WorldWideScience

Sample records for optimal dose finding

  1. Case Example of Dose Optimization Using Data From Bortezomib Dose-Finding Clinical Trials.

    Science.gov (United States)

    Lee, Shing M; Backenroth, Daniel; Cheung, Ying Kuen Ken; Hershman, Dawn L; Vulih, Diana; Anderson, Barry; Ivy, Percy; Minasian, Lori

    2016-04-20

    The current dose-finding methodology for estimating the maximum tolerated dose of investigational anticancer agents is based on the cytotoxic chemotherapy paradigm. Molecularly targeted agents (MTAs) have different toxicity profiles, which may lead to more long-lasting mild or moderate toxicities as well as to late-onset and cumulative toxicities. Several approved MTAs have been poorly tolerated during long-term administration, leading to postmarketing dose optimization studies to re-evaluate the optimal treatment dose. Using data from completed bortezomib dose-finding trials, we explore its toxicity profile, optimize its dose, and examine the appropriateness of current designs for identifying an optimal dose. We classified the toxicities captured from 481 patients in 14 bortezomib dose-finding studies conducted through the National Cancer Institute Cancer Therapy Evaluation Program, computed the incidence of late-onset toxicities, and compared the incidence of dose-limiting toxicities (DLTs) among groups of patients receiving different doses of bortezomib. A total of 13,008 toxicities were captured: 46% of patients' first DLTs and 88% of dose reductions or discontinuations of treatment because of toxicity were observed after the first cycle. Moreover, for the approved dose of 1.3 mg/m(2), the estimated cumulative incidence of DLT was > 50%, and the estimated cumulative incidence of dose reduction or treatment discontinuation because of toxicity was nearly 40%. When considering the entire course of treatment, the approved bortezomib dose exceeds the conventional ceiling DLT rate of 20% to 33%. Retrospective analysis of trial data provides an opportunity for dose optimization of MTAs. Future dose-finding studies of MTAs should take into account late-onset toxicities to ensure that a tolerable dose is identified for future efficacy and comparative trials. © 2016 by American Society of Clinical Oncology.

  2. Optimization of vitamin K antagonist drug dose finding by replacement of the international normalized ratio by a bidirectional factor : validation of a new algorithm

    NARCIS (Netherlands)

    Beinema, M J; van der Meer, F J M; Brouwers, J R B J; Rosendaal, F R

    2016-01-01

    UNLABELLED: Essentials We developed a new algorithm to optimize vitamin K antagonist dose finding. Validation was by comparing actual dosing to algorithm predictions. Predicted and actual dosing of well performing centers were highly associated. The method is promising and should be tested in a

  3. Finding the optimal dose of vitamin K1 to treat vitamin K deficiency and to avoid anaphylactoid reactions.

    Science.gov (United States)

    Mi, Yan-Ni; Ping, Na-Na; Li, Bo; Xiao, Xue; Zhu, Yan-Bing; Cao, Lei; Ren, Jian-Kang; Cao, Yong-Xiao

    2017-10-01

    Vitamin K1 injection induces severe dose-related anaphylactoid reactions and overdose for the treatment of vitamin K deficiency. We aimed to find an optimal and small dose of vitamin K1 injection to treat vitamin K deficiency and avoid anaphylactoid reactions in animal. Rats were administered a vitamin K-deficient diet and gentamicin to establish vitamin K deficiency model. Behaviour tests were performed in beagle dogs to observe anaphylactoid reactions. The results showed an increased protein induced by vitamin K absence or antagonist II (PIVKA-II) levels, a prolonging of prothrombin time (PT) and activated partial thromboplastin time (APTT) and a decrease in vitamin K-dependent coagulation factor (F) II, VII, IX and X activities in the model group. In vitamin K1 0.01 mg/kg group, the liver vitamin K1 levels increased fivefold and the liver vitamin K2 levels increased to the normal amount. Coagulation markers PT, APTT, FVII and FIX activities returned to normal. Both in the 0.1 and 1.0 mg/kg vitamin K1 groups, coagulation functions completely returned to normal. Moreover, the amount of liver vitamin K1 was 40 (0.1 mg/kg) or 100 (1.0 mg/kg) times as in normal. Vitamin K2 was about 4 (0.1 mg/kg) or 5 (1.0 mg/kg) times as the normal amount. There was no obvious anaphylactoid symptom in dogs with the dose of 0.03 mg/kg, which is equivalent to the dose of 0.01 mg/kg in rats. These results demonstrated that a small dose of vitamin K1 is effective to improve vitamin K deficiency and to prevent anaphylactoid reactions, simultaneously. © 2017 Société Française de Pharmacologie et de Thérapeutique.

  4. Finding optimal exact reducts

    KAUST Repository

    AbouEisha, Hassan M.

    2014-01-01

    The problem of attribute reduction is an important problem related to feature selection and knowledge discovery. The problem of finding reducts with minimum cardinality is NP-hard. This paper suggests a new algorithm for finding exact reducts with minimum cardinality. This algorithm transforms the initial table to a decision table of a special kind, apply a set of simplification steps to this table, and use a dynamic programming algorithm to finish the construction of an optimal reduct. I present results of computer experiments for a collection of decision tables from UCIML Repository. For many of the experimented tables, the simplification steps solved the problem.

  5. Finding optimal exact reducts

    KAUST Repository

    AbouEisha, Hassan M.

    2014-01-01

    The problem of attribute reduction is an important problem related to feature selection and knowledge discovery. The problem of finding reducts with minimum cardinality is NP-hard. This paper suggests a new algorithm for finding exact reducts

  6. Optimizing adaptive design for Phase 2 dose-finding trials incorporating long-term success and financial considerations: A case study for neuropathic pain.

    Science.gov (United States)

    Gao, Jingjing; Nangia, Narinder; Jia, Jia; Bolognese, James; Bhattacharyya, Jaydeep; Patel, Nitin

    2017-06-01

    In this paper, we propose an adaptive randomization design for Phase 2 dose-finding trials to optimize Net Present Value (NPV) for an experimental drug. We replace the traditional fixed sample size design (Patel, et al., 2012) by this new design to see if NPV from the original paper can be improved. Comparison of the proposed design to the previous design is made via simulations using a hypothetical example based on a Diabetic Neuropathic Pain Study. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Optimizing the balance between radiation dose and image quality in pediatric head CT: findings before and after intensive radiologic staff training.

    Science.gov (United States)

    Paolicchi, Fabio; Faggioni, Lorenzo; Bastiani, Luca; Molinaro, Sabrina; Puglioli, Michele; Caramella, Davide; Bartolozzi, Carlo

    2014-06-01

    The purpose of this study was to assess the radiation dose and image quality of pediatric head CT examinations before and after radiologic staff training. Outpatients 1 month to 14 years old underwent 215 unenhanced head CT examinations before and after intensive training of staff radiologists and technologists in optimization of CT technique. Patients were divided into three age groups (0-4, 5-9, and 10-14 years), and CT dose index, dose-length product, tube voltage, and tube current-rotation time product values before and after training were retrieved from the hospital PACS. Gray matter conspicuity and contrast-to-noise ratio before and after training were calculated, and subjective image quality in terms of artifacts, gray-white matter differentiation, noise, visualization of posterior fossa structures, and need for repeat CT examination was visually evaluated by three neuroradiologists. The median CT dose index and dose-length product values were significantly lower after than before training in all age groups (27 mGy and 338 mGy ∙ cm vs 107 mGy and 1444 mGy ∙ cm in the 0- to 4-year-old group, 41 mGy and 483 mGy ∙ cm vs 68 mGy and 976 mGy ∙ cm in the 5- to 9-year-old group, and 51 mGy and 679 mGy ∙ cm vs 107 mGy and 1480 mGy ∙ cm in the 10- to 14-year-old group; p training were significantly lower than the levels before training (p staff training can be effective in reducing radiation dose while preserving diagnostic image quality in pediatric head CT examinations.

  8. Optimized dose distribution of a high dose rate vaginal cylinder

    International Nuclear Information System (INIS)

    Li Zuofeng; Liu, Chihray; Palta, Jatinder R.

    1998-01-01

    Purpose: To present a comparison of optimized dose distributions for a set of high-dose-rate (HDR) vaginal cylinders calculated by a commercial treatment-planning system with benchmark calculations using Monte-Carlo-calculated dosimetry data. Methods and Materials: Optimized dose distributions using both an isotropic and an anisotropic dose calculation model were obtained for a set of HDR vaginal cylinders. Mathematical optimization techniques available in the computer treatment-planning system were used to calculate dwell times and positions. These dose distributions were compared with benchmark calculations with TG43 formalism and using Monte-Carlo-calculated data. The same dwell times and positions were used for a quantitative comparison of dose calculated with three dose models. Results: The isotropic dose calculation model can result in discrepancies as high as 50%. The anisotropic dose calculation model compared better with benchmark calculations. The differences were more significant at the apex of the vaginal cylinder, which is typically used as the prescription point. Conclusion: Dose calculation models available in a computer treatment-planning system must be evaluated carefully to ensure their correct application. It should also be noted that when optimized dose distribution at a distance from the cylinder surface is calculated using an accurate dose calculation model, the vaginal mucosa dose becomes significantly higher, and therefore should be carefully monitored

  9. Dose-mass inverse optimization for minimally moving thoracic lesions

    Science.gov (United States)

    Mihaylov, I. B.; Moros, E. G.

    2015-05-01

    In the past decade, several different radiotherapy treatment plan evaluation and optimization schemes have been proposed as viable approaches, aiming for dose escalation or an increase of healthy tissue sparing. In particular, it has been argued that dose-mass plan evaluation and treatment plan optimization might be viable alternatives to the standard of care, which is realized through dose-volume evaluation and optimization. The purpose of this investigation is to apply dose-mass optimization to a cohort of lung cancer patients and compare the achievable healthy tissue sparing to that one achievable through dose-volume optimization. Fourteen non-small cell lung cancer (NSCLC) patient plans were studied retrospectively. The range of tumor motion was less than 0.5 cm and motion management in the treatment planning process was not considered. For each case, dose-volume (DV)-based and dose-mass (DM)-based optimization was performed. Nine-field step-and-shoot IMRT was used, with all of the optimization parameters kept the same between DV and DM optimizations. Commonly used dosimetric indices (DIs) such as dose to 1% the spinal cord volume, dose to 50% of the esophageal volume, and doses to 20 and 30% of healthy lung volumes were used for cross-comparison. Similarly, mass-based indices (MIs), such as doses to 20 and 30% of healthy lung masses, 1% of spinal cord mass, and 33% of heart mass, were also tallied. Statistical equivalence tests were performed to quantify the findings for the entire patient cohort. Both DV and DM plans for each case were normalized such that 95% of the planning target volume received the prescribed dose. DM optimization resulted in more organs at risk (OAR) sparing than DV optimization. The average sparing of cord, heart, and esophagus was 23, 4, and 6%, respectively. For the majority of the DIs, DM optimization resulted in lower lung doses. On average, the doses to 20 and 30% of healthy lung were lower by approximately 3 and 4%, whereas lung

  10. Dose-shaping using targeted sparse optimization

    Energy Technology Data Exchange (ETDEWEB)

    Sayre, George A.; Ruan, Dan [Department of Radiation Oncology, University of California - Los Angeles School of Medicine, 200 Medical Plaza, Los Angeles, California 90095 (United States)

    2013-07-15

    Purpose: Dose volume histograms (DVHs) are common tools in radiation therapy treatment planning to characterize plan quality. As statistical metrics, DVHs provide a compact summary of the underlying plan at the cost of losing spatial information: the same or similar dose-volume histograms can arise from substantially different spatial dose maps. This is exactly the reason why physicians and physicists scrutinize dose maps even after they satisfy all DVH endpoints numerically. However, up to this point, little has been done to control spatial phenomena, such as the spatial distribution of hot spots, which has significant clinical implications. To this end, the authors propose a novel objective function that enables a more direct tradeoff between target coverage, organ-sparing, and planning target volume (PTV) homogeneity, and presents our findings from four prostate cases, a pancreas case, and a head-and-neck case to illustrate the advantages and general applicability of our method.Methods: In designing the energy minimization objective (E{sub tot}{sup sparse}), the authors utilized the following robust cost functions: (1) an asymmetric linear well function to allow differential penalties for underdose, relaxation of prescription dose, and overdose in the PTV; (2) a two-piece linear function to heavily penalize high dose and mildly penalize low and intermediate dose in organs-at risk (OARs); and (3) a total variation energy, i.e., the L{sub 1} norm applied to the first-order approximation of the dose gradient in the PTV. By minimizing a weighted sum of these robust costs, general conformity to dose prescription and dose-gradient prescription is achieved while encouraging prescription violations to follow a Laplace distribution. In contrast, conventional quadratic objectives are associated with a Gaussian distribution of violations, which is less forgiving to large violations of prescription than the Laplace distribution. As a result, the proposed objective E{sub tot

  11. Dose-shaping using targeted sparse optimization

    International Nuclear Information System (INIS)

    Sayre, George A.; Ruan, Dan

    2013-01-01

    Purpose: Dose volume histograms (DVHs) are common tools in radiation therapy treatment planning to characterize plan quality. As statistical metrics, DVHs provide a compact summary of the underlying plan at the cost of losing spatial information: the same or similar dose-volume histograms can arise from substantially different spatial dose maps. This is exactly the reason why physicians and physicists scrutinize dose maps even after they satisfy all DVH endpoints numerically. However, up to this point, little has been done to control spatial phenomena, such as the spatial distribution of hot spots, which has significant clinical implications. To this end, the authors propose a novel objective function that enables a more direct tradeoff between target coverage, organ-sparing, and planning target volume (PTV) homogeneity, and presents our findings from four prostate cases, a pancreas case, and a head-and-neck case to illustrate the advantages and general applicability of our method.Methods: In designing the energy minimization objective (E tot sparse ), the authors utilized the following robust cost functions: (1) an asymmetric linear well function to allow differential penalties for underdose, relaxation of prescription dose, and overdose in the PTV; (2) a two-piece linear function to heavily penalize high dose and mildly penalize low and intermediate dose in organs-at risk (OARs); and (3) a total variation energy, i.e., the L 1 norm applied to the first-order approximation of the dose gradient in the PTV. By minimizing a weighted sum of these robust costs, general conformity to dose prescription and dose-gradient prescription is achieved while encouraging prescription violations to follow a Laplace distribution. In contrast, conventional quadratic objectives are associated with a Gaussian distribution of violations, which is less forgiving to large violations of prescription than the Laplace distribution. As a result, the proposed objective E tot sparse improves

  12. Dose-shaping using targeted sparse optimization.

    Science.gov (United States)

    Sayre, George A; Ruan, Dan

    2013-07-01

    Dose volume histograms (DVHs) are common tools in radiation therapy treatment planning to characterize plan quality. As statistical metrics, DVHs provide a compact summary of the underlying plan at the cost of losing spatial information: the same or similar dose-volume histograms can arise from substantially different spatial dose maps. This is exactly the reason why physicians and physicists scrutinize dose maps even after they satisfy all DVH endpoints numerically. However, up to this point, little has been done to control spatial phenomena, such as the spatial distribution of hot spots, which has significant clinical implications. To this end, the authors propose a novel objective function that enables a more direct tradeoff between target coverage, organ-sparing, and planning target volume (PTV) homogeneity, and presents our findings from four prostate cases, a pancreas case, and a head-and-neck case to illustrate the advantages and general applicability of our method. In designing the energy minimization objective (E tot (sparse)), the authors utilized the following robust cost functions: (1) an asymmetric linear well function to allow differential penalties for underdose, relaxation of prescription dose, and overdose in the PTV; (2) a two-piece linear function to heavily penalize high dose and mildly penalize low and intermediate dose in organs-at risk (OARs); and (3) a total variation energy, i.e., the L1 norm applied to the first-order approximation of the dose gradient in the PTV. By minimizing a weighted sum of these robust costs, general conformity to dose prescription and dose-gradient prescription is achieved while encouraging prescription violations to follow a Laplace distribution. In contrast, conventional quadratic objectives are associated with a Gaussian distribution of violations, which is less forgiving to large violations of prescription than the Laplace distribution. As a result, the proposed objective E tot (sparse) improves tradeoff between

  13. Multiple anatomy optimization of accumulated dose

    International Nuclear Information System (INIS)

    Watkins, W. Tyler; Siebers, Jeffrey V.; Moore, Joseph A.; Gordon, James; Hugo, Geoffrey D.

    2014-01-01

    Purpose: To investigate the potential advantages of multiple anatomy optimization (MAO) for lung cancer radiation therapy compared to the internal target volume (ITV) approach. Methods: MAO aims to optimize a single fluence to be delivered under free-breathing conditions such that the accumulated dose meets the plan objectives, where accumulated dose is defined as the sum of deformably mapped doses computed on each phase of a single four dimensional computed tomography (4DCT) dataset. Phantom and patient simulation studies were carried out to investigate potential advantages of MAO compared to ITV planning. Through simulated delivery of the ITV- and MAO-plans, target dose variations were also investigated. Results: By optimizing the accumulated dose, MAO shows the potential to ensure dose to the moving target meets plan objectives while simultaneously reducing dose to organs at risk (OARs) compared with ITV planning. While consistently superior to the ITV approach, MAO resulted in equivalent OAR dosimetry at planning objective dose levels to within 2% volume in 14/30 plans and to within 3% volume in 19/30 plans for each lung V20, esophagus V25, and heart V30. Despite large variations in per-fraction respiratory phase weights in simulated deliveries at high dose rates (e.g., treating 4/10 phases during single fraction beams) the cumulative clinical target volume (CTV) dose after 30 fractions and per-fraction dose were constant independent of planning technique. In one case considered, however, per-phase CTV dose varied from 74% to 117% of prescription implying the level of ITV-dose heterogeneity may not be appropriate with conventional, free-breathing delivery. Conclusions: MAO incorporates 4DCT information in an optimized dose distribution and can achieve a superior plan in terms of accumulated dose to the moving target and OAR sparing compared to ITV-plans. An appropriate level of dose heterogeneity in MAO plans must be further investigated

  14. Multiple anatomy optimization of accumulated dose

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, W. Tyler, E-mail: watkinswt@virginia.edu; Siebers, Jeffrey V. [Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia 22908 and Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States); Moore, Joseph A. [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland 21231 and Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States); Gordon, James [Henry Ford Health System, Detroit, Michigan 48202 and Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States); Hugo, Geoffrey D. [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States)

    2014-11-01

    Purpose: To investigate the potential advantages of multiple anatomy optimization (MAO) for lung cancer radiation therapy compared to the internal target volume (ITV) approach. Methods: MAO aims to optimize a single fluence to be delivered under free-breathing conditions such that the accumulated dose meets the plan objectives, where accumulated dose is defined as the sum of deformably mapped doses computed on each phase of a single four dimensional computed tomography (4DCT) dataset. Phantom and patient simulation studies were carried out to investigate potential advantages of MAO compared to ITV planning. Through simulated delivery of the ITV- and MAO-plans, target dose variations were also investigated. Results: By optimizing the accumulated dose, MAO shows the potential to ensure dose to the moving target meets plan objectives while simultaneously reducing dose to organs at risk (OARs) compared with ITV planning. While consistently superior to the ITV approach, MAO resulted in equivalent OAR dosimetry at planning objective dose levels to within 2% volume in 14/30 plans and to within 3% volume in 19/30 plans for each lung V20, esophagus V25, and heart V30. Despite large variations in per-fraction respiratory phase weights in simulated deliveries at high dose rates (e.g., treating 4/10 phases during single fraction beams) the cumulative clinical target volume (CTV) dose after 30 fractions and per-fraction dose were constant independent of planning technique. In one case considered, however, per-phase CTV dose varied from 74% to 117% of prescription implying the level of ITV-dose heterogeneity may not be appropriate with conventional, free-breathing delivery. Conclusions: MAO incorporates 4DCT information in an optimized dose distribution and can achieve a superior plan in terms of accumulated dose to the moving target and OAR sparing compared to ITV-plans. An appropriate level of dose heterogeneity in MAO plans must be further investigated.

  15. Multiple anatomy optimization of accumulated dose.

    Science.gov (United States)

    Watkins, W Tyler; Moore, Joseph A; Gordon, James; Hugo, Geoffrey D; Siebers, Jeffrey V

    2014-11-01

    To investigate the potential advantages of multiple anatomy optimization (MAO) for lung cancer radiation therapy compared to the internal target volume (ITV) approach. MAO aims to optimize a single fluence to be delivered under free-breathing conditions such that the accumulated dose meets the plan objectives, where accumulated dose is defined as the sum of deformably mapped doses computed on each phase of a single four dimensional computed tomography (4DCT) dataset. Phantom and patient simulation studies were carried out to investigate potential advantages of MAO compared to ITV planning. Through simulated delivery of the ITV- and MAO-plans, target dose variations were also investigated. By optimizing the accumulated dose, MAO shows the potential to ensure dose to the moving target meets plan objectives while simultaneously reducing dose to organs at risk (OARs) compared with ITV planning. While consistently superior to the ITV approach, MAO resulted in equivalent OAR dosimetry at planning objective dose levels to within 2% volume in 14/30 plans and to within 3% volume in 19/30 plans for each lung V20, esophagus V25, and heart V30. Despite large variations in per-fraction respiratory phase weights in simulated deliveries at high dose rates (e.g., treating 4/10 phases during single fraction beams) the cumulative clinical target volume (CTV) dose after 30 fractions and per-fraction dose were constant independent of planning technique. In one case considered, however, per-phase CTV dose varied from 74% to 117% of prescription implying the level of ITV-dose heterogeneity may not be appropriate with conventional, free-breathing delivery. MAO incorporates 4DCT information in an optimized dose distribution and can achieve a superior plan in terms of accumulated dose to the moving target and OAR sparing compared to ITV-plans. An appropriate level of dose heterogeneity in MAO plans must be further investigated.

  16. Multicriteria optimization of the spatial dose distribution

    International Nuclear Information System (INIS)

    Schlaefer, Alexander; Viulet, Tiberiu; Muacevic, Alexander; Fürweger, Christoph

    2013-01-01

    Purpose: Treatment planning for radiation therapy involves trade-offs with respect to different clinical goals. Typically, the dose distribution is evaluated based on few statistics and dose–volume histograms. Particularly for stereotactic treatments, the spatial dose distribution represents further criteria, e.g., when considering the gradient between subregions of volumes of interest. The authors have studied how to consider the spatial dose distribution using a multicriteria optimization approach.Methods: The authors have extended a stepwise multicriteria optimization approach to include criteria with respect to the local dose distribution. Based on a three-dimensional visualization of the dose the authors use a software tool allowing interaction with the dose distribution to map objectives with respect to its shape to a constrained optimization problem. Similarly, conflicting criteria are highlighted and the planner decides if and where to relax the shape of the dose distribution.Results: To demonstrate the potential of spatial multicriteria optimization, the tool was applied to a prostate and meningioma case. For the prostate case, local sparing of the rectal wall and shaping of a boost volume are achieved through local relaxations and while maintaining the remaining dose distribution. For the meningioma, target coverage is improved by compromising low dose conformality toward noncritical structures. A comparison of dose–volume histograms illustrates the importance of spatial information for achieving the trade-offs.Conclusions: The results show that it is possible to consider the location of conflicting criteria during treatment planning. Particularly, it is possible to conserve already achieved goals with respect to the dose distribution, to visualize potential trade-offs, and to relax constraints locally. Hence, the proposed approach facilitates a systematic exploration of the optimal shape of the dose distribution

  17. Topology optimization of inertia driven dosing units

    DEFF Research Database (Denmark)

    Andreasen, Casper Schousboe

    2017-01-01

    This paper presents a methodology for optimizing inertia driven dosing units, sometimes referred to as eductors, for use in small scale flow applications. The unit is assumed to operate at low to moderate Reynolds numbers and under steady state conditions. By applying topology optimization...

  18. Optimizing lithium dosing in hemodialysis

    DEFF Research Database (Denmark)

    Bjarnason, N H; Munkner, R; Kampmann, J P

    2006-01-01

    in which we developed an algorithm based on a 2-compartment distribution without elimination. The GFR estimate led to plasma concentrations 3-4 times lower than those anticipated. In contrast, the estimates based on V(d) and the algorithm derived from pharmacokinetic modeling led to comparable loading dose...... in this patient with no residual kidney function. We did not observe adverse effects related to this regimen, which was monitored from 18 days to 8 months of therapy, and the patient experienced relief from her severe depressive disorder. In conclusion, dialysis patients may be treated with lithium administrated...

  19. Optimizing lithium dosing in hemodialysis

    DEFF Research Database (Denmark)

    Bjarnason, N H; Munkner, R; Kampmann, J P

    2006-01-01

    We studied a 62-year-old female hemodialysis patient during initiation and maintenance of lithium carbonate therapy. Three different methods were applied to estimate the regimen: a scenario based on volume of distribution (V(d)), a scenario based on glomerular filtration rate (GFR), and a scenario...... estimates. Furthermore, the maintenance dose estimated from the central compartment (V1) led to plasma concentrations within the therapeutic range. Thus, a regimen where 12.2 mmol lithium was given after each hemodialysis session resulted in stable between-dialysis plasma lithium concentrations...... in this patient with no residual kidney function. We did not observe adverse effects related to this regimen, which was monitored from 18 days to 8 months of therapy, and the patient experienced relief from her severe depressive disorder. In conclusion, dialysis patients may be treated with lithium administrated...

  20. Dose optimization in simulated permanent interstitial implant of prostate brachytherapy

    International Nuclear Information System (INIS)

    Faria, Fernando Pereira de

    2006-01-01

    Any treatment of cancer that uses some modality of radiotherapy is planned before being executed. In general the goal in radiotherapy is to irradiate the target to be treated minimizing the incidence of radiation in healthy surrounding tissues. The planning differ among themselves according to the modality of radiotherapy, the type of cancer and where it is located. This work approaches the problem of dose optimization for the planning of prostate cancer treatment through the modality of low dose-rate brachytherapy with Iodine 125 or Palladium 103 seeds. An algorithm for dose calculation and optimization was constructed to find the seeds configuration that better fits the relevant clinical criteria such as as the tolerated dose by the urethra and rectum and the desired dose for prostate. The algorithm automatically finds this configuration from the prostate geometry established in two or three dimensions by using images of ultrasound, magnetic resonance or tomography and from the establishment of minimum restrictions to the positions of the seeds in the prostate and needles in a template. Six patterns of seeds distribution based on clinical criteria were suggested and tested in this work. Each one of these patterns generated a space of possible seeds configurations for the prostate tested by the dose calculation and optimization algorithm. The configurations that satisfied the clinical criteria were submitted to a test according to an optimization function suggested in this work. The configuration that produced maximum value for this function was considered the optimized one. (author)

  1. Finding optimal vaccination strategies for pandemic influenza using genetic algorithms.

    Science.gov (United States)

    Patel, Rajan; Longini, Ira M; Halloran, M Elizabeth

    2005-05-21

    In the event of pandemic influenza, only limited supplies of vaccine may be available. We use stochastic epidemic simulations, genetic algorithms (GA), and random mutation hill climbing (RMHC) to find optimal vaccine distributions to minimize the number of illnesses or deaths in the population, given limited quantities of vaccine. Due to the non-linearity, complexity and stochasticity of the epidemic process, it is not possible to solve for optimal vaccine distributions mathematically. However, we use GA and RMHC to find near optimal vaccine distributions. We model an influenza pandemic that has age-specific illness attack rates similar to the Asian pandemic in 1957-1958 caused by influenza A(H2N2), as well as a distribution similar to the Hong Kong pandemic in 1968-1969 caused by influenza A(H3N2). We find the optimal vaccine distributions given that the number of doses is limited over the range of 10-90% of the population. While GA and RMHC work well in finding optimal vaccine distributions, GA is significantly more efficient than RMHC. We show that the optimal vaccine distribution found by GA and RMHC is up to 84% more effective than random mass vaccination in the mid range of vaccine availability. GA is generalizable to the optimization of stochastic model parameters for other infectious diseases and population structures.

  2. Quality assurance for high dose rate brachytherapy treatment planning optimization: using a simple optimization to verify a complex optimization

    International Nuclear Information System (INIS)

    Deufel, Christopher L; Furutani, Keith M

    2014-01-01

    As dose optimization for high dose rate brachytherapy becomes more complex, it becomes increasingly important to have a means of verifying that optimization results are reasonable. A method is presented for using a simple optimization as quality assurance for the more complex optimization algorithms typically found in commercial brachytherapy treatment planning systems. Quality assurance tests may be performed during commissioning, at regular intervals, and/or on a patient specific basis. A simple optimization method is provided that optimizes conformal target coverage using an exact, variance-based, algebraic approach. Metrics such as dose volume histogram, conformality index, and total reference air kerma agree closely between simple and complex optimizations for breast, cervix, prostate, and planar applicators. The simple optimization is shown to be a sensitive measure for identifying failures in a commercial treatment planning system that are possibly due to operator error or weaknesses in planning system optimization algorithms. Results from the simple optimization are surprisingly similar to the results from a more complex, commercial optimization for several clinical applications. This suggests that there are only modest gains to be made from making brachytherapy optimization more complex. The improvements expected from sophisticated linear optimizations, such as PARETO methods, will largely be in making systems more user friendly and efficient, rather than in finding dramatically better source strength distributions. (paper)

  3. Dose optimization in CT examination of children

    International Nuclear Information System (INIS)

    Hojreh, A.; Prosch, H.

    2012-01-01

    Problems arise due to the increased clinical use of computed tomography (CT) and the high radiosensitivity of children. The ALARA concept (as low as reasonably achievable) prevails in pediatric radiology. Justified indications and full utilization of available dose optimization methods. Medical physicists and the manufacturers should support pediatric radiology in the implementation of the ALARA concept. The referring physicians and radiology staff should be integrated into training programs. Sufficient diagnostic image quality is paramount and not the pretty images. (orig.) [de

  4. Segment-based dose optimization using a genetic algorithm

    International Nuclear Information System (INIS)

    Cotrutz, Cristian; Xing Lei

    2003-01-01

    Intensity modulated radiation therapy (IMRT) inverse planning is conventionally done in two steps. Firstly, the intensity maps of the treatment beams are optimized using a dose optimization algorithm. Each of them is then decomposed into a number of segments using a leaf-sequencing algorithm for delivery. An alternative approach is to pre-assign a fixed number of field apertures and optimize directly the shapes and weights of the apertures. While the latter approach has the advantage of eliminating the leaf-sequencing step, the optimization of aperture shapes is less straightforward than that of beamlet-based optimization because of the complex dependence of the dose on the field shapes, and their weights. In this work we report a genetic algorithm for segment-based optimization. Different from a gradient iterative approach or simulated annealing, the algorithm finds the optimum solution from a population of candidate plans. In this technique, each solution is encoded using three chromosomes: one for the position of the left-bank leaves of each segment, the second for the position of the right-bank and the third for the weights of the segments defined by the first two chromosomes. The convergence towards the optimum is realized by crossover and mutation operators that ensure proper exchange of information between the three chromosomes of all the solutions in the population. The algorithm is applied to a phantom and a prostate case and the results are compared with those obtained using beamlet-based optimization. The main conclusion drawn from this study is that the genetic optimization of segment shapes and weights can produce highly conformal dose distribution. In addition, our study also confirms previous findings that fewer segments are generally needed to generate plans that are comparable with the plans obtained using beamlet-based optimization. Thus the technique may have useful applications in facilitating IMRT treatment planning

  5. Optimized Dose Distribution of Gammamed Plus Vaginal Cylinders

    International Nuclear Information System (INIS)

    Supe, Sanjay S.; Bijina, T.K.; Varatharaj, C.; Shwetha, B.; Arunkumar, T.; Sathiyan, S.; Ganesh, K.M.; Ravikumar, M.

    2009-01-01

    Endometrial carcinoma is the most common malignancy arising in the female genital tract. Intracavitary vaginal cuff irradiation may be given alone or with external beam irradiation in patients determined to be at risk for locoregional recurrence. Vaginal cylinders are often used to deliver a brachytherapy dose to the vaginal apex and upper vagina or the entire vaginal surface in the management of postoperative endometrial cancer or cervical cancer. The dose distributions of HDR vaginal cylinders must be evaluated carefully, so that clinical experiences with LDR techniques can be used in guiding optimal use of HDR techniques. The aim of this study was to optimize dose distribution for Gammamed plus vaginal cylinders. Placement of dose optimization points was evaluated for its effect on optimized dose distributions. Two different dose optimization point models were used in this study, namely non-apex (dose optimization points only on periphery of cylinder) and apex (dose optimization points on periphery and along the curvature including the apex points). Thirteen dwell positions were used for the HDR dosimetry to obtain a 6-cm active length. Thus 13 optimization points were available at the periphery of the cylinder. The coordinates of the points along the curvature depended on the cylinder diameters and were chosen for each cylinder so that four points were distributed evenly in the curvature portion of the cylinder. Diameter of vaginal cylinders varied from 2.0 to 4.0 cm. Iterative optimization routine was utilized for all optimizations. The effects of various optimization routines (iterative, geometric, equal times) was studied for the 3.0-cm diameter vaginal cylinder. The effect of source travel step size on the optimized dose distributions for vaginal cylinders was also evaluated. All optimizations in this study were carried for dose of 6 Gy at dose optimization points. For both non-apex and apex models of vaginal cylinders, doses for apex point and three dome

  6. Optimization of dose distribution for the system of linear accelerator-based stereotactic radiosurgery

    International Nuclear Information System (INIS)

    Suh Taesuk.

    1990-01-01

    This work addresses a method for obtaining an optimal dose distribution of stereotactic radiosurgery. Since stereotactic radiosurgery utilizes multiple noncoplanar arcs and a three-dimensional dose evaluation technique, many beam parameters and complex optimization criteria are included in the dose optimization. Consequently, a lengthy computation time is required to optimize even the simplest case by a trial and error method. The basic approach presented here is to use both an analytical and an experimental optimization to minimize the dose to critical organs while maintaining a dose shaped to the target. The experimental approach is based on shaping the target volumes using multiple isocenters from dose experience, or on field shaping using a beam's eye view technique. The analytical approach is to adapt computer-aided design optimization to find optimum parameters automatically. Three-dimensional approximate dose models are developed to simulate the exact dose model using a spherical or cylindrical coordinate system. Optimum parameters are found much faster with the use of computer-aided design optimization techniques. The implementation of computer-aided design algorithms with the approximate dose model and the application of the algorithms to several cases are discussed. It is shown that the approximate dose model gives dose distributions similar to those of the exact dose model, which makes the approximate dose model an attractive alternative to the exact dose model, and much more efficient in terms of computer-aided design and visual optimization

  7. Embracing model-based designs for dose-finding trials.

    Science.gov (United States)

    Love, Sharon B; Brown, Sarah; Weir, Christopher J; Harbron, Chris; Yap, Christina; Gaschler-Markefski, Birgit; Matcham, James; Caffrey, Louise; McKevitt, Christopher; Clive, Sally; Craddock, Charlie; Spicer, James; Cornelius, Victoria

    2017-07-25

    Dose-finding trials are essential to drug development as they establish recommended doses for later-phase testing. We aim to motivate wider use of model-based designs for dose finding, such as the continual reassessment method (CRM). We carried out a literature review of dose-finding designs and conducted a survey to identify perceived barriers to their implementation. We describe the benefits of model-based designs (flexibility, superior operating characteristics, extended scope), their current uptake, and existing resources. The most prominent barriers to implementation of a model-based design were lack of suitable training, chief investigators' preference for algorithm-based designs (e.g., 3+3), and limited resources for study design before funding. We use a real-world example to illustrate how these barriers can be overcome. There is overwhelming evidence for the benefits of CRM. Many leading pharmaceutical companies routinely implement model-based designs. Our analysis identified barriers for academic statisticians and clinical academics in mirroring the progress industry has made in trial design. Unified support from funders, regulators, and journal editors could result in more accurate doses for later-phase testing, and increase the efficiency and success of clinical drug development. We give recommendations for increasing the uptake of model-based designs for dose-finding trials in academia.

  8. Sodium phenylbutyrate in Huntington's disease: a dose-finding study.

    Science.gov (United States)

    Hogarth, Penelope; Lovrecic, Luca; Krainc, Dimitri

    2007-10-15

    Transcriptional dysregulation in Huntington's disease (HD) is mediated in part by aberrant patterns of histone acetylation. We performed a dose-finding study in human HD of sodium phenylbutyrate (SPB), a histone deacetylase inhibitor that ameliorates the HD phenotype in animal models. We used a dose-escalation/de-escalation design, using prespecified toxicity criteria and standard clinical and laboratory safety measures. The maximum tolerated dose was 15 g/day. At higher doses, toxicity included vomiting, lightheadedness, confusion, and gait instability. We saw no significant laboratory or electrocardiographic abnormalities. Gene expression changes in blood suggested an inverse dose-response. In conclusion, SPB at 12 to 15 g/day appears to be safe and well-tolerated in human HD. 2007 Movement Disorder Society

  9. Optimal Mutagen Doses for Emiliania huxleyi

    Science.gov (United States)

    Byrne, P.

    2016-02-01

    Emiliania huxleyi (E. huxleyi) is one of the most prominent coccolithophores. Given favorable conditions, E. huxleyi blooms can reach sizes exceeding 100,000km2, with densities of 107 cells per L (Olson & Strom 2002). With increasing demand and limited supply of fossil fuels, it has become increasingly popular to look toward alternative renewable fuel sources. E. Huxleyi store energy predominately as uniquely structured polyunsaturated long chain (C37-39) alkenes, alkenones and alkenoates (abbreviated as PULCAs) (Eltgroth et al 2005). Unlike the stored energy of macroalgae and higher order plants, triacylglycerols (TAGs), PULCAs provide a similar composition to native petroleum crude oils (Yamane 2013), which offers a more cost effective and higher yielding extraction process (Wu et al 1999). A number of factors have been shown to influence the alkenone content of E. huxleyi, such as nitrogen deficiency, phosphate limitation (Li et al 2014), and temperature (Shiraiwa et al 2005). For these reasons E. huxleyi has the potential to be an attractive system for algal biofuel. The broad and long-term objective of our research is to elucidate the alkenone biosynthesis pathway in E. Huxleyi, using random mutagenesis techniques. We propose to use UV light and methylmethane sulfonate (MMS) to create a mutant population, from which clones unable to synthesize alkenones will be selected. Identifying genes whose specific mutations underlie the loss-of-function phenotype will then reveal genes of interest. The aim of this research was to determine the UV and MMS dose response rates for E. huxleyi to ascertain optimal doses defined as a 50% survival rate for each of the two mutagens. Preliminary data indicate that E. huxleyi appear to be highly sensitive to UV mutagenesis, with an LD50 of 0.57mJ/cm2 for the calcifying strain M217 and 0.96mJ/cm2 for the non-calcifying strain CCMP1516. Both calcifying and non-calcifying strains exhibit similar LD50 values for MMS at 1-2% (v/v).

  10. Comparison of traditional low-dose-rate to optimized and nonoptimized high-dose-rate tandem and ovoid dosimetry

    International Nuclear Information System (INIS)

    Decker, William E.; Erickson, Beth; Albano, Katherine; Gillin, Michael

    2001-01-01

    Purpose: Few dose specification guidelines exist when attempting to perform high-dose-rate (HDR) dosimetry. The purpose of this study was to model low-dose-rate (LDR) dosimetry, using parameters common in HDR dosimetry, to achieve the 'pear-shape' dose distribution achieved with LDR tandem and ovoid applications. Methods and Materials: Radiographs of Fletcher-Suit LDR applicators and Nucletron 'Fletcher-like' HDR applicators were taken with the applicators in an idealized geometry. Traditional Fletcher loadings of 3M Cs-137 sources and the Theratronics Planning System were used for LDR dosimetry. HDR dosimetry was performed using the Nucletron Microselectron HDR UPS V11.22 with an Ir-192 source. Dose optimization points were initially located along a line 2 cm lateral to the tandem, beginning at the tandem tip at 0.5-cm intervals, ending at the sail, and optimized to 100% of the point A dose. A single dose optimization point was also placed laterally from the center of each ovoid equal to the radius of the ovoid (ovoid surface dose). For purposes of comparison, dose was also calculated for points A and B, and a point located 1 cm superior to the tandem tip in the plane of the tandem, (point F). Four- and 6-cm tandem lengths and 2.0-, 2.5-, and 3.0-cm ovoid diameters were used for this study. Based on initial findings, dose optimization schemes were developed to best approximate LDR dosimetry. Finally, radiographs were obtained of HDR applications in two patients. These radiographs were used to compare the optimization schemes with 'nonoptimized' treatment plans. Results: Calculated doses for points A and B were similar for LDR, optimized HDR, and nonoptimized HDR. The optimization scheme that used tapered dose points at the tandem tip and optimized a single ovoid surface point on each ovoid to 170% of point A resulted in a good approximation of LDR dosimetry. Nonoptimized HDR resulted in higher doses at point F, the bladder, and at points lateral to the tandem tip

  11. Finding an optimal seating arrangement for employees

    Directory of Open Access Journals (Sweden)

    Ninoslav Čerkez

    2015-10-01

    Full Text Available The paper deals with modelling a specifc problem called the Optimal Seating Arrangement (OSA as an Integer Linear Program and demonstrated that the problem can be efficiently solved by combining branch-and-bound and cutting plane methods. OSA refers to a specific scenario that could possibly happen in a corporative environment, i.e. when a company endeavors to minimize travel costs when employees travel to an organized event. Each employee is free to choose the time to travel to and from an event and it depends on personal reasons. The paper differentiates between using different travel possibilities in the OSA problem, such as using company assigned or a company owned vehicles, private vehicles or using public transport, if needed. Also, a user-friendly web application was made and is available to the public for testing purposes.

  12. Sensitivity of dose-finding studies to observation errors.

    Science.gov (United States)

    Zohar, Sarah; O'Quigley, John

    2009-11-01

    The purpose of Phase I designs is to estimate the MTD (maximum tolerated dose, in practice a dose with some given acceptable rate of toxicity) while, at the same time, minimizing the number of patients treated at doses too far removed from the MTD. Our purpose here is to investigate the sensitivity of conclusions from dose-finding designs to recording or observation errors. Certain toxicities may go undetected and, conversely, certain non-toxicities may be incorrectly recorded as dose-limiting toxicities. Recording inaccuracies would be expected to have an influence on final and within trial recommendations and, in this paper, we study in greater depth this question. We focus, in particular on three designs used currently; the standard '3+3' design, the grouped up-and-down design [M. Gezmu, N. Flournoy, Group up-and-down designs for dose finding. Journal of Statistical Planning and Inference 2006; 136 (6): 1749-1764.] and the continual reassessment method (CRM, [J. O'Quigley, M. Pepe, L. Fisher, Continual reassessment method: a practical design for phase 1 clinical trials in cancer. Biometrics 1990; 46 (1): 33-48.]). A non-toxicity incorrectly recorded as a toxicity (error of first kind) has a greater influence in general than the converse (error of second kind). These results are illustrated via figures which suggest that the standard '3+3' design in particular is sensitive to errors of the second kind. Such errors can have a very important impact on drug development in that, if carried through to the Phase 2 and Phase 3 studies, we can significantly increase the probability of failure to detect efficacy as a result of having delivered an inadequate dose.

  13. Optimizing the TESS Planet Finding Pipeline

    Science.gov (United States)

    Chitamitara, Aerbwong; Smith, Jeffrey C.; Tenenbaum, Peter; TESS Science Processing Operations Center

    2017-10-01

    The Transiting Exoplanet Survey Satellite (TESS) is a new NASA planet finding all-sky survey that will observe stars within 200 light years and 10-100 times brighter than that of the highly successful Kepler mission. TESS is expected to detect ~1000 planets smaller than Neptune and dozens of Earth size planets. As in the Kepler mission, the Science Processing Operations Center (SPOC) processing pipeline at NASA Ames Research center is tasked with calibrating the raw pixel data, generating systematic error corrected light curves and then detecting and validating transit signals. The Transiting Planet Search (TPS) component of the pipeline must be modified and tuned for the new data characteristics in TESS. For example, due to each sector being viewed for as little as 28 days, the pipeline will be identifying transiting planets based on a minimum of two transit signals rather than three, as in the Kepler mission. This may result in a significantly higher false positive rate. The study presented here is to measure the detection efficiency of the TESS pipeline using simulated data. Transiting planets identified by TPS are compared to transiting planets from the simulated transit model using the measured epochs, periods, transit durations and the expected detection statistic of injected transit signals (expected MES). From the comparisons, the recovery and false positive rates of TPS is measured. Measurements of recovery in TPS are then used to adjust TPS configuration parameters to maximize the planet recovery rate and minimize false detections. The improvements in recovery rate between initial TPS conditions and after various adjustments will be presented and discussed.

  14. Dose optimization in computed tomography: ICRP 87

    International Nuclear Information System (INIS)

    2007-01-01

    The doses given in the use of computed tomography scans are studied, aiming to calibrate the limits of irradiation in patients who need these tests. Furthermore, a good value of computed tomography should be guaranteed by physicians and radiologists for people not being irradiated unfairly, reducing doses and unnecessary tests. A critical evaluation by an ethics committee is suggested for cases where the test is performed for medical research without a cause [es

  15. Computed radiography dose optimization in pediatric patients

    International Nuclear Information System (INIS)

    Juste, B.; Verdu, G.; Tortosa, R.; Villaescusa, J.I.

    2008-01-01

    Radiation dose reduction in pediatric X-ray imaging is especially important because of children radiation sensitivity. For any radiographic examination performed at a fixed radiographic tube potential, the patient absorbed dose is directly proportional to the value of milliampere-seconds (mAs) selected by the operator. Nevertheless, reducing X-ray exposure has the unavoidable disadvantage of increasing the quantum noise in the resultant image. The objective of this work is to identify the minimum tube current setting required for maintaining accurate examinations, to modify, if required, the daily protocols applied at La Fe de Valencia Universitary Hospital. To accomplish this goal, a noise addition software has been developed in order to study the diagnostic accuracy as a function of reducing dose by artificially increasing the image noise. The noise addition tool has been applied to several thorax images acquired from pediatric unit to simulate new lower dose radiographies and allow medical researchers to study how lower dose affects the patient pneumonia diagnosis. (author)

  16. Dose optimization of intra-operative high dose rate interstitial brachytherapy implants for soft tissue sarcoma

    Directory of Open Access Journals (Sweden)

    Jamema Swamidas

    2009-01-01

    Full Text Available Objective : A three dimensional (3D image-based dosimetric study to quantitatively compare geometric vs. dose-point optimization in combination with graphical optimization for interstitial brachytherapy of soft tissue sarcoma (STS. Materials and Methods : Fifteen consecutive STS patients, treated with intra-operative, interstitial Brachytherapy, were enrolled in this dosimetric study. Treatment plans were generated using dose points situated at the "central plane between the catheters", "between the catheters throughout the implanted volume", at "distances perpendicular to the implant axis" and "on the surface of the target volume" Geometrically optimized plans had dose points defined between the catheters, while dose-point optimized plans had dose points defined at a plane perpendicular to the implant axis and on the target surface. Each plan was graphically optimized and compared using dose volume indices. Results : Target coverage was suboptimal with coverage index (CI = 0.67 when dose points were defined at the central plane while it was superior when the dose points were defined at the target surface (CI=0.93. The coverage of graphically optimized plans (GrO was similar to non-GrO with dose points defined on surface or perpendicular to the implant axis. A similar pattern was noticed with conformity index (0.61 vs. 0.82. GrO were more conformal and less homogeneous compared to non-GrO. Sum index was superior for dose points defined on the surface of the target and relatively inferior for plans with dose points at other locations (1.35 vs. 1.27. Conclusions : Optimization with dose points defined away from the implant plane and on target results in superior target coverage with optimal values of other indices. GrO offer better target coverage for implants with non-uniform geometry and target volume.

  17. Robust EM Continual Reassessment Method in Oncology Dose Finding

    Science.gov (United States)

    Yuan, Ying; Yin, Guosheng

    2012-01-01

    The continual reassessment method (CRM) is a commonly used dose-finding design for phase I clinical trials. Practical applications of this method have been restricted by two limitations: (1) the requirement that the toxicity outcome needs to be observed shortly after the initiation of the treatment; and (2) the potential sensitivity to the prespecified toxicity probability at each dose. To overcome these limitations, we naturally treat the unobserved toxicity outcomes as missing data, and use the expectation-maximization (EM) algorithm to estimate the dose toxicity probabilities based on the incomplete data to direct dose assignment. To enhance the robustness of the design, we propose prespecifying multiple sets of toxicity probabilities, each set corresponding to an individual CRM model. We carry out these multiple CRMs in parallel, across which model selection and model averaging procedures are used to make more robust inference. We evaluate the operating characteristics of the proposed robust EM-CRM designs through simulation studies and show that the proposed methods satisfactorily resolve both limitations of the CRM. Besides improving the MTD selection percentage, the new designs dramatically shorten the duration of the trial, and are robust to the prespecification of the toxicity probabilities. PMID:22375092

  18. Dose reduction and optimization studies (ALARA) at nuclear power facilities

    International Nuclear Information System (INIS)

    Baum, J.W.; Meinhold, C.B.

    1983-01-01

    Brookhaven National Laboratory (BNL) has been commissioned by the Nuclear Regulatory Commission (NRC) to study dose-reduction techniques and effectiveness of as low as reasonably achievable (ALARA) planning at LWR plants. These studies have the following objectives: identify high-dose maintenance tasks; identify dose-reduction techniques; examine incentives for dose reduction; evaluate cost-effectiveness and optimization of dose-reduction techniques; and compile an ALARA handbook on data, engineering modifications, cost-effectiveness calculations, and other information of interest to ALARA practioners

  19. Radiation dose optimization research: Exposure technique approaches in CR imaging – A literature review

    International Nuclear Information System (INIS)

    Seeram, Euclid; Davidson, Rob; Bushong, Stewart; Swan, Hans

    2013-01-01

    The purpose of this paper is to review the literature on exposure technique approaches in Computed Radiography (CR) imaging as a means of radiation dose optimization in CR imaging. Specifically the review assessed three approaches: optimization of kVp; optimization of mAs; and optimization of the Exposure Indicator (EI) in practice. Only papers dating back to 2005 were described in this review. The major themes, patterns, and common findings from the literature reviewed showed that important features are related to radiation dose management strategies for digital radiography include identification of the EI as a dose control mechanism and as a “surrogate for dose management”. In addition the use of the EI has been viewed as an opportunity for dose optimization. Furthermore optimization research has focussed mainly on optimizing the kVp in CR imaging as a means of implementing the ALARA philosophy, and studies have concentrated on mainly chest imaging using different CR systems such as those commercially available from Fuji, Agfa, Kodak, and Konica-Minolta. These studies have produced “conflicting results”. In addition, a common pattern was the use of automatic exposure control (AEC) and the measurement of constant effective dose, and the use of a dose-area product (DAP) meter

  20. Application of biological dose concept in dose optimization for conformal radiotherapy of prostate carcinoma

    International Nuclear Information System (INIS)

    Li Yunhai; Liao Yuan; Zhou Lijun; Pan Ziqiang; Feng Yan

    2003-01-01

    Objective: On basis of physical dose optimization, LQ model was used to investigate the difference between the curves of biological effective dose and physical isodose. The influence of applying the biological dose concept on three dimensional conformal radiotherapy of prostate carcinoma was discussed. Methods: Four treatment plannings were designed for physical dose optimization: three fields, four-box fields, five fields and six fields. Target dose uniformity and protection of the critical tissue-rectum were used as the principal standard for designing the treatment planning. Biological effective dose (BED) was calculated by LQ model. The difference between the BED curve drawn in the central layer and the physical isodose curve was studied. The difference between the adjusted physical dose (APD) and the physical dose was also studied. Results: Five field planning was the best in target dose uniformity and protection of the critical tissue-rectum. The physical dose was uniform in the target, but the biological effective doses revealed great discrepancy in the biological model. Adjusted physical dose distribution also displayed larger discrepancy than the physical dose unadjusted. Conclusions: Intensified Modulated Radiotherapy (IMRT) technique with inversion planning using biological dose concept may be much more advantageous to reach a high tumor control probability and low normal tissue complication probability

  1. Identifying the most successful dose (MSD) in dose-finding studies in cancer.

    Science.gov (United States)

    Zohar, Sarah; O'Quigley, John

    2006-01-01

    For a dose finding study in cancer, the most successful dose (MSD), among a group of available doses, is that dose at which the overall success rate is the highest. This rate is the product of the rate of seeing non-toxicities together with the rate of tumor response. A successful dose finding trial in this context is one where we manage to identify the MSD in an efficient manner. In practice we may also need to consider algorithms for identifying the MSD which can incorporate certain restrictions, the most common restriction maintaining the estimated toxicity rate alone below some maximum rate. In this case the MSD may correspond to a different level than that for the unconstrained MSD and, in providing a final recommendation, it is important to underline that it is subject to the given constraint. We work with the approach described in O'Quigley et al. [Biometrics 2001; 57(4):1018-1029]. The focus of that work was dose finding in HIV where both information on toxicity and efficacy were almost immediately available. Recent cancer studies are beginning to fall under this same heading where, as before, toxicity can be quickly evaluated and, in addition, we can rely on biological markers or other measures of tumor response. Mindful of the particular context of cancer, our purpose here is to consider the methodology developed by O'Quigley et al. and its practical implementation. We also carry out a study on the doubly under-parameterized model, developed by O'Quigley et al. but not

  2. Synthesis of optimal digital controller of flocculant dosing

    Directory of Open Access Journals (Sweden)

    A.V. Pismenskiy

    2013-06-01

    Full Text Available Purpose. The task of automatic process control of the slime water thickening and flotation tailings clarification is the stabilization of thicken product density within the given range and keeping up the solids content in the overflow not above the permissible level with minimum use of the flocculants. In existing systems for automatic control the flocculant dosing is carried out according to the solids content in the device input (the principle of open-loop control. This leads to the excess consumption of the flocculants and increase the dispersion density of the overflow. To perform the synthesis of the optimal digital controller in order to minimize the deviations from the master control and ensure the specified quality of the transition process. Over controlling value should not exceed 5 %. To perform the system operation modeling in order to determine the quality of transient processes. Methodology. Synthesis of the optimal digital controller is based on the method of dynamic programming. Findings. A mathematical model of the object control is represented in the normal form of Cauchy and further in the form of differential equations. The optimum period of quantization as the function from specified error of control and the output coordinate change is calculated. The differential equation of Bellman is obtained and the condition for minimization of the quality functional. Bellman function is represented as a quadratic form from the variables of the system condition. In order to limit possible control, the weight coefficients of the functional are calculated based on maximum permitted values of the system condition variables and the control actions during the transient process. Practical value. Using the modeling of ACS of the flocculant dosing it was established that the over controlling amount is 3.5%, the transient process life 5.6 sec, the transient process is aperiodical, non-static control, which meets the requirements imposed on the

  3. A Method for Correcting IMRT Optimizer Heterogeneity Dose Calculations

    International Nuclear Information System (INIS)

    Zacarias, Albert S.; Brown, Mellonie F.; Mills, Michael D.

    2010-01-01

    Radiation therapy treatment planning for volumes close to the patient's surface, in lung tissue and in the head and neck region, can be challenging for the planning system optimizer because of the complexity of the treatment and protected volumes, as well as striking heterogeneity corrections. Because it is often the goal of the planner to produce an isodose plan with uniform dose throughout the planning target volume (PTV), there is a need for improved planning optimization procedures for PTVs located in these anatomical regions. To illustrate such an improved procedure, we present a treatment planning case of a patient with a lung lesion located in the posterior right lung. The intensity-modulated radiation therapy (IMRT) plan generated using standard optimization procedures produced substantial dose nonuniformity across the tumor caused by the effect of lung tissue surrounding the tumor. We demonstrate a novel iterative method of dose correction performed on the initial IMRT plan to produce a more uniform dose distribution within the PTV. This optimization method corrected for the dose missing on the periphery of the PTV and reduced the maximum dose on the PTV to 106% from 120% on the representative IMRT plan.

  4. Intensity-modulated radiation therapy for nasopharyngeal carcinoma parotid sparing with euivalent uiform dose optimization

    International Nuclear Information System (INIS)

    Yue Weiyou; Dai Jianrong; Gao Li

    2006-01-01

    Objective: The aim of this study was to evaluate the role of an euivalent uiform dose (EUD) based optimization algorithm in sparing the parotids of patients with nasopharyngeal carcinoma (NPC) when they are treated with intensity-modulated radiation therapy (IMRT). Methods: 12 patients were randomly selected from the NPC patients who received IMRT treatments. For these patients, the treatment plans were designed with physical optimization constraints (dose/dose-volume constraints). Based on these plans, new plans were designed through replacing the physical constraints with maximum EUD for parotids, while keeping the physical objectives for targets and other organs at risk(OARs) unchanged. Comparison was then made between the new plan, which had EUD constraints to parotids, and the former for each individual patient. Results: While maintaining the dose to the targets and the other OARs un- changed, optimization with EUD constraints to parotids decreased the mean dose and V 30 of parotids significantly, simultaneously, the dose of target volume and other organs at risk keep stable, the values of probability were less than 0.05 by T-test. Conclusions: The doses to parotids can be reduced through optimization with EUD constraints. This finding is quite helpful to reduce the occurrence rate of parotid complications, and to provide spaces for escalating target dose. (authors)

  5. Optimizing bevacizumab dosing in glioblastoma: less is more.

    Science.gov (United States)

    Ajlan, Abdulrazag; Thomas, Piia; Albakr, Abdulrahman; Nagpal, Seema; Recht, Lawrence

    2017-10-01

    Compared to traditional chemotherapies, where dose limiting toxicities represent the maximum possible dose, monoclonal antibody therapies are used at doses well below maximum tolerated dose. However, there has been little effort to ascertain whether there is a submaximal dose at which the efficacy/complication ratio is maximized. Thus, despite the general practice of using Bevacizumab (BEV) at dosages of 10 mg/kg every other week for glioma patients, there has not been much prior work examining whether the relatively high complication rates reported with this agent can be decreased by lowering the dose without impairing efficacy. We assessed charts from 80 patients who received BEV for glioblastoma to survey the incidence of complications relative to BEV dose. All patients were treated with standard upfront chemoradiation. The toxicity was graded based on the NCI CTCAE, version 4.03. The rate of BEV serious related adverse events was 12.5% (n = 10/80). There were no serious adverse events (≥grade 3) when the administered dose was (<3 mg/kg/week), compared to a 21% incidence in those who received higher doses (≥3 mg/kg/week) (P < 0.01). Importantly, the three patient deaths attributable to BEV administration occurred in patients receiving higher doses. Patients who received lower doses also had a better survival rate, although this did not reach statistical significance [median OS 39 for low dose group vs. 17.3 for high dose group (P = 0.07)]. Lower rates of serious BEV related toxicities are noted when lower dosages are used without diminishing positive clinical impact. Further work aimed at optimizing BEV dosage is justified.

  6. Robotic path-finding in inverse treatment planning for stereotactic radiosurgery with continuous dose delivery

    Energy Technology Data Exchange (ETDEWEB)

    Vandewouw, Marlee M., E-mail: marleev@mie.utoronto.ca; Aleman, Dionne M. [Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8 (Canada); Jaffray, David A. [Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario M5G 2M9 (Canada)

    2016-08-15

    Purpose: Continuous dose delivery in radiation therapy treatments has been shown to decrease total treatment time while improving the dose conformity and distribution homogeneity over the conventional step-and-shoot approach. The authors develop an inverse treatment planning method for Gamma Knife® Perfexion™ that continuously delivers dose along a path in the target. Methods: The authors’ method is comprised of two steps: find a path within the target, then solve a mixed integer optimization model to find the optimal collimator configurations and durations along the selected path. Robotic path-finding techniques, specifically, simultaneous localization and mapping (SLAM) using an extended Kalman filter, are used to obtain a path that travels sufficiently close to selected isocentre locations. SLAM is novelly extended to explore a 3D, discrete environment, which is the target discretized into voxels. Further novel extensions are incorporated into the steering mechanism to account for target geometry. Results: The SLAM method was tested on seven clinical cases and compared to clinical, Hamiltonian path continuous delivery, and inverse step-and-shoot treatment plans. The SLAM approach improved dose metrics compared to the clinical plans and Hamiltonian path continuous delivery plans. Beam-on times improved over clinical plans, and had mixed performance compared to Hamiltonian path continuous plans. The SLAM method is also shown to be robust to path selection inaccuracies, isocentre selection, and dose distribution. Conclusions: The SLAM method for continuous delivery provides decreased total treatment time and increased treatment quality compared to both clinical and inverse step-and-shoot plans, and outperforms existing path methods in treatment quality. It also accounts for uncertainty in treatment planning by accommodating inaccuracies.

  7. Robotic path-finding in inverse treatment planning for stereotactic radiosurgery with continuous dose delivery

    International Nuclear Information System (INIS)

    Vandewouw, Marlee M.; Aleman, Dionne M.; Jaffray, David A.

    2016-01-01

    Purpose: Continuous dose delivery in radiation therapy treatments has been shown to decrease total treatment time while improving the dose conformity and distribution homogeneity over the conventional step-and-shoot approach. The authors develop an inverse treatment planning method for Gamma Knife® Perfexion™ that continuously delivers dose along a path in the target. Methods: The authors’ method is comprised of two steps: find a path within the target, then solve a mixed integer optimization model to find the optimal collimator configurations and durations along the selected path. Robotic path-finding techniques, specifically, simultaneous localization and mapping (SLAM) using an extended Kalman filter, are used to obtain a path that travels sufficiently close to selected isocentre locations. SLAM is novelly extended to explore a 3D, discrete environment, which is the target discretized into voxels. Further novel extensions are incorporated into the steering mechanism to account for target geometry. Results: The SLAM method was tested on seven clinical cases and compared to clinical, Hamiltonian path continuous delivery, and inverse step-and-shoot treatment plans. The SLAM approach improved dose metrics compared to the clinical plans and Hamiltonian path continuous delivery plans. Beam-on times improved over clinical plans, and had mixed performance compared to Hamiltonian path continuous plans. The SLAM method is also shown to be robust to path selection inaccuracies, isocentre selection, and dose distribution. Conclusions: The SLAM method for continuous delivery provides decreased total treatment time and increased treatment quality compared to both clinical and inverse step-and-shoot plans, and outperforms existing path methods in treatment quality. It also accounts for uncertainty in treatment planning by accommodating inaccuracies.

  8. Fast optimization and dose calculation in scanned ion beam therapy

    International Nuclear Information System (INIS)

    Hild, S.; Graeff, C.; Trautmann, J.; Kraemer, M.; Zink, K.; Durante, M.; Bert, C.

    2014-01-01

    Purpose: Particle therapy (PT) has advantages over photon irradiation on static tumors. An increased biological effectiveness and active target conformal dose shaping are strong arguments for PT. However, the sensitivity to changes of internal geometry complicates the use of PT for moving organs. In case of interfractionally moving objects adaptive radiotherapy (ART) concepts known from intensity modulated radiotherapy (IMRT) can be adopted for PT treatments. One ART strategy is to optimize a new treatment plan based on daily image data directly before a radiation fraction is delivered [treatment replanning (TRP)]. Optimizing treatment plans for PT using a scanned beam is a time consuming problem especially for particles other than protons where the biological effective dose has to be calculated. For the purpose of TRP, fast optimization and fast dose calculation have been implemented into the GSI in-house treatment planning system (TPS) TRiP98. Methods: This work reports about the outcome of a code analysis that resulted in optimization of the calculation processes as well as implementation of routines supporting parallel execution of the code. To benchmark the new features, the calculation time for therapy treatment planning has been studied. Results: Compared to the original version of the TPS, calculation times for treatment planning (optimization and dose calculation) have been improved by a factor of 10 with code optimization. The parallelization of the TPS resulted in a speedup factor of 12 and 5.5 for the original version and the code optimized version, respectively. Hence the total speedup of the new implementation of the authors' TPS yielded speedup factors up to 55. Conclusions: The improved TPS is capable of completing treatment planning for ion beam therapy of a prostate irradiation considering organs at risk in this has been overseen in the review process. Also see below 6 min

  9. Intradermal inactivated poliovirus vaccine: a preclinical dose-finding study.

    Science.gov (United States)

    Kouiavskaia, Diana; Mirochnitchenko, Olga; Dragunsky, Eugenia; Kochba, Efrat; Levin, Yotam; Troy, Stephanie; Chumakov, Konstantin

    2015-05-01

    Intradermal delivery of vaccines has been shown to result in dose sparing. We tested the ability of fractional doses of inactivated poliovirus vaccine (IPV) delivered intradermally to induce levels of serum poliovirus-neutralizing antibodies similar to immunization through the intramuscular route. Immunogenicity of fractional doses of IPV was studied by comparing intramuscular and intradermal immunization of Wistar rats using NanoPass MicronJet600 microneedles. Intradermal delivery of partial vaccine doses induced antibodies at titers comparable to those after immunization with full human dose delivered intramuscularly. The results suggest that intradermal delivery of IPV may lead to dose-sparing effect and reduction of the vaccination cost. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  10. Intradermal Inactivated Poliovirus Vaccine: A Preclinical Dose-Finding Study

    OpenAIRE

    Kouiavskaia, Diana; Mirochnitchenko, Olga; Dragunsky, Eugenia; Kochba, Efrat; Levin, Yotam; Troy, Stephanie; Chumakov, Konstantin

    2014-01-01

    Intradermal delivery of vaccines has been shown to result in dose sparing. We tested the ability of fractional doses of inactivated poliovirus vaccine (IPV) delivered intradermally to induce levels of serum poliovirus-neutralizing antibodies similar to immunization through the intramuscular route. Immunogenicity of fractional doses of IPV was studied by comparing intramuscular and intradermal immunization of Wistar rats using NanoPass MicronJet600 microneedles. Intradermal delivery of partial...

  11. Optimization of image quality and patient dose in mammography

    International Nuclear Information System (INIS)

    Shafqat Faaruq; Jaferi, R.A.; Nafeesa Nazlee

    2007-01-01

    Complete test of publication follows. Optimization of patient dose and image quality can be defined as to get the best image quality with minimum possible radiation dose to the patient by setting various parameters and modes of operation available in mammography machines. The optimization procedures were performed on two mammography units from M/S GE and Metaltronica, available at NORI, using standard mammographic accreditation phantom (Model: BR-156) and acrylic sheets of variable thicknesses. Quality assurance and quality control (QC) tests being the essential part of optimization. The QC tests as recommended by American College of Radiology, were first performed on both machines as well as X-ray film processor. In the second step, different affecting the image quality and radiation dose to patient, like film screen combination (FSC), phantom optical density (PD), kVp, mAs etc, were adjusted for various phantom thicknesses ranging from 3 cm to 6.5 cm in various modes of operation in the machines (semi-auto- and manual in GE, Auto-, semi-auto- and manual mode in Metaltronica). The image quality was studied for these optimized parameters on the basis of the number of test objects of the phantom visible in these images. Finally the linear relationship between mAs and skin entrance dose (mGy) was verified using ionization chamber with the phantom and the actual patients. Despite some practical limitations, the results of the quality assurance tests were within acceptable limits defined by ACR. The dose factor for GE was 68.0 y/mAs, while 76.0 mGy/mAs for Metaltronica at 25 kVp. Before the start of this study the only one mammography unit GE, was routinely used at NORI and normal mode of operation of this unit was semi-auto mode with fixed kVp independent of compressed breast thickness, but in this study it was concluded that selecting kVp according to beast thickness result in an appreciable dose reduction (4-5 times less) without any compromise in image quality. The

  12. Finding Multiple Optimal Solutions to Optimal Load Distribution Problem in Hydropower Plant

    Directory of Open Access Journals (Sweden)

    Xinhao Jiang

    2012-05-01

    Full Text Available Optimal load distribution (OLD among generator units of a hydropower plant is a vital task for hydropower generation scheduling and management. Traditional optimization methods for solving this problem focus on finding a single optimal solution. However, many practical constraints on hydropower plant operation are very difficult, if not impossible, to be modeled, and the optimal solution found by those models might be of limited practical uses. This motivates us to find multiple optimal solutions to the OLD problem, which can provide more flexible choices for decision-making. Based on a special dynamic programming model, we use a modified shortest path algorithm to produce multiple solutions to the problem. It is shown that multiple optimal solutions exist for the case study of China’s Geheyan hydropower plant, and they are valuable for assessing the stability of generator units, showing the potential of reducing occurrence times of units across vibration areas.

  13. Optimal dose-response relationships in voice therapy.

    Science.gov (United States)

    Roy, Nelson

    2012-10-01

    Like other areas of speech-language pathology, the behavioural management of voice disorders lacks precision regarding optimal dose-response relationships. In voice therapy, dosing can presumably vary from no measurable effect (i.e., no observable benefit or adverse effect), to ideal dose (maximum benefit with no adverse effects), to doses that produce toxic or harmful effects on voice production. Practicing specific vocal exercises will inevitably increase vocal load. At ideal doses, these exercises may be non-toxic and beneficial, while at intermediate or high doses, the same exercises may actually be toxic or damaging to vocal fold tissues. In pharmacology, toxicity is a critical concept, yet it is rarely considered in voice therapy, with little known regarding "effective" concentrations of specific voice therapies vs "toxic" concentrations. The potential for vocal fold tissue damage related to overdosing on specific vocal exercises has been under-studied. In this commentary, the issue of dosing will be explored within the context of voice therapy, with particular emphasis placed on possible "overdosing".

  14. Decision Support System for Optimized Herbicide Dose in Spring Barley

    DEFF Research Database (Denmark)

    Sønderskov, Mette; Kudsk, Per; Mathiassen, Solvejg K

    2014-01-01

    Crop Protection Online (CPO) is a decision support system, which integrates decision algorithms quantifying the requirement for weed control and a herbicide dose model. CPO was designed to be used by advisors and farmers to optimize the choice of herbicide and dose. The recommendations from CPO...... as the Treatment Frequency Index (TFI)) compared to a high level of required weed control. The observations indicated that the current level of weed control required is robust for a range of weed scenarios. Weed plant numbers 3 wk after spraying indicated that the growth of the weed species were inhibited...

  15. Radiation oncology: what can we achieve by optimized dose delivery?

    International Nuclear Information System (INIS)

    Lawrence, T.

    2003-01-01

    Spectacular technical advances have marked the last twenty years in radiation oncology. This revolution began with CT-based planning which was followed by 3D conformal therapy. The latter approach produced two important capabilities. The most obvious was that tumors could be viewed in their true location with respect to normal tissues and treated with beams that were not in the axial plane. A second equally important advance was the development of 3D planning tools such as dose volume histograms. These tools permitted quantitative comparison of treatment plans and have supported the development of models relating normal tissue irradiation to the risk of complication. The '3D hypothesis' - that 3D treatment planning would permit higher doses of radiation to be safely delivered-has been proven. Dose escalation studies have been successfully conducted in the lung (= 100 Gy), liver (= 90 Gy), brain (= 90 Gy), and prostate (= 78 Gy). Prospective phase II and phase III trials suggest improved outcome using these higher doses for tumors in the liver and prostate compared to doses considered acceptable in the 2D era. The next technical revolution is underway, with advances in '4D' radiotherapy (accounting fully for organ motion) and in intensity-modulated radiation therapy (IMRT) to further improve the conformality and accuracy of treatment. Proton therapy will improve dose distributions still further. These improved dose distributions can be combined with more accurate tumor delineation provided by functional imaging to offer the potential for additional dose escalation without toxicity and for improved tumor control. These developments permit us to ask if we are approaching the limits of dose optimization and how (if?) research in radiation delivery should proceed

  16. Inhomogeneous target-dose distributions: a dimension more for optimization?

    International Nuclear Information System (INIS)

    Gersem, Werner R.T. de; Derycke, Sylvie; Colle, Christophe O.; Wagter, Carlos de; Neve, Wilfried J. de

    1999-01-01

    Purpose: To evaluate if the use of inhomogeneous target-dose distributions, obtained by 3D conformal radiotherapy plans with or without beam intensity modulation, offers the possibility to decrease indices of toxicity to normal tissues and/or increase indices of tumor control stage III non-small cell lung cancer (NSCLC). Methods and Materials: Ten patients with stage III NSCLC were planned using a conventional 3D technique and a technique involving noncoplanar beam intensity modulation (BIM). Two planning target volumes (PTVs) were defined: PTV1 included macroscopic tumor volume and PTV2 included macroscopic and microscopic tumor volume. Virtual simulation defined the beam shapes and incidences as well as the wedge orientations (3D) and segment outlines (BIM). Weights of wedged beams, unwedged beams, and segments were determined by optimization using an objective function with a biological and a physical component. The biological component included tumor control probability (TCP) for PTV1 (TCP1), PTV2 (TCP2), and normal tissue complication probability (NTCP) for lung, spinal cord, and heart. The physical component included the maximum and minimum dose as well as the standard deviation of the dose at PTV1. The most inhomogeneous target-dose distributions were obtained by using only the biological component of the objective function (biological optimization). By enabling the physical component in addition to the biological component, PTV1 inhomogeneity was reduced (biophysical optimization). As indices for toxicity to normal tissues, NTCP-values as well as maximum doses or dose levels to relevant fractions of the organ's volume were used. As indices for tumor control, TCP-values as well as minimum doses to the PTVs were used. Results: When optimization was performed with the biophysical as compared to the biological objective function, the PTV1 inhomogeneity decreased from 13 (8-23)% to 4 (2-9)% for the 3D-(p = 0.00009) and from 44 (33-56)% to 20 (9-34)% for the BIM

  17. Optimizing CT radiation dose based on patient size and image quality: the size-specific dose estimate method

    Energy Technology Data Exchange (ETDEWEB)

    Larson, David B. [Stanford University School of Medicine, Department of Radiology, Stanford, CA (United States)

    2014-10-15

    The principle of ALARA (dose as low as reasonably achievable) calls for dose optimization rather than dose reduction, per se. Optimization of CT radiation dose is accomplished by producing images of acceptable diagnostic image quality using the lowest dose method available. Because it is image quality that constrains the dose, CT dose optimization is primarily a problem of image quality rather than radiation dose. Therefore, the primary focus in CT radiation dose optimization should be on image quality. However, no reliable direct measure of image quality has been developed for routine clinical practice. Until such measures become available, size-specific dose estimates (SSDE) can be used as a reasonable image-quality estimate. The SSDE method of radiation dose optimization for CT abdomen and pelvis consists of plotting SSDE for a sample of examinations as a function of patient size, establishing an SSDE threshold curve based on radiologists' assessment of image quality, and modifying protocols to consistently produce doses that are slightly above the threshold SSDE curve. Challenges in operationalizing CT radiation dose optimization include data gathering and monitoring, managing the complexities of the numerous protocols, scanners and operators, and understanding the relationship of the automated tube current modulation (ATCM) parameters to image quality. Because CT manufacturers currently maintain their ATCM algorithms as secret for proprietary reasons, prospective modeling of SSDE for patient populations is not possible without reverse engineering the ATCM algorithm and, hence, optimization by this method requires a trial-and-error approach. (orig.)

  18. First step in optimization doses in computed tomography

    International Nuclear Information System (INIS)

    Mecca, Fernando; Nascimeto, Vitor; Dias, K. Simone

    2008-01-01

    Full text: Introduction: The evolution reached by computed tomography in the last 10 years made this image modality have utmost importance for the analysis and diagnosis of a broad range of pathologies. Thus, a significant increase in the number of examinations using CT can be observed. Hence, the doses of radiation in such analyses became a factor of concern, because they increase the collective dose over the population. The use of the 'ALARA' principle in computed tomography became a necessity and the first step to perform it is to know the doses applied in each exam, building, then, a methodology to reduce their values without losing diagnostic information. Methodology: In the optimization process of dose values with CT scan at INCA (National Institute of Cancer, Rio de Janeiro-Brazil), examinations carried through in two distinct equipments were analyzed. For each room, samples of 10 patients were taken from each examination, both for adult and child patients: thorax (including high resolution exams), abdomen, pelvis and skull. The values of C VOL and P kl were estimated from the table values of nC w as well as from the values established in the dosimetry carried through with head and abdomen phantoms. Results: In adult thorax examinations, the C VOL values have ranged between 14 and 21 mGy and P kl values from 230 and 590 mGy*cm. For head examinations the range was between 8 and 16 mGy and 350 and 600 mGy.cm. For abdomen, it ranged between 6 and 16 mGy and 200 and 440 mGy*cm. For child patients the results are in the same range of adults in all examinations. Conclusion: There was evident in this work the necessity of the optimization doses in protocols of children because his doses are the same of the adult patients them is necessary to study specific protocols for this kind of patients at least. (author)

  19. Optimizing Radiation Doses for Computed Tomography Across Institutions: Dose Auditing and Best Practices.

    Science.gov (United States)

    Demb, Joshua; Chu, Philip; Nelson, Thomas; Hall, David; Seibert, Anthony; Lamba, Ramit; Boone, John; Krishnam, Mayil; Cagnon, Christopher; Bostani, Maryam; Gould, Robert; Miglioretti, Diana; Smith-Bindman, Rebecca

    2017-06-01

    the audit and meeting, head CT doses varied less, although some institutions increased and some decreased mean head CT doses and the proportion above benchmarks. Reviewing institutional doses and sharing dose-optimization best practices resulted in lower radiation doses for chest and abdominal CT and more consistent doses for head CT.

  20. VNM: An R Package for Finding Multiple-Objective Optimal Designs for the 4-Parameter Logistic Model

    OpenAIRE

    Hyun, Seung Won; Wong, Weng Kee; Yang, Yarong

    2018-01-01

    A multiple-objective optimal design is useful for dose-response studies because it can incorporate several objectives at the design stage. Objectives can be of varying interests and a properly constructed multiple-objective optimal design can provide user-specified efficiencies, delivering higher efficiencies for the more important objectives. In this work, we introduce the VNM package written in R for finding 3-objective locally optimal designs for the 4-parameter logistic (4PL) model widely...

  1. Dose conversion of radon exposure according to new epidemiological findings

    International Nuclear Information System (INIS)

    Tomasek, L.; Rogel, A.; Laurier, D.; Tirmarche, M.

    2008-01-01

    In 1993, ICRP-65 recommended that dose conversion of radon exposure should be based on the comparison of detriments between radon exposure and effective dose. The lifetime detriment from the radon exposure was projected according to the epidemiological studies of uranium miners then available. The projection model (GSF) was multiplicative with temporal and age-at-exposure modification. Since 1993, new studies of uranium miners have appeared and many original studies were updated. In addition, projections of the risk have been improved by including further modifying factors as for instance in BEIR VI. New analyses were completed in the Czech and French studies of uranium miners with accurate estimates of exposures based on extensive radon measurements. The resulting estimates of excess absolute lifetime risk per unit exposure in working level months (WLM) from these models lead to dose conversion of 10 mSv WLM -1 for the BEIR VI model and 8 mSv WLM -1 for the joint Czech-French model in contrast to the conversion of 5 mSv WLM -1 for the GSF model. (authors)

  2. Optimization of Patient Doses in Interventional Radiology and Cardiology

    International Nuclear Information System (INIS)

    Nikodemova, D.; Boehm, K.

    2011-01-01

    obtained results also make possible to implement the basic optimization process into the clinical practice of interventional radiological departments and in this way to reduce the collective dose of the Slovak population from interventional radiological examinations. On the basis of the obtained results we can make the following conclusions: The analyses of the measured results show that the main contribution to the patient's exposure is caused by acquisition in the DSA mode. Implementation of optimization methods - reduction of pulse frequency in fluoroscopy mode, as well as reduction of total number of frames, allowed significant decrease of patient's radiation doses. Comparison of the measured results of the fluoroscopy time, KAP, total number of frames and ESD in this study with other published data show good agreement of all monitored parameters. (author)

  3. Towards optimal dosing of coumarin derivatives: the role of pharmacogenetics

    NARCIS (Netherlands)

    van Schie, R.M.F.

    2013-01-01

    Coumarin derivatives are effective in the prevention and treatment of thromboembolic diseases. Examples of indications are atrial fibrillation and venous thromboembolism. Although coumarins are on the market for decades, it is still challenging to find the optimal dosage for each patient since

  4. Dose optimization for multislice computed tomography protocols of the midface

    International Nuclear Information System (INIS)

    Lorenzen, M.; Wedegaertner, U.; Weber, C.; Adam, G.; Lorenzen, J.; Lockemann, U.

    2005-01-01

    Purpose: to optimize multislice computed tomography (MSCT) protocols of the midface for dose reduction and adequate image quality. Materials and methods: MSCT (somatom volume zoom, siemens) of the midface was performed on 3 cadavers within 24 hours of death with successive reduction of the tube current, applying 150, 100, 70 and 30 mAs at 120 kV as well as 40 and 21 mAs at 80 kV. At 120 kV, a pitch of 0.875 and collimation of 4 x 1 mm were used, and at 80 kV, a pitch of 0.7 and collimation of 2 x 0.5 mm. Images were reconstructed in transverse and coronal orientation. Qualitative image analysis was separately performed by two radiologists using a five-point scale (1 = excellent; 5 = poor) applying the following parameters: image quality, demarcation and sharpness of lamellar bone, overall image quality, and image noise (1 = minor; 5 = strong). The effective body dose [mSv] and organ dose [mSv] of the ocular lens (using the dosimetry system ''WINdose'') were calculated, and the interobserver agreement (kappa coefficient) was determined. Results: for the evaluation of the lamellar bone, adequate sharpness, demarcation and image quality was demonstrated at 120 kV/30 mAs, and for the overall image quality and noise, 120 kV/40 mAs was acceptable. With regard to image quality, the effective body dose could be reduced from 1.89 mSv to 0.34 mSv and the organ dose of the ocular lens from 27.2 mSv to 4.8 mSv. Interobserver agreement was moderate (kappa = 0.39). Conclusion: adequate image quality was achieved for MSCT protocols of the midface with 30 mAs at 120 kV, resulting in a dose reduction of 70% in comparison to standard protocols. (orig.)

  5. Absorbed dose optimization in the microplanar beam radiotherapy

    International Nuclear Information System (INIS)

    Company, F.Z.; Jaric, J.; Allen, B.J.

    1996-01-01

    Full text: Recent advances in synchrotron generated X-ray beams with high fluence rate, small divergence and sharply defined microbeam margins permit investigation of the application of an array of closely spaced, parallel or converging microbeams for radiotherapy. The proposed technique takes advantage of the repair mechanism hypothesis of capillary endothelial cells between alternate microbeam zones, which regenerates the lethally irradiated capillaries. Unlike a pencil beam, more accurate dose calculation, beam width and spacing are essential to minimise radiation damage to normal tissue cells outside the target. The absorbed dose between microbeam zones should be kept below the threshold for irreversible radiation damage. Thus the peak-to-valley ratio for the dose distribution should be optimized. The absorbed dose profile depends on the energy of the incident beam and the composition and density of the medium. Using Monte Carlo computations, the radial absorbed dose of single 24 x 24 μm 2 cross-section X-ray beams of different energies in a tissue/lung/tissue phantom was investigated. The results indicated that at 100 keV, closely spaced square cross-sectional microbeams can be applied to the lung. A bundle of parallel 24 μm-wide planar microbeams spaced at 200 μm intervals provides much more irradiation coverage of tissue than is provided by a bundle of parallel, square cross-sectional microbeam, although the former is associated with much smaller Peak (maximum absorbed dose on the beam axis) -to-Valley ( minimum interbeam absorbed dose ) ratios than the latter. In this study the lateral and depth dose of single and multiple microplanar beams with beam dimensions of width 24 μm and 48 μm and height 2-20 cm with energy of 100 keV in a tissue/lung/tissue phantom are investigated. The EGS4 Monte Carlo code is used to calculate dose profiles at different depths and bundles of beams (2 x 2 cm 2 to 20 x 20 cm 2 square cross section) with a 150 μm 200 μm and

  6. Doses optimization to patients in computed tomography studies

    International Nuclear Information System (INIS)

    Trujillo Z, F. E.

    2010-09-01

    in recent years the number of studies of computed tomography has been increased, as well as the technology and methodology of these, while the radiological protection to the patient has not advanced to the same step. The IAEA has implemented the Patients Radiation Protection projects, where one of the areas of more interest is the computed tomography. The present work is a brief summary of the actions to realize for the doses optimization imparted to the patients, obtaining an appropriate diagnostic quality in the images at the same time; as it was presented in the course of the project C-RLA/9/067-001. The results that were obtained between Image Quality and Dose by Radiation that is imparted to the patient are shown, as well s the exposition factors that influence in these, according to the project C-RLA/9/067-001. The main actions for the dose optimization are using tension optimized protocols (kV), of load (m As), of collimation/cut thickness, of inclination of the gantry, of the pitch/displacement by rotation, of the reconstruction algorithm (kernel), according to the diagnostic objective to reach and to the patient physical characteristics (like weight and age), as well as to use protections to shield the sensitive organs (mainly those that do not have clinical interest for the procedure). Conclusion: To establish or to begin to implement, insofar as possible, the IAEA recommendations, relating to the clinical practice of the hospitals in Mexico and to the available equipment s type. (Author)

  7. Inverse modeling of FIB milling by dose profile optimization

    International Nuclear Information System (INIS)

    Lindsey, S.; Waid, S.; Hobler, G.; Wanzenböck, H.D.; Bertagnolli, E.

    2014-01-01

    FIB technologies possess a unique ability to form topographies that are difficult or impossible to generate with binary etching through typical photo-lithography. The ability to arbitrarily vary the spatial dose distribution and therefore the amount of milling opens possibilities for the production of a wide range of functional structures with applications in biology, chemistry, and optics. However in practice, the realization of these goals is made difficult by the angular dependence of the sputtering yield and redeposition effects that vary as the topography evolves. An inverse modeling algorithm that optimizes dose profiles, defined as the superposition of time invariant pixel dose profiles (determined from the beam parameters and pixel dwell times), is presented. The response of the target to a set of pixel dwell times in modeled by numerical continuum simulations utilizing 1st and 2nd order sputtering and redeposition, the resulting surfaces are evaluated with respect to a target topography in an error minimization routine. Two algorithms for the parameterization of pixel dwell times are presented, a direct pixel dwell time method, and an abstracted method that uses a refineable piecewise linear cage function to generate pixel dwell times from a minimal number of parameters. The cage function method demonstrates great flexibility and efficiency as compared to the direct fitting method with performance enhancements exceeding ∼10× as compared to direct fitting for medium to large simulation sets. Furthermore, the refineable nature of the cage function enables solutions to adapt to the desired target function. The optimization algorithm, although working with stationary dose profiles, is demonstrated to be applicable also outside the quasi-static approximation. Experimental data confirms the viability of the solutions for 5 × 7 μm deep lens like structures defined by 90 pixel dwell times

  8. Multiple local minima in IMRT optimization based on dose-volume criteria

    International Nuclear Information System (INIS)

    Wu Qiuwen; Mohan, Radhe

    2002-01-01

    Multiple local minima traps are known to exist in dose-volume and dose-response objective functions. Nevertheless, their presence and consequences are not considered impediments in finding satisfactory solutions in routine optimization of IMRT plans using gradient methods. However, there is often a concern that a significantly superior solution may exist unbeknownst to the planner and that the optimization process may not be able to reach it. We have investigated the soundness of the assumption that the presence of multiple minima traps can be ignored. To find local minima, we start the optimization process a large number of times with random initial intensities. We investigated whether the occurrence of local minima depends upon the choice of the objective function parameters and the number of variables and whether their existence is an impediment in finding a satisfactory solution. To learn about the behavior of multiple minima, we first used a symmetric cubic phantom containing a cubic target and an organ-at-risk surrounding it to optimize the beam weights of two pairs of parallel-opposed beams using a gradient technique. The phantom studies also served to test our software. Objective function parameters were chosen to ensure that multiple minima would exist. Data for 500 plans, optimized with random initial beam weights, were analyzed. The search process did succeed in finding the local minima and showed that the number of minima depends on the parameters of the objective functions. It was also found that the consequences of local minima depended on the number of beams. We further searched for the multiple minima in intensity-modulated treatment plans for a head-and-neck case and a lung case. In addition to the treatment plan scores and the dose-volume histograms, we examined the dose distributions and intensity patterns. We did not find any evidence that multiple local minima affect the outcome of optimization using gradient techniques in any clinically

  9. Bottlenecks in the development of topical analgesics: molecule, formulation, dose-finding, and phase III design

    Directory of Open Access Journals (Sweden)

    Keppel Hesselink JM

    2017-03-01

    Full Text Available Jan M Keppel Hesselink,1 David J Kopsky,2 Stephen M Stahl3 1Institute Neuropathic Pain, Bosch en Duin, the Netherlands; 2Institute Neuropathic Pain, Amsterdam, the Netherlands; 3University of California San Diego, La Jolla, CA, USA Abstract: Topical analgesics can be defined as topical formulations containing analgesics or co-analgesics. Since 2000, interest in such formulations has been on the rise. There are, however, four critical issues in the research and development phases of topical analgesics: 1 The selection of the active pharmaceutical ingredient. Analgesics and co-analgesics differ greatly in their mechanism of action, and it is required to find the most optimal fit between such mechanisms of action and the pathogenesis of the targeted (neuropathic pain. 2 Issues concerning the optimized formulation. For relevant clinical efficacy, specific characteristics for the selected vehicle (eg, cream base or gel base are required, depending on the physicochemical characteristics of the active pharmaceutical ingredient(s to be delivered. 3 Well-designed phase II dose-finding studies are required, and, unfortunately, such trials are missing. In fact, we will demonstrate that underdosing is one of the major hurdles to detect meaningful and statistically relevant clinical effects of topical analgesics. 4 Selection of clinical end points and innovatively designed phase III trials. End point selection can make or break a trial. For instance, to include numbness together with tingling as a composite end point for neuropathic pain seems stretching the therapeutic impact of an analgesic too far. Given the fast onset of action of topical analgesics (usually within 30 minutes, enrichment designs might enhance the chances for success, as the placebo response might decrease. Topical analgesics may become promising inroads for the treatment of neuropathic pain, once sufficient attention is given to these four key aspects. Keywords: topical, analgesics

  10. Optimization of paediatric radiation doses with CR systems

    International Nuclear Information System (INIS)

    Zatelli, Giovanna; Mazzocchi, S.; Ciccarone, A.; Fonda, C.; De Otto, G.

    2008-01-01

    Full text: Radiation protection of paediatric patients is a primary objective in paediatric radiology due the higher life expectance of the little patients undergoing radiology examinations and due to the higher radiosensitivity of tissues. Aim of this work is the study of the optimization process in paediatric doses needed after the recent installation of a new Computed Radiography System in the Radiology of the Meyer paediatric Hospital, in Florence, Italy. This process involves both the use of new dedicated digitizer (Agfa DX-S) and elaboration software (Agfa NX2.0). The choice of the DX-S systems has been performed in consideration of high resolution (Scanhead technology - DirectriX detector), image sharpness and portability of the cassettes that make DX-S ideal in paediatric applications as neonatal intensive care. The NX software for image processing has been installed with the 'Paediatric' licence that optimizes paediatric images especially for exposures of premature newborns. Paediatric NX automatically selects the paediatric age group, depending on the patient's birth date. Each age group contains enhanced algorithms and settings adapted to age group, for optimized visibility of fine details. All the CR system has been accepted by mean of quality control acceptance tool AGFA AutoQC2, and all the automatic exposure control devices installed on radiographic devices were previously calibrated in accordance to literature with signal to noise vs dose considerations [S. Mazzocchi et al. 'AEC set-up optimization with computed radiography imaging' Radiat. Prot. Dosim. 117, 169-173 2005]. Paediatric patients were then divided into age-weight categories and the Entrance Surface Doses (ESD) were calculated by output x-rays measurements. ESD for thorax examinations were correlated to the image evaluations performed by experienced radiologists following European Guidelines on quality criteria for diagnostic radiographic images in paediatrics (EUR 16261, European

  11. Analysis and planning of dose-finding studies with active control

    International Nuclear Information System (INIS)

    Helms, Hans-Joachim

    2014-01-01

    In the clinical development of radiopharmaceuticals the dose finding plays an important role. The contribution is focused on the evaluation and planning of dose finding studies with active control. It is of primary interest to find the lowest dose that yields the same efficacy as the active control. Besides the target dose confidence intervals are of importance to describe the quality of the target dose estimation. The calculation of case numbers and the determination of the dose steps to be studied are challenging under practical conditions. The contribution covers the demonstration of the statistical model the parameter estimation and the asymptotic properties based on maximum likelihood theory, the spline-based evaluation of nonlinear dose finding studies with active control and the planning of design and number of cases.

  12. Optimization of the quality and dose in thorax general radiology

    International Nuclear Information System (INIS)

    Hwang, Suy Ferreira

    2001-01-01

    Image quality and radiation dose at skin entrance in chest radiography were studied for three exposure protocols, denoted as 1, 2 and 3. Protocol 1 represents the most used technique in radiology services in our country. This technique consists of the following parameters: 81 kV tube voltage, anti-scatter grid and 2 m focus-film distance. Protocol 2 uses the same parameters of the Protocol 1, without grid. Protocol 3 uses I 33kV without grid and 3,5 m focus-film distance. In Protocols 2 and 3 a 30 em air gap was used between patient and film. Two samples of 50 patients were radiographed in two different facilities, herein denoted 1 and 2. Protocol 1 was used in facility I to radiograph the first patient sample, and Protocols 2 and 3 were used in facility 2 to radiograph the second patient sample. Three experts in chest radiology evaluated the obtained chest images according anatomical quality criteria for this examination. For each patient exposure the radiation dose at skin entrance was measured. In this work, a chest phantom, containing test objects to evaluate quantitatively image quality, was made. The phantom was radiographed with the three protocols herein investigated. Results of this study showed clearly that Protocol 3 presents an average dose at skin entrance about half than Protocol 2 and about one third of Protocol 1. In regard to chest radiographic images and radiation dose, it was statistically demonstrated that the Protocol 3 is better than Protocols 1 and 2, with the improvement of the image quality and patient dose reduction in order of 3 times. This work also discusses the perspective of using optimized exposure technique proposed by Protocol 3 as an alternative technique far chest radiographic examinations to those currently used in our diagnostic radiology facilities. (author)

  13. Finding the optimal Bayesian network given a constraint graph

    Directory of Open Access Journals (Sweden)

    Jacob M. Schreiber

    2017-07-01

    Full Text Available Despite recent algorithmic improvements, learning the optimal structure of a Bayesian network from data is typically infeasible past a few dozen variables. Fortunately, domain knowledge can frequently be exploited to achieve dramatic computational savings, and in many cases domain knowledge can even make structure learning tractable. Several methods have previously been described for representing this type of structural prior knowledge, including global orderings, super-structures, and constraint rules. While super-structures and constraint rules are flexible in terms of what prior knowledge they can encode, they achieve savings in memory and computational time simply by avoiding considering invalid graphs. We introduce the concept of a “constraint graph” as an intuitive method for incorporating rich prior knowledge into the structure learning task. We describe how this graph can be used to reduce the memory cost and computational time required to find the optimal graph subject to the encoded constraints, beyond merely eliminating invalid graphs. In particular, we show that a constraint graph can break the structure learning task into independent subproblems even in the presence of cyclic prior knowledge. These subproblems are well suited to being solved in parallel on a single machine or distributed across many machines without excessive communication cost.

  14. Optimal Intermittent Dose Schedules for Chemotherapy Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Nadia ALAM

    2013-08-01

    Full Text Available In this paper, a design method for optimal cancer chemotherapy schedules via genetic algorithm (GA is presented. The design targets the key objective of chemotherapy to minimize the size of cancer tumor after a predefined time with keeping toxic side effects in limit. This is a difficult target to achieve using conventional clinical methods due to poor therapeutic indices of existing anti-cancer drugs. Moreover, there are clinical limitations in treatment administration to maintain continuous treatment. Besides, carefully decided rest periods are recommended to for patient’s comfort. Three intermittent drug scheduling schemes are presented in this paper where GA is used to optimize the dose quantities and timings by satisfying several treatment constraints. All three schemes are found to be effective in total elimination of cancer tumor after an agreed treatment length. The number of cancer cells is found zero at the end of the treatment for all three cases with tolerable toxicity. Finally, two of the schemes, “Fixed interval variable dose (FIVD and “Periodic dose” that are periodic in characteristic have been emphasized due to their additional simplicity in administration along with friendliness to patients. responses to the designed treatment schedules. Therefore the proposed design method is capable of planning effective, simple, patient friendly and acceptable chemotherapy schedules.

  15. A mathematical approach to optimal selection of dose values in the additive dose method of ERP dosimetry

    International Nuclear Information System (INIS)

    Hayes, R.B.; Haskell, E.H.; Kenner, G.H.

    1996-01-01

    Additive dose methods commonly used in electron paramagnetic resonance (EPR) dosimetry are time consuming and labor intensive. We have developed a mathematical approach for determining optimal spacing of applied doses and the number of spectra which should be taken at each dose level. Expected uncertainitites in the data points are assumed to be normally distributed with a fixed standard deviation and linearity of dose response is also assumed. The optimum spacing and number of points necessary for the minimal error can be estimated, as can the likely error in the resulting estimate. When low doses are being estimated for tooth enamel samples the optimal spacing is shown to be a concentration of points near the zero dose value with fewer spectra taken at a single high dose value within the range of known linearity. Optimization of the analytical process results in increased accuracy and sample throughput

  16. Tools for the analysis of dose optimization: I. Effect-volume histogram

    International Nuclear Information System (INIS)

    Alber, M.; Nuesslin, F.

    2002-01-01

    With the advent of dose optimization algorithms, predominantly for intensity-modulated radiotherapy (IMRT), computer software has progressed beyond the point of being merely a tool at the hands of an expert and has become an active, independent mediator of the dosimetric conflicts between treatment goals and risks. To understand and control the internal decision finding as well as to provide means to influence it, a tool for the analysis of the dose distribution is presented which reveals the decision-making process performed by the algorithm. The internal trade-offs between partial volumes receiving high or low doses are driven by functions which attribute a weight to each volume element. The statistics of the distribution of these weights is cast into an effect-volume histogram (EVH) in analogy to dose-volume histograms. The analysis of the EVH reveals which traits of the optimum dose distribution result from the defined objectives, and which are a random consequence of under- or misspecification of treatment goals. The EVH can further assist in the process of finding suitable objectives and balancing conflicting objectives. If biologically inspired objectives are used, the EVH shows the distribution of local dose effect relative to the prescribed level. (author)

  17. Modern dose-finding designs for cancer phase I trials drug combinations and molecularly targeted agents

    CERN Document Server

    Hirakawa, Akihiro; Daimon, Takashi; Matsui, Shigeyuki

    2018-01-01

    This book deals with advanced methods for adaptive phase I dose-finding clinical trials for combination of two agents and molecularly targeted agents (MTAs) in oncology. It provides not only methodological aspects of the dose-finding methods, but also software implementations and practical considerations in applying these complex methods to real cancer clinical trials. Thus, the book aims to furnish researchers in biostatistics and statistical science with a good summary of recent developments of adaptive dose-finding methods as well as providing practitioners in biostatistics and clinical investigators with advanced materials for designing, conducting, monitoring, and analyzing adaptive dose-finding trials. The topics in the book are mainly related to cancer clinical trials, but many of those topics are potentially applicable or can be extended to trials for other diseases. The focus is mainly on model-based dose-finding methods for two kinds of phase I trials. One is clinical trials with combinations of tw...

  18. Dose escalation with 3-D CRT in prostate cancer: five year dose responses and optimal treatment

    International Nuclear Information System (INIS)

    Hanks, Gerald; Hanlon, Alexandra; Pinover, Wayne; Hunt, Margie; Movsas, Benjamin; Schultheiss, Timothy

    1997-01-01

    Purpose: To report 5 yr dose responses in prostate cancer patients treated with 3D-CRT and describe optimal treatment based on dose response. Methods: Dose escalation was studied in 233 consecutive patients treated with 3D-CRT between 3/89 and 10/92. All surviving patients have >32 mo follow-up, the median follow-up is 55 mo. Estimated logistic cumulative distribution functions (logit response models) fit to 5 yr actuarial bNED outcome are reported for 3 dose groups in each of 3 pretreatment PSA groupings (10-19.9 ng/ml and 20+ ng/ml); no dose response is observed for patients with pretreatment PSA <10 ng/ml. Logit response models fit to 5 yr actuarial late morbidity rates (grade 2 GI, grade 2 GU, grade 3,4 GI) are also reported for 4 dose groups. Patients are treated with CT planned 4-field conformal technique where the PTV encompasses the CTV by 1.0 cm in all directions including the anterior rectal wall margin. Patients are followed at 6 mo intervals with PSA and DRE, and bNED failure is defined as PSA ≥1.5 ng/ml and rising on two consecutive measures. The Fox Chase modification of the LENT morbidity scale is used for GI morbidity including any blood transfusion and/or more than 2 coagulations as a grade 3 event. GU morbidity follows the RTOG scale. Results: The logit response models based on 5 yr bNED results have slopes of 27% and 18% for pretreatment PSA grouping 10-19.9 ng/ml and 20+ ng/ml, respectively. The 50% bNED response is observed at 71 Gy and 80 Gy respectively, while the 80% bNED response is observed at 76 Gy for the 10-19.9 ng/ml group and estimated at 88 Gy for the 20+ ng/ml group. Logit dose response models for grade 2 GI and grade 2 GU morbidity show markedly different slopes, 23% versus 4%, respectively. The slope for grade 3,4 GI is 12%. The dose response model indicates grade 3,4 GI complication rates at 5 yrs are 8% at 76 Gy and 12% at 80 Gy. Conclusion: Based on 5 yr results, we can draw some conclusions about appropriate dose from these

  19. Optimization of dose in computerized radiology exams of the hands

    International Nuclear Information System (INIS)

    Pavan, Ana Luiza Menegatti; Alvarez, Matheus; Alves, Allan Felipe Fattori; Dela Rosa, Maria Eugenia; Miranda, Jose Ricardo de Arruda

    2014-01-01

    Fractures and dislocations of the hand are some of the most frequently encountered injuries of the musculoskeletal system traumas. To evaluate these lesions radiography is the investigation of choice, and is rarely needed the help of other images to establish the diagnosis and treatment. The image quality of the X-ray examination is therefore essential. In this study a homogeneous phantom hand was developed for use in the hand image optimization process. In this procedure were quantified for different tissue thicknesses which are an anthropomorphic hand phantom. To perform the classification and quantification of tissue was applied membership functions in histograms of CT scans. The same procedure was adopted for 30 retrospective examinations of patients in the Hospital of the Faculty of Medicine of Botucatu UNESP (HCFMB-UNESP). The homogeneous phantom built was used to calibrate the techniques used in clinical routine (RC). Such calibrated techniques were used to acquire images of anthropomorphic phantom. These images were analyzed by Visual Grading Method (VFA) by experienced radiologists in the area. The image with better grade in AGV and lower dose was chosen as the Gold Standard. The results showed concordance between the tissue thicknesses which constitute the anthropomorphic phantom and the sample evaluated patients, with variations between 12.63% and 6.48% for soft tissue and bone, respectively. The Gold Technical Standard compared with the technique normally used in the CR reduces dose charge 41.28% and 33.18% in the tube

  20. Optimal dose of combined rocuronium and cisatracurium during minor surgery

    Science.gov (United States)

    Park, Woo Young; Choi, Jae Chan; Yun, Hey Jeong; Jeon, Yeong Gwan; Park, Gisoon; Choi, Jong Bum

    2018-01-01

    Abstract Background: Combined rocuronium and cisatracurium have synergistic effects. We investigated whether reduced doses are effective during coadministration, by monitoring neuromuscular relaxation during surgery. Methods: This randomized, controlled clinical trial was registered at http://clinicaltrials.gov (registration number NCT02495038). The participants were 81 patients scheduled for elective mastoidectomy and tympanoplasty. Participants were assigned to groups, including the intubating dose group (Group I, n = 27; combined ED95 rocuronium and ED95 cisatracurium), the small reduction group (Group S, n = 27; dose reduced by 10% of each ED95), or the large reduction group (Group L, n = 27; dose reduced by 20% of each ED95). Drugs were administered to patients and a timer was started using TOF-Watch monitoring. TOF (train-of-four) was monitored at the ulnar nerve, at a setting of 2 Hz/12 s. We recorded the time to TOF ratio = 0 (onset), time to first TOF ratio > 25% (duration 25%), and TOF 25–75% (recovery index) under total intravenous anesthesia. One-way analysis of variance was used for statistical analyses (α = 0.05, β = 0.2). Results: There were no significant demographic differences between groups. Group L had a longer duration to onset (mean ± standard deviation, 399.3 ± 147.8 seconds) and shorter duration 25% (39.4 ± 6.8 minutes) compared to Group I (212.8 ± 56.0 s and 51.3 ± 8.47 minutes, respectively) and Group S (230.7 ± 60.6 s and 47.9 ± 10.7 minutes, respectively). There were no other significant differences between groups. Conclusion: Our findings contribute to determining clinically effective combinations of rocuronium and cisatracurium, as well as to predicting the pharmacokinetic characteristics of the synergistic effects. We suggest that reducing doses of both drugs by approximately 10% of their respective ED95 values is sufficient to maintain neuromuscular

  1. Fast, multiple optimizations of quadratic dose objective functions in IMRT

    International Nuclear Information System (INIS)

    Breedveld, Sebastiaan; Storchi, Pascal R M; Keijzer, Marleen; Heijmen, Ben J M

    2006-01-01

    Inverse treatment planning for intensity-modulated radiotherapy may include time consuming, multiple minimizations of an objective function. In this paper, methods are presented to speed up the process of (repeated) minimization of the well-known quadratic dose objective function, extended with a smoothing term that ensures generation of clinically acceptable beam profiles. In between two subsequent optimizations, the voxel-dependent importance factors of the quadratic terms will generally be adjusted, based on an intermediate plan evaluation. The objective function has been written in matrix-vector format, facilitating the use of a recently published, fast quadratic minimization algorithm, instead of commonly applied gradient-based methods. This format also reduces the calculation time in between subsequent minimizations, related to adjustment of the voxel-dependent importance factors. Sparse matrices are used to limit the required amount of computer memory. For three patients, comparisons have been made with a gradient method. Mean speed improvements of up to a factor of 37 have been achieved

  2. SU-F-BRCD-06: Multiple Anatomy Optimization of Accumulated Dose.

    Science.gov (United States)

    Watkins, W T; Moore, J A; Sharma, M; Dial, C; Xu, H; Hugo, G D; Gordon, J J; Siebers, J V

    2012-06-01

    Multiple anatomy optimization (MAO) utilizing deformable dose accumulation on entire 4DCT data sets is implemented to overcome ambiguity between optimal dose defined on a single anatomy and optimal accumulated dose resulting from dose delivery to moving and deforming anatomy. Six lung cancer patients are planned using two methods of radiotherapy optimization: the internal target volume (ITV) envelope method and MAO, which simultaneously optimizes a single fluence for delivery to all 10 breathing phases such that the accumulated dose satisfies the plan objectives. Target dose is constrained to 70 Gy. The ITV-plan is optimized on a single breathing phase with the planning target volume defined as the ITV; the MAO target is the moving CTV. MAO is compared to single image ITV optimization based on the accumulated dose assuming equal monitor-units to each phase. Dose-volume differences between single image estimations and 10-image accumulation are examined. Single image optimal dose distributions overestimate target V70 by 4.2%±3.1% (average, one standard deviation) and in five of six cases ipsilateral lung V20 is underestimated (1.4%±0.9%). For these five cases, MAO increases V70 by 2.8%±2.5% (maximum of 6% increase in V70) and reduces ipsilateral lung V20 by up to 3% (average decrease of 1.2%±1.3%). Contralateral lung V20, esophagus V25, and heart V30 are also reduced by up to 5%, 3%, and 3%. For the sixth case, lung tumor motion is on the order of the dose voxel size (3mm), and MAO did not improve upon the ITV plan. Dose-volume optimization on a stationary image does not ensure accumulated dose coverage to the moving CTV. Multiple anatomy optimization can remove dose ambiguity and improve plan quality. P01CA11602 and Philips Medical Systems. © 2012 American Association of Physicists in Medicine.

  3. Therapeutic treatment plan optimization with probability density-based dose prescription

    International Nuclear Information System (INIS)

    Lian Jun; Cotrutz, Cristian; Xing Lei

    2003-01-01

    The dose optimization in inverse planning is realized under the guidance of an objective function. The prescription doses in a conventional approach are usually rigid values, defining in most instances an ill-conditioned optimization problem. In this work, we propose a more general dose optimization scheme based on a statistical formalism [Xing et al., Med. Phys. 21, 2348-2358 (1999)]. Instead of a rigid dose, the prescription to a structure is specified by a preference function, which describes the user's preference over other doses in case the most desired dose is not attainable. The variation range of the prescription dose and the shape of the preference function are predesigned by the user based on prior clinical experience. Consequently, during the iterative optimization process, the prescription dose is allowed to deviate, with a certain preference level, from the most desired dose. By not restricting the prescription dose to a fixed value, the optimization problem becomes less ill-defined. The conventional inverse planning algorithm represents a special case of the new formalism. An iterative dose optimization algorithm is used to optimize the system. The performance of the proposed technique is systematically studied using a hypothetical C-shaped tumor with an abutting circular critical structure and a prostate case. It is shown that the final dose distribution can be manipulated flexibly by tuning the shape of the preference function and that using a preference function can lead to optimized dose distributions in accordance with the planner's specification. The proposed framework offers an effective mechanism to formalize the planner's priorities over different possible clinical scenarios and incorporate them into dose optimization. The enhanced control over the final plan may greatly facilitate the IMRT treatment planning process

  4. Commentary: progress in optimization of patient dose and image quality in x-ray diagnostics

    International Nuclear Information System (INIS)

    Carlsson, G.A.; Chan, H.-P.

    1999-01-01

    X-ray diagnostics gives the largest contribution to the population dose from man-made radiation sources. Strategies for reduction of patient doses without loss of diagnostic accuracy are therefore of great interest to society and have been focussed in general terms by the ICRP (ICRP 1996) through the introduction of the concept of diagnostic reference levels. The European Union has stimulated research in the field, and, based on patient dose measurements and radiologists' appreciation of acceptable image quality, good radiographic techniques have been identified and recommended (EUR 1996a, b) for conventional screen-film imaging. These efforts have resulted in notable dose reductions in clinical practices (Hart et al 1996). In spite of 100 years of use of x-rays for diagnostics, the choice of technique parameters still relies to a great extent on experience. Scientific efforts to optimize the choice in terms of finding the parameter settings which yield sufficient image quality at the lowest possible cost in dose are still rare. True optimization requires (1) estimation of the image quality needed to make a correct diagnosis and (2) methods to investigate all possible means of achieving this image quality in order to be able to decide which of them gives the lowest dose. The paper by Tapiovaara, Sandborg and Dance published in this issue of Physics in Medicine and Biology (pages 537-559) addresses the optimization of paediatric fluoroscopy, a timely and important topic. Fluoroscopy procedures, used to guide x-ray examinations or interventional procedures, are little standardized and may result in high dose levels; radiation exposure in childhood is likely to result in a higher lifetime risk than the same exposure later in life. The authors represent an interesting mix of expertise within various scientific fields: the theory of medical imaging and assessment of image quality, the physics of diagnostic radiology and radiation dosimetry. They provide good insights

  5. Generation of uniformly distributed dose points for anatomy-based three-dimensional dose optimization methods in brachytherapy.

    Science.gov (United States)

    Lahanas, M; Baltas, D; Giannouli, S; Milickovic, N; Zamboglou, N

    2000-05-01

    We have studied the accuracy of statistical parameters of dose distributions in brachytherapy using actual clinical implants. These include the mean, minimum and maximum dose values and the variance of the dose distribution inside the PTV (planning target volume), and on the surface of the PTV. These properties have been studied as a function of the number of uniformly distributed sampling points. These parameters, or the variants of these parameters, are used directly or indirectly in optimization procedures or for a description of the dose distribution. The accurate determination of these parameters depends on the sampling point distribution from which they have been obtained. Some optimization methods ignore catheters and critical structures surrounded by the PTV or alternatively consider as surface dose points only those on the contour lines of the PTV. D(min) and D(max) are extreme dose values which are either on the PTV surface or within the PTV. They must be avoided for specification and optimization purposes in brachytherapy. Using D(mean) and the variance of D which we have shown to be stable parameters, achieves a more reliable description of the dose distribution on the PTV surface and within the PTV volume than does D(min) and D(max). Generation of dose points on the real surface of the PTV is obligatory and the consideration of catheter volumes results in a realistic description of anatomical dose distributions.

  6. Mahalanobis distance and variable selection to optimize dose response

    International Nuclear Information System (INIS)

    Moore, D.H. II; Bennett, D.E.; Wyrobek, A.J.; Kranzler, D.

    1979-01-01

    A battery of statistical techniques are combined to improve detection of low-level dose response. First, Mahalanobis distances are used to classify objects as normal or abnormal. Then the proportion classified abnormal is regressed on dose. Finally, a subset of regressor variables is selected which maximizes the slope of the dose response line. Use of the techniques is illustrated by application to mouse sperm damaged by low doses of x-rays

  7. WE-B-304-00: Point/Counterpoint: Biological Dose Optimization

    International Nuclear Information System (INIS)

    2015-01-01

    The ultimate goal of radiotherapy treatment planning is to find a treatment that will yield a high tumor control probability (TCP) with an acceptable normal tissue complication probability (NTCP). Yet most treatment planning today is not based upon optimization of TCPs and NTCPs, but rather upon meeting physical dose and volume constraints defined by the planner. It has been suggested that treatment planning evaluation and optimization would be more effective if they were biologically and not dose/volume based, and this is the claim debated in this month’s Point/Counterpoint. After a brief overview of biologically and DVH based treatment planning by the Moderator Colin Orton, Joseph Deasy (for biological planning) and Charles Mayo (against biological planning) will begin the debate. Some of the arguments in support of biological planning include: this will result in more effective dose distributions for many patients DVH-based measures of plan quality are known to have little predictive value there is little evidence that either D95 or D98 of the PTV is a good predictor of tumor control sufficient validated outcome prediction models are now becoming available and should be used to drive planning and optimization Some of the arguments against biological planning include: several decades of experience with DVH-based planning should not be discarded we do not know enough about the reliability and errors associated with biological models the radiotherapy community in general has little direct experience with side by side comparisons of DVH vs biological metrics and outcomes it is unlikely that a clinician would accept extremely cold regions in a CTV or hot regions in a PTV, despite having acceptable TCP values Learning Objectives: To understand dose/volume based treatment planning and its potential limitations To understand biological metrics such as EUD, TCP, and NTCP To understand biologically based treatment planning and its potential limitations

  8. Algorithms for finding optimal paths in network games with p players

    Directory of Open Access Journals (Sweden)

    R. Boliac

    1997-08-01

    Full Text Available We study the problem of finding optimal paths in network games with p players. Some polynomial-time algorithms for finding optimal paths and optimal by Nash strategies of the players in network games with p players are proposed.

  9. Optimal initial dose adjustment of warfarin in orthopedic patients.

    Science.gov (United States)

    Lenzini, Petra A; Grice, Gloria R; Milligan, Paul E; Gatchel, Susan K; Deych, Elena; Eby, Charles S; Burnett, R Stephen J; Clohisy, John C; Barrack, Robert L; Gage, Brian F

    2007-11-01

    Warfarin sodium is commonly prescribed for the prophylaxis and treatment of venous thromboembolism. Dosing algorithms have not been widely adopted because they require a fixed initial warfarin dose (eg, 5 mg) and are not tailored to other factors that may affect the international normalized ratio (INR). To develop an algorithm that could predict a therapeutic warfarin dose based on drug interactions, INR response after the initial warfarin doses, and other clinical factors. We used stepwise regression to quantify the relationship between these factors in patients beginning prophylactic warfarin therapy immediately prior to joint replacement. In the derivation cohort (n = 271), we separately modeled the therapeutic dose after 2 and 3 initial doses. We prospectively validated these 2 models in an independent cohort (n = 105). About half of the therapeutic dose variability was predictable after 3 days of therapy: R2 was 53% in the derivation cohort and 42% in the validation cohort. INR response after 3 warfarin doses (INR3) inversely correlated with therapeutic dose (p < 0.001). Intraoperative blood loss transiently, but significantly, elevated the postoperative INR values. Other significant (p < 0.03) predictors were the first and second warfarin doses (+7% and +6%, respectively, per 1 mg), and statin use (-15.0%). The model derived after 2 warfarin doses explained 32% of the variability in therapeutic dose. We developed and validated algorithms that estimate therapeutic warfarin doses based on clinical factors and INR response available after 2-3 days of warfarin therapy. The algorithms are implemented online at www.WarfarinDosing.org.

  10. Decoding Decoders: Finding Optimal Representation Spaces for Unsupervised Similarity Tasks

    OpenAIRE

    Zhelezniak, Vitalii; Busbridge, Dan; Shen, April; Smith, Samuel L.; Hammerla, Nils Y.

    2018-01-01

    Experimental evidence indicates that simple models outperform complex deep networks on many unsupervised similarity tasks. We provide a simple yet rigorous explanation for this behaviour by introducing the concept of an optimal representation space, in which semantically close symbols are mapped to representations that are close under a similarity measure induced by the model's objective function. In addition, we present a straightforward procedure that, without any retraining or architectura...

  11. Feasibility of dose painting using volumetric modulated arc optimization and delivery

    DEFF Research Database (Denmark)

    Korreman, Stine; Ulrich, Silke; Bowen, Stephen

    2010-01-01

    Dose painting strategies are limited by optimization algorithms in treatment planning systems and physical constraints of the beam delivery. We investigate dose conformity using the RapidArc optimizer and beam delivery technique. Furthermore, robustness of the plans with respect to positioning un...

  12. Finding optimal interaction interface alignments between biological complexes

    KAUST Repository

    Cui, Xuefeng

    2015-06-13

    Motivation: Biological molecules perform their functions through interactions with other molecules. Structure alignment of interaction interfaces between biological complexes is an indispensable step in detecting their structural similarities, which are keys to understanding their evolutionary histories and functions. Although various structure alignment methods have been developed to successfully access the similarities of protein structures or certain types of interaction interfaces, existing alignment tools cannot directly align arbitrary types of interfaces formed by protein, DNA or RNA molecules. Specifically, they require a \\'blackbox preprocessing\\' to standardize interface types and chain identifiers. Yet their performance is limited and sometimes unsatisfactory. Results: Here we introduce a novel method, PROSTA-inter, that automatically determines and aligns interaction interfaces between two arbitrary types of complex structures. Our method uses sequentially remote fragments to search for the optimal superimposition. The optimal residue matching problem is then formulated as a maximum weighted bipartite matching problem to detect the optimal sequence order-independent alignment. Benchmark evaluation on all non-redundant protein-DNA complexes in PDB shows significant performance improvement of our method over TM-align and iAlign (with the \\'blackbox preprocessing\\'). Two case studies where our method discovers, for the first time, structural similarities between two pairs of functionally related protein-DNA complexes are presented. We further demonstrate the power of our method on detecting structural similarities between a protein-protein complex and a protein-RNA complex, which is biologically known as a protein-RNA mimicry case. © The Author 2015. Published by Oxford University Press.

  13. No-threshold dose-response curves for nongenotoxic chemicals: Findings and applications for risk assessment

    International Nuclear Information System (INIS)

    Sheehan, Daniel M.

    2006-01-01

    We tested the hypothesis that no threshold exists when estradiol acts through the same mechanism as an active endogenous estrogen. A Michaelis-Menten (MM) equation accounting for response saturation, background effects, and endogenous estrogen level fit a turtle sex-reversal data set with no threshold and estimated the endogenous dose. Additionally, 31 diverse literature dose-response data sets were analyzed by adding a term for nonhormonal background; good fits were obtained but endogenous dose estimations were not significant due to low resolving power. No thresholds were observed. Data sets were plotted using a normalized MM equation; all 178 data points were accommodated on a single graph. Response rates from ∼1% to >95% were well fit. The findings contradict the threshold assumption and low-dose safety. Calculating risk and assuming additivity of effects from multiple chemicals acting through the same mechanism rather than assuming a safe dose for nonthresholded curves is appropriate

  14. SU-F-J-133: Adaptive Radiation Therapy with a Four-Dimensional Dose Calculation Algorithm That Optimizes Dose Distribution Considering Breathing Motion

    Energy Technology Data Exchange (ETDEWEB)

    Ali, I; Algan, O; Ahmad, S [University of Oklahoma Health Sciences, Oklahoma City, OK (United States); Alsbou, N [University of Central Oklahoma, Edmond, OK (United States)

    2016-06-15

    Purpose: To model patient motion and produce four-dimensional (4D) optimized dose distributions that consider motion-artifacts in the dose calculation during the treatment planning process. Methods: An algorithm for dose calculation is developed where patient motion is considered in dose calculation at the stage of the treatment planning. First, optimal dose distributions are calculated for the stationary target volume where the dose distributions are optimized considering intensity-modulated radiation therapy (IMRT). Second, a convolution-kernel is produced from the best-fitting curve which matches the motion trajectory of the patient. Third, the motion kernel is deconvolved with the initial dose distribution optimized for the stationary target to produce a dose distribution that is optimized in four-dimensions. This algorithm is tested with measured doses using a mobile phantom that moves with controlled motion patterns. Results: A motion-optimized dose distribution is obtained from the initial dose distribution of the stationary target by deconvolution with the motion-kernel of the mobile target. This motion-optimized dose distribution is equivalent to that optimized for the stationary target using IMRT. The motion-optimized and measured dose distributions are tested with the gamma index with a passing rate of >95% considering 3% dose-difference and 3mm distance-to-agreement. If the dose delivery per beam takes place over several respiratory cycles, then the spread-out of the dose distributions is only dependent on the motion amplitude and not affected by motion frequency and phase. This algorithm is limited to motion amplitudes that are smaller than the length of the target along the direction of motion. Conclusion: An algorithm is developed to optimize dose in 4D. Besides IMRT that provides optimal dose coverage for a stationary target, it extends dose optimization to 4D considering target motion. This algorithm provides alternative to motion management

  15. Study of dose calculation and beam parameters optimization with genetic algorithm in IMRT

    International Nuclear Information System (INIS)

    Chen Chaomin; Tang Mutao; Zhou Linghong; Lv Qingwen; Wang Zhuoyu; Chen Guangjie

    2006-01-01

    Objective: To study the construction of dose calculation model and the method of automatic beam parameters selection in IMRT. Methods: The three-dimension convolution dose calculation model of photon was constructed with the methods of Fast Fourier Transform. The objective function based on dose constrain was used to evaluate the fitness of individuals. The beam weights were optimized with genetic algorithm. Results: After 100 iterative analyses, the treatment planning system produced highly conformal and homogeneous dose distributions. Conclusion: the throe-dimension convolution dose calculation model of photon gave more accurate results than the conventional models; genetic algorithm is valid and efficient in IMRT beam parameters optimization. (authors)

  16. Daily dose and shielding optimization in work performance at 'Ukrytie' object

    International Nuclear Information System (INIS)

    Batij, V.G.; Derengovskij, V.V.; Egorov, V.V.; Kuz'menko, V.A.; Rud'ko, V.M.; Sizov, A.A.; Stoyanov, A.I.

    2000-01-01

    The procedure of daily dose and shielding optimization in work performance at 'Ukryttia' object is offered. The recommendations allowing reducing collective effective doze according to the optimization principle are submitted. The technique of shielding optimization is given at stabilization works realization. The optimum shielding calculation example for the strengthening support is given

  17. Analysis of Cumulative Dose to Implanted Pacemaker According to Various IMRT Delivery Methods: Optimal Dose Delivery Versus Dose Reduction Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Woo; Hong, Se Mie [Dept. of Radiation Oncology, Konkuk University Medical Center, Seoul (Korea, Republic of)

    2011-11-15

    Cancer patients with implanted cardiac pacemaker occasionally require radiotherapy. Pacemaker may be damaged or malfunction during radiotherapy due to ionizing radiation or electromagnetic interference. Although radiotherapy should be planned to keep the dose to pacemaker as low as possible not to malfunction ideally, current radiation treatment planning (RTP) system does not accurately calculate deposited dose to adjacent field border or area beyond irradiated fields. In terms of beam delivery techniques using multiple intensity modulated fields, dosimetric effect of scattered radiation in high energy photon beams is required to be detailed analyzed based on measurement data. The aim of this study is to evaluate dose discrepancies of pacemaker in a RTP system as compared to measured doses. We also designed dose reduction strategy limited value of 2 Gy for radiation treatment patients with cardiac implanted pacemaker. Total accumulated dose of 145 cGy based on in-vivo dosimetry was satisfied with the recommendation criteria to prevent malfunction of pacemaker in SS technique. However, the 2 mm lead shielder enabled the scattered doses to reduce up to 60% and 40% in the patient and the phantom, respectively. The SS technique with the lead shielding could reduce the accumulated scattered doses less than 100 cGy. Calculated and measured doses were not greatly affected by the beam delivery techniques. In-vivo and measured doses on pacemaker position showed critical dose discrepancies reaching up to 4 times as compared to planned doses in RTP. The current SS technique could deliver lower scattered doses than recommendation criteria, but use of 2 mm lead shielder contributed to reduce scattered doses by 60%. The tertiary lead shielder can be useful to prevent malfunction or electrical damage of implanted pacemakers during radiotherapy. It is required to estimate more accurate scattered doses of the patient or medical device in RTP to design proper dose reduction strategy.

  18. Analysis of Cumulative Dose to Implanted Pacemaker According to Various IMRT Delivery Methods: Optimal Dose Delivery Versus Dose Reduction Strategy

    International Nuclear Information System (INIS)

    Lee, Jeong Woo; Hong, Se Mie

    2011-01-01

    Cancer patients with implanted cardiac pacemaker occasionally require radiotherapy. Pacemaker may be damaged or malfunction during radiotherapy due to ionizing radiation or electromagnetic interference. Although radiotherapy should be planned to keep the dose to pacemaker as low as possible not to malfunction ideally, current radiation treatment planning (RTP) system does not accurately calculate deposited dose to adjacent field border or area beyond irradiated fields. In terms of beam delivery techniques using multiple intensity modulated fields, dosimetric effect of scattered radiation in high energy photon beams is required to be detailed analyzed based on measurement data. The aim of this study is to evaluate dose discrepancies of pacemaker in a RTP system as compared to measured doses. We also designed dose reduction strategy limited value of 2 Gy for radiation treatment patients with cardiac implanted pacemaker. Total accumulated dose of 145 cGy based on in-vivo dosimetry was satisfied with the recommendation criteria to prevent malfunction of pacemaker in SS technique. However, the 2 mm lead shielder enabled the scattered doses to reduce up to 60% and 40% in the patient and the phantom, respectively. The SS technique with the lead shielding could reduce the accumulated scattered doses less than 100 cGy. Calculated and measured doses were not greatly affected by the beam delivery techniques. In-vivo and measured doses on pacemaker position showed critical dose discrepancies reaching up to 4 times as compared to planned doses in RTP. The current SS technique could deliver lower scattered doses than recommendation criteria, but use of 2 mm lead shielder contributed to reduce scattered doses by 60%. The tertiary lead shielder can be useful to prevent malfunction or electrical damage of implanted pacemakers during radiotherapy. It is required to estimate more accurate scattered doses of the patient or medical device in RTP to design proper dose reduction strategy.

  19. Stereotactic radiosurgery with the gamma knife. Possibilities of dose distribution optimizations

    International Nuclear Information System (INIS)

    Stuecklschweiger, G.

    1995-01-01

    On April 1992, the first stereotactic radiosurgical procedure using the gamma knife was performed at the University Medical School Graz, Department of Neurosurgery. Accurate dose optimization is the foundation of a convenient and responsible utilization of this modality. But there are limits, because the final collimation is only achieved by 1 of the 4 special helm collimators. The possibilities of dose optimization and its influence on the dose distributions were investigated and partly compared with results of film densitometry measurements. In detail, the technique, which uses the same isocenter, but different sized collimators was studied. The influence of these optimization techniques on the resulting dose distributions and the dose gradient at the edge of the treatment planning volume was analyzed. Also the visions for an effective dose optimization are discussed. With 2 shots of different diameters, located at the same target coordinates and different weighting of time any collimator size between the 4 mm and 18 mm can be achieved. Because of that, a combination of more than 2 collimators is not meaningful. With the combined shots the dose fall gradient was less than that of either of the single shots involved in the combination. With the available physical and technical possibilities only a limited, very time consuming optimization is practicable. The quality control of isodose distributions requires optimizations in hard-and software, that enable CT- or MRT-based 3-dimensional visualization and dose volume analysis. (orig./MG) [de

  20. Optimization in the nuclear fuel cycle I: Temporal variation of dose rate

    International Nuclear Information System (INIS)

    Pereira, W.S.; Silva, A.X.; Lopes, J.M.; Carmo, A.S.; Fernandes, T.S.; Mello, C.R.; Kelecom, A.

    2017-01-01

    Radioprotection aims to protect man and the environment from the harmful effects of radiation. Radioprotection is based on three fundamental principles: justification, dose limitation and optimization. Optimization is a complementary principle to dose limitation and should be applied in all phases of development, and even in unregulated situations. The aim of this work is to use the exposure rate as a tool to optimize radioprotection. The exposure rate at a nuclear facility was monitored at 15 points for one year and statistical tools for data analysis were proposed as auxiliary tools for the process of optimizing the dose rates measured at the facility. A total of 9,125 exposure-rate measures were performed during 2014. The monthly averages were organized by sampling point and by month of the year. No statistical difference was observed in the monthly variation of the dose rate. Therefore, this variable can not be used in the optimization process in this nuclear installation

  1. Optimized dose conformation of multi-leaf collimator fields

    International Nuclear Information System (INIS)

    Serago, Christopher F.; Buskirk, Steven J.; Foo, May L.; McLaughlin, Mark P.

    1996-01-01

    Purpose/Objective: Current commercially available multi-leaf collimators (MLC) have leaf widths of about 1 cm. These leaf widths may produce stepped dose gradients at the fields edges at the 50% dose level. Small local perturbations of the dose distribution from the prescribed/expected dose distribution may not be acceptable for some clinical applications. Improvements to the conformation of the MLC dose distribution may be achieved using multiple exposures per MLC field, with either shifting the table/patient position, or rotating the orientation of the MLC jaws between exposures. Material and Methods: Dose distributions for MLC, primary jaws only, and lead alloy block fields were measured with film dosimetry for 6 and 20 MV photon beams in a solid water phantom. Square, circular, and typical clinical prostate, brain, lung, esophagus, and head and neck fields were measured. MLC field shapes were produced using a commercial MLC with a leaf width of 1 cm at the treatment isocenter. The dose per MLC field was delivered in either single (conventional) or multiple exposures. The table(patient) position or the collimator rotation was shifted between exposures when multiple exposure MLC fields were used. Differences in the dose distribution were evaluated at the 90% and 50% isodose level. Displacements of the measured 50% isodose from the prescribed/expected 50% isodose were measured at 5 degree intervals. Results: Measurements of the penumbra at a 10 cm depth for square fields show that using double exposure MLC fields with .5 cm table index decreases the effective penumbra by 1 mm. For clinical shaped fields, displacements between the prescribed/expected 50% isodose and the measured 50% isodose for conventional single exposure MLC fields are measured to be as great as 9 mm, and discrepancies on the order of 5 to 6 mm are common. In contrast, the maximum displacement errors measured with multiple exposure MLC fields are less than 5 mm and rarely more than 4 mm. In some

  2. A step-up test procedure to find the minimum effective dose.

    Science.gov (United States)

    Wang, Weizhen; Peng, Jianan

    2015-01-01

    It is of great interest to find the minimum effective dose (MED) in dose-response studies. A sequence of decreasing null hypotheses to find the MED is formulated under the assumption of nondecreasing dose response means. A step-up multiple test procedure that controls the familywise error rate (FWER) is constructed based on the maximum likelihood estimators for the monotone normal means. When the MED is equal to one, the proposed test is uniformly more powerful than Hsu and Berger's test (1999). Also, a simulation study shows a substantial power improvement for the proposed test over four competitors. Three R-codes are provided in Supplemental Materials for this article. Go to the publishers online edition of Journal of Biopharmaceutical Statistics to view the files.

  3. Analysis of Radiation Treatment Planning by Dose Calculation and Optimization Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Sup; Yoon, In Ha; Lee, Woo Seok; Baek, Geum Mun [Dept. of Radiation Oncology, Asan Medical Center, Seoul (Korea, Republic of)

    2012-09-15

    Analyze the Effectiveness of Radiation Treatment Planning by dose calculation and optimization algorithm, apply consideration of actual treatment planning, and then suggest the best way to treatment planning protocol. The treatment planning system use Eclipse 10.0. (Varian, USA). PBC (Pencil Beam Convolution) and AAA (Anisotropic Analytical Algorithm) Apply to Dose calculation, DVO (Dose Volume Optimizer 10.0.28) used for optimized algorithm of Intensity Modulated Radiation Therapy (IMRT), PRO II (Progressive Resolution Optimizer V 8.9.17) and PRO III (Progressive Resolution Optimizer V 10.0.28) used for optimized algorithm of VAMT. A phantom for experiment virtually created at treatment planning system, 30x30x30 cm sized, homogeneous density (HU: 0) and heterogeneous density that inserted air assumed material (HU: -1,000). Apply to clinical treatment planning on the basis of general treatment planning feature analyzed with Phantom planning. In homogeneous density phantom, PBC and AAA show 65.2% PDD (6 MV, 10 cm) both, In heterogeneous density phantom, also show similar PDD value before meet with low density material, but they show different dose curve in air territory, PDD 10 cm showed 75%, 73% each after penetrate phantom. 3D treatment plan in same MU, AAA treatment planning shows low dose at Lung included area. 2D POP treatment plan with 15 MV of cervical vertebral region include trachea and lung area, Conformity Index (ICRU 62) is 0.95 in PBC calculation and 0.93 in AAA. DVO DVH and Dose calculation DVH are showed equal value in IMRT treatment plan. But AAA calculation shows lack of dose compared with DVO result which is satisfactory condition. Optimizing VMAT treatment plans using PRO II obtained results were satisfactory, but lower density area showed lack of dose in dose calculations. PRO III, but optimizing the dose calculation results were similar with optimized the same conditions once more. In this study, do not judge the rightness of the dose

  4. Analysis of Radiation Treatment Planning by Dose Calculation and Optimization Algorithm

    International Nuclear Information System (INIS)

    Kim, Dae Sup; Yoon, In Ha; Lee, Woo Seok; Baek, Geum Mun

    2012-01-01

    Analyze the Effectiveness of Radiation Treatment Planning by dose calculation and optimization algorithm, apply consideration of actual treatment planning, and then suggest the best way to treatment planning protocol. The treatment planning system use Eclipse 10.0. (Varian, USA). PBC (Pencil Beam Convolution) and AAA (Anisotropic Analytical Algorithm) Apply to Dose calculation, DVO (Dose Volume Optimizer 10.0.28) used for optimized algorithm of Intensity Modulated Radiation Therapy (IMRT), PRO II (Progressive Resolution Optimizer V 8.9.17) and PRO III (Progressive Resolution Optimizer V 10.0.28) used for optimized algorithm of VAMT. A phantom for experiment virtually created at treatment planning system, 30x30x30 cm sized, homogeneous density (HU: 0) and heterogeneous density that inserted air assumed material (HU: -1,000). Apply to clinical treatment planning on the basis of general treatment planning feature analyzed with Phantom planning. In homogeneous density phantom, PBC and AAA show 65.2% PDD (6 MV, 10 cm) both, In heterogeneous density phantom, also show similar PDD value before meet with low density material, but they show different dose curve in air territory, PDD 10 cm showed 75%, 73% each after penetrate phantom. 3D treatment plan in same MU, AAA treatment planning shows low dose at Lung included area. 2D POP treatment plan with 15 MV of cervical vertebral region include trachea and lung area, Conformity Index (ICRU 62) is 0.95 in PBC calculation and 0.93 in AAA. DVO DVH and Dose calculation DVH are showed equal value in IMRT treatment plan. But AAA calculation shows lack of dose compared with DVO result which is satisfactory condition. Optimizing VMAT treatment plans using PRO II obtained results were satisfactory, but lower density area showed lack of dose in dose calculations. PRO III, but optimizing the dose calculation results were similar with optimized the same conditions once more. In this study, do not judge the rightness of the dose

  5. The use of linear programming in optimization of HDR implant dose distributions

    International Nuclear Information System (INIS)

    Jozsef, Gabor; Streeter, Oscar E.; Astrahan, Melvin A.

    2003-01-01

    The introduction of high dose rate brachytherapy enabled optimization of dose distributions to be used on a routine basis. The objective of optimization is to homogenize the dose distribution within the implant while simultaneously satisfying dose constraints on certain points. This is accomplished by varying the time the source dwells at different locations. As the dose at any point is a linear function of the dwell times, a linear programming approach seems to be a natural choice. The dose constraints are inherently linear inequalities. Homogeneity requirements are linearized by minimizing the maximum deviation of the doses at points inside the implant from a prescribed dose. The revised simplex method was applied for the solution of this linear programming problem. In the homogenization process the possible source locations were chosen as optimization points. To avoid the problem of the singular value of the dose at a source location from the source itself we define the 'self-contribution' as the dose at a small distance from the source. The effect of varying this distance is discussed. Test cases were optimized for planar, biplanar and cylindrical implants. A semi-irregular, fan-like implant with diverging needles was also investigated. Mean central dose calculation based on 3D Delaunay-triangulation of the source locations was used to evaluate the dose distributions. The optimization method resulted in homogeneous distributions (for brachytherapy). Additional dose constraints--when applied--were satisfied. The method is flexible enough to include other linear constraints such as the inclusion of the centroids of the Delaunay-triangulation for homogenization, or limiting the maximum allowable dwell time

  6. Estimation of the optimal dosing regimen of escitalopram in dogs: A dose occupancy study with [11C]DASB.

    Science.gov (United States)

    Taylor, Olivia; Van Laeken, Nick; Polis, Ingeborgh; Dockx, Robrecht; Vlerick, Lise; Dobbeleir, Andre; Goethals, Ingeborg; Saunders, Jimmy; Sadones, Nele; Baeken, Chris; De Vos, Filip; Peremans, Kathelijne

    2017-01-01

    Although the favourable characteristics of escitalopram as being the most selective serotonin reuptake inhibitor and having an increased therapeutic efficacy via binding on an additional allosteric binding site of the serotonin transporter, its dosing regimen has not yet been optimized for its use in dogs. This study aimed to estimate the optimal dosing frequency and the required dose for achieving 80% occupancy of the serotonin transporters in the basal ganglia. The dosing frequency was investigated by determining the elimination half-life after a four day oral pre-treatment period with 0.83 mg/kg escitalopram (3 administrations/day) and a subsequent i.v. injection 0.83 mg/kg. Blood samples were taken up to 12 hours after i.v. injection and the concentration of escitalopram in plasma was analysed via LC-MSMS. The dose-occupancy relationship was then determined by performing two PET scans in five adult beagles: a baseline PET scan and a second scan after steady state conditions were achieved following oral treatment with a specific dose of escitalopram ranging from 0.5 to 2.5 mg/kg/day. As the elimination half-life was determined to be 6.7 hours a dosing frequency of three administrations a day was proposed for the second part of the study. Further it was opted for a treatment period of four days, which well exceeded the minimum period to achieve steady state conditions. The optimal dosing regimen to achieve 80% occupancy in the basal ganglia and elicit a therapeutic effect, was calculated to be 1.85 mg/kg/day, divided over three administrations. Under several circumstances, such as insufficient response to other SSRIs, concurrent drug intake or in research studies focused on SERT, the use of escitalopram can be preferred over the use of the already for veterinary use registered fluoxetine, however, in case of long-term treatment with escitalopram, regularly cardiac screening is recommended.

  7. Radiation dose optimization in the decommissioning plan for Loviisa NPP

    Energy Technology Data Exchange (ETDEWEB)

    Holmberg, R.; Eurajoki, T. [Nuclear Power Engineering (Finland)

    1995-03-01

    Finnish rules for nuclear power require a detailed decommissioning plan to be made and kept up to date already during plant operation. The main reasons for this {open_quotes}premature{close_quotes} plan, is, firstly, the need to demonstrate the feasibility of decommissioning, and, secondly, to make realistic cost estimates in order to fund money for this future operation. The decomissioning for Lovissa Nuclear Power Plant (NPP) (2{times}445 MW, PWR) was issued in 1987. It must be updated about every five years. One important aspect of the plant is an estimate of radiation doses to the decomissioning workers. The doses were recently re-estimated because of a need to decrease the total collective dose estimate in the original plan, 23 manSv. In the update, the dose was reduced by one-third. Part of the reduction was due to changes in the protection and procedures, in which ALARA considerations were taken into account, and partly because of re-estimation of the doses.

  8. Radiation dose of CT coronary angiography in clinical practice: Objective evaluation of strategies for dose optimization

    International Nuclear Information System (INIS)

    Yerramasu, Ajay; Venuraju, Shreenidhi; Atwal, Satvir; Goodman, Dennis; Lipkin, David; Lahiri, Avijit

    2012-01-01

    Background: CT coronary angiography (CTCA) is an evolving modality for the diagnosis of coronary artery disease. Radiation burden associated with CTCA has been a major concern in the wider application of this technique. It is important to reduce the radiation dose without compromising the image quality. Objectives: To estimate the radiation dose of CTCA in clinical practice and evaluate the effect of dose-saving algorithms on radiation dose and image quality. Methods: Effective radiation dose was measured from the dose-length product in 616 consecutive patients (mean age 58 ± 12 years; 70% males) who underwent clinically indicated CTCA at our institution over 1 year. Image quality was assessed subjectively using a 4-point scale and objectively by measuring the signal- and contrast-to-noise ratios in the coronary arteries. Multivariate linear regression analysis was used to identify factors independently associated with radiation dose. Results: Mean effective radiation dose of CTCA was 6.6 ± 3.3 mSv. Radiation dose was significantly reduced by dose saving algorithms such as 100 kV imaging (−47%; 95% CI, −44% to −50%), prospective gating (−35%; 95% CI, −29% to −40%) and ECG controlled tube current modulation (−23%; 95% CI, −9% to −34%). None of the dose saving algorithms were associated with a significant reduction in mean image quality or the frequency of diagnostic scans (P = non-significant for all comparisons). Conclusion: Careful application of radiation-dose saving algorithms in appropriately selected patients can reduce the radiation burden of CTCA significantly, without compromising the image quality.

  9. Noise and dose modeling for pediatric CT optimization: preliminary results

    International Nuclear Information System (INIS)

    Miller Clemente, Rafael A.; Perez Diaz, Marlen; Mora Reyes, Yudel; Rodriguez Garlobo, Maikel; Castillo Salazar, Rafael

    2008-01-01

    Full text: A Multiple Linear Regression Model was developed to predict noise and dose in computed tomography pediatric imaging for head and abdominal examinations. Relative values of Noise and Volumetric Computed Tomography Dose Index was used to estimate de model respectively. 54 images of physical phantoms were performed. Independent variables considered included: phantom diameter, tube current and kilovolts, x ray beam collimation, reconstruction diameter and equipment's post processing filters. Predicted values show good agreement with measurements, which were better in noise model (R 2 adjusted =0.953) than the dose model (R 2 adjusted =0.744). Tube current, object diameter, beam collimation and reconstruction filter were identified as the most influencing factors in models. (author)

  10. A hybrid evolutionary algorithm for multi-objective anatomy-based dose optimization in high-dose-rate brachytherapy

    International Nuclear Information System (INIS)

    Lahanas, M; Baltas, D; Zamboglou, N

    2003-01-01

    Multiple objectives must be considered in anatomy-based dose optimization for high-dose-rate brachytherapy and a large number of parameters must be optimized to satisfy often competing objectives. For objectives expressed solely in terms of dose variances, deterministic gradient-based algorithms can be applied and a weighted sum approach is able to produce a representative set of non-dominated solutions. As the number of objectives increases, or non-convex objectives are used, local minima can be present and deterministic or stochastic algorithms such as simulated annealing either cannot be used or are not efficient. In this case we employ a modified hybrid version of the multi-objective optimization algorithm NSGA-II. This, in combination with the deterministic optimization algorithm, produces a representative sample of the Pareto set. This algorithm can be used with any kind of objectives, including non-convex, and does not require artificial importance factors. A representation of the trade-off surface can be obtained with more than 1000 non-dominated solutions in 2-5 min. An analysis of the solutions provides information on the possibilities available using these objectives. Simple decision making tools allow the selection of a solution that provides a best fit for the clinical goals. We show an example with a prostate implant and compare results obtained by variance and dose-volume histogram (DVH) based objectives

  11. Using spatial information about recurrence risk for robust optimization of dose-painting prescription functions

    International Nuclear Information System (INIS)

    Bender, Edward T.

    2012-01-01

    Purpose: To develop a robust method for deriving dose-painting prescription functions using spatial information about the risk for disease recurrence. Methods: Spatial distributions of radiobiological model parameters are derived from distributions of recurrence risk after uniform irradiation. These model parameters are then used to derive optimal dose-painting prescription functions given a constant mean biologically effective dose. Results: An estimate for the optimal dose distribution can be derived based on spatial information about recurrence risk. Dose painting based on imaging markers that are moderately or poorly correlated with recurrence risk are predicted to potentially result in inferior disease control when compared the same mean biologically effective dose delivered uniformly. A robust optimization approach may partially mitigate this issue. Conclusions: The methods described here can be used to derive an estimate for a robust, patient-specific prescription function for use in dose painting. Two approximate scaling relationships were observed: First, the optimal choice for the maximum dose differential when using either a linear or two-compartment prescription function is proportional to R, where R is the Pearson correlation coefficient between a given imaging marker and recurrence risk after uniform irradiation. Second, the predicted maximum possible gain in tumor control probability for any robust optimization technique is nearly proportional to the square of R.

  12. Dose-finding study of carbamylated monomeric allergoid tablets in grass-allergic rhinoconjunctivitis patients.

    Science.gov (United States)

    Mösges, Ralph; Rohdenburg, Christina; Eichel, Andrea; Zadoyan, Gregor; Kasche, Elena-Manja; Shah-Hosseini, Kija; Lehmacher, Walter; Schmalz, Petra; Compalati, Enrico

    2017-11-01

    To determine the optimal effective and safe dose of sublingual immunotherapy tablets containing carbamylated monomeric allergoids in patients with grass pollen-induced allergic rhinoconjunctivitis. In this prospective, randomized, double-blind, active-controlled, multicenter, Phase II study, four different daily doses were applied preseasonally for 12 weeks. Of 158 randomized adults, 155 subjects (safety population) received 300 units of allergy (UA)/day (n = 36), 600 UA/day (n = 43), 1000 UA/day (n = 39), or 2000 UA/day (n = 37). After treatment, 54.3, 47.6, 59.0 and 51.4% of patients, respectively, ceased to react to the highest allergen concentration in a conjunctival provocation test. Furthermore, the response threshold improved in 70.4, 62.9, 76.7 and 66.7% of patients, respectively. No serious adverse events occurred. This study found 1000 UA/day to be the optimal effective and safe dose.

  13. Regulatory T Cell Responses in Participants with Type 1 Diabetes after a Single Dose of Interleukin-2: A Non-Randomised, Open Label, Adaptive Dose-Finding Trial

    Science.gov (United States)

    Todd, John A.; Porter, Linsey; Smyth, Deborah J.; Rainbow, Daniel B.; Ferreira, Ricardo C.; Yang, Jennie H.; Bell, Charles J. M.; Schuilenburg, Helen; Challis, Ben; Clarke, Pamela; Coleman, Gillian; Dawson, Sarah; Goymer, Donna; Kennet, Jane; Brown, Judy; Greatorex, Jane; Goodfellow, Ian; Evans, Mark; Mander, Adrian P.; Bond, Simon; Wicker, Linda S.

    2016-01-01

    Background Interleukin-2 (IL-2) has an essential role in the expansion and function of CD4+ regulatory T cells (Tregs). Tregs reduce tissue damage by limiting the immune response following infection and regulate autoreactive CD4+ effector T cells (Teffs) to prevent autoimmune diseases, such as type 1 diabetes (T1D). Genetic susceptibility to T1D causes alterations in the IL-2 pathway, a finding that supports Tregs as a cellular therapeutic target. Aldesleukin (Proleukin; recombinant human IL-2), which is administered at high doses to activate the immune system in cancer immunotherapy, is now being repositioned to treat inflammatory and autoimmune disorders at lower doses by targeting Tregs. Methods and Findings To define the aldesleukin dose response for Tregs and to find doses that increase Tregs physiologically for treatment of T1D, a statistical and systematic approach was taken by analysing the pharmacokinetics and pharmacodynamics of single doses of subcutaneous aldesleukin in the Adaptive Study of IL-2 Dose on Regulatory T Cells in Type 1 Diabetes (DILT1D), a single centre, non-randomised, open label, adaptive dose-finding trial with 40 adult participants with recently diagnosed T1D. The primary endpoint was the maximum percentage increase in Tregs (defined as CD3+CD4+CD25highCD127low) from the baseline frequency in each participant measured over the 7 d following treatment. There was an initial learning phase with five pairs of participants, each pair receiving one of five pre-assigned single doses from 0.04 × 106 to 1.5 × 106 IU/m2, in order to model the dose-response curve. Results from each participant were then incorporated into interim statistical modelling to target the two doses most likely to induce 10% and 20% increases in Treg frequencies. Primary analysis of the evaluable population (n = 39) found that the optimal doses of aldesleukin to induce 10% and 20% increases in Tregs were 0.101 × 106 IU/m2 (standard error [SE] = 0.078, 95% CI = −0

  14. Determination of tolerance dose uncertainties and optimal design of dose response experiments with small animal numbers

    International Nuclear Information System (INIS)

    Karger, C.P.; Hartmann, G.H.

    2001-01-01

    Background: Dose response experiments aim to determine the complication probability as a function of dose. Adjusting the parameters of the frequently used dose response model P(D)=1/[1+(D 50 /D) k ] to the experimental data, 2 intuitive quantities are obtained: The tolerance dose D 50 and the slope parameter k. For mathematical reasons, however, standard statistic software uses a different set of parameters. Therefore, the resulting fit parameters of the statistic software as well as their standard errors have to be transformed to obtain D 50 and k as well as their standard errors. Material and Methods: The influence of the number of dose levels on the uncertainty of the fit parameters is studied by a simulation for a fixed number of animals. For experiments with small animal numbers, statistical artifacts may prevent the determination of the standard errors of the fit parameters. Consequences on the design of dose response experiments are investigated. Results: Explicit formulas are presented, which allow to calculate the parameters D 50 and k as well as their standard errors from the output of standard statistic software. The simulation shows, that the standard errors of the resulting parameters are independent of the number of dose levels, as long as the total number of animals involved in the experiment, remains constant. Conclusion: Statistical artifacts in experiments containing small animal numbers may be prevented by an adequate design of the experiment. For this, it is suggested to select a higher number of dose levels, rather than using a higher number of animals per dose level. (orig.) [de

  15. A fast dose calculation method based on table lookup for IMRT optimization

    International Nuclear Information System (INIS)

    Wu Qiuwen; Djajaputra, David; Lauterbach, Marc; Wu Yan; Mohan, Radhe

    2003-01-01

    This note describes a fast dose calculation method that can be used to speed up the optimization process in intensity-modulated radiotherapy (IMRT). Most iterative optimization algorithms in IMRT require a large number of dose calculations to achieve convergence and therefore the total amount of time needed for the IMRT planning can be substantially reduced by using a faster dose calculation method. The method that is described in this note relies on an accurate dose calculation engine that is used to calculate an approximate dose kernel for each beam used in the treatment plan. Once the kernel is computed and saved, subsequent dose calculations can be done rapidly by looking up this kernel. Inaccuracies due to the approximate nature of the kernel in this method can be reduced by performing scheduled kernel updates. This fast dose calculation method can be performed more than two orders of magnitude faster than the typical superposition/convolution methods and therefore is suitable for applications in which speed is critical, e.g., in an IMRT optimization that requires a simulated annealing optimization algorithm or in a practical IMRT beam-angle optimization system. (note)

  16. Optimal dose of losartan for renoprotection in diabetic nephropathy

    DEFF Research Database (Denmark)

    Andersen, Steen; Rossing, Peter; Juhl, Tina R

    2002-01-01

    filtration rate (GFR) ([(51)Cr]EDTA plasma clearance) were determined. RESULTS: Baseline values of albuminuria (geometric mean (95% CI)) and GFR (means+/-SEM) were 1138 (904-1432) mg/24 h and 91+/-3 ml/min/1.73 m(2), respectively. The blood pressure at baseline was 155/81+/-3/2 mmHg. All doses of losartan...... consecutive hypertensive type 1 diabetic patients with diabetic nephropathy received increasing doses of losartan, 50, 100, and 150 mg once daily in three periods each lasting 2 months. At baseline and at the end of each treatment period, albuminuria, 24-h blood pressure (TM2420 A&D), and glomerular...

  17. Radiation Doses in Intravenous Urography And Potentials For Optimization

    International Nuclear Information System (INIS)

    Halato, M.A.; Badawi, A.; Gassom, G.A.; Barsham, M.A.; Ibrahim, A.F.; Suliman, I.I.; Sulieman, A.A.

    2011-01-01

    In this study radiation doses in IVU clinical examinations were measured in three public hospitals and a sample of 44 patients. In each room the machine output was measured for different peak tube voltages. Patient's data such as (age and weight) and exposure parameters (kVp) and mAs) were recorded. Entrance Surface Air Kerma (ESAK) for patients was determined by using the tube output and the patient exposure parameters. The ESAK ranged from 0.76 to 6.75 mGy. The cumulative ESAK ranged from 3.5 to 34.6 mGy. In conclusion, the obtained results are in agreement with the standard reference ESAK levels. The study showed that the cumulative ESAK can approach a level known to increase the probability of stochastic effect. Keywords: Patient dose, intravenous Urography, radiation protection

  18. Implementation of spot scanning dose optimization and dose calculation for helium ions in Hyperion

    DEFF Research Database (Denmark)

    Fuchs, Hermann; Alber, Markus; Schreiner, Thomas

    2015-01-01

    PURPOSE: Helium ions ((4)He) may supplement current particle beam therapy strategies as they possess advantages in physical dose distribution over protons. To assess potential clinical advantages, a dose calculation module accounting for relative biological effectiveness (RBE) was developed...... published so far. The advantage of (4)He seems to lie in the reduction of dose to surrounding tissue and to OARs. Nevertheless, additional biological experiments and treatment planning studies with larger patient numbers and more tumor indications are necessary to study the possible benefits of helium ion...

  19. Case study: Findings and lessons learned from investigating a uranium intake and the corresponding dose calculations

    International Nuclear Information System (INIS)

    Beeslaar, Frik; Niekerk, Santie van; Steenkamp, Harry; Visagie, Abrie

    2008-01-01

    Full text: Purpose: To discuss the findings of an investigation into uranium intake and to discuss the lessons learned from the subsequent bioassay monitoring and dose calculations. Method: An investigation was held to determine direct and root causes after elevated air concentration levels were reported during the execution of an ad-hoc task. A programme of bioassay monitoring (urine sampling and lung counts) was implemented for the involved staff and committed effective doses were calculated. Major findings of the investigation: a) Inadequate pre-task assessment led to hazards not being identified and subsequently proper control measures were not implemented; b) Inadequate localised control of contamination led to contamination of worker's clothes and faces and contamination of rest of area; c) Workers were complacent which led to a lapse in safety awareness and subsequently they removed their face masks during the task. Problems experienced with bioassay monitoring and dose calculations: a) Some bioassay samples were not taken or were given incorrectly; b) Calculating doses were difficult due to lack of information regarding date of intake; whether there were other possible intakes; and the physiochemical nature of the uranium; c) Weak correlation between predicted and actual bioassay data; d) Period between starting bioassay monitoring and the actual event was too long. Conclusions: a) Shortcomings in the control of contamination with protective clothing and during the execution of ad-hoc tasks; b) Identifying hazards and assessing it is extremely dependant on the skill and capabilities if the Radiation Protection Officers; c) Instructions to workers regarding sampling of urine and arrangements around the sampling should be very specific with only one person responsible for managing the process; d) Be aware of the psychological impact on the affected workers; e) 2 nd Independent dose calculation important for verifying doses; f) Detection capabilities and

  20. Human and technical factors in the doses reduction and optimization at Cogema/Marcoule

    International Nuclear Information System (INIS)

    Bourgogne, J.L.

    1998-01-01

    In the case of Cogema/Marcoule, the constant decrease of radiation doses is attributed to three factors: technical with a surveillance system and doses optimization, relational with the promotion of confidence in teams of radiation protection services as an acceptation factor of radiation protection techniques and psychological with an evolution of minds towards the ALARA approach. (N.C.)

  1. Optimization of equivalent uniform dose using the L-curve criterion

    International Nuclear Information System (INIS)

    Chvetsov, Alexei V; Dempsey, James F; Palta, Jatinder R

    2007-01-01

    Optimization of equivalent uniform dose (EUD) in inverse planning for intensity-modulated radiation therapy (IMRT) prevents variation in radiobiological effect between different radiotherapy treatment plans, which is due to variation in the pattern of dose nonuniformity. For instance, the survival fraction of clonogens would be consistent with the prescription when the optimized EUD is equal to the prescribed EUD. One of the problems in the practical implementation of this approach is that the spatial dose distribution in EUD-based inverse planning would be underdetermined because an unlimited number of nonuniform dose distributions can be computed for a prescribed value of EUD. Together with ill-posedness of the underlying integral equation, this may significantly increase the dose nonuniformity. To optimize EUD and keep dose nonuniformity within reasonable limits, we implemented into an EUD-based objective function an additional criterion which ensures the smoothness of beam intensity functions. This approach is similar to the variational regularization technique which was previously studied for the dose-based least-squares optimization. We show that the variational regularization together with the L-curve criterion for the regularization parameter can significantly reduce dose nonuniformity in EUD-based inverse planning

  2. Optimization of equivalent uniform dose using the L-curve criterion

    Energy Technology Data Exchange (ETDEWEB)

    Chvetsov, Alexei V; Dempsey, James F; Palta, Jatinder R [Department of Radiation Oncology, University of Florida, Gainesville, FL 32610-0385 (United States)

    2007-09-21

    Optimization of equivalent uniform dose (EUD) in inverse planning for intensity-modulated radiation therapy (IMRT) prevents variation in radiobiological effect between different radiotherapy treatment plans, which is due to variation in the pattern of dose nonuniformity. For instance, the survival fraction of clonogens would be consistent with the prescription when the optimized EUD is equal to the prescribed EUD. One of the problems in the practical implementation of this approach is that the spatial dose distribution in EUD-based inverse planning would be underdetermined because an unlimited number of nonuniform dose distributions can be computed for a prescribed value of EUD. Together with ill-posedness of the underlying integral equation, this may significantly increase the dose nonuniformity. To optimize EUD and keep dose nonuniformity within reasonable limits, we implemented into an EUD-based objective function an additional criterion which ensures the smoothness of beam intensity functions. This approach is similar to the variational regularization technique which was previously studied for the dose-based least-squares optimization. We show that the variational regularization together with the L-curve criterion for the regularization parameter can significantly reduce dose nonuniformity in EUD-based inverse planning.

  3. Optimization of equivalent uniform dose using the L-curve criterion.

    Science.gov (United States)

    Chvetsov, Alexei V; Dempsey, James F; Palta, Jatinder R

    2007-10-07

    Optimization of equivalent uniform dose (EUD) in inverse planning for intensity-modulated radiation therapy (IMRT) prevents variation in radiobiological effect between different radiotherapy treatment plans, which is due to variation in the pattern of dose nonuniformity. For instance, the survival fraction of clonogens would be consistent with the prescription when the optimized EUD is equal to the prescribed EUD. One of the problems in the practical implementation of this approach is that the spatial dose distribution in EUD-based inverse planning would be underdetermined because an unlimited number of nonuniform dose distributions can be computed for a prescribed value of EUD. Together with ill-posedness of the underlying integral equation, this may significantly increase the dose nonuniformity. To optimize EUD and keep dose nonuniformity within reasonable limits, we implemented into an EUD-based objective function an additional criterion which ensures the smoothness of beam intensity functions. This approach is similar to the variational regularization technique which was previously studied for the dose-based least-squares optimization. We show that the variational regularization together with the L-curve criterion for the regularization parameter can significantly reduce dose nonuniformity in EUD-based inverse planning.

  4. Right dose, right now: using big data to optimize antibiotic dosing in the critically ill.

    Science.gov (United States)

    Elbers, Paul W G; Girbes, Armand; Malbrain, Manu L N G; Bosman, Rob

    2015-01-01

    Antibiotics save lives and are essential for the practice of intensive care medicine. Adequate antibiotic treatment is closely related to outcome. However this is challenging in the critically ill, as their pharmacokinetic profile is markedly altered. Therefore, it is surprising that critical care physicians continue to rely on standard dosing regimens for every patient, regardless of the actual clinical situation. This review outlines the pharmacokinetic and pharmacodynamic principles that underlie the need for individualized and personalized drug dosing. At present, therapeutic drug monitoring may be of help, but has major disadvantages, remains unavailable for most antibiotics and has produced mixed results. We therefore propose the AutoKinetics concept, taking decision support for antibiotic dosing back to the bedside. By direct interaction with electronic patient records, this opens the way for the use of big data for providing the right dose at the right time in each patient.

  5. Planning of optimal work path for minimizing exposure dose during radiation work in radwaste storage

    International Nuclear Information System (INIS)

    Kim, Yoon Hyuk; Park, Won Man; Kim, Kyung Soo; Whang, Joo Ho

    2005-01-01

    Since the safety of nuclear power plant has been becoming a big social issue, the exposure dose of radiation for workers has been one of the important factors concerning the safety problem. The existing calculation methods of radiation dose used in the planning of radiation work assume that dose rate dose not depend on the location within a work space, thus the variation of exposure dose by different work path is not considered. In this study, a modified numerical method was presented to estimate the exposure dose during radiation work in radwaste storage considering the effects of the distance between a worker and sources. And a new numerical algorithm was suggested to search the optimal work path minimizing the exposure dose in pre-defined work space with given radiation sources. Finally, a virtual work simulation program was developed to visualize the exposure dose of radiation during radiation works in radwaste storage and provide the capability of simulation for work planning. As a numerical example, a test radiation work was simulated under given space and two radiation sources, and the suggested optimal work path was compared with three predefined work paths. The optimal work path obtained in the study could reduce the exposure dose for the given test work. Based on the results, the developed numerical method and simulation program could be useful tools in the planning of radiation work

  6. Optimal bladder filling during high-dose-rate intracavitary brachytherapy for cervical cancer: a dosimetric study

    Directory of Open Access Journals (Sweden)

    Umesh Mahantshetty

    2017-04-01

    Full Text Available Purpose: The aim of this study is to compare 3D dose volume histogram (DVH parameters of bladder and other organs at risk with different bladder filling protocol during high-dose-rate intracavitary brachytherapy (HDR-ICBT in cervical cancer, and to find optimized bladder volume. Material and methods : This dosimetric study was completed with 21 patients who underwent HDR-ICBT with computed tomography/magnetic resonance compatible applicator as a routine treatment. Computed tomography planning was done for each patient with bladder emptied (series 1, after 50 ml (series 2, and 100 ml (series 3 bladder filling with a saline infusion through the bladder catheter. Contouring was done on the Eclipse Planning System. 7 Gy to point A was prescribed with the standard loading patterns. Various 3D DVH parameters including 0.1 cc, 1 cc, 2 cc doses and mean doses to the OAR’s were noted. Paired t-test was performed. Results : The mean (± SD bladder volume was 64.5 (± 25 cc, 116.2 (± 28 cc, and 172.9 (± 29 cc, for series 1, 2, and 3, respectively. The 0.1 cm 3 ,1 cm 3 , 2 cm 3 mean bladder doses for series 1, series 2, and series 3 were 9.28 ± 2.27 Gy, 7.38 ± 1.72 Gy, 6.58 ± 1.58 Gy; 9.39 ± 2.28 Gy, 7.85 ± 1.85 Gy, 7.05 ± 1.59 Gy, and 10.09 ± 2.46 Gy, 8.33 ± 1.75 Gy, 7.6 ± 1.55 Gy, respectively. However, there was a trend towards higher bladder doses in series 3. Similarly, for small bowel dose 0.1 cm 3 , 1 cm 3 , and 2 cm 3 in series 1, 2, and 3 were 5.44 ± 2.2 Gy, 4.41 ± 1.84 Gy, 4 ± 1.69 Gy; 4.57 ± 2.89 Gy, 3.78 ± 2.21 Gy, 3.35 ± 2.02 Gy, and 4.09 ± 2.38 Gy, 3.26 ± 1.8 Gy, 3.05 ± 1.58 Gy. Significant increase in small bowel dose in empty bladder (series 1 compared to full bladder (series 3 (p = 0.03 was noted. However, the rectal and sigmoid doses were not significantly affected with either series. Conclusions : Bladder filling protocol with 50 ml and 100 ml was well tolerated and achieved a reasonably reproducible bladder volume

  7. A 12-week DBPC dose-finding study with sublingual monomeric allergoid tablets in house dust mite-allergic patients.

    Science.gov (United States)

    Hüser, C; Dieterich, P; Singh, J; Shah-Hosseini, K; Allekotte, S; Lehmacher, W; Compalati, E; Mösges, R

    2017-01-01

    In sublingual immunotherapy, optimal doses are a key factor for therapeutic outcomes. The aim of this study with tablets containing carbamylated monomeric house dust mite allergoids was to determine the most effective and safe dose. In this double-blind, placebo-controlled dose-finding study, 131 patients with house dust mite-induced allergic rhinoconjunctivitis were randomized to 12-week treatments with 300 UA/day, 1000 UA/day, 2000 UA/day, 3000 UA/day or placebo. Conjunctival provocation tests (CPT) were performed before, during and after treatment. The change in mean allergic severity (primary endpoint), calculated from the severity of the CPT reaction, and the proportion of patients with an improved CPT threshold (secondary endpoint) determined the treatment effect. The mean allergic severity decreased in all groups, including the placebo group. It was lower in all active treatment groups (300 UA/day: 0.14, 1000 UA/day: 0.15, 2000 UA/day: 0.10, 3000 UA/day: 0.15) than in the placebo group (0.30). However, this difference was not statistically significant (P allergoid sublingual tablets is well tolerated and reduces the CPT reaction in house dust mite-allergic patients. © 2016 The Authors. Allergy Published by John Wiley & Sons Ltd.

  8. Economic assessment of pulsed dose-rate (P.D.R.) brachytherapy with optimized dose distribution for cervix carcinoma

    International Nuclear Information System (INIS)

    Remonnay, R.; Morelle, M.; Pommier, P.; Carrere, M.O.; Remonnay, R.; Morelle, M.; Pommier, P.; Pommier, P.; Haie-Meder, C.; Quetin, P.; Kerr, C.; Delannes, M.; Castelain, B.; Peignaux, K.; Kirova, Y.; Romestaing, P.; Williaume, D.; Krzisch, C.; Thomas, L.; Lang, P.; Baron, M.H.; Cussac, A.; Lesaunier, F.; Maillard, S.; Barillot, I.; Charra-Brunaud, C.; Peiffert, D.

    2010-01-01

    Purpose: Our study aims at evaluating the cost of pulsed dose-rate (P.D.R.) brachytherapy with optimized dose distribution versus traditional treatments (iridium wires, cesium, non-optimized P.D.R.). Issues surrounding reimbursement were also explored. Materials and methods: This prospective, multi-centre, non-randomized study conducted in the framework of a project entitled 'Support Program for Costly Diagnostic and Therapeutic Innovations' involved 21 hospitals. Patients with cervix carcinoma received either classical brachytherapy or the innovation. The direct medical costs of staff and equipment, as well as the costs of radioactive sources, consumables and building renovation were evaluated from a hospital point of view using a micro costing approach. Subsequent costs per brachytherapy were compared between the four strategies. Results: The economic study included 463 patients over two years. The main resources categories associated with P.D.R. brachytherapy (whether optimized or not) were radioactive sources (1053 Euros) and source projectors (735 Euros). Optimized P.D.R. induced higher cost of imagery and dosimetry (respectively 130 Euros and 367 Euros) than non-optimized P.D.R. (47 Euros and 75 Euros). Extra costs of innovation over the less costly strategy (iridium wires) reached more than 2100 Euros per treatment, but could be reduced by half in the hypothesis of 40 patients treated per year (instead of 24 in the study). Conclusion: Aside from staff, imaging and dosimetry, the current hospital reimbursements largely underestimated the cost of innovation related to equipment and sources. (authors)

  9. Optimization in radiotherapy treatment planning thanks to a fast dose calculation method

    International Nuclear Information System (INIS)

    Yang, Mingchao

    2014-01-01

    This thesis deals with the radiotherapy treatments planning issue which need a fast and reliable treatment planning system (TPS). The TPS is composed of a dose calculation algorithm and an optimization method. The objective is to design a plan to deliver the dose to the tumor while preserving the surrounding healthy and sensitive tissues. The treatment planning aims to determine the best suited radiation parameters for each patient's treatment. In this thesis, the parameters of treatment with IMRT (Intensity modulated radiation therapy) are the beam angle and the beam intensity. The objective function is multi-criteria with linear constraints. The main objective of this thesis is to demonstrate the feasibility of a treatment planning optimization method based on a fast dose-calculation technique developed by (Blanpain, 2009). This technique proposes to compute the dose by segmenting the patient's phantom into homogeneous meshes. The dose computation is divided into two steps. The first step impacts the meshes: projections and weights are set according to physical and geometrical criteria. The second step impacts the voxels: the dose is computed by evaluating the functions previously associated to their mesh. A reformulation of this technique makes possible to solve the optimization problem by the gradient descent algorithm. The main advantage of this method is that the beam angle parameters could be optimized continuously in 3 dimensions. The obtained results in this thesis offer many opportunities in the field of radiotherapy treatment planning optimization. (author) [fr

  10. Implementation of spot scanning dose optimization and dose calculation for helium ions in Hyperion

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Hermann, E-mail: hermann.fuchs@meduniwien.ac.at [Department of Radiation Oncology, Division of Medical Radiation Physics, Medical University of Vienna/AKH Vienna, Vienna 1090, Austria and Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna 1090 (Austria); Alber, Markus [Department for Oncology, Aarhus University Hospital, Aarhus 8000 (Denmark); Schreiner, Thomas [PEG MedAustron, Wiener Neustadt 2700 (Austria); Georg, Dietmar [Department of Radiation Oncology, Division of Medical Radiation Physics, Medical University of Vienna/AKH Vienna, Vienna 1090 (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna 1090 (Austria); Comprehensive Cancer Center, Medical University of Vienna/AKH Vienna, Vienna 1090 (Austria)

    2015-09-15

    Purpose: Helium ions ({sup 4}He) may supplement current particle beam therapy strategies as they possess advantages in physical dose distribution over protons. To assess potential clinical advantages, a dose calculation module accounting for relative biological effectiveness (RBE) was developed and integrated into the treatment planning system Hyperion. Methods: Current knowledge on RBE of {sup 4}He together with linear energy transfer considerations motivated an empirical depth-dependent “zonal” RBE model. In the plateau region, a RBE of 1.0 was assumed, followed by an increasing RBE up to 2.8 at the Bragg-peak region, which was then kept constant over the fragmentation tail. To account for a variable proton RBE, the same model concept was also applied to protons with a maximum RBE of 1.6. Both RBE models were added to a previously developed pencil beam algorithm for physical dose calculation and included into the treatment planning system Hyperion. The implementation was validated against Monte Carlo simulations within a water phantom using γ-index evaluation. The potential benefits of {sup 4}He based treatment plans were explored in a preliminary treatment planning comparison (against protons) for four treatment sites, i.e., a prostate, a base-of-skull, a pediatric, and a head-and-neck tumor case. Separate treatment plans taking into account physical dose calculation only or using biological modeling were created for protons and {sup 4}He. Results: Comparison of Monte Carlo and Hyperion calculated doses resulted in a γ{sub mean} of 0.3, with 3.4% of the values above 1 and γ{sub 1%} of 1.5 and better. Treatment plan evaluation showed comparable planning target volume coverage for both particles, with slightly increased coverage for {sup 4}He. Organ at risk (OAR) doses were generally reduced using {sup 4}He, some by more than to 30%. Improvements of {sup 4}He over protons were more pronounced for treatment plans taking biological effects into account. All

  11. Methylphenidate dose optimization for ADHD treatment: review of safety, efficacy, and clinical necessity

    Directory of Open Access Journals (Sweden)

    Huss M

    2017-07-01

    Full Text Available Michael Huss,1 Praveen Duhan,2 Preetam Gandhi,3 Chien-Wei Chen,4 Carsten Spannhuth,3 Vinod Kumar5 1Child and Adolescent Psychiatry, University Medicine, Mainz, Germany; 2Global Medical Affairs, Novartis Healthcare Pvt. Ltd., Hyderabad, India; 3Development Franchise, Established Medicine Neuroscience, Novartis Pharma AG, Basel, Switzerland; 4Biostatistics Cardio-Metabolic & Established Medicine, Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA; 5Established Medicines, Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA Abstract: Attention-deficit/hyperactivity disorder (ADHD is a chronic psychiatric disorder characterized by hyperactivity and/or inattention and is often associated with a substantial impact on psychosocial functioning. Methylphenidate (MPH, a central nervous system stimulant, is commonly used for pharmacological treatment of adults and children with ADHD. Current practice guidelines recommend optimizing MPH dosage to individual patient needs; however, the clinical benefits of individual dose optimization compared with fixed-dose regimens remain unclear. Here we review the available literature on MPH dose optimization from clinical trials and real-world experience on ADHD management. In addition, we report safety and efficacy data from the largest MPH modified-release long-acting Phase III clinical trial conducted to examine benefits of dose optimization in adults with ADHD. Overall, MPH is an effective ADHD treatment with a good safety profile; data suggest that dose optimization may enhance the safety and efficacy of treatment. Further research is required to establish the extent to which short-term clinical benefits of MPH dose optimization translate into improved long-term outcomes for patients with ADHD. Keywords: methylphenidate, dose optimization, attention-deficit/hyperactivity disorder, ADHD

  12. MO-DE-204-02: Optimization of the Patient CT Dose in Europe

    International Nuclear Information System (INIS)

    Tsapaki, V.

    2016-01-01

    The main topic of the session is to show how dose optimization is being implemented in various regions of the world, including Europe, Australia, North America and other regions. A multi-national study conducted under International Atomic Energy Agency (IAEA) across more than 50 less resourced countries gave insight into patient radiation doses and safety practices in CT, mammography, radiography and interventional procedures, both for children and adults. An important outcome was the capability development on dose assessment and management. An overview of recent European projects related to CT radiation dose and optimization both to adults and children will be presented. Existing data on DRLs together with a European methodology proposed on establishing and using DRLs for paediatric radiodiagnostic imaging and interventional radiology practices will be shown. Compared with much of Europe at least, many Australian imaging practices are relatively new to the task of diagnostic imaging dose optimisation. In 2008 the Australian Government prescribed a requirement to periodically compare patient radiation doses with diagnostic reference levels (DRLs), where DRLs have been established. Until recently, Australia had only established DRLs for computed tomography (CT). Regardless, both professional society and individual efforts to improved data collection and develop optimisation strategies across a range of modalities continues. Progress in this field, principally with respect to CT and interventional fluoroscopy will be presented. In the US, dose reduction and optimization efforts for computed tomography have been promoted and mandated by several organizations and accrediting entities. This presentation will cover the general motivation, implementation, and implications of such efforts. Learning Objectives: Understand importance of the dose optimization in Diagnostic Radiology. See how this goal is achieved in different regions of the World. Learn about the global trend

  13. MO-DE-204-04: Dose Optimization in CT: Trends and Motivation in the US

    International Nuclear Information System (INIS)

    Kofler, J.

    2016-01-01

    The main topic of the session is to show how dose optimization is being implemented in various regions of the world, including Europe, Australia, North America and other regions. A multi-national study conducted under International Atomic Energy Agency (IAEA) across more than 50 less resourced countries gave insight into patient radiation doses and safety practices in CT, mammography, radiography and interventional procedures, both for children and adults. An important outcome was the capability development on dose assessment and management. An overview of recent European projects related to CT radiation dose and optimization both to adults and children will be presented. Existing data on DRLs together with a European methodology proposed on establishing and using DRLs for paediatric radiodiagnostic imaging and interventional radiology practices will be shown. Compared with much of Europe at least, many Australian imaging practices are relatively new to the task of diagnostic imaging dose optimisation. In 2008 the Australian Government prescribed a requirement to periodically compare patient radiation doses with diagnostic reference levels (DRLs), where DRLs have been established. Until recently, Australia had only established DRLs for computed tomography (CT). Regardless, both professional society and individual efforts to improved data collection and develop optimisation strategies across a range of modalities continues. Progress in this field, principally with respect to CT and interventional fluoroscopy will be presented. In the US, dose reduction and optimization efforts for computed tomography have been promoted and mandated by several organizations and accrediting entities. This presentation will cover the general motivation, implementation, and implications of such efforts. Learning Objectives: Understand importance of the dose optimization in Diagnostic Radiology. See how this goal is achieved in different regions of the World. Learn about the global trend

  14. MO-DE-204-04: Dose Optimization in CT: Trends and Motivation in the US

    Energy Technology Data Exchange (ETDEWEB)

    Kofler, J. [Mayo Clinic (United States)

    2016-06-15

    The main topic of the session is to show how dose optimization is being implemented in various regions of the world, including Europe, Australia, North America and other regions. A multi-national study conducted under International Atomic Energy Agency (IAEA) across more than 50 less resourced countries gave insight into patient radiation doses and safety practices in CT, mammography, radiography and interventional procedures, both for children and adults. An important outcome was the capability development on dose assessment and management. An overview of recent European projects related to CT radiation dose and optimization both to adults and children will be presented. Existing data on DRLs together with a European methodology proposed on establishing and using DRLs for paediatric radiodiagnostic imaging and interventional radiology practices will be shown. Compared with much of Europe at least, many Australian imaging practices are relatively new to the task of diagnostic imaging dose optimisation. In 2008 the Australian Government prescribed a requirement to periodically compare patient radiation doses with diagnostic reference levels (DRLs), where DRLs have been established. Until recently, Australia had only established DRLs for computed tomography (CT). Regardless, both professional society and individual efforts to improved data collection and develop optimisation strategies across a range of modalities continues. Progress in this field, principally with respect to CT and interventional fluoroscopy will be presented. In the US, dose reduction and optimization efforts for computed tomography have been promoted and mandated by several organizations and accrediting entities. This presentation will cover the general motivation, implementation, and implications of such efforts. Learning Objectives: Understand importance of the dose optimization in Diagnostic Radiology. See how this goal is achieved in different regions of the World. Learn about the global trend

  15. MO-DE-204-02: Optimization of the Patient CT Dose in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Tsapaki, V. [Konstantopoulio General Hospital (Greece)

    2016-06-15

    The main topic of the session is to show how dose optimization is being implemented in various regions of the world, including Europe, Australia, North America and other regions. A multi-national study conducted under International Atomic Energy Agency (IAEA) across more than 50 less resourced countries gave insight into patient radiation doses and safety practices in CT, mammography, radiography and interventional procedures, both for children and adults. An important outcome was the capability development on dose assessment and management. An overview of recent European projects related to CT radiation dose and optimization both to adults and children will be presented. Existing data on DRLs together with a European methodology proposed on establishing and using DRLs for paediatric radiodiagnostic imaging and interventional radiology practices will be shown. Compared with much of Europe at least, many Australian imaging practices are relatively new to the task of diagnostic imaging dose optimisation. In 2008 the Australian Government prescribed a requirement to periodically compare patient radiation doses with diagnostic reference levels (DRLs), where DRLs have been established. Until recently, Australia had only established DRLs for computed tomography (CT). Regardless, both professional society and individual efforts to improved data collection and develop optimisation strategies across a range of modalities continues. Progress in this field, principally with respect to CT and interventional fluoroscopy will be presented. In the US, dose reduction and optimization efforts for computed tomography have been promoted and mandated by several organizations and accrediting entities. This presentation will cover the general motivation, implementation, and implications of such efforts. Learning Objectives: Understand importance of the dose optimization in Diagnostic Radiology. See how this goal is achieved in different regions of the World. Learn about the global trend

  16. Estimation of the optimal dosing regimen of escitalopram in dogs: A dose occupancy study with [11C]DASB.

    Directory of Open Access Journals (Sweden)

    Olivia Taylor

    Full Text Available Although the favourable characteristics of escitalopram as being the most selective serotonin reuptake inhibitor and having an increased therapeutic efficacy via binding on an additional allosteric binding site of the serotonin transporter, its dosing regimen has not yet been optimized for its use in dogs. This study aimed to estimate the optimal dosing frequency and the required dose for achieving 80% occupancy of the serotonin transporters in the basal ganglia. The dosing frequency was investigated by determining the elimination half-life after a four day oral pre-treatment period with 0.83 mg/kg escitalopram (3 administrations/day and a subsequent i.v. injection 0.83 mg/kg. Blood samples were taken up to 12 hours after i.v. injection and the concentration of escitalopram in plasma was analysed via LC-MSMS. The dose-occupancy relationship was then determined by performing two PET scans in five adult beagles: a baseline PET scan and a second scan after steady state conditions were achieved following oral treatment with a specific dose of escitalopram ranging from 0.5 to 2.5 mg/kg/day. As the elimination half-life was determined to be 6.7 hours a dosing frequency of three administrations a day was proposed for the second part of the study. Further it was opted for a treatment period of four days, which well exceeded the minimum period to achieve steady state conditions. The optimal dosing regimen to achieve 80% occupancy in the basal ganglia and elicit a therapeutic effect, was calculated to be 1.85 mg/kg/day, divided over three administrations. Under several circumstances, such as insufficient response to other SSRIs, concurrent drug intake or in research studies focused on SERT, the use of escitalopram can be preferred over the use of the already for veterinary use registered fluoxetine, however, in case of long-term treatment with escitalopram, regularly cardiac screening is recommended.

  17. Optimization of a neutron ambient dose equivalent rate meter

    International Nuclear Information System (INIS)

    Burgkhardt, B.; Fieg, G.; Piesch, E.; Klett, A.; Maushart, R.

    1994-01-01

    Co-operating in a technology transfer project, the Karlsruhe Nuclear Research Center and EG and G Berthold have developed a neutron equivalent doserate probe with high sensitivity and an energy dependent detection efficiency in accordance with the ICRP60 requirements. The special features of this probe were realized, on the one hand, by optimizing the moderator and absorber geometry through simulation calculations with the neutron transport code MCNP, and, on the other hand, by using a newly designed 3 He-methane proportional counter tube. The measurements were not yet completed when this paper went to press, however, it is to be expected that the response sensitivity will be more than 3 counts/nSv. (orig.) [de

  18. BAYESIAN DATA AUGMENTATION DOSE FINDING WITH CONTINUAL REASSESSMENT METHOD AND DELAYED TOXICITY

    Science.gov (United States)

    Liu, Suyu; Yin, Guosheng; Yuan, Ying

    2014-01-01

    A major practical impediment when implementing adaptive dose-finding designs is that the toxicity outcome used by the decision rules may not be observed shortly after the initiation of the treatment. To address this issue, we propose the data augmentation continual re-assessment method (DA-CRM) for dose finding. By naturally treating the unobserved toxicities as missing data, we show that such missing data are nonignorable in the sense that the missingness depends on the unobserved outcomes. The Bayesian data augmentation approach is used to sample both the missing data and model parameters from their posterior full conditional distributions. We evaluate the performance of the DA-CRM through extensive simulation studies, and also compare it with other existing methods. The results show that the proposed design satisfactorily resolves the issues related to late-onset toxicities and possesses desirable operating characteristics: treating patients more safely, and also selecting the maximum tolerated dose with a higher probability. The new DA-CRM is illustrated with two phase I cancer clinical trials. PMID:24707327

  19. Design of shared unit-dose drug distribution network using multi-level particle swarm optimization.

    Science.gov (United States)

    Chen, Linjie; Monteiro, Thibaud; Wang, Tao; Marcon, Eric

    2018-03-01

    Unit-dose drug distribution systems provide optimal choices in terms of medication security and efficiency for organizing the drug-use process in large hospitals. As small hospitals have to share such automatic systems for economic reasons, the structure of their logistic organization becomes a very sensitive issue. In the research reported here, we develop a generalized multi-level optimization method - multi-level particle swarm optimization (MLPSO) - to design a shared unit-dose drug distribution network. Structurally, the problem studied can be considered as a type of capacitated location-routing problem (CLRP) with new constraints related to specific production planning. This kind of problem implies that a multi-level optimization should be performed in order to minimize logistic operating costs. Our results show that with the proposed algorithm, a more suitable modeling framework, as well as computational time savings and better optimization performance are obtained than that reported in the literature on this subject.

  20. Digital radiography of scoliosis with a scanning method: radiation dose optimization

    Energy Technology Data Exchange (ETDEWEB)

    Geijer, Haakan; Andersson, Torbjoern [Department of Radiology, Oerebro University Hospital, 701 85 Oerebro (Sweden); Verdonck, Bert [Philips Medical Systems, P.O. Box 10,000, 5680 Best (Netherlands); Beckman, Karl-Wilhelm; Persliden, Jan [Department of Medical Physics, Oerebro University Hospital, 701 85 Oerebro (Sweden)

    2003-03-01

    The aim of this study was optimization of the radiation dose-image quality relationship for a digital scanning method of scoliosis radiography. The examination is performed as a digital multi-image translation scan that is reconstructed to a single image in a workstation. Entrance dose was recorded with thermoluminescent dosimeters placed dorsally on an Alderson phantom. At the same time, kerma area product (KAP) values were recorded. A Monte Carlo calculation of effective dose was also made. Image quality was evaluated with a contrast-detail phantom and Visual Grading. The radiation dose was reduced by lowering the image intensifier entrance dose request, adjusting pulse frequency and scan speed, and by raising tube voltage. The calculated effective dose was reduced from 0.15 to 0.05 mSv with reduction of KAP from 1.07 to 0.25 Gy cm{sup 2} and entrance dose from 0.90 to 0.21 mGy. The image quality was reduced with the Image Quality Figure going from 52 to 62 and a corresponding reduction in image quality as assessed with Visual Grading. The optimization resulted in a dose reduction to 31% of the original effective dose with an acceptable reduction in image quality considering the intended use of the images for angle measurements. (orig.)

  1. Optimization and audit of radiation dose during percutaneous transluminal coronary angioplasty

    International Nuclear Information System (INIS)

    Livingstone, Roshan S.; Timothy Peace, B.S.; Chandy, Sunil; Gorge, Paul V.; Pati, Purendra

    2007-01-01

    The percutaneous transluminal coronary angioplasty (PTCA) is one of the interventional procedures which impart high radiation doses to patients compared to the other cardiologic procedures. This study intends to audit and optimize radiation dose imparted to patients undergoing PTCA. Forty-four patients who underwent PTCA involving single or multiple stent placement guided under cardiovascular X-ray machine were included in the study. Radiation doses were measured using dose area product (DAP) meter for patients undergoing single and multiple stent placements during PTCA. A dose reduction of 27-47% was achieved using copper filters and optimal exposure parameters. The mean DAP values before optimization were 66.16 and 122.68 Gy cm 2 for single and multiple stent placement respectively. These values were 48.67 and 65.44 Gy cm 2 respectively after optimization. In the present scenario, due to the increase in the number of PTCAs performed and the associated risk from radiation, periodical audit of radiation doses for interventional procedures are recommended. (author)

  2. Digital radiography: optimization of image quality and dose using multi-frequency software.

    Science.gov (United States)

    Precht, H; Gerke, O; Rosendahl, K; Tingberg, A; Waaler, D

    2012-09-01

    New developments in processing of digital radiographs (DR), including multi-frequency processing (MFP), allow optimization of image quality and radiation dose. This is particularly promising in children as they are believed to be more sensitive to ionizing radiation than adults. To examine whether the use of MFP software reduces the radiation dose without compromising quality at DR of the femur in 5-year-old-equivalent anthropomorphic and technical phantoms. A total of 110 images of an anthropomorphic phantom were imaged on a DR system (Canon DR with CXDI-50 C detector and MLT[S] software) and analyzed by three pediatric radiologists using Visual Grading Analysis. In addition, 3,500 images taken of a technical contrast-detail phantom (CDRAD 2.0) provide an objective image-quality assessment. Optimal image-quality was maintained at a dose reduction of 61% with MLT(S) optimized images. Even for images of diagnostic quality, MLT(S) provided a dose reduction of 88% as compared to the reference image. Software impact on image quality was found significant for dose (mAs), dynamic range dark region and frequency band. By optimizing image processing parameters, a significant dose reduction is possible without significant loss of image quality.

  3. Universal field matching in craniospinal irradiation by a background-dose gradient-optimized method.

    Science.gov (United States)

    Traneus, Erik; Bizzocchi, Nicola; Fellin, Francesco; Rombi, Barbara; Farace, Paolo

    2018-01-01

    The gradient-optimized methods are overcoming the traditional feathering methods to plan field junctions in craniospinal irradiation. In this note, a new gradient-optimized technique, based on the use of a background dose, is described. Treatment planning was performed by RayStation (RaySearch Laboratories, Stockholm, Sweden) on the CT scans of a pediatric patient. Both proton (by pencil beam scanning) and photon (by volumetric modulated arc therapy) treatments were planned with three isocenters. An 'in silico' ideal background dose was created first to cover the upper-spinal target and to produce a perfect dose gradient along the upper and lower junction regions. Using it as background, the cranial and the lower-spinal beams were planned by inverse optimization to obtain dose coverage of their relevant targets and of the junction volumes. Finally, the upper-spinal beam was inversely planned after removal of the background dose and with the previously optimized beams switched on. In both proton and photon plans, the optimized cranial and the lower-spinal beams produced a perfect linear gradient in the junction regions, complementary to that produced by the optimized upper-spinal beam. The final dose distributions showed a homogeneous coverage of the targets. Our simple technique allowed to obtain high-quality gradients in the junction region. Such technique universally works for photons as well as protons and could be applicable to the TPSs that allow to manage a background dose. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  4. MO-PIS-Exhibit Hall-01: Imaging: CT Dose Optimization Technologies I

    International Nuclear Information System (INIS)

    Denison, K; Smith, S

    2014-01-01

    Partners in Solutions is an exciting new program in which AAPM partners with our vendors to present practical “hands-on” information about the equipment and software systems that we use in our clinics. The imaging topic this year is CT scanner dose optimization capabilities. Note that the sessions are being held in a special purpose room built on the Exhibit Hall Floor, to encourage further interaction with the vendors. Dose Optimization Capabilities of GE Computed Tomography Scanners Presentation Time: 11:15 – 11:45 AM GE Healthcare is dedicated to the delivery of high quality clinical images through the development of technologies, which optimize the application of ionizing radiation. In computed tomography, dose management solutions fall into four categories: employs projection data and statistical modeling to decrease noise in the reconstructed image - creating an opportunity for mA reduction in the acquisition of diagnostic images. Veo represents true Model Based Iterative Reconstruction (MBiR). Using high-level algorithms in tandem with advanced computing power, Veo enables lower pixel noise standard deviation and improved spatial resolution within a single image. Advanced Adaptive Image Filters allow for maintenance of spatial resolution while reducing image noise. Examples of adaptive image space filters include Neuro 3-D filters and Cardiac Noise Reduction Filters. AutomA adjusts mA along the z-axis and is the CT equivalent of auto exposure control in conventional x-ray systems. Dynamic Z-axis Tracking offers an additional opportunity for dose reduction in helical acquisitions while SmartTrack Z-axis Tracking serves to ensure beam, collimator and detector alignment during tube rotation. SmartmA provides angular mA modulation. ECG Helical Modulation reduces mA during the systolic phase of the heart cycle. SmartBeam optimization uses bowtie beam-shaping hardware and software to filter off-axis x-rays - minimizing dose and reducing x-ray scatter. The

  5. MO-PIS-Exhibit Hall-01: Imaging: CT Dose Optimization Technologies I

    Energy Technology Data Exchange (ETDEWEB)

    Denison, K; Smith, S [GE Healthcare, Waukesha, WI (United States)

    2014-06-15

    Partners in Solutions is an exciting new program in which AAPM partners with our vendors to present practical “hands-on” information about the equipment and software systems that we use in our clinics. The imaging topic this year is CT scanner dose optimization capabilities. Note that the sessions are being held in a special purpose room built on the Exhibit Hall Floor, to encourage further interaction with the vendors. Dose Optimization Capabilities of GE Computed Tomography Scanners Presentation Time: 11:15 – 11:45 AM GE Healthcare is dedicated to the delivery of high quality clinical images through the development of technologies, which optimize the application of ionizing radiation. In computed tomography, dose management solutions fall into four categories: employs projection data and statistical modeling to decrease noise in the reconstructed image - creating an opportunity for mA reduction in the acquisition of diagnostic images. Veo represents true Model Based Iterative Reconstruction (MBiR). Using high-level algorithms in tandem with advanced computing power, Veo enables lower pixel noise standard deviation and improved spatial resolution within a single image. Advanced Adaptive Image Filters allow for maintenance of spatial resolution while reducing image noise. Examples of adaptive image space filters include Neuro 3-D filters and Cardiac Noise Reduction Filters. AutomA adjusts mA along the z-axis and is the CT equivalent of auto exposure control in conventional x-ray systems. Dynamic Z-axis Tracking offers an additional opportunity for dose reduction in helical acquisitions while SmartTrack Z-axis Tracking serves to ensure beam, collimator and detector alignment during tube rotation. SmartmA provides angular mA modulation. ECG Helical Modulation reduces mA during the systolic phase of the heart cycle. SmartBeam optimization uses bowtie beam-shaping hardware and software to filter off-axis x-rays - minimizing dose and reducing x-ray scatter. The

  6. Evaluation of doses delivered during CT examination by different scanners for purposes of intercomparison and dose optimization

    International Nuclear Information System (INIS)

    Bashiru, Adam

    2017-07-01

    This research study was aimed at performing dosimetry intercomparison on different CT scanners in the diagnostic radiology departments of Korle-Bu Teaching Hospital (KBTH), Sweden Ghana Medical Center (SGMC) and Global Medical and Imaging Center (GMIC). Using the standard body phantom and integrated ion chamber technique volume computed tomography dose index (CTDIvol) and Dose-Length Product (DLPs) within the phantom were evaluated. The ion chamber technique was applied to two 16 slice Siemens and one Toshiba Aquilion one CT scanners. CTDIvol and DLP values for the standard body polymethyl methacrylate (PMMA) phantom were estimated and comparison made with corresponding console displayed values for accuracy and also to deduce a suitable method for optimization of patients and occupationally exposed worker doses. Effective doses were also calculated. An intra and inter institutional comparison of measured doses and console displayed doses were performed. Chest protocol at Automatic Exposure Control (AEC) was applied during the scanning of the phantom. Estimated CTDIvol values (mGy) were 17mGy, 24mGy and 13.1mGy for SGMC, GMIC and KBTH respectively. These values deviated from the console displayed values by 24.1%, 22.9% and 31.3% respectively. Similarly, estimated DLP values (mGy.cm) were 675mGy.cm,944mGy.cm and 419mGy.cm for SGMC, GMIC and KBTH respectively deviating from the console displayed values by 24.1%, 24.2% and 29% respectively. In terms of effective doses (E), the calculated E (mSv) values were 9.45mSv, 13.2mSv and 5.87mSv estimated from the DLPs from SGMC, GMIC and KBTH respectively using K, the anatomy-specific dose coefficient expressing effective dose normalized to DLP in a standard CT dosimetry phantom of 0.014 mSv mGy-1 cm-1. The estimated doses were compared to other selected international Dose Reference Levels (DRLs) and were within range. (au)

  7. Detection and optimization of image quality and dose in digital mammography systems

    International Nuclear Information System (INIS)

    Semturs, F.

    2015-01-01

    Background and purpose: During the last few years, mammography institutes have replaced their conventional mammography systems (FSM) with digital mammography systems (FFDM). This happened mainly in direction to digital computed radiography systems (FFDM-CR), where the mammography device could be kept in operation. Consequently also the AEC-parameters have not been changed and therefore the same dose as for FFM was used. Following the main theme of the thesis "Optimization of image quality and dose", also measurements with such CR-Systems have been performed in relation to image quality and dose behavior. Optimization in this context means - in following the ALARA principle - the reduction of dose while ensuring required clinical image quality. With other words - image quality is of higher value compared to dose. Considering this, it has been found out through measurements during this thesis, that FFDM-CR Systems need considerable more dose for achieving image quality comparable with FFM. On the other hand, it has been shown with measurements during this thesis, that the newest FFDM-CR technology (needle structure) supports dose reduction (optimization) to a certain degree without compromising image quality. Dose increase, as recommended in this thesis, could also increase the danger of more radiation induced carcinoma. There are several studies (which are also discussed in this thesis), which show that the benefit of not missing cancers because of higher dose dramatically overrides any health concerns. Such an optimization of image quality and dose is now described in more detail by comparing the new CR needle technology with the older power based CR technology. Material and Methods: The image quality and dose behavior for multiple breast thicknesses (simulated with PMMA slabs) of a CR needle crystal detector system is optimized by considering also different beam qualities. Technical image quality is determined with a low contrast phantom (CDMAM phantom) and from

  8. Dose constraint implementation in AREVA group: an optimization tool

    International Nuclear Information System (INIS)

    Decobert, Veronique

    2008-01-01

    AREVA offers customers reliable technology solutions for CO 2 free power generation and electricity transmission and distribution. The group counts 68000 employees worldwide and for its nuclear activities there are about 33.000 people who work under ionizing radiation. Risk management and prevention is one of the ten engagements of the sustainable development policy of AREVA, to establish and maintain the highest level of nuclear and occupational safety in all of the group's operations to preserve public and worker health, and to protect the environment. The implementation of these engagements is founded on a voluntary continuous improvement program, AREVA Way: objectives, common for the all entities, are laid down in the policies documents. Indicators are defined and a common reporting method for each indicator and the result of performance self-assessment is set up. AREVA chose to federate the whole of the nuclear entities around a common policy, the Nuclear Safety Charter, implemented at the beginning of 2005. This charter sets up principles of organization, action and engagements of transparency. Regarding radiation protection, the Charter reaffirms the engagement to limit in the installations of the group, at a level as low as reasonably possible, the exposure of the workers, through the implementation of the ALARA principle and the implementation of a continuous improvement policy. This approach, basically different from the simple respect of imposed limits, radically modifies the dynamics of progress. In the activities of engineering, the optimization of protection against radiation is also integrated in the design, by taking account the experience feedback of the operational activities. This determination of constraints is taken on all levels of the organization. Thus sustainable development performance indicators and especially those relating to protection against radiation are discussed between the managers in charge of Units Business and the Top managers

  9. Case study on implementation of the dose constraint concept in optimization in working environment

    Energy Technology Data Exchange (ETDEWEB)

    Krajewska, Grazyna; Krajewski, Pawel [Central Laboratory for Radiological Protection, PL-03194, Warsaw (Poland)

    2014-07-01

    A case study of already fixed dose constrain values in nuclear medicine sector, indicated that, the practical implementation of ICRP principle of optimization ( Publication 103, ICRP, 2007) still hit on methodology problems due to lack of adequate numerous monitoring data of internal contamination and complicated mathematical formalism. In practice, to ensure that 'the likelihood of incurring exposure, the number of people exposed, and the magnitude of their individual doses are kept as low as reasonably achievable', the baseline of effective doses together with statistical distribution is required. Furthermore, as it has revealed in this study, doses PHP's generated with MC methods had un-regularly shapes, depending on random operations rather than routine procedures. The role of dose constraints for occupational exposures, was further elaborated in Publication 101 (ICRP, 2006) as 'the dose constraint is a value of individual dose used to limit the range of options considered in the process of optimization'. The revisions of the International Basic Safety Standards as well as the Euratom Basic Safety Standard Directive both aim to implement new ICRP recommendations and have requirements to use dose constraints, defined broadly along the lines provided by the ICRP, and suggest that values be selected from the bands recommended by the ICRP. These will be obligatory adopted in the national regulations by regulatory authorities of EU countries. However, due to accidental characteristics of monitoring data, the 95% confidence tail of the doses for the most highly exposed individuals is near the limit of 20 mSv per year. This is apparently observed in the particular endocrinology units dealing with I-131 therapy. One might concluded that dose limitation and optimization are viewed as sufficient for the management of occupational exposures and reasonably be achieved. (authors)

  10. TU-PIS-Exhibit Hall-01: CT Dose Optimization Technologies II

    International Nuclear Information System (INIS)

    Driesser, I; Angel, E

    2014-01-01

    Partners in Solutions is an exciting new program in which AAPM partners with our vendors to present practical “hands-on” information about the equipment and software systems that we use in our clinics. The imaging topic this year is CT scanner dose optimization capabilities. Note that the sessions are being held in a special purpose room built on the Exhibit Hall Floor, to encourage further interaction with the vendors. Siemens‘ Commitment to the Right Dose in Computed Tomography Presentation Time: 11:15 - 11:45 AM Providing sustainable clinical results at highest patient safety: This is the challenge in medical imaging. Especially for Computed Tomography this means applying not simply the lowest, but the right dose for sound diagnostic imaging. Consequently, Siemens is committed to deliver the right dose in CT. In order to reduce radiation to the right dose, the first step is to provide the right dose technology. Through decades of research and development in CT imaging, Siemens CT has constantly introduced new ideas leading to a comprehensive portfolio of unique CARE technologies to deliver the right dose. For example automated kV adjustment based on patient size and the clinical question with CARE kV and three generations of iterative reconstruction. Based on the right dose technology, the next step is to actually scan at the right dose. For this, it is key to know the right dose targets for every examination. Siemens continuously involves CT experts to push developments further and outline how users can best adapt their procedures to the right dose. For users to know whether they met the right dose targets, it is therefore important to understand and monitor the actual absolute dose values. All scanners are delivered with defined default protocols which automatically use the available right dose technologies. Finally, to deliver the right dose not just in singular cases, but ideally to patients everywhere, organizations need then to manage dose across

  11. Dose optimization in adult patients exams in a computerized tomography service

    International Nuclear Information System (INIS)

    Pimentel, Juliana; Finatto, Jerusa D.; Silva, Ana Maria Marques da; Froner, Ana Paula P.

    2013-01-01

    This paper presents a study of dose optimization in computed tomography X-ray of skull, chest and abdomen of adult patients, performed in a diagnostic imaging service in a large hospital. Images of a simulated dose phantom were acquired and the kVp, mAs, pitch, thickness and CTDI vol were collected directly from the equipment. Using the PACS system, regions of interest were delineated, where the mean and standard deviation of CT numbers for each protocol were been calculated. The optimization took into account the maintenance of the CT number and noise from images acquired with clinical protocols. It was observed that the protocols used in the service, in general, exhibit a low dose, despite the great variability among the different professional shifts. In examinations of the chest, skull and abdomen, changes in the values of mAs and pitch were suggested, allowing dose reductions (60%, 17% and 19%, respectively), without compromising the image diagnostic quality. (author)

  12. TU-AB-BRC-12: Optimized Parallel MonteCarlo Dose Calculations for Secondary MU Checks

    Energy Technology Data Exchange (ETDEWEB)

    French, S; Nazareth, D [Roswell Park Cancer Institute, Buffalo, NY (United States); Bellor, M [Lockheed Martin, Manassas, VA (United States)

    2016-06-15

    Purpose: Secondary MU checks are an important tool used during a physics review of a treatment plan. Commercial software packages offer varying degrees of theoretical dose calculation accuracy, depending on the modality involved. Dose calculations of VMAT plans are especially prone to error due to the large approximations involved. Monte Carlo (MC) methods are not commonly used due to their long run times. We investigated two methods to increase the computational efficiency of MC dose simulations with the BEAMnrc code. Distributed computing resources, along with optimized code compilation, will allow for accurate and efficient VMAT dose calculations. Methods: The BEAMnrc package was installed on a high performance computing cluster accessible to our clinic. MATLAB and PYTHON scripts were developed to convert a clinical VMAT DICOM plan into BEAMnrc input files. The BEAMnrc installation was optimized by running the VMAT simulations through profiling tools which indicated the behavior of the constituent routines in the code, e.g. the bremsstrahlung splitting routine, and the specified random number generator. This information aided in determining the most efficient compiling parallel configuration for the specific CPU’s available on our cluster, resulting in the fastest VMAT simulation times. Our method was evaluated with calculations involving 10{sup 8} – 10{sup 9} particle histories which are sufficient to verify patient dose using VMAT. Results: Parallelization allowed the calculation of patient dose on the order of 10 – 15 hours with 100 parallel jobs. Due to the compiler optimization process, further speed increases of 23% were achieved when compared with the open-source compiler BEAMnrc packages. Conclusion: Analysis of the BEAMnrc code allowed us to optimize the compiler configuration for VMAT dose calculations. In future work, the optimized MC code, in conjunction with the parallel processing capabilities of BEAMnrc, will be applied to provide accurate

  13. The Global Optimal Algorithm of Reliable Path Finding Problem Based on Backtracking Method

    Directory of Open Access Journals (Sweden)

    Liang Shen

    2017-01-01

    Full Text Available There is a growing interest in finding a global optimal path in transportation networks particularly when the network suffers from unexpected disturbance. This paper studies the problem of finding a global optimal path to guarantee a given probability of arriving on time in a network with uncertainty, in which the travel time is stochastic instead of deterministic. Traditional path finding methods based on least expected travel time cannot capture the network user’s risk-taking behaviors in path finding. To overcome such limitation, the reliable path finding algorithms have been proposed but the convergence of global optimum is seldom addressed in the literature. This paper integrates the K-shortest path algorithm into Backtracking method to propose a new path finding algorithm under uncertainty. The global optimum of the proposed method can be guaranteed. Numerical examples are conducted to demonstrate the correctness and efficiency of the proposed algorithm.

  14. Algorithms for the optimization of RBE-weighted dose in particle therapy.

    Science.gov (United States)

    Horcicka, M; Meyer, C; Buschbacher, A; Durante, M; Krämer, M

    2013-01-21

    We report on various algorithms used for the nonlinear optimization of RBE-weighted dose in particle therapy. Concerning the dose calculation carbon ions are considered and biological effects are calculated by the Local Effect Model. Taking biological effects fully into account requires iterative methods to solve the optimization problem. We implemented several additional algorithms into GSI's treatment planning system TRiP98, like the BFGS-algorithm and the method of conjugated gradients, in order to investigate their computational performance. We modified textbook iteration procedures to improve the convergence speed. The performance of the algorithms is presented by convergence in terms of iterations and computation time. We found that the Fletcher-Reeves variant of the method of conjugated gradients is the algorithm with the best computational performance. With this algorithm we could speed up computation times by a factor of 4 compared to the method of steepest descent, which was used before. With our new methods it is possible to optimize complex treatment plans in a few minutes leading to good dose distributions. At the end we discuss future goals concerning dose optimization issues in particle therapy which might benefit from fast optimization solvers.

  15. Analytic characterization of linear accelerator radiosurgery dose distributions for fast optimization

    International Nuclear Information System (INIS)

    Meeks, S.L.; Buatti, J.M.; Eyster, B.; Kendrick, L.A.

    1999-01-01

    Linear accelerator (linac) radiosurgery utilizes non-coplanar arc therapy delivered through circular collimators. Generally, spherically symmetric arc sets are used, resulting in nominally spherical dose distributions. Various treatment planning parameters may be manipulated to provide dose conformation to irregular lesions. Iterative manipulation of these variables can be a difficult and time-consuming task, because (a) understanding the effect of these parameters is complicated and (b) three-dimensional (3D) dose calculations are computationally expensive. This manipulation can be simplified, however, because the prescription isodose surface for all single isocentre distributions can be approximated by conic sections. In this study, the effects of treatment planning parameter manipulation on the dimensions of the treatment isodose surface were determined empirically. These dimensions were then fitted to analytic functions, assuming that the dose distributions were characterized as conic sections. These analytic functions allowed real-time approximation of the 3D isodose surface. Iterative plan optimization, either manual or automated, is achieved more efficiently using this real time approximation of the dose matrix. Subsequent to iterative plan optimization, the analytic function is related back to the appropriate plan parameters, and the dose distribution is determined using conventional dosimetry calculations. This provides a pseudo-inverse approach to radiosurgery optimization, based solely on geometric considerations. (author)

  16. The optimal fraction size in high-dose-rate brachytherapy: dependency on tissue repair kinetics and low-dose rate

    International Nuclear Information System (INIS)

    Sminia, Peter; Schneider, Christoph J.; Fowler, Jack F.

    2002-01-01

    Background and Purpose: Indications of the existence of long repair half-times on the order of 2-4 h for late-responding human normal tissues have been obtained from continuous hyperfractionated accelerated radiotherapy (CHART). Recently, these data were used to explain, on the basis of the biologically effective dose (BED), the potential superiority of fractionated high-dose rate (HDR) with large fraction sizes of 5-7 Gy over continuous low-dose rate (LDR) irradiation at 0.5 Gy/h in cervical carcinoma. We investigated the optimal fraction size in HDR brachytherapy and its dependency on treatment choices (overall treatment time, number of HDR fractions, and time interval between fractions) and treatment conditions (reference low-dose rate, tissue repair characteristics). Methods and Materials: Radiobiologic model calculations were performed using the linear-quadratic model for incomplete mono-exponential repair. An irradiation dose of 20 Gy was assumed to be applied either with HDR in 2-12 fractions or continuously with LDR for a range of dose rates. HDR and LDR treatment regimens were compared on the basis of the BED and BED ratio of normal tissue and tumor, assuming repair half-times between 1 h and 4 h. Results: With the assumption that the repair half-time of normal tissue was three times longer than that of the tumor, hypofractionation in HDR relative to LDR could result in relative normal tissue sparing if the optimum fraction size is selected. By dose reduction while keeping the tumor BED constant, absolute normal tissue sparing might therefore be achieved. This optimum HDR fraction size was found to be largely dependent on the LDR dose rate. On the basis of the BED NT/TUM ratio of HDR over LDR, 3 x 6.7 Gy would be the optimal HDR fractionation scheme for replacement of an LDR scheme of 20 Gy in 10-30 h (dose rate 2-0.67 Gy/h), while at a lower dose rate of 0.5 Gy/h, four fractions of 5 Gy would be preferential, still assuming large differences between tumor

  17. Optimization of extracranial stereotactic radiation therapy of small lung lesions using accurate dose calculation algorithms

    International Nuclear Information System (INIS)

    Dobler, Barbara; Walter, Cornelia; Knopf, Antje; Fabri, Daniella; Loeschel, Rainer; Polednik, Martin; Schneider, Frank; Wenz, Frederik; Lohr, Frank

    2006-01-01

    The aim of this study was to compare and to validate different dose calculation algorithms for the use in radiation therapy of small lung lesions and to optimize the treatment planning using accurate dose calculation algorithms. A 9-field conformal treatment plan was generated on an inhomogeneous phantom with lung mimics and a soft tissue equivalent insert, mimicking a lung tumor. The dose distribution was calculated with the Pencil Beam and Collapsed Cone algorithms implemented in Masterplan (Nucletron) and the Monte Carlo system XVMC and validated using Gafchromic EBT films. Differences in dose distribution were evaluated. The plans were then optimized by adding segments to the outer shell of the target in order to increase the dose near the interface to the lung. The Pencil Beam algorithm overestimated the dose by up to 15% compared to the measurements. Collapsed Cone and Monte Carlo predicted the dose more accurately with a maximum difference of -8% and -3% respectively compared to the film. Plan optimization by adding small segments to the peripheral parts of the target, creating a 2-step fluence modulation, allowed to increase target coverage and homogeneity as compared to the uncorrected 9 field plan. The use of forward 2-step fluence modulation in radiotherapy of small lung lesions allows the improvement of tumor coverage and dose homogeneity as compared to non-modulated treatment plans and may thus help to increase the local tumor control probability. While the Collapsed Cone algorithm is closer to measurements than the Pencil Beam algorithm, both algorithms are limited at tissue/lung interfaces, leaving Monte-Carlo the most accurate algorithm for dose prediction

  18. Optimal medication dosing from suboptimal clinical examples: a deep reinforcement learning approach.

    Science.gov (United States)

    Nemati, Shamim; Ghassemi, Mohammad M; Clifford, Gari D

    2016-08-01

    Misdosing medications with sensitive therapeutic windows, such as heparin, can place patients at unnecessary risk, increase length of hospital stay, and lead to wasted hospital resources. In this work, we present a clinician-in-the-loop sequential decision making framework, which provides an individualized dosing policy adapted to each patient's evolving clinical phenotype. We employed retrospective data from the publicly available MIMIC II intensive care unit database, and developed a deep reinforcement learning algorithm that learns an optimal heparin dosing policy from sample dosing trails and their associated outcomes in large electronic medical records. Using separate training and testing datasets, our model was observed to be effective in proposing heparin doses that resulted in better expected outcomes than the clinical guidelines. Our results demonstrate that a sequential modeling approach, learned from retrospective data, could potentially be used at the bedside to derive individualized patient dosing policies.

  19. Is patient size important in dose determination and optimization in cardiology?

    International Nuclear Information System (INIS)

    Reay, J; Chapple, C L; Kotre, C J

    2003-01-01

    Patient dose determination and optimization have become more topical in recent years with the implementation of the Medical Exposures Directive into national legislation, the Ionising Radiation (Medical Exposure) Regulations. This legislation incorporates a requirement for new equipment to provide a means of displaying a measure of patient exposure and introduces the concept of diagnostic reference levels. It is normally assumed that patient dose is governed largely by patient size; however, in cardiology, where procedures are often very complex, the significance of patient size is less well understood. This study considers over 9000 cardiology procedures, undertaken throughout the north of England, and investigates the relationship between patient size and dose. It uses simple linear regression to calculate both correlation coefficients and significance levels for data sorted by both room and individual clinician for the four most common examinations, left ventrical and/or coronary angiography, single vessel stent insertion and single vessel angioplasty. This paper concludes that the correlation between patient size and dose is weak for the procedures considered. It also illustrates the use of an existing method for removing the effect of patient size from dose survey data. This allows typical doses and, therefore, reference levels to be defined for the purposes of dose optimization

  20. Dose finding study of granisetron in patients receiving high-dose cisplatin chemotherapy. The Granisetron Study Group.

    Science.gov (United States)

    Riviere, A.

    1994-01-01

    The efficacy and safety of three different doses of granisetron (2 micrograms kg-1, group A; 10 micrograms kg-1, group B; 40 micrograms kg-1, group C) were compared in a randomised, double-blind study of 157 patients due to receive high-dose cisplatin therapy (mean dose > 97 mg m-2). In each group, up to two 3 mg rescue doses of granisetron were allowed if more than mild nausea or vomiting occurred. In group A 30.8%, in group B 61.5% and in group C 67.9% of patients were complete responders (i.e. no vomiting or nothing worse than mild nausea) during the first 24 h. These differences are significant between groups A and B, and A and C. There were no statistically significant differences in any efficacy variable between the 10 micrograms kg-1 and 40 micrograms kg-1 groups, although in each case the trend favoured the higher dose. Additional rescue doses resulted in resolved or improved symptoms in 95.3% for the first rescue dose and 93.3% for the second. Over the 7 days of the study, 82.7%, 82.7% and 86.8% of patients in groups A, B and C respectively were treated with granisetron alone. Headache was the most common side-effect, reported by 9.6% of patients; the majority of headaches were mild. There was no difference between the treatment groups regarding the adverse event rate. We concluded that prophylactic doses of 10 or 40 micrograms kg-1 lead to a safe and satisfactory degree of control of nausea and vomiting induced by high-dose cisplatin. PMID:8180032

  1. Absence of multiple local minima effects in intensity modulated optimization with dose-volume constraints

    Energy Technology Data Exchange (ETDEWEB)

    Llacer, Jorge [EC Engineering Consultants, LLC 130, Forest Hill Drive, Los Gatos, CA (United States); Deasy, Joseph O [Department of Radiation Oncology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO (United States); Bortfeld, Thomas R [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 30 Fruit Street, Boston, MA (United States); Solberg, Timothy D [Department of Radiation Oncology, University of California, Los Angeles, CA (United States); Promberger, Claus [BrainLAB AG, Ammerthalstrasse 8, 85551 Heimstetten (Germany)

    2003-01-21

    This paper reports on the analysis of intensity modulated radiation treatment optimization problems in the presence of non-convex feasible parameter spaces caused by the specification of dose-volume constraints for the organs-at-risk (OARs). The main aim was to determine whether the presence of those non-convex spaces affects the optimization of clinical cases in any significant way. This was done in two phases: (1) Using a carefully designed two-dimensional mathematical phantom that exhibits two controllable minima and with randomly initialized beamlet weights, we developed a methodology for exploring the nature of the convergence characteristics of quadratic cost function optimizations (deterministic or stochastic). The methodology is based on observing the statistical behaviour of the residual cost at the end of optimizations in which the stopping criterion is progressively more demanding and carrying out those optimizations to very small error changes per iteration. (2) Seven clinical cases were then analysed with dose-volume constraints that are stronger than originally used in the clinic. The clinical cases are two prostate cases differently posed, a meningioma case, two head-and-neck cases, a spleen case and a spine case. Of the 14 different sets of optimizations (with and without the specification of maximum doses allowed for the OARs), 12 fail to show any effect due to the existence of non-convex feasible spaces. The remaining two sets of optimizations show evidence of multiple minima in the solutions, but those minima are very close to each other in cost and the resulting treatment plans are practically identical, as measured by the quality of the dose-volume histograms (DVHs). We discuss the differences between fluence maps resulting from those similar treatment plans. We provide a possible reason for the observed results and conclude that, although the study is necessarily limited, the annealing characteristics of a simulated annealing method may not be

  2. CT radiation dose and image quality optimization using a porcine model.

    Science.gov (United States)

    Zarb, Francis; McEntee, Mark F; Rainford, Louise

    2013-01-01

    To evaluate potential radiation dose savings and resultant image quality effects with regard to optimization of commonly performed computed tomography (CT) studies derived from imaging a porcine (pig) model. Imaging protocols for 4 clinical CT suites were developed based on the lowest milliamperage and kilovoltage, the highest pitch that could be set from current imaging protocol parameters, or both. This occurred before significant changes in noise, contrast, and spatial resolution were measured objectively on images produced from a quality assurance CT phantom. The current and derived phantom protocols were then applied to scan a porcine model for head, abdomen, and chest CT studies. Further optimized protocols were developed based on the same methodology as in the phantom study. The optimization achieved with respect to radiation dose and image quality was evaluated following data collection of radiation dose recordings and image quality review. Relative visual grading analysis of image quality criteria adapted from the European guidelines on radiology quality criteria for CT were used for studies completed with both the phantom-based or porcine-derived imaging protocols. In 5 out of 16 experimental combinations, the current clinical protocol was maintained. In 2 instances, the phantom protocol reduced radiation dose by 19% to 38%. In the remaining 9 instances, the optimization based on the porcine model further reduced radiation dose by 17% to 38%. The porcine model closely reflects anatomical structures in humans, allowing the grading of anatomical criteria as part of image quality review without radiation risks to human subjects. This study demonstrates that using a porcine model to evaluate CT optimization resulted in more radiation dose reduction than when imaging protocols were tested solely on quality assurance phantoms.

  3. Application of Multiobjective Genetic Algorithms in Anatomy Based Dose Optimization in Brachytherapy and its Comparation with Deterministic Algorithms

    National Research Council Canada - National Science Library

    Milickovic, Natasa

    2001-01-01

    In High Dose Rate (HDR) brachytherapy the conventional dose optimization algorithms consider the multiple objectives in the form of an aggregate function which combines individual objectives into a single utility value...

  4. Optimal Clinical Doses of Faropenem, Linezolid, and Moxifloxacin in Children With Disseminated Tuberculosis: Goldilocks.

    Science.gov (United States)

    Srivastava, Shashikant; Deshpande, Devyani; Pasipanodya, Jotam; Nuermberger, Eric; Swaminathan, Soumya; Gumbo, Tawanda

    2016-11-01

     When treated with the same antibiotic dose, children achieve different 0- to 24-hour area under the concentration-time curves (AUC 0-24 ) because of maturation and between-child physiological variability on drug clearance. Children are also infected by Mycobacterium tuberculosis isolates with different antibiotic minimum inhibitory concentrations (MICs). Thus, each child will achieve different AUC 0-24 /MIC ratios when treated with the same dose.  We used 10 000-subject Monte Carlo experiments to identify the oral doses of linezolid, moxifloxacin, and faropenem that would achieve optimal target exposures associated with optimal efficacy in children with disseminated tuberculosis. The linezolid and moxifloxacin exposure targets were AUC 0-24 /MIC ratios of 62 and 122, and a faropenem percentage of time above MIC >60%, in combination therapy. A linezolid AUC 0-24 of 93.4 mg × hour/L was target for toxicity. Population pharmacokinetic parameters of each drug and between-child variability, as well as MIC distribution, were used, and the cumulative fraction of response (CFR) was calculated. We also considered drug penetration indices into meninges, bone, and peritoneum.  The linezolid dose of 15 mg/kg in full-term neonates and infants aged up to 3 months and 10 mg/kg in toddlers, administered once daily, achieved CFR ≥ 90%, with linezolid AUC 0-24 associated with toxicity. The moxifloxacin dose of 25 mg/kg/day achieved a CFR > 90% in infants, but the optimal dose was 20 mg/kg/day in older children. The faropenem medoxomil optimal dosage was 30 mg/kg 3-4 times daily.  The regimen and doses of linezolid, moxifloxacin, and faropenem identified are proposed to be adequate for all disseminated tuberculosis syndromes, whether drug-resistant or -susceptible. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America.

  5. Evaluation of dose prediction errors and optimization convergence errors of deliverable-based head-and-neck IMRT plans computed with a superposition/convolution dose algorithm

    International Nuclear Information System (INIS)

    Mihaylov, I. B.; Siebers, J. V.

    2008-01-01

    The purpose of this study is to evaluate dose prediction errors (DPEs) and optimization convergence errors (OCEs) resulting from use of a superposition/convolution dose calculation algorithm in deliverable intensity-modulated radiation therapy (IMRT) optimization for head-and-neck (HN) patients. Thirteen HN IMRT patient plans were retrospectively reoptimized. The IMRT optimization was performed in three sequential steps: (1) fast optimization in which an initial nondeliverable IMRT solution was achieved and then converted to multileaf collimator (MLC) leaf sequences; (2) mixed deliverable optimization that used a Monte Carlo (MC) algorithm to account for the incident photon fluence modulation by the MLC, whereas a superposition/convolution (SC) dose calculation algorithm was utilized for the patient dose calculations; and (3) MC deliverable-based optimization in which both fluence and patient dose calculations were performed with a MC algorithm. DPEs of the mixed method were quantified by evaluating the differences between the mixed optimization SC dose result and a MC dose recalculation of the mixed optimization solution. OCEs of the mixed method were quantified by evaluating the differences between the MC recalculation of the mixed optimization solution and the final MC optimization solution. The results were analyzed through dose volume indices derived from the cumulative dose-volume histograms for selected anatomic structures. Statistical equivalence tests were used to determine the significance of the DPEs and the OCEs. Furthermore, a correlation analysis between DPEs and OCEs was performed. The evaluated DPEs were within ±2.8% while the OCEs were within 5.5%, indicating that OCEs can be clinically significant even when DPEs are clinically insignificant. The full MC-dose-based optimization reduced normal tissue dose by as much as 8.5% compared with the mixed-method optimization results. The DPEs and the OCEs in the targets had correlation coefficients greater

  6. A nonvoxel-based dose convolution/superposition algorithm optimized for scalable GPU architectures

    Energy Technology Data Exchange (ETDEWEB)

    Neylon, J., E-mail: jneylon@mednet.ucla.edu; Sheng, K.; Yu, V.; Low, D. A.; Kupelian, P.; Santhanam, A. [Department of Radiation Oncology, University of California Los Angeles, 200 Medical Plaza, #B265, Los Angeles, California 90095 (United States); Chen, Q. [Department of Radiation Oncology, University of Virginia, 1300 Jefferson Park Avenue, Charlottesville, California 22908 (United States)

    2014-10-15

    Purpose: Real-time adaptive planning and treatment has been infeasible due in part to its high computational complexity. There have been many recent efforts to utilize graphics processing units (GPUs) to accelerate the computational performance and dose accuracy in radiation therapy. Data structure and memory access patterns are the key GPU factors that determine the computational performance and accuracy. In this paper, the authors present a nonvoxel-based (NVB) approach to maximize computational and memory access efficiency and throughput on the GPU. Methods: The proposed algorithm employs a ray-tracing mechanism to restructure the 3D data sets computed from the CT anatomy into a nonvoxel-based framework. In a process that takes only a few milliseconds of computing time, the algorithm restructured the data sets by ray-tracing through precalculated CT volumes to realign the coordinate system along the convolution direction, as defined by zenithal and azimuthal angles. During the ray-tracing step, the data were resampled according to radial sampling and parallel ray-spacing parameters making the algorithm independent of the original CT resolution. The nonvoxel-based algorithm presented in this paper also demonstrated a trade-off in computational performance and dose accuracy for different coordinate system configurations. In order to find the best balance between the computed speedup and the accuracy, the authors employed an exhaustive parameter search on all sampling parameters that defined the coordinate system configuration: zenithal, azimuthal, and radial sampling of the convolution algorithm, as well as the parallel ray spacing during ray tracing. The angular sampling parameters were varied between 4 and 48 discrete angles, while both radial sampling and parallel ray spacing were varied from 0.5 to 10 mm. The gamma distribution analysis method (γ) was used to compare the dose distributions using 2% and 2 mm dose difference and distance-to-agreement criteria

  7. A nonvoxel-based dose convolution/superposition algorithm optimized for scalable GPU architectures

    International Nuclear Information System (INIS)

    Neylon, J.; Sheng, K.; Yu, V.; Low, D. A.; Kupelian, P.; Santhanam, A.; Chen, Q.

    2014-01-01

    Purpose: Real-time adaptive planning and treatment has been infeasible due in part to its high computational complexity. There have been many recent efforts to utilize graphics processing units (GPUs) to accelerate the computational performance and dose accuracy in radiation therapy. Data structure and memory access patterns are the key GPU factors that determine the computational performance and accuracy. In this paper, the authors present a nonvoxel-based (NVB) approach to maximize computational and memory access efficiency and throughput on the GPU. Methods: The proposed algorithm employs a ray-tracing mechanism to restructure the 3D data sets computed from the CT anatomy into a nonvoxel-based framework. In a process that takes only a few milliseconds of computing time, the algorithm restructured the data sets by ray-tracing through precalculated CT volumes to realign the coordinate system along the convolution direction, as defined by zenithal and azimuthal angles. During the ray-tracing step, the data were resampled according to radial sampling and parallel ray-spacing parameters making the algorithm independent of the original CT resolution. The nonvoxel-based algorithm presented in this paper also demonstrated a trade-off in computational performance and dose accuracy for different coordinate system configurations. In order to find the best balance between the computed speedup and the accuracy, the authors employed an exhaustive parameter search on all sampling parameters that defined the coordinate system configuration: zenithal, azimuthal, and radial sampling of the convolution algorithm, as well as the parallel ray spacing during ray tracing. The angular sampling parameters were varied between 4 and 48 discrete angles, while both radial sampling and parallel ray spacing were varied from 0.5 to 10 mm. The gamma distribution analysis method (γ) was used to compare the dose distributions using 2% and 2 mm dose difference and distance-to-agreement criteria

  8. An automated optimization tool for high-dose-rate (HDR) prostate brachytherapy with divergent needle pattern

    Science.gov (United States)

    Borot de Battisti, M.; Maenhout, M.; de Senneville, B. Denis; Hautvast, G.; Binnekamp, D.; Lagendijk, J. J. W.; van Vulpen, M.; Moerland, M. A.

    2015-10-01

    Focal high-dose-rate (HDR) for prostate cancer has gained increasing interest as an alternative to whole gland therapy as it may contribute to the reduction of treatment related toxicity. For focal treatment, optimal needle guidance and placement is warranted. This can be achieved under MR guidance. However, MR-guided needle placement is currently not possible due to space restrictions in the closed MR bore. To overcome this problem, a MR-compatible, single-divergent needle-implant robotic device is under development at the University Medical Centre, Utrecht: placed between the legs of the patient inside the MR bore, this robot will tap the needle in a divergent pattern from a single rotation point into the tissue. This rotation point is just beneath the perineal skin to have access to the focal prostate tumor lesion. Currently, there is no treatment planning system commercially available which allows optimization of the dose distribution with such needle arrangement. The aim of this work is to develop an automatic inverse dose planning optimization tool for focal HDR prostate brachytherapy with needle insertions in a divergent configuration. A complete optimizer workflow is proposed which includes the determination of (1) the position of the center of rotation, (2) the needle angulations and (3) the dwell times. Unlike most currently used optimizers, no prior selection or adjustment of input parameters such as minimum or maximum dose or weight coefficients for treatment region and organs at risk is required. To test this optimizer, a planning study was performed on ten patients (treatment volumes ranged from 8.5 cm3to 23.3 cm3) by using 2-14 needle insertions. The total computation time of the optimizer workflow was below 20 min and a clinically acceptable plan was reached on average using only four needle insertions.

  9. Dashboard systems: Pharmacokinetic/pharmacodynamic mediated dose optimization for monoclonal antibodies.

    Science.gov (United States)

    Mould, Diane R; Dubinsky, Marla C

    2015-03-01

    Many marketed drugs exhibit high variability in exposure and response. While these drugs are efficacious in their approved indications, finding appropriate dose regimens for individual patients is not straightforward. Similar dose adjustment problems are also seen with drugs that have a complex relationship between exposure and response and/or a narrow therapeutic window. This is particularly true for monoclonal antibodies, where prolonged dosing at a sub-therapeutic dose can also elicit anti-drug antibodies which will further compromise safety and efficacy. Thus, finding appropriate doses quickly would represent a substantial improvement in healthcare. Dashboard systems, which are decision-support tools, offer an improved, convenient means of tailoring treatment for individual patients. This article reviews the clinical need for this approach, particularly with monoclonal antibodies, the design, development, and testing of such systems, and the likely benefits of dashboard systems in clinical practice. We focus on infliximab for reference. © 2015, The American College of Clinical Pharmacology.

  10. Optimization of dose designs in intracavitary radiotherapy of patients with uterine body carcinoma

    International Nuclear Information System (INIS)

    Ushakova, G.A.; Afanas'ev, B.P.

    1991-01-01

    The potentialities of mathematical optimization were investigated with respect to dosimetric design of radiation therapy of endometral cancer patients using Agat-B and Agat-apparatus. The effectiveness of linear programming for creating in a pathological focus and in normal tissues of a dose distribution, meeting clinical requirements to the maximum, was shown

  11. Sampling optimization trade-offs for long-term monitoring of gamma dose rates

    NARCIS (Netherlands)

    Melles, S.J.; Heuvelink, G.B.M.; Twenhöfel, C.J.W.; Stöhlker, U.

    2008-01-01

    This paper applies a recently developed optimization method to examine the design of networks that monitor radiation under routine conditions. Annual gamma dose rates were modelled by combining regression with interpolation of the regression residuals using spatially exhaustive predictors and an

  12. Impact of using linear optimization models in dose planning for HDR brachytherapy

    International Nuclear Information System (INIS)

    Holm, Aasa; Larsson, Torbjoern; Carlsson Tedgren, Aasa

    2012-01-01

    Purpose: Dose plans generated with optimization models hitherto used in high-dose-rate (HDR) brachytherapy have shown a tendency to yield longer dwell times than manually optimized plans. Concern has been raised for the corresponding undesired hot spots, and various methods to mitigate these have been developed. The hypotheses upon this work is based are (a) that one cause for the long dwell times is the use of objective functions comprising simple linear penalties and (b) that alternative penalties, as these are piecewise linear, would lead to reduced length of individual dwell times. Methods: The characteristics of the linear penalties and the piecewise linear penalties are analyzed mathematically. Experimental comparisons between the two types of penalties are carried out retrospectively for a set of prostate cancer patients. Results: When the two types of penalties are compared, significant changes can be seen in the dwell times, while most dose-volume parameters do not differ significantly. On average, total dwell times were reduced by 4.2%, with a reduction of maximum dwell times by 25%, when the alternative penalties were used. Conclusions: The use of linear penalties in optimization models for HDR brachytherapy is one cause for the undesired long dwell times that arise in mathematically optimized plans. By introducing alternative penalties, a significant reduction in dwell times can be achieved for HDR brachytherapy dose plans. Although various measures for mitigating the long dwell times are already available, the observation that linear penalties contribute to their appearance is of fundamental interest.

  13. Optimal treatment scheduling of ionizing radiation and sunitinib improves the antitumor activity and allows dose reduction

    International Nuclear Information System (INIS)

    Kleibeuker, Esther A; Hooven, Matthijs A ten; Castricum, Kitty C; Honeywell, Richard; Griffioen, Arjan W; Verheul, Henk M; Slotman, Ben J; Thijssen, Victor L

    2015-01-01

    The combination of radiotherapy with sunitinib is clinically hampered by rare but severe side effects and varying results with respect to clinical benefit. We studied different scheduling regimes and dose reduction in sunitinib and radiotherapy in preclinical tumor models to improve potential outcome of this combination treatment strategy. The chicken chorioallantoic membrane (CAM) was used as an angiogenesis in vivo model and as a xenograft model with human tumor cells (HT29 colorectal adenocarcinoma, OE19 esophageal adenocarcinoma). Treatment consisted of ionizing radiation (IR) and sunitinib as single therapy or in combination, using different dose-scheduling regimes. Sunitinib potentiated the inhibitory effect of IR (4 Gy) on angiogenesis. In addition, IR (4 Gy) and sunitinib (4 days of 32.5 mg/kg per day) inhibited tumor growth. Ionizing radiation induced tumor cell apoptosis and reduced proliferation, whereas sunitinib decreased tumor angiogenesis and reduced tumor cell proliferation. When IR was applied before sunitinib, this almost completely inhibited tumor growth, whereas concurrent IR was less effective and IR after sunitinib had no additional effect on tumor growth. Moreover, optimal scheduling allowed a 50% dose reduction in sunitinib while maintaining comparable antitumor effects. This study shows that the therapeutic efficacy of combination therapy improves when proper dose-scheduling is applied. More importantly, optimal treatment regimes permit dose reductions in the angiogenesis inhibitor, which will likely reduce the side effects of combination therapy in the clinical setting. Our study provides important leads to optimize combination treatment in the clinical setting

  14. Lithium carbonate in amyotrophic lateral sclerosis: lack of efficacy in a dose-finding trial.

    Science.gov (United States)

    Chiò, A; Borghero, G; Calvo, A; Capasso, M; Caponnetto, C; Corbo, M; Giannini, F; Logroscino, G; Mandrioli, J; Marcello, N; Mazzini, L; Moglia, C; Monsurrò, M R; Mora, G; Patti, F; Perini, M; Pietrini, V; Pisano, F; Pupillo, E; Sabatelli, M; Salvi, F; Silani, V; Simone, I L; Sorarù, G; Tola, M R; Volanti, P; Beghi, E

    2010-08-17

    A neuroprotective effect of lithium in amyotrophic lateral sclerosis (ALS) has been recently reported. We performed a multicenter trial with lithium carbonate to assess its tolerability, safety, and efficacy in patients with ALS, comparing 2 different target blood levels (0.4-0.8 mEq/L, therapeutic group [TG], vs 0.2-0.4 mEq/L, subtherapeutic group [STG]). The study was a multicenter, single-blind, randomized, dose-finding trial, conducted from May 2008 to November 2009 in 21 Italian ALS centers. The trial was registered with the public database of the Italian Agency for Drugs (http://oss-sper-clin.agenziafarmaco.it/) (EudraCT number 2008-001094-15). As of October 2009, a total of 171 patients had been enrolled, 87 randomized to the TG and 84 to the STG. The interim data analysis, performed per protocol, showed that 117 patients (68.4%) discontinued the study because of death/tracheotomy/severe disability, adverse events (AEs)/serious AEs (SAEs), or lack of efficacy. The Data Monitoring Committee recommended stopping the trial on November 2, 2009. Lithium was not well-tolerated in this cohort of patients with ALS, even at subtherapeutic doses. The 2 doses were equivalent in terms of survival/severe disability and functional data. The relatively high frequency of AEs/SAEs and the reduced tolerability of lithium raised serious doubts about its safety in ALS. The study provides Class II evidence that therapeutic (0.4-0.8 mEq/L) vs subtherapeutic (0.2-0.4 mEq/L) lithium carbonate did not differ in the primary outcome of efficacy (survival/loss of autonomy) in ALS. Both target levels led to dropouts in more than 30% of participants due to patient-perceived lack of efficacy and AEs.

  15. The system of dose limitation and its optimization requirement: Present status and future outlook

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    1984-01-01

    Optimization of radiation protection is a relevant and controversial requirement of the system of dose limitation currently recommended by the International Commission on Radiological Protection (ICRP). Since the first European Scientific Seminar on Experience and Methods on Optimization - held by the Commission of the European Communities in 1979 - and several related seminars and symposia organized by the IAEA, many international efforts have been made to promote the practical implementation of the requirement. Recently, the ICRP published a report of ICRP Committee 4 on cost-benefit analysis in the optimization of radiation protection (ICRP Publication 37); it provides guidance on the principles and methods of application of the requirement. Ultimately, this seminar demonstrates the continuous interest of the international community in the proper use of optimization. This paper is intended to contribute to the seminar's objective, discussing the current issues concerning the implementation of the requirement and exploring perspectives for future applications of the principles involved in optimization

  16. Multiobjective anatomy-based dose optimization for HDR-brachytherapy with constraint free deterministic algorithms

    International Nuclear Information System (INIS)

    Milickovic, N.; Lahanas, M.; Papagiannopoulou, M.; Zamboglou, N.; Baltas, D.

    2002-01-01

    In high dose rate (HDR) brachytherapy, conventional dose optimization algorithms consider multiple objectives in the form of an aggregate function that transforms the multiobjective problem into a single-objective problem. As a result, there is a loss of information on the available alternative possible solutions. This method assumes that the treatment planner exactly understands the correlation between competing objectives and knows the physical constraints. This knowledge is provided by the Pareto trade-off set obtained by single-objective optimization algorithms with a repeated optimization with different importance vectors. A mapping technique avoids non-feasible solutions with negative dwell weights and allows the use of constraint free gradient-based deterministic algorithms. We compare various such algorithms and methods which could improve their performance. This finally allows us to generate a large number of solutions in a few minutes. We use objectives expressed in terms of dose variances obtained from a few hundred sampling points in the planning target volume (PTV) and in organs at risk (OAR). We compare two- to four-dimensional Pareto fronts obtained with the deterministic algorithms and with a fast-simulated annealing algorithm. For PTV-based objectives, due to the convex objective functions, the obtained solutions are global optimal. If OARs are included, then the solutions found are also global optimal, although local minima may be present as suggested. (author)

  17. Optimal scheduling of biocide dosing for seawater-cooled power and desalination plants

    KAUST Repository

    Mahfouz, Abdullah Bin

    2011-02-13

    Thermal desalination systems are typically integrated with power plants to exploit the excess heat resulting from the power-generation units. Using seawater in cooling the power plant and the desalination system is a common practice in many parts of the world where there is a shortage of freshwater. Biofouling is one of the major problems associated with the usage of seawater in cooling systems. Because of the dynamic variation in the power and water demands as well as the changes in the characteristics of seawater and the process, there is a need to develop an optimal policy for scheduling biocide usage and cleaning maintenance of the heat exchangers. The objective of this article is to introduce a systematic procedure for the optimization of scheduling the dosing of biocide and dechlorination chemicals as well as cleaning maintenance for a power production/thermal desalination plant. A multi-period optimization formulation is developed and solved to determine: the optimal levels of dosing and dechlorination chemicals; the timing of maintenance to clean the heat-exchange surfaces; and the dynamic dependence of the biofilm growth on the applied doses, the seawater-biocide chemistry, the process conditions, and seawater characteristics for each time period. The technical, economic, and environmental considerations of the system are accounted for. A case study is solved to elucidate the applicability of the developed optimization approach. © 2011 Springer-Verlag.

  18. Radioiodine (I-131) treatment for uncomplicated hyperthyroidism: An assessment of optimal dose and cost-effectiveness

    International Nuclear Information System (INIS)

    Paul, A.K.; Rahman, H.A.; Jahan, N.

    2002-01-01

    Aim: Radioiodine (I-131) is increasingly being considered for the treatment of hyperthyroidism but there is no general agreement for the initial dose. To determine the cost-effectiveness and optimal dose of I-131 to cure disease, we prospectively studied the outcome of radioiodine therapy of 423 patients. Material and Methods: Any of the fixed doses of 6, 8, 10, 12 or 15 mCi of I-131 was administered to the patients relating to thyroid gland size. The individual was excluded from this study who had multinodular goitre and autonomous toxic nodule. Patients were classified as cured if the clinical and biochemical status was either euthyroid or hypothyroid at one year without further treatment by antithyroid drugs or radioiodine. The costs were assessed by analyzing the total cost of care including office visit, laboratory testing, radioiodine treatment, average conveyance and income loss of patient and attendant and thyroxine replacement for a period of 2 years from the day of I-131 administration. Results: The results showed a progressive increase of cure rate from the doses of 6, 8 and 10 mCi by 67%, 76.5% and 85.7% respectively but the cure rate for the doses of 12 and 15 mCi was 87.9% and 88.8% respectively. Cure was directly related to the dose between 6 and 10 mCi but at higher doses the cure rate was increased marginally at the expense of increased total body radiation. There was little variation in total costs, but was higher for low dose-therapy and the cost proportion between the 6 mCi regimen and 10 mCi regimen was 1.04:1. Conclusion: We could conclude that an initial 10 mCi of I-131 may be the optimal dose for curing hyperthyroidism and will also limit the total costs

  19. [Optimizing staff radiation protection in radiology by minimizing the effective dose].

    Science.gov (United States)

    von Boetticher, H; Lachmund, J; Hoffmann, W; Luska, G

    2006-03-01

    In the present study the optimization of radiation protection devices is achieved by minimizing the effective dose of the staff members since the stochastic radiation effects correlate to the effective dose. Radiation exposure dosimetry was performed with TLD measurements using one Alderson Phantom in the patient position and a second phantom in the typical position of the personnel. Various types of protective clothing as well as fixed shields were considered in the calculations. It was shown that the doses of the unshielded organs (thyroid, parts of the active bone marrow) contribute significantly to the effective dose of the staff. Therefore, there is no linear relationship between the shielding factors for protective garments and the effective dose. An additional thyroid protection collar reduces the effective dose by a factor of 1.7 - 3.0. X-ray protective clothing with a 0.35 mm lead equivalent and an additional thyroid protection collar provides better protection against radiation than an apron with a 0.5 mm lead equivalent but no collar. The use of thyroid protection collars is an effective preventive measure against exceeding occupational organ dose limits, and a thyroid shield also considerably reduces the effective dose. Therefore, thyroid protection collars should be a required component of anti-X protection.

  20. Optimal precurarizing dose of rocuronium to decrease fasciculation and myalgia following succinylcholine administration.

    Science.gov (United States)

    Kim, Kyu Nam; Kim, Kyo Sang; Choi, Hoon Il; Jeong, Ji Seon; Lee, Hee-Jong

    2014-06-01

    Succinylcholine commonly produces frequent adverse effects, including muscle fasciculation and myalgia. The current study identified the optimal dose of rocuronium to prevent succinylcholine-induced fasciculation and myalgia and evaluated the influence of rocuronium on the speed of onset produced by succinylcholine. This randomized, double-blinded study was conducted in 100 patients randomly allocated into five groups of 20 patients each. Patients were randomized to receive 0.02, 0.03, 0.04, 0.05 and 0.06 mg/kg rocuronium as a precurarizing dose. Neuromuscular monitoring after each precurarizing dose was recorded from the adductor pollicis muscle using acceleromyography with train-of-four stimulation of the ulnar nerve. All patients received succinylcholine 1.5 mg/kg at 2 minutes after the precurarization, and were assessed the incidence and severity of fasciculations, while myalgia was assessed at 24 hours after surgery. The incidence and severity of visible muscle fasciculation was significantly less with increasing the amount of precurarizing dose of rocuronium (P rocuronium, but there was no significance (P = 0.072). The onset time of succinylcholine was significantly longer with increasing the amount of precurarizing dose of rocuronium (P rocuronium was the optimal dose considering the reduction in the incidence and severity of fasciculation and myalgia with acceptable onset time, and the safe and effective precurarization.

  1. Dose responses in a normoxic polymethacrylic acid gel dosimeter using optimal CT scanning parameters

    Energy Technology Data Exchange (ETDEWEB)

    Cho, K.H. [Department of Radiation Oncology, College of Medicine, Soonchunhyang University, Bucheon 420-767 (Korea, Republic of); Department of Medical Physics, Kyonggi University, Suwon 443-760 (Korea, Republic of); Cho, S.J. [Department of Radiation Oncology, College of Medicine, Eulji University, Seongnam 461-713 (Korea, Republic of); Lee, S. [Department of Radiation Oncology, College of Medicine, Korea University, Seoul 130-701 (Korea, Republic of); Lee, S.H. [Cheil General Hospital and Women' s Healthcare Center, Kwandong University College of Medicine, Seoul 100-380 (Korea, Republic of); Min, C.K.; Kim, Y.H.; Moon, S.K.; Kim, E.S.; Chang, A.R. [Department of Radiation Oncology, College of Medicine, Soonchunhyang University, Bucheon 420-767 (Korea, Republic of); Kwon, S.I., E-mail: sikwon@kyonggi.ac.kr [Department of Medical Physics, Kyonggi University, Suwon 443-760 (Korea, Republic of)

    2012-05-21

    The dosimetric characteristics of normoxic polymethacrylic acid gels are investigated using optimal CT scanning parameters and the possibility of their clinical application is also considered. The effects of CT scanning parameters (tube voltage, tube current, scan time, slick thickness, field of view, and reconstruction algorithm) are experimentally investigated to determine the optimal parameters for minimizing the amount of noise in images obtained using normoxic polymethacrylic acid gel. In addition, the dose sensitivity, dose response, accuracy, and reproducibility of the normoxic polymethacrylic acid gel are evaluated. CT images are obtained using a head phantom that is fabricated for clinical applications. In addition, IMRT treatment planning is performed using a Tomotherapy radiation treatment planning system. A program for analyzing the results is produced using Visual C. A comparison between the treatment planning and the CT images of irradiated gels is performed. The dose sensitivity is found to be 2.41{+-}0.04 HGy{sup -1}. The accuracies of dose evaluation at doses of 2 Gy and 4 Gy are 3.0% and 2.6%, respectively, and their reproducibilities are 2.0% and 2.1%, respectively. In the comparison of gel and Tomotherpay planning, the pass rate of the {gamma}-index, based on the reference values of a dose error of 3% and a DTA of 3 mm, is 93.7%.

  2. Dose responses in a normoxic polymethacrylic acid gel dosimeter using optimal CT scanning parameters

    Science.gov (United States)

    Cho, K. H.; Cho, S. J.; Lee, S.; Lee, S. H.; Min, C. K.; Kim, Y. H.; Moon, S. K.; Kim, E. S.; Chang, A. R.; Kwon, S. I.

    2012-05-01

    The dosimetric characteristics of normoxic polymethacrylic acid gels are investigated using optimal CT scanning parameters and the possibility of their clinical application is also considered. The effects of CT scanning parameters (tube voltage, tube current, scan time, slick thickness, field of view, and reconstruction algorithm) are experimentally investigated to determine the optimal parameters for minimizing the amount of noise in images obtained using normoxic polymethacrylic acid gel. In addition, the dose sensitivity, dose response, accuracy, and reproducibility of the normoxic polymethacrylic acid gel are evaluated. CT images are obtained using a head phantom that is fabricated for clinical applications. In addition, IMRT treatment planning is performed using a Tomotherapy radiation treatment planning system. A program for analyzing the results is produced using Visual C. A comparison between the treatment planning and the CT images of irradiated gels is performed. The dose sensitivity is found to be 2.41±0.04 HGy-1. The accuracies of dose evaluation at doses of 2 Gy and 4 Gy are 3.0% and 2.6%, respectively, and their reproducibilities are 2.0% and 2.1%, respectively. In the comparison of gel and Tomotherpay planning, the pass rate of the γ-index, based on the reference values of a dose error of 3% and a DTA of 3 mm, is 93.7%.

  3. Studies of dose optimization and image quality in technological transition in mammography; Estudos de otimizacao de dose e qualidade de imagem em processos de transicao tecnologica em mamografia

    Energy Technology Data Exchange (ETDEWEB)

    Furquim, Tania C.; Nersissian, Denise Y., E-mail: tfurquim@iee.usp.b [Universidade de Sao Paulo (IEE/USP), SP (Brazil). Inst. de Eletrotecnica e Energia

    2011-07-01

    The introduction of new technologies in mammography may improve image quality; however, it may unnecessarily increase doses if optimization processes are not studied. In this work, radiation doses of the moment of transition of conventional to digital mammography have been analyzed. The presented data have been acquired from 2005 to 2009, in hospitals and clinics of Sao Paulo city, to 4 conventional and 5 digital equipment. The results show that even after optimization processes, new technologies still impart higher doses. Thus, individualized studies are needed when technological transitions occur, in order to maintain image quality without significant dose increase. (author)

  4. A Branch-and-Price approach to find optimal decision trees

    NARCIS (Netherlands)

    Firat, M.; Crognier, Guillaume; Gabor, Adriana; Zhang, Y.

    2018-01-01

    In Artificial Intelligence (AI) field, decision trees have gained certain importance due to their effectiveness in solving classification and regression problems. Recently, in the literature we see finding optimal decision trees are formulated as Mixed Integer Linear Programming (MILP) models. This

  5. Optimization of filtration for reduction of lung dose from Rn decay products: Part I--Theoretical

    International Nuclear Information System (INIS)

    Curling, C.A.; Rudnick, S.N.; Ryan, P.B.; Moeller, D.W.

    1990-01-01

    A theoretical model was developed for the optimization of filter characteristics that would minimize the dose from the inhalation of Rn decay products. Modified forms of the Jacobi-Porstendorfer room model and the Jacobi-Eisfeld lung dose model were chosen for use in the mathematical simulation. Optimized parameters of the filter were the thickness, solidity, and fiber diameter. For purposes of the calculations, the room dimensions, air exchange rate, particle-size distribution and concentration, and the Rn concentration were specified. The resulting computer-aided optimal design was a thin filter (the minimum thickness used in the computer model was 0.1 mm) having low solidity (the minimum solidity used was 0.5%) and large diameter fibers (the maximum diameter used was 100 microns). The simulation implies that a significant reduction in the dose rate can be achieved using a well-designed recirculating filter system. The theoretical model, using the assumption of ideal mixing, predicts an 80% reduction in the dose rate, although inherent in this assumption is the movement of 230 room volumes per hour through the fan

  6. Toward endobronchial Ir-192 high-dose-rate brachytherapy therapeutic optimization

    International Nuclear Information System (INIS)

    Gay, H A; Allison, R R; Downie, G H; Mota, H C; Austerlitz, C; Jenkins, T; Sibata, C H

    2007-01-01

    A number of patients with lung cancer receive either palliative or curative high-dose-rate (HDR) endobronchial brachytherapy. Up to a third of patients treated with endobronchial HDR die from hemoptysis. Rather than accept hemoptysis as an expected potential consequence of HDR, we have calculated the radial dose distribution for an Ir-192 HDR source, rigorously examined the dose and prescription points recommended by the American Brachytherapy Society (ABS), and performed a radiobiological-based analysis. The radial dose rate of a commercially available Ir-192 source was calculated with a Monte Carlo simulation. Based on the linear quadratic model, the estimated palliative, curative and blood vessel rupture radii from the center of an Ir-192 source were obtained for the ABS recommendations and a series of customized HDR prescriptions. The estimated radius at risk for blood vessel perforation for the ABS recommendations ranges from 7 to 9 mm. An optimized prescription may in some situations reduce this radius to 4 mm. The estimated blood perforation radius is generally smaller than the palliative radius. Optimized and individualized endobronchial HDR prescriptions are currently feasible based on our current understanding of tumor and normal tissue radiobiology. Individualized prescriptions could minimize complications such as fatal hemoptysis without sacrificing efficacy. Fiducial stents, HDR catheter centering or spacers and the use of CT imaging to better assess the relationship between the catheter and blood vessels promise to be useful strategies for increasing the therapeutic index of this treatment modality. Prospective trials employing treatment optimization algorithms are needed

  7. High-dose simultaneously integrated breast boost using intensity-modulated radiotherapy and inverse optimization

    International Nuclear Information System (INIS)

    Hurkmans, Coen W.; Meijer, Gert J.; Vliet-Vroegindeweij, Corine van; Sangen, Maurice J. van der; Cassee, Jorien

    2006-01-01

    Purpose: Recently a Phase III randomized trial has started comparing a boost of 16 Gy as part of whole-breast irradiation to a high boost of 26 Gy in young women. Our main aim was to develop an efficient simultaneously integrated boost (SIB) technique for the high-dose arm of the trial. Methods and Materials: Treatment planning was performed for 5 left-sided and 5 right-sided tumors. A tangential field intensity-modulated radiotherapy technique added to a sequentially planned 3-field boost (SEQ) was compared with a simultaneously planned technique (SIB) using inverse optimization. Normalized total dose (NTD)-corrected dose volume histogram parameters were calculated and compared. Results: The intended NTD was produced by 31 fractions of 1.66 Gy to the whole breast and 2.38 Gy to the boost volume. The average volume of the PTV-breast and PTV-boost receiving more than 95% of the prescribed dose was 97% or more for both techniques. Also, the mean lung dose and mean heart dose did not differ much between the techniques, with on average 3.5 Gy and 2.6 Gy for the SEQ and 3.8 Gy and 2.6 Gy for the SIB, respectively. However, the SIB resulted in a significantly more conformal irradiation of the PTV-boost. The volume of the PTV-breast, excluding the PTV-boost, receiving a dose higher than 95% of the boost dose could be reduced considerably using the SIB as compared with the SEQ from 129 cc (range, 48-262 cc) to 58 cc (range, 30-102 cc). Conclusions: A high-dose simultaneously integrated breast boost technique has been developed. The unwanted excessive dose to the breast was significantly reduced

  8. WE-B-304-02: Treatment Planning Evaluation and Optimization Should Be Biologically and Not Dose/volume Based

    International Nuclear Information System (INIS)

    Deasy, J.

    2015-01-01

    The ultimate goal of radiotherapy treatment planning is to find a treatment that will yield a high tumor control probability (TCP) with an acceptable normal tissue complication probability (NTCP). Yet most treatment planning today is not based upon optimization of TCPs and NTCPs, but rather upon meeting physical dose and volume constraints defined by the planner. It has been suggested that treatment planning evaluation and optimization would be more effective if they were biologically and not dose/volume based, and this is the claim debated in this month’s Point/Counterpoint. After a brief overview of biologically and DVH based treatment planning by the Moderator Colin Orton, Joseph Deasy (for biological planning) and Charles Mayo (against biological planning) will begin the debate. Some of the arguments in support of biological planning include: this will result in more effective dose distributions for many patients DVH-based measures of plan quality are known to have little predictive value there is little evidence that either D95 or D98 of the PTV is a good predictor of tumor control sufficient validated outcome prediction models are now becoming available and should be used to drive planning and optimization Some of the arguments against biological planning include: several decades of experience with DVH-based planning should not be discarded we do not know enough about the reliability and errors associated with biological models the radiotherapy community in general has little direct experience with side by side comparisons of DVH vs biological metrics and outcomes it is unlikely that a clinician would accept extremely cold regions in a CTV or hot regions in a PTV, despite having acceptable TCP values Learning Objectives: To understand dose/volume based treatment planning and its potential limitations To understand biological metrics such as EUD, TCP, and NTCP To understand biologically based treatment planning and its potential limitations

  9. Superiority of Equivalent Uniform Dose (EUD)-Based Optimization for Breast and Chest Wall

    International Nuclear Information System (INIS)

    Mihailidis, Dimitris N.; Plants, Brian; Farinash, Lloyd; Harmon, Michael; Whaley, Lewis; Raja, Prem; Tomara, Pelagia

    2010-01-01

    We investigate whether IMRT optimization based on generalized equivalent uniform dose (gEUD) objectives for organs at risk (OAR) results in superior dosimetric outcomes when compared with multiple dose-volume (DV)-based objectives plans for patients with intact breast and postmastectomy chest wall (CW) cancer. Four separate IMRT plans were prepared for each of the breast and CW cases (10 patients). The first three plans used our standard in-house, physician-selected, DV objectives (phys-plan); gEUD-based objectives for the OARs (gEUD-plan); and multiple, 'very stringent,' DV objectives for each OAR and PTV (DV-plan), respectively. The fourth plan was only beam-fluence optimized (FO-plan), without segmentation, which used the same objectives as in the DV-plan. The latter plan was to be used as an 'optimum' benchmark without the effects of the segmentation for deliverability. Dosimetric quantities, such as V 20Gy for the ipsilateral lung and mean dose (D mean ) for heart, contralateral breast, and contralateral lung were used to evaluate the results. For all patients in this study, we have seen that the gEUD-based plans allow greater sparing of the OARs while maintaining equivalent target coverage. The average ipsilateral lung V 20Gy reduced from 22 ± 4.4% for the FO-plan to 18 ± 3% for the gEUD-plan. All other dosimetric quantities shifted towards lower doses for the gEUD-plan. gEUD-based optimization can be used to search for plans of different DVHs with the same gEUDs. The use of gEUD allows selective optimization and reduction of the dose for each OAR and results in a truly individualized treatment plan.

  10. Tool development for organ dose optimization taking into account the image quality in Computed Tomography

    International Nuclear Information System (INIS)

    Adrien-Decoene, Camille

    2015-01-01

    Due to the significant rise of computed tomography (CT) exams in the past few years and the increase of the collective dose due to medical exams, dose estimation in CT imaging has become a major public health issue. However dose optimization cannot be considered without taking into account the image quality which has to be good enough for radiologists. In clinical practice, optimization is obtained through empirical index and image quality using measurements performed on specific phantoms like the CATPHAN. Based on this kind of information, it is thus difficult to correctly optimize protocols regarding organ doses and radiologist criteria. Therefore our goal is to develop a tool allowing the optimization of the patient dose while preserving the image quality needed for diagnosis. The work is divided into two main parts: (i) the development of a Monte Carlo dose simulator based on the PENELOPE code, and (ii) the assessment of an objective image quality criterion. For that purpose, the GE Lightspeed VCT 64 CT tube was modelled with information provided by the manufacturer technical note and by adapting the method proposed by Turner et al (Med. Phys. 36: 2154-2164). The axial and helical movements of the X-ray tube were then implemented into the MC tool. To improve the efficiency of the simulation, two variance reduction techniques were used: a circular and a translational splitting. The splitting algorithms allow a uniform particle distribution along the gantry path to simulate the continuous gantry motion in a discrete way. Validations were performed in homogeneous conditions using a home-made phantom and the well-known CTDI phantoms. Then, dose values were measured in CIRS ATOM anthropomorphic phantom using both optically stimulated luminescence dosimeters for point doses and XR-QA Gafchromic films for relative dose maps. Comparisons between measured and simulated values enabled us to validate the MC tool used for dosimetric purposes. Finally, organ doses for

  11. TH-E-209-02: Dose Monitoring and Protocol Optimization: The Pediatric Perspective

    International Nuclear Information System (INIS)

    MacDougall, R.

    2016-01-01

    Radiation dose monitoring solutions have opened up new opportunities for medical physicists to be more involved in modern clinical radiology practices. In particular, with the help of comprehensive radiation dose data, data-driven protocol management and informed case follow up are now feasible. Significant challenges remain however and the problems faced by medical physicists are highly heterogeneous. Imaging systems from multiple vendors and a wide range of vintages co-exist in the same department and employ data communication protocols that are not fully standardized or implemented making harmonization complex. Many different solutions for radiation dose monitoring have been implemented by imaging facilities over the past few years. Such systems are based on commercial software, home-grown IT solutions, manual PACS data dumping, etc., and diverse pathways can be used to bring the data to impact clinical practice. The speakers will share their experiences with creating or tailoring radiation dose monitoring/management systems and procedures over the past few years, which vary significantly in design and scope. Topics to cover: (1) fluoroscopic dose monitoring and high radiation event handling from a large academic hospital; (2) dose monitoring and protocol optimization in pediatric radiology; and (3) development of a home-grown IT solution and dose data analysis framework. Learning Objectives: Describe the scope and range of radiation dose monitoring and protocol management in a modern radiology practice Review examples of data available from a variety of systems and how it managed and conveyed. Reflect on the role of the physicist in radiation dose awareness.

  12. TH-E-209-02: Dose Monitoring and Protocol Optimization: The Pediatric Perspective

    Energy Technology Data Exchange (ETDEWEB)

    MacDougall, R. [Boston Children’s Hospital (United States)

    2016-06-15

    Radiation dose monitoring solutions have opened up new opportunities for medical physicists to be more involved in modern clinical radiology practices. In particular, with the help of comprehensive radiation dose data, data-driven protocol management and informed case follow up are now feasible. Significant challenges remain however and the problems faced by medical physicists are highly heterogeneous. Imaging systems from multiple vendors and a wide range of vintages co-exist in the same department and employ data communication protocols that are not fully standardized or implemented making harmonization complex. Many different solutions for radiation dose monitoring have been implemented by imaging facilities over the past few years. Such systems are based on commercial software, home-grown IT solutions, manual PACS data dumping, etc., and diverse pathways can be used to bring the data to impact clinical practice. The speakers will share their experiences with creating or tailoring radiation dose monitoring/management systems and procedures over the past few years, which vary significantly in design and scope. Topics to cover: (1) fluoroscopic dose monitoring and high radiation event handling from a large academic hospital; (2) dose monitoring and protocol optimization in pediatric radiology; and (3) development of a home-grown IT solution and dose data analysis framework. Learning Objectives: Describe the scope and range of radiation dose monitoring and protocol management in a modern radiology practice Review examples of data available from a variety of systems and how it managed and conveyed. Reflect on the role of the physicist in radiation dose awareness.

  13. Feasibility of optimizing the dose distribution in lung tumors using fluorine-18-fluorodeoxyglucose positron emission tomography and single photon emission computed tomography guided dose prescriptions

    International Nuclear Information System (INIS)

    Das, S.K.; Miften, M.M.; Zhou, S.; Bell, M.; Munley, M.T.; Whiddon, C.S.; Craciunescu, O.; Baydush, A.H.; Wong, T.; Rosenman, J.G.; Dewhirst, M.W.; Marks, L.B.

    2004-01-01

    The information provided by functional images may be used to guide radiotherapy planning by identifying regions that require higher radiation dose. In this work we investigate the dosimetric feasibility of delivering dose to lung tumors in proportion to the fluorine-18-fluorodeoxyglucose activity distribution from positron emission tomography (FDG-PET). The rationale for delivering dose in proportion to the tumor FDG-PET activity distribution is based on studies showing that FDG uptake is correlated to tumor cell proliferation rate, which is shown to imply that this dose delivery strategy is theoretically capable of providing the same duration of local control at all voxels in tumor. Target dose delivery was constrained by single photon emission computed tomography (SPECT) maps of normal lung perfusion, which restricted irradiation of highly perfused lung and imposed dose-function constraints. Dose-volume constraints were imposed on all other critical structures. All dose-volume/function constraints were considered to be soft, i.e., critical structure doses corresponding to volume/function constraint levels were minimized while satisfying the target prescription, thus permitting critical structure doses to minimally exceed dose constraint levels. An intensity modulation optimization methodology was developed to deliver this radiation, and applied to two lung cancer patients. Dosimetric feasibility was assessed by comparing spatially normalized dose-volume histograms from the nonuniform dose prescription (FDG-PET proportional) to those from a uniform dose prescription with equivalent tumor integral dose. In both patients, the optimization was capable of delivering the nonuniform target prescription with the same ease as the uniform target prescription, despite SPECT restrictions that effectively diverted dose from high to low perfused normal lung. In one patient, both prescriptions incurred similar critical structure dosages, below dose-volume/function limits

  14. Optimization of dose in computerized radiology exams of the hands; Otimizacao da dose em exames de radiologia computadorizada de mao

    Energy Technology Data Exchange (ETDEWEB)

    Pavan, Ana Luiza Menegatti; Alvarez, Matheus; Alves, Allan Felipe Fattori; Dela Rosa, Maria Eugenia; Miranda, Jose Ricardo de Arruda, E-mail: analuiza@ibb.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (IBB/UNESP), Botucatu, SP (Brazil). Inst. de Biofisica. Departamento de Fisica e Biofisica; Pina, Diana Rodrigues de; Ribeiro, Sergio Marrone [Universidade Estadual Paulista Julio de Mesquita Filho (FMB/UNESP), Botucatu, SP (Brazil). Fac. de Medicina. Dept. de Doencas Tropicais e Diagnostico por Imagem; Duarte, Sergio Barbosa [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    Fractures and dislocations of the hand are some of the most frequently encountered injuries of the musculoskeletal system traumas. To evaluate these lesions radiography is the investigation of choice, and is rarely needed the help of other images to establish the diagnosis and treatment. The image quality of the X-ray examination is therefore essential. In this study a homogeneous phantom hand was developed for use in the hand image optimization process. In this procedure were quantified for different tissue thicknesses which are an anthropomorphic hand phantom. To perform the classification and quantification of tissue was applied membership functions in histograms of CT scans. The same procedure was adopted for 30 retrospective examinations of patients in the Hospital of the Faculty of Medicine of Botucatu UNESP (HCFMB-UNESP). The homogeneous phantom built was used to calibrate the techniques used in clinical routine (RC). Such calibrated techniques were used to acquire images of anthropomorphic phantom. These images were analyzed by Visual Grading Method (VFA) by experienced radiologists in the area. The image with better grade in AGV and lower dose was chosen as the Gold Standard. The results showed concordance between the tissue thicknesses which constitute the anthropomorphic phantom and the sample evaluated patients, with variations between 12.63% and 6.48% for soft tissue and bone, respectively. The Gold Technical Standard compared with the technique normally used in the CR reduces dose charge 41.28% and 33.18% in the tube.

  15. Optimal Hemodialysis Prescription: Do Children Need More Than a Urea Dialysis Dose?

    Directory of Open Access Journals (Sweden)

    Fischbach Michel

    2011-01-01

    Full Text Available When prescribing hemodialysis in children, the clinician should first establish an adequate regimen, before seeking to optimize the treatment (Fischbach et al. 2005. A complete dialysis dose should consist of a urea dialysis dose and a determined convective volume. Intensified and more frequent dialysis regimens should not be considered exclusively as rescue therapy. Interestingly, a recent single-center study demonstrated that frequent on-line HDF provides an optimal dialysis prescription, both in terms of blood pressure control (and therefore avoidance of left ventricular hypertrophy, and catch-up growth, that is, no malnutrition or cachexia and less resistance to growth hormone. Nevertheless, this one-center experience would benefit from a prospective randomized study.

  16. Optimal medication dosing in patients with diabetes mellitus and chronic kidney disease.

    Science.gov (United States)

    MacCallum, Lori

    2014-10-01

    Diabetes mellitus is the leading cause of chronic kidney disease (CKD) in Canada. As rates of diabetes rise, so does the prevalence of CKD. Diabetes and CKD are chronic diseases that require multiple medications for their management. Many of the anticipated effects of these medications are altered by the physiologic changes that occur in CKD. Failure to individualize drug dosing in this population may lead to toxicity or decreased therapeutic response, leading to treatment failure. At times this can be challenging for a multitude of reasons, including the limitations of available calculations for estimating renal function, inconsistent dosing recommendations and the lack of dosing recommendations for some medications. Clinicians caring for these patients need to consider an approach of individualized drug therapy that will ensure optimal outcomes. The better understanding that clinicians have of these challenges, the more effective they will be at using the available information as a guide together with their own professional judgement to make appropriate dosing changes. This article discusses the following: 1) physiologic changes that occur in CKD and its impact on drug dosing; 2) advantages and disadvantages of various calculations used for estimating renal function; 3) pharmacokinetic and pharmacodynamic changes of some commonly used medications in diabetes, and finally, 4) an approach to individualized drug dosing for this patient population. Copyright © 2014 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  17. Optimal registration conditions for tooth EPR dosimetry at low accumulated dose

    International Nuclear Information System (INIS)

    Galtsev, V.E.; Galtseva, E.V.; Lebedev, Y.S.

    1997-01-01

    The spectrum registration under rapid passage conditions (the second harmonic phase quadrature of the absorption signal) allows one to enhance substantially the sensitivity of tooth enamel and bone EPR dosimetry at a low accumulated dose. In the present work the dependencies of the radiation and background signals on EPR spectrometer parameters are described and the optimal conditions in RPM for EPR dosimetry are obtained. (Author)

  18. Model-Based Individualized Treatment of Chemotherapeutics: Bayesian Population Modeling and Dose Optimization.

    Directory of Open Access Journals (Sweden)

    Devaraj Jayachandran

    Full Text Available 6-Mercaptopurine (6-MP is one of the key drugs in the treatment of many pediatric cancers, auto immune diseases and inflammatory bowel disease. 6-MP is a prodrug, converted to an active metabolite 6-thioguanine nucleotide (6-TGN through enzymatic reaction involving thiopurine methyltransferase (TPMT. Pharmacogenomic variation observed in the TPMT enzyme produces a significant variation in drug response among the patient population. Despite 6-MP's widespread use and observed variation in treatment response, efforts at quantitative optimization of dose regimens for individual patients are limited. In addition, research efforts devoted on pharmacogenomics to predict clinical responses are proving far from ideal. In this work, we present a Bayesian population modeling approach to develop a pharmacological model for 6-MP metabolism in humans. In the face of scarcity of data in clinical settings, a global sensitivity analysis based model reduction approach is used to minimize the parameter space. For accurate estimation of sensitive parameters, robust optimal experimental design based on D-optimality criteria was exploited. With the patient-specific model, a model predictive control algorithm is used to optimize the dose scheduling with the objective of maintaining the 6-TGN concentration within its therapeutic window. More importantly, for the first time, we show how the incorporation of information from different levels of biological chain-of response (i.e. gene expression-enzyme phenotype-drug phenotype plays a critical role in determining the uncertainty in predicting therapeutic target. The model and the control approach can be utilized in the clinical setting to individualize 6-MP dosing based on the patient's ability to metabolize the drug instead of the traditional standard-dose-for-all approach.

  19. Model-Based Individualized Treatment of Chemotherapeutics: Bayesian Population Modeling and Dose Optimization

    Science.gov (United States)

    Jayachandran, Devaraj; Laínez-Aguirre, José; Rundell, Ann; Vik, Terry; Hannemann, Robert; Reklaitis, Gintaras; Ramkrishna, Doraiswami

    2015-01-01

    6-Mercaptopurine (6-MP) is one of the key drugs in the treatment of many pediatric cancers, auto immune diseases and inflammatory bowel disease. 6-MP is a prodrug, converted to an active metabolite 6-thioguanine nucleotide (6-TGN) through enzymatic reaction involving thiopurine methyltransferase (TPMT). Pharmacogenomic variation observed in the TPMT enzyme produces a significant variation in drug response among the patient population. Despite 6-MP’s widespread use and observed variation in treatment response, efforts at quantitative optimization of dose regimens for individual patients are limited. In addition, research efforts devoted on pharmacogenomics to predict clinical responses are proving far from ideal. In this work, we present a Bayesian population modeling approach to develop a pharmacological model for 6-MP metabolism in humans. In the face of scarcity of data in clinical settings, a global sensitivity analysis based model reduction approach is used to minimize the parameter space. For accurate estimation of sensitive parameters, robust optimal experimental design based on D-optimality criteria was exploited. With the patient-specific model, a model predictive control algorithm is used to optimize the dose scheduling with the objective of maintaining the 6-TGN concentration within its therapeutic window. More importantly, for the first time, we show how the incorporation of information from different levels of biological chain-of response (i.e. gene expression-enzyme phenotype-drug phenotype) plays a critical role in determining the uncertainty in predicting therapeutic target. The model and the control approach can be utilized in the clinical setting to individualize 6-MP dosing based on the patient’s ability to metabolize the drug instead of the traditional standard-dose-for-all approach. PMID:26226448

  20. Evaluation of Geometrically Optimized Single- and Double-plane Interstitial High Dose Rate Implants with Respect to Conformality and Homogeneity

    International Nuclear Information System (INIS)

    Major, Tibor; Polgar, Csaba; Fodor, Janos; Takacsi-nagy, Zoltan; Mangel, Laszlo; Nemeth, Gyoergy

    2003-01-01

    The use of a stepping source in high dose rate brachytherapy supported with dwell-time optimization makes it possible to deviate from the classical dosimetry systems. Dose distributions of single- and double-plane implants were analysed for conformality and homogeneity at idealized target volumes. The Paris system was used for catheter positioning and target volume determination. Geometric optimization and individual dose prescription were applied. Volumetric indices and dose parameters were calculated at optimal active length, which was found to be equal to target volume length. The mean conformality, homogeneity, external volume and overdose volume indices were 0.78, 0.67, 0.22 and 0.13, respectively. The average minimum target and reference doses were 69% and 86%, respectively. Comparisons between the volumetric indices of geometrical optimized and non-optimized implants were also performed, and a significant difference was found regarding any index. The geometrical optimization resulted in superior conformality and slightly inferior homogeneity. At geometrically optimized implants, the active length can be reduced compared to non-optimized implants. Volumetric parameters and dose-volume histogram-based individual dose prescription are recommended for quantitative assessment of interstitial implants

  1. SU-F-T-428: An Optimization-Based Commissioning Tool for Finite Size Pencil Beam Dose Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y; Tian, Z; Song, T; Jia, X; Gu, X; Jiang, S [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: Finite size pencil beam (FSPB) algorithms are commonly used to pre-calculate the beamlet dose distribution for IMRT treatment planning. FSPB commissioning, which usually requires fine tuning of the FSPB kernel parameters, is crucial to the dose calculation accuracy and hence the plan quality. Yet due to the large number of beamlets, FSPB commissioning could be very tedious. This abstract reports an optimization-based FSPB commissioning tool we have developed in MatLab to facilitate the commissioning. Methods: A FSPB dose kernel generally contains two types of parameters: the profile parameters determining the dose kernel shape, and a 2D scaling factors accounting for the longitudinal and off-axis corrections. The former were fitted using the penumbra of a reference broad beam’s dose profile with Levenberg-Marquardt algorithm. Since the dose distribution of a broad beam is simply a linear superposition of the dose kernel of each beamlet calculated with the fitted profile parameters and scaled using the scaling factors, these factors could be determined by solving an optimization problem which minimizes the discrepancies between the calculated dose of broad beams and the reference dose. Results: We have commissioned a FSPB algorithm for three linac photon beams (6MV, 15MV and 6MVFFF). Dose of four field sizes (6*6cm2, 10*10cm2, 15*15cm2 and 20*20cm2) were calculated and compared with the reference dose exported from Eclipse TPS system. For depth dose curves, the differences are less than 1% of maximum dose after maximum dose depth for most cases. For lateral dose profiles, the differences are less than 2% of central dose at inner-beam regions. The differences of the output factors are within 1% for all the three beams. Conclusion: We have developed an optimization-based commissioning tool for FSPB algorithms to facilitate the commissioning, providing sufficient accuracy of beamlet dose calculation for IMRT optimization.

  2. Radiotherapy in differentiated thyroid cancer: Optimal dose distribution using a wax bolus

    International Nuclear Information System (INIS)

    Mayer, R.; Stucklschweiger, G.; Oechs, A.; Pakish, B.; Hackl, A.; Preidler, K.; Szola, D.

    1994-01-01

    The study includes 53 patients with differentiated thyroid cancer, who underwent surgical and radioiodine therapy as well as hormone therapy. Postoperative radiotherapy was performed in all patients in 'mini-mantle-technique' with parallel opposed fields, followed by an anterior boost-field with electrons up to 60-64 Gy, using a wax bolus for optimal dose distribution in the target volume sparing out the spinal cord as much as possible. The dose to the spinal cord did not exceed 44 Gy in any case. The study shows that radiotherapy with doses up to 60-64 Gy plays an important role in postsurgical therapeutic management. Therefore nonradical surgery is a less important prognostic factor for survival and local recurrence in patients with differentiated thyroid cancer than histological diagnosis in combination with age and lymph node involvement

  3. Treatment planning for heavy ion radiotherapy: calculation and optimization of biologically effective dose

    International Nuclear Information System (INIS)

    Kraemer, M.; Scholz, M.

    2000-09-01

    We describe a novel approach to treatment planning for heavy ion radiotherapy based on the local effect model (LEM) which allows to calculate the biologically effective dose not only for the target region but for the entire irradiation volume. LEM is ideally suited to be used as an integral part of treatment planning code systems for active dose shaping devices like the GSI raster scan system. Thus, it has been incorporated into our standard treatment planning system for ion therapy (TRiP). Single intensity modulated fields can be optimized with respect to homogeneous biologically effective dose. The relative biological effectiveness (RBE) is calculated separately for each voxel of the patient CT. Our radiobiologically oriented code system is in use since 1995 for the planning of irradiation experiments with cell cultures and animals such as rats and minipigs. Since 1997 it is in regular and successful use for patient treatment planning. (orig.)

  4. CLINICAL AND PHARMACOLOGICAL APPROACHES TO OPTIMIZE THE DOSING REGIMEN OF ANTIBACTERIAL DRUGS IN PEDIATRICS

    Directory of Open Access Journals (Sweden)

    Natal’ya B. Lazareva

    2018-01-01

    Full Text Available The rational use of antibacterial drugs in children implies an adequate choice of the necessary medication, its dosing regimen, and the duration of treatment in order to achieve maximum efficacy and minimize toxic effects. The knowledge of pharmacokinetic and pharmacodynamic profiles of the antibacterial drug plays a crucial role for optimizing the dosing regimen. The strategy of individual choice of the dosing regimen, taking into account the principles of pharmacokinetics and pharmacodynamics, can be especially effective in patients with the expectedly changed parameters of pharmacokinetics and in infections caused by bacteria strains with low sensitivity to antibiotics. The review presents a contemporary view of pharmacokinetic and pharmacodynamic profiles of antibacterial drugs most commonly used in pediatrics and their relationship to the clinical efficacy of the administered therapy.

  5. Collective Influence Algorithm to find influencers via optimal percolation in massively large social media

    Science.gov (United States)

    Morone, Flaviano; Min, Byungjoon; Bo, Lin; Mari, Romain; Makse, Hernán A.

    2016-07-01

    We elaborate on a linear-time implementation of Collective-Influence (CI) algorithm introduced by Morone, Makse, Nature 524, 65 (2015) to find the minimal set of influencers in networks via optimal percolation. The computational complexity of CI is O(N log N) when removing nodes one-by-one, made possible through an appropriate data structure to process CI. We introduce two Belief-Propagation (BP) variants of CI that consider global optimization via message-passing: CI propagation (CIP) and Collective-Immunization-Belief-Propagation algorithm (CIBP) based on optimal immunization. Both identify a slightly smaller fraction of influencers than CI and, remarkably, reproduce the exact analytical optimal percolation threshold obtained in Random Struct. Alg. 21, 397 (2002) for cubic random regular graphs, leaving little room for improvement for random graphs. However, the small augmented performance comes at the expense of increasing running time to O(N2), rendering BP prohibitive for modern-day big-data. For instance, for big-data social networks of 200 million users (e.g., Twitter users sending 500 million tweets/day), CI finds influencers in 2.5 hours on a single CPU, while all BP algorithms (CIP, CIBP and BDP) would take more than 3,000 years to accomplish the same task.

  6. Collective Influence Algorithm to find influencers via optimal percolation in massively large social media

    Science.gov (United States)

    Morone, Flaviano; Min, Byungjoon; Bo, Lin; Mari, Romain; Makse, Hernán A.

    2016-01-01

    We elaborate on a linear-time implementation of Collective-Influence (CI) algorithm introduced by Morone, Makse, Nature 524, 65 (2015) to find the minimal set of influencers in networks via optimal percolation. The computational complexity of CI is O(N log N) when removing nodes one-by-one, made possible through an appropriate data structure to process CI. We introduce two Belief-Propagation (BP) variants of CI that consider global optimization via message-passing: CI propagation (CIP) and Collective-Immunization-Belief-Propagation algorithm (CIBP) based on optimal immunization. Both identify a slightly smaller fraction of influencers than CI and, remarkably, reproduce the exact analytical optimal percolation threshold obtained in Random Struct. Alg. 21, 397 (2002) for cubic random regular graphs, leaving little room for improvement for random graphs. However, the small augmented performance comes at the expense of increasing running time to O(N2), rendering BP prohibitive for modern-day big-data. For instance, for big-data social networks of 200 million users (e.g., Twitter users sending 500 million tweets/day), CI finds influencers in 2.5 hours on a single CPU, while all BP algorithms (CIP, CIBP and BDP) would take more than 3,000 years to accomplish the same task. PMID:27455878

  7. Phase I dose-finding study of cabazitaxel administered weekly in patients with advanced solid tumours

    International Nuclear Information System (INIS)

    Fumoleau, Pierre; Trigo, Jose Manuel; Isambert, Nicolas; Sémiond, Dorothée; Gupta, Sunil; Campone, Mario

    2013-01-01

    Cabazitaxel is approved in patients with metastatic hormone-refractory prostate cancer previously treated with a docetaxel-containing regimen. This study evaluated a weekly cabazitaxel dosing regimen. Primary objectives were to report dose-limiting toxicities (DLTs) and to determine the maximum tolerated dose (MTD). Efficacy, safety and pharmacokinetics were secondary objectives. Cabazitaxel was administered weekly (1-hour intravenous infusion at 1.5–12 mg/m2 doses) for the first 4 weeks of a 5-week cycle in patients with solid tumours. Monitoring of DLTs was used to determine the MTD and the recommended weekly dose. Thirty-one patients were enrolled. Two of six patients experienced DLTs at 12 mg/m 2 , which was declared the MTD. Gastrointestinal disorders were the most common adverse event. Eight patients developed neutropenia (three ≥ Grade 3); one occurrence of febrile neutropenia was reported. There were two partial responses (in breast cancer) and 13 patients had stable disease (median duration of 3.3 months). Increases in C max and AUC 0–t were dose proportional for the 6–12 mg/m 2 doses. The MTD of weekly cabazitaxel was 12 mg/m 2 and the recommended weekly dose was 10 mg/m 2 . The observed safety profile and antitumour activity of cabazitaxel were consistent with those observed with other taxanes in similar dosing regimens. The study was registered with ClinicalTrials.gov as http://www.clinicaltrials.gov/ct2/show/NCT01755390

  8. Optimization of dose radiation and image quality on computed tomography of thorax in adult women

    Energy Technology Data Exchange (ETDEWEB)

    Cruz Z, G. R.; Casian C, G. [Hospital Juarez de Mexico, Av. IPN No. 5160, 07760 Mexico D. F. (Mexico); Gaona, E.; Franco E, J. G.; Molina F, N., E-mail: gaen1310@correo.xoc.uam.mx [Universidad Autonoma Metropolitana, Unidad Xochimilco, Calz. del Hueso 1100, 04960 Mexico D. F. (Mexico)

    2015-10-15

    Full text: The objective of the study is the optimization of the dose (Dlp) and image quality in the exploration of adult women in studies of thorax with computed tomography (CT). The CT is a technique of exploration with high radiation doses to patients with an increase of the risk factors of developing cancer in the future, but X-rays are a very important medical diagnostic tool. We performed a retrospective survey of 50 female patients who had thorax tomography using the automatic protocol established by the manufacturer, a database of dose (Dlp), measures of patient A P and radiological parameters such as kV and m A was obtained. Subsequently, we carry out the prospective study with 30 patients with prescription of thorax tomography, scans were conducted with CT with reduced doses using manual techniques protocol of exploration while maintaining diagnostic image quality. The results show that the prospective study patients received doses lower than 30% on average. In general the dose patients were within the confidence interval of 95% of the levels of diagnostic reference (DRL) adopted by the European Community for CT and the most common value is 400 Dlp for thorax. Comparative image quality study was conducted using the protocol of the manufacturer and the manual protocol and image quality was diagnostic after dose reduction up to 30%. The reduction of radiation dose in female patients in studies of thorax CT helps to reduce risk factors of developing cancer later in life. A thorax tomography study includes the fibro-glandular tissue of the breast which is very sensitive to stochastic effects of radiation. (Author)

  9. Optimization of dose radiation and image quality on computed tomography of thorax in adult women

    International Nuclear Information System (INIS)

    Cruz Z, G. R.; Casian C, G.; Gaona, E.; Franco E, J. G.; Molina F, N.

    2015-10-01

    Full text: The objective of the study is the optimization of the dose (Dlp) and image quality in the exploration of adult women in studies of thorax with computed tomography (CT). The CT is a technique of exploration with high radiation doses to patients with an increase of the risk factors of developing cancer in the future, but X-rays are a very important medical diagnostic tool. We performed a retrospective survey of 50 female patients who had thorax tomography using the automatic protocol established by the manufacturer, a database of dose (Dlp), measures of patient A P and radiological parameters such as kV and m A was obtained. Subsequently, we carry out the prospective study with 30 patients with prescription of thorax tomography, scans were conducted with CT with reduced doses using manual techniques protocol of exploration while maintaining diagnostic image quality. The results show that the prospective study patients received doses lower than 30% on average. In general the dose patients were within the confidence interval of 95% of the levels of diagnostic reference (DRL) adopted by the European Community for CT and the most common value is 400 Dlp for thorax. Comparative image quality study was conducted using the protocol of the manufacturer and the manual protocol and image quality was diagnostic after dose reduction up to 30%. The reduction of radiation dose in female patients in studies of thorax CT helps to reduce risk factors of developing cancer later in life. A thorax tomography study includes the fibro-glandular tissue of the breast which is very sensitive to stochastic effects of radiation. (Author)

  10. SU-E-T-453: Optimization of Dose Gradient for Gamma Knife Radiosurgery.

    Science.gov (United States)

    Sheth, N; Chen, Y; Yang, J

    2012-06-01

    The goals of stereotactic radiosurgery (SRS) are the ablation of target tissue and sparing of critical normal tissue. We develop tools to aid in the selection of collimation and prescription (Rx) isodose line to optimize the dose gradient for single isocenter intracranial stereotactic radiosurgery (SRS) with GammaKnife 4C utilizing the updated physics data in GammaPlan v10.1. Single isocenter intracranial SRS plans were created to treat the center of a solid water anthropomorphism head phantom for each GammaKnife collimator (4 mm, 8 mm, 14 mm, and 18 mm). The dose gradient, defined as the difference of effective radii of spheres equal to half and full Rx volumes, and Rx treatment volume was analyzed for isodoses from 99% to 20% of Rx. The dosimetric data on Rx volume and dose gradient vs. Rx isodose for each collimator was compiled into an easy to read nomogram as well as plotted graphically. The 4, 8, 14, and 18 mm collimators have the sharpest dose gradient at the 64%, 70%, 76%, and 77% Rx isodose lines, respectively. This corresponds to treating 4.77 mm, 8.86 mm, 14.78 mm, and 18.77 mm diameter targets with dose gradients radii of 1.06 mm, 1.63 mm, 2.54 mm, and 3.17 mm, respectively. We analyzed the dosimetric data for the most recent version of GammaPlan treatment planning software to develop tools that when applied clinically will aid in the selection of a collimator and Rx isodose line for optimal dose gradient and target coverage for single isocenter intracranial SRS with GammaKnife 4C. © 2012 American Association of Physicists in Medicine.

  11. GIS-BASED ROUTE FINDING USING ANT COLONY OPTIMIZATION AND URBAN TRAFFIC DATA FROM DIFFERENT SOURCES

    Directory of Open Access Journals (Sweden)

    M. Davoodi

    2015-12-01

    Full Text Available Nowadays traffic data is obtained from multiple sources including GPS, Video Vehicle Detectors (VVD, Automatic Number Plate Recognition (ANPR, Floating Car Data (FCD, VANETs, etc. All such data can be used for route finding. This paper proposes a model for finding the optimum route based on the integration of traffic data from different sources. Ant Colony Optimization is applied in this paper because the concept of this method (movement of ants in a network is similar to urban road network and movements of cars. The results indicate that this model is capable of incorporating data from different sources, which may even be inconsistent.

  12. Gis-Based Route Finding Using ANT Colony Optimization and Urban Traffic Data from Different Sources

    Science.gov (United States)

    Davoodi, M.; Mesgari, M. S.

    2015-12-01

    Nowadays traffic data is obtained from multiple sources including GPS, Video Vehicle Detectors (VVD), Automatic Number Plate Recognition (ANPR), Floating Car Data (FCD), VANETs, etc. All such data can be used for route finding. This paper proposes a model for finding the optimum route based on the integration of traffic data from different sources. Ant Colony Optimization is applied in this paper because the concept of this method (movement of ants in a network) is similar to urban road network and movements of cars. The results indicate that this model is capable of incorporating data from different sources, which may even be inconsistent.

  13. Development of CER-001: Preclinical Dose Selection Through to Phase I Clinical Findings.

    Science.gov (United States)

    Keyserling, Constance H; Barbaras, Ronald; Benghozi, Renee; Dasseux, Jean-Louis

    2017-05-01

    CER-001 comprises recombinant human apolipoprotein A-I complexed with phospholipids that mimics natural, nascent, pre-β high-density lipoprotein (HDL). We present animal model data showing dose-dependent increases in cholesterol efflux with CER-001 and its subsequent elimination by reverse lipid transport, together with inhibition of atherosclerotic plaque progression. We report the first phase I study results with CER-001 in humans, starting at 0.25 mg/kg, which is 1/80th of the safe dose (20 mg/kg) established in 4-week multiple-dose animal studies dosed every second day. Healthy volunteers, 18-55 years old with a low-density lipoprotein-cholesterol:HDL-cholesterol ratio greater than 3.0, received single intravenous escalating doses of CER-001 (0.25-45.0 mg/kg) and placebo in a double-blind randomised cross-over fashion. Subjects were followed up for 3 weeks post-dose. Assessments included adverse event monitoring, blood sampling, and clinical laboratory measurements. Thirty-two subjects were enrolled. All CER-001 doses (0.25-45 mg/kg) were safe and well tolerated, with an adverse event profile similar to placebo. Effects on clinical chemistry, haematology and coagulation parameters were comparable to placebo. No adverse effects of CER-001 on electrocardiograms were observed. No antibodies to apolipoprotein A-I were detected following single-dose administration of CER-001. Plasma apolipoprotein A-I levels increased in a dose-related manner and returned to baseline by 24 h post-dose for doses up to 10 mg/kg but remained in circulation for >72 h post-dose for doses >10 mg/kg. CER-001 caused elevations in plasma cholesterol and total and unesterified cholesterol in the HDL fraction. Mobilisation of unesterified cholesterol in the HDL fraction was seen with CER-001 at doses as low as 2 mg/kg. CER-001 is well tolerated when administered to humans as single doses up to 45 mg/kg and mobilises and eliminates cholesterol via reverse lipid transport.

  14. Dose reduction and image quality optimizations in CT of pediatric and adult patients: phantom studies

    International Nuclear Information System (INIS)

    Jeon, P-H; Lee, C-L; Kim, D-H; Lee, Y-J; Kim, H-J; Jeon, S-S

    2014-01-01

    Multi-detector computed tomography (MDCT) can be used to easily and rapidly perform numerous acquisitions, possibly leading to a marked increase in the radiation dose to individual patients. Technical options dedicated to automatically adjusting the acquisition parameters according to the patient's size are of specific interest in pediatric radiology. A constant tube potential reduction can be achieved for adults and children, while maintaining a constant detector energy fluence. To evaluate radiation dose, the weighted CT dose index (CTDIw) was calculated based on the CT dose index (CTDI) measured using an ion chamber, and image noise and image contrast were measured from a scanned image to evaluate image quality. The dose-weighted contrast-to-noise ratio (CNRD) was calculated from the radiation dose, image noise, and image contrast measured from a scanned image. The noise derivative (ND) is a quality index for dose efficiency. X-ray spectra with tube voltages ranging from 80 to 140 kVp were used to compute the average photon energy. Image contrast and the corresponding contrast-to-noise ratio (CNR) were determined for lesions of soft tissue, muscle, bone, and iodine relative to a uniform water background, as the iodine contrast increases at lower energy (i.e., k-edge of iodine is 33 keV closer to the beam energy) using mixed water-iodine contrast normalization (water 0, iodine 25, 100, 200, and 1000 HU, respectively). The proposed values correspond to high quality images and can be reduced if only high-contrast organs are assessed. The potential benefit of lowering the tube voltage is an improved CNRD, resulting in a lower radiation dose and optimization of image quality. Adjusting the tube potential in abdominal CT would be useful in current pediatric radiography, where the choice of X-ray techniques generally takes into account the size of the patient as well as the need to balance the conflicting requirements of diagnostic image quality and radiation dose

  15. Exploring trade-offs between VMAT dose quality and delivery efficiency using a network optimization approach

    International Nuclear Information System (INIS)

    Salari, Ehsan; Craft, David; Wala, Jeremiah

    2012-01-01

    To formulate and solve the fluence-map merging procedure of the recently-published VMAT treatment-plan optimization method, called vmerge, as a bi-criteria optimization problem. Using an exact merging method rather than the previously-used heuristic, we are able to better characterize the trade-off between the delivery efficiency and dose quality. vmerge begins with a solution of the fluence-map optimization problem with 180 equi-spaced beams that yields the ‘ideal’ dose distribution. Neighboring fluence maps are then successively merged, meaning that they are added together and delivered as a single map. The merging process improves the delivery efficiency at the expense of deviating from the initial high-quality dose distribution. We replace the original merging heuristic by considering the merging problem as a discrete bi-criteria optimization problem with the objectives of maximizing the treatment efficiency and minimizing the deviation from the ideal dose. We formulate this using a network-flow model that represents the merging problem. Since the problem is discrete and thus non-convex, we employ a customized box algorithm to characterize the Pareto frontier. The Pareto frontier is then used as a benchmark to evaluate the performance of the standard vmerge algorithm as well as two other similar heuristics. We test the exact and heuristic merging approaches on a pancreas and a prostate cancer case. For both cases, the shape of the Pareto frontier suggests that starting from a high-quality plan, we can obtain efficient VMAT plans through merging neighboring fluence maps without substantially deviating from the initial dose distribution. The trade-off curves obtained by the various heuristics are contrasted and shown to all be equally capable of initial plan simplifications, but to deviate in quality for more drastic efficiency improvements. This work presents a network optimization approach to the merging problem. Contrasting the trade-off curves of the

  16. Exploring trade-offs between VMAT dose quality and delivery efficiency using a network optimization approach.

    Science.gov (United States)

    Salari, Ehsan; Wala, Jeremiah; Craft, David

    2012-09-07

    To formulate and solve the fluence-map merging procedure of the recently-published VMAT treatment-plan optimization method, called VMERGE, as a bi-criteria optimization problem. Using an exact merging method rather than the previously-used heuristic, we are able to better characterize the trade-off between the delivery efficiency and dose quality. VMERGE begins with a solution of the fluence-map optimization problem with 180 equi-spaced beams that yields the 'ideal' dose distribution. Neighboring fluence maps are then successively merged, meaning that they are added together and delivered as a single map. The merging process improves the delivery efficiency at the expense of deviating from the initial high-quality dose distribution. We replace the original merging heuristic by considering the merging problem as a discrete bi-criteria optimization problem with the objectives of maximizing the treatment efficiency and minimizing the deviation from the ideal dose. We formulate this using a network-flow model that represents the merging problem. Since the problem is discrete and thus non-convex, we employ a customized box algorithm to characterize the Pareto frontier. The Pareto frontier is then used as a benchmark to evaluate the performance of the standard VMERGE algorithm as well as two other similar heuristics. We test the exact and heuristic merging approaches on a pancreas and a prostate cancer case. For both cases, the shape of the Pareto frontier suggests that starting from a high-quality plan, we can obtain efficient VMAT plans through merging neighboring fluence maps without substantially deviating from the initial dose distribution. The trade-off curves obtained by the various heuristics are contrasted and shown to all be equally capable of initial plan simplifications, but to deviate in quality for more drastic efficiency improvements. This work presents a network optimization approach to the merging problem. Contrasting the trade-off curves of the merging

  17. Improved dose-volume histogram estimates for radiopharmaceutical therapy by optimizing quantitative SPECT reconstruction parameters

    Science.gov (United States)

    Cheng, Lishui; Hobbs, Robert F.; Segars, Paul W.; Sgouros, George; Frey, Eric C.

    2013-06-01

    In radiopharmaceutical therapy, an understanding of the dose distribution in normal and target tissues is important for optimizing treatment. Three-dimensional (3D) dosimetry takes into account patient anatomy and the nonuniform uptake of radiopharmaceuticals in tissues. Dose-volume histograms (DVHs) provide a useful summary representation of the 3D dose distribution and have been widely used for external beam treatment planning. Reliable 3D dosimetry requires an accurate 3D radioactivity distribution as the input. However, activity distribution estimates from SPECT are corrupted by noise and partial volume effects (PVEs). In this work, we systematically investigated OS-EM based quantitative SPECT (QSPECT) image reconstruction in terms of its effect on DVHs estimates. A modified 3D NURBS-based Cardiac-Torso (NCAT) phantom that incorporated a non-uniform kidney model and clinically realistic organ activities and biokinetics was used. Projections were generated using a Monte Carlo (MC) simulation; noise effects were studied using 50 noise realizations with clinical count levels. Activity images were reconstructed using QSPECT with compensation for attenuation, scatter and collimator-detector response (CDR). Dose rate distributions were estimated by convolution of the activity image with a voxel S kernel. Cumulative DVHs were calculated from the phantom and QSPECT images and compared both qualitatively and quantitatively. We found that noise, PVEs, and ringing artifacts due to CDR compensation all degraded histogram estimates. Low-pass filtering and early termination of the iterative process were needed to reduce the effects of noise and ringing artifacts on DVHs, but resulted in increased degradations due to PVEs. Large objects with few features, such as the liver, had more accurate histogram estimates and required fewer iterations and more smoothing for optimal results. Smaller objects with fine details, such as the kidneys, required more iterations and less

  18. CT findings of pancreatic carcinoma. Evaluation with the combined method of early enhancement CT and high dose enhancement CT

    International Nuclear Information System (INIS)

    Itoh, Shigeki; Endo, Tokiko; Isomura, Takayuki; Ishigaki, Takeo; Ikeda, Mitsuru; Senda, Kouhei.

    1995-01-01

    Computed tomographic (CT) findings of pancreatic ductal adenocarcinoma were studied with the combined method of early enhancement CT and high dose enhancement CT in 72 carcinomas. Common Findings were change in pancreatic contour, abnormal attenuation in a tumor and dilatation of the main pancreatic duct. The incidence of abnormal attenuation and dilatation of the main pancreatic duct and bile duct was constant regardless of tumor size. The finding of hypoattenuation at early enhancement CT was most useful for demonstrating a carcinoma. However, this finding was negative in ten cases, five of which showed inhomogenous hyperattenuation at high dose enhancement CT. The detection of change in pancreatic contour and dilatation of the main pancreatic duct was most frequent at high dose enhancement CT. The finding of change in pancreatic contour and/or abnormal attenuation in a tumor could be detected in 47 cases at plain CT, 66 at early enhancement CT and 65 at high dose enhancement CT. Since the four cases in which neither finding was detected by any CT method showed dilatated main pancreatic duct, there was no case without abnormal CT findings. This combined CT method will be a reliable diagnostic technique in the imaging of pancreatic carcinoma. (author)

  19. Optimization of total arc degree for stereotactic radiotherapy by using integral biologically effective dose and irradiated volume

    International Nuclear Information System (INIS)

    Lim, Do Hoon; Kim, Dae Yong; Lee, Myung Za; Chun, Ha Chung

    2001-01-01

    To find the optimal values of total arc degree to protect the normal brain tissue from high dose radiation in stereotactic radiotherapy planning. With Xknife-3 planning system and 4 MV linear accelerator, the authors planned under various values of parameters. One isocenter, 12, 20, 30, 40, 50, and 60 mm of collimator diameters, 100 deg, 200 deg, 300 deg, 400 deg, 500 deg, 600 deg, of total arc degrees, and 30 deg or 45 deg of arc intervals were used. After the completion of planning, the plans were compared each other using V 50 (the volume of normal brain that is delivered high dose radiation) and integral biologically effective dose. At 30 deg of arc interval, the values of V 50 had the decreased pattern with the increase of total arc degree in any collimator diameter. At 45 deg arc interval, up to 400 deg of total arc degree, the values of V 50 decreased with the increase of total arc degree, but at 500 deg and 600 deg of total arc degrees, the values increased. At 30 deg of arc interval, integral biologically effective dose showed the decreased pattern with the increase of total arc degree in any collimator diameter. At 45 deg arc interval with less than 40 mm collimator diameter, the integral biologically effective dose decreased with the increase of total arc degree, but with 50 and 60 mm of collimator diameters, up to 400 deg of total arc degree, integral biologically effective dose decreased with the increase of total arc degree, but at 500 deg and 600 deg of total arc degrees, the values increased. In the stereotactic radiotherapy planning for brain lesions, planning with 400 deg of total arc degree is optimal. Especially, when the larger collimator more than 50 mm diameter should be used, the uses of 500 deg and 600 deg of total arc degrees make the increase of V 50 and integral biologically effective dose, Therefore stereotactic radiotherapy planning using 400 deg of total arc degree can increase the therapeutic ratio and produce the effective outcome

  20. Comparison of linear and nonlinear programming approaches for "worst case dose" and "minmax" robust optimization of intensity-modulated proton therapy dose distributions.

    Science.gov (United States)

    Zaghian, Maryam; Cao, Wenhua; Liu, Wei; Kardar, Laleh; Randeniya, Sharmalee; Mohan, Radhe; Lim, Gino

    2017-03-01

    Robust optimization of intensity-modulated proton therapy (IMPT) takes uncertainties into account during spot weight optimization and leads to dose distributions that are resilient to uncertainties. Previous studies demonstrated benefits of linear programming (LP) for IMPT in terms of delivery efficiency by considerably reducing the number of spots required for the same quality of plans. However, a reduction in the number of spots may lead to loss of robustness. The purpose of this study was to evaluate and compare the performance in terms of plan quality and robustness of two robust optimization approaches using LP and nonlinear programming (NLP) models. The so-called "worst case dose" and "minmax" robust optimization approaches and conventional planning target volume (PTV)-based optimization approach were applied to designing IMPT plans for five patients: two with prostate cancer, one with skull-based cancer, and two with head and neck cancer. For each approach, both LP and NLP models were used. Thus, for each case, six sets of IMPT plans were generated and assessed: LP-PTV-based, NLP-PTV-based, LP-worst case dose, NLP-worst case dose, LP-minmax, and NLP-minmax. The four robust optimization methods behaved differently from patient to patient, and no method emerged as superior to the others in terms of nominal plan quality and robustness against uncertainties. The plans generated using LP-based robust optimization were more robust regarding patient setup and range uncertainties than were those generated using NLP-based robust optimization for the prostate cancer patients. However, the robustness of plans generated using NLP-based methods was superior for the skull-based and head and neck cancer patients. Overall, LP-based methods were suitable for the less challenging cancer cases in which all uncertainty scenarios were able to satisfy tight dose constraints, while NLP performed better in more difficult cases in which most uncertainty scenarios were hard to meet

  1. Adaptive designs for dose-finding in non-cancer phase II trials: influence of early unexpected outcomes.

    Science.gov (United States)

    Resche-Rigon, Matthieu; Zohar, Sarah; Chevret, Sylvie

    2008-01-01

    In non-cancer phase II trials, dose-finding trials are usually carried out using fixed designs, in which several doses including a placebo are randomly distributed to patients. However, in certain vulnerable populations, such as neonates or infants, there is an heightened requirement for safety, precluding randomization. To estimate the minimum effective dose of a new drug from a non-cancer phase II trial, we propose the use of adaptive designs like the Continual Reassessment Method (CRM). This approach estimates the dose closest to some target response, and has been shown to be unbiased and efficient in cancer phase I trials. Based on a motivating example, we point out the individual influence of first outliers in this setting. A weighted version of the CRM is proposed as a theoretical benchmark to control for these outliers. Using simulations, we illustrate how this approach provides further insight into the behavior of the CRM. When dealing with low targets like a 10% failure rate, the CRM appears unable to rapidly overcome an early unexpected outcome. This behavior persisted despite changing the inference (Bayesian or likelihood), underlying dose-response model (though slightly improved using the power model), and the number of patients enrolled at each dose level. The choices for initial guesses of failure rates, the vague prior for the model parameter, and the log-log shape of weights can appear somewhat arbitrary. In phase II dose-finding studies in which failure targets are below 20%, the CRM appears quite sensitive to first unexpected outcomes. Using a power model for dose-response improves some behavior if the trial is started at the first dose level and includes at least three to five patients at the starting dose before applying the CRM allocation rule.

  2. System for verifiable CT radiation dose optimization based on image quality. part II. process control system.

    Science.gov (United States)

    Larson, David B; Malarik, Remo J; Hall, Seth M; Podberesky, Daniel J

    2013-10-01

    To evaluate the effect of an automated computed tomography (CT) radiation dose optimization and process control system on the consistency of estimated image noise and size-specific dose estimates (SSDEs) of radiation in CT examinations of the chest, abdomen, and pelvis. This quality improvement project was determined not to constitute human subject research. An automated system was developed to analyze each examination immediately after completion, and to report individual axial-image-level and study-level summary data for patient size, image noise, and SSDE. The system acquired data for 4 months beginning October 1, 2011. Protocol changes were made by using parameters recommended by the prediction application, and 3 months of additional data were acquired. Preimplementation and postimplementation mean image noise and SSDE were compared by using unpaired t tests and F tests. Common-cause variation was differentiated from special-cause variation by using a statistical process control individual chart. A total of 817 CT examinations, 490 acquired before and 327 acquired after the initial protocol changes, were included in the study. Mean patient age and water-equivalent diameter were 12.0 years and 23.0 cm, respectively. The difference between actual and target noise increased from -1.4 to 0.3 HU (P process control chart identified several special causes of variation. Implementation of an automated CT radiation dose optimization system led to verifiable simultaneous decrease in image noise variation and SSDE. The automated nature of the system provides the opportunity for consistent CT radiation dose optimization on a broad scale. © RSNA, 2013.

  3. Optimal dose and volume for postoperative radiotherapy in brain oligometastases from lung cancer: a retrospective study

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Seung Yeun; Kim, Hye Ryun; Cho, Byoung Chul; Lee, Chang Geol; Suh, Chang Ok [Yonsei Cancer Center, Yonsei University College of Medicine, Seoul (Korea, Republic of); Chang, Jong Hee [Dept. of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2017-06-15

    To evaluate intracranial control after surgical resection according to the adjuvant treatment received in order to assess the optimal radiotherapy (RT) dose and volume. Between 2003 and 2015, a total of 53 patients with brain oligometastases from non-small cell lung cancer (NSCLC) underwent metastasectomy. The patients were divided into three groups according to the adjuvant treatment received: whole brain radiotherapy (WBRT) ± boost (WBRT ± boost group, n = 26), local RT/Gamma Knife surgery (local RT group, n = 14), and the observation group (n = 13). The most commonly used dose schedule was WBRT (25 Gy in 10 fractions, equivalent dose in 2 Gy fractions [EQD2] 26.04 Gy) with tumor bed boost (15 Gy in 5 fractions, EQD2 16.25 Gy). The WBRT ± boost group showed the lowest 1-year intracranial recurrence rate of 30.4%, followed by the local RT and observation groups, at 66.7%, and 76.9%, respectively (p = 0.006). In the WBRT ± boost group, there was no significant increase in the 1-year new site recurrence rate of patients receiving a lower dose of WBRT (EQD2) <27 Gy compared to that in patients receiving a higher WBRT dose (p = 0.553). The 1-year initial tumor site recurrence rate was lower in patients receiving tumor bed dose (EQD2) of ≥42.3 Gy compared to those receiving <42.3 Gy, although the difference was not significant (p = 0.347). Adding WBRT after resection of brain oligometastases from NSCLC seems to enhance intracranial control. Furthermore, combining lower-dose WBRT with a tumor bed boost may be an attractive option.

  4. The role of dose limitation and optimization in intervention. Approaches to the remediation of contaminated sites in Germany

    International Nuclear Information System (INIS)

    Goldammer, W.; Helming, M.; Kuehnel, G.; Landfermann, H.-H.

    2000-01-01

    The clean-up of contaminated sites requires appropriate and efficient methodologies for the decision-making about priorities and extent of remedial measures, aiming at the two, usually conflicting, goals to protect people and the environment and to save money and other resources. Finding the cost-effective balance between these two primary objectives often is complicated by several factors. Sensible decision-making in this situation requires the use of appropriate methodologies and tools which assist in identifying and implementing the optimal solution. The paper discusses an approach developed in Germany to achieve environmentally sound and cost-effective solutions. A basic requirement within the German approach is the limitation of individual doses in order to limit inequity between people exposed. An Action Level of 1 mSv per annum is used in this sense for the identification of sites that require farther investigation and potentially remediation. On the basis of this individual dose related criterion secondary reference levels for directly measurable quantities such as activity concentrations have been derived, facilitating the practical application of the Action Level Concept. Decisions on remedial action, in particular for complex sites, are based on justification and optimization analyses. These take into consideration a variety of different contaminants and risks to humans and the environment arising on various exposure pathways. The optimization analyses, carried-out to identify optimal remediation options, address radiological risks as well as short and long term costs within a cost-benefit analysis framework. Other relevant factors of influence, e.g. chemical risks or ecological damage, are incorporated as well. Comprehensive methodologies utilizing probabilistic methods have been developed to assess site conditions and possible remediation options on this basis. The approaches developed are applied within the German uranium mine rehabilitation program

  5. The role of dose limitation and optimization in intervention. Approaches to the remediation of contaminated sites in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Goldammer, W. [Brenk Systemplanung GmbH, Aachen (Germany); Helming, M.; Kuehnel, G.; Landfermann, H.-H. [Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, Bonn (Germany)

    2000-05-01

    The clean-up of contaminated sites requires appropriate and efficient methodologies for the decision-making about priorities and extent of remedial measures, aiming at the two, usually conflicting, goals to protect people and the environment and to save money and other resources. Finding the cost-effective balance between these two primary objectives often is complicated by several factors. Sensible decision-making in this situation requires the use of appropriate methodologies and tools which assist in identifying and implementing the optimal solution. The paper discusses an approach developed in Germany to achieve environmentally sound and cost-effective solutions. A basic requirement within the German approach is the limitation of individual doses in order to limit inequity between people exposed. An Action Level of 1 mSv per annum is used in this sense for the identification of sites that require farther investigation and potentially remediation. On the basis of this individual dose related criterion secondary reference levels for directly measurable quantities such as activity concentrations have been derived, facilitating the practical application of the Action Level Concept. Decisions on remedial action, in particular for complex sites, are based on justification and optimization analyses. These take into consideration a variety of different contaminants and risks to humans and the environment arising on various exposure pathways. The optimization analyses, carried-out to identify optimal remediation options, address radiological risks as well as short and long term costs within a cost-benefit analysis framework. Other relevant factors of influence, e.g. chemical risks or ecological damage, are incorporated as well. Comprehensive methodologies utilizing probabilistic methods have been developed to assess site conditions and possible remediation options on this basis. The approaches developed are applied within the German uranium mine rehabilitation program

  6. Dose optimization of gadolinium DTPA. An inter-individual study of patients with intracranial tumours

    International Nuclear Information System (INIS)

    Schubeus, P.; Schoerner, W.; Haustein, J.; Hosten, N.; Niendorf, H.P.; Felix, R.; Schering AG, Berlin

    1990-01-01

    The diagnostic value of various doses of Gd-DTPA was compared intraindividually. Thirty-three patients with cerebral tumours were randomly allocated to three groups. Group 1 was given a dose of 0.025, group 2 a dose of 0.05 and group 3 a dose of 0.1 mmol GD-DTPA/kg body weight. Following administration of Gd-DTPA the average tumor/brain contrast in group 1 was -4.5%, in group 2 +8.4% and in group 3 +43.0%. Diagnostically useful tumour delineation was obtained in two out of 11 in group 1, in seven out of 11 in group 2 and in 10 out of 11 in group 3. A further increase in the dose to 0.2 mmol/kg body weight in group 3 resulted in a further increase in tumour/brain contrast of +62.5% and improved tumour deliniation in one case. As a result of these findings a dose of 0.1 mmol Gd-DTPA/kg body weight is reommended for the routine investigation of intracranial tumours. (orig.) [de

  7. Contribution to optimization of individual doses of workers in shipment of generator technetium-99m

    International Nuclear Information System (INIS)

    Fonseca, Lizandra Pereira de Souza

    2010-01-01

    The Instituto de Pesquisas Energeticas e Nucleares, IPEN, radiopharmaceuticals research and produce that are distributed throughout Brazil, currently the radiopharmaceutical with the largest number of packaged shipped per year and with the highest total activity is the 99m technetium generator. To reduce individual doses for workers involved in the production of radiopharmaceuticals was performed a study of radiological protection optimization in the shipment process of technetium generator, using the techniques: differential cost-benefit analysis, integral cost-benefit analysis, multi-attribute utility analysis and multi-criteria outranking analysis. With changes in the configuration of packed for generator dispatch and with the acquirement of a mat transporter it was possible establish 4 protection options. The attributes considered were the protection cost, collective dose, individual dose and physical effort by worker to move the package without the mat. To assess the robustness of analytical solutions found with the techniques used in the optimization we performed a sensitivity study and found that option 3 is more robust than option 1, which is no longer the analytical solution with an increase of R$ 20.000,00 the cost of protection. (author)

  8. Optimization of the radiation protection: the value of Sv personnel for the occupational doses

    International Nuclear Information System (INIS)

    Sollet SaNudo, E.; Carmena Servet, P.

    1997-01-01

    Publication 60 of the International Commission on Radiological Protection (ICRP) points out that most of the methods used in the optimization tend to emphasize the benefits and the detriment to society. The benefits and the detriments are unlikely to be distributed through the society in the same way. Optimization of protection may thus introduce a substantial inequity between one individual and another. To avoid this, the optimization principle is now formulated by ICRP as follows. The magnitude of the individual doses, the number of people exposed, and the likelihood of incurring exposures where are not certain to be received should be kept as low as reasonably achievable, economic and social factors being taken into account. This procedure should be constrained by restrictions on the doses to individuals or the risks to individuals, so as to limit the inequity likely to result from the inherent economic and social judgments. Beyond the optimal reduction of the collective exposure, now ICRP 60 recommends to reduce the number of persons exposed and the scatter of individual exposures. It is implicit in this recommendation that the high priority must be given to the highest individual exposures. Now the decision is made; in case of conflict, reduction of individual exposures should go first than reduction of collective exposures. In order to implement the optimization principle, this article suggests the introduction of a system to compute the reference monetary values of the person, sievert satisfying the new ICRP recommendations and ensuring a global coherence within the whole system of radiological protection. (Author) 13 refs

  9. Analgesic and sedative effects of perioperative gabapentin in total knee arthroplasty A randomized, double-blind, placebo-controlled, dose-finding study

    DEFF Research Database (Denmark)

    Lunn, Troels Haxholdt; Husted, Henrik; Laursen, Mogens Berg

    2015-01-01

    (1:1:1) to either gabapentin 1300 mg/d (group A), gabapentin 900 mg/d (group B), or placebo (group C) daily from 2 hours preoperatively to postoperative day 6 in addition to a standardized multimodal analgesic regime. The primary outcome was pain upon ambulation 24 hours after surgery......Gabapentin has shown acute postoperative analgesic effects, but the optimal dose and procedure-specific benefits vs harm have not been clarified. In this randomized, double-blind, placebo-controlled dose-finding study, 300 opioid-naive patients scheduled for total knee arthroplasty were randomized......, and the secondary outcome was sedation 6 hours after surgery. Other outcomes were overall pain during well-defined mobilizations and at rest and sedation during the first 48 hours and from days 2-6, morphine use, anxiety, depression, sleep quality, and nausea, vomiting, dizziness, concentration difficulty, headache...

  10. Characterization and validation of the thorax phantom Lungman for dose assessment in chest radiography optimization studies.

    Science.gov (United States)

    Rodríguez Pérez, Sunay; Marshall, Nicholas William; Struelens, Lara; Bosmans, Hilde

    2018-01-01

    This work concerns the validation of the Kyoto-Kagaku thorax anthropomorphic phantom Lungman for use in chest radiography optimization. The equivalence in terms of polymethyl methacrylate (PMMA) was established for the lung and mediastinum regions of the phantom. Patient chest examination data acquired under automatic exposure control were collated over a 2-year period for a standard x-ray room. Parameters surveyed included exposure index, air kerma area product, and exposure time, which were compared with Lungman values. Finally, a voxel model was developed by segmenting computed tomography images of the phantom and implemented in PENELOPE/penEasy Monte Carlo code to compare phantom tissue-equivalent materials with materials from ICRP Publication 89 in terms of organ dose. PMMA equivalence varied depending on tube voltage, from 9.5 to 10.0 cm and from 13.5 to 13.7 cm, for the lungs and mediastinum regions, respectively. For the survey, close agreement was found between the phantom and the patients' median values (deviations lay between 8% and 14%). Differences in lung doses, an important organ for optimization in chest radiography, were below 13% when comparing the use of phantom tissue-equivalent materials versus ICRP materials. The study confirms the value of the Lungman for chest optimization studies.

  11. Reducing Dose Uncertainty for Spot-Scanning Proton Beam Therapy of Moving Tumors by Optimizing the Spot Delivery Sequence

    International Nuclear Information System (INIS)

    Li, Heng; Zhu, X. Ronald; Zhang, Xiaodong

    2015-01-01

    Purpose: To develop and validate a novel delivery strategy for reducing the respiratory motion–induced dose uncertainty of spot-scanning proton therapy. Methods and Materials: The spot delivery sequence was optimized to reduce dose uncertainty. The effectiveness of the delivery sequence optimization was evaluated using measurements and patient simulation. One hundred ninety-one 2-dimensional measurements using different delivery sequences of a single-layer uniform pattern were obtained with a detector array on a 1-dimensional moving platform. Intensity modulated proton therapy plans were generated for 10 lung cancer patients, and dose uncertainties for different delivery sequences were evaluated by simulation. Results: Without delivery sequence optimization, the maximum absolute dose error can be up to 97.2% in a single measurement, whereas the optimized delivery sequence results in a maximum absolute dose error of ≤11.8%. In patient simulation, the optimized delivery sequence reduces the mean of fractional maximum absolute dose error compared with the regular delivery sequence by 3.3% to 10.6% (32.5-68.0% relative reduction) for different patients. Conclusions: Optimizing the delivery sequence can reduce dose uncertainty due to respiratory motion in spot-scanning proton therapy, assuming the 4-dimensional CT is a true representation of the patients' breathing patterns.

  12. Standardization and Optimization of Computed Tomography Protocols to Achieve Low-Dose

    Science.gov (United States)

    Chin, Cynthia; Cody, Dianna D.; Gupta, Rajiv; Hess, Christopher P.; Kalra, Mannudeep K.; Kofler, James M.; Krishnam, Mayil S.; Einstein, Andrew J.

    2014-01-01

    The increase in radiation exposure due to CT scans has been of growing concern in recent years. CT scanners differ in their capabilities and various indications require unique protocols, but there remains room for standardization and optimization. In this paper we summarize approaches to reduce dose, as discussed in lectures comprising the first session of the 2013 UCSF Virtual Symposium on Radiation Safety in Computed Tomography. The experience of scanning at low dose in different body regions, for both diagnostic and interventional CT procedures, is addressed. An essential primary step is justifying the medical need for each scan. General guiding principles for reducing dose include tailoring a scan to a patient, minimizing scan length, use of tube current modulation and minimizing tube current, minimizing-tube potential, iterative reconstruction, and periodic review of CT studies. Organized efforts for standardization have been spearheaded by professional societies such as the American Association of Physicists in Medicine. Finally, all team members should demonstrate an awareness of the importance of minimizing dose. PMID:24589403

  13. Using rapidly-exploring random tree-based algorithms to find smooth and optimal trajectories

    CSIR Research Space (South Africa)

    Matebese, B

    2012-10-01

    Full Text Available -exploring random tree-based algorithms to fi nd smooth and optimal trajectories B MATEBESE1, MK BANDA2 AND S UTETE1 1CSIR Modelling and Digital Science, PO Box 395, Pretoria, South Africa, 0001 2Department of Applied Mathematics, Stellenbosch University... and complex environments. The RRT algorithm is the most popular and has the ability to find a feasible solution faster than other algorithms. The drawback of using RRT is that, as the number of samples increases, the probability that the algorithm converges...

  14. Robustness of IPSA optimized high-dose-rate prostate brachytherapy treatment plans to catheter displacements.

    Science.gov (United States)

    Poder, Joel; Whitaker, May

    2016-06-01

    Inverse planning simulated annealing (IPSA) optimized brachytherapy treatment plans are characterized with large isolated dwell times at the first or last dwell position of each catheter. The potential of catheter shifts relative to the target and organs at risk in these plans may lead to a more significant change in delivered dose to the volumes of interest relative to plans with more uniform dwell times. This study aims to determine if the Nucletron Oncentra dwell time deviation constraint (DTDC) parameter can be optimized to improve the robustness of high-dose-rate (HDR) prostate brachytherapy plans to catheter displacements. A set of 10 clinically acceptable prostate plans were re-optimized with a DTDC parameter of 0 and 0.4. For each plan, catheter displacements of 3, 7, and 14 mm were retrospectively applied and the change in dose volume histogram (DVH) indices and conformity indices analyzed. The robustness of clinically acceptable prostate plans to catheter displacements in the caudal direction was found to be dependent on the DTDC parameter. A DTDC value of 0 improves the robustness of planning target volume (PTV) coverage to catheter displacements, whereas a DTDC value of 0.4 improves the robustness of the plans to changes in hotspots. The results indicate that if used in conjunction with a pre-treatment catheter displacement correction protocol and a tolerance of 3 mm, a DTDC value of 0.4 may produce clinically superior plans. However, the effect of the DTDC parameter in plan robustness was not observed to be as strong as initially suspected.

  15. On the sensitivity of IMRT dose optimization to the mathematical form of a biological imaging-based prescription function

    International Nuclear Information System (INIS)

    Bowen, Stephen R; Bentzen, Soeren M; Jeraj, Robert; Flynn, Ryan T

    2009-01-01

    Voxel-based prescriptions of deliberately non-uniform dose distributions based on molecular imaging, so-called dose painting or theragnostic radiation therapy, require specification of a transformation that maps the image data intensities to prescribed doses. However, the functional form of this transformation is currently unknown. An investigation into the sensitivity of optimized dose distributions resulting from several possible prescription functions was conducted. Transformations between the radiotracer activity concentrations from Cu-ATSM PET images, as a surrogate of tumour hypoxia, and dose prescriptions were implemented to yield weighted distributions of prescribed dose boosts in high uptake regions. Dose escalation was constrained to reflect clinically realistic whole tumour doses and constant normal tissue doses. Optimized heterogeneous dose distributions were found by minimizing a voxel-by-voxel quadratic objective function in which all tumour voxels were given equal weight. Prescriptions based on a polynomial mapping function were found to be least constraining on their optimized plans, while prescriptions based on a sigmoid mapping function were the most demanding to deliver. A prescription formalism that fixed integral dose was less sensitive to errors in the choice of the mapping function than one that boosted integral dose. Integral doses to normal tissue and critical structures were insensitive to the shape of the prescription function. Planned target dose conformity improved with smaller beamlet dimensions until the inherent spatial resolution of the functional image was matched. Clinical implementation of dose painting depends on advances in absolute quantification of functional images and improvements in delivery techniques over smaller spatial scales.

  16. Optimal path-finding through mental exploration based on neural energy field gradients.

    Science.gov (United States)

    Wang, Yihong; Wang, Rubin; Zhu, Yating

    2017-02-01

    Rodent animal can accomplish self-locating and path-finding task by forming a cognitive map in the hippocampus representing the environment. In the classical model of the cognitive map, the system (artificial animal) needs large amounts of physical exploration to study spatial environment to solve path-finding problems, which costs too much time and energy. Although Hopfield's mental exploration model makes up for the deficiency mentioned above, the path is still not efficient enough. Moreover, his model mainly focused on the artificial neural network, and clear physiological meanings has not been addressed. In this work, based on the concept of mental exploration, neural energy coding theory has been applied to the novel calculation model to solve the path-finding problem. Energy field is constructed on the basis of the firing power of place cell clusters, and the energy field gradient can be used in mental exploration to solve path-finding problems. The study shows that the new mental exploration model can efficiently find the optimal path, and present the learning process with biophysical meaning as well. We also analyzed the parameters of the model which affect the path efficiency. This new idea verifies the importance of place cell and synapse in spatial memory and proves that energy coding is effective to study cognitive activities. This may provide the theoretical basis for the neural dynamics mechanism of spatial memory.

  17. Longevity extension of worker honey bees (Apis mellifera) by royal jelly: optimal dose and active ingredient

    OpenAIRE

    Yang, Wenchao; Tian, Yuanyuan; Han, Mingfeng; Miao, Xiaoqing

    2017-01-01

    In the Western honey bee, Apis mellifera, queens and workers have different longevity although they share the same genome. Queens consume royal jelly (RJ) as the main food throughout their life, including as adults, but workers only eat worker jelly when they are larvae less than 3 days old. In order to explore the effect of RJ and the components affecting longevity of worker honey bees, we first determined the optimal dose for prolonging longevity of workers as 4% RJ in 50% sucrose solution,...

  18. Optimization of hybrid iterative reconstruction level and evaluation of image quality and radiation dose for pediatric cardiac computed tomography angiography

    International Nuclear Information System (INIS)

    Yang, Lin; Liang, Changhong; Zhuang, Jian; Huang, Meiping; Liu, Hui

    2017-01-01

    Hybrid iterative reconstruction can reduce image noise and produce better image quality compared with filtered back-projection (FBP), but few reports describe optimization of the iteration level. We optimized the iteration level of iDose"4 and evaluated image quality for pediatric cardiac CT angiography. Children (n = 160) with congenital heart disease were enrolled and divided into full-dose (n = 84) and half-dose (n = 76) groups. Four series were reconstructed using FBP, and iDose"4 levels 2, 4 and 6; we evaluated subjective quality of the series using a 5-grade scale and compared the series using a Kruskal-Wallis H test. For FBP and iDose"4-optimal images, we compared contrast-to-noise ratios (CNR) and size-specific dose estimates (SSDE) using a Student's t-test. We also compared diagnostic-accuracy of each group using a Kruskal-Wallis H test. Mean scores for iDose"4 level 4 were the best in both dose groups (all P < 0.05). CNR was improved in both groups with iDose"4 level 4 as compared with FBP. Mean decrease in SSDE was 53% in the half-dose group. Diagnostic accuracy for the four datasets were in the range 92.6-96.2% (no statistical difference). iDose"4 level 4 was optimal for both the full- and half-dose groups. Protocols with iDose"4 level 4 allowed 53% reduction in SSDE without significantly affecting image quality and diagnostic accuracy. (orig.)

  19. Optimization of hybrid iterative reconstruction level and evaluation of image quality and radiation dose for pediatric cardiac computed tomography angiography

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lin; Liang, Changhong [Southern Medical University, Guangzhou (China); Guangdong Academy of Medical Sciences, Dept. of Radiology, Guangdong General Hospital, Guangzhou (China); Zhuang, Jian [Guangdong Academy of Medical Sciences, Dept. of Cardiac Surgery, Guangdong Cardiovascular Inst., Guangdong Provincial Key Lab. of South China Structural Heart Disease, Guangdong General Hospital, Guangzhou (China); Huang, Meiping [Guangdong Academy of Medical Sciences, Dept. of Radiology, Guangdong General Hospital, Guangzhou (China); Guangdong Academy of Medical Sciences, Dept. of Catheterization Lab, Guangdong Cardiovascular Inst., Guangdong Provincial Key Lab. of South China Structural Heart Disease, Guangdong General Hospital, Guangzhou (China); Liu, Hui [Guangdong Academy of Medical Sciences, Dept. of Radiology, Guangdong General Hospital, Guangzhou (China)

    2017-01-15

    Hybrid iterative reconstruction can reduce image noise and produce better image quality compared with filtered back-projection (FBP), but few reports describe optimization of the iteration level. We optimized the iteration level of iDose{sup 4} and evaluated image quality for pediatric cardiac CT angiography. Children (n = 160) with congenital heart disease were enrolled and divided into full-dose (n = 84) and half-dose (n = 76) groups. Four series were reconstructed using FBP, and iDose{sup 4} levels 2, 4 and 6; we evaluated subjective quality of the series using a 5-grade scale and compared the series using a Kruskal-Wallis H test. For FBP and iDose{sup 4}-optimal images, we compared contrast-to-noise ratios (CNR) and size-specific dose estimates (SSDE) using a Student's t-test. We also compared diagnostic-accuracy of each group using a Kruskal-Wallis H test. Mean scores for iDose{sup 4} level 4 were the best in both dose groups (all P < 0.05). CNR was improved in both groups with iDose{sup 4} level 4 as compared with FBP. Mean decrease in SSDE was 53% in the half-dose group. Diagnostic accuracy for the four datasets were in the range 92.6-96.2% (no statistical difference). iDose{sup 4} level 4 was optimal for both the full- and half-dose groups. Protocols with iDose{sup 4} level 4 allowed 53% reduction in SSDE without significantly affecting image quality and diagnostic accuracy. (orig.)

  20. Use of a channelized Hotelling observer to assess CT image quality and optimize dose reduction for iteratively reconstructed images.

    Science.gov (United States)

    Favazza, Christopher P; Ferrero, Andrea; Yu, Lifeng; Leng, Shuai; McMillan, Kyle L; McCollough, Cynthia H

    2017-07-01

    The use of iterative reconstruction (IR) algorithms in CT generally decreases image noise and enables dose reduction. However, the amount of dose reduction possible using IR without sacrificing diagnostic performance is difficult to assess with conventional image quality metrics. Through this investigation, achievable dose reduction using a commercially available IR algorithm without loss of low contrast spatial resolution was determined with a channelized Hotelling observer (CHO) model and used to optimize a clinical abdomen/pelvis exam protocol. A phantom containing 21 low contrast disks-three different contrast levels and seven different diameters-was imaged at different dose levels. Images were created with filtered backprojection (FBP) and IR. The CHO was tasked with detecting the low contrast disks. CHO performance indicated dose could be reduced by 22% to 25% without compromising low contrast detectability (as compared to full-dose FBP images) whereas 50% or more dose reduction significantly reduced detection performance. Importantly, default settings for the scanner and protocol investigated reduced dose by upward of 75%. Subsequently, CHO-based protocol changes to the default protocol yielded images of higher quality and doses more consistent with values from a larger, dose-optimized scanner fleet. CHO assessment provided objective data to successfully optimize a clinical CT acquisition protocol.

  1. Dose finding of melatonin for chronic idiopathic childhood sleep onset insomnia: an RCT.

    NARCIS (Netherlands)

    van Geijlswijk, I.M.; van der Heijden, K.B.; Egberts, A.C.G.; Korzilius, H.P.; Smits, M.G.

    2010-01-01

    RATIONALE: Pharmacokinetics of melatonin in children might differ from that in adults. OBJECTIVES: This study aims to establish a dose-response relationship for melatonin in advancing dim light melatonin onset (DLMO), sleep onset (SO), and reducing sleep onset latency (SOL) in children between 6 and

  2. OEDIPE, a software for personalized Monte Carlo dosimetry and treatment planning optimization in nuclear medicine: absorbed dose and biologically effective dose considerations

    International Nuclear Information System (INIS)

    Petitguillaume, A.; Broggio, D.; Franck, D.; Desbree, A.; Bernardini, M.; Labriolle Vaylet, C. de

    2014-01-01

    For targeted radionuclide therapies, treatment planning usually consists of the administration of standard activities without accounting for the patient-specific activity distribution, pharmacokinetics and dosimetry to organs at risk. The OEDIPE software is a user-friendly interface which has an automation level suitable for performing personalized Monte Carlo 3D dosimetry for diagnostic and therapeutic radionuclide administrations. Mean absorbed doses to regions of interest (ROIs), isodose curves superimposed on a personalized anatomical model of the patient and dose-volume histograms can be extracted from the absorbed dose 3D distribution. Moreover, to account for the differences in radiosensitivity between tumoral and healthy tissues, additional functionalities have been implemented to calculate the 3D distribution of the biologically effective dose (BED), mean BEDs to ROIs, isoBED curves and BED-volume histograms along with the Equivalent Uniform Biologically Effective Dose (EUD) to ROIs. Finally, optimization tools are available for treatment planning optimization using either the absorbed dose or BED distributions. These tools enable one to calculate the maximal injectable activity which meets tolerance criteria to organs at risk for a chosen fractionation protocol. This paper describes the functionalities available in the latest version of the OEDIPE software to perform personalized Monte Carlo dosimetry and treatment planning optimization in targeted radionuclide therapies. (authors)

  3. Radiobiological impact of dose calculation algorithms on biologically optimized IMRT lung stereotactic body radiation therapy plans

    International Nuclear Information System (INIS)

    Liang, X.; Penagaricano, J.; Zheng, D.; Morrill, S.; Zhang, X.; Corry, P.; Griffin, R. J.; Han, E. Y.; Hardee, M.; Ratanatharathom, V.

    2016-01-01

    The aim of this study is to evaluate the radiobiological impact of Acuros XB (AXB) vs. Anisotropic Analytic Algorithm (AAA) dose calculation algorithms in combined dose-volume and biological optimized IMRT plans of SBRT treatments for non-small-cell lung cancer (NSCLC) patients. Twenty eight patients with NSCLC previously treated SBRT were re-planned using Varian Eclipse (V11) with combined dose-volume and biological optimization IMRT sliding window technique. The total dose prescribed to the PTV was 60 Gy with 12 Gy per fraction. The plans were initially optimized using AAA algorithm, and then were recomputed using AXB using the same MUs and MLC files to compare with the dose distribution of the original plans and assess the radiobiological as well as dosimetric impact of the two different dose algorithms. The Poisson Linear-Quadatric (PLQ) and Lyman-Kutcher-Burman (LKB) models were used for estimating the tumor control probability (TCP) and normal tissue complication probability (NTCP), respectively. The influence of the model parameter uncertainties on the TCP differences and the NTCP differences between AAA and AXB plans were studied by applying different sets of published model parameters. Patients were grouped into peripheral and centrally-located tumors to evaluate the impact of tumor location. PTV dose was lower in the re-calculated AXB plans, as compared to AAA plans. The median differences of PTV(D 95% ) were 1.7 Gy (range: 0.3, 6.5 Gy) and 1.0 Gy (range: 0.6, 4.4 Gy) for peripheral tumors and centrally-located tumors, respectively. The median differences of PTV(mean) were 0.4 Gy (range: 0.0, 1.9 Gy) and 0.9 Gy (range: 0.0, 4.3 Gy) for peripheral tumors and centrally-located tumors, respectively. TCP was also found lower in AXB-recalculated plans compared with the AAA plans. The median (range) of the TCP differences for 30 month local control were 1.6 % (0.3 %, 5.8 %) for peripheral tumors and 1.3 % (0.5 %, 3.4 %) for centrally located tumors. The lower

  4. Optimal Dose of Epidural Dexmedetomidine Added to Ropivacaine for Epidural Labor Analgesia: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Zhang Wangping

    2017-01-01

    Full Text Available Background. Dexmedetomidine combined with local anesthetics can decrease the concentration of epidural ropivacaine. However, the optimal dose of epidural dexmedetomidine combined with ropivacaine for labor analgesia is still uncertain. This study investigated the effect of adding different dose of epidural dexmedetomidine to ropivacaine during epidural labor analgesia. Methods. One hundred women were randomly assigned to one of the four groups (Groups A, B, C, and D received 0.25, 0.5, 0.75, and 1 μg/ml of dexmedetomidine plus 0.1% ropivacaine, resp.. The onset of epidural anesthesia and stages of labor were studied, and pain was assessed using a visual analogue scale (VAS. Hemodynamic parameters and fetal heart rate were monitored. Apgar scores and umbilical artery pH were recorded. The side effects, if any, were recorded also. Results. The addition of 0.25, 0.5, and 0.75 μg/ml of dexmedetomidine to 0.1% ropivacaine provided safe and effective analgesia, but 1 μg/ml of dexmedetomidine resulted in increasing incidence of motor block. The hemodynamic parameters were similar between groups (P>0.05. Side effects in Group D were significantly higher than those in the other three groups (P<0.05. Conclusions. When dexmedetomidine is combined with 0.1% ropivacaine, the optimal concentration of dexmedetomidine is 0.5 μg/ml for epidural labor analgesia (this trial is registered with ChiCTR-OPC-16008548.

  5. Application of PK/PD Modeling in Veterinary Field: Dose Optimization and Drug Resistance Prediction

    Directory of Open Access Journals (Sweden)

    Ijaz Ahmad

    2016-01-01

    Full Text Available Among veterinary drugs, antibiotics are frequently used. The true mean of antibiotic treatment is to administer dose of drug that will have enough high possibility of attaining the preferred curative effect, with adequately low chance of concentration associated toxicity. Rising of antibacterial resistance and lack of novel antibiotic is a global crisis; therefore there is an urgent need to overcome this problem. Inappropriate antibiotic selection, group treatment, and suboptimal dosing are mostly responsible for the mentioned problem. One approach to minimizing the antibacterial resistance is to optimize the dosage regimen. PK/PD model is important realm to be used for that purpose from several years. PK/PD model describes the relationship between drug potency, microorganism exposed to drug, and the effect observed. Proper use of the most modern PK/PD modeling approaches in veterinary medicine can optimize the dosage for patient, which in turn reduce toxicity and reduce the emergence of resistance. The aim of this review is to look at the existing state and application of PK/PD in veterinary medicine based on in vitro, in vivo, healthy, and disease model.

  6. Dose finding of melatonin for chronic idiopathic childhood sleep onset insomnia: an RCT

    OpenAIRE

    van Geijlswijk, Ingeborg M.; van der Heijden, Kristiaan B.; Egberts, A. C. G.; Korzilius, Hubert P. L. M.; Smits, Marcel G.

    2010-01-01

    RATIONALE: Pharmacokinetics of melatonin in children might differ from that in adults. OBJECTIVES: This study aims to establish a dose-response relationship for melatonin in advancing dim light melatonin onset (DLMO), sleep onset (SO), and reducing sleep onset latency (SOL) in children between 6 and 12 years with chronic sleep onset insomnia (CSOI). METHODS: The method used for this study is the randomized, placebo-controlled double-blind trial. Children with CSOI (n = 72) received either mel...

  7. Peritoneal Nebulization of Ropivacaine during Laparoscopic Cholecystectomy: Dose Finding and Pharmacokinetic Study

    Directory of Open Access Journals (Sweden)

    Massimo Allegri

    2017-01-01

    Full Text Available Background. Intraperitoneal nebulization of ropivacaine reduces postoperative pain and morphine consumption after laparoscopic surgery. The aim of this multicenter double-blind randomized controlled trial was to assess the efficacy of different doses and dose-related absorption of ropivacaine when nebulized in the peritoneal cavity during laparoscopic cholecystectomy. Methods. Patients were randomized to receive 50, 100, or 150 mg of ropivacaine 1% by peritoneal nebulization through a nebulizer. Morphine consumption, pain intensity in the abdomen, wound and shoulder, time to unassisted ambulation, discharge time, and adverse effects were collected during the first 48 hours after surgery. The pharmacokinetics of ropivacaine was evaluated using high performance liquid chromatography. Results. Nebulization of 50 mg of ropivacaine had the same effect of 100 or 150 mg in terms of postoperative morphine consumption, shoulder pain, postoperative nausea and vomiting, activity resumption, and hospital discharge timing (>0.05. Plasma concentrations did not reach toxic levels in any patient, and no significant differences were observed between groups (P>0.05. Conclusions. There is no enhancement in analgesic efficacy with higher doses of nebulized ropivacaine during laparoscopic cholecystectomy. When administered with a microvibration-based aerosol humidification system, the pharmacokinetics of ropivacaine is constant and maintains an adequate safety profile for each dosage tested.

  8. Autopsy findings in surgical-radiotherapeutically treated bladder carcinoma - conclusions for optimization of radiotherapy

    International Nuclear Information System (INIS)

    Fueller, J.; Kob, D.; Fritzsche, V.

    1989-01-01

    Autopsy findings in patients with bladder carcinoma, treated by combined operation and radiotherapy, revealed tendencies of tumor spread as well as complications and late effects of radiotherapy. In 24.5% of the cases tumor tissue was found within the bladder and in 30.5% within the minor pelvis. Metastases were found in 24.1% in iliac lymph nodes, in 21.3% in abdominal lymph nodes. Liver, lungs, bones, and kidneys are main organs for hematological metastasizing. Little or undifferentiated carcinomas and squamous cell carcinomas showed a greater tendency to metastasize than highly and medium-differentiated ureteral carcinomas. The least radiotherapeutical complications and late effects were found in a fractionation with daily 1.5 Gy and a total dose of 60 Gy. (author)

  9. Dual-energy contrast-enhanced breast tomosynthesis: optimization of beam quality for dose and image quality

    International Nuclear Information System (INIS)

    Samei, Ehsan; Saunders, Robert S Jr

    2011-01-01

    Dual-energy contrast-enhanced breast tomosynthesis is a promising technique to obtain three-dimensional functional information from the breast with high resolution and speed. To optimize this new method, this study searched for the beam quality that maximized image quality in terms of mass detection performance. A digital tomosynthesis system was modeled using a fast ray-tracing algorithm, which created simulated projection images by tracking photons through a voxelized anatomical breast phantom containing iodinated lesions. The single-energy images were combined into dual-energy images through a weighted log subtraction process. The weighting factor was optimized to minimize anatomical noise, while the dose distribution was chosen to minimize quantum noise. The dual-energy images were analyzed for the signal difference to noise ratio (SdNR) of iodinated masses. The fast ray-tracing explored 523 776 dual-energy combinations to identify which yields optimum mass SdNR. The ray-tracing results were verified using a Monte Carlo model for a breast tomosynthesis system with a selenium-based flat-panel detector. The projection images from our voxelized breast phantom were obtained at a constant total glandular dose. The projections were combined using weighted log subtraction and reconstructed using commercial reconstruction software. The lesion SdNR was measured in the central reconstructed slice. The SdNR performance varied markedly across the kVp and filtration space. Ray-tracing results indicated that the mass SdNR was maximized with a high-energy tungsten beam at 49 kVp with 92.5 μm of copper filtration and a low-energy tungsten beam at 49 kVp with 95 μm of tin filtration. This result was consistent with Monte Carlo findings. This mammographic technique led to a mass SdNR of 0.92 ± 0.03 in the projections and 3.68 ± 0.19 in the reconstructed slices. These values were markedly higher than those for non-optimized techniques. Our findings indicate that dual

  10. Optimizing fluorescently tethered Hsp90 inhibitor dose for maximal specific uptake by breast tumors

    Science.gov (United States)

    Crouch, Brian T.; Duer, Joy; Wang, Roujia; Gallagher, Jennifer; Hall, Allison; Soo, Mary Scott; Hughes, Philip; Haystead, Timothy A. J.; Ramanujam, Nirmala

    2018-03-01

    Despite improvements in surgical resection, 20-40% of patients undergoing breast conserving surgery require at least one additional re-excision. Leveraging the unique surface expression of heat shock protein 90 (Hsp90), a chaperone protein involved in several key hallmarks of cancer, in breast cancer provides an exciting opportunity to identify residual disease during surgery. We developed a completely non-destructive strategy using HS-27, a fluorescently-tethered Hsp90 inhibitor, to assay surface Hsp90 expression on intact tissue specimens using a fluorescence microendoscope with a field of view of 750 μm and subcellular resolution of 4 μm. HS-27 consists of an FDA approved Hsp90 inhibitor tethered to fluorescein isothiocyanate (EX 488nm, EM 525nm). Here, we optimized ex vivo HS-27 administration in pre-clinical breast cancer models and validated our approach on 21 patients undergoing standard of care ultrasound guided core needle biopsy. HS-27 administration time was fixed at 1- minute to minimize imaging impact on clinical workflow. HS-27 and HS-217 (non-specific control) doses were modulated from 1 μM up to 100 μM to identify the dose maximizing the ratio of specific uptake (HS-27 fluorescence) to non-specific uptake (HS-217 fluorescence). The specificity ratio was maximized at 100 μM and was significantly greater than all other doses (pcancer makes this technology attractive for assessing tumor margins, as one agent can be used for all subtypes.

  11. Optimization of the therapeutic dose of 131I for thyroid differentiated carcinoma

    International Nuclear Information System (INIS)

    Lima, Fabiana Farias de

    2002-09-01

    organs, such as the narrow and gonads, of up to 78.4%.Possible benefits to the institution also include the use of less radioactive material and a reduction in radiation exposures to the staff during the manipulation and administration of the 131 I. To facilitate the calculations of the optimum therapeutic activity of 131 I for individual patients, a simple and fast dose planning program was created (PlanDose). The program has been set up to evaluate thryroid remant ablation, but it can also be used for the calculation of the activity to be administered for treatment of hyperthyroidism. This protocol of calculated optimal patient-specific 131 I. activities allows a better determination of the necessary ablative dose for patients with differentiated carcinoma of the thyroid, and is an example of optimizing the practice of radiation protection. (author)

  12. Inverse optimization of objective function weights for treatment planning using clinical dose-volume histograms

    Science.gov (United States)

    Babier, Aaron; Boutilier, Justin J.; Sharpe, Michael B.; McNiven, Andrea L.; Chan, Timothy C. Y.

    2018-05-01

    We developed and evaluated a novel inverse optimization (IO) model to estimate objective function weights from clinical dose-volume histograms (DVHs). These weights were used to solve a treatment planning problem to generate ‘inverse plans’ that had similar DVHs to the original clinical DVHs. Our methodology was applied to 217 clinical head and neck cancer treatment plans that were previously delivered at Princess Margaret Cancer Centre in Canada. Inverse plan DVHs were compared to the clinical DVHs using objective function values, dose-volume differences, and frequency of clinical planning criteria satisfaction. Median differences between the clinical and inverse DVHs were within 1.1 Gy. For most structures, the difference in clinical planning criteria satisfaction between the clinical and inverse plans was at most 1.4%. For structures where the two plans differed by more than 1.4% in planning criteria satisfaction, the difference in average criterion violation was less than 0.5 Gy. Overall, the inverse plans were very similar to the clinical plans. Compared with a previous inverse optimization method from the literature, our new inverse plans typically satisfied the same or more clinical criteria, and had consistently lower fluence heterogeneity. Overall, this paper demonstrates that DVHs, which are essentially summary statistics, provide sufficient information to estimate objective function weights that result in high quality treatment plans. However, as with any summary statistic that compresses three-dimensional dose information, care must be taken to avoid generating plans with undesirable features such as hotspots; our computational results suggest that such undesirable spatial features were uncommon. Our IO-based approach can be integrated into the current clinical planning paradigm to better initialize the planning process and improve planning efficiency. It could also be embedded in a knowledge-based planning or adaptive radiation therapy framework to

  13. The Clinical Value of Non-Coplanar Photon Beams in Biologically Optimized Intensity Modulated Dose Delivery on Deep-Seated Tumours

    International Nuclear Information System (INIS)

    Ferreira, Brigida C.; Svensson, Roger; Loef, Johan; Brahme, Anders

    2003-01-01

    The aim of the present study is to compare the merits of different radiobiologically optimized treatment techniques using few-field planar and non-coplanar dose delivery on an advanced cancer of the cervix, with rectum and bladder as principal organs at risk. Classically, the rational for using non-coplanar beams is to minimize the overlap of beam entrance and exit regions and to find new beam directions avoiding organs at risk, in order to reduce damage to sensitive normal tissues. Two four-beam configurations have been extensively studied. The first consists of three evenly spaced coplanar beams and a fourth non-coplanar beam. A second tetrahedral-like configuration, with two symmetric non-coplanar beams at the same gantry angle and two coplanar beams, with optimized beam directions, was also tested. The present study shows that when radiobiologically optimized intensity modulated beams are applied to such a geometry, only a marginal increase in the treatment outcome can be achieved by non-coplanar beams compared to the optimal coplanar treatment. The main reason for this result is that the high dose in the beam-overlap regions is already optimally reduced by biologically optimized intensity modulation in the plane. The large number of degrees of freedom already incorporated in the treatment by the use of intensity modulation and radiobiological optimization, leads to the saturation of the benefit acquired by a further increase in the degrees of freedom with non-coplanar beams. In conclusion, the use coplanar of radiobiologically optimized intensity modulation simplifies the dose delivery, reducing the need for non-coplanar beam portals

  14. TH-CD-202-08: Feasibility Study of Planning Phase Optimization Using Patient Geometry-Driven Information for Better Dose Sparing of Organ at Risks

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S; Kim, D; Kim, T; Park, S; Shin, D; Kim, K; Cho, M; Suh, T [Department of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of); Kim, S [Virginia Commonwealth University, Richmond, VA (United States)

    2016-06-15

    Purpose: To propose a simple and effective cost value function to search optimal planning phase (gating window) and demonstrated its feasibility for respiratory correlated radiation therapy. Methods: We acquired 4DCT of 10 phases for 10 lung patients who have tumor located near OARs such as esophagus, heart, and spinal cord (i.e., central lung cancer patients). A simplified mathematical optimization function was established by using overlap volume histogram (OVH) between the target and organ at risk (OAR) at each phase and the tolerance dose of selected OARs to achieve surrounding OARs dose-sparing. For all patients and all phases, delineation of the target volume and selected OARs (esophagus, heart, and spinal cord) was performed (by one observer to avoid inter-observer variation), then cost values were calculated for all phases. After the breathing phases were ranked according to cost value function, the relationship between score and dose distribution at highest and lowest cost value phases were evaluated by comparing the mean/max dose. Results: A simplified mathematical cost value function showed noticeable difference from phase to phase, implying it is possible to find optimal phases for gating window. The lowest cost value which may result in lower mean/max dose to OARs was distributed at various phases for all patients. The mean doses of the OARs significantly decreased about 10% with statistical significance for all 3 OARs at the phase with the lowest cost value. Also, the max doses of the OARs were decreased about 2∼5% at the phase with the lowest cost value compared to the phase with the highest cost value. Conclusion: It is demonstrated that optimal phases (in dose distribution perspective) for gating window could exist differently through each patient and the proposed cost value function can be a useful tool for determining such phases without performing dose optimization calculations. This research was supported by the Mid-career Researcher Program

  15. Does inverse planning applied to Iridium192 high dose rate prostate brachytherapy improve the optimization of the dose afforded by the Paris system?

    International Nuclear Information System (INIS)

    Nickers, Philippe; Lenaerts, Eric; Thissen, Benedicte; Deneufbourg, Jean-Marie

    2005-01-01

    Background and purpose: The purpose of the work is to analyse for 192 Ir prostate brachytherapy (BT) some of the different steps in optimizing the dose delivered to the CTV, urethra and rectum. Materials and methods: Between 07/1998 and 12/2001, 166 patients were treated with 192 Ir wires providing a low dose rate, according to the Paris system philosophy and with the 2D version of the treatment planning Isis R . 40-45 Gy were delivered after an external beam radiotherapy of 40 Gy. The maximum tolerable doses for BT were 25 Gy to the anterior third of the rectum on the whole length of the implant (R dose) and 52 Gy to the urethra on a 1 cm length (U max ). A U max /CTV dose ratio >1.3 represented a pejorative value as the planned dose of 40-45 Gy could not be achieved. On the other side a ratio ≤1.25 was considered optimal and the intermediate values satisfactory. A R/CTV dose ratio 192 Ir sources. Results: At the end of a learning curve reaching a plateau after the first 71 patients, 90% of the implants with 192 Ir wires were stated at least satisfactory for a total rate of 82% for the whole population. When the 3D dosimetry for SST was used, the initial values >1.25 decreased significantly with optimization required on CTV contours and additional constraints on urethra while the R/CTV ratio was maintained under 0.55. For initial U max /CTV >1.3 or >1.25 but ≤1.3 indeed, the mean respective values of 1.41±0.16 and 1.28±0.01 decreased to 1.28±0.24 and 1.17±0.09 (P<0.001), allowing to increase the total dose to the CTV by 4 Gy. Conclusions: The Paris system which assumes a homogeneous distribution of a minimum number of catheters inside the CTV allowed to anticipate a satisfactory dosimetry in 82% of cases. However, this precision rate could be improved until 95% with an optimization approach based on an inverse planning philosophy. These new 3D optimization methods, ideally based on good quality implants at first allow to deliver the highest doses with

  16. Brachytherapy optimization using radiobiological-based planning for high dose rate and permanent implants for prostate cancer treatment

    Science.gov (United States)

    Seeley, Kaelyn; Cunha, J. Adam; Hong, Tae Min

    2017-01-01

    We discuss an improvement in brachytherapy--a prostate cancer treatment method that directly places radioactive seeds inside target cancerous regions--by optimizing the current standard for delivering dose. Currently, the seeds' spatiotemporal placement is determined by optimizing the dose based on a set of physical, user-defined constraints. One particular approach is the ``inverse planning'' algorithms that allow for tightly fit isodose lines around the target volumes in order to reduce dose to the patient's organs at risk. However, these dose distributions are typically computed assuming the same biological response to radiation for different types of tissues. In our work, we consider radiobiological parameters to account for the differences in the individual sensitivities and responses to radiation for tissues surrounding the target. Among the benefits are a more accurate toxicity rate and more coverage to target regions for planning high-dose-rate treatments as well as permanent implants.

  17. Correlation of ultra-low dose chest CT findings with physiologic measures of asbestosis

    Energy Technology Data Exchange (ETDEWEB)

    Manners, David [Sir Charles Gairdner Hospital, Department of Respiratory Medicine, Nedlands, WA (Australia); Wong, Patrick; Murray, Conor; Teh, Joelin [Royal Perth Hospital, Department of Diagnostic Imaging, Perth (Australia); Kwok, Yi Jin [Sir Charles Gairdner Hospital, Department of Diagnostic Imaging, Nedlands, WA (Australia); De Klerk, Nick; Franklin, Peter [University of Western Australia, School of Population Health, Perth, WA (Australia); Alfonso, Helman; Reid, Alison [Curtin University, School of Public Health, Perth, WA (Australia); Musk, A.W.B. [Sir Charles Gairdner Hospital, Department of Respiratory Medicine, Nedlands, WA (Australia); University of Western Australia, School of Population Health, Perth, WA (Australia); University of Western Australia, School of Medicine and Pharmacology, Perth, WA (Australia); Brims, Fraser J.H. [Sir Charles Gairdner Hospital, Department of Respiratory Medicine, Nedlands, WA (Australia); University of Western Australia, School of Population Health, Perth, WA (Australia); Curtin University, Curtin Medical School, Perth (Australia)

    2017-08-15

    The correlation between ultra low dose computed tomography (ULDCT)-detected parenchymal lung changes and pulmonary function abnormalities is not well described. This study aimed to determine the relationship between ULDCT-detected interstitial lung disease (ILD) and measures of pulmonary function in an asbestos-exposed population. Two thoracic radiologists independently categorised prone ULDCT scans from 143 participants for ILD appearances as absent (score 0), probable (1) or definite (2) without knowledge of asbestos exposure or lung function. Pulmonary function measures included spirometry and diffusing capacity to carbon monoxide (DLCO). Participants were 92% male with a median age of 73.0 years. CT dose index volume was between 0.6 and 1.8 mGy. Probable or definite ILD was reported in 63 (44.1%) participants. Inter-observer agreement was good (k = 0.613, p < 0.001). There was a statistically significant correlation between the ILD score and both forced expiratory volume in 1 second (FEV{sub 1}) and forced vital capacity (FVC) (r = -0.17, p = 0.04 and r = -0.20, p = 0.02). There was a strong correlation between ILD score and DLCO (r = -0.34, p < 0.0001). Changes consistent with ILD on ULDCT correlate well with corresponding reductions in gas transfer, similar to standard CT. In asbestos-exposed populations, ULDCT may be adequate to detect radiological changes consistent with asbestosis. (orig.)

  18. Correlation of ultra-low dose chest CT findings with physiologic measures of asbestosis

    International Nuclear Information System (INIS)

    Manners, David; Wong, Patrick; Murray, Conor; Teh, Joelin; Kwok, Yi Jin; De Klerk, Nick; Franklin, Peter; Alfonso, Helman; Reid, Alison; Musk, A.W.B.; Brims, Fraser J.H.

    2017-01-01

    The correlation between ultra low dose computed tomography (ULDCT)-detected parenchymal lung changes and pulmonary function abnormalities is not well described. This study aimed to determine the relationship between ULDCT-detected interstitial lung disease (ILD) and measures of pulmonary function in an asbestos-exposed population. Two thoracic radiologists independently categorised prone ULDCT scans from 143 participants for ILD appearances as absent (score 0), probable (1) or definite (2) without knowledge of asbestos exposure or lung function. Pulmonary function measures included spirometry and diffusing capacity to carbon monoxide (DLCO). Participants were 92% male with a median age of 73.0 years. CT dose index volume was between 0.6 and 1.8 mGy. Probable or definite ILD was reported in 63 (44.1%) participants. Inter-observer agreement was good (k = 0.613, p < 0.001). There was a statistically significant correlation between the ILD score and both forced expiratory volume in 1 second (FEV 1 ) and forced vital capacity (FVC) (r = -0.17, p = 0.04 and r = -0.20, p = 0.02). There was a strong correlation between ILD score and DLCO (r = -0.34, p < 0.0001). Changes consistent with ILD on ULDCT correlate well with corresponding reductions in gas transfer, similar to standard CT. In asbestos-exposed populations, ULDCT may be adequate to detect radiological changes consistent with asbestosis. (orig.)

  19. Evaluation of X ray radiation doses in pediatric examinations of cranial computerized tomography based on optimization studies

    International Nuclear Information System (INIS)

    Daros, Kellen Adriana Curci

    2005-01-01

    This paper identifies the technical conditions for CT examination which offers lowest absorbed dose and to attend the manufacturer recommendations as far the spatial resolution is concerned. The paper evaluates the absorbed dose during cranial CT in up to 6 years children satisfying the technical condition recommended by the manufacturer and routine clinical conditions. The paper also established a quantitative relationship among the absorbed dose and its distribution in the cranial regions of pediatric patients up to 6 years old in a way to estimate the doses subject to optimized conditions

  20. Dose-Finding Study of Omeprazole on Gastric pH in Neonates with Gastro-Esophageal Acid Reflux Using a Bayesian Sequential Approach.

    Directory of Open Access Journals (Sweden)

    Florentia Kaguelidou

    Full Text Available Proton pump inhibitors are frequently administered on clinical symptoms in neonates but benefit remains controversial. Clinical trials validating omeprazole dosage in neonates are limited. The objective of this trial was to determine the minimum effective dose (MED of omeprazole to treat pathological acid reflux in neonates using reflux index as surrogate marker.Double blind dose-finding trial with continual reassessment method of individual dose administration using a Bayesian approach, aiming to select drug dose as close as possible to the predefined target level of efficacy (with a credibility interval of 95%.Neonatal Intensive Care unit of the Robert Debré University Hospital in Paris, France.Neonates with a postmenstrual age ≥ 35 weeks and a pathologic 24-hour intra-esophageal pH monitoring defined by a reflux index ≥ 5% over 24 hours were considered for participation. Recruitment was stratified to 3 groups according to gestational age at birth.Five preselected doses of oral omeprazole from 1 to 3 mg/kg/day.Primary outcome, measured at 35 weeks postmenstrual age or more, was a reflux index <5% during the 24-h pH monitoring registered 72±24 hours after omeprazole initiation.Fifty-four neonates with a reflux index ranging from 5.06 to 27.7% were included. Median age was 37.5 days and median postmenstrual age was 36 weeks. In neonates born at less than 32 weeks of GA (n = 30, the MED was 2.5mg/kg/day with an estimated mean posterior probability of success of 97.7% (95% credibility interval: 90.3-99.7%. The MED was 1mg/kg/day for neonates born at more than 32 GA (n = 24.Omeprazole is extensively prescribed on clinical symptoms but efficacy is not demonstrated while safety concerns do exist. When treatment is required, the daily dose needs to be validated in preterm and term neonates. Optimal doses of omeprazole to increase gastric pH and decrease reflux index below 5% over 24 hours, determined using an adaptive Bayesian design differ

  1. Dose-Finding Study of Omeprazole on Gastric pH in Neonates with Gastro-Esophageal Acid Reflux Using a Bayesian Sequential Approach.

    Science.gov (United States)

    Kaguelidou, Florentia; Alberti, Corinne; Biran, Valerie; Bourdon, Olivier; Farnoux, Caroline; Zohar, Sarah; Jacqz-Aigrain, Evelyne

    2016-01-01

    Proton pump inhibitors are frequently administered on clinical symptoms in neonates but benefit remains controversial. Clinical trials validating omeprazole dosage in neonates are limited. The objective of this trial was to determine the minimum effective dose (MED) of omeprazole to treat pathological acid reflux in neonates using reflux index as surrogate marker. Double blind dose-finding trial with continual reassessment method of individual dose administration using a Bayesian approach, aiming to select drug dose as close as possible to the predefined target level of efficacy (with a credibility interval of 95%). Neonatal Intensive Care unit of the Robert Debré University Hospital in Paris, France. Neonates with a postmenstrual age ≥ 35 weeks and a pathologic 24-hour intra-esophageal pH monitoring defined by a reflux index ≥ 5% over 24 hours were considered for participation. Recruitment was stratified to 3 groups according to gestational age at birth. Five preselected doses of oral omeprazole from 1 to 3 mg/kg/day. Primary outcome, measured at 35 weeks postmenstrual age or more, was a reflux index reflux index ranging from 5.06 to 27.7% were included. Median age was 37.5 days and median postmenstrual age was 36 weeks. In neonates born at less than 32 weeks of GA (n = 30), the MED was 2.5mg/kg/day with an estimated mean posterior probability of success of 97.7% (95% credibility interval: 90.3-99.7%). The MED was 1mg/kg/day for neonates born at more than 32 GA (n = 24). Omeprazole is extensively prescribed on clinical symptoms but efficacy is not demonstrated while safety concerns do exist. When treatment is required, the daily dose needs to be validated in preterm and term neonates. Optimal doses of omeprazole to increase gastric pH and decrease reflux index below 5% over 24 hours, determined using an adaptive Bayesian design differ among neonates. Both gestational and postnatal ages account for these differences but their differential impact on omeprazole

  2. Expected treatment dose construction and adaptive inverse planning optimization: Implementation for offline head and neck cancer adaptive radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yan Di; Liang Jian [Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan 48073 (United States)

    2013-02-15

    Purpose: To construct expected treatment dose for adaptive inverse planning optimization, and evaluate it on head and neck (h and n) cancer adaptive treatment modification. Methods: Adaptive inverse planning engine was developed and integrated in our in-house adaptive treatment control system. The adaptive inverse planning engine includes an expected treatment dose constructed using the daily cone beam (CB) CT images in its objective and constrains. Feasibility of the adaptive inverse planning optimization was evaluated retrospectively using daily CBCT images obtained from the image guided IMRT treatment of 19 h and n cancer patients. Adaptive treatment modification strategies with respect to the time and the number of adaptive inverse planning optimization during the treatment course were evaluated using the cumulative treatment dose in organs of interest constructed using all daily CBCT images. Results: Expected treatment dose was constructed to include both the delivered dose, to date, and the estimated dose for the remaining treatment during the adaptive treatment course. It was used in treatment evaluation, as well as in constructing the objective and constraints for adaptive inverse planning optimization. The optimization engine is feasible to perform planning optimization based on preassigned treatment modification schedule. Compared to the conventional IMRT, the adaptive treatment for h and n cancer illustrated clear dose-volume improvement for all critical normal organs. The dose-volume reductions of right and left parotid glands, spine cord, brain stem and mandible were (17 {+-} 6)%, (14 {+-} 6)%, (11 {+-} 6)%, (12 {+-} 8)%, and (5 {+-} 3)% respectively with the single adaptive modification performed after the second treatment week; (24 {+-} 6)%, (22 {+-} 8)%, (21 {+-} 5)%, (19 {+-} 8)%, and (10 {+-} 6)% with three weekly modifications; and (28 {+-} 5)%, (25 {+-} 9)%, (26 {+-} 5)%, (24 {+-} 8)%, and (15 {+-} 9)% with five weekly modifications. Conclusions

  3. Research of protocols for optimization of exposure dose in abdominopelic CT

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Dong Hee [Dept. of Radiological Science, Far East University, Eumseong (Korea, Republic of)

    2017-06-15

    This study measured the exposure dose during abdominal-pelvic CT exam which occupies 70% of CT exam and tried to propose a protocol for optimized exposure dose in abdomen and pelvis without affecting the imagery interpretation. The study scanned abdomen-pelvis using the current clinical scan method, the 120 kVp, auto exposure control(AEC), as 1 phase. As for the newly proposed 2 phase scan method, the study divided into 1 phase abdomen exam and 2 phase pelvis exam and each conducted tube voltage 120 kVp, AEC for abdomen exam, and fixed tube current method in 120 kVp, 100, 150, 200, 250, 300, 350, 400 mA for pelvis exam. The exposure dose value was compared using CTDIVOL, DLP value measured during scan, and average value of CT attenuation coefficient, noise, SNR from each scan image were obtained to evaluate the image. As for the result, scanning of 2 phase showed significant difference compared to 1 phase. In CTDIVOL value, the 2 phase showed 26% decrease in abdomen, 1.8∼59.5% decrease in pelvis for 100∼250 mA, 12.7%∼30% increase in pelvis for 300∼400 mA. Also, DLP value showed 53% decrease in abdomen and 41∼81% decrease in pelvis when scanned by 2 phase compared to 1 phase, but it was not statistically significant. As for the SNR, when scanning 2 phase close to heart, scanning 1 phase close to pelvis, scanning and scanning 1 phase at upper and lower abdomen, it was higher when scanning 2 phase for 200∼ 250 mA. Also, the CT number and noise was overall similar, but the noise was high close to pelvis. However, when scanning 2 phase for 250 mA close to pelvis, the noise value came out similar to 1 phase, and did not show statistically significant difference. It seems when separating pelvis to scan in 250 mA rather than 400 mA in 1 phase as before, it is expected to have reduced effect of exposure dose without difference in the quality of image. Thus, for patients who often get abdominal-pelvic CT exam, fertile women or children, this study proposes 2

  4. Optimization in the relation between image quality and patient dose in head CT

    International Nuclear Information System (INIS)

    Perez-Diaz, M.; Paz-Viera, J.E.; Carvalho Filho, A.E.; Andrade, M.E.A.; Khoury, H.J.

    2013-01-01

    Thirty-two head CT scans were acquired employing an anthropomorphic phantom containing lesions in the posterior fossa, using 2 scanners: Siemens Sensation with 64 slices and Philips Brilliance with 6 slices. Parameters as tube current (mA), slice thickness (mm), collimation (mm), tube potential (kVp) and dynamic range were changed during studies, looking for the optimal acquisition/processing conditions which permit both good lesion detectability and the lowest dose. The CT air kerma index (mGy) was measured with a pencil ionization chamber. Image quality was analyzed by 5 radiologists using a 5 points-scale criteria (1=poor, 2=fair, 3=good, 4=very good, 5=excellent) and also using 5 figure of merit in the spatial and frequency domains: Contrast (C [%]), Contrast to Noise Ratio (CNR), Signal to Noise Ratio (SNR), Normalized Mean Square Error (NMSE) and Spectral Distance (SD). Objective and subjective results were correlated. We observed that doses could be reduced by up to 25% respect to the usual practice with both scanners, mainly reducing the mAs, without affecting lesion detection. As a result, we propose an optimized protocol for each scanner as follow: 250 mAs, 120 kVp and the collimation of 6 slices x 1.50 mm per rotation the same reconstructed slice thickness to detect the lesions in the posterior fossa with good image quality for the Philips Brilliance 6, while 150 mAs, 100 kVp, collimation of 30 x 1.2 mm and reconstructed slice thickness of 3.0 mm were needed with the Siemens Sensation 64. (author)

  5. Optimized computational method for determining the beta dose distribution using a multiple-element thermoluminescent dosimeter system

    International Nuclear Information System (INIS)

    Shen, L.; Levine, S.H.; Catchen, G.L.

    1987-01-01

    This paper describes an optimization method for determining the beta dose distribution in tissue, and it describes the associated testing and verification. The method uses electron transport theory and optimization techniques to analyze the responses of a three-element thermoluminescent dosimeter (TLD) system. Specifically, the method determines the effective beta energy distribution incident on the dosimeter system, and thus the system performs as a beta spectrometer. Electron transport theory provides the mathematical model for performing the optimization calculation. In this calculation, parameters are determined that produce calculated doses for each of the chip/absorber components in the three-element TLD system. The resulting optimized parameters describe an effective incident beta distribution. This method can be used to determine the beta dose specifically at 7 mg X cm-2 or at any depth of interest. The doses at 7 mg X cm-2 in tissue determined by this method are compared to those experimentally determined using an extrapolation chamber. For a great variety of pure beta sources having different incident beta energy distributions, good agreement is found. The results are also compared to those produced by a commonly used empirical algorithm. Although the optimization method produces somewhat better results, the advantage of the optimization method is that its performance is not sensitive to the specific method of calibration

  6. Role of the parameters involved in the plan optimization based on the generalized equivalent uniform dose and radiobiological implications

    International Nuclear Information System (INIS)

    Widesott, L; Strigari, L; Pressello, M C; Landoni, V; Benassi, M

    2008-01-01

    We investigated the role and the weight of the parameters involved in the intensity modulated radiation therapy (IMRT) optimization based on the generalized equivalent uniform dose (gEUD) method, for prostate and head-and-neck plans. We systematically varied the parameters (gEUD max and weight) involved in the gEUD-based optimization of rectal wall and parotid glands. We found that the proper value of weight factor, still guaranteeing planning treatment volumes coverage, produced similar organs at risks dose-volume (DV) histograms for different gEUD max with fixed a = 1. Most of all, we formulated a simple relation that links the reference gEUD max and the associated weight factor. As secondary objective, we evaluated plans obtained with the gEUD-based optimization and ones based on DV criteria, using the normal tissue complication probability (NTCP) models. gEUD criteria seemed to improve sparing of rectum and parotid glands with respect to DV-based optimization: the mean dose, the V 40 and V 50 values to the rectal wall were decreased of about 10%, the mean dose to parotids decreased of about 20-30%. But more than the OARs sparing, we underlined the halving of the OARs optimization time with the implementation of the gEUD-based cost function. Using NTCP models we enhanced differences between the two optimization criteria for parotid glands, but no for rectum wall

  7. Optimal use of β-blockers in high-risk hypertension: A guide to dosing equivalence

    Directory of Open Access Journals (Sweden)

    Janet B McGill

    2010-05-01

    Full Text Available Janet B McGillDepartment of Medicine, Washington University School of Medicine, St. Louis, Missouri, USAAbstract: Hypertension is the number one diagnosis made by primary care physicians, placing them in a unique position to prescribe the antihypertensive agent best suited to the individual patient. In individuals with diabetes mellitus, blood pressure (BP levels > 130/80 mmHg confer an even higher risk for cardiovascular and renal disease, and these patients will benefit from aggressive antihypertensive treatment using a combination of agents. β‑blockers are playing an increasingly important role in the management of hypertension in high-risk patients. β‑blockers are a heterogeneous class of agents, and this review presents the differences between β‑blockers and provides evidence-based protocols to assist in understanding dose equivalence in the selection of an optimal regimen in patients with complex needs. The clinical benefits provided by β‑blockers are only effective if patients adhere to medication treatment long term. β‑blockers with proven efficacy, once-daily dosing, and lower side effect profiles may become instrumental in the treatment of hypertensive diabetic and nondiabetic patients.Keywords: antihypertensive, blood pressure, atenolol, carvedilol, labetalol, metoprolol, nebivolol

  8. Clinical review: Optimal dose of continuous renal replacement therapy in acute kidney injury.

    Science.gov (United States)

    Prowle, John R; Schneider, Antoine; Bellomo, Rinaldo

    2011-01-01

    Continuous renal replacement therapy (CRRT) is the preferred treatment for acute kidney injury in intensive care units (ICUs) throughout much of the world. Despite the widespread use of CRRT, controversy and center-specific practice variation in the clinical application of CRRT continue. In particular, whereas two single-center studies have suggested survival benefit from delivery of higher-intensity CRRT to patients with acute kidney injury in the ICU, other studies have been inconsistent in their results. Now, however, two large multi-center randomized controlled trials - the Veterans Affairs/National Institutes of Health Acute Renal Failure Trial Network (ATN) study and the Randomized Evaluation of Normal versus Augmented Level (RENAL) Replacement Therapy Study - have provided level 1 evidence that effluent flow rates above 25 mL/kg per hour do not improve outcomes in patients in the ICU. In this review, we discuss the concept of dose of CRRT, its relationship with clinical outcomes, and what target optimal dose of CRRT should be pursued in light of the high-quality evidence now available.

  9. Medical imaging using ionizing radiation: Optimization of dose and image quality in fluoroscopy

    International Nuclear Information System (INIS)

    Jones, A. Kyle; Balter, Stephen; Rauch, Phillip; Wagner, Louis K.

    2014-01-01

    The 2012 Summer School of the American Association of Physicists in Medicine (AAPM) focused on optimization of the use of ionizing radiation in medical imaging. Day 2 of the Summer School was devoted to fluoroscopy and interventional radiology and featured seven lectures. These lectures have been distilled into a single review paper covering equipment specification and siting, equipment acceptance testing and quality control, fluoroscope configuration, radiation effects, dose estimation and measurement, and principles of flat panel computed tomography. This review focuses on modern fluoroscopic equipment and is comprised in large part of information not found in textbooks on the subject. While this review does discuss technical aspects of modern fluoroscopic equipment, it focuses mainly on the clinical use and support of such equipment, from initial installation through estimation of patient dose and management of radiation effects. This review will be of interest to those learning about fluoroscopy, to those wishing to update their knowledge of modern fluoroscopic equipment, to those wishing to deepen their knowledge of particular topics, such as flat panel computed tomography, and to those who support fluoroscopic equipment in the clinic

  10. OPTIMATION OF 48 KHZ ULTRASONIC WAVE DOSE FOR THE INACTIVATION OF SALMONELLA TYPHI

    Directory of Open Access Journals (Sweden)

    Dwi May Lestari

    2015-01-01

    Full Text Available This study was aimed to determine the effect of ultrasonic dose exposure which could decrease the viability of Salmonella typhi by using the variation of exposure time (15, 20, 25, and 30 minutes and volume of bacterial suspension (2, 4, 6, and 8 ml at constant power. The sample used was Salmonella typhi. Ultrasonic wave transmitter was a piezoelectric tweeter with 0,191 watts of power and 48 kHz frequency generated by the signal generator. Piezoelectric tweeter was a kind of transducer which converted electrical energy into ultrasonic energy. This research was an experimental laboratory with a completely randomized design. The decrease of bacterial percentage was calculated by using TPC (Total Plate Count. Data were analyzed by using One Way Anova. The results showed that the variation of exposure time and volume of bacterial suspension gave significant effect on the percentage of Salmonella typhi kill. The most optimal of ultrasonic dose exposure to kill Salmonella typhi was 281.87 J/ml with 100% bacterial kill.

  11. Brachytherapy dose-volume histogram computations using optimized stratified sampling methods

    International Nuclear Information System (INIS)

    Karouzakis, K.; Lahanas, M.; Milickovic, N.; Giannouli, S.; Baltas, D.; Zamboglou, N.

    2002-01-01

    A stratified sampling method for the efficient repeated computation of dose-volume histograms (DVHs) in brachytherapy is presented as used for anatomy based brachytherapy optimization methods. The aim of the method is to reduce the number of sampling points required for the calculation of DVHs for the body and the PTV. From the DVHs are derived the quantities such as Conformity Index COIN and COIN integrals. This is achieved by using partial uniform distributed sampling points with a density in each region obtained from a survey of the gradients or the variance of the dose distribution in these regions. The shape of the sampling regions is adapted to the patient anatomy and the shape and size of the implant. For the application of this method a single preprocessing step is necessary which requires only a few seconds. Ten clinical implants were used to study the appropriate number of sampling points, given a required accuracy for quantities such as cumulative DVHs, COIN indices and COIN integrals. We found that DVHs of very large tissue volumes surrounding the PTV, and also COIN distributions, can be obtained using a factor of 5-10 times smaller the number of sampling points in comparison with uniform distributed points

  12. Prevention of laryngospasm with rocuronium in cats: a dose-finding study.

    Science.gov (United States)

    Martin-Flores, Manuel; Sakai, Daniel M; Portela, Diego A; Borlle, Lucia; Campoy, Luis; Gleed, Robin D

    2016-09-01

    To identify the dose of rocuronium that will prevent a laryngeal response to water spraying of the glottis in anesthetized cats. Randomized crossover study. Eight healthy, adult, short-haired cats, aged 1-4 years, weighing 3.2-6.0 kg. Each cat was anesthetized four times and administered one of four doses of rocuronium (0.1, 0.2, 0.3 and 0.6 mg kg(-1) ) in random order. The larynx was observed with a video-endoscope inserted through a laryngeal mask airway. Video-clips of the laryngeal response to a sterile water spray (0.2 mL) were obtained at baseline (without rocuronium) and at maximal effect of each treatment. Glottal closure score (0-2), duration of glottal closure, and number of adductive arytenoid movements were obtained from video-clips of laryngeal responses (reproduced in slow motion) at baseline and after treatment. Two observers blinded to treatment allocation scored the vigor of the laryngeal response on a visual analog scale (VAS). The duration of apnea (up to 5 minutes) was recorded for each treatment. Compared with baseline, rocuronium 0.3 mg kg(-1) and 0.6 mg kg(-1) significantly decreased all glottal scores obtained from the videos (all p rocuronium 0.1, 0.2, 0.3 and 0.6 mg kg(-1) , respectively. Rocuronium 0.3 mg kg(-1) and 0.6 mg kg(-1) consistently decreased the completeness and duration of the laryngeal response to water spray, and reduced the number of arytenoid adductive movements in response to that stimulus. However, a laryngeal response was never completely prevented. Rocuronium 0.3 mg kg(-1) may be useful for facilitating tracheal intubation. Positive pressure ventilation must be available for cats administered rocuronium. © 2016 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesia and Analgesia.

  13. Low-dose ion-based transmission radiography and tomography for optimization of carbon ion-beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Magallanes Hernandez, Lorena

    2017-02-21

    )), middle (1000 primaries per RP) and low imaging dose (500 primaries per RP) in the radiographic domain, whereas only high dose tomographic acquisitions were experimentally performed. Dedicated Monte Carlo (MC)-based post-processing methods, developed at the Ludwig-Maximilians-Universitaet Muenchen (Munich, Germany), were applied to improve the retrieval of Water Equivalent Thickness (WET) variations in lateral (spatial resolution) and longitudinal (ion range resolution) directions, for iRADs, and rWEPL in the tomographic case. An exhaustive quantitative and qualitative evaluation of the acquired images was made in comparison with the ground-truth and simulated data in terms of physical-dose to the object [Gy], accuracy [% of Relative Error (RE)] and overall image quality [NRMSD]. iRADs were produced with 0.5 to 1 mGy imaging dose and an absolute mean WET-RE within 1.5%. Tomographies of two heterogeneous phantoms were acquired in the high dose regime, yielding 4 Gy imaging dose and a RE in rWEPL below 1%, for a geometry that resembles an anatomical scenario. Nonetheless, the findings in the low dose projection studies indicate that the dose of tomographic acquisitions with the current experimental setup can be reduced down to 0.2 Gy. Furthermore, the improved readout system tests and MC simulations establish the possibility to decrease the dose received by the imaged object by about one order of magnitude down (∝0.03 Gy), which lies in the clinically accepted range. Finally, the ongoing imaging system upgrade and the potential integration with single-ion tracking detectors is outlined. The outcome of this thesis highlights the strengths and weaknesses of ion transmission-imaging with the investigated integration-mode RRD, paving the way to future improvements towards eventual application to the ion-beam therapy clinical work-flow. Although further optimization is still required for clinical application, ion-based transmission-imaging has demonstrated its potentiality to

  14. Low-dose ion-based transmission radiography and tomography for optimization of carbon ion-beam therapy

    International Nuclear Information System (INIS)

    Magallanes Hernandez, Lorena

    2017-01-01

    )), middle (1000 primaries per RP) and low imaging dose (500 primaries per RP) in the radiographic domain, whereas only high dose tomographic acquisitions were experimentally performed. Dedicated Monte Carlo (MC)-based post-processing methods, developed at the Ludwig-Maximilians-Universitaet Muenchen (Munich, Germany), were applied to improve the retrieval of Water Equivalent Thickness (WET) variations in lateral (spatial resolution) and longitudinal (ion range resolution) directions, for iRADs, and rWEPL in the tomographic case. An exhaustive quantitative and qualitative evaluation of the acquired images was made in comparison with the ground-truth and simulated data in terms of physical-dose to the object [Gy], accuracy [% of Relative Error (RE)] and overall image quality [NRMSD]. iRADs were produced with 0.5 to 1 mGy imaging dose and an absolute mean WET-RE within 1.5%. Tomographies of two heterogeneous phantoms were acquired in the high dose regime, yielding 4 Gy imaging dose and a RE in rWEPL below 1%, for a geometry that resembles an anatomical scenario. Nonetheless, the findings in the low dose projection studies indicate that the dose of tomographic acquisitions with the current experimental setup can be reduced down to 0.2 Gy. Furthermore, the improved readout system tests and MC simulations establish the possibility to decrease the dose received by the imaged object by about one order of magnitude down (∝0.03 Gy), which lies in the clinically accepted range. Finally, the ongoing imaging system upgrade and the potential integration with single-ion tracking detectors is outlined. The outcome of this thesis highlights the strengths and weaknesses of ion transmission-imaging with the investigated integration-mode RRD, paving the way to future improvements towards eventual application to the ion-beam therapy clinical work-flow. Although further optimization is still required for clinical application, ion-based transmission-imaging has demonstrated its potentiality to

  15. The optimal dose of the contrast media for spiral CT portography

    International Nuclear Information System (INIS)

    Zhang Jiansheng; Xiao Peiyu; Meng Xiaochun; Xu Chuan

    2007-01-01

    Objective: To investigate the optimal dose of the contrast media in SCTP. Methods: 40 healthy patients were divided into 2 groups according to their body weight (20 cases in group A with weight below 60kg, 20 cases in group B with weight over 70kg). They all received 90ml contrast media at a rate of 4.0 ml/sec in the contrast-enhanced CT ex- amination. And non-cirrhosis cases, liver cirrhosis without ascites cases and liver cirrhosis with ascites cases were selected respectively, 60 patients in each group. Then, the patients of each group were randomly divided into 3 sub-groups, 20 cases in each of them, which respectively received 1.5ml/kg, 2.0ml/kg, 2.5ml/kg contrast media at a rate of 4.0 ml/sec in the contrast-enhanced CT examination. The effect of the dose of the contrast material on the imaging quality of portal vein system in patients with different weight and different state of illness was analyzed. Results: In 40 healthy patients, the density difference between portal vein and hepatic parenchyma was significantly higher in Group A than in Group B (P 0.05), and both of them showed significant difference while using 1.5ml/kg contrast media (P 0.05), and they both had significant difference when using 1.5ml/kg contrast media (P< 0.05). Besides these, the imaging quality of portal vein branches and collateral vessels were better in 2.0ml/kg group than others. Conclusion: The patient's body weight and the state of liver disease influenced the extent of portal vein enhancement. To calculate the dose of contrast media according to patient's weight is crucial for ensuring the imaging quality of portal vein system. 2.0ml/kg contrast media can provide a better effect. (authors)

  16. Optimal dose of rocuronium bromide undergoing adenotonsillectomy under 5% sevoflurane with fentanyl.

    Science.gov (United States)

    Huh, Hyub; Park, Jeong Jun; Kim, Ji Yeong; Kim, Tae Hoon; Yoon, Seung Zhoo; Shin, Hye Won; Lee, Hye-Won; Lim, Hye-Ja; Cho, Jang Eun

    2017-10-01

    Adenotonsillectomy is a short surgical procedure under general anaesthesia in children. An ideal muscle relaxant for adenotonsillectomy would create an intense neuromuscular block while having a quick recovery time without postoperative morbidity. We compared the effect of different doses of rocuronium for the tracheal intubation in children under 5% sevoflurane and fentanyl. 75 children (aged 3-10 years, ASA I) scheduled for adenotonsillectomy were enrolled. Anaesthesia was induced with propofol 2.5 mg/kg, followed by fentanyl 2 μg/kg. After mask ventilation with 5 vol% sevoflurane in 100% oxygen for 2 min, 2 ml of study drug was administered intravenously, i.e., either normal saline (S Group) or one of two doses (0.15 or 0.3 mg/kg) of rocuronium. We assessed conditions during tracheal intubation and also recorded the surgical condition, the time from discontinuation of sevoflurane to extubation and PAED scale, pain scores in PACU. Rocuronium groups (96% and 100%, respectively; P rocuronium (80%) treatment clearly resulted in excellent intubating conditions compared with the 0.15 mg/kg group (44%; p = 0.028). There was no significant difference in the time to extubation and surgical condition, and in the postoperative measures of emergence delirium, pain, and recovery time among the three groups. A dose of 0.3 mg/kg rocuronium may provide optimal intubating conditions without delayed recovery in 5% sevoflurane anaesthesia with fentanyl in children undergoing adenotonsillectomy. NCT02467595. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Effect of geometrical optimization on the treatment volumes and the dose homogeneity of biplane interstitial brachytherapy implants

    International Nuclear Information System (INIS)

    Anacak, Yavuz; Esassolak, Mustafa; Aydin, Ayhan; Aras, Arif; Olacak, Ibrahim; Haydaroglu, Ayfer

    1997-01-01

    Background and purpose: The isodose distributions of HDR stepping source brachytherapy implants can be modified by changing dwell times and this procedure is called optimization. The purpose of this study is to evaluate the effect of geometrical optimization on the brachytherapy volumes and the dose homogeneity inside the implant and to compare them with non-optimized counterparts. Material and methods: A set of biplane breast implants consisting of 84 different configurations have been digitized by the planning computer and volumetric analysis was performed for both non-optimized and geometrically optimized implants. Treated length (T L ), treated volume (V 100 ), irradiated volume (V 50 ), overdose volume (V 200 ) and quality index (QI) have been calculated for every non-optimized implant and compared to its corresponding geometrically optimized implant having a similar configuration and covering the same target length. Results: The mean T L was 74.48% of the active length (A L ) for non-optimized implants and was 91.87% for optimized implants (P 50 /V 100 value was 2.71 for non-optimized implants and 2.65 for optimized implants (P 200 /V 100 value was 0.09 for non-optimized implants and 0.10 for optimized implants (P < 0.001). Conclusions: By performing geometrical optimization it is possible to implant shorter needles for a given tumour to adequately cover the target volume with the reference isodose and thus surgical damage is reduced. The amount of healthy tissues outside the target receiving considerable radiation is significantly reduced due to the decrease in irradiated volume. Dose homogeneity inside the implant is significantly improved. Although there is a slight increase of overdose volume inside the implant, this increase is considered to be negligible in clinical applications

  18. Indeterminate findings on oncologic PET/CT: What difference dose PET/MRI make?

    Energy Technology Data Exchange (ETDEWEB)

    Fraum, Tyler J.; Fowler, Kathryn J.; McConathy, Jonathan; Dehdashti, Farokh [Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis (United States)

    2016-12-15

    Positron emission tomography/computed tomography (PET/CT) with 2-deoxy-2-[{sup 18}F]fluoro-D-glucose (FDG) has become the standard of care for the initial staging and subsequent treatment response assessment of many different malignancies. Despite this success, PET/CT is often supplemented by MRI to improve assessment of local tumor invasion and to facilitate detection of lesions in organs with high background FDG uptake. Consequently, PET/MRI has the potential to expand the clinical value of PET examinations by increasing reader certainty and reducing the need for subsequent imaging. This study evaluates the ability of FDG-PET/MRI to clarify findings initially deemed indeterminate on clinical FDG-PET/CT studies. A total of 190 oncology patients underwent whole-body PET/CT, immediately followed by PET/MRI utilizing the same FDG administration. Each PET/CT was interpreted by our institution's nuclear medicine service as a standard-of-care clinical examination. Review of these PET/CT reports identified 31 patients (16 %) with indeterminate findings. Two readers evaluated all 31 PET/CT studies, followed by the corresponding PET/MRI studies. A consensus was reached for each case, and changes in interpretation directly resulting from PET/MRI review were recorded. Interpretations were then correlated with follow-up imaging, pathology results, and other diagnostic studies. In 18 of 31 cases with indeterminate findings on PET/CT, PET/MRI resulted in a more definitive interpretation by facilitating the differentiation of infection/inflammation from malignancy (15/18), the accurate localization of FDG-avid lesions (2/18), and the characterization of incidental non-FDG-avid solid organ lesions (1/18). Explanations for improved reader certainty with PET/MRI included the superior soft tissue contrast of MRI and the ability to assess cellular density with diffusion-weighted imaging. The majority (12/18) of such cases had an appropriate standard of reference; in all 12 cases

  19. Indeterminate findings on oncologic PET/CT: What difference dose PET/MRI make?

    International Nuclear Information System (INIS)

    Fraum, Tyler J.; Fowler, Kathryn J.; McConathy, Jonathan; Dehdashti, Farokh

    2016-01-01

    Positron emission tomography/computed tomography (PET/CT) with 2-deoxy-2-["1"8F]fluoro-D-glucose (FDG) has become the standard of care for the initial staging and subsequent treatment response assessment of many different malignancies. Despite this success, PET/CT is often supplemented by MRI to improve assessment of local tumor invasion and to facilitate detection of lesions in organs with high background FDG uptake. Consequently, PET/MRI has the potential to expand the clinical value of PET examinations by increasing reader certainty and reducing the need for subsequent imaging. This study evaluates the ability of FDG-PET/MRI to clarify findings initially deemed indeterminate on clinical FDG-PET/CT studies. A total of 190 oncology patients underwent whole-body PET/CT, immediately followed by PET/MRI utilizing the same FDG administration. Each PET/CT was interpreted by our institution's nuclear medicine service as a standard-of-care clinical examination. Review of these PET/CT reports identified 31 patients (16 %) with indeterminate findings. Two readers evaluated all 31 PET/CT studies, followed by the corresponding PET/MRI studies. A consensus was reached for each case, and changes in interpretation directly resulting from PET/MRI review were recorded. Interpretations were then correlated with follow-up imaging, pathology results, and other diagnostic studies. In 18 of 31 cases with indeterminate findings on PET/CT, PET/MRI resulted in a more definitive interpretation by facilitating the differentiation of infection/inflammation from malignancy (15/18), the accurate localization of FDG-avid lesions (2/18), and the characterization of incidental non-FDG-avid solid organ lesions (1/18). Explanations for improved reader certainty with PET/MRI included the superior soft tissue contrast of MRI and the ability to assess cellular density with diffusion-weighted imaging. The majority (12/18) of such cases had an appropriate standard of reference; in all 12 cases, the

  20. Bupivacaine in microcapsules prolongs analgesia after subcutaneous infiltration in humans: a dose-finding study

    DEFF Research Database (Denmark)

    Pedersen, Juri L; Lillesø, Jesper; Hammer, Niels A

    2004-01-01

    In this study, we examined the onset and duration of local analgesic effects of bupivacaine incorporated into biodegradable microcapsules (extended-duration local anesthetic; EDLA) administered as subcutaneous infiltrations in different doses in humans. In 18 volunteers, the skin on the medial calf...... was infiltrated with 10 mL of EDLA, and the opposite calf was infiltrated with 10 mL of aqueous bupivacaine (5.0 mg/mL) in a double-blinded, randomized manner. Three different concentrations of EDLA were tested (6.25, 12.5, and 25 mg/mL), with 6 subjects in each group. Pain responses to mechanical and heat......, and 6 mo after the injections. The time to maximum effects was significantly shorter for aqueous bupivacaine (2-6 h) than for EDLA (4-24 h), but there were no significant differences between the maximum effects of EDLA and aqueous bupivacaine. From 24 to 96 h after the injections, EDLA was significantly...

  1. Feasibility and robustness of dose painting by numbers in proton therapy with contour-driven plan optimization

    International Nuclear Information System (INIS)

    Barragán, A. M.; Differding, S.; Lee, J. A.; Sterpin, E.; Janssens, G.

    2015-01-01

    Purpose: To prove the ability of protons to reproduce a dose gradient that matches a dose painting by numbers (DPBN) prescription in the presence of setup and range errors, by using contours and structure-based optimization in a commercial treatment planning system. Methods: For two patients with head and neck cancer, voxel-by-voxel prescription to the target volume (GTV PET ) was calculated from 18 FDG-PET images and approximated with several discrete prescription subcontours. Treatments were planned with proton pencil beam scanning. In order to determine the optimal plan parameters to approach the DPBN prescription, the effects of the scanning pattern, number of fields, number of subcontours, and use of range shifter were separately tested on each patient. Different constant scanning grids (i.e., spot spacing = Δx = Δy = 3.5, 4, and 5 mm) and uniform energy layer separation [4 and 5 mm WED (water equivalent distance)] were analyzed versus a dynamic and automatic selection of the spots grid. The number of subcontours was increased from 3 to 11 while the number of beams was set to 3, 5, or 7. Conventional PTV-based and robust clinical target volumes (CTV)-based optimization strategies were considered and their robustness against range and setup errors assessed. Because of the nonuniform prescription, ensuring robustness for coverage of GTV PET inevitably leads to overdosing, which was compared for both optimization schemes. Results: The optimal number of subcontours ranged from 5 to 7 for both patients. All considered scanning grids achieved accurate dose painting (1% average difference between the prescribed and planned doses). PTV-based plans led to nonrobust target coverage while robust-optimized plans improved it considerably (differences between worst-case CTV dose and the clinical constraint was up to 3 Gy for PTV-based plans and did not exceed 1 Gy for robust CTV-based plans). Also, only 15% of the points in the GTV PET (worst case) were above 5% of DPBN

  2. Fluence map optimization (FMO) with dose-volume constraints in IMRT using the geometric distance sorting method.

    Science.gov (United States)

    Lan, Yihua; Li, Cunhua; Ren, Haozheng; Zhang, Yong; Min, Zhifang

    2012-10-21

    A new heuristic algorithm based on the so-called geometric distance sorting technique is proposed for solving the fluence map optimization with dose-volume constraints which is one of the most essential tasks for inverse planning in IMRT. The framework of the proposed method is basically an iterative process which begins with a simple linear constrained quadratic optimization model without considering any dose-volume constraints, and then the dose constraints for the voxels violating the dose-volume constraints are gradually added into the quadratic optimization model step by step until all the dose-volume constraints are satisfied. In each iteration step, an interior point method is adopted to solve each new linear constrained quadratic programming. For choosing the proper candidate voxels for the current dose constraint adding, a so-called geometric distance defined in the transformed standard quadratic form of the fluence map optimization model was used to guide the selection of the voxels. The new geometric distance sorting technique can mostly reduce the unexpected increase of the objective function value caused inevitably by the constraint adding. It can be regarded as an upgrading to the traditional dose sorting technique. The geometry explanation for the proposed method is also given and a proposition is proved to support our heuristic idea. In addition, a smart constraint adding/deleting strategy is designed to ensure a stable iteration convergence. The new algorithm is tested on four cases including head-neck, a prostate, a lung and an oropharyngeal, and compared with the algorithm based on the traditional dose sorting technique. Experimental results showed that the proposed method is more suitable for guiding the selection of new constraints than the traditional dose sorting method, especially for the cases whose target regions are in non-convex shapes. It is a more efficient optimization technique to some extent for choosing constraints than the dose

  3. Optimization of radiotherapy to target volumes with concave outlines: target-dose homogenization and selective sparing of critical structures by constrained matrix inversion

    Energy Technology Data Exchange (ETDEWEB)

    Colle, C; Van den Berge, D; De Wagter, C; Fortan, L; Van Duyse, B; De Neve, W

    1995-12-01

    The design of 3D-conformal dose distributions for targets with concave outlines is a technical challenge in conformal radiotherapy. For these targets, it is impossible to find beam incidences for which the target volume can be isolated from the tissues at risk. Commonly occurring examples are most thyroid cancers and the targets located at the lower neck and upper mediastinal levels related to some head and neck. A solution to this problem was developed, using beam intensity modulation executed with a multileaf collimator by applying a static beam-segmentation technique. The method includes the definition of beam incidences and beam segments of specific shape as well as the calculation of segment weights. Tests on Sherouse`s GRATISTM planning system allowed to escalate the dose to these targets to 65-70 Gy without exceeding spinal cord tolerance. Further optimization by constrained matrix inversion was investigated to explore the possibility of further dose escalation.

  4. Anatomy-based inverse optimization in high-dose-rate brachytherapy combined with hypofractionated external beam radiotherapy for localized prostate cancer: Comparison of incidence of acute genitourinary toxicity between anatomy-based inverse optimization and geometric optimization

    International Nuclear Information System (INIS)

    Akimoto, Tetsuo; Katoh, Hiroyuki; Kitamoto, Yoshizumi; Shirai, Katsuyuki; Shioya, Mariko; Nakano, Takashi

    2006-01-01

    Purpose: To evaluate the advantages of anatomy-based inverse optimization (IO) in planning high-dose-rate (HDR) brachytherapy. Methods and Materials: A total of 114 patients who received HDR brachytherapy (9 Gy in two fractions) combined with hypofractionated external beam radiotherapy (EBRT) were analyzed. The dose distributions of HDR brachytherapy were optimized using geometric optimization (GO) in 70 patients and by anatomy-based IO in the remaining 44 patients. The correlation between the dose-volume histogram parameters, including the urethral dose and the incidence of acute genitourinary (GU) toxicity, was evaluated. Results: The averaged values of the percentage of volume receiving 80-150% of the prescribed minimal peripheral dose (V 8 -V 15 ) of the urethra generated by anatomy-based IO were significantly lower than the corresponding values generated by GO. Similarly, the averaged values of the minimal dose received by 5-50% of the target volume (D 5 -D 5 ) obtained using anatomy-based IO were significantly lower than those obtained using GO. Regarding acute toxicity, Grade 2 or worse acute GU toxicity developed in 23% of all patients, but was significantly lower in patients for whom anatomy-based IO (16%) was used than in those for whom GO was used (37%), consistent with the reduced urethral dose (p <0.01). Conclusion: The results of this study suggest that anatomy-based IO is superior to GO for dose optimization in HDR brachytherapy for prostate cancer

  5. Dose Optimization of Calcusol™ and Calcium Oxalate Monohydrate (COM on Primary Renal Epithelial Cells Cultures of Mice ( Mus musculus

    Directory of Open Access Journals (Sweden)

    Ahmad Soni

    2014-05-01

    Full Text Available Kidney stones are one of the urologic diseases that have plagued mankind for centuries. The main constituents of stones in the kidney are calcium oxalate monohydrate (COM crystals. Nowadays, there are varieties of drugs and treatments that can be made to minimize the grievances due to kidney stone disease. The treatment can be done either by using chemicals or traditional medicine. Calcusol™ is one of the popular herbal products that have been used by Indonesian people in curing the kidney stone disease. The main constituent that was contained in Calcusol™ is an extract of the tempuyung leaves (Sonchus arvensis L., which is expected could cure the kidney stone disease. This study used primary cultured renal epithelial cells of mice to determine the optimal dose of Calcusol™ and the optimal dose of COM. The primary Kidney epithelial cell were treated with Calcusol™ and COM at various doses. The analysis of the cell death either by necrosis or apoptosis pathways was analyzed by flow cytometric analysis. The results that were obtained is the percentage of cell death that is then analyzed by using a complete randomized design (CRD One Way Anova. Based on the results that were obtained, it is known that the optimal dose of Calcusol™ in vitro were ranging from 75 ppm to 100 ppm, whereas the optimal dose of COM suggested for 500 ppm.

  6. Autoblocking dose-limiting normal structures within a radiation treatment field: 3-D computer optimization of 'unconventional' field arrangements

    International Nuclear Information System (INIS)

    Bates, Brian A.; Cullip, Timothy J.; Rosenman, Julian G.

    1995-01-01

    Purpose/Objective: To demonstrate that one can obtain a homogeneous dose distribution within a specified gross tumor volume (GTV) while severely limiting the dose to a structure surrounded by that tumor volume. We present three clinical examples below. Materials and Methods: Using planning CT scans from previously treated patients, we designed variety of radiation treatment plans in which the dose-critical normal structure was blocked, even if it meant blocking some of the tumor. To deal with the resulting dose inhomogeneities within the tumor, we introduced 3D compensation. Examples presented here include (1) blocking the spinal cord segment while treating an entire vertebral body, (2) blocking both kidneys while treating the entire peritoneal cavity, and (3) blocking one parotid gland while treating the oropharynx in its entirety along with regional nodes. A series of multiple planar and non-coplanar beam templates with automatic anatomic blocking and field shaping were designed for each scenario. Three-dimensional compensators were designed that gave the most homogeneous dose-distribution for the GTV. For each beam, rays were cast from the beam source through a 2D compensator grid and out through the tumor. The average tumor dose along each ray was then used to adjust the compensator thickness over successive iterations to achieve a uniform average dose. DVH calculations for the GTV, normal structures, and the 'auto-blocked' structure were made and used for inter-plan comparisons. Results: These optimized treatment plans successfully decreased dose to the dose-limiting structure while at the same time preserving or even improving the dose distribution to the tumor volume as compared to traditional treatment plans. Conclusion: The use of 3D compensation allows one to obtain dose distributions that are, theoretically, at least, far superior to those in common clinical use. Sensible beam templates, auto-blocking, auto-field shaping, and 3D compensators form a

  7. The effect of postoperative radiotherapy on the feasibility of optimal dose adjuvant CMF chemotheraphy in stage II breast carcinoma

    International Nuclear Information System (INIS)

    Sulkes, A.; Brufman, G.; Rizel, S.; Weshler, Z.; Biran, S.; Fuks, Z.

    1983-01-01

    The impact of a number of variables upon the effectiveness of adjuvant chemotherapy given to 87 patients with Stage II breast carcinoma was retrospectively analyzed. Adjuvant chemotherapy consisted of cyclophosphamide, methotrexate and 5-fluorouracil (CMF). Drugs were given in optimal doses (85% or more of the planned dose) to 17% of the patients; in intermediate doses (66 to 84% of the planned dose) to 50% of the patients; and in low doses (65% or less of the planned dose) to 33% of the patients. Myelosuppression was the main reason for giving intermediate or low doses. At a median follow-up of three years, 84% of all patients remain alive. Radiation therapy preceding chemotherapy was given to 70% of the patients, concomitant irradation and chemotherapy to 15%, and 13 patients (15%) received chemotheapy only. Of the 14 patients who received optimal doses of CMF, 12 (86%) also received radiation therapy. Disease-free survival at three years is similar for irradiated and nonirradiated patients, but the latter have a higher incidence of local recurrence (5% vs. 15%), although the difference is not statistically significant. Delay in the intiation of chemotherapy, mostly because of the administration of postoperative irradiation, adversely affected the probability and duration of disease-free survival, particulararly in premenopausal women in whom chemotherapy was started within more than 90 days of mastectomy. The administration of optimal doses of adjuvant chemotherapy should follow the primary treatment to the breast tumor as closely as possible. If radiation therapy is indicated as well, it should be delivered concomitantly with chemotherapy, given the feasibility of administering both modalities simultaneously, as demonstrated in this study

  8. Prevalence of incidental or unexpected findings on low-dose CT performed during routine SPECT/CT nuclear medicine studies

    International Nuclear Information System (INIS)

    Yap, Kelvin Kwok-Ho; Sutherland, Tom; Shafik-Eid, Raymond; Taubman, Kim; Schlicht, Stephen; Ramaseshan, Ganeshan

    2015-01-01

    In nuclear medicine, single-photon-emission computed tomography (SPECT) is often combined with ‘simultaneous’ low-dose CT (LDCT) to provide complementary anatomical and functional correlation. As a consequence, numerous incidental and unexpected findings may be detected on LDCT. Recognition of these findings and appropriate determination of their relevance can add to the utility of SPECT/CT. We aimed to evaluate the prevalence and categorise the relevance of incidental and unexpected findings on LDCT scans performed as part of routine SPECT/CT studies. All available LDCT scans performed as part of SPECT/CT studies at St. Vincent's Hospital Melbourne in the year 2013 were retrospectively reviewed. Two qualified radiologists independently reviewed the studies and any previous available imaging and categorised any detected incidental findings. A total of 2447 LDCT studies were reviewed. The relevance of the findings was classified according to a modified version of a scale used in the Colonography Reporting and Data System: E1 = normal or normal variant (28.0%); E2 = clinically unimportant (63.5%); E3 = likely unimportant or incompletely characterised (6.2%); E4 = potentially important (2.5%). Imaging specialists need to be cognisant of incidental and unexpected findings present on LDCT studies performed as part of SPECT/CT. Appropriate categorisation of findings and communication of potentially important findings to referring clinicians should form part of routine practice. The overall prevalence of potentially significant incidental and unexpected findings in our series was 8.7% (E3, 6.2%; E4, 2.5%) and was comparable to rates in other published imaging series.

  9. Dose optimization in adult patients exams in a computerized tomography service; Otimizacao de dose em exames de pacientes adultos em um servico de tomografia computadorizada

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel, Juliana; Finatto, Jerusa D.; Silva, Ana Maria Marques da, E-mail: ana.marques@pucrs.br [Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, RS (Brazil); Froner, Ana Paula P. [CDI Tomografia e Ressonancia Magnetica, Porto Alegre, RS (Brazil)

    2013-08-15

    This paper presents a study of dose optimization in computed tomography X-ray of skull, chest and abdomen of adult patients, performed in a diagnostic imaging service in a large hospital. Images of a simulated dose phantom were acquired and the kVp, mAs, pitch, thickness and CTDI{sub vol} were collected directly from the equipment. Using the PACS system, regions of interest were delineated, where the mean and standard deviation of CT numbers for each protocol were been calculated. The optimization took into account the maintenance of the CT number and noise from images acquired with clinical protocols. It was observed that the protocols used in the service, in general, exhibit a low dose, despite the great variability among the different professional shifts. In examinations of the chest, skull and abdomen, changes in the values of mAs and pitch were suggested, allowing dose reductions (60%, 17% and 19%, respectively), without compromising the image diagnostic quality. (author)

  10. WE-AB-207B-07: Dose Cloud: Generating “Big Data” for Radiation Therapy Treatment Plan Optimization Research

    Energy Technology Data Exchange (ETDEWEB)

    Folkerts, MM [University of Texas Southwestern Medical Center, Dallas, TX (United States); University of California San Diego, La Jolla, California (United States); Long, T; Tian, Z; Jia, X; Chen, M; Lu, W; Jiang, SB [University of Texas Southwestern Medical Center, Dallas, TX (United States); Radke, RJ [Rensselaer Polytechnic Institute, Troy, NY (United States)

    2016-06-15

    Purpose: To provide a tool to generate large sets of realistic virtual patient geometries and beamlet doses for treatment optimization research. This tool enables countless studies exploring the fundamental interplay between patient geometry, objective functions, weight selections, and achievable dose distributions for various algorithms and modalities. Methods: Generating realistic virtual patient geometries requires a small set of real patient data. We developed a normalized patient shape model (PSM) which captures organ and target contours in a correspondence-preserving manner. Using PSM-processed data, we perform principal component analysis (PCA) to extract major modes of variation from the population. These PCA modes can be shared without exposing patient information. The modes are re-combined with different weights to produce sets of realistic virtual patient contours. Because virtual patients lack imaging information, we developed a shape-based dose calculation (SBD) relying on the assumption that the region inside the body contour is water. SBD utilizes a 2D fluence-convolved scatter kernel, derived from Monte Carlo simulations, and can compute both full dose for a given set of fluence maps, or produce a dose matrix (dose per fluence pixel) for many modalities. Combining the shape model with SBD provides the data needed for treatment plan optimization research. Results: We used PSM to capture organ and target contours for 96 prostate cases, extracted the first 20 PCA modes, and generated 2048 virtual patient shapes by randomly sampling mode scores. Nearly half of the shapes were thrown out for failing anatomical checks, the remaining 1124 were used in computing dose matrices via SBD and a standard 7-beam protocol. As a proof of concept, and to generate data for later study, we performed fluence map optimization emphasizing PTV coverage. Conclusions: We successfully developed and tested a tool for creating customizable sets of virtual patients suitable for

  11. WE-AB-207B-07: Dose Cloud: Generating “Big Data” for Radiation Therapy Treatment Plan Optimization Research

    International Nuclear Information System (INIS)

    Folkerts, MM; Long, T; Tian, Z; Jia, X; Chen, M; Lu, W; Jiang, SB; Radke, RJ

    2016-01-01

    Purpose: To provide a tool to generate large sets of realistic virtual patient geometries and beamlet doses for treatment optimization research. This tool enables countless studies exploring the fundamental interplay between patient geometry, objective functions, weight selections, and achievable dose distributions for various algorithms and modalities. Methods: Generating realistic virtual patient geometries requires a small set of real patient data. We developed a normalized patient shape model (PSM) which captures organ and target contours in a correspondence-preserving manner. Using PSM-processed data, we perform principal component analysis (PCA) to extract major modes of variation from the population. These PCA modes can be shared without exposing patient information. The modes are re-combined with different weights to produce sets of realistic virtual patient contours. Because virtual patients lack imaging information, we developed a shape-based dose calculation (SBD) relying on the assumption that the region inside the body contour is water. SBD utilizes a 2D fluence-convolved scatter kernel, derived from Monte Carlo simulations, and can compute both full dose for a given set of fluence maps, or produce a dose matrix (dose per fluence pixel) for many modalities. Combining the shape model with SBD provides the data needed for treatment plan optimization research. Results: We used PSM to capture organ and target contours for 96 prostate cases, extracted the first 20 PCA modes, and generated 2048 virtual patient shapes by randomly sampling mode scores. Nearly half of the shapes were thrown out for failing anatomical checks, the remaining 1124 were used in computing dose matrices via SBD and a standard 7-beam protocol. As a proof of concept, and to generate data for later study, we performed fluence map optimization emphasizing PTV coverage. Conclusions: We successfully developed and tested a tool for creating customizable sets of virtual patients suitable for

  12. Optimism and benefit finding in parents of children with developmental disabilities: The role of positive reappraisal and social support.

    Science.gov (United States)

    Slattery, Éadaoin; McMahon, Jennifer; Gallagher, Stephen

    2017-06-01

    Researchers have consistently documented the relationship between optimism and benefit finding; however, there is a dearth of research on the psychological mechanisms mediating their association. This cross-sectional study sought to elucidate the mediating role of positive reappraisal and social support in the optimism-benefit finding relationship in parents caring for children with developmental disabilities by testing a parallel multiple mediation model. One hundred and forty-six parents caring for children with developmental disabilities completed an online survey assessing optimism, positive reappraisal, social support and benefit finding. Optimism was not directly related to benefit finding but rather influenced it indirectly through positive reappraisal and social support. Specifically, higher levels of optimism predicted greater positive reappraisal and social support, which in turn led to greater benefit finding in parents. These results underscore the importance of targeting parents' perceptions of benefits through both positive reappraisal and social support in order to help them cope with the demands of the caregiving context. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. SU-C-BRB-02: Symmetric and Asymmetric MLC Based Lung Shielding and Dose Optimization During Translating Bed TBI

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, S; Kakakhel, MB [Pakistan Institute of Engineering & Applied Sciences (PIEAS), Islamabad (Pakistan); Ahmed, SBS; Hussain, A [Aga Khan University Hospital (AKUH), Karachi (Pakistan)

    2015-06-15

    Purpose: The primary aim was to introduce a dose optimization method for translating bed total body irradiation technique that ensures lung shielding dynamically. Symmetric and asymmetric dynamic MLC apertures were employed for this purpose. Methods: The MLC aperture sizes were defined based on the radiological depth values along the divergent ray lines passing through the individual CT slices. Based on these RD values, asymmetrically shaped MLC apertures were defined every 9 mm of the phantom in superior-inferior direction. Individual MLC files were created with MATLAB™ and were imported into Eclipse™ treatment planning system for dose calculations. Lungs can be shielded to an optimum level by reducing the MLC aperture width over the lungs. The process was repeated with symmetrically shaped apertures. Results: Dose-volume histogram (DVH) analysis shows that the asymmetric MLC based technique provides better dose coverage to the body and optimum shielding of the lungs compared to symmetrically shaped beam apertures. Midline dose homogeneity is within ±3% with asymmetric MLC apertures whereas it remains within ±4.5% with symmetric ones (except head region where it drops down to −7%). The substantial over and under dosage of ±5% at tissue interfaces has been reduced to ±2% with asymmetric MLC technique. Lungs dose can be reduced to any desired limit. In this experiment lungs dose was reduced to 80% of the prescribed dose, as was desired. Conclusion: The novel asymmetric MLC based technique assures optimum shielding of OARs (e.g. lungs) and better 3-D dose homogeneity and body-dose coverage in comparison with the symmetric MLC aperture optimization. The authors acknowledge the financial and infrastructural support provided by Pakistan Institute of Engineering & Applied Sciences (PIEAS), Islamabad and Aga Khan University Hospital (AKUH), Karachi during the course of this research project. Authors have no conflict of interest with any national / international

  14. Quality control as a way to find out doses as low as reasonably practicable in mammography systems

    International Nuclear Information System (INIS)

    Hwang, S.F.; Nogueira, M.S.; Peixoto, J.E.; Paraguay, Y.V.

    2008-01-01

    The breast cancer is the most common neoplasm amongst women. Mammography is an essential tool for diagnosis and early detection of this disease. In order to guarantee the effectiveness of the diagnosis taking into account the patient radiation safety, it is mandatory to perform the quality control tests of the mammographic equipment. The main objective of this work has been to evaluate the relationship between the image quality and the total performance of the medical equipment. Primary data were collected from several radiological facilities during the quality control inspections performed by the local regulatory authorities of the Brazilian health, the National Commission of Nuclear Energy and the Brazilian College of Radiology. The main important functioning parameters were evaluated as well as the image quality using the simulator 'phantom mama'. In spite of the fact that high quality images could suggest delivering large radiation doses to patients it has been demonstrated that it is possible to acquire images with a good quality for clinical diagnosis without delivering high doses if the system is working properly. It has been concluded that following an optimized quality control program could avoid the complex dosimetric studies to guarantee good images quality. (author)

  15. Bluetongue Disabled Infectious Single Animal (DISA) vaccine: Studies on the optimal route and dose in sheep.

    Science.gov (United States)

    van Rijn, Piet A; Daus, Franz J; Maris-Veldhuis, Mieke A; Feenstra, Femke; van Gennip, René G P

    2017-01-05

    Bluetongue (BT) is a disease of ruminants caused by bluetongue virus (BTV) transmitted by biting midges of the Culicoides genus. Outbreaks have been controlled successfully by vaccination, however, currently available BT vaccines have several shortcomings. Recently, we have developed BT Disabled Infectious Single Animal (DISA) vaccines based on live-attenuated BTV without expression of dispensable non-structural NS3/NS3a protein. DISA vaccines are non-pathogenic replicating vaccines, do not cause viremia, enable DIVA and are highly protective. NS3/NS3a protein is involved in virus release, cytopathogenic effect and suppression of Interferon-I induction, suggesting that the vaccination route can be of importance. A standardized dose of DISA vaccine for serotype 8 has successfully been tested by subcutaneous vaccination. We show that 10 and 100times dilutions of this previously tested dose did not reduce the VP7 humoral response. Further, the vaccination route of DISA vaccine strongly determined the induction of VP7 directed antibodies (Abs). Intravenous vaccination induced high and prolonged humoral response but is not practical in field situations. VP7 seroconversion was stronger by intramuscular vaccination than by subcutaneous vaccination. For both vaccination routes and for two different DISA vaccine backbones, IgM Abs were rapidly induced but declined after 14days post vaccination (dpv), whereas the IgG response was slower. Interestingly, intramuscular vaccination resulted in an initial peak followed by a decline up to 21dpv and then increased again. This second increase is a steady and continuous increase of IgG Abs. These results indicate that intramuscular vaccination is the optimal route. The protective dose of DISA vaccine has not been determined yet, but it is expected to be significantly lower than of currently used BT vaccines. Therefore, in addition to the advantages of improved safety and DIVA compatibility, the novel DISA vaccines will be cost

  16. Optimizing hyaluronidase dose and plasmid DNA delivery greatly improves gene electrotransfer efficiency in rat skeletal muscle

    DEFF Research Database (Denmark)

    Åkerström, Thorbjörn; Vedel, Kenneth; Needham Andersen, Josefine

    2015-01-01

    Transfection of rat skeletal muscle in vivo is a widely used research model. However, gene electrotransfer protocols have been developed for mice and yield variable results in rats. We investigated whether changes in hyaluronidase pre-treatment and plasmid DNA delivery can improve transfection...... with a homogenous distribution. We also show that transfection was stable over five weeks of regular exercise or inactivity. Our findings show that species-specific plasmid DNA delivery and hyaluronidase pre-treatment greatly improves transfection efficiency in rat skeletal muscle....... efficiency in rat skeletal muscle. We found that pre-treating the muscle with a hyaluronidase dose suitable for rats (0.56. U/g b.w.) prior to plasmid DNA injection increased transfection efficiency by >200% whereas timing of the pre-treatment did not affect efficiency. Uniformly distributing plasmid DNA...

  17. TU-G-204-04: A Unified Strategy for Bi-Factorial Optimization of Radiation Dose and Contrast Dose in CT Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sahbaee, P; Zhang, Y; Solomon, J; Becchetti, M; Segars, P; Samei, E [Duke University Medical Center, Durham, NC (United States)

    2015-06-15

    Purpose: To substantiate the interdependency of contrast dose, radiation dose, and image quality in CT towards the patient- specific optimization of the imaging protocols Methods: The study deployed two phantom platforms. A variable sized (12, 18, 23, 30, 37 cm) phantom (Mercury-3.0) containing an iodinated insert (8.5 mgI/ml) was imaged on a representative CT scanner at multiple CTDI values (0.7–22.6 mGy). The contrast and noise were measured from the reconstructed images for each phantom diameter. Linearly related to iodine-concentration, contrast-to-noise ratio (CNR), were calculated for 16 iodine-concentration levels (0–8.5 mgI/ml). The analysis was extended to a recently developed suit of 58 virtual human models (5D XCAT) with added contrast dynamics. Emulating a contrast-enhanced abdominal image procedure and targeting a peak-enhancement in aorta, each XCAT phantom was “imaged” using a simulation platform (CatSim, GE). 3D surfaces for each patient/size established the relationship between iodine-concentration, dose, and CNR. The ratios of change in iodine-concentration versus dose (IDR) to yield a constant change in CNR were calculated for each patient size. Results: Mercury phantom results show the image-quality size- dependence on CTDI and IC levels. For desired image-quality values, the iso-contour-lines reflect the trade off between contrast-material and radiation doses. For a fixed iodine-concentration (4 mgI/mL), the IDR values for low (1.4 mGy) and high (11.5 mGy) dose levels were 1.02, 1.07, 1.19, 1.65, 1.54, and 3.14, 3.12, 3.52, 3.76, 4.06, respectively across five sizes. The simulation data from XCAT models confirmed the empirical results from Mercury phantom. Conclusion: The iodine-concentration, image quality, and radiation dose are interdependent. The understanding of the relationships between iodine-concentration, image quality, and radiation dose will allow for a more comprehensive optimization of CT imaging devices and techniques

  18. Radiolabeled cetuximab: dose optimization for epidermal growth factor receptor imaging in a head-and-neck squamous cell carcinoma model

    NARCIS (Netherlands)

    Hoeben, B.A.W.; Molkenboer-Kuenen, J.D.M.; Oyen, W.J.G.; Peeters, W.J.M.; Kaanders, J.H.A.M.; Bussink, J.; Boerman, O.C.

    2011-01-01

    Noninvasive imaging of the epidermal growth factor receptor (EGFR) in head-and-neck squamous cell carcinoma could be of value to select patients for EGFR-targeted therapy. We assessed dose optimization of (111) Indium-DTPA-cetuximab ((111) In-cetuximab) for EGFR imaging in a head-and-neck squamous

  19. Longevity extension of worker honey bees (Apis mellifera by royal jelly: optimal dose and active ingredient

    Directory of Open Access Journals (Sweden)

    Wenchao Yang

    2017-03-01

    Full Text Available In the Western honey bee, Apis mellifera, queens and workers have different longevity although they share the same genome. Queens consume royal jelly (RJ as the main food throughout their life, including as adults, but workers only eat worker jelly when they are larvae less than 3 days old. In order to explore the effect of RJ and the components affecting longevity of worker honey bees, we first determined the optimal dose for prolonging longevity of workers as 4% RJ in 50% sucrose solution, and developed a method of obtaining long lived workers. We then compared the effects of longevity extension by RJ 4% with bee-collected pollen from rapeseed (Brassica napus. Lastly, we determined that a water soluble RJ protein obtained by precipitation with 60% ammonium sulfate (RJP60 contained the main component for longevity extension after comparing the effects of RJ crude protein extract (RJCP, RJP30 (obtained by precipitation with 30% ammonium sulfate, and RJ ethanol extract (RJEE. Understanding what regulates worker longevity has potential to help increase colony productivity and improve crop pollination efficiency.

  20. Longevity extension of worker honey bees (Apis mellifera) by royal jelly: optimal dose and active ingredient.

    Science.gov (United States)

    Yang, Wenchao; Tian, Yuanyuan; Han, Mingfeng; Miao, Xiaoqing

    2017-01-01

    In the Western honey bee, Apis mellifera , queens and workers have different longevity although they share the same genome. Queens consume royal jelly (RJ) as the main food throughout their life, including as adults, but workers only eat worker jelly when they are larvae less than 3 days old. In order to explore the effect of RJ and the components affecting longevity of worker honey bees, we first determined the optimal dose for prolonging longevity of workers as 4% RJ in 50% sucrose solution, and developed a method of obtaining long lived workers. We then compared the effects of longevity extension by RJ 4% with bee-collected pollen from rapeseed ( Brassica napus ). Lastly, we determined that a water soluble RJ protein obtained by precipitation with 60% ammonium sulfate (RJP 60 ) contained the main component for longevity extension after comparing the effects of RJ crude protein extract (RJCP), RJP 30 (obtained by precipitation with 30% ammonium sulfate), and RJ ethanol extract (RJEE). Understanding what regulates worker longevity has potential to help increase colony productivity and improve crop pollination efficiency.

  1. Optimizing abdominal CT dose and image quality with respect to x-ray tube voltage

    Science.gov (United States)

    Huda, Walter; Ogden, Kent M.

    2004-05-01

    The objective of this study was to identify the x-ray tube voltage that results in optimum performance for abdominal CT imaging for a range of imaging tasks and patient sizes. Theoretical calculations were performed of the contrast to noise ratio (CNR) for disk shaped lesions of muscle, fat, bone and iodine embedded in a uniform water background. Lesion contrast was the mean Hounsfield Unit value at the effective photon energy, and image noise was determined from the total radiation intensity incident on the CT x-ray detector. Patient size ranging from young infants (10 kg) to oversized adults (120 kg), with CNR values obtained for x-ray tube voltages ranging from 80 to 140 kV. Patients of varying sizes were modeled as an equivalent cylinder of water, and the mean section dose (D) was determined for each selected x-ray tube kV value at a constant mAs. For each patient size and lesion type, we identified an optimal kV as the x-ray tube voltage that yields a maximum value of the figure of merit (CNR2/D). Increasing the x-ray tube voltage from 80 to 140 kV reduced lesion contrast by 11% for muscle, 21% for fat, 35% for bone and 52% for iodine, and these reductions were approximately independent of patient size. Increasing the x-ray tube voltage from 80 to 140 kV increased a muscle lesion CNR relative to a uniform water background by a factor of 2.6, with similar trends observed for fat (2.3), bone (1.9) and iodine (1.4). The improvement in lesion CNR with increasing x-ray tube voltage was highest for the largest sized patients. Increasing the x-ray tube voltage from 80 to 140 kV increased the patient dose by a factor of between 5.0 and 6.2 depending on the patient size. For small sized patients (10 and 30 kg) and muscle lesions, best performance is obtained at 80 kV; however, for adults (70 kg) and oversized adults (120 kg), the best performance would be obtained at 140 kV. Imaging fat lesions was best performed at 80 kV for all patients except for oversized adults

  2. Doses to organs at cerebral risks: optimization by robotized stereotaxic radiotherapy and automatic segmentation atlas versus three dimensional conformal radiotherapy

    International Nuclear Information System (INIS)

    Bondiau, P.Y.; Thariat, J.; Benezery, K.; Herault, J.; Dalmasso, C.; Marcie, S.; Malandain, G.

    2007-01-01

    The stereotaxic radiotherapy robotized by 'Cyberknife fourth generation' allows a dosimetric optimization with a high conformity index on the tumor and radiation doses limited on organs at risk. A cerebral automatic anatomic segmentation atlas of organs at risk are used in routine in three dimensions. This study evaluated the superiority of the stereotaxic radiotherapy in comparison with the three dimensional conformal radiotherapy on the preservation of organs at risk in regard of the delivered dose to tumors justifying an accelerated hypo fractionation and a dose escalation. This automatic segmentation atlas should allow to establish correlations between anatomy and cerebral dosimetry; This atlas allows to underline the dosimetry optimization by stereotaxic radiotherapy robotized for organs at risk. (N.C.)

  3. Calculation of Residual Dose Rates and Intervention Scenarios for the LHC Beam Cleaning Insertions-Constraints and Optimization

    CERN Document Server

    Brugger, Markus; Assmann, R W; Forkel-Wirth, Doris; Menzel, Hans Gregor; Roesler, Stefan; Vincke, Helmut H

    2005-01-01

    Radiation protection of the personnel who will perform interventions in the LHC Beam Cleaning Insertions is mandatory and includes the design of equipment and the establishment of work procedures. Residual dose rates due to activated equipment are expected to reach significant values such that any maintenance has to be planned and optimized in advance. Three-dimensional maps of dose equivalent rates at different cooling times after operation of the LHC have been calculated with FLUKA. The simulations are based on an explicit calculation of induced radioactivity and of the transport of the radiation from the radioactive decay. The paper summarizes the results for the Beam Cleaning Insertions and discusses the estimation of individual and collective doses received by personnel during critical interventions, such as the exchange of a collimator or the installation of Phase 2. The given examples outline the potential and the need to optimize, in an iterative way, the design of components as well as the layout of ...

  4. Contralateral breast doses measured by film dosimetry: tangential techniques and an optimized IMRT technique

    International Nuclear Information System (INIS)

    Saur, S; Frengen, J; Fjellsboe, L M B; Lindmo, T

    2009-01-01

    The contralateral breast (CLB) doses for three tangential techniques were characterized by using a female thorax phantom and GafChromic EBT film. Dose calculations by the pencil beam and collapsed cone algorithms were included for comparison. The film dosimetry reveals a highly inhomogeneous dose distribution within the CLB, and skin doses due to the medial fields that are several times higher than the interior dose. These phenomena are not correctly reproduced by the calculation algorithms. All tangential techniques were found to give a mean CLB dose of approximately 0.5 Gy. All wedged fields resulted in higher CLB doses than the corresponding open fields, and the lateral open fields resulted in higher CLB doses than the medial open fields. More than a twofold increase in the mean CLB dose from the medial open field was observed for a 90 deg. change of the collimator orientation. Replacing the physical wedge with a virtual wedge reduced the mean dose to the CLB by 35% and 16% for the medial and lateral fields, respectively. Lead shielding reduced the skin dose for a tangential technique by approximately 50%, but the mean CLB dose was only reduced by approximately 11%. Finally, a technique based on open medial fields in combination with several IMRT fields is proposed as a technique for minimizing the CLB dose. With and without lead shielding, the mean CLB dose using this technique was found to be 0.20 and 0.27 Gy, respectively.

  5. Pre-ejection period by radial artery tonometry supplements echo doppler findings during biventricular pacemaker optimization

    Directory of Open Access Journals (Sweden)

    Qamruddin Salima

    2011-07-01

    Full Text Available Abstract Background Biventricular (Biv pacemaker echo optimization has been shown to improve cardiac output however is not routinely used due to its complexity. We investigated the role of a simple method involving computerized pre-ejection time (PEP assessment by radial artery tonometry in guiding Biv pacemaker optimization. Methods Blinded echo and radial artery tonometry were performed simultaneously in 37 patients, age 69.1 ± 12.8 years, left ventricular (LV ejection fraction (EF 33 ± 10%, during Biv pacemaker optimization. Effect of optimization on echo derived velocity time integral (VTI, ejection time (ET, myocardial performance index (MPI, radial artery tonometry derived PEP and echo-radial artery tonometry derived PEP/VTI and PEP/ET indices was evaluated. Results Significant improvement post optimization was achieved in LV ET (286.9 ± 37.3 to 299 ± 34.6 ms, p Conclusion An acute shortening of PEP by radial artery tonometry occurs post Biv pacemaker optimization and correlates with improvement in hemodynamics by echo Doppler and may provide a cost-efficient approach to assist with Biv pacemaker echo optimization.

  6. Quality and Dose Optimized CT Trauma Protocol - Recommendation from a University Level-I Trauma Center.

    Science.gov (United States)

    Kahn, Johannes; Kaul, David; Böning, Georg; Rotzinger, Roman; Freyhardt, Patrick; Schwabe, Philipp; Maurer, Martin H; Renz, Diane Miriam; Streitparth, Florian

    2017-09-01

    Purpose  As a supra-regional level-I trauma center, we evaluated computed tomography (CT) acquisitions of polytraumatized patients for quality and dose optimization purposes. Adapted statistical iterative reconstruction [(AS)IR] levels, tube voltage reduction as well as a split-bolus contrast agent (CA) protocol were applied. Materials and Methods  61 patients were split into 3 different groups that differed with respect to tube voltage (120 - 140 kVp) and level of applied ASIR reconstruction (ASIR 20 - 50 %). The CT protocol included a native acquisition of the head followed by a single contrast-enhanced acquisition of the whole body (64-MSCT). CA (350 mg/ml iodine) was administered as a split bolus injection of 100 ml (2 ml/s), 20 ml NaCl (1 ml/s), 60 ml (4 ml/s), 40 ml NaCl (4 ml/s) with a scan delay of 85 s to detect injuries of both the arterial system and parenchymal organs in a single acquisition. Both the quantitative (SNR/CNR) and qualitative (5-point Likert scale) image quality was evaluated in parenchymal organs that are often injured in trauma patients. Radiation exposure was assessed. Results  The use of IR combined with a reduction of tube voltage resulted in good qualitative and quantitative image quality and a significant reduction in radiation exposure of more than 40 % (DLP 1087 vs. 647 mGyxcm). Image quality could be improved due to a dedicated protocol that included different levels of IR adapted to different slice thicknesses, kernels and the examined area for the evaluation of head, lung, body and bone injury patterns. In synopsis of our results, we recommend the implementation of a polytrauma protocol with a tube voltage of 120 kVp and the following IR levels: cCT 5mm: ASIR 20; cCT 0.625 mm: ASIR 40; lung 2.5 mm: ASIR 30, body 5 mm: ASIR 40; body 1.25 mm: ASIR 50; body 0.625 mm: ASIR 0. Conclusion  A dedicated adaptation of the CT trauma protocol (level of reduction of tube voltage and of IR

  7. Optimizing Collimator Margins for Isotoxically Dose-Escalated Conformal Radiation Therapy of Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Samantha, E-mail: Samantha.warren@oncology.ox.ac.uk [Department of Oncology, Gray Institute of Radiation Oncology and Biology, University of Oxford, Oxford (United Kingdom); Oxford Cancer Centre, Oxford University Hospitals, Oxford (United Kingdom); Panettieri, Vanessa [William Buckland Radiotherapy Centre, Alfred Hospital, Commercial Road, Melbourne (Australia); Panakis, Niki; Bates, Nicholas [Oxford Cancer Centre, Oxford University Hospitals, Oxford (United Kingdom); Lester, Jason F. [Velindre Cancer Centre, Velindre Road, Whitchurch, Cardiff (United Kingdom); Jain, Pooja [Clatterbridge Cancer Centre, Clatterbridge Road, Wirral (United Kingdom); Landau, David B. [Department of Radiotherapy, Guy' s and St. Thomas' NHS Foundation Trust, London (United Kingdom); Nahum, Alan E.; Mayles, W. Philip M. [Clatterbridge Cancer Centre, Clatterbridge Road, Wirral (United Kingdom); Fenwick, John D. [Department of Oncology, Gray Institute of Radiation Oncology and Biology, University of Oxford, Oxford (United Kingdom); Oxford Cancer Centre, Oxford University Hospitals, Oxford (United Kingdom)

    2014-04-01

    Purpose: Isotoxic dose escalation schedules such as IDEAL-CRT [isotoxic dose escalation and acceleration in lung cancer chemoradiation therapy] (ISRCTN12155469) individualize doses prescribed to lung tumors, generating a fixed modeled risk of radiation pneumonitis. Because the beam penumbra is broadened in lung, the choice of collimator margin is an important element of the optimization of isotoxic conformal radiation therapy for lung cancer. Methods and Materials: Twelve patients with stage I-III non-small cell lung cancer (NSCLC) were replanned retrospectively using a range of collimator margins. For each plan, the prescribed dose was calculated according to the IDEAL-CRT isotoxic prescription method, and the absolute dose (D{sub 99}) delivered to 99% of the planning target volume (PTV) was determined. Results: Reducing the multileaf collimator margin from the widely used 7 mm to a value of 2 mm produced gains of 2.1 to 15.6 Gy in absolute PTV D{sub 99}, with a mean gain ± 1 standard error of the mean of 6.2 ± 1.1 Gy (2-sided P<.001). Conclusions: For NSCLC patients treated with conformal radiation therapy and an isotoxic dose prescription, absolute doses in the PTV may be increased by using smaller collimator margins, reductions in relative coverage being offset by increases in prescribed dose.

  8. Optimizing image quality and dose for digital radiography of distal pediatric extremities using the contrast-to-noise ratio

    International Nuclear Information System (INIS)

    Hess, R.; Neitzel, U.

    2012-01-01

    Purpose: To investigate the influence of X-ray tube voltage and filtration on image quality in terms of contrast-to-noise ratio (CNR) and dose for digital radiography of distal pediatric extremities and to determine conditions that give the best balance of CNR and patient dose. Materials and Methods: In a phantom study simulating the absorption properties of distal extremities, the CNR and the related patient dose were determined as a function of tube voltage in the range 40 - 66 kV, both with and without additional filtration of 0.1 mm Cu/1 mm Al. The measured CNR was used as an indicator of image quality, while the mean absorbed dose (MAD) - determined by a combination of measurement and simulation - was used as an indicator of the patient dose. Results: The most favorable relation of CNR and dose was found for the lowest tube voltage investigated (40 kV) without additional filtration. Compared to a situation with 50 kV or 60 kV, the mean absorbed dose could be lowered by 24 % and 50 %, respectively, while keeping the image quality (CNR) at the same level. Conclusion: For digital radiography of distal pediatric extremities, further CNR and dose optimization appears to be possible using lower tube voltages. Further clinical investigation of the suggested parameters is necessary. (orig.)

  9. Evaluation of automatic exposure control system chamber for the dose optimization when examining pelvic in digital radiography.

    Science.gov (United States)

    Kim, Sung-Chul; Lee, Hae-Kag; Lee, Yang-Sub; Cho, Jae-Hwan

    2015-01-01

    We found a way to optimize the image quality and reduce the exposure dose of patients through the proper activity combination of the automatic exposure control system chamber for the dose optimization when examining the pelvic anteroposterior side using the phantom of the human body standard model. We set 7 combinations of the chamber of automatic exposure control system. The effective dose was yielded by measuring five times for each according to the activity combination of the chamber for the dose measurement. Five radiologists with more than five years of experience evaluated the image through picture archiving and communication system using double blind test while classifying the 6 anatomical sites into 3-point level (improper, proper, perfect). When only one central chamber was activated, the effective dose was found to be the highest level, 0.287 mSv; and lowest when only the top left chamber was used, 0.165 mSv. After the subjective evaluation by five panel members on the pelvic image was completed, there was no statistically meaningful difference between the 7 chamber combinations, and all had good image quality. When testing the pelvic anteroposterior side with digital radiography, we were able to reduce the exposure dose of patients using the combination of the top right side of or the top two of the chamber.

  10. Use of Monte Carlo Simulations to Determine Optimal Carbapenem Dosing in Critically Ill Patients Receiving Prolonged Intermittent Renal Replacement Therapy.

    Science.gov (United States)

    Lewis, Susan J; Kays, Michael B; Mueller, Bruce A

    2016-10-01

    Pharmacokinetic/pharmacodynamic analyses with Monte Carlo simulations (MCSs) can be used to integrate prior information on model parameters into a new renal replacement therapy (RRT) to develop optimal drug dosing when pharmacokinetic trials are not feasible. This study used MCSs to determine initial doripenem, imipenem, meropenem, and ertapenem dosing regimens for critically ill patients receiving prolonged intermittent RRT (PIRRT). Published body weights and pharmacokinetic parameter estimates (nonrenal clearance, free fraction, volume of distribution, extraction coefficients) with variability were used to develop a pharmacokinetic model. MCS of 5000 patients evaluated multiple regimens in 4 different PIRRT effluent/duration combinations (4 L/h × 10 hours or 5 L/h × 8 hours in hemodialysis or hemofiltration) occurring at the beginning or 14-16 hours after drug infusion. The probability of target attainment (PTA) was calculated using ≥40% free serum concentrations above 4 times the minimum inhibitory concentration (MIC) for the first 48 hours. Optimal doses were defined as the smallest daily dose achieving ≥90% PTA in all PIRRT combinations. At the MIC of 2 mg/L for Pseudomonas aeruginosa, optimal doses were doripenem 750 mg every 8 hours, imipenem 1 g every 8 hours or 750 mg every 6 hours, and meropenem 1 g every 12 hours or 1 g pre- and post-PIRRT. Ertapenem 500 mg followed by 500 mg post-PIRRT was optimal at the MIC of 1 mg/L for Streptococcus pneumoniae. Incorporating data from critically ill patients receiving RRT into MCS resulted in markedly different carbapenem dosing regimens in PIRRT from those recommended for conventional RRTs because of the unique drug clearance characteristics of PIRRT. These results warrant clinical validation. © 2016, The American College of Clinical Pharmacology.

  11. The optimal parameter for radiation dose in pediatric low dose abdominal CT: cross-sectional dimensions versus body weight

    International Nuclear Information System (INIS)

    Jung, Yoon Young; Goo, Hyun Woo

    2008-01-01

    To investigate the best parameter between cross-sectional dimensions and body weight in pediatric low dose abdominal CT. One hundred and thirty six children consecutively underwent weight-based abdominal CT. The subjects consisted of group 1 (79 children, weight range 10.0-19.9 kg) and group 2 (57 children, weight range 20.0-39.9 kg). Abdominal cross-sectional dimensions including circumference, area, anteroposterior diameters and transverse diameters were calculated. Image noise (standard deviation of CT density) was measured by placing a region of interest in the posterior segment of the right hepatic lobe on a CT image at the celiac axis. The measured image noise was correlated with the cross-sectional abdominal dimensions and body weight for subjects in each group. In group 1 subjects,area, circumference, transverse diameter, anteroposterior diameter, and body weight showed a significant positive correlation with image noise in descending order(γ = 0.63, 0.62, 0.61, 0.51, and 0.49; ρ < 0.0001). In group 2 subjects, transverse diameter, circumference, area, anteroposterior diameter, and body weight showed a significant positive correlation with image noise in descending order (γ = 0.83, 0.82, 0.78, 0.71, and 0.71; ρ < 0.0001). Cross-sectional dimensions such as area, circumference, and transverse diameter showed a higher positive correlation with image noise than body weight for pediatric low dose abdominal CT

  12. Quality and dose optimized CT trauma protocol. Recommendation from a university level-I trauma center

    Energy Technology Data Exchange (ETDEWEB)

    Kahn, Johannes; Boening, Georg; Rotzinger, Roman; Freyhardt, Patrick; Streitparth, Florian [Charite School of Medicine and Univ. Hospital Berlin (Germany). Dept. of Radiology; Kaul, David [Charite School of Medicine and Univ. Hospital Berlin (Germany). Dept. of Radiation Oncology; Schwabe, Philipp [Charite School of Medicine and Univ. Hospital Berlin (Germany). Dept. of Trauma Surgery; Maurer, Martin H. [Inselspital Bern (Switzerland). Dept. of Diagnostic, Interventional and Pediatric Radiology; Renz, Diane Miriam [Univ. Hospital Jena (Germany). Inst. of Diagnostic and Interventional Radiology

    2017-09-15

    As a supra-regional level-I trauma center, we evaluated computed tomography (CT) acquisitions of polytraumatized patients for quality and dose optimization purposes. Adapted statistical iterative reconstruction [(AS)IR] levels, tube voltage reduction as well as a split-bolus contrast agent (CA) protocol were applied. Materials and Methods 61 patients were split into 3 different groups that differed with respect to tube voltage (120 - 140 kVp) and level of applied ASIR reconstruction (ASIR 20 - 50%). The CT protocol included a native acquisition of the head followed by a single contrast-enhanced acquisition of the whole body (64-MSCT). CA (350 mg/ml iodine) was administered as a split bolus injection of 100 ml (2 ml/s), 20 ml NaCl (1 ml/s), 60 ml (4 ml/s), 40 ml NaCl (4 ml/s) with a scan delay of 85s to detect injuries of both the arterial system and parenchymal organs in a single acquisition. Both the quantitative (SNR/CNR) and qualitative (5-point Likert scale) image quality was evaluated in parenchymal organs that are often injured in trauma patients. Radiation exposure was assessed. The use of IR combined with a reduction of tube voltage resulted in good qualitative and quantitative image quality and a significant reduction in radiation exposure of more than 40% (DLP 1087 vs. 647 mGy x cm). Image quality could be improved due to a dedicated protocol that included different levels of IR adapted to different slice thicknesses, kernels and the examined area for the evaluation of head, lung, body and bone injury patterns. In synopsis of our results, we recommend the implementation of a polytrauma protocol with a tube voltage of 120 kVp and the following IR levels: cCT 5mm: ASIR 20; cCT 0.625 mm: ASIR 40; lung 2.5 mm: ASIR 30, body 5 mm: ASIR 40; body 1.25 mm: ASIR 50; body 0.625 mm: ASIR 0. A dedicated adaptation of the CT trauma protocol (level of reduction of tube voltage and of IR) according to the examined body region (head, lung, body, bone) combined with a

  13. Quality and dose optimized CT trauma protocol. Recommendation from a university level-I trauma center

    International Nuclear Information System (INIS)

    Kahn, Johannes; Boening, Georg; Rotzinger, Roman; Freyhardt, Patrick; Streitparth, Florian; Kaul, David; Schwabe, Philipp; Maurer, Martin H.; Renz, Diane Miriam

    2017-01-01

    As a supra-regional level-I trauma center, we evaluated computed tomography (CT) acquisitions of polytraumatized patients for quality and dose optimization purposes. Adapted statistical iterative reconstruction [(AS)IR] levels, tube voltage reduction as well as a split-bolus contrast agent (CA) protocol were applied. Materials and Methods 61 patients were split into 3 different groups that differed with respect to tube voltage (120 - 140 kVp) and level of applied ASIR reconstruction (ASIR 20 - 50%). The CT protocol included a native acquisition of the head followed by a single contrast-enhanced acquisition of the whole body (64-MSCT). CA (350 mg/ml iodine) was administered as a split bolus injection of 100 ml (2 ml/s), 20 ml NaCl (1 ml/s), 60 ml (4 ml/s), 40 ml NaCl (4 ml/s) with a scan delay of 85s to detect injuries of both the arterial system and parenchymal organs in a single acquisition. Both the quantitative (SNR/CNR) and qualitative (5-point Likert scale) image quality was evaluated in parenchymal organs that are often injured in trauma patients. Radiation exposure was assessed. The use of IR combined with a reduction of tube voltage resulted in good qualitative and quantitative image quality and a significant reduction in radiation exposure of more than 40% (DLP 1087 vs. 647 mGy x cm). Image quality could be improved due to a dedicated protocol that included different levels of IR adapted to different slice thicknesses, kernels and the examined area for the evaluation of head, lung, body and bone injury patterns. In synopsis of our results, we recommend the implementation of a polytrauma protocol with a tube voltage of 120 kVp and the following IR levels: cCT 5mm: ASIR 20; cCT 0.625 mm: ASIR 40; lung 2.5 mm: ASIR 30, body 5 mm: ASIR 40; body 1.25 mm: ASIR 50; body 0.625 mm: ASIR 0. A dedicated adaptation of the CT trauma protocol (level of reduction of tube voltage and of IR) according to the examined body region (head, lung, body, bone) combined with a

  14. Finding an optimization of the plate element of Egyptian research reactor using genetic algorithm

    International Nuclear Information System (INIS)

    Wahed, M.; Ibrahim, W.; Effat, A.

    2008-01-01

    The second Egyptian research reactor ET-RR-2 went critical on the 27th of November 1997. The National Center of Nuclear Safety and Radiation Control (NCNSRC) has the responsibility of the evaluation and assessment of the safety of this reactor. The purpose of this paper is to present an approach to optimization of the fuel element plate. For an efficient search through the solution space we use a multi objective genetic algorithm which allows us to identify a set of Pareto optimal solutions providing the decision maker with the complete spectrum of optimal solutions with respect to the various targets. The aim of this paper is to propose a new approach for optimizing the fuel element plate in the reactor. The fuel element plate is designed with a view to improve reliability and lifetime and it is one of the most important elements during the shut down. In this present paper, we present a conceptual design approach for fuel element plate, in conjunction with a genetic algorithm to obtain a fuel plate that maximizes a fitness value to optimize the safety design of the fuel plate. (authors)

  15. Patient Dose Optimization in Fluoroscopically Guided Interventional Procedures. Final Report of a Coordinated Research Project

    International Nuclear Information System (INIS)

    2010-01-01

    In recent years, many surgical procedures have increasingly been replaced by interventional procedures that guide catheters into the arteries under X ray fluoroscopic guidance to perform a variety of operations such as ballooning, embolization, implantation of stents etc. The radiation exposure to patients and staff in such procedures is much higher than in simple radiographic examinations like X ray of chest or abdomen such that radiation induced skin injuries to patients and eye lens opacities among workers have been reported in the 1990's and after. Interventional procedures have grown both in frequency and importance during the last decade. This Coordinated Research Project (CRP) and TECDOC were developed within the International Atomic Energy Agency's (IAEA) framework of statutory responsibility to provide for the worldwide application of the standards for the protection of people against exposure to ionizing radiation. The CRP took place between 2003 and 2005 in six countries, with a view of optimizing the radiation protection of patients undergoing interventional procedures. The Fundamental Safety Principles and the International Basic Safety Standards for Protection against Ionizing Radiation (BSS) issued by the IAEA and co-sponsored by the Food and Agriculture Organization of the United Nations (FAO), the International Labour Organization (ILO), the World Health Organization (WHO), the Pan American Health Organization (PAHO) and the Nuclear Energy Agency (NEA), among others, require the radiation protection of patients undergoing medical exposures through justification of the procedures involved and through optimization. In keeping with its responsibility on the application of standards, the IAEA programme on Radiological Protection of Patients encourages the reduction of patient doses. To facilitate this, it has issued specific advice on the application of the BSS in the field of radiology in Safety Reports Series No. 39 and the three volumes on Radiation

  16. Optimizing CT technique to reduce radiation dose: effect of changes in kVp, iterative reconstruction, and noise index on dose and noise in a human cadaver.

    Science.gov (United States)

    Chang, Kevin J; Collins, Scott; Li, Baojun; Mayo-Smith, William W

    2017-06-01

    For assessment of the effect of varying the peak kilovoltage (kVp), the adaptive statistical iterative reconstruction technique (ASiR), and automatic dose modulation on radiation dose and image noise in a human cadaver, a cadaver torso underwent CT scanning at 80, 100, 120 and 140 kVp, each at ASiR settings of 0, 30 and 50 %, and noise indices (NIs) of 5.5, 11 and 22. The volume CT dose index (CTDI vol ), image noise, and attenuation values of liver and fat were analyzed for 20 data sets. Size-specific dose estimates (SSDEs) and liver-to-fat contrast-to-noise ratios (CNRs) were calculated. Values for different combinations of kVp, ASiR, and NI were compared. The CTDI vol varied by a power of 2 with kVp values between 80 and 140 without ASiR. Increasing ASiR levels allowed a larger decrease in CTDI vol and SSDE at higher kVp than at lower kVp while image noise was held constant. In addition, CTDI vol and SSDE decreased with increasing NI at each kVp, but the decrease was greater at higher kVp than at lower kVp. Image noise increased with decreasing kVp despite a fixed NI; however, this noise could be offset with the use of ASiR. The CT number of the liver remained unchanged whereas that of fat decreased as the kVp decreased. Image noise and dose vary in a complicated manner when the kVp, ASiR, and NI are varied in a human cadaver. Optimization of CT protocols will require balancing of the effects of each of these parameters to maximize image quality while minimizing dose.

  17. Measurement the concentration of polonium 210Po and find annual dose resulting from eating certain foods by the individual Iraqi

    International Nuclear Information System (INIS)

    Al-Emam, A. M.; Mhemeed, A.K.; Hasan, H.I.

    2012-12-01

    The present study aims to determine the concentration of polonium 2 10P o in some of the food consumed by the Iraqi individual collecting (27) sample produced within the country, including imported and available in local markets to some Iraqi provinces, and these foods included potatoes, wheat and fish. To find concentration of polonium 2 10P o method is used chemical separation and deposition on silver disc, and use surface barrier detector to find alpha particle spectrum for polonium and find concentrations ere at 7.15, 2.58, 6.86 Bq / kg, for each of potatoes, wheat and fish, respectively, Daily intake rate for polotuinm 2 10P o which found in the food under study was measured, and show that the annual dose resulting from eating foods that contain this element was at 4.55, 87,69, 0.298 μSv/ y for food stuff mentioned are compatible with universal values and within the permissible limits worldwide. (Author)

  18. Optimal Dose of Calcium for Treatment of Nutritional Rickets: A Randomized Controlled Trial.

    Science.gov (United States)

    Thacher, Tom D; Smith, Lauren; Fischer, Philip R; Isichei, Christian O; Cha, Stephen S; Pettifor, John M

    2016-11-01

    Calcium supplementation is indicated for the treatment of nutritional rickets. Our aim was to determine the optimal dose of calcium for treatment of children with rickets. Sixty-five Nigerian children with radiographically confirmed rickets were randomized to daily supplemental calcium intake of 500 mg (n = 21), 1000 mg (n = 23), or 2000 mg (n = 21). Venous blood, radiographs, and forearm areal bone density (aBMD) were obtained at baseline and at 8, 16, and 24 weeks after enrollment. The primary outcome was radiographic healing, using a 10-point radiographic severity score. The radiographic severity scores improved in all three groups, but the rate of radiographic healing (points per month) was significantly more rapid in the 1000-mg (-0.29; 95% confidence interval [CI] -0.13 to -0.45) and 2000-mg (-0.36; 95% CI -0.19 to -0.53) supplementation groups relative to the 500-mg group. The 2000-mg group did not heal more rapidly than the 1000-mg group. Of those who completed treatment for 24 weeks, 12 (67%), 20 (87%), and 14 (67%) in the 2000-mg, 1000-mg, and 500-mg groups, respectively, had achieved a radiographic score of 1.5 or less (p = 0.21). Serum alkaline phosphatase decreased and calcium increased similarly in all groups. Forearm diaphyseal aBMD improved significantly more rapidly in the 2000-mg group than in the 500-mg and 1000-mg groups (p rickets than 500 mg, but 2000 mg did not have greater benefit than 1000 mg. Some children require longer than 24 weeks for complete healing of nutritional rickets. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.

  19. Optimization of the temporal pattern of applied dose for a single fraction of radiation: Implications for radiation therapy

    Science.gov (United States)

    Altman, Michael B.

    The increasing prevalence of intensity modulated radiation therapy (IMRT) as a treatment modality has led to a renewed interest in the potential for interaction between prolonged treatment time, as frequently associated with IMRT, and the underlying radiobiology of the irradiated tissue. A particularly relevant aspect of radiobiology is cell repair capacity, which influences cell survival, and thus directly relates to the ability to control tumors and spare normal tissues. For a single fraction of radiation, the linear quadratic (LQ) model is commonly used to relate the radiation dose to the fraction of cells surviving. The LQ model implies a dependence on two time-related factors which correlate to radiobiological effects: the duration of radiation application, and the functional form of how the dose is applied over that time (the "temporal pattern of applied dose"). Although the former has been well studied, the latter has not. Thus, the goal of this research is to investigate the impact of the temporal pattern of applied dose on the survival of human cells and to explore how the manipulation of this temporal dose pattern may be incorporated into an IMRT-based radiation therapy treatment planning scheme. The hypothesis is that the temporal pattern of applied dose in a single fraction of radiation can be optimized to maximize or minimize cell kill. Furthermore, techniques which utilize this effect could have clinical ramifications. In situations where increased cell kill is desirable, such as tumor control, or limiting the degree of cell kill is important, such as the sparing of normal tissue, temporal sequences of dose which maximize or minimize cell kill (temporally "optimized" sequences) may provide greater benefit than current clinically used radiation patterns. In the first part of this work, an LQ-based modeling analysis of effects of the temporal pattern of dose on cell kill is performed. Through this, patterns are identified for maximizing cell kill for a

  20. Optimal dose reduction in computed tomography methodologies predicted from real-time dosimetry

    Science.gov (United States)

    Tien, Christopher Jason

    Over the past two decades, computed tomography (CT) has become an increasingly common and useful medical imaging technique. CT is a noninvasive imaging modality with three-dimensional volumetric viewing abilities, all in sub-millimeter resolution. Recent national scrutiny on radiation dose from medical exams has spearheaded an initiative to reduce dose in CT. This work concentrates on dose reduction of individual exams through two recently-innovated dose reduction techniques: organ dose modulation (ODM) and tube current modulation (TCM). ODM and TCM tailor the phase and amplitude of x-ray current, respectively, used by the CT scanner during the scan. These techniques are unique because they can be used to achieve patient dose reduction without any appreciable loss in image quality. This work details the development of the tools and methods featuring real-time dosimetry which were used to provide pioneering measurements of ODM or TCM in dose reduction for CT.

  1. Evaluation of Mangosteen juice blend on biomarkers of inflammation in obese subjects: a pilot, dose finding study

    Directory of Open Access Journals (Sweden)

    Singh Betsy B

    2009-10-01

    Full Text Available Abstract Background The ability to reduce inflammation in overweight and obese individuals may be valuable in preventing the progression to metabolic syndrome with associated risks for heart disease and diabetes. The purpose of this study was to evaluate the effect of multiple dosages of a proprietary Mangosteen Juice blend on indicators of inflammation and antioxidant levels in obese patients with elevated C-reactive protein (CRP levels. Methods The study was an 8 week randomized, double-blind, placebo-controlled study with a pre-study 2 week washout period. The study included four groups including placebo and three difference doses of the test product, XanGo Juice™: 3, 6 or 9 oz twice daily. The primary outcome measure of this study was high-sensitivity (HS-CRP. Secondary outcome measures included other biochemical indicators of inflammation, anthropomorphic measures and a safety evaluation. Results One hundred twenty two (122 persons were screened for the study, 44 were randomized and 40 completed the study. HS-CRP measurements dropped after 8 weeks treatment compared to baseline in all 3 dose groups and increased in the placebo group. The changes from baseline were not significant but the comparison of change from baseline was significant for the 18 oz group when compared to placebo (p = 0.02. Other markers of inflammation (inflammatory cytokines and a marker for lipid peroxidation (F2 isoprostane did not show any significant differences when compared with placebo. There was a trend towards a decrease in BMI in the juice groups. There were no side effects reported in any of the groups and none of the laboratory or EKG safety assessments indicated clinically significant changes for any subject. Conclusion In this pilot, dose-finding study, a proprietary mangosteen juice blend (XanGo Juice™ reduced CRP levels (increased change from baseline compared to placebo for those taking the highest dose of 18 oz per day. Further studies with a

  2. Evaluation of Mangosteen juice blend on biomarkers of inflammation in obese subjects: a pilot, dose finding study.

    Science.gov (United States)

    Udani, Jay K; Singh, Betsy B; Barrett, Marilyn L; Singh, Vijay J

    2009-10-20

    The ability to reduce inflammation in overweight and obese individuals may be valuable in preventing the progression to metabolic syndrome with associated risks for heart disease and diabetes. The purpose of this study was to evaluate the effect of multiple dosages of a proprietary Mangosteen Juice blend on indicators of inflammation and antioxidant levels in obese patients with elevated C-reactive protein (CRP) levels. The study was an 8 week randomized, double-blind, placebo-controlled study with a pre-study 2 week washout period. The study included four groups including placebo and three difference doses of the test product, XanGo Juice: 3, 6 or 9 oz twice daily. The primary outcome measure of this study was high-sensitivity (HS)-CRP. Secondary outcome measures included other biochemical indicators of inflammation, anthropomorphic measures and a safety evaluation. One hundred twenty two (122) persons were screened for the study, 44 were randomized and 40 completed the study. HS-CRP measurements dropped after 8 weeks treatment compared to baseline in all 3 dose groups and increased in the placebo group. The changes from baseline were not significant but the comparison of change from baseline was significant for the 18 oz group when compared to placebo (p = 0.02). Other markers of inflammation (inflammatory cytokines) and a marker for lipid peroxidation (F2 isoprostane) did not show any significant differences when compared with placebo. There was a trend towards a decrease in BMI in the juice groups. There were no side effects reported in any of the groups and none of the laboratory or EKG safety assessments indicated clinically significant changes for any subject. In this pilot, dose-finding study, a proprietary mangosteen juice blend (XanGo Juice) reduced CRP levels (increased change from baseline) compared to placebo for those taking the highest dose of 18 oz per day. Further studies with a larger population are required to confirm and further define the

  3. Mid-ventilation position planning: Optimal model for dose distribution in lung tumour

    International Nuclear Information System (INIS)

    Benchalal, M.; Leseur, J.; Chajon, E.; Cazoulat, G.; Haigron, P.; Simon, A.; Bellec, J.; Lena, H.; Crevoisier, R. de

    2012-01-01

    Purpose. - The dose distribution for lung tumour is estimated using a 3D-CT scan, and since a person breathes while the images are captured, the dose distribution doesn't reflect the reality. A 4D-CT scan integrates the motion of the tumour during breathing and, therefore, provides us with important information regarding tumour's motion in all directions, the motion volume (ITV) and the time-weighted average position (MVP). Patient and methods. - Based on these two concepts, we have estimated, for a lung carcinoma case a 3D dose distribution from a 3D-CT scan, and a 4D dose distribution from a 4-D CT scan. To this, we have applied a non-rigid registration to estimate the cumulative dose. Results. - Our study shows that the 4D dose estimation of the GTV is almost the same when made using MVP and ITV concepts, but sparring of the healthy lung is better done using the MPV model (MVP), as compared to the ITV model. This improvement of the therapeutic index allows, from a projection on the theoretical maximal dose to PTV (strictly restricted to doses for the lungs and the spinal cord), for an increase of about 11% on the total dose (maximal dose of 86 Gy for the ITV and 96 Gy for the MVP). Conclusion. - Further studies with more patients are needed to confirm our data. (authors)

  4. Procedures for finding optimal layouts of vehicle components with respect to durability

    Energy Technology Data Exchange (ETDEWEB)

    Eschenauer, H.A.; Idelberger, H. [Univ. of Siegen (Germany); Bieker, G.; Rottler, A. [Bombardier, Siegen-Netphen (Germany); Weinert, M. [Ford Motor Comp., Cologne (Germany)

    2007-07-01

    When designing complete systems or system components, it is of vital importance for the manufacturers to optimally fulfill the continuously increasing demands pertaining to safety, durability, reduction of energy consumption, noise reduction, improvement of comfort, accuracy, etc. This applies to all types of traffic and transportation systems like rail vehicles, automobiles, airplanes and ships. By combining structural analysis and simulation methods with optimization algorithms, required specifications can be met faster and more reliably, and hence the production development cycles can be substantially reduced. This paper shall give an overview on results of a method with the features of a damage approximation as precisely as possible on the one hand and, on the other hand, a load-time history with few different load cycles so that a nonlinear calculation can be performed in the shortest possible time. Simulations with rigidly and elastically modeled components like bogie frames or carbodies show that depending on the type of modeling substantial differences may occur with respect to dynamic behavior and the interaction quantity between the bodies. This aspect has to be taken into consideration for quantitatively sufficient fatigue strength and durability calculation. Mathematical optimization procedures are in general an efficient tool to guarantee the optimal fulfillment of all required design objectives and constraints in all stages of the design process. Some of the procedures are illustrated at two examples (bogie frame, carbody). (orig.)

  5. Design of an optimal automation system : Finding a balance between a human's task engagement and exhaustion

    NARCIS (Netherlands)

    Klein, Michel; van Lambalgen, Rianne

    2011-01-01

    In demanding tasks, human performance can seriously degrade as a consequence of increased workload and limited resources. In such tasks it is very important to maintain an optimal performance quality, therefore automation assistance is required. On the other hand, automation can also impose

  6. Comparative evaluation of two dose optimization methods for image-guided, highly-conformal, tandem and ovoids cervix brachytherapy planning

    Science.gov (United States)

    Ren, Jiyun; Menon, Geetha; Sloboda, Ron

    2013-04-01

    Although the Manchester system is still extensively used to prescribe dose in brachytherapy (BT) for locally advanced cervix cancer, many radiation oncology centers are transitioning to 3D image-guided BT, owing to the excellent anatomy definition offered by modern imaging modalities. As automatic dose optimization is highly desirable for 3D image-based BT, this study comparatively evaluates the performance of two optimization methods used in BT treatment planning—Nelder-Mead simplex (NMS) and simulated annealing (SA)—for a cervix BT computer simulation model incorporating a Manchester-style applicator. Eight model cases were constructed based on anatomical structure data (for high risk-clinical target volume (HR-CTV), bladder, rectum and sigmoid) obtained from measurements on fused MR-CT images for BT patients. D90 and V100 for HR-CTV, D2cc for organs at risk (OARs), dose to point A, conformation index and the sum of dwell times within the tandem and ovoids were calculated for optimized treatment plans designed to treat the HR-CTV in a highly conformal manner. Compared to the NMS algorithm, SA was found to be superior as it could perform optimization starting from a range of initial dwell times, while the performance of NMS was strongly dependent on their initial choice. SA-optimized plans also exhibited lower D2cc to OARs, especially the bladder and sigmoid, and reduced tandem dwell times. For cases with smaller HR-CTV having good separation from adjoining OARs, multiple SA-optimized solutions were found which differed markedly from each other and were associated with different choices for initial dwell times. Finally and importantly, the SA method yielded plans with lower dwell time variability compared with the NMS method.

  7. Keeping an eye on the ring: COMS plaque loading optimization for improved dose conformity and homogeneity.

    Science.gov (United States)

    Gagne, Nolan L; Cutright, Daniel R; Rivard, Mark J

    2012-09-01

    To improve tumor dose conformity and homogeneity for COMS plaque brachytherapy by investigating the dosimetric effects of varying component source ring radionuclides and source strengths. The MCNP5 Monte Carlo (MC) radiation transport code was used to simulate plaque heterogeneity-corrected dose distributions for individually-activated source rings of 14, 16 and 18 mm diameter COMS plaques, populated with (103)Pd, (125)I and (131)Cs sources. Ellipsoidal tumors were contoured for each plaque size and MATLAB programming was developed to generate tumor dose distributions for all possible ring weighting and radionuclide permutations for a given plaque size and source strength resolution, assuming a 75 Gy apical prescription dose. These dose distributions were analyzed for conformity and homogeneity and compared to reference dose distributions from uniformly-loaded (125)I plaques. The most conformal and homogeneous dose distributions were reproduced within a reference eye environment to assess organ-at-risk (OAR) doses in the Pinnacle(3) treatment planning system (TPS). The gamma-index analysis method was used to quantitatively compare MC and TPS-generated dose distributions. Concentrating > 97% of the total source strength in a single or pair of central (103)Pd seeds produced the most conformal dose distributions, with tumor basal doses a factor of 2-3 higher and OAR doses a factor of 2-3 lower than those of corresponding uniformly-loaded (125)I plaques. Concentrating 82-86% of the total source strength in peripherally-loaded (131)Cs seeds produced the most homogeneous dose distributions, with tumor basal doses 17-25% lower and OAR doses typically 20% higher than those of corresponding uniformly-loaded (125)I plaques. Gamma-index analysis found > 99% agreement between MC and TPS dose distributions. A method was developed to select intra-plaque ring radionuclide compositions and source strengths to deliver more conformal and homogeneous tumor dose distributions than

  8. Dose-volume histograms for optimization of treatment plans illustrated by the example of oesophagus carcinoma

    International Nuclear Information System (INIS)

    Roth, J.; Huenig, R.; Huegli, C.

    1995-01-01

    Using the example of oesophagus carcinoma, dose-volume histograms for diverse treatment techniques are calculated and judged by means of multiplanar isodose representations. The selected treatment plans are ranked with the aid of the dose-volume histograms. We distinguish the tissue inside and outside of the target volume. The description of the spatial dose distribution in dependence of the different volumes and the respective fractions of the tumor dose therein with the help of dose-volume histograms brings about a correlation between the physical parameters and the biological effects. In addition one has to bear in mind the consequences of measures that influence the reaction and the side-effects of radiotherapy (e.g. chemotherapy), i.e. the recuperation of the tissues that were irradiated intentionally or inevitably. Taking all that into account it is evident that the dose-volume histograms are a powerful tool for assessing the quality of treatment plans. (orig./MG) [de

  9. Optimization of the dose level for a given treatment plan to maximize the complication-free tumor cure

    International Nuclear Information System (INIS)

    Lind, B.K.; Mavroidis, P.; Hyoedynmaa, S.; Kappas, C.

    1999-01-01

    During the past decade, tumor and normal tissue reactions after radiotherapy have been increasingly quantified in radiobiological terms. For this purpose, response models describing the dependence of tumor and normal tissue reactions on the irradiated volume, heterogeneity of the delivered dose distribution and cell sensitivity variations can be taken into account. The probability of achieving a good treatment outcome can be increased by using an objective function such as P + , the probability of complication-free tumor control. A new procedure is presented, which quantifies P + from the dose delivery on 2D surfaces and 3D volumes and helps the user of any treatment planning system (TPS) to select the best beam orientations, the best beam modalities and the most suitable beam energies. The final step of selecting the prescribed dose level is made by a renormalization of the entire dose plan until the value of P + is maximized. The index P + makes use of clinically established dose-response parameters, for tumors and normal tissues of interest, in order to improve its clinical relevance. The results, using P + , are compared against the assessments of experienced medical physicists and radiation oncologists for two clinical cases. It is observed that when the absorbed dose level for a given treatment plan is increased, the treatment outcome first improves rapidly. As the dose approaches the tolerance of normal tissues the complication-free curve begins to drop. The optimal dose level is often just below this point and it depends on the geometry of each patient and target volume. Furthermore, a more conformal dose delivery to the target results in a higher control rate for the same complication level. This effect can be quantified by the increased value of the P + parameter. (orig.)

  10. A fast inverse treatment planning strategy facilitating optimized catheter selection in image-guided high-dose-rate interstitial gynecologic brachytherapy.

    Science.gov (United States)

    Guthier, Christian V; Damato, Antonio L; Hesser, Juergen W; Viswanathan, Akila N; Cormack, Robert A

    2017-12-01

    Interstitial high-dose rate (HDR) brachytherapy is an important therapeutic strategy for the treatment of locally advanced gynecologic (GYN) cancers. The outcome of this therapy is determined by the quality of dose distribution achieved. This paper focuses on a novel yet simple heuristic for catheter selection for GYN HDR brachytherapy and their comparison against state of the art optimization strategies. The proposed technique is intended to act as a decision-supporting tool to select a favorable needle configuration. The presented heuristic for catheter optimization is based on a shrinkage-type algorithm (SACO). It is compared against state of the art planning in a retrospective study of 20 patients who previously received image-guided interstitial HDR brachytherapy using a Syed Neblett template. From those plans, template orientation and position are estimated via a rigid registration of the template with the actual catheter trajectories. All potential straight trajectories intersecting the contoured clinical target volume (CTV) are considered for catheter optimization. Retrospectively generated plans and clinical plans are compared with respect to dosimetric performance and optimization time. All plans were generated with one single run of the optimizer lasting 0.6-97.4 s. Compared to manual optimization, SACO yields a statistically significant (P ≤ 0.05) improved target coverage while at the same time fulfilling all dosimetric constraints for organs at risk (OARs). Comparing inverse planning strategies, dosimetric evaluation for SACO and "hybrid inverse planning and optimization" (HIPO), as gold standard, shows no statistically significant difference (P > 0.05). However, SACO provides the potential to reduce the number of used catheters without compromising plan quality. The proposed heuristic for needle selection provides fast catheter selection with optimization times suited for intraoperative treatment planning. Compared to manual optimization, the

  11. Determination of the optimal minimum radioiodine dose in patients with Graves' disease: a clinical outcome study

    Energy Technology Data Exchange (ETDEWEB)

    Howarth, D.; Tan, P.; Booker, J. [Pacific Medical Imaging, Newcastle, NSW (Australia); Epstein, M. [Dept. of Endocrinology, John Hunter Hospital, Newcastle, NSW (Australia); Lan, L. [High-Dependency Unit, St. George Hospital, Sydney, NSW (Australia)

    2001-10-01

    The study was performed under the auspices of the International Atomic Energy Commission, Vienna, Austria, with the aim of determining the optimal minimum therapeutic dose of iodine-131 for Graves' disease. The study was designed as a single-blinded randomised prospective outcome trial. Fifty-eight patients were enrolled, consisting of 50 females and 8 males aged from 17 to 75 years. Each patient was investigated by clinical assessment, biochemical and immunological assessment, thyroid ultrasound, technetium-99m thyroid scintigraphy and 24-h thyroid {sup 131}I uptake. Patients were then randomised into two treatment groups, one receiving 60 Gy and the other receiving 90 Gy thyroid tissue absorbed dose of radioiodine. The end-point markers were clinical and biochemical response to treatment. The median follow-up period was 37.5 months (range, 24-48 months). Among the 57 patients who completed final follow-up, a euthyroid state was achieved in 26 patients (46%), 27 patients (47%) were rendered hypothyroid and four patients (7%) remained hyperthyroid. Thirty-four patients (60%) remained hyperthyroid at 6 months after the initial radioiodine dose (median dose 126 MBq), and a total of 21 patients required additional radioiodine therapy (median total dose 640 MBq; range 370-1,485 MBq). At 6-month follow-up, of the 29 patients who received a thyroid tissue dose of 90 Gy, 17 (59%) remained hyperthyroid. By comparison, of the 28 patients who received a thyroid tissue dose of 60 Gy, 17 (61%) remained hyperthyroid. No significant difference in treatment response was found (P=0.881). At 6 months, five patients in the 90-Gy group were hypothyroid, compared to two patients in the 60-Gy group (P=0.246). Overall at 6 months, non-responders to low-dose therapy had a significantly larger thyroid gland mass (respective means: 35.9 ml vs 21.9 ml) and significantly higher levels of serum thyroglobulin (respective means: 597.6 {mu}g/l vs 96.9 {mu}g/l). Where low-dose radioiodine

  12. Finding influential nodes for integration in brain networks using optimal percolation theory.

    Science.gov (United States)

    Del Ferraro, Gino; Moreno, Andrea; Min, Byungjoon; Morone, Flaviano; Pérez-Ramírez, Úrsula; Pérez-Cervera, Laura; Parra, Lucas C; Holodny, Andrei; Canals, Santiago; Makse, Hernán A

    2018-06-11

    Global integration of information in the brain results from complex interactions of segregated brain networks. Identifying the most influential neuronal populations that efficiently bind these networks is a fundamental problem of systems neuroscience. Here, we apply optimal percolation theory and pharmacogenetic interventions in vivo to predict and subsequently target nodes that are essential for global integration of a memory network in rodents. The theory predicts that integration in the memory network is mediated by a set of low-degree nodes located in the nucleus accumbens. This result is confirmed with pharmacogenetic inactivation of the nucleus accumbens, which eliminates the formation of the memory network, while inactivations of other brain areas leave the network intact. Thus, optimal percolation theory predicts essential nodes in brain networks. This could be used to identify targets of interventions to modulate brain function.

  13. Factor analysis in optimization of formulation of high content uniformity tablets containing low dose active substance.

    Science.gov (United States)

    Lukášová, Ivana; Muselík, Jan; Franc, Aleš; Goněc, Roman; Mika, Filip; Vetchý, David

    2017-11-15

    Warfarin is intensively discussed drug with narrow therapeutic range. There have been cases of bleeding attributed to varying content or altered quality of the active substance. Factor analysis is useful for finding suitable technological parameters leading to high content uniformity of tablets containing low amount of active substance. The composition of tabletting blend and technological procedure were set with respect to factor analysis of previously published results. The correctness of set parameters was checked by manufacturing and evaluation of tablets containing 1-10mg of warfarin sodium. The robustness of suggested technology was checked by using "worst case scenario" and statistical evaluation of European Pharmacopoeia (EP) content uniformity limits with respect to Bergum division and process capability index (Cpk). To evaluate the quality of active substance and tablets, dissolution method was developed (water; EP apparatus II; 25rpm), allowing for statistical comparison of dissolution profiles. Obtained results prove the suitability of factor analysis to optimize the composition with respect to batches manufactured previously and thus the use of metaanalysis under industrial conditions is feasible. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. X-ray dose response of calcite—A comprehensive analysis for optimal application in TL dosimetry

    International Nuclear Information System (INIS)

    Kalita, J.M.; Wary, G.

    2016-01-01

    Highlights: • Effect of annealing temperature on TL signal of calcite has been studied. • Specific annealing treatment for optimal dose response has been evaluated. • The dose response of natural calcite has been analyzed quantitatively. - Abstract: The effect of various annealing treatments on dosimetric characteristics of orange calcite (CaCO_3) mineral has been studied in detail. Quantitative analysis on the dose response shows that the 573 K annealed sample showed sublinear dose response from 10 mGy to 1 Gy. The fading and reproducibility of this sample are also good enough for dosimetric application. However, a specific annealing treatment after irradiation shows some significant improvements in the dosimetric characteristics of the sample. The 773 K pre-annealed sample, after X-ray irradiation post-annealing at 340 K for 6 min provides linear dose response from 10 mGy to 3.60 Gy, very less fading and good reproducibility. Moreover, this sample after post-annealing at 380 K for 6 min shows linear dose response from 10 mGy to 5.40 Gy when analyzed from the ∼408 K thermoluminescence (TL) glow peak. Analysis of TL glow curves confirmed that the 1.30 eV trap center in calcite crystal is the most effective trapping site for dosimetric application.

  15. X-ray dose response of calcite—A comprehensive analysis for optimal application in TL dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kalita, J.M., E-mail: jitukalita09@gmail.com; Wary, G.

    2016-09-15

    Highlights: • Effect of annealing temperature on TL signal of calcite has been studied. • Specific annealing treatment for optimal dose response has been evaluated. • The dose response of natural calcite has been analyzed quantitatively. - Abstract: The effect of various annealing treatments on dosimetric characteristics of orange calcite (CaCO{sub 3}) mineral has been studied in detail. Quantitative analysis on the dose response shows that the 573 K annealed sample showed sublinear dose response from 10 mGy to 1 Gy. The fading and reproducibility of this sample are also good enough for dosimetric application. However, a specific annealing treatment after irradiation shows some significant improvements in the dosimetric characteristics of the sample. The 773 K pre-annealed sample, after X-ray irradiation post-annealing at 340 K for 6 min provides linear dose response from 10 mGy to 3.60 Gy, very less fading and good reproducibility. Moreover, this sample after post-annealing at 380 K for 6 min shows linear dose response from 10 mGy to 5.40 Gy when analyzed from the ∼408 K thermoluminescence (TL) glow peak. Analysis of TL glow curves confirmed that the 1.30 eV trap center in calcite crystal is the most effective trapping site for dosimetric application.

  16. Optimization in the nuclear fuel cycle I: Temporal variation of dose rate; Optimização no ciclo do combustível nuclear I: variação temporal da taxa de dose

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, W.S., E-mail: pereiras@gmail.com [Universidade Veiga de Ameida (UVA), Rio de Janeiro, RJ (Brazil); Silva, A.X.; Lopes, J.M.; Carmo, A.S.; Fernandes, T.S.; Mello, C.R., E-mail: lararapls@hotmail.com, E-mail: Ademir@nuclear.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Kelecom, A. [Universidade Federal Fluminense (UFF), Niterói, RJ (Brazil)

    2017-07-01

    Radioprotection aims to protect man and the environment from the harmful effects of radiation. Radioprotection is based on three fundamental principles: justification, dose limitation and optimization. Optimization is a complementary principle to dose limitation and should be applied in all phases of development, and even in unregulated situations. The aim of this work is to use the exposure rate as a tool to optimize radioprotection. The exposure rate at a nuclear facility was monitored at 15 points for one year and statistical tools for data analysis were proposed as auxiliary tools for the process of optimizing the dose rates measured at the facility. A total of 9,125 exposure-rate measures were performed during 2014. The monthly averages were organized by sampling point and by month of the year. No statistical difference was observed in the monthly variation of the dose rate. Therefore, this variable can not be used in the optimization process in this nuclear installation.

  17. Optimization of dose distributions for adjuvant locoregional radiotherapy of gastric cancer by IMRT

    International Nuclear Information System (INIS)

    Lohr, F.; Dobler, B.; Mai, S.; Hermann, B.; Tiefenbacher, U.; Wieland, P.; Steil, V.; Wenz, F.

    2003-01-01

    Background and Purpose: Locoregional relapse is a problem frequently encountered with advanced gastric cancer. Data from the randomized Intergroup trial 116 suggest effectiveness of adjuvant radiochemotherapy, albeit with significant toxicity. The potential of intensity-modulated radiotherapy (IMRT) to reduce toxicity by significantly reducing maximum and median doses to organs at risk while still applying sufficient dose to the target volume in the upper abdomen was studied. Patient and Methods: For a typical configuration of target volumes and organs, a step-and-shoot IMRT plan (eight beam orientations), developed as a class solution for treatment of tumors in the upper abdomen (Figures 1 to 3), a conventional plan, a combination of the conventional plan with a kidney-sparing boost plan, and a conventional plan with noncoplanar ap and pa fields for improved kidney sparing were compared with respect to coverage of target volume and dose to organs at risk with a dose of 45 Gy delivered as the median dose to the target volume. Results: When using the conventional three-dimensionally planned box techniques, the right kidney could be kept below tolerance, but median dose to the left kidney amounted to between 14.8 and 26.9 Gy, depending on the plan. IMRT reduced the median dose to the left kidney to 10.5 Gy, while still keeping the dose to the right kidney 90% of prescription dose were delivered to > 90% of target volume with IMRT (Table 1). Conclusion: IMRT has the potential to deliver efficient doses to target volumes in the upper abdomen, while delivering dose to organs at risk in a more advantageous fashion than a conventional technique. For clinical implementation, the possibility of extensive organ motion in the upper abdomen has to be taken into account for treatment planning and patient positioning. The multitude of potential risks related to its application has to be the subject of thorough follow-up and further studies. (orig.)

  18. Optimization of Dose and Image Quality in Full-fiand Computed Radiography Systems for Common Digital Radiographic Examinations

    Directory of Open Access Journals (Sweden)

    Soo-Foon Moey

    2018-01-01

    Full Text Available IntroductionA fine balance of image quality and radiation dose can be achieved by optimization to minimize stochastic and deterministic effects. This study aimed in ensuring that images of acceptable quality for common radiographic examinations in digital imaging were produced without causing harmful effects. Materials and MethodsThe study was conducted in three phases. The pre-optimization involved ninety physically abled patients aged between 20 to 60 years and weighed between 60 and 80 kilograms for four common digital radiographic examinations. Kerma X_plus, DAP meter was utilized to measure the entrance surface dose (ESD while effective dose (ED was estimated using CALDose_X 5.0 Monte Carlo software. The second phase, an experimental study utilized an anthropomorphic phantom (PBU-50 and Leeds test object TOR CDR for relative comparison of image quality. For the optimization phase, the imaging parameters with acceptable image quality and lowest ESD from the experimental study was related to patient’s body thickness. Image quality were evaluated by two radiologists using the modified evaluation criteria score lists. ResultsSignificant differences were found for image quality for all examinations. However significant difference for ESD were found for PA chest and AP abdomen only. The ESD for three of the examinations were lower than all published data. Additionally, the ESD and ED obtained for all examinations were lower than that recommended by radiation regulatory bodies. ConclusionOptimization of image quality and dose was achieved by utilizing an appropriate tube potential, calibrated automatic exposure control and additional filtration of 0.2mm copper.

  19. SU-E-T-284: Dose Plan Optimization When Using Hydrogel Prostate-Rectum Spacer: A Single Institution Experience

    Energy Technology Data Exchange (ETDEWEB)

    Rajecki, M; Thurber, A; Catalfamo, F; Duff, M; Shah, D [Cancer Care of Western New York, Cheektowaga, NY (United States)

    2015-06-15

    Purpose: To describe rectal dose reduction achieved and techniques used to take advantage of the increased peri-rectal spacing provided by injected polyethylene-glycol. Methods: Thirty prostate cancer patents were 2:1 randomized during a clinical trial to evaluate the effectiveness of injected poly-ethylene glycol hydrogel (SpaceOAR System) in creating space between the prostate and the anterior rectal wall. All patients received a baseline CT/MR scan and baseline IMRT treatment plan. Patients were randomized to receive hydrogel injection (n=20) or Control (n=10), followed by another CT/MR scan and treatment plan (single arc VMAT, 6 MV photons, 79.2 Gy, 44 fractions). Additional optimization structures were employed to constrain the dose to the rectum; specifically an avoidance structure to limit V75 <15%, and a control structure to limit the maximum relative dose <105% in the interface region of the anterior rectal wall and the prostate planning target volume. Dose volumetric data was analyzed for rectal volumes receiving 60 through 80 Gy. Results: Rectal dose reduction was observed in all patients who received the hydrogel. Volumetric analysis indicates a median rectal volume and (reduction from baseline plan) following spacer application of 4.9% (8.9%) at V60Gy, 3.8% (8.1%) at V65Gy, 2.5% (7.2%) at V70Gy, 1.6% (5.8%) at V75Gy, and 0.5% (2.5%) at V80Gy. Conclusion: Relative to planning without spacers, rectal dose constraints of 5%, 4%, 3%, 2%, 1% for V60, V65, V70, V75, and V80, should be obtainable when peri-rectal spacers are used. The combined effect of increased peri-rectal space provided by the hydrogel, with strict optimization objectives, resulted in reduced dose to the rectum. To maximize benefit, strict optimization objectives and reduced rectal dose constraints should be employed when creating plans for patients with perirectal spacers. Clinical Trial for SpaceOAR product conducted by Augmenix,Inc. The research site was paid to be a participating site.

  20. SU-E-T-284: Dose Plan Optimization When Using Hydrogel Prostate-Rectum Spacer: A Single Institution Experience

    International Nuclear Information System (INIS)

    Rajecki, M; Thurber, A; Catalfamo, F; Duff, M; Shah, D

    2015-01-01

    Purpose: To describe rectal dose reduction achieved and techniques used to take advantage of the increased peri-rectal spacing provided by injected polyethylene-glycol. Methods: Thirty prostate cancer patents were 2:1 randomized during a clinical trial to evaluate the effectiveness of injected poly-ethylene glycol hydrogel (SpaceOAR System) in creating space between the prostate and the anterior rectal wall. All patients received a baseline CT/MR scan and baseline IMRT treatment plan. Patients were randomized to receive hydrogel injection (n=20) or Control (n=10), followed by another CT/MR scan and treatment plan (single arc VMAT, 6 MV photons, 79.2 Gy, 44 fractions). Additional optimization structures were employed to constrain the dose to the rectum; specifically an avoidance structure to limit V75 <15%, and a control structure to limit the maximum relative dose <105% in the interface region of the anterior rectal wall and the prostate planning target volume. Dose volumetric data was analyzed for rectal volumes receiving 60 through 80 Gy. Results: Rectal dose reduction was observed in all patients who received the hydrogel. Volumetric analysis indicates a median rectal volume and (reduction from baseline plan) following spacer application of 4.9% (8.9%) at V60Gy, 3.8% (8.1%) at V65Gy, 2.5% (7.2%) at V70Gy, 1.6% (5.8%) at V75Gy, and 0.5% (2.5%) at V80Gy. Conclusion: Relative to planning without spacers, rectal dose constraints of 5%, 4%, 3%, 2%, 1% for V60, V65, V70, V75, and V80, should be obtainable when peri-rectal spacers are used. The combined effect of increased peri-rectal space provided by the hydrogel, with strict optimization objectives, resulted in reduced dose to the rectum. To maximize benefit, strict optimization objectives and reduced rectal dose constraints should be employed when creating plans for patients with perirectal spacers. Clinical Trial for SpaceOAR product conducted by Augmenix,Inc. The research site was paid to be a participating site

  1. Optimization on the dose versus noise in the image on protocols for computed tomography of pediatric head

    International Nuclear Information System (INIS)

    Saint'Yves, Thalis L.A.; Travassos, Paulo Cesar B.; Goncalves, Elicardo A.S.; Mecca A, Fernando; Silveira, Thiago B.

    2010-01-01

    This article aims to establish protocols optimized for computed tomography of pediatric skull, to the Picker Q2000 tomography of the Instituto Nacional de Cancer, through the analysis of dose x noise on the image with the variation of values of mAs and kVp. We used a water phantom to measure the noise, a pencil type ionization chamber to measure the dose in the air and the Alderson Randon phantom for check the quality of the image. We found values of mAs and kVp that reduce the skin dose of the original protocol used in 35.9%, maintaining the same image quality at a safe diagnosis. (author)

  2. Determination of the optimal dose reduction level via iterative reconstruction using 640-slice volume chest CT in a pig model.

    Directory of Open Access Journals (Sweden)

    Xingli Liu

    Full Text Available To determine the optimal dose reduction level of iterative reconstruction technique for paediatric chest CT in pig models.27 infant pigs underwent 640-slice volume chest CT with 80kVp and different mAs. Automatic exposure control technique was used, and the index of noise was set to SD10 (Group A, routine dose, SD12.5, SD15, SD17.5, SD20 (Groups from B to E to reduce dose respectively. Group A was reconstructed with filtered back projection (FBP, and Groups from B to E were reconstructed using iterative reconstruction (IR. Objective and subjective image quality (IQ among groups were compared to determine an optimal radiation reduction level.The noise and signal-to-noise ratio (SNR in Group D had no significant statistical difference from that in Group A (P = 1.0. The scores of subjective IQ in Group A were not significantly different from those in Group D (P>0.05. There were no obvious statistical differences in the objective and subjective index values among the subgroups (small, medium and large subgroups of Group D. The effective dose (ED of Group D was 58.9% lower than that of Group A (0.20±0.05mSv vs 0.48±0.10mSv, p <0.001.In infant pig chest CT, using iterative reconstruction can provide diagnostic image quality; furthermore, it can reduce the dosage by 58.9%.

  3. Reduction of the secondary neutron dose in passively scattered proton radiotherapy, using an optimized pre-collimator/collimator

    International Nuclear Information System (INIS)

    Brenner, David J; Elliston, Carl D; Hall, Eric J; Paganetti, Harald

    2009-01-01

    Proton radiotherapy represents a potential major advance in cancer therapy. Most current proton beams are spread out to cover the tumor using passive scattering and collimation, resulting in an extra whole-body high-energy neutron dose, primarily from proton interactions with the final collimator. There is considerable uncertainty as to the carcinogenic potential of low doses of high-energy neutrons, and thus we investigate whether this neutron dose can be significantly reduced without major modifications to passively scattered proton beam lines. Our goal is to optimize the design features of a patient-specific collimator or pre-collimator/collimator assembly. There are a number of often contradictory design features, in terms of geometry and material, involved in an optimal design. For example, plastic or hybrid plastic/metal collimators have a number of advantages. We quantify these design issues, and investigate the practical balances that can be achieved to significantly reduce the neutron dose without major alterations to the beamline design or function. Given that the majority of proton therapy treatments, at least for the next few years, will use passive scattering techniques, reducing the associated neutron-related risks by simple modifications of the collimator assembly design is a desirable goal.

  4. Electron Irradiation of Conjunctival Lymphoma-Monte Carlo Simulation of the Minute Dose Distribution and Technique Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Brualla, Lorenzo, E-mail: lorenzo.brualla@uni-due.de [NCTeam, Strahlenklinik, Universitaetsklinikum Essen, Essen (Germany); Zaragoza, Francisco J.; Sempau, Josep [Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Barcelona (Spain); Wittig, Andrea [Department of Radiation Oncology, University Hospital Giessen and Marburg, Philipps-University Marburg, Marburg (Germany); Sauerwein, Wolfgang [NCTeam, Strahlenklinik, Universitaetsklinikum Essen, Essen (Germany)

    2012-07-15

    Purpose: External beam radiotherapy is the only conservative curative approach for Stage I non-Hodgkin lymphomas of the conjunctiva. The target volume is geometrically complex because it includes the eyeball and lid conjunctiva. Furthermore, the target volume is adjacent to radiosensitive structures, including the lens, lacrimal glands, cornea, retina, and papilla. The radiotherapy planning and optimization requires accurate calculation of the dose in these anatomical structures that are much smaller than the structures traditionally considered in radiotherapy. Neither conventional treatment planning systems nor dosimetric measurements can reliably determine the dose distribution in these small irradiated volumes. Methods and Materials: The Monte Carlo simulations of a Varian Clinac 2100 C/D and human eye were performed using the PENELOPE and PENEASYLINAC codes. Dose distributions and dose volume histograms were calculated for the bulbar conjunctiva, cornea, lens, retina, papilla, lacrimal gland, and anterior and posterior hemispheres. Results: The simulated results allow choosing the most adequate treatment setup configuration, which is an electron beam energy of 6 MeV with additional bolus and collimation by a cerrobend block with a central cylindrical hole of 3.0 cm diameter and central cylindrical rod of 1.0 cm diameter. Conclusions: Monte Carlo simulation is a useful method to calculate the minute dose distribution in ocular tissue and to optimize the electron irradiation technique in highly critical structures. Using a voxelized eye phantom based on patient computed tomography images, the dose distribution can be estimated with a standard statistical uncertainty of less than 2.4% in 3 min using a computing cluster with 30 cores, which makes this planning technique clinically relevant.

  5. 3D DSA findings of uterine artery and its optimal projection position

    International Nuclear Information System (INIS)

    Lu Weifu; Zhang Aiwu; Zhou Chunze; Lu Dong; Xiao Jingkun; Wang Weiyu; Zhang Xingming; Zhang Zhengfeng; Hou Changlong

    2011-01-01

    Objective: to observe the origin site, anatomic features of uterine artery with 3D DSA and to discuss the optimal projection position in order to improve the success rate of super-selective catheterization of uterine artery. Methods: Prospective pelvic angiography was performed in 42 adult females (a total of 84 uterine arteries). 3D DSA was carried out with 206 ° rotation. 3D reconstruction of the obtained images was performed and the angiographic manifestations of the uterine artery were analyzed. The optimal projection position for the displaying of uterine artery was discussed. The quality of images obtained with the projection angle of 15 °-25 °, 25 °-35 ° and 35 °-45 ° was determined and the results were compared with each other. Results: The orifices of all 84 uterine arteries could be well demonstrated on 3D DSA images. The uterine artery was originated from the anterior trunk of internal iliac artery (n=58, 69%), from main stem of internal iliac artery (n=16, 19.1%), from internal pudenda artery (n=8, 9.5%) and from inferior gluteal artery (n=2, 2.4%). The best projection position to show the opening and route of the uterine artery was contralateral oblique view of 25-35 degrees (P<0.05). Conclusion: 3D DSA can clearly display the anatomy of the uterine artery, which is very helpful for the management of super-selective catheterization of uterine artery. The optimal projection position for uterine artery is contralateral oblique view of 25-35 degrees. (authors)

  6. Finding the Pareto Optimal Equitable Allocation of Homogeneous Divisible Goods Among Three Players

    Directory of Open Access Journals (Sweden)

    Marco Dall'Aglio

    2017-01-01

    Full Text Available We consider the allocation of a finite number of homogeneous divisible items among three players. Under the assumption that each player assigns a positive value to every item, we develop a simple algorithm that returns a Pareto optimal and equitable allocation. This is based on the tight relationship between two geometric objects of fair division: The Individual Pieces Set (IPS and the Radon-Nykodim Set (RNS. The algorithm can be considered as an extension of the Adjusted Winner procedure by Brams and Taylor to the three-player case, without the guarantee of envy-freeness. (original abstract

  7. The optimal growth hormone replacement dose in adults, derived from bioimpedance analysis.

    Science.gov (United States)

    de Boer, H; Blok, G J; Voerman, B; de Vries, P; Popp-Snijders, C; van der Veen, E

    1995-07-01

    The prevalence of clinical signs and symptoms related to fluid retention is high in most studies evaluating the efficacy of GH treatment in GH-deficient (GHD) adults. This may be a consequence of supraphysiological GH replacement. To examine whether fluid retention is a dose-related phenomenon, we evaluated the impact of various GH substitution doses on body fluid status in 46 GHD men participating in a 1-yr, double blind, and placebo-controlled study. The patients were randomized to receive either placebo (n = 13) or GH in a dose of 1 (n = 11), 2 (n = 10), or 3 (n = 12) IU/m2.day, respectively. Treatment was started at one third of the predetermined dose and was subsequently increased by another third every month until the maintenance dose was reached. Tissue hydration was assessed by means of electrical impedance measurements. Normal values were obtained from 128 age- and sex-matched controls. In the untreated GHD state, whole body resistance was abnormally high (observed, 642 +/- 82 omega; predicted, 550 +/- 31 omega; P Regression analysis of the pooled data showed that GH replacement in a dose of 1.10 IU/m2.day (95% confidence interval, 0.85-1.45 IU/m2.day) resulted in a normalization of whole body resistance. In conclusion, GH replacement therapy in adults rapidly corrects the preexisting deficit in ECW. This rehydration process is dose dependent and may result in a substantial weight gain.(ABSTRACT TRUNCATED AT 400 WORDS)

  8. Using body mass index to predict optimal thyroid dosing after thyroidectomy.

    Science.gov (United States)

    Ojomo, Kristin A; Schneider, David F; Reiher, Alexandra E; Lai, Ngan; Schaefer, Sarah; Chen, Herbert; Sippel, Rebecca S

    2013-03-01

    Current postoperative thyroid replacement dosing is weight based, with adjustments made after thyroid-stimulating hormone values. This method can lead to considerable delays in achieving euthyroidism and often fails to accurately dose over- and underweight patients. Our aim was to develop an accurate dosing method that uses patient body mass index (BMI) data. A retrospective review of a prospectively collected thyroid database was performed. We selected adult patients undergoing thyroidectomy, with benign pathology, who achieved euthyroidism on thyroid hormone supplementation. Body mass index and euthyroid dose were plotted and regression was used to fit curves to the data. Statistical analysis was performed using STATA 10.1 software (Stata Corp). One hundred twenty-two patients met inclusion criteria. At initial follow-up, only 39 patients were euthyroid (32%). Fifty-three percent of patients with BMI >30 kg/m(2) were overdosed, and 46% of patients with BMI regression equation was derived for calculating initial levothyroxine dose (μg/kg/d = -0.018 × BMI + 2.13 [F statistic = 52.7, root mean square error of 0.24]). The current standard of weight-based thyroid replacement fails to appropriately dose underweight and overweight patients. Body mass index can be used to more accurately dose thyroid hormone using a simple formula. Copyright © 2013 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  9. Prediction of Optimal Reversal Dose of Sugammadex after Rocuronium Administration in Adult Surgical Patients

    Directory of Open Access Journals (Sweden)

    Shigeaki Otomo

    2014-01-01

    Full Text Available The objective of this study was to determine the point after sugammadex administration at which sufficient or insufficient dose could be determined, using first twitch height of train-of-four (T1 height or train-of-four ratio (TOFR as indicators. Groups A and B received 1 mg/kg and 0.5 mg/kg of sugammadex, respectively, as a first dose when the second twitch reappeared in train-of-four stimulation, and Groups C and D received 1 mg/kg and 0.5 mg/kg of sugammadex, respectively, as the first dose at posttetanic counts 1–3. Five minutes after the first dose, an additional 1 mg/kg of sugammadex was administered and changes in T1 height and TOFR were observed. Patients were divided into a recovered group and a partly recovered group, based on percentage changes in T1 height after additional dosing. T1 height and TOFR during the 5 min after first dose were then compared. In the recovered group, TOFR exceeded 90% in all patients at 3 min after sugammadex administration. In the partly recovered group, none of the patients had a TOFR above 90% at 3 min after sugammadex administration. An additional dose of sugammadex can be considered unnecessary if the train-of-four ratio is ≥90% at 3 min after sugammadex administration. This trial is registered with UMIN000007245.

  10. Studies of the dose distribution for patients undergoing various examinations in x-ray diagnosis and methods optimization

    International Nuclear Information System (INIS)

    Schandorf, Cyril

    2002-01-01

    The analysis of the status of x-ray diagnosis in Ghana revealed that Ghana is in the health care Category III, since there are about 4,2000 people to each physicians-ray departments have no quality management and quality control system in place for monitoring the quality of diagnostic images. Education and training in radiation protection and cost-effective use of x-rays are needed as part of the educational programme for radiologists, radiographers, x-ray technical officers and darkroom attendants. The dose and dose distribution for adult patients undergoing chest PA, lumber spine AP, pelvis/abdomen AP, and Skull AP examinations were determined using thermoluminescence dosemeters and compared with Commission of the European Communities guideline values. Analysis of the data show that 86%, 58% and 50% of the radiographic room delivered doses to patients compared the CEC value for Chest PA, lumber spine AP, pelvis/Abdomen AP and Skull AP respectively. Radiographic departments therefore should review their radiographic procedures to bring their does to optimum levels. Three methods were investigated for use as dose reduction optimization options. With the establishment of administrative procedures for the control of indiscriminate requests and referral criteria for x-ray examinations, patient dose can be averted. It is estimated about 10man.Sv can be averted annually. Authorized exposures can be minimized by standardizing the parameters which have significant influence on patient dose, taking into account screen-film system and film processing. By optimization the techniques factors, entrance surface dose and effective dose can be reduced. For chest PA examination the reduction factors are 4 and 3 respectively. Corresponding values for lumber spine AP, pelvis/abdomen AP and skull AP are 2 and 1.8, 1.4 and 1.4, 2.0 and 1.8 respectively. Three local materials, Ghanaian Anum Serpentine (SGA), Ghanaian Peki-Dzake Serpentine (SGP) and Ghanaian Golokwati Serpentine (SGG

  11. Optimization of foramsulfuron doses for post-emergence weed control in maize (Zea mays L.)

    Energy Technology Data Exchange (ETDEWEB)

    Pannacci, E.

    2016-11-01

    Four field experiments were carried out from 2011 to 2014 in order to evaluate the effects of foramsulfuron, applied at the recommended (60.8 g a.i./ha) and reduced doses (1/3 and 2/3), on the efficacy against several of the most important weeds in maize. For each “year-weed” combination, dose-response curves were applied to estimate the dose of foramsulfuron required to obtain 90% and 95% weed control (ED90 and ED95). Foramsulfuron phytotoxicity on maize and crop yield were assessed. Foramsulfuron at 1/3 of the recommended dose (20.3 g a.i./ha) provided 95% efficacy against redroot pigweed (Amaranthus retroflexus L.), green foxtail (Setaria viridis (L.) Beauv.), wild mustard (Sinapis arvensis L.) and black nightshade (Solanum nigrum L.). Velvetleaf (Abutilon theophrasti Medik.), common lambsquarters (Chenopodium album L.) and barnyardgrass (Echinochloa crus-galli (L.) Beauv.) were satisfactorily controlled (95% weed efficacy) with ED95 ranged from 20 to 50 g/ha of foramsulfuron (about from 1/3 to 5/6 of the recommended dose) depending on growth stage. The recommended dose was effective against pale smartweed (Polygonum lapathifolium L.) at 2-4 true leaves (12-14 BBCH scale), but this dose did not kill plants larger than 2-4 true leaves. The ranking among weed species based on their susceptibility to foramsulfuron was: redroot pigweed = green foxtail = wild mustard = black nightshade > velvetleaf = common lambsquarters = barnyardgrass > pale smartweed. Dose of foramsulfuron can be reduced below recommended dose depending on weed species and growth stage. Foramsulfuron showed a good crop selectivity and had no negative effect on maize yield. (Author)

  12. Renoprotection of Optimal Antiproteinuric Doses (ROAD) Study: a randomized controlled study of benazepril and losartan in chronic renal insufficiency.

    Science.gov (United States)

    Hou, Fan Fan; Xie, Di; Zhang, Xun; Chen, Ping Yan; Zhang, Wei Ru; Liang, Min; Guo, Zhi Jian; Jiang, Jian Ping

    2007-06-01

    The Renoprotection of Optimal Antiproteinuric Doses (ROAD) study was performed to determine whether titration of benazepril or losartan to optimal antiproteinuric doses would safely improve the renal outcome in chronic renal insufficiency. A total of 360 patients who did not have diabetes and had proteinuria and chronic renal insufficiency were randomly assigned to four groups. Patients received open-label treatment with a conventional dosage of benazepril (10 mg/d), individual uptitration of benazepril (median 20 mg/d; range 10 to 40), a conventional dosage of losartan (50 mg/d), or individual uptitration of losartan (median 100 mg/d; range 50 to 200). Uptitration was performed to optimal antiproteinuric and tolerated dosages, and then these dosages were maintained. Median follow-up was 3.7 yr. The primary end point was time to the composite of a doubling of the serum creatinine, ESRD, or death. Secondary end points included changes in the level of proteinuria and the rate of progression of renal disease. Compared with the conventional dosages, optimal antiproteinuric dosages of benazepril and losartan that were achieved through uptitration were associated with a 51 and 53% reduction in the risk for the primary end point (P = 0.028 and 0.022, respectively). Optimal antiproteinuric dosages of benazepril and losartan, at comparable BP control, achieved a greater reduction in both proteinuria and the rate of decline in renal function compared with their conventional dosages. There was no significant difference for the overall incidence of major adverse events between groups that were given conventional and optimal dosages in both arms. It is concluded that uptitration of benazepril or losartan against proteinuria conferred further benefit on renal outcome in patients who did not have diabetes and had proteinuria and renal insufficiency.

  13. Efficacy and optimal dose of daily polyethylene glycol 3350 for treatment of constipation and encopresis in children.

    Science.gov (United States)

    Pashankar, D S; Bishop, W P

    2001-09-01

    To determine efficacy, safety, and optimal dose of a laxative, polyethylene glycol (PEG) 3350, in children with chronic constipation. Children with chronic constipation (n = 24) were treated with PEG for 8 weeks at an initial dose of 1 g/kg/d. The dose was adjusted every 3 days as required to achieve 2 soft stools per day. A diary was kept to monitor dose, stool frequency and consistency, soiling, and other symptoms. Stool consistency was rated from 1 (hard) to 5 (watery). Subjects were examined for fecal retention. The Student t test and the Fisher exact test were used for data analysis. All 20 children who completed the study found PEG to be palatable and were satisfied with the treatment. There were no significant adverse effects. Weekly stool frequency increased from 2.3 +/- 0.4 to 16.9 +/- 1.6 (P PEG at a mean dose of 0.8 g/kg is an effective, safe, and palatable treatment for constipation.

  14. How to optimize tuberculosis case finding: explorations for Indonesia with a health system model

    NARCIS (Netherlands)

    R.A. Ahmad (Riris); Y. Mahendradhata (Yodi); J. Cunningham (Jane); A. Utarini (Adi); S.J. de Vlas (Sake)

    2009-01-01

    textabstractBACKGROUND: A mathematical model was designed to explore the impact of three strategies for better tuberculosis case finding. Strategies included: (1) reducing the number of tuberculosis patients who do not seek care; (2) reducing diagnostic delay; and (3) engaging non-DOTS providers in

  15. Efficient algorithms for finding optimal binary features in numeric and nominal labeled data

    NARCIS (Netherlands)

    Mampaey, Michael; Nijssen, Siegfried; Feelders, Adrianus; Konijn, Rob; Knobbe, Arno

    2013-01-01

    An important subproblem in supervised tasks such as decision tree induction and subgroup discovery is finding an interesting binary feature (such as a node split or a subgroup refinement) based on a numeric or nominal attribute, with respect to some discrete or continuous target variable. Often one

  16. Local delivery of nimodipine by prolonged-release microparticles-feasibility, effectiveness and dose-finding in experimental subarachnoid hemorrhage.

    Directory of Open Access Journals (Sweden)

    Daniel Hänggi

    Full Text Available BACKGROUND AND PURPOSE: To investigate the effect of locally applied nimodipine prolonged-release microparticles on angiographic vasospasm and secondary brain injury after experimental subarachnoid hemorrhage (SAH. METHODS: 70 male Wistar rats were categorized into three groups: 1 sham operated animals (control, 2 animals with SAH only (control and the 3 treatment group. SAH was induced using the double hemorrhage model. The treatment group received different concentrations (20%, 30% or 40% of nimodipine microparticles. Angiographic vasospasm was assessed 5 days later using digital subtraction angiography (DSA. Histological analysis of frozen sections was performed using H&E-staining as well as Iba1 and MAP2 immunohistochemistry. RESULTS: DSA images were sufficient for assessment in 42 animals. Severe angiographic vasospasm was present in group 2 (SAH only, as compared to the sham operated group (p<0.001. Only animals within group 3 and the highest nimodipine microparticles concentration (40% as well as group 1 (sham demonstrated the largest intracranial artery diameters. Variation in vessel calibers, however, did not result in differences in Iba-1 or MAP2 expression, i.e. in histological findings for secondary brain injury. CONCLUSIONS: Local delivery of high-dose nimodipine prolonged-release microparticles at high concentration resulted in significant reduction in angiographic vasospasm after experimental SAH and with no histological signs for matrix toxicity.

  17. The histomorphological findings of kidneys after application of high dose and high-energy shock wave lithotripsy.

    Science.gov (United States)

    Demir, Aslan; Türker, Polat; Bozkurt, Suheyla Uyar; İlker, Yalcin Nazmi

    2015-01-01

    In this animal study, we reviewed the histomorphological findings in rabbit kidneys after a high number of high-energy shock wave applications and observed if there were any cumulative effects after repeated sessions. We formed 2 groups, each consisting of 8 rabbits. Group 1 received 1 session and group 2 received 3 sessions of ESWL with a 7 day interval between sessions, consisting of 3500 beats to the left kidney and 5500 beats to the right kidney per session. The specimens of kidneys were examined histomorphologically after bilateral nephrectomy was performed. For statistical analysis, 4 groups of specimens were formed. The first and second groups received 1 session, 3500 and 5500 beats, respectively. The third and fourth groups received 3 sessions, at 3500 and 5500 beats per each session, respectively. The sections were evaluated under a light microscope to determine subcapsular thickening; subcapsular, intratubular and parenchymal hemorrhage; subcapsular, intersitital, perivascular and proximal ureteral fibrosis; paranchymal necrosis; tubular epithelial vacuolization; tubular atrophy; glomerular destruction and calcification. In histopathological examinations capsular thickening, subcapsular hematoma, tubuloepithelial vacuolisation, glomerular destruction, parenchymal hemorrhage, interstitial fibrosis, and perivascular fibrosis were observed in all groups. In statistical analysis, on the basis of perivascular fibrosis and tubular atrophy, there was a beats per session dependent increase of both. The detrimental effects from ESWL are dose dependent but not cumulative for up to 3 sessions. Histopathological experimental animal studies will aid in understanding local and maybe, by means of these local effects, systemic effects.

  18. Functional and histological findings of the islets of Langerhans in mice after fractioned telecobalt irradiations with tumor doses

    International Nuclear Information System (INIS)

    Konermann, G.; Petersen, K.G.; Slanina, J.; Blachnitzky, E.O.; Kraft, C.; Freiburg Univ.

    1979-01-01

    After a local radiation exposure of the pancreas of mice to a total dose of 5000 rd ( 60 Co gamma radiation over five weeks with 5 x 200 rd per week), there is no demonstrable alteration, even at long term, of the glucose tolerance and the insulin secretion of isolated islets of Langerhans in vitro and of the density of a histochemically prepared islet secretion. However, the proinsuline synthesis under glucose loading is reduced by about 40%. A radiogenic reduction of the total insulin content in the islet tissue of 27,6% is accompanied by a diminution of the body weight of 10% and a reduction of the organ weight of pancreas, liver and spleen of 20%, 13% and 47%. In view of these findings and taking into account a cellular death rate in the islet tissue of 21% immediately after the radiotherapy and of 5,8% eight weeks post irradiationem, the authors suppose a compensating secretion by the remaining islet cells which is sufficient under normal conditions. Signs of a tissue degeneration near the vessels are clearer in the exocrine pancreas than in the islet tissue. (orig.) 891 MG/orig. 892 RKD [de

  19. The histomorphological findings of kidneys after application of high dose and high-energy shock wave lithotripsy

    Science.gov (United States)

    Türker, Polat; Bozkurt, Suheyla Uyar; İlker, Yalcin Nazmi

    2015-01-01

    Introduction In this animal study, we reviewed the histomorphological findings in rabbit kidneys after a high number of high-energy shock wave applications and observed if there were any cumulative effects after repeated sessions. Material and methods We formed 2 groups, each consisting of 8 rabbits. Group 1 received 1 session and group 2 received 3 sessions of ESWL with a 7 day interval between sessions, consisting of 3500 beats to the left kidney and 5500 beats to the right kidney per session. The specimens of kidneys were examined histomorphologically after bilateral nephrectomy was performed. For statistical analysis, 4 groups of specimens were formed. The first and second groups received 1 session, 3500 and 5500 beats, respectively. The third and fourth groups received 3 sessions, at 3500 and 5500 beats per each session, respectively. The sections were evaluated under a light microscope to determine subcapsular thickening; subcapsular, intratubular and parenchymal hemorrhage; subcapsular, intersitital, perivascular and proximal ureteral fibrosis; paranchymal necrosis; tubular epithelial vacuolization; tubular atrophy; glomerular destruction and calcification. Results In histopathological examinations capsular thickening, subcapsular hematoma, tubuloepithelial vacuolisation, glomerular destruction, parenchymal hemorrhage, interstitial fibrosis, and perivascular fibrosis were observed in all groups. In statistical analysis, on the basis of perivascular fibrosis and tubular atrophy, there was a beats per session dependent increase of both. Conclusions The detrimental effects from ESWL are dose dependent but not cumulative for up to 3 sessions. Histopathological experimental animal studies will aid in understanding local and maybe, by means of these local effects, systemic effects. PMID:25914842

  20. Human Performance Optimization Metrics: Consensus Findings, Gaps, and Recommendations for Future Research.

    Science.gov (United States)

    Nindl, Bradley C; Jaffin, Dianna P; Dretsch, Michael N; Cheuvront, Samuel N; Wesensten, Nancy J; Kent, Michael L; Grunberg, Neil E; Pierce, Joseph R; Barry, Erin S; Scott, Jonathan M; Young, Andrew J; OʼConnor, Francis G; Deuster, Patricia A

    2015-11-01

    Human performance optimization (HPO) is defined as "the process of applying knowledge, skills and emerging technologies to improve and preserve the capabilities of military members, and organizations to execute essential tasks." The lack of consensus for operationally relevant and standardized metrics that meet joint military requirements has been identified as the single most important gap for research and application of HPO. In 2013, the Consortium for Health and Military Performance hosted a meeting to develop a toolkit of standardized HPO metrics for use in military and civilian research, and potentially for field applications by commanders, units, and organizations. Performance was considered from a holistic perspective as being influenced by various behaviors and barriers. To accomplish the goal of developing a standardized toolkit, key metrics were identified and evaluated across a spectrum of domains that contribute to HPO: physical performance, nutritional status, psychological status, cognitive performance, environmental challenges, sleep, and pain. These domains were chosen based on relevant data with regard to performance enhancers and degraders. The specific objectives at this meeting were to (a) identify and evaluate current metrics for assessing human performance within selected domains; (b) prioritize metrics within each domain to establish a human performance assessment toolkit; and (c) identify scientific gaps and the needed research to more effectively assess human performance across domains. This article provides of a summary of 150 total HPO metrics across multiple domains that can be used as a starting point-the beginning of an HPO toolkit: physical fitness (29 metrics), nutrition (24 metrics), psychological status (36 metrics), cognitive performance (35 metrics), environment (12 metrics), sleep (9 metrics), and pain (5 metrics). These metrics can be particularly valuable as the military emphasizes a renewed interest in Human Dimension efforts

  1. Dose optimization in radiotherapy patients for IMRT based on 4D-CBCT

    International Nuclear Information System (INIS)

    Alfonso, R.; Castillo, D.; Ascensión, Y.; Linares, H.; García, F.; Argota, R.

    2015-01-01

    The use of tomographic systems based on conical photon beams kVp (kV-CBCT) to verify the accuracy of the positioning of patients in external radiotherapy treatments has expanded in recent years, with increasing availability of linear accelerators systems for image guided radiation therapy (IGRT) based kV-CBCT systems, incorporated into the gantry of the equipment. Several studies have evaluated the collateral doses received by patients using these positioning systems for radiotherapy (RT). Recently, the firm Elekta has developed a solution to manage the effects of respiratory movements and reduce internal margins that affect the planning target volume (Symmetry TM ), which is based on the acquisition of dynamic tomographic studies (4D- CBCT), making it possible to estimate the average white temporal position in each treatment, without using methods triggered or ‘tracking’. These 4D studies however require a greater number of images per gantry angle, potentially involves a higher dose administered to patients, besides the actual dose treatment beam. The present study investigated a methodology to assess dose rates 4DCBCT (4D-CBDI) using dosimetric instrumentation and phantoms as those typically available in radiotherapy departments. The doses received by different techniques are compared using as criteria of merit image quality and overall geometric accuracy achieved in positioning and internal margins. The results show that it is possible to reduce the administered to patients in studies of CBCT static and dynamic, without significantly affecting the objectives of the same in terms of geometric accuracy dose. [es

  2. Accuracy and optimal timing of activity measurements in estimating the absorbed dose of radioiodine in the treatment of Graves' disease

    Science.gov (United States)

    Merrill, S.; Horowitz, J.; Traino, A. C.; Chipkin, S. R.; Hollot, C. V.; Chait, Y.

    2011-02-01

    Calculation of the therapeutic activity of radioiodine 131I for individualized dosimetry in the treatment of Graves' disease requires an accurate estimate of the thyroid absorbed radiation dose based on a tracer activity administration of 131I. Common approaches (Marinelli-Quimby formula, MIRD algorithm) use, respectively, the effective half-life of radioiodine in the thyroid and the time-integrated activity. Many physicians perform one, two, or at most three tracer dose activity measurements at various times and calculate the required therapeutic activity by ad hoc methods. In this paper, we study the accuracy of estimates of four 'target variables': time-integrated activity coefficient, time of maximum activity, maximum activity, and effective half-life in the gland. Clinical data from 41 patients who underwent 131I therapy for Graves' disease at the University Hospital in Pisa, Italy, are used for analysis. The radioiodine kinetics are described using a nonlinear mixed-effects model. The distributions of the target variables in the patient population are characterized. Using minimum root mean squared error as the criterion, optimal 1-, 2-, and 3-point sampling schedules are determined for estimation of the target variables, and probabilistic bounds are given for the errors under the optimal times. An algorithm is developed for computing the optimal 1-, 2-, and 3-point sampling schedules for the target variables. This algorithm is implemented in a freely available software tool. Taking into consideration 131I effective half-life in the thyroid and measurement noise, the optimal 1-point time for time-integrated activity coefficient is a measurement 1 week following the tracer dose. Additional measurements give only a slight improvement in accuracy.

  3. Finding quasi-optimal network topologies for information transmission in active networks.

    Science.gov (United States)

    Baptista, Murilo S; de Carvalho, Josué X; Hussein, Mahir S

    2008-01-01

    This work clarifies the relation between network circuit (topology) and behaviour (information transmission and synchronization) in active networks, e.g. neural networks. As an application, we show how one can find network topologies that are able to transmit a large amount of information, possess a large number of communication channels, and are robust under large variations of the network coupling configuration. This theoretical approach is general and does not depend on the particular dynamic of the elements forming the network, since the network topology can be determined by finding a Laplacian matrix (the matrix that describes the connections and the coupling strengths among the elements) whose eigenvalues satisfy some special conditions. To illustrate our ideas and theoretical approaches, we use neural networks of electrically connected chaotic Hindmarsh-Rose neurons.

  4. Finding quasi-optimal network topologies for information transmission in active networks.

    Directory of Open Access Journals (Sweden)

    Murilo S Baptista

    Full Text Available This work clarifies the relation between network circuit (topology and behaviour (information transmission and synchronization in active networks, e.g. neural networks. As an application, we show how one can find network topologies that are able to transmit a large amount of information, possess a large number of communication channels, and are robust under large variations of the network coupling configuration. This theoretical approach is general and does not depend on the particular dynamic of the elements forming the network, since the network topology can be determined by finding a Laplacian matrix (the matrix that describes the connections and the coupling strengths among the elements whose eigenvalues satisfy some special conditions. To illustrate our ideas and theoretical approaches, we use neural networks of electrically connected chaotic Hindmarsh-Rose neurons.

  5. Radiological protection optimization derived from radiation induced lesions in interventional cardiology finding

    International Nuclear Information System (INIS)

    Vano, E.; Arranz, L.; Sastre, J.M.; Ferrer, N.

    1997-01-01

    Interventional Cardiology is one of the specialties in which patients are submitted to the greatest radiation doses with x ray systems used for diagnostic purposes and then, it is also a specialty of high occupational radiation risk. In the last years, several cases of radiation induced lesions produced on patients derived of new complex interventional procedures have been described. As consequence, different rules for avoiding this kind of incidents have been recommended by International Organisations and regulatory Bodies. Nevertheless it has been devoted relatively few attention to the evaluation of the occupational risks that inevitably are also high in these facilities. In this work, some cases of radioinduced skin lesions produced on patients submitted to cardiac ablation procedures are described. Radiological protection considerations of interest for the regulatory Bodies are made, that permit to minimize the probability of these incidents, in what to the X-rays equipment is referred as well as to the operation procedures and level of radiation protection training of the medical specialists. (author)

  6. Dose optimization based on linear programming implemented in a system for treatment planning in Monte Carlo

    International Nuclear Information System (INIS)

    Ureba, A.; Palma, B. A.; Leal, A.

    2011-01-01

    Develop a more efficient method of optimization in relation to time, based on linear programming designed to implement a multi objective penalty function which also permits a simultaneous solution integrated boost situations considering two white volumes simultaneously.

  7. Framework for optimizing chlorine dose in small- to medium-sized ...

    African Journals Online (AJOL)

    2015-10-05

    Oct 5, 2015 ... should also be addressed in the modelling process. The main objective of the ... The hydraulic simulation model outputs include flows at the junctions .... MATLAB is used in this study to build Mamdani Systems for optimizing ...

  8. Optimizing the dosing schedule of l-asparaginase improves its anti-tumor activity in breast tumor-bearing mice

    Directory of Open Access Journals (Sweden)

    Shoya Shiromizu

    2018-04-01

    Full Text Available Proliferation of acute lymphoblastic leukemic cells is nutritionally dependent on the external supply of asparagine. l-asparaginase, an enzyme hydrolyzing l-asparagine in blood, is used for treatment of acute lymphoblastic leukemic and other related blood cancers. Although previous studies demonstrated that l-asparaginase suppresses the proliferation of cultured solid tumor cells, it remains unclear whether this enzyme prevents the growth of solid tumors in vivo. In this study, we demonstrated the importance of optimizing dosing schedules for the anti-tumor activity of l-asparaginase in 4T1 breast tumor-bearing mice. Cultures of several types of murine solid tumor cells were dependent on the external supply of asparagine. Among them, we selected murine 4T1 breast cancer cells and implanted them into BALB/c female mice kept under standardized light/dark cycle conditions. The growth of 4T1 tumor cells implanted in mice was significantly suppressed by intravenous administration of l-asparaginase during the light phase, whereas its administration during the dark phase failed to show significant anti-tumor activity. Decreases in plasma asparagine levels due to the administration of l-asparaginase were closely related to the dosing time-dependency of its anti-tumor effects. These results suggest that the anti-tumor efficacy of l-asparaginase in breast tumor-bearing mice is improved by optimizing the dosing schedule. Keywords: l-asparaginase, Asparagine, Solid tumor, Chrono-pharmacotherapy

  9. Optimizing the dosing schedule of l-asparaginase improves its anti-tumor activity in breast tumor-bearing mice.

    Science.gov (United States)

    Shiromizu, Shoya; Kusunose, Naoki; Matsunaga, Naoya; Koyanagi, Satoru; Ohdo, Shigehiro

    2018-04-01

    Proliferation of acute lymphoblastic leukemic cells is nutritionally dependent on the external supply of asparagine. l-asparaginase, an enzyme hydrolyzing l-asparagine in blood, is used for treatment of acute lymphoblastic leukemic and other related blood cancers. Although previous studies demonstrated that l-asparaginase suppresses the proliferation of cultured solid tumor cells, it remains unclear whether this enzyme prevents the growth of solid tumors in vivo. In this study, we demonstrated the importance of optimizing dosing schedules for the anti-tumor activity of l-asparaginase in 4T1 breast tumor-bearing mice. Cultures of several types of murine solid tumor cells were dependent on the external supply of asparagine. Among them, we selected murine 4T1 breast cancer cells and implanted them into BALB/c female mice kept under standardized light/dark cycle conditions. The growth of 4T1 tumor cells implanted in mice was significantly suppressed by intravenous administration of l-asparaginase during the light phase, whereas its administration during the dark phase failed to show significant anti-tumor activity. Decreases in plasma asparagine levels due to the administration of l-asparaginase were closely related to the dosing time-dependency of its anti-tumor effects. These results suggest that the anti-tumor efficacy of l-asparaginase in breast tumor-bearing mice is improved by optimizing the dosing schedule. Copyright © 2018 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  10. Optimization of the fractionated irradiation scheme considering physical doses to tumor and organ at risk based on dose–volume histograms

    Energy Technology Data Exchange (ETDEWEB)

    Sugano, Yasutaka [Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Hokkaido 060-0812 (Japan); Mizuta, Masahiro [Laboratory of Advanced Data Science, Information Initiative Center, Hokkaido University, Kita-11, Nishi-5, Kita-ku, Sapporo, Hokkaido 060-0811 (Japan); Takao, Seishin; Shirato, Hiroki; Sutherland, Kenneth L. [Department of Radiation Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-5, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); Date, Hiroyuki, E-mail: date@hs.hokudai.ac.jp [Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Hokkaido 060-0812 (Japan)

    2015-11-15

    Purpose: Radiotherapy of solid tumors has been performed with various fractionation regimens such as multi- and hypofractionations. However, the ability to optimize the fractionation regimen considering the physical dose distribution remains insufficient. This study aims to optimize the fractionation regimen, in which the authors propose a graphical method for selecting the optimal number of fractions (n) and dose per fraction (d) based on dose–volume histograms for tumor and normal tissues of organs around the tumor. Methods: Modified linear-quadratic models were employed to estimate the radiation effects on the tumor and an organ at risk (OAR), where the repopulation of the tumor cells and the linearity of the dose-response curve in the high dose range of the surviving fraction were considered. The minimization problem for the damage effect on the OAR was solved under the constraint that the radiation effect on the tumor is fixed by a graphical method. Here, the damage effect on the OAR was estimated based on the dose–volume histogram. Results: It was found that the optimization of fractionation scheme incorporating the dose–volume histogram is possible by employing appropriate cell surviving models. The graphical method considering the repopulation of tumor cells and a rectilinear response in the high dose range enables them to derive the optimal number of fractions and dose per fraction. For example, in the treatment of prostate cancer, the optimal fractionation was suggested to lie in the range of 8–32 fractions with a daily dose of 2.2–6.3 Gy. Conclusions: It is possible to optimize the number of fractions and dose per fraction based on the physical dose distribution (i.e., dose–volume histogram) by the graphical method considering the effects on tumor and OARs around the tumor. This method may stipulate a new guideline to optimize the fractionation regimen for physics-guided fractionation.

  11. Athletic pubalgia and "sports hernia": optimal MR imaging technique and findings.

    Science.gov (United States)

    Omar, Imran M; Zoga, Adam C; Kavanagh, Eoin C; Koulouris, George; Bergin, Diane; Gopez, Angela G; Morrison, William B; Meyers, William C

    2008-01-01

    Groin injuries are common in athletes who participate in sports that require twisting at the waist, sudden and sharp changes in direction, and side-to-side ambulation. Such injuries frequently lead to debilitating pain and lost playing time, and they may be difficult to diagnose. Diagnostic confusion often arises from the complex anatomy and biomechanics of the pubic symphysis region, the large number of potential sources of groin pain, and the similarity of symptoms in athletes with different types or sites of injury. Many athletes with a diagnosis of "sports hernia" or "athletic pubalgia" have a spectrum of related pathologic conditions resulting from musculotendinous injuries and subsequent instability of the pubic symphysis without any finding of inguinal hernia at physical examination. The actual causal mechanisms of athletic pubalgia are poorly understood, and imaging studies have been deemed inadequate or unhelpful for clarification. However, a large-field-of-view magnetic resonance (MR) imaging survey of the pelvis, combined with high-resolution MR imaging of the pubic symphysis, is an excellent means of assessing various causes of athletic pubalgia, providing information about the location of injury, and delineating the severity of disease. Familiarity with the pubic anatomy and with MR imaging findings in athletic pubalgia and in other confounding causes of groin pain allows accurate imaging-based diagnoses and helps in planning treatment that targets specific pathologic conditions. (c) RSNA, 2008.

  12. Human and technical factors in the doses reduction and optimization at Cogema/Marcoule; Facteurs techniques et humains dans la reduction et l'optimisation des doses a Cogema/Marcoule

    Energy Technology Data Exchange (ETDEWEB)

    Bourgogne, J.L. [Cogema, 30 - Marcoule (France)

    1998-07-01

    In the case of Cogema/Marcoule, the constant decrease of radiation doses is attributed to three factors: technical with a surveillance system and doses optimization, relational with the promotion of confidence in teams of radiation protection services as an acceptation factor of radiation protection techniques and psychological with an evolution of minds towards the ALARA approach. (N.C.)

  13. Optimization of initial propofol bolus dose for EEG Narcotrend Index-guided transition from sevoflurane induction to intravenous anesthesia in children.

    Science.gov (United States)

    Dennhardt, Nils; Boethig, Dietmar; Beck, Christiane; Heiderich, Sebastian; Boehne, Martin; Leffler, Andreas; Schultz, Barbara; Sümpelmann, Robert

    2017-04-01

    Sevoflurane induction followed by intravenous anesthesia is a widely used technique to combine the benefits of an easier and less traumatic venipuncture after sevoflurane inhalation with a recovery with less agitation, nausea, and vomiting after total intravenous anesthesia (TIVA). Combination of two different anesthetics may lead to unwanted burst suppression in the electroencephalogram (EEG) during the transition phase. The objective of this prospective clinical observational study was to identify the optimal initial propofol bolus dose for a smooth transition from sevoflurane induction to TIVA using the EEG Narcotrend Index (NI). Fifty children aged 1-8 years scheduled for elective pediatric surgery were studied. After sevoflurane induction and establishing of an intravenous access, a propofol bolus dose range 0-5 mg·kg -1 was administered at the attending anesthetist's discretion to maintain a NI between 20 and 64, and sevoflurane was stopped. Anesthesia was continued as TIVA with a propofol infusion dose of 15 mg·kg -1 ·h -1 for the first 15 min, followed by stepwise reduction according to McFarlan's pediatric infusion regime, and remifentanil 0.25 μg·kg -1 ·min -1 . Endtidal concentration of sevoflurane, NI, and hemodynamic data were recorded during the whole study period using a standardized case report form. Propofol plasma concentrations were calculated using the paedfusor dataset and a TIVA simulation program. Median endtidal concentration of sevoflurane at the time of administration of the propofol bolus was 5.1 [IQR 4.7-5.9] Vol%. The median propofol bolus dose was 1.2 [IQR 0.9-2.5] mg·kg -1 and median NI thereafter was 33 [IQR 23-40]. Nine children presented with a NI 13-20 and three children with burst suppression in the EEG (NI 0-12); all of them received an initial propofol bolus dose >2 mg·kg -1 . Regression equation demonstrated that NI 20-64 was achieved with a 95% probability when using a propofol bolus dose of 1 mg·kg -1 after

  14. SU-E-J-113: The Influence of Optimizing Pediatric CT Simulator Protocols On the Treatment Dose Calculation in Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y; Zhang, J; Hu, Q; Tie, J; Wu, H [Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiotherapy, Peking University Cancer Hospital ' Institute, Beijing (China); Deng, J [Department of Therapeutic Radiology, Yale University, New Haven, CT (United States)

    2014-06-01

    Purpose: To investigate the possibility of applying optimized scanning protocols for pediatric CT simulation by quantifying the dosimetric inaccuracy introduced by using a fixed HU to density conversion. Methods: The images of a CIRS electron density reference phantom (Model 062) were acquired by a Siemens CT simulator (Sensation Open) using the following settings of tube voltage and beam current: 120 kV/190mA (the reference protocol used to calibrate CT for our treatment planning system (TPS)); Fixed 190mA combined with all available kV: 80, 100, and 140; fixed 120 kV and various current from 37 to 444 mA (scanner extremes) with interval of 30 mA. To avoid the HU uncertainty of point sampling in the various inserts of known electron densities, the mean CT numbers of the central cylindrical volume were calculated using DICOMan software. The doses per 100 MU to the reference point (SAD=100cm, Depth=10cm, Field=10X10cm, 6MV photon beam) in a virtual cubic phantom (30X30X30cm) were calculated using Eclipse TPS (calculation model: AcurosXB-11031) by assigning the CT numbers to HU of typical materials acquired by various protocols. Results: For the inserts of densities less than muscle, CT number fluctuations of all protocols were within the tolerance of 10 HU as accepted by AAPM-TG66. For more condensed materials, fixed kV yielded stable HU with any mA combination where largest disparities were found in 1750mg/cc insert: HU{sub reference}=1801(106.6cGy), HU{sub minimum}=1799 (106.6cGy, error{sub dose}=0.00%), HU{sub maximum}=1815 (106.8cGy, error{sub dose}=0.19%). Yet greater disagreements were observed with increasing density when kV was modified: HU{sub minimum}=1646 (104.5cGy, error{sub dose}=- 1.97%), HU{sub maximum}=2487 (116.4cGy, error{sub dose}=9.19%) in 1750mg/cc insert. Conclusion: Without affecting treatment dose calculation, personalized mA optimization of CT simulator can be conducted by fixing kV for a better cost-effectiveness of imaging dose and quality

  15. How to optimize tuberculosis case finding: explorations for Indonesia with a health system model

    Directory of Open Access Journals (Sweden)

    Mahendradhata Yodi

    2009-06-01

    Full Text Available Abstract Background A mathematical model was designed to explore the impact of three strategies for better tuberculosis case finding. Strategies included: (1 reducing the number of tuberculosis patients who do not seek care; (2 reducing diagnostic delay; and (3 engaging non-DOTS providers in the referral of tuberculosis suspects to DOTS services in the Indonesian health system context. The impact of these strategies on tuberculosis mortality and treatment outcome was estimated using a mathematical model of the Indonesian health system. Methods The model consists of multiple compartments representing logical movement of a respiratory symptomatic (tuberculosis suspect through the health system, including patient- and health system delays. Main outputs of the model are tuberculosis death rate and treatment outcome (i.e. full or partial cure. We quantified the model parameters for the Jogjakarta province context, using a two round Delphi survey with five Indonesian tuberculosis experts. Results The model validation shows that four critical model outputs (average duration of symptom onset to treatment, detection rate, cure rate, and death rate were reasonably close to existing available data, erring towards more optimistic outcomes than are actually reported. The model predicted that an intervention to reduce the proportion of tuberculosis patients who never seek care would have the biggest impact on tuberculosis death prevention, while an intervention resulting in more referrals of tuberculosis suspects to DOTS facilities would yield higher cure rates. This finding is similar for situations where the alternative sector is a more important health resource, such as in most other parts of Indonesia. Conclusion We used mathematical modeling to explore the impact of Indonesian health system interventions on tuberculosis treatment outcome and deaths. Because detailed data were not available regarding the current Indonesian population, we relied on expert

  16. Is dosing of therapeutic immunoglobulins optimal? – A review of a 3-decade long debate in Europe.

    Directory of Open Access Journals (Sweden)

    Jacqueline eKerr

    2014-12-01

    Full Text Available The consumption of immunoglobulins (Ig is increasing due to better recognition of antibody deficiencies, an aging population and new indications. This review aims to examine the various dosing regimens and research developments in the established and in some of the relevant off-label indications in Europe. The background to the current regulatory settings in Europe is provided as a backdrop for the latest developments in primary and secondary immunodeficiencies and in immunomodulatory indications. In these heterogeneous areas, clinical trials encompassing different routes of administration, varying intervals and infusion rates are paving the way towards more individualized therapy regimens.In primary antibody deficiencies adjustments in dosing and intervals will depend on the clinical presentation, effective IgG trough levels and IgG metabolism. Ideally, individual pharmacokinetic profiles in conjunction with the clinical phenotype could lead to highly tailored treatment. In practice, incremental dosage increases are necessary to titrate the optimal dose for more severely ill patients. Higher intravenous doses in these patients also have beneficial immunomodulatory effects beyond mere IgG replacement. Better understanding of the pharmacokinetics of Ig therapy is leading to a move away from simplistic ‘per kg’ dosing.Defective antibody production is common in many secondary immunodeficiencies irrespective of whether the causative factor was lymphoid malignancies (established indications, certain autoimmune disorders, immunosuppressive agents or biologics. This antibody failure, as shown by test immunisation, may be amenable to treatment with replacement Ig therapy. In certain immunomodulatory settings (e.g. ITP selection of patients for Ig therapy may be enhanced by relevant biomarkers in order to exclude non-responders and thus obtain higher response rates. In this review the developments in dosing of therapeutic immunoglobulins have been

  17. SU-F-T-335: Piecewise Uniform Dose Prescription and Optimization Based On PET/CT Images

    Energy Technology Data Exchange (ETDEWEB)

    Liu, G; Liu, J [Hunan University, Changsha, Hunan (China)

    2016-06-15

    Purpose: In intensity modulated radiation therapy (IMRT), the tumor target volume is given a uniform dose prescription, which does not consider the heterogeneous characteristics of tumor such as hypoxia, clonogen density, radiosensitivity, tumor proliferation rate and so on. Our goal is to develop a nonuniform target dose prescription method which can spare organs at risk (OARs) better and does not decrease the tumor control probability (TCP). Methods: We propose a piecewise uniform dose prescription (PUDP) based on PET/CT images of tumor. First, we propose to delineate biological target volumes (BTV) and sub-biological target volumes (sub-BTVs) by our Hierarchical Mumford-Shah Vector Model based on PET/CT images of tumor. Then, in order to spare OARs better, we make the BTV mean dose minimized while restrict the TCP to a constant. So, we can get a general formula for determining an optimal dose prescription based on a linearquadratic model (LQ). However, this dose prescription is high heterogeneous, it is very difficult to deliver by IMRT. Therefore we propose to use the equivalent uniform dose (EUD) in each sub-BTV as its final dose prescription, which makes a PUDP for the BTV. Results: We have evaluated the IMRT planning of a patient with nasopharyngeal carcinoma respectively using PUDP and UDP. The results show that the highest and mean doses inside brain stem are 48.425Gy and 19.151Gy respectively when the PUDP is used for IMRT planning, while they are 52.975Gy and 20.0776Gy respectively when the UDP is used. Both of the resulting TCPs(0.9245, 0.9674) are higher than the theoretical TCP(0.8739), when 70Gy is delivered to the BTV. Conclusion: Comparing with the UDP, the PUDP can spare the OARs better while the resulting TCP by PUDP is not significantly lower than by UDP. This work was supported in part by National Natural Science Foundation of China undergrant no.61271382 and by the foundation for construction of scientific project platform forthe cancer

  18. SU-F-T-335: Piecewise Uniform Dose Prescription and Optimization Based On PET/CT Images

    International Nuclear Information System (INIS)

    Liu, G; Liu, J

    2016-01-01

    Purpose: In intensity modulated radiation therapy (IMRT), the tumor target volume is given a uniform dose prescription, which does not consider the heterogeneous characteristics of tumor such as hypoxia, clonogen density, radiosensitivity, tumor proliferation rate and so on. Our goal is to develop a nonuniform target dose prescription method which can spare organs at risk (OARs) better and does not decrease the tumor control probability (TCP). Methods: We propose a piecewise uniform dose prescription (PUDP) based on PET/CT images of tumor. First, we propose to delineate biological target volumes (BTV) and sub-biological target volumes (sub-BTVs) by our Hierarchical Mumford-Shah Vector Model based on PET/CT images of tumor. Then, in order to spare OARs better, we make the BTV mean dose minimized while restrict the TCP to a constant. So, we can get a general formula for determining an optimal dose prescription based on a linearquadratic model (LQ). However, this dose prescription is high heterogeneous, it is very difficult to deliver by IMRT. Therefore we propose to use the equivalent uniform dose (EUD) in each sub-BTV as its final dose prescription, which makes a PUDP for the BTV. Results: We have evaluated the IMRT planning of a patient with nasopharyngeal carcinoma respectively using PUDP and UDP. The results show that the highest and mean doses inside brain stem are 48.425Gy and 19.151Gy respectively when the PUDP is used for IMRT planning, while they are 52.975Gy and 20.0776Gy respectively when the UDP is used. Both of the resulting TCPs(0.9245, 0.9674) are higher than the theoretical TCP(0.8739), when 70Gy is delivered to the BTV. Conclusion: Comparing with the UDP, the PUDP can spare the OARs better while the resulting TCP by PUDP is not significantly lower than by UDP. This work was supported in part by National Natural Science Foundation of China undergrant no.61271382 and by the foundation for construction of scientific project platform forthe cancer

  19. Impact of 'optimized' treatment planning for tandem and ring, and tandem and ovoids, using high dose rate brachytherapy for cervical cancer

    International Nuclear Information System (INIS)

    Noyes, William R.; Peters, Nancy E.; Thomadsen, Bruce R.; Fowler, Jack F.; Buchler, Dolores A.; Stitt, Judith A.; Kinsella, Timothy J.

    1995-01-01

    Purpose: Different treatment techniques are used in high dose rate (HDR) remote afterloading intracavitary brachytherapy for uterine cervical cancer. We have investigated the differences between 'optimized' and 'nonoptimized' therapy using both a tandem and ring (T/R) applicator, and a tandem and ovoids (T/O), applicator. Methods and Materials: HDR afterloading brachytherapy using the Madison System for Stage IB cervical cancer was simulated for 10 different patients using both a T/R applicator and a T/O applicator. A treatment course consists of external beam irradiation and five insertions of HDR afterloading brachytherapy. Full dosimetry calculations were performed at the initial insertion for both applicators and used as a reference for the following four insertions of the appropriate applicator. Forty dosimetry calculations were performed to determine the dose delivered to Point M (similar to Point A), Point E (obturator lymph nodes), vaginal surface, bladder, and rectum. 'Optimized' doses were specified to Point M and to the vaginal surface. 'Nonoptimized' doses were specified to Point M only. Using the linear-quadratic equation, calculations have been performed to convert the delivered dose using HDR to the biologically equivalent doses at the conventional low dose rate (LDR) at 0.60 Gy/h. Results: Major differences between 'optimized' and 'nonoptimized' LDR equivalent doses were found at the vaginal surface, bladder, and rectum. Overdoses at the vaginal surface, bladder, and rectum were calculated to be 208%, nil, and 42%, respectively, for the T/R applicator with 'nonoptimization'. However, for the T/O applicator, the overdoses were smaller, being nil, 32%, and 27%, respectively, with 'nonoptimization'. Conclusion: Doses given in high dose rate intracavitary brachytherapy border on tissue tolerance. 'Optimization' of either applicator decreases the risk of a dose that may have potential for complications. Optimization of a tandem and ovoids best ensures

  20. Finding a pareto-optimal solution for multi-region models subject to capital trade and spillover externalities

    Energy Technology Data Exchange (ETDEWEB)

    Leimbach, Marian [Potsdam-Institut fuer Klimafolgenforschung e.V., Potsdam (Germany); Eisenack, Klaus [Oldenburg Univ. (Germany). Dept. of Economics and Statistics

    2008-11-15

    In this paper we present an algorithm that deals with trade interactions within a multi-region model. In contrast to traditional approaches this algorithm is able to handle spillover externalities. Technological spillovers are expected to foster the diffusion of new technologies, which helps to lower the cost of climate change mitigation. We focus on technological spillovers which are due to capital trade. The algorithm of finding a pareto-optimal solution in an intertemporal framework is embedded in a decomposed optimization process. The paper analyzes convergence and equilibrium properties of this algorithm. In the final part of the paper, we apply the algorithm to investigate possible impacts of technological spillovers. While benefits of technological spillovers are significant for the capital-importing region, benefits for the capital-exporting region depend on the type of regional disparities and the resulting specialization and terms-of-trade effects. (orig.)

  1. Determination of an optimal dose of medetomidine-ketamine-buprenorphine for anaesthesia in the Cape ground squirrel (Xerus inauris

    Directory of Open Access Journals (Sweden)

    K. E. Joubert

    2011-04-01

    Full Text Available The optimal dose of medetomidine-ketamine-buprenorphine was determined in 25 Cape ground squirrels (Xerus inauris undergoing surgical implantation of a temperature logger into the abdominal cavity. At the end of anaesthesia, the squirrels were given atipamezole intramuscularly to reverse the effects of medetomidine. The mean dose of medetomidine was 67.6±9.2 μg/kg, ketamine 13.6±1.9 mg/kg and buprenorphine 0.5±0.06 μg/kg. Induction time was 3.1 ± 1.4 min. This produced surgical anaesthesia for 21± 4.2 min. Atipamezole 232±92 μg/kg produced a rapid recovery. Squirrels were sternally recumbent in 3.5 ± 2.2 min.

  2. Optimization of filtration for the reduction of lung dose from Rn decay products: Part II--Experimental

    International Nuclear Information System (INIS)

    Curling, C.A.; Rudnick, S.N.; Harrington, D.P.; Moeller, D.W.

    1990-01-01

    Research was performed to determine the validity of a model developed to theoretically predict the optimal characteristics of a recirculating filter system for minimizing the lung dose to a person breathing airborne Rn progeny. Four designs, each with different filter thicknesses, solidities, and fiber diameters, were tested to evaluate the accuracy of the model over a range of parameters. Increasing thicknesses were then tested for the most effective filter design to provide a more definitive comparison of experimental data and model predictions for this key parameter. The experimental data supported the conclusion that the most effective design was a thin filter of low solidity composed of coarse fibers. Although the maximum reduction in the dose-equivalent rate observed in these experiments was 50%, this was largely due to constraints on the experimental arrangements. With properly constructed filter units, much better removal efficiencies can undoubtedly be achieved

  3. Which genetic determinants should be considered for tacrolimus dose optimization in kidney transplantation?

    DEFF Research Database (Denmark)

    Bruckmueller, H; Werk, Anneke Nina; Renders, Lutz

    2014-01-01

    ). In addition, there are further polymorphic genes, possibly influencing CYP3A activity (pregnan x receptor NR1I2, P450 oxidoreductase POR and peroxisome proliferator-activator receptor alpha PPRA). We aimed to investigate combined effects of these gene variants on tacrolimus maintenance dose and PK in stable...

  4. Optimal antidepressant dosing. Practical framework for selection, titration, and duration of therapy.

    Science.gov (United States)

    Nielsen, J W; Witek, M W; Hurwitz, S

    2000-10-01

    Appropriate antidepressant dosing and trial duration are crucial for successful treatment of depression. Before prescribing an antidepressant, primary care physicians should take into account each patient's history, responses to previous antidepressants, depressive symptoms, coexisting illnesses, and current prescriptions. Physicians must be able to help patients manage side effects and know when to discontinue treatment, switch antidepressants, or refer patients to a psychiatrist.

  5. Optimization of radiological protection and dose constraints in the new draft ICRP Recommendations 2006

    International Nuclear Information System (INIS)

    Klener, V.

    2007-01-01

    The overall concept of the new ICRP Recommendations 2006 is analyzed, the concept of dose constraints as a basic tool of radiological protection management is described, arguments and criticisms against the current proposal are cited and points of dispute highlighted, and perspectives of the Recommendations are assessed. (author)

  6. Preliminary results for avelumab plus axitinib as first-line therapy in patients with advanced clear-cell renal-cell carcinoma (JAVELIN Renal 100): an open-label, dose-finding and dose-expansion, phase 1b trial.

    Science.gov (United States)

    Choueiri, Toni K; Larkin, James; Oya, Mototsugu; Thistlethwaite, Fiona; Martignoni, Marcella; Nathan, Paul; Powles, Thomas; McDermott, David; Robbins, Paul B; Chism, David D; Cho, Daniel; Atkins, Michael B; Gordon, Michael S; Gupta, Sumati; Uemura, Hirotsugu; Tomita, Yoshihiko; Compagnoni, Anna; Fowst, Camilla; di Pietro, Alessandra; Rini, Brian I

    2018-04-01

    The combination of an immune checkpoint inhibitor and a VEGF pathway inhibitor to treat patients with advanced renal-cell carcinoma might increase the clinical benefit of these drugs compared with their use alone. Here, we report preliminary results for the combination of avelumab, an IgG1 monoclonal antibody against the programmed cell death protein ligand PD-L1, and axitinib, a VEGF receptor inhibitor approved for second-line treatment of advanced renal-cell carcinoma, in treatment-naive patients with advanced renal-cell carcinoma. The JAVELIN Renal 100 study is an ongoing open-label, multicentre, dose-finding, and dose-expansion, phase 1b study, done in 14 centres in the USA, UK, and Japan. Eligible patients were aged 18 years or older (≥20 years in Japan) and had histologically or cytologically confirmed advanced renal-cell carcinoma with clear-cell component, life expectancy of at least 3 months, an Eastern Cooperative Oncology Group performance status of 1 or less, received no previous systemic treatment for advanced renal cell carcinoma, and had a resected primary tumour. Patients enrolled into the dose-finding phase received 5 mg axitinib orally twice daily for 7 days, followed by combination therapy with 10 mg/kg avelumab intravenously every 2 weeks and 5 mg axitinib orally twice daily. Based on the pharmacokinetic data from the dose-finding phase, ten additional patients were enrolled into the dose-expansion phase and assigned to this regimen. The other patients in the dose-expansion phase started taking combination therapy directly. The primary endpoint was dose-limiting toxicities in the first 4 weeks (two cycles) of treatment with avelumab plus axitinib. Safety and antitumour activity analyses were done in all patients who received at least one dose of avelumab or axitinib. This trial is registered with ClinicalTrials.gov, number NCT02493751. Between Oct 30, 2015, and Sept 30, 2016, we enrolled six patients into the dose-finding phase and 49 into the

  7. Doses optimization to patients in computed tomography studies; Optimizacion de las dosis a pacientes en estudios de tomografia computada

    Energy Technology Data Exchange (ETDEWEB)

    Trujillo Z, F. E., E-mail: flaviotrujillo@gmail.co [Hospital Regional de Alta Especialidad de Oaxaca, Aldama s/n, Paraje El Tule, 71256 San Bartolo Coyotepec, Oaxaca (Mexico)

    2010-09-15

    in recent years the number of studies of computed tomography has been increased, as well as the technology and methodology of these, while the radiological protection to the patient has not advanced to the same step. The IAEA has implemented the Patients Radiation Protection projects, where one of the areas of more interest is the computed tomography. The present work is a brief summary of the actions to realize for the doses optimization imparted to the patients, obtaining an appropriate diagnostic quality in the images at the same time; as it was presented in the course of the project C-RLA/9/067-001. The results that were obtained between Image Quality and Dose by Radiation that is imparted to the patient are shown, as well s the exposition factors that influence in these, according to the project C-RLA/9/067-001. The main actions for the dose optimization are using tension optimized protocols (kV), of load (m As), of collimation/cut thickness, of inclination of the gantry, of the pitch/displacement by rotation, of the reconstruction algorithm (kernel), according to the diagnostic objective to reach and to the patient physical characteristics (like weight and age), as well as to use protections to shield the sensitive organs (mainly those that do not have clinical interest for the procedure). Conclusion: To establish or to begin to implement, insofar as possible, the IAEA recommendations, relating to the clinical practice of the hospitals in Mexico and to the available equipment s type. (Author)

  8. Optimizing a single fixed dose of Iodine-131 in Graves' Disease (An Experience)

    International Nuclear Information System (INIS)

    Khan, S.H.

    2007-01-01

    Full text: Kashmir is a Himalayan mountain state of India enclosed by high snow capped ridges of Pir Panjal Mountains at an average height of 4000-5000 meters above the sea level. For most of the 4 million inhabitants in this land locked valley, agriculture horticulture and handcrafts are the main source of income. Due to long and severe winters the terraced farming on the mountain slopes yield just a single crop of rice which is barely sufficient to meet the local needs of this staple diet. People are relatively poor with low annual per capita income. Goiter is endemic in the Valley of Kashmir. In a published report the overall prevalence of goiter among the school going children in Kashmir between the ages of 5 years is 45.2% (+ SEM) with urinary iodine excretion of 49 + 3.55 μg per gram of creatinine. The extremely shy people of Kashmir are casual towards the aesthetic aspects of their goiters but nevertheless seek medical advice when associated with physical symptoms. In a published study of 203 patients of thyrotoxicosis from Kashmir, Graves' disease was the commonest cause, accounting for 63% of patients. One hundred and twentyone patients of Graves' disease were prospectively studied for their response to a single fixed dose of I-131. Patients were randomly treated with two different fixed doses of I- 131. Sixty four patients belonging to Group-I received a fixed dose of 185 MBq (Low Dose) and 57 patients belonging to Group -2 received 370 MBq (High Dose) of I- 131. Following therapy all patients were evaluated at 3 months. Patients with normal or reduced thyroid hormone levels were termed as responders and those with persistently elevated levels of thyroid hormone were termed as non responders. The response rates among the two groups were analyzed for their statistical significance. Patients treated with the high fixed dose of 370 MBq revealed good response to therapy achieving a rate of 91.22%, while the response rate in the group of patients treated with

  9. Transposition of the 97/43 EURATOM directive. Mission on procedures and standard levels of medical examinations using ionizing radiations. The radiological procedures: quality criteria and doses optimization

    International Nuclear Information System (INIS)

    2001-07-01

    The objective of this report concerns the optimization of radiological practices, to avoid delivering unuseful doses while ensuring an image quality necessary to the obtaining of the desired diagnosis information. (N.C.)

  10. SU-F-J-214: Dose Reduction by Spatially Optimized Image Quality Via Fluence Modulated Proton CT (FMpCT)

    International Nuclear Information System (INIS)

    De Angelis, L; Landry, G; Dedes, G; Parodi, K; Hansen, D; Rit, S; Belka, C

    2016-01-01

    Purpose: Proton CT (pCT) is a promising imaging modality for reducing range uncertainty in image-guided proton therapy. Range uncertainties partially originate from X-ray CT number conversion to stopping power ratio (SPR) and are limiting the exploitation of the full potential of proton therapy. In this study we explore the concept of spatially dependent fluence modulated proton CT (FMpCT), for achieving optimal image quality in a clinical region of interest (ROI), while reducing significantly the imaging dose to the patient. Methods: The study was based on simulated ideal pCT using pencil beam (PB) scanning. A set of 250 MeV protons PBs was used to create 360 projections of a cylindrical water phantom and a head and neck cancer patient. The tomographic images were reconstructed using a filtered backprojection (FBP) as well as an iterative algorithm (ITR). Different fluence modulation levels were investigated and their impact on the image was quantified in terms of SPR accuracy as well as noise within and outside selected ROIs, as a function of imaging dose. The unmodulated image served as reference. Results: Both FBP reconstruction and ITR without total variation (TV) yielded image quality in the ROIs similar to the reference images, for modulation down to 0.1 of the full proton fluence. The average dose was reduced by 75% for the water phantom and by 40% for the patient. FMpCT does not improve the noise for ITR with TV and modulation 0.1. Conclusion: This is the first work proposing and investigating FMpCT for producing optimal image quality for treatment planning and image guidance, while simultaneously reducing imaging dose. Future work will address spatial resolution effects and the impact of FMpCT on the quality of proton treatment plans for a prototype pCT scanner capable of list mode data acquisition. Acknowledgement: DFG-MAP DFG - Munich-Centre for Advanced Photonics (MAP)

  11. SU-F-J-214: Dose Reduction by Spatially Optimized Image Quality Via Fluence Modulated Proton CT (FMpCT)

    Energy Technology Data Exchange (ETDEWEB)

    De Angelis, L; Landry, G; Dedes, G; Parodi, K [Ludwig-Maximilians-Universitaet Muenchen (LMU Munich), Garching b. Muenchen (Germany); Hansen, D [Aarhus University Hospital, Aarhus, Jutland (Denmark); Rit, S [University Lyon, Lyon, Auvergne-Rhone-Alpes (France); Belka, C [LMU Munich, Munich (Germany)

    2016-06-15

    Purpose: Proton CT (pCT) is a promising imaging modality for reducing range uncertainty in image-guided proton therapy. Range uncertainties partially originate from X-ray CT number conversion to stopping power ratio (SPR) and are limiting the exploitation of the full potential of proton therapy. In this study we explore the concept of spatially dependent fluence modulated proton CT (FMpCT), for achieving optimal image quality in a clinical region of interest (ROI), while reducing significantly the imaging dose to the patient. Methods: The study was based on simulated ideal pCT using pencil beam (PB) scanning. A set of 250 MeV protons PBs was used to create 360 projections of a cylindrical water phantom and a head and neck cancer patient. The tomographic images were reconstructed using a filtered backprojection (FBP) as well as an iterative algorithm (ITR). Different fluence modulation levels were investigated and their impact on the image was quantified in terms of SPR accuracy as well as noise within and outside selected ROIs, as a function of imaging dose. The unmodulated image served as reference. Results: Both FBP reconstruction and ITR without total variation (TV) yielded image quality in the ROIs similar to the reference images, for modulation down to 0.1 of the full proton fluence. The average dose was reduced by 75% for the water phantom and by 40% for the patient. FMpCT does not improve the noise for ITR with TV and modulation 0.1. Conclusion: This is the first work proposing and investigating FMpCT for producing optimal image quality for treatment planning and image guidance, while simultaneously reducing imaging dose. Future work will address spatial resolution effects and the impact of FMpCT on the quality of proton treatment plans for a prototype pCT scanner capable of list mode data acquisition. Acknowledgement: DFG-MAP DFG - Munich-Centre for Advanced Photonics (MAP)

  12. Pharmacokinetics of Pyrazinamide and Optimal Dosing Regimens for Drug-Sensitive and -Resistant Tuberculosis.

    Science.gov (United States)

    Chirehwa, Maxwell T; McIlleron, Helen; Rustomjee, Roxana; Mthiyane, Thuli; Onyebujoh, Philip; Smith, Peter; Denti, Paolo

    2017-08-01

    Pyrazinamide is used in the treatment of tuberculosis (TB) because its sterilizing effect against tubercle bacilli allows the shortening of treatment. It is part of standard treatment for drug-susceptible and drug-resistant TB, and it is being considered as a companion drug in novel regimens. The aim of this analysis was to characterize factors contributing to the variability in exposure and to evaluate drug exposures using alternative doses, thus providing evidence to support revised dosing recommendations for drug-susceptible and multidrug-resistant tuberculosis (MDR-TB). Pyrazinamide pharmacokinetic (PK) data from 61 HIV/TB-coinfected patients in South Africa were used in the analysis. The patients were administered weight-adjusted doses of pyrazinamide, rifampin, isoniazid, and ethambutol in fixed-dose combination tablets according to WHO guidelines and underwent intensive PK sampling on days 1, 8, 15, and 29. The data were interpreted using nonlinear mixed-effects modeling. PK profiles were best described using a one-compartment model with first-order elimination. Allometric scaling was applied to disposition parameters using fat-free mass. Clearance increased by 14% from the 1st day to the 29th day of treatment. More than 50% of patients with weight less than 55 kg achieved lower pyrazinamide exposures at steady state than the targeted area under the concentration-time curve from 0 to 24 h of 363 mg · h/liter. Among patients with drug-susceptible TB, adding 400 mg to the dose for those weighing 30 to 54 kg improved exposure. Average pyrazinamide exposure in different weight bands among patients with MDR-TB could be matched by administering 1,500 mg, 1,750 mg, and 2,000 mg to patients in the 33- to 50-kg, 51- to 70-kg, and greater than 70-kg weight bands, respectively. Copyright © 2017 American Society for Microbiology.

  13. Dose escalation with 3D conformal treatment: five year outcomes, treatment optimization, and future directions

    International Nuclear Information System (INIS)

    Hanks, Gerald E.; Hanlon, Alexandra L. M.S.; Schultheiss, Timothy E.; Pinover, Wayne H.; Movsas, Benjamin; Epstein, Barry E.; Hunt, Margie

    1998-01-01

    Purpose: To report the 5-year outcomes of dose escalation with 3D conformal treatment (3DCRT) of prostate cancer. Methods and Materials: Two hundred thirty-two consecutive patients were treated with 3DCRT alone between 6/89 and 10/92 with ICRU reporting point dose that increased from 63 to 79 Gy. The median follow-up was 60 months, and any patient free of clinical or biochemical evidence of disease was termed bNED. Biochemical failure was defined as prostate-specific antigen (PSA) rising on two consecutive recordings and exceeding 1.5 ng/ml. Morbidity was reported by the Radiation Therapy Oncology Group (RTOG) scale, the Late Effects Normal Tissue (LENT) scale, and a Fox Chase modification of the latter (FC-LENT). All patients were treated with a four-field technique with a 1 cm clinical target volume (CTV) to planning target volume (PTV) margin to the prostate or prostate boost; the CTV and gross tumor volume (GTV) were the same. Actuarial rates of outcome were calculated by Kaplan-Meier and cumulative incidence methods and compared using the log rank and Gray's test statistic, respectively. Cox regression models were used to establish prognostic factors predictive of the various measures of outcome. Five-year Kaplan-Meier bNED rates were utilized by dose group to estimate logit response models for bNED and late morbidity. Results: PSA 10 ng/ml based on 5-year bNED results. No dose response was observed for patients with pretreatment PSA 10 ng/ml strongly suggests that clinical trials employing radiation should investigate the use of 3DCRT and prostate doses of 76-80 Gy

  14. A novel approach to find and optimize bin locations and collection routes using a geographic information system.

    Science.gov (United States)

    Erfani, Seyed Mohammad Hassan; Danesh, Shahnaz; Karrabi, Seyed Mohsen; Shad, Rouzbeh

    2017-07-01

    One of the major challenges in big cities is planning and implementation of an optimized, integrated solid waste management system. This optimization is crucial if environmental problems are to be prevented and the expenses to be reduced. A solid waste management system consists of many stages including collection, transfer and disposal. In this research, an integrated model was proposed and used to optimize two functional elements of municipal solid waste management (storage and collection systems) in the Ahmadabad neighbourhood located in the City of Mashhad - Iran. The integrated model was performed by modelling and solving the location allocation problem and capacitated vehicle routing problem (CVRP) through Geographic Information Systems (GIS). The results showed that the current collection system is not efficient owing to its incompatibility with the existing urban structure and population distribution. Application of the proposed model could significantly improve the storage and collection system. Based on the results of minimizing facilities analyses, scenarios with 100, 150 and 180 m walking distance were considered to find optimal bin locations for Alamdasht, C-metri and Koohsangi. The total number of daily collection tours was reduced to seven as compared to the eight tours carried out in the current system (12.50% reduction). In addition, the total number of required crews was minimized and reduced by 41.70% (24 crews in the current collection system vs 14 in the system provided by the model). The total collection vehicle routing was also optimized such that the total travelled distances during night and day working shifts was cut back by 53%.

  15. WE-AB-303-06: Combining DAO with MV + KV Optimization to Improve Skin Dose Sparing with Real-Time Fluoroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Grelewicz, Z; Wiersma, R [The University of Chicago, Chicago, IL (United States)

    2015-06-15

    Purpose: Real-time fluoroscopy may allow for improved patient positioning and tumor tracking, particularly in the treatment of lung tumors. In order to mitigate the effects of the imaging dose, previous studies have demonstrated the effect of including both imaging dose and imaging constraints into the inverse treatment planning object function. That method of combined MV+kV optimization may Result in plans with treatment beams chosen to allow for more gentle imaging beam-on times. Direct-aperture optimization (DAO) is also known to produce treatment plans with fluence maps more conducive to lower beam-on times. Therefore, in this work we demonstrate the feasibility of a combination of DAO and MV+kV optimization for further optimized real-time kV imaging. Methods: Therapeutic and imaging beams were modeled in the EGSnrc Monte Carlo environment, and applied to a patient model for a previously treated lung patient to provide dose influence matrices from DOSXYZnrc. An MV + kV IMRT DAO treatment planning system was developed to compare DAO treatment plans with and without MV+kV optimization. The objective function was optimized using simulated annealing. In order to allow for comparisons between different cases of the stochastically optimized plans, the optimization was repeated twenty times. Results: Across twenty optimizations, combined MV+kV IMRT resulted in an average of 12.8% reduction in peak skin dose. Both non-optimized and MV+kV optimized imaging beams delivered, on average, mean dose of approximately 1 cGy per fraction to the target, with peak doses to target of approximately 6 cGy per fraction. Conclusion: When using DAO, MV+kV optimization is shown to Result in improvements to plan quality in terms of skin dose, when compared to the case of MV optimization with non-optimized kV imaging. The combination of DAO and MV+kV optimization may allow for real-time imaging without excessive imaging dose. Financial support for the work has been provided in part by NIH

  16. Optimization of the therapeutic dose of {sup 131}I for thyroid differentiated carcinoma; Otimizacao da dose terapeutica com {sup 131}I para carcinoma diferenciado da tiroide

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Fabiana Farias de

    2002-09-01

    reduction for many organs, such as the narrow and gonads, of up to 78.4%.Possible benefits to the institution also include the use of less radioactive material and a reduction in radiation exposures to the staff during the manipulation and administration of the {sup 131} I. To facilitate the calculations of the optimum therapeutic activity of {sup 131} I for individual patients, a simple and fast dose planning program was created (PlanDose). The program has been set up to evaluate thryroid remant ablation, but it can also be used for the calculation of the activity to be administered for treatment of hyperthyroidism. This protocol of calculated optimal patient-specific {sup 131} I. activities allows a better determination of the necessary ablative dose for patients with differentiated carcinoma of the thyroid, and is an example of optimizing the practice of radiation protection. (author)

  17. Kinetic characterization of glucose aerodehydrogenase from Aspergillus niger EMS-150-F after optimizing the dose of mutagen for enhanced production of enzyme

    OpenAIRE

    Umbreen, Huma; Zia, Muhammad Anjum; Rasul, Samreen

    2013-01-01

    In the present study enhanced production of glucose aerodehydrogenase from Aspergillus niger has been achieved after optimizing the dose of chemical mutagen ethyl methane sulfonate (EMS) that has not been reported earlier. Different doses of mutagen were applied and a strain was developed basing upon the best production. The selected strain Aspergillus niger EMS-150-F was optimized for nutrient requirements in order to produce enzyme through fermentation and the results showed the best yield ...

  18. An unusual finding of massive pulmonary embolism in a patient during treatment with high-dose ibuprofen.

    Science.gov (United States)

    Bilora, Franca; Adamo, Angelo; Pomerri, Fabio; Prandoni, Paolo

    2016-02-01

    Non-steroidal anti-inflammatory drugs have been associated with an increased risk of venous thromboembolism. We report for the first time, the case of a patient who developed massive pulmonary embolism after a long period of treatment with high doses of ibuprofen. A 65-year-old woman was admitted with severe dyspnea while on treatment with high doses of ibuprofen for diffuse spine pain due to arthrosis. A spiral computed tomography showed a massive pulmonary embolism. No other explanation for the thromboembolic disorder was found. She was successfully treated with therapeutic doses of low-molecular-weight heparin followed by rivaroxaban. Ibuprofen was discontinued and replaced by tramadol. High-dose ibuprofen is likely to have accounted for the life-threatening thromboembolic disorder.

  19. Dose optimization in pelvic radiography by air gap method on CR and DR systems – A phantom study

    International Nuclear Information System (INIS)

    Chan, C.T.P.; Fung, K.K.L.

    2015-01-01

    Objectives: This study aimed at investigating the feasibility of replacing the anti-scatter grid with an air gap at a pelvic radiographic examination in order to reduce patient dose while retaining diagnostic image quality. Methods: An anthropomorphic pelvis phantom was placed on a device that allowed the adjustment of different air gap thicknesses introduced between the phantom and the image receptor of Computed Radiography (CR) and Digital Radiography (DR) systems. Grid and non-grid images with different air gap thicknesses of both systems were produced. Ovary and testes doses were measured using thermoluminescent dosimeters. Radiographic quality of all images was rated by 5 experienced radiographers blindly using the Image Quality Score (IQS) and Visual Grading Analysis (VGA) systems. Results: Images of diagnostic quality were produced while the grid was replaced by a range of 0–25 cm air gap thickness in the pelvic radiographic examination. At non-grid examination with 10 cm air gap thickness, a maximum of relative dose reduction by 70.7% and 81.6% at CR; 68.6% and 79.4% at DR were achieved respectively at ovary and testes locations of the phantom as compared with their corresponding grid examinations. Conclusion: 10 cm was found to be the optimal air gap thickness at the tested pelvic examination. Effective dose was found to be reduced by 2 and 2.3 times respectively at the CR and DR examinations while the anti-scatter grid was replaced by 10 cm air gap. However, dose reduction effect by air gap method was found to be more pronounced in CR than in DR. - Highlights: • 10 cm air gap was found to be a substitute to replace grid in pelvic RANDO in CR/DR. • Over 68.6% of dose reduction effect were achieved at the ovary and testes regions. • Over 76.4% of reduction in effective dose were achieved at both the tested regions. • Dose reduction by air gap method was found to be more pronounced in CR than in DR

  20. Extension and optimization of the FIND algorithm: Computing Green’s and less-than Green’s functions

    International Nuclear Information System (INIS)

    Li, S.; Darve, E.

    2012-01-01

    Highlights: ► FIND is an algorithm for calculating entries of the inverse of a sparse matrix. ► We extend the algorithm to other matrix inverse related calculations. ► We exploit sparsity and symmetry to improve performance. - Abstract: The FIND algorithm is a fast algorithm designed to calculate certain entries of the inverse of a sparse matrix. Such calculation is critical in many applications, e.g., quantum transport in nano-devices. We extended the algorithm to other matrix inverse related calculations. Those are required for example to calculate the less-than Green’s function and the current density through the device. For a 2D device discretized as an N x × N y mesh, the best known algorithms have a running time of O(N x 3 N y ), whereas FIND only requires O(N x 2 N y ). Even though this complexity has been reduced by an order of magnitude, the matrix inverse calculation is still the most time consuming part in the simulation of transport problems. We could not reduce the order of complexity, but we were able to significantly reduce the constant factor involved in the computation cost. By exploiting the sparsity and symmetry, the size of the problem beyond which FIND is faster than other methods typically decreases from a 130 × 130 2D mesh down to a 40 × 40 mesh. These improvements make the optimized FIND algorithm even more competitive for real-life applications.

  1. Trace element supplementation in the biogas production from wheat stillage--optimization of metal dosing.

    Science.gov (United States)

    Schmidt, Thomas; Nelles, Michael; Scholwin, Frank; Pröter, Jürgen

    2014-09-01

    A trace element dosing strategy for the anaerobic digestion of wheat stillage was developed in this study. Mesophilic CSTR reactors were operated with the sulfuric substrate wheat stillage in some cases under trace element deficiency. After supplementing trace elements during the start-up, one of the elements of Fe, Ni, Co, Mo, and W were depleted in one digester while still augmenting the other elements to determine minimum requirements for each element. The depletion of Fe and Ni resulted in a rapid accumulation of volatile fatty acids while Co and W seem to have a long-term effect. Based on the results it was possible to reduce the dosing of trace elements, which is positive with reference to economic and environmental aspects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Quality control: a measure for optimization of dose in diagnostic radiology

    International Nuclear Information System (INIS)

    Abd Aziz Mhd Ramli; Muhammad Jamal Md Isa; Husaini Salleh

    2002-01-01

    Patient dose should always be a factor that is taken into account when using diagnostic X-ray equipment. There is no doubt that patients receive vastly different radiation doses for same examination under different circumstances and performance as well as safety standard of X-ray generating machine is one of the possible causes for this. MINT's experience in measuring performance and safety standard of X-ray fluoroscopic equipments in the year of 2000 indicated that 70% of the irradiating apparatus tend to deliver unnecessary exposures to patients due to various causes. Improper calibration and the usage of unoptimized fluoroscopic X-ray equipment are identified as two major causes that lead to unoptimized medical exposures to patient

  3. Can a single dose of human papillomavirus (HPV) vaccine prevent cervical cancer? Early findings from an Indian study.

    Science.gov (United States)

    Sankaranarayanan, Rengaswamy; Joshi, Smita; Muwonge, Richard; Esmy, Pulikottil Okkuru; Basu, Partha; Prabhu, Priya; Bhatla, Neerja; Nene, Bhagwan M; Shaw, Janmesh; Poli, Usha Rani Reddy; Verma, Yogesh; Zomawia, Eric; Pimple, Sharmila; Tommasino, Massimo; Pawlita, Michael; Gheit, Tarik; Waterboer, Tim; Sehr, Peter; Pillai, Madhavan Radhakrishna

    2018-03-15

    Human papillomavirus (HPV) vaccination is a major strategy for preventing cervical and other ano-genital cancers. Worldwide HPV vaccination introduction and coverage will be facilitated if a single dose of vaccine is as effective as two or three doses or demonstrates significant protective effect compared to 'no vaccination'. In a multi-centre cluster randomized trial of two vs three doses of quadrivalent HPV vaccination (Gardasil™) in India, suspension of the vaccination due to events unrelated to the study led to per protocol and partial vaccination of unmarried 10-18 year old girls leading to four study groups, two by design and two by default. They were followed up for the primary outcomes of immunogenicity in terms of L1 genotype-specific binding antibody titres, neutralising antibody titres, and antibody avidity for the vaccine-targeted HPV types and HPV infections. Analysis was per actual number of vaccine doses received. This study is registered with ISRCTN, number ISRCTN98283094; and with ClinicalTrials.gov, number NCT00923702. Of the 17,729 vaccinated girls, 4348 (25%) received three doses on days 1, 60, 180 or later, 4979 (28%) received two doses on days 1 and 180 or later, 3452 (19%) received two doses on days 1 and 60, and 4950 (28%) received one dose. One dose recipients demonstrated a robust and sustained immune response against HPV 16 and 18, albeit inferior to that of 3- or 2-doses and the antibody levels were stable over a 4 year period. The frequencies of cumulative incident and persistent HPV 16 and 18 infections up to 7 years of follow-up were similar and uniformly low in all the vaccinated study groups; the frequency of HPV 16 and 18 infections were significantly higher in unvaccinated age-matched control women than among vaccine recipients. The frequency of vaccine non-targeted HPV types was similar in the vaccinated groups but higher in the unvaccinated control women. Our results indicate that a single dose of quadrivalent HPV

  4. Radiotherapy for calcaneodynia. Results of a single center prospective randomized dose optimization trial

    Energy Technology Data Exchange (ETDEWEB)

    Ott, O.J.; Jeremias, C.; Gaipl, U.S.; Frey, B.; Schmidt, M.; Fietkau, R. [University Hospital Erlangen (Germany). Dept. of Radiation Oncology

    2013-04-15

    The aim of this work was to compare the efficacy of two different dose fractionation schedules for radiotherapy of patients with calcaneodynia. Between February 2006 and April 2010, 457 consecutive evaluable patients were recruited for this prospective randomized trial. All patients received radiotherapy using the orthovoltage technique. One radiotherapy series consisted of 6 single fractions/3 weeks. In case of insufficient remission of pain after 6 weeks a second radiation series was performed. Patients were randomly assigned to receive either single doses of 0.5 or 1.0 Gy. Endpoint was pain reduction. Pain was measured before, immediately after, and 6 weeks after radiotherapy using a visual analogue scale (VAS) and a comprehensive pain score (CPS). The overall response rate for all patients was 87 % directly after and 88 % 6 weeks after radiotherapy. The mean VAS values before, immediately after, and 6 weeks after treatment for the 0.5 and 1.0 Gy groups were 65.5 {+-} 22.1 and 64.0 {+-} 20.5 (p = 0.188), 34.8 {+-} 24.7 and 39.0 {+-} 26.3 (p = 0.122), and 25.1 {+-} 26.8 and 28.9 {+-} 26.8 (p = 0.156), respectively. The mean CPS before, immediately after, and 6 weeks after treatment was 10.1 {+-} 2.7 and 10.0 {+-} 3.0 (p = 0.783), 5.6 {+-} 3.7 and 6.0 {+-} 3.9 (p = 0.336), 4.0 {+-} 4.1 and 4.3 {+-} 3.6 (p = 0.257), respectively. No statistically significant differences between the two single dose trial arms for early (p = 0.216) and delayed response (p = 0.080) were found. Radiotherapy is an effective treatment option for the management of calcaneodynia. For radiation protection reasons, the dose for a radiotherapy series is recommended not to exceed 3-6 Gy. (orig.)

  5. Optimizing dosing frequencies for bisphosphonates in the management of postmenopausal osteoporosis: patient considerations

    Directory of Open Access Journals (Sweden)

    John Sunyecz

    2008-12-01

    Full Text Available John SunyeczMenopauseRx, Inc., Hopwood, PA, USAAbstract: Postmenopausal osteoporosis is common and underrecognized among elderly women. Osteoporotic fractures cause disability and disfigurement and threaten patients’ mobility, independence, and survival. Care for incident fractures in this age group must go beyond orthopedic repair, to assessment and treatment of the underlying bone fragility. Fracture risk can be reduced by vitamin D and calcium supplementation along with antiresorptive drug treatment. First-line osteoporosis pharmacotherapy employs nitrogen-containing bisphosphonates. The inconvenience of daily oral treatment has motivated development of weekly, monthly, and intermittent oral regimens, as well as quarterly and yearly intravenous (iv regimens. Ibandronate is the first bisphosphonate to have shown direct anti-fracture efficacy with a non-daily regimen; it was approved for once-monthly oral dosing in 2005 and for quarterly iv dosing in 2006. Intermittent oral risedronate and yearly iv zoledronic acid were approved in 2007. Newly available regimens with extended dosing intervals reduce the inconvenience of bisphosphonate therapy and provide patients with a range of options from which to select a maximally sustainable course of treatment. This review discusses the development, efficacy, safety, and tolerability of extended-interval bisphosphonate regimens and examines their potential to improve patient acceptance and long-term success of osteoporosis treatment.Keywords: ibandronate, alendronate, risedronate, zoledronic acid, adherence, persistence

  6. Optimization of radiation therapy, III: a method of assessing complication probabilities from dose-volume histograms

    International Nuclear Information System (INIS)

    Lyman, J.T.; Wolbarst, A.B.

    1987-01-01

    To predict the likelihood of success of a therapeutic strategy, one must be able to assess the effects of the treatment upon both diseased and healthy tissues. This paper proposes a method for determining the probability that a healthy organ that receives a non-uniform distribution of X-irradiation, heat, chemotherapy, or other agent will escape complications. Starting with any given dose distribution, a dose-cumulative-volume histogram for the organ is generated. This is then reduced by an interpolation scheme (involving the volume-weighting of complication probabilities) to a slightly different histogram that corresponds to the same overall likelihood of complications, but which contains one less step. The procedure is repeated, one step at a time, until there remains a final, single-step histogram, for which the complication probability can be determined. The formalism makes use of a complication response function C(D, V) which, for the given treatment schedule, represents the probability of complications arising when the fraction V of the organ receives dose D and the rest of the organ gets none. Although the data required to generate this function are sparse at present, it should be possible to obtain the necessary information from in vivo and clinical studies. Volume effects are taken explicitly into account in two ways: the precise shape of the patient's histogram is employed in the calculation, and the complication response function is a function of the volume

  7. Pharmacokinetic/Pharmacodynamic Modelling of Receptor Internalization with CRTH2 Antagonists to Optimize Dose Selection.

    Science.gov (United States)

    Krause, Andreas; Zisowsky, Jochen; Strasser, Daniel S; Gehin, Martine; Sidharta, Patricia N; Groenen, Peter M A; Dingemanse, Jasper

    2016-07-01

    The chemoattractant receptor-homologous molecule expressed on T helper-2 cells (CRTH2) is a G-protein-coupled receptor for prostaglandin D2 (PGD2), a key mediator in inflammatory disorders. Two selective and potent CRTH2 antagonists currently in clinical development, ACT-453859 and setipiprant, were compared with respect to their (predicted) clinical efficacy. Population pharmacokinetic (PK) and pharmacodynamic (PD) models were developed to characterize how plasma concentrations (PK) of ACT-453859, its active metabolite ACT-463036 and setipiprant related to their effect on blocking PGD2-induced internalization of CRTH2 on eosinophils (PD). Simulations were used to identify doses and dosing regimens leading to 90 % of maximum blockade of CRTH2 internalization at trough. A combined concentration of ACT-453859 and its metabolite ACT-463036, with weights proportional to potency (based on an eosinophil shape change assay), enabled good characterization of the PD effect. The modelling and simulation results facilitated decision making by suggesting an ACT-453859 dose of 400 mg once daily (or 100 mg twice daily) for clinically relevant CRTH2 antagonism. Pharmacometric quantification demonstrated that CRTH2 internalization is a useful new biomarker to study CRTH2 antagonism. Ninety percent of maximum blockade of CRTH2 internalization at trough is suggested as a quantitative PD target in clinical studies.

  8. Inverse planning anatomy-based dose optimization for HDR-brachytherapy of the prostate using fast simulated annealing algorithm and dedicated objective function

    International Nuclear Information System (INIS)

    Lessard, Etienne; Pouliot, Jean

    2001-01-01

    An anatomy-based dose optimization algorithm is developed to automatically and rapidly produce a highly conformal dose coverage of the target volume while minimizing urethra, bladder, and rectal doses in the delivery of an high dose-rate (HDR) brachytherapy boost for the treatment of prostate cancer. The dwell times are optimized using an inverse planning simulated annealing algorithm (IPSA) governed entirely from the anatomy extracted from a CT and by a dedicated objective function (cost function) reflecting clinical prescription and constraints. With this inverse planning approach, the focus is on the physician's prescription and constraint instead of on the technical limitations. Consequently, the physician's control on the treatment is improved. The capacity of this algorithm to represent the physician's prescription is presented for a clinical prostate case. The computation time (CPU) for IPSA optimization is less than 1 min (41 s for 142 915 iterations) for a typical clinical case, allowing fast and practical dose optimization. The achievement of highly conformal dose coverage to the target volume opens the possibility to deliver a higher dose to the prostate without inducing overdosage of urethra and normal tissues surrounding the prostate. Moreover, using the same concept, it will be possible to deliver a boost dose to a delimited tumor volume within the prostate. Finally, this method can be easily extended to other anatomical sites

  9. Finding an optimal rehabilitation paradigm after stroke: Enhancing fiber growth and training of the brain at the right moment

    Directory of Open Access Journals (Sweden)

    Anna-Sophia eWahl

    2014-06-01

    Full Text Available After stroke the central nervous system reveals a spectrum of intrinsic capacities to react as a highly dynamic system which can change the properties of its circuits, form new contacts, erase others, and remap related cortical and spinal cord regions. This plasticity can lead to a surprising degree of spontaneous recovery. It includes the activation of neuronal molecular mechanisms of growth and of extrinsic growth promoting factors and guidance signals in the tissue. Rehabilitative training and pharmacological interventions may modify and boost these neuronal processes, but almost nothing is known on the optimal timing of the different processes and therapeutic interventions and on their detailed interactions. Finding optimal rehabilitation paradigms requires an optimal orchestration of the internal processes of re‐organization and the therapeutic interventions in accordance with defined plastic time windows.In this review we summarize the mechanisms of spontaneous plasticity after stroke and experimental interventions to enhance growth and plasticity, with an emphasis on anti‐Nogo‐A immunotherapy. We highlight critical time windows of growth and of rehabilitative training and consider different approaches of combinatorial rehabilitative schedules. Finally, we discuss potential future strategies for designing repair and rehabilitation paradigms by introducing a 3 step model: determination of the metabolic and plastic status of the brain, pharmacological enhancement of its plastic mechanisms, and stabilization of newly formed functional connections by rehabilitative training.

  10. Anatomy-based inverse planning dose optimization in HDR prostate implant: A toxicity study

    International Nuclear Information System (INIS)

    Mahmoudieh, Alireza; Tremblay, Christine; Beaulieu, Luc; Lachance, Bernard; Harel, Francois; Lessard, Etienne; Pouliot, Jean; Vigneault, Eric

    2005-01-01

    Background and purpose: The aim of this study is to evaluate the acute and late complications in patients who have received HDR implant boost using inverse planning, and to determine dose volume correlations. Patients and methods: Between September 1999 and October 2002, 44 patients with locally advanced prostate cancer (PSA ≥10 ng/ml, and/or Gleason score ≥7, and/or Stage T2c or higher) were treated with 40-45 Gy external pelvic field followed by 2-3 fraction of inverse-planned HDR implant boost (6-9.5 Gy /fraction). Median follow-up time was 1.7 years with 81.8% of patients who had at least 12 months of follow up (range 8.6-42.5. Acute and late morbidity data were collected and graded according to RTOG criteria. Questionnaires were used to collect prostate related measures of quality of life, and international prostate symptom score (IPSS) before and after treatment. Dose-volume histograms for prostate, urethra, bladder, penis bulb and rectum were analyzed. Results: The median patient age was 64 years. Of these, 32% were in the high risk group, and 61% in the intermediate risk group. 3 patients (7%) had no adverse prognostic factors. A single grade 3 GU acute toxicity was reported but no grade 3-4 acute GI toxicity. No grade 3-4 late GU or GI toxicity was reported. Acute (late) grade 2 urinary and rectal symptoms were reported in 31.8 (11.4%) and 4.6% (4.6%) of patients, respectively. A trend for predicting acute GU toxicity is seen for total HDR dose of more than 18 Gy (OR=3.6, 95%CI=[0.96-13.5], P=0.058). The evolution of toxicity is presented for acute and late GU/GI toxicity. Erectile dysfunction occurs in approximately 27% of patients who were not on hormonal deprivation, but may be taking sildenafil. The IPSS peaked on averaged 6 weeks post-implant and returned to the baseline at a median of 6 months. Conclusions: Inverse-planned HDR brachytherapy is a viable option to deliver higher dose to the prostate as a boost without increasing GU or rectal

  11. Optimization of beam shaping assembly based on D-T neutron generator and dose evaluation for BNCT

    Science.gov (United States)

    Naeem, Hamza; Chen, Chaobin; Zheng, Huaqing; Song, Jing

    2017-04-01

    The feasibility of developing an epithermal neutron beam for a boron neutron capture therapy (BNCT) facility based on a high intensity D-T fusion neutron generator (HINEG) and using the Monte Carlo code SuperMC (Super Monte Carlo simulation program for nuclear and radiation process) is proposed in this study. The Monte Carlo code SuperMC is used to determine and optimize the final configuration of the beam shaping assembly (BSA). The optimal BSA design in a cylindrical geometry which consists of a natural uranium sphere (14 cm) as a neutron multiplier, AlF3 and TiF3 as moderators (20 cm each), Cd (1 mm) as a thermal neutron filter, Bi (5 cm) as a gamma shield, and Pb as a reflector and collimator to guide neutrons towards the exit window. The epithermal neutron beam flux of the proposed model is 5.73 × 109 n/cm2s, and other dosimetric parameters for the BNCT reported by IAEA-TECDOC-1223 have been verified. The phantom dose analysis shows that the designed BSA is accurate, efficient and suitable for BNCT applications. Thus, the Monte Carlo code SuperMC is concluded to be capable of simulating the BSA and the dose calculation for BNCT, and high epithermal flux can be achieved using proposed BSA.

  12. Evaluation of X ray radiation doses in pediatric examinations of cranial computerized tomography based on optimization studies; Avaliacao das doses de radiacao X em exames pediatricos de tomografia computadorizada de cranio com base em estudos de otimizacao

    Energy Technology Data Exchange (ETDEWEB)

    Daros, Kellen Adriana Curci

    2005-07-01

    This paper identifies the technical conditions for CT examination which offers lowest absorbed dose and to attend the manufacturer recommendations as far the spatial resolution is concerned. The paper evaluates the absorbed dose during cranial CT in up to 6 years children satisfying the technical condition recommended by the manufacturer and routine clinical conditions. The paper also established a quantitative relationship among the absorbed dose and its distribution in the cranial regions of pediatric patients up to 6 years old in a way to estimate the doses subject to optimized conditions

  13. The Shortlist Method for fast computation of the Earth Mover's Distance and finding optimal solutions to transportation problems.

    Science.gov (United States)

    Gottschlich, Carsten; Schuhmacher, Dominic

    2014-01-01

    Finding solutions to the classical transportation problem is of great importance, since this optimization problem arises in many engineering and computer science applications. Especially the Earth Mover's Distance is used in a plethora of applications ranging from content-based image retrieval, shape matching, fingerprint recognition, object tracking and phishing web page detection to computing color differences in linguistics and biology. Our starting point is the well-known revised simplex algorithm, which iteratively improves a feasible solution to optimality. The Shortlist Method that we propose substantially reduces the number of candidates inspected for improving the solution, while at the same time balancing the number of pivots required. Tests on simulated benchmarks demonstrate a considerable reduction in computation time for the new method as compared to the usual revised simplex algorithm implemented with state-of-the-art initialization and pivot strategies. As a consequence, the Shortlist Method facilitates the computation of large scale transportation problems in viable time. In addition we describe a novel method for finding an initial feasible solution which we coin Modified Russell's Method.

  14. Factor analysis in optimization of formulation of high content uniformity tablets containing low dose active substance

    Czech Academy of Sciences Publication Activity Database

    Lukášová, I.; Muselík, J.; Franc, A.; Goněc, R.; Mika, Filip; Vetchý, D.

    2017-01-01

    Roč. 109, NOV (2017), s. 541-547 ISSN 0928-0987 R&D Projects: GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : factor analysis * process optimization * sampling error * worst case Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Medical laboratory technology (including laboratory samples analysis Impact factor: 3.756, year: 2016

  15. The Erlangen Dose Optimization Trial for radiotherapy of benign painful shoulder syndrome. Long-term results

    International Nuclear Information System (INIS)

    Ott, O.J.; Hertel, S.; Gaipl, U.S.; Frey, B.; Schmidt, M.; Fietkau, R.

    2014-01-01

    To evaluate the long-term efficacy of pain reduction by two dose-fractionation schedules for radiotherapy of painful shoulder syndrome. Between February 2006 and February 2010, 312 evaluable patients were recruited for this prospective trial. All patients received low-dose orthovoltage radiotherapy. One course consisted of 6 fractions in 3 weeks. In the case of insufficient pain remission after 6 weeks, a second course was administered. Patients were randomly assigned to one of two groups to receive single doses of either 0.5 or 1.0 Gy. Endpoint was pain reduction. Pain was measured before radiotherapy, as well as immediately after (early response), 6 weeks after (delayed response) and approximately 3 years after (long-term response) completion of radiotherapy using a questionnaire-based visual analogue scale (VAS) and a comprehensive pain score (CPS). Median follow-up was 35 months (range 11-57). The overall early, delayed and long-term response rates for all patients were 83, 85 and 82%, respectively. The mean VAS scores before treatment and those for early, delayed and long-term response in the 0.5- and 1.0-Gy groups were 56.8±23.7 and 53.2±21.8 (p=0.16); 38.2±36.1 and 34.0±24.5 (p=0.19); 33.0±27.2 and 23.7±22.7 (p=0.04) and 27.9±25.8 and 32.1±26.9 (p=0.25), respectively. The mean CPS values before treatment and those for early, delayed and long-term response were 9.7±3.0 and 9.5±2.7 (p=0.31); 6.1±3.6 and 5.4±3.6 (p=0.10); 5.3±3.7 and 4.1±3.7 (p=0.05) and 4.0±3.9 and 5.3±4.4 (p=0.05), respectively. No significant differences in the quality of the long-term response were found between the 0.5- and 1.0-Gy arms (p=0.28). Radiotherapy is an effective treatment for the management of benign painful shoulder syndrome. For radiation protection reasons, the dose for a radiotherapy series should not exceed 3.0 Gy. (orig.)

  16. Radiation induced wheat-rye chromosomal translocations in triticale. Optimizing the dose using fluorescence in situ hybridization

    International Nuclear Information System (INIS)

    Ahmad, F.; Comeau, A.; Chen, Q.; Collin, J.; St-Pierre, C.A.

    2000-01-01

    Fluorescent in situ hybridization (FISH) was utilized to monitor the level of ionizing radiation ( 60 Co source) in their ability to cause intra- and intergeneric chromosomal aberrations in triticale seeds. Seeds were irradiated with 0, 20, 50, 100, 200, 300, 400, 500 and 1000 Gy doses. The root growth of irradiated seeds was greatly inhibited at 200 Gy and above. Various types of aberrations including wheat-rye, wheat-wheat, rye-rye, wheat-rye-wheat, rye-wheat-rye translocations and acentric fragments with or without translocations were observed. There was a consistent increase in proportion of aberrations per cell with an increase in radiation dose. It was concluded that for an optimal level of chromosomal translocation and least number of acentric fragments, a 20 Gy dose was quite sufficient for inducing a desirable level of wheat-rye chromosomal translocations. The excellent efficiency and importance of utilizing FISH in such studies of alien-introgression via chromosomal translocations are discussed. (author)

  17. Radiation induced wheat-rye chromosomal translocations in triticale. Optimizing the dose using fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, F. [Brandon Univ., Manitoba (Canada); Comeau, A.; Chen, Q.; Collin, J.; St-Pierre, C.A.

    2000-03-01

    Fluorescent in situ hybridization (FISH) was utilized to monitor the level of ionizing radiation ({sup 60}Co source) in their ability to cause intra- and intergeneric chromosomal aberrations in triticale seeds. Seeds were irradiated with 0, 20, 50, 100, 200, 300, 400, 500 and 1000 Gy doses. The root growth of irradiated seeds was greatly inhibited at 200 Gy and above. Various types of aberrations including wheat-rye, wheat-wheat, rye-rye, wheat-rye-wheat, rye-wheat-rye translocations and acentric fragments with or without translocations were observed. There was a consistent increase in proportion of aberrations per cell with an increase in radiation dose. It was concluded that for an optimal level of chromosomal translocation and least number of acentric fragments, a 20 Gy dose was quite sufficient for inducing a desirable level of wheat-rye chromosomal translocations. The excellent efficiency and importance of utilizing FISH in such studies of alien-introgression via chromosomal translocations are discussed. (author)

  18. Planning Target Volume D95 and Mean Dose Should Be Considered for Optimal Local Control for Stereotactic Ablative Radiation Therapy