WorldWideScience

Sample records for optimal drug therapy

  1. Algorithms for optimizing drug therapy

    Directory of Open Access Journals (Sweden)

    Martin Lene

    2004-07-01

    Full Text Available Abstract Background Drug therapy has become increasingly efficient, with more drugs available for treatment of an ever-growing number of conditions. Yet, drug use is reported to be sub optimal in several aspects, such as dosage, patient's adherence and outcome of therapy. The aim of the current study was to investigate the possibility to optimize drug therapy using computer programs, available on the Internet. Methods One hundred and ten officially endorsed text documents, published between 1996 and 2004, containing guidelines for drug therapy in 246 disorders, were analyzed with regard to information about patient-, disease- and drug-related factors and relationships between these factors. This information was used to construct algorithms for identifying optimum treatment in each of the studied disorders. These algorithms were categorized in order to define as few models as possible that still could accommodate the identified factors and the relationships between them. The resulting program prototypes were implemented in HTML (user interface and JavaScript (program logic. Results Three types of algorithms were sufficient for the intended purpose. The simplest type is a list of factors, each of which implies that the particular patient should or should not receive treatment. This is adequate in situations where only one treatment exists. The second type, a more elaborate model, is required when treatment can by provided using drugs from different pharmacological classes and the selection of drug class is dependent on patient characteristics. An easily implemented set of if-then statements was able to manage the identified information in such instances. The third type was needed in the few situations where the selection and dosage of drugs were depending on the degree to which one or more patient-specific factors were present. In these cases the implementation of an established decision model based on fuzzy sets was required. Computer programs

  2. Optimal Control of Drug Therapy in a Hepatitis B Model

    Directory of Open Access Journals (Sweden)

    Jonathan E. Forde

    2016-08-01

    Full Text Available Combination antiviral drug therapy improves the survival rates of patients chronically infected with hepatitis B virus by controlling viral replication and enhancing immune responses. Some of these drugs have side effects that make them unsuitable for long-term administration. To address the trade-off between the positive and negative effects of the combination therapy, we investigated an optimal control problem for a delay differential equation model of immune responses to hepatitis virus B infection. Our optimal control problem investigates the interplay between virological and immunomodulatory effects of therapy, the control of viremia and the administration of the minimal dosage over a short period of time. Our numerical results show that the high drug levels that induce immune modulation rather than suppression of virological factors are essential for the clearance of hepatitis B virus.

  3. Open source machine-learning algorithms for the prediction of optimal cancer drug therapies.

    Science.gov (United States)

    Huang, Cai; Mezencev, Roman; McDonald, John F; Vannberg, Fredrik

    2017-01-01

    Precision medicine is a rapidly growing area of modern medical science and open source machine-learning codes promise to be a critical component for the successful development of standardized and automated analysis of patient data. One important goal of precision cancer medicine is the accurate prediction of optimal drug therapies from the genomic profiles of individual patient tumors. We introduce here an open source software platform that employs a highly versatile support vector machine (SVM) algorithm combined with a standard recursive feature elimination (RFE) approach to predict personalized drug responses from gene expression profiles. Drug specific models were built using gene expression and drug response data from the National Cancer Institute panel of 60 human cancer cell lines (NCI-60). The models are highly accurate in predicting the drug responsiveness of a variety of cancer cell lines including those comprising the recent NCI-DREAM Challenge. We demonstrate that predictive accuracy is optimized when the learning dataset utilizes all probe-set expression values from a diversity of cancer cell types without pre-filtering for genes generally considered to be "drivers" of cancer onset/progression. Application of our models to publically available ovarian cancer (OC) patient gene expression datasets generated predictions consistent with observed responses previously reported in the literature. By making our algorithm "open source", we hope to facilitate its testing in a variety of cancer types and contexts leading to community-driven improvements and refinements in subsequent applications.

  4. Open source machine-learning algorithms for the prediction of optimal cancer drug therapies.

    Directory of Open Access Journals (Sweden)

    Cai Huang

    Full Text Available Precision medicine is a rapidly growing area of modern medical science and open source machine-learning codes promise to be a critical component for the successful development of standardized and automated analysis of patient data. One important goal of precision cancer medicine is the accurate prediction of optimal drug therapies from the genomic profiles of individual patient tumors. We introduce here an open source software platform that employs a highly versatile support vector machine (SVM algorithm combined with a standard recursive feature elimination (RFE approach to predict personalized drug responses from gene expression profiles. Drug specific models were built using gene expression and drug response data from the National Cancer Institute panel of 60 human cancer cell lines (NCI-60. The models are highly accurate in predicting the drug responsiveness of a variety of cancer cell lines including those comprising the recent NCI-DREAM Challenge. We demonstrate that predictive accuracy is optimized when the learning dataset utilizes all probe-set expression values from a diversity of cancer cell types without pre-filtering for genes generally considered to be "drivers" of cancer onset/progression. Application of our models to publically available ovarian cancer (OC patient gene expression datasets generated predictions consistent with observed responses previously reported in the literature. By making our algorithm "open source", we hope to facilitate its testing in a variety of cancer types and contexts leading to community-driven improvements and refinements in subsequent applications.

  5. Artificial intelligence in drug combination therapy.

    Science.gov (United States)

    Tsigelny, Igor F

    2018-02-09

    Currently, the development of medicines for complex diseases requires the development of combination drug therapies. It is necessary because in many cases, one drug cannot target all necessary points of intervention. For example, in cancer therapy, a physician often meets a patient having a genomic profile including more than five molecular aberrations. Drug combination therapy has been an area of interest for a while, for example the classical work of Loewe devoted to the synergism of drugs was published in 1928-and it is still used in calculations for optimal drug combinations. More recently, over the past several years, there has been an explosion in the available information related to the properties of drugs and the biomedical parameters of patients. For the drugs, hundreds of 2D and 3D molecular descriptors for medicines are now available, while for patients, large data sets related to genetic/proteomic and metabolomics profiles of the patients are now available, as well as the more traditional data relating to the histology, history of treatments, pretreatment state of the organism, etc. Moreover, during disease progression, the genetic profile can change. Thus, the ability to optimize drug combinations for each patient is rapidly moving beyond the comprehension and capabilities of an individual physician. This is the reason, that biomedical informatics methods have been developed and one of the more promising directions in this field is the application of artificial intelligence (AI). In this review, we discuss several AI methods that have been successfully implemented in several instances of combination drug therapy from HIV, hypertension, infectious diseases to cancer. The data clearly show that the combination of rule-based expert systems with machine learning algorithms may be promising direction in this field. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Optimization of personalized therapies for anticancer treatment.

    Science.gov (United States)

    Vazquez, Alexei

    2013-04-12

    As today, there are hundreds of targeted therapies for the treatment of cancer, many of which have companion biomarkers that are in use to inform treatment decisions. If we would consider this whole arsenal of targeted therapies as a treatment option for every patient, very soon we will reach a scenario where each patient is positive for several markers suggesting their treatment with several targeted therapies. Given the documented side effects of anticancer drugs, it is clear that such a strategy is unfeasible. Here, we propose a strategy that optimizes the design of combinatorial therapies to achieve the best response rates with the minimal toxicity. In this methodology markers are assigned to drugs such that we achieve a high overall response rate while using personalized combinations of minimal size. We tested this methodology in an in silico cancer patient cohort, constructed from in vitro data for 714 cell lines and 138 drugs reported by the Sanger Institute. Our analysis indicates that, even in the context of personalized medicine, combinations of three or more drugs are required to achieve high response rates. Furthermore, patient-to-patient variations in pharmacokinetics have a significant impact in the overall response rate. A 10 fold increase in the pharmacokinetics variations resulted in a significant drop the overall response rate. The design of optimal combinatorial therapy for anticancer treatment requires a transition from the one-drug/one-biomarker approach to global strategies that simultaneously assign makers to a catalog of drugs. The methodology reported here provides a framework to achieve this transition.

  7. Drug cocktail optimization in chemotherapy of cancer.

    Directory of Open Access Journals (Sweden)

    Saskia Preissner

    Full Text Available BACKGROUND: In general, drug metabolism has to be considered to avoid adverse effects and ineffective therapy. In particular, chemotherapeutic drug cocktails strain drug metabolizing enzymes especially the cytochrome P450 family (CYP. Furthermore, a number of important chemotherapeutic drugs such as cyclophosphamide, ifosfamide, tamoxifen or procarbazine are administered as prodrugs and have to be activated by CYP. Therefore, the genetic variability of these enzymes should be taken into account to design appropriate therapeutic regimens to avoid inadequate drug administration, toxicity and inefficiency. OBJECTIVE: The aim of this work was to find drug interactions and to avoid side effects or ineffective therapy in chemotherapy. DATA SOURCES AND METHODS: Information on drug administration in the therapy of leukemia and their drug metabolism was collected from scientific literature and various web resources. We carried out an automated textmining approach. Abstracts of PubMed were filtered for relevant articles using specific keywords. Abstracts were automatically screened for antineoplastic drugs and their synonyms in combination with a set of human CYPs in title or abstract. RESULTS: We present a comprehensive analysis of over 100 common cancer treatment regimens regarding drug-drug interactions and present alternatives avoiding CYP overload. Typical concomitant medication, e.g. antiemetics or antibiotics is a preferred subject to improvement. A webtool, which allows drug cocktail optimization was developed and is publicly available on http://bioinformatics.charite.de/chemotherapy.

  8. Optimizing clinical drug product performance

    DEFF Research Database (Denmark)

    Dickinson, Paul A.; Kesisoglou, Filippos; Flanagan, Talia

    2016-01-01

    The aim of Biopharmaceutics Risk Assessment Roadmap (BioRAM) and the BioRAM Scoring Grid is to facilitate optimization of clinical performance of drug products. BioRAM strategy relies on therapy-driven drug delivery and follows an integrated systems approach for formulating and addressing critical...... questions and decision-making (J Pharm Sci. 2014,103(11): 3777-97). In BioRAM, risk is defined as not achieving the intended in vivo drug product performance, and success is assessed by time to decision-making and action. Emphasis on time to decision-making and time to action highlights the value of well....... Application of the BioRAM Scoring Grid is illustrated using published literature. Organizational considerations for implementing BioRAM strategy, including the interactions, function, and skillsets of the BioRAM group members, are also reviewed. As a creative and innovative systems approach, we believe...

  9. Modeling antibiotic treatment in hospitals: A systematic approach shows benefits of combination therapy over cycling, mixing, and mono-drug therapies.

    Science.gov (United States)

    Tepekule, Burcu; Uecker, Hildegard; Derungs, Isabel; Frenoy, Antoine; Bonhoeffer, Sebastian

    2017-09-01

    Multiple treatment strategies are available for empiric antibiotic therapy in hospitals, but neither clinical studies nor theoretical investigations have yielded a clear picture when which strategy is optimal and why. Extending earlier work of others and us, we present a mathematical model capturing treatment strategies using two drugs, i.e the multi-drug therapies referred to as cycling, mixing, and combination therapy, as well as monotherapy with either drug. We randomly sample a large parameter space to determine the conditions determining success or failure of these strategies. We find that combination therapy tends to outperform the other treatment strategies. By using linear discriminant analysis and particle swarm optimization, we find that the most important parameters determining success or failure of combination therapy relative to the other treatment strategies are the de novo rate of emergence of double resistance in patients infected with sensitive bacteria and the fitness costs associated with double resistance. The rate at which double resistance is imported into the hospital via patients admitted from the outside community has little influence, as all treatment strategies are affected equally. The parameter sets for which combination therapy fails tend to fall into areas with low biological plausibility as they are characterised by very high rates of de novo emergence of resistance to both drugs compared to a single drug, and the cost of double resistance is considerably smaller than the sum of the costs of single resistance.

  10. Drug-drug interactions between anti-retroviral therapies and drugs of abuse in HIV systems.

    Science.gov (United States)

    Kumar, Santosh; Rao, P S S; Earla, Ravindra; Kumar, Anil

    2015-03-01

    Substance abuse is a common problem among HIV-infected individuals. Importantly, addictions as well as moderate use of alcohol, smoking, or other illicit drugs have been identified as major reasons for non-adherence to antiretroviral therapy (ART) among HIV patients. The literature also suggests a decrease in the response to ART among HIV patients who use these substances, leading to failure to achieve optimal virological response and increased disease progression. This review discusses the challenges with adherence to ART as well as observed drug interactions and known toxicities with major drugs of abuse, such as alcohol, smoking, methamphetamine, cocaine, marijuana, and opioids. The lack of adherence and drug interactions potentially lead to decreased efficacy of ART drugs and increased ART, and drugs of abuse-mediated toxicity. As CYP is the common pathway in metabolizing both ART and drugs of abuse, we discuss the possible involvement of CYP pathways in such drug interactions. We acknowledge that further studies focusing on common metabolic pathways involving CYP and advance research in this area would help to potentially develop novel/alternate interventions and drug dose/regimen adjustments to improve medication outcomes in HIV patients who consume drugs of abuse.

  11. Optimization of Drug Delivery by Drug-Eluting Stents.

    Directory of Open Access Journals (Sweden)

    Franz Bozsak

    Full Text Available Drug-eluting stents (DES, which release anti-proliferative drugs into the arterial wall in a controlled manner, have drastically reduced the rate of in-stent restenosis and revolutionized the treatment of atherosclerosis. However, late stent thrombosis remains a safety concern in DES, mainly due to delayed healing of the endothelial wound inflicted during DES implantation. We present a framework to optimize DES design such that restenosis is inhibited without affecting the endothelial healing process. To this end, we have developed a computational model of fluid flow and drug transport in stented arteries and have used this model to establish a metric for quantifying DES performance. The model takes into account the multi-layered structure of the arterial wall and incorporates a reversible binding model to describe drug interaction with the cells of the arterial wall. The model is coupled to a novel optimization algorithm that allows identification of optimal DES designs. We show that optimizing the period of drug release from DES and the initial drug concentration within the coating has a drastic effect on DES performance. Paclitaxel-eluting stents perform optimally by releasing their drug either very rapidly (within a few hours or very slowly (over periods of several months up to one year at concentrations considerably lower than current DES. In contrast, sirolimus-eluting stents perform optimally only when drug release is slow. The results offer explanations for recent trends in the development of DES and demonstrate the potential for large improvements in DES design relative to the current state of commercial devices.

  12. Bisphosphonate Treatment in Osteoporosis: Optimal Duration of Therapy and the Incorporation of a Drug Holiday.

    Science.gov (United States)

    Villa, Jordan C; Gianakos, Arianna; Lane, Joseph M

    2016-02-01

    Bisphosphonates are the most widely used treatment for osteoporosis. They accumulate in the bone for years, and therefore, their inhibitory effects on osteoclasts may persist after drug discontinuation. The ideal duration of therapy remains controversial. The purpose of this study is to review the literature to determine the (1) indications for drug holiday, (2) the duration of drug holiday, (3) the evaluation during drug holiday, and (4) the proper treatment and maintenance after drug holiday. A review of two electronic databases (PubMed/MEDLINE and EMBASE) was conducted using the term "(Drug holiday)," in January 29, 2015. Inclusion criteria were as follows: (1) clinical trials and case control, (2) human studies, (3) published in a peer-review journal, and (4) written in English. Exclusion criteria were as follows: (1) case reports, (2) case series, and (3) in vitro studies. The literature supports a therapeutic pause after 3-5 years of bisphosphonate treatment in patients with minor bone deficiencies and no recent fragility fracture (low risk) and in patients with moderate bone deficiencies and/or recent fragility fracture (moderate risk). In these patients, a bone health reevaluation is recommended every 1-3 years. Patients with high fracture risk should be maintained on bisphosphonate therapy without drug holiday. The duration and length of drug holiday should be individualized for each patient. Evaluation should be based on serial bone mass measurements, bone turnover rates, and fracture history evaluation. If after drug therapy, assessments show an increased risk of fracture, the patient may benefit from initiating another treatment. Raloxifene, teriparatide, or denosumab are available options.

  13. The optimal time of discontinuing methimazole before radioiodine therapy

    International Nuclear Information System (INIS)

    Moosavi, Z.; Zakavi, R.

    2001-01-01

    Hyperthyroidism is a common disease and one of the best methods for its treatment is radioiodine therapy with Treatment with antithyroid drugs brings patients to euthyroidism before radioiodine therapy. Antithyroid drugs should be discontinued before radioiodine therapy to increase thyroid uptake. The purpose of this study was to determine the optimal time of methimazole discontinuation. One hundred eighty four patients, who were referred for radioiodine therapy were classified in 3 groups according to the duration of methimazole discontinuation before thyroid uptake (RAIU) measurement. Group 1,2 and 3 were patients who discontinued methimazole (48-72 h rs), (72-120 h rs) and more than 120 h rs before RAIU measurement, respectively. Mean thyroid uptake in group 1, 2 and 3 was (64±151.1%), (60.1±14.1%) and (59.3±12.8), respectively. No significant difference was noted in thyroid uptake between these groups (F= 1.83, P<0.16). This study shows that 48-72 h rs of methimazole discontinuation before radioiodine therapy is enough and longer term abstention is not associated with higher uptake

  14. Visualization of network target crosstalk optimizes drug synergism in myocardial ischemia.

    Directory of Open Access Journals (Sweden)

    Xiaojing Wan

    Full Text Available Numerous drugs and compounds have been validated as protecting against myocardial ischemia (MI, a leading cause of heart failure; however, synergistic possibilities among them have not been systematically explored. Thus, there appears to be significant room for optimization in the field of drug combination therapy for MI. Here, we propose an easy approach for the identification and optimization of MI-related synergistic drug combinations via visualization of the crosstalk between networks of drug targets corresponding to different drugs (each drug has a unique network of targets. As an example, in the present study, 28 target crosstalk networks (TCNs of random pairwise combinations of 8 MI-related drugs (curcumin, capsaicin, celecoxib, raloxifene, silibinin, sulforaphane, tacrolimus, and tamoxifen were established to illustrate the proposed method. The TCNs revealed a high likelihood of synergy between curcumin and the other drugs, which was confirmed by in vitro experiments. Further drug combination optimization showed a synergistic protective effect of curcumin, celecoxib, and sililinin in combination against H₂O₂-induced ischemic injury of cardiomyocytes at a relatively low concentration of 500 nM. This result is in agreement with the earlier finding of a denser and modular functional crosstalk between their networks of targets in the regulation of cell apoptosis. Our study offers a simple approach to rapidly search for and optimize potent synergistic drug combinations, which can be used for identifying better MI therapeutic strategies. Some new light was also shed on the characteristic features of drug synergy, suggesting that it is possible to apply this method to other complex human diseases.

  15. Visualization of network target crosstalk optimizes drug synergism in myocardial ischemia.

    Science.gov (United States)

    Wan, Xiaojing; Meng, Jia; Dai, Yingnan; Zhang, Yina; Yan, Shuang

    2014-01-01

    Numerous drugs and compounds have been validated as protecting against myocardial ischemia (MI), a leading cause of heart failure; however, synergistic possibilities among them have not been systematically explored. Thus, there appears to be significant room for optimization in the field of drug combination therapy for MI. Here, we propose an easy approach for the identification and optimization of MI-related synergistic drug combinations via visualization of the crosstalk between networks of drug targets corresponding to different drugs (each drug has a unique network of targets). As an example, in the present study, 28 target crosstalk networks (TCNs) of random pairwise combinations of 8 MI-related drugs (curcumin, capsaicin, celecoxib, raloxifene, silibinin, sulforaphane, tacrolimus, and tamoxifen) were established to illustrate the proposed method. The TCNs revealed a high likelihood of synergy between curcumin and the other drugs, which was confirmed by in vitro experiments. Further drug combination optimization showed a synergistic protective effect of curcumin, celecoxib, and sililinin in combination against H₂O₂-induced ischemic injury of cardiomyocytes at a relatively low concentration of 500 nM. This result is in agreement with the earlier finding of a denser and modular functional crosstalk between their networks of targets in the regulation of cell apoptosis. Our study offers a simple approach to rapidly search for and optimize potent synergistic drug combinations, which can be used for identifying better MI therapeutic strategies. Some new light was also shed on the characteristic features of drug synergy, suggesting that it is possible to apply this method to other complex human diseases.

  16. Assessment of patients' knowledge of their drug therapy in a ...

    African Journals Online (AJOL)

    Patients' knowledge of their medications is an important factor in ensuring adherence. Medication adherence is essential for rational drug use and derivation of optimal therapy. This study was conducted to assess knowledge of outpatients regarding their medications. A well structured questionnaire was administered to 200 ...

  17. Optimizing biological therapy in Crohn's disease.

    Science.gov (United States)

    Gecse, Krisztina Barbara; Végh, Zsuzsanna; Lakatos, Péter László

    2016-01-01

    Anti-TNF therapy has revolutionized the treatment of inflammatory bowel diseases, including both Crohn's disease and ulcerative colitis. However, a significant proportion of patients does not respond to anti-TNF agents or lose response over time. Recently, therapeutic drug monitoring has gained a major role in identifying the mechanism and management of loss of response. The aim of this review article is to summarize the predictors of efficacy and outcomes, the different mechanisms of anti-TNF/biological failure in Crohn's disease and identify strategies to optimize biological treatment.

  18. Brand-name drug, generic drug, orphan drug. Pharmacological therapy with biosimilar drugs - provision of due diligence in the treatment process.

    Science.gov (United States)

    Zajdel, Justyna; Zajdel, Radosław

    2013-01-01

    Due diligence in the process of provision of healthcare services refers, among other elements, to the application of pharmacological therapy at a time which offers the greatest chance for a successful outcome of treatment, i.e. for achieving the optimum expected effect understood as an improvement in the patient's health, reduction of health risks or elimination of the disease. However, due diligence may also refer to actions aimed at ensuring that neither the patient nor the healthcare payer is required to incur unreasonable costs in the process of treatment. The validity of that statement stems not only from normative acts but also from ethical standards laid down in the Medical Code of Ethics (Article 57 section 2). It often happens that the provision of optimal treatment calls for deviations from the formal provisions included in Summary Product Characteristics (SPCs), and the application of drugs that are bioequivalent to reference drugs, which translates into a significant reduction of costs. The present study addresses the problem of acceptability of a specific form of drug substitution consisting in the replacement of a reference drug with a generic drug. Also explored are legal aspects associated with the possibility of therapy based on "off-label use". The study reviews normative acts existing in the Polish and EU legislation. It also provides a clear definition of orphan drug, which has made it possible to make a distinction and investigate mutual relations between the concepts of brand-name (reference) drug, orphan drug and generic drug.

  19. Optimizing empiric therapy for Gram-negative bloodstream infections in children.

    Science.gov (United States)

    Chao, Y; Reuter, C; Kociolek, L K; Patel, R; Zheng, X; Patel, S J

    2018-06-01

    Antimicrobial stewardship can be challenging in children with bloodstream infections (BSIs) caused by Gram-negative bacilli (GNB). This retrospective cohort study explored how data elements in the electronic health record could potentially optimize empiric antibiotic therapy for BSIs caused by GNB, via the construction of customized antibiograms for categorical GNB infections and identification of opportunities to minimize organism-drug mismatch and decrease time to effective therapy. Our results suggest potential strategies that could be implemented at key decision points in prescribing at initiation, modification, and targeting of therapy. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  20. On the MTD paradigm and optimal control for multi-drug cancer chemotherapy.

    Science.gov (United States)

    Ledzewicz, Urszula; Schättler, Heinz; Gahrooi, Mostafa Reisi; Dehkordi, Siamak Mahmoudian

    2013-06-01

    In standard chemotherapy protocols, drugs are given at maximum tolerated doses (MTD) with rest periods in between. In this paper, we briey discuss the rationale behind this therapy approach and, using as example multidrug cancer chemotherapy with a cytotoxic and cytostatic agent, show that these types of protocols are optimal in the sense of minimizing a weighted average of the number of tumor cells (taken both at the end of therapy and at intermediate times) and the total dose given if it is assumed that the tumor consists of a homogeneous population of chemotherapeutically sensitive cells. A 2-compartment linear model is used to model the pharmacokinetic equations for the drugs.

  1. Brand-name drug, generic drug, orphan drug. Pharmacological therapy with biosimilar drugs – provision of due diligence in the treatment process

    Science.gov (United States)

    Zajdel, Justyna

    2013-01-01

    Due diligence in the process of provision of healthcare services refers, among other elements, to the application of pharmacological therapy at a time which offers the greatest chance for a successful outcome of treatment, i.e. for achieving the optimum expected effect understood as an improvement in the patient's health, reduction of health risks or elimination of the disease. However, due diligence may also refer to actions aimed at ensuring that neither the patient nor the healthcare payer is required to incur unreasonable costs in the process of treatment. The validity of that statement stems not only from normative acts but also from ethical standards laid down in the Medical Code of Ethics (Article 57 section 2). It often happens that the provision of optimal treatment calls for deviations from the formal provisions included in Summary Product Characteristics (SPCs), and the application of drugs that are bioequivalent to reference drugs, which translates into a significant reduction of costs. The present study addresses the problem of acceptability of a specific form of drug substitution consisting in the replacement of a reference drug with a generic drug. Also explored are legal aspects associated with the possibility of therapy based on “off-label use”. The study reviews normative acts existing in the Polish and EU legislation. It also provides a clear definition of orphan drug, which has made it possible to make a distinction and investigate mutual relations between the concepts of brand-name (reference) drug, orphan drug and generic drug. PMID:24592133

  2. Application of Feedback System Control Optimization Technique in Combined Use of Dual Antiplatelet Therapy and Herbal Medicines

    Directory of Open Access Journals (Sweden)

    Wang Liu

    2018-05-01

    Full Text Available Aim: Combined use of herbal medicines in patients underwent dual antiplatelet therapy (DAPT might cause bleeding or thrombosis because herbal medicines with anti-platelet activities may exhibit interactions with DAPT. In this study, we tried to use a feedback system control (FSC optimization technique to optimize dose strategy and clarify possible interactions in combined use of DAPT and herbal medicines.Methods: Herbal medicines with reported anti-platelet activities were selected by searching related references in Pubmed. Experimental anti-platelet activities of representative compounds originated from these herbal medicines were investigated using in vitro assay, namely ADP-induced aggregation of rat platelet-rich-plasma. FSC scheme hybridized artificial intelligence calculation and bench experiments to iteratively optimize 4-drug combination and 2-drug combination from these drug candidates.Results: Totally 68 herbal medicines were reported to have anti-platelet activities. In the present study, 7 representative compounds from these herbal medicines were selected to study combinatorial drug optimization together with DAPT, i.e., aspirin and ticagrelor. FSC technique first down-selected 9 drug candidates to the most significant 5 drugs. Then, FSC further secured 4 drugs in the optimal combination, including aspirin, ticagrelor, ferulic acid from DangGui, and forskolin from MaoHouQiaoRuiHua. Finally, FSC quantitatively estimated the possible interactions between aspirin:ticagrelor, aspirin:ferulic acid, ticagrelor:forskolin, and ferulic acid:forskolin. The estimation was further verified by experimentally determined Combination Index (CI values.Conclusion: Results of the present study suggested that FSC optimization technique could be used in optimization of anti-platelet drug combinations and might be helpful in designing personal anti-platelet therapy strategy. Furthermore, FSC analysis could also identify interactions between different

  3. Microsponges based novel drug delivery system for augmented arthritis therapy.

    Science.gov (United States)

    Osmani, Riyaz Ali M; Aloorkar, Nagesh H; Ingale, Dipti J; Kulkarni, Parthasarathi K; Hani, Umme; Bhosale, Rohit R; Jayachandra Dev, Dandasi

    2015-10-01

    The motive behind present work was to formulate and evaluate gel containing microsponges of diclofenac diethylamine to provide prolonged release for proficient arthritis therapy. Quasi-emulsion solvent diffusion method was implied using Eudragit RS-100 and microsponges with varied drug-polymer ratios were prepared. For the sake of optimization, diverse factors affecting microparticles physical properties were too investigated. Microsponges were characterized by SEM, DSC, FT-IR, XRPD and particle size analysis, and evaluated for morphology, drug loading, in vitro drug release and ex vivo diffusion as well. There were no chemical interactions between drug and polymers used as revealed by compatibility studies outcomes. The drug polymer ratio reflected notable effect on drug content, encapsulation efficiency and particle size. SEM results revealed spherical microsponges with porous surface, and had 7.21 μm mean particle size. The microsponges were then incorporated in gel; which exhibited viscous modulus along with pseudoplastic behavior. In vitro drug release results depicted that microsponges with 1:2 drug-polymer ratio were more efficient to give extended drug release of 75.88% at the end of 8 h; while conventional formulation get exhausted incredibly earlier by releasing 81.11% drug at the end of 4 h only. Thus the formulated microsponge-based gel of diclofenac diethylamine would be a promising alternative to conventional therapy for safer and efficient treatment of arthritis and musculoskeletal disorders.

  4. Predicting targeted drug combinations based on Pareto optimal patterns of coexpression network connectivity.

    Science.gov (United States)

    Penrod, Nadia M; Greene, Casey S; Moore, Jason H

    2014-01-01

    Molecularly targeted drugs promise a safer and more effective treatment modality than conventional chemotherapy for cancer patients. However, tumors are dynamic systems that readily adapt to these agents activating alternative survival pathways as they evolve resistant phenotypes. Combination therapies can overcome resistance but finding the optimal combinations efficiently presents a formidable challenge. Here we introduce a new paradigm for the design of combination therapy treatment strategies that exploits the tumor adaptive process to identify context-dependent essential genes as druggable targets. We have developed a framework to mine high-throughput transcriptomic data, based on differential coexpression and Pareto optimization, to investigate drug-induced tumor adaptation. We use this approach to identify tumor-essential genes as druggable candidates. We apply our method to a set of ER(+) breast tumor samples, collected before (n = 58) and after (n = 60) neoadjuvant treatment with the aromatase inhibitor letrozole, to prioritize genes as targets for combination therapy with letrozole treatment. We validate letrozole-induced tumor adaptation through coexpression and pathway analyses in an independent data set (n = 18). We find pervasive differential coexpression between the untreated and letrozole-treated tumor samples as evidence of letrozole-induced tumor adaptation. Based on patterns of coexpression, we identify ten genes as potential candidates for combination therapy with letrozole including EPCAM, a letrozole-induced essential gene and a target to which drugs have already been developed as cancer therapeutics. Through replication, we validate six letrozole-induced coexpression relationships and confirm the epithelial-to-mesenchymal transition as a process that is upregulated in the residual tumor samples following letrozole treatment. To derive the greatest benefit from molecularly targeted drugs it is critical to design combination

  5. [Combination drug therapy in leprosy].

    Science.gov (United States)

    Terencio de las Aguas, J

    1983-01-01

    The importance of polichemotherapy in multibacilar leprosy (LL and LD) in patients without any previous therapy as in those diagnosticated and under monotherapy most of all in the resistance patients is presented. Sulphones, clofazimine and rifampicine are selected as first rate drugs and protionamide-etionamide as second rate drugs. The therapy plans with the association of two and three drugs and the convenience of continuing indefinitely with at least one of the drugs are presented insisting on the advantages of the clofazimine-sulphones and rifampicine-sulphones associations. The necessity of immunotherapy for recover of celular immunity against the bacilus, is the only form of preventing relapses and drug resistance.

  6. Drug interactions between common illicit drugs and prescription therapies.

    Science.gov (United States)

    Lindsey, Wesley T; Stewart, David; Childress, Darrell

    2012-07-01

    The aim was to summarize the clinical literature on interactions between common illicit drugs and prescription therapies. Medline, Iowa Drug Information Service, International Pharmaceutical Abstracts, EBSCO Academic Search Premier, and Google Scholar were searched from date of origin of database to March 2011. Search terms were cocaine, marijuana, cannabis, methamphetamine, amphetamine, ecstasy, N-methyl-3,4-methylenedioxymethamphetamine, methylenedioxymethamphetamine, heroin, gamma-hydroxybutyrate, sodium oxybate, and combined with interactions, drug interactions, and drug-drug interactions. This review focuses on established clinical evidence. All applicable full-text English language articles and abstracts found were evaluated and included in the review as appropriate. The interactions of illicit drugs with prescription therapies have the ability to potentiate or attenuate the effects of both the illicit agent and/or the prescription therapeutic agent, which can lead to toxic effects or a reduction in the prescription agent's therapeutic activity. Most texts and databases focus on theoretical or probable interactions due to the kinetic properties of the drugs and do not fully explore the pharmacodynamic and clinical implications of these interactions. Clinical trials with coadministration of illicit drugs and prescription drugs are discussed along with case reports that demonstrate a potential interaction between agents. The illicit drugs discussed are cocaine, marijuana, amphetamines, methylenedioxymethamphetamine, heroin, and sodium oxybate. Although the use of illicit drugs is widespread, there are little experimental or clinical data regarding the effects of these agents on common prescription therapies. Potential drug interactions between illicit drugs and prescription drugs are described and evaluated on the Drug Interaction Probability Scale by Horn and Hansten.

  7. Drug therapy of leprosy

    Directory of Open Access Journals (Sweden)

    A. A. Kubanov

    2016-01-01

    Full Text Available Leprosy (Hansen’s disease is a chronic granulomatous bacterial infection mainly affecting the skin and peripheral nervous system yet also involving other organs and systems as a result of a pathological process. The causative agent of leprosy - Mycobacterium leprae - is an obligate intracellular microorganism. Despite the removal of a threat of a leprosy epidemic, European countries still record outbreaks of the disease mainly among migrants coming from endemic areas. A golden standard of the treatment of leprosy is a WHO-recommended combined drug therapy comprising drugs such as dapsone, clofazimine and rifampicin. The article provides current data on the mechanisms of action, efficacy and safety of these drugs and their combined scheme of treatment obtained as a result of clinical trials. Moreover, it also reviews new regimens of the drug therapy of leprosy including those with the use of drugs from the group of fluoroquinols as well as immunotherapy of the disease.

  8. Analysis of combination drug therapy to develop regimens with shortened duration of treatment for tuberculosis.

    Directory of Open Access Journals (Sweden)

    George L Drusano

    Full Text Available Tuberculosis remains a worldwide problem, particularly with the advent of multi-drug resistance. Shortening therapy duration for Mycobacterium tuberculosis is a major goal, requiring generation of optimal kill rate and resistance-suppression. Combination therapy is required to attain the goal of shorter therapy.Our objective was to identify a method for identifying optimal combination chemotherapy. We developed a mathematical model for attaining this end. This is accomplished by identifying drug effect interaction (synergy, additivity, antagonism for susceptible organisms and subpopulations resistant to each drug in the combination.We studied the combination of linezolid plus rifampin in our hollow fiber infection model. We generated a fully parametric drug effect interaction mathematical model. The results were subjected to Monte Carlo simulation to extend the findings to a population of patients by accounting for between-patient variability in drug pharmacokinetics.All monotherapy allowed emergence of resistance over the first two weeks of the experiment. In combination, the interaction was additive for each population (susceptible and resistant. For a 600 mg/600 mg daily regimen of linezolid plus rifampin, we demonstrated that >50% of simulated subjects had eradicated the susceptible population by day 27 with the remaining organisms resistant to one or the other drug. Only 4% of patients had complete organism eradication by experiment end.These data strongly suggest that in order to achieve the goal of shortening therapy, the original regimen may need to be changed at one month to a regimen of two completely new agents with resistance mechanisms independent of the initial regimen. This hypothesis which arose from the analysis is immediately testable in a clinical trial.

  9. Antiretroviral therapy: current drugs.

    Science.gov (United States)

    Pau, Alice K; George, Jomy M

    2014-09-01

    The rapid advances in drug discovery and the development of antiretroviral therapy is unprecedented in the history of modern medicine. The administration of chronic combination antiretroviral therapy targeting different stages of the human immunodeficiency virus' replicative life cycle allows for durable and maximal suppression of plasma viremia. This suppression has resulted in dramatic improvement of patient survival. This article reviews the history of antiretroviral drug development and discusses the clinical pharmacology, efficacy, and toxicities of the antiretroviral agents most commonly used in clinical practice to date. Published by Elsevier Inc.

  10. Drug therapy in headache.

    Science.gov (United States)

    Weatherall, Mark W

    2015-06-01

    All physicians will encounter patients with headaches. Primary headache disorders are common, and often disabling. This paper reviews the principles of drug therapy in headache in adults, focusing on the three commonest disorders presenting in both primary and secondary care: tension-type headache, migraine and cluster headache. The clinical evidence on the basis of which choices can be made between the currently available drug therapies for acute and preventive treatment of these disorders is presented, and information given on the options available for the emergency parenteral treatment of refractory migraine attacks and cluster headache. © Royal College of Physicians 2015. All rights reserved.

  11. Drug delivery system and radiation therapy

    International Nuclear Information System (INIS)

    Shibata, Tokushi

    2005-01-01

    This paper describes the review of radiation therapy, neutron capture therapy (NCT) and drug delivery system for the latter. In cancer radiation therapy, there are problems of body movement like breathing, needless irradiation of normal tissues, difficulty to decide the correct irradiation position and tumor morphology. NCT has advantages to overcome these, and since boron has a big cross section for thermal neutron, NPT uses the reaction 10 B(n, α) 7 Li in the target cancer which previously incorporated the boron-containing drug. During the period 1966-1996, 246 patients were treated with this in Japan and the treatment has been continued thereafter. The tasks for NCT are developments of drug delivery system efficient to deliver the drug into the tumor and of convenient neutron source like the accelerator. (S.I.)

  12. Behaviour therapy for obesity treatment considering approved drug therapy

    Directory of Open Access Journals (Sweden)

    Wasem, Jürgen

    2008-05-01

    Full Text Available Introduction: Obesity is a worldwide health problem whose prevalence is on the increase. Many obesity-associated diseases require intensive medical treatment and are the cause of a large proportion of health-related expenditures in Germany. Treatment of obesity includes nutritional, exercise and behaviour therapy, usually in combination. The goal of behaviour therapy for obesity is to bring about a long-term alteration in the eating and exercise habits of overweight and obese individuals. Under certain circumstances, drug treatment may be indicated. Objectives: What is the effectiveness of behaviour therapy for obesity considering approved drugs reduce weight under medical, economic, ethical-social and legal aspects? Methods: A systematic review was conducted using relevant electronic literature databases. Publications chosen according to predefined criteria are evaluated by approved methodical standards of the evidence-based medicine systematically and qualitatively. Results: In total 18 studies, included one HTA and one meta-analysis could be identified according to the predefined inclusion criteria. Three studies compare behaviour therapy to other therapy forms (advice or instruction on nutritional changes, physical activity or a combination of the two, six studies evaluate different forms of behaviour therapy, four studies and four studies compare behaviour therapies mediated by Internet or telephone. Three studies could be identified examining the effect of the combination of behaviour and drug therapy. Furthermore one HTA and one meta-analysis could be included in the evaluation. The behaviour therapy in comparison with other therapy forms reveals a higher effectiveness. In comparison of the different therapeutic approaches of the behaviour therapy intensive behaviour therapy forms and group therapy show a higher effectiveness. Studies related to behaviour therapy based on media support demonstrate a weight reduction both through the

  13. Design, Characterization, and Optimization of Controlled Drug Delivery System Containing Antibiotic Drug/s

    Directory of Open Access Journals (Sweden)

    Apurv Patel

    2016-01-01

    Full Text Available The objective of this work was design, characterization, and optimization of controlled drug delivery system containing antibiotic drug/s. Osmotic drug delivery system was chosen as controlled drug delivery system. The porous osmotic pump tablets were designed using Plackett-Burman and Box-Behnken factorial design to find out the best formulation. For screening of three categories of polymers, six independent variables were chosen for Plackett-Burman design. Osmotic agent sodium chloride and microcrystalline cellulose, pore forming agent sodium lauryl sulphate and sucrose, and coating agent ethyl cellulose and cellulose acetate were chosen as independent variables. Optimization of osmotic tablets was done by Box-Behnken design by selecting three independent variables. Osmotic agent sodium chloride, pore forming agent sodium lauryl sulphate, and coating agent cellulose acetate were chosen as independent variables. The result of Plackett-Burman and Box-Behnken design and ANOVA studies revealed that osmotic agent and pore former had significant effect on the drug release up to 12 hr. The observed independent variables were found to be very close to predicted values of most satisfactory formulation which demonstrates the feasibility of the optimization procedure in successful development of porous osmotic pump tablets containing antibiotic drug/s by using sodium chloride, sodium lauryl sulphate, and cellulose acetate as key excipients.

  14. Search algorithms as a framework for the optimization of drug combinations.

    Directory of Open Access Journals (Sweden)

    Diego Calzolari

    2008-12-01

    Full Text Available Combination therapies are often needed for effective clinical outcomes in the management of complex diseases, but presently they are generally based on empirical clinical experience. Here we suggest a novel application of search algorithms -- originally developed for digital communication -- modified to optimize combinations of therapeutic interventions. In biological experiments measuring the restoration of the decline with age in heart function and exercise capacity in Drosophila melanogaster, we found that search algorithms correctly identified optimal combinations of four drugs using only one-third of the tests performed in a fully factorial search. In experiments identifying combinations of three doses of up to six drugs for selective killing of human cancer cells, search algorithms resulted in a highly significant enrichment of selective combinations compared with random searches. In simulations using a network model of cell death, we found that the search algorithms identified the optimal combinations of 6-9 interventions in 80-90% of tests, compared with 15-30% for an equivalent random search. These findings suggest that modified search algorithms from information theory have the potential to enhance the discovery of novel therapeutic drug combinations. This report also helps to frame a biomedical problem that will benefit from an interdisciplinary effort and suggests a general strategy for its solution.

  15. The effect of nanoparticle size on theranostic systems: the optimal particle size for imaging is not necessarily optimal for drug delivery

    Science.gov (United States)

    Dreifuss, Tamar; Betzer, Oshra; Barnoy, Eran; Motiei, Menachem; Popovtzer, Rachela

    2018-02-01

    Theranostics is an emerging field, defined as combination of therapeutic and diagnostic capabilities in the same material. Nanoparticles are considered as an efficient platform for theranostics, particularly in cancer treatment, as they offer substantial advantages over both common imaging contrast agents and chemotherapeutic drugs. However, the development of theranostic nanoplatforms raises an important question: Is the optimal particle for imaging also optimal for therapy? Are the specific parameters required for maximal drug delivery, similar to those required for imaging applications? Herein, we examined this issue by investigating the effect of nanoparticle size on tumor uptake and imaging. Anti-epidermal growth factor receptor (EGFR)-conjugated gold nanoparticles (GNPs) in different sizes (diameter range: 20-120 nm) were injected to tumor bearing mice and their uptake by tumors was measured, as well as their tumor visualization capabilities as tumor-targeted CT contrast agent. Interestingly, the results showed that different particles led to highest tumor uptake or highest contrast enhancement, meaning that the optimal particle size for drug delivery is not necessarily optimal for tumor imaging. These results have important implications on the design of theranostic nanoplatforms.

  16. Enhancing the Pediatric Drug Development Framework to Deliver Better Pediatric Therapies Tomorrow.

    Science.gov (United States)

    Bucci-Rechtweg, Christina

    2017-10-01

    Health care professionals involved in the clinical management of children have long appreciated the limited number of therapies suitably evaluated for their optimal use in the pediatric population. In the past century, advances in regulatory policy significantly evolved adult drug evaluation. The scarcity of available patient populations, practical complexities of drug development research, and minimal financial returns have hampered pharmaceutical investment in the study of therapies for children. More recently, pediatric policy and legislation in the United States and Europe have instituted a system of obligations and incentives to stimulate investment in pediatric drug development. These initiatives, in conjunction with a more sophisticated process of drug discovery and development, have led to significant advancements in the labeling of drugs for pediatric use. Facilitated by the emergence of new targets, precision medicine, and innovations in regulatory science, there is now a subtle shift in focus toward drug development research for children rather than simply in children. Although there has been an increase in pediatric studies of investigational agents and labeling of pediatric information for use, there have been unintended consequences of existing policies. As a result, limited progress has been made in certain therapeutic areas and for off-patent therapies. Future policy reform to enhance the availability and accessibility of pediatric medicines should not only reflect an understanding not only of the successes of existing policy and legislative initiatives but also constructively address failures and unintended consequences. Taken together, policy reform, global cooperation, and innovation in regulatory science will more ably deliver better pediatric therapies tomorrow. Copyright © 2017 Elsevier HS Journals, Inc. All rights reserved.

  17. Sufficient conditions for optimality for a mathematical model of drug treatment with pharmacodynamics

    Directory of Open Access Journals (Sweden)

    Maciej Leszczyński

    2017-01-01

    Full Text Available We consider an optimal control problem for a general mathematical model of drug treatment with a single agent. The control represents the concentration of the agent and its effect (pharmacodynamics is modelled by a Hill function (i.e., Michaelis-Menten type kinetics. The aim is to minimize a cost functional consisting of a weighted average related to the state of the system (both at the end and during a fixed therapy horizon and to the total amount of drugs given. The latter is an indirect measure for the side effects of treatment. It is shown that optimal controls are continuous functions of time that change between full or no dose segments with connecting pieces that take values in the interior of the control set. Sufficient conditions for the strong local optimality of an extremal controlled trajectory in terms of the existence of a solution to a piecewise defined Riccati differential equation are given.

  18. Role of pharmacists in optimizing the use of anticancer drugs in the clinical setting

    Directory of Open Access Journals (Sweden)

    Ma CSJ

    2014-02-01

    Full Text Available Carolyn SJ Ma Department of Pharmacy Practice, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Honolulu, HI, USA Abstract: Oncology pharmacists, also known as oncology pharmacy specialists (OPSs have specialized knowledge of anticancer medications and their role in cancer. As essential member of the interdisciplinary team, OPSs optimize the benefits of drug therapy, help to minimize toxicities and work with patients on supportive care issues. The OPSs expanded role as experts in drug therapy extends to seven major key elements of medication management that include: selection, procurement, storage, preparation/dispensing, prescribing/dosing/transcribing, administration and monitoring/evaluation/education. As front line caregivers in hospital, ambulatory care, long-term care facilities, and community specialty pharmacies, the OPS also helps patients in areas of supportive care including nausea and vomiting, hematologic support, nutrition and infection control. This role helps the patient in the recovery phase between treatment cycles and adherence to chemotherapy treatment schedules essential for optimal treatment and outcome. Keywords: oncology pharmacist, oncology pharmacy specialist, medication management, chemotherapy

  19. Potential drug therapies for the treatment of fibromyalgia.

    Science.gov (United States)

    Lawson, Kim

    2016-09-01

    Fibromyalgia (FM) is a common, complex chronic widespread pain condition is characterized by fatigue, sleep disturbance and cognitive dysfunction. Treatment of FM is difficult, requiring both pharmacological and non-pharmacological approaches, with an empiric approach to drug therapy focused toward individual symptoms, particularly pain. The effectiveness of current medications is limited with many patients discontinuing use. A systemic database search has identified 26 molecular entities as potential emerging drug therapies. Advances in the understanding of the pathophysiology of FM provides clues to targets for new medications. Investigation of bioamine modulation and α2δ ligands and novel targets such as dopamine receptors, NMDA receptors, cannabinoid receptors, melatonin receptors and potassium channels has identified potential drug therapies. Modest improvement of health status in patients with FM has been observed with drugs targeting a diverse range of molecular mechanisms. No single drug, however, offered substantial efficacy against all the symptoms characteristic of FM. Identification of new and improved therapies for FM needs to address the heterogeneity of the condition, which suggests existence of patient subgroups, the relationship of central and peripheral aspects of the pathophysiology and a requirement of combination therapy with drugs targeting multiple molecular mechanisms.

  20. Drug therapy smartens up

    Science.gov (United States)

    Martin, Christian

    2015-11-01

    The submission of the first 'smart pill' for market approval, combined with progress in the European nanomedicine landscape, illustrates the positive outlook for drug therapy and health monitoring, explains Christian Martin.

  1. Metabolomics has the potential to improve drug therapy

    DEFF Research Database (Denmark)

    Stage, Claus; Jürgens, Gesche; Dalhoff, Kim Peder

    2014-01-01

    Until now drug therapy has primarily been controlled by dose titration on the basis of effects and side effects. However, a lot of people being treated with a drug experience too little effect or too many side effects. Therefore it will be advantageous to improve drug therapy and make it even more...

  2. Favorable effect of optimal lipid-lowering therapy on neointimal tissue characteristics after drug-eluting stent implantation: qualitative optical coherence tomographic analysis.

    Science.gov (United States)

    Jang, Ji-Yong; Kim, Jung-Sun; Shin, Dong-Ho; Kim, Byeong-Keuk; Ko, Young-Guk; Choi, Donghoon; Jang, Yangsoo; Hong, Myeong-Ki

    2015-10-01

    Serial follow-up optical coherence tomography (OCT) was used to evaluate the effect of optimal lipid-lowering therapy on qualitative changes in neointimal tissue characteristics after drug-eluting stent (DES) implantation. DES-treated patients (n = 218) who received statin therapy were examined with serial follow-up OCT. First and second follow-up OCT evaluations were performed approximately 6 and 18 months after the index procedure, respectively. Patients were divided into two groups, based on the level of low-density lipoprotein-cholesterol (LDL-C), which was measured at the second follow-up. The optimal lipid-lowering group (n = 121) had an LDL-C reduction of ≥50% or an LDL-C level ≤70 mg/dL, and the conventional group (n = 97). Neointimal characteristics were qualitatively categorized as homogeneous or non-homogeneous patterns using OCT. The non-homogeneous group included heterogeneous, layered, or neoatherosclerosis patterns. Qualitative changes in neointimal tissue characteristics between the first and second follow-up OCT examinations were assessed. Between the first and second follow-up OCT procedures, the neointimal cross-sectional area increased more substantially in the conventional group (0.4 mm(2) vs. 0.2 mm(2) in the optimal lipid-lowering group, p = 0.01). The neointimal pattern changed from homogeneous to non-homogeneous less often in the optimal lipid-lowering group (1.3%, 1/77, p < 0.001) than in the conventional group (15.3%, 11/72, p = 0.44). Optimal LDL-C reduction was an independent predictor for the prevention of neointimal pattern change from homogeneous to non-homogeneous (odds ratio: 0.05, 95% confidence interval: 0.01∼0.46, p = 0.008). Our findings suggest that an intensive reduction in LDL-C levels can prevent non-homogeneous changes in the neointima and increases in neointimal cross-sectional area compared with conventional LDL-C controls. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Commercialization strategy of the herbal composition HemoHIM as a complementary drug for anti-cancer therapies

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Sungkee; Jung, Uhee; Park, Haeran

    2013-01-15

    Ο Purpose - Establishment of strategy for the development of HemoHIM as a complementary drug for cancer therapies including non-clinical data preparation, obtainment of a research project grant, base of manufacturing process and raw material standardization Ο Research Results - Examination and confirmation of the essential requirements to develop the complementary drug for anticancer therapies by consulting with Korea FDA, and clinical CRO, and medical experts (animal efficacy study, toxicological safety test, standard analytical method, raw material standardization) - Obtainment of a governmental research project for 3 years from Ministry of Health and Welfare to develop HemoHIM as an complementary herbal drug for anti-cancer therapies - Acquisition of fundamental data on the manufacturing process and the raw material standardization for the optimal efficacy of HemoHIM Ο Expected benefit - Planning to get the approval of IND from Korea FDA by 2015 after completing the non-clinical study through the on-going project from Ministry of Health and Welfare - Planning to commercialize the product by 2017.

  4. Commercialization strategy of the herbal composition HemoHIM as a complementary drug for anti-cancer therapies

    International Nuclear Information System (INIS)

    Jo, Sungkee; Jung, Uhee; Park, Haeran

    2013-01-01

    Ο Purpose - Establishment of strategy for the development of HemoHIM as a complementary drug for cancer therapies including non-clinical data preparation, obtainment of a research project grant, base of manufacturing process and raw material standardization Ο Research Results - Examination and confirmation of the essential requirements to develop the complementary drug for anticancer therapies by consulting with Korea FDA, and clinical CRO, and medical experts (animal efficacy study, toxicological safety test, standard analytical method, raw material standardization) - Obtainment of a governmental research project for 3 years from Ministry of Health and Welfare to develop HemoHIM as an complementary herbal drug for anti-cancer therapies - Acquisition of fundamental data on the manufacturing process and the raw material standardization for the optimal efficacy of HemoHIM Ο Expected benefit - Planning to get the approval of IND from Korea FDA by 2015 after completing the non-clinical study through the on-going project from Ministry of Health and Welfare - Planning to commercialize the product by 2017

  5. Direct anti-atherosclerotic therapy; development of natural anti-atherosclerotic drugs preventing cellular cholesterol retention.

    Science.gov (United States)

    Orekhov, Alexander N

    2013-01-01

    The results of numerous clinical trials with statins and other drugs have demonstrated the principal possibility of the prevention and regression of atherosclerosis by pharmacotherapy. This review describes the use of cultured human arterial cells for the mass screening of anti-atherosclerotic substances, the investigation of the mechanisms responsible for their atherosclerosis-related effects, and the optimization of anti-atherosclerotic and anti-atherogenic drug and dietary therapies. Natural products can be considered promising drugs for anti-atherosclerotic therapy. Our basic studies have shown that cellular lipidosis is the principal event in the genesis of atherosclerotic lesions. Using cellular models and natural products, we have developed an approach to prevent lipid accumulation in arterial cells. Based on our knowledge of atherosclerosis, we developed drugs that possess direct anti-atherosclerotic activity. Two-year treatment with allicor (garlic powder) has a direct anti-atherosclerotic effect on carotid atherosclerosis in asymptomatic men. Inflaminat (calendula, elder, and violet), which possesses anti-cytokine activity, has been shown to cause the regression of carotid atherosclerosis following the treatment of asymptomatic men for one year. The phytoestrogen-rich drug karinat (garlic powder, extract of grape seeds, green tea leaves, hop cones, β-carotene, α-tocopherol, and ascorbic acid) prevents the development of carotid atherosclerosis in postmenopausal women. Thus, our basic findings were successfully translated into clinical practice. Because of this translation, a novel approach to antiatherosclerotic therapy was developed. Our clinical trial confirmed the efficacy of both the novel approach and the novel drugs.

  6. Development and Optimization of controlled drug release ...

    African Journals Online (AJOL)

    The aim of this study is to develop and optimize an osmotically controlled drug delivery system of diclofenac sodium. Osmotically controlled oral drug delivery systems utilize osmotic pressure for controlled delivery of active drugs. Drug delivery from these systems, to a large extent, is independent of the physiological factors ...

  7. [How I treat: from specialized pharmacology to drug therapy: a plea for an optimal educational program for rational therapeutics, from decision making to drug prescription].

    Science.gov (United States)

    Scheen, A J

    2000-09-01

    Clinical pharmacology and therapeutics are two complementary disciplines which should lead the medical student, through an optimized training, to a rational prescription of drugs, ultimate and important step of the medical approach. Such a learning should occur progressively throughout the medical education, focusing, first, on the therapeutic reasoning ("why?") and, second, on the practical application leading to the prescription ("how?"). The medical student should learn the difficult task of integrating disease, drug and patient, in order to optimize the benefit/risk ratio, while being informed about new concepts such as "Evidence-Based Medicine" and pharmacoeconomics.

  8. Optimizing weight control in diabetes: antidiabetic drug selection

    Directory of Open Access Journals (Sweden)

    S Kalra

    2010-08-01

    Full Text Available S Kalra1, B Kalra1, AG Unnikrishnan2, N Agrawal3, S Kumar41Bharti Hospital, Karnal; 2Amrita Institute of Medical Science, Kochi; 3Medical College, Gwalior; 4Excel Life Sciences, Noida, IndiaDate of preparation: 18th August 2010Conflict of interest: SK has received speaker fees from Novo Nordisk, sanofi-aventis, MSD, Eli Lilly, BMS, and AstraZeneca.Clinical question: Which antidiabetic drugs provide optimal weight control in patients with type 2 diabetes?Results: Metformin reduces weight gain, and may cause weight loss, when given alone or in combination with other drugs. Pioglitazone and rosiglitazone use is associated with weight gain. Use of the glucagon-like peptide-1 (GLP-1 analogs, liraglutide and exenatide, is associated with weight loss. Dipeptidyl peptidase-4 (DPP-4 inhibitors are considered weight-neutral. Results with insulin therapy are conflicting. Insulin detemir provides weight control along with glycemic control.Implementation: • Weight gain is considered an inevitable part of good glycemic control using conventional modalities of treatment such as sulfonylureas.• Use of metformin, weight-sparing insulin analogs such as insulin detemir, and liraglutide, should be encouraged as monotherapy, or in combination with other drugs.Keywords: weight control, diabetes

  9. Nanotechnology inspired advanced engineering fundamentals for optimizing drug delivery.

    Science.gov (United States)

    Kassem, Ahmed Alaa

    2018-02-06

    Drug toxicity and inefficacy are commonly experienced problems with drug therapy failure. To face these problems, extensive research work took place aiming to design new dosage forms for drug delivery especially nanoparticulate systems. These systems are designed to increase the quantity of the therapeutic molecule delivered to the desired site concurrently with reduced side effects. In order to achieve this objective, nanocarriers must principally display suitable drug vehiculization abilities and a controlled biological destiny of drug molecules. Only the intelligent design of the nanomedicine will accomplish these fundamentals. The present review article is dedicated to the discussion of the important fundamentals to be considered in the fabrication of nanomedicines. These include the therapeutic agent, the nanocarrier and the functionalization moieties. Special consideration is devoted to the explanation and compilation of highly potential fabrication approaches assisting how to control the in vivo destiny of the nanomedicine. Finally, some nanotechnology-based drug delivery systems, for the development of nanomedicine, are also discussed. The nanotechnology-based drug delivery systems showed remarkable outcomes based on passive and active targeting as well as improvement of the drug pharmacodynamic and pharmacokinetic profiles. Multifunctional nanocarrier concept affords a revolutionary drug delivery approach for maximizing the efficacy, safety and monitoring the biological fate of the therapeutic molecule. Nanomedicines may enhance the efficacy of therapeutic molecules and reduce their toxic effects. Meanwhile, further research works are required to rightly optimize (and define) the effectiveness, nanotoxicity, in vivo destiny and feasibility of these nanomedicines which, from a preclinical standpoint, are actually promising. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. EUD-based biological optimization for carbon ion therapy

    International Nuclear Information System (INIS)

    Brüningk, Sarah C.; Kamp, Florian; Wilkens, Jan J.

    2015-01-01

    Purpose: Treatment planning for carbon ion therapy requires an accurate modeling of the biological response of each tissue to estimate the clinical outcome of a treatment. The relative biological effectiveness (RBE) accounts for this biological response on a cellular level but does not refer to the actual impact on the organ as a whole. For photon therapy, the concept of equivalent uniform dose (EUD) represents a simple model to take the organ response into account, yet so far no formulation of EUD has been reported that is suitable to carbon ion therapy. The authors introduce the concept of an equivalent uniform effect (EUE) that is directly applicable to both ion and photon therapies and exemplarily implemented it as a basis for biological treatment plan optimization for carbon ion therapy. Methods: In addition to a classical EUD concept, which calculates a generalized mean over the RBE-weighted dose distribution, the authors propose the EUE to simplify the optimization process of carbon ion therapy plans. The EUE is defined as the biologically equivalent uniform effect that yields the same probability of injury as the inhomogeneous effect distribution in an organ. Its mathematical formulation is based on the generalized mean effect using an effect-volume parameter to account for different organ architectures and is thus independent of a reference radiation. For both EUD concepts, quadratic and logistic objective functions are implemented into a research treatment planning system. A flexible implementation allows choosing for each structure between biological effect constraints per voxel and EUD constraints per structure. Exemplary treatment plans are calculated for a head-and-neck patient for multiple combinations of objective functions and optimization parameters. Results: Treatment plans optimized using an EUE-based objective function were comparable to those optimized with an RBE-weighted EUD-based approach. In agreement with previous results from photon

  11. Clinico-psychological analysis of systematic (vestibular and nonsystematic (psychogenic vertigo, therapy optimization

    Directory of Open Access Journals (Sweden)

    Elena Mikhailovna Illarionova

    2011-01-01

    Full Text Available Objective: to study the clinical and psychoemotional characteristics in patients with systematic and nonsystematic vertigo and to optimize therapy. Patients and methods. The clinical features were analyzed in 25 patients with systematic vertigo and 25 patients with psychogenic vertigo. Their psychoemotional sphere was studied using the Beck depression inventory, the Spielberger-hanin personality- and situation-related anxiety inventory, and the vestibular inventory. Results. There were statistically significant clinical differences and a higher degree of anxiety-depressive disorders in the patients with psychogenic vertigo. Drug therapy in combination with stabilometric platform exercises based on the biological feedback principle was stated to be effective in patients with different types of vertigo, in those with psychogenic dizziness in particular.

  12. How should immunomodulators be optimized when used as combination therapy with anti-tumor necrosis factor agents in the management of inflammatory bowel disease?

    Science.gov (United States)

    Ward, Mark G; Irving, Peter M; Sparrow, Miles P

    2015-10-28

    In the last 15 years the management of inflammatory bowel disease has evolved greatly, largely through the increased use of immunomodulators and, especially, anti-tumor necrosis factor (anti-TNF) biologic agents. Within this time period, confidence in the use of anti-TNFs has increased, whilst, especially in recent years, the efficacy and safety of thiopurines has been questioned. Yet despite recent concerns regarding the risk: benefit profile of thiopurines, combination therapy with an immunomodulator and an anti-TNF has emerged as the recommended treatment strategy for the majority of patients with moderate-severe disease, especially those who are recently diagnosed. Concurrently, therapeutic drug monitoring has emerged as a means of optimizing the dosage of both immunomodulators and anti-TNFs. However the recommended therapeutic target levels for both drug classes were largely derived from studies of monotherapy with either agent, or studies underpowered to analyze outcomes in combination therapy patients. It has been assumed that these target levels are applicable to patients on combination therapy also, however there are few data to support this. Similarly, the timing and duration of treatment with immunomodulators when used in combination therapy remains unknown. Recent attention, including post hoc analyses of the pivotal registration trials, has focused on the optimization of anti-TNF agents, when used as either monotherapy or combination therapy. This review will instead focus on how best to optimize immunomodulators when used in combination therapy, including an evaluation of recent data addressing unanswered questions regarding the optimal timing, dosage and duration of immunomodulator therapy in combination therapy patients.

  13. Laboratory markers in personalized drug therapy

    NARCIS (Netherlands)

    Geerts, A.F.J.

    2012-01-01

    During the last decade two major trends have influenced the thinking about the benefit-risk balance in drug therapy.The first trend showed that this balance is not only determined by the interaction of the pharmacological properties of the drug with the patient’s (patho)physiological profile, but is

  14. Data Decision and Drug Therapy Based on Non-Small Cell Lung Cancer in a Big Data Medical System in Developing Countries

    Directory of Open Access Journals (Sweden)

    Jia Wu

    2018-05-01

    Full Text Available In many developing or underdeveloped countries, limited medical resources and large populations may affect the survival of mankind. The research for the medical information system and recommendation of effective treatment methods may improve diagnosis and drug therapy for patients in developing or underdeveloped countries. In this study, we built a system model for the drug therapy, relevance parameter analysis, and data decision making in non-small cell lung cancer. Based on the probability analysis and status decision, the optimized therapeutic schedule can be calculated and selected, and then effective drug therapy methods can be determined to improve relevance parameters. Statistical analysis of clinical data proves that the model of the probability analysis and decision making can provide fast and accurate clinical data.

  15. Biomarker-guided repurposing of chemotherapeutic drugs for cancer therapy: a novel strategy in drug development

    Directory of Open Access Journals (Sweden)

    Jan eStenvang

    2013-12-01

    Full Text Available Cancer is a leading cause of mortality worldwide and matters are only set to worsen as its incidence continues to rise. Traditional approaches to combat cancer include improved prevention, early diagnosis, optimized surgery, development of novel drugs and honing regimens of existing anti-cancer drugs. Although discovery and development of novel and effective anti-cancer drugs is a major research area, it is well known that oncology drug development is a lengthy process, extremely costly and with high attrition rates. Furthermore, those drugs that do make it through the drug development mill are often quite expensive, laden with severe side-effects and, unfortunately, to date, have only demonstrated minimal increases in overall survival. Therefore, a strong interest has emerged to identify approved non-cancer drugs that possess anti-cancer activity, thus shortcutting the development process. This research strategy is commonly known as drug repurposing or drug repositioning and provides a faster path to the clinics. We have developed and implemented a modification of the standard drug repurposing strategy that we review here; rather than investigating target-promiscuous non-cancer drugs for possible anti-cancer activity, we focus on the discovery of novel cancer indications for already approved chemotherapeutic anti-cancer drugs. Clinical implementation of this strategy is normally commenced at clinical phase II trials and includes pre-treated patients. As the response rates to any non-standard chemotherapeutic drug will be relatively low in such a patient cohort it is a pre-requisite that such testing is based on predictive biomarkers. This review describes our strategy of biomarker-guided repurposing of chemotherapeutic drugs for cancer therapy, taking the repurposing of topoisomerase I inhibitors and topoisomerase I as a potential predictive biomarker as case in point.

  16. Spiritual self-schema therapy, drug abuse, and HIV.

    Science.gov (United States)

    Marcotte, David; Avants, S Kelly; Margolin, Arthur

    2003-01-01

    This case report describes the use of Spiritual Self-Schema (3-S) therapy in the treatment of an HIV-positive inner-city drug user maintained on methadone and referred for additional treatment due to unremitting cocaine use. 3-S therapy is a manual-guided intervention based on cognitive self-schema theory. Its goal is to help the patient create, elaborate, and make accessible a cognitive schema--the "spiritual" self-schema-that is incompatible with drug use and other HIV risk behaviors. 3-S therapy facilitates a cognitive shift from the habitual activation of the "addict" self-schema, with its drug-related cognitions, scripts and action plans, to the "spiritual" self-schema, with its associated repertoire of harm reduction beliefs and behaviors.

  17. Nanomedicine of synergistic drug combinations for cancer therapy - Strategies and perspectives.

    Science.gov (United States)

    Zhang, Rui Xue; Wong, Ho Lun; Xue, Hui Yi; Eoh, June Young; Wu, Xiao Yu

    2016-10-28

    Nanomedicine of synergistic drug combinations has shown increasing significance in cancer therapy due to its promise in providing superior therapeutic benefits to the current drug combination therapy used in clinical practice. In this article, we will examine the rationale, principles, and advantages of applying nanocarriers to improve anticancer drug combination therapy, review the use of nanocarriers for delivery of a variety of combinations of different classes of anticancer agents including small molecule drugs and biologics, and discuss the challenges and future perspectives of the nanocarrier-based combination therapy. The goal of this review is to provide better understanding of this increasingly important new paradigm of cancer treatment and key considerations for rational design of nanomedicine of synergistic drug combinations for cancer therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Computer models for optimizing radiation therapy

    International Nuclear Information System (INIS)

    Duechting, W.

    1998-01-01

    The aim of this contribution is to outline how methods of system analysis, control therapy and modelling can be applied to simulate normal and malignant cell growth and to optimize cancer treatment as for instance radiation therapy. Based on biological observations and cell kinetic data, several types of models have been developed describing the growth of tumor spheroids and the cell renewal of normal tissue. The irradiation model is represented by the so-called linear-quadratic model describing the survival fraction as a function of the dose. Based thereon, numerous simulation runs for different treatment schemes can be performed. Thus, it is possible to study the radiation effect on tumor and normal tissue separately. Finally, this method enables a computer-assisted recommendation for an optimal patient-specific treatment schedule prior to clinical therapy. (orig.) [de

  19. Percutaneous coronary intervention with optimal medical therapy vs. optimal medical therapy alone for patients with stable angina pectoris

    Directory of Open Access Journals (Sweden)

    Gorenoi, Vitali

    2011-01-01

    Full Text Available Scientific background: Stable Angina Pectoris (AP is a main syndrome of chronic coronary artery disease (CAD, a disease with enormous epidemiological and health economic relevance. Medical therapy and percutaneous coronary interventions (PCI are the most important methods used in the treatment of chronic CAD. Research questions: The evaluation addresses questions on medical efficacy, incremental cost-effectiveness as well as ethic, social and legal aspects in the use of PCI in CAD patients in comparison to optimal medical therapy alone. Methods: A systematic literature search was conducted in June 2010 in the electronic databases (MEDLINE, EMBASE etc. and was completed by a hand search. The medical analysis was initially based on systematic reviews of randomized controlled trials (RCT and was followed by the evaluation of RCT with use of current optimal medical therapy. The results of the RCT were combined using meta-analysis. The strength and the applicability of the determined evidence were appraised. The health economic analysis was initially focused on the published studies. Additionally, a health economic modelling was performed with clinical assumptions derived from the conducted meta-analysis and economic assumptions derived from the German Diagnosis Related Groups 2011. Results: Seven systematic reviews (applicability of the evidence low and three RCT with use of optimal medical therapy (applicability of the evidence for the endpoints AP and revascularisations moderate, for further endpoints high were included in the medical analysis. The results from RCT are used as a base of the evaluation. The routine use of the PCI reduces the proportion of patients with AP attacks in the follow-up after one and after three years in comparison with optimal medical therapy alone (evidence strength moderate; however, this effect was not demonstrated in the follow-up after five years (evidence strength low. The difference in effect in the follow

  20. Effects of music therapy on drug therapy of adult psychiatric outpatients: A pilot randomised controlled study

    Directory of Open Access Journals (Sweden)

    Mario Degli Stefani

    2016-10-01

    Full Text Available Objective: Framed in the patients’ engagement perspective, the current study aims to determine the effects of group music therapy in addition to drug care in comparison with drug care in the treatment of psychiatric outpatients. Method: Participants (n = 27 with ICD-10 diagnoses of F20 (schizophrenia, F25 (schizoaffective disorders, F31 (bipolar affective disorder, F32 (depressive episode and F60 (specific personality disorders were randomised to receive group music therapy plus standard care (48 weekly sessions of two hours or standard care only. The clinical measures included dosages of neuroleptics, benzodiazepines, mood stabilisers and antidepressants. Results: The participants who received group music therapy demonstrated greater improvement in drug dosage relative to neuroleptics than those who did not receive group music therapy. Antidepressants had an increment for both groups that was significant only for the control group. Benzodiazepines and mood stabilisers did not show any significant change in either group. Conclusions: Group music therapy combined with standard drug care is effective for controlling neuroleptic drug dosages in adult psychiatric outpatients who received group music therapy. We discuss the likely applications of group music therapy in psychiatry and the possible contribution of music therapy in improving the psychopathological condition of adult outpatients. In addition, the implications for the patient-centred perspective were also discussed.

  1. Effects of Music Therapy on Drug Therapy of Adult Psychiatric Outpatients: A Pilot Randomized Controlled Study

    Science.gov (United States)

    Degli Stefani, Mario; Biasutti, Michele

    2016-01-01

    Objective: Framed in the patients’ engagement perspective, the current study aims to determine the effects of group music therapy in addition to drug care in comparison with drug care in addition to other non-expressive group activities in the treatment of psychiatric outpatients. Method: Participants (n = 27) with ICD-10 diagnoses of F20 (schizophrenia), F25 (schizoaffective disorders), F31 (bipolar affective disorder), F32 (depressive episode), and F60 (specific personality disorders) were randomized to receive group music therapy plus standard care (48 weekly sessions of 2 h) or standard care only. The clinical measures included dosages of neuroleptics, benzodiazepines, mood stabilizers, and antidepressants. Results: The participants who received group music therapy demonstrated greater improvement in drug dosage with respect to neuroleptics than those who did not receive group music therapy. Antidepressants had an increment for both groups that was significant only for the control group. Benzodiazepines and mood stabilizers did not show any significant change in either group. Conclusion: Group music therapy combined with standard drug care was effective for controlling neuroleptic drug dosages in adult psychiatric outpatients who received group music therapy. We discussed the likely applications of group music therapy in psychiatry and the possible contribution of music therapy in improving the psychopathological condition of adult outpatients. In addition, the implications for the patient-centered perspective were also discussed. PMID:27774073

  2. [Experience of rapid drug desensitization therapy in the treatment of mycobacterial disease].

    Science.gov (United States)

    Sasaki, Yuka; Kurashima, Atsuyuki; Morimoto, Kozo; Okumura, Masao; Watanabe, Masato; Yoshiyama, Takashi; Ogata, Hideo; Gotoh, Hajime; Kudoh, Shoji; Suzuki, Hiroaki

    2014-11-01

    Drugs for tuberculosis and non-tuberculosis mycobacterial diseases are limited. In particular, no new drugs for non-tuberculosis mycobacterial disease have been developed in recent years. Antimycobacterial drugs have many adverse reactions, for which drug desensitization therapy has been used. Rapid drug desensitization (RDD) therapy, including antituberculosis drugs and clarithromycin, has been implemented in many regions in Europe and the United States. We investigated the validity of RDD therapy in Japan. We report our experience with RDD therapy in 13 patients who developed severe drug allergy to antimycobacterial treatment. The desensitization protocol reported by Holland and Cernandas was adapted. The underlying diseases were 7 cases of pulmonary Mycobacterium avium complex disease and 6 cases of pulmonary tuberculosis. Isoniazid was readministered in 2 (100%) of 2 patients; rifampicin, in 8 (67.7%) of 12 patients; ethambutol, in 4 (67.7%) of 6 patients; and clarithromycin, in 2 (100%) of 2 patients. In Japan, the desensitization therapy recommended by the Treatment Committee of the Japanese Society for Tuberculosis have been implemented generally. We think RDD therapy is effective and safe as the other desensitization therapy. We will continue to investigate the efficiency of RDD therapy in patients who had discontinued antimycobacterial treatment because of the drug allergic reaction.

  3. Design and optimization of self-nanoemulsifying formulations for lipophilic drugs

    International Nuclear Information System (INIS)

    Zhao, Tianjing; Maniglio, Devid; Motta, Antonella; Migliaresi, Claudio; Chen, Jie; Chen, Bin

    2015-01-01

    The purpose of the current study was to develop and optimize novel self-nanoemulsifying drug delivery systems (SNEDDS) with a high proportion of essential oil as carriers for lipophilic drugs. Solubility and droplet size as a function of the composition were investigated, and a ternary phase diagram was constructed in order to identify the self-emulsification regions. The optimized SNEDDS formulation consisted of lemon essential oil (oil), Cremophor RH40 (surfactant) and Transcutol HP (co-surfactant) in the ratio 50:30:20 (v/v). Ibuprofen was chosen as the model drug. The droplet size, ζ-potential and stability of the drug-loaded optimized formulations were determined. The stability of SNEDDS was proved after triple freezing/thawing cycles and storage at 4 °C and 25 °C for 3 months. In vitro drug release studies of optimized SNEDDS revealed a significant increase of the drug release and release rate in comparison to the Ibuprofen suspension (80% versus approximately 40% in 2 h). The results indicated that these SNEDDS formulations could be used to improve the bioavailability of lipophilic drugs. (paper)

  4. SU-F-19A-08: Optimal Time Release Schedule of In-Situ Drug Release During Permanent Prostate Brachytherapy

    International Nuclear Information System (INIS)

    Cormack, R; Ngwa, W; Makrigiorgos, G; Tangutoori, S; Rajiv, K; Sridhar, S

    2014-01-01

    Purpose: Permanent prostate brachytherapy spacers can be used to deliver sustained doses of radiosentitizing drug directly to the target, in order to enhance the radiation effect. Implantable nanoplatforms for chemo-radiation therapy (INCeRTs) have a maximum drug capacity and can be engineered to control the drug release schedule. The optimal schedule for sensitization during continuous low dose rate irradiation is unknown. This work studies the optimal release schedule of drug for both traditional sensitizers, and those that work by suppressing DNA repair processes. Methods: Six brachytherapy treatment plans were used to model the anatomy, implant geometry and calculate the spatial distribution of radiation dose and drug concentrations for a range of drug diffusion parameters. Three state partial differential equations (cells healthy, damaged or dead) modeled the effect of continuous radiation (radiosensitivities α,β) and cellular repair (time tr) on a cell population. Radiosensitization was modeled as concentration dependent change in α,β or tr which with variable duration under the constraint of fixed total drug release. Average cell kill was used to measure effectiveness. Sensitization by means of both enhanced damage and reduced repair were studied. Results: Optimal release duration is dependent on the concentration of radiosensitizer compared to the saturation concentration (csat) above which additional sensitization does not occur. Long duration drug release when enhancing α or β maximizes cell death when drug concentrations are generally over csat. Short term release is optimal for concentrations below saturation. Sensitization by suppressing repair has a similar though less distinct trend that is more affected by the radiation dose distribution. Conclusion: Models of sustained local radiosensitization show potential to increase the effectiveness of radiation in permanent prostate brachytherapy. INCeRTs with high drug capacity produce the greatest

  5. Therapy optimization in multiple sclerosis: a prospective observational study of therapy compliance and outcomes.

    Science.gov (United States)

    Coyle, Patricia K; Cohen, Bruce A; Leist, Thomas; Markowitz, Clyde; Oleen-Burkey, MerriKay; Schwartz, Marc; Tullman, Mark J; Zwibel, Howard

    2014-03-13

    Data sources for MS research are numerous but rarely provide an objective measure of drug therapy compliance coupled with patient-reported health outcomes. The objective of this paper is to describe the methods and baseline characteristics of the Therapy Optimization in MS (TOP MS) study designed to investigate the relationship between disease-modifying therapy compliance and health outcomes. TOP MS was designed as a prospective, observational, nationwide patient-focused study using an internet portal for data entry. The protocol was reviewed and approved by Sterling IRB. The study was registered with ClinicalTrials.gov. It captured structured survey data monthly from MS patients recruited by specialty pharmacies. Data collection included the clinical characteristics of MS such as MS relapses. Disability, quality of life and work productivity and activity impairment were assessed quarterly with well-validated scales. When events like severe fatigue or new or worsening depression were reported, feedback was provided to treating physicians. The therapy compliance measure was derived from pharmacy drug shipment records uploaded to the study database. The data presented in this paper use descriptive statistics. The TOP MS Study enrolled 2966 participants receiving their disease-modifying therapy (DMT) from specialty pharmacies. The mean age of the sample was 49 years, 80.4% were female, 89.9% were Caucasian and 55.7% were employed full or part time. Mean time since first symptoms was 11.5 years; mean duration since diagnosis was 9.5 years. Patient-reported EDSS was 3.5; 72.2% had a relapsing-remitting disease course. The most commonly reported symptoms at the time of enrollment were fatigue (74.7%), impaired coordination or balance (61.8%) and numbness and tingling (61.2%). Half of the sample was using glatiramer acetate and half was using beta-interferons. Demographic and clinical characteristics of the TOP MS sample at enrollment are consistent with other community

  6. Methadone maintenance therapy as evidence based drug abuse ...

    African Journals Online (AJOL)

    Methadone maintenance therapy as evidence based drug abuse planning in ... drugs are being used as artificial problem-solvers such as frustrations, stress or ... Drug use is a problem to users when it begins to cause some damage to their ...

  7. CLINICAL AND PHARMACOLOGICAL APPROACHES TO OPTIMIZE THE DOSING REGIMEN OF ANTIBACTERIAL DRUGS IN PEDIATRICS

    Directory of Open Access Journals (Sweden)

    Natal’ya B. Lazareva

    2018-01-01

    Full Text Available The rational use of antibacterial drugs in children implies an adequate choice of the necessary medication, its dosing regimen, and the duration of treatment in order to achieve maximum efficacy and minimize toxic effects. The knowledge of pharmacokinetic and pharmacodynamic profiles of the antibacterial drug plays a crucial role for optimizing the dosing regimen. The strategy of individual choice of the dosing regimen, taking into account the principles of pharmacokinetics and pharmacodynamics, can be especially effective in patients with the expectedly changed parameters of pharmacokinetics and in infections caused by bacteria strains with low sensitivity to antibiotics. The review presents a contemporary view of pharmacokinetic and pharmacodynamic profiles of antibacterial drugs most commonly used in pediatrics and their relationship to the clinical efficacy of the administered therapy.

  8. Monitoring early tumor response to drug therapy with diffuse optical tomography

    Science.gov (United States)

    Flexman, Molly L.; Vlachos, Fotios; Kim, Hyun Keol; Sirsi, Shashank R.; Huang, Jianzhong; Hernandez, Sonia L.; Johung, Tessa B.; Gander, Jeffrey W.; Reichstein, Ari R.; Lampl, Brooke S.; Wang, Antai; Borden, Mark A.; Yamashiro, Darrell J.; Kandel, Jessica J.; Hielscher, Andreas H.

    2012-01-01

    Although anti-angiogenic agents have shown promise as cancer therapeutics, their efficacy varies between tumor types and individual patients. Providing patient-specific metrics through rapid noninvasive imaging can help tailor drug treatment by optimizing dosages, timing of drug cycles, and duration of therapy--thereby reducing toxicity and cost and improving patient outcome. Diffuse optical tomography (DOT) is a noninvasive three-dimensional imaging modality that has been shown to capture physiologic changes in tumors through visualization of oxygenated, deoxygenated, and total hemoglobin concentrations, using non-ionizing radiation with near-infrared light. We employed a small animal model to ascertain if tumor response to bevacizumab (BV), an anti-angiogenic agent that targets vascular endothelial growth factor (VEGF), could be detected at early time points using DOT. We detected a significant decrease in total hemoglobin levels as soon as one day after BV treatment in responder xenograft tumors (SK-NEP-1), but not in SK-NEP-1 control tumors or in non-responder control or BV-treated NGP tumors. These results are confirmed by magnetic resonance imaging T2 relaxometry and lectin perfusion studies. Noninvasive DOT imaging may allow for earlier and more effective control of anti-angiogenic therapy.

  9. A guided interview process to improve student pharmacists' identification of drug therapy problems.

    Science.gov (United States)

    Rovers, John; Miller, Michael J; Koenigsfeld, Carrie; Haack, Sally; Hegge, Karly; McCleeary, Erin

    2011-02-10

    To measure agreement between advanced pharmacy practice experience students using a guided interview process and experienced clinical pharmacists using standard practices to identify drug therapy problems. Student pharmacists enrolled in an advanced pharmacy practice experience (APPE) and clinical pharmacists conducted medication therapy management interviews to identify drug therapy problems in elderly patients recruited from the community. Student pharmacists used a guided interview tool, while clinical pharmacists' interviews were conducted using their usual and customary practices. Student pharmacists also were surveyed to determine their perceptions of the interview tool. Fair to moderate agreement was observed on student and clinical pharmacists' identification of 4 of 7 drug therapy problems. Of those, agreement was significantly higher than chance for 3 drug therapy problems (adverse drug reaction, dosage too high, and needs additional drug therapy) and not significant for 1 (unnecessary drug therapy). Students strongly agreed that the interview tool was useful but agreed less strongly on recommending its use in practice. The guided interview process served as a useful teaching aid to assist student pharmacists to identify drug therapy problems.

  10. Optimal pharmacological therapy in ST-elevation myocardial infarction-a review : A review of antithrombotic therapies in STEMI.

    Science.gov (United States)

    Hermanides, R S; Kilic, S; van 't Hof, A W J

    2018-04-23

    Antithrombotic therapy is an essential component in the optimisation of clinical outcomes in patients with ST-elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention. There are currently several intravenous anticoagulant drugs available for primary percutaneous coronary intervention. Dual antiplatelet therapy comprising aspirin and P2Y12 inhibitor represents the cornerstone treatment for STEMI. However, these effective treatment strategies may be associated with bleeding complications. Compared with clopidogrel, prasugrel and ticagrelor are more potent and predictable, which translates into better clinical outcomes. Therefore, these agents are the first-line treatment in primary percutaneous coronary intervention. However, patients can still experience adverse ischaemic events, which might be in part attributed to alternative pathways triggering thrombosis. In this review, we provide a critical and updated review of currently available antithrombotic therapies used in patients with STEMI undergoing primary PCI. Finding a balance that minimises both thrombotic and bleeding risk is difficult, but crucial. Further randomised trials for this optimal balance are needed.

  11. Personalized Drug Therapy in Cystic Fibrosis: From Fiction to Reality.

    Science.gov (United States)

    de Lima Marson, Fernando Augusto; Bertuzzo, Carmen Silvia; Ribeiro, Jose Dirceu

    2015-01-01

    Personalized drug therapy for cystic fibrosis (CF) is a long-term dream for CF patients, caregivers, physicians and researchers. After years of study, the fiction of personalized treatment has turned to hope. Basic information about CFTR mutations classes and new treatments is needed if we are to deal properly with the new CF era. The problems involved in this issue, however, should be evaluated with greater care and attention. VX-770 is a new drug available to treat CF patients with some class III CFTR mutations and other drugs are being studied regarding other classes. The scientific literature has constantly given information about each therapy, both in vitro and in vivo. The hope is increasing. Nevertheless the "scientific world" still lacks information about patients' reality and daily health related practical needs. Clinical trials have showed good evaluation of some drugs so far, but clinical response is a wide spectrum yet to be analyzed: CFTR mutations spectrum, costs related to the treatment with new drugs (for VX-770 therapy), variability of CF clinical expression, limitations to test in vitro drugs, absence of good clinical markers to evaluate drug response, absence of long-term studies and with patients below six years old, multidrug treatment used to improve the expression response, and finally, the most important problem, who will benefit from the new drugs therapy, are issues that constitute a barrier that should be overcome. Personalized drug therapy may not be a fiction anymore, but it is not yet a reality for all CF patients.

  12. Optimal structure of particles-based superparamagnetic microrobots: application to MRI guided targeted drug therapy

    International Nuclear Information System (INIS)

    Mellal, Lyès; Belharet, Karim; Folio, David; Ferreira, Antoine

    2015-01-01

    This paper presents an optimal design strategy for therapeutic magnetic micro carriers (TMMC) guided in real time by a magnetic resonance imaging (MRI) system. As aggregates of TMMCs must be formed to carry the most amount of drug and magnetic actuation capability, different clustering agglomerations could be arranged. Nevertheless, its difficult to predict the hydrodynamic behavior of any arbitrary-shaped object due to the nonlinear hydrodynamic effects. Indeed, the drag effect is related not only to the properties of the bolus but also to its interaction with the fluid viscosity, the free-stream velocity and the container geometry. In this work, we propose a mathematical framework to optimize the TMMC aggregates to improve the steering efficiency in experimental endovascular conditions. The proposed analysis is carried out on various sizes and geometries of microcarrier: spherical, ellipsoid-like, and chain-like of microsphere structures. We analyze the magnetophoretic behavior of such designs to exhibit the optimal configuration. Based on the optimal design of the boluses, experimental investigations were carried out in mm-sized fluidic artery phantoms to demonstrate the steerability of the magnetic bolus using a proof-of-concept setup. The experiments demonstrate the steerability of the magnetic bolus under different velocity, shear-stress, and trajectory constraints with a laminar viscous fluidic environment. Preliminary experiments with a MRI system confirm the feasibility of the steering of these TMMCs in hepatic artery microchannel phantom

  13. Drug Delivery Systems for Imaging and Therapy of Parkinson's Disease.

    Science.gov (United States)

    Gunay, Mine Silindir; Ozer, A Yekta; Chalon, Sylvie

    2016-01-01

    Although a variety of therapeutic approaches are available for the treatment of Parkinson's disease, challenges limit effective therapy. Among these challenges are delivery of drugs through the blood brain barier to the target brain tissue and the side effects observed during long term administration of antiparkinsonian drugs. The use of drug delivery systems such as liposomes, niosomes, micelles, nanoparticles, nanocapsules, gold nanoparticles, microspheres, microcapsules, nanobubbles, microbubbles and dendrimers is being investigated for diagnosis and therapy. This review focuses on formulation, development and advantages of nanosized drug delivery systems which can penetrate the central nervous system for the therapy and/or diagnosis of PD, and highlights future nanotechnological approaches. It is esential to deliver a sufficient amount of either therapeutic or radiocontrast agents to the brain in order to provide the best possible efficacy or imaging without undesired degradation of the agent. Current treatments focus on motor symptoms, but these treatments generally do not deal with modifying the course of Parkinson's disease. Beyond pharmacological therapy, the identification of abnormal proteins such as α -synuclein, parkin or leucine-rich repeat serine/threonine protein kinase 2 could represent promising alternative targets for molecular imaging and therapy of Parkinson's disease. Nanotechnology and nanosized drug delivery systems are being investigated intensely and could have potential effect for Parkinson's disease. The improvement of drug delivery systems could dramatically enhance the effectiveness of Parkinson's Disease therapy and reduce its side effects.

  14. Formulation and Optimization of Multiparticulate Drug Delivery System Approach for High Drug Loading.

    Science.gov (United States)

    Shah, Neha; Mehta, Tejal; Gohel, Mukesh

    2017-08-01

    The aim of the present work was to develop and optimize multiparticulate formulation viz. pellets of naproxen by employing QbD and risk assessment approach. Mixture design with extreme vertices was applied to the formulation with high loading of drug (about 90%) and extrusion-spheronization as a process for manufacturing pellets. Independent variables chosen were level of microcrystalline cellulose (MCC)-X 1 , polyvinylpyrrolidone K-90 (PVP K-90)-X 2 , croscarmellose sodium (CCS)-X 3 , and polacrilin potassium (PP)-X 4 . Dependent variables considered were disintegration time (DT)-Y 1 , sphericity-Y 2 , and percent drug release-Y 3 . The formulation was optimized based on the batches generated by MiniTab 17 software. The batch with maximum composite desirability (0.98) proved to be optimum. From the evaluation of design batches, it was observed that, even in low variation, the excipients affect the pelletization property of the blend and also the final drug release. In conclusion, pellets with high drug loading can be effectively manufactured and optimized systematically using QbD approach.

  15. Risk-optimized proton therapy to minimize radiogenic second cancers

    DEFF Research Database (Denmark)

    Rechner, Laura A; Eley, John G; Howell, Rebecca M

    2015-01-01

    Proton therapy confers substantially lower predicted risk of second cancer compared with photon therapy. However, no previous studies have used an algorithmic approach to optimize beam angle or fluence-modulation for proton therapy to minimize those risks. The objectives of this study were...... to demonstrate the feasibility of risk-optimized proton therapy and to determine the combination of beam angles and fluence weights that minimizes the risk of second cancer in the bladder and rectum for a prostate cancer patient. We used 6 risk models to predict excess relative risk of second cancer. Treatment...

  16. Clinical management of drug-drug interactions in HCV therapy: Challenges and solutions

    NARCIS (Netherlands)

    Burger, D.M.; Back, D.; Buggisch, P.; Buti, M.; Craxi, A.; Foster, G.; Klinker, H.; Larrey, D.; Nikitin, I.; Pol, S. van der; Puoti, M.; Romero-Gomez, M.; Wedemeyer, H.; Zeuzem, S.

    2013-01-01

    Hepatitis C virus (HCV) infected patients often take multiple co-medications to treat adverse events related to HCV therapy, or to manage other co-morbidities. Drug-drug interactions associated with this polypharmacy are relatively new to the field of HCV pharmacotherapy. With the advent of the

  17. Drug therapy in patients with Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Müller Thomas

    2012-05-01

    Full Text Available Abstract Parkinson`s disease (PD is a progressive, disabling neurodegenerative disorder with onset of motor and non-motor features. Both reduce quality of life of PD patients and cause caregiver burden. This review aims to provide a survey of possible therapeutic options for treatment of motor and non motor symptoms of PD and to discuss their relation to each other. MAO-B-Inhibitors, NMDA antagonists, dopamine agonists and levodopa with its various application modes mainly improve the dopamine associated motor symptoms in PD. This armentarium of PD drugs only partially influences the onset and occurrence of non motor symptoms. These PD features predominantly result from non dopaminergic neurodegeneration. Autonomic features, such as seborrhea, hyperhidrosis, orthostatic syndrome, salivation, bladder dysfunction, gastrointestinal disturbances, and neuropsychiatric symptoms, such as depression, sleep disorders, psychosis, cognitive dysfunction with impaired execution and impulse control may appear. Drug therapy of these non motor symptoms complicates long-term PD drug therapy due to possible occurrence of drug interactions, - side effects, and altered pharmacokinetic behaviour of applied compounds. Dopamine substituting compounds themselves may contribute to onset of these non motor symptoms. This complicates the differentiation from the disease process itself and influences therapeutic options, which are often limited because of additional morbidity with necessary concomitant drug therapy.

  18. Impact of use of alcohol and illicit drugs by AIDS patients on adherence to antiretroviral therapy in Bahia, Brazil.

    Science.gov (United States)

    Teixeira, Celia; Dourado, Maria De Lourdes; Santos, Marcio P; Brites, Carlos

    2013-05-01

    Use of alcohol and illicit drugs is a common finding among HIV-infected individuals, but there are many open questions about its impact on adherence to antiretroviral therapy and virological outcomes. Our study aimed to evaluate the impact of the use of alcohol and illicit drugs on the adherence to antiretroviral therapy (ART) among patients starting ART in Salvador, Brazil. We followed up 144 AIDS patients initiating ART for a 6-month period. At baseline, they were interviewed about demographics, behavior, and use of illicit drugs and alcohol. All of them had HIV-1 RNA plasma viral load and CD4(+)/CD8(+) cells count measured before starting therapy. After 60 days of treatment they were asked to answer a new questionnaire on adherence to ART. All patients were monitored during the following months, and new CD4(+) cell count/HIV-1 RNA plasma viral load determinations were performed after 6 months of therapy. Optimal adherence to therapy was defined by self-reported questionnaire, by 95% use of prescribed drug doses, and by using plasma HIV-1 RNA viral load as a biological marker. A total of 61 (42.4%) patients reported alcohol use, 7 (4.9%) used illicit drugs, and 17 (11.8%) used both alcohol and illicit drugs. Being in a steady relationship was protective to nonadherence (95% CI: 0.18-0.84). Missing more than two medical visits was also associated with a 68% higher likelihood of nonadherence (95% CI: 0.10-1.02). After logistic regression we detected a higher risk of nonadherence for patients declaring use of alcohol plus illicit drugs (odds ratio=6.0; 95% CI: 1.78-20.28) or high-intensity use of alcohol (odds ratio=3.29; 95% CI: 1.83-5.92). AIDS patients using alcohol and/or illicit drugs are socially vulnerable, and need specific and flexible programs, combining mental health care, harm reduction strategies, and assisted drug therapy to maximize the chances of successful use of ART.

  19. What is the Optimal Strategy for Adaptive Servo-Ventilation Therapy?

    Science.gov (United States)

    Imamura, Teruhiko; Kinugawa, Koichiro

    2018-05-23

    Clinical advantages in the adaptive servo-ventilation (ASV) therapy have been reported in selected heart failure patients with/without sleep-disorder breathing, whereas multicenter randomized control trials could not demonstrate such advantages. Considering this discrepancy, optimal patient selection and device setting may be a key for the successful ASV therapy. Hemodynamic and echocardiographic parameters indicating pulmonary congestion such as elevated pulmonary capillary wedge pressure were reported as predictors of good response to ASV therapy. Recently, parameters indicating right ventricular dysfunction also have been reported as good predictors. Optimal device setting with appropriate pressure setting during appropriate time may also be a key. Large-scale prospective trial with optimal patient selection and optimal device setting is warranted.

  20. Targeted drugs in radiation therapy

    International Nuclear Information System (INIS)

    Favaudon, V.; Hennequin, C.; Hennequin, C.

    2004-01-01

    New drugs aiming at the development of targeted therapies have been assayed in combination with ionizing radiation over the past few years. The rationale of this concept comes from the fact that the cytotoxic potential of targeted drugs is limited, thus requiring concomitant association with a cytotoxic agent for the eradication of tumor cells. Conversely a low level of cumulative toxicity is expected from targeted drugs. Most targeted drugs act through inhibition of post-translational modifications of proteins, such as dimerization of growth factor receptors, prenylation reactions, or phosphorylation of tyrosine or serine-threonine residues. Many systems involving the proteasome, neo-angiogenesis promoters, TGF-β, cyclooxygenase or the transcription factor NF-κB, are currently under investigation in hopes they will allow a control of cell proliferation, apoptosis, cell cycle progression, tumor angiogenesis and inflammation. A few drugs have demonstrated an antitumor potential in particular phenotypes. In most instances, however, radiation-drug interactions proved to be strictly additive in terms of cell growth inhibition or induced cell death. Strong potentiation of the response to radiotherapy is expected to require interaction with DNA repair mechanisms. (authors)

  1. Alternative Drugs in Pain Therapy

    Directory of Open Access Journals (Sweden)

    İlker Kelle

    2006-01-01

    Full Text Available Various treatment modalities of acute and chronic pain have been an area of interest of medicine and investigators for centuries. There are two major classes of drugs that are used to control pain: opioid and non-opioid analgesics. They could be used in the case of monotherapy or combination therapy in pain management. However, these agents are not accepted as ideal drugs in clinical approaches against pain because of their serious side effects such as development of tolerance and addiction, renal failure and gastrointestinal bleeding. As a consequent, developing new forms of pain relievers that are more safe and effective without any other side effects has became the main goal of researchers. In recent studies, it has been shown that conotoxin therapies are not addictive, and have tolerable indexes unlike opioids. In addition, conotoxins side effects are much milder and easier to manage than those of opioids. In this regard, it has been emphasized that biotoxins such as conotoxins obtained from marine creatures can be better choices in pain management for future prospects.

  2. DNA nanostructure-based drug delivery nanosystems in cancer therapy.

    Science.gov (United States)

    Wu, Dandan; Wang, Lei; Li, Wei; Xu, Xiaowen; Jiang, Wei

    2017-11-25

    DNA as a novel biomaterial can be used to fabricate different kinds of DNA nanostructures based on its principle of GC/AT complementary base pairing. Studies have shown that DNA nanostructure is a nice drug carrier to overcome big obstacles existing in cancer therapy such as systemic toxicity and unsatisfied drug efficacy. Thus, different types of DNA nanostructure-based drug delivery nanosystems have been designed in cancer therapy. To improve treating efficacy, they are also developed into more functional drug delivery nanosystems. In recent years, some important progresses have been made. The objective of this review is to make a retrospect and summary about these different kinds of DNA nanostructure-based drug delivery nanosystems and their latest progresses: (1) active targeting; (2) mutidrug co-delivery; (3) construction of stimuli-responsive/intelligent nanosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. [Uveitis associated with juvenile idiopathic arthritis : Optimization of immunomodulatory therapy].

    Science.gov (United States)

    Heiligenhaus, A; Tappeiner, C; Walscheid, K; Heinz, C

    2016-05-01

    Uveitis associated with juvenile idiopathic arthritis (JIA-associated uveitis) is a vision-threatening disorder with a high complication rate. Besides early diagnosis within screening programs an adequate therapy is essential for improvement of the long-term prognosis. Corticosteroid therapy is often insufficient. In addition to conventional immunosuppression, immunomodulatory drugs, so-called biologicals, are novel highly effective treatment modalities. A systematic search of the literature was carried out for biologicals currently used in the treatment of JIA-associated uveitis. Review of current publications, summary of treatment guidelines and discussion of treatment options for therapy refractive patients. In accordance with the current recommendations tumor necrosis factor (TNF) inhibitors are administered if uveitis inactivity cannot be achieved with topical corticosteroids and in the next stage with immunosuppressants (methotrexate preferred). According to the currently available data adalimumab is then preferred. When the effectiveness of TNF inhibitors ceases during long-term administration and/or recurrences, other biological response modifiers are attractive treatment options (e. g. lymphocyte inhibitors or specific receptor antagonists). The TNF inhibitors are of major importance for the treatment of JIA-associated uveitis. Prospective studies and registries would be desirable in order to be able to compare the value of TNF inhibitors and other biologicals and for optimization of treatment recommendations.

  4. Drug Therapy Problems in Patients on Antihypertensives and ...

    African Journals Online (AJOL)

    Drug therapy problems (DTPs), with the associated risks inherent in antihypertensive and antidiabetic therapy require utmost attention. This present study was aimed at assessing the DTPs observed in the management of hypertension and diabetes mellitus (DM) in two tertiary health facilities in Niger Delta region. In this ...

  5. Optimizing clopidogrel dose response: a new clinical algorithm comprising CYP2C19 pharmacogenetics and drug interactions

    Directory of Open Access Journals (Sweden)

    Saab YB

    2015-09-01

    Full Text Available Yolande B Saab,1 Rony Zeenny,2 Wijdan H Ramadan2 1School of Pharmacy, Pharmaceutical Sciences Department, 2School of Pharmacy, Pharmacy Practice Department, Lebanese American University, Byblos, Lebanon Purpose: Response to clopidogrel varies widely with nonresponse rates ranging from 4% to 30%. A reduced function of the gene variant of the CYP2C19 has been associated with lower drug metabolite levels, and hence diminished platelet inhibition. Drugs that alter CYP2C19 activity may also mimic genetic variants. The aim of the study is to investigate the cumulative effect of CYP2C19 gene polymorphisms and drug interactions that affects clopidogrel dosing, and apply it into a new clinical-pharmacogenetic algorithm that can be used by clinicians in optimizing clopidogrel-based treatment. Method: Clopidogrel dose optimization was analyzed based on two main parameters that affect clopidogrel metabolite area under the curve: different CYP2C19 genotypes and concomitant drug intake. Clopidogrel adjusted dose was computed based on area under the curve ratios for different CYP2C19 genotypes when a drug interacting with CYP2C19 is added to clopidogrel treatment. A clinical-pharmacogenetic algorithm was developed based on whether clopidogrel shows 1 expected effect as per indication, 2 little or no effect, or 3 clinical features that patients experience and fit with clopidogrel adverse drug reactions. Results: The study results show that all patients under clopidogrel treatment, whose genotypes are different from *1*1, and concomitantly taking other drugs metabolized by CYP2C19 require clopidogrel dose adjustment. To get a therapeutic effect and avoid adverse drug reactions, therapeutic dose of 75 mg clopidogrel, for example, should be lowered to 6 mg or increased to 215 mg in patients with different genotypes. Conclusion: The implementation of clopidogrel new algorithm has the potential to maximize the benefit of clopidogrel pharmacological therapy

  6. Smart Drug Delivery Systems in Cancer Therapy.

    Science.gov (United States)

    Unsoy, Gozde; Gunduz, Ufuk

    2018-02-08

    Smart nanocarriers have been designed for tissue-specific targeted drug delivery, sustained or triggered drug release and co-delivery of synergistic drug combinations to develop safer and more efficient therapeutics. Advances in drug delivery systems provide reduced side effects, longer circulation half-life and improved pharmacokinetics. Smart drug delivery systems have been achieved successfully in the case of cancer. These nanocarriers can serve as an intelligent system by considering the differences of tumor microenvironment from healthy tissue, such as low pH, low oxygen level, or high enzymatic activity of matrix metalloproteinases. The performance of anti-cancer agents used in cancer diagnosis and therapy is improved by enhanced cellular internalization of smart nanocarriers and controlled drug release. Here, we review targeting, cellular internalization; controlled drug release and toxicity of smart drug delivery systems. We are also emphasizing the stimulus responsive controlled drug release from smart nanocarriers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. The anti-hepatitis drug use effect and inventory management optimization from the perspective of hospital drug supply chain.

    Science.gov (United States)

    Liu, Zhanyu

    2017-09-01

    By analyzing the current hospital anti hepatitis drug use, dosage, indications and drug resistance, this article studied the drug inventory management and cost optimization. The author used drug utilization evaluation method, analyzed the amount and kind distribution of anti hepatitis drugs and made dynamic monitoring of inventory. At the same time, the author puts forward an effective scheme of drug classification management, uses the ABC classification method to classify the drugs according to the average daily dose of drugs, and implements the automatic replenishment plan. The design of pharmaceutical services supply chain includes drug procurement platform, warehouse management system and connect to the hospital system through data exchange. Through the statistical analysis of drug inventory, we put forward the countermeasures of drug logistics optimization. The results showed that drug replenishment plan can effectively improve drugs inventory efficiency.

  8. Antiretroviral drug resistance in HIV-1 therapy-naive patients in Cuba.

    Science.gov (United States)

    Pérez, Lissette; Kourí, Vivian; Alemán, Yoan; Abrahantes, Yeisel; Correa, Consuelo; Aragonés, Carlos; Martínez, Orlando; Pérez, Jorge; Fonseca, Carlos; Campos, Jorge; Álvarez, Delmis; Schrooten, Yoeri; Dekeersmaeker, Nathalie; Imbrechts, Stijn; Beheydt, Gertjan; Vinken, Lore; Soto, Yudira; Álvarez, Alina; Vandamme, Anne-Mieke; Van Laethem, Kristel

    2013-06-01

    In Cuba, antiretroviral therapy rollout started in 2001 and antiretroviral therapy coverage has reached almost 40% since then. The objectives of this study were therefore to analyze subtype distribution, and level and patterns of drug resistance in therapy-naive HIV-1 patients. Four hundred and one plasma samples were collected from HIV-1 therapy-naive patients in 2003 and in 2007-2011. HIV-1 drug resistance genotyping was performed in the pol gene and drug resistance was interpreted according to the WHO surveillance drug-resistance mutations list, version 2009. Potential impact on first-line therapy response was estimated using genotypic drug resistance interpretation systems HIVdb version 6.2.0 and Rega version 8.0.2. Phylogenetic analysis was performed using Neighbor-Joining. The majority of patients were male (84.5%), men who have sex with men (78.1%) and from Havana City (73.6%). Subtype B was the most prevalent subtype (39.3%), followed by CRF20-23-24_BG (19.5%), CRF19_cpx (18.0%) and CRF18_cpx (10.3%). Overall, 29 patients (7.2%) had evidence of drug resistance, with 4.0% (CI 1.6%-4.8%) in 2003 versus 12.5% (CI 7.2%-14.5%) in 2007-2011. A significant increase in drug resistance was observed in recently HIV-1 diagnosed patients, i.e. 14.8% (CI 8.0%-17.0%) in 2007-2011 versus 3.8% (CI 0.9%-4.7%) in 2003 (OR 3.9, CI 1.5-17.0, p=0.02). The majority of drug resistance was restricted to a single drug class (75.8%), with 55.2% patients displaying nucleoside reverse transcriptase inhibitor (NRTI), 10.3% non-NRTI (NNRTI) and 10.3% protease inhibitor (PI) resistance mutations. Respectively, 20.7% and 3.4% patients carried viruses containing drug resistance mutations against NRTI+NNRTI and NRTI+NNRTI+PI. The first cases of resistance towards other drug classes than NRTI were only detected from 2008 onwards. The most frequent resistance mutations were T215Y/rev (44.8%), M41L (31.0%), M184V (17.2%) and K103N (13.8%). The median genotypic susceptibility score for the

  9. Risk-optimized proton therapy to minimize radiogenic second cancers

    Science.gov (United States)

    Rechner, Laura A.; Eley, John G.; Howell, Rebecca M.; Zhang, Rui; Mirkovic, Dragan; Newhauser, Wayne D.

    2015-01-01

    Proton therapy confers substantially lower predicted risk of second cancer compared with photon therapy. However, no previous studies have used an algorithmic approach to optimize beam angle or fluence-modulation for proton therapy to minimize those risks. The objectives of this study were to demonstrate the feasibility of risk-optimized proton therapy and to determine the combination of beam angles and fluence weights that minimize the risk of second cancer in the bladder and rectum for a prostate cancer patient. We used 6 risk models to predict excess relative risk of second cancer. Treatment planning utilized a combination of a commercial treatment planning system and an in-house risk-optimization algorithm. When normal-tissue dose constraints were incorporated in treatment planning, the risk model that incorporated the effects of fractionation, initiation, inactivation, and repopulation selected a combination of anterior and lateral beams, which lowered the relative risk by 21% for the bladder and 30% for the rectum compared to the lateral-opposed beam arrangement. Other results were found for other risk models. PMID:25919133

  10. Bone scintigraphy during therapy with cytostatically acting drugs

    International Nuclear Information System (INIS)

    Schmidt, U.; Pries, H.H.; Joseph, K.; Mahlstedt, J.; Marburg Univ.

    1976-01-01

    Case reports show up, that bone scintigraphy during therapy of metastasing cancer of mamma or prostata with cytostatically acting drugs may reveal 'pseudonormal' results. False negative diagnosis can be excluded only by carefully regarding drug history. Gamma-camera with wholebody scan device for scintigraphy in two projections simplifies safe evaluation significantly. (orig.) [de

  11. Delivering precision antimicrobial therapy through closed-loop control systems

    Science.gov (United States)

    Rawson, T M; O’Hare, D; Herrero, P; Sharma, S; Moore, L S P; de Barra, E; Roberts, J A; Gordon, A C; Hope, W; Georgiou, P; Cass, A E G; Holmes, A H

    2018-01-01

    Abstract Sub-optimal exposure to antimicrobial therapy is associated with poor patient outcomes and the development of antimicrobial resistance. Mechanisms for optimizing the concentration of a drug within the individual patient are under development. However, several barriers remain in realizing true individualization of therapy. These include problems with plasma drug sampling, availability of appropriate assays, and current mechanisms for dose adjustment. Biosensor technology offers a means of providing real-time monitoring of antimicrobials in a minimally invasive fashion. We report the potential for using microneedle biosensor technology as part of closed-loop control systems for the optimization of antimicrobial therapy in individual patients. PMID:29211877

  12. Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance.

    Science.gov (United States)

    Khdair, Ayman; Chen, Di; Patil, Yogesh; Ma, Linan; Dou, Q Ping; Shekhar, Malathy P V; Panyam, Jayanth

    2010-01-25

    Tumor drug resistance significantly limits the success of chemotherapy in the clinic. Tumor cells utilize multiple mechanisms to prevent the accumulation of anticancer drugs at their intracellular site of action. In this study, we investigated the anticancer efficacy of doxorubicin in combination with photodynamic therapy using methylene blue in a drug-resistant mouse tumor model. Surfactant-polymer hybrid nanoparticles formulated using an anionic surfactant, Aerosol-OT (AOT), and a naturally occurring polysaccharide polymer, sodium alginate, were used for synchronized delivery of the two drugs. Balb/c mice bearing syngeneic JC tumors (mammary adenocarcinoma) were used as a drug-resistant tumor model. Nanoparticle-mediated combination therapy significantly inhibited tumor growth and improved animal survival. Nanoparticle-mediated combination treatment resulted in enhanced tumor accumulation of both doxorubicin and methylene blue, significant inhibition of tumor cell proliferation, and increased induction of apoptosis. These data suggest that nanoparticle-mediated combination chemotherapy and photodynamic therapy using doxorubicin and methylene blue has significant therapeutic potential against drug-resistant tumors. Copyright 2009 Elsevier B.V. All rights reserved.

  13. The optimal management of anti-thrombotic therapy after valve replacement: certainties and uncertainties.

    Science.gov (United States)

    Iung, Bernard; Rodés-Cabau, Josep

    2014-11-07

    Anti-thrombotic therapy after valve replacement encompasses a number of different situations. Long-term anticoagulation of mechanical prostheses uses vitamin K antagonists with a target international normalized ratio adapted to the characteristics of the prosthesis and the patient. The association of low-dose aspirin is systematic in the American guidelines and more restrictive in the European guidelines. Early heparin therapy is frequently used early after mechanical valve replacement, although there are no precise recommendations regarding timing, type, and dose of drug. Direct oral anticoagulants are presently contraindicated in patients with mechanical prosthesis. The main advantage of bioprostheses is the absence of long-term anticoagulant therapy. Early anticoagulation is indicated after valve replacement for mitral bioprostheses, whereas aspirin is now favoured early after bioprosthetic valve replacement in the aortic position. Early dual antiplatelet therapy is indicated after transcatheter aortic valve implantation, followed by single antiplatelet therapy. However, this relies on low levels of evidence and optimization of anti-thrombotic therapy is warranted in these high-risk patients. Although guidelines are consistent in most instances, discrepancies and the low-level of evidence of certain recommendations highlight the need for further controlled trials, in particular with regard to the combination of antiplatelet therapy with oral anticoagulant and the early post-operative anti-thrombotic therapy following the procedure. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  14. Role of Nanodiamonds in Drug Delivery and Stem Cell Therapy.

    Science.gov (United States)

    Ansari, Shakeel Ahmed; Satar, Rukhsana; Jafri, Mohammad Alam; Rasool, Mahmood; Ahmad, Waseem; Kashif Zaidi, Syed

    2016-09-01

    The use of nanotechnology in medicine and more specifically drug delivery is set to spread rapidly. Currently many substances are under investigation for drug delivery and more specifically for cancer therapy. Nanodiamonds (NDs) have contributed significantly in the development of highly efficient and successful drug delivery systems, and in stem cell therapy. Drug delivery through NDs is an intricate and complex process that deserves special attention to unravel underlying molecular mechanisms in order to overcome certain bottlenecks associated with it. It has already been established that NDs based drug delivery systems have excellent biocompatibility, nontoxicity, photostability and facile surface functionalization properties. There is mounting evidence that suggests that such conjugated delivery systems well retain the properties of nanoparticles like small size, large surface area to volume ratio that provide greater biocatalytic activity to the attached drug in terms of selectivity, loading and stability. NDs based drug delivery systems may form the basis for the development of effective novel drug delivery vehicles with salient features that may facilitate their utility in fluorescence imaging, target specificity and sustainedrelease.

  15. Trigeminal neuralgia: successful antiepileptic drug combination therapy in three refractory cases

    Directory of Open Access Journals (Sweden)

    Prisco L

    2011-08-01

    Full Text Available Lara Prisco1, Mario Ganau2, Federica Bigotto1, Francesca Zornada11Department of Anaesthesiology, Intensive Care and Emergency Medicine, University Hospital of Cattinara, 2Graduate School of Nanotechnology, University of Trieste, ItalyAbstract: Antiepileptic drug combination therapy remains an empirical second-line treatment approach in trigeminal neuralgia, after treatment with one antiepileptic drug or other nonantiepileptic drugs have failed. The results in three patients followed in our clinic are not sufficient to draw definitive conclusions, but suggest the possibility of developing this type of therapeutic approach further.Keywords: trigeminal neuralgia, antiepileptic drugs, combination therapy

  16. Optimization of adaptive radiation therapy in cervical cancer: Solutions for photon and proton therapy

    NARCIS (Netherlands)

    van de Schoot, A.J.A.J.

    2016-01-01

    In cervical cancer radiation therapy, an adaptive strategy is required to compensate for interfraction anatomical variations in order to achieve adequate dose delivery. In this thesis, we have aimed at optimizing adaptive radiation therapy in cervical cancer to improve treatment efficiency and

  17. Optimizing hydroxyurea therapy for sickle cell anemia.

    Science.gov (United States)

    Ware, Russell E

    2015-01-01

    Hydroxyurea has proven efficacy in numerous clinical trials as a disease-modifying treatment for patients with sickle cell anemia (SCA) but is currently under-used in clinical practice. To improve the effectiveness of hydroxyurea therapy, efforts should be directed toward broadening the clinical treatment indications, optimizing the daily dosage, and emphasizing the benefits of early and extended treatment. Here, various issues related to hydroxyurea treatment are discussed, focusing on both published evidence and clinical experience. Specific guidance is provided regarding important but potentially unfamiliar aspects of hydroxyurea treatment for SCA, such as escalating to maximum tolerated dose, treating in the setting of cerebrovascular disease, switching from chronic transfusions to hydroxyurea, and using serial phlebotomy to alleviate iron overload. Future research directions to optimize hydroxyurea therapy are also discussed, including personalized dosing based on pharmacokinetic modeling, prediction of fetal hemoglobin responses based on pharmacogenomics, and the risks and benefits of hydroxyurea for non-SCA genotypes and during pregnancy/lactation. Another critical initiative is the introduction of hydroxyurea safely and effectively into global regions that have a high disease burden of SCA but limited resources, such as sub-Saharan Africa, the Caribbean, and India. Final considerations emphasize the long-term goal of optimizing hydroxyurea therapy, which is to help treatment become accepted as standard of care for all patients with SCA. © 2015 by The American Society of Hematology. All rights reserved.

  18. Optimizing Treatment with TNF Inhibitors in Inflammatory Bowel Disease by Monitoring Drug Levels and Antidrug Antibodies

    DEFF Research Database (Denmark)

    Steenholdt, Casper; Bendtzen, Klaus; Brynskov, Jørn

    2016-01-01

    costs. The objective is to review optimization of anti-TNF therapy by use of personalized treatment strategies based on circulating drug levels and antidrug antibodies (Abs), i.e. therapeutic drug monitoring (TDM). Furthermore, to outline TDM-related pitfalls and their prevention. METHODS: Literature...... inflammatory phenotype influencing the pharmacodynamic (PD) responses to TNF inhibitors also affect treatment outcomes. As an alternative to handling anti-TNF-treated patients by empiric strategies, TDM identifies underlying PK and PD-related reasons for treatment failure and aids decision making to secure...... of chronology between changes in PK versus symptomatic and objective disease activity manifestations. Biases can be accommodated by knowledgeable interpretation of results obtained by validated assays with clinically established thresholds, and by repeated assessments over time using complimentary techniques...

  19. Drug therapy for chronic idiopathic axonal polyneuropathy

    NARCIS (Netherlands)

    Vrancken, A. F. J. E.; van Schaik, I. N.; Hughes, R. A. C.; Notermans, N. C.

    2004-01-01

    BACKGROUND: Chronic idiopathic axonal polyneuropathy is an insidiously progressive sensory or sensorimotor polyneuropathy that affects elderly people. Although severe disability or handicap does not occur, it reduces quality of life. OBJECTIVES: To assess whether drug therapy for chronic idiopathic

  20. [Drug susceptibility test guided therapy and novel empirical quadruple therapy for Helicobacter pylori infection: a network Meta-analysis].

    Science.gov (United States)

    Gou, Q Y; Yu, R B; Shi, R H

    2017-05-10

    Objective: To compare the efficacy and the risk of adverse effect of drug susceptibility test guided therapy and novel empirical quadruple therapy for Helicobacter ( H .) pylori infection. Methods: Literature retrieval was conducted by using major databases. Related papers published up to June 2015 were considered eligible if they were randomized control trials comparing different pharmacological formulations for H. pylori infection and used in a network Meta-analysis and a single rate Meta-analysis to evaluate the relative and absolute rates of H. pylori eradication and the risk of adverse effect. The Jadad score was used to evaluate the methodological quality. Funnel plot was constructed to evaluate the risk of publication bias. Begg's rank correlation test or Egger's regression intercept test was done for the asymmetry of funnel plot. Results: Twenty randomized control trials for the treatment of 6 753 initial treated patients with H. pylori infection were included. Drug susceptibility test guided therapy was significantly superior to concomitant therapy, hybrid therapy, sequential therapy and bismuth quadruple therapy. The culture-based therapy had the highest likelihood of improving clinical efficacy, with lowest risk of adverse effect. Concomitant therapy had the highest probability of causing adverse effect despite its effectiveness. Hybrid therapy and bismuth quadruple therapy were associated with lower risk of adverse effect and higher effectiveness. Conclusion: Drug susceptibility test guided therapy showed superiority to other 4 interventions for H. pylori eradication mentioned above. Hybrid therapy and bismuth quadruple therapy might be applied in the settings where the culture-based strategy is not available.

  1. Drug therapy for people with mental disorders in the view of nursing professionals

    Directory of Open Access Journals (Sweden)

    Camila Bonfim de Alcântara

    2018-03-01

    Full Text Available Abstract Objective: To identify the perception of nursing professionals about drug therapy for people with mental disorders. Methods: An exploratory qualitative research was carried out in four Psychosocial Care Centers of Curitiba, Paraná, Brazil. Data, collected from January to March 2015 using an individual semi-structured interview applied to 56 nursing professionals, were submitted to qualitative data analysis and interpretation as proposed by Creswell. Results: The data were organized into three thematic categories: drug therapy improves the life of the person with a mental disorder; negative and positive consequences related to drug therapy; and drug therapy as one of the resources needed to treat mental health. Conclusion: Nursing staff perceive the importance of medications as a resource to treat people with mental disorders as psychotropic drugs minimize he acute symptoms of disorders and improve living conditions when associated with other therapeutic resources.

  2. Optimization of self-microemulsifying drug delivery systems (SMEDDS) using a D-optimal design and the desirability function

    DEFF Research Database (Denmark)

    Holm, R.; Jensen, I.H.M.; Sonnergaard, Jørn

    2006-01-01

    with the hard gelatin capsule. Three formulation variables, PEG200, a surfactant mixture, and an oil mixture, were included in the experimental design. The results of the mathematical analysis of the data demonstrated significant interactions among the formulation variables, and the desirability function......D-optimal design and the desirability function were applied to optimize a self-microemulsifying drug delivery system (SMEDDS). The optimized key parameters were the following: 1) particle size of the dispersed emulsion, 2) solubility of the drug in the vehicle, and 3) the vehicle compatibility...

  3. Celiac Disease and Drug-Based Therapies: Inquiry into Patients Demands.

    Science.gov (United States)

    Branchi, Federica; Tomba, Carolina; Ferretti, Francesca; Norsa, Lorenzo; Roncoroni, Leda; Bardella, Maria Teresa; Conte, Dario; Elli, Luca

    2016-01-01

    Medical research is looking for alternative drug-based options to the gluten-free diet (GFD) for celiac disease. We aimed at evaluating the need for alternative therapies perceived by celiac patients. During the 2013 meeting of the Lombardy section of the Italian Celiac Patients Association, adult subjects were invited to fill in a questionnaire investigating their clinical profile in relation to compliance to the diet, quality of life (QOL) as well as their opinion on alternative therapies. Three hundred and seventy two patients (76 m, mean age 41.7 ± 13.9 years) completed the questionnaire. Patients reported a significant improvement in health status (HS) and QOL after the diet was started (p < 0.001). The GFD was accepted by 88% patients, but the need for alternative therapies was reported by 65%. Subjects expressing the need for a drug-based therapy showed a lower increase in QOL (p = 0.003) and HS (p = 0.005) on GFD. The preferred option for an alternative therapy was the use of enzymes (145 subjects), followed by a vaccine (111 subjects). The GFD is favorably accepted by most celiac patients. Nevertheless, a proportion of patients pronounce themselves in favor of the development of alternative drugs. © 2016 S. Karger AG, Basel.

  4. Effect of acupuncture combined with drug therapy on the nerve cytokine secretion and oxidative stress in convalescence of cerebral infarction

    Directory of Open Access Journals (Sweden)

    Xiao-Jie Dai

    2017-09-01

    Full Text Available Objective: To explore the effect of acupuncture combined with drug therapy on the nerve cytokine secretion and oxidative stress in convalescence of cerebral infarction. Methods: A total of 118 patients in convalescence of cerebral infarction who were treated in the affiliated hospital of our school between August 2014 and December 2016 were divided into control group (n=59 and observation group (n=59 according to the random number table method. Control group received routine drug therapy, and the observation group received acupuncture combined with drug therapy. The differences in serum levels of neurotrophic factors, nerve injury factors and oxidative stress indexes were compared between the two groups before and after treatment. Results: The differences in serum levels of neurotrophic factors, nerve injury factors and oxidative stress indexes were not statistically significant between the two groups before treatment. After treatment, serum neurotrophic factors IGF-1, BDNF and NGF levels of observation group were higher than those of control group; nerve injury factors S-100β, NSE, GFAP and UCH-L1 levels were lower than those of control group; oxidative stress indexes MDA, AOPPs and LHP levels were lower than those of control group while SOD and GSH-Px levels were higher than those of control group. Conclusion: Acupuncture combined with drug therapy can effectively optimize the nerve function, reduce the nerve injury and suppress the systemic oxidative stress response of patients in convalescence of cerebral infarction.

  5. Drug therapy problems identification by clinical pharmacists in a private hospital in Kuwait.

    Science.gov (United States)

    Bayoud, T; Waheedi, M; Lemay, J; Awad, A

    2018-05-01

    To report the types and frequency of drug therapy problems (DTPs) identified and the physician acceptance of the clinical pharmacist interventions in a private hospital in Kuwait. A retrospective cross-sectional study was conducted on 3500 patients admitted to the hospital between December 2010 and April 2013. A structured approach was used to identify DTPs and recommend interventions. Data were analyzed using MAXQDA version 11. A total of 670 DTPs were identified and recommendations were proposed to treating physicians for each DTP. Overdosage was the most frequently identified drug therapy problem (30.8%), followed by low dosage (17.6%), unnecessary drug therapy (17.3%), need for additional drug therapy (11.6%), and need for different drug product (11.6%). The drug classes most frequently involved were anti-infectives (36.9%), analgesics (25.2%), and gastrointestinal agents (15.5%). More than two-third of the interventions (67.5%) were accepted and implemented by physicians. The most frequently accepted interventions were related to nonadherence, adverse drug reaction, monitoring parameters, inappropriate dosage, and need for additional drug therapy. The current findings expand the existing body of data by reporting on pharmacist recommendations of identified DTPs and importantly, their high rate of acceptance and implementation by the treating physician. These results could serve as a springboard to support further development and implementation of clinical pharmacy services in other healthcare settings in Kuwait. Copyright © 2018 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.

  6. The quest for optimal antimicrobial therapy

    NARCIS (Netherlands)

    Mol, Petrus Gerardus Maria

    2005-01-01

    Since the discovery of sulphonam ides and penicillin in the 1930's, and their widespread use in clinical practice during World War II a plethora of new antimicrobial agents have entered the market. Initial optim ism has faded that these new drugs would eliminate infectious diseases as killer

  7. Biomarker-guided repurposing of chemotherapeutic drugs for cancer therapy

    DEFF Research Database (Denmark)

    Stenvang, Jan; Kümler, Iben; Nygård, Sune Boris

    2013-01-01

    -standard chemotherapeutic drug will be relatively low in such a patient cohort it is a pre-requisite that such testing is based on predictive biomarkers. This review describes our strategy of biomarker-guided repurposing of chemotherapeutic drugs for cancer therapy, taking the repurposing of topoisomerase I (Top1...

  8. Impact of pharmacy technician-centered medication reconciliation on optimization of antiretroviral therapy and opportunistic infection prophylaxis in hospitalized patients with HIV/AIDS.

    Science.gov (United States)

    Siemianowski, Laura A; Sen, Sanchita; George, Jomy M

    2013-08-01

    This study aimed to examine the role of a pharmacy technician-centered medication reconciliation (PTMR) program in optimization of medication therapy in hospitalized patients with HIV/AIDS. A chart review was conducted for all inpatients that had a medication reconciliation performed by the PTMR program. Adult patients with HIV and antiretroviral therapy (ART) and/or the opportunistic infection (OI) prophylaxis listed on the medication reconciliation form were included. The primary objective is to describe the (1) number and types of medication errors and (2) the percentage of patients who received appropriate ART. The secondary objective is a comparison of the number of medication errors between standard mediation reconciliation and a pharmacy-led program. In the PTMR period, 55 admissions were evaluated. In all, 50% of the patients received appropriate ART. In 27of the 55 admissions, there were 49 combined ART and OI-related errors. The most common ART-related errors were drug-drug interactions. The incidence of ART-related medication errors that included drug-drug interactions and renal dosing adjustments were similar between the pre-PTMR and PTMR groups (P = .0868). Of the 49 errors in the PTMR group, 18 were intervened by a medication reconciliation pharmacist. A PTMR program has a positive impact on optimizing ART and OI prophylaxis in patients with HIV/AIDS.

  9. Optimized Treatment Schedules for Chronic Myeloid Leukemia.

    Directory of Open Access Journals (Sweden)

    Qie He

    2016-10-01

    Full Text Available Over the past decade, several targeted therapies (e.g. imatinib, dasatinib, nilotinib have been developed to treat Chronic Myeloid Leukemia (CML. Despite an initial response to therapy, drug resistance remains a problem for some CML patients. Recent studies have shown that resistance mutations that preexist treatment can be detected in a substantial number of patients, and that this may be associated with eventual treatment failure. One proposed method to extend treatment efficacy is to use a combination of multiple targeted therapies. However, the design of such combination therapies (timing, sequence, etc. remains an open challenge. In this work we mathematically model the dynamics of CML response to combination therapy and analyze the impact of combination treatment schedules on treatment efficacy in patients with preexisting resistance. We then propose an optimization problem to find the best schedule of multiple therapies based on the evolution of CML according to our ordinary differential equation model. This resulting optimization problem is nontrivial due to the presence of ordinary different equation constraints and integer variables. Our model also incorporates drug toxicity constraints by tracking the dynamics of patient neutrophil counts in response to therapy. We determine optimal combination strategies that maximize time until treatment failure on hypothetical patients, using parameters estimated from clinical data in the literature.

  10. Real-time motion-adaptive-optimization (MAO) in TomoTherapy

    Energy Technology Data Exchange (ETDEWEB)

    Lu Weiguo; Chen Mingli; Ruchala, Kenneth J; Chen Quan; Olivera, Gustavo H [TomoTherapy Inc., 1240 Deming Way, Madison, WI (United States); Langen, Katja M; Kupelian, Patrick A [MD Anderson Cancer Center-Orlando, Orlando, FL (United States)], E-mail: wlu@tomotherapy.com

    2009-07-21

    IMRT delivery follows a planned leaf sequence, which is optimized before treatment delivery. However, it is hard to model real-time variations, such as respiration, in the planning procedure. In this paper, we propose a negative feedback system of IMRT delivery that incorporates real-time optimization to account for intra-fraction motion. Specifically, we developed a feasible workflow of real-time motion-adaptive-optimization (MAO) for TomoTherapy delivery. TomoTherapy delivery is characterized by thousands of projections with a fast projection rate and ultra-fast binary leaf motion. The technique of MAO-guided delivery calculates (i) the motion-encoded dose that has been delivered up to any given projection during the delivery and (ii) the future dose that will be delivered based on the estimated motion probability and future fluence map. These two pieces of information are then used to optimize the leaf open time of the upcoming projection right before its delivery. It consists of several real-time procedures, including 'motion detection and prediction', 'delivered dose accumulation', 'future dose estimation' and 'projection optimization'. Real-time MAO requires that all procedures are executed in time less than the duration of a projection. We implemented and tested this technique using a TomoTherapy (registered) research system. The MAO calculation took about 100 ms per projection. We calculated and compared MAO-guided delivery with two other types of delivery, motion-without-compensation delivery (MD) and static delivery (SD), using simulated 1D cases, real TomoTherapy plans and the motion traces from clinical lung and prostate patients. The results showed that the proposed technique effectively compensated for motion errors of all test cases. Dose distributions and DVHs of MAO-guided delivery approached those of SD, for regular and irregular respiration with a peak-to-peak amplitude of 3 cm, and for medium and large

  11. Real-time motion-adaptive-optimization (MAO) in TomoTherapy

    International Nuclear Information System (INIS)

    Lu Weiguo; Chen Mingli; Ruchala, Kenneth J; Chen Quan; Olivera, Gustavo H; Langen, Katja M; Kupelian, Patrick A

    2009-01-01

    IMRT delivery follows a planned leaf sequence, which is optimized before treatment delivery. However, it is hard to model real-time variations, such as respiration, in the planning procedure. In this paper, we propose a negative feedback system of IMRT delivery that incorporates real-time optimization to account for intra-fraction motion. Specifically, we developed a feasible workflow of real-time motion-adaptive-optimization (MAO) for TomoTherapy delivery. TomoTherapy delivery is characterized by thousands of projections with a fast projection rate and ultra-fast binary leaf motion. The technique of MAO-guided delivery calculates (i) the motion-encoded dose that has been delivered up to any given projection during the delivery and (ii) the future dose that will be delivered based on the estimated motion probability and future fluence map. These two pieces of information are then used to optimize the leaf open time of the upcoming projection right before its delivery. It consists of several real-time procedures, including 'motion detection and prediction', 'delivered dose accumulation', 'future dose estimation' and 'projection optimization'. Real-time MAO requires that all procedures are executed in time less than the duration of a projection. We implemented and tested this technique using a TomoTherapy (registered) research system. The MAO calculation took about 100 ms per projection. We calculated and compared MAO-guided delivery with two other types of delivery, motion-without-compensation delivery (MD) and static delivery (SD), using simulated 1D cases, real TomoTherapy plans and the motion traces from clinical lung and prostate patients. The results showed that the proposed technique effectively compensated for motion errors of all test cases. Dose distributions and DVHs of MAO-guided delivery approached those of SD, for regular and irregular respiration with a peak-to-peak amplitude of 3 cm, and for medium and large prostate motions. The results conceptually

  12. Drug therapy for peripheral vestibular vertigo

    Directory of Open Access Journals (Sweden)

    L. M. Antonenko

    2017-01-01

    Full Text Available The choice of effective treatments for vestibular vertigo is one of the important problems, by taking into account the high prevalence of peripheral vestibular diseases. Different drugs, such as vestibular suppressants for the relief of acute vertigo attacks and vestibular compensation stimulants for rehabilitation treatment, are used to treat vestibular vertigo. Drug therapy in combination with vestibular exercises is effective in patients with vestibular neuronitis, Meniere's disease, so is that with therapeutic maneuvers in patients with benign paroxysmal positional vertigo. The high therapeutic efficacy and safety of betahistines permit their extensive use for the treatment of various vestibular disorders.

  13. Development and optimization of a self-microemulsifying drug delivery system for atorvastatin calcium by using D-optimal mixture design.

    Science.gov (United States)

    Yeom, Dong Woo; Song, Ye Seul; Kim, Sung Rae; Lee, Sang Gon; Kang, Min Hyung; Lee, Sangkil; Choi, Young Wook

    2015-01-01

    In this study, we developed and optimized a self-microemulsifying drug delivery system (SMEDDS) formulation for improving the dissolution and oral absorption of atorvastatin calcium (ATV), a poorly water-soluble drug. Solubility and emulsification tests were performed to select a suitable combination of oil, surfactant, and cosurfactant. A D-optimal mixture design was used to optimize the concentration of components used in the SMEDDS formulation for achieving excellent physicochemical characteristics, such as small droplet size and high dissolution. The optimized ATV-loaded SMEDDS formulation containing 7.16% Capmul MCM (oil), 48.25% Tween 20 (surfactant), and 44.59% Tetraglycol (cosurfactant) significantly enhanced the dissolution rate of ATV in different types of medium, including simulated intestinal fluid, simulated gastric fluid, and distilled water, compared with ATV suspension. Good agreement was observed between predicted and experimental values for mean droplet size and percentage of the drug released in 15 minutes. Further, pharmacokinetic studies in rats showed that the optimized SMEDDS formulation considerably enhanced the oral absorption of ATV, with 3.4-fold and 4.3-fold increases in the area under the concentration-time curve and time taken to reach peak plasma concentration, respectively, when compared with the ATV suspension. Thus, we successfully developed an optimized ATV-loaded SMEDDS formulation by using the D-optimal mixture design, that could potentially be used for improving the oral absorption of poorly water-soluble drugs.

  14. Nanomaterial-based drug delivery carriers for cancer therapy

    CERN Document Server

    Feng, Tao

    2017-01-01

    This brief summarizes different types of organic and inorganic nanomaterials for drug delivery in cancer therapy. It highlights that precisely designed nanomaterials will be the next-generation therapeutic agents for cancer treatment.

  15. The application of machine learning techniques in the clinical drug therapy.

    Science.gov (United States)

    Meng, Huan-Yu; Jin, Wan-Lin; Yan, Cheng-Kai; Yang, Huan

    2018-05-25

    The development of a novel drug is an extremely complicated process that includes the target identification, design and manufacture, and proper therapy of the novel drug, as well as drug dose selection, drug efficacy evaluation, and adverse drug reaction control. Due to the limited resources, high costs, long duration, and low hit-to-lead ratio in the development of pharmacogenetics and computer technology, machine learning techniques have assisted novel drug development and have gradually received more attention by researchers. According to current research, machine learning techniques are widely applied in the process of the discovery of new drugs and novel drug targets, the decision surrounding proper therapy and drug dose, and the prediction of drug efficacy and adverse drug reactions. In this article, we discussed the history, workflow, and advantages and disadvantages of machine learning techniques in the processes mentioned above. Although the advantages of machine learning techniques are fairly obvious, the application of machine learning techniques is currently limited. With further research, the application of machine techniques in drug development could be much more widespread and could potentially be one of the major methods used in drug development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Drug Concentration Thresholds Predictive of Therapy Failure and Death in Children With Tuberculosis: Bread Crumb Trails in Random Forests.

    Science.gov (United States)

    Swaminathan, Soumya; Pasipanodya, Jotam G; Ramachandran, Geetha; Hemanth Kumar, A K; Srivastava, Shashikant; Deshpande, Devyani; Nuermberger, Eric; Gumbo, Tawanda

    2016-11-01

     The role of drug concentrations in clinical outcomes in children with tuberculosis is unclear. Target concentrations for dose optimization are unknown.  Plasma drug concentrations measured in Indian children with tuberculosis were modeled using compartmental pharmacokinetic analyses. The children were followed until end of therapy to ascertain therapy failure or death. An ensemble of artificial intelligence algorithms, including random forests, was used to identify predictors of clinical outcome from among 30 clinical, laboratory, and pharmacokinetic variables.  Among the 143 children with known outcomes, there was high between-child variability of isoniazid, rifampin, and pyrazinamide concentrations: 110 (77%) completed therapy, 24 (17%) failed therapy, and 9 (6%) died. The main predictors of therapy failure or death were a pyrazinamide peak concentration <38.10 mg/L and rifampin peak concentration <3.01 mg/L. The relative risk of these poor outcomes below these peak concentration thresholds was 3.64 (95% confidence interval [CI], 2.28-5.83). Isoniazid had concentration-dependent antagonism with rifampin and pyrazinamide, with an adjusted odds ratio for therapy failure of 3.00 (95% CI, 2.08-4.33) in antagonism concentration range. In regard to death alone as an outcome, the same drug concentrations, plus z scores (indicators of malnutrition), and age <3 years, were highly ranked predictors. In children <3 years old, isoniazid 0- to 24-hour area under the concentration-time curve <11.95 mg/L × hour and/or rifampin peak <3.10 mg/L were the best predictors of therapy failure, with relative risk of 3.43 (95% CI, .99-11.82).  We have identified new antibiotic target concentrations, which are potential biomarkers associated with treatment failure and death in children with tuberculosis. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America.

  17. Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance in vitro.

    Science.gov (United States)

    Khdair, Ayman; Handa, Hitesh; Mao, Guangzhao; Panyam, Jayanth

    2009-02-01

    Drug resistance limits the success of many anticancer drugs. Reduced accumulation of the drug at its intracellular site of action because of overexpression of efflux transporters such as P-glycoprotein (P-gp) is a major mechanism of drug resistance. In this study, we investigated whether photodynamic therapy (PDT) using methylene blue, also a P-gp inhibitor, can be used to enhance doxorubicin-induced cytotoxicity in drug-resistant tumor cells. Aerosol OT (AOT)-alginate nanoparticles were used as a carrier for the simultaneous cellular delivery of doxorubicin and methylene blue. Methylene blue was photoactivated using light of 665 nm wavelength. Induction of apoptosis and necrosis following treatment with combination chemotherapy and PDT was investigated in drug-resistant NCI/ADR-RES cells using flow cytometry and fluorescence microscopy. Effect of encapsulation in nanoparticles on the intracellular accumulation of doxorubicin and methylene blue was investigated qualitatively using fluorescence microscopy and was quantitated using HPLC. Encapsulation in AOT-alginate nanoparticles significantly enhanced the cytotoxicity of combination therapy in resistant tumor cells. Nanoparticle-mediated combination therapy resulted in a significant induction of both apoptosis and necrosis. Improvement in cytotoxicity could be correlated with enhanced intracellular and nuclear delivery of the two drugs. Further, nanoparticle-mediated combination therapy resulted in significantly elevated reactive oxygen species (ROS) production compared to single drug treatment. In conclusion, nanoparticle-mediated combination chemotherapy and PDT using doxorubicin and methylene blue was able to overcome resistance mechanisms and resulted in improved cytotoxicity in drug-resistant tumor cells.

  18. Antiangiogenic therapy for breast cancer

    DEFF Research Database (Denmark)

    Nielsen, D.L.; Andersson, M.; Andersen, Jon Alexander Lykkegaard

    2010-01-01

    tyrosine kinase activity, such as sorafenib, appear promising. While, the role of sunitinib and inhibitors of mammalian target of rapamycin (mTOR) in breast cancer has to be defined. Several unanswered questions remain, such as choice of drug(s), optimal duration of therapy and patient selection criteria...

  19. Drug-induced Sweet's syndrome secondary to hepatitis C antiviral therapy.

    Science.gov (United States)

    Gheorghe, Liana; Cotruta, Bogdan; Trifu, Viorel; Cotruta, Cristina; Becheanu, Gabriel; Gheorghe, Cristian

    2008-09-01

    Pegylated interferon-alpha in combination with ribavirin currently represents the therapeutic standard for the hepatitis C virus infection. Interferon based therapy may be responsible for many cutaneous side effects. We report a case of drug-induced Sweet's syndrome secondary to hepatitis C antiviral therapy. To our knowledge, this is the first reported case of Sweet's syndrome in association with pegylated interferon-alpha therapy.

  20. Design optimization of a novel pMDI actuator for systemic drug delivery.

    Science.gov (United States)

    Kakade, Prashant P; Versteeg, Henk K; Hargrave, Graham K; Genova, Perry; Williams Iii, Robert C; Deaton, Daniel

    2007-01-01

    Pressurized metered dose inhalers (pMDIs) are the most widely prescribed and economical respiratory drug delivery systems. Conventional pMDI actuators-those based on "two-orifice-and-sump" designs-produce an aerosol with a reasonable respirable fraction, but with high aerosol velocity. The latter is responsible for high oropharyngeal deposition, and consequently low drug delivery efficiency. Kos' pMDI technology is based on a proprietary vortex nozzle actuator (VNA), an innovative actuator configuration that seeks to reduce aerosol plume velocity, thereby promoting deep lung deposition. Using VNA development as a case study, this paper presents a systematic design optimization process to improve the actuator performance through use of advanced optical characterization tools. The optimization effort mainly relied on laser-based optical diagnostics to provide an improved understanding of the fundamentals of aerosol formation and interplay of various geometrical factors. The performance of the optimized VNA design thus evolved was characterized using phase Doppler anemometry and cascade impaction. The aerosol velocities for both standard and optimized VNA designs were found to be comparable, with both notably less than conventional actuators. The optimized VNA design also significantly reduces drug deposition in the actuator as well as USP throat adapter, which in turn, leads to a significantly higher fine particle fraction than the standard design (78 +/- 3% vs. 63 +/- 2% on an ex valve basis). This improved drug delivery efficiency makes VNA technology a practical proposition as a systemic drug delivery platform. Thus, this paper demonstrates how advanced optical diagnostic and characterization tools can be used in the development of high efficiency aerosol drug delivery devices.

  1. The comprehension of drug therapy in elderly in a family health unit

    Directory of Open Access Journals (Sweden)

    Maria Carolina Martinghi Spinola Moretti

    2018-04-01

    Full Text Available Introduction: The complex therapeutic regimen and aging changes contribute to the difficulty of understanding the drug therapy and treatment adherence. Objective: To evaluate the comprehension of drug therapy for elderly identifying the limiting factors to its adherence to the treatment. Methods: A descriptive, exploratory and quantitative study using na evaluation questionnaire of the comprehension of the drug therapy, mini-mental state examination and the Lawton scale in patients from the Adult Program of a Family Health Unit, in nearby São Paulo, SP, Brazil. Data were analyzed by χ2 tests or Fisher’s exact test, of Mann-Whitney or Kruskal-Wallis. Results: The sample consisted of 50 elderly patients with diabetes and/or arterial hypertension with the average age of 68.8 years and low education. Only 30% of them knew the name of the medications that they make use of, 6% understood the letter of the prescription, 24% thought there is no need to take their medications when they feel good; and 20% have abandoned treatment sometime. The factors that influenced the comprehension of the drug therapy were marital status, family composition, cognitive status, number of pills/day and level of education. Conclusion: The lack of understanding by the elderly about their drug therapy may hinder to its adherence to the treatment, lead to poor control of symptoms, and interfere directly in their health and quality of life.

  2. Recent advances in targeted drug therapy for hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    FAN Yongqiang

    2018-02-01

    Full Text Available More and more clinical trials have proved the efficacy of targeted drugs in the treatment of hepatocellular carcinoma (HCC. With the development of science and technology, more and more targeted drugs have appeared. In recent years, targeted drugs such as regorafenib and ramucirumab have shown great potential in related clinical trials. In addition, there are ongoing clinical trials for second-line candidate drugs, such as c-Met inhibitors tivantinib and cabozantinib and a VEGFR-2 inhibitor ramucirumab. This article summarizes the advances in targeted drug therapy for HCC and related trial data, which provides a reference for further clinical trials and treatment.

  3. A Florescence Detection Module for Photodynamic Therapy Optimization by Measuring the Concentration of Photo sensitizer

    International Nuclear Information System (INIS)

    Serrano Navarro, Joel; Stolik Isakina, Suren; La Rosa Vazquez, Jose M. de; Valor Reed, Alma

    2016-01-01

    In the present work, a portable fluorescence detection system designed and built for dosimetry control applications in Photodynamic Therapy is presented. The system excites the used photo sensitizer drug with a modulated laser light source and subsequently measures the radiance of the emitted fluorescent light. Since the fluorescent radiance is directly related to the photosensitizers concentration, this measurement allows for real-time monitoring of the photo sensitizer concentration in the treated tissue. The system is thought to permit adjusting the therapeutic regime in order to optimize the expected therapy results. In the developed system, a synchronous detection technique is employed to recover the fluorescence signals embedded in noisy backgrounds and lit environments. A scanning probe with a 405 nm diode laser is used to excite the photo sensitizer, while a detection wavelength range from 590 nm to 700 nm has been implemented. (Author)

  4. Optimization approaches to volumetric modulated arc therapy planning

    Energy Technology Data Exchange (ETDEWEB)

    Unkelbach, Jan, E-mail: junkelbach@mgh.harvard.edu; Bortfeld, Thomas; Craft, David [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States); Alber, Markus [Department of Medical Physics and Department of Radiation Oncology, Aarhus University Hospital, Aarhus C DK-8000 (Denmark); Bangert, Mark [Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg D-69120 (Germany); Bokrantz, Rasmus [RaySearch Laboratories, Stockholm SE-111 34 (Sweden); Chen, Danny [Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Li, Ruijiang; Xing, Lei [Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States); Men, Chunhua [Department of Research, Elekta, Maryland Heights, Missouri 63043 (United States); Nill, Simeon [Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG (United Kingdom); Papp, Dávid [Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695 (United States); Romeijn, Edwin [H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Salari, Ehsan [Department of Industrial and Manufacturing Engineering, Wichita State University, Wichita, Kansas 67260 (United States)

    2015-03-15

    Volumetric modulated arc therapy (VMAT) has found widespread clinical application in recent years. A large number of treatment planning studies have evaluated the potential for VMAT for different disease sites based on the currently available commercial implementations of VMAT planning. In contrast, literature on the underlying mathematical optimization methods used in treatment planning is scarce. VMAT planning represents a challenging large scale optimization problem. In contrast to fluence map optimization in intensity-modulated radiotherapy planning for static beams, VMAT planning represents a nonconvex optimization problem. In this paper, the authors review the state-of-the-art in VMAT planning from an algorithmic perspective. Different approaches to VMAT optimization, including arc sequencing methods, extensions of direct aperture optimization, and direct optimization of leaf trajectories are reviewed. Their advantages and limitations are outlined and recommendations for improvements are discussed.

  5. A Novel Scheme for Optimal Control of a Nonlinear Delay Differential Equations Model to Determine Effective and Optimal Administrating Chemotherapy Agents in Breast Cancer.

    Science.gov (United States)

    Ramezanpour, H R; Setayeshi, S; Akbari, M E

    2011-01-01

    Determining the optimal and effective scheme for administrating the chemotherapy agents in breast cancer is the main goal of this scientific research. The most important issue here is the amount of drug or radiation administrated in chemotherapy and radiotherapy for increasing patient's survival. This is because in these cases, the therapy not only kills the tumor cells, but also kills some of the healthy tissues and causes serious damages. In this paper we investigate optimal drug scheduling effect for breast cancer model which consist of nonlinear ordinary differential time-delay equations. In this paper, a mathematical model of breast cancer tumors is discussed and then optimal control theory is applied to find out the optimal drug adjustment as an input control of system. Finally we use Sensitivity Approach (SA) to solve the optimal control problem. The goal of this paper is to determine optimal and effective scheme for administering the chemotherapy agent, so that the tumor is eradicated, while the immune systems remains above a suitable level. Simulation results confirm the effectiveness of our proposed procedure. In this paper a new scheme is proposed to design a therapy protocol for chemotherapy in Breast Cancer. In contrast to traditional pulse drug delivery, a continuous process is offered and optimized, according to the optimal control theory for time-delay systems.

  6. Non-Steroidal Anti-inflammatory Drugs As Host-Directed Therapy for Tuberculosis : A Systematic Review

    NARCIS (Netherlands)

    Kroesen, Vera M.; Gröschel, Matthias I.; Martinson, Neil; Zumla, Alimuddin; Maeurer, Markus; van der Werf, Tjip S.; Vilaplana, Cristina

    2017-01-01

    Lengthy, antimicrobial therapy targeting the pathogen is the mainstay of conventional tuberculosis treatment, complicated by emerging drug resistances. Host-directed therapies, including non-steroidal anti-inflammatory drugs (NSAIDs), in contrast, target host factors to mitigate disease severity. In

  7. Therapy against organophosphate poisoning: The importance of anticholinergic drugs with antiglutamatergic properties

    International Nuclear Information System (INIS)

    Weissman, Ben Avi; Raveh, Lily

    2008-01-01

    Potent cholinesterase inhibitors (e.g., soman, sarin), induce a wide range of deleterious effects including convulsions, behavioral impairments and ultimately, death. Due to the likelihood of various scenarios of military or terrorist attacks by these and other chemical weapons, research has to be aimed at finding optimal therapies. Early accumulation of acetylcholine in synaptic clefts was suggested to trigger an array of toxic events including an excessive release of glutamate, culminating in the activation of its receptors. Stimulation of the N-Methyl-D-Aspartate (NMDA) subtype of these receptors was associated with the neuronal injury that initiates organophosphate-induced brain damage. The notion of a stepwise mechanism yielded treatments based on a combination of an immediate administration of enzyme reactivators and anticholinergic drugs. This strategy dramatically increased survival rates but did not abolish convulsions and failed to prevent the ensuing cognitive dysfunction. Efforts to improve this paradigm by adding anticonvulsants or antiglutamatergic drugs with anti-epileptic characteristics produced dubious results. Under these conditions, benactyzine and caramiphen, agents with anticholinergic and antiglutamatergic properties, provided improved protection when introduced as adjunct agents to oximes, reversible cholinesterase inhibitors and/or specific antimuscarinic drugs such as atropine. In contrast, the specific antimuscarinic drug scopolamine failed to block soman-induced changes in glutamatergic and behavioral parameters even when given prophylactically. These findings along with a large number of additional reports led towards the conclusion that the therapeutic advantage of drugs such as benactyzine and caramiphen could derive from their ability to modulate central cholinergic and glutamate neurotransmission

  8. Novel Drug Delivery Technique for Breast Cancer Therapy

    National Research Council Canada - National Science Library

    Esenaliev, Rinat O

    2004-01-01

    .... We proposed to complete Task 3 and to implement Task 4 in the third year of the project. Task 3 focuses on in vivo studies of efficacy of cancer therapy with the use of ultrasound-enhanced delivery of anti-cancer drug 5-FU...

  9. Cancer therapy with drug loaded magnetic nanoparticles-magnetic drug targeting

    International Nuclear Information System (INIS)

    Alexiou, Christoph; Tietze, Rainer; Schreiber, Eveline; Jurgons, Roland; Richter, Heike; Trahms, Lutz; Rahn, Helene; Odenbach, Stefan; Lyer, Stefan

    2011-01-01

    The aim of magnetic drug targeting (MDT) in cancer therapy is to concentrate chemotherapeutics to a tumor region while simultaneously the overall dose is reduced. This can be achieved with coated superparamagnetic nanoparticles bound to a chemotherapeutic agent. These particles are applied intra arterially close to the tumor region and focused to the tumor by a strong external magnetic field. The interaction of the particles with the field gradient leads to an accumulation in the region of interest (i.e. tumor). The particle enrichment and thereby the drug-load in the tumor during MDT has been proven by several analytical and imaging methods. Moreover, in pilot studies we investigated in an experimental in vivo tumor model the effectiveness of this approach. Complete tumor regressions without any negative side effects could be observed. - Research Highlights: →Iron oxide nanoparticles can be enriched in tumors by external magnetic fields. → Histology evidences the intravasation of particles enter the intracellular space. → Non-invasive imaging techniques can display the spatial arrangement of particles. → HPLC-analysis show outstanding drug enrichment in tumors after MDT.

  10. Cancer therapy with drug loaded magnetic nanoparticles-magnetic drug targeting

    Energy Technology Data Exchange (ETDEWEB)

    Alexiou, Christoph, E-mail: c.alexiou@web.d [Department of Oto-rhino-laryngology, Head and Neck Surgery, University Hospital Erlangen, Section for Experimental Oncology and Nanomedicine at the Else Kroener-Fresenius-Stiftung-Professorship (Germany); Tietze, Rainer; Schreiber, Eveline [Department of Oto-rhino-laryngology, Head and Neck Surgery, University Hospital Erlangen, Section for Experimental Oncology and Nanomedicine at the Else Kroener-Fresenius-Stiftung-Professorship (Germany); Jurgons, Roland [Franz Penzoldt Center, University Hospital Erlangen (Germany); Richter, Heike; Trahms, Lutz [PTB Berlin (Germany); Rahn, Helene; Odenbach, Stefan [TU Dresden, Chair of Magnetofluiddynamics, 01062 Dresden (Germany); Lyer, Stefan [Department of Oto-rhino-laryngology, Head and Neck Surgery, University Hospital Erlangen, Section for Experimental Oncology and Nanomedicine at the Else Kroener-Fresenius-Stiftung-Professorship (Germany)

    2011-05-15

    The aim of magnetic drug targeting (MDT) in cancer therapy is to concentrate chemotherapeutics to a tumor region while simultaneously the overall dose is reduced. This can be achieved with coated superparamagnetic nanoparticles bound to a chemotherapeutic agent. These particles are applied intra arterially close to the tumor region and focused to the tumor by a strong external magnetic field. The interaction of the particles with the field gradient leads to an accumulation in the region of interest (i.e. tumor). The particle enrichment and thereby the drug-load in the tumor during MDT has been proven by several analytical and imaging methods. Moreover, in pilot studies we investigated in an experimental in vivo tumor model the effectiveness of this approach. Complete tumor regressions without any negative side effects could be observed. - Research Highlights: Iron oxide nanoparticles can be enriched in tumors by external magnetic fields. Histology evidences the intravasation of particles enter the intracellular space. Non-invasive imaging techniques can display the spatial arrangement of particles. HPLC-analysis show outstanding drug enrichment in tumors after MDT.

  11. Family Therapy for Drug Abuse: Review and Updates 2003-2010

    Science.gov (United States)

    Rowe, Cynthia L.

    2012-01-01

    Just 15 years ago, Liddle and Dakof ("Journal of Marital and Family Therapy," 1995; 21, 511) concluded, based on the available evidence, that family therapy represented a "promising, but not definitive" approach for the treatment of drug problems among adolescents and adults. Seven years later, Rowe and Liddle (2003) review described considerable…

  12. Self-assembled nanoparticles based on PEGylated conjugated polyelectrolyte and drug molecules for image-guided drug delivery and photodynamic therapy.

    Science.gov (United States)

    Yuan, Youyong; Liu, Bin

    2014-09-10

    A drug delivery system based on poly(ethylene glycol) (PEG) grafted conjugated polyelectrolyte (CPE) has been developed to serve as a polymeric photosensitizer and drug carrier for combined photodynamic and chemotherapy. The amphiphilic brush copolymer can self-assemble into micellar nanopaticles (NPs) in aqueous media with hydrophobic conjugated polyelectrolyte backbone as the core and hydrophilic PEG as the shell. The NPs have an average diameter of about 100 nm, with the absorption and emission maxima at 502 and 598 nm, respectively, making them suitable for bioimaging applications. Moreover, the CPE itself can serve as a photosensitizer, which makes the NPs not only a carrier for drug but also a photosensitizing unit for photodynamic therapy, resulting in the combination of chemo- and photodynamic therapy for cancer. The half-maximal inhibitory concentration (IC50) value for the combination therapy to U87-MG cells is 12.7 μg mL(-1), which is much lower than that for the solely photodynamic therapy (25.5 μg mL(-1)) or chemotherapy (132.8 μg mL(-1)). To improve the tumor specificity of the system, cyclic arginine-glycine-aspartic acid (cRGD) tripeptide as the receptor to integrin αvβ3 overexpressed cancer cells was further incorporated to the surface of the NPs. The delivery system based on PEGylated CPE is easy to fabricate, which integrates the merits of targeted cancer cell image, chemotherapeutic drug delivery, and photodynamic therapy, making it promising for cancer treatment.

  13. Microwave coagulation therapy and drug injection to treat splenic injury.

    Science.gov (United States)

    Zhang, Guoming; Sun, Yuanyuan; Yu, Jie; Dong, Lei; Mu, Nannan; Liu, Xiaohong; Liu, Lanfen; Zhang, Yan; Wang, Xiaofei; Liang, Ping

    2014-01-01

    The present study compares the efficacy of 915- and 2450-MHz contrast-enhanced ultrasound (CEUS)-guided percutaneous microwave coagulation with that of CEUS-guided thrombin injection for the treatment of trauma-induced spleen hemorrhage. In a canine splenic artery hemorrhage model with two levels of arterial diameter (A, microwaves and drug injection. Therapy efficacy was measured by comparing bleeding rate, hemostatic time, bleeding index, bleeding volume, and pathology. The most efficient technique was CEUS-guided 915-MHz percutaneous microwave coagulation therapy in terms of action time and total blood loss. The success rate of the 915-MHz microwave group was higher than that of the 2450-MHz microwave and the drug injection groups (except A level, P microwave group than those in the 2450-MHz microwave and drug injection groups (P microwave group, but pathologic changes of light injury could be seen in the other groups. The present study provides evidence that microwave coagulation therapy is more efficient than thrombin injection for the treatment of splenic hemorrhage. Furthermore, treatment with 915-MHz microwaves stops bleeding more rapidly and generates a wider cauterization zone than does treatment with 2450-MHz microwaves. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Optimal dose-response relationships in voice therapy.

    Science.gov (United States)

    Roy, Nelson

    2012-10-01

    Like other areas of speech-language pathology, the behavioural management of voice disorders lacks precision regarding optimal dose-response relationships. In voice therapy, dosing can presumably vary from no measurable effect (i.e., no observable benefit or adverse effect), to ideal dose (maximum benefit with no adverse effects), to doses that produce toxic or harmful effects on voice production. Practicing specific vocal exercises will inevitably increase vocal load. At ideal doses, these exercises may be non-toxic and beneficial, while at intermediate or high doses, the same exercises may actually be toxic or damaging to vocal fold tissues. In pharmacology, toxicity is a critical concept, yet it is rarely considered in voice therapy, with little known regarding "effective" concentrations of specific voice therapies vs "toxic" concentrations. The potential for vocal fold tissue damage related to overdosing on specific vocal exercises has been under-studied. In this commentary, the issue of dosing will be explored within the context of voice therapy, with particular emphasis placed on possible "overdosing".

  15. Nanomedicine-based combination anticancer therapy between nucleic acids and small-molecular drugs.

    Science.gov (United States)

    Huang, Wei; Chen, Liqing; Kang, Lin; Jin, Mingji; Sun, Ping; Xin, Xin; Gao, Zhonggao; Bae, You Han

    2017-06-01

    Anticancer therapy has always been a vital challenge for the development of nanomedicine. Repeated single therapeutic agent may lead to undesirable and severe side effects, unbearable toxicity and multidrug resistance due to complex nature of tumor. Nanomedicine-based combination anticancer therapy can synergistically improve antitumor outcomes through multiple-target therapy, decreasing the dose of each therapeutic agent and reducing side effects. There are versatile combinational anticancer strategies such as chemotherapeutic combination, nucleic acid-based co-delivery, intrinsic sensitive and extrinsic stimulus combinational patterns. Based on these combination strategies, various nanocarriers and drug delivery systems were engineered to carry out the efficient co-delivery of combined therapeutic agents for combination anticancer therapy. This review focused on illustrating nanomedicine-based combination anticancer therapy between nucleic acids and small-molecular drugs for synergistically improving anticancer efficacy. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Activated Charge-Reversal Polymeric Nano-System: The Promising Strategy in Drug Delivery for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Yichen Hu

    2016-04-01

    Full Text Available Various polymeric nanoparticles (NPs with optimal size, tumor-targeting functionalization, or microenvironment sensitive characteristics have been designed to solve several limitations of conventional chemotherapy. Nano-sized polymeric drug carrier systems have remarkably great advantages in drug delivery and cancer therapy, which are still plagued with severe deficiencies, especially insufficient cellular uptake. Recently, surface charge of medical NPs has been demonstrated to play an important role in cellular uptake. NPs with positive charge show higher affinity to anionic cell membranes such that with more efficient cellular internalization, but otherwise cause severe aggregation and fast clearance in circulation. Thus, surface charge-reversal NPs, specifically activated at the tumor site, have shown to elegantly resolve the enhanced cellular uptake in cancer cells vs. non-specific protein adsorption dilemma. Herein, this review mainly focuses on the effect of tumor-site activated surface charge reversal NPs on tumor treatment, including the activated mechanisms and various applications in suppressing cancer cells, killing cancer stem cell and overcoming multidrug resistance, with the emphasis on recent research in these fields. With the comprehensive and in-depth understanding of the activated surface charge reversal NPs, this approach might arouse great interest of scientific research on enhanced efficient polymeric nano-carriers in cancer therapy.

  17. Potential drug interactions in patients given antiretroviral therapy.

    Science.gov (United States)

    Santos, Wendel Mombaque Dos; Secoli, Silvia Regina; Padoin, Stela Maris de Mello

    2016-11-21

    to investigate potential drug-drug interactions (PDDI) in patients with HIV infection on antiretroviral therapy. a cross-sectional study was conducted on 161 adults with HIV infection. Clinical, socio demographic, and antiretroviral treatment data were collected. To analyze the potential drug interactions, we used the software Micromedex(r). Statistical analysis was performed by binary logistic regression, with a p-value of ≤0.05 considered statistically significant. of the participants, 52.2% were exposed to potential drug-drug interactions. In total, there were 218 potential drug-drug interactions, of which 79.8% occurred between drugs used for antiretroviral therapy. There was an association between the use of five or more medications and potential drug-drug interactions (p = 0.000) and between the time period of antiretroviral therapy being over six years and potential drug-drug interactions (p central nervous and cardiovascular systems, but also can interfere in tests used for detection of HIV resistance to antiretroviral drugs. investigar potenciais interações droga-droga (PDDI) em pacientes infectados com HIV em terapia de antirretroviral. um estudo de corte transversal foi conduzido em 161 pessoas infectadas com o HIV. Dados de tratamentos clínicos, sociodemográficos e antirretrovirais foram coletados. Para analisar a possível interação medicamentosa, nós usamos o software Micromedex(r). A análise estatística foi feita por regressão logística binária, com um valor P de ≤0.05, considerado estatisticamente significativo. dos participantes, 52.2% foram expostos a potenciais interações droga-droga. No total, houve 218 interações droga-droga, das quais 79.8% ocorreram entre drogas usadas para a terapia antirretroviral. Houve uma associação entre o uso de cinco ou mais medicamentos e possíveis interações droga-droga (p = 0.000), e entre o período de tempo de terapia antirretroviral acima de seis anos e possíveis interações droga

  18. Fast optimization and dose calculation in scanned ion beam therapy

    International Nuclear Information System (INIS)

    Hild, S.; Graeff, C.; Trautmann, J.; Kraemer, M.; Zink, K.; Durante, M.; Bert, C.

    2014-01-01

    Purpose: Particle therapy (PT) has advantages over photon irradiation on static tumors. An increased biological effectiveness and active target conformal dose shaping are strong arguments for PT. However, the sensitivity to changes of internal geometry complicates the use of PT for moving organs. In case of interfractionally moving objects adaptive radiotherapy (ART) concepts known from intensity modulated radiotherapy (IMRT) can be adopted for PT treatments. One ART strategy is to optimize a new treatment plan based on daily image data directly before a radiation fraction is delivered [treatment replanning (TRP)]. Optimizing treatment plans for PT using a scanned beam is a time consuming problem especially for particles other than protons where the biological effective dose has to be calculated. For the purpose of TRP, fast optimization and fast dose calculation have been implemented into the GSI in-house treatment planning system (TPS) TRiP98. Methods: This work reports about the outcome of a code analysis that resulted in optimization of the calculation processes as well as implementation of routines supporting parallel execution of the code. To benchmark the new features, the calculation time for therapy treatment planning has been studied. Results: Compared to the original version of the TPS, calculation times for treatment planning (optimization and dose calculation) have been improved by a factor of 10 with code optimization. The parallelization of the TPS resulted in a speedup factor of 12 and 5.5 for the original version and the code optimized version, respectively. Hence the total speedup of the new implementation of the authors' TPS yielded speedup factors up to 55. Conclusions: The improved TPS is capable of completing treatment planning for ion beam therapy of a prostate irradiation considering organs at risk in this has been overseen in the review process. Also see below 6 min

  19. Competence of medical students in communicating drug therapy: Value of role-play demonstrations.

    Science.gov (United States)

    Tayem, Yasin I; Altabtabaei, Abdulaziz S; Mohamed, Mohamed W; Arrfedi, Mansour M; Aljawder, Hasan S; Aldebous, Fahad A; James, Henry; Al Khaja, Khalid A J; Sequeira, Reginald P

    2016-01-01

    This study used role-play demonstrations to train medical students to communicate drug therapy and evaluated the perceptions on this instructional approach. The second-year medical students who attended a prescription writing session (n = 133), participated in this study. Prescription communication was introduced by using role-play demonstrations. Participant's perceptions were explored by a self-administered questionnaire and focus group discussion. The academic achievement of attendees and nonattendees was compared with an objective structured performance evaluation (OSPE) station that tested students' competence in this skill. Most attendees responded to the questionnaire (81.2%). Almost all respondents expressed their desire to have similar demonstrations in other units. A large proportion of participants reported that role-play demonstrations helped them develop their communication skills, in general, confidence to communicate drug-related information in a prescription, and the ability to explain the aim of drug therapy to patients. Most trainees thought also that they developed skills to communicate instructions on drug use including drug dose, frequency of administration, duration of therapy, adverse drug reactions, and warnings. During the focus group interviews, students thought that role-play was useful but would be more beneficial if conducted frequently in small group as part of the curriculum implementation. The majority of students also reported improved competence in writing a complete prescription. Analysis of attendees and nonattendees grades in the OSPE showed that the former scored higher than the latter group (P = 0.016). Role-play demonstrations were well accepted by medical students and led to the development of their competence in communicating drug therapy to patients.

  20. Drug addiction therapy. A dance to the music of time.

    Science.gov (United States)

    Goodison, L; Schafer, H

    1999-10-21

    Dance therapy can play a useful role in the treatment and rehabilitation of women with drug addiction. It works by raising self-esteem through an improved relationship with the body, giving women the strength to help combat their habit. The benefits of dance therapy for women at the detox unit of Holloway Prison have been confirmed by prison staff.

  1. Linear energy transfer incorporated intensity modulated proton therapy optimization

    Science.gov (United States)

    Cao, Wenhua; Khabazian, Azin; Yepes, Pablo P.; Lim, Gino; Poenisch, Falk; Grosshans, David R.; Mohan, Radhe

    2018-01-01

    The purpose of this study was to investigate the feasibility of incorporating linear energy transfer (LET) into the optimization of intensity modulated proton therapy (IMPT) plans. Because increased LET correlates with increased biological effectiveness of protons, high LETs in target volumes and low LETs in critical structures and normal tissues are preferred in an IMPT plan. However, if not explicitly incorporated into the optimization criteria, different IMPT plans may yield similar physical dose distributions but greatly different LET, specifically dose-averaged LET, distributions. Conventionally, the IMPT optimization criteria (or cost function) only includes dose-based objectives in which the relative biological effectiveness (RBE) is assumed to have a constant value of 1.1. In this study, we added LET-based objectives for maximizing LET in target volumes and minimizing LET in critical structures and normal tissues. Due to the fractional programming nature of the resulting model, we used a variable reformulation approach so that the optimization process is computationally equivalent to conventional IMPT optimization. In this study, five brain tumor patients who had been treated with proton therapy at our institution were selected. Two plans were created for each patient based on the proposed LET-incorporated optimization (LETOpt) and the conventional dose-based optimization (DoseOpt). The optimized plans were compared in terms of both dose (assuming a constant RBE of 1.1 as adopted in clinical practice) and LET. Both optimization approaches were able to generate comparable dose distributions. The LET-incorporated optimization achieved not only pronounced reduction of LET values in critical organs, such as brainstem and optic chiasm, but also increased LET in target volumes, compared to the conventional dose-based optimization. However, on occasion, there was a need to tradeoff the acceptability of dose and LET distributions. Our conclusion is that the

  2. Novel devices for individualized controlled inhalation can optimize aerosol therapy in efficacy, patient care and power of clinical trials

    Directory of Open Access Journals (Sweden)

    Fischer A

    2009-12-01

    Full Text Available Abstract In the treatment of pulmonary diseases the inhalation of aerosols plays a key role - it is the preferred route of drug delivery in asthma, chronic obstructive pulmonary disease (COPD and cystic fibrosis. But, in contrast to oral and intravenous administration drug delivery to the lungs is controlled by additional parameters. Beside its pharmacology the active agent is furthermore determined by its aerosol characteristics as particle diameter, particle density, hygroscopicity and electrical charge. The patient related factors like age and stage of pulmonary disease will be additionally affected by the individual breathing pattern and morphometry of the lower airways. A number of these parameters with essential impact on the pulmonary drug deposition can be influenced by the performance of the inhalation system. Therefore, the optimization of nebulisation technology was a major part of aerosol science in the last decade. At this time the control of inspiration volume and air flow as well as the administration of a defined aerosol bolus was in the main focus. Up to date a more efficient and a more targeted pulmonary drug deposition - e.g., in the alveoli - will be provided by novel devices which also allow shorter treatment times and a better reproducibility of the administered lung doses. By such means of precise dosing and drug targeting the efficacy of inhalation therapy can be upgraded, e.g., the continuous inhalation of budesonide in asthma. From a patients' perspective an optimized inhalation manoeuvre means less side effects, e.g., in cystic fibrosis therapy the reduced oropharyngeal tobramycin exposure causes fewer bronchial irritations. Respecting to shorter treatment times also, this result in an improved quality of life and compliance. For clinical trials the scaling down of dose variability in combination with enhanced pulmonary deposition reduces the number of patients to be included and the requirement of pharmaceutical

  3. Scale up, optimization and stability analysis of Curcumin C3 complex-loaded nanoparticles for cancer therapy

    Science.gov (United States)

    2012-01-01

    Background Nanoparticle based delivery of anticancer drugs have been widely investigated. However, a very important process for Research & Development in any pharmaceutical industry is scaling nanoparticle formulation techniques so as to produce large batches for preclinical and clinical trials. This process is not only critical but also difficult as it involves various formulation parameters to be modulated all in the same process. Methods In our present study, we formulated curcumin loaded poly (lactic acid-co-glycolic acid) nanoparticles (PLGA-CURC). This improved the bioavailability of curcumin, a potent natural anticancer drug, making it suitable for cancer therapy. Post formulation, we optimized our process by Reponse Surface Methodology (RSM) using Central Composite Design (CCD) and scaled up the formulation process in four stages with final scale-up process yielding 5 g of curcumin loaded nanoparticles within the laboratory setup. The nanoparticles formed after scale-up process were characterized for particle size, drug loading and encapsulation efficiency, surface morphology, in vitro release kinetics and pharmacokinetics. Stability analysis and gamma sterilization were also carried out. Results Results revealed that that process scale-up is being mastered for elaboration to 5 g level. The mean nanoparticle size of the scaled up batch was found to be 158.5 ± 9.8 nm and the drug loading was determined to be 10.32 ± 1.4%. The in vitro release study illustrated a slow sustained release corresponding to 75% drug over a period of 10 days. The pharmacokinetic profile of PLGA-CURC in rats following i.v. administration showed two compartmental model with the area under the curve (AUC0-∞) being 6.139 mg/L h. Gamma sterilization showed no significant change in the particle size or drug loading of the nanoparticles. Stability analysis revealed long term physiochemical stability of the PLGA-CURC formulation. Conclusions A successful effort towards

  4. VECTOR THEORY AND OPTIMAL CHOICE OF ANTIMICROBIAL DRUG FOR LOCAL WOUND TREATMENT

    Directory of Open Access Journals (Sweden)

    Boyko N. N

    2016-12-01

    Full Text Available Introduction. One of important problems in the field of medicine and pharmacy is an optimal choice among several alternatives. For example, the choice of drugs for treatment among several analogs, selection of excipients among analogs for development of pharmaceutical forms with optimal pharmacological, technological and economical parameters, etc.The aim of the work is to show the possibility of vector theory use for optimal choice of antimicrobial drugs for local wound treatment among analogs taking into account several criteria at the same time. Materials and methods. For our investigation we have chosen ten drugs with antimicrobial properties for local wound treatment in different pharmaceutical forms (ointment, liniment, water and glycerin solution, tincture. We have determined antibacterial activity of drugs by agar well diffusion method on six test-stain microorganisms: Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Proteus vulgaris ATCC 4636, Bacillus subtilis ATCC 6633, and Candida albicans ATCC 885-653. Well diameter was 10 mm, the volume of drug in the well was 0.27±0.02 ml, microbial burden of agar upper layer was 107 CFU/ml, and total layer height in Petri dish was 4.0±0.5 mm. In order to integrate various qualitative and quantitative parameters into one index (vector object in multidimensional factors’ space we modify these parameters to non-dimensional normalized values. For this purpose we use a desirability theory. We have chosen the following criteria for optimal choice of the drug: antimicrobial activity (integrated index of drug’s antimicrobial activity, drug’s price, pharmacological and technological index, spectrum of drug’s action on test strains of microorganisms studied. Results and their discussions. Using vector and desirability theory, we have obtained the following range of drugs in decreasing order: Laevomecol ointment, Ioddicerinum, Tincture of Sophora

  5. Cancer treatment as a game: integrating evolutionary game theory into the optimal control of chemotherapy

    International Nuclear Information System (INIS)

    Orlando, Paul A; Gatenby, Robert A; Brown, Joel S

    2012-01-01

    Chemotherapy for metastatic cancer commonly fails due to evolution of drug resistance in tumor cells. Here, we view cancer treatment as a game in which the oncologists choose a therapy and tumors ‘choose’ an adaptive strategy. We propose the oncologist can gain an upper hand in the game by choosing treatment strategies that anticipate the adaptations of the tumor. In particular, we examine the potential benefit of exploiting evolutionary tradeoffs in tumor adaptations to therapy. We analyze a math model where cancer cells face tradeoffs in allocation of resistance to two drugs. The tumor ‘chooses’ its strategy by natural selection and the oncologist chooses her strategy by solving a control problem. We find that when tumor cells perform best by investing resources to maximize response to one drug the optimal therapy is a time-invariant delivery of both drugs simultaneously. However, if cancer cells perform better using a generalist strategy allowing resistance to both drugs simultaneously, then the optimal protocol is a time varying solution in which the two drug concentrations negatively covary. However, drug interactions can significantly alter these results. We conclude that knowledge of both evolutionary tradeoffs and drug interactions is crucial in planning optimal chemotherapy schedules for individual patients. (paper)

  6. Cancer treatment as a game: integrating evolutionary game theory into the optimal control of chemotherapy

    Science.gov (United States)

    Orlando, Paul A.; Gatenby, Robert A.; Brown, Joel S.

    2012-12-01

    Chemotherapy for metastatic cancer commonly fails due to evolution of drug resistance in tumor cells. Here, we view cancer treatment as a game in which the oncologists choose a therapy and tumors ‘choose’ an adaptive strategy. We propose the oncologist can gain an upper hand in the game by choosing treatment strategies that anticipate the adaptations of the tumor. In particular, we examine the potential benefit of exploiting evolutionary tradeoffs in tumor adaptations to therapy. We analyze a math model where cancer cells face tradeoffs in allocation of resistance to two drugs. The tumor ‘chooses’ its strategy by natural selection and the oncologist chooses her strategy by solving a control problem. We find that when tumor cells perform best by investing resources to maximize response to one drug the optimal therapy is a time-invariant delivery of both drugs simultaneously. However, if cancer cells perform better using a generalist strategy allowing resistance to both drugs simultaneously, then the optimal protocol is a time varying solution in which the two drug concentrations negatively covary. However, drug interactions can significantly alter these results. We conclude that knowledge of both evolutionary tradeoffs and drug interactions is crucial in planning optimal chemotherapy schedules for individual patients.

  7. Two is better than one; toward a rational design of combinatorial therapy.

    Science.gov (United States)

    Chen, Sheng-Hong; Lahav, Galit

    2016-12-01

    Drug combination is an appealing strategy for combating the heterogeneity of tumors and evolution of drug resistance. However, the rationale underlying combinatorial therapy is often not well established due to lack of understandings of the specific pathways responding to the drugs, and their temporal dynamics following each treatment. Here we present several emerging trends in harnessing properties of biological systems for the optimal design of drug combinations, including the type of drugs, specific concentration, sequence of addition and the temporal schedule of treatments. We highlight recent studies showing different approaches for efficient design of drug combinations including single-cell signaling dynamics, adaption and pathway crosstalk. Finally, we discuss novel and feasible approaches that can facilitate the optimal design of combinatorial therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy.

    Science.gov (United States)

    Dilnawaz, Fahima; Singh, Abhalaxmi; Mohanty, Chandana; Sahoo, Sanjeeb K

    2010-05-01

    The primary inadequacy of chemotherapeutic drugs is their relative non-specificity and potential side effects to the healthy tissues. To overcome this, drug loaded multifunctional magnetic nanoparticles are conceptualized. We report here an aqueous based formulation of glycerol monooleate coated magnetic nanoparticles (GMO-MNPs) devoid of any surfactant capable of carrying high payload hydrophobic anticancer drugs. The biocompatibility was confirmed by tumor necrosis factor alpha assay, confocal microscopy. High entrapment efficiency approximately 95% and sustained release of encapsulated drugs for more than two weeks under in vitro conditions was achieved for different anticancer drugs (paclitaxel, rapamycin, alone or combination). Drug loaded GMO-MNPs did not affect the magnetization properties of the iron oxide core as confirmed by magnetization study. Additionally the MNPs were functionalized with carboxylic groups by coating with DMSA (Dimercaptosuccinic acid) for the supplementary conjugation of amines. For targeted therapy, HER2 antibody was conjugated to GMO-MNPs and showed enhanced uptake in human breast carcinoma cell line (MCF-7). The IC(50) doses revealed potential antiproliferative effect in MCF-7. Therefore, antibody conjugated GMO-MNPs could be used as potential drug carrier for the active therapeutic aspects in cancer therapy. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Profiling persistent tubercule bacilli from patient sputa during therapy predicts early drug efficacy.

    Science.gov (United States)

    Honeyborne, Isobella; McHugh, Timothy D; Kuittinen, Iitu; Cichonska, Anna; Evangelopoulos, Dimitrios; Ronacher, Katharina; van Helden, Paul D; Gillespie, Stephen H; Fernandez-Reyes, Delmiro; Walzl, Gerhard; Rousu, Juho; Butcher, Philip D; Waddell, Simon J

    2016-04-07

    New treatment options are needed to maintain and improve therapy for tuberculosis, which caused the death of 1.5 million people in 2013 despite potential for an 86 % treatment success rate. A greater understanding of Mycobacterium tuberculosis (M.tb) bacilli that persist through drug therapy will aid drug development programs. Predictive biomarkers for treatment efficacy are also a research priority. Genome-wide transcriptional profiling was used to map the mRNA signatures of M.tb from the sputa of 15 patients before and 3, 7 and 14 days after the start of standard regimen drug treatment. The mRNA profiles of bacilli through the first 2 weeks of therapy reflected drug activity at 3 days with transcriptional signatures at days 7 and 14 consistent with reduced M.tb metabolic activity similar to the profile of pre-chemotherapy bacilli. These results suggest that a pre-existing drug-tolerant M.tb population dominates sputum before and after early drug treatment, and that the mRNA signature at day 3 marks the killing of a drug-sensitive sub-population of bacilli. Modelling patient indices of disease severity with bacterial gene expression patterns demonstrated that both microbiological and clinical parameters were reflected in the divergent M.tb responses and provided evidence that factors such as bacterial load and disease pathology influence the host-pathogen interplay and the phenotypic state of bacilli. Transcriptional signatures were also defined that predicted measures of early treatment success (rate of decline in bacterial load over 3 days, TB test positivity at 2 months, and bacterial load at 2 months). This study defines the transcriptional signature of M.tb bacilli that have been expectorated in sputum after two weeks of drug therapy, characterizing the phenotypic state of bacilli that persist through treatment. We demonstrate that variability in clinical manifestations of disease are detectable in bacterial sputa signatures, and that the changing M.tb m

  10. Tubulin Inhibitor-Based Antibody-Drug Conjugates for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Hao Chen

    2017-08-01

    Full Text Available Antibody-drug conjugates (ADCs are a class of highly potent biopharmaceutical drugs generated by conjugating cytotoxic drugs with specific monoclonal antibodies through appropriate linkers. Specific antibodies used to guide potent warheads to tumor tissues can effectively reduce undesired side effects of the cytotoxic drugs. An in-depth understanding of antibodies, linkers, conjugation strategies, cytotoxic drugs, and their molecular targets has led to the successful development of several approved ADCs. These ADCs are powerful therapeutics for cancer treatment, enabling wider therapeutic windows, improved pharmacokinetic/pharmacodynamic properties, and enhanced efficacy. Since tubulin inhibitors are one of the most successful cytotoxic drugs in the ADC armamentarium, this review focuses on the progress in tubulin inhibitor-based ADCs, as well as lessons learned from the unsuccessful ADCs containing tubulin inhibitors. This review should be helpful to facilitate future development of new generations of tubulin inhibitor-based ADCs for cancer therapy.

  11. Treatment planning, optimization, and beam delivery technqiues for intensity modulated proton therapy

    Science.gov (United States)

    Sengbusch, Evan R.

    Physical properties of proton interactions in matter give them a theoretical advantage over photons in radiation therapy for cancer treatment, but they are seldom used relative to photons. The primary barriers to wider acceptance of proton therapy are the technical feasibility, size, and price of proton therapy systems. Several aspects of the proton therapy landscape are investigated, and new techniques for treatment planning, optimization, and beam delivery are presented. The results of these investigations suggest a means by which proton therapy can be delivered more efficiently, effectively, and to a much larger proportion of eligible patients. An analysis of the existing proton therapy market was performed. Personal interviews with over 30 radiation oncology leaders were conducted with regard to the current and future use of proton therapy. In addition, global proton therapy market projections are presented. The results of these investigations serve as motivation and guidance for the subsequent development of treatment system designs and treatment planning, optimization, and beam delivery methods. A major factor impacting the size and cost of proton treatment systems is the maximum energy of the accelerator. Historically, 250 MeV has been the accepted value, but there is minimal quantitative evidence in the literature that supports this standard. A retrospective study of 100 patients is presented that quantifies the maximum proton kinetic energy requirements for cancer treatment, and the impact of those results with regard to treatment system size, cost, and neutron production is discussed. This study is subsequently expanded to include 100 cranial stereotactic radiosurgery (SRS) patients, and the results are discussed in the context of a proposed dedicated proton SRS treatment system. Finally, novel proton therapy optimization and delivery techniques are presented. Algorithms are developed that optimize treatment plans over beam angle, spot size, spot spacing

  12. Preparation of finasteride capsules-loaded drug nanoparticles: formulation, optimization, in vitro, and pharmacokinetic evaluation

    Directory of Open Access Journals (Sweden)

    Ahmed TA

    2016-02-01

    Full Text Available Tarek A Ahmed1,2 1Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; 2Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt Abstract: In this study, optimized freeze-dried finasteride nanoparticles (NPs were prepared from drug nanosuspension formulation that was developed using the bottom–up technique. The effects of four formulation and processing variables that affect the particle size and solubility enhancement of the NPs were explored using the response surface optimization design. The optimized formulation was morphologically characterized using transmission electron microscopy (TEM. Physicochemical interaction among the studied components was investigated. Crystalline change was investigated using X-ray powder diffraction (XRPD. Crystal growth of the freeze-dried NPs was compared to the corresponding aqueous drug nanosuspension. Freeze-dried NPs formulation was subsequently loaded into hard gelatin capsules that were examined for in vitro dissolution and pharmacokinetic behavior. Results revealed that in most of the studied variables, some of the quadratic and interaction effects had a significant effect on the studied responses. TEM image illustrated homogeneity and shape of the prepared NPs. No interaction among components was noticed. XRPD confirmed crystalline state change in the optimized NPs. An enhancement in the dissolution rate of more than 2.5 times from capsules filled with optimum drug NPs, when compared to capsules filled with pure drug, was obtained. Crystal growth, due to Ostwald ripening phenomenon and positive Gibbs free energy, was reduced following lyophilization of the nanosuspension formulation. Pharmacokinetic parameters from drug NPs were superior to that of pure drug and drug microparticles. In conclusion, freeze-dried NPs based on drug nanosuspension formulation is a successful

  13. [Combination drug therapy in patients with BPH].

    Science.gov (United States)

    Kuzmenko, A V; Kuzmenko, V V; Gyaurgiev, T A

    2018-03-01

    Introuction. One of the risk factors for LUTS is an infravesical obstruction, which is most often caused by benign prostatic hyperplasia (BPH). BPH symptoms are formed due to three components: static (mechanical), dynamic, and impaired functional capacity of the bladder. Medical treatment with 1-blockers decreases the outflow obstruction. 5-alpha reductase inhibitors are used to inhibit the static component of BPH. To investigate the effectiveness of various modifications of medical therapy of BPH using -blockers and 5-reductase inhibitors and combinations thereof. The study comprised 90 BPH patients who were divided into three groups, with each group containing 30 people. Patients of group I, II and III received monotherapy with -blockers, a combination of 5-reductase and -blockers, and fixed-dose combination drug Duodart, respectively. Evaluation of the treatment effectiveness included filling out voiding diaries, completing the I-PSS and QL questionnaires, uroflowmetry, transrectal ultrasonography of the prostate and estimation of the incidence of adverse effects. Also, compliance with the treatment was evaluated, and the number of patients who had episodes of acute urinary retention and required surgical treatment during the 12 month treatment course was registered. Compared to monotherapy, combination therapy with -blockers and 5-reductase inhibitors more effectively reduces the LUTS, increases Qmax and prevents the disease progression, which manifests in a lower incidence of AUR and fewer surgical interventions in groups II and III. However, the combination therapy can be associated with some side effects. Patients who received fixed-dose combination drug Duodart had a greater compliance rate than patients on the combination of drugs, which, in our opinion, is associated with fewer cases of AUR and surgical interventions. The use of Duodart in patients with BPH effectively alleviates LUTS and reduces the risk of the disease progression, which manifests itself

  14. Treatment with antithyroid drugs or iodine following radioiodine therapy for Graves' disease

    International Nuclear Information System (INIS)

    Mazeto, Glaucia; Leal, B.M.B.; Souza, L.S.; Griva, B.L.; Moriguchi, S.M.; Moreira, C.C.; Lemos, A.C.; Kiy, Y.

    2005-01-01

    Full text: The effect of radioiodine ( 131 I) therapy in Graves' disease is gradual and the patients continue to be hyperthyroid for much time after this therapy. In a retrospective study, we compared the evolution of 196 patients in this situation treated with some therapeutic regimens. They received propylthiouracil or methimazole (ATD), one of them and potassium iodide (KI), KI only, or no drugs after 131 I therapy. ATD was started usually one day and KI two months after the radioiodine. The groups had similar age, pretreatment serum T 4 concentrations and 131 I treatment dose. Cure of the hyperthyroidism occurred in 83,9%, 75,5%, 75,0% and 70,6% in no-drugs, KI, ATD and KI-ATD groups, respectively. Hyperthyroidism was longer in KI and KI-ATD groups. Definitive hypothyroidism occurred in 39,2%, 47,2%, 52,9% and 66,1% in KI-ATD, KI, ATD and no-drugs groups, respectively. This condition appeared more quickly in no-drugs and ATD groups. Conclusion: We conclude that KI and ATD groups had similar evolutions as to cure of hyperthyroidism and occurrence of hypothyroidism. (author)

  15. Impact of Active Drug Use on Antiretroviral Therapy Adherence and Viral Suppression in HIV-infected Drug Users

    OpenAIRE

    Arnsten, Julia H; Demas, Penelope A; Grant, Richard W; Gourevitch, Marc N; Farzadegan, Homayoon; Howard, Andrea A; Schoenbaum, Ellie E

    2002-01-01

    Despite a burgeoning literature on adherence to HIV therapies, few studies have examined the impact of ongoing drug use on adherence and viral suppression, and none of these have utilized electronic monitors to quantify adherence among drug users. We used 262 electronic monitors to measure adherence with all antiretrovirals in 85 HIV-infected current and former drug users, and found that active cocaine use, female gender, not receiving Social Security benefits, not being married, screening po...

  16. VNS Therapy versus the latest antiepileptic drug.

    Science.gov (United States)

    Ben-Menachem, Elinor; French, Jacqueline A

    2005-09-01

    Pro AED: The central issue in medical decision-making is risk-benefit assessment. Surgery of any type is still considered to be a major undertaking. To warrant these risks, the patient has a right to expect that they have a greater chance of a good outcome with an invasive therapy than with a non-invasive one. The main question is when, if ever, this becomes the case when comparing implantation of a VNS Therapy System versus adding an antiepileptic drug (AED)? After the first drug? The second? After all AEDs have failed? To date, no randomized trial comparing the addition of an AED against vagus nerve stimulation (VNS Therapy) has been undertaken, although several are currently being contemplated. Without this information, it is more difficult to make a case for early implementation of VNS Therapy. Unfortunately, few data are available regarding the potential for patients to become seizure-free after implantation of a VNS Therapy System. Another issue is side effects. It is important to remember that VNS Therapy also produces adverse events, albeit very different in character than those associated with AEDs, to which physicians have become accustomed. These include cough, dyspnea, pharyngitis, voice alteration and sleep apnea. A less frequently discussed, potentially negative consequence of VNS Therapy relates to the ability to obtain imaging of the patient. Patients who have undergone VNS Therapy System implantation are not candidates for imaging of the chest, breast, or abdomen. A second issue is that imaging of the brain can only be performed with MRI scanners that meet certain requirements, and as MRI technology develops, scanners meeting these requirements may become harder to find. However, to summarize, VNS Therapy is an excellent and useful treatment choice. Fortunately, the choice between AEDs and VNS Therapy is not an "either/or" decision. Each has a role in the treatment of patients with epilepsy, and the advantages and disadvantages of each should be

  17. Synergistic gene and drug tumor therapy using a chimeric peptide.

    Science.gov (United States)

    Han, Kai; Chen, Si; Chen, Wei-Hai; Lei, Qi; Liu, Yun; Zhuo, Ren-Xi; Zhang, Xian-Zheng

    2013-06-01

    Co-delivery of gene and drug for synergistic therapy has provided a promising strategy to cure devastating diseases. Here, an amphiphilic chimeric peptide (Fmoc)2KH7-TAT with pH-responsibility for gene and drug delivery was designed and fabricated. As a drug carrier, the micelles self-assembled from the peptide exhibited a much faster doxorubicin (DOX) release rate at pH 5.0 than that at pH 7.4. As a non-viral gene vector, (Fmoc)(2)KH(7)-TAT peptide could satisfactorily mediate transfection of pGL-3 reporter plasmid with or without the existence of serum in both 293T and HeLa cell-lines. Besides, the endosome escape capability of peptide/DNA complexes was investigated by confocal laser scanning microscopy (CLSM). To evaluate the co-delivery efficiency and the synergistic anti-tumor effect of gene and drug, p53 plasmid and DOX were simultaneously loaded in the peptide micelles to form micelleplexes during the self-assembly of the peptide. Cellular uptake and intracellular delivery of gene and drug were studied by CLSM and flow cytometry respectively. And p53 protein expression was determined via Western blot analysis. The in vitro cytotoxicity and in vivo tumor inhibition effect were also studied. Results suggest that the co-delivery of gene and drug from peptide micelles resulted in effective cell growth inhibition in vitro and significant tumor growth restraining in vivo. The chimeric peptide-based gene and drug co-delivery system will find great potential for tumor therapy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Design of shared unit-dose drug distribution network using multi-level particle swarm optimization.

    Science.gov (United States)

    Chen, Linjie; Monteiro, Thibaud; Wang, Tao; Marcon, Eric

    2018-03-01

    Unit-dose drug distribution systems provide optimal choices in terms of medication security and efficiency for organizing the drug-use process in large hospitals. As small hospitals have to share such automatic systems for economic reasons, the structure of their logistic organization becomes a very sensitive issue. In the research reported here, we develop a generalized multi-level optimization method - multi-level particle swarm optimization (MLPSO) - to design a shared unit-dose drug distribution network. Structurally, the problem studied can be considered as a type of capacitated location-routing problem (CLRP) with new constraints related to specific production planning. This kind of problem implies that a multi-level optimization should be performed in order to minimize logistic operating costs. Our results show that with the proposed algorithm, a more suitable modeling framework, as well as computational time savings and better optimization performance are obtained than that reported in the literature on this subject.

  19. [Targeting high-risk drugs to optimize clinical pharmacists' intervention].

    Science.gov (United States)

    Mouterde, Anne-Laure; Bourdelin, Magali; Maison, Ophélie; Coursier, Sandra; Bontemps, Hervé

    2016-12-01

    By the Order of 6 April 2011, the pharmacist must validate all the prescriptions containing "high-risk drugs" or those of "patients at risk". To optimize this clinical pharmacy activity, we identified high-risk drugs. A list of high-risk drugs has been established using literature, pharmacists' interventions (PI) performed in our hospital and a survey sent to hospital pharmacists. In a prospective study (analysis of 100 prescriptions for each high-risk drug selected), we have identified the most relevant to target. We obtained a statistically significant PI rate (P<0.05) for digoxin, oral anticoagulants direct, oral methotrexate and colchicine. This method of targeted pharmaceutical validation based on high-risk drugs is relevant to detect patients with high risk of medicine-related illness. Copyright © 2016 Société française de pharmacologie et de thérapeutique. Published by Elsevier Masson SAS. All rights reserved.

  20. Carbon nanotubes as a novel drug delivery system for anticancer therapy: a review

    International Nuclear Information System (INIS)

    Kushwaha, Swatantra Kumar Singh; Ghoshal, SauravI; Rai, Awani Kumar; Singh, Satyawan

    2013-01-01

    Carbon nanotubes (CNTs) were discovered in 1991 and shown to have certain unique physicochemical properties, attracting considerable interest in their application in various fields including drug delivery. The unique properties of CNTs such as ease of cellular uptake, high drug loading, thermal ablation, among others, render them useful for cancer therapy. Cancer is one of the most challenging diseases of modern times because its therapy involves distinguishing normal healthy cells from affected cells. Here, CNTs play a major role because phenomena such as EPR, allow CNTs to distinguish normal cells from affected ones, the Holy Grail in cancer therapy. Considerable work has been done on CNTs as drug delivery systems over the last two decades. However, concerns over certain issues such as biocompatibility and toxicity have been raised and warrant extensive research in this field. (author)

  1. Carbon nanotubes as a novel drug delivery system for anticancer therapy: a review

    Directory of Open Access Journals (Sweden)

    Swatantra Kumar Singh Kushwaha

    2013-12-01

    Full Text Available Carbon nanotubes (CNTs were discovered in 1991 and shown to have certain unique physicochemical properties, attracting considerable interest in their application in various fields including drug delivery. The unique properties of CNTs such as ease of cellular uptake, high drug loading, thermal ablation, among others, render them useful for cancer therapy. Cancer is one of the most challenging diseases of modern times because its therapy involves distinguishing normal healthy cells from affected cells. Here, CNTs play a major role because phenomena such as EPR, allow CNTs to distinguish normal cells from affected ones, the Holy Grail in cancer therapy. Considerable work has been done on CNTs as drug delivery systems over the last two decades. However, concerns over certain issues such as biocompatibility and toxicity have been raised and warrant extensive research in this field.

  2. Carbon nanotubes as a novel drug delivery system for anticancer therapy: a review

    Energy Technology Data Exchange (ETDEWEB)

    Kushwaha, Swatantra Kumar Singh; Ghoshal, SauravI; Rai, Awani Kumar, E-mail: swatantrakushwaha@yahoo.co.in [Pranveer Singh Institute of Technology, Kanpur (India); Singh, Satyawan [Saroj Institute of Technology and Management, Lucknow (India)

    2013-10-15

    Carbon nanotubes (CNTs) were discovered in 1991 and shown to have certain unique physicochemical properties, attracting considerable interest in their application in various fields including drug delivery. The unique properties of CNTs such as ease of cellular uptake, high drug loading, thermal ablation, among others, render them useful for cancer therapy. Cancer is one of the most challenging diseases of modern times because its therapy involves distinguishing normal healthy cells from affected cells. Here, CNTs play a major role because phenomena such as EPR, allow CNTs to distinguish normal cells from affected ones, the Holy Grail in cancer therapy. Considerable work has been done on CNTs as drug delivery systems over the last two decades. However, concerns over certain issues such as biocompatibility and toxicity have been raised and warrant extensive research in this field. (author)

  3. 94: Treatment plan optimization for conformal therapy

    International Nuclear Information System (INIS)

    Rosen, I.I.; Lane, R.G.

    1987-01-01

    Computer-controlled conformal radiation therapy techniques can deliver complex treatments utilizing large numbers of beams, gantry angles and beam shapes. Linear programming is well-suited for planning conformal treatments. Given a list of available treatment beams, linear programming calculates the relative weights of the beams such that the objective function is optimized and doses to constraint points are within the prescribed limits. 5 refs.; 3 figs

  4. Two drugs are better than one. A short history of combined therapy of ovarian cancer.

    Science.gov (United States)

    Bukowska, Barbara; Gajek, Arkadiusz; Marczak, Agnieszka

    2015-01-01

    Combined therapy of ovarian cancer has a long history. It has been applied for many years. The first drug which was commonly combined with other chemotherapeutics was cisplatin. It turned out to be effective given together with alkylating agents as well as with taxanes. Another drug which is often the basis of first-line therapy is doxorubicin. The use of traditional chemotherapy is often limited due to side effects. This is why new drugs, targeted specifically at cancer cells (e.g. monoclonal antibodies or epidermal growth factor receptor inhibitors), offer a welcome addition when used in combination with conventional anticancer agents. Drugs applied in combination should be synergistic or at least additive. To evaluate the type of interaction between drugs in a plausible sequence, isobolographic analysis is used. This method allows one to assess whether the two agents could make an efficient combination, which might improve the therapy of ovarian cancer.

  5. Systemic antibiotic therapy in periodontics

    Directory of Open Access Journals (Sweden)

    Anoop Kapoor

    2012-01-01

    Full Text Available Systemic antibiotics in conjunction with scaling and root planing (SRP, can offer an additional benefit over SRP alone in the treatment of periodontitis, in terms of clinical attachment loss (CAL and pocket depth change, and reduced risk of additional CAL loss. However, antibiotics are not innocuous drugs. Their use should be justified on the basis of a clearly established need and should not be substituted for adequate local treatment. The aim of this review is to discuss the rationale, proper selection, dosage and duration for antibiotic therapy so as to optimize the usefulness of drug therapy.

  6. Verantwoording en kosteneffectiviet van therapeutic drug monitoring (1) : Betere behandeling voor minder geld

    NARCIS (Netherlands)

    Touw, D.J.; Neef, C.; Vinks, A.A.

    2003-01-01

    There are a number of effective but highly toxic drugs that exhibit a narrow therapeutic index and marked intersubject pharmacokinetic variability. Optimal therapy with such drugs requires therapeutic drug monitoring (TDM) in order to safely obtain the desired clinical effects. A systematic review

  7. Optimizing drug therapy in patients with cardiovascular disease: the impact of pharmacist-managed pharmacotherapy clinics in a primary care setting.

    Science.gov (United States)

    Geber, Jean; Parra, David; Beckey, Nick P; Korman, Lisa

    2002-06-01

    We evaluated the effectiveness of pharmacist-managed pharmacotherapy clinics in implementing and maximizing therapy with agents known to reduce the morbidity and mortality associated with cardiovascular disease. This was a retrospective chart review of 150 patients who were treated for coronary artery disease in primary care clinics. Appropriate treatment of hypercholesterolemia occurred in 96% of patients referred to a clinical pharmacy specialist, compared with 68% of those followed by primary care providers alone (p<0.0001). Eighty-five percent and 50%, respectively, achieved goal low-density lipoprotein (LDL) values below 105 mg/dl (p<0.0001). Appropriate therapy with aspirin or other antiplatelet or anticoagulant drugs was prescribed in 97% and 92%, respectively (p=0.146). As appropriate therapy with these agents was high in both groups, the ability to detect a difference between groups was limited. Among patients with an ejection fraction below 40%, appropriate therapy with an angiotensin-converting enzyme inhibitor or acceptable alternative was 89% and 69%, respectively (p<0.05). Twenty-seven cardiac events were documented in the clinical pharmacy group, versus 22 in the primary care group (p=0.475). Despite the relatively high percentage of patients reaching goal LDL in the primary care group, referral to clinical pharmacy specialists resulted in statistically significant increases in the number of patients appropriately treated for hypercholesterolemia and achieving goal LDL.

  8. Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy.

    Science.gov (United States)

    Piktel, Ewelina; Niemirowicz, Katarzyna; Wątek, Marzena; Wollny, Tomasz; Deptuła, Piotr; Bucki, Robert

    2016-05-26

    The rapid development of nanotechnology provides alternative approaches to overcome several limitations of conventional anti-cancer therapy. Drug targeting using functionalized nanoparticles to advance their transport to the dedicated site, became a new standard in novel anti-cancer methods. In effect, the employment of nanoparticles during design of antineoplastic drugs helps to improve pharmacokinetic properties, with subsequent development of high specific, non-toxic and biocompatible anti-cancer agents. However, the physicochemical and biological diversity of nanomaterials and a broad spectrum of unique features influencing their biological action requires continuous research to assess their activity. Among numerous nanosystems designed to eradicate cancer cells, only a limited number of them entered the clinical trials. It is anticipated that progress in development of nanotechnology-based anti-cancer materials will provide modern, individualized anti-cancer therapies assuring decrease in morbidity and mortality from cancer diseases. In this review we discussed the implication of nanomaterials in design of new drugs for effective antineoplastic therapy and describe a variety of mechanisms and challenges for selective tumor targeting. We emphasized the recent advantages in the field of nanotechnology-based strategies to fight cancer and discussed their part in effective anti-cancer therapy and successful drug delivery.

  9. Feasibility of a unified approach to intensity-modulated radiation therapy and volume-modulated arc therapy optimization and delivery

    International Nuclear Information System (INIS)

    Hoover, Douglas A.; Chen, Jeff Z.; MacFarlane, Michael; Wong, Eugene; Battista, Jerry J.

    2015-01-01

    Purpose: To study the feasibility of unified intensity-modulated arc therapy (UIMAT) which combines intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) optimization and delivery to produce superior radiation treatment plans, both in terms of dose distribution and efficiency of beam delivery when compared with either VMAT or IMRT alone. Methods: An inverse planning algorithm for UIMAT was prototyped within the PINNACLE treatment planning system (Philips Healthcare). The IMRT and VMAT deliveries are unified within the same arc, with IMRT being delivered at specific gantry angles within the arc. Optimized gantry angles for the IMRT and VMAT phases are assigned automatically by the inverse optimization algorithm. Optimization of the IMRT and VMAT phases is done simultaneously using a direct aperture optimization algorithm. Five treatment plans each for prostate, head and neck, and lung were generated using a unified optimization technique and compared with clinical IMRT or VMAT plans. Delivery verification was performed with an ArcCheck phantom (Sun Nuclear) on a Varian TrueBeam linear accelerator (Varian Medical Systems). Results: In this prototype implementation, the UIMAT plans offered the same target dose coverage while reducing mean doses to organs at risk by 8.4% for head-and-neck cases, 5.7% for lung cases, and 3.5% for prostate cases, compared with the VMAT or IMRT plans. In addition, UIMAT can be delivered with similar efficiency as VMAT. Conclusions: In this proof-of-concept work, a novel radiation therapy optimization and delivery technique that interlaces VMAT or IMRT delivery within the same arc has been demonstrated. Initial results show that unified VMAT/IMRT has the potential to be superior to either standard IMRT or VMAT

  10. Antibody-drug conjugates for cancer therapy: The technological and regulatory challenges of developing drug-biologic hybrids.

    Science.gov (United States)

    Hamilton, Gregory S

    2015-09-01

    Antibody-drug conjugates (ADCs) are a new class of therapeutic agents that combine the targeting ability of monoclonal antibodies (mAbs) with small molecule drugs. The combination of a mAb targeting a cancer-specific antigen with a cytotoxin has tremendous promise as a new type of targeted cancer therapy. Two ADCs have been approved and many more are in clinical development, suggesting that this new class of drugs is coming to the forefront. Because of their unique nature as biologic-small drug hybrids, ADCs are challenging to develop, from both the scientific and regulatory perspectives. This review discusses both these aspects in current practice, and surveys the current state of the art of ADC drug development. Copyright © 2015 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  11. A comparison of three optimization algorithms for intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Pflugfelder, D.; Wilkens, J.J.; Nill, S.; Oelfke, U.

    2008-01-01

    In intensity modulated treatment techniques, the modulation of each treatment field is obtained using an optimization algorithm. Multiple optimization algorithms have been proposed in the literature, e.g. steepest descent, conjugate gradient, quasi-Newton methods to name a few. The standard optimization algorithm in our in-house inverse planning tool KonRad is a quasi-Newton algorithm. Although this algorithm yields good results, it also has some drawbacks. Thus we implemented an improved optimization algorithm based on the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) routine. In this paper the improved optimization algorithm is described. To compare the two algorithms, several treatment plans are optimized using both algorithms. This included photon (IMRT) as well as proton (IMPT) intensity modulated therapy treatment plans. To present the results in a larger context the widely used conjugate gradient algorithm was also included into this comparison. On average, the improved optimization algorithm was six times faster to reach the same objective function value. However, it resulted not only in an acceleration of the optimization. Due to the faster convergence, the improved optimization algorithm usually terminates the optimization process at a lower objective function value. The average of the observed improvement in the objective function value was 37%. This improvement is clearly visible in the corresponding dose-volume-histograms. The benefit of the improved optimization algorithm is particularly pronounced in proton therapy plans. The conjugate gradient algorithm ranked in between the other two algorithms with an average speedup factor of two and an average improvement of the objective function value of 30%. (orig.)

  12. Combinatorial therapy discovery using mixed integer linear programming.

    Science.gov (United States)

    Pang, Kaifang; Wan, Ying-Wooi; Choi, William T; Donehower, Lawrence A; Sun, Jingchun; Pant, Dhruv; Liu, Zhandong

    2014-05-15

    Combinatorial therapies play increasingly important roles in combating complex diseases. Owing to the huge cost associated with experimental methods in identifying optimal drug combinations, computational approaches can provide a guide to limit the search space and reduce cost. However, few computational approaches have been developed for this purpose, and thus there is a great need of new algorithms for drug combination prediction. Here we proposed to formulate the optimal combinatorial therapy problem into two complementary mathematical algorithms, Balanced Target Set Cover (BTSC) and Minimum Off-Target Set Cover (MOTSC). Given a disease gene set, BTSC seeks a balanced solution that maximizes the coverage on the disease genes and minimizes the off-target hits at the same time. MOTSC seeks a full coverage on the disease gene set while minimizing the off-target set. Through simulation, both BTSC and MOTSC demonstrated a much faster running time over exhaustive search with the same accuracy. When applied to real disease gene sets, our algorithms not only identified known drug combinations, but also predicted novel drug combinations that are worth further testing. In addition, we developed a web-based tool to allow users to iteratively search for optimal drug combinations given a user-defined gene set. Our tool is freely available for noncommercial use at http://www.drug.liuzlab.org/. zhandong.liu@bcm.edu Supplementary data are available at Bioinformatics online.

  13. Access to antiepileptic drug therapy in children in Camagüey Province, Cuba

    Science.gov (United States)

    Arencibia, Zeina Bárzaga; Leyva, Alberto López; Peña, Yordanka Mejías; Reyes, Alba Rosa González; Nápolez, Maurilys Acosta; Carbonell Perdomo, Demetrio; Manzano, Edita Fernández; Choonara, Imti

    2012-01-01

    Objective To describe access to antiepileptic drug therapy and estimate the prevalence of epilepsy in children in Camagüey Province, Cuba. Methods All the community pharmacies in the province were visited and information collected about the number of children receiving antiepileptic drugs in 2009. Availability and cost of each antiepileptic drug were determined. The prevalence of epilepsy was estimated by determining the number of children receiving antiepileptic drugs. Results There were 923 children who received a total of 977 antiepileptic drugs in Camagüey Province. The estimated prevalence of epilepsy was 5.18 per thousand children which is lower than previously reported rates in other low and lower-middle income countries. Most of the children (871, 94%) received a single antiepileptic drug. Carbamazepine and valproate were the two most frequently prescribed antiepileptic drugs. Antiepileptic drugs were available from the local pharmacy on 76% of occasions. If the antiepileptic drug was not available from the local pharmacy, the parent had to travel to another pharmacy to obtain the medicine. Conclusions The estimated prevalence of epilepsy in children in Cuba is lower than that estimated in other lower-middle income countries. Access to drug therapy in children with epilepsy can be achieved in lower-middle income countries. PMID:23134098

  14. Salvage Therapy of Multiple Myeloma: The New Generation Drugs

    Directory of Open Access Journals (Sweden)

    Alessandra Romano

    2014-01-01

    Full Text Available During the past decade, overall results of treatment of multiple myeloma (MM have been improved and survival curves are now significantly better with respect to those obtained with historical treatment. These improvements are linked to a deeper knowledge of the biology of disease and to the introduction in clinical practice of drugs with different mechanism of action such as proteasome inhibitors and immunomodulatory drugs (IMiDs. However, MM remains in most cases an incurable disease. For patients who relapse after treatment with novel agents, the prognosis is dismal and new drugs and therapeutic strategies are required for continued disease control. In this review, we summarize new insights in salvage therapy for relapsed/refractory MM as emerging from recent clinical trials exploring the activity of bendamustine, new generation proteasome inhibitors, novel IMiDs, monoclonal antibodies, and drugs interfering with growth pathways.

  15. Salvage Therapy of Multiple Myeloma: The New Generation Drugs

    Science.gov (United States)

    Romano, Alessandra; Conticello, Concetta; Di Raimondo, Cosimo; Schinocca, Elena; La Fauci, Alessia; Parrinello, Nunziatina Laura; Chiarenza, Annalisa

    2014-01-01

    During the past decade, overall results of treatment of multiple myeloma (MM) have been improved and survival curves are now significantly better with respect to those obtained with historical treatment. These improvements are linked to a deeper knowledge of the biology of disease and to the introduction in clinical practice of drugs with different mechanism of action such as proteasome inhibitors and immunomodulatory drugs (IMiDs). However, MM remains in most cases an incurable disease. For patients who relapse after treatment with novel agents, the prognosis is dismal and new drugs and therapeutic strategies are required for continued disease control. In this review, we summarize new insights in salvage therapy for relapsed/refractory MM as emerging from recent clinical trials exploring the activity of bendamustine, new generation proteasome inhibitors, novel IMiDs, monoclonal antibodies, and drugs interfering with growth pathways. PMID:24967371

  16. Nonalcoholic steatohepatitis: emerging targeted therapies to optimize treatment options

    Directory of Open Access Journals (Sweden)

    Milic S

    2015-08-01

    Full Text Available Sandra Milic,1 Ivana Mikolasevic,1,2 Irena Krznaric-Zrnic,1 Marija Stanic,3 Goran Poropat,1 Davor Stimac,1 Vera Vlahovic-Palcevski,4 Lidija Orlic2 1Department of Gastroenterology, UHC Rijeka, Rijeka, Croatia; 2Department of Nephrology, Dialysis and Kidney Transplantation, UHC Rijeka, Rijeka, Croatia; 3Department of Hematology, UHC Rijeka, Rijeka, Croatia; 4Department for Clinical Pharmacology, University of Rijeka Medical School, UHC Rijeka, Rijeka, Croatia Abstract: Diet and lifestyle changes have led to worldwide increases in the prevalences of obesity and metabolic syndrome, resulting in substantially greater incidence of nonalcoholic fatty liver disease (NAFLD. NAFLD is considered a hepatic manifestation of metabolic syndrome and is related to diabetes, insulin resistance, central obesity, hyperlipidemia, and hypertension. Nonalcoholic steatohepatitis (NASH is an entity that describes liver inflammation due to NAFLD. Growing evidence suggests that NAFLD is a multisystem disease with a clinical burden that is not only confined to liver-related morbidity and mortality, but that also affects several extra-hepatic organs and regulatory pathways. Thus, NAFLD is considered an important public health issue, but there is currently no effective therapy for all NAFLD patients in the general population. Studies seeking optimal therapy for NAFLD and NASH have not yet led to development of a universal protocol for treating this growing problem. Several pharmacological agents have been studied in an effort to improve insulin resistance and the proinflammatory mediators that may be responsible for NASH progression. Cardiovascular risk factors are highly prevalent among NASH patients, and the backbone of treatment regimens for these patients still comprises general lifestyle interventions, including dietary changes and increased physical activity. Vitamin E and thiazolidinedione derivatives are currently the most evidence-based therapeutic options, but only

  17. Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy.

    Science.gov (United States)

    Parhi, Priyambada; Mohanty, Chandana; Sahoo, Sanjeeb Kumar

    2012-09-01

    Combination therapy for the treatment of cancer is becoming more popular because it generates synergistic anticancer effects, reduces individual drug-related toxicity and suppresses multi-drug resistance through different mechanisms of action. In recent years, nanotechnology-based combination drug delivery to tumor tissues has emerged as an effective strategy by overcoming many biological, biophysical and biomedical barriers that the body stages against successful delivery of anticancer drugs. The sustained, controlled and targeted delivery of chemotherapeutic drugs in a combination approach enhanced therapeutic anticancer effects with reduced drug-associated side effects. In this article, we have reviewed the scope of various nanotechnology-based combination drug delivery approaches and also summarized the current perspective and challenges facing the successful treatment of cancer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Individualization of anticancer therapy; molecular targets of novel drugs in oncology

    Directory of Open Access Journals (Sweden)

    Katarzyna Regulska

    2012-11-01

    Full Text Available Deregulation of cellular signal transduction, caused by gene mutations, has been recognized as a basic factor of cancer initiation, promotion and progression. Thus, the ability to control the activity of overstimulated signal molecules by the use of appropriate inhibitors became the idea of targeted cancer therapy, which has provided an effective tool to normalize the molecular disorders in malignant cells and to treat certain types of cancer. The molecularly targeted drugs are divided into two major pharmaceutical classes: monoclonal antibodies and small-molecule kinase inhibitors. This review presents a summary of their characteristics, analyzing their chemical structures, specified molecular targets, mechanisms of action and indications for use. Also the molecules subjected to preclinical trials or phase I, II and III clinical trials evaluating their efficiency and safety are presented. Moreover, the article discusses further perspectives for development of targeted therapies focusing on three major directions: systematic searching and discovery of new targets that are oncogenic drivers, improving the pharmacological properties of currently known drugs, and developing strategies to overcome drug resistance. Finally, the role of proper pharmacodiagnostics as a key to rational anticancer therapy has been emphasized since the verification of reliable predictive biomarkers is a basis of individualized medicine in oncology. 

  19. BUCCAL DRUG DELIVERY USING ADHESIVE POLYMERIC PATCHES

    OpenAIRE

    R. Venkatalakshmi

    2012-01-01

    The buccal mucosa has been investigated for local drug therapy and the systemic delivery of therapeutic peptides and other drugs that are subjected to first-pass metabolism or are unstable within the rest of the gastrointestinal tract. The mucosa of the oral cavity presents a formidable barrier to drug penetration, and one method of optimizing drug delivery is by the use of adhesive dosage forms and the mucosa has a rich blood supply and it is relatively permeable. The buccal mucosa is very s...

  20. Algorithms for the optimization of RBE-weighted dose in particle therapy.

    Science.gov (United States)

    Horcicka, M; Meyer, C; Buschbacher, A; Durante, M; Krämer, M

    2013-01-21

    We report on various algorithms used for the nonlinear optimization of RBE-weighted dose in particle therapy. Concerning the dose calculation carbon ions are considered and biological effects are calculated by the Local Effect Model. Taking biological effects fully into account requires iterative methods to solve the optimization problem. We implemented several additional algorithms into GSI's treatment planning system TRiP98, like the BFGS-algorithm and the method of conjugated gradients, in order to investigate their computational performance. We modified textbook iteration procedures to improve the convergence speed. The performance of the algorithms is presented by convergence in terms of iterations and computation time. We found that the Fletcher-Reeves variant of the method of conjugated gradients is the algorithm with the best computational performance. With this algorithm we could speed up computation times by a factor of 4 compared to the method of steepest descent, which was used before. With our new methods it is possible to optimize complex treatment plans in a few minutes leading to good dose distributions. At the end we discuss future goals concerning dose optimization issues in particle therapy which might benefit from fast optimization solvers.

  1. Toxins and derivatives in molecular pharmaceutics: Drug delivery and targeted therapy.

    Science.gov (United States)

    Zhan, Changyou; Li, Chong; Wei, Xiaoli; Lu, Wuyuan; Lu, Weiyue

    2015-08-01

    Protein and peptide toxins offer an invaluable source for the development of actively targeted drug delivery systems. They avidly bind to a variety of cognate receptors, some of which are expressed or even up-regulated in diseased tissues and biological barriers. Protein and peptide toxins or their derivatives can act as ligands to facilitate tissue- or organ-specific accumulation of therapeutics. Some toxins have evolved from a relatively small number of structural frameworks that are particularly suitable for addressing the crucial issues of potency and stability, making them an instrumental source of leads and templates for targeted therapy. The focus of this review is on protein and peptide toxins for the development of targeted drug delivery systems and molecular therapies. We summarize disease- and biological barrier-related toxin receptors, as well as targeted drug delivery strategies inspired by those receptors. The design of new therapeutics based on protein and peptide toxins is also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. REHABILITATION THERAPY VERSUS DRUG THERAPY IN PATIENTS WITH LUMBAR DISC DEGENERATION

    Directory of Open Access Journals (Sweden)

    BROSCATEAN, Emanuela-Flavia

    2013-12-01

    Full Text Available Lumbar disc degeneration is a disorder whose clinical manifestations are represented by episodic pain in the lumbar spine, without lumbar blockage and minor muscle contraction. Because lumbalgia caused by lumbar disc degeneration is not always very high intensity pain, the easiest to apply treatment is drug therapy. The aim of this study was to analyze the potential role of rehabilitation treatment in the recovery of patients and the prevention of complications compared to drug therapy alone. The study included 28 patients (17 women and 11 men aged between 23-60 years, assigned to two groups: 20 patients who received rehabilitation treatment (consisting of massage, kinesiotherapy, hydrokinesiotherapy, electrotherapy and medication and 8 patients who received drug treatment consisting of anti-inflammatory and analgesic drugs. The treatment duration was 10 days. For the evaluation of pain, the visual analogue scale was used, for the degree of disability, the Oswestry questionnaire, and for joint mobility and muscle strength, articular and muscular testing. At the end of treatment, the study group compared to the control group had a statistically significant result for pain (p=0.001, as well as for the Oswestry score (p=0.030. The mean age of the patients was 35.51±3.026, which shows an increased incidence among young adults. A possible connection between the development of the disease in women and age less than 45 years was also investigated, but the result was not statistically significant, p=0.22. Our data suggest the fact that rehabilitation treatment plays an important role in the reduction of pain and the improvement of the quality of life of patients with lumbar disc degeneration by decreasing the degree of disability. In the future, it can be proposed to monitor patients with lumbar disc degeneration over a longer time period in order to see the effects of kinetic rehabilitation programs in relation to the delay of chronicization. As

  3. Pharmokinetics in Drug Therapy as a Required Undergraduate Course

    Science.gov (United States)

    Schumacher, G. E.

    1976-01-01

    This course is offered in the third quarter of the fourth year of the five-year curriculum in pharmacology. The year includes (1) a 350-hour clinical clerkship, (2) two courses in "Case Studies in Drug Therapy," (3) one course in "Case Studies in Pharmacy Practice," and (4) professional electives. (LBH)

  4. Effects of Multidimensional Family Therapy (MDFT) on Nonopioid Drug Abuse:

    DEFF Research Database (Denmark)

    Filges, Trine; Andersen, Ditte; Jørgensen, Anne-Marie Klint

    2015-01-01

    trials. Meta-analytic methods were used to quantitatively synthesize study results.  Results: The search yielded five studies that met inclusion criteria. MDFT was found to be more effective than other treatments on drug abuse problem severity and drug use frequency in the short run but not in the long...... run and demonstrated positive effects on treatment retention compared to control conditions.  Discussion: While additional research is needed, the review offers support for MDFT as a treatment to young nonopioid drug abusers. The number of studies included in this review was limited, however......Purpose: This review evaluates the evidence of the effects of multidimensional family therapy (MDFT) on drug use reduction in young people for the treatment of nonopioid drug use.  Method: We followed Campbell Collaboration guidelines to conduct a systematic review of randomized and nonrandomized...

  5. Optimizing urine drug testing for monitoring medication compliance in pain management.

    Science.gov (United States)

    Melanson, Stacy E F; Ptolemy, Adam S; Wasan, Ajay D

    2013-12-01

    It can be challenging to successfully monitor medication compliance in pain management. Clinicians and laboratorians need to collaborate to optimize patient care and maximize operational efficiency. The test menu, assay cutoffs, and testing algorithms utilized in the urine drug testing panels should be periodically reviewed and tailored to the patient population to effectively assess compliance and avoid unnecessary testing and cost to the patient. Pain management and pathology collaborated on an important quality improvement initiative to optimize urine drug testing for monitoring medication compliance in pain management. We retrospectively reviewed 18 months of data from our pain management center. We gathered data on test volumes, positivity rates, and the frequency of false positive results. We also reviewed the clinical utility of our testing algorithms, assay cutoffs, and adulterant panel. In addition, the cost of each component was calculated. The positivity rate for ethanol and 3,4-methylenedioxymethamphetamine were us to optimize our testing panel for monitoring medication compliance in pain management and reduce cost. Wiley Periodicals, Inc.

  6. Epigenetic polypharmacology: from combination therapy to multitargeted drugs.

    Science.gov (United States)

    de Lera, Angel R; Ganesan, A

    The modern drug discovery process has largely focused its attention in the so-called magic bullets, single chemical entities that exhibit high selectivity and potency for a particular target. This approach was based on the assumption that the deregulation of a protein was causally linked to a disease state, and the pharmacological intervention through inhibition of the deregulated target was able to restore normal cell function. However, the use of cocktails or multicomponent drugs to address several targets simultaneously is also popular to treat multifactorial diseases such as cancer and neurological disorders. We review the state of the art with such combinations that have an epigenetic target as one of their mechanisms of action. Epigenetic drug discovery is a rapidly advancing field, and drugs targeting epigenetic enzymes are in the clinic for the treatment of hematological cancers. Approved and experimental epigenetic drugs are undergoing clinical trials in combination with other therapeutic agents via fused or linked pharmacophores in order to benefit from synergistic effects of polypharmacology. In addition, ligands are being discovered which, as single chemical entities, are able to modulate multiple epigenetic targets simultaneously (multitarget epigenetic drugs). These multiple ligands should in principle have a lower risk of drug-drug interactions and drug resistance compared to cocktails or multicomponent drugs. This new generation may rival the so-called magic bullets in the treatment of diseases that arise as a consequence of the deregulation of multiple signaling pathways provided the challenge of optimization of the activities shown by the pharmacophores with the different targets is addressed.

  7. Affordable HIV drug-resistance testing for monitoring of antiretroviral therapy in sub-Saharan Africa.

    Science.gov (United States)

    Inzaule, Seth C; Ondoa, Pascale; Peter, Trevor; Mugyenyi, Peter N; Stevens, Wendy S; de Wit, Tobias F Rinke; Hamers, Raph L

    2016-11-01

    Increased provision of antiretroviral therapy in sub-Saharan Africa has led to a growing number of patients with therapy failure and acquired drug-resistant HIV, driving the demand for more costly further lines of antiretroviral therapy. In conjunction with accelerated access to viral load monitoring, feasible and affordable technologies to detect drug-resistant HIV could help maximise the durability and rational use of available drug regimens. Potential low-cost technologies include in-house Sanger and next-generation sequencing in centralised laboratories, and point mutation assays and genotype-free systems that predict response to antiretroviral therapy at point-of-care. Strengthening of centralised high-throughput laboratories, including efficient systems for sample referral and results delivery, will increase economies-of-scale while reducing costs. Access barriers can be mitigated by standardisation of in-house assays into commercial kits, use of polyvalent instruments, and adopting price-reducing strategies. A stepwise rollout approach should improve feasibility, prioritising WHO-recommended population-based surveillance and management of complex patient categories, such as patients failing protease inhibitor-based antiretroviral therapy. Implementation research, adaptations of existing WHO guidance, and political commitment, will be key to support the appropriate investments and policy changes. In this Personal View, we discuss the potential role of HIV drug resistance testing for population-based surveillance and individual patient management in sub-Saharan Africa. We review the strengths and challenges of promising low-cost technologies and how they can be implemented. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. RNA Editing and Drug Discovery for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Wei-Hsuan Huang

    2013-01-01

    Full Text Available RNA editing is vital to provide the RNA and protein complexity to regulate the gene expression. Correct RNA editing maintains the cell function and organism development. Imbalance of the RNA editing machinery may lead to diseases and cancers. Recently, RNA editing has been recognized as a target for drug discovery although few studies targeting RNA editing for disease and cancer therapy were reported in the field of natural products. Therefore, RNA editing may be a potential target for therapeutic natural products. In this review, we provide a literature overview of the biological functions of RNA editing on gene expression, diseases, cancers, and drugs. The bioinformatics resources of RNA editing were also summarized.

  9. Early antiretroviral therapy and potent second-line drugs could decrease HIV incidence of drug resistance.

    Science.gov (United States)

    Shen, Mingwang; Xiao, Yanni; Rong, Libin; Meyers, Lauren Ancel; Bellan, Steven E

    2017-06-28

    Early initiation of antiretroviral therapy (ART) reduces the risk of drug-sensitive HIV transmission but may increase the transmission of drug-resistant HIV. We used a mathematical model to estimate the long-term population-level benefits of ART and determine the scenarios under which earlier ART (treatment at 1 year post-infection, on average) could decrease simultaneously both total and drug-resistant HIV incidence (new infections). We constructed an infection-age-structured mathematical model that tracked the transmission rates over the course of infection and modelled the patients' life expectancy as a function of ART initiation timing. We fitted this model to the annual AIDS incidence and death data directly, and to resistance data and demographic data indirectly among men who have sex with men (MSM) in San Francisco. Using counterfactual scenarios, we assessed the impact on total and drug-resistant HIV incidence of ART initiation timing, frequency of acquired drug resistance, and second-line drug effectiveness (defined as the combination of resistance monitoring, biomedical drug efficacy and adherence). Earlier ART initiation could decrease the number of both total and drug-resistant HIV incidence when second-line drug effectiveness is sufficiently high (greater than 80%), but increase the proportion of new infections that are drug resistant. Thus, resistance may paradoxically appear to be increasing while actually decreasing. © 2017 The Author(s).

  10. Non-Steroidal Anti-inflammatory Drugs As Host-Directed Therapy for Tuberculosis: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Vera M. Kroesen

    2017-06-01

    Full Text Available Lengthy, antimicrobial therapy targeting the pathogen is the mainstay of conventional tuberculosis treatment, complicated by emerging drug resistances. Host-directed therapies, including non-steroidal anti-inflammatory drugs (NSAIDs, in contrast, target host factors to mitigate disease severity. In the present Systematic Review, we investigate whether NSAIDs display any effects as therapy of TB and discuss possible mechanisms of action of NSAIDs as adjunctive therapy of TB. Ten studies, seven preclinical studies in mice and three clinical trials, were included and systematically reviewed. Our results point toward a beneficial effect of NSAIDs as adjunct to current TB therapy regimens, mediated by decreased lung pathology balancing host-immune reaction. The determination of the best timing for their administration in order to obtain the potential beneficial effects needs further investigation. Even if the preclinical evidence requires clinical evaluation, NSAIDs might represent a potential safe, simple, and cheap improvement in therapy of TB.

  11. Stereocomplex-Reinforced PEGylated Polylactide Micelle for Optimized Drug Delivery

    Directory of Open Access Journals (Sweden)

    Chunsheng Feng

    2016-04-01

    Full Text Available The instability of PEGylated polylactide micelles is a challenge for drug delivery. Stereocomplex interaction between racemic polylactide chains with different configurations provides an effective strategy to enhance the stability of micelles as the nanocarriers of drugs. In this work, a stereocomplex micelle (SCM self-assembled from the amphiphilic triblock copolymers comprising poly(ethylene glycol (PEG, and dextrorotatory and levorotatory polylactides (PDLA and PLLA was applied for efficient drug delivery. The spherical SCM showed the smallest scale and the lowest critical micelle concentration (CMC than the micelles with single components attributed to the stereocomplex interaction between PDLA and PLLA. 10-Hydroxycamptothecin (HCPT as a model antitumor drug was loaded into micelles. Compared with the loading micelles from individual PDLA and PLLA, the HCPT-loaded SCM exhibited the highest drug loading efficiency (DLE and the slowest drug release in phosphate-buffered saline (PBS at pH 7.4, indicating its enhanced stability in circulation. More fascinatingly, the laden SCM was demonstrated to have the highest cellular uptake of HCPT and suppress malignant cells most effectively in comparison to the HCPT-loaded micelles from single copolymer. In summary, the stereocomplex-enhanced PLA–PEG–PLA micelle may be promising for optimized drug delivery in the clinic.

  12. Chitosan in Mucoadhesive Drug Delivery: Focus on Local Vaginal Therapy

    Directory of Open Access Journals (Sweden)

    Toril Andersen

    2015-01-01

    Full Text Available Mucoadhesive drug therapy destined for localized drug treatment is gaining increasing importance in today’s drug development. Chitosan, due to its known biodegradability, bioadhesiveness and excellent safety profile offers means to improve mucosal drug therapy. We have used chitosan as mucoadhesive polymer to develop liposomes able to ensure prolonged residence time at vaginal site. Two types of mucoadhesive liposomes, namely the chitosan-coated liposomes and chitosan-containing liposomes, where chitosan is both embedded and surface-available, were made of soy phosphatidylcholine with entrapped fluorescence markers of two molecular weights, FITC-dextran 4000 and 20,000, respectively. Both liposomal types were characterized for their size distribution, zeta potential, entrapment efficiency and the in vitro release profile, and compared to plain liposomes. The proof of chitosan being both surface-available as well as embedded into the liposomes in the chitosan-containing liposomes was found. The capability of the surface-available chitosan to interact with the model porcine mucin was confirmed for both chitosan-containing and chitosan-coated liposomes implying potential mucoadhesive behavior. Chitosan-containing liposomes were shown to be superior in respect to the simplicity of preparation, FITC-dextran load, mucoadhesiveness and in vitro release and are expected to ensure prolonged residence time on the vaginal mucosa providing localized sustained release of entrapped model substances.

  13. Promise and deceit: pharmakos, drug replacement therapy, and the perils of experience.

    Science.gov (United States)

    Meyers, Todd

    2014-06-01

    The problem of lying as a feature of medication compliance has been well documented in anthropological and clinical literatures. Yet the role of the lie-its destabilizing effects on the continuity of drug treatment and therapy, as a technology of drug misuse, or as a way to understand the neuro-chemical processes of treatment (pharmacotherapy "tricking" or lying to the brain)-has been less considered, particularly in the context of opioid replacement therapy. The following paper is set against the backdrop of a three-year study of adolescents receiving a relatively new drug (buprenorphine) for the treatment of opiate dependency inside and outside of highly monitored treatment environments in the United States. Lies give order not only to the experience of addiction but also to the experience of therapy as well. In order to better understand this ordering of experience, the paper puts the widely discussed conceptual duality of the pharmakon (healing and poison) in conversation with a perilously overlooked subject in the critical study of pharmacotherapy, namely the pharmakos or the personification of sacrifice. The paper demonstrates how the patient-subject comes to represent therapeutic promise by allowing for the possibility of (and often performing) deceit.

  14. Therapeutic drug monitoring in pregnancy.

    Science.gov (United States)

    Matsui, Doreen M

    2012-10-01

    Therapeutic drug monitoring (TDM) is commonly recommended to optimize drug dosing regimens of various medications. It has been proposed to guide therapy in pregnant women, in whom physiological changes may lead to altered pharmacokinetics resulting in difficulty in predicting the appropriate drug dosage. Ideally, TDM may play a role in enhancing the effectiveness of treatment while minimizing toxicity of both the mother and fetus. Monitoring of drug levels may also be helpful in assessing adherence to prescribed therapy in selected cases. Limitations exist as therapeutic ranges have only been defined for a limited number of drugs and are based on data obtained in nonpregnant patients. TDM has been suggested for anticonvulsants, antidepressants, and antiretroviral drugs, based on pharmacokinetic studies that have shown reduced drug concentrations. However, there is only relatively limited (and sometimes inconsistent) information regarding the clinical impact of these pharmacokinetic changes during pregnancy and the effect of subsequent dose adjustments. Further studies are required to determine whether implementation of TDM during pregnancy improves outcome and is associated with any benefit beyond that achieved by clinical judgment alone. The cost effectiveness of TDM programs during pregnancy also remains to be examined.

  15. Drug Therapy.

    Science.gov (United States)

    He, Ri-Hui; Tao, Ran

    2017-01-01

    This chapter first summarizes the therapy of addiction disorder, and elaborates on the progress of medication. First, the difference between dependency and addiction are introduced. The basic principles of the therapy of substance and non-substance addiction are then put forward. It is also pointed out in this chapter that with the progress of the study, the goal of addiction disorder therapy is expected to transfer from reducing the relapse and harm of the addiction to completely eliminating and recovering from it. This chapter also introduces the progress of psychological addiction elimination technology, especially the "Unconditioned Stimulus Retrieval Extinction Paradigm and Conditioned Stimulus Retrieval Extinction Paradigm" and PITDH technology. Finally it is pointed out that in addiction disorder therapy, comprehensive intervention has become a trend. With regard to the medication for addiction disorders, this chapter also includes the progress and deficiencies of substance and non-substance addiction. In terms of addiction disorder rehabilitation, the foundation of substance addiction is medication which is, however, limited for non-substance addiction. The key to the rehabilitation of addiction disorder is psycho-behavioral therapy, which is especially effective in eliminating craving.

  16. Cancer therapy leading to state of cancer metabolism depression for efficient operation of small dosage cytotoxic drugs

    Directory of Open Access Journals (Sweden)

    Ponizovskiy MR

    2015-04-01

    Full Text Available “Prolonged medical starvation” as the method of cancer therapy was borrowed from folk healers Omelchenko A and Breuss R. Author was convinced in efficiency of this method of cancer treatment via examination of cured patients and on own experience. The mechanism of this method of cancer therapy operates via Warburg effect targeting that promotes efficient cancer treatment with small cytotoxic drugs. Just it was described the mechanism of Warburg effect as well as mechanism transmutation of mitochondrial function in cancer metabolism which are exhibited in connection with operation of described method cancer therapy. There were described the biochemical and biophysical mechanisms of formations resistance to some cytotoxic drugs and recurrence cancer disease after disease remission which occur sometimes as result of treatment with great dosage of cytotoxic drugs. Also it was described the benefits of use the method “Prolonged medical starvation” with decreased dosage of cytotoxic drugs for cancer treatment. The significance of this work that it was substantiated the mechanism operation of combination “Prolonged medical starvation” with small dosages cytotoxic drugs of cancer treatment, which mechanism leads to prevention recurrence cancer disease and resistance to anticancer drugs in comparison with intensive anticancer chemotherapy with great dosages of cytotoxic drugs in cancer therapy. Also the offered concepts of cancer therapy mechanism gave possibility to explain mechanisms of some results of experiments eliminating the doubts of the authors these experiments.

  17. Behavioral couples therapy (BCT) for alcohol and drug use disorders: A meta-analysis

    NARCIS (Netherlands)

    Powers, M.B.; Vedel, E.; Emmelkamp, P.M.G.

    2008-01-01

    Narrative reviews conclude that behavioral couples therapy (BCT) produces better outcomes than individual-based treatment for alcoholism and drug abuse problems (e.g., [Epstein, E. E., & McCrady, B. S. (1998). Behavioral couples treatment of alcohol and drug use disorders: Current status and

  18. Continuous Drug Infusion for Diabetes Therapy: A Closed-Loop Control System Design

    Directory of Open Access Journals (Sweden)

    Jiming Chen

    2008-03-01

    Full Text Available While a typical way for diabetes therapy is discrete insulin infusion based on long-time interval measurement, in this paper, we design a closed-loop control system for continuous drug infusion to improve the traditional discrete methods and make diabetes therapy automatic in practice. By exploring the accumulative function of drug to insulin, a continuous injection model is proposed. Based on this model, proportional-integral-derivative (PID and fuzzy logic controllers are designed to tackle a control problem of the resulting highly nonlinear plant. Even with serious disturbance of glucose, such as nutrition absorption at meal time, the proposed scheme can perform well in simulation experiments.

  19. NIR photoregulated chemo- and photodynamic cancer therapy based on conjugated polyelectrolyte-drug conjugate encapsulated upconversion nanoparticles

    Science.gov (United States)

    Yuan, Youyong; Min, Yuanzeng; Hu, Qinglian; Xing, Bengang; Liu, Bin

    2014-09-01

    The design of nanoplatforms with target recognition and near-infrared (NIR) laser photoregulated chemo- and photodynamic therapy is highly desirable but remains challenging. In this work, we have developed such a system by taking advantage of a conjugated polyelectrolyte (CPE)-drug conjugate and upconversion nanoparticles (UCNPs). The poly(ethylene glycol) (PEG) grafted CPE not only serves as a polymer matrix for UCNP encapsulation, but also as a fluorescent imaging agent, a photosensitizer as well as a carrier for chemotherapeutic drug doxorubicin (DOX) through a UV-cleavable ortho-nitrobenzyl (NB) linker. Upon 980 nm laser irradiation, the UCNPs emit UV and visible light. The up-converted UV light is utilized for controlled drug release through the photocleavage of the ortho-nitrobenzyl linker, while the up-converted visible light is used to initiate the polymer photosensitizer to produce reactive oxygen species (ROS) for photodynamic therapy. The NIR photo-regulated UCNP@CPE-DOX showed high efficiency of ROS generation and controlled drug release in cancer cells upon single laser irradiation. In addition, the combination therapy showed enhanced inhibition of U87-MG cell growth as compared to sole treatments. As two light sources with different wavelengths are always needed for traditional photodynamic therapy and photoregulated drug release, the adoption of UCNPs as an NIR light switch is highly beneficial to combined chemo- and photodynamic therapy with enhanced therapeutic effects.

  20. Protein Nanoparticles as Drug Delivery Carriers for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Warangkana Lohcharoenkal

    2014-01-01

    Full Text Available Nanoparticles have increasingly been used for a variety of applications, most notably for the delivery of therapeutic and diagnostic agents. A large number of nanoparticle drug delivery systems have been developed for cancer treatment and various materials have been explored as drug delivery agents to improve the therapeutic efficacy and safety of anticancer drugs. Natural biomolecules such as proteins are an attractive alternative to synthetic polymers which are commonly used in drug formulations because of their safety. In general, protein nanoparticles offer a number of advantages including biocompatibility and biodegradability. They can be prepared under mild conditions without the use of toxic chemicals or organic solvents. Moreover, due to their defined primary structure, protein-based nanoparticles offer various possibilities for surface modifications including covalent attachment of drugs and targeting ligands. In this paper, we review the most significant advancements in protein nanoparticle technology and their use in drug delivery arena. We then examine the various sources of protein materials that have been used successfully for the construction of protein nanoparticles as well as their methods of preparation. Finally, we discuss the applications of protein nanoparticles in cancer therapy.

  1. Protein nanoparticles as drug delivery carriers for cancer therapy.

    Science.gov (United States)

    Lohcharoenkal, Warangkana; Wang, Liying; Chen, Yi Charlie; Rojanasakul, Yon

    2014-01-01

    Nanoparticles have increasingly been used for a variety of applications, most notably for the delivery of therapeutic and diagnostic agents. A large number of nanoparticle drug delivery systems have been developed for cancer treatment and various materials have been explored as drug delivery agents to improve the therapeutic efficacy and safety of anticancer drugs. Natural biomolecules such as proteins are an attractive alternative to synthetic polymers which are commonly used in drug formulations because of their safety. In general, protein nanoparticles offer a number of advantages including biocompatibility and biodegradability. They can be prepared under mild conditions without the use of toxic chemicals or organic solvents. Moreover, due to their defined primary structure, protein-based nanoparticles offer various possibilities for surface modifications including covalent attachment of drugs and targeting ligands. In this paper, we review the most significant advancements in protein nanoparticle technology and their use in drug delivery arena. We then examine the various sources of protein materials that have been used successfully for the construction of protein nanoparticles as well as their methods of preparation. Finally, we discuss the applications of protein nanoparticles in cancer therapy.

  2. Accelerating drug development for neuroblastoma - New Drug Development Strategy: an Innovative Therapies for Children with Cancer, European Network for Cancer Research in Children and Adolescents and International Society of Paediatric Oncology Europe Neuroblastoma project.

    Science.gov (United States)

    Moreno, Lucas; Caron, Hubert; Geoerger, Birgit; Eggert, Angelika; Schleiermacher, Gudrun; Brock, Penelope; Valteau-Couanet, Dominique; Chesler, Louis; Schulte, Johannes H; De Preter, Katleen; Molenaar, Jan; Schramm, Alexander; Eilers, Martin; Van Maerken, Tom; Johnsen, John Inge; Garrett, Michelle; George, Sally L; Tweddle, Deborah A; Kogner, Per; Berthold, Frank; Koster, Jan; Barone, Giuseppe; Tucker, Elizabeth R; Marshall, Lynley; Herold, Ralf; Sterba, Jaroslav; Norga, Koen; Vassal, Gilles; Pearson, Andrew Dj

    2017-08-01

    Neuroblastoma, the commonest paediatric extra-cranial tumour, remains a leading cause of death from cancer in children. There is an urgent need to develop new drugs to improve cure rates and reduce long-term toxicity and to incorporate molecularly targeted therapies into treatment. Many potential drugs are becoming available, but have to be prioritised for clinical trials due to the relatively small numbers of patients. Areas covered: The current drug development model has been slow, associated with significant attrition, and few new drugs have been developed for neuroblastoma. The Neuroblastoma New Drug Development Strategy (NDDS) has: 1) established a group with expertise in drug development; 2) prioritised targets and drugs according to tumour biology (target expression, dependency, pre-clinical data; potential combinations; biomarkers), identifying as priority targets ALK, MEK, CDK4/6, MDM2, MYCN (druggable by BET bromodomain, aurora kinase, mTORC1/2) BIRC5 and checkpoint kinase 1; 3) promoted clinical trials with target-prioritised drugs. Drugs showing activity can be rapidly transitioned via parallel randomised trials into front-line studies. Expert opinion: The Neuroblastoma NDDS is based on the premise that optimal drug development is reliant on knowledge of tumour biology and prioritisation. This approach will accelerate neuroblastoma drug development and other poor prognosis childhood malignancies.

  3. An Optimization Model for Expired Drug Recycling Logistics Networks and Government Subsidy Policy Design Based on Tri-level Programming.

    Science.gov (United States)

    Huang, Hui; Li, Yuyu; Huang, Bo; Pi, Xing

    2015-07-09

    In order to recycle and dispose of all people's expired drugs, the government should design a subsidy policy to stimulate users to return their expired drugs, and drug-stores should take the responsibility of recycling expired drugs, in other words, to be recycling stations. For this purpose it is necessary for the government to select the right recycling stations and treatment stations to optimize the expired drug recycling logistics network and minimize the total costs of recycling and disposal. This paper establishes a tri-level programming model to study how the government can optimize an expired drug recycling logistics network and the appropriate subsidy policies. Furthermore, a Hybrid Genetic Simulated Annealing Algorithm (HGSAA) is proposed to search for the optimal solution of the model. An experiment is discussed to illustrate the good quality of the recycling logistics network and government subsides obtained by the HGSAA. The HGSAA is proven to have the ability to converge on the global optimal solution, and to act as an effective algorithm for solving the optimization problem of expired drug recycling logistics network and government subsidies.

  4. Health care costs of adults treated for attention-deficit/hyperactivity disorder who received alternative drug therapies.

    Science.gov (United States)

    Wu, Eric Q; Birnbaum, Howard G; Zhang, Huabin F; Ivanova, Jasmina I; Yang, Elaine; Mallet, David

    2007-09-01

    Many therapies exist for treating adult attention-deficit/hyperactivity disorder (ADHD), also referred to as attention-deficit disorder (ADD), but there is no research regarding cost differences associated with initiating alternative ADD/ADHD drug therapies in adults. To compare from the perspective of a large self-insured employer the risk-adjusted direct health care costs associated with 3 alternative drug therapies for ADD in newly treated patients: extended-release methylphenidate (osmotic release oral system-MPH), mixed amphetamine salts extended release (MAS-XR), or atomoxetine. We analyzed data from a US claims database of 5 million beneficiaries from 31 large self-insured employers (1999-2004). Analysis was restricted to adults aged 18 to 64 years with at least 1 diagnosis of ADD/ADHD (International Classification of Diseases, Ninth Revision, Clinical Modification [ICD-9-CM] codes 314.0x--attention deficit disorder; 314.00--attention deficit disorder without hyperactivity; or 314.01--attention-deficit disorder with hyperactivity) and at least 1 pharmacy claim for OROS-MPH, MAS-XR, or atomoxetine identified using National Drug Codes. In preliminary analysis, we calculated the duration of index ADHD drug therapy as time from index therapy initiation to a minimum 60-day gap. Because the median duration of index ADHD drug therapy was found to be approximately 90 days, the primary measures were total direct medical plus drug costs and medical-only costs computed over 6 months following therapy initiation. Adults were required to have continuous eligibility 6 months before and 6 months after their latest drug therapy initiation and no ADHD therapy during the previous 6 months. Cost was measured as the payment amount made by the health plan to the provider rather than billed charges, and it excluded patient copayments and deductibles. Medical costs included costs incurred for all-cause inpatient and outpatient/other services. Costs were adjusted for inflation to

  5. Nanotechnology-Based Drug Delivery Systems for Photodynamic Therapy of Cancer: A Review.

    Science.gov (United States)

    Calixto, Giovana Maria Fioramonti; Bernegossi, Jéssica; de Freitas, Laura Marise; Fontana, Carla Raquel; Chorilli, Marlus

    2016-03-11

    Photodynamic therapy (PDT) is a promising alternative approach for improved cancer treatment. In PDT, a photosensitizer (PS) is administered that can be activated by light of a specific wavelength, which causes selective damage to the tumor and its surrounding vasculature. The success of PDT is limited by the difficulty in administering photosensitizers (PSs) with low water solubility, which compromises the clinical use of several molecules. Incorporation of PSs in nanostructured drug delivery systems, such as polymeric nanoparticles (PNPs), solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), gold nanoparticles (AuNPs), hydrogels, liposomes, liquid crystals, dendrimers, and cyclodextrin is a potential strategy to overcome this difficulty. Additionally, nanotechnology-based drug delivery systems may improve the transcytosis of a PS across epithelial and endothelial barriers and afford the simultaneous co-delivery of two or more drugs. Based on this, the application of nanotechnology in medicine may offer numerous exciting possibilities in cancer treatment and improve the efficacy of available therapeutics. Therefore, the aim of this paper is to review nanotechnology-based drug delivery systems for photodynamic therapy of cancer.

  6. Nanotechnology-Based Drug Delivery Systems for Photodynamic Therapy of Cancer: A Review

    Directory of Open Access Journals (Sweden)

    Giovana Maria Fioramonti Calixto

    2016-03-01

    Full Text Available Photodynamic therapy (PDT is a promising alternative approach for improved cancer treatment. In PDT, a photosensitizer (PS is administered that can be activated by light of a specific wavelength, which causes selective damage to the tumor and its surrounding vasculature. The success of PDT is limited by the difficulty in administering photosensitizers (PSs with low water solubility, which compromises the clinical use of several molecules. Incorporation of PSs in nanostructured drug delivery systems, such as polymeric nanoparticles (PNPs, solid lipid nanoparticles (SLNs, nanostructured lipid carriers (NLCs, gold nanoparticles (AuNPs, hydrogels, liposomes, liquid crystals, dendrimers, and cyclodextrin is a potential strategy to overcome this difficulty. Additionally, nanotechnology-based drug delivery systems may improve the transcytosis of a PS across epithelial and endothelial barriers and afford the simultaneous co-delivery of two or more drugs. Based on this, the application of nanotechnology in medicine may offer numerous exciting possibilities in cancer treatment and improve the efficacy of available therapeutics. Therefore, the aim of this paper is to review nanotechnology-based drug delivery systems for photodynamic therapy of cancer.

  7. SU-F-T-209: Multicriteria Optimization Algorithm for Intensity Modulated Radiation Therapy Using Pencil Proton Beam Scanning

    Energy Technology Data Exchange (ETDEWEB)

    Beltran, C; Kamal, H [Mayo Clinic, Rochester, MN (United States)

    2016-06-15

    Purpose: To provide a multicriteria optimization algorithm for intensity modulated radiation therapy using pencil proton beam scanning. Methods: Intensity modulated radiation therapy using pencil proton beam scanning requires efficient optimization algorithms to overcome the uncertainties in the Bragg peaks locations. This work is focused on optimization algorithms that are based on Monte Carlo simulation of the treatment planning and use the weights and the dose volume histogram (DVH) control points to steer toward desired plans. The proton beam treatment planning process based on single objective optimization (representing a weighted sum of multiple objectives) usually leads to time-consuming iterations involving treatment planning team members. We proved a time efficient multicriteria optimization algorithm that is developed to run on NVIDIA GPU (Graphical Processing Units) cluster. The multicriteria optimization algorithm running time benefits from up-sampling of the CT voxel size of the calculations without loss of fidelity. Results: We will present preliminary results of Multicriteria optimization for intensity modulated proton therapy based on DVH control points. The results will show optimization results of a phantom case and a brain tumor case. Conclusion: The multicriteria optimization of the intensity modulated radiation therapy using pencil proton beam scanning provides a novel tool for treatment planning. Work support by a grant from Varian Inc.

  8. SU-F-T-209: Multicriteria Optimization Algorithm for Intensity Modulated Radiation Therapy Using Pencil Proton Beam Scanning

    International Nuclear Information System (INIS)

    Beltran, C; Kamal, H

    2016-01-01

    Purpose: To provide a multicriteria optimization algorithm for intensity modulated radiation therapy using pencil proton beam scanning. Methods: Intensity modulated radiation therapy using pencil proton beam scanning requires efficient optimization algorithms to overcome the uncertainties in the Bragg peaks locations. This work is focused on optimization algorithms that are based on Monte Carlo simulation of the treatment planning and use the weights and the dose volume histogram (DVH) control points to steer toward desired plans. The proton beam treatment planning process based on single objective optimization (representing a weighted sum of multiple objectives) usually leads to time-consuming iterations involving treatment planning team members. We proved a time efficient multicriteria optimization algorithm that is developed to run on NVIDIA GPU (Graphical Processing Units) cluster. The multicriteria optimization algorithm running time benefits from up-sampling of the CT voxel size of the calculations without loss of fidelity. Results: We will present preliminary results of Multicriteria optimization for intensity modulated proton therapy based on DVH control points. The results will show optimization results of a phantom case and a brain tumor case. Conclusion: The multicriteria optimization of the intensity modulated radiation therapy using pencil proton beam scanning provides a novel tool for treatment planning. Work support by a grant from Varian Inc.

  9. Radioiodine therapy versus antithyroid drugs in Graves' disease: a meta-analysis of randomized controlled trials

    Science.gov (United States)

    Qin, Lan

    2016-01-01

    Objective: This meta-analysis was performed to compare radioiodine therapy with antithyroid drugs in terms of clinical outcomes, including development or worsening of ophthalmopathy, hyperthyroid cure rate, hypothyroidism, relapse rate and adverse events. Methods: Randomized controlled trials (RCTs) published in PubMed, Embase, Web of Science, SinoMed and National Knowledge Infrastructure, China, were systematically reviewed to compare the effects of radioiodine therapy with antithyroid drugs in patients with Graves' disease. Results were expressed as risk ratio with 95% confidence intervals (CIs) and weighted mean differences with 95% CIs. Pooled estimates were performed using a fixed-effects model or random-effects model, depending on the heterogeneity among studies. Results: 17 RCTs involving 4024 patients met the inclusion criteria and were included. Results showed that radioiodine treatment has increased risk in new ophthalmopathy, development or worsening of ophthalmopathy and hypothyroidism. Whereas, compared with antithyroid drugs, radioiodine treatment seems to have a higher hyperthyroid cure rate, lower recurrence rate and lower incidence of adverse events. Conclusion: Radioiodine therapy is associated with a higher hyperthyroid cure rate and lower relapse rate compared with antithyroid drugs. However, it also increases the risk of ophthalmopathy and hypothyroidism. Advances in knowledge: Considering that antithyroid drug treatment can be associated with unsatisfactory control of hyperthyroidism, we would recommend radioiodine therapy as the treatment of choice for patients with Graves' disease. PMID:27266544

  10. Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy.

    Science.gov (United States)

    Qiu, Meng; Wang, Dou; Liang, Weiyuan; Liu, Liping; Zhang, Yin; Chen, Xing; Sang, David Kipkemoi; Xing, Chenyang; Li, Zhongjun; Dong, Biqin; Xing, Feng; Fan, Dianyuan; Bao, Shiyun; Zhang, Han; Cao, Yihai

    2018-01-16

    A biodegradable drug delivery system (DDS) is one the most promising therapeutic strategies for cancer therapy. Here, we propose a unique concept of light activation of black phosphorus (BP) at hydrogel nanostructures for cancer therapy. A photosensitizer converts light into heat that softens and melts drug-loaded hydrogel-based nanostructures. Drug release rates can be accurately controlled by light intensity, exposure duration, BP concentration, and hydrogel composition. Owing to sufficiently deep penetration of near-infrared (NIR) light through tissues, our BP-based system shows high therapeutic efficacy for treatment of s.c. cancers. Importantly, our drug delivery system is completely harmless and degradable in vivo. Together, our work proposes a unique concept for precision cancer therapy by external light excitation to release cancer drugs. If these findings are successfully translated into the clinic, millions of patients with cancer will benefit from our work.

  11. A mathematical model of optimized radioiodine-131 therapy of Graves' hyperthyroidism

    International Nuclear Information System (INIS)

    Doi, Suhail AR; Loutfi, Issa; Al-Shoumer, Kamal AS

    2001-01-01

    The current status of radioiodine-131 (RaI) dosimetry for Graves' hyperthyroidism is not clear. Recurrent hyperthyroidism and iatrogenic hypothyroidism are two problems which interact such that trying to solve one leads to exacerbation of the other. Optimized RaI therapy has therefore begun to be defined just in terms of early hypothyroidism (ablative therapy) as physicians have given up on reducing hypothyroidism. Optimized therapy is evaluated both in terms of the greatest separation of cure rate from hypothyroidism rate (non-ablative therapy) or in terms of early hypothyroidism (ablative therapy) by mathematical modeling of outcome after radioiodine and critically discussing the three common methods of RaI dosing for Graves' disease. Cure follows a logarithmic relationship to activity administered or absorbed dose, while hypothyroidism follows a linear relationship. The effect of including or omitting factors in the calculation of the administered I–131 activity such as the measured thyroid uptake and effective half-life of RaI or giving extra compensation for gland size is discussed. Very little benefit can be gained by employing complicated methods of RaI dose selection for non-ablative therapy since the standard activity model shows the best potential for cure and prolonged euthyroidism. For ablative therapy, a standard MBq/g dosing provides the best outcome in terms of cure and early hypothyroidism

  12. Cost-utility analysis of antithyroid drug therapy versus 131I therapy for Graves' disease

    International Nuclear Information System (INIS)

    Hayashi, Katsumi; Abe, Katsumi; Sakata, Ikuko; Sakaguchi, Chiharu; Yamamoto, Kentaro; Kosuda, Shigeru

    2005-01-01

    There is no comparative cost-utility study between 131 I therapy and antithyroid drugs (ATD) therapy for Graves' disease, though 131 I therapy has higher remission rate and less side effects. The objective of the study was to analyze the cost-utility of ATD therapy versus 131 I therapy by calculating life-long medical costs and utility, based on the responses of Graves' disease patients to questionnaires. To determine the expected cost and expected utility, a decision tree analysis was designed on the basis of the 2 competing strategies of ATD therapy versus 131 I therapy. A simulation of 1,000 female patients weighing≥50 kg who assumed to experience the onset of Graves' disease at the age of 30, to first complain of thyrotoxic symptoms and moderate goiter 2-3 mo. previously, and to undergo a 40-years-long cohort study, was created for each strategy using a decision tree and baselines of other relevant variables. The variables and costs were based on the literature and hospital bills. The maximum and minimum values of utility were defined as 1.0 and 0.0, respectively. Future costs and utilities were discounted 5%. The medical costs and utilities were 85,739-88,650 yen/patient/40 years and 16.47-16.56/patient/40 years, respectively, for the ATD therapy strategy, and 81,842 yen/patient/40 years and 17.41/patient/40 years, respectively, for the 131 I therapy strategy. These results quantitatively demonstrated that the 131 I therapy strategy was superior to the ATD therapy strategy in terms of both cost and utility. 131 I therapy should be used more widely in Japan because of its greater utility and lower cost. (author)

  13. Use of Monte Carlo Simulations to Determine Optimal Carbapenem Dosing in Critically Ill Patients Receiving Prolonged Intermittent Renal Replacement Therapy.

    Science.gov (United States)

    Lewis, Susan J; Kays, Michael B; Mueller, Bruce A

    2016-10-01

    Pharmacokinetic/pharmacodynamic analyses with Monte Carlo simulations (MCSs) can be used to integrate prior information on model parameters into a new renal replacement therapy (RRT) to develop optimal drug dosing when pharmacokinetic trials are not feasible. This study used MCSs to determine initial doripenem, imipenem, meropenem, and ertapenem dosing regimens for critically ill patients receiving prolonged intermittent RRT (PIRRT). Published body weights and pharmacokinetic parameter estimates (nonrenal clearance, free fraction, volume of distribution, extraction coefficients) with variability were used to develop a pharmacokinetic model. MCS of 5000 patients evaluated multiple regimens in 4 different PIRRT effluent/duration combinations (4 L/h × 10 hours or 5 L/h × 8 hours in hemodialysis or hemofiltration) occurring at the beginning or 14-16 hours after drug infusion. The probability of target attainment (PTA) was calculated using ≥40% free serum concentrations above 4 times the minimum inhibitory concentration (MIC) for the first 48 hours. Optimal doses were defined as the smallest daily dose achieving ≥90% PTA in all PIRRT combinations. At the MIC of 2 mg/L for Pseudomonas aeruginosa, optimal doses were doripenem 750 mg every 8 hours, imipenem 1 g every 8 hours or 750 mg every 6 hours, and meropenem 1 g every 12 hours or 1 g pre- and post-PIRRT. Ertapenem 500 mg followed by 500 mg post-PIRRT was optimal at the MIC of 1 mg/L for Streptococcus pneumoniae. Incorporating data from critically ill patients receiving RRT into MCS resulted in markedly different carbapenem dosing regimens in PIRRT from those recommended for conventional RRTs because of the unique drug clearance characteristics of PIRRT. These results warrant clinical validation. © 2016, The American College of Clinical Pharmacology.

  14. Antibody-drug conjugates: Promising and efficient tools for targeted cancer therapy.

    Science.gov (United States)

    Nasiri, Hadi; Valedkarimi, Zahra; Aghebati-Maleki, Leili; Majidi, Jafar

    2018-09-01

    Over the recent decades, the use of antibody-drug conjugates (ADCs) has led to a paradigm shift in cancer chemotherapy. Antibody-based treatment of various human tumors has presented dramatic efficacy and is now one of the most promising strategies used for targeted therapy of patients with a variety of malignancies, including hematological cancers and solid tumors. Monoclonal antibodies (mAbs) are able to selectively deliver cytotoxic drugs to tumor cells, which express specific antigens on their surface, and has been suggested as a novel category of agents for use in the development of anticancer targeted therapies. In contrast to conventional treatments that cause damage to healthy tissues, ADCs use mAbs to specifically attach to antigens on the surface of target cells and deliver their cytotoxic payloads. The therapeutic success of future ADCs depends on closely choosing the target antigen, increasing the potency of the cytotoxic cargo, improving the properties of the linker, and reducing drug resistance. If appropriate solutions are presented to address these issues, ADCs will play a more important role in the development of targeted therapeutics against cancer in the next years. We review the design of ADCs, and focus on how ADCs can be exploited to overcome multiple drug resistance (MDR). © 2018 Wiley Periodicals, Inc.

  15. Effects of aerobic exercise and drug therapy on blood pressure and ...

    African Journals Online (AJOL)

    EB

    Key words: Aerobic exercise, drug therapy, blood pressure, randomised controlled trial. African Health Sciences 2013; (1): .... body fat and displayed it on the screen of the meter. ... inelastible tape measure (Butterfly, China). Blood pressure ...

  16. Treating Women Drug Abusers: Action Therapy and Trauma Assessment

    Science.gov (United States)

    Uhler, Ann S.; Parker, Olga V.

    2002-01-01

    The authors suggest that action therapy, a group of techniques including psychodrama, drama therapy, and role training, warrants research attention to determine whether it is well suited to the special characteristics and needs of women clients. In addition, the authors call on researchers to develop a new standardized tool for counselors to use during initial interviews to determine whether women presenting for drug abuse treatment also have significant issues related to trauma. The authors believe the use of unassisted clinical judgment for trauma assessment in first interviews may drive patients away by probing for painful information that clients are not yet ready to confront or divulge. PMID:18567963

  17. Cognitive-Behavioral Therapies for Young People in Outpatient Treatment for Nonopioid Drug Use

    Science.gov (United States)

    Filges, Trine; Jorgensen, Anne-Marie Klint

    2018-01-01

    Objectives: This review evaluates the evidence on the effects of cognitive-behavioral therapy (CBT) on drug use reduction for young people in treatment for nonopioid drug use. Method: We followed Campbell Collaboration guidelines to conduct a systematic review of randomized and nonrandomized trials. Meta-analytic methods were used to…

  18. An Optimization Model for Expired Drug Recycling Logistics Networks and Government Subsidy Policy Design Based on Tri-level Programming

    Directory of Open Access Journals (Sweden)

    Hui Huang

    2015-07-01

    Full Text Available In order to recycle and dispose of all people’s expired drugs, the government should design a subsidy policy to stimulate users to return their expired drugs, and drug-stores should take the responsibility of recycling expired drugs, in other words, to be recycling stations. For this purpose it is necessary for the government to select the right recycling stations and treatment stations to optimize the expired drug recycling logistics network and minimize the total costs of recycling and disposal. This paper establishes a tri-level programming model to study how the government can optimize an expired drug recycling logistics network and the appropriate subsidy policies. Furthermore, a Hybrid Genetic Simulated Annealing Algorithm (HGSAA is proposed to search for the optimal solution of the model. An experiment is discussed to illustrate the good quality of the recycling logistics network and government subsides obtained by the HGSAA. The HGSAA is proven to have the ability to converge on the global optimal solution, and to act as an effective algorithm for solving the optimization problem of expired drug recycling logistics network and government subsidies.

  19. Cognitive-Behavioural Therapies for Young People in Outpatient Treatment for Non-Opioid Drug Use:

    DEFF Research Database (Denmark)

    Filges, Trine; Knudsen, Anne-Sofie Due; Svendsen, Majken

    2015-01-01

    ), Multidimensional Family Therapy (MDFT), and Psychoeducational Therapy (PET)). RESULTS Our main objective was to evaluate the current evidence on the effect of CBT on abstinence and drug use reduction for young people in outpatient treatment for non-opioid drug use. Seven randomised trials, involving 953......, and PET ) with respect to reduction in young people’s drug use. The evidence drawn from this systematic review is based on seven included studies analysed in two separate analyses, depending on whether the intervention was CBT with an add-on component such as motivational interviewing (four studies......) or CBT without an add-on component (three studies). The seven studies are very different in terms of their findings regarding the effects of CBT interventions compared to other interventions (ACRA, CBOP (+ACC), DHPE, FFT, IT, MDFT, and PET ) on young people’s drug use. Therefore, the overall conclusion...

  20. Iterative regularization in intensity-modulated radiation therapy optimization

    International Nuclear Information System (INIS)

    Carlsson, Fredrik; Forsgren, Anders

    2006-01-01

    A common way to solve intensity-modulated radiation therapy (IMRT) optimization problems is to use a beamlet-based approach. The approach is usually employed in a three-step manner: first a beamlet-weight optimization problem is solved, then the fluence profiles are converted into step-and-shoot segments, and finally postoptimization of the segment weights is performed. A drawback of beamlet-based approaches is that beamlet-weight optimization problems are ill-conditioned and have to be regularized in order to produce smooth fluence profiles that are suitable for conversion. The purpose of this paper is twofold: first, to explain the suitability of solving beamlet-based IMRT problems by a BFGS quasi-Newton sequential quadratic programming method with diagonal initial Hessian estimate, and second, to empirically show that beamlet-weight optimization problems should be solved in relatively few iterations when using this optimization method. The explanation of the suitability is based on viewing the optimization method as an iterative regularization method. In iterative regularization, the optimization problem is solved approximately by iterating long enough to obtain a solution close to the optimal one, but terminating before too much noise occurs. Iterative regularization requires an optimization method that initially proceeds in smooth directions and makes rapid initial progress. Solving ten beamlet-based IMRT problems with dose-volume objectives and bounds on the beamlet-weights, we find that the considered optimization method fulfills the requirements for performing iterative regularization. After segment-weight optimization, the treatments obtained using 35 beamlet-weight iterations outperform the treatments obtained using 100 beamlet-weight iterations, both in terms of objective value and of target uniformity. We conclude that iterating too long may in fact deteriorate the quality of the deliverable plan

  1. Capillary Electrophoresis Hyphenated with Mass Spectrometry for Determination of Inflammatory Bowel Disease Drugs in Clinical Urine Samples

    Directory of Open Access Journals (Sweden)

    Katarína Maráková

    2017-11-01

    Full Text Available Azathioprine is the main thiopurine drug used in the treatment of immune-based inflammations of gastrointestinal tract. For the purpose of therapy control and optimization, effective and reliable analytical methods for a rapid drug monitoring in biological fluids are essential. Here, we developed a separation method based on the capillary electrophoresis (CE hyphenated with tandem mass spectrometry (MS/MS for the simultaneous determination of azathioprine and its selected metabolites (6-thioguanine, 6-mercaptopurine, and 6-methylmercaptopurine as well as other co-medicated drugs (mesalazine, prednisone, and allopurinol. The optimized CE-MS/MS conditions provided a very efficient and stable system for the separation and sensitive detection of these drugs in human urine matrices. The developed method was successfully applied for the assay of the targeted drugs and their selected metabolites in urine samples collected from patients suffering from inflammatory bowel disease (IBD and receiving azathioprine therapy. The developed CE-MS/MS method, due to its reliability, short analysis time, production of complex clinical profiles, and favorable performance parameters, evaluated according to FDA guidelines for bioanalytical method validation, is proposed for routine clinical laboratories to optimize thiopurine therapy, estimate enzymatic activity, and control patient compliance with medication and co-medication.

  2. Global Optimization of Ventricular Myocyte Model to Multi-Variable Objective Improves Predictions of Drug-Induced Torsades de Pointes

    Directory of Open Access Journals (Sweden)

    Trine Krogh-Madsen

    2017-12-01

    Full Text Available In silico cardiac myocyte models present powerful tools for drug safety testing and for predicting phenotypical consequences of ion channel mutations, but their accuracy is sometimes limited. For example, several models describing human ventricular electrophysiology perform poorly when simulating effects of long QT mutations. Model optimization represents one way of obtaining models with stronger predictive power. Using a recent human ventricular myocyte model, we demonstrate that model optimization to clinical long QT data, in conjunction with physiologically-based bounds on intracellular calcium and sodium concentrations, better constrains model parameters. To determine if the model optimized to congenital long QT data better predicts risk of drug-induced long QT arrhythmogenesis, in particular Torsades de Pointes risk, we tested the optimized model against a database of known arrhythmogenic and non-arrhythmogenic ion channel blockers. When doing so, the optimized model provided an improved risk assessment. In particular, we demonstrate an elimination of false-positive outcomes generated by the baseline model, in which simulations of non-torsadogenic drugs, in particular verapamil, predict action potential prolongation. Our results underscore the importance of currents beyond those directly impacted by a drug block in determining torsadogenic risk. Our study also highlights the need for rich data in cardiac myocyte model optimization and substantiates such optimization as a method to generate models with higher accuracy of predictions of drug-induced cardiotoxicity.

  3. 42 CFR 423.153 - Drug utilization management, quality assurance, and medication therapy management programs (MTMPs).

    Science.gov (United States)

    2010-10-01

    ... PRESCRIPTION DRUG BENEFIT Cost Control and Quality Improvement Requirements § 423.153 Drug utilization... 42 Public Health 3 2010-10-01 2010-10-01 false Drug utilization management, quality assurance, and medication therapy management programs (MTMPs). 423.153 Section 423.153 Public Health CENTERS FOR MEDICARE...

  4. Magnetic chitosan nanoparticles as a drug delivery system for targeting photodynamic therapy

    International Nuclear Information System (INIS)

    Sun Yun; Chen Zhilong; Yang Xiaoxia; Huang Peng; Zhou Xinping; Du Xiaoxia

    2009-01-01

    Photodynamic therapy (PDT) has become an increasingly recognized alternative to cancer treatment in clinic. However, PDT therapy agents, namely photosensitizer (PS), are limited in application as a result of prolonged cutaneous photosensitivity, poor water solubility and inadequate selectivity, which are encountered by numerous chemical therapies. Magnetic chitosan nanoparticles provide excellent biocompatibility, biodegradability, non-toxicity and water solubility without compromising their magnetic targeting. Nevertheless, no previous attempt has been reported to develop an in vivo magnetic drug delivery system with chitosan nanoparticles for magnetic resonance imaging (MRI) monitored targeting photodynamic therapy. In this study, magnetic targeting chitosan nanoparticles (MTCNPs) were prepared and tailored as a drug delivery system and imaging agents for PS, designated as PHPP. Results showed that PHPP-MTCNPs could be used in MRI monitored targeting PDT with excellent targeting and imaging ability. Non-toxicity and high photodynamic efficacy on SW480 carcinoma cells both in vitro and in vivo were achieved with this method at the level of 0-100 μM. Notably, localization of nanoparticles in skin and hepatic tissue was significantly less than in tumor tissue, therefore photosensitivity and hepatotoxicity can be attenuated.

  5. Drug-Target Kinetics in Drug Discovery.

    Science.gov (United States)

    Tonge, Peter J

    2018-01-17

    The development of therapies for the treatment of neurological cancer faces a number of major challenges including the synthesis of small molecule agents that can penetrate the blood-brain barrier (BBB). Given the likelihood that in many cases drug exposure will be lower in the CNS than in systemic circulation, it follows that strategies should be employed that can sustain target engagement at low drug concentration. Time dependent target occupancy is a function of both the drug and target concentration as well as the thermodynamic and kinetic parameters that describe the binding reaction coordinate, and sustained target occupancy can be achieved through structural modifications that increase target (re)binding and/or that decrease the rate of drug dissociation. The discovery and deployment of compounds with optimized kinetic effects requires information on the structure-kinetic relationships that modulate the kinetics of binding, and the molecular factors that control the translation of drug-target kinetics to time-dependent drug activity in the disease state. This Review first introduces the potential benefits of drug-target kinetics, such as the ability to delineate both thermodynamic and kinetic selectivity, and then describes factors, such as target vulnerability, that impact the utility of kinetic selectivity. The Review concludes with a description of a mechanistic PK/PD model that integrates drug-target kinetics into predictions of drug activity.

  6. Study on hybrid multi-objective optimization algorithm for inverse treatment planning of radiation therapy

    International Nuclear Information System (INIS)

    Li Guoli; Song Gang; Wu Yican

    2007-01-01

    Inverse treatment planning for radiation therapy is a multi-objective optimization process. The hybrid multi-objective optimization algorithm is studied by combining the simulated annealing(SA) and genetic algorithm(GA). Test functions are used to analyze the efficiency of algorithms. The hybrid multi-objective optimization SA algorithm, which displacement is based on the evolutionary strategy of GA: crossover and mutation, is implemented in inverse planning of external beam radiation therapy by using two kinds of objective functions, namely the average dose distribution based and the hybrid dose-volume constraints based objective functions. The test calculations demonstrate that excellent converge speed can be achieved. (authors)

  7. Combination Cancer Therapy Can Confer Benefit via Patient-to-Patient Variability without Drug Additivity or Synergy.

    Science.gov (United States)

    Palmer, Adam C; Sorger, Peter K

    2017-12-14

    Combination cancer therapies aim to improve the probability and magnitude of therapeutic responses and reduce the likelihood of acquired resistance in an individual patient. However, drugs are tested in clinical trials on genetically diverse patient populations. We show here that patient-to-patient variability and independent drug action are sufficient to explain the superiority of many FDA-approved drug combinations in the absence of drug synergy or additivity. This is also true for combinations tested in patient-derived tumor xenografts. In a combination exhibiting independent drug action, each patient benefits solely from the drug to which his or her tumor is most sensitive, with no added benefit from other drugs. Even when drug combinations exhibit additivity or synergy in pre-clinical models, patient-to-patient variability and low cross-resistance make independent action the dominant mechanism in clinical populations. This insight represents a different way to interpret trial data and a different way to design combination therapies. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Nanotechnology-Based Drug Delivery Systems for Melanoma Antitumoral Therapy: A Review.

    Science.gov (United States)

    Rigon, Roberta Balansin; Oyafuso, Márcia Helena; Fujimura, Andressa Terumi; Gonçalez, Maíra Lima; do Prado, Alice Haddad; Gremião, Maria Palmira Daflon; Chorilli, Marlus

    2015-01-01

    Melanoma (MEL) is a less common type of skin cancer, but it is more aggressive with a high mortality rate. The World Cancer Research Fund International (GLOBOCAN 2012) estimates that there were 230,000 new cases of MEL in the world in 2012. Conventional MEL treatment includes surgery and chemotherapy, but many of the chemotherapeutic agents used present undesirable properties. Drug delivery systems are an alternative strategy by which to carry antineoplastic agents. Encapsulated drugs are advantageous due to such properties as high stability, better bioavailability, controlled drug release, a long blood circulation time, selective organ or tissue distribution, a lower total required dose, and minimal toxic side effects. This review of scientific research supports applying a nanotechnology-based drug delivery system for MEL therapy.

  9. Drug loading optimization and extended drug delivery of corticoids from pHEMA based soft contact lenses hydrogels via chemical and microstructural modifications.

    Science.gov (United States)

    García-Millán, Eva; Koprivnik, Sandra; Otero-Espinar, Francisco Javier

    2015-06-20

    This paper proposes an approach to improve drug loading capacity and release properties of poly(2-hydroxyethyl methacrylate) (p(HEMA)) soft contact lenses based on the optimization of the hydrogel composition and microstructural modifications using water during the polymerization process. P(HEMA) based soft contact lenses were prepared by thermal or photopolymerization of 2-hydroxyethyl methacrylate (HEMA) solutions containing ethylene glycol di-methacrylate as crosslinker and different proportions of N-vinyl-2-pyrrolidone (NVP) or methacrylic acid (MA) as co-monomers. Transmittance, water uptake, swelling, microstructure, drug absorption isotherms and in vitro release were characterized using triamcinolone acetonide (TA) as model drug. Best drug loading ratios were obtained with lenses containing the highest amount (200 mM) of MA. Incorporation of 40% V/V of water during the polymerization increases the hydrogel porosity giving a better drug loading capacity. In vitro TA release kinetics shows that MA hydrogels released the drug significantly faster than NVP-hydrogels. Drug release was found to be diffusion controlled and kinetics was shown to be reproducible after consecutive drug loading/release processes. Results of p(HEMA) based soft contact lenses copolymerized with ethylene glycol dimethacrylate (EGDMA) and different co-monomers could be a good alternative to optimize the loading and ocular drug delivery of this corticosteroid drug. Copyright © 2015. Published by Elsevier B.V.

  10. Radioiodine therapy and thyrostatic drugs and iodine

    Energy Technology Data Exchange (ETDEWEB)

    Moka, D.; Dietlein, M.; Schicha, H. [Department of Nuclear Medicine, University of Cologne, Joseph Stelzmannstrasse 9, 50924 Koeln (Germany)

    2002-08-01

    Radioiodine therapy is now the most common definite treatment for persistent hyperthyroidism. The outcome of radioiodine therapy depends mainly on the absorbed energy dose in the diseased thyroid tissue. The administered activity and the resulting target dose in the thyroid depend on both the biokinetics of radioiodine and the actual therapeutic effect of radioiodine in the thyroid. Thyrostatic drugs have a major influence on the kinetics of radioiodine in the thyroid and may additionally have a radioprotective effect. Pre-treatment with thyrostatic medication lowers the effective half-life and uptake of radioiodine. This can reduce the target dose in the thyroid and have a negative influence on the outcome of the therapy. Discontinuation of medication shortly before radioiodine administration can increase the absorbed energy dose in the thyroid without increasing the whole-body exposure to radiation as much as would a higher or second radioiodine administration. Furthermore, administration of non-radioactive iodine-127 2-3 days after radioiodine administration can also increase the effective half-life of radioiodine in the thyroid. Thus, improving the biokinetics of radioiodine will allow lower activities to be administered with lower effective doses to the rest of the body, while achieving an equally effective target dose in the thyroid. (orig.)

  11. Management of noninfectious posterior uveitis with intravitreal drug therapy

    Directory of Open Access Journals (Sweden)

    Tan HY

    2016-10-01

    Full Text Available Hui Yi Tan,1 Aniruddha Agarwal,2 Cecilia S Lee,3 Jay Chhablani,4 Vishali Gupta,5 Manoj Khatri,6 Jayabalan Nirmal,7 Carlos Pavesio,8 Rupesh Agrawal1,7–9 1Yong Loo Lin School of Medicine, National University of Singapore, Singapore; 2Department of Vitreoretina, Stanley M Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, 3Department of Ophthalmology, University of Washington, Seattle, WA, USA; 4Department of Vitreoretina, L V Prasad Eye Institute, Hyderabad, Telangana, 5Department of Retina and Uvea, Post Graduate Institute of Medical Education and Research, Chandigarh, 6Department of Retina, Rajan Eye Care Hospital, Chennai, Tamil Nadu, India; 7School of Material Science and Engineering, Nanyang Technological University, Singapore; 8Department of Medical Retina, Moorfields Eye Hospital, NHS Foundation Trust, London, UK; 9Department of Ophthalmology, National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore Abstract: Uveitis is an important cause of vision loss worldwide due to its sight-threatening complications, especially cystoid macular edema, as well as choroidal neovascularization, macular ischemia, cataract, and glaucoma. Systemic corticosteroids are the mainstay of therapy for noninfectious posterior uveitis; however, various systemic side effects can occur. Intravitreal medication achieves a therapeutic level in the vitreous while minimizing systemic complications and is thus used as an exciting alternative. Corticosteroids, antivascular endothelial growth factors, immunomodulators such as methotrexate and sirolimus, and nonsteroidal anti-inflammatory drugs are currently available for intravitreal therapy. This article reviews the existing literature for efficacy and safety of these various options for intravitreal drug therapy for the management of noninfectious uveitis (mainly intermediate, posterior, and panuveitis. Keywords: intravitreal therapy, noninfectious uveitis, posterior uveitis

  12. Fighting cancer with nanomedicine---drug-polyester nanoconjugates for targeted cancer therapy

    Science.gov (United States)

    Yin, Qian

    The aim of my Ph. D. research is to develop drug-polyester nanoconjugates (NCs) as a novel translational polymeric drug delivery system that can successfully evade non-specific uptake by reticuloendothelial system (RES) and facilitate targeted cancer diagnosis and therapy. By uniquely integrating well-established chemical reaction-controlled ring opening polymerization (ROP) with nanoprecipitation technique, I successfully developed a polymeric NC system based on poly(lactic acid) and poly(O-carboxyanhydrides) (OCA) that allows for the quantitative loading and controlled release of a variety of anticancer drugs. The developed NC system could be easily modified with parmidronate, one of bisphosphonates commonly used as the treatment for disease characterized by osteolysis, to selectively deliver doxorubicin (Doxo) to the bone tissues and substantially to improve their therapeutic efficiency in inhibiting the growth of osteosarcoma in both murine and canine models. More importantly, the developed NCs could avidly bind to human serum albumin, a ubiquitous protein in the blood, to bypass the endothelium barrier and penetrate into tumor tissues more deeply and efficiently. When compared with PEGylated NCs, these albumin-bound NCs showed significantly reduced accumulation in RES and enhanced tumor accumulation, which consequently contributed to higher their tumor inhibition capabilities. In addition, the developed NC system allows easy incorporation of X-ray computed tomography (CT) contrast agents to largely facilitate personalized therapy by improving diagnosis accuracy and monitoring therapeutic efficacy. Through the synthetic and formulation strategy I developed, a large quantity (grams or larger-scale) of drug-polyester NCs can be easily obtained, which can be used as a model drug delivery system for fundamental studies as well as a real drug delivery system for disease treatment in clinical settings.

  13. Drug efficiency: a new concept to guide lead optimization programs towards the selection of better clinical candidates.

    Science.gov (United States)

    Braggio, Simone; Montanari, Dino; Rossi, Tino; Ratti, Emiliangelo

    2010-07-01

    As a result of their wide acceptance and conceptual simplicity, drug-like concepts are having a major influence on the drug discovery process, particularly in the selection of the 'optimal' absorption, distribution, metabolism, excretion and toxicity and physicochemical parameters space. While they have an undisputable value when assessing the potential of lead series or in evaluating inherent risk of a portfolio of drug candidates, they result much less useful in weighing up compounds for the selection of the best potential clinical candidate. We introduce the concept of drug efficiency as a new tool both to guide the drug discovery program teams during the lead optimization phase and to better assess the developability potential of a drug candidate.

  14. Cognitive-Behavioural Therapies for Young People in Outpatient Treatment for NonOpioid Drug Use

    DEFF Research Database (Denmark)

    Filges, Trine; Jørgensen, Anne-Marie Klint

    2016-01-01

    Objectives: This review evaluates the evidence on the effects of cognitive–behavioral therapy (CBT) on drug use reduction for young people in treatment for nonopioid drug use. Method: We followed Campbell Collaboration guidelines to conduct a systematic review of randomized and nonrandomized trials...

  15. Current and future therapies for gout.

    Science.gov (United States)

    Pascart, Tristan; Richette, Pascal

    2017-08-01

    Gout is a common disease responsible for recurrent flares triggered by the deposition of monosodium urate crystals secondary to longstanding hyperuricaemia. The management of gout implies both the treatment of flares and the treatment of hyperuricaemia itself. Recent improvement in the understanding of the disease led to the development of new drugs. Areas covered: This review covers data related to 'old' treatments of flares and hyperuricaemia, evidence on the recently approved drugs and emerging therapies in development. Expert opinion: Recent data provide a good grasp of the optimal use of colchicine, corticosteroids and NSAIDs for the treatment of flares. Interleukin-1 blocking therapies have an increasing role in the management of difficult-to-treat gout. Sub-optimal use of allopurinol is common and its potency to reduce serum uric acid (SUA) levels is underestimated. Febuxostat effectively reduces SUA levels. New uricosurics, notably lesinurad and arhalofenate, in combination with xanthine oxidase inhibitors, offer promising perspectives to help a greater number of patients achieve sufficient SUA reduction.

  16. Impact of renal aging on drug therapy.

    Science.gov (United States)

    Musso, Carlos G; Belloso, Waldo H; Scibona, Paula; Bellizzi, Vincenzo; Macías Núñez, Juan F

    2015-08-01

    Elderly patients (age ≥ 65 years old) use up to 30% of all commonly prescribed medication, and they suffer more their adverse effects than the general population. In order to minimize this risk, physicians should avoid polypharmacy, dangerous pharmacological interactions and take into account pharmacodynamic and senile pharmacokinetic changes before prescribing any medication to the elderly. The present review article originally describes how renal physiology changes secondary to aging such as dysautonomia, glomerular filtration rate reduction, tubular back-filtration, sodium, calcium and magnesium loss, potassium retention, altered dilution-concentration capability, tubular frailty, genetics, internal milieu and body composition are senile changes that when combined predispose elderly people to suffer from pharmacological adverse effects. Knowledge of these physiological modifications associated with aging and their impact on the pharmacology of particular drugs may help to optimize drug use and to avoid complications in this age group.

  17. Design and optimization of self-nanoemulsifying drug delivery systems for improved bioavailability of cyclovirobuxine D.

    Science.gov (United States)

    Ke, Zhongcheng; Hou, Xuefeng; Jia, Xiao-Bin

    2016-01-01

    The main purpose of this research was to design a self-nanoemulsifying drug delivery system (SNEDDS) for improving the bioavailability of cyclovirobuxine D as a poorly water-soluble drug. Solubility trials, emulsifying studies, and pseudo-ternary phase diagrams were used to screen the SNEDDS formulations. The optimized drug-loaded SNEDDS was prepared at a mass ratio of 3:24:38:38 for cyclovirobuxine D, oleic acid, Solutol SH15, and propylene glycol, respectively. The optimized formulation was characterized in terms of physicochemical and pharmacokinetic parameters compared with marketed cyclovirobuxine D tablets. The optimized cyclovirobuxine-D-loaded SNEDDS was spontaneously dispersed to form a nanoemulsion with a globule size of 64.80±3.58 nm, which exhibited significant improvement of drug solubility, rapid absorption rate, and enhanced area under the curve, together with increased permeation and decreased efflux. Fortunately, there was a nonsignificant cytotoxic effect toward Caco-2 cells. The relative bioavailability of SNEDDS was 200.22% in comparison with market tablets, in rabbits. SNEDDS could be a potential candidate for an oral dosage form of cyclovirobuxine D with improved bioavailability.

  18. Functional Family Therapy for Young People in Treatment for Nonopioid Drug Use

    DEFF Research Database (Denmark)

    Filges, Trine; Andersen, Ditte

    2016-01-01

    Objectives: This review evaluates the evidence on the effects of functional family therapy (FFT) on drug abuse reduction for young people in treatment for nonopioid drug use. Data and Analysis: We followed Campbell Collaboration guidelines to conduct a systematic review of randomized...... and nonrandomized trials. Results: The search yielded two studies that met inclusion criteria. Only one study provided numerical results on the effect of FFT on drug use reduction. Conclusions: There is insufficient evidence to allow any conclusion to be drawn on the effect of FFT for young people in treatment...

  19. Brief strategic family therapy for young people in treatment for drug use

    DEFF Research Database (Denmark)

    Lindstrøm, Maia; Filges, Trine; Jørgensen, Anne-Marie Klint

    2015-01-01

    This review evaluates the evidence on the effects of brief strategic family therapy (BSFT) on drug use reduction for young people in treatment for nonopioid drug use. Method: We followed Campbell Collaboration guidelines to prepare this review and ultimately located three studies for final analysis...... and interpretation. Results: The results are mixed: BSFT does not seem to have better or worse effects on drug use frequency and family functioning than other treatments but has positive effects on treatment retention compared to control conditions. Longer retention in treatment has been identified as a consistent...

  20. Optimal imaging surveillance schedules after liver-directed therapy for hepatocellular carcinoma.

    Science.gov (United States)

    Boas, F Edward; Do, Bao; Louie, John D; Kothary, Nishita; Hwang, Gloria L; Kuo, William T; Hovsepian, David M; Kantrowitz, Mark; Sze, Daniel Y

    2015-01-01

    To optimize surveillance schedules for the detection of recurrent hepatocellular carcinoma (HCC) after liver-directed therapy. New methods have emerged that allow quantitative analysis and optimization of surveillance schedules for diseases with substantial rates of recurrence such as HCC. These methods were applied to 1,766 consecutive chemoembolization, radioembolization, and radiofrequency ablation procedures performed on 910 patients between 2006 and 2011. Computed tomography or magnetic resonance imaging performed just before repeat therapy was set as the time of "recurrence," which included residual and locally recurrent tumor as well as new liver tumors. Time-to-recurrence distribution was estimated by Kaplan-Meier method. Average diagnostic delay (time between recurrence and detection) was calculated for each proposed surveillance schedule using the time-to-recurrence distribution. An optimized surveillance schedule could then be derived to minimize the average diagnostic delay. Recurrence is 6.5 times more likely in the first year after treatment than in the second. Therefore, screening should be much more frequent in the first year. For eight time points in the first 2 years of follow-up, the optimal schedule is 2, 4, 6, 8, 11, 14, 18, and 24 months. This schedule reduces diagnostic delay compared with published schedules and is cost-effective. The calculated optimal surveillance schedules include shorter-interval follow-up when there is a higher probability of recurrence and longer-interval follow-up when there is a lower probability. Cost can be optimized for a specified acceptable diagnostic delay or diagnostic delay can be optimized within a specified acceptable cost. Copyright © 2015 SIR. Published by Elsevier Inc. All rights reserved.

  1. The effect of optimal medical therapy on 1-year mortality after acute myocardial infarction.

    Science.gov (United States)

    Bramlage, P; Messer, C; Bitterlich, N; Pohlmann, C; Cuneo, A; Stammwitz, E; Tebbenjohanns, J; Gohlke, H; Senges, J; Tebbe, U

    2010-04-01

    Five drug classes have been shown to improve the prognosis of acute myocardial infarction in clinical trials: aspirin, beta-blockers, statins, renin angiotensin system (RAS) blockers and thienopyridines. We aimed to assess whether the benefits of combining these drugs (termed optimal medical therapy, OMT), will result in a reduction of mortality in clinical practice. Nationwide registry Hospitals with a cardiology unit or internal medicine department. 5353 patients with acute myocardial infarction. At hospital discharge 89% received aspirin, 90% beta-blockers, 84% statins, 81% RAS blockers, 70% a thienopyridine and 46.2% OMT. Pharmacotherapy OR with 95% CI for mortality from myocardial infarction were calculated and adjusted for patient risk at baseline. Total mortality was reduced by 74% in patients receiving OMT (adj OR 0.26; 95% CI 0.18 to 0.38) versus patients receiving one or no drug. This was consistent in subgroups defined by STEMI/NSTEMI, diabetes and gender. Mortality was also reduced in patients receiving 2-4 drugs (adj OR 0.49; 95% CI 0.35 to 0.68), diabetic patients being the only subgroup with no significant effect. Analyses on the relative importance of either component revealed that withdrawal of beta-blockers (adj OR 0.63; 95% CI 0.34 to 1.16) and/or a combination of aspirin/clopidogrel (adj OR 0.59; 95% CI 0.20 to 1.17) abolished the risk reduction conferred by OMT. OMT over 1 year was associated with a significantly lower mortality of patients with acute myocardial infarction in clinical practice. However OMT is provided to less than half of eligible patients leaving room for substantial improvement.

  2. Biological-based optimization and volumetric modulated arc therapy delivery for stereotactic body radiation therapy

    International Nuclear Information System (INIS)

    Diot, Quentin; Kavanagh, Brian; Timmerman, Robert; Miften, Moyed

    2012-01-01

    Purpose: To describe biological-based optimization and Monte Carlo (MC) dose calculation-based treatment planning for volumetric modulated arc therapy (VMAT) delivery of stereotactic body radiation therapy (SBRT) in lung, liver, and prostate patients. Methods: Optimization strategies and VMAT planning parameters using a biological-based optimization MC planning system were analyzed for 24 SBRT patients. Patients received a median dose of 45 Gy [range, 34-54 Gy] for lung tumors in 1-5 fxs and a median dose of 52 Gy [range, 48-60 Gy] for liver tumors in 3-6 fxs. Prostate patients received a fractional dose of 10 Gy in 5 fxs. Biological-cost functions were used for plan optimization, and its dosimetric quality was evaluated using the conformity index (CI), the conformation number (CN), the ratio of the volume receiving 50% of the prescription dose over the planning target volume (Rx/PTV50). The quality and efficiency of the delivery were assessed according to measured quality assurance (QA) passing rates and delivery times. For each disease site, one patient was replanned using physical cost function and compared to the corresponding biological plan. Results: Median CI, CN, and Rx/PTV50 for all 24 patients were 1.13 (1.02-1.28), 0.79 (0.70-0.88), and 5.3 (3.1-10.8), respectively. The median delivery rate for all patients was 410 MU/min with a maximum possible rate of 480 MU/min (85%). Median QA passing rate was 96.7%, and it did not significantly vary with the tumor site. Conclusions: VMAT delivery of SBRT plans optimized using biological-motivated cost-functions result in highly conformal dose distributions. Plans offer shorter treatment-time benefits and provide efficient dose delivery without compromising the plan conformity for tumors in the prostate, lung, and liver, thereby improving patient comfort and clinical throughput. The short delivery times minimize the risk of patient setup and intrafraction motion errors often associated with long SBRT treatment

  3. Modeling of Antilatency Treatment in HIV: What Is the Optimal Duration of Antiretroviral Therapy-Free HIV Remission?

    Science.gov (United States)

    Cromer, Deborah; Pinkevych, Mykola; Rasmussen, Thomas A; Lewin, Sharon R; Kent, Stephen J; Davenport, Miles P

    2017-12-15

    A number of treatment strategies are currently being developed to promote antiretroviral therapy-free HIV cure or remission. While complete elimination of the HIV reservoir would prevent recurrence of infection, it is not clear how different remission lengths would affect viral rebound and transmission. In this work, we use a stochastic model to show that a treatment that achieves a 1-year average time to viral remission will still lead to nearly a quarter of subjects experiencing viral rebound within the first 3 months. Given quarterly viral testing intervals, this leads to an expected 39 (95% uncertainty interval [UI], 22 to 69) heterosexual transmissions and up to 262 (95% UI, 107 to 534) homosexual transmissions per 1,000 treated subjects over a 10-year period. Thus, a balance between high initial treatment levels, risk of recrudescence, and risk of transmission should be considered when assessing the "useful" or optimal length of antiretroviral therapy-free HIV remission to be targeted. We also investigate the trade-off between increasing the average duration of remission versus the risk of treatment failure (viral recrudescence) and the need for retreatment. To minimize drug exposure, we found that the optimal target of antilatency interventions is a 1,700-fold reduction in the size of the reservoir, which leads to an average time to recrudescence of 30 years. Interestingly, this is a significantly lower level of reduction than that required for complete elimination of the viral reservoir. Additionally, we show that when shorter periods are targeted, there is a real probability of viral transmission occurring between tests for viral rebound. IMPORTANCE Current treatment of HIV involves patients taking antiretroviral therapy to ensure that the level of virus remains very low or undetectable. Continuous therapy is required, as the virus persists in a latent state within cells, and when therapy is stopped, the virus rebounds, usually within 2 weeks. A major

  4. Achieving a Spiritual Therapy Standard for Drug Dependency in Malaysia, from an Islamic Perspective: Brief Review Article.

    Science.gov (United States)

    Seghatoleslam, Tahereh; Habil, Hussain; Hatim, Ahmad; Rashid, Rusdi; Ardakan, Abolfazl; Esmaeili Motlaq, Farid

    2015-01-01

    Religion is one of the protective factors that facilities positive outcomes by preventing individuals from engaging in addictive substance. A recent study has confirmed that religion inhibits drug addiction. The concept of psychospiritual therapy was to introduce drug addiction. Therefore, of the various methods of psychotherapy, the usage of Taqwa (piety) emerged as an applicable method of Islamic spiritual therapy. This study was conducted in Malaysia as a Muslim country and focuses on Islamic recommendations and its relation to spiritual therapy.

  5. 帕金森病的药物治疗%Drug therapy for Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    杨任民

    2011-01-01

    帕金森病(PD)的多种治疗药物是针对运动症状的治疗,而PD非运动症状可降低患者生活质量,甚至可加重PD患者的运动症状和功能残疾,其治疗也不容忽视.本文综述PD运动症状的药物治疗原则,以及各类药物的临床使用及其疗效评价,同时汇总多种非运动症状的药物治疗研究.%Several drugs have been used to treat the motor symptoms of Parkinson's disease (PD). Non-motor symptoms may reduce quality of life, cause more motor symptoms and functional disability in PD patients. The therapy for non-motor symptoms should not be ignored. This review describes the principle and application of drug therapy for motor symptoms of PD, and summarizes drug therapy for a variety of non-motor symptoms.

  6. Characteristics of Hemorrhagic Peptic Ulcers in Patients Receiving Antithrombotic/Nonsteroidal Antiinflammatory Drug Therapy

    OpenAIRE

    Nakamura, Kazuhiko; Akahoshi, Kazuya; Ochiai, Toshiaki; Komori, Keishi; Haraguchi, Kazuhiro; Tanaka, Munehiro; Nakamura, Norimoto; Tanaka, Yoshimasa; Kakigao, Kana; Ogino, Haruei; Ihara, Eikichi; Akiho, Hirotada; Motomura, Yasuaki; Kabemura, Teppei; Harada, Naohiko

    2012-01-01

    Background/Aims Antithrombotic/nonsteroidal antiinflammatory drug (NSAID) therapies increase the incidence of upper gastrointestinal bleeding. The features of hemorrhagic peptic ulcer disease in patients receiving antithrombotic/NSAID therapies were investigated. Methods We investigated the medical records of 485 consecutive patients who underwent esophagogastroduodenoscopy and were diagnosed with hemorrhagic gastroduodenal ulcers. The patients treated with antithrombotic agents/NSAIDs were c...

  7. Chinese herbal therapy and Western drug use, belief and adherence for hypertension management in the rural areas of Heilongjiang province, China.

    Directory of Open Access Journals (Sweden)

    Xia Li

    Full Text Available Traditional Chinese medicine (TCM including Chinese herbal therapy has been widely practiced in China. However, little is known about Chinese herbal therapy use for hypertension management, which is one of the most prevalent chronic conditions in China. Thus we described Chinese herbal therapy and western drug users, beliefs, hypertension knowledge, and Chinese herbal and western drug adherence and determinants of Chinese herbal therapy use among patients with hypertension in rural areas of Heilongjiang Province, China.This face-to-face cross sectional survey included 665 hypertensive respondents aged 30 years or older in rural areas of Heilongjiang Province, China. Of 665 respondents, 39.7% were male, 27.4% were aged 65 years or older. At the survey, 14.0% reported using Chinese herbal therapy and 71.3% reported using western drug for hypertension management. A majority of patients had low level of treatment adherence (80.6% for the Chinese herbal therapy users and 81.2% for the western drug users. When respondents felt that their blood pressure was under control, 72.0% of the Chinese herbal therapy users and 69.2% of the western drug users sometimes stopped taking their medicine. Hypertensive patients with high education level or better quality of life are more likely use Chinese herbal therapy.Majority of patients diagnosed with hypertension use western drugs to control blood pressure. Chinese herbal therapy use was associated with education level and quality of life.

  8. Nanoparticle-Based Drug Delivery for Therapy of Lung Cancer: Progress and Challenges

    Directory of Open Access Journals (Sweden)

    Anish Babu

    2013-01-01

    Full Text Available The last decade has witnessed enormous advances in the development and application of nanotechnology in cancer detection, diagnosis, and therapy culminating in the development of the nascent field of “cancer nanomedicine.” A nanoparticle as per the National Institutes of Health (NIH guidelines is any material that is used in the formulation of a drug resulting in a final product smaller than 1 micron in size. Nanoparticle-based therapeutic systems have gained immense popularity due to their ability to overcome biological barriers, effectively deliver hydrophobic therapies, and preferentially target disease sites. Currently, many formulations of nanocarriers are utilized including lipid-based, polymeric and branched polymeric, metal-based, magnetic, and mesoporous silica. Innovative strategies have been employed to exploit the multicomponent, three-dimensional constructs imparting multifunctional capabilities. Engineering such designs allows simultaneous drug delivery of chemotherapeutics and anticancer gene therapies to site-specific targets. In lung cancer, nanoparticle-based therapeutics is paving the way in the diagnosis, imaging, screening, and treatment of primary and metastatic tumors. However, translating such advances from the bench to the bedside has been severely hampered by challenges encountered in the areas of pharmacology, toxicology, immunology, large-scale manufacturing, and regulatory issues. This review summarizes current progress and challenges in nanoparticle-based drug delivery systems, citing recent examples targeted at lung cancer treatment.

  9. Population-based differences in treatment outcome following anticancer drug therapies.

    Science.gov (United States)

    Ma, Brigette By; Hui, Edwin P; Mok, Tony Sk

    2010-01-01

    Population-based differences in toxicity and clinical outcome following treatment with anticancer drugs have an important effect on oncology practice and drug development. These differences arise from complex interactions between biological and environmental factors, which include genetic diversity affecting drug metabolism and the expression of drug targets, variations in tumour biology and host physiology, socioeconomic disparities, and regional preferences in treatment standards. Some well-known examples include the high prevalence of activating epidermal growth factor receptor (EGFR) mutations in pulmonary adenocarcinoma among northeast (China, Japan, Korea) and parts of southeast Asia (excluding India) non-smokers, which predict sensitivity to EGFR kinase inhibitors, and the sharp contrast between Japan and the west in the management and survival outcome of gastric cancer. This review is a critical overview of population-based differences in the four most prevalent cancers in the world: lung, breast, colorectal, and stomach cancer. Particular attention is given to the clinical relevance of such knowledge in terms of the individualisation of drug therapy and in the design of clinical trials. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  10. Peptide-Mediated Liposomal Drug Delivery System Targeting Tumor Blood Vessels in Anticancer Therapy

    Directory of Open Access Journals (Sweden)

    Han-Chung Wu

    2010-01-01

    Full Text Available Solid tumors are known to recruit new blood vessels to support their growth. Therefore, unique molecules expressed on tumor endothelial cells can function as targets for the antiangiogenic therapy of cancer. Current efforts are focusing on developing therapeutic agents capable of specifically targeting cancer cells and tumor-associated microenvironments including tumor blood vessels. These therapies hold the promise of high efficacy and low toxicity. One recognized strategy for improving the therapeutic effectiveness of conventional chemotherapeutics is to encapsulate anticancer drugs into targeting liposomes that bind to the cell surface receptors expressed on tumor-associated endothelial cells. These anti-angiogenic drug delivery systems could be used to target both tumor blood vessels as well as the tumor cells, themselves. This article reviews the mechanisms and advantages of various present and potential methods using peptide-conjugated liposomes to specifically destroy tumor blood vessels in anticancer therapy.

  11. Altered drug metabolism during pregnancy: hormonal regulation of drug-metabolizing enzymes.

    Science.gov (United States)

    Jeong, Hyunyoung

    2010-06-01

    Medication use during pregnancy is prevalent, but pharmacokinetic information of most drugs used during pregnancy is lacking in spite of known effects of pregnancy on drug disposition. Accurate pharmacokinetic information is essential for optimal drug therapy in mother and fetus. Thus, understanding how pregnancy influences drug disposition is important for better prediction of pharmacokinetic changes of drugs in pregnant women. Pregnancy is known to affect hepatic drug metabolism, but the underlying mechanisms remain unknown. Physiological changes accompanying pregnancy are probably responsible for the reported alteration in drug metabolism during pregnancy. These include elevated concentrations of various hormones such as estrogen, progesterone, placental growth hormones and prolactin. This review covers how these hormones influence expression of drug-metabolizing enzymes (DMEs), thus potentially responsible for altered drug metabolism during pregnancy. The reader will gain a greater understanding of the altered drug metabolism in pregnant women and the regulatory effects of pregnancy hormones on expression of DMEs. In-depth studies in hormonal regulatory mechanisms as well as confirmatory studies in pregnant women are warranted for systematic understanding and prediction of the changes in hepatic drug metabolism during pregnancy.

  12. Treatment of hyperthyroidism with radioiodine: adjunctive therapy with antithyroid drugs reconsidered

    International Nuclear Information System (INIS)

    Velkeniers, B.; Vanhaelst, L.; Cytryn, R.; Jonckheer, M.H.

    1988-01-01

    To assess the value of antithyroid drugs as an adjunct to radioactive iodine for the treatment of hyperthyroidism the incidence of relapse or hypothyroidism after a mean follow-up of 51/2 years (range 2-7 years) was reviewed retrospectively for 206 patients, some treated with and others without antithyroid drugs after radioiodine therapy. Allocation to treatment group had been random, and both groups were similar in all respects except for the adjunctive treatment with antithyroid drugs. All doses of 131 I had been calculated by one physician. Compared with those who received 131 I alone, those starting on antithyroid drugs within 8 days after 131 I had a lower incidence of hypothyroidism but a higher incidence of early post-treatment recurrence or persistence of hyperthyroidism, and considerably lower incidence of remission. (author)

  13. Quantifying antiviral activity optimizes drug combinations against hepatitis C virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, Yoshiki [School of Medicine, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan; Nakajim, Syo [Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan; Department of Applied Biological Sciences, Faculty of Science and Technology, Tokyo University of Sciences, Chiba, J; Ohash, Hirofumi [Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan: Department of Applied Biological Sciences, Faculty of Science and Technology, Tokyo University of Sciences, Chiba, J; Tanaka, Yasuhito [Department of Virology and Liver Unit, Nagoya City University Graduate School of Medicinal Sciences, Nagoya, Japan; Wakita, Takaji [Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan; Perelson, Alan S. [Los Alamos National Laboratory; Iwami, Shingo [Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan: PRESTO, JST, Saitama, Japan: CREST, JST, Saitama, Japan; Watashi, Koichi [Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan: Department of Applied Biological Sciences, Faculty of Science and Technology, Tokyo University of Sciences, Chiba, J

    2016-03-21

    Cell culture study combing a mathematical model and computer simulation quantifies the anti-hepatitis C virus drug efficacy at any concentrations and any combinations in preclinical settings, and can obtain rich basic evidences for selecting optimal treatments prior to costly clinical trials.

  14. Nanotechnology-based drug delivery treatments and specific targeting therapy for age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Tai-Chi Lin

    2015-11-01

    Full Text Available Nanoparticles combined with cells, drugs, and specially designed genes provide improved therapeutic efficacy in studies and clinical setting, demonstrating a new era of treatment strategy, especially in retinal diseases. Nanotechnology-based drugs can provide an essential platform for sustaining, releasing and a specific targeting design to treat retinal diseases. Poly-lactic-co-glycolic acid is the most widely used biocompatible and biodegradable polymer approved by the Food and Drug Administration. Many studies have attempted to develop special devices for delivering small-molecule drugs, proteins, and other macromolecules consistently and slowly. In this article, we first review current progress in the treatment of age-related macular degeneration. Then, we discuss the function of vascular endothelial growth factor (VEGF and the pharmacological effects of anti-VEGF-A antibodies and soluble or modified VEGF receptors. Lastly, we summarize the combination of antiangiogenic therapy and nanomedicines, and review current potential targeting therapy in age-related macular degeneration.

  15. Transmission of HIV drug resistance and the predicted effect on current first-line regimens in Europe

    NARCIS (Netherlands)

    Hofstra, L. Marije; Sauvageot, Nicolas; Albert, Jan; Alexiev, Ivailo; Garcia, Federico; Struck, Daniel; Van De Vijver, David A M C; Åsjö, Birgitta; Beshkov, Danail; Coughlan, Suzie; Descamps, Diane; Griskevicius, Algirdas; Hamouda, Osamah; Horban, Andrzej; Van Kasteren, Marjo; Kolupajeva, Tatjana; Kostrikis, Leontios G.; Liitsola, Kirsi; Linka, Marek; Mor, Orna; Nielsen, Claus; Otelea, Dan; Paraskevis, Dimitrios; Paredes, Roger; Poljak, Mario; Puchhammer-Stöckl, Elisabeth; Sönnerborg, Anders; Staneková, Danica; Stanojevic, Maja; Van Laethem, Kristel; Zazzi, Maurizio; Lepej, Snjezana Zidovec; Boucher, Charles A B; Schmit, Jean Claude; Wensing, Annemarie M J; Puchhammer-Stockl, E.; Sarcletti, M.; Schmied, B.; Geit, M.; Balluch, G.; Vandamme, A. M.; Vercauteren, J.; Derdelinckx, I.; Sasse, A.; Bogaert, M.; Ceunen, H.; De Roo, A.; De Wit, S.; Echahidi, F.; Fransen, K.; Goffard, J. C.; Goubau, P.; Goudeseune, E.; Yombi, J. C.; Lacor, P.; Liesnard, C.; Moutschen, M.; Pierard, D.; Rens, R.; Schrooten, Y.; Vaira, D.; Vandekerckhove, L. P R; Van Den Heuvel, A.; Van Der Gucht, B.; Van Ranst, M.; Van Wijngaerden, E.; Vandercam, B.; Vekemans, M.; Verhofstede, C.; Clumeck, N.; Van Laethem, K.; Beshkov, D.; Alexiev, I.; Lepej, S. Zidovec; Begovac, J.; Kostrikis, Leontios G.; Demetriades, I.; Kousiappa, I.; Demetriou, V.; Hezka, J.; Linka, M.; Maly, M.; Machala, L.; Nielsen, C.; Jørgensen, L. B.; Gerstoft, J.; Mathiesen, L.; Pedersen, C.; Nielsen, H.; Laursen, A.; Kvinesdal, B.; Liitsola, K.; Ristola, M.; Suni, J.; Sutinen, J.; Descamps, D.; Assoumou, L.; Castor, G.; Grude, M.; Flandre, P.; Storto, A.; Hamouda, O.; Kücherer, C.; Berg, T.; Braun, P.; Poggensee, G.; Däumer, M.; Eberle, J.; Heiken, H.; Kaiser, R.; Knechten, H.; Korn, K.; Müller, H.; Neifer, S.; Schmidt, B.; Walter, H.; Gunsenheimer-Bartmeyer, B.; Harrer, T.; Paraskevis, D.; Hatzakis, A.; Zavitsanou, A.; Vassilakis, A.; Lazanas, M.; Chini, M.; Lioni, A.; Sakka, V.; Kourkounti, S.; Paparizos, V.; Antoniadou, A.; Papadopoulos, A.; Poulakou, G.; Katsarolis, I.; Protopapas, K.; Chryssos, G.; Drimis, S.; Gargalianos, P.; Xylomenos, G.; Lourida, G.; Psichogiou, M.; Daikos, G. L.; Sipsas, N. V.; Kontos, A.; Gamaletsou, M. N.; Koratzanis, G.; Sambatakou, E.; Mariolis, H.; Skoutelis, A.; Papastamopoulos, V.; Georgiou, O.; Panagopoulos, P.; Maltezos, E.; Coughlan, S.; De Gascun, C.; Byrne, C.; Duffy, M.; Bergin, C.; Reidy, D.; Farrell, G.; Lambert, J.; O'Connor, E.; Rochford, A.; Low, J.; Coakely, P.; O'Dea, S.; Hall, W.; Mor, O.; Levi, I.; Chemtob, D.; Grossman, Z.; Zazzi, M.; De Luca, A.; Balotta, C.; Riva, C.; Mussini, C.; Caramma, I.; Capetti, A.; Colombo, M. C.; Rossi, C.; Prati, F.; Tramuto, F.; Vitale, F.; Ciccozzi, M.; Angarano, G.; Rezza, G.; Kolupajeva, T.; Kolupajeva, T.; Vasins, O.; Griskevicius, A.; Lipnickiene, V.; Schmit, J. C.; Struck, D.; Sauvageot, N.; Hemmer, R.; Arendt, V.; Michaux, C.; Staub, T.; Sequin-Devaux, C.; Wensing, A. M J; Boucher, C. A B; Van Kessel, A.; Van Bentum, P. H M; Brinkman, K.; Connell, B. J.; Van Der Ende, M. E.; Hoepelman, I. M.; Van Kasteren, M.; Kuipers, M.; Langebeek, N.; Richter, C.; Santegoets, R. M W J; Schrijnders-Gudde, L.; Schuurman, R.; Van De Ven, B. J M; Åsjö, B.; Kran, A. M Bakken; Ormaasen, V.; Aavitsland, P.; Horban, A.; Stanczak, J. J.; Stanczak, G. P.; Firlag-Burkacka, E.; Wiercinska-Drapalo, A.; Jablonowska, E.; Maolepsza, E.; Leszczyszyn-Pynka, M.; Szata, W.; Camacho, R.; Palma, C.; Borges, F.; Paixão, T.; Duque, V.; Araújo, F.; Otelea, D.; Paraschiv, S.; Tudor, A. M.; Cernat, R.; Chiriac, C.; Dumitrescu, F.; Prisecariu, L. J.; Stanojevic, M.; Jevtovic, Dj; Salemovic, D.; Stanekova, D.; Habekova, M.; Chabadová, Z.; Drobkova, T.; Bukovinova, P.; Shunnar, A.; Truska, P.; Poljak, M.; Lunar, M.; Babic, D.; Tomazic, J.; Vidmar, L.; Vovko, T.; Karner, P.; Garcia, F.; Paredes, R.; Monge, S.; Moreno, S.; Del Amo, J.; Asensi, V.; Sirvent, J. L.; De Mendoza, C.; Delgado, R.; Gutiérrez, F.; Berenguer, J.; Garcia-Bujalance, S.; Stella, N.; De Los Santos, I.; Blanco, J. R.; Dalmau, D.; Rivero, M.; Segura, F.; Elías, M. J Pérez; Alvarez, M.; Chueca, N.; Rodríguez-Martín, C.; Vidal, C.; Palomares, J. C.; Viciana, I.; Viciana, P.; Cordoba, J.; Aguilera, A.; Domingo, P.; Galindo, M. J.; Miralles, C.; Del Pozo, M. A.; Ribera, E.; Iribarren, J. A.; Ruiz, L.; De La Torre, J.; Vidal, F.; Clotet, B.; Albert, J.; Heidarian, A.; Aperia-Peipke, K.; Axelsson, M.; Mild, M.; Karlsson, A.; Sönnerborg, A.; Thalme, A.; Navér, L.; Bratt, G.; Karlsson, A.; Blaxhult, A.; Gisslén, M.; Svennerholm, B.; Bergbrant, I.; Björkman, P.; Säll, C.; Lindholm, A.; Kuylenstierna, N.; Montelius, R.; Azimi, F.; Johansson, B.; Carlsson, M.; Johansson, E.; Ljungberg, B.; Ekvall, H.; Strand, A.; Mäkitalo, S.; Öberg, S.; Holmblad, P.; Höfer, M.; Holmberg, H.; Josefson, P.; Ryding, U.

    2016-01-01

    Background. Numerous studies have shown that baseline drug resistance patterns may influence the outcome of antiretroviral therapy. Therefore, guidelines recommend drug resistance testing to guide the choice of initial regimen. In addition to optimizing individual patient management, these baseline

  16. Astrocyte Senescence and Metabolic Changes in Response to HIV Antiretroviral Therapy Drugs

    Directory of Open Access Journals (Sweden)

    Justin Cohen

    2017-08-01

    Full Text Available With the advent of highly active antiretroviral therapy (HAART survival rates among patients infected by HIV have increased. However, even though survival has increased HIV-associated neurocognitive disorders (HAND still persist, suggesting that HAART-drugs may play a role in the neurocognitive impairment observed in HIV-infected patients. Given previous data demonstrating that astrocyte senescence plays a role in neurocognitive disorders such as Alzheimer’s disease (AD, we examined the role of HAART on markers of senescence in primary cultures of human astrocytes (HAs. Our results indicate HAART treatment induces cell cycle arrest, senescence-associated beta-galactosidase, and the cell cycle inhibitor p21. Highly active antiretroviral therapy treatment is also associated with the induction of reactive oxygen species and upregulation of mitochondrial oxygen consumption. These changes in mitochondria correlate with increased glycolysis in HAART drug treated astrocytes. Taken together these results indicate that HAART drugs induce the senescence program in HAs, which is associated with oxidative and metabolic changes that could play a role in the development of HAND.

  17. Sexual Function and the Use of Medical Devices or Drugs to Optimize Potency After Prostate Brachytherapy

    International Nuclear Information System (INIS)

    Whaley, J. Taylor; Levy, Lawrence B.; Swanson, David A.; Pugh, Thomas J.; Kudchadker, Rajat J.; Bruno, Teresa L.; Frank, Steven J.

    2012-01-01

    Purpose: Prospective evaluation of sexual outcomes after prostate brachytherapy with iodine-125 seeds as monotherapy at a tertiary cancer care center. Methods and Materials: Subjects were 129 men with prostate cancer with I-125 seed implants (prescribed dose, 145 Gy) without supplemental hormonal or external beam radiation therapy. Sexual function, potency, and bother were prospectively assessed at baseline and at 1, 4, 8, and 12 months using validated quality-of-life self-assessment surveys. Postimplant dosimetry values, including dose to 10% of the penile bulb (D10), D20, D33, D50, D75, D90, and penile volume receiving 100% of the prescribed dose (V100) were calculated. Results: At baseline, 56% of patients recorded having optimal erections; at 1 year, 62% of patients with baseline erectile function maintained optimal potency, 58% of whom with medically prescribed sexual aids or drugs. Variables associated with pretreatment-to-posttreatment decline in potency were time after implant (p = 0.04) and age (p = 0.01). Decline in urinary function may have been related to decline in potency. At 1 year, 69% of potent patients younger than 70 years maintained optimal potency, whereas 31% of patients older than 70 maintained optimal potency (p = 0.02). Diabetes was related to a decline in potency (p = 0.05), but neither smoking nor hypertension were. For patients with optimal potency at baseline, mean sexual bother scores had declined significantly at 1 year (p < 0.01). Sexual potency, sexual function, and sexual bother scores failed to correlate with any dosimetric variable tested. Conclusions: Erections firm enough for intercourse can be achieved at 1 year after treatment, but most men will require medical aids to optimize potency. Although younger men were better able to maintain erections firm enough for intercourse than older men, there was no correlation between potency, sexual function, or sexual bother and penile bulb dosimetry.

  18. Sexual Function and the Use of Medical Devices or Drugs to Optimize Potency After Prostate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Whaley, J. Taylor; Levy, Lawrence B. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Swanson, David A. [Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Pugh, Thomas J. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Kudchadker, Rajat J.; Bruno, Teresa L. [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Frank, Steven J., E-mail: sjfrank@mdnaderson.org [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States)

    2012-04-01

    Purpose: Prospective evaluation of sexual outcomes after prostate brachytherapy with iodine-125 seeds as monotherapy at a tertiary cancer care center. Methods and Materials: Subjects were 129 men with prostate cancer with I-125 seed implants (prescribed dose, 145 Gy) without supplemental hormonal or external beam radiation therapy. Sexual function, potency, and bother were prospectively assessed at baseline and at 1, 4, 8, and 12 months using validated quality-of-life self-assessment surveys. Postimplant dosimetry values, including dose to 10% of the penile bulb (D10), D20, D33, D50, D75, D90, and penile volume receiving 100% of the prescribed dose (V100) were calculated. Results: At baseline, 56% of patients recorded having optimal erections; at 1 year, 62% of patients with baseline erectile function maintained optimal potency, 58% of whom with medically prescribed sexual aids or drugs. Variables associated with pretreatment-to-posttreatment decline in potency were time after implant (p = 0.04) and age (p = 0.01). Decline in urinary function may have been related to decline in potency. At 1 year, 69% of potent patients younger than 70 years maintained optimal potency, whereas 31% of patients older than 70 maintained optimal potency (p = 0.02). Diabetes was related to a decline in potency (p = 0.05), but neither smoking nor hypertension were. For patients with optimal potency at baseline, mean sexual bother scores had declined significantly at 1 year (p < 0.01). Sexual potency, sexual function, and sexual bother scores failed to correlate with any dosimetric variable tested. Conclusions: Erections firm enough for intercourse can be achieved at 1 year after treatment, but most men will require medical aids to optimize potency. Although younger men were better able to maintain erections firm enough for intercourse than older men, there was no correlation between potency, sexual function, or sexual bother and penile bulb dosimetry.

  19. Optimal systemic therapy for premenopausal women with hormone receptor-positive breast cancer.

    Science.gov (United States)

    Jankowitz, Rachel C; McGuire, Kandace P; Davidson, Nancy E

    2013-08-01

    Although systemic therapy is one of the cornerstones of therapy for premenopausal women with early stage breast cancer, there remain many unknowns regarding its optimal use. By accident of clinical trial design, much clinical investigation in premenopausal women has focused on chemotherapy. More recently the value of endocrine therapy (tamoxifen and ovarian suppression/ablation via surgery, LHRH agonists, or chemotherapy-induced menopause) has become apparent, and some form of endocrine therapy is viewed as standard for virtually all premenopausal women with early stage invasive breast cancer that expresses estrogen and/or progesterone receptor. Critical open questions include type and duration of endocrine therapy and the development of prognostic/predictive markers to help identify patients who are likely to benefit from chemotherapy in addition to endocrine therapy. For some years, five years of tamoxifen has been viewed as the standard endocrine therapy for premenopausal hormone-responsive breast cancer, although the ATLAS trial suggests that an additional five years of tamoxifen can be considered. The MA17 trial also suggests that an additional five years of an aromatase inhibitor can be considered for women who become postmenopausal during tamoxifen therapy. Information about the value of ovarian suppression continues to emerge, most recently with the demonstration of excellent outcome with goserelin plus tamoxifen in the ABCSG12 trial. The SOFT and TEXT trials, whose accrual is now complete, should help to define optimal endocrine therapy. In addition, use of the 21-gene recurrence score assay may help to delineate the additional value of chemotherapy for patients with node-negative breast cancer, and its utility in the setting of women with 1-3 positive lymph nodes is under study in the RxPONDER trial. Nonetheless, the need for other predictive biomarkers to select appropriate therapy remains real. Finally, attention to long term benefits and side effects

  20. Role of antithyroid drug treatment prior to radioiodine therapy in hyperthyroidism

    International Nuclear Information System (INIS)

    Das, B.K.; Pradhan, P.K.; Senthilnathan, M.S.; Malhotra, G.

    2005-01-01

    Full text: Radio Iodine (RI) therapy is preceded by anti thyroid drug treatment in most centres. There is a general notion that this is a pre-requisite for RI therapy. There have been some sporadic reports in the past emphasizing that euthyroid state is not necessary in all cases before RI. However, no prospective randomized study has been reported in recent literature. The aim of this prospective study was to find out whether prior treatment with anti thyroid drugs showed any advantage in comparison to direct application of radio iodine in hyperthyroid patients. Seventy-two clinically and bio chemically proven cases of hyperthyroidism were randomized into two groups , each with 36 patients. They were matched by age, sex and size of goiter. After establishment of the diagnosis the patients were either subjected to anti thyroid drug treatment (Group A) or given calculated dose of radio iodine (Group B). After being euthyroid for at least 4 weeks the Group A patients were asked to stop the drugs (Neomercazole) for 3-5 days and radio iodine was administered. Patients in both groups were prescribed beta blockers for 4-6 weeks. Average radio iodine dose in both groups was 5 ± 0.92 mCi. All patients were evaluated both clinically and bio chemically 3, 6, 12 months after the radio iodine application. The duration to achieve euthyroid state, patient tolerance and side effects if any were meticulously recorded. In the pre treated group 72.1, 83.4 and 97.2% of the patients attained euthyroid state at 3, 6, 12 months respectively. Five patients needed a second dose after 3 months. No side effect or complications were observed. In group B 77.7, 88.8 and 94.4% of patients achieved euthyroid status at 3, 6 and 12 months respectively. There was no side effects or complications noted. However, 16.7 and 22.2% of the patients in group A and 27.7 and 36.1% of the group B became hypothyroid at 6 and 12 months respectively. They were treated with Thyroxine supplementation. Overall

  1. Optimization of bilayer floating tablet containing metoprolol tartrate as a model drug for gastric retention.

    Science.gov (United States)

    Narendra, C; Srinath, M S; Babu, Ganesh

    2006-04-07

    The purpose of the present study was to develop an optimized gastric floating drug delivery system (GFDDS) containing metoprolol tartrate (MT) as a model drug by the optimization technique. A 2(3) factorial design was employed in formulating the GFDDS with total polymer content-to-drug ratio (X1), polymer-to-polymer ratio (X2), and different viscosity grades of hydroxypropyl methyl cellulose (HPMC) (X3) as independent variables. Four dependent variables were considered: percentage of MT release at 8 hours, T50%, diffusion coefficient, and floating time. The main effect and interaction terms were quantitatively evaluated using a mathematical model. The results indicate that X1 and X2 significantly affected the floating time and release properties, but the effect of different viscosity grades of HPMC (K4M and K10M) was nonsignificant. Regression analysis and numerical optimization were performed to identify the best formulation. Fickian release transport was confirmed as the release mechanism from the optimized formulation. The predicted values agreed well with the experimental values, and the results demonstrate the feasibility of the model in the development of GFDDS.

  2. Specific Cell Targeting Therapy Bypasses Drug Resistance Mechanisms in African Trypanosomiasis.

    Directory of Open Access Journals (Sweden)

    Juan D Unciti-Broceta

    2015-06-01

    Full Text Available African trypanosomiasis is a deadly neglected disease caused by the extracellular parasite Trypanosoma brucei. Current therapies are characterized by high drug toxicity and increasing drug resistance mainly associated with loss-of-function mutations in the transporters involved in drug import. The introduction of new antiparasitic drugs into therapeutic use is a slow and expensive process. In contrast, specific targeting of existing drugs could represent a more rapid and cost-effective approach for neglected disease treatment, impacting through reduced systemic toxicity and circumventing resistance acquired through impaired compound uptake. We have generated nanoparticles of chitosan loaded with the trypanocidal drug pentamidine and coated by a single domain nanobody that specifically targets the surface of African trypanosomes. Once loaded into this nanocarrier, pentamidine enters trypanosomes through endocytosis instead of via classical cell surface transporters. The curative dose of pentamidine-loaded nanobody-chitosan nanoparticles was 100-fold lower than pentamidine alone in a murine model of acute African trypanosomiasis. Crucially, this new formulation displayed undiminished in vitro and in vivo activity against a trypanosome cell line resistant to pentamidine as a result of mutations in the surface transporter aquaglyceroporin 2. We conclude that this new drug delivery system increases drug efficacy and has the ability to overcome resistance to some anti-protozoal drugs.

  3. [Molecular fundamentals of drug interactions in the therapy of colorectal cancer].

    Science.gov (United States)

    Regulska, Katarzyna; Stanisz, Beata; Regulski, Miłosz; Gieremek, Paulina

    2014-03-04

    Rapid advances in the field of chemotherapy have resulted in the introduction of numerous antineoplastic drugs into clinical practice, which increased the efficiency of patient management. Also the prevalent use of combination treatment based on drug action synergy contributed to the improved clinical effect associated with cytotoxic drug administration. It seems, however, obvious that the multidirectional pharmacotherapy in oncology requires a thorough knowledge of drugs' pharmaceutical behavior in order to maximize their collective action and prevent the occurrence of unintended drug interactions that could potentially impair treatment effectiveness. In fact, drug interactions constitute a serious problem for current oncology primarily resulting from a narrow therapeutic index specific for the majority of anticancer drugs. This, in turn, indicates that even slight deviations of their pharmacokinetics could cause significant clinical consequences, manifested by alteration of the toxicological profile or reduction of therapeutic efficiency. Hence, the investigation of molecular aspects underlying the mechanisms of various drug interactions seems to be essential for proper and safe patient management. The present article is devoted to the extensive subject of drug interactions occurring in the therapy of colorectal cancer. It presents the available literature data on both positive and negative effects of interactions and it discusses their mechanisms complying with their classification into pharmacokinetic and pharmacodynamic ones.

  4. G2 checkpoint abrogator abates the antagonistic interaction between antimicrotubule drugs and radiation therapy

    International Nuclear Information System (INIS)

    Sui Meihua; Zhang Hongfang; Di Xiaoyun; Chang Jinjia; Shen Youqing; Fan Weimin

    2012-01-01

    Background and purpose: We previously demonstrated that radiation may arrest tumor cells at G2 phase, which in turn prevents the cytotoxicity of antimicrotubule drugs and results in antagonistic interaction between these two modalities. Herein we tested whether G2 abrogators would attenuate the above antagonistic interaction and improve the therapeutic efficacy of combination therapy between radiation and antimicrotubule drugs. Materials and methods: Breast cancer BCap37 and epidermoid carcinoma KB cell lines were administered with radiation, UCN-01 (a model drug of G2 abrogator), paclitaxel or vincristine, alone or in combinations. The antitumor activities of single and combined treatments were analyzed by a series of cytotoxic, apoptotic, cell cycle, morphological and biochemical assays. Results: UCN-01 significantly enhanced the cytotoxicity of radiation, antimitotic drugs, and their combined treatments in vitro. Further investigations demonstrated that UCN-01 attenuated radiation-induced G2 arrest, and subsequently repressed the inhibitory effect of radiation on drug-induced mitotic arrest and apoptosis. Conclusions: This is the first report demonstrating that G2 checkpoint abrogation represses the inhibitory effect of radiation on antimicrotubule drugs, which may be implicated in cancer combination therapy. Considering that G2 abrogators are under extensive evaluation for cancer treatment, our findings provide valuable information for this class of promising compounds.

  5. An assessment of antibiotic therapy of urinary tract infection in elderly, hospitalised patients.

    Science.gov (United States)

    McCaig, D J; Stewart, D; Harvey, Y; Downie, G; Scott, C J

    1995-11-01

    The aim of the study was to compare the antibiotic treatment actually received by elderly, hospitalised patients with urinary tract infection (UTI) with 'optimal' therapy (as gauged by compliance with antibiotic policy, infecting organism, sensitivity data, patient renal function and cost). UTI was more common in females and in catheterised patients and E.Coli was the commonest pathogen. Trimethoprim and co-amoxiclav were the drugs used most frequently for either empirical or sensitivity data-based treatment. In 96% of infections a drug with appropriate action was administered. Often, however, treatment could have been optimised by substituting a cheaper suitable antibiotic, by standardising duration of therapy and ensuring that doses were adjusted for renal impairment. Savings from the use of 'optimal' therapy were estimated at 17%. There is clearly considerable scope for positive input from the clinical pharmacist in this area.

  6. IONP-doped nanoparticles for highly effective NIR-controlled drug release and combination tumor therapy

    Directory of Open Access Journals (Sweden)

    Fu X

    2017-05-01

    Full Text Available Xudong Fu,1 Xinjun Wang,1 Shaolong Zhou,1 Yanyan Zhang2 1The Fifth Affiliated Hospital of Zhengzhou University, 2School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China Abstract: Despite advances in controlled drug delivery, drug delivery systems (DDSs with controlled activated drug release and high spatial and temporal resolution are still required. Theranostic nanomedicine is capable of diagnosis, therapy, and monitoring the delivery and distribution of drug molecules and has received growing interest. In this study, a near-infrared light-controlled “off–on” DDS with magnetic resonance imaging and magnetic targeting properties was developed using a hybrid nanoplatform (carbon nanotubes [CNTs]-iron oxide nanoparticle. Doxorubicin (DOX and distearoyl-sn-glycero-3-phosphoethanolamine-PEG were adsorbed onto CNTs-iron oxide nanoparticle, and then to avoid the unexpected drug release during circulation, 1-myristyl alcohol was used to encapsulate the CNTs–drug complex. Herein, multifunctional DOX-loaded nanoparticles (NPs with “off–on” state were developed. DOX-NPs showed an obvious “off–on” effect (temperature increase, drug release controlled by near-infrared light in vitro and in vivo. In the in vivo and in vitro studies, DOX-NPs exhibited excellent magnetic resonance imaging ability, magnetic targeting property, high biosafety, and high antitumor combined therapeutic efficacy (hyperthermia combined with chemotherapy. These results highlight the great potential of DOX-NPs in the treatment of cancer. Keywords: controlled drug release, magnetic targeting, MRI, combination therapy

  7. APPLICABILITY OF THE NON STEROID ANTIINFLAMMATORY DRUGS IN FEVER THERAPY OF CHILDREN

    Directory of Open Access Journals (Sweden)

    O.A. Mubarakshina

    2008-01-01

    Full Text Available The non steroid anti-inflammatory drugs are widely applied in the pediatric practices for the fever therapy among children. While choosing the medications from this group to prescribe them to the children, it is essential to get guided towards the highly efficient medications with the least risk of the side effects. Only Paracetamol and ibuprofen are fully compliant with this requirement. They are officially recommended by who as the anti febrile medications for use in pediatrics. In the given article, the author reviews the advantages of ibuprofen over to Paracetamol based on the data from the foreign randomized research. She pays certain attention to the safety issues during the ibuprofen based treatment and to the opportunities of the combined Paracetamol and ibuprofen based therapy.Key words: fever, treatment, non steroid anti-inflammatory drugs, children.

  8. Pulmonary fibrosis associated with psychotropic drug therapy: a case report

    Directory of Open Access Journals (Sweden)

    Thornton Clare

    2009-11-01

    Full Text Available Abstract Introduction Sertraline and Risperidone are commonly used psychotropic drugs. Sertraline has previously been associated with eosinopilic pneumonia. Neither drug is recognised as a cause of diffuse fibrotic lung disease. Our report represents the first such case. Case Presentation We describe the case of a 33 year old Asian male with chronic schizophrenia who had been treated for three years with sertraline and risperidone. He presented to hospital in respiratory failure following a six month history of progressive breathlessness. High resolution CT scan demonstrated diffuse pulmonary fibrosis admixed with patchy areas of consolidation. Because the aetiology of this man's diffuse parenchymal lung disease remained unclear a surgical lung biopsy was undertaken. Histological assessment disclosed widespread fibrosis with marked eosinophillic infiltration and associated organising pneumonia - features all highly suggestive of drug induced lung disease. Following withdrawal of both sertraline and risperidone and initiation of corticosteroid therapy the patient's respiratory failure resolved and three years later he remains well albeit limited by breathlessness on heavy exertion. Conclusion Drug induced lung disease can be rapidly progressive and if drug exposure continues may result in respiratory failure and death. Prompt recognition is critical as drug withdrawal may result in marked resolution of disease. This case highlights sertraline and risperidone as drugs that may, in susceptible individuals, cause diffuse pulmonary fibrosis.

  9. Drug utilization and therapy provision patterns by prescriber types among patients with systemic lupus erythematosus in Korea

    Directory of Open Access Journals (Sweden)

    Shin S

    2017-10-01

    Full Text Available Sooyoung Shin College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST, Ajou University, Yeongtong-gu, Suwon, Republic of Korea Background: Systemic lupus erythematosus (SLE poses a growing challenge for healthcare systems, affecting an increasing number of people in Korea. This study aimed to investigate the prescribing patterns of SLE therapies and to compare common drug regimens prescribed by provider types.Methods: Sampled national health insurance claims data in 2015 were used to select eligible SLE patients. Frequency analyses were carried out regarding patient characteristics related to relevant SLE prescriptions. Patient-days were calculated per substance and per drug class and then categorized by provider types. Differences in drug utilization trends among the main types of providers were examined with the chi-square test.Results: A total of 2,074 patients with SLE were selected for study inclusion. Systemic corticosteroid therapy was provided for up to 67.9% of patients, frequently in conjunction with other SLE therapies. About 33.2% and 18.7% of steroid users were treated for more than 150 days and 300 days during the study period, respectively. The provider group that most frequently prescribed systemic corticosteroids was dermatologists. Hydroxychloroquine, an antimalarial considered pivotal to SLE management, was prescribed for only 32.4% of patients, predominantly by rheumatologists. Antimalarial therapy was associated with the longest therapy duration (257.7±120.1 days, followed by immunosuppressant therapy (187.0±153.0 days. Prescription rates of antimalarials and immunosuppressants were substantially lower in primary care doctor group and particularly in dermatologist group, compared to rheumatologist group (P-value associated with prescription patterns by provider types was <0.001 for both drug classes.Conclusion: The drug utilization patterns among the main provider groups commonly

  10. Therapies for inborn errors of metabolism: what has the orphan drug act delivered?

    Science.gov (United States)

    Talele, Sonali S; Xu, Kui; Pariser, Anne R; Braun, M Miles; Farag-El-Massah, Sheiren; Phillips, M Ian; Thompson, Barry H; Coté, Timothy R

    2010-07-01

    The 1983 US Orphan Drug Act established a process through which promising therapies are designated as orphan products and, later, with satisfactory safety and efficacy data, receive marketing approval and fiscal incentives. We examined accomplishments in drug development for inborn errors of metabolism (IEMs). Food and Drug Administration data were used to identify orphan product designations and approvals for IEMs, and the trends for the past 26 years were summarized. Individual clinical development times (CDTs) from filing investigational new drug application to marketing approval were determined. We examined 1956 orphan product designations from 1983 through 2008 and found 93 (4.8%) for IEMs. Of those, 24 (25.8%) received marketing approval. This proportion of approval was significantly (P = .036) higher than that for non-IEM orphan products (17%). Among the IEM products, disorders of complex molecules received the most designations and approvals (61 and 11, respectively). Among the subgroups, lysosomal storage diseases received the most designations and approvals (43 and 9, respectively), whereas mitochondrial diseases (other than fatty acid oxidation disorders) received 7 designations with no approvals. We then examined the CDTs for the approved IEM products and found a median of 6.4 years (range: 2.6-25.1 years). Biological products had significantly shorter CDTs than drugs (mean: 4.6 vs 11.0 years; P = .003). For 26 years, the Orphan Drug Act has generated new therapies for IEMs. Why some IEMs have motivated successful drug development and others have not remains enigmatic; yet the needs of IEM patients without treatment are a certainty.

  11. Drugs meeting the molecular basis of diabetic kidney disease: bridging from molecular mechanism to personalized medicine.

    Science.gov (United States)

    Lambers Heerspink, Hiddo J; Oberbauer, Rainer; Perco, Paul; Heinzel, Andreas; Heinze, Georg; Mayer, Gert; Mayer, Bernd

    2015-08-01

    Diabetic kidney disease (DKD) is a complex, multifactorial disease and is associated with a high risk of renal and cardiovascular morbidity and mortality. Clinical practice guidelines for diabetes recommend essentially identical treatments for all patients without taking into account how the individual responds to the instituted therapy. Yet, individuals vary widely in how they respond to medications and therefore optimal therapy differs between individuals. Understanding the underlying molecular mechanisms of variability in drug response will help tailor optimal therapy. Polymorphisms in genes related to drug pharmacokinetics have been used to explore mechanisms of response variability in DKD, but with limited success. The complex interaction between genetic make-up and environmental factors on the abundance of proteins and metabolites renders pharmacogenomics alone insufficient to fully capture response variability. A complementary approach is to attribute drug response variability to individual variability in underlying molecular mechanisms involved in the progression of disease. The interplay of different processes (e.g. inflammation, fibrosis, angiogenesis, oxidative stress) appears to drive disease progression, but the individual contribution of each process varies. Drugs at the other hand address specific targets and thereby interfere in certain disease-associated processes. At this level, biomarkers may help to gain insight into which specific pathophysiological processes are involved in an individual followed by a rational assessment whether a specific drug's mode of action indeed targets the relevant process at hand. This article describes the conceptual background and data-driven workflow developed by the SysKid consortium aimed at improving characterization of the molecular mechanisms underlying DKD at the interference of the molecular impact of individual drugs in order to tailor optimal therapy to individual patients. © The Author 2015. Published by

  12. Process Pharmacology: A Pharmacological Data Science Approach to Drug Development and Therapy.

    Science.gov (United States)

    Lötsch, Jörn; Ultsch, Alfred

    2016-04-01

    A novel functional-genomics based concept of pharmacology that uses artificial intelligence techniques for mining and knowledge discovery in "big data" providing comprehensive information about the drugs' targets and their functional genomics is proposed. In "process pharmacology", drugs are associated with biological processes. This puts the disease, regarded as alterations in the activity in one or several cellular processes, in the focus of drug therapy. In this setting, the molecular drug targets are merely intermediates. The identification of drugs for therapeutic or repurposing is based on similarities in the high-dimensional space of the biological processes that a drug influences. Applying this principle to data associated with lymphoblastic leukemia identified a short list of candidate drugs, including one that was recently proposed as novel rescue medication for lymphocytic leukemia. The pharmacological data science approach provides successful selections of drug candidates within development and repurposing tasks. © 2016 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  13. Response Surface Methodology: An Extensive Potential to Optimize in vivo Photodynamic Therapy Conditions

    International Nuclear Information System (INIS)

    Tirand, Loraine; Bastogne, Thierry; Bechet, Denise M.Sc.; Linder, Michel; Thomas, Noemie; Frochot, Celine; Guillemin, Francois; Barberi-Heyob, Muriel

    2009-01-01

    Purpose: Photodynamic therapy (PDT) is based on the interaction of a photosensitizing (PS) agent, light, and oxygen. Few new PS agents are being developed to the in vivo stage, partly because of the difficulty in finding the right treatment conditions. Response surface methodology, an empirical modeling approach based on data resulting from a set of designed experiments, was suggested as a rational solution with which to select in vivo PDT conditions by using a new peptide-conjugated PS targeting agent, neuropilin-1. Methods and Materials: A Doehlert experimental design was selected to model effects and interactions of the PS dose, fluence, and fluence rate on the growth of U87 human malignant glioma cell xenografts in nude mice, using a fixed drug-light interval. All experimental results were computed by Nemrod-W software and Matlab. Results: Intrinsic diameter growth rate, a tumor growth parameter independent of the initial volume of the tumor, was selected as the response variable and was compared to tumor growth delay and relative tumor volumes. With only 13 experimental conditions tested, an optimal PDT condition was selected (PS agent dose, 2.80 mg/kg; fluence, 120 J/cm 2 ; fluence rate, 85 mW/cm 2 ). Treatment of glioma-bearing mice with the peptide-conjugated PS agent, followed by the optimized PDT condition showed a statistically significant improvement in delaying tumor growth compared with animals who received the PDT with the nonconjugated PS agent. Conclusions: Response surface methodology appears to be a useful experimental approach for rapid testing of different treatment conditions and determination of optimal values of PDT factors for any PS agent.

  14. Should pediatric patients with hyperlipidemia receive drug therapy?

    Science.gov (United States)

    Bhatnagar, Deepak

    2002-01-01

    Hyperlipidemia is now established as a major risk factor for causation of coronary heart disease (CHD) in adults; however, there is much debate on the level of coronary risk at which lipid-lowering drugs should be used. These issues of possible harm or lack of benefit from long-term use of lipid-lowering therapy, and cost effectiveness, are also pertinent in the pediatric setting. Evidence from several countries indicates that children have an increasing prevalence of obesity, hyperlipidemia and type 2 diabetes mellitus. Children who have high serum lipids 'track' these increased levels into adulthood. In some countries there is a trend to screen children for hypercholesterolemia. Family history itself is a poor discriminator in determining which children need to be screened and treated. Estimation of apolipoprotein B and/or apolipoprotein E genotype can improve prediction. Measuring high density lipoprotein cholesterol also helps, but obesity appears to be the best marker for screening children at high risk. These considerations should not cloud the need for case finding and treatment of children with genetic disorders. Low fat diets have been shown to be well tolerated and effective in children; however, there are no major long-term studies demonstrating harm or benefit in those on lipid-lowering drugs. Nevertheless, concerns regarding the psychological effect and the theoretical metabolic effects of long-term lipid lowering remain. Lipid-lowering drugs should be generally restricted to children with genetic disorders of lipid metabolism. Children with diabetes mellitus, hypertension or nonlipid-related inherited disorders leading to premature CHD in adults should be treated with diet, and with lipid-lowering drugs when they reach adulthood. Children with secondary hyperlipidemia should be assessed individually. A number of drugs and nutriceuticals are available for use in children, but only a few drugs are licensed for use in children.

  15. Indefinite antithyroid drug therapy in toxic Graves′ disease: What are the cons

    Directory of Open Access Journals (Sweden)

    Rajesh Rajput

    2013-01-01

    Full Text Available Existing treatment modalities for Graves′ disease includes antithyroid drugs (ATDs, radioactive iodine, and surgery. There has been a lack of general agreement as to which therapy is the best as none is ideal since all effectively restore euthyroidism, but with some limitations. Previously, therapies were selected with the goal of achieving euthyroidism. Instead, hypothyroidism is now the goal of treatment, to ensure that hyperthyroidism does not recur. Current evidences suggest that high relapse rate and not so rare fatal side effects seen with ATD therapy compel one to consider other definite modes of treatment like radiotherapy and surgery for toxic Graves′ disease after discussing this with the patient.

  16. Indefinite antithyroid drug therapy in toxic Graves’ disease: What are the cons

    Science.gov (United States)

    Rajput, Rajesh; Goel, Vasudha

    2013-01-01

    Existing treatment modalities for Graves’ disease includes antithyroid drugs (ATDs), radioactive iodine, and surgery. There has been a lack of general agreement as to which therapy is the best as none is ideal since all effectively restore euthyroidism, but with some limitations. Previously, therapies were selected with the goal of achieving euthyroidism. Instead, hypothyroidism is now the goal of treatment, to ensure that hyperthyroidism does not recur. Current evidences suggest that high relapse rate and not so rare fatal side effects seen with ATD therapy compel one to consider other definite modes of treatment like radiotherapy and surgery for toxic Graves’ disease after discussing this with the patient. PMID:24251229

  17. A method of segment weight optimization for intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Pei Xi; Cao Ruifen; Jing Jia; Cheng Mengyun; Zheng Huaqing; Li Jia; Huang Shanqing; Li Gui; Song Gang; Wang Weihua; Wu Yican; FDS Team

    2011-01-01

    The error caused by leaf sequencing often leads to planning of Intensity-Modulated Radiation Therapy (IMRT) arrange system couldn't meet clinical demand. The optimization approach in this paper can reduce this error and improve efficiency of plan-making effectively. Conjugate Gradient algorithm was used to optimize segment weight and readjust segment shape, which could minimize the error anterior-posterior leaf sequencing eventually. Frequent clinical cases were tasted by precise radiotherapy system, and then compared Dose-Volume histogram between target area and organ at risk as well as isodose line in computed tomography (CT) film, we found that the effect was improved significantly after optimizing segment weight. Segment weight optimizing approach based on Conjugate Gradient method can make treatment planning meet clinical request more efficiently, so that has extensive application perspective. (authors)

  18. Weighted optimization of irradiance for photodynamic therapy of port wine stains

    Science.gov (United States)

    He, Linhuan; Zhou, Ya; Hu, Xiaoming

    2016-10-01

    Planning of irradiance distribution (PID) is one of the foremost factors for on-demand treatment of port wine stains (PWS) with photodynamic therapy (PDT). A weighted optimization method for PID was proposed according to the grading of PWS with a three dimensional digital illumination instrument. Firstly, the point clouds of lesions were filtered to remove the error or redundant points, the triangulation was carried out and the lesion was divided into small triangular patches. Secondly, the parameters such as area, normal vector and orthocenter for optimization of each triangular patch were calculated, and the weighted coefficients were determined by the erythema indexes and areas of patches. Then, the optimization initial point was calculated based on the normal vectors and orthocenters to optimize the light direction. In the end, the irradiation can be optimized according to cosine values of irradiance angles and weighted coefficients. Comparing the irradiance distribution before and after optimization, the proposed weighted optimization method can make the irradiance distribution match better with the characteristics of lesions, and has the potential to improve the therapeutic efficacy.

  19. 'Massfunktionen' as limit conditions of an optimization scheme for the telecobalt therapy

    International Nuclear Information System (INIS)

    Kirsch, M.; Forth, E.; Schumann, E.

    1978-01-01

    The basic ideas of the 'Score-Funktionen-Modell' of Hope and his collaborators are used for the establishment of the first stage of an optimization scheme for the telecobalt therapy. The new 'Massfunktionen' for the telecobalt therapy are limit conditions for the criterion of the optimum, i.e. the dose distribution in a body section. The 'Massfunktionen' are an analytic registration of parameters for the dose distribution such as dose homogeneity in the focal region and sparing of the subcutaneous tissues, the radiosensitive organs and the sound surroundings of the tumor. The functions are derived from the dose conditions in the irradiated body section. At the actual stage of development of the optimization scheme, these functions allow to decide whether an irradiation scheme is acceptable or not. (orig.) [de

  20. Molecular fundamentals of drug interactions in the therapy of colorectal cancer

    Directory of Open Access Journals (Sweden)

    Katarzyna Regulska

    2014-03-01

    Full Text Available Rapid advances in the field of chemotherapy have resulted in the introduction of numerous antineoplastic drugs into clinical practice, which increased the efficiency of patient management. Also the prevalent use of combination treatment based on drug action synergy contributed to the improved clinical effect associated with cytotoxic drug administration. It seems, however, obvious that the multidirectional pharmacotherapy in oncology requires a thorough knowledge of drugs’ pharmaceutical behavior in order to maximize their collective action and prevent the occurrence of unintended drug interactions that could potentially impair treatment effectiveness. In fact, drug interactions constitute a serious problem for current oncology primarily resulting from a narrow therapeutic index specific for the majority of anticancer drugs. This, in turn, indicates that even slight deviations of their pharmacokinetics could cause significant clinical consequences, manifested by alteration of the toxicological profile or reduction of therapeutic efficiency. Hence, the investigation of molecular aspects underlying the mechanisms of various drug interactions seems to be essential for proper and safe patient management. The present article is devoted to the extensive subject of drug interactions occurring in the therapy of colorectal cancer. It presents the available literature data on both positive and negative effects of interactions and it discusses their mechanisms complying with their classification into pharmacokinetic and pharmacodynamic ones.

  1. Development and optimization of methotrexate-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery applications.

    Science.gov (United States)

    Tahir, Nayab; Madni, Asadullah; Balasubramanian, Vimalkumar; Rehman, Mubashar; Correia, Alexandra; Kashif, Prince Muhammad; Mäkilä, Ermei; Salonen, Jarno; Santos, Hélder A

    2017-11-25

    Lipid-polymer hybrid nanoparticles (LPHNPs) are emerging platforms for drug delivery applications. In the present study, methotrexate loaded LPHNPs consisted of PLGA and Lipoid S100 were fabricated by employing a single-step modified nanoprecipitation method combined with self-assembly. A three factor, three level Box Behnken design using Design-Expert ® software was employed to access the influence of three independent variables on the particle size, drug entrapment and percent drug release. The optimized formulation was selected through numeric optimization approach. The results were supported with the ANOVA analysis, regression equations and response surface plots. Transmission electron microscope images indicated the nanosized and spherical shape of the LPHNPs with fair size distribution. The nanoparticles ranged from 176 to 308nm, which increased with increased polymer concentration. The increase in polymer and lipid concentration also increased the drug entrapment efficiency. The in vitro drug release was in range 70.34-91.95% and the release mechanism follow the Higuchi model (R 2 =0.9888) and Fickian diffusion (n<0.5). The in vitro cytotoxicity assay and confocal microscopy of the optimized formulation demonstrate the good safety and better internalization of the LPHNPs. The cell antiproliferation showed the spatial and controlled action of the nanoformulation as compared to the plain drug solution. The results suggest that LPHNPs can be a promising delivery system envisioned to safe, stable and potentially controlled delivery of methotrexate to the cancer cells to achieve better therapeutic outcomes. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Intracellular trafficking of new anticancer therapeutics: antibody–drug conjugates

    Science.gov (United States)

    Kalim, Muhammad; Chen, Jie; Wang, Shenghao; Lin, Caiyao; Ullah, Saif; Liang, Keying; Ding, Qian; Chen, Shuqing; Zhan, Jinbiao

    2017-01-01

    Antibody–drug conjugate (ADC) is a milestone in targeted cancer therapy that comprises of monoclonal antibodies chemically linked to cytotoxic drugs. Internalization of ADC takes place via clathrin-mediated endocytosis, caveolae-mediated endocytosis, and pinocytosis. Conjugation strategies, endocytosis and intracellular trafficking optimization, linkers, and drugs chemistry present a great challenge for researchers to eradicate tumor cells successfully. This inventiveness of endocytosis and intracellular trafficking has given considerable momentum recently to develop specific antibodies and ADCs to treat cancer cells. It is significantly advantageous to emphasize the endocytosis and intracellular trafficking pathways efficiently and to design potent engineered conjugates and biological entities to boost efficient therapies enormously for cancer treatment. Current studies illustrate endocytosis and intracellular trafficking of ADC, protein, and linker strategies in unloading and also concisely evaluate practically applicable ADCs. PMID:28814834

  3. Intracellular trafficking of new anticancer therapeutics: antibody-drug conjugates.

    Science.gov (United States)

    Kalim, Muhammad; Chen, Jie; Wang, Shenghao; Lin, Caiyao; Ullah, Saif; Liang, Keying; Ding, Qian; Chen, Shuqing; Zhan, Jinbiao

    2017-01-01

    Antibody-drug conjugate (ADC) is a milestone in targeted cancer therapy that comprises of monoclonal antibodies chemically linked to cytotoxic drugs. Internalization of ADC takes place via clathrin-mediated endocytosis, caveolae-mediated endocytosis, and pinocytosis. Conjugation strategies, endocytosis and intracellular trafficking optimization, linkers, and drugs chemistry present a great challenge for researchers to eradicate tumor cells successfully. This inventiveness of endocytosis and intracellular trafficking has given considerable momentum recently to develop specific antibodies and ADCs to treat cancer cells. It is significantly advantageous to emphasize the endocytosis and intracellular trafficking pathways efficiently and to design potent engineered conjugates and biological entities to boost efficient therapies enormously for cancer treatment. Current studies illustrate endocytosis and intracellular trafficking of ADC, protein, and linker strategies in unloading and also concisely evaluate practically applicable ADCs.

  4. Prolonged Intermittent Renal Replacement Therapy.

    Science.gov (United States)

    Edrees, Fahad; Li, Tingting; Vijayan, Anitha

    2016-05-01

    Prolonged intermittent renal replacement therapy (PIRRT) is becoming an increasingly popular alternative to continuous renal replacement therapy in critically ill patients with acute kidney injury. There are significant practice variations in the provision of PIRRT across institutions, with respect to prescription, technology, and delivery of therapy. Clinical trials have generally demonstrated that PIRRT is non-inferior to continuous renal replacement therapy regarding patient outcomes. PIRRT offers cost-effective renal replacement therapy along with other advantages such as early patient mobilization and decreased nursing time. However, due to lack of standardization of the procedure, PIRRT still poses significant challenges, especially pertaining to appropriate drug dosing. Future guidelines and clinical trials should work toward developing consensus definitions for PIRRT and ensure optimal delivery of therapy. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  5. The in silico drug discovery toolbox: applications in lead discovery and optimization.

    Science.gov (United States)

    Bruno, Agostino; Costantino, Gabriele; Sartori, Luca; Radi, Marco

    2017-11-06

    Discovery and development of a new drug is a long lasting and expensive journey that takes around 15 years from starting idea to approval and marketing of new medication. Despite the R&D expenditures have been constantly increasing in the last few years, number of new drugs introduced into market has been steadily declining. This is mainly due to preclinical and clinical safety issues, which still represent about 40% of drug discontinuation. From this point of view, it is clear that if we want to increase drug-discovery success rate and reduce costs associated with development of a new drug, a comprehensive evaluation/prediction of potential safety issues should be conducted as soon as possible during early drug discovery phase. In the present review, we will analyse the early steps of drug-discovery pipeline, describing the sequence of steps from disease selection to lead optimization and focusing on the most common in silico tools used to assess attrition risks and build a mitigation plan. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Alginate-polyvinyl alcohol based interpenetrating polymer network for prolonged drug therapy, Optimization and in-vitro characterization.

    Science.gov (United States)

    Anwar, Hina; Ahmad, Mahmood; Minhas, Muhammad Usman; Rehmani, Sahrish

    2017-06-15

    A new natural and synthetic polymeric blend to form interpenetrating polymer network (IPN) hydrogels was synthesized utilizing sodium alginate and PVA as polymers by free radical polymerization employing 2-Acylamido-2-methylpropane-sulfonic acid as monomer (AMPS) and tramadol HCl as model drug through 3 2 level full factorial design to evaluate the impact of selected independent factors i.e. polymer (sodium alginate) and monomer (AMPS) contents on swelling index at 18th hour, percent drug release at 18th hour, time required for 80% drug release and drug entrapment efficiency as dependent variables. FTIR, SEM, sol-gel analysis, equilibrium swelling studies and in-vitro release kinetics were performedfor in-vitro characterization of formulated IPN hydrogels. In-vitro studies carried out at pH 1.2 and pH 7.4 revealed pH independent swelling and drug release from polymeric IPN, providing controlled drug release for an extended period of time with improved entrapment efficiency, thereby concluding that this polymeric blend may be a promising system for the prolonged drug delivery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Optimization of primaquine diphosphate tablet formulation for controlled drug release using the mixture experimental design.

    Science.gov (United States)

    Duque, Marcelo Dutra; Kreidel, Rogério Nepomuceno; Taqueda, Maria Elena Santos; Baby, André Rolim; Kaneko, Telma Mary; Velasco, Maria Valéria Robles; Consiglieri, Vladi Olga

    2013-01-01

    A tablet formulation based on hydrophilic matrix with a controlled drug release was developed, and the effect of polymer concentrations on the release of primaquine diphosphate was evaluated. To achieve this purpose, a 20-run, four-factor with multiple constraints on the proportions of the components was employed to obtain tablet compositions. Drug release was determined by an in vitro dissolution study in phosphate buffer solution at pH 6.8. The polynomial fitted functions described the behavior of the mixture on simplex coordinate systems to study the effects of each factor (polymer) on tablet characteristics. Based on the response surface methodology, a tablet composition was optimized with the purpose of obtaining a primaquine diphosphate release closer to a zero order kinetic. This formulation released 85.22% of the drug for 8 h and its kinetic was studied regarding to Korsmeyer-Peppas model, (Adj-R(2) = 0.99295) which has confirmed that both diffusion and erosion were related to the mechanism of the drug release. The data from the optimized formulation were very close to the predictions from statistical analysis, demonstrating that mixture experimental design could be used to optimize primaquine diphosphate dissolution from hidroxypropylmethyl cellulose and polyethylene glycol matrix tablets.

  8. Optimization of light source parameters in the photodynamic therapy of heterogeneous prostate

    International Nuclear Information System (INIS)

    Li Jun; Altschuler, Martin D; Hahn, Stephen M; Zhu, Timothy C

    2008-01-01

    The three-dimensional (3D) heterogeneous distributions of optical properties in a patient prostate can now be measured in vivo. Such data can be used to obtain a more accurate light-fluence kernel. (For specified sources and points, the kernel gives the fluence delivered to a point by a source of unit strength.) In turn, the kernel can be used to solve the inverse problem that determines the source strengths needed to deliver a prescribed photodynamic therapy (PDT) dose (or light-fluence) distribution within the prostate (assuming uniform drug concentration). We have developed and tested computational procedures to use the new heterogeneous data to optimize delivered light-fluence. New problems arise, however, in quickly obtaining an accurate kernel following the insertion of interstitial light sources and data acquisition. (1) The light-fluence kernel must be calculated in 3D and separately for each light source, which increases kernel size. (2) An accurate kernel for light scattering in a heterogeneous medium requires ray tracing and volume partitioning, thus significant calculation time. To address these problems, two different kernels were examined and compared for speed of creation and accuracy of dose. Kernels derived more quickly involve simpler algorithms. Our goal is to achieve optimal dose planning with patient-specific heterogeneous optical data applied through accurate kernels, all within clinical times. The optimization process is restricted to accepting the given (interstitially inserted) sources, and determining the best source strengths with which to obtain a prescribed dose. The Cimmino feasibility algorithm is used for this purpose. The dose distribution and source weights obtained for each kernel are analyzed. In clinical use, optimization will also be performed prior to source insertion to obtain initial source positions, source lengths and source weights, but with the assumption of homogeneous optical properties. For this reason, we compare the

  9. Antiangiogenic therapy for breast cancer

    DEFF Research Database (Denmark)

    Nielsen, D.L.; Andersson, M.; Andersen, Jon Alexander Lykkegaard

    2010-01-01

    and optimal use of these agents for the treatment of breast cancer. Currently, the most promising approach has been the use of bevacizumab, a humanized monoclonal antibody directed against the most potent pro-angiogenic factor, vascular endothelial growth factor (VEGF). Small molecular inhibitors of VEGF...... tyrosine kinase activity, such as sorafenib, appear promising. While, the role of sunitinib and inhibitors of mammalian target of rapamycin (mTOR) in breast cancer has to be defined. Several unanswered questions remain, such as choice of drug(s), optimal duration of therapy and patient selection criteria......ABSTRACT: Angiogenesis is an important component of cancer growth, invasion and metastasis. Therefore, inhibition of angiogenesis is an attractive strategy for treatment of cancer. We describe existing clinical trials of antiangiogenic agents and the challenges facing the clinical development...

  10. Modeling the effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors.

    Science.gov (United States)

    Lorz, Alexander; Lorenzi, Tommaso; Clairambault, Jean; Escargueil, Alexandre; Perthame, Benoît

    2015-01-01

    Histopathological evidence supports the idea that the emergence of phenotypic heterogeneity and resistance to cytotoxic drugs can be considered as a process of selection in tumor cell populations. In this framework, can we explain intra-tumor heterogeneity in terms of selection driven by the local cell environment? Can we overcome the emergence of resistance and favor the eradication of cancer cells by using combination therapies? Bearing these questions in mind, we develop a model describing cell dynamics inside a tumor spheroid under the effects of cytotoxic and cytostatic drugs. Cancer cells are assumed to be structured as a population by two real variables standing for space position and the expression level of a phenotype of resistance to cytotoxic drugs. The model takes explicitly into account the dynamics of resources and anticancer drugs as well as their interactions with the cell population under treatment. We analyze the effects of space structure and combination therapies on phenotypic heterogeneity and chemotherapeutic resistance. Furthermore, we study the efficacy of combined therapy protocols based on constant infusion and bang-bang delivery of cytotoxic and cytostatic drugs.

  11. Rational use and interpretation of urine drug testing in chronic opioid therapy.

    Science.gov (United States)

    Reisfield, Gary M; Salazar, Elaine; Bertholf, Roger L

    2007-01-01

    Urine drug testing (UDT) has become an essential feature of pain management, as physicians seek to verify adherence to prescribed opioid regimens and to detect the use of illicit or unauthorized licit drugs. Results of urine drug tests have important consequences in regard to therapeutic decisions and the trust between physician and patient. However, reliance on UDT to confirm adherence can be problematic if the results are not interpreted correctly, and evidence suggests that many physicians lack an adequate understanding of the complexities of UDT and the factors that can affect test results. These factors include metabolic conversion between drugs, genetic variations in drug metabolism, the sensitivity and specificity of the analytical method for a particular drug or metabolite, and the effects of intentional and unintentional interferants. In this review, we focus on the technical features and limitations of analytical methods used for detecting drugs or their metabolites in urine, the statistical constructs that are pertinent to ordering UDT and interpreting test results, and the application of these concepts to the clinical monitoring of patients maintained on chronic opioid therapy.

  12. Association Between the Occurrence of Adverse Drug Events and Modification of First-Line Highly Active Antiretroviral Therapy in Ghanaian HIV Patients.

    Science.gov (United States)

    Tetteh, Raymond A; Nartey, Edmund T; Lartey, Margaret; Mantel-Teeuwisse, Aukje K; Leufkens, Hubert G M; Yankey, Barbara A; Dodoo, Alexander N O

    2016-11-01

    Patients initiated on highly active antiretroviral therapy (HAART) generally remain on medication indefinitely. A modification in the HAART regimen may become necessary because of possible acute or chronic toxicities, concomitant clinical conditions, development of virological failure or the advent of adverse drug events. The study documents adverse drug events of HIV-positive Ghanaian patients with HAART modifications. It also investigates the association between documented adverse drug events and HAART modification using an unmatched case-control study design. The study was conducted in the Fevers Unit of the Korle Bu Teaching Hospital and involved patients who attended the HIV Care Clinic between January 2004 and December 2009. Data from 298 modified therapy patients (cases) were compared with 298 continuing therapy patients (controls) who had been on treatment for at least 1 month before the end of study. Controls were sampled from the same database of a cohort of HIV-positive patients on HAART, at the time a case occurred, in terms of treatment initiation ±1 month. Data were obtained from patients' clinical folders and the HIV clinic database linked to the pharmacy database. The nature of the documented adverse drug events of the cases was described and the association between the documented adverse drug events and HAART modification was determined by logistic regression with reported odds ratios (ORs) and their 95 % confidence interval (CI). Among the 298 modified therapy patients sampled in this study, 52.7 % of them had at least one documented adverse drug event. The most documented adverse drug event was anaemia, recorded in 18.5 % of modified therapy patients, all of whom were on a zidovudine-based regimen. The presence of documented adverse drug events was significantly associated with HAART modification [adjusted OR = 2.71 (95 % CI 2.11-3.48), p < 0.001]. Among HIV patients on HAART, adverse drug events play a major role in treatment

  13. [Classical antihypertensive drugs: diuretics].

    Science.gov (United States)

    Nagy, Viktor László

    2017-03-01

    The diuretics are essential medicaments of antihypertensive therapy. They reduce blood pressure and cardiovascular events optimally. With increasing doses of thiazides and thiazide analogs do not come further powerful effect of reducing blood pressure or cardiovascular mortality and morbidity, but clearly elevate the side effects. Because of it, the minimum effective dose level and the fixed-dose combination therapy should be preferred. The use these drugs leads to especially positive outcome in elder patients, isolated systolic hypertension, heart failure, after stroke and in black population. Loop diuretics as antihypertensive therapy can be used only by renal impairment. The use of aldosterone antagonists can have a good effect not only on heart failure but also on prevention of atrial fibrillation. Furthermore, using it in a combination therapy with thiazides, it reduces the risk of hypokalemia. Therefore, the diuretic treatment in hypertension is flourishing again. Orv. Hetil., 2017, 158(11), 403-408.

  14. Pharmacokinetic modeling of therapies for systemic lupus erythematosus

    OpenAIRE

    Yang, Xiaoyan; Sherwin, Catherine MT; Yu, Tian; Yellepeddi, Venkata K; Brunner, Hermine I; Vinks, Alexander A

    2015-01-01

    With the increasing use of different types of therapies in treating autoimmune diseases such as systemic lupus erythematosus (SLE), there is a need to utilize pharmacokinetic (PK) strategies to optimize the clinical outcome of these treatments. Various PK analysis approaches, including population PK modeling and physiologically based PK modeling, have been used to evaluate drug PK characteristics and population variability or to predict drug PK profiles in a mechanistic manner. This review ou...

  15. Machine Learning Approach to Optimizing Combined Stimulation and Medication Therapies for Parkinson's Disease.

    Science.gov (United States)

    Shamir, Reuben R; Dolber, Trygve; Noecker, Angela M; Walter, Benjamin L; McIntyre, Cameron C

    2015-01-01

    Deep brain stimulation (DBS) of the subthalamic region is an established therapy for advanced Parkinson's disease (PD). However, patients often require time-intensive post-operative management to balance their coupled stimulation and medication treatments. Given the large and complex parameter space associated with this task, we propose that clinical decision support systems (CDSS) based on machine learning algorithms could assist in treatment optimization. Develop a proof-of-concept implementation of a CDSS that incorporates patient-specific details on both stimulation and medication. Clinical data from 10 patients, and 89 post-DBS surgery visits, were used to create a prototype CDSS. The system was designed to provide three key functions: (1) information retrieval; (2) visualization of treatment, and; (3) recommendation on expected effective stimulation and drug dosages, based on three machine learning methods that included support vector machines, Naïve Bayes, and random forest. Measures of medication dosages, time factors, and symptom-specific pre-operative response to levodopa were significantly correlated with post-operative outcomes (P < 0.05) and their effect on outcomes was of similar magnitude to that of DBS. Using those results, the combined machine learning algorithms were able to accurately predict 86% (12/14) of the motor improvement scores at one year after surgery. Using patient-specific details, an appropriately parameterized CDSS could help select theoretically optimal DBS parameter settings and medication dosages that have potential to improve the clinical management of PD patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. HSA/PSS coated gold nanorods as thermo-triggered drug delivery vehicles for combined cancer photothermal therapy and chemotherapy

    Science.gov (United States)

    Tu, Ting-Yu; Yang, Shu-Jyuan; Wang, Chung-Hao; Lee, Shin-Yu; Shieh, Ming-Jium

    2018-02-01

    Drug delivery systems combined multimodal therapy strategies are very promising in cancer theranostic applications. In this work, a new drug-delivery vehicles based on human serum albumin (HSA)-coated gold nanorods (GNR/PSS/HSA NPs) was developed. The success of coating was verified by transmission electron microscopy (TEM), zeta potential and fourier transform infrared spectroscopy (FTIR). Furthermore, it is demonstrated that doxorubicin (DOX) is successfully loaded among multilayered gold nanorods by the electrostatic and hydrophobic force, and DOX@GNR/PSS/HSA NPs were highly biocompatible and stable in various physiological solutions. The NPs possess strong absorbance in nearinfrared (NIR) region, and high photothermal conversion efficiency for outstanding photothermal therapy applications. A bimodal drug release triggered by proteinase or NIR irradiation has been revealed, resulting in a significant chemotherapeutic effect in tumor sites because of the preferential drug accumulation and triggered release. Importantly, the in vitro and in vivo experiments demonstrated that DOX@GNR/PSS/HSA NPs, which combined photothermal and chemotherapy for cancer therapy, revealing a remarkably superior synergistic anticancer effect over either monotherapy. All these results suggested a considerable potential of DOX@GNR/PSS/HSA NPs nano-platform for antitumor therapy.

  17. Antithyroid drug regimens before and after 131I-therapy for hyperthyroidism: evidence-based?

    Science.gov (United States)

    Mijnhout, G S; Franken, A A M

    2008-06-01

    In view of the new national guideline on thyroid dysfunction, the evidence base for current practice as well as the new guideline is assessed with regard to the use of antithyroid drugs (ATDs) before and after radioiodine (131I) therapy. In December 2006, we surveyed 16 hospitals by telephone about different aspects of their antithyroid drug regimen: all eight academic centres and eight nonacademic teaching hospitals. The literature was searched for an evidence-based answer to each question in the inquiry. 13 of 16 hospitals (81%) use antithyroid drugs for pretreatment before 131I. ATDs are discontinued on average four days before 131I or diagnostic scan. However, 27% stop only three days beforehand, which may diminish the effect of 131I. Propylthiouracil (PTU) is also withdrawn four days before 131I, although the literature shows that PTU diminishes the effect of 131I even if it is stopped 15 days beforehand. Resumption of ATDs after 131I to prevent thyrotoxicosis is common practice (81%). One hospital (6%) never restarts ATDs, two (13%) only by indication. Adjunctive treatment consists of combination therapy in 93%, is usually resumed within two days after 131I therapy, and then continued for two to six months. Routine adjunctive treatment is not evidence-based and may be limited to a high-risk subset, especially elderly patients (>70 years) and patients with cardiac comorbidity. Resumption of ATDs within five to seven days after 131I may diminish the effect of 131I. Antithyroid drug regimens in the Netherlands are heterogeneous. The evidence base of current practice and the new guideline are discussed.

  18. Colchicine in therapy. State of the art and new perspectives for an old drug.

    Science.gov (United States)

    Famaey, J P

    1988-01-01

    Colchicine is the most specific treatment in acute gouty attacks. In several European countries, oral colchicine is still used for routine treatment of acute gout. Its selectivity is used as a diagnostic tool. It is also active in the treatment of acute crises of chondrocalcinosis and more occasionally of other arthritic crises (e.g. sarcoidosis). Colchicine appears to be the necessary adjuvant prophylactic drug when starting a hypouricemic treatment with uricosuric or uricolytic drugs for avoiding acute gouty crisis due to sudden mobilisation of the uric acid pool. Besides gout, colchicine is the drug of choice for treating familial mediterranean fever. It appears to be helpful in the treatment of Behçet's disease. It seems also useful for treating fibrosing conditions such as liver cirrhosis and scleroderma. As an adjuvant therapy, it helps treating dermatological disorders which are associated with leucocyte migration as an essential pathogenic factor (e.g. psoriasis, dermatitis herpetiformis, necrotising vasculitis ...). It has been advocated as an adjuvant therapy in malignant diseases as a support in radiotherapy and as an useful drug in various other diseases where it has been tried occasionally (e.g. Paget's disease of the bone, idiopathic thrombocytopenic purpura, disc syndrome). This very old drug remains a modern therapeutic agent.

  19. Utilization of special computerized tomography and nuclear medicine techniques for quality control and for the optimization of combined precision chemotherapy and precision radiation therapy

    International Nuclear Information System (INIS)

    Wiley, A.L. Jr.; Wirtanen, G.W.; Chien, I.-C.

    1984-01-01

    A combination of precision (selective, intra-arterial) chemotherapy and precision radiotherapy can be used for advanced pancreatic, biliary tract, and sarcomatous malignancies. There were some remarkable responses, but also a few poor responses and even some morbidity. Accordingly, methods are developed of pre-selecting those patients whose tumors are likely to respond to such therapy, as well as methods for improving the therapeutic ratio by the rational optimization of combined therapy. Specifically, clinical tumor blood flow characteristics (monitored with nuclear medicine techniques) may provide useful criteria for such selection. The authors also evaluate qualitatively the drug distribution or exposure space with specialized color-coded computerized tomography images, which demonstrate spatially dependent enhancement of intra-arterial contrast in tumor and in adjacent normal tissues. Such clinical data can improve the quality control aspects of intra-arterial chemotherapy administration, as well as the possibility of achievement of a significant therapeutic ratio by the integration of precision chemotherapy and precision radiation therapy. (Auth.)

  20. Moving forward in uveitis therapy: preclinical to phase II clinical trial drug development.

    Science.gov (United States)

    Salazar-Méndez, Raquel; Yilmaz, Taygan; Cordero-Coma, Miguel

    2016-01-01

    Several advances have been made in the diagnostic approach and therapeutic management of patients with immune-mediated uveitis over the last few decades, which have to lead to an improvement in the visual prognosis of patients. However, the use of available therapies, including steroids and immunosuppressive drugs, is still associated with limited efficacy and potentially serious side effects. Consequently, efforts have been made to develop novel therapeutic alternatives including new molecules and innovative therapeutic approaches. Herein, the authors provide an updated review of those drugs in the initial phases of evaluation for the treatment of immune-mediated uveitides as well as the latest evidence from basic research. Enhanced understanding of the pathogenic mechanisms leading to immune-mediated uveitis has led to the identification of new therapeutic targets and thus to the development of more specific drugs. In addition, considering that the eye is a semi-enclosed chamber and that local therapy has the benefit of sparing the rest of the body from potentially toxic exposure, several attempts of establishing direct ophthalmologic avenues for delivery of the established and emerging drugs have also been made. All these advances have been an unquestionable step forward in the challenging management of uveitis patients.

  1. Fertility and cancer therapy

    International Nuclear Information System (INIS)

    Maguire, L.C.

    1979-01-01

    With increased survival of increasing numbers of cancer patients as a result of therapy, the consequences, early and late, of the therapies must be realized. It is the treating physician's duty to preserve as much reproductive potential as possible for patients, consistent with adequate care. With radiotherapy this means shielding the gonads as much as possible, optimal but not excessive doses and fields, oophoropexy, or sperm collection and storage prior to irradiation. With chemotherapy it means the shortest exposure to drugs consistent with best treatment and prior to therapy the collection and storage of sperm where facilities are available. At present this is still an experimental procedure. Artificial insemination for a couple when the male has received cancer therapy is another alternative. Finally, it is the responsibility of physicians caring for patients with neoplasms to be knowledgeable about these and all other effects of therapy so that patients may be counseled appropriately and understand the implications of therapy for their life

  2. Optimization and Simulation in Drug Development - Review and Analysis

    DEFF Research Database (Denmark)

    Schjødt-Eriksen, Jens; Clausen, Jens

    2003-01-01

    We give a review of pharmaceutical R&D and mathematical simulation and optimization methods used to support decision making within the pharmaceutical development process. The complex nature of drug development is pointed out through a description of the various phases of the pharmaceutical develo...... development process. A part of the paper is dedicated to the use of simulation techniques to support clinical trials. The paper ends with a section describing portfolio modelling methods in the context of the pharmaceutical industry....

  3. Role of beam orientation optimization in intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Pugachev, Andrei; Li, Jonathan G.; Boyer, Arthur L.; Hancock, Steven L.; Le, Quynh-Thu; Donaldson, Sarah S.; Lei Xing

    2001-01-01

    Purpose: To investigate the role of beam orientation optimization in intensity-modulated radiation therapy (IMRT) and to examine the potential benefits of noncoplanar intensity-modulated beams. Methods and Materials: A beam orientation optimization algorithm was implemented. For this purpose, system variables were divided into two groups: beam position (gantry and table angles) and beam profile (beamlet weights). Simulated annealing was used for beam orientation optimization and the simultaneous iterative inverse treatment planning algorithm (SIITP) for beam intensity profile optimization. Three clinical cases were studied: a localized prostate cancer, a nasopharyngeal cancer, and a paraspinal tumor. Nine fields were used for all treatments. For each case, 3 types of treatment plan optimization were performed: (1) beam intensity profiles were optimized for 9 equiangular spaced coplanar beams; (2) orientations and intensity profiles were optimized for 9 coplanar beams; (3) orientations and intensity profiles were optimized for 9 noncoplanar beams. Results: For the localized prostate case, all 3 types of optimization described above resulted in dose distributions of a similar quality. For the nasopharynx case, optimized noncoplanar beams provided a significant gain in the gross tumor volume coverage. For the paraspinal case, orientation optimization using noncoplanar beams resulted in better kidney sparing and improved gross tumor volume coverage. Conclusion: The sensitivity of an IMRT treatment plan with respect to the selection of beam orientations varies from site to site. For some cases, the choice of beam orientations is important even when the number of beams is as large as 9. Noncoplanar beams provide an additional degree of freedom for IMRT treatment optimization and may allow for notable improvement in the quality of some complicated plans

  4. Functional Family Therapy for Young People in Treatment for Nonopioid Drug Use: A Systematic Review

    Science.gov (United States)

    Filges, Trine; Andersen, Ditte; Jørgensen, Anne-Marie Klint

    2018-01-01

    Objectives: This review evaluates the evidence on the effects of functional family therapy (FFT) on drug abuse reduction for young people in treatment for nonopioid drug use. Data and Analysis: We followed Campbell Collaboration guidelines to conduct a systematic review of randomized and nonrandomized trials. Results: The search yielded two…

  5. Vibrio cholerae infection, novel drug targets and phage therapy.

    Science.gov (United States)

    Fazil, Mobashar Hussain Urf Turabe; Singh, Durg V

    2011-10-01

    Vibrio cholerae is the causative agent of the diarrheal disease cholera. Although antibiotic therapy shortens the duration of diarrhea, excessive use has contributed to the emergence of antibiotic resistance in V. cholerae. Mobile genetic elements have been shown to be largely responsible for the shift of drug resistance genes in bacteria, including some V. cholerae strains. Quorum sensing communication systems are used for interaction among bacteria and for sensing environmental signals. Sequence analysis of the ctxB gene of toxigenic V. cholerae strains demonstrated its presence in multiple cholera toxin genotypes. Moreover, bacteriophage that lyse the bacterium have been reported to modulate epidemics by decreasing the required infectious dose of the bacterium. In this article, we will briefly discuss the disease, its clinical manifestation, antimicrobial resistance and the novel approaches to locate drug targets to treat cholera.

  6. The Impact of Herbal Drug Use on Adverse Drug Reaction Profiles of Patients on Antiretroviral Therapy in Zimbabwe

    Directory of Open Access Journals (Sweden)

    Tinashe Mudzviti

    2012-01-01

    Full Text Available Background. The main objective was to determine the impact of herbal drug use on adverse drug reactions in patients on antiretroviral therapy (ART. Methodology. Patients receiving first-line ART from the national roll-out program participated in this cross-sectional study. Participants were interviewed and a data collection sheet was used to collect information from the corresponding medical record. Results. The majority (98.2% of participants were using at least one herbal drug together with ART. The most common herbal remedies used were Allium Sativum (72.7%, Bidens pilosa (66.0%, Eucalyptus globulus (52.3%, Moringa oleifera (44.1%, Lippia javanica (36.3%, and Peltoforum africanum (34.3%. Two indigenous herbs, Musakavakadzi (OR=0.25; 95% CI 0.076–0.828 and Peltoforum africanum (OR=0.495; 95% CI 0.292–0.839 reduced the occurrence of adverse drug events. Conclusions. The use of herbal drugs is high in the HIV-infected population and there is need for pharmacovigilance programs to recognize the role they play in altering ADR profiles.

  7. Improving adherence to antiretroviral therapy

    Directory of Open Access Journals (Sweden)

    Nischal K

    2005-01-01

    Full Text Available Antiretroviral therapy (ART has transformed HIV infection into a treatable, chronic condition. However, the need to continue treatment for decades rather than years, calls for a long-term perspective of ART. Adherence to the regimen is essential for successful treatment and sustained viral control. Studies have indicated that at least 95% adherence to ART regimens is optimal. It has been demonstrated that a 10% higher level of adherence results in a 21% reduction in disease progression. The various factors affecting success of ART are social aspects like motivation to begin therapy, ability to adhere to therapy, lifestyle pattern, financial support, family support, pros and cons of starting therapy and pharmacological aspects like tolerability of the regimen, availability of the drugs. Also, the regimen′s pill burden, dosing frequency, food requirements, convenience, toxicity and drug interaction profile compared with other regimens are to be considered before starting ART. The lack of trust between clinician and patient, active drug and alcohol use, active mental illness (e.g. depression, lack of patient education and inability of patients to identify their medications, lack of reliable access to primary medical care or medication are considered to be predictors of inadequate adherence. Interventions at various levels, viz. patient level, medication level, healthcare level and community level, boost adherence and overall outcome of ART.

  8. Geriatric drug therapy and healthcare utilization in the United kingdom.

    Science.gov (United States)

    Kennerfalk, Anita; Ruigómez, Ana; Wallander, Mari-Ann; Wilhelmsen, Lars; Johansson, Saga

    2002-05-01

    To describe the use of prescription drug therapy, especially polypharmacy, in an elderly general population; to relate that use to age, gender, and different types of healthcare utilization; and to investigate the influence of selection of different time windows on the result of the quantity as well as the categories of drugs used. Data on a sample of 5000 patients aged 65-90 years in 1996 were derived from the General Practice Research Database (GPRD). The population covered by GPRD is broadly representative of the UK population treated in general practice. Drug use was assessed using 2 time windows - current use of individual drugs on a random day (index date) and 1 month following the index date. Healthcare utilization was analyzed by use of information on visits to general practitioners (GPs), hospitalizations, and referrals to specialists. Women used more drugs than men; however, the prevalence of polypharmacy, defined as concomitant use of > or =5 drugs, was similar in both genders. The most frequently used therapeutic groups were cardiovascular, central nervous, and gastrointestinal system drugs. Almost 80% of both women and men visited a GP at least once a year. Overall, women used more ambulatory care services and men were hospitalized more often. Use of random date compared with 1-month period resulted in a significant underestimation of the amount of drugs used for acute conditions and, consequently, the risk of polypharmacy. The overall results confirm the findings in earlier studies suggesting that the GPRD might be a useful tool in further studies on prescription drug use among elderly persons. More information on the appropriateness of drug use is needed to prevent overuse as well as underuse of medications among the elderly.

  9. 77 FR 75177 - Impact of Approved Drug Labeling on Chronic Opioid Therapy; Public Hearing; Request for Comments

    Science.gov (United States)

    2012-12-19

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-1172] Impact of Approved Drug Labeling on Chronic Opioid Therapy; Public Hearing; Request for Comments AGENCY... impact the entire class of opioid drugs or a large subcategory thereof (e.g., ER/LA opioids), such as the...

  10. AlPcS4-PDT for gastric cancer therapy using gold nanorod, cationic liposome, and Pluronic® F127 nanomicellar drug carriers.

    Science.gov (United States)

    Xin, Jing; Wang, Sijia; Wang, Bing; Wang, Jiazhuang; Wang, Jing; Zhang, Luwei; Xin, Bo; Shen, Lijian; Zhang, Zhenxi; Yao, Cuiping

    2018-01-01

    As a promising photodynamic therapy (PDT) agent, Al(III) phthalocyanine chloride tetrasulfonic acid (AlPcS 4 ) provides deep penetration into tissue, high quantum yields, good photostability, and low photobleaching. However, its low delivery efficiency and high binding affinity to serum albumin cause its low penetration into cancer cells, further limiting its PDT effect on gastric cancer. In order to improve AlPcS 4 /PDT effect, the AlPcS 4 delivery sys tems with different drug carriers were synthesized and investigated. Gold nanorods, cationic liposomes, and Pluronic ® F127 nanomicellars were used to formulate the AlPcS 4 delivery systems. The anticancer effect was evaluated by CCK-8 assay and colony formation assay. The delivery efficiency of AlPcS 4 and the binding affinity to serum proteins were determined by fluorescence intensity assay. The apoptosis and necrosis ability, reactive oxygen species and singlet oxygen generation, mitochondrial transmembrane potential and ([Ca 2+ ] i ) concentration were further measured to evaluate the mechanism of cell death. The series of synthesized AlPcS 4 delivery systems with different drug carriers improve the limited PDT effect in varying degrees. In contrast, AlPcS 4 complex with gold nanorods has significant anticancer effects because gold nanorods are not only suitable for AlPcS 4 delivery, but also exhibit enhanced singlet oxygen generation effect and photothermal effect to induce cell death directly. Moreover, AlPcS 4 complex with cationic liposomes shows the potent inhibition effect because of its optimal AlPcS 4 delivery efficiency and ability to block serum albumin. In addition, AlPcS 4 complex with Pluronic F127 exhibits inferior PDT effect but presents lower cytotoxicity, slower dissociation rate, and longer retention time of incorporated drugs; thus, F127-AlPcS 4 is used for prolonged gastric cancer therapy. The described AlPcS 4 drug delivery systems provide promising agents for gastric cancer therapy.

  11. Mathematical modeling for novel cancer drug discovery and development.

    Science.gov (United States)

    Zhang, Ping; Brusic, Vladimir

    2014-10-01

    Mathematical modeling enables: the in silico classification of cancers, the prediction of disease outcomes, optimization of therapy, identification of promising drug targets and prediction of resistance to anticancer drugs. In silico pre-screened drug targets can be validated by a small number of carefully selected experiments. This review discusses the basics of mathematical modeling in cancer drug discovery and development. The topics include in silico discovery of novel molecular drug targets, optimization of immunotherapies, personalized medicine and guiding preclinical and clinical trials. Breast cancer has been used to demonstrate the applications of mathematical modeling in cancer diagnostics, the identification of high-risk population, cancer screening strategies, prediction of tumor growth and guiding cancer treatment. Mathematical models are the key components of the toolkit used in the fight against cancer. The combinatorial complexity of new drugs discovery is enormous, making systematic drug discovery, by experimentation, alone difficult if not impossible. The biggest challenges include seamless integration of growing data, information and knowledge, and making them available for a multiplicity of analyses. Mathematical models are essential for bringing cancer drug discovery into the era of Omics, Big Data and personalized medicine.

  12. Biological in situ Dose Painting for Image-Guided Radiation Therapy Using Drug-Loaded Implantable Devices

    International Nuclear Information System (INIS)

    Cormack, Robert A.; Sridhar, Srinivas; Suh, W. Warren; D'Amico, Anthony V.; Makrigiorgos, G. Mike

    2010-01-01

    Purpose: Implantable devices routinely used for increasing spatial accuracy in modern image-guided radiation treatments (IGRT), such as fiducials or brachytherapy spacers, encompass the potential for in situ release of biologically active drugs, providing an opportunity to enhance the therapeutic ratio. We model this new approach for two types of treatment. Methods and Materials: Radiopaque fiducials used in IGRT, or prostate brachytherapy spacers ('eluters'), were assumed to be loaded with radiosensitizer for in situ drug slow release. An analytic function describing the concentration of radiosensitizer versus distance from eluters, depending on diffusion-elimination properties of the drug in tissue, was developed. Tumor coverage by the drug was modeled for tumors typical of lung stereotactic body radiation therapy treatments for various eluter dimensions and drug properties. Six prostate 125 I brachytherapy cases were analyzed by assuming implantation of drug-loaded spacers. Radiosensitizer-induced subvolume boost was simulated from which biologically effective doses for typical radiosensitizers were calculated in one example. Results: Drug distributions from three-dimensional arrangements of drug eluters versus eluter size and drug properties were tabulated. Four radiosensitizer-loaded fiducials provide adequate radiosensitization for ∼4-cm-diameter lung tumors, thus potentially boosting biologically equivalent doses in centrally located stereotactic body treated lesions. Similarly, multiple drug-loaded spacers provide prostate brachytherapy with flexible shaping of 'biologically equivalent doses' to fit requirements difficult to meet by using radiation alone, e.g., boosting a high-risk region juxtaposed to the urethra while respecting normal tissue tolerance of both the urethra and the rectum. Conclusions: Drug loading of implantable devices routinely used in IGRT provides new opportunities for therapy modulation via biological in situ dose painting.

  13. Extensively Drug-Resistant Tuberculosis: Principles of Resistance, Diagnosis, and Management.

    Science.gov (United States)

    Wilson, John W; Tsukayama, Dean T

    2016-04-01

    Extensively drug-resistant (XDR) tuberculosis (TB) is an unfortunate by-product of mankind's medical and pharmaceutical ingenuity during the past 60 years. Although new drug developments have enabled TB to be more readily curable, inappropriate TB management has led to the emergence of drug-resistant disease. Extensively drug-resistant TB describes Mycobacterium tuberculosis that is collectively resistant to isoniazid, rifampin, a fluoroquinolone, and an injectable agent. It proliferates when established case management and infection control procedures are not followed. Optimized treatment outcomes necessitate time-sensitive diagnoses, along with expanded combinations and prolonged durations of antimicrobial drug therapy. The challenges to public health institutions are immense and most noteworthy in underresourced communities and in patients coinfected with human immunodeficiency virus. A comprehensive and multidisciplinary case management approach is required to optimize outcomes. We review the principles of TB drug resistance and the risk factors, diagnosis, and managerial approaches for extensively drug-resistant TB. Treatment outcomes, cost, and unresolved medical issues are also discussed. Copyright © 2016 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  14. Application of PK/PD Modeling in Veterinary Field: Dose Optimization and Drug Resistance Prediction

    Directory of Open Access Journals (Sweden)

    Ijaz Ahmad

    2016-01-01

    Full Text Available Among veterinary drugs, antibiotics are frequently used. The true mean of antibiotic treatment is to administer dose of drug that will have enough high possibility of attaining the preferred curative effect, with adequately low chance of concentration associated toxicity. Rising of antibacterial resistance and lack of novel antibiotic is a global crisis; therefore there is an urgent need to overcome this problem. Inappropriate antibiotic selection, group treatment, and suboptimal dosing are mostly responsible for the mentioned problem. One approach to minimizing the antibacterial resistance is to optimize the dosage regimen. PK/PD model is important realm to be used for that purpose from several years. PK/PD model describes the relationship between drug potency, microorganism exposed to drug, and the effect observed. Proper use of the most modern PK/PD modeling approaches in veterinary medicine can optimize the dosage for patient, which in turn reduce toxicity and reduce the emergence of resistance. The aim of this review is to look at the existing state and application of PK/PD in veterinary medicine based on in vitro, in vivo, healthy, and disease model.

  15. [Experimental therapy of cardiac remodeling with quercetin-containing drugs].

    Science.gov (United States)

    Kuzmenko, M A; Pavlyuchenko, V B; Tumanovskaya, L V; Dosenko, V E; Moybenko, A A

    2013-01-01

    It was shown that continuous beta-adrenergic hyperstimulation resulted in cardiac function disturbances and fibrosis of cardiac tissue. Treatment with quercetin-containing drugs, particularly, water-soluble corvitin and tableted quertin exerted favourable effect on cardiac hemodynamics, normalized systolic and diastolic function in cardiac remodeling, induced by sustained beta-adrenergic stimulation. It was estimated that conducted experimental therapy limited cardiac fibrosis area almost three-fold, that could be associated with first and foremost improved cardiac distensibility, characteristics of diastolic and also pump function in cardiac remodeling.

  16. Optimization of matrix tablets controlled drug release using Elman dynamic neural networks and decision trees.

    Science.gov (United States)

    Petrović, Jelena; Ibrić, Svetlana; Betz, Gabriele; Đurić, Zorica

    2012-05-30

    The main objective of the study was to develop artificial intelligence methods for optimization of drug release from matrix tablets regardless of the matrix type. Static and dynamic artificial neural networks of the same topology were developed to model dissolution profiles of different matrix tablets types (hydrophilic/lipid) using formulation composition, compression force used for tableting and tablets porosity and tensile strength as input data. Potential application of decision trees in discovering knowledge from experimental data was also investigated. Polyethylene oxide polymer and glyceryl palmitostearate were used as matrix forming materials for hydrophilic and lipid matrix tablets, respectively whereas selected model drugs were diclofenac sodium and caffeine. Matrix tablets were prepared by direct compression method and tested for in vitro dissolution profiles. Optimization of static and dynamic neural networks used for modeling of drug release was performed using Monte Carlo simulations or genetic algorithms optimizer. Decision trees were constructed following discretization of data. Calculated difference (f(1)) and similarity (f(2)) factors for predicted and experimentally obtained dissolution profiles of test matrix tablets formulations indicate that Elman dynamic neural networks as well as decision trees are capable of accurate predictions of both hydrophilic and lipid matrix tablets dissolution profiles. Elman neural networks were compared to most frequently used static network, Multi-layered perceptron, and superiority of Elman networks have been demonstrated. Developed methods allow simple, yet very precise way of drug release predictions for both hydrophilic and lipid matrix tablets having controlled drug release. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Design and optimization of self-nanoemulsifying drug delivery systems for improved bioavailability of cyclovirobuxine D

    Directory of Open Access Journals (Sweden)

    Ke ZC

    2016-06-01

    Full Text Available Zhongcheng Ke,1–3 Xuefeng Hou,4 Xiao-bin Jia31Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 2Huangshan University, Huangshan, Anhui, 3Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 4Anhui University of Chinese Medicine, Hefei, Anhui, People’s Republic of ChinaBackground: The main purpose of this research was to design a self-nanoemulsifying drug delivery system (SNEDDS for improving the bioavailability of cyclovirobuxine D as a poorly water-soluble drug.Materials and methods: Solubility trials, emulsifying studies, and pseudo-ternary phase diagrams were used to screen the SNEDDS formulations. The optimized drug-loaded SNEDDS was prepared at a mass ratio of 3:24:38:38 for cyclovirobuxine D, oleic acid, Solutol SH15, and propylene glycol, respectively. The optimized formulation was characterized in terms of physicochemical and pharmacokinetic parameters compared with marketed cyclovirobuxine D tablets.Results: The optimized cyclovirobuxine-D-loaded SNEDDS was spontaneously dispersed to form a nanoemulsion with a globule size of 64.80±3.58 nm, which exhibited significant improvement of drug solubility, rapid absorption rate, and enhanced area under the curve, together with increased permeation and decreased efflux. Fortunately, there was a nonsignificant cytotoxic effect toward Caco-2 cells. The relative bioavailability of SNEDDS was 200.22% in comparison with market tablets, in rabbits.Conclusion: SNEDDS could be a potential candidate for an oral dosage form of cyclovirobuxine D with improved bioavailability.Keywords: self-nanoemulsifying drug delivery, bioavailability, cyclovirobuxine D

  18. Therapeutic drug monitoring of infliximab : performance evaluation of three commercial ELISA kits

    NARCIS (Netherlands)

    Schmitz, E.M.H.; van de Kerkhof, D.; Hamann, D.; van Dongen, J.L.J.; Kuijper, P.H.M.; Brunsveld, L.; Scharnhorst, V.; Broeren, M.A.C.

    2016-01-01

    BACKGROUND: Therapeutic drug monitoring (TDM) of infliximab (IFX, Remicade®) can aid to optimize therapy efficacy. Many assays are available for this purpose. However, a reference standard is lacking. Therefore, we evaluated the analytical performance, agreement and clinically relevant differences

  19. Cost-effectiveness-analysis: radioiodine or antithyroid drugs as first-line therapy of hyperthyroidism due to Graves' disease

    International Nuclear Information System (INIS)

    Dietlein, M.; Moka, D.; Dederichs, B.; Schicha, H.; Hunsche, E.; Lauterbach, K.W.

    1999-01-01

    Aim: As first-line therapy of hyperthyroidism caused by Graves' disease antithyroid drugs are favoured in Europe, while radioiodine therapy is favoured in the USA. Radioiodine therapy has become more economic in Germany since the new recommendations by the Federal German Radiation Protection Committee (SSK) for patient discharge guidelines. Method: Sensitivity analyses took into account the long-term relapse rate of conservative or radioiodine therapy, use of diagnostic tests, level of health insurance, drops in productivity and a discount factor. Costing models included the costs of follow-up care over 30 years. The costs of the hospitalisation for radioiodine therapy were calculated for 300 patients, discharged with 250 MBq I-131 residual activity. Result: Antithyroid drugs were considered cost-effective when they achieved relapse rate of 50% or less, a cut in the number of tests needed and reduced working hours. Failure to meet any one of these conditions makes primary radioiodine therapy more cost-effective in 1593 of 1944 calculated costing models. Repeated conservative therapies will increase clearly the overall costs. Conclusion: Radioiodine is a cost-effective, first-line therapy in patients with a special risk of relapse after primary conservative therapy (goitre, younger patient, persistent elevated TSH-receptor-antibodies or Tc-uptake). (orig.) [de

  20. A combination therapy of selective intraarterial anti-cancer drug infusion and radiation therapy for muscle-invasive bladder cancer

    International Nuclear Information System (INIS)

    Okuno, Yumiko; Zaitsu, Masayoshi; Mikami, Koji; Takeuchi, Takumi; Matsuda, Izuru; Arahira, Satoko

    2017-01-01

    The gold standard for the treatment of muscle-invasive bladder cancer Without metastasis is radical cystectomy. However, there increase patients very elderly and with serious complications. They are not good candidates for invasive surgical operation. Intraarterial infusion of 70 mg/m"2 of cisplatin and 30 mg/m"2 of pirarubicin into bilateral bladder arteries was conducted for 5 patients diagnosed with muscle invasive bladder cancers without distant metastasis. Right and left distribution of anti-cancer drugs was determined based on the location of bladder tumor(s). External beam radiation therapy was commenced immediately following intraarterial infusion. The patients were followed up with clinical and radiographic investigations and bladderbiopsy was performed as needed. Patients were all males who are smoking or with smoking history ranging from 73 to 85 years of age (median 82). The duration between transurethral resection of bladder tumors (TUR-Bt) and intraarterial infusion of anti-cancer drugs was 47.4 days (range 26-68), the median follow-up period after intraarterial infusion was 21.5 months (range 87-547) without death. Total radiation dose was 59.2 ±3.0 Gy. Complete remission was accomplished in all cases. One patient showed intravesical recurrence of non muscle-invasive tumors 45.8 months following intraarterial infusion and underwent TUR-Bt. Two cases underwent bladder biopsies showing no tumors. All patients but one case with bladder recurrence were free of tumor recurrence with radiographic investigation. For adverse events, acute renal failure was in one case and leukocytopenia was in all 5 cases, Grade 2 for one and Grade 3 for 4 cases. Follow-up periods are not long enough, but early results of a combination therapy of selective intraarterial anti-cancer drug infusion and radiation therapy for muscle-invasive bladder cancer were good. (author)

  1. Robust optimization of psychotropic drug mixture separation in hydrophilic interaction liquid chromatography.

    Science.gov (United States)

    Rakić, Tijana; Jovanović, Marko; Dumić, Aleksandra; Pekić, Marina; Ribić, Sanja; Stojanović, Biljana Jancić

    2013-01-01

    This paper presents multiobjective optimization of complex mixtures separation in hydrophilic interaction liquid chromatography (HILIC). The selected model mixture consisted of five psychotropic drugs: clozapine, thioridazine, sulpiride, pheniramine and lamotrigine. Three factors related to the mobile phase composition (acetonitrile content, pH of the water phase and concentration of ammonium acetate) were optimized in order to achieve the following goals: maximal separation quality, minimal total analysis duration and robustness of an optimum. The consideration of robustness in early phases of the method development provides reliable methods with low risk for failure in validation phase. The simultaneous optimization of all goals was achieved by multiple threshold approach combined with grid point search. The identified optimal separation conditions (acetonitrile content 83%, pH of the water phase 3.5 and ammonium acetate content in water phase 14 mM) were experimentally verified.

  2. Unfavourable effect of prolonged treatment with antithyroid drugs on radioiodine therapy outcome in Graves' hyperthyroidism

    OpenAIRE

    Rajić, Milena; Vlajković, Marina; Ilić, Slobodan; Stević, Miloš; Sekulić, Vladan; Zečević, Mila

    2014-01-01

    Radioiodine therapy (RIT) of Graves' hyperthyroidism (GH) is usually recommended after failure of primary therapy with antithyroid drugs (ATDs), which are commonly prescribed for up to 18-24 months. However, in our region, the prolonged ATDs treatment of the disease is very common. Thus, we assessed the efficacy of RIT after prolonged continual pretreatment with ATDs in Graves' hyperthyroidism. Therapy outcome using a single dose of radioiodine was evaluated after one year in 91 patients (f/m...

  3. Rational drug therapy education in clinical phase carried out by task-based learning

    Science.gov (United States)

    Bilge, S. Sırrı; Akyüz, Bahar; Ağrı, Arzu Erdal; Özlem, Mıdık

    2017-01-01

    Objectives: Irrational drug use results in drug interactions, treatment noncompliance, and drug resistance. Rational pharmacotherapy education is being implemented in many faculties of medicine. Our aim is to introduce rational pharmacotherapy education by clinicians and to evaluate task-based rational drug therapy education in the clinical context. Methods: The Kirkpatrick's evaluation model was used for the evaluation of the program. The participants evaluated the program in terms of constituents of the program, utilization, and contribution to learning. Voluntary participants responded to the evaluation forms after the educational program. Data are evaluated using both quantitative and qualitative tools. SPSS (version 21) used for quantitative data for determining mean and standard deviation values. Descriptive qualitative analysis approach is used for the analysis of open-ended questions. Results: It was revealed that the program and its components have been favorable. A total 95.9% of the students consider the education to be beneficial. Simulated patients practice and personal drug choice/problem-based learning sessions were appreciated by the students in particular. 93.9% of the students stated that all students of medicine should undergo this educational program. Among the five presentations contained in the program, “The Principles of Prescribing” received the highest points (9 ± 1.00) from participating students in general evaluation of the educational program. Conclusion: This study was carried out to improve task-based rational drug therapy education. According to feedback from the students concerning content, method, resource, assessment, and program design; some important changes, especially in number of facilitators and indications, are made in rational pharmacotherapy education in clinical task-based learning program. PMID:28458432

  4. CAN MELATONIN BE EFFECTIVELY USED TO DIMINISH SIDE EFFECTS OF VARIOUS PSYCHOTROPIC DRUGS AND ELECTROCONVULSIVE THERAPY?

    Directory of Open Access Journals (Sweden)

    Roman Aleksandrovich Bekker

    2017-10-01

    Full Text Available Purpose. To study and summarize the existing evidence base for the use of melatonin as a mean to counteract or diminish the side effects of various psychotropic drugs and electroconvulsive therapy, and to provide the reader with relevant conclusions. Methodology. The authors have searched for the scientific literature regarding the use of melatonin as a mean to counteract or diminish the side effects of various psychotropic drugs and electroconvulsive therapy, using the PubMed and Google Scholar as a search tool. Then the authors thoroughly reviewed the data they found. The resulting review is presented in this article. Results. The data we have obtained from this review of the literature indicate that melatonin can be effectively used both in monotherapy and in combination with other therapeutic means in order to reduce several different side effects of psychotropic drugs and electroconvulsive therapy. Melatonin also deserves further study in this regard. The evidence base for its use in this manner is very variable in quality for different side effects. For now, the greatest evidence base exists regarding the potential effectiveness of melatonin in the prevention and treatment of drug-induced insomnia, memory and cognitive impairment, akathisia, tardive dyskinesias, and metabolic syndrome. Practical implications. The results we have obtained can be widely applied in psychiatry, neurology and addiction medicine, as well as in all those areas of general medicine, which make use of psychotropic drugs.

  5. A fast optimization algorithm for multicriteria intensity modulated proton therapy planning

    International Nuclear Information System (INIS)

    Chen Wei; Craft, David; Madden, Thomas M.; Zhang, Kewu; Kooy, Hanne M.; Herman, Gabor T.

    2010-01-01

    Purpose: To describe a fast projection algorithm for optimizing intensity modulated proton therapy (IMPT) plans and to describe and demonstrate the use of this algorithm in multicriteria IMPT planning. Methods: The authors develop a projection-based solver for a class of convex optimization problems and apply it to IMPT treatment planning. The speed of the solver permits its use in multicriteria optimization, where several optimizations are performed which span the space of possible treatment plans. The authors describe a plan database generation procedure which is customized to the requirements of the solver. The optimality precision of the solver can be specified by the user. Results: The authors apply the algorithm to three clinical cases: A pancreas case, an esophagus case, and a tumor along the rib cage case. Detailed analysis of the pancreas case shows that the algorithm is orders of magnitude faster than industry-standard general purpose algorithms (MOSEK's interior point optimizer, primal simplex optimizer, and dual simplex optimizer). Additionally, the projection solver has almost no memory overhead. Conclusions: The speed and guaranteed accuracy of the algorithm make it suitable for use in multicriteria treatment planning, which requires the computation of several diverse treatment plans. Additionally, given the low memory overhead of the algorithm, the method can be extended to include multiple geometric instances and proton range possibilities, for robust optimization.

  6. A fast optimization algorithm for multicriteria intensity modulated proton therapy planning.

    Science.gov (United States)

    Chen, Wei; Craft, David; Madden, Thomas M; Zhang, Kewu; Kooy, Hanne M; Herman, Gabor T

    2010-09-01

    To describe a fast projection algorithm for optimizing intensity modulated proton therapy (IMPT) plans and to describe and demonstrate the use of this algorithm in multicriteria IMPT planning. The authors develop a projection-based solver for a class of convex optimization problems and apply it to IMPT treatment planning. The speed of the solver permits its use in multicriteria optimization, where several optimizations are performed which span the space of possible treatment plans. The authors describe a plan database generation procedure which is customized to the requirements of the solver. The optimality precision of the solver can be specified by the user. The authors apply the algorithm to three clinical cases: A pancreas case, an esophagus case, and a tumor along the rib cage case. Detailed analysis of the pancreas case shows that the algorithm is orders of magnitude faster than industry-standard general purpose algorithms (MOSEK'S interior point optimizer, primal simplex optimizer, and dual simplex optimizer). Additionally, the projection solver has almost no memory overhead. The speed and guaranteed accuracy of the algorithm make it suitable for use in multicriteria treatment planning, which requires the computation of several diverse treatment plans. Additionally, given the low memory overhead of the algorithm, the method can be extended to include multiple geometric instances and proton range possibilities, for robust optimization.

  7. Progress in psoriasis therapy via novel drug delivery systems

    Directory of Open Access Journals (Sweden)

    Nitha Vincent

    2014-09-01

    Full Text Available Psoriasis is a lifelong condition which is caused by the negative signals produced by immune system, which leads to hyper proliferation and other inflammatory reactions on the skin. In this case, keratinocytes which are the outermost layer of skin possess shortened life cycle and results in the alteration of desquamation process where the cytokines will come out through lesions of affected patients and as a result, scaling marks appears on the skin. These conditions may negatively affect the patient’s quality of life and lead to psychosocial stress. Psoriasis can be categorized as mild, moderate and severe conditions. Mild psoriasis leads to the formation of rashes, and when it becomes moderate, the skin turns into scaly. In severe conditions, red patches may be present on skin surface and becomes itchy. Topical therapy continues to be one of the pillars for psoriasis management. Drug molecules with target effect on the skin tissues and other inflammations should be selected for the treatment of psoriasis. Most of the existing drugs lead to systemic intoxication and dryness when applied in higher dose. Different scientific approaches for topical delivery are being explored by researches including emollient, modified gelling system, transdermal delivery, spray, nanogels, hydrogels, micro/nano emulsion, liposomes, nano capsules etc. These topical dosage forms are evaluated for various physico chemical properties such as drug content, viscosity, pH, extrudability, spreadability, toxicity, irritancy, permeability and drug release mechanism. This review paper focus attention to the impact of these formulation approaches on various anti-psoriasis drugs for their successful treatment.

  8. Changes of serum cytokines levels after drug therapy in epileptic patients

    International Nuclear Information System (INIS)

    Xie Jianping; Li Suping; Xiong Gang

    2004-01-01

    Objective: To explore the role of the cytokines interleukin-2 (IL-2), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in the neuroimmune modulation of epilepsy through measurement of the changes of the serum levels of the these cytokines after drug therapy in epileptic patients. Methods: Serum IL-2, IL-6, TNF-α levels were measured with RIA in 43 patients with epilepsy both before and after drug therapy for 3-6 months as well as 32 controls. Results: Before treatment, serum levels of these cytokines in the patients were significantly higher than those in the controls (p<0.001). After treatment, 18 of the 43 patients were regarded as treatment very successful, with attack numbers decreased more than 75%. Some of this group of patient had their serum cytokines levels significantly dropped down, but the mean level for the group as a whole did not change much. In the rest 25 patients with less successful result, changes were not significant with the levels increased in a few cases. Among the cytokines, levels of IL-2 were significantly positively correlated to those of IL-6 and TNF-α (r=0.47, p<0.01, r=0.55, p<0.01). Conclusion: Increased levels of the cytokines in the epileptic patients suggest an activated immune state. However, the changes of levels after therapy are not predictable and do not necessarily drop down significantly even with very successful treatment

  9. Two-step polymer- and liposome-enzyme prodrug therapies for cancer: PDEPT and PELT concepts and future perspectives.

    Science.gov (United States)

    Scomparin, Anna; Florindo, Helena F; Tiram, Galia; Ferguson, Elaine L; Satchi-Fainaro, Ronit

    2017-09-01

    Polymer-directed enzyme prodrug therapy (PDEPT) and polymer enzyme liposome therapy (PELT) are two-step therapies developed to provide anticancer drugs site-selective intratumoral accumulation and release. Nanomedicines, such as polymer-drug conjugates and liposomal drugs, accumulate in the tumor site due to extravasation-dependent mechanism (enhanced permeability and retention - EPR - effect), and further need to cross the cellular membrane and release their payload in the intracellular compartment. The subsequent administration of a polymer-enzyme conjugate able to accumulate in the tumor tissue and to trigger the extracellular release of the active drug showed promising preclinical results. The development of polymer-enzyme, polymer-drug conjugates and liposomal drugs had undergone a vast advancement over the past decades. Several examples of enzyme mimics for in vivo therapy can be found in the literature. Moreover, polymer therapeutics often present an enzyme-sensitive mechanism of drug release. These nanomedicines can thus be optimal substrates for PDEPT and this review aims to provide new insights and stimuli toward the future perspectives of this promising combination. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Optimization of radiation therapy

    International Nuclear Information System (INIS)

    Ohtsubo, Masaaki

    1990-01-01

    In radiotherapy, dose optimization is to give adequate dose uniformly over target volume and minimize the dose to normal and adjacent critical organs. Therefore, it is necessary to analyze dose distribution in detail. This paper presents a method for quantitatively assessing treatment planning by analysis of dose distribution. For this purpose, several parameters were introduced, such as D T, min (minimum target absorbed dose), NUF (nonuniformity factor), volume rate of damaged lung and spinal cord, R T/T (ratio of target volume to treatment volume), LE (local efficiency), integral dose, etc. And some criteria were made using these parameters, and were applied to evaluate various plans in external beam radiation therapy for lung and esophagus cancer. In these parameters, NUF was especially useful to obtain three-dimensional dose information of target volume, and value of NUF was in agreement with the information provided by dose volume histogram. AP-PA parallel opposed fields technique was inferior in D T,min and NUF. In lung cancer, there was no spinal cord injury in oblique parallel opposed fields technique, and this technique is particularly useful when target volume is in posterior. In these two techniques, R T/T was small and hot spots were frequently observed. R T/T was largest in oblique wedged two-fields technique, but this technique was inferior in D T, min and NUF. About D T, min and NUF, four fields technique was the best, but in this technique spinal cord complication often occurred in case that target volume was in the middle. In moving beam technique (360deg rotation or arc), integral dose is large, and the more target volume is in posterior, the more often spinal cord complication occurs. In esophageal cancer, three fields technique was the best to avoid spinal cord injury. It seems that this method is very useful for optimization in radiation treatment planning. (author)

  11. Automatic CT simulation optimization for radiation therapy: A general strategy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hua, E-mail: huli@radonc.wustl.edu; Chen, Hsin-Chen; Tan, Jun; Gay, Hiram; Michalski, Jeff M.; Mutic, Sasa [Department of Radiation Oncology, Washington University, St. Louis, Missouri 63110 (United States); Yu, Lifeng [Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 (United States); Anastasio, Mark A. [Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63110 (United States); Low, Daniel A. [Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California 90095 (United States)

    2014-03-15

    Purpose: In radiation therapy, x-ray computed tomography (CT) simulation protocol specifications should be driven by the treatment planning requirements in lieu of duplicating diagnostic CT screening protocols. The purpose of this study was to develop a general strategy that allows for automatically, prospectively, and objectively determining the optimal patient-specific CT simulation protocols based on radiation-therapy goals, namely, maintenance of contouring quality and integrity while minimizing patient CT simulation dose. Methods: The authors proposed a general prediction strategy that provides automatic optimal CT simulation protocol selection as a function of patient size and treatment planning task. The optimal protocol is the one that delivers the minimum dose required to provide a CT simulation scan that yields accurate contours. Accurate treatment plans depend on accurate contours in order to conform the dose to actual tumor and normal organ positions. An image quality index, defined to characterize how simulation scan quality affects contour delineation, was developed and used to benchmark the contouring accuracy and treatment plan quality within the predication strategy. A clinical workflow was developed to select the optimal CT simulation protocols incorporating patient size, target delineation, and radiation dose efficiency. An experimental study using an anthropomorphic pelvis phantom with added-bolus layers was used to demonstrate how the proposed prediction strategy could be implemented and how the optimal CT simulation protocols could be selected for prostate cancer patients based on patient size and treatment planning task. Clinical IMRT prostate treatment plans for seven CT scans with varied image quality indices were separately optimized and compared to verify the trace of target and organ dosimetry coverage. Results: Based on the phantom study, the optimal image quality index for accurate manual prostate contouring was 4.4. The optimal tube

  12. Automatic CT simulation optimization for radiation therapy: A general strategy.

    Science.gov (United States)

    Li, Hua; Yu, Lifeng; Anastasio, Mark A; Chen, Hsin-Chen; Tan, Jun; Gay, Hiram; Michalski, Jeff M; Low, Daniel A; Mutic, Sasa

    2014-03-01

    In radiation therapy, x-ray computed tomography (CT) simulation protocol specifications should be driven by the treatment planning requirements in lieu of duplicating diagnostic CT screening protocols. The purpose of this study was to develop a general strategy that allows for automatically, prospectively, and objectively determining the optimal patient-specific CT simulation protocols based on radiation-therapy goals, namely, maintenance of contouring quality and integrity while minimizing patient CT simulation dose. The authors proposed a general prediction strategy that provides automatic optimal CT simulation protocol selection as a function of patient size and treatment planning task. The optimal protocol is the one that delivers the minimum dose required to provide a CT simulation scan that yields accurate contours. Accurate treatment plans depend on accurate contours in order to conform the dose to actual tumor and normal organ positions. An image quality index, defined to characterize how simulation scan quality affects contour delineation, was developed and used to benchmark the contouring accuracy and treatment plan quality within the predication strategy. A clinical workflow was developed to select the optimal CT simulation protocols incorporating patient size, target delineation, and radiation dose efficiency. An experimental study using an anthropomorphic pelvis phantom with added-bolus layers was used to demonstrate how the proposed prediction strategy could be implemented and how the optimal CT simulation protocols could be selected for prostate cancer patients based on patient size and treatment planning task. Clinical IMRT prostate treatment plans for seven CT scans with varied image quality indices were separately optimized and compared to verify the trace of target and organ dosimetry coverage. Based on the phantom study, the optimal image quality index for accurate manual prostate contouring was 4.4. The optimal tube potentials for patient sizes

  13. Effectiveness of Cognitive-Behavioral Therapy in the Improvement of Coping Strategies and Addiction Symptoms in Drug-Dependent Patients

    Directory of Open Access Journals (Sweden)

    H BrockieMilan

    2014-12-01

    Full Text Available Objective: This study was carried out to determine the effectiveness of cognitive-behavioral therapy in improving coping strategies and symptoms of drug addiction patients. Method: In a quasi-experimental study, the number of 90drug-dependent patients referring to clinics to stop taking drugs existing in the city of Urmia were divided into two experimental (n=45 groups and control (n=45 using random sampling. The experimental group received 12 sessions of cognitive-behavioral treatment in Carroll style while the control group received only methadone and the physical pills. All the participants completed coping strategies questionnaire at the beginning, during (after three months, and three months after treatment (follow-up. As well, they were assessed for the rate of improvement in symptoms of addiction and process of addiction treatment using by Madzly’s addiction profile questionnaire. Findings: The results proved the effectiveness of cognitive-behavioral therapy and its survival. Conclusion: Cognitive behavioral therapy is very influential in the boost of coping strategies and the improvement of mental and physical health in drug-dependent patients.

  14. Poly(acrylic acid) conjugated hollow mesoporous carbon as a dual-stimuli triggered drug delivery system for chemo-photothermal synergistic therapy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xian; Liu, Chang; Wang, Shengyu; Jiao, Jian; Di, Donghua; Jiang, Tongying; Zhao, Qinfu, E-mail: zqf021110505@163.com; Wang, Siling, E-mail: silingwang@syphu.edu.cn

    2017-02-01

    In this work, we described the development of the redox and pH dual stimuli-responsive drug delivery system and combination of the chemotherapy and photothermal therapy for cancer treatment. The poly(acrylic acid) (PAA) was conjugated on the outlets of hollow mesoporous carbon (HMC) via disulfide bonds. PAA was used as a capping to block drug within the mesopores of HMC for its lots of favorable advantages, such as good biocompatibility, appropriate molecular weight to block the mesopores of HMC, extension of the blood circulation, and the improvement of the dispersity of the nano-carriers in physiological environment. The DOX loaded DOX/HMC-SS-PAA had a high drug loading amount up to 51.9%. The in vitro drug release results illustrated that DOX/HMC-SS-PAA showed redox and pH dual-responsive drug release, and the release rate could be further improved by the near infrared (NIR) irradiation. Cell viability experiment indicated that DOX/HMC-SS-PAA had a synergistic therapeutic effect by combination of chemotherapy and photothermal therapy. This work suggested that HMC-SS-PAA exhibited dual-responsive drug release property and could be used as a NIR-adsorbing drug delivery system for chemo-photothermal synergistic therapy. - Highlights: • Poly(acrylic acid) was grafted on hollow mesoporous carbon (HMC) via disulfide bonds. • The grafted PAA could increase the biocompatibility and stability of HMC. • The DOX-loaded DOX/HMC-SS-PAA had a high drug loading efficiency up to 51.9%. • DOX/HMC-SS-PAA showed redox/pH dual-responsive and NIR-triggered drug release. • DOX/HMC-SS-PAA showed a chemo/photothermal synergistic therapy effect.

  15. Poly(acrylic acid) conjugated hollow mesoporous carbon as a dual-stimuli triggered drug delivery system for chemo-photothermal synergistic therapy

    International Nuclear Information System (INIS)

    Li, Xian; Liu, Chang; Wang, Shengyu; Jiao, Jian; Di, Donghua; Jiang, Tongying; Zhao, Qinfu; Wang, Siling

    2017-01-01

    In this work, we described the development of the redox and pH dual stimuli-responsive drug delivery system and combination of the chemotherapy and photothermal therapy for cancer treatment. The poly(acrylic acid) (PAA) was conjugated on the outlets of hollow mesoporous carbon (HMC) via disulfide bonds. PAA was used as a capping to block drug within the mesopores of HMC for its lots of favorable advantages, such as good biocompatibility, appropriate molecular weight to block the mesopores of HMC, extension of the blood circulation, and the improvement of the dispersity of the nano-carriers in physiological environment. The DOX loaded DOX/HMC-SS-PAA had a high drug loading amount up to 51.9%. The in vitro drug release results illustrated that DOX/HMC-SS-PAA showed redox and pH dual-responsive drug release, and the release rate could be further improved by the near infrared (NIR) irradiation. Cell viability experiment indicated that DOX/HMC-SS-PAA had a synergistic therapeutic effect by combination of chemotherapy and photothermal therapy. This work suggested that HMC-SS-PAA exhibited dual-responsive drug release property and could be used as a NIR-adsorbing drug delivery system for chemo-photothermal synergistic therapy. - Highlights: • Poly(acrylic acid) was grafted on hollow mesoporous carbon (HMC) via disulfide bonds. • The grafted PAA could increase the biocompatibility and stability of HMC. • The DOX-loaded DOX/HMC-SS-PAA had a high drug loading efficiency up to 51.9%. • DOX/HMC-SS-PAA showed redox/pH dual-responsive and NIR-triggered drug release. • DOX/HMC-SS-PAA showed a chemo/photothermal synergistic therapy effect.

  16. Optimization of naltrexone diclofenac codrugs for sustained drug delivery across microneedle-treated skin.

    Science.gov (United States)

    Ghosh, Priyanka; Lee, DoMin; Kim, Kyung Bo; Stinchcomb, Audra L

    2014-01-01

    The purpose of this work was to optimize the structure of codrugs for extended delivery across microneedle treated skin. Naltrexone, the model compound was linked with diclofenac, a nonspecific cyclooxygenase inhibitor to enhance the pore lifetime following microneedle treatment and develop a 7 day transdermal system for naltrexone. Four different codrugs of naltrexone and diclofenac were compared in terms of stability and solubility. Transdermal flux, permeability and skin concentration of both parent drugs and codrugs were quantified to form a structure permeability relationship. The results indicated that all codrugs bioconverted in the skin. The degree of conversion was dependent on the structure, phenol linked codrugs were less stable compared to the secondary alcohol linked structures. The flux of naltrexone across microneedle treated skin and the skin concentration of diclofenac were higher for the phenol linked codrugs. The polyethylene glycol link enhanced solubility of the codrugs, which translated into flux enhancement. The current studies indicated that formulation stability of codrugs and the flux of naltrexone can be enhanced via structure design optimization. The polyethylene glycol linked naltrexone diclofenac codrug is better suited for a 7 day drug delivery system both in terms of stability and drug delivery.

  17. Microsponges based novel drug delivery system for augmented arthritis therapy

    OpenAIRE

    Osmani, Riyaz Ali M.; Aloorkar, Nagesh H.; Ingale, Dipti J.; Kulkarni, Parthasarathi K.; Hani, Umme; Bhosale, Rohit R.; Jayachandra Dev, Dandasi

    2015-01-01

    The motive behind present work was to formulate and evaluate gel containing microsponges of diclofenac diethylamine to provide prolonged release for proficient arthritis therapy. Quasi-emulsion solvent diffusion method was implied using Eudragit RS-100 and microsponges with varied drug–polymer ratios were prepared. For the sake of optimization, diverse factors affecting microparticles physical properties were too investigated. Microsponges were characterized by SEM, DSC, FT-IR, XRPD and parti...

  18. Preclinical optimization of a broad-spectrum anti-bladder cancer tri-drug regimen via the Feedback System Control (FSC) platform

    Science.gov (United States)

    Liu, Qi; Zhang, Cheng; Ding, Xianting; Deng, Hui; Zhang, Daming; Cui, Wei; Xu, Hongwei; Wang, Yingwei; Xu, Wanhai; Lv, Lei; Zhang, Hongyu; He, Yinghua; Wu, Qiong; Szyf, Moshe; Ho, Chih-Ming; Zhu, Jingde

    2015-06-01

    Therapeutic outcomes of combination chemotherapy have not significantly advanced during the past decades. This has been attributed to the formidable challenges of optimizing drug combinations. Testing a matrix of all possible combinations of doses and agents in a single cell line is unfeasible due to the virtually infinite number of possibilities. We utilized the Feedback System Control (FSC) platform, a phenotype oriented approach to test 100 options among 15,625 possible combinations in four rounds of assaying to identify an optimal tri-drug combination in eight distinct chemoresistant bladder cancer cell lines. This combination killed between 82.86% and 99.52% of BCa cells, but only 47.47% of the immortalized benign bladder epithelial cells. Preclinical in vivo verification revealed its markedly enhanced anti-tumor efficacy as compared to its bi- or mono-drug components in cell line-derived tumor xenografts. The collective response of these pathways to component drugs was both cell type- and drug type specific. However, the entire spectrum of pathways triggered by the tri-drug regimen was similar in all four cancer cell lines, explaining its broad spectrum killing of BCa lines, which did not occur with its component drugs. Our findings here suggest that the FSC platform holdspromise for optimization of anti-cancer combination chemotherapy.

  19. Liposomes as a drug delivery system in photodynamic therapy for colon cancer treatment

    CSIR Research Space (South Africa)

    Maduray, K

    2010-01-01

    Full Text Available Photodynamic therapy (PDT) uses a drug termed a photosensitizer (PS), light (laser) of an appropriate wavelength and molecular oxygen (tissue) to elicit cell death of cancer cells. The objective of this study was to evaluate the enhancement of PDT...

  20. Near-infrared fluorescence imaging platform for quantifying in vivo nanoparticle diffusion from drug loaded implants.

    Science.gov (United States)

    Markovic, Stacey; Belz, Jodi; Kumar, Rajiv; Cormack, Robert A; Sridhar, Srinivas; Niedre, Mark

    2016-01-01

    Drug loaded implants are a new, versatile technology platform to deliver a localized payload of drugs for various disease models. One example is the implantable nanoplatform for chemo-radiation therapy where inert brachytherapy spacers are replaced by spacers doped with nanoparticles (NPs) loaded with chemotherapeutics and placed directly at the disease site for long-term localized drug delivery. However, it is difficult to directly validate and optimize the diffusion of these doped NPs in in vivo systems. To better study this drug release and diffusion, we developed a custom macroscopic fluorescence imaging system to visualize and quantify fluorescent NP diffusion from spacers in vivo. To validate the platform, we studied the release of free fluorophores, and 30 nm and 200 nm NPs conjugated with the same fluorophores as a model drug, in agar gel phantoms in vitro and in mice in vivo. Our data verified that the diffusion volume was NP size-dependent in all cases. Our near-infrared imaging system provides a method by which NP diffusion from implantable nanoplatform for chemo-radiation therapy spacers can be systematically optimized (eg, particle size or charge) thereby improving treatment efficacy of the platform.

  1. A novel experimental design method to optimize hydrophilic matrix formulations with drug release profiles and mechanical properties.

    Science.gov (United States)

    Choi, Du Hyung; Lim, Jun Yeul; Shin, Sangmun; Choi, Won Jun; Jeong, Seong Hoon; Lee, Sangkil

    2014-10-01

    To investigate the effects of hydrophilic polymers on the matrix system, an experimental design method was developed to integrate response surface methodology and the time series modeling. Moreover, the relationships among polymers on the matrix system were studied with the evaluation of physical properties including water uptake, mass loss, diffusion, and gelling index. A mixture simplex lattice design was proposed while considering eight input control factors: Polyethylene glycol 6000 (x1 ), polyethylene oxide (PEO) N-10 (x2 ), PEO 301 (x3 ), PEO coagulant (x4 ), PEO 303 (x5 ), hydroxypropyl methylcellulose (HPMC) 100SR (x6 ), HPMC 4000SR (x7 ), and HPMC 10(5) SR (x8 ). With the modeling, optimal formulations were obtained depending on the four types of targets. The optimal formulations showed the four significant factors (x1 , x2 , x3 , and x8 ) and other four input factors (x4 , x5 , x6 , and x7 ) were not significant based on drug release profiles. Moreover, the optimization results were analyzed with estimated values, targets values, absolute biases, and relative biases based on observed times for the drug release rates with four different targets. The result showed that optimal solutions and target values had consistent patterns with small biases. On the basis of the physical properties of the optimal solutions, the type and ratio of the hydrophilic polymer and the relationships between polymers significantly influenced the physical properties of the system and drug release. This experimental design method is very useful in formulating a matrix system with optimal drug release. Moreover, it can distinctly confirm the relationships between excipients and the effects on the system with extensive and intensive evaluations. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  2. Challenges and future in vaccines, drug development, and immunomodulatory therapy.

    Science.gov (United States)

    Kling, Heather M; Nau, Gerard J; Ross, Ted M; Evans, Thomas G; Chakraborty, Krishnendu; Empey, Kerry M; Flynn, JoAnne L

    2014-08-01

    Pulmonary diseases and infections are among the top contributors to human morbidity and mortality worldwide, and despite the successful history of vaccines and antimicrobial therapeutics, infectious disease still presents a significant threat to human health. Effective vaccines are frequently unavailable in developing countries, and successful vaccines have yet to be developed for major global maladies, such as tuberculosis. Furthermore, antibiotic resistance poses a growing threat to human health. The "Challenges and Future in Vaccines, Drug Development, and Immunomodulatory Therapy" session of the 2013 Pittsburgh International Lung Conference highlighted several recent and current studies related to treatment and prevention of antibiotic-resistant bacterial infections, highly pathogenic influenza, respiratory syncytial virus, and tuberculosis. Research presented here focused on novel antimicrobial therapies, new vaccines that are either in development or currently in clinical trials, and the potential for immunomodulatory therapies. These studies are making important contributions to the areas of microbiology, virology, and immunology related to pulmonary diseases and infections and are paving the way for improvements in the efficacy of vaccines and antimicrobials.

  3. DNA Nanotechnology for Precise Control over Drug Delivery and Gene Therapy.

    Science.gov (United States)

    Angell, Chava; Xie, Sibai; Zhang, Liangfang; Chen, Yi

    2016-03-02

    Nanomedicine has been growing exponentially due to its enhanced drug targeting and reduced drug toxicity. It uses the interactions where nanotechnological components and biological systems communicate with each other to facilitate the delivery performance. At this scale, the physiochemical properties of delivery systems strongly affect their capacities. Among current delivery systems, DNA nanotechnology shows many advantages because of its unprecedented engineering abilities. Through molecular recognition, DNA nanotechnology can be used to construct a variety of nanostructures with precisely controllable size, shape, and surface chemistry, which can be appreciated in the delivery process. In this review, different approaches that are currently used for the construction of DNA nanostructures are reported. Further, the utilization of these DNA nanostructures with the well-defined parameters for the precise control in drug delivery and gene therapy is discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A 37-year-old woman presenting with impaired visual function during antituberculosis drug therapy: a case report

    Directory of Open Access Journals (Sweden)

    Ayanniyi Abdulkabir A

    2011-07-01

    Full Text Available Abstract Introduction Combination antituberculosis drug therapy remains the mainstay of treating tuberculosis. Unfortunately, antituberculosis drugs produce side effects including (toxic impaired visual function, which may be irreversible. We report a case of antituberculosis-drug-induced impaired visual function that was reversed following early detection and attention. Case presentation A 37-year-old Yoruba woman, weighing 48 kg, presented to our facility with impaired visual functions and mild sensory polyneuropathy in about the fourth month of antituberculosis treatment. Her therapy comprised ethambutol 825 mg, isoniazid 225 mg, rifampicin 450 mg, and pyrazinamide 1200 mg. Her visual acuity was 6/60 in her right eye and 1/60 in her left eye. She had sluggish pupils, red-green dyschromatopsia, hyperemic optic discs and central visual field defects. Her intraocular pressure was 14 mmHg. Her liver and kidney functions were essentially normal. Screening for human immunodeficiency virus was not reactive. Her impaired visual function improved following prompt diagnosis and attention, including the discontinuation of medication. Conclusions The ethambutol and isoniazid in antituberculosis medication are notorious for causing impaired visual function. The diagnosis of ocular toxicity from antituberculosis drugs should never be delayed, and should be possible with the patient's history and simple but basic eye examinations and tests. Tight weight-based antituberculosis therapy, routine peri-therapy visual function monitoring towards early detection of impaired function, and prompt attention will reduce avoidable ocular morbidity.

  5. Association of opioid agonist therapy with lower incidence of hepatitis C virus infection in young adult injection drug users.

    Science.gov (United States)

    Tsui, Judith I; Evans, Jennifer L; Lum, Paula J; Hahn, Judith A; Page, Kimberly

    2014-12-01

    Injection drug use is the primary mode of transmission for hepatitis C virus (HCV) infection. Prior studies suggest opioid agonist therapy may reduce the incidence of HCV infection among injection drug users; however, little is known about the effects of this therapy in younger users. To evaluate whether opioid agonist therapy was associated with a lower incidence of HCV infection in a cohort of young adult injection drug users. Observational cohort study conducted from January 3, 2000, through August 21, 2013, with quarterly interviews and blood sampling. We recruited young adult (younger than 30 years) injection drug users who were negative for anti-HCV antibody and/or HCV RNA. Substance use treatment within the past 3 months, including non-opioid agonist forms of treatment, opioid agonist (methadone hydrochloride or buprenorphine hydrochloride) detoxification or maintenance therapy, or no treatment. Incident HCV infection documented with a new positive result for HCV RNA and/or HCV antibodies. Cumulative incidence rates (95% CI) of HCV infection were calculated assuming a Poisson distribution. Cox proportional hazards regression models were fit adjusting for age, sex, race, years of injection drug use, homelessness, and incarceration. Baseline characteristics of the sample (n = 552) included median age of 23 (interquartile range, 20-26) years; 31.9% female; 73.1% white; 39.7% who did not graduate from high school; and 69.2% who were homeless. During the observation period of 680 person-years, 171 incident cases of HCV infection occurred (incidence rate, 25.1 [95% CI, 21.6-29.2] per 100 person-years). The rate ratio was significantly lower for participants who reported recent maintenance opioid agonist therapy (0.31 [95% CI, 0.14-0.65]; P = .001) but not for those who reported recent non-opioid agonist forms of treatment (0.63 [95% CI, 0.37-1.08]; P = .09) or opioid agonist detoxification (1.45 [95% CI, 0.80-2.69]; P = .23). After adjustment for

  6. Utilizing Problem Structure in Optimization of Radiation Therapy

    International Nuclear Information System (INIS)

    Carlsson, Fredrik

    2008-04-01

    In this thesis, optimization approaches for intensity-modulated radiation therapy are developed and evaluated with focus on numerical efficiency and treatment delivery aspects. The first two papers deal with strategies for solving fluence map optimization problems efficiently while avoiding solutions with jagged fluence profiles. The last two papers concern optimization of step-and-shoot parameters with emphasis on generating treatment plans that can be delivered efficiently and accurately. In the first paper, the problem dimension of a fluence map optimization problem is reduced through a spectral decomposition of the Hessian of the objective function. The weights of the eigenvectors corresponding to the p largest eigenvalues are introduced as optimization variables, and the impact on the solution of varying p is studied. Including only a few eigenvector weights results in faster initial decrease of the objective value, but with an inferior solution, compared to optimization of the bixel weights. An approach combining eigenvector weights and bixel weights produces improved solutions, but at the expense of the pre-computational time for the spectral decomposition. So-called iterative regularization is performed on fluence map optimization problems in the second paper. The idea is to find regular solutions by utilizing an optimization method that is able to find near-optimal solutions with non-jagged fluence profiles in few iterations. The suitability of a quasi-Newton sequential quadratic programming method is demonstrated by comparing the treatment quality of deliverable step-and-shoot plans, generated through leaf sequencing with a fixed number of segments, for different number of bixel-weight iterations. A conclusion is that over-optimization of the fluence map optimization problem prior to leaf sequencing should be avoided. An approach for dynamically generating multileaf collimator segments using a column generation approach combined with optimization of

  7. Automatic interactive optimization for volumetric modulated arc therapy planning

    International Nuclear Information System (INIS)

    Tol, Jim P; Dahele, Max; Peltola, Jarkko; Nord, Janne; Slotman, Ben J; Verbakel, Wilko FAR

    2015-01-01

    Intensity modulated radiotherapy treatment planning for sites with many different organs-at-risk (OAR) is complex and labor-intensive, making it hard to obtain consistent plan quality. With the aim of addressing this, we developed a program (automatic interactive optimizer, AIO) designed to automate the manual interactive process for the Eclipse treatment planning system. We describe AIO and present initial evaluation data. Our current institutional volumetric modulated arc therapy (RapidArc) planning approach for head and neck tumors places 3-4 adjustable OAR optimization objectives along the dose-volume histogram (DVH) curve that is displayed in the optimization window. AIO scans this window and uses color-coding to differentiate between the DVH-lines, allowing it to automatically adjust the location of the optimization objectives frequently and in a more consistent fashion. We compared RapidArc AIO plans (using 9 optimization objectives per OAR) with the clinical plans of 10 patients, and evaluated optimal AIO settings. AIO consistency was tested by replanning a single patient 5 times. Average V95&V107 of the boost planning target volume (PTV) and V95 of the elective PTV differed by ≤0.5%, while average elective PTV V107 improved by 1.5%. Averaged over all patients, AIO reduced mean doses to individual salivary structures by 0.9-1.6Gy and provided mean dose reductions of 5.6Gy and 3.9Gy to the composite swallowing structures and oral cavity, respectively. Re-running AIO five times, resulted in the aforementioned parameters differing by less than 3%. Using the same planning strategy as manually optimized head and neck plans, AIO can automate the interactive Eclipse treatment planning process and deliver dosimetric improvements over existing clinical plans

  8. Effects of Multidimensional Family Therapy (MDFT) on Nonopioid Drug Abuse: A Systematic Review and Meta-Analysis

    Science.gov (United States)

    Filges, Trine; Andersen, Ditte; Jørgensen, Anne-Marie Klint

    2018-01-01

    Purpose: This review evaluates the evidence of the effects of multidimensional family therapy (MDFT) on drug use reduction in young people for the treatment of nonopioid drug use. Method: We followed Campbell Collaboration guidelines to conduct a systematic review of randomized and nonrandomized trials. Meta-analytic methods were used to…

  9. The Impact of Breakthrough Therapy Designation on Development Strategies and Timelines for Nononcology Drugs and Vaccines.

    Science.gov (United States)

    Poirier, A F; Murphy, W R

    2016-12-01

    The US Food and Drug Administration (FDA) Safety and Innovation Act (FDASIA, 2012) introduced the Breakthrough Therapy Designation (BTD), a new tool to expedite development of medicines to treat serious or life-threatening diseases. The majority of BTDs have gone to oncology drugs, and a recent publication by Shea et al. 1 reviewed the impact of BTD on oncology drug development. This article reviews the impact of BTD on development strategies and timelines for nononcology drugs. © 2016 American Society for Clinical Pharmacology and Therapeutics.

  10. Effects of music therapy on drug avoidance self-efficacy in patients on a detoxification unit: a three-group randomized effectiveness study.

    Science.gov (United States)

    Silverman, Michael J

    2014-01-01

    Self-efficacy is a component of Bandura's social cognitive theory and can lead to abstinence and a reduction of relapse potential for people who have substance abuse disorders. To date, no music therapy researcher has utilized this theoretical model to address abstinence and reduce the likelihood of relapse in people who have addictions. The purpose of this study was to determine the effects of music therapy on drug avoidance self-efficacy in a randomized three-group wait-list control design with patients on a detoxification unit. Participants (N = 131) were cluster randomized to one of three single-session conditions: music therapy, verbal therapy, or wait-list control. Music therapy participants received a group lyric analysis intervention, verbal therapy participants received a group talk therapy session, and wait-list control participants eventually received a group recreational music therapy intervention. Although there was no significant between-group difference in drug avoidance self-efficacy, participants in the music therapy condition tended to have the highest mean drug avoidance self-efficacy scores. Posttest written comments supported the use of both music therapy and verbal therapy sessions. Two music therapy participants specifically noted that their initial skepticism had dissipated after receiving music therapy. Despite a lack of significant differences, the theoretical support of self-efficacy for substance abuse rehabilitation suggests that this may be an area of continued clinical focus and empirical investigation. Clinical anecdotes, limitations of the study, and suggestions for future research are provided.

  11. Optimization of rotational arc station parameter optimized radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Dong, P.; Ungun, B. [Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States); Boyd, S. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Xing, L., E-mail: lei@stanford.edu [Department of Radiation Oncology, Stanford University, Stanford, California 94305 and Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)

    2016-09-15

    Purpose: To develop a fast optimization method for station parameter optimized radiation therapy (SPORT) and show that SPORT is capable of matching VMAT in both plan quality and delivery efficiency by using three clinical cases of different disease sites. Methods: The angular space from 0° to 360° was divided into 180 station points (SPs). A candidate aperture was assigned to each of the SPs based on the calculation results using a column generation algorithm. The weights of the apertures were then obtained by optimizing the objective function using a state-of-the-art GPU based proximal operator graph solver. To avoid being trapped in a local minimum in beamlet-based aperture selection using the gradient descent algorithm, a stochastic gradient descent was employed here. Apertures with zero or low weight were thrown out. To find out whether there was room to further improve the plan by adding more apertures or SPs, the authors repeated the above procedure with consideration of the existing dose distribution from the last iteration. At the end of the second iteration, the weights of all the apertures were reoptimized, including those of the first iteration. The above procedure was repeated until the plan could not be improved any further. The optimization technique was assessed by using three clinical cases (prostate, head and neck, and brain) with the results compared to that obtained using conventional VMAT in terms of dosimetric properties, treatment time, and total MU. Results: Marked dosimetric quality improvement was demonstrated in the SPORT plans for all three studied cases. For the prostate case, the volume of the 50% prescription dose was decreased by 22% for the rectum and 6% for the bladder. For the head and neck case, SPORT improved the mean dose for the left and right parotids by 15% each. The maximum dose was lowered from 72.7 to 71.7 Gy for the mandible, and from 30.7 to 27.3 Gy for the spinal cord. The mean dose for the pharynx and larynx was

  12. Optimization of rotational arc station parameter optimized radiation therapy

    International Nuclear Information System (INIS)

    Dong, P.; Ungun, B.; Boyd, S.; Xing, L.

    2016-01-01

    Purpose: To develop a fast optimization method for station parameter optimized radiation therapy (SPORT) and show that SPORT is capable of matching VMAT in both plan quality and delivery efficiency by using three clinical cases of different disease sites. Methods: The angular space from 0° to 360° was divided into 180 station points (SPs). A candidate aperture was assigned to each of the SPs based on the calculation results using a column generation algorithm. The weights of the apertures were then obtained by optimizing the objective function using a state-of-the-art GPU based proximal operator graph solver. To avoid being trapped in a local minimum in beamlet-based aperture selection using the gradient descent algorithm, a stochastic gradient descent was employed here. Apertures with zero or low weight were thrown out. To find out whether there was room to further improve the plan by adding more apertures or SPs, the authors repeated the above procedure with consideration of the existing dose distribution from the last iteration. At the end of the second iteration, the weights of all the apertures were reoptimized, including those of the first iteration. The above procedure was repeated until the plan could not be improved any further. The optimization technique was assessed by using three clinical cases (prostate, head and neck, and brain) with the results compared to that obtained using conventional VMAT in terms of dosimetric properties, treatment time, and total MU. Results: Marked dosimetric quality improvement was demonstrated in the SPORT plans for all three studied cases. For the prostate case, the volume of the 50% prescription dose was decreased by 22% for the rectum and 6% for the bladder. For the head and neck case, SPORT improved the mean dose for the left and right parotids by 15% each. The maximum dose was lowered from 72.7 to 71.7 Gy for the mandible, and from 30.7 to 27.3 Gy for the spinal cord. The mean dose for the pharynx and larynx was

  13. Pharmacomicrobiomics: exploiting the drug-microbiota interactions in anticancer therapies.

    Science.gov (United States)

    Panebianco, Concetta; Andriulli, Angelo; Pazienza, Valerio

    2018-05-22

    Cancer is a major health burden worldwide, and despite continuous advances in medical therapies, resistance to standard drugs and adverse effects still represent an important cause of therapeutic failure. There is a growing evidence that gut bacteria can affect the response to chemo- and immunotherapeutic drugs by modulating either efficacy or toxicity. Moreover, intratumor bacteria have been shown to modulate chemotherapy response. At the same time, anticancer treatments themselves significantly affect the microbiota composition, thus disrupting homeostasis and exacerbating discomfort to the patient. Here, we review the existing knowledge concerning the role of the microbiota in mediating chemo- and immunotherapy efficacy and toxicity and the ability of these therapeutic options to trigger dysbiotic condition contributing to the severity of side effects. In addition, we discuss the use of probiotics, prebiotics, synbiotics, postbiotics, and antibiotics as emerging strategies for manipulating the microbiota in order to improve therapeutic outcome or at least ensure patients a better quality of life all along of anticancer treatments.

  14. Development of a Whole Body Atlas for Radiation Therapy Planning and Treatment Optimization

    International Nuclear Information System (INIS)

    Qatarneh, Sharif

    2006-01-01

    The main objective of radiation therapy is to obtain the highest possible probability of tumor cure while minimizing adverse reactions in healthy tissues. A crucial step in the treatment process is to determine the location and extent of the primary tumor and its loco regional lymphatic spread in relation to adjacent radiosensitive anatomical structures and organs at risk. These volumes must also be accurately delineated with respect to external anatomic reference points, preferably on surrounding bony structures. At the same time, it is essential to have the best possible physical and radiobiological knowledge about the radiation responsiveness of the target tissues and organs at risk in order to achieve a more accurate optimization of the treatment outcome. A computerized whole body Atlas has therefore been developed to serve as a dynamic database, with systematically integrated knowledge, comprising all necessary physical and radiobiological information about common target volumes and normal tissues. The Atlas also contains a database of segmented organs and a lymph node topography, which was based on the Visible Human dataset, to form standard reference geometry of organ systems. The reference knowledge base and the standard organ dataset can be utilized for Atlas-based image processing and analysis in radiation therapy planning and for biological optimization of the treatment outcome. Atlas-based segmentation procedures were utilized to transform the reference organ dataset of the Atlas into the geometry of individual patients. The anatomic organs and target volumes of the database can be converted by elastic transformation into those of the individual patient for final treatment planning. Furthermore, a database of reference treatment plans was started by implementing state-of-the-art biologically based radiation therapy planning techniques such as conformal, intensity modulated, and radio biologically optimized treatment planning. The computerized Atlas can

  15. WE-FG-BRB-03: Challenges and Opportunities for Implementing Biological Optimization in Particle Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, D. [Yale University School of Medicine (United States)

    2016-06-15

    The physical pattern of energy deposition and the enhanced relative biological effectiveness (RBE) of protons and carbon ions compared to photons offer unique and not fully understood or exploited opportunities to improve the efficacy of radiation therapy. Variations in RBE within a pristine or spread out Bragg peak and between particle types may be exploited to enhance cell killing in target regions without a corresponding increase in damage to normal tissue structures. In addition, the decreased sensitivity of hypoxic tumors to photon-based therapies may be partially overcome through the use of more densely ionizing radiations. These and other differences between particle and photon beams may be used to generate biologically optimized treatments that reduce normal tissue complications. In this symposium, speakers will examine the impact of the RBE of charged particles on measurable biological endpoints, treatment plan optimization, and the prediction or retrospective assessment of treatment outcomes. In particular, an AAPM task group was formed to critically examine the evidence for a spatially-variant RBE in proton therapy. Current knowledge of proton RBE variation with respect to dose, biological endpoint, and physics parameters will be reviewed. Further, the clinical relevance of these variations will be discussed. Recent work focused on improving simulations of radiation physics and biological response in proton and carbon ion therapy will also be presented. Finally, relevant biology research and areas of research needs will be highlighted, including the dependence of RBE on genetic factors including status of DNA repair pathways, the sensitivity of cancer stem-like cells to charged particles, the role of charged particles in hypoxic tumors, and the importance of fractionation effects. In addition to the physical advantages of protons and more massive ions over photons, the future application of biologically optimized treatment plans and their potential to

  16. Reducing Dose Uncertainty for Spot-Scanning Proton Beam Therapy of Moving Tumors by Optimizing the Spot Delivery Sequence

    International Nuclear Information System (INIS)

    Li, Heng; Zhu, X. Ronald; Zhang, Xiaodong

    2015-01-01

    Purpose: To develop and validate a novel delivery strategy for reducing the respiratory motion–induced dose uncertainty of spot-scanning proton therapy. Methods and Materials: The spot delivery sequence was optimized to reduce dose uncertainty. The effectiveness of the delivery sequence optimization was evaluated using measurements and patient simulation. One hundred ninety-one 2-dimensional measurements using different delivery sequences of a single-layer uniform pattern were obtained with a detector array on a 1-dimensional moving platform. Intensity modulated proton therapy plans were generated for 10 lung cancer patients, and dose uncertainties for different delivery sequences were evaluated by simulation. Results: Without delivery sequence optimization, the maximum absolute dose error can be up to 97.2% in a single measurement, whereas the optimized delivery sequence results in a maximum absolute dose error of ≤11.8%. In patient simulation, the optimized delivery sequence reduces the mean of fractional maximum absolute dose error compared with the regular delivery sequence by 3.3% to 10.6% (32.5-68.0% relative reduction) for different patients. Conclusions: Optimizing the delivery sequence can reduce dose uncertainty due to respiratory motion in spot-scanning proton therapy, assuming the 4-dimensional CT is a true representation of the patients' breathing patterns.

  17. Evaluation of optimized bronchoalveolar lavage sampling designs for characterization of pulmonary drug distribution.

    Science.gov (United States)

    Clewe, Oskar; Karlsson, Mats O; Simonsson, Ulrika S H

    2015-12-01

    Bronchoalveolar lavage (BAL) is a pulmonary sampling technique for characterization of drug concentrations in epithelial lining fluid and alveolar cells. Two hypothetical drugs with different pulmonary distribution rates (fast and slow) were considered. An optimized BAL sampling design was generated assuming no previous information regarding the pulmonary distribution (rate and extent) and with a maximum of two samples per subject. Simulations were performed to evaluate the impact of the number of samples per subject (1 or 2) and the sample size on the relative bias and relative root mean square error of the parameter estimates (rate and extent of pulmonary distribution). The optimized BAL sampling design depends on a characterized plasma concentration time profile, a population plasma pharmacokinetic model, the limit of quantification (LOQ) of the BAL method and involves only two BAL sample time points, one early and one late. The early sample should be taken as early as possible, where concentrations in the BAL fluid ≥ LOQ. The second sample should be taken at a time point in the declining part of the plasma curve, where the plasma concentration is equivalent to the plasma concentration in the early sample. Using a previously described general pulmonary distribution model linked to a plasma population pharmacokinetic model, simulated data using the final BAL sampling design enabled characterization of both the rate and extent of pulmonary distribution. The optimized BAL sampling design enables characterization of both the rate and extent of the pulmonary distribution for both fast and slowly equilibrating drugs.

  18. [Non-antiretroviral drugs uses among HIV-infected persons receiving antiretroviral therapy in Senegal: Costs and factors associated with prescription].

    Science.gov (United States)

    Diouf, A; Youbong, T J; Maynart, M; Ndoye, M; Diéye, F L; Ndiaye, N A; Koita-Fall, M B; Ndiaye, B; Seydi, M

    2017-08-01

    In addition to antiretroviral therapy, non-antiretroviral drugs are necessary for the appropriate care of people living with HIV. The costs of such drugs are totally or partially supported by the people living with HIV. We aimed to evaluate the overall costs, the costs supported by the people living with HIV and factors associated with the prescription of non-antiretroviral drugs in people living with HIV on antiretroviral therapy in Senegal. We conducted a retrospective cohort study on 331 people living with HIV who initiated antiretroviral therapy between 2009 and 2011 and followed until March 2012. The costs of non-antiretroviral drugs were those of the national pharmacy for essential drugs; otherwise they were the lowest costs in the private pharmacies. Associated factors were identified through a logistic regression model. The study population was 61 % female. At baseline, 39 % of patients were classified at WHO clinical stage 3 and 40 % at WHO clinical stage 4. Median age, body mass index and CD4 cells count were 41 years, 18kg/m 2  and 93 cells/μL, respectively. After a mean duration of 11.4 months of antiretroviral therapy, 85 % of patients received at least one prescription for a non-antiretroviral drug. Over the entire study period, the most frequently prescribed non-antiretroviral drugs were cotrimoxazole (78.9 % of patients), iron (33.2 %), vitamins (21.1 %) and antibiotics (19.6 %). The mean cost per patient was 34 Euros and the mean cost supported per patient was 14 Euros. The most expensive drugs per treated patient were antihypertensives (168 Euros), anti-ulcer agents (12 Euros), vitamins (8.5 Euros) and antihistamines (7 Euros). The prescription for a non-antiretroviral drug was associated with advanced clinical stage (WHO clinical stage 3/4 versus stage 1/2): OR=2.25; 95 % CI=1.11-4.57 and viral type (HIV-2 versus HIV-1/HIV-1+HIV-2): OR=0.36; 95 % CI=0.14-0.89. Non-antiretroviral drugs are frequently prescribed to

  19. Formulation, optimization, and evaluation of self-emulsifying drug delivery systems of nevirapine.

    Science.gov (United States)

    Chintalapudi, Ramprasad; Murthy, T E G K; Lakshmi, K Rajya; Manohar, G Ganesh

    2015-01-01

    The aim of the present study was to formulate and optimize the self-emulsifying drug delivery systems (SEDDS) of nevirapine (NVP) by use of 2(2) factorial designs to enhance the oral absorption of NVP by improving its solubility, dissolution rate, and diffusion profile. SEDDS are the isotropic mixtures of oil, surfactant, co-surfactant and drug that form oil in water microemulsion when introduced into the aqueous phase under gentle agitation. Solubility of NVP in different oils, surfactants, and co-surfactants was determined for the screening of excipients. Pseudo-ternary phase diagrams were constructed by the aqueous titration method, and formulations were developed based on the optimum excipient combinations with the help of data obtained through the maximum micro emulsion region containing combinations of oil, surfactant, and co-surfactant. The formulations of SEDDS were optimized by 2(2) factorial designs. The optimum formulation of SEDDS contains 32.5% oleic acid, 44.16% tween 20, and 11.9% polyethylene glycol 600 as oil, surfactant, and co-surfactant respectively. The SEDDS was evaluated for the following drug content, self-emulsification time, rheological properties, zeta potential, in vitro diffusion studies, thermodynamic stability studies, and in vitro dissolution studies. An increase in dissolution was achieved by SEDDS compared to pure form of NVP. Overall, this study suggests that the dissolution and oral bioavailability of NVP could be improved by SEDDS technology.

  20. Review of the treatment of psoriatic arthritis with biological agents: choice of drug for initial therapy and switch therapy for non-responders.

    Science.gov (United States)

    D'Angelo, Salvatore; Tramontano, Giuseppina; Gilio, Michele; Leccese, Pietro; Olivieri, Ignazio

    2017-01-01

    Psoriatic arthritis (PsA) is a heterogeneous chronic inflammatory disease with a broad clinical spectrum and variable course. It can involve musculoskeletal structures as well as skin, nails, eyes, and gut. The management of PsA has changed tremendously in the last decade, thanks to an earlier diagnosis, an advancement in pharmacological therapies, and a wider application of a multidisciplinary approach. The commercialization of tumor necrosis factor inhibitors (adalimumab, certolizumab pegol, etanercept, golimumab, and infliximab) as well as interleukin (IL)-12/23 (ustekinumab) and IL-17 (secukinumab) inhibitors is representative of a revolution in the treatment of PsA. No evidence-based strategies are currently available for guiding the rheumatologist to prescribe biological drugs. Several international and national recommendation sets are currently available with the aim to help rheumatologists in everyday clinical practice management of PsA patients treated with biological therapy. Since no specific biological agent has been demonstrated to be more effective than others, the drug choice should be made according to the available safety data, the presence of extra-articular manifestations, the patient's preferences (e.g., administration route), and the drug price. However, future studies directly comparing different biological drugs and assessing the efficacy of treatment strategies specific for PsA are urgently needed.

  1. Otimizando o componente farmacológico da terapia integrada da vertigem Optimizing the pharmacological component of integrated balance therapy

    Directory of Open Access Journals (Sweden)

    Maurício Malavasi Ganança

    2007-02-01

    Full Text Available A farmacoterapia é opção importante no tratamento das vestibulopatias periféricas. OBJETIVO: Identificar a medicação que otimiza a terapia integrada da vertigem (TIV na doença de Ménière e em outras vestibulopatias periféricas. MATERIAL E MÉTODO: Estudo de casos em que pacientes com doença de Ménière ou outras vestibulopatias periféricas receberam TIV com betaistina, cinarizina, clonazepam, flunarizina, Ginkgo biloba ou sem medicação durante 120 dias. RESULTADOS: Na doença de Ménière, TIV com qualquer um dos medicamentos foi mais eficaz do que TIV sem medicação, após 60 dias; a betaistina foi mais efetiva que todas as outras drogas, após 60 e 120 dias. Nas outras vestibulopatias periféricas, diferenças significantes foram observadas entre TIV com betaistina, cinarizina, clonazepam ou flunarizina e TIV sem medicação após 60 dias e todas as drogas foram mais efetivas que TIV sem medicação após 120 dias; betaistina, cinarizina ou clonazepam foram igualmente efetivos e betaistina foi mais efetiva que flunarizina e Ginkgo biloba. Os tratamentos foram bem tolerados. CONCLUSÕES: TIV incluindo medicação é mais efetiva que sem medicação na doença de Ménière ou em outras vestibulopatias periféricas. Betaistina foi o medicamento mais efetivo na doença de Ménière e tão eficaz quanto cinarizina ou clonazepam em outras vestibulopatias periféricas.Drug treatment is an important option for the treatment of peripheral vestibular diseases. AIM: To identify the drug component associated with optimal integrated balance therapy (IBT for Ménière’s disease or other peripheral vestibular disorders. MATERIALS AND METHODS: Analysis of a series of patients with Ménière’s disease patients or patients with other peripheral vestibular disorders that received IBT involving either no medication or betahistine, cinnarizine, clonazepam, flunarizine or Ginkgo biloba during 120 days. RESULTS: In Ménière’s disease

  2. Normalization of doxorubicin release from graphene oxide: New approach for optimization of effective parameters on drug loading.

    Science.gov (United States)

    Hashemi, Mohadeseh; Yadegari, Amir; Yazdanpanah, Ghasem; Omidi, Meisam; Jabbehdari, Sayena; Haghiralsadat, Fatemeh; Yazdian, Fatemeh; Tayebi, Lobat

    2017-05-01

    Graphene oxide (GO) has been recently introduced as a suitable anticancer drug carrier, which could be loaded with doxorubicin (DOX) as a general chemotherapy agent. Herein, the attempts were made to optimize the effective parameters on both loading and release of DOX on GO. GO and GO-DOX were characterized using transition electron microscopy , zeta potential, Raman spectroscopy, UV-visible spectroscopy, and Fourier transform infrared spectroscopy. In addition, loading and releasing behaviors of DOX on GO were studied in terms of different temperature and pH values. The primary optimized values of pH and temperature for best-loaded amount of DOX were 8.9 and 309 K, respectively. Moreover, we found that the smallest amount of released DOX, in pH of cancer microenvironment (5.4), occurs when DOX had been previously loaded in pH 7.8 and 310 K. Although the highest amount of loaded DOX was in basic pH, the results of efficient release of DOX from the GO-DOX complex and also cellular toxicity assay revealed that the best pH for loading of DOX on GO was 7.8. Therefore, in addition to optimization of parameters for efficient loading of DOX on GO, this study suggested that normalization of a released drug compared with the amount of a loaded drug could be a new approach for optimization of drug loading on nanocarriers. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  3. Time-oriented experimental design method to optimize hydrophilic matrix formulations with gelation kinetics and drug release profiles.

    Science.gov (United States)

    Shin, Sangmun; Choi, Du Hyung; Truong, Nguyen Khoa Viet; Kim, Nam Ah; Chu, Kyung Rok; Jeong, Seong Hoon

    2011-04-04

    A new experimental design methodology was developed by integrating the response surface methodology and the time series modeling. The major purposes were to identify significant factors in determining swelling and release rate from matrix tablets and their relative factor levels for optimizing the experimental responses. Properties of tablet swelling and drug release were assessed with ten factors and two default factors, a hydrophilic model drug (terazosin) and magnesium stearate, and compared with target values. The selected input control factors were arranged in a mixture simplex lattice design with 21 experimental runs. The obtained optimal settings for gelation were PEO, LH-11, Syloid, and Pharmacoat with weight ratios of 215.33 (88.50%), 5.68 (2.33%), 19.27 (7.92%), and 3.04 (1.25%), respectively. The optimal settings for drug release were PEO and citric acid with weight ratios of 191.99 (78.91%) and 51.32 (21.09%), respectively. Based on the results of matrix swelling and drug release, the optimal solutions, target values, and validation experiment results over time were similar and showed consistent patterns with very small biases. The experimental design methodology could be a very promising experimental design method to obtain maximum information with limited time and resources. It could also be very useful in formulation studies by providing a systematic and reliable screening method to characterize significant factors in the sustained release matrix tablet. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. A dual-targeting strategy for enhanced drug delivery and synergistic therapy based on thermosensitive nanoparticles.

    Science.gov (United States)

    Wang, Mingxin; You, Chaoqun; Gao, Zhiguo; Wu, Hongshuai; Sun, Baiwang; Zhu, Xiaoli; Chen, Renjie

    2018-08-01

    The functionalized nanoparticles have been widely studied and reported as carriers of drug transport recently. Furthermore, many groups have focused more on developing novel and efficient treatment methods, such as photodynamic therapy and photothermal therapy, since both therapies have shown inspiring potential in the application of antitumor. The mentioned treatments exhibited the superiority of cooperative manner and showed the ability to compensate for the adverse effects caused by conventional monotherapy in proposed strategies. In view of the above descriptions, we formulated a thermosensitive drug delivery system, which achieved the enhanced delivery of cisplatin and two photosensitizers (ICG and Ce6) by dual-targeting traction. Drawing on the thin film hydration method, cisplatin and photosensitizers were encapsulated inside nanoparticles. Meanwhile, the targeting peptide cRGD and targeting molecule folate can be modified on the surface of nanoparticles to realize the active identification of tumor cells. The measurements of dynamic light scattering showed that the prepared nanoparticles had an ideal dispersibility and uniform particle size of 102.6 nm. On the basis of the results observed from confocal laser scanning microscope, the modified nanoparticles were more efficient endocytosed by MCF-7 cells as a contrast to SGC-7901 cells. Photothermal conversion-triggered drug release and photo-therapies produced a significant apoptosis rate of 85.9% on MCF-7 cells. The distinguished results made it believed that the formulated delivery system had conducted great efforts and innovations for the realization of concise collaboration and provided a promising strategy for the treatment of breast cancer.

  5. Computational Methods Used in Hit-to-Lead and Lead Optimization Stages of Structure-Based Drug Discovery.

    Science.gov (United States)

    Heifetz, Alexander; Southey, Michelle; Morao, Inaki; Townsend-Nicholson, Andrea; Bodkin, Mike J

    2018-01-01

    GPCR modeling approaches are widely used in the hit-to-lead (H2L) and lead optimization (LO) stages of drug discovery. The aims of these modeling approaches are to predict the 3D structures of the receptor-ligand complexes, to explore the key interactions between the receptor and the ligand and to utilize these insights in the design of new molecules with improved binding, selectivity or other pharmacological properties. In this book chapter, we present a brief survey of key computational approaches integrated with hierarchical GPCR modeling protocol (HGMP) used in hit-to-lead (H2L) and in lead optimization (LO) stages of structure-based drug discovery (SBDD). We outline the differences in modeling strategies used in H2L and LO of SBDD and illustrate how these tools have been applied in three drug discovery projects.

  6. Small-molecule inhibition of HIV pre-mRNA splicing as a novel antiretroviral therapy to overcome drug resistance.

    Directory of Open Access Journals (Sweden)

    Nadia Bakkour

    2007-10-01

    Full Text Available The development of multidrug-resistant viruses compromises antiretroviral therapy efficacy and limits therapeutic options. Therefore, it is an ongoing task to identify new targets for antiretroviral therapy and to develop new drugs. Here, we show that an indole derivative (IDC16 that interferes with exonic splicing enhancer activity of the SR protein splicing factor SF2/ASF suppresses the production of key viral proteins, thereby compromising subsequent synthesis of full-length HIV-1 pre-mRNA and assembly of infectious particles. IDC16 inhibits replication of macrophage- and T cell-tropic laboratory strains, clinical isolates, and strains with high-level resistance to inhibitors of viral protease and reverse transcriptase. Importantly, drug treatment of primary blood cells did not alter splicing profiles of endogenous genes involved in cell cycle transition and apoptosis. Thus, human splicing factors represent novel and promising drug targets for the development of antiretroviral therapies, particularly for the inhibition of multidrug-resistant viruses.

  7. Effectiveness of group cognitive therapy about opium addict complications on attitude of adolescents with drug dependent parents

    Directory of Open Access Journals (Sweden)

    Kaveh Hojjat

    2015-12-01

    Full Text Available Background and Aim: Statistics show that 30% to 40 % of  opium addicted fathers’ children are prone to substance abuse in the future. The present study aimed at assessing the effectiveness of cognitive therapy approach  to attitude changing of adolescents with substance dependent fathers. Materials and Methods:  In this controlled. field-trail randomized study. .data collection tool was “attitude to addiction questionnaire”. The study population was all male students in the first grade of high school in Maneh - Samalghan city. . Six sessions of group cognitive therapy based on the effectiveness of drug side-effects in drug-addicted fathers’ adolescent children’s attitude were held. The above-mentioned questionnaire was filled out before and after intervention. The obtained data  was fed into SPSS software (V: 16 using. Independent t-test .and paired t-test were used for analysis and P<0.05 was taken as the significant level. Results:  There were no significant differences between the two groups in pre-test regarding their attitude about drug abuse (P=.20%. Mean score variance from pre-test to post-test in the intervention group decreased, but in the control group, it showed a slight increase. This means that the intervention reduced the positive attitude towards drugs, but the changes were not statistically significant (p=0.57. Besides, among ten factors decisive in an individual’s attitude about addiction, only group cognitive therapy  was able  to decrease mean points of an individual’s attitude about drug abuse .. Significantly (P = 0.04. Conclusion: It was found that group cognitive therapy education about opium  addict complicationsdidn`t have a significant effect on the attitude of the students with addicted fathers. Thus, a change of adolescents’ attitude requires more research.

  8. Application of a drug delivery system using ultrasound and nano/microbubbles for anti-angiogenic therapy

    International Nuclear Information System (INIS)

    Horie, Sachiko; Kodama, Tetsuya; Sato, Yasushi

    2017-01-01

    The drug delivery system using ultrasound and nano/microbubbles is a molecular delivery approach using the mechanism of sonoporation. With sonoporation, an endothelium-derived negative-feedback regulator of angiogenesis, Vasohibin-1 (VASH1), was introduced specifically into tumor vessels. We found VASH1 in tumor vessels induce normalization of tumor vessels and inhibited tumor growth. A recent topic regarding tumor angiogenesis is vascular normalization. Tumor vessels are abnormal or immature that cause hyperpermeability and impaired blood flow. Tumor vascular normalization improves blood flow and tissue hypoxia, which increase the effectiveness of chemotherapy and radiotherapy and reduce tumor cell malignancy. In this review, application of drug delivery system using ultrasound for an anti-angiogenic therapy, a tumor vessel normalization therapy to treat cancer, is summarized. (author)

  9. HIV drug resistance early warning indicators in cohorts of individuals starting antiretroviral therapy between 2004 and 2009: World Health Organization global report from 50 countries.

    Science.gov (United States)

    Bennett, Diane E; Jordan, Michael R; Bertagnolio, Silvia; Hong, Steven Y; Ravasi, Giovanni; McMahon, James H; Saadani, Ahmed; Kelley, Karen F

    2012-05-01

    The World Health Organization developed a set of human immunodeficiency virus drug resistance (HIVDR) early warning indicators (EWIs) to assess antiretroviral therapy clinic and program factors associated with HIVDR. EWIs are monitored by abstracting data routinely recorded in clinical records, and the results enable clinics and program managers to identify problems that should be addressed to minimize preventable emergence of HIVDR in clinic populations. As of June 2011, 50 countries monitored EWIs, covering 131 686 patients initiating antiretroviral treatment between 2004 and 2009 at 2107 clinics. HIVDR prevention is associated with patient care (appropriate prescribing and patient monitoring), patient behavior (adherence), and clinic/program management efforts to reduce treatment interruptions (follow up, retention on first-line ART, procurement and supply management of antiretroviral drugs). EWIs measure these factors and the results have been used to optimize patient and population treatment outcomes.

  10. Inhalation Therapy in Horses.

    Science.gov (United States)

    Cha, Mandy L; Costa, Lais R R

    2017-04-01

    This article discusses the benefits and limitations of inhalation therapy in horses. Inhalation drug therapy delivers the drug directly to the airways, thereby achieving maximal drug concentrations at the target site. Inhalation therapy has the additional advantage of decreasing systemic side effects. Inhalation therapy in horses is delivered by the use of nebulizers or pressured metered dose inhalers. It also requires the use of a muzzle or nasal mask in horses. Drugs most commonly delivered through inhalation drug therapy in horses include bronchodilators, antiinflammatories, and antimicrobials. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Prognosis of medical and economic efficiency of a patient-oriented program implementation aimed at formation of adherenceto drug therapy among rural population

    Directory of Open Access Journals (Sweden)

    E A Kitaeva

    2018-02-01

    Full Text Available Aim. Development and implementation of novel organizational management technologies of medical care aimed at formation of adherence to drug therapy in patients from rural areas and calculation of medical and economic efficiency of implementation of this project. Methods. The study subject was the population of Rybnaya Sloboda district of the Republic of Tatarstan. Patient recruitment into the groups was conducted in the polyclinic of Rybnaya Sloboda central regional hospital. The duration of the study was 6 months for each of two groups with further follow-up and evaluation of adherence to therapy for 2 months. Results. Annually stroke affects 5.6 to 6.6 million of people around the world, 35% of whom die in the acute period. Recently, serious rejuvenation of cardiovascular disorders has been observed. The main reason for such trend is low patients’ compliance to drug therapy. And patients’ compliance itself allows significantly decreasing the risk of cardiovascular complications. The article discussed the issues of low compliance to drug therapy, presents the methods of its formation in patients from rural area. The examples of foreign and Russian experience of increasing patients’ compliance to drug therapy are described and the key intervention points for patients are determined. On the basis of conducted analysis, implementation was developed and suggested for patient-oriented program aimed at formation of adherence to drug therapy of rural population. Also, the authors performed evaluation of medical and economic efficiency of implementation of a patient-oriented program aimed at formation of adherence to drug therapy of rural population (assessment of expenditures for medications, hospital stay, incapacity related to the main disease; evaluation of expenditures for prevention of complications and disability. Conclusion. Effective organization of prophylactic activity is of great importance for prevention of cardiovascular disease

  12. Current trends in immunosuppressive therapies for renal transplant recipients.

    Science.gov (United States)

    Lee, Ruth-Ann; Gabardi, Steven

    2012-11-15

    Current trends in immunosuppressive therapies for renal transplant recipients are reviewed. The common premise for immunosuppressive therapies in renal transplantation is to use multiple agents to work on different immunologic targets. The use of a multidrug regimen allows for pharmacologic activity at several key steps in the T-cell replication process and lower dosages of each individual agent, thereby producing fewer drug-related toxicities. In general, there are three stages of clinical immunosuppression: induction therapy, maintenance therapy, and treatment of an established acute rejection episode. Only immunosuppressive therapies used for maintenance therapy are discussed in detail in this review. The most common maintenance immunosuppressive agents can be divided into five classes: (1) the calcineurin inhibitors (CNIs) (cyclosporine and tacrolimus), (2) costimulation blockers (belatacept), (3) mammalian target of rapamycin inhibitors (sirolimus and everolimus), (4) antiproliferatives (azathioprine and mycophenolic acid derivatives), and (5) corticosteroids. Immunosuppressive regimens vary among transplantation centers but most often include a CNI and an adjuvant agent, with or without corticosteroids. Selection of appropriate immunosuppressive regimens should be patient specific, taking into account the medications' pharmacologic properties, adverse-event profile, and potential drug-drug interactions, as well as the patient's preexisting diseases, risk of rejection, and medication regimen. Advancements in transplant immunosuppression have resulted in a significant reduction in acute cellular rejection and a modest increase in long-term patient and graft survival. Because the optimal immunosuppression regimen is still unknown, immunosuppressant use should be influenced by institutional preference and tailored to the immunologic risk of the patient and adverse-effect profile of the drug.

  13. Safety aspects of protease inhibitors for chronic hepatitis C: adverse events and drug-to-drug interactions

    Directory of Open Access Journals (Sweden)

    Rosângela Teixeira

    Full Text Available The standard of care therapy of chronic hepatitis C with the combination of pegylated interferon and ribavirin for 24 or 48 weeks was a remarkable accomplishment of the past decade. However, sustained virological responses rates of about 80% (genotypes 2-3 and 50% (geno 3 type 1 were not satisfactory especially for patients infected with genotype 1. Important advances in the biology of HCV have made possible the development of the direct-acting antiviral agents boceprevir and telaprevir with substantial increase in the rates of sustained virological response with shorter duration of therapy for a large number of patients. However, the complexity of triple therapy is higher and several new side effects are expected suggesting greater expertise in the patient management. Anemia and disgeusia are frequent with boceprevir while cutaneous rash, ranging from mild to severe, is expected with telaprevir. Higher risk of drug-drug interactions demand further clinical consideration of the previous well-known adverse events of pegylated interferon and ribavirin. Identification and prompt management of these potential new problems with boceprevir and telaprevir are crucial in clinical practice for optimizing treatment and assuring safety outcomes to HCV-genotype 1 patients.

  14. Safety aspects of protease inhibitors for chronic hepatitis C: adverse events and drug-to-drug interactions

    Directory of Open Access Journals (Sweden)

    Rosângela Teixeira

    2013-04-01

    Full Text Available The standard of care therapy of chronic hepatitis C with the combination of pegylated interferon and ribavirin for 24 or 48 weeks was a remarkable accomplishment of the past decade. However, sustained virological responses rates of about 80% (genotypes 2-3 and 50% (geno 3 type 1 were not satisfactory especially for patients infected with genotype 1. Important advances in the biology of HCV have made possible the development of the direct-acting antiviral agents boceprevir and telaprevir with substantial increase in the rates of sustained virological response with shorter duration of therapy for a large number of patients. However, the complexity of triple therapy is higher and several new side effects are expected suggesting greater expertise in the patient management. Anemia and disgeusia are frequent with boceprevir while cutaneous rash, ranging from mild to severe, is expected with telaprevir. Higher risk of drug-drug interactions demand further clinical consideration of the previous well-known adverse events of pegylated interferon and ribavirin. Identification and prompt management of these potential new problems with boceprevir and telaprevir are crucial in clinical practice for optimizing treatment and assuring safety outcomes to HCV-genotype 1 patients.

  15. Seeking optimal renal replacement therapy delivery in intensive care units.

    Science.gov (United States)

    Kocjan, Marinka; Brunet, Fabrice P

    2010-01-01

    Globally, critical care environments within health care organizations strive to provide optimal quality renal replacement therapy (RRT), an artificial replacement for lost kidney function. Examination of RRT delivery model literature and a case study review of the multidisciplinary-mixed RRT delivery model utilized within a closed medical surgical intensive care unit illustrates the organizational and clinical management of specialized resource and multidisciplinary roles. The successful utilization of a specific RRT delivery model is dependent upon resource availability.

  16. IGF-1 receptor targeted nanoparticles for image-guided therapy of stroma-rich and drug resistant human cancer.

    Science.gov (United States)

    Zhou, Hongyu; Qian, Weiping; Uckun, Fatih M; Zhou, Zhiyang; Wang, Liya; Wang, Andrew; Mao, Hui; Yang, Lily

    2016-04-17

    Low drug delivery efficiency and drug resistance from highly heterogeneous cancer cells and tumor microenvironment represent major challenges in clinical oncology. Growth factor receptor, IGF-1R, is overexpressed in both human tumor cells and tumor associated stromal cells. The level of IGF-1R expression is further up-regulated in drug resistant tumor cells. We have developed IGF-1R targeted magnetic iron oxide nanoparticles (IONPs) carrying multiple anticancer drugs into human tumors. This IGF-1R targeted theranostic nanoparticle delivery system has an iron core for non-invasive MR imaging, amphiphilic polymer coating to ensure the biocompatibility as well as for drug loading and conjugation of recombinant human IGF-1 as targeting molecules. Chemotherapy drugs, Doxorubicin (Dox), was encapsulated into the polymer coating and/or conjugated to the IONP surface by coupling with the carboxyl groups. The ability of IGF1R targeted theranostic nanoparticles to penetrate tumor stromal barrier and enhance tumor cell killing has been demonstrated in human pancreatic cancer patient tissue derived xenograft (PDX) models. Repeated systemic administrations of those IGF-1R targeted theranostic IONP carrying Dox led to breaking the tumor stromal barrier and improved therapeutic effect. Near infrared (NIR) optical and MR imaging enabled noninvasive monitoring of nanoparticle-drug delivery and therapeutic responses. Our results demonstrated that IGF-1R targeted nanoparticles carrying multiple drugs are promising combination therapy approaches for image-guided therapy of stroma-rich and drug resistant human cancer, such as pancreatic cancer.

  17. IGF-1 receptor targeted nanoparticles for image-guided therapy of stroma-rich and drug resistant human cancer

    Science.gov (United States)

    Zhou, Hongyu; Qian, Weiping; Uckun, Fatih M.; Zhou, Zhiyang; Wang, Liya; Wang, Andrew; Mao, Hui; Yang, Lily

    2016-05-01

    Low drug delivery efficiency and drug resistance from highly heterogeneous cancer cells and tumor microenvironment represent major challenges in clinical oncology. Growth factor receptor, IGF-1R, is overexpressed in both human tumor cells and tumor associated stromal cells. The level of IGF-1R expression is further up-regulated in drug resistant tumor cells. We have developed IGF-1R targeted magnetic iron oxide nanoparticles (IONPs) carrying multiple anticancer drugs into human tumors. This IGF-1R targeted theranostic nanoparticle delivery system has an iron core for non-invasive MR imaging, amphiphilic polymer coating to ensure the biocompatibility as well as for drug loading and conjugation of recombinant human IGF-1 as targeting molecules. Chemotherapy drugs, Doxorubicin (Dox), was encapsulated into the polymer coating and/or conjugated to the IONP surface by coupling with the carboxyl groups. The ability of IGF1R targeted theranostic nanoparticles to penetrate tumor stromal barrier and enhance tumor cell killing has been demonstrated in human pancreatic cancer patient tissue derived xenograft (PDX) models. Repeated systemic administrations of those IGF-1R targeted theranostic IONP carrying Dox led to breaking the tumor stromal barrier and improved therapeutic effect. Near infrared (NIR) optical and MR imaging enabled noninvasive monitoring of nanoparticle-drug delivery and therapeutic responses. Our results demonstrated that IGF-1R targeted nanoparticles carrying multiple drugs are promising combination therapy approaches for image-guided therapy of stroma-rich and drug resistant human cancer, such as pancreatic cancer.

  18. Mechanisms of termination and prevention of atrial fibrillation by drug therapy

    Science.gov (United States)

    Workman, AJ; Smith, GL; Rankin, AC

    2011-01-01

    Atrial fibrillation (AF) is a disorder of the rhythm of electrical activation of the cardiac atria. It is the most common cardiac arrhythmia, has multiple aetiologies, and increases the risk of death from stroke. Pharmacological therapy is the mainstay of treatment for AF, but currently available anti-arrhythmic drugs have limited efficacy and safety. An improved understanding of how anti-arrhythmic drugs affect the electrophysiological mechanisms of AF initiation and maintenance, in the setting of the different cardiac diseases that predispose to AF, is therefore required. A variety of animal models of AF has been developed, to represent and control the pathophysiological causes and risk factors of AF, and to permit the measurement of detailed and invasive parameters relating to the associated electrophysiological mechanisms of AF. The purpose of this review is to examine, consolidate and compare available relevant data on in-vivo electrophysiological mechanisms of AF suppression by currently approved and investigational anti-arrhythmic drugs in such models. These include the Vaughan Williams class I-IV drugs, namely Na+ channel blockers, β-adrenoceptor antagonists, action potential prolonging drugs, and Ca2+ channel blockers; the “upstream therapies”, e.g., angiotensin converting enzyme inhibitors, statins and fish oils; and a variety of investigational drugs such as “atrial-selective” multiple ion channel blockers, gap junction-enhancers, and intracellular Ca2+-handling modulators. It is hoped that this will help to clarify the main electrophysiological mechanisms of action of different and related drug types in different disease settings, and the likely clinical significance and potential future exploitation of such mechanisms. PMID:21334377

  19. Formulation and optimization of a novel oral fast dissolving film containing drug nanoparticles by Box-Behnken design-response surface methodology.

    Science.gov (United States)

    Shen, Chengying; Shen, Baode; Xu, He; Bai, Jinxia; Dai, Ling; Lv, Qingyuan; Han, Jin; Yuan, Hailong

    2014-05-01

    The purpose of this study was to design and optimize a novel drug nanoparticles-loaded oral fast dissolving film (NP-OFDF) using Box-Behnken design-response surface methodology. Drug nanosuspensions produced from high pressure homogenization were transformed into oral fast dissolving film containing drug nanoparticles by casting methods. Herpetrione (HPE), a novel and potent antiviral agent with poor water solubility that was extracted from Herpetospermum caudigerum, was studied as the model drug. The formulations of oral fast dissolving film containing HPE nanoparticles (HPE-NP-OFDF) were optimized by employing Box-Behnken design-response surface methodology and then systematically characterized. The optimized HPE-NP-OFDF was disintegrated in water within 20 s with reconstituted nanosuspensions particle size of 299.31 nm. Scanning electron microscopy (SEM) images showed that well-dispersed HPE nanoparticles with slight adhesion to each other were exposed on the surface of film or embedded in film. The X-ray diffractogram (XRD) analysis suggested that HPE in the HPE-NP-OFDF was in the amorphous state. In-vitro release study, approximate 77.23% of HPE was released from the HPE-NP-OFDF within 5 min, which was more than eight times compared with that of HPE raw materials (9.57%). The optimized HPE-NP-OFDF exhibits much faster drug release rates compared to HPE raw material, which indicated that this novel NP-OFDF may provide a potential opportunity for oral delivery of drugs with poor water solubility.

  20. 3-D Bioprinting of Neural Tissue for Applications in Cell Therapy and Drug Screening

    Directory of Open Access Journals (Sweden)

    Michaela Thomas

    2017-11-01

    Full Text Available Neurodegenerative diseases affect millions of individuals in North America and cost the health-care industry billions of dollars for treatment. Current treatment options for degenerative diseases focus on physical rehabilitation or drug therapies, which temporarily mask the effects of cell damage, but quickly lose their efficacy. Cell therapies for the central nervous system remain an untapped market due to the complexity involved in growing neural tissues, controlling their differentiation, and protecting them from the hostile environment they meet upon implantation. Designing tissue constructs for the discovery of better drug treatments are also limited due to the resolution needed for an accurate cellular representation of the brain, in addition to being expensive and difficult to translate to biocompatible materials. 3-D printing offers a streamlined solution for engineering brain tissue for drug discovery or, in the future, for implantation. New microfluidic and bioplotting devices offer increased resolution, little impact on cell viability and have been tested with several bioink materials including fibrin, collagen, hyaluronic acid, poly(caprolactone, and poly(ethylene glycol. This review details current efforts at bioprinting neural tissue and highlights promising avenues for future work.

  1. Tenofovir-based regimens associated with less drug resistance in HIV-1-infected Nigerians failing first-line antiretroviral therapy.

    Science.gov (United States)

    Etiebet, Mary-Ann A; Shepherd, James; Nowak, Rebecca G; Charurat, Man; Chang, Harry; Ajayi, Samuel; Elegba, Olufunmilayo; Ndembi, Nicaise; Abimiku, Alashle; Carr, Jean K; Eyzaguirre, Lindsay M; Blattner, William A

    2013-02-20

    In resource-limited settings, HIV-1 drug resistance testing to guide antiretroviral therapy (ART) selection is unavailable. We retrospectively conducted genotypic analysis on archived samples from Nigerian patients who received targeted viral load testing to confirm treatment failure and report their drug resistance mutation patterns. Stored plasma from 349 adult patients on non-nucleoside reverse transcriptase inhibitor (NNRTI) regimens was assayed for HIV-1 RNA viral load, and samples with more than 1000 copies/ml were sequenced in the pol gene. Analysis for resistance mutations utilized the IAS-US 2011 Drug Resistance Mutation list. One hundred and seventy-five samples were genotyped; the majority of the subtypes were G (42.9%) and CRF02_AG (33.7%). Patients were on ART for a median of 27 months. 90% had the M184V/I mutation, 62% had at least one thymidine analog mutation, and 14% had the K65R mutation. 97% had an NNRTI resistance mutation and 47% had at least two etravirine-associated mutations. In multivariate analysis tenofovir-based regimens were less likely to have at least three nucleoside reverse transcriptase inhibitor (NRTI) mutations after adjusting for subtype, previous ART, CD4, and HIV viral load [P < 0.001, odds ratio (OR) 0.04]. 70% of patients on tenofovir-based regimens had at least two susceptible NRTIs to include in a second-line regimen compared with 40% on zidovudine-based regimens (P = 0.04, OR = 3.4). At recognition of treatment failure, patients on tenofovir-based first-line regimens had fewer NRTI drug-resistant mutations and more active NRTI drugs available for second-line regimens. These findings can inform strategies for ART regimen sequencing to optimize long-term HIV treatment outcomes in low-resource settings.

  2. Disintegration mediated controlled release supersaturating solid dispersion formulation of an insoluble drug: design, development, optimization, and in vitro evaluation.

    Science.gov (United States)

    Verma, Sanjay; Rudraraju, Varma S

    2015-02-01

    The objective of this study was to develop a solid dispersion based controlled release system for drug substances that are poorly soluble in water. A wax-based disintegration mediated controlled release system was designed based on the fact that an amorphous drug can crystallize out from hydrophilic matrices. For this study, cilostazol (CIL) was selected as the model drug, as it exhibits poor aqueous solubility. An amorphous solid dispersion was prepared to assist the drug to attain a supersaturated state. Povidone was used as carrier for solid dispersion (spray drying technique), hydrogenated vegetable oil (HVO) as wax matrix former, and sodium carboxymethyl cellulose (NaCMC) as a disintegrant. The extreme vertices mixture design (EVMD) was applied to optimize the designed and developed composition. The optimized formulation provided a dissolution pattern which was equivalent to the predicted curve, ascertaining that the optimal formulation could be accomplished with EVMD. The release profile of CIL was described by the Higuchi's model better than zero-order, first-order, and Hixson-Crowell's model, which indicated that the supersaturation state of CIL dominated to allow drug release by diffusion rather than disintegration regulated release as is generally observed by Hixson-Crowell's model. The optimized composition was evaluated for disintegration, dissolution, XRD, and stability studies. It was found that the amorphous state as well as the dissolution profile of CIL was maintained under the accelerated conditions of 40°C/75% RH for 6 months.

  3. Intratumor heterogeneity alters most effective drugs in designed combinations.

    Science.gov (United States)

    Zhao, Boyang; Hemann, Michael T; Lauffenburger, Douglas A

    2014-07-22

    The substantial spatial and temporal heterogeneity observed in patient tumors poses considerable challenges for the design of effective drug combinations with predictable outcomes. Currently, the implications of tissue heterogeneity and sampling bias during diagnosis are unclear for selection and subsequent performance of potential combination therapies. Here, we apply a multiobjective computational optimization approach integrated with empirical information on efficacy and toxicity for individual drugs with respect to a spectrum of genetic perturbations, enabling derivation of optimal drug combinations for heterogeneous tumors comprising distributions of subpopulations possessing these perturbations. Analysis across probabilistic samplings from the spectrum of various possible distributions reveals that the most beneficial (considering both efficacy and toxicity) set of drugs changes as the complexity of genetic heterogeneity increases. Importantly, a significant likelihood arises that a drug selected as the most beneficial single agent with respect to the predominant subpopulation in fact does not reside within the most broadly useful drug combinations for heterogeneous tumors. The underlying explanation appears to be that heterogeneity essentially homogenizes the benefit of drug combinations, reducing the special advantage of a particular drug on a specific subpopulation. Thus, this study underscores the importance of considering heterogeneity in choosing drug combinations and offers a principled approach toward designing the most likely beneficial set, even if the subpopulation distribution is not precisely known.

  4. A controlled evaluation of family behavior therapy in concurrent child neglect and drug abuse.

    Science.gov (United States)

    Donohue, Brad; Azrin, Nathan H; Bradshaw, Kelsey; Van Hasselt, Vincent B; Cross, Chad L; Urgelles, Jessica; Romero, Valerie; Hill, Heather H; Allen, Daniel N

    2014-08-01

    Approximately 50% of child protective service (CPS) referrals abuse drugs; yet, existing treatment studies in this population have been limited to case examinations. Therefore, a family-based behavioral therapy was evaluated in mothers referred from CPS for child neglect and drug abuse utilizing a controlled experimental design. Seventy-two mothers evidencing drug abuse or dependence and child neglect were randomly assigned to family behavior therapy (FBT) or treatment as usual (TAU). Participants were assessed at baseline, 6 months, and 10 months postrandomization. As hypothesized, intent-to-treat repeated measures analyses revealed mothers referred for child neglect not due to their children being exposed to illicit drugs demonstrated better outcomes in child maltreatment potential from baseline to 6- and 10-month postrandomization assessments when assigned to FBT, as compared with TAU mothers and FBT mothers who were referred due to child drug exposure. Similar results occurred for hard drug use from baseline to 6 and 10 months postrandomization. However, TAU mothers referred due to child drug exposure were also found to decrease their hard drug use more than TAU mothers of non-drug-exposed children and FBT mothers of drug-exposed children at 6 and 10 months postrandomization. Although effect sizes for mothers assigned to FBT were slightly larger for marijuana use than TAU (medium vs. large), these differences were not statistically significant. Specific to secondary outcomes, mothers in FBT, relative to TAU, increased time employed from baseline to 6 and 10 months postrandomization. Mothers in FBT, compared to TAU, also decreased HIV risk from baseline to 6 months postrandomization. There were no differences in outcome between FBT and TAU for number of days children were in CPS custody and alcohol intoxication, although FBT mothers demonstrated marginal decreases (p = .058) in incarceration from baseline to 6 months postrandomization relative to TAU mothers

  5. Cost-effectiveness analysis of antithyroid drug therapy, 131I therapy and subtotal thyroidectomy for Graves' disease

    International Nuclear Information System (INIS)

    Yano, Fuzuki; Watanabe, Sadahiro; Hayashi, Katsumi; Kita, Tamotsu; Yamamoto, Masayoshi; Kosuda, Shigeru; Tanaka, Yuji

    2007-01-01

    The objective of this study was to assess the cost-effectiveness of antithyroid drug (ATD) therapy vs. radioiodine therapy (RIT) vs. subtotal thyroidectomy (STT) by calculating expected lifelong cost and utility based on Graves' disease patients' responses to questionnaires using a decision-tree sensitivity analysis and relevant variables. The decision-tree sensitivity analysis to determine expected lifelong cost and utility in Graves' disease patients was designed on the basis of the 4 competing strategies consisting of: (1) ATD therapy plus RIT strategy, (2) ATD therapy plus STT strategy, (3) low-fixed-dose (185 MBq) RIT alone strategy, and (4) high-fixed-dose (370 MBq) RIT alone strategy. One-way sensitivity analysis was designed in the ATD therapy plus RIT strategy, for replacement with RIT in place of ATD, ranging from a 1% incidence of ATD side effects to 30%. The low-fixed-dose RIT alone strategy was least costly, and the high-fixed-dose RIT alone strategy most costly. The lifelong utility of high-fixed-dose RIT alone strategy with a 5% rate of discounting was highest (lifelong utility for 30 years: 15.2/patient), and the utility of the ATD plus RIT strategy with 1% side effects of the ATD was lowest (14.1/patient). The cost-effectiveness ratio was lowest (yen 5 008/utility) in a low-fixed-dose RIT alone strategy. In conclusion, a low-fixed-dose RIT alone strategy is preferred treatments in view of cost-effectiveness ratio, and RIT should be used more widely in Japan. (author)

  6. WE-AB-209-09: Optimization of Rotational Arc Station Parameter Optimized Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Dong, P; Xing, L [Stanford University School of Medicine, Stanford, CA (United States); Ungun, B [Stanford University School of Medicine, Stanford, CA (United States); Stanford University School of Engineering, Stanford, CA (United States); Boyd, S [Stanford University School of Engineering, Stanford, CA (United States)

    2016-06-15

    Purpose: To develop a fast optimization method for station parameter optimized radiation therapy (SPORT) and show that SPORT is capable of improving VMAT in both plan quality and delivery efficiency. Methods: The angular space from 0° to 360° was divided into 180 station points (SPs). A candidate aperture was assigned to each of the SPs based on the calculation results using a column generation algorithm. The weights of the apertures were then obtained by optimizing the objective function using a state-of-the-art GPU based Proximal Operator Graph Solver (POGS) within seconds. Apertures with zero or low weight were thrown out. To avoid being trapped in a local minimum, a stochastic gradient descent method was employed which also greatly increased the convergence rate of the objective function. The above procedure repeated until the plan could not be improved any further. A weighting factor associated with the total plan MU also indirectly controlled the complexities of aperture shapes. The number of apertures for VMAT and SPORT was confined to 180. The SPORT allowed the coexistence of multiple apertures in a single SP. The optimization technique was assessed by using three clinical cases (prostate, H&N and brain). Results: Marked dosimetric quality improvement was demonstrated in the SPORT plans for all three studied cases. Prostate case: the volume of the 50% prescription dose was decreased by 22% for the rectum. H&N case: SPORT improved the mean dose for the left and right parotids by 15% each. Brain case: the doses to the eyes, chiasm and inner ears were all improved. SPORT shortened the treatment time by ∼1 min for the prostate case, ∼0.5 min for brain case, and ∼0.2 min for the H&N case. Conclusion: The superior dosimetric quality and delivery efficiency presented here indicates that SPORT is an intriguing alternative treatment modality.

  7. WE-AB-209-09: Optimization of Rotational Arc Station Parameter Optimized Radiation Therapy

    International Nuclear Information System (INIS)

    Dong, P; Xing, L; Ungun, B; Boyd, S

    2016-01-01

    Purpose: To develop a fast optimization method for station parameter optimized radiation therapy (SPORT) and show that SPORT is capable of improving VMAT in both plan quality and delivery efficiency. Methods: The angular space from 0° to 360° was divided into 180 station points (SPs). A candidate aperture was assigned to each of the SPs based on the calculation results using a column generation algorithm. The weights of the apertures were then obtained by optimizing the objective function using a state-of-the-art GPU based Proximal Operator Graph Solver (POGS) within seconds. Apertures with zero or low weight were thrown out. To avoid being trapped in a local minimum, a stochastic gradient descent method was employed which also greatly increased the convergence rate of the objective function. The above procedure repeated until the plan could not be improved any further. A weighting factor associated with the total plan MU also indirectly controlled the complexities of aperture shapes. The number of apertures for VMAT and SPORT was confined to 180. The SPORT allowed the coexistence of multiple apertures in a single SP. The optimization technique was assessed by using three clinical cases (prostate, H&N and brain). Results: Marked dosimetric quality improvement was demonstrated in the SPORT plans for all three studied cases. Prostate case: the volume of the 50% prescription dose was decreased by 22% for the rectum. H&N case: SPORT improved the mean dose for the left and right parotids by 15% each. Brain case: the doses to the eyes, chiasm and inner ears were all improved. SPORT shortened the treatment time by ∼1 min for the prostate case, ∼0.5 min for brain case, and ∼0.2 min for the H&N case. Conclusion: The superior dosimetric quality and delivery efficiency presented here indicates that SPORT is an intriguing alternative treatment modality.

  8. [Treatment of typical trigeminus neuralgias. Overview of the current state of drug and surgical therapy].

    Science.gov (United States)

    Möbius, E; Leopold, H C; Paulus, W M

    1984-10-11

    Carbamazepine continues to be the most useful drug in the treatment of trigeminal neuralgia. Diphenylhydantoin may be given in addition to or instead of Carbamazepine. Refractory cases may benefit from combination with Baclofen or Chlorphenesin. In cases of persistent pain the concomitant use of tricyclic antidepressant drugs is recommended. If pain continues in spite of multiple medical therapies or if serious side effects develop, then surgical procedures such as percutaneous controlled thermocoagulation or microvascular decompression are indicated. Percutaneous thermocoagulation is associated with the lowest mortality and morbidity rate and can easily be repeated. Microvascular decompression should especially be offered to young patients, who want to avoid any sensory disturbance of the face, and recommended for other patients for whom all other forms of therapy including percutaneous thermocoagulation have failed.

  9. Drug delivery system design and development for boron neutron capture therapy on cancer treatment

    International Nuclear Information System (INIS)

    Sherlock Huang, Lin-Chiang; Hsieh, Wen-Yuan; Chen, Jiun-Yu; Huang, Su-Chin; Chen, Jen-Kun; Hsu, Ming-Hua

    2014-01-01

    We have already synthesized a boron-containing polymeric micellar drug delivery system for boron neutron capture therapy (BNCT). The synthesized diblock copolymer, boron-terminated copolymers (Bpin-PLA-PEOz), consisted of biodegradable poly(D,L-lactide) (PLA) block and water-soluble polyelectrolyte poly(2-ethyl-2-oxazoline) (PEOz) block, and a cap of pinacol boronate ester (Bpin). In this study, we have demonstrated that synthesized Bpin-PLA-PEOz micelle has great potential to be boron drug delivery system with preliminary evaluation of biocompatibility and boron content. - Highlights: • Herein, we have synthesized boron-modified diblock copolymer. • Bpin-PLA-PEOz, which will be served as new boron containing vehicle for transporting the boron drug. • This boron containing Bpin-PLA-PEOz micelle was low toxicity can be applied to drug delivery

  10. Regional Lymphotropic Therapy in Combination with Low Level Laser Therapy for Treating Multi-Drug-Resistant Tuberculosis

    Directory of Open Access Journals (Sweden)

    Oksana Dogorova

    2016-03-01

    Full Text Available With the growing incidence of Multi-Drug-Resistant Tuberculosis (MDR-TB in newly identified patients, novel multimodality treatment methods are needed, aimed at reducing the time to sputum conversion and cavity healing, which would be applicable in MDR cases. Our experimental treatment consisted of the following: 1 chemotherapy based on the drug sensitivity profile, 2 local laser irradiation therapy for 25 days, and lymphotropic administration of isoniazid (to subcutaneous tissue in alternating locations: underarm area; fifth intercostal space along the sterna border; subclavian area where the first rib meets the sternum in a daily dose of 10mg/kg 5 times a week. This treatment was significantly more effective in newly detected destructive MDR-TB versus the standard Category IV regimen for MDR-TB in terms of reduced time for sputum culture conversion and cavity healing, estimated to be 6 months after initiation of treatment.

  11. Multi-targeted therapy for leprosy: insilico strategy to overcome multi drug resistance and to improve therapeutic efficacy.

    Science.gov (United States)

    Anusuya, Shanmugam; Natarajan, Jeyakumar

    2012-12-01

    Leprosy remains a major public health problem, since single and multi-drug resistance has been reported worldwide over the last two decades. In the present study, we report the novel multi-targeted therapy for leprosy to overcome multi drug resistance and to improve therapeutic efficacy. If multiple enzymes of an essential metabolic pathway of a bacterium were targeted, then the therapy would become more effective and can prevent the occurrence of drug resistance. The MurC, MurD, MurE and MurF enzymes of peptidoglycan biosynthetic pathway were selected for multi targeted therapy. The conserved or class specific active site residues important for function or stability were predicted using evolutionary trace analysis and site directed mutagenesis studies. Ten such residues which were present in at least any three of the four Mur enzymes (MurC, MurD, MurE and MurF) were identified. Among the ten residues G125, K126, T127 and G293 (numbered based on their position in MurC) were found to be conserved in all the four Mur enzymes of the entire bacterial kingdom. In addition K143, T144, T166, G168, H234 and Y329 (numbered based on their position in MurE) were significant in binding substrates and/co-factors needed for the functional events in any three of the Mur enzymes. These are the probable residues for designing newer anti-leprosy drugs in an attempt to reduce drug resistance. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Current drug therapies for rosacea: a chronic vascular and inflammatory skin disease.

    Science.gov (United States)

    Feldman, Steven R; Huang, William W; Huynh, Tu T

    2014-06-01

    Rosacea is a chronic skin disorder that presents with abnormal vascular and inflammatory conditions. Clinical manifestations include flushing, facial erythema, inflammatory papules and pustules, telangiectasias, edema, and watery or irritated eyes. To discuss the evolving pathophysiology of rosacea, factors involved in promoting the chronic vascular and inflammatory abnormalities seen in rosacea, and the available drug therapies for the condition. Chronic inflammation and vascular changes are believed to be underlying factors in the pathophysiology of rosacea. Aberrant cathelicidin expression, elevated kallikrein 5 (KLK5) proteolytic activity, and altered toll-like receptor 2 (TLR2) expression have been reported in rosacea skin leading to the production of proinflammatory cytokines. Until recently, drug therapies only targeted the inflammatory lesions (papules and pustules) and transient erythema associated with these inflammatory lesions of rosacea. Brimonidine tartrate gel 0.5% was recently approved for the treatment of persistent (nontransient) facial erythema of rosacea, acting primarily on the cutaneous vascular component of the disease. Rosacea is a chronic vascular and inflammatory skin disease. Understanding the role of factors that trigger the onset of rosacea symptoms and exacerbate the condition is crucial in treating this skin disease.

  13. Role for therapeutic drug monitoring during induction therapy with TNF antagonists in IBD: evolution in the definition and management of primary nonresponse.

    Science.gov (United States)

    Papamichael, Konstantinos; Gils, Ann; Rutgeerts, Paul; Levesque, Barrett G; Vermeire, Séverine; Sandborn, William J; Vande Casteele, Niels

    2015-01-01

    : Primary nonresponse and primary nonremission are important limitations of tumor necrosis factor (TNF) antagonists, occurring in 10% to 40% and 50% to 80% of patients with inflammatory bowel disease, respectively. The magnitude of primary nonresponse differs between phase III clinical trials and cohort studies, indicating differences, e.g., in definition, patient population or blinding. The causes of nonresponse can be attributed to the drug (pharmacokinetics, immunogenicity), the patient (genetics, disease activity), the disease (type, location, severity), and/or the treatment strategy (dosing regimen, combination therapy). Primary nonresponse has been attributed to "non-TNF-driven disease" which is an overly simplified and potentially misleading approach to the problem. Many patients with primary nonresponse could successfully be treated with dose optimization during the induction phase or switching to another TNF antagonist. Therefore, primary nonresponse is frequently not a non-TNF-driven disease. Recent studies from rheumatoid arthritis and preliminary data from inflammatory bowel disease evaluating therapeutic drug monitoring have suggested that early measurement of drug and anti-drug antibody concentrations could help to define primary nonresponse and rationalize patient management of this problem. Moreover, a modeling approach including pharmacological parameters and patient-related covariants could potentially be predictive for response to the treatment. We describe an overview of this evolution in thinking, underpinned by previous findings, and assess the potential role of early measurement of drug and antidrug antibody concentrations in the definition and management of primary nonresponse.

  14. Drug persistence and need for dose intensification to adalimumab therapy; the importance of therapeutic drug monitoring in inflammatory bowel diseases.

    Science.gov (United States)

    Gonczi, Lorant; Kurti, Zsuzsanna; Rutka, Mariann; Vegh, Zsuzsanna; Farkas, Klaudia; Lovasz, Barbara D; Golovics, Petra A; Gecse, Krisztina B; Szalay, Balazs; Molnar, Tamas; Lakatos, Peter L

    2017-08-08

    Therapeutic drug monitoring (TDM) aid therapeutic decision making in patients with inflammatory bowel disease (IBD) who lose response to anti-TNF therapy. Our aim was to evaluate the frequency and predictive factors of loss of response (LOR) to adalimumab using TDM in IBD patients. One hundred twelve IBD patients (with 214 TDM measurements, CD/UC 84/28, male/female 50/62, mean age CD/UC: 36/35 years) were enrolled in this consecutive cohort from two referral centres in Hungary. Demographic data were comprehensively collected and harmonized monitoring strategy was applied. Previous and current therapy, laboratory data and clinical activity were recorded at the time of TDM. Patients were evaluated either at the time of suspected LOR or during follow-up. TDM measurements were determined by commercial ELISA (LISA TRACKER, Theradiag, France). Among 112 IBD patients, LOR/drug persistence was 25.9%/74.1%. The cumulative ADA positivity (>10 ng/mL) and low TL (<5.0 μg/mL) was 12.1% and 17.8% after 1 year and 17.3% and 29.5% after 2 years of adalimumab therapy. Dose intensification was needed in 29.5% of the patients. Female gender and ADA positivity were associated with LOR (female gender: p < 0.001, OR:7.8 CI 95%: 2.5-24.3, ADA positivity: p = 0.007 OR:3.6 CI 95%: 1.4-9.5). ADA development, low TL and need for dose intensification were frequent during adalimumab therapy and support the selective use of TDM in IBD patients treated with adalimumab. ADA positivity and gender were predictors of LOR.

  15. Drug therapy in spinal tuberculosis.

    Science.gov (United States)

    Rajasekaran, S; Khandelwal, Gaurav

    2013-06-01

    Although the discovery of effective anti-tuberculosis drugs has made uncomplicated spinal tuberculosis a medical disease, the advent of multi-drug-resistant Mycobacterium tuberculosis and the co-infection of HIV with tuberculosis have led to a resurgence of the disease recently. The principles of drug treatment of spinal tuberculosis are derived from our experience in treating pulmonary tuberculosis. Spinal tuberculosis is classified to be a severe form of extrapulmonary tuberculosis and hence is included in Category I of the WHO classification. The tuberculosis bacilli isolated from patients are of four different types with different growth kinetics and metabolic characteristics. Hence multiple drugs, which act on the different groups of the mycobacteria, are included in each anti-tuberculosis drug regimen. Prolonged and uninterrupted chemotherapy (which may be 'short course' and 'intermittent' but preferably 'directly observed') is effective in controlling the infection. Spinal Multi-drug-resistant TB and spinal TB in HIV-positive patients present unique problems in management and have much poorer prognosis. Failure of chemotherapy and emergence of drug resistance are frequent due to the failure of compliance hence all efforts must be made to improve patient compliance to the prescribed drug regimen.

  16. Breast Cancer Gene Therapy: Development of Novel Non-Invasive Magnetic Resonance Assay to Optimize Efficacy

    National Research Council Canada - National Science Library

    Mason, Ralph P

    2007-01-01

    Gene therapy holds great promise for treatment of breast cancer. In particular clinical trials are underway to apply therapeutic genes related to pro-drug activation or to modulate the activity of oncogenes by blocking promoter sites...

  17. Low-Dose Tramadol and Non-Steroidal Anti-Inflammatory Drug Combination Therapy Prevents the Transition to Chronic Low Back Pain.

    Science.gov (United States)

    Inage, Kazuhide; Orita, Sumihisa; Yamauchi, Kazuyo; Suzuki, Takane; Suzuki, Miyako; Sakuma, Yoshihiro; Kubota, Go; Oikawa, Yasuhiro; Sainoh, Takeshi; Sato, Jun; Fujimoto, Kazuki; Shiga, Yasuhiro; Abe, Koki; Kanamoto, Hirohito; Inoue, Masahiro; Kinoshita, Hideyuki; Takahashi, Kazuhisa; Ohtori, Seiji

    2016-08-01

    Retrospective study. To determine whether low-dose tramadol plus non-steroidal anti-inflammatory drug combination therapy could prevent the transition of acute low back pain to chronic low back pain. Inadequately treated early low back pain transitions to chronic low back pain occur in approximately 30% of affected individuals. The administration of non-steroidal anti-inflammatory drugs is effective for treatment of low back pain in the early stages. However, the treatment of low back pain that is resistant to non-steroidal anti-inflammatory drugs is challenging. Patients who presented with acute low back pain at our hospital were considered for inclusion in this study. After the diagnosis of acute low back pain, non-steroidal anti-inflammatory drug administration was started. Forty patients with a visual analog scale score of >5 for low back pain 1 month after treatment were finally enrolled. The first 20 patients were included in a non-steroidal anti-inflammatory drug group, and they continued non-steroidal anti-inflammatory drug therapy for 1 month. The next 20 patients were included in a combination group, and they received low-dose tramadol plus non-steroidal anti-inflammatory drug combination therapy for 1 month. The incidence of adverse events and the improvement in the visual analog scale score at 2 months after the start of treatment were analyzed. No adverse events were observed in the non-steroidal anti-inflammatory drug group. In the combination group, administration was discontinued in 2 patients (10%) due to adverse events immediately following the start of tramadol administration. At 2 months, the improvement in the visual analog scale score was greater in the combination group than in the non-steroidal anti-inflammatory drug group (ppain to chronic low back pain.

  18. I-SWOT as instrument to individually optimize therapy of thoracoabdominal aortic aneurysms: Effective, norm-compliant and meeting the needs.

    Science.gov (United States)

    Sachweh, A; von Kodolitsch, Y; Kölbel, T; Larena-Avellaneda, A; Wipper, S; Bernhardt, A M; Girdauskas, E; Detter, C; Reichenspurner, H; Blankart, C R; Debus, E S

    2017-01-01

    Guidelines summarize medical evidence, they identify the most efficient therapy under study conditions and recommend this therapy for use. The physician now has the challenge to translate a therapy that is efficient under laboratory conditions to a patient who is an individual person. To accomplish this task the physician has to make sure that (I) the ideal typical therapy is applicable and effective in this individual patient taking the special features into consideration, that (II) therapy is compliant with the norm including guidelines, laws and ethical requirements (conformity) and that (III) the therapy meets the patient's needs. How can physicians together with the patients translate the medical evidence into an individually optimized therapy? At the German Aortic Center in Hamburg we use I‑SWOT as an instrument to identify such individually optimized therapy. With I‑SWOT, we present an instrument with which we have developed an (I) efficient, (II) conform and (III) needs-oriented therapeutic strategy for individual patients. I-SWOT cross-tabulates strengths (S) and weaknesses (W) related to therapy with opportunities (O) and threats (T) related to individual patients. This I‑SWOT matrix identifies four fundamental types of strategy, which comprise "SO" maximizing strengths and opportunities, "WT" minimizing weaknesses and threats, "WO" minimizing weaknesses and maximizing opportunities and "ST" maximizing strengths and minimizing threats. We discuss the case of a patient with asymptomatic thoracoabdominal aneurysm to show how I‑SWOT is used to identify an individually optimized therapy strategy.

  19. Development of special medical foods and botanical drugs using HemoHIM for cancer patients during radiation therapy

    International Nuclear Information System (INIS)

    Jo, Sung Kee; Jung, U Hee; Park, Hae Ran

    2010-02-01

    In vivo evaluation on the reductive effects of HemoHIM on the side-effects of radiation and anticancer drug treatment. - Evaluation on the promoting effects of HemoHIM on the tumor growth inhibitory activities of radiation and anticancer drug(cisplatin) in tumor-bearing mice. - Evaluation of the reductive effects of HemoHIM on the immune suppressive side-effects of radiation and anticancer drug(cisplatin) in tumor-bearing mice. - Evaluation of reductive effects of HemoHIM on the self-renewal tissue(intestine) damage of radiation and anticancer drug(5-FU) in mice. · Assessment of toxicological safety of HemoHIM (GLP) and establishment of analytical methods for active/index components of HemoHIM - Assurance of toxicological safety in single-dose and 3 month repeat-dose toxicity test in rats - Establishment of analytical methods for active/index compounds and content analysis result in various production lots. · Production of Special Medical Food pilot products for cancer patients and development of dosage forms for the natural new drugs. - Establishment of optimal formulations including HemoHIM for the Special Medical Food - Production of Special Medical Food pilot products for clinical test, analysis of nutrients, and official declaration of food production - Establishment of production process of HemoHIM for natural drug and production of pilot products for toxicity tests - Development of drug dosage forms of HemoHIM (tablet, granule, capsule) · Clinical evaluation of HemoHIM on reduction of side-effects of radiation and chemotherapy in cancer patients - Subjects: breast cancer patients who completed surgical operation and chemotherapy, HemoHIM administration during and after the radiation therapy (HemoHIM group: 15, placebo group 13) - Administration period: 3 months from few days before RT commencement - Results - Improvement of immunological biomarkers (immune cell subpopulations, cytokine production) - Reduction of and enhanced recovery from radiation skin

  20. Development of special medical foods and botanical drugs using HemoHIM for cancer patients during radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Sung Kee; Jung, U Hee; Park, Hae Ran

    2010-02-15

    In vivo evaluation on the reductive effects of HemoHIM on the side-effects of radiation and anticancer drug treatment. - Evaluation on the promoting effects of HemoHIM on the tumor growth inhibitory activities of radiation and anticancer drug(cisplatin) in tumor-bearing mice. - Evaluation of the reductive effects of HemoHIM on the immune suppressive side-effects of radiation and anticancer drug(cisplatin) in tumor-bearing mice. - Evaluation of reductive effects of HemoHIM on the self-renewal tissue(intestine) damage of radiation and anticancer drug(5-FU) in mice. {center_dot} Assessment of toxicological safety of HemoHIM (GLP) and establishment of analytical methods for active/index components of HemoHIM - Assurance of toxicological safety in single-dose and 3 month repeat-dose toxicity test in rats - Establishment of analytical methods for active/index compounds and content analysis result in various production lots. {center_dot} Production of Special Medical Food pilot products for cancer patients and development of dosage forms for the natural new drugs. - Establishment of optimal formulations including HemoHIM for the Special Medical Food - Production of Special Medical Food pilot products for clinical test, analysis of nutrients, and official declaration of food production - Establishment of production process of HemoHIM for natural drug and production of pilot products for toxicity tests - Development of drug dosage forms of HemoHIM (tablet, granule, capsule) {center_dot} Clinical evaluation of HemoHIM on reduction of side-effects of radiation and chemotherapy in cancer patients - Subjects: breast cancer patients who completed surgical operation and chemotherapy, HemoHIM administration during and after the radiation therapy (HemoHIM group: 15, placebo group 13) - Administration period: 3 months from few days before RT commencement - Results - Improvement of immunological biomarkers (immune cell subpopulations, cytokine production) - Reduction of and enhanced

  1. Particle swarm optimizer for weighting factor selection in intensity-modulated radiation therapy optimization algorithms.

    Science.gov (United States)

    Yang, Jie; Zhang, Pengcheng; Zhang, Liyuan; Shu, Huazhong; Li, Baosheng; Gui, Zhiguo

    2017-01-01

    In inverse treatment planning of intensity-modulated radiation therapy (IMRT), the objective function is typically the sum of the weighted sub-scores, where the weights indicate the importance of the sub-scores. To obtain a high-quality treatment plan, the planner manually adjusts the objective weights using a trial-and-error procedure until an acceptable plan is reached. In this work, a new particle swarm optimization (PSO) method which can adjust the weighting factors automatically was investigated to overcome the requirement of manual adjustment, thereby reducing the workload of the human planner and contributing to the development of a fully automated planning process. The proposed optimization method consists of three steps. (i) First, a swarm of weighting factors (i.e., particles) is initialized randomly in the search space, where each particle corresponds to a global objective function. (ii) Then, a plan optimization solver is employed to obtain the optimal solution for each particle, and the values of the evaluation functions used to determine the particle's location and the population global location for the PSO are calculated based on these results. (iii) Next, the weighting factors are updated based on the particle's location and the population global location. Step (ii) is performed alternately with step (iii) until the termination condition is reached. In this method, the evaluation function is a combination of several key points on the dose volume histograms. Furthermore, a perturbation strategy - the crossover and mutation operator hybrid approach - is employed to enhance the population diversity, and two arguments are applied to the evaluation function to improve the flexibility of the algorithm. In this study, the proposed method was used to develop IMRT treatment plans involving five unequally spaced 6MV photon beams for 10 prostate cancer cases. The proposed optimization algorithm yielded high-quality plans for all of the cases, without human

  2. Beyond bixels: Generalizing the optimization parameters for intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Markman, Jerry; Low, Daniel A.; Beavis, Andrew W.; Deasy, Joseph O.

    2002-01-01

    Intensity modulated radiation therapy (IMRT) treatment planning systems optimize fluence distributions by subdividing the fluence distribution into rectangular bixels. The algorithms typically optimize the fluence intensity directly, often leading to fluence distributions with sharp discontinuities. These discontinuities may yield difficulties in delivery of the fluence distribution, leading to inaccurate dose delivery. We have developed a method for decoupling the bixel intensities from the optimization parameters; either by introducing optimization control points from which the bixel intensities are interpolated or by parametrizing the fluence distribution using basis functions. In either case, the number of optimization search parameters is reduced from the direct bixel optimization method. To illustrate the concept, the technique is applied to two-dimensional idealized head and neck treatment plans. The interpolation algorithms investigated were nearest-neighbor, linear and cubic spline, and radial basis functions serve as the basis function test. The interpolation and basis function optimization techniques were compared against the direct bixel calculation. The number of optimization parameters were significantly reduced relative to the bixel optimization, and this was evident in the reduction of computation time of as much as 58% from the full bixel optimization. The dose distributions obtained using the reduced optimization parameter sets were very similar to the full bixel optimization when examined by dose distributions, statistics, and dose-volume histograms. To evaluate the sensitivity of the fluence calculations to spatial misalignment caused either by delivery errors or patient motion, the doses were recomputed with a 1 mm shift in each beam and compared to the unshifted distributions. Except for the nearest-neighbor algorithm, the reduced optimization parameter dose distributions were generally less sensitive to spatial shifts than the bixel

  3. Preclinical Evaluations To Identify Optimal Linezolid Regimens for Tuberculosis Therapy

    Science.gov (United States)

    Drusano, George L.; Adams, Jonathan R.; Rodriquez, Jaime L.; Jambunathan, Kalyani; Baluya, Dodge L.; Brown, David L.; Kwara, Awewura; Mirsalis, Jon C.; Hafner, Richard; Louie, Arnold

    2015-01-01

    ABSTRACT Linezolid is an oxazolidinone with potent activity against Mycobacterium tuberculosis. Linezolid toxicity in patients correlates with the dose and duration of therapy. These toxicities are attributable to the inhibition of mitochondrial protein synthesis. Clinically relevant linezolid regimens were simulated in the in vitro hollow-fiber infection model (HFIM) system to identify the linezolid therapies that minimize toxicity, maximize antibacterial activity, and prevent drug resistance. Linezolid inhibited mitochondrial proteins in an exposure-dependent manner, with toxicity being driven by trough concentrations. Once-daily linezolid killed M. tuberculosis in an exposure-dependent manner. Further, 300 mg linezolid given every 12 hours generated more bacterial kill but more toxicity than 600 mg linezolid given once daily. None of the regimens prevented linezolid resistance. These findings show that with linezolid monotherapy, a clear tradeoff exists between antibacterial activity and toxicity. By identifying the pharmacokinetic parameters linked with toxicity and antibacterial activity, these data can provide guidance for clinical trials evaluating linezolid in multidrug antituberculosis regimens. PMID:26530386

  4. Strategies to Optimize Adult Stem Cell Therapy for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Shan Liu

    2016-06-01

    Full Text Available Stem cell therapy aims to replace damaged or aged cells with healthy functioning cells in congenital defects, tissue injuries, autoimmune disorders, and neurogenic degenerative diseases. Among various types of stem cells, adult stem cells (i.e., tissue-specific stem cells commit to becoming the functional cells from their tissue of origin. These cells are the most commonly used in cell-based therapy since they do not confer risk of teratomas, do not require fetal stem cell maneuvers and thus are free of ethical concerns, and they confer low immunogenicity (even if allogenous. The goal of this review is to summarize the current state of the art and advances in using stem cell therapy for tissue repair in solid organs. Here we address key factors in cell preparation, such as the source of adult stem cells, optimal cell types for implantation (universal mesenchymal stem cells vs. tissue-specific stem cells, or induced vs. non-induced stem cells, early or late passages of stem cells, stem cells with endogenous or exogenous growth factors, preconditioning of stem cells (hypoxia, growth factors, or conditioned medium, using various controlled release systems to deliver growth factors with hydrogels or microspheres to provide apposite interactions of stem cells and their niche. We also review several approaches of cell delivery that affect the outcomes of cell therapy, including the appropriate routes of cell administration (systemic, intravenous, or intraperitoneal vs. local administration, timing for cell therapy (immediate vs. a few days after injury, single injection of a large number of cells vs. multiple smaller injections, a single site for injection vs. multiple sites and use of rodents vs. larger animal models. Future directions of stem cell-based therapies are also discussed to guide potential clinical applications.

  5. The Efficacy of Dog Assisted Therapy in Detained Drug Users: A Pilot Study in an Italian Attenuated Custody Institute.

    Science.gov (United States)

    Contalbrigo, Laura; De Santis, Marta; Toson, Marica; Montanaro, Maria; Farina, Luca; Costa, Aldo; Nava, Felice Alfonso

    2017-06-24

    Drug addiction is a major care and safety challenge in prison context. Nowadays, rehabilitation and specific therapeutic programs are suggested to improve health and well-being of inmates during their detention time and to reduce substance abuse relapse after release from prison. Among these programs, several studies reported the benefits for inmates coming from animal assisted interventions. In this pilot controlled study, we investigated the efficacy of a dog assisted therapy program addressed to 22 drug addicted male inmates housed in an attenuated custody institute in Italy. The study lasted six months, the treated group (12 inmates) was involved once a week for one hour in 20 dog assisted therapy sessions, whereas the control group (10 inmates) followed the standard rehabilitation program. One week before the beginning and one week after the end of the sessions, all inmates involved were submitted to symptom checklist-90-revised and Kennedy axis V. Inmates involved in the dog assisted therapy sessions significantly improved their social skills, reducing craving, anxiety and depression symptoms compared to the control group. Despite the limitation due to the small number of inmates enrolled and to the absence of follow up, we found these results encouraging to the use of dog assisted therapy as co-therapy in drug addicted inmates rehabilitation programs, and we claim the need of more extensive study on this subject.

  6. Internalization, Trafficking, Intracellular Processing and Actions of Antibody-Drug Conjugates.

    Science.gov (United States)

    Xu, Shi

    2015-11-01

    This review discusses the molecular mechanism involved in the targeting and delivery of antibody-drug conjugates (ADCs), the new class of biopharmaceuticals mainly designed for targeted cancer therapy. this review goes over major progress in preclinical and clinical studies of ADCs, in the past 5 years. The pharmacokinetics and pharmacodynamics of ADCs involve multiple mechanisms, including internalization of ADCs by target cells, intracellular trafficking, release of conjugated drugs, and payload. These mechanisms actually jointly determine the efficacy of ADCs. Therefore, the optimization of ADCs should take them as necessary rationales.

  7. Combining Oncolytic Virotherapy with p53 Tumor Suppressor Gene Therapy

    Directory of Open Access Journals (Sweden)

    Christian Bressy

    2017-06-01

    Full Text Available Oncolytic virus (OV therapy utilizes replication-competent viruses to kill cancer cells, leaving non-malignant cells unharmed. With the first U.S. Food and Drug Administration-approved OV, dozens of clinical trials ongoing, and an abundance of translational research in the field, OV therapy is poised to be one of the leading treatments for cancer. A number of recombinant OVs expressing a transgene for p53 (TP53 or another p53 family member (TP63 or TP73 were engineered with the goal of generating more potent OVs that function synergistically with host immunity and/or other therapies to reduce or eliminate tumor burden. Such transgenes have proven effective at improving OV therapies, and basic research has shown mechanisms of p53-mediated enhancement of OV therapy, provided optimized p53 transgenes, explored drug-OV combinational treatments, and challenged canonical roles for p53 in virus-host interactions and tumor suppression. This review summarizes studies combining p53 gene therapy with replication-competent OV therapy, reviews preclinical and clinical studies with replication-deficient gene therapy vectors expressing p53 transgene, examines how wild-type p53 and p53 modifications affect OV replication and anti-tumor effects of OV therapy, and explores future directions for rational design of OV therapy combined with p53 gene therapy.

  8. Covalent linkage of nanodiamond-paclitaxel for drug delivery and cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kuang-Kai; Wang, Chi-Ching; Chao, Jui-I [Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30013, Taiwan (China); Zheng, Wen-Wei; Lo, Yu-Shiu; Chen, Chinpiao [Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan (China); Chiu, Yu-Chung; Cheng, Chia-Liang, E-mail: clcheng@mail.ndhu.edu.tw, E-mail: chinpiao@mail.ndhu.edu.tw, E-mail: jichao@faculty.nctu.edu.tw [Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan (China)

    2010-08-06

    A nanoparticle-conjugated cancer drug provides a novel strategy for cancer therapy. In this study, we manipulated nanodiamond (ND), a carbon nanomaterial, to covalently link paclitaxel for cancer drug delivery and therapy. Paclitaxel was bound to the surface of 3-5 nm sized ND through a succession of chemical modifications. The ND-paclitaxel conjugation was measured by atomic force microscope and nuclear magnetic resonance spectroscopy, and confirmed with infrared spectroscopy by the detection of deuterated paclitaxel. Treatment with 0.1-50 {mu}g ml{sup -1} ND-paclitaxel for 48 h significantly reduced the cell viability in the A549 human lung carcinoma cells. ND-paclitaxel induced both mitotic arrest and apoptosis in A549 cells. However, ND alone or denatured ND-paclitaxel (after treatment with strong alkaline solution, 1 M NaOH) did not induce the damage effects on A549 cells. ND-paclitaxel was taken into lung cancer cells in a concentration-dependent manner using flow cytometer analysis. The ND-paclitaxel particles were located in the microtubules and cytoplasm of A549 cells observed by confocal microscopy. Furthermore, ND-paclitaxel markedly blocked the tumor growth and formation of lung cancer cells in xenograft SCID mice. Together, we provide a functional covalent conjugation of ND-paclitaxel, which can be delivered into lung carcinoma cells and preserves the anticancer activities on the induction of mitotic blockage, apoptosis and anti-tumorigenesis.

  9. Tumor-targeted polymeric nanostructured lipid carriers with precise ratiometric control over dual-drug loading for combination therapy in non-small-cell lung cancer.

    Science.gov (United States)

    Liang, Yan; Tian, Baocheng; Zhang, Jing; Li, Keke; Wang, Lele; Han, Jingtian; Wu, Zimei

    2017-01-01

    Gemcitabine (GEM) and paclitaxel (PTX) are effective combination anticancer agents against non-small-cell lung cancer (NSCLC). At the present time, a main challenge of combination treatment is the precision of control that will maximize the combined effects. Here, we report a novel method to load GEM (hydrophilic) and PTX (hydrophobic) into simplex tumor-targeted nanostructured lipid carriers (NLCs) for accurate control of the ratio of the two drugs. We covalently preconjugated the dual drugs through a hydrolyzable ester linker to form drug conjugates. N -acetyl-d-glucosamine (NAG) is a glucose receptor-targeting ligand. We added NAG to the formation of NAG-NLCs. In general, synthesis of poly(6- O -methacryloyl-d-galactopyranose)-GEM/PTX (PMAGP-GEM/PTX) conjugates was demonstrated, and NAG-NLCs were prepared using emulsification and solvent evaporation. NAG-NLCs displayed sphericity with an average diameter of 120.3±1.3 nm, a low polydispersity index of 0.233±0.04, and accurate ratiometric control over the two drugs. A cytotoxicity assay showed that the NAG-NLCs had better antitumor activity on NSCLC cells than normal cells. There was an optimal ratio of the two drugs, exhibiting the best cytotoxicity and combinatorial effects among all the formulations we tested. In comparison with both the free-drug combinations and separately nanopackaged drug conjugates, PMAGP-GEM/PTX NAG-NLCs (3:1) exhibited superior synergism. Flow cytometry and confocal laser scanning microscopy showed that NAG-NLCs exhibited higher uptake efficiency in A549 cells via glucose receptor-mediated endocytosis. This combinatorial delivery system settles problems with ratiometric coloading of hydrophilic and hydrophobic drugs for tumor-targeted combination therapy to achieve maximal anticancer efficacy in NSCLC.

  10. Successful treatment of methicillin-resistant Staphylococcus aureus osteomyelitis with combination therapy using linezolid and rifampicin under therapeutic drug monitoring.

    Science.gov (United States)

    Ashizawa, Nobuyuki; Tsuji, Yasuhiro; Kawago, Koyomi; Higashi, Yoshitsugu; Tashiro, Masato; Nogami, Makiko; Gejo, Ryuichi; Narukawa, Munetoshi; Kimura, Tomoatsu; Yamamoto, Yoshihiro

    2016-05-01

    Linezolid is an effective antibiotic against most gram-positive bacteria including drug-resistant strains such as methicillin-resistant Staphylococcus aureus. Although linezolid therapy is known to result in thrombocytopenia, dosage adjustment or therapeutic drug monitoring of linezolid is not generally necessary. In this report, however, we describe the case of a 79-year-old woman with recurrent methicillin-resistant S. aureus osteomyelitis that was successfully treated via surgery and combination therapy using linezolid and rifampicin under therapeutic drug monitoring for maintaining an appropriate serum linezolid concentration. The patient underwent surgery for the removal of the artificial left knee joint and placement of vancomycin-impregnated bone cement beads against methicillin-resistant S. aureus after total left knee implant arthroplasty for osteoarthritis. We also initiated linezolid administration at a conventional dose of 600 mg/h at 12-h intervals, but reduced it to 300 mg/h at 12-h intervals on day 9 because of a decrease in platelet count and an increase in serum linezolid trough concentration. However, when the infection exacerbated, we again increased the linezolid dose to 600 mg/h at 12-h intervals and performed combination therapy with rifampicin, considering their synergistic effects and the control of serum linezolid trough concentration via drug interaction. Methicillin-resistant S. aureus infection improved without reducing the dose of or discontinuing linezolid. The findings in the present case suggest that therapeutic drug monitoring could be useful for ensuring the therapeutic efficacy and safety of combination therapy even in patients with osteomyelitis who require long-term antibiotic administration. Copyright © 2015 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  11. Acquiring the optimal time for hyperbaric therapy in the rat model of CFA induced arthritis.

    Science.gov (United States)

    Koo, Sung Tae; Lee, Chang-Hyung; Shin, Yong Il; Ko, Hyun Yoon; Lee, Da Gyo; Jeong, Han-Sol

    2014-01-01

    We previously published an article about the pressure effect using a rheumatoid animal model. Hyperbaric therapy appears to be beneficial in treating rheumatoid arthritis (RA) by reducing the inflammatory process in an animal model. In this sense, acquiring the optimal pressure-treatment time parameter for RA is important and no optimal hyperbaric therapy time has been suggested up to now. The purpose of our study was to acquire the optimal time for hyperbaric therapy in the RA rat model. Controlled animal study. Following injection of complete Freund's adjuvant (CFA) into one side of the knee joint, 32 rats were randomly assigned to 3 different time groups (1, 3, 5 hours a day) under 1.5 atmospheres absolute (ATA) hyperbaric chamber for 12 days. The pain levels were assessed daily for 2 weeks by weight bearing force (WBF) of the affected limb. In addition, the levels of gelatinase, MMP-2, and MMP-9 expression in the synovial fluids of the knees were analyzed. The reduction of WBF was high at 2 days after injection and then it was spontaneously increased up to 14 days in all 3 groups. There were significant differences of WBF between 5 hours and control during the third through twelfth days, between 3 hours and control during the third through fifth and tenth through twelfth days, and between 3 hours and 5 hours during the third through seventh days (P CFA injection in all groups compared to the initial findings, however, the 3 hour group showed a smaller MMP-9/MMP-2 ratio than the control group. Although enough samples were used for the study to support our hypothesis, more samples will be needed to raise the validity and reliability. The effect of hyperbaric treatment appears to be dependent upon the elevated therapy time under 1.5 ATA pressure for a short period of time; however, the long-term effects were similar in all pressure groups. Further study will be needed to acquire the optimal pressure-treatment parameter relationship in various conditions for

  12. Is administered radioiodine activity appropriate? The effects of pre- treatment antithyroid drugs on the therapy outcome

    International Nuclear Information System (INIS)

    Nanayakkara, D.; Udugama, C.; Perera, K.; Herath, S.

    2007-01-01

    Full text: Although radioiodine (RAI) therapy has been used in the treatment of thyrotoxicosis, there are both wide variations in current practice and deficiencies in outcome. There is concern as to decide the optimum activity to achieve better therapeutic outcome and uncertainty over the effects of pretreatment antithyroid drugs (ATD) on the post therapy outcome. Use of ATD (carbimazole) to control the severity of the disease prior to RAI therapy is a common accepted practice. The Royal college of Physicians (RCP) guideline on radioiodine therapy for thyrotoxicosis has recommended activity of 400mBq for Graves' disease (GD) and 15mCi for toxic multi nodular disease (TMND) to achieve euthyroidism with an incidence of hypothyroidism around 15-20% at 2 years. However, in the clinical setting, many patients have become hypothyroid very early than the expected time period. This study was carried out to see the fixed dose RAI therapy outcome of both GD and TMND. Another objective is to assess the effects of pre therapy ATD on the RAI therapy for both GD and TMND at 1 year. Post RAI therapy outcome was analyzed in thyrotoxic patients who received RAI at our institute from 2001-2005. Diagnosis of thyrotoxicosis was made on the basis of biochemical thyroid function tests and thyroid uptake scans. Both GD and TMND patients were selected. Patients who were treated with ATD were advised to stop drugs for at least 4 weeks before administration of RAI therapeutic dose. GD patients received 400mBq and TMND received 550mBq of RAI irrespective of the size of the thyroid gland. Both GD and TMND were further categorized into two groups on the basis of whether they have given ATD prior to RAI therapy. Patients with solitary toxic nodular disease were excluded from the study. Post therapy thyroid functions (free thyroxine and thyroid stimulating hormone) were done at 1, 2, 3, 6 and 12 months intervals. Therapy outcome over time was defined on the basis of thyroid function and

  13. Application of the Pareto principle to identify and address drug-therapy safety issues.

    Science.gov (United States)

    Müller, Fabian; Dormann, Harald; Pfistermeister, Barbara; Sonst, Anja; Patapovas, Andrius; Vogler, Renate; Hartmann, Nina; Plank-Kiegele, Bettina; Kirchner, Melanie; Bürkle, Thomas; Maas, Renke

    2014-06-01

    Adverse drug events (ADE) and medication errors (ME) are common causes of morbidity in patients presenting at emergency departments (ED). Recognition of ADE as being drug related and prevention of ME are key to enhancing pharmacotherapy safety in ED. We assessed the applicability of the Pareto principle (~80 % of effects result from 20 % of causes) to address locally relevant problems of drug therapy. In 752 cases consecutively admitted to the nontraumatic ED of a major regional hospital, ADE, ME, contributing drugs, preventability, and detection rates of ADE by ED staff were investigated. Symptoms, errors, and drugs were sorted by frequency in order to apply the Pareto principle. In total, 242 ADE were observed, and 148 (61.2 %) were assessed as preventable. ADE contributed to 110 inpatient hospitalizations. The ten most frequent symptoms were causally involved in 88 (80.0 %) inpatient hospitalizations. Only 45 (18.6 %) ADE were recognized as drug-related problems until discharge from the ED. A limited set of 33 drugs accounted for 184 (76.0 %) ADE; ME contributed to 57 ADE. Frequency-based listing of ADE, ME, and drugs involved allowed identification of the most relevant problems and development of easily to implement safety measures, such as wall and pocket charts. The Pareto principle provides a method for identifying the locally most relevant ADE, ME, and involved drugs. This permits subsequent development of interventions to increase patient safety in the ED admission process that best suit local needs.

  14. National indicators for quality of drug therapy in older persons: the Swedish experience from the first 10 years.

    Science.gov (United States)

    Fastbom, Johan; Johnell, Kristina

    2015-03-01

    Inappropriate drug use is an important health problem in elderly persons. Beginning with the Beers' criteria in the early 1990s, explicit criteria have been extensively used to measure and improve quality of drug use in older people. This article describes the Swedish indicators for quality of drug therapy in the elderly, introduced in 2004 and updated in 2010. These indicators were designed to be applied to people aged 75 years and over, regardless of residence and other characteristics. The indicators are divided into drug specific, covering choice, indication and dosage of drugs, polypharmacy, drug-drug interactions (DDIs), drug use in decreased renal function and in some symptoms; and diagnosis specific, covering the rational, irrational and hazardous drug use in common disorders in elderly people. During the 10 years since introduction, the Swedish indicators have several applications. They form the basis for recommendations for drug therapy in older people, are implemented in prescribing supports and drug utilisation reviews, are used in national benchmarking of the quality of Swedish healthcare and have contributed to initiatives from pensioner organisations. The indicators have also been used in several pharmacoepidemiological studies. Since 2005, there have been signs of improvement of the quality of drug prescribing to elderly persons in Sweden. For example, the prescribing of drugs that should be avoided in older persons decreased by 36 % between 2006 and 2012 in persons aged 80 years and older. Similarly, drug combinations that may cause DDIs decreased by 26 % and antipsychotics by 41 %. The indicators have likely contributed to this.

  15. Antidepressant Drug Treatment in Association with Multiple Sclerosis Disease-Modifying Therapy: Using Explorys in the MS Population.

    Science.gov (United States)

    Mirsky, Matthew M; Marrie, Ruth Ann; Rae-Grant, Alexander

    2016-01-01

    Background: The Explorys Enterprise Performance Management (EPM) database contains de-identified clinical data for 50 million patients. Multiple sclerosis (MS) disease-modifying therapies (DMTs), specifically interferon beta (IFNβ) treatments, may potentiate depression. Conflicting data have emerged, and a large-scale claims-based study by Patten et al. did not support such an association. This study compares the results of Patten et al. with those using the EPM database. Methods: "Power searches" were built to test the relationship between antidepressant drug use and DMT in the MS population. Searches were built to produce a cohort of individuals diagnosed as having MS in the past 3 years taking a specific DMT who were then given any antidepressant drug. The antidepressant drug therapy prevalence was tested in the MS population on the following DMTs: IFNβ-1a, IFNβ-1b, combined IFNβ, glatiramer acetate, natalizumab, fingolimod, and dimethyl fumarate. Results: In patients with MS, the rate of antidepressant drug use in those receiving DMTs was 40.60% to 44.57%. The rate of antidepressant drug use for combined IFNβ DMTs was 41.61% (males: 31.25%-39.62%; females: 43.10%-47.33%). Antidepressant drug use peaked in the group aged 45 to 54 years for five of six DMTs. Conclusions: We found no association between IFNβ treatment and antidepressant drug use in the MS population compared with other DMTs. The EPM database has been validated against the Patten et al. data for future use in the MS population.

  16. Multiple model predictive control for optimal drug administration of mixed immunotherapy and chemotherapy of tumours.

    Science.gov (United States)

    Sharifi, N; Ozgoli, S; Ramezani, A

    2017-06-01

    Mixed immunotherapy and chemotherapy of tumours is one of the most efficient ways to improve cancer treatment strategies. However, it is important to 'design' an effective treatment programme which can optimize the ways of combining immunotherapy and chemotherapy to diminish their imminent side effects. Control engineering techniques could be used for this. The method of multiple model predictive controller (MMPC) is applied to the modified Stepanova model to induce the best combination of drugs scheduling under a better health criteria profile. The proposed MMPC is a feedback scheme that can perform global optimization for both tumour volume and immune competent cell density by performing multiple constraints. Although current studies usually assume that immunotherapy has no side effect, this paper presents a new method of mixed drug administration by employing MMPC, which implements several constraints for chemotherapy and immunotherapy by considering both drug toxicity and autoimmune. With designed controller we need maximum 57% and 28% of full dosage of drugs for chemotherapy and immunotherapy in some instances, respectively. Therefore, through the proposed controller less dosage of drugs are needed, which contribute to suitable results with a perceptible reduction in medicine side effects. It is observed that in the presence of MMPC, the amount of required drugs is minimized, while the tumour volume is reduced. The efficiency of the presented method has been illustrated through simulations, as the system from an initial condition in the malignant region of the state space (macroscopic tumour volume) transfers into the benign region (microscopic tumour volume) in which the immune system can control tumour growth. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Optimal primary surgical management of infected pseudoaneurysm in intravenous drug abusers: ligation or reconstruction?

    International Nuclear Information System (INIS)

    Jamil, M.; Usman, R.; Afzal, M.; Malik, N.I.

    2017-01-01

    Objective: To find out the optimal primary surgical treatment options for infected pseudoaneurysm in intravenous drug abusers. Study Design: Cross sectional descriptive study. Place and Duration of Study: Department of Vascular Surgery, Combined Military Hospital Lahore, from Jan 2010 to Jun 2015. Material and Methods: A total of 31 consecutive patients with a history of intravenous drug abuse and an infected pseudoaneurysm in the groin or elbow, presenting in emergency department; were included in this study. All patients were primarily treated with ligation of the artery, excision of infected pseudoaneurysm and debridement of necrotic tissues. Only one patient underwent additional revascularization procedure. Results: All patients who underwent ligation and excision procedures did well initially. One (3.2%) patient developed severe distal ischemia after ligation of femoral artery within first 24 hours, so extra anatomic revascularization procedure was performed. Five (16.1%) patients required revascularization procedure after 16 weeks due to disabling distal ischemia. No amputation was needed and mortality rate was zero. Conclusion: Primary ligation of the artery with excision of infected pseudoaneurysm and necrotic material was found the optimal initial management for infected pseudoaneurysm in intravenous drug addicts. Ischemic complications if develop should be treated with early or late revascularization.

  18. Review of the treatment of psoriatic arthritis with biological agents: choice of drug for initial therapy and switch therapy for non-responders

    Directory of Open Access Journals (Sweden)

    D'Angelo S

    2017-03-01

    Full Text Available Salvatore D’Angelo,1 Giuseppina Tramontano,1 Michele Gilio,1 Pietro Leccese,1 Ignazio Olivieri1,2 1Rheumatology Institute of Lucania (IRel - Rheumatology Department of Lucania, San Carlo Hospital of Potenza and Madonna delle Grazie Hospital of Matera, Potenza and Matera, 2Basilicata Ricerca Biomedica (BRB Foundation, Potenza, Italy Abstract: Psoriatic arthritis (PsA is a heterogeneous chronic inflammatory disease with a broad clinical spectrum and variable course. It can involve musculoskeletal structures as well as skin, nails, eyes, and gut. The management of PsA has changed tremendously in the last decade, thanks to an earlier diagnosis, an advancement in pharmacological therapies, and a wider application of a multidisciplinary approach. The commercialization of tumor necrosis factor inhibitors (adalimumab, certolizumab pegol, etanercept, golimumab, and infliximab as well as interleukin (IL-12/23 (ustekinumab and IL-17 (secukinumab inhibitors is representative of a revolution in the treatment of PsA. No evidence-based strategies are currently available for guiding the rheumatologist to prescribe biological drugs. Several international and national recommendation sets are currently available with the aim to help rheumatologists in everyday clinical practice management of PsA patients treated with biological therapy. Since no specific biological agent has been demonstrated to be more effective than others, the drug choice should be made according to the available safety data, the presence of extra-articular manifestations, the patient’s preferences (e.g., administration route, and the drug price. However, future studies directly comparing different biological drugs and assessing the efficacy of treatment strategies specific for PsA are urgently needed. Keywords: psoriatic arthritis, treatment, biological drugs, TNF inhibitors, ustekinumab, secukinumab

  19. Optimization of drug loading to improve physical stability of paclitaxel-loaded long-circulating liposomes.

    Science.gov (United States)

    Kannan, Vinayagam; Balabathula, Pavan; Divi, Murali K; Thoma, Laura A; Wood, George C

    2015-01-01

    The effect of formulation and process parameters on drug loading and physical stability of paclitaxel-loaded long-circulating liposomes was evaluated. The liposomes were prepared by hydration-extrusion method. The formulation parameters such as total lipid content, cholesterol content, saturated-unsaturated lipid ratio, drug-lipid ratio and process parameters such as extrusion pressure and number of extrusion cycles were studied and their impact on drug loading and physical stability was evaluated. A proportionate increase in drug loading was observed with increase in the total phospholipid content. Cholesterol content and saturated lipid content in the bilayer showed a negative influence on drug loading. The short-term stability evaluation of liposomes prepared with different drug-lipid ratios demonstrated that 1:60 as the optimum drug-lipid ratio to achieve a loading of 1-1.3 mg/mL without the risk of physical instability. The vesicle size decreased with an increase in the extrusion pressure and number of extrusion cycles, but no significant trends were observed for drug loading with changes in process pressure or number of cycles. The optimization of formulation and process parameters led to a physically stable formulation of paclitaxel-loaded long-circulating liposomes that maintain size, charge and integrity during storage.

  20. The application of carbon nanotubes in target drug delivery systems for cancer therapies

    Science.gov (United States)

    Zhang, Wuxu; Zhang, Zhenzhong; Zhang, Yingge

    2011-10-01

    Among all cancer treatment options, chemotherapy continues to play a major role in killing free cancer cells and removing undetectable tumor micro-focuses. Although chemotherapies are successful in some cases, systemic toxicity may develop at the same time due to lack of selectivity of the drugs for cancer tissues and cells, which often leads to the failure of chemotherapies. Obviously, the therapeutic effects will be revolutionarily improved if human can deliver the anticancer drugs with high selectivity to cancer cells or cancer tissues. This selective delivery of the drugs has been called target treatment. To realize target treatment, the first step of the strategies is to build up effective target drug delivery systems. Generally speaking, such a system is often made up of the carriers and drugs, of which the carriers play the roles of target delivery. An ideal carrier for target drug delivery systems should have three pre-requisites for their functions: (1) they themselves have target effects; (2) they have sufficiently strong adsorptive effects for anticancer drugs to ensure they can transport the drugs to the effect-relevant sites; and (3) they can release the drugs from them in the effect-relevant sites, and only in this way can the treatment effects develop. The transporting capabilities of carbon nanotubes combined with appropriate surface modifications and their unique physicochemical properties show great promise to meet the three pre-requisites. Here, we review the progress in the study on the application of carbon nanotubes as target carriers in drug delivery systems for cancer therapies.

  1. An Optimization Model for Expired Drug Recycling Logistics Networks and Government Subsidy Policy Design Based on Tri-level Programming

    OpenAIRE

    Huang, Hui; Li, Yuyu; Huang, Bo; Pi, Xing

    2015-01-01

    In order to recycle and dispose of all people’s expired drugs, the government should design a subsidy policy to stimulate users to return their expired drugs, and drug-stores should take the responsibility of recycling expired drugs, in other words, to be recycling stations. For this purpose it is necessary for the government to select the right recycling stations and treatment stations to optimize the expired drug recycling logistics network and minimize the total costs of recycling and disp...

  2. Ion-Responsive Drug Delivery Systems.

    Science.gov (United States)

    Yoshida, Takayuki; Shakushiro, Kohsuke; Sako, Kazuhiro

    2018-02-08

    Some kinds of cations and anions are contained in body fluids such as blood, interstitial fluid, gastrointestinal juice, and tears at relatively high concentration. Ionresponsive drug delivery is available to design the unique dosage formulations which provide optimized drug therapy with effective, safe and convenient dosing of drugs. The objective of the present review was to collect, summarize, and categorize recent research findings on ion-responsive drug delivery systems. Ions in body fluid/formulations caused structural changes of polymers/molecules contained in the formulations, allow formulations exhibit functions. The polymers/molecules responding to ions were ion-exchange resins/fibers, anionic or cationic polymers, polymers exhibiting transition at lower critical solution temperature, self-assemble supramolecular systems, peptides, and metalorganic frameworks. The functions of ion-responsive drug delivery systems were categorized to controlled drug release, site-specific drug release, in situ gelation, prolonged retention at the target sites, and enhancement of drug permeation. Administration of the formulations via oral, ophthalmic, transdermal, and nasal routes has showed significant advantages in the recent literatures. Many kinds of drug delivery systems responding to ions have been reported recently for several administration routes. Improvement and advancement of these systems can maximize drugs potential and contribute to patients in the world. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Co-delivery of chemotherapeutics and proteins for synergistic therapy.

    Science.gov (United States)

    He, Chaoliang; Tang, Zhaohui; Tian, Huayu; Chen, Xuesi

    2016-03-01

    Combination therapy with chemotherapeutics and protein therapeutics, typically cytokines and antibodies, has been a type of crucial approaches for synergistic cancer treatment. However, conventional approaches by simultaneous administration of free chemotherapeutic drugs and proteins lead to limitations for further optimizing the synergistic effects, due to the distinct in vivo pharmacokinetics and distribution of small drugs and proteins, insufficient tumor selectivity and tumor accumulation, unpredictable drug/protein ratios at tumor sites, short half-lives, and serious systemic adverse effects. Consequently, to obtain optimal synergistic anti-tumor efficacy, considerable efforts have been devoted to develop the co-delivery systems for co-incorporating chemotherapeutics and proteins into a single carrier system and subsequently releasing the dual or multiple payloads at desired target sites in a more controllable manner. The co-delivery systems result in markedly enhanced blood stability and in vivo half-lives of the small drugs and proteins, elevated tumor accumulation, as well as the capability of delivering the multiple agents to the same target sites with rational drug/protein ratios, which may facilitate maximizing the synergistic effects and therefore lead to optimal antitumor efficacy. This review emphasizes the recent advances in the co-delivery systems for chemotherapeutics and proteins, typically cytokines and antibodies, for systemic or localized synergistic cancer treatment. Moreover, the proposed mechanisms responsible for the synergy of chemotherapeutic drugs and proteins are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Antifungal therapy: drug-drug interactions at your fingertips

    NARCIS (Netherlands)

    Lempers, V.J.; Bruggemann, R.J.

    2016-01-01

    The Information Age has revolutionized the ability of healthcare professionals (HCPs) to oversee a substantial body of clinically relevant information literally at one's fingertips. In the field of clinical pharmacology, this may be particularly useful for managing drug-drug interactions (DDIs). A

  5. [Potential antimicrobial drug interactions in clinical practice: consequences of polypharmacy and multidrug resistance].

    Science.gov (United States)

    Martínez-Múgica, Cristina

    2015-12-01

    Polypharmacy is a growing problem nowadays, which can increase the risk of potential drug interactions, and result in a loss of effectiveness. This is particularly relevant to the anti-infective therapy, especially when infection is produced by resistant bacteria, because therapeutic options are limited and interactions can cause treatment failure. All antimicrobial prescriptions were retrospectively reviewed during a week in the Pharmacy Department, in order to detect potential drug-interactions and analysing their clinical significance. A total of 314 antimicrobial prescriptions from 151 patients were checked. There was at least one potential interaction detected in 40% of patients, being more frequent and severe in those infected with multidrug-resistant microorganisms. Drugs most commonly involved were quinolones, azoles, linezolid and vancomycin. Potential drug interactions with antimicrobial agents are a frequent problem that can result in a loss of effectiveness. This is why they should be detected and avoided when possible, in order to optimize antimicrobial therapy, especially in case of multidrug resistant infections.

  6. Transformable Peptide Nanocarriers for Expeditious Drug Release and Effective Cancer Therapy via Cancer-Associated Fibroblast Activation.

    Science.gov (United States)

    Ji, Tianjiao; Zhao, Ying; Ding, Yanping; Wang, Jing; Zhao, Ruifang; Lang, Jiayan; Qin, Hao; Liu, Xiaoman; Shi, Jian; Tao, Ning; Qin, Zhihai; Nie, Guangjun; Zhao, Yuliang

    2016-01-18

    A novel cleavable amphiphilic peptide (CAP) was designed to be specifically responsive to fibroblast activation protein-α (FAP-α), a protease specifically expressed on the surface of cancer-associated fibroblasts. The CAP self-assembled into fiber-like nanostructures in solution, while the presence of hydrophobic chemotherapeutic drugs readily transformed the assemblies into drug-loaded spherical nanoparticles. The disassembly of these nanoparticles (CAP-NPs) upon FAP-α cleavage resulted in rapid and efficient release of the encapsulated drugs specifically at tumor sites. This Transformers-like drug delivery strategy could allow them to disrupt the stromal barrier and enhance local drug accumulation. Therapeutic results suggested that drug-loaded CAP-NPs hold promising tumor specificity and therapeutic efficacy for various solid tumor models, confirming its potential utility and versatility in antitumor therapy. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  7. Better prevention than cure: optimal patient preparation for renal replacement therapy.

    Science.gov (United States)

    Huang, Xiaoyan; Carrero, Juan Jesús

    2014-03-01

    A generous proportion of end-stage renal disease patients may not be adequately prepared for initiation of renal replacement therapy (RRT). Here we review potential benefits of early patient referral to nephrologists and optimal preparation for RRT. We place this evidence in the context of the epidemiological study by Kurella Tamura et al., which shows that voluntary community kidney disease screening and education is associated with better patient preparation and, importantly, improved survival upon initiation of RRT.

  8. Treatment Adherence as a New Choice Factor for Optimization of Oral Anticoagulation Therapy in Patients with Atrial Fibrillation and Hemostatic Gene Polymorphisms

    Directory of Open Access Journals (Sweden)

    Yu. P. Skirdenko

    2016-01-01

    Full Text Available Aim. To evaluate treatment adherence and prevalence of CYP2C9 and VKORC1 gene mutations in patients with atrial fibrillation (AF and provide rationale of choice for oral anticoagulation therapy.Material and methods. Treatment adherence was evaluated in 137 AF patients (aged 35-85 years with quantitative estimation of drug therapy adherence along with compliance to medical support and lifestyle modifications. Among them 82 patients underwent polymerase chain reaction (PCR analysis of CYP2C9 and VKORC1 gene polymorphisms.Results. Patients receiving anticoagulation therapy are characterized by lower level of adherence compared to patients without anticoagulants (65.2±19.3% vs 68.5±19.1%; Wald-Wolfowitz; p<0.05. Considering all studied parameters men are less adherent than women (54.7±18.6% vs 60.6±16.7%; Kolmogorov-Smirnov; p<0.05. Patients receiving new oral anticoagulants (NOAC have better compliance compared with patients of warfarin group. Mutations in CYP2C9 gene were detected in 32.9%, VKORC1 – in 68.3%, and their combination – in 21.9% of study participants. Warfarin therapy may be potentially dangerous in such patients due to low adherence.Conclusion. Considering high prevalence of CYP2C9 and VKORC1 gene mutations treatment adherence should be estimated to optimize choice of anticoagulation therapy. NOAC treatment should be considered in patients with low adherence for prevention of thromboembolic complications.

  9. Pharmacy Characteristics Associated with the Provision of Drug Therapy Services in Nonmetropolitan Community Pharmacies

    Science.gov (United States)

    Gadkari, Abhijit S.; Mott, David A.; Kreling, David H.; Bonnarens, Joseph K.

    2009-01-01

    Context: Higher prevalence of chronic diseases and reduced access to other health professionals in rural areas suggest that rural Medicare enrollees will benefit from pharmacist-provided drug therapy services (DTS). Purpose: The purpose of this study was to describe non-metropolitan community pharmacy sites in Wisconsin, the provision of DTS at…

  10. Retrospective Analysis of Emerging Drugs Use in a Quebec Women's and Children's University Hospital and Perspectives for Safe and Optimal Drug Use.

    Science.gov (United States)

    Corny, Jennifer; Pelletier, Elaine; Lebel, Denis; Bussières, Jean-François

    2017-03-10

    Only few medicines are licensed for children. The use of emerging drugs (unmarketed drug, off-label drug with poorly documented use, and/or costly drugs) might represent an essential alternative for pediatric patients. The objective of the study was to assess emerging drug uses rate and profile in our women's and children's centre to support the implementation of an appropriate policy. We identified retrospectively emerging drugs used between 2013-01-01 and 2014-02-28, using computerized pharmacist software extraction of drugs used. Conventional oncologic drugs were excluded. Retrospective analysis of medical charts for patients who received an emerging drug and literature review for each drug were performed to determine efficacy and safety endpoints. Median delays between first intention and final decision to use the drug and between final decision and first administration were calculated. Proportion of patients who experienced a positive evolution under treatment or a side effect possibly related to the drug was calculated. A total of 26 emerging drugs were identified (89 patients, 99 uses). Median treatment duration was 66 days [1-1435]. Median delay between first evocation and final decision to use the drug was 2 days [0-333] and 0 day [0-404] between final decision and first administration. 52/99 (53%) of patients experienced a positive evolution under treatment and 26/99 (26%) experienced a side effect possibly related to emerging drug use. This study allowed us to describe emerging drug uses in a women and children tertiary hospital. It led to the implementation of a local emerging drug use policy ensuring optimal and safe use of these drugs. There is a significant number of emerging drugs used in pediatric which shows positive improvement in 56% of patients. © 2017 Journal of Population Therapeutics and Clinical Pharmacology. All rights reserved.

  11. TU-EF-304-07: Monte Carlo-Based Inverse Treatment Plan Optimization for Intensity Modulated Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y [Tsinghua University, Beijing, Beijing (China); UT Southwestern Medical Center, Dallas, TX (United States); Tian, Z; Jiang, S; Jia, X [UT Southwestern Medical Center, Dallas, TX (United States); Song, T [Southern Medical University, Guangzhou, Guangdong (China); UT Southwestern Medical Center, Dallas, TX (United States); Wu, Z; Liu, Y [Tsinghua University, Beijing, Beijing (China)

    2015-06-15

    Purpose: Intensity-modulated proton therapy (IMPT) is increasingly used in proton therapy. For IMPT optimization, Monte Carlo (MC) is desired for spots dose calculations because of its high accuracy, especially in cases with a high level of heterogeneity. It is also preferred in biological optimization problems due to the capability of computing quantities related to biological effects. However, MC simulation is typically too slow to be used for this purpose. Although GPU-based MC engines have become available, the achieved efficiency is still not ideal. The purpose of this work is to develop a new optimization scheme to include GPU-based MC into IMPT. Methods: A conventional approach using MC in IMPT simply calls the MC dose engine repeatedly for each spot dose calculations. However, this is not the optimal approach, because of the unnecessary computations on some spots that turned out to have very small weights after solving the optimization problem. GPU-memory writing conflict occurring at a small beam size also reduces computational efficiency. To solve these problems, we developed a new framework that iteratively performs MC dose calculations and plan optimizations. At each dose calculation step, the particles were sampled from different spots altogether with Metropolis algorithm, such that the particle number is proportional to the latest optimized spot intensity. Simultaneously transporting particles from multiple spots also mitigated the memory writing conflict problem. Results: We have validated the proposed MC-based optimization schemes in one prostate case. The total computation time of our method was ∼5–6 min on one NVIDIA GPU card, including both spot dose calculation and plan optimization, whereas a conventional method naively using the same GPU-based MC engine were ∼3 times slower. Conclusion: A fast GPU-based MC dose calculation method along with a novel optimization workflow is developed. The high efficiency makes it attractive for clinical

  12. TU-EF-304-07: Monte Carlo-Based Inverse Treatment Plan Optimization for Intensity Modulated Proton Therapy

    International Nuclear Information System (INIS)

    Li, Y; Tian, Z; Jiang, S; Jia, X; Song, T; Wu, Z; Liu, Y

    2015-01-01

    Purpose: Intensity-modulated proton therapy (IMPT) is increasingly used in proton therapy. For IMPT optimization, Monte Carlo (MC) is desired for spots dose calculations because of its high accuracy, especially in cases with a high level of heterogeneity. It is also preferred in biological optimization problems due to the capability of computing quantities related to biological effects. However, MC simulation is typically too slow to be used for this purpose. Although GPU-based MC engines have become available, the achieved efficiency is still not ideal. The purpose of this work is to develop a new optimization scheme to include GPU-based MC into IMPT. Methods: A conventional approach using MC in IMPT simply calls the MC dose engine repeatedly for each spot dose calculations. However, this is not the optimal approach, because of the unnecessary computations on some spots that turned out to have very small weights after solving the optimization problem. GPU-memory writing conflict occurring at a small beam size also reduces computational efficiency. To solve these problems, we developed a new framework that iteratively performs MC dose calculations and plan optimizations. At each dose calculation step, the particles were sampled from different spots altogether with Metropolis algorithm, such that the particle number is proportional to the latest optimized spot intensity. Simultaneously transporting particles from multiple spots also mitigated the memory writing conflict problem. Results: We have validated the proposed MC-based optimization schemes in one prostate case. The total computation time of our method was ∼5–6 min on one NVIDIA GPU card, including both spot dose calculation and plan optimization, whereas a conventional method naively using the same GPU-based MC engine were ∼3 times slower. Conclusion: A fast GPU-based MC dose calculation method along with a novel optimization workflow is developed. The high efficiency makes it attractive for clinical

  13. SU-E-T-295: Simultaneous Beam Sampling and Aperture Shape Optimization for Station Parameter Optimized Radiation Therapy (SPORT)

    Energy Technology Data Exchange (ETDEWEB)

    Zarepisheh, M; Li, R; Xing, L [Stanford UniversitySchool of Medicine, Stanford, CA (United States); Ye, Y [Stanford Univ, Management Science and Engineering, Stanford, Ca (United States); Boyd, S [Stanford University, Electrical Engineering, Stanford, CA (United States)

    2014-06-01

    Purpose: Station Parameter Optimized Radiation Therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital LINACs, in which the station parameters of a delivery system, (such as aperture shape and weight, couch position/angle, gantry/collimator angle) are optimized altogether. SPORT promises to deliver unprecedented radiation dose distributions efficiently, yet there does not exist any optimization algorithm to implement it. The purpose of this work is to propose an optimization algorithm to simultaneously optimize the beam sampling and aperture shapes. Methods: We build a mathematical model whose variables are beam angles (including non-coplanar and/or even nonisocentric beams) and aperture shapes. To solve the resulting large scale optimization problem, we devise an exact, convergent and fast optimization algorithm by integrating three advanced optimization techniques named column generation, gradient method, and pattern search. Column generation is used to find a good set of aperture shapes as an initial solution by adding apertures sequentially. Then we apply the gradient method to iteratively improve the current solution by reshaping the aperture shapes and updating the beam angles toward the gradient. Algorithm continues by pattern search method to explore the part of the search space that cannot be reached by the gradient method. Results: The proposed technique is applied to a series of patient cases and significantly improves the plan quality. In a head-and-neck case, for example, the left parotid gland mean-dose, brainstem max-dose, spinal cord max-dose, and mandible mean-dose are reduced by 10%, 7%, 24% and 12% respectively, compared to the conventional VMAT plan while maintaining the same PTV coverage. Conclusion: Combined use of column generation, gradient search and pattern search algorithms provide an effective way to optimize simultaneously the large collection of station parameters and significantly improves

  14. SU-E-T-295: Simultaneous Beam Sampling and Aperture Shape Optimization for Station Parameter Optimized Radiation Therapy (SPORT)

    International Nuclear Information System (INIS)

    Zarepisheh, M; Li, R; Xing, L; Ye, Y; Boyd, S

    2014-01-01

    Purpose: Station Parameter Optimized Radiation Therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital LINACs, in which the station parameters of a delivery system, (such as aperture shape and weight, couch position/angle, gantry/collimator angle) are optimized altogether. SPORT promises to deliver unprecedented radiation dose distributions efficiently, yet there does not exist any optimization algorithm to implement it. The purpose of this work is to propose an optimization algorithm to simultaneously optimize the beam sampling and aperture shapes. Methods: We build a mathematical model whose variables are beam angles (including non-coplanar and/or even nonisocentric beams) and aperture shapes. To solve the resulting large scale optimization problem, we devise an exact, convergent and fast optimization algorithm by integrating three advanced optimization techniques named column generation, gradient method, and pattern search. Column generation is used to find a good set of aperture shapes as an initial solution by adding apertures sequentially. Then we apply the gradient method to iteratively improve the current solution by reshaping the aperture shapes and updating the beam angles toward the gradient. Algorithm continues by pattern search method to explore the part of the search space that cannot be reached by the gradient method. Results: The proposed technique is applied to a series of patient cases and significantly improves the plan quality. In a head-and-neck case, for example, the left parotid gland mean-dose, brainstem max-dose, spinal cord max-dose, and mandible mean-dose are reduced by 10%, 7%, 24% and 12% respectively, compared to the conventional VMAT plan while maintaining the same PTV coverage. Conclusion: Combined use of column generation, gradient search and pattern search algorithms provide an effective way to optimize simultaneously the large collection of station parameters and significantly improves

  15. Model-based optimization of G-CSF treatment during cytotoxic chemotherapy.

    Science.gov (United States)

    Schirm, Sibylle; Engel, Christoph; Loibl, Sibylle; Loeffler, Markus; Scholz, Markus

    2018-02-01

    Although G-CSF is widely used to prevent or ameliorate leukopenia during cytotoxic chemotherapies, its optimal use is still under debate and depends on many therapy parameters such as dosing and timing of cytotoxic drugs and G-CSF, G-CSF pharmaceuticals used and individual risk factors of patients. We integrate available biological knowledge and clinical data regarding cell kinetics of bone marrow granulopoiesis, the cytotoxic effects of chemotherapy and pharmacokinetics and pharmacodynamics of G-CSF applications (filgrastim or pegfilgrastim) into a comprehensive model. The model explains leukocyte time courses of more than 70 therapy scenarios comprising 10 different cytotoxic drugs. It is applied to develop optimized G-CSF schedules for a variety of clinical scenarios. Clinical trial results showed validity of model predictions regarding alternative G-CSF schedules. We propose modifications of G-CSF treatment for the chemotherapies 'BEACOPP escalated' (Hodgkin's disease), 'ETC' (breast cancer), and risk-adapted schedules for 'CHOP-14' (aggressive non-Hodgkin's lymphoma in elderly patients). We conclude that we established a model of human granulopoiesis under chemotherapy which allows predictions of yet untested G-CSF schedules, comparisons between them, and optimization of filgrastim and pegfilgrastim treatment. As a general rule of thumb, G-CSF treatment should not be started too early and patients could profit from filgrastim treatment continued until the end of the chemotherapy cycle.

  16. The importance of Pharmacovigilance for the drug safety: Focus on cardiovascular profile of incretin-based therapy.

    Science.gov (United States)

    Sportiello, Liberata; Rafaniello, Concetta; Scavone, Cristina; Vitale, Cristiana; Rossi, Francesco; Capuano, Annalisa

    2016-01-01

    With the recent introduction of the new European Pharmacovigilance legislation, all new drugs must be carefully monitored after admission on the European market, in order to assess the long safety profile. Currently, special attention is given to several hypoglycemic agents with recent market approval (agonists of glucagon-like peptide-1 [GLP-1] receptor and dipeptidyl peptidase 4 inhibitors [DPP-4i]), which act through the potentiation of incretin hormone signaling. Their inclusion in European additional monitoring is also due to safety problems, which seem to characterize their pharmacological class. In fact, these drugs initially showed a good tolerability profile with mainly gastrointestinal adverse events, low risk of hypoglycemia and minor effects on body weight. But, new concerns such as infections, pancreatitis, pancreatic cancer and above all cardiovascular events (especially risk of heart failure requiring hospitalization) are now arising. In this review, we highlighted aspects of the new Pharmacovigilance European dispositions, and then we investigated the tolerability profile of incretin-based therapies, in particular DPP-4 inhibitors. Notably, we focused our attention on new safety concerns, which are emerging mostly in the post-marketing period, as the cardiovascular risk profile. Evidence in literature and opinions of regulatory agencies (e.g., European Medicines Agency and Food and Drug Administration) about risks of incretin-based therapies are yet controversial, and there are many open questions in particular on cancer and cardiovascular effects. Thus, it is important to continue to monitor closely the use of these drugs in clinical practice to improve the knowledge on their long-term safety and their place in diabetes therapy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Incorporating Natural Products, Pharmaceutical Drugs, Self-Care and Digital/Mobile Health Technologies into Molecular-Behavioral Combination Therapies for Chronic Diseases

    Science.gov (United States)

    Bulaj, Grzegorz; Ahern, Margaret M.; Kuhn, Alexis; Judkins, Zachary S.; Bowen, Randy C.; Chen, Yizhe

    2016-01-01

    Merging pharmaceutical and digital (mobile health, mHealth) ingredients to create new therapies for chronic diseases offers unique opportunities for natural products such as omega-3 polyunsaturated fatty acids (n-3 PUFA), curcumin, resveratrol, theanine, or α-lipoic acid. These compounds, when combined with pharmaceutical drugs, show improved efficacy and safety in preclinical and clinical studies of epilepsy, neuropathic pain, osteoarthritis, depression, schizophrenia, diabetes and cancer. Their additional clinical benefits include reducing levels of TNFα and other inflammatory cytokines. We describe how pleiotropic natural products can be developed as bioactive incentives within the network pharmacology together with pharmaceutical drugs and self-care interventions. Since approximately 50% of chronically-ill patients do not take pharmaceutical drugs as prescribed, psychobehavioral incentives may appeal to patients at risk for medication non-adherence. For epilepsy, the incentive-based network therapy comprises anticonvulsant drugs, antiseizure natural products (n-3 PUFA, curcumin or/and resveratrol) coupled with disease-specific behavioral interventions delivered by mobile medical apps. The add-on combination of antiseizure natural products and mHealth supports patient empowerment and intrinsic motivation by having a choice in self-care behaviors. The incentivized therapies offer opportunities: (1) to improve clinical efficacy and safety of existing drugs, (2) to catalyze patient-centered, disease self-management and behavior-changing habits, also improving health-related quality-of-life after reaching remission, and (3) merging copyrighted mHealth software with natural products, thus establishing an intellectual property protection of medical treatments comprising the natural products existing in public domain and currently promoted as dietary supplements. Taken together, clinical research on synergies between existing drugs and pleiotropic natural products

  18. Design and optimization of self-nanoemulsifying drug delivery systems (SNEDDS) for enhanced dissolution of gemfibrozil.

    Science.gov (United States)

    Villar, Ana Maria Sierra; Naveros, Beatriz Clares; Campmany, Ana Cristina Calpena; Trenchs, Monserrat Aróztegui; Rocabert, Coloma Barbé; Bellowa, Lyda Halbaut

    2012-07-15

    Self-nanoemulsifying drug delivery systems of gemfibrozil were developed under Quality by Design approach for improvement of dissolution and oral absorption. Preliminary screening was performed to select proper components combination. Box-Behnken experimental design was employed as statistical tool to optimize the formulation variables, X(1) (Cremophor(®) EL), X(2) (Capmul(®) MCM-C8), and X(3) (lemon essential oil). Systems were assessed for visual characteristics (emulsification efficacy), turbidity, droplet size, polydispersity index and drug release. Different pH media were also assayed for optimization. Following optimization, the values of formulation components (X(1), X(2), and X(3)) were 32.43%, 29.73% and 21.62%, respectively (16.22% of gemfibrozil). Transmission electron microscopy demonstrated spherical droplet morphology. SNEEDS release study was compared to commercial tablets. Optimized SNEDDS formulation of gemfibrozil showed a significant increase in dissolution rate compared to conventional tablets. Both formulations followed Weibull mathematical model release with a significant difference in t(d) parameter in favor of the SNEDDS. Equally amodelistic parameters were calculated being the dissolution efficiency significantly higher for SNEDDS, confirming that the developed SNEDDS formulation was superior to commercial formulation with respect to in vitro dissolution profile. This paper provides an overview of the SNEDDS of the gemfibrozil as a promising alternative to improve oral absorption. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. The importance of monitoring adverse drug reactions in pediatric patients: the results of a national surveillance program in Italy.

    Science.gov (United States)

    Carnovale, Carla; Brusadelli, Tatiana; Zuccotti, GianVincenzo; Beretta, Silvia; Sullo, Maria Giuseppa; Capuano, Annalisa; Rossi, Francesco; Moschini, Martina; Mugelli, Alessandro; Vannacci, Alfredo; Laterza, Marcella; Clementi, Emilio; Radice, Sonia

    2014-09-01

    To gain information on safety of drugs used in pediatrics through a 4-year post-marketing active pharmacovigilance program. The program sampled the Italian population and was termed 'Monitoring of the Adverse Effects in Pediatric population' (MEAP). Adverse drug reactions (ADRs) were collected for individuals aged 0 - 17 years treated in hospitals and territorial health services in Lombardy, Tuscany, Apulia and Campania; located to gain an appropriate sampling of the population. ADRs were evaluated using the Adverse Drug Reaction Probability Scale (Naranjo) and analyzed with respect to time, age, sex, category of ADR, seriousness, suspected medicines, type of reporter and off-label use. We collected and analyzed reports from 3539 ADRs. Vaccines, antineoplastic and psychotropic drugs were the most frequently pharmacotherapeutic subgroups involved. Seventeen percent of reported ADRs were serious; of them fever, vomiting and angioedema were the most frequently reported. Eight percent of ADRs were associated with off-label use, and 10% were unknown ADRs. Analysis of these revealed possible strategies of therapy optimization. The MEAP project demonstrated that active post-marketing pharmacovigilance programs are a valid strategy to increase awareness on pediatric pharmacology, reduce underreporting and provide information on drug actions in pediatrics. This information enhances drug therapy optimization in the pediatric patients.

  20. Effective photodynamic therapy in drug-resistant prostate cancer cells utilizing a non-viral antitumor vector (a secondary publication).

    Science.gov (United States)

    Yamauchi, Masaya; Honda, Norihiro; Hazama, Hisanao; Tachikawa, Shoji; Nakamura, Hiroyuki; Kaneda, Yasufumi; Awazu, Kunio

    2016-03-31

    There is an urgent need to develop an efficient strategy for the treatment of drug-resistant prostate cancer. Photodynamic therapy (PDT), in which low incident levels of laser energy are used to activate a photosensitizer taken up by tumor cells, is expected as a novel therapy for the treatment of prostate cancer because of the minimal invasive nature of PDT. The present study was designed to assess the efficacy of a novel vector approach combined with a conventional porphyrin-based photosensitizer. Our group focused on a non-viral vector (hemagglutinating virus of Japan envelope; HVJ-E) combined with protoporphyrin IX (PpIX) lipid, termed the porphyrus envelope (PE). It has been previously confirmed that HVJ-E has drug-delivering properties and can induce cancer-specific cell death. The PE (HVJ-E contained in PpIX lipid) was developed as a novel photosensitizer. In this study, the antitumor and PDT efficacy of the PE against hormone-antagonistic human prostate cancer cells (PC-3) were evaluated. Our results demonstrated that, under specific circumstances, PDT using the PE was very effective against PC-3 cells. A novel therapy for drug-resistant prostate cancer based on this vector approach is eagerly anticipated.

  1. Initial observations of cell-mediated drug delivery to the deep lung.

    Science.gov (United States)

    Kumar, Arun; Glaum, Mark; El-Badri, Nagwa; Mohapatra, Shyam; Haller, Edward; Park, Seungjoo; Patrick, Leslie; Nattkemper, Leigh; Vo, Dawn; Cameron, Don F

    2011-01-01

    Using current methodologies, drug delivery to small airways, terminal bronchioles, and alveoli (deep lung) is inefficient, especially to the lower lungs. Urgent lung pathologies such as acute respiratory distress syndrome (ARDS) and post-lung transplantation complications are difficult to treat, in part due to the methodological limitations in targeting the deep lung with high efficiency drug distribution to the site of pathology. To overcome drug delivery limitations inhibiting the optimization of deep lung therapy, isolated rat Sertoli cells preloaded with chitosan nanoparticles were use to obtain a high-density distribution and concentration (92%) of the nanoparticles in the lungs of mice by way of the peripheral venous vasculature rather than the more commonly used pulmonary route. Additionally, Sertoli cells were preloaded with chitosan nanoparticles coupled with the anti-inflammatory compound curcumin and then injected intravenously into control or experimental mice with deep lung inflammation. By 24 h postinjection, most of the curcumin load (∼90%) delivered in the injected Sertoli cells was present and distributed throughout the lungs, including the perialveloar sac area in the lower lungs. This was based on the high-density, positive quantification of both nanoparticles and curcumin in the lungs. There was a marked positive therapeutic effect achieved 24 h following curcumin treatment delivered by this Sertoli cell nanoparticle protocol (SNAP). Results identify a novel and efficient protocol for targeted delivery of drugs to the deep lung mediated by extratesticular Sertoli cells. Utilization of SNAP delivery may optimize drug therapy for conditions such as ARDS, status asthmaticus, pulmonary hypertension, lung cancer, and complications following lung transplantation where the use of high concentrations of anti-inflammatory drugs is desirable, but often limited by risks of systemic drug toxicity.

  2. Relationship between hunger, adherence to antiretroviral therapy and plasma HIV RNA suppression among HIV-positive illicit drug users in a Canadian setting.

    Science.gov (United States)

    Anema, Aranka; Kerr, Thomas; Milloy, M-J; Feng, Cindy; Montaner, Julio S