WorldWideScience

Sample records for optimal coolant material

  1. Selection of nuclear reactor coolant materials

    International Nuclear Information System (INIS)

    Shi Lisheng; Wang Bairong

    2012-01-01

    Nuclear material is nuclear material or materials used in nuclear industry, the general term, it is the material basis for the construction of nuclear power, but also a leader in nuclear energy development, the two interdependent and mutually reinforcing. At the same time, nuclear materials research, development and application of the depth and breadth of science and technology reflects a nation and the level of the nuclear power industry. Coolant also known as heat-carrier agent, is an important part of the heart nuclear reactor, its role is to secure as much as possible to the economic output in the form fission energy to heat the reactor to be used: the same time cooling the core, is controlled by the various structural components allowable temperature. This paper described the definition of nuclear reactor coolant and characteristics, and then addressed the requirements of the coolant material, and finally were introduced several useful properties of the coolant and chemical control. (authors)

  2. Fusion-reactor blanket and coolant material compatibility

    International Nuclear Information System (INIS)

    Jeppson, D.W.; Keough, R.F.

    1981-01-01

    Fusion reactor blanket and coolant compatibility tests are being conducted to aid in the selection and design of safe blanket and coolant systems for future fusion reactors. Results of scoping compatibility tests to date are reported for blanket material and water interactions at near operating temperatures. These tests indicate the quantitative hydrogen release, the maximum temperature and pressures produced and the rates of interactions for selected blanket materials

  3. Multi-objective optimization of the reactor coolant system

    International Nuclear Information System (INIS)

    Chen Lei; Yan Changqi; Wang Jianjun

    2014-01-01

    Background: Weight and size are important criteria in evaluating the performance of a nuclear power plant. It is of great theoretical value and engineering significance to reduce the weight and volume of the components for a nuclear power plant by the optimization methodology. Purpose: In order to provide a new method for the optimization of nuclear power plant multi-objective, the concept of the non-dominated solution was introduced. Methods: Based on the parameters of Qinshan I nuclear power plant, the mathematical models of the reactor core, the reactor vessel, the main pipe, the pressurizer and the steam generator were built and verified. The sensitivity analyses were carried out to study the influences of the design variables on the objectives. A modified non-dominated sorting genetic algorithm was proposed and employed to optimize the weight and the volume of the reactor coolant system. Results: The results show that the component mathematical models are reliable, the modified non-dominated sorting generic algorithm is effective, and the reactor inlet temperature is the most important variable which influences the distribution of the non-dominated solutions. Conclusion: The optimization results could provide a reference to the design of such reactor coolant system. (authors)

  4. Neutronic design analyses for a dual-coolant blanket concept: Optimization for a fusion reactor DEMO

    International Nuclear Information System (INIS)

    Palermo, I.; Gómez-Ros, J.M.; Veredas, G.; Sanz, J.; Sedano, L.

    2012-01-01

    Highlights: ► Dual-Coolant He/Pb15.7Li breeding blanket for a DEMO fusion reactor is studied. ► An iterative process optimizes neutronic responses minimizing reactor dimension. ► A 3D toroidally symmetric geometry has been generated from the CAD model. ► Overall TBR values support the feasibility of the conceptual model considered. ► Power density in TF coils is below load limit for quenching. - Abstract: The generation of design specifications for a DEMO reactor, including breeding blanket (BB), vacuum vessel (VV) and magnetic field coils (MFC), requires a consistent neutronic optimization of structures between plasma and MFC. This work targets iteratively to generate these neutronic specifications for a Dual-Coolant He/Pb15.7Li breeding blanket design. The iteration process focuses on the optimization of allowable space between plasma scrapped-off-layer and VV in order to generate a MFC/VV/BB/plasma sustainable configuration with minimum global system volumes. Two VV designs have been considered: (1) a double-walled option with light-weight stiffeners and (2) a thick massive one. The optimization process also involves VV materials, looking to warrant radiation impact operational limits on the MFC. The resulting nuclear responses: peak nuclear heating in toroidal field (TF) coil, tritium breeding ratio (TBR), power amplification factor and helium production in the structural material are provided.

  5. Compatibility of structural materials with fusion reactor coolant and breeder fluids

    International Nuclear Information System (INIS)

    DeVan, J.H.

    1979-01-01

    Fusion reactors are characterized by a lithium-containing blanket, a heat transfer medium that is integral with the blanket and first wall, and a heat engine that couples to the heat transfer medium. A variety of lithium-containing substances have been identified as potential blanket materials, including molten lithium metal, molten LiF-BeF 2 , Pb-Li alloys, and solid ceramic compounds such as Li 2 O. Potential heat transfer media include liquid lithium, liquid sodium, molten nitrates, water, and helium. Each of these coolants and blankets requires a particular set of chemical and mechanical properties with respect to the associated reactor and heat engine structural materials. This paper discusses the materials factors that underlie the selection of workable combinations of blankets and coolants. It also addresses the materials compatibility problems generic to those blanket-coolant combinations currently being considered in reactor design studies. (orig.)

  6. Core performance of equilibrium fast reactors for different coolant materials and fuel types

    International Nuclear Information System (INIS)

    Mizutani, Akihiko; Sekimoto, Hiroshi

    1998-01-01

    Parametric studies with several coolant and fuel materials in the equilibrium state are performed for fast reactors in which natural uranium is fed and all of the actinides are confined. Sodium, sodium-potassium, lead, lead-bismuth and helium coolant materials, and oxide, nitride and metal fuels are employed to compare the neutronic characteristics in the equilibrium state. As to the criticality performance, sodium-potassium shows the best performance among the liquid metal coolants and the metallic fuel indicates the best performance

  7. A Study on thermal-hydraulic characteristics of the coolant materials for the transmutation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chang Hyun; You, Young Woo; Cho, Jae Seon; Kim, Ju Youl; Kim, Do Hyoung; Kim, Yoon Ik; Yang, Hui Chang [Seoul National University, Taejon (Korea)

    1998-03-01

    The objective of this study is to provide the direction of transmutation reactor design in terms of thermal hydraulics especially through the analysis of thermal hydraulic characteristics of various candidate materials for the transmutation reactor coolant. In this study, the characteristics of coolant materials used in current nuclear power plants and candidate materials for transmutation reactor are analyzed and compared. To evaluate the thermal hydraulic characteristics, the preliminary thermal-hydraulic calculation is performed for the candidate coolant materials of transmutation reactor. An analysis of thermal-hydraulic characteristics of transmutation reactor. An analysis of thermal-hydraulic characteristics of Sodium, Lead, Lead-Bismuth, and Lead-Lithium among the liquid metals considered as the coolant of transmutation reactor is performed by using computational fluid dynamics code FLUENT, and SIMPLER algorithm. (author). 50 refs., 40 figs., 30 tabs.

  8. Effects of molten material temperatures and coolant temperatures on vapor explosion

    Institute of Scientific and Technical Information of China (English)

    LI Tianshu; YANG Yanhua; YUAN Minghao; HU Zhihua

    2007-01-01

    An observable experiment facility for low-temperature molten materials to be dropped into water was set up in this study to investigate the mechanism of the vapor explosion. The effect of the fuel and coolant interaction(FCI) on the vapor explosion during the severe accidents of a fission nuclear reactor has been studied. The experiment results showed that the molten material temperature has an important effect on the vapor explosion behavior and pressure. The increase of the coolant temperature would decrease the pressure of the vapor explosion.

  9. Study on the quench behavior of molten fuel material jet into coolant

    International Nuclear Information System (INIS)

    Abe, Yutaka; Kizu, Tetsuya; Arai, Takahiro; Nariai, Hideki; Chitose, Keiko; Koyama, Kazuya

    2004-01-01

    In a core disruptive accident (CDA) of a Fast Breeder Reactor, the post accident heat removal (PAHR) is crucial for the accident mitigation. The molten core material should be solidified in the sodium coolant in the reactor vessel. In the present experiment, molten material jet is injected into water to experimentally obtain fragments and the visualized information of the fragmentation. The distributed particle behavior of the molten material jet is observed with high-speed video camera. The distributions of the fragmented droplet diameter from the molten material jet are evaluated by correcting the solidified particles. The experimental results of the mean fragmented droplet diameter are compared with the existing theories. Consequently, the fragmented droplet diameter is close to the value estimated based on the Kelvin-Helmholtz instability. Once the particle diameter of the fragmented molten material could be known from a hydrodynamic model, it becomes possible to estimate the mass ratio of the molten particle to the total injected mass by combining an appropriate heat transfer model. The heat transfer model used in the present study is composed of the fragmentation model based on the Kelvin-Helmholtz instability. The mass ratio of the molten fragment to total mass of the melted mixed oxide fuel in sodium coolant estimated in the present study is very small. The result means that most of the molten mixed oxide fuel material injected into the sodium coolant can be cooled down under the solidified temperature, that is so called quenched, if the amount of the coolant is sufficient. (author)

  10. Technical committee meeting on material-coolant interactions and material movement and relocation in liquid metal fast reactors

    International Nuclear Information System (INIS)

    1994-01-01

    The Technical Committee Meeting on Material-Coolant Interactions and Material Movement and Relocation in Liquid Metal Fast Reactors was sponsored by the International Working Group on Fast Reactors (IWGFR), International Atomic Energy Agency (IAEA) and hosted by PNC, on behalf of the Japanese government. A broad range of technical subjects was discussed in the TCM, covering entire aspects of material motion and interactions relevant to the safety of LMFRs. Recent achievement and current status in research and development in this area were presented including European out-of-pile test of molten material movement and relocation; molten material-sodium interaction; molten fuel-coolant interaction; core disruptive accidents; sodium boiling; post accident material relocation, heat removal and relevant experiments already performed or planned

  11. Technical committee meeting on material-coolant interactions and material movement and relocation in liquid metal fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-07-01

    The Technical Committee Meeting on Material-Coolant Interactions and Material Movement and Relocation in Liquid Metal Fast Reactors was sponsored by the International Working Group on Fast Reactors (IWGFR), International Atomic Energy Agency (IAEA) and hosted by PNC, on behalf of the Japanese government. A broad range of technical subjects was discussed in the TCM, covering entire aspects of material motion and interactions relevant to the safety of LMFRs. Recent achievement and current status in research and development in this area were presented including European out-of-pile test of molten material movement and relocation; molten material-sodium interaction; molten fuel-coolant interaction; core disruptive accidents; sodium boiling; post accident material relocation, heat removal and relevant experiments already performed or planned.

  12. Fuel, structural material and coolant for an advanced fast micro-reactor

    International Nuclear Information System (INIS)

    Nascimento, Jamil A. do; Guimaraes, Lamartine N.F.; Ono, Shizuca

    2011-01-01

    The use of nuclear reactors in space, seabed or other Earth hostile environment in the future is a vision that some Brazilian nuclear researchers share. Currently, the USA, a leader in space exploration, has as long-term objectives the establishment of a permanent Moon base and to launch a manned mission to Mars. A nuclear micro-reactor is the power source chosen to provide energy for life support, electricity for systems, in these missions. A strategy to develop an advanced micro-reactor technologies may consider the current fast reactor technologies as back-up and the development of advanced fuel, structural and coolant materials. The next generation reactors (GEN-IV) for terrestrial applications will operate with high output temperature to allow advanced conversion cycle, such as Brayton, and hydrogen production, among others. The development of an advanced fast micro-reactor may create a synergy between the GEN-IV and space reactor technologies. Considering a set of basic requirements and materials properties this paper discusses the choice of advanced fuel, structural and coolant materials for a fast micro-reactor. The chosen candidate materials are: nitride, oxide as back-up, for fuel, lead, tin and gallium for coolant, ferritic MA-ODS and Mo alloys for core structures. The next step will be the neutronic and burnup evaluation of core concepts with this set of materials. (author)

  13. Break-up and quench behavior of molten material in coolant

    International Nuclear Information System (INIS)

    Abe, Y.; Kizu, T.; Arai, T.; Nariai, H.; Chitose, K.; Koyama, K.

    2003-01-01

    In a Core Disruptive Accident (CDA) of a Fast Breeder Reactor, the Post Accident Heat Removal(PAHR) is crucial for the accident mitigation. The molten core material should be solidified in the sodium coolant in the reactor vessel. The material, being fragmented while solidification and forming debris bed, will be cooled in the coolant. In the experiment, molten material jet is injected into water to experimentally obtain fragments and the visualized information of the fragmentation and boiling phenomena during PAHR in CDA. The distributed particle behavior of the molten material jet is observed with high-speed video camera. The experimental results are compared with the existing theories. Consequently, the marginal wavelength on the surface of a water jet is close to the value estimated based on the Rayleigh-Taylor instability. Moreover, the fragmented droplet diameter obtained from the interaction of molten material and water is close to the value estimated based on the Kelvin-Helmholtz instability. Once the particle diameter of the fragmented molten material could be known from a hydrodynamic model, it becomes possible to estimate the mass of the molten particle with some appropriate heat transfer model

  14. Use of a multi-attribute utility theory for evaluating the best coolant material in transmutation reactors

    International Nuclear Information System (INIS)

    Yu, Dong Han; Han, Suk Joong; Kim, Do Hyung; Park, Won Suk

    1998-12-01

    In order to develop and design a good transmutation system, it is necessary first to select the best available coolant material for a reactor coolant system. Choosing the best coolant material may not be easy since there are several criteria associated with thermal performance, safety problem, cost problem, neutronic aspects. etc. The best option should be chosen based on the maximization of our needs in this situation. It is a challenging task. Decision theory can be employed to solve this type of problem. This report presents the feasibility study for evaluating the best coolant material in transmutation reactors based on the multi=attribute utility theory. The main problem presented here is how to logically evaluate candidate coolant materials under multiple criteria such as thermal performance, safety problem, cost problem, cost problem, neutronic aspects, etc. Since the current problem involves multiple criteria or attributes, first of all, the multi-attribute utility theory (MAUT) such as SMART and AHP has been extensively reviewed. Then, many candidate coolant material for transmutation reactors have been identified. The next step is to construct a value tree that express to reflect the relative importance of the attributes for overall evaluation. Finally, given these assignments, the final goal were obtained by manipulating these ranks through the value tree. The proposed approach is intended to help people be rational and logical in making decisions such complex tasks. (author). 8 refs., 7 tabs., 22 figs

  15. Selection of an Alternate Biocide for the ISS Internal Thermal Control System Coolant, Phase 2

    Science.gov (United States)

    Wilson, Mark E.; Cole, Harold; Weir, Natalee; Oehler, Bill; Steele, John; Varsik, Jerry; Lukens, Clark

    2004-01-01

    The ISS (International Space Station) ITCS (Internal Thermal Control System) includes two internal coolant loops that utilize an aqueous based coolant for heat transfer. A silver salt biocide had previously been utilized as an additive in the coolant formulation to control the growth and proliferation of microorganisms within the coolant loops. Ground-based and in-flight testing demonstrated that the silver salt was rapidly depleted, and did not act as an effective long-term biocide. Efforts to select an optimal alternate biocide for the ITCS coolant application have been underway and are now in the final stages. An extensive evaluation of biocides was conducted to down-select to several candidates for test trials and was reported on previously. Criteria for that down-select included: the need for safe, non-intrusive implementation and operation in a functioning system; the ability to control existing planktonic and biofilm residing microorganisms; a negligible impact on system-wetted materials of construction; and a negligible reactivity with existing coolant additives. Candidate testing to provide data for the selection of an optimal alternate biocide is now in the final stages. That testing has included rapid biocide effectiveness screening using Biolog MT2 plates to determine minimum inhibitory concentration (amount that will inhibit visible growth of microorganisms), time kill studies to determine the exposure time required to completely eliminate organism growth, materials compatibility exposure evaluations, coolant compatibility studies, and bench-top simulated coolant testing. This paper reports the current status of the effort to select an alternate biocide for the ISS ITCS coolant. The results of various test results to select the optimal candidate are presented.

  16. Optimization of mass flow rate in RGTT200K coolant purification for Carbon Monoxide conversion process

    International Nuclear Information System (INIS)

    Sumijanto; Sriyono

    2016-01-01

    Carbon monoxide is a species that is difficult to be separated from the reactor coolant helium because it has a relatively small molecular size. So it needs a process of conversion from carbon monoxide to carbondioxide. The rate of conversion of carbon monoxide in the purification system is influenced by several parameters including concentration, temperature and mass flow rate. In this research, optimization of the mass flow rate in coolant purification of RGTT200K for carbon monoxide conversion process was done. Optimization is carried out by using software Super Pro Designer. The rate of reduction of reactant species, the growth rate between the species and the species products in the conversion reactions equilibrium were analyzed to derive the mass flow rate optimization of purification for carbon monoxide conversion process. The purpose of this study is to find the mass flow rate of purification for the preparation of the basic design of the RGTT200K coolant helium purification system. The analysis showed that the helium mass flow rate of 0.6 kg/second resulted in an un optimal conversion process. The optimal conversion process was reached at a mass flow rate of 1.2 kg/second. A flow rate of 3.6 kg/second – 12 kg/second resulted in an ineffective process. For supporting the basic design of the RGTT200K helium purification system, the mass flow rate for carbon monoxide conversion process is suggested to be 1.2 kg/second. (author)

  17. Coolant material effect on the heat transfer rates of the molten metal pool with solidification

    International Nuclear Information System (INIS)

    Cho, Jae Seon; Suh, Kune Y.; Chung, Chang Hyun; Park, Rae Joon; Kim, Sang Baik

    1998-01-01

    Experimental studies on heat transfer and solidification of the molten metal pool with overlying coolant with boiling were performed. The simulant molten pool material is tin (Sn) with the melting temperature of 232 degree C. Demineralized water and R113 are used as the working coolant. This work examines the crust formation and the heat transfer characteristics of the molten metal pool immersed in the boiling coolant. The Nusselt number and the Rayleigh number in the molten metal pool region of this study are compared between the water coolant case and the R113 coolant case. The experimental results for the water coolant are higher than those for R113. Also, the empirical relationship of the Nusselt number and the Rayleigh number is compared with the literature correlations measured from mercury. The present experimental results are higher than the literature correlations. It is believed that this discrepancy is caused by the effect of the heat loss to the environment on the natural convection heat transfer in the molten pool

  18. Enriched boric acid as an optimized neutron absorber in the EPR primary coolant

    International Nuclear Information System (INIS)

    Cosse, Christelle; Jolivel, Fabienne; Berger, Martial

    2012-09-01

    This paper focuses on one of the most important EPR PWR reactor design optimizations, through primary coolant conditioning by enriched boric acid (EBA). On PWRs throughout the world, boric acid has already been implemented in primary coolant and associated auxiliary systems for criticality control, due to its high Boron 10 neutron absorption cross section. Boric acid also allows primary coolant pH 300C control in combination with lithium hydroxide in many PWRs. The boric acid employed in the majority of existing PWRs is the 'natural' one, with a typical isotopic atomic abundance in Boron 10 about 19.8 at.%. However, EPR requirements for neutron management are more important, due to its fully optimized design compared to older PWRs. From the boron point of view, it means that criticality could be controlled either by increased 'natural' Boron concentrations or by using EBA. Comparatively to 'natural' boric acid, EBA allows for: - the use of smaller storage volumes for an identical total Boron concentration, or lower total Boron concentration if the tank volumes are kept identical. The latter also reduces the risks of boric acid crystallization, in spite of increased neutron-absorbing properties - the application of an evolutionary chemistry operating regime called Advanced pH Control, making it possible to maintain a constant pH 300C value at 7.2 in the primary coolant at nominal conditions throughout entire cycles. This optimized stability of pH 300C will contribute to reduce the consequences of contamination of the reactor coolant system by corrosion products, and consequently, all related issues - the reduction of borated liquid wastes, thanks to maximal recycling resulting from EPR design. The increased design costs associated with EBA are consequently compensated by a reduced total consumption of this chemical. Therefore, the basic design choice for the EPR is the use of EBA. For the Flamanville 3 EPR, according to the above

  19. Research on coolant radiochemistry

    International Nuclear Information System (INIS)

    Yeon, Jei Won; Kim, W. H.; Park, Y. J.; Im, J. K.; Jung, Y. J.; Jee, K. Y.; Choi, K. C.

    2004-04-01

    The final objective of this study is to develop the technology on the reduction of radioactive material formed in reactor coolant circuit. The contents of this study are composed of the simulation of primary cooling system, chemistry measurement technology in the high-temperature high-pressure environments, and coolant chemistry control technology. The main results are as follows; High-temperature and high-pressure loop system was designed and fabricated, which is to inducing CRUD growth condition on the surface of cladding. The high-temperature pH measurement system was established with YSZ sensing electrode and Ag/AgCl reference electrode. The performance of pH electrode was confirmed in the temperature range 200∼280 .deg. C. Coolant chemistry control technologies such as the neutron irradiation technique of boric acid solution, the evaluation on high-temperature electrochemical behavior of coolant, and the measurement of physicochemical properties of micro-particles were developed. The results of this study can be useful for the understanding of chemical phenomena occurred in reactor coolant and for the study on the reduction of radioactive material in primary coolant, which will be carried out in the next research stage

  20. Improving Coolant Effectiveness through Drill Design Optimization in Gundrilling

    Science.gov (United States)

    Woon, K. S.; Tnay, G. L.; Rahman, M.

    2018-05-01

    Effective coolant application is essential to prevent thermo-mechanical failures of gun drills. This paper presents a novel study that enhances coolant effectiveness in evacuating chips from the cutting zone using a computational fluid dynamic (CFD) method. Drag coefficients and transport behaviour over a wide range of Reynold numbers were first established through a series of vertical drop tests. With these, a CFD model was then developed and calibrated with a set of horizontal drilling tests. Using this CFD model, critical drill geometries that lead to poor chip evacuation including the nose grind contour, coolant hole configuration and shoulder dub-off angle in commercial gun drills are identified. From this study, a new design that consists a 20° inner edge, 15° outer edge, 0° shoulder dub-off and kidney-shaped coolant channel is proposed and experimentally proven to be more superior than all other commercial designs.

  1. THE CONTROL ALGORITHM OF THE DRYING PROCESS PARTICULATE MATERIALS IN THE APPARATUS WITH THE SWIRLING FLOW OF COOLANT AND MICROWAVE ENERGY SUPPLY

    Directory of Open Access Journals (Sweden)

    S. T. Antipov

    2015-01-01

    Full Text Available The technical task of the process is to improve the drying quality of the final product, increasing the precision and reliability of control, the reduction of specific energy consumption. One of the ways to improve the process is complex and i ts local automation. This paper deals with the problems of development and creation of a new control algorithm drying process of the particulate material. Identified a number of shortcomings of the existing methods of automatic control of the process. As a result, the authors proposed a method for drying particulate materials in the device with swirling flow and the microwave energy supply and its automatic control algorithm. The description of the operating principle of the drying apparatus consists in that the particulate material is wet by using a tangential flow of coolant supplied to the cylinder-drying apparatus which also serves the axial coolant flow, whereby the heat transfer fluid with the particulate material begins to undergo a complex circular movement along the circumference apparatus, thereby increasing its speed and its operation control algorithm. The work of this scheme is carried out at three levels of regulation on the basis of determining the coefficient of efficiency of the dryer, which makes it possible to determine the optimal value of the power equipment and to forecast the cost of electricity. All of the above allows you to get ready for a high quality product while minimizing thermal energy and material costs by optimizing the operating parameters of the drying of the particulate material in the dryer with a combined microwave energy supply and ensure the rational use of heat energy by varying their quantity depending on the characteristics to be dried particulate material and the course of the process.

  2. Studies of iodine adsorption and desorption on HTGR coolant circuit materials

    International Nuclear Information System (INIS)

    Osborne, M.F.; Compere, E.L.; de Nordwall, H.J.

    1976-04-01

    Safety studies of the HTGR system indicate that radioactive iodine, released from the fuel to the helium coolant, may pose a problem of concern if no attenuation of the amount of iodine released occurs in the coolant circuit. Since information on iodine behavior in this system was incomplete, iodine adsorption on HTGR materials was studied in vacuum as a function of iodine pressure and of adsorber temperature. Iodine coverages on Fe 3 O 4 and Cr 2 O 3 approached maxima of about 2 x 10 14 and 1 x 10 14 atoms/cm 2 , respectively, whereas the iodine coverage on graphite under similar conditions was found to be less by a factor of about 100. Iodine desorption from the same materials into vacuum or flowing helium was investigated, on a limited basis, as a function of iodine coverage, of adsorber temperature, and of dry vs wet helium. The rate of vacuum desorption from Fe 3 O 4 was related to the spectrum of energies of the adsorption sites. A small amount of water vapor in the helium enhanced desorption from iron powder but appeared to have less effect on desorption from the metal oxides

  3. Optimization of Coolant Technique Conditions for Machining A319 Aluminium Alloy Using Response Surface Method (RSM)

    Science.gov (United States)

    Zainal Ariffin, S.; Razlan, A.; Ali, M. Mohd; Efendee, A. M.; Rahman, M. M.

    2018-03-01

    Background/Objectives: The paper discusses about the optimum cutting parameters with coolant techniques condition (1.0 mm nozzle orifice, wet and dry) to optimize surface roughness, temperature and tool wear in the machining process based on the selected setting parameters. The selected cutting parameters for this study were the cutting speed, feed rate, depth of cut and coolant techniques condition. Methods/Statistical Analysis Experiments were conducted and investigated based on Design of Experiment (DOE) with Response Surface Method. The research of the aggressive machining process on aluminum alloy (A319) for automotive applications is an effort to understand the machining concept, which widely used in a variety of manufacturing industries especially in the automotive industry. Findings: The results show that the dominant failure mode is the surface roughness, temperature and tool wear when using 1.0 mm nozzle orifice, increases during machining and also can be alternative minimize built up edge of the A319. The exploration for surface roughness, productivity and the optimization of cutting speed in the technical and commercial aspects of the manufacturing processes of A319 are discussed in automotive components industries for further work Applications/Improvements: The research result also beneficial in minimizing the costs incurred and improving productivity of manufacturing firms. According to the mathematical model and equations, generated by CCD based RSM, experiments were performed and cutting coolant condition technique using size nozzle can reduces tool wear, surface roughness and temperature was obtained. Results have been analyzed and optimization has been carried out for selecting cutting parameters, shows that the effectiveness and efficiency of the system can be identified and helps to solve potential problems.

  4. Sodium coolant of fast reactors: Experience and problems

    International Nuclear Information System (INIS)

    Kozlov, F.A.; Volchkov, L.G.; Drobyshev, A.V.; Nikulin, M.P.; Kochetkov, L.A.; Alexeev, V.V.

    1997-01-01

    In present report the following subjects are considered: state of the coolant and sodium systems under normal operating condition as well as under decommissioning, disclosing of sodium circuits and liquidation of its consequences, cleaning from sodium and decontamination under repairing works of equipment and circuits. Cleaning of coolant and sodium systems under normal operating conditions and under accident contamination. Cleaning of the equipment under repairing works and during decommissioning from sodium and products of its interaction with water and air. Treatment of sodium waste, taking into account a possibility of sodium fires. It is shown that the state of coolant, cover gas, surfaces of constructive materials which are in contact with them, cleaning systems, formed during installation operation require development of specific technologies. Developed technologies ensured safety operation of sodium cooled installations as in normal operating conditions so in abnormal situations. R and D activities in this field and experience gained provided a solid base for coping with problems arising during decommissioning. Prospective research problems are emphasized where the future efforts should be concentrated in order to improve characteristics of sodium cooled reactors and to make their decommissioning optimal and safe. (author)

  5. Development of lead-bismuth coolant technology for nuclear device

    International Nuclear Information System (INIS)

    Kamata, Kin-ya; Kitano, Teruaki; Ono, Mikinori

    2004-01-01

    Liquid lead-bismuth is a promising material as a future fast reactor coolant or an intensive neutron source material for accelerator driven transmutation system (ADS). To develop nuclear plants and their installations using lead-bismuth coolant for practical use, both coolant technologies, inhabitation process of steels and quality control of coolant, and total operation system for liquid lead-bismuth plants are required. Based on the experience of liquid metal coolant, Mitsui Engineering and Shipbuilding Co., Ltd. (MES) has completed the liquid lead-bismuth forced circulation loop and has acquired various engineering data on main components including economizer. As a result of tis operation, MES has developed key technologies of lead-bismuth coolant such as controlling of oxygen content in lead-bismuth and a purification of lead-bismuth coolant. MES participated in the national project, ''The Development of Accelerator Driven Transmutation System'', together with JAERI (Japan Atomic Energy Research Institute) and started corrosion test for beam window of ADS. (author)

  6. Evaluation of primary coolant pH operation methods for the domestic PWRs

    International Nuclear Information System (INIS)

    Paek, Seung Woo; Na, Jung Won; Kim, Yong Eak; Bae, Jae Heum

    1992-01-01

    Radioactive nuclides deposited on out-of-core surface after the radiation in the core by the transport of corrosion products (CRUD) through the primary coolant system in PWR which is the major plant type in Korea, are leading sources of radiation exposure to plant maintenance personnel. Thus, the optimal chemistry operation method is required for the reduction of radiation exposure by the corrosion products. This study analysed the actual water chemistry operation data of four operating domestic PWRs. And in order to evaluate the coolant chemistry operation data, a computer code which can calculate the activity buildup in the various chemistry conditions of PWR coolant was employed. Through the analysis of comparison between the activity buildup of actual water chemistry operation mode and that of assumed Elevated Li operation mode calculated by the computer code, it was found that the out-of-core radioactivity can be reduced by diminishing the deposition of corrosion products on the core in case that the Elevated Li operation mode is applied to the coolant chemistry operation of PWR. And the higher coolant pH operation was shown to have the advantage of the reduction of out-of-core activity buildup if the integrity of system structural materials and fuel cladding is guaranteed. (Author)

  7. Experimental research and development of main circulation pump bearings in reactor plants using heavy liquid-metal coolants

    International Nuclear Information System (INIS)

    Zudin, A.; Beznosov, A.; Chernysh, A.; Prikazchikov, G.

    2015-01-01

    At the present time, specialists in Russia are engaged in designing the BREST-OD-300 fast neutron lead-coolant reactor plant. There is currently no experience in designing and operating axial pumps of lead-coolant reactor plants, including one of their major units – bearing unit. Selection and substantiation of operating and structural parameters of plain friction bearings used in main circulation pumps of reactor plants running on heavy liquid-metal coolants are important tasks that are solved at the NNSTU. Development of a feasible procedure for designing bearings and its components operating within the structure of the main circulation pump of a reactor plant running on a heavy liquid-metal coolant as well as guidelines for an optimized structural scheme of such bearings set a goal of performing a range of theoretically-calculated and experimental works. The report contains testing data of a hydrostatic bearing with reciprocal fricative choking tested on the NNSTU FT-4 bench running on a lead coolant within the range of 420-500degC. There have been presented a scheme of a bench for testing a contact friction bearing on a high-temperature coolant and the results of investigation tests of bearings of such type at T = 450 ÷ 500degC. Material of the bearing sleeve is steel 08X18H10T, and a possibility is provided with regard to installation of the bearing sleeves and shaft made of non-metal materials (ceramic materials, silicified graphite, etc.). The presented testing data of plain friction bearings operating in a high-temperature heavy liquid-metal coolant will serve as a ground for making an alternative choice of a plain friction bearing for the main circulation pump of a reactor plant running on a heavy liquid-metal coolant. (author)

  8. Analysis of material effect in molten fuel-coolant interaction, comparison of thermodynamic calculations and experimental observations

    Czech Academy of Sciences Publication Activity Database

    Tyrpekl, Václav; Piluso, P.

    2012-01-01

    Roč. 46, AUGUST (2012), s. 197-203 ISSN 0306-4549 Institutional support: RVO:61388980 Keywords : Nuclear reactor severe accident * Fuel -Coolant Interaction * Material effect * Steam explosion Subject RIV: CA - Inorganic Chemistry Impact factor: 0.800, year: 2012

  9. Reducing forces during drilling brittle hard materials by using ultrasonic and variation of coolant

    Science.gov (United States)

    Schopf, C.; Rascher, R.

    2016-11-01

    The process of ultrasonic machining is especially used for brittle hard materials as the additional ultrasonic vibration of the tool at high frequencies and low amplitudes acts like a hammer on the surface. With this technology it is possible to drill holes with lower forces, therefor the machining can be done faster and the worktime is much less than conventionally. A three-axis dynamometer was used to measure the forces, which act between the tool and the sample part. A focus is set on the sharpness of the tool. The results of a test series are based on the Sauer Ultrasonic Grinding Centre. On the same machine it is possible to drill holes in the conventional way. Additional to the ultasonic Input the type an concentration of coolant is important for the Drilling-force. In the test there were three different coolant and three different concentrations tested. The combination of ultrasonic vibration and the right coolant and concentration is the best way to reduce the Forces. Another positive effect is, that lower drilling-forces produce smaller chipping on the edge of the hole. The way to reduce the forces and chipping is the main issue of this paper.

  10. Current status of investigations on molten fuel: Coolant interaction, material movement and relocation in LMFBRs in Russia

    International Nuclear Information System (INIS)

    Buksha, Yu.; Kuznetsov, I.

    1994-01-01

    The paper contains information on experimental studies and calculation codes, related to molten fuel-coolant interaction, material movement and relocation. Some calculation results for the BN-800 type reactor are presented. (author)

  11. Liquid metal coolants for fusion-fission hybrid system: A neutronic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Renato V.A.; Velasquez, Carlos E.; Pereira, Claubia; Veloso, Maria Auxiliadora F.; Costa, Antonella L., E-mail: claubia@nuclear.ufmg.br [Universidade de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Barros, Graiciany P. [Comissão Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Based on a work already published by the UFMG Nuclear Engineering Department, it was suggested to use different coolant materials in a fusion-fission system after a fuel burnup simulation, including that one used in reference work. The goal is to compare the neutron parameters, such as the effect multiplication factor and actinide amounts in transmutation layer, for each used coolant and find the best(s) coolant material(s) to be applied in the considered system. Results indicate that the lead and lead-bismuth coolant are the most suitable choices to be applied to cool the system. (author)

  12. Design and fabrication of magnetic coolant filter

    Science.gov (United States)

    Prashanth, B. N.

    2017-07-01

    Now a day's use of coolants in industry has become dominant because of high production demands. Coolants not only help in speeding up the production but also provide many advantages in the metal working operation. As the consumption of coolants is very high a system is badly in need, so as to recirculate the used coolant. Also the amount of hazardous waste generated by industrial plants has become an increasingly costly problem for the manufactures and an additional stress on the environment. Since the purchase and disposal of the spent cutting fluids is becoming increasingly expensive, fluid recycling is a viable option for minimizing the cost. Separation of metallic chips from the coolants by using magnetic coolant separation has proven a good management and maintenance of the cutting fluid. By removing the metallic chips, the coolant life is greatly extended, increases the machining quality and reduces downtime. Above being the case, a magnetic coolant filter is developed which utilizes high energy permanent magnets to develop a dense magnetic field along a narrow flow path into which the contaminated coolant is directed. The ferromagnetic particles captured and aligned by the dense magnetic field, from the efficient filter medium. This enables the unit to remove ferromagnetic particles from the coolant. Magnetic coolant filters use the principle of magnetic separation to purify the used coolant. The developed magnetic coolant separation has the capability of purifying 40 litres per minute of coolant with the size of the contaminants ranging from 1 µm to 30 µm. The filter will be helpful in saving the production cost as the cost associated with the proposed design is well justified by the cost savings in production. The magnetic field produced by permanent magnets will be throughout the area underneath the reservoir. This produces magnetic field 30mm above the coolant reservoir. Very fine particles are arrested without slip. The magnetic material used will not

  13. Coolant cleanup system for BWR type reactor

    International Nuclear Information System (INIS)

    Kinoshita, Shoichiro; Araki, Hidefumi.

    1993-01-01

    The cleanup system of the present invention removes impurity ions and floating materials accumulated in a reactor during evaporation of coolants in the nuclear reactor. That is, coolants pass pipelines from a pressure vessel using pressure difference between a high pressure in the pressure vessel and a low pressure at the upstream of a condensate filtration/desalting device of a condensate/feed water system as a driving source, during which cations and floating materials are removed in a high temperature filtration/desalting device and coolants flow into the condensate/feedwater system. Impurities containing anions are removed here by the condensates filtration/desalting device. Then, they return to the pressure vessel while pressurized and heated by a condensate pump, a feed water pump and a feed water heater. At least pumps, a heat exchanger for heating, a filtration/desalting device for removing anions and pipelines connecting them used exclusively for the coolant cleanup system are no more necessary. (I.S.)

  14. Safeguarding of emergency core cooling in case of loss-of-coolant accidents with insulation material release

    International Nuclear Information System (INIS)

    Pointner, W.; Broecker, A.

    2012-01-01

    The report on safeguarding of emergency core cooling in case of loss-of-coolant accidents with insulation material release covers the following issues: assessment of the relevant status for PWR, evaluation of the national and international (USA, Canada, France) status, actualization of recommendations, transferability from PWR to BWR. Generic studies on the core cooling capability in case of insulation material release in BWR-type reactors were evaluated.

  15. Method of injecting iron ion into reactor coolant

    International Nuclear Information System (INIS)

    Ito, Kazuyuki; Sawa, Toshio; Nishino, Yoshitaka; Adachi, Tetsuro; Osumi, Katsumi.

    1988-01-01

    Purpose: To form iron ions stably and inject them into nuclear reactor coolants with no substantial degradation of the severe water quality conditions for reactor coolants. Method: Iron ions are formed by spontaneous corrosion of iron type materials and electroconductivity is increased with the iron ions. Then, the liquids are introduced into an electrolysis vessel using iron type material as electrodes and, thereafter, incorporation of newly added ions other than the iron ions are prevented by supplying electric current. Further, by retaining the iron type material in the packing vessel by the magnetic force therein, only the iron ions are flow out substantially from the packing vessel while preventing the discharge of iron type materials per se or solid corrosion products and then introduced into the electrolysis vessel. Powdery or granular pure iron or carbon steel is used as the iron type material. Thus, iron ions and hydroxides thereof can be injected into coolants by using reactor water at low electroconductivity and incapable of electrolysis. (Kamimura, M.)

  16. Reactor coolant pump service life evaluation for current life cycle optimization and license renewal

    International Nuclear Information System (INIS)

    Doroshuk, B.W.; Berto, D.S.; Robles, M.

    1990-01-01

    This paper reports that as part of the plant life cycle management and license renewal program, Baltimore Gas and Electric Company (BG and E) has completed a service life evaluation of their reactor coolant pumps, funded jointly by EPRI and performed by ABB Combustion Engineering Nuclear Power. Two of the goals of the BG and E plant life cycle management and license renewal program, and of this current evaluation, are to identify actions which would optimize current plant operation, and ensure that license renewal remains a viable option. The reactor coolant pumps (RCPs) at BG and E's Calvert Cliffs Units 1 and 2 are Byron Jackson pumps with a diffuser and a single suction. This pump design is also used in many other nuclear plants. The RCP service life evaluation assessed the effect of all plausible age-related degradation mechanisms (ARDMs) on the RCP components. Cyclic fatigue and thermal embrittlement were two ARDMs identified as having a high potential to limit the service life of the pump case. The pump case is a primary pressure boundary component. Hence, ensuring its continued structural integrity is important

  17. Performance Analysis of Thermoelectric Based Automotive Waste Heat Recovery System with Nanofluid Coolant

    Directory of Open Access Journals (Sweden)

    Zhi Li

    2017-09-01

    Full Text Available Output performance of a thermoelectric-based automotive waste heat recovery system with a nanofluid coolant is analyzed in this study. Comparison between Cu-Ethylene glycol (Cu-EG nanofluid coolant and ethylene glycol with water (EG-W coolant under equal mass flow rate indicates that Cu-EG nanofluid as a coolant can effectively improve power output and thermoelectric conversion efficiency for the system. Power output enhancement for a 3% concentration of nanofluid is 2.5–8 W (12.65–13.95% compared to EG-Water when inlet temperature of exhaust varies within 500–710 K. The increase of nanofluid concentration within a realizable range (6% has positive effect on output performance of the system. Study on the relationship between total area of thermoelectric modules (TEMs and output performance of the system indicates that optimal total area of TEMs exists for maximizing output performance of the system. Cu-EG nanofluid as coolant can decrease optimal total area of TEMs compared with EG-W, which will bring significant advantages for the optimization and arrangement of TEMs whether the system space is sufficient or not. Moreover, power output enhancement under Cu-EG nanofluid coolant is larger than that of EG-W coolant due to the increase of hot side heat transfer coefficient of TEMs.

  18. Premixing and steam explosion phenomena in the tests with stratified melt-coolant configuration and binary oxidic melt simulant materials

    Energy Technology Data Exchange (ETDEWEB)

    Kudinov, Pavel, E-mail: pavel@safety.sci.kth.se; Grishchenko, Dmitry, E-mail: dmitry@safety.sci.kth.se; Konovalenko, Alexander, E-mail: kono@kth.se; Karbojian, Aram, E-mail: karbojan@kth.se

    2017-04-01

    Highlights: • Steam explosion in stratified melt-coolant configuration is studied experimentally. • Different binary oxidic melt simulant materials were used. • Five spontaneous steam explosions were observed. • Instability of melt-coolant interface and formation of premixing layer was observed. • Explosion strength is influenced by melt superheat and water subcooling. - Abstract: Steam explosion phenomena in stratified melt-coolant configuration are considered in this paper. Liquid corium layer covered by water on top can be formed in severe accident scenarios with (i) vessel failure and release of corium melt into a relatively shallow water pool; (ii) with top flooding of corium melt layer. In previous assessments of potential energetics in stratified melt-coolant configuration, it was assumed that melt and coolant are separated by a stable vapor film and there is no premixing prior to the shock wave propagation. This assumption was instrumental for concluding that the amount of energy that can be released in such configuration is not of safety importance. However, several recent experiments carried out in Pouring and Under-water Liquid Melt Spreading (PULiMS) facility with up to 78 kg of binary oxidic corium simulants mixtures have resulted in spontaneous explosions with relatively high conversion ratios (order of one percent). The instability of the melt-coolant interface, melt splashes and formation of premixing layer were observed in the tests. In this work, we present results of experiments carried out more recently in steam explosion in stratified melt-coolant configuration (SES) facility in order to shed some light on the premixing phenomena and assess the influence of the test conditions on the steam explosion energetics.

  19. Heat transfer and fluid flow aspects of fuel--coolant interactions

    International Nuclear Information System (INIS)

    Corradini, M.L.

    1978-09-01

    A major portion of the safety analysis effort for the LMFBR is involved in assessing the consequences of a Hypothetical Core Disruptive Accident (HCDA). The thermal interaction of the hot fuel and the sodium coolant during the HCDA is investigated in two areas. A postulated loss of flow transient may produce a two-phase fuel at high pressures. The thermal interaction phenomena between fuel and coolant as the fuel is ejected into the upper plenum are investigated. A postulated transient overpower accident may produce molten fuel being released into sodium coolant in the core region. An energetic coolant vapor explosion for these reactor materials does not seem likely. However, experiments using other materials (e.g., Freon/water, tin/water) have demonstrated the possibility of this phenomenon

  20. Numerical simulation of the insulation material transport to a PWR core under loss of coolant accident conditions

    International Nuclear Information System (INIS)

    Höhne, Thomas; Grahn, Alexander; Kliem, Sören; Rohde, Ulrich; Weiss, Frank-Peter

    2013-01-01

    Highlights: ► Detailed results of a numerical simulation of the insulation material transport to a PWR core are shown. ► The spacer grid is modeled as a strainer which completely retains the insulation material carried by coolant. ► The CFD calculations showed that the fibers at the upper spacer grid plane are not uniformly distributed. ► Furthermore the pressure loss does not exceed a critical limit. ► The PWR core coolablity can be guaranteed all the time during the transient. -- Abstract: In 1992, strainers on the suction side of the ECCS pumps in Barsebäck NPP Unit 2 became partially clogged with mineral wool because after a safety valve opened the steam impinged on thermally insulated equipment and released mineral wool. This event pointed out that strainer clogging is an issue in the course of a loss-of-coolant accident. Modifications of the insulation material, the strainer area and mesh size were carried out in most of the German NPPs. Moreover, back flushing procedures to remove the mineral wool from the strainers and differential pressure measurements were implemented to assure the performance of emergency core cooling during the containment sump recirculation mode. Nevertheless, it cannot be completely ruled out, that a limited amount of small fractions of the insulation material is transported into the RPV. During a postulated cold leg LOCA with hot leg ECC injection, the fibers enter the upper plenum and can accumulate at the fuel element spacer grids, preferably at the uppermost grid level. This effect might affect the ECC flow into the core and could result in degradation of core cooling. It was the aim of the numerical simulations presented to study where and how many mineral wool fibers are deposited at the upper spacer grid. The 3D, time dependent, multi-phase flow problem was modeled applying the CFD code ANSYS CFX. The CFD calculation does not yet include steam production in the core and also does not include re-suspension of the

  1. Fatigue management considering LWR coolant environments

    International Nuclear Information System (INIS)

    Park, Heung Bae; Jin, Tae eun

    2000-01-01

    Design fatigue curve for structural material in the ASME Boiler and Pressure Vessel Code do not explicitly address the effects of reactor coolant environments on fatigue life. Environmentally assisted cracking (EAC) of low-alloy steels in light water reactor (LWR) coolant environments has been a concern ever since the early 1970's. And, recent fatigue test data indicate a significant decrease in fatigue lives of carbon steels, low-alloy steels and austenitic stainless steels in LWR coolant environments. For these reasons, fatigue of major components has been identified as a technical issue remaining to be resolved for life management and license renewal of nuclear power plants. In the present paper, results of recent investigations by many organizations are reviewed to provide technical justification to support the development of utility approach regarding the management of fatigue considering LWR coolant environments for the purpose of life management and license renewal of nuclear power plants. (author)

  2. Radioactive corrosion products in circuit of fast reactor loop with dissociating coolant

    International Nuclear Information System (INIS)

    Dolgov, V.M.; Katanaev, A.O.

    1982-01-01

    The results of experimental investigation into depositions of radionuclides of corrosion origin on the surfaces of a reactor-in-pile loop facility with a dissociating coolant are presented. It is stated that the ratio of radionuclides in fixed depositions linearly decreases with decrease of the coolant temperature at the core-condenser section. The element composition of non-fixed compositions quantitatively and qualitatively differs from the composition of structural material, and it is more vividly displayed for the core-condenser section. The main mechanism of circuit contamination with radioactive corrosion products is substantiated: material corrosion in the zones of coolant phase transfer, their remove by the coolant in the core, deposition, activation and wash-out by the coolant from the core surfaces

  3. Actively controlling coolant-cooled cold plate configuration

    Science.gov (United States)

    Chainer, Timothy J.; Parida, Pritish R.

    2015-07-28

    A method is provided to facilitate active control of thermal and fluid dynamic performance of a coolant-cooled cold plate. The method includes: monitoring a variable associated with at least one of the coolant-cooled cold plate or one or more electronic components being cooled by the cold plate; and dynamically varying, based on the monitored variable, a physical configuration of the cold plate. By dynamically varying the physical configuration, the thermal and fluid dynamic performance of the cold plate are adjusted to, for example, optimally cool the one or more electronic components, and at the same time, reduce cooling power consumption used in cooling the electronic component(s). The physical configuration can be adjusted by providing one or more adjustable plates within the coolant-cooled cold plate, the positioning of which may be adjusted based on the monitored variable.

  4. Bayesian optimization for materials science

    CERN Document Server

    Packwood, Daniel

    2017-01-01

    This book provides a short and concise introduction to Bayesian optimization specifically for experimental and computational materials scientists. After explaining the basic idea behind Bayesian optimization and some applications to materials science in Chapter 1, the mathematical theory of Bayesian optimization is outlined in Chapter 2. Finally, Chapter 3 discusses an application of Bayesian optimization to a complicated structure optimization problem in computational surface science. Bayesian optimization is a promising global optimization technique that originates in the field of machine learning and is starting to gain attention in materials science. For the purpose of materials design, Bayesian optimization can be used to predict new materials with novel properties without extensive screening of candidate materials. For the purpose of computational materials science, Bayesian optimization can be incorporated into first-principles calculations to perform efficient, global structure optimizations. While re...

  5. Correlating activity incorporation with properties of oxide films formed on material samples exposed to BWR and PWR coolants in Finnish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bojinov, M.; Kinnunen, P.; Laitinen, T.; Maekelae, K.; Saario, T.; Sirkiae, P. [VTT Industrial Systems, Espoo (Finland); Buddas, T.; Halin, M.; Kvarnstroem, R.; Tompuri, K. [Fortum Power and Heat Oy, Loviisa Power Plant, Loviisa (Finland); Helin, M.; Muttilainen, E.; Reinvall, A. [Teollisuuden Voima Oy, Olkiluoto (Finland)

    2002-07-01

    The extent of activity incorporation on primary circuit surfaces in nuclear power plants is connected to the chemical composition of the coolant, to the corrosion behaviour of the material surfaces and to the structure and properties of oxide films formed on circuit surfaces due to corrosion. Possible changes in operational conditions may induce changes in the structure of the oxide films and thus in the rate of activity incorporation. To predict these changes, experimental correlations between water chemistry, oxide films and activity incorporation, as well as mechanistic understanding of the related phenomena need to be established. In order to do this, flow-through cells with material samples and facilities for high-temperature water chemistry monitoring have been installed at Olkiluoto unit 1 (BWR) and Loviisa unit 1 (PWR) in spring 2000. The cells are being used for two major purposes: To observe the changes in the structure and activity levels of oxide films formed on material samples exposed to the primary coolant. Correlating these observations with the abundant chemical and radiochemical data on coolant composition, dose rates etc. collected routinely by the plant, as well as with high-temperature water chemistry monitoring data such as the corrosion potentials of relevant material samples, the redox potential and the high-temperature conductivity of the primary coolant. We describe in this paper the scope of the work, give examples of the observations made and summarize the results on oxide films that have been obtained during one full fuel cycle at both plants. (authors)

  6. Specificities of reactor coolant pumps units with lead and lead-bismuth coolant

    International Nuclear Information System (INIS)

    Beznosov, A.V.; Anotonenkov, M.A.; Bokov, P.A.; Baranova, V.S.; Kustov, M.S.

    2009-01-01

    The analysis results of impact of lead and lead-bismuth coolants specific properties on the coolants flow features in flow channels of the main and auxiliary circulating pumps are presented. Impossibility of cavitation initiation in flow channels of vane pumps pumping lead and lead-bismuth coolants was demonstrated. The experimental research results of discontinuity of heavy liquid metal coolant column were presented and conditions of gas cavitation initiation in coolant flow were discussed. Invalidity of traditional calculation methods of water and sodium coolants circulation pumps calculations for lead and lead-bismuth coolants circulation pumps was substantiated [ru

  7. Research on Coolant Radiochemistry

    International Nuclear Information System (INIS)

    Ha, Yeong Keong; Kim, W. H.; Yeon, J. W.; Jung, Y. J.; Choi, K. C.; Choi, K. S.; Park, Y. J.; Cho, Y. H.

    2007-06-01

    The final objective of this study is to develop a method for reducing radioactive materials formed in the reactor coolant circuit. This second stage research was categorized into the following three subgroups: the development of the estimation technique of microscopic chemical variation at high temperatures and pressures, the fundamental study on the thermodynamics at high temperatures and pressures, and the study on the deposition of metal oxides and the determination of the main factors responsible for the growth of CRUD. First, in the development of the estimation technique of microscopic chemical change at high temperatures and pressures, the technique for measuring coolant chemistry such as pH, conductivity and Eh was developed to be appropriate for the high temperature and pressure condition. The coolant chemistry measuring system including the self-devised high temperature pH sensor can be applied to the field of nuclear reactor and contribute on a large scale in the automation of the coolant chemistry control and the establishment of the real-time on-line measuring technique. Secondly, the dissociation constant of water and the solubility of metal oxides were measured in the fundamental study on the thermodynamics at high temperatures and pressures. Finally, in the study on the deposition of metal oxides and the determination of the main factors responsible for the growth of CRUD, the careful investigation of the deposition phenomena of micro particles on the cladding surface showed that subcooled boiling and the dissolved hydrogen are the main factors responsible for the growth of CRUD. In addition, the basis was provided for the construction of a new particle behavior model in the reactor coolant circuit

  8. Technical meeting on 'Primary coolant pipe rupture event in liquid metal cooled fast reactors'. Working material

    International Nuclear Information System (INIS)

    2003-01-01

    In Liquid Metal cooled Fast Reactors (LMFR) or in accelerator driven sub-critical systems (ADS) with LMFR like sub-critical cores, the primary coolant pipes (PCP) connect the primary coolant pumps to the grid plate. A rupture in one of these pipes could cause significant loss of coolant flow to the core with severe consequences. In loop type reactors, all primary pipelines are provided with double envelopes and inter-space coolant leak monitoring systems that permit leak detection before break. Thus, the PCP rupture event can be placed in the beyond design basis event (BDBE) category. Such an arrangement is difficult to incorporate for pool type reactors, and hence it could be argued that the PCP rupture event needs to be analysed in detail as a design basis event (DBE, category 4 event). The primary coolant pipes are made of ductile austenitic stainless steel material and operate at temperatures of the cold pool and at comparatively low pressures. For such low stressed piping with negligible creep and embrittlement effects, it is of interest to discuss under what design provisions, for pool type reactors, the guillotine rupture of PCP could be placed in the BDBE category. The topical Technical Meeting (TM) on 'Primary Coolant Pipe Rupture Event in Liquid Metal Cooled Reactors' was called to enable the specialists to present the philosophy and analyses applied on this topic in the various Member States for different LMFRs. The scope of the Technical Meeting was to provide a global forum for information exchange on the philosophy applied in the various participating Member States and the analyses performed for different LMFRs with regard to the primary coolant pipe rupture event. More specifically, the objectives of the Technical Meeting were to review the safety philosophy for the PCP rupture event in pool type LMFR, to assess the structural reliability of the PCP and the probability of rupture under different conditions (with/without in-service inspection), to

  9. Optimization of reactor coolant shutdown chemistry practices for crud inventory management

    International Nuclear Information System (INIS)

    Fellers, B.; Barnette, J.; Stevens, J.; Perkins, D.

    2002-01-01

    This report describes reactor coolant shutdown chemistry control practices at Comanche Peak Steam Electric Station (CPSES, TXU-Generation, USA). The shutdown evolution is managed from a process control perspective to achieve conditions most favorable to crud decomposition and to avoiding re-precipitation of metals. The report discusses the evolution of current industry practices and the necessity for greater emphasis on shutdown chemistry control in response to Axial Offset Anomaly and growth of ex-core radiation fields during outage conditions. Nuclear Industry experience with axial offset anomaly (AOA), radiation field growth and unexpected behavior of crud during reactor shutdowns has encouraged the refinement of chemistry control practices during plant shutdown and startup. The strong implication of nickel rich crud as a cause of AOA and unexpected crud behavior has resulted in a focus on nickel inventory management. The goals for Comanche Peak Steam Electric Station (CPSES) include maintaining solubility of metals and radioisotopes, maximizing nickel removal and effective cleanup with demineralizers. This paper provides results and lessons learned from long term efforts to optimize the shutdown process. (authors)

  10. Multi-state reliability for coolant pump based on dependent competitive failure model

    International Nuclear Information System (INIS)

    Shang Yanlong; Cai Qi; Zhao Xinwen; Chen Ling

    2013-01-01

    By taking into account the effect of degradation due to internal vibration and external shocks. and based on service environment and degradation mechanism of nuclear power plant coolant pump, a multi-state reliability model of coolant pump was proposed for the system that involves competitive failure process between shocks and degradation. Using this model, degradation state probability and system reliability were obtained under the consideration of internal vibration and external shocks for the degraded coolant pump. It provided an effective method to reliability analysis for coolant pump in nuclear power plant based on operating environment. The results can provide a decision making basis for design changing and maintenance optimization. (authors)

  11. Design criteria of primary coolant chemistry in SMART-P

    International Nuclear Information System (INIS)

    Choi, Byung Seon; Kim, Ah Young; Kim, Seong Hoon; Yoon, Ju Hyeon; Zee, Sung Qunn

    2005-01-01

    SMART-P differs significantly from commercially designed PWRs. Materials inventories used in SMART-P differ from that at PWRs. All surfaces of the primary circuit with the primary coolant are either made from or plated with stainless steel. The material of steam generator (SG) is also different from that of the standard material of the commercially operating PWRs: titanium alloy for the steam generator tubes. Also, SMART-P primary coolant technology differs from that in PWRs: ammonia is used as a pH raising agent and hydrogen formed due to radiolytic processes is kept in specific range by ammonia dosing. Nevertheless, main objectives of the SMART-P primary coolant are the same as at PWRs: to assure primary system pressure boundary integrity, fuel cladding integrity and to minimize out-of-core radiation buildup. The objective of this work is to introduce the design criteria for the primary water chemistry for SMART-P from the viewpoint of the system characteristics and the chemical design concept

  12. Integral forged pump casing for the primary coolant circuit of a nuclear reactor: Development in design, forging technology, and material

    International Nuclear Information System (INIS)

    Austel, W.; Korbe, H.

    1986-01-01

    Developments in the forging of large casings for primary circuit coolant pumps for light water reactors in Germany are demonstrated beginning with the multiple forging fabricated version and ending with the integral forged type. This version is the result of the joint efforts of the pump manufacturer and the forgemaster after a cost-gain evaluation and represents an optimum solution in view of its functional and economical performance and also considering the high requirements for mechanical-technological properties, including homogeneity of the material. The development from 22 NiMoCr 3 7/A 508 Class 2 to 20 MnMoNi 5 5/A 508 Class 3 and their optimization will be demonstrated. This development is based mainly on minimizing the sulfur content and on vacuum carbon deoxidation (VCD), which results in a reduction of the A-segregations, in improving fracture toughness and isotropy, and in the desired fine-grain structure

  13. Research on physical and chemical parameters of coolant in Light-Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Isabela C.; Mesquita, Amir Z., E-mail: icr@cdtn.br, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEM-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The coolant radiochemical monitoring of light-water reactors, both power reactor as research reactors is one most important tasks of the system safe operation. The last years have increased the interest in the coolant chemical studying to optimize the process, to minimize the corrosion, to ensure the primary system materials integrity, and to reduce the workers exposure radiation. This paper has the objective to present the development project in Nuclear Technology Development Center (CDTN), which aims to simulate the primary water physical-chemical parameters of light-water-reactors (LWR). Among these parameters may be cited: the temperature, the pressure, the pH, the electric conductivity, and the boron concentration. It is also being studied the adverse effects that these parameters can result in the reactor integrity. The project also aims the mounting of a system to control and monitoring of temperature, electric conductivity, and pH of water in the Installation of Test in Accident Conditions (ITCA), located in the Thermal-Hydraulic Laboratory at CDTN. This facility was widely used in the years 80/90 for commissioning of several components that were installed in Angra 2 containment. In the test, the coolant must reproduce the physical and chemical conditions of the primary. It is therefore fundamental knowledge of the main control parameters of the primary cooling water from PWR reactors. Therefore, this work is contributing, with the knowledge and the reproduction with larger faithfulness of the reactors coolant in the experimental circuits. (author)

  14. Analysis of actual status of works on technology of heavy liquid metal coolants

    International Nuclear Information System (INIS)

    Martynov, P.N.; Askhadullin, R.Sh.; Orlov, Yu.I.; Storozhenko, A.N.

    2014-01-01

    Principle duties in heavy liquid metal coolant technology (HLMC) are provision of the purity of coolant and surfaces of circulation loop for maintenance of design thermohydraulic characteristics, prevention of structural materials corrosion and erosion during long service life and present-day safety precautions on different stages of reactor facility operation. For this reason, current HLMC (Pb-Bi, Pb) technology must include coolant pre-operation and charging; monitoring and regulating of coolant oxygen potential; hydrogen purification of coolant and surfaces of circulation loop from lead oxides-based slags; coolant filtration; reactor cover gas purification from coolant aerosols. The current topical problem is personnel training on the questions of HLMC technology [ru

  15. Coolant clean-up system in the primary coolant circuit for nuclear reactor

    International Nuclear Information System (INIS)

    Saito, Michio.

    1981-01-01

    Purpose: To maintain the quality of coolants at a prescribed level by distillating coolants in the primary coolant circuit for a BWR type reactor to remove impurities therefrom, taking out the condensates from the top of the distillation column and extracting impurities in a concentrated state from the bottom. Constitution: Coolant water for cooling the core is recycled by a recycling pump by way of a recycling pipeway in a reactor. The coolants extracted from an extraction pipeway connected to the recycling pipeway are fed into a distillation column, where distillation is taken place. Impurities in the coolants, that is, in-core corrosion products, fission products generated in the reactor core, etc. are separated by the distillation, concentrated and solidified in the bottom of the distillation column. While on the other hand, condensates removed with the impurities, that is, coolants cleaned-up are recycled to the coolant water for cooling the reactor core. (Moriyama, K.)

  16. Optimized manufacturable porous materials

    DEFF Research Database (Denmark)

    Andreassen, Erik; Andreasen, Casper Schousboe; Jensen, Jakob Søndergaard

    Topology optimization has been used to design two-dimensional material structures with specific elastic properties, but optimized designs of three-dimensional material structures are more scarsely seen. Partly because it requires more computational power, and partly because it is a major challenge...... to include manufacturing constraints in the optimization. This work focuses on incorporating the manufacturability into the optimization procedure, allowing the resulting material structure to be manufactured directly using rapid manufacturing techniques, such as selective laser melting/sintering (SLM....../S). The available manufacturing methods are best suited for porous materials (one constituent and void), but the optimization procedure can easily include more constituents. The elasticity tensor is found from one unit cell using the homogenization method together with a standard finite element (FE) discretization...

  17. Triboengineering problems of lead coolant in innovative fast reactors

    International Nuclear Information System (INIS)

    Beznosov, A.V.; Novozhilova, O.O.; Shumilkov, A.I.; Lvov, A.V.; Bokova, T.A.; Makhov, K.A.

    2013-01-01

    Graphical abstract: Models of experimental sites for research of processes tribology in heavy liquid metal coolant. -- Highlights: • The contact a pair of heavy liquid metal coolant for reactors on fast neutrons. • The hydrostatic bearings main circulation pumps. • Oxide coating and degree of wear of friction surfaces in heavy liquid metal coolant. -- Abstract: So far, there are plenty of works dedicated to studying the phenomenon of friction. However, there are none dedicated to functioning of contact pairs in heavy liquid-metal coolants for fast neutron, reactor installations (Kogaev and Drozdov, 1991; Modern Tribology, 2008; Drozdov et al., 1986). At the Nizhny Novgorod State Technical University, such research is conducted in respect to friction, bearings of main circulating pumps, interaction of sheaths of neutron absorber rods with their covers, of the reactor control and safety system, refueling systems, and interaction of coolant flows with, channel borders. As a result of experimental studies, the characteristic of friction pairs in the heavy, liquid metal coolant shows the presence dependences of oxide film on structural materials of the wear. The inapplicability of existing calculation methods for assessing the performance of the bearing nodes, in the heavy liquid metal coolant is shown

  18. Liquid metal coolant disposal from UKAEA reactors at Dounreay

    International Nuclear Information System (INIS)

    Adam, E.R.

    1997-01-01

    As part of the United Kingdom's Fast Reactor Development programme two reactors were built and operated at Dounreay in the North of Scotland. DFR (Dounreay Fast Reactor) was operated from 1959-1977 and PFR (Prototype Fast Reactor) was operated from 1974-1994. Both reactors are currently undergoing Stage 1 Decommissioning and are installing plant to dispose of the bulk coolant (DFR ∼ 60 tonne; PFR ∼ 1500 tonne). The coolant (NaK) remaining at DFR is mainly in the primary circuit which contains in excess of 500 TBq of Cs137. Disposal of 40 tonnes of secondary coolant has already been carried out. The paper will describe the processes used to dispose of this secondary circuit coolant and how it is intended the remaining primary circuit coolant will be handled. The programme to process the primary coolant will also be described which involves the conversion of the liquid metal to caustic and its decontamination. No PFR coolant Na has been disposed off to date. The paper will describe the current decommissioning programme activities relating to liquid metal disposal and treatment describing the materials to be disposed of and the issue of decontamination of the effluents. (author)

  19. Development of nuclear transmutation technology - A study on the thermal-hydraulic characteristics of Pb-Bi coolant material

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chang Hyun; You, Young Woo; Cho, Jae Seon; Kim, Ju Youl; Yang, Hui Chang; Huh, Byung Gil [Seoul National University, Seoul (Korea)

    2000-03-01

    The objective of this study is to provide the direction of HYPER design in terms of thermal hydraulics especially through the analysis of thermal hydraulic characteristics of lead-bismuth material as a HYPER coolant and of proton accelerator target system. In this study, in order to evaluate the thermal-hydraulic characteristics of HYPER system, the FLUENT calculation is performed with liquid metal lead-bismuth(43%) and the turbulent Prandtl number model is developed. Also, the heat transfer analyses including temperature rising are performed for accelerator beam window, solid tungsten target and liquid target which is composed of liquid lead and lead-bismuth, respectively and the thermal stress analyses are performed for accelerator beam window. Through this study, the BASECASE whose parameter is HYPER system design specification is calculated by FLUENT. It is shown that the coolant velocity must exceeds 1.6 m/s for supporting the core coolant temperature in operating temperature range. The suggested turbulent Prandtl number model is applicable to liquid metal. And in order to maintain the integrity of proton beam target system, it is necessary to investigate the target structure associated with smoothing the flow path and beam window cooling. 43 refs., 67 figs., 27 tabs. (Author)

  20. Thorium Fuel Utilization Analysis on Small Long Life Reactor for Different Coolant Types

    Science.gov (United States)

    Permana, Sidik

    2017-07-01

    A small power reactor and long operation which can be deployed for less population and remote area has been proposed by the IAEA as a small and medium reactor (SMR) program. Beside uranium utilization, it can be used also thorium fuel resources for SMR as a part of optimalization of nuclear fuel as a “partner” fuel with uranium fuel. A small long-life reactor based on thorium fuel cycle for several reactor coolant types and several power output has been evaluated in the present study for 10 years period of reactor operation. Several key parameters are used to evaluate its effect to the reactor performances such as reactor criticality, excess reactivity, reactor burnup achievement and power density profile. Water-cooled types give higher criticality than liquid metal coolants. Liquid metal coolant for fast reactor system gives less criticality especially at beginning of cycle (BOC), which shows liquid metal coolant system obtains almost stable criticality condition. Liquid metal coolants are relatively less excess reactivity to maintain longer reactor operation than water coolants. In addition, liquid metal coolant gives higher achievable burnup than water coolant types as well as higher power density for liquid metal coolants.

  1. Recent results from the MIT in-core experiments on coolant chemistry

    International Nuclear Information System (INIS)

    Harling, O.K.; Kohse, G.E.; Cabello, E.C.; Bernard, J.A.

    1993-01-01

    This paper reports results from an ongoing series of in-core experiments that have been conducted at the 5-MW(thermal) MIT Research Reactor (MITR-II) for optimizing coolant chemistries in light water reactors. Four experiments are in progress, including a pressurized coolant chemistry loop (PCCL), a boiling coolant chemistry loop (BCCL), a facility for the study of irradiation-assisted stress-corrosion cracking, and one for the evaluation of in situ sensors for the monitoring of crack propagation in metal (SENSOR). The first two have now been fully operational for several years. The latter two are scheduled to begin regular operation later this year

  2. Coolant leakage detection device

    International Nuclear Information System (INIS)

    Ito, Takao.

    1983-01-01

    Purpose: To surely detect the coolant leakage at a time when the leakage amount is still low in the intra-reactor inlet pipeway of FBR type reactor. Constitution: Outside of the intra-reactor inlet piping for introducing coolants at low temperature into a reactor core, an outer closure pipe is furnished. The upper end of the outer closure pipe opens above the liquid level of the coolants in the reactor, and a thermocouple is inserted to the opening of the upper end. In such a structure, if the coolants in the in-reactor piping should leak to the outer closure pipe, coolants over-flows from the opening thereof, at which the thermocouple detects the temperature of the coolants at a low temperature, thereby enabling to detect the leakage of the coolants at a time when it is still low. (Kamimura, M.)

  3. Trace organics in AGR coolants

    International Nuclear Information System (INIS)

    Smith, R.; Green, L.O.; Johnson, P.A.V.

    1980-01-01

    Several analytical techniques have been employed in previous studies of the stable organic compounds arising from the radiolysis of methane/carbon monoxide/carbon dioxide coolants. The majority of this early information was collected from the Windscale AGR prototype. Analyses were also carried out on the liquors obtained from the WAGR humidryers. Three classes of compound were found in the liquors; aliphatic acids in the aqueous phase and methyl ketones and aromatic hydrocarbons in the oily phase. Acetic acid was found to be the predominant carboxylic acid. This paper outlines the major findings from a recent analytical survey of coolants taken over a wide range of dose rate, pressure, temperature and composition, from materials testing reactor facilities, WAGR and CAGR. (author)

  4. Material effect in the fuel-coolant interaction: structural characterization of the steam explosion debris and solidification mechanism

    International Nuclear Information System (INIS)

    Tyrpekl, V.

    2012-01-01

    This work has been performed under joint supervision between Charles University in Prague (Czech Republic) and Strasbourg University (France). It also profited from the background and cooperation of Institute of Inorganic Chemistry Academy of Science of the Czech Republic and French Commission for Atomic and Alternative energies (CEA Cadarache). Results of the work contribute to the OECD/NEA project Serena 2 (Program on Steam Explosion Resolution for Nuclear Applications). Presented thesis can be classed in the scientific field of nuclear safety and material science. It is aimed on the so-called 'molten nuclear Fuel - Coolant Interaction' (FCI) that belongs among the recent issues of the nuclear reactor severe accident R and D. During the nuclear reactor melt down accident the melted reactor load can interact with the coolant (light water). This interaction can be located inside the vessel or outside in the case of vessel break-up. These two scenarios are commonly called in- and ex-vessel FCI and they differ in the conditions such as initial pressure of the system, water sub-cooling etc. The Molten fuel - coolant interaction can progress into thermal detonation called 'steam explosion' that can challenge the reactor or containment integrity. Recent experiments have shown that the melt composition has a major effect on the occurrence and yield of such explosion. In particular, different behaviors have been observed between simulant material (alumina), which has important explosion efficiency, and some prototypic corium compositions (80 w. % UO 2 , 20% w. % ZrO 2 . This 'material effect' has launched a new interest in the post-test analyses of FCI debris in order to estimate the processes occurring during these extremely rapid phenomena. The thesis is organized in nine chapters. The chapter 1 gives the general introduction and context of the nuclear reactor accident. Major nuclear accidents (Three Miles Island 1979, Chernobyl 1986 and Fukushima 2011) are briefly

  5. Full reactor coolant system chemical decontamination qualification programs

    Energy Technology Data Exchange (ETDEWEB)

    Miller, P.E. [Westinghouse Electric Corp., Pittsburgh, PA (United States)

    1995-03-01

    Corrosion and wear products are found throughout the reactor coolant system (RCS), or primary loop, of a PWR power plant. These products circulate with the primary coolant through the reactor where they may become activated. An oxide layer including these activated products forms on the surfaces of the RCS (including the fuel elements). The amount of radioactivity deposited on the different surface varies and depends primarily on the corrosion rate of the materials concerned, the amount of cobalt in the coolant and the chemistry of the coolant. The oxide layer, commonly called crud, on the surfaces of nuclear plant systems leads to personnel radiation exposure. The level of the radiation fields from the crud increases with time from initial plant startup and typically levels off after 4 to 6 cycles of plant operation. Thereafter, significant personnel radiation exposure may be incurred whenever major maintenance is performed. Personnel exposure is highest during refueling outages when routine maintenance on major plant components, such as steam generators and reactor coolant pumps, is performed. Administrative controls are established at nuclear plants to minimize the exposure incurred by an individual and the plant workers as a whole.

  6. The influence of wall materials on Cs depositions in HTR coolant loops

    International Nuclear Information System (INIS)

    Herion, J.

    1975-01-01

    The basic concepts on the effect of the wall material on the deposition of fission products in high temperature reactor (HTR) coolant loops are developed which include the mechanisms of adsorption, solubility and diffusion. General mathematical interrelations of the Cs-adsorption on technical metals are presented and discussed using experimental data from the literature. Desorption energies and frequency factors are determined from measurements of the electrons' work function of metals in Cs atmosphere from R.G. Wilson using these mathematical interrelations. The solubilities and the diffusion constants of Cs are so small in the few investigated cases (Mo, Ta) that high diffusivity paths must be taken into account. Thermochemical considerations on the influence of gaseous impurities on the deposition behaviour are lacking in reliable data. (orig./LH) [de

  7. Transient Temperature Distribution in a Reactor Core with Cylindrical Fuel Rods and Compressible Coolant

    Energy Technology Data Exchange (ETDEWEB)

    Vollmer, H

    1968-04-15

    Applying linearization and Laplace transformation the transient temperature distribution and weighted temperatures in fuel, canning and coolant are calculated analytically in two-dimensional cylindrical geometry for constant material properties in fuel and canning. The model to be presented includes previous models as special cases and has the following novel features: compressibility of the coolant is accounted for. The material properties of the coolant are variable. All quantities determining the temperature field are taken into account. It is shown that the solution for fuel and canning temperature may be given by the aid of 4 basic transfer functions depending on only two variables. These functions are calculated for all relevant rod geometries and material constants. The integrals involved in transfer functions determining coolant temperatures are solved for the most part generally by application of coordinate and Laplace transformation. The model was originally developed for use in steam cooled fast reactor analysis where the coolant temperature rise and compressibility are considerable. It may be applied to other fast or thermal systems after suitable simplifications.

  8. Optimal Design of Porous Materials

    DEFF Research Database (Denmark)

    Andreassen, Erik

    The focus of this thesis is topology optimization of material microstructures. That is, creating new materials, with attractive properties, by combining classic materials in periodic patterns. First, large-scale topology optimization is used to design complicated three-dimensional materials......, throughout the thesis extra attention is given to obtain structures that can be manufactured. That is also the case in the final part, where a simple multiscale method for the optimization of structural damping is presented. The method can be used to obtain an optimized component with structural details...

  9. An Investigation into Water Chemistry in Primary Coolant Circuit of an Advanced Boiling Water Reactor

    International Nuclear Information System (INIS)

    Wu, Bing-Jhen; Yeh, Tsung-Kuang; Wang, Mei-Ya; Sheu, Rong-Jiun

    2012-09-01

    To ensure operation safety, an optimization on the coolant chemistry in the primary coolant circuit of a nuclear reactor is essential no matter what type or generation the reactor belongs to. For a better understanding toward the water chemistry in an advanced boiling water reactor (ABWR), such as the one being constructed in the northern part of Taiwan, and for a safer operation of this ABWR, we conducted a proactive, thorough water chemistry analysis prior to the completion of this reactor in this study. A numerical simulation model for water chemistry analyses in ABWRs has been developed, based upon the core technology we established in the past. This core technology for water chemistry modeling is basically an integration of water radiolysis, thermal-hydraulics, and reactor physics. The model, by the name of DEMACE - ABWR, is an improved version of the original DEMACE model and was used for radiolysis and water chemistry prediction in the Longmen ABWR in Taiwan. Predicted results pertinent to the water chemistry variation and the corrosion behavior of structure materials in the primary coolant circuit of this ABWR under rated-power operation were reported in this paper. (authors)

  10. Minimizing secondary coolant blowdown in HANARO

    International Nuclear Information System (INIS)

    Park, Y. C.; Woo, J. S.; Ryu, J. S.; Cho, Y. G.; Lim, N. Y.

    2000-01-01

    There is about 80m 3 /h loss of the secondary cooling water by evaporation, windage and blowdown during the operation of HANARO, 30MW research reactor. The evaporation and the windage is necessary loss to maintain the performance of cooling tower, but the blowdown is artificial lose to get rid of the foreign material and to maintain the quality of the secondary cooling water. Therefore, minimizing the blowdown loss was studied. It was confirmed, through the relation of the number of cycle and the loss rate of secondary coolant, that the number of cycle is saturated to 12 without blowdown because of the windage loss. When the secondary coolant is treated by high Ca-hardness treatment program (the number of cycle > 10) to maintain the number of cycle around 12 without blowdown, only the turbidity exceeds the limit. By adding filtering system it was confirmed, through the relation of turbidity and filtering rate of secondary cooling water, that the turbidity is reduced below the limit (5 deg.) by 2% of filtering rate without blowdown. And it was verified, through the performance test of back-flow filtering unit, that this unit gets rid of foreign material up to 95% of the back-flow and that the water can be reused as coolant. Therefore, the secondary cooling water can be treated by the high Ca-hardness program and filter system without blowdown

  11. The installation welding of pressure water reactor coolant piping

    International Nuclear Information System (INIS)

    Deng Feng

    2010-01-01

    Large pressure water reactor nuclear power plants are constructing in our country. There are three symmetry standard loops in reactor coolant system. Each loop possesses a steam generator and a primary poop, in which one of the loops is equipped with a pressurizer. These components are connected with reactor pressure vessel by installation welding of the coolant piping. The integrity of reactor coolant pressure boundary is the second barrier to protect the radioactive substance from release to outside, so the safe operation of nuclear power plant is closely related to the quality of coolant piping installation welding. The heavy tube with super low carbon content austenitic stainless steel is selected for coolant piping. This kind of material has good welding behavior, but the poor thermal conductivity, the big liner expansion coefficient and the big welding deformation will cause bigger welding stress. To reduce the welding deformation, to control the dimension precision, to reduce the residual stress and to ensure the welding quality the installation sequence should be properly designed and the welding technology should be properly controlled. (authors)

  12. The upgrade of intense pulsed neutron source (IPNS) through the change of coolant and reflector

    CERN Document Server

    Baek, I C; Iverson, E B

    2002-01-01

    The current intense pulsed neutron source (IPNS) depleted uranium target is cooled by light water. The inner reflector material is graphite and the outer reflector material is beryllium. The presence of H sub 2 O in the target moderates neutrons and leads to a higher absorption loss in the target than is necessary. D sub 2 O coolant in the small quantities required minimizes this effect. We have studied the possible improvement in IPNS beam fluxes that would result from changing the coolant from H sub 2 O to D sub 2 O and the inner reflector from graphite to beryllium. Neutron intensities were calculated for directions normal to the viewed surface of each moderator for four different cases of combinations of target coolant and reflector materials. The simulations reported here were performed using the MCNPX (version 2.1.5) computer program. Our results show that substantial gains in neutron beam intensities can be achieved by appropriate combination of target coolant and reflector materials. The combination o...

  13. CAREM-25: considerations about primary coolant chemistry

    International Nuclear Information System (INIS)

    Chocron, Mauricio; Iglesias, Alberto M.; Raffo Calderon, Maria C.; Villegas, Marina

    2000-01-01

    World operating experience, in conjunction with basic studies has been modifying chemistry specifications for the primary coolant of water cooled nuclear reactors along with the reactor type and structural materials involved in the design. For the reactor CAREM-25, the following sources of information have been used: 1) Experience gained by the Chemistry Department of the National Atomic Energy Commission (CNEA, Argentina); 2) Participation of the Chemistry Department (CNEA) in international cooperation projects; 3) Guidelines given by EPRI, Siemens-KWU, AECL, etc. Given the main objectives: materials integrity, low radiation levels and personnel safety, which are in turn a balance between the lowest corrosion and activity transport achievable and considering that the CAREM-25 is a pressurized vessel integrated reactor, a group of guidelines for the chemistry and additives for the primary coolant have been given in the present work. (author)

  14. HANARO secondary coolant management

    International Nuclear Information System (INIS)

    Kim, Seon Duk.

    1998-02-01

    In this report, the basic theory for management of water quality, environmental factors influencing to the coolant, chemicals and its usage for quality control of coolant are mentioned, and water balance including the loss rate by evaporation (34.3 m 3 /hr), discharge rate (12.665 m 3 /hr), concentration ratio and feed rate (54.1 m 3 /hr) are calculated at 20 MW operation. Also, the analysis data of HANSU Limited for HANARO secondary coolant (feed water and circulating coolant) - turbidity, pH, conductivity, M-alkalinity, Ca-hardness, chloride ion, total iron ion, phosphoric ion and conversion rate are reviewed. It is confirmed that the feed water has good quality and the circulating coolant has been maintained within the control specification in general, but some items exceeded the control specification occasionally. Therefore it is judged that more regular discharge of coolant is needed. (author). 6 refs., 17 tabs., 18 figs

  15. A comparative neutronic analysis of 150MWe TRU burner according to the coolant alteration

    International Nuclear Information System (INIS)

    Yoo, J. W.; Kim, S. J.; Kim, Y. I.

    2000-01-01

    A comparative neutronic analysis has been conducted for the small TRU burner according to their coolant material. The use of Pb-Bi coolant gave a low burnup reactivity swing and negative or less positive coolant void coefficient with harder neutron spectrum. By a lower burnup reactivity swing and higher conversion ratio of Pb-Bi cooled core, the total amount of TRU consumption was found to be small compared with Na cooled core despite of the higher MA consumption ratio of Pb-Bi cooled core. However, Pb-Bi cooled reactor have a lager margin in the coolant void coefficient, so that a variable MA composition can be loaded in the core. Accordingly, even though the Pb-Bi cooled TRU burner has not effectiveness on TRU burning in the same geometry and material condition, a flexible MA loading is envisaged to result in 10 times larger MA burning amount, still preserving a low coolant void worth

  16. Dynamic response of INTOR/NET blankets after coolant tube rupture

    International Nuclear Information System (INIS)

    Klippel, H.T.

    1985-01-01

    The dynamic response of different water-cooled liquid Li 17 Pb 83 breeder blanket modules has been calculated to study the potential of these modules in case of coolant tube rupture. Numerical calculations with the code PISCES have been carried out taking into account the fluid-structure interaction and the elasto-plastic behaviour of the structural material. The results show that for inert coolant characteristics the proposed conceptual designs for NET and INTOR have sufficient resistance against coolant tube rupture but when taking into account energy release due to chemical reaction of water with LiPb-alloy up to doubling of the wall thickness has to be envisaged to guarantee structural reliability. (orig.)

  17. Coolant circuit water chemistry of the Paks Nuclear Power Plant

    International Nuclear Information System (INIS)

    Tilky, Peter; Doma, Arpad

    1985-01-01

    The numerous advantages of the proper selection of water chemistry parameters including low corrosion rate of the structural materials, hence the low-level activity build-up, depositions, radiation doses were emphasized. Major characteristics of water chemistry applied to the primary coolant of pressurized water reactors including neutral, slightly basic and strong basic ones are discussed. Boric acid is widely used to control reactivity. Primary coolant water chemistry of WWER type reactors which is based on the addition of ammonia and potassium hydroxide to boric acid is compared with that of other reactors. The demineralization of the total condensate of the steam turbines became a general trend in the water chemistry of the secondary coolant circuits. (V.N.)

  18. Compartmentalized safety coolant injection system

    International Nuclear Information System (INIS)

    Johnson, F.T.

    1983-01-01

    A safety coolant injection system for nuclear reactors wherein a core reflood tank is provided to afford more reliable reflooding of the reactor core in the event of a break in one of the reactor coolant supply loops. Each reactor coolant supply loop is arranged in a separate compartment in the containment structure to contain and control the flow of spilled coolant so as to permit its use during emergency core cooling procedures. A spillway allows spilled coolant in the compartment to pass into the emergency water storage tank from where it can be pumped back to the reactor vessel. (author)

  19. Nonlinear dynamic analysis of nuclear reactor primary coolant systems

    International Nuclear Information System (INIS)

    Saffell, B.F. Jr.; Macek, R.W.; Thompson, T.R.; Lippert, R.F.

    1979-01-01

    The ADINA computer code is utilized to perform mechanical response analysis of pressurized reactor primary coolant systems subjected to postulated loss-of-coolant accident (LOCA) loadings. Specifically, three plant analyses are performed utilizing the geometric and material nonlinear analysis capabilities of ADINA. Each reactor system finite element model represents the reactor vessel and internals, piping, major components, and component supports in a single coupled model. Material and geometric nonlinear capabilities of the beam and truss elements are employed in the formulation of each finite element model. Loadings applied to each plant for LOCA dynamic analysis include steady-state pressure, dead weight, strain energy release, transient piping hydraulic forces, and reactor vessel cavity pressurization. Representative results are presented with some suggestions for consideration in future ADINA code development

  20. Nuclear reactor coolant channels

    International Nuclear Information System (INIS)

    Macbeth, R.V.

    1978-01-01

    Reference is made to coolant channels for pressurised water and boiling water reactors and the arrangement described aims to improve heat transfer between the fuel rods and the coolant. Baffle means extending axially within the channel are provided and disposed relative to the fuel rods so as to restrict flow oscillations occurring within the coolant from being propagated transversely to the axis of the channel. (UK)

  1. Reactor coolant pump seal leakage monitoring

    International Nuclear Information System (INIS)

    Stevens, D.M.; Spencer, J.W.; Morris, D.J.; James, W.; Shugars, H.G.

    1986-01-01

    Problems with reactor coolant pump seals have historically accounted for a large percentage of unscheduled outages. Studies performed for the Electric Power Research Institute (EPRI) have shown that the replacement of coolant pump seals has been one of the leading causes of nuclear plant unavailability over the last ten years. Failures of coolant pump seals can lead to primary coolant leakage rates of 200-500 gallons per minute into the reactor building. Airborne activity and high surface contamination levels following these failures require a major cleanup effort and increases the time and personnel exposure required to refurbish the pump seals. One of the problems in assessing seal integrity is the inability to accurately measure seal leakage. Because seal leakage flow is normally very small, it cannot be sensed directly with normal flow instrumentation, but must be inferred from several other temperature and flow measurements. In operating plants the leakage rate has been quantified with a tipping-bucket gauge, a device which indicates when one quart of water has been accumulated. The tipping-bucket gauge has been used for most rainfall-intensity monitoring. The need for a more accurate and less expensive gauge has been addressed. They have developed a drop-counter precipitation sensor has been developed and optimized. The applicability of the drop-counter device to the problem of measuring seal leakage is being investigated. If a review of system specification and known drop-counter performance indicates that this method is feasible for measuring seal leak rates, a drop-counter gauge will be fabricated and tested in the laboratory. If laboratory tests are successful the gauge will be demonstrated in a pump test loop at Ontario Hydro and evaluated under simulated plant conditions. 3 references, 2 figures

  2. Coolant system decontamination

    International Nuclear Information System (INIS)

    Anstine, L.D.; James, D.B.; Melaika, E.A.; Peterson, J.P.

    1981-01-01

    An improved method for decontaminating the coolant system of water cooled nuclear power reactors and for regenerating the decontamination solution is described. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution. (author)

  3. Hydrodynamics of heavy liquid metal coolant processes and filtering apparatus

    International Nuclear Information System (INIS)

    Albert K Papovyants; Yuri I Orlov; Pyotr N Martynov; Yuri D Boltoev

    2005-01-01

    Full text of publication follows: To optimize the design of filters for cleaning heavy liquid metal coolant (HLMC) from suspended impurities and choose appropriate filter material, the contribution is considered of different mechanisms of delivery and retention of these impurities from the coolant flow, which is governed by its specificity as a thermodynamically instable disperse system to a large extent. It is shown that the buildup of deposits in the filter is favored by the hydrodynamic regime with minimum filtration rates being due to the predominance in the suspension of the fine-dispersed solid phase (oxides Fe 3 O 4 , Cr 2 O 3 and so on). With concentrating the last mentioned phase in filter material pores or stagnant zones, coagulation structuration is possible, which is accompanied by sharp local increase in the viscosity and strength of the solid phase medium being built from liquid metal, i.e. slag sedimentary deposits. In rather extended pores, disintegration of such structures is possible, which is accompanied by sedimentation of large particles produced due to sticking together at coagulation. The analytical solution of the problem of particle sedimentation due to diffusion indicated that in the case under consideration, this mechanism takes place for particles less than ∼ 0,05 μm in size, which is specified by the fact that the time of their delivery to the filter material surface is longer than that of the coolant being in the filter. The London-Van-der-Waals molecular forces play a crucial role in the stage of retention of a separate particle. The constant of the molecular interaction between a spherical particle and the flat surface has been estimated for the chosen value of the gap between the contacting bodies, being dependent on the wetting angle. The sufficient condition for d p -diameter particle capture by the adhesion force field (with a gap of H ≅ 30 nm) is that it be brought by the appropriate forces at a distance from the wall equal

  4. The solid coolant and prospects of its use in innovative reactors

    International Nuclear Information System (INIS)

    Dmitriev, A.M.; Deniskin, V.P.

    2010-01-01

    The progress of nuclear power demands consideration and development of innovative projects of the reactors having the increased level of safety due to their immanent properties allowing to provide high parameters. One of interesting and perspective offers is the use of a solid substance as a coolant. Use of the solid coolant of a nuclear reactor core has significant advantages among which an opportunity of movement of the coolant in the core under action of gravities and absence of necessity to have superfluous pressure in the jacket, that in turn means small metal consumption of construction, decrease in risk of emergency and its consequences. Cooling of the core with the help of solid substance is possible at performance of the certain conditions connected to features of the solid coolant. The major requirements are: the uniform continuous movement and minimal fluctuation of its density on every site of the core; high mechanical durability and wear resistance of particles; as well as good parameters of heat exchange, i.e. high heat conductivity and thermal capacity of the coolant material at the core operating conditions

  5. In-plane Material Filters for the Discrete Material Optimization Method

    DEFF Research Database (Denmark)

    Sørensen, Rene; Lund, Erik

    2015-01-01

    , because the projection filter is a non-linear function of the design variables, the projected variables have to be re-scaled in a final so-called normalization filter. This is done to prevent the optimizer in creating superior, but non-physical pseudo-materials. The method is demonstrated on a series......This paper presents in-plane material filters for the Discrete Material Optimization method used for optimizing laminated composite structures. The filters make it possible for engineers to specify a minimum length scale which governs the minimum size of areas with constant material continuity....... Consequently, engineers can target the available production methods, and thereby increase its manufacturability while the optimizer is free to determine which material to apply together with an optimum location, shape, and size of these areas with constant material continuity. By doing so, engineers no longer...

  6. Recovery studies for plutonium machining oil coolant

    International Nuclear Information System (INIS)

    Navratil, J.D.; Baldwin, C.E.

    1977-01-01

    Lathe coolant oil, contaminated with plutonium and having a carbon tetrachloride diluent, is generated in plutonium machining areas at Rocky Flats. A research program was initiated to determine the nature of plutonium in this mixture of oil and carbon tetrachloride. Appropriate methods then could be developed to remove the plutonium and to recycle the oil and carbon tetrachloride. Studies showed that the mixtures of spent oil and carbon tetrachloride contained particulate plutonium and plutonium species that are soluble in water or in oil and carbon tetrachloride. The particulate plutonium was removed by filtration; the nonfilterable plutonium was removed by adsorption on various materials. Laboratory-scale tests indicated the lathe-coolant oil mixture could be separated by distilling the carbon tetrachloride to yield recyclable products

  7. Management of large scale coolant channel replacement programme for Indian PHWRs

    International Nuclear Information System (INIS)

    Bhatnagar, V.K.; Chadda, S.K.; Arya, R.C.

    1994-01-01

    Coolant channel assemblies form most important core components of pressurised heavy water reactors. Zirconium alloy pressure tube which form part of coolant channel assemblies are subjected to environment of high neutron flux, high pressure and temperature. Under those operating environmental conditions, the pressure tubes material undergoes degradation of metallurgical and mechanical properties in addition to dimensional changes. The coolant channels are subjected to an in-service inspection (ISI) programme for monitoring the health particularly of the pressure tubes. The en-mass replacement of pressure tubes is needed after most of the pressure tubes show unacceptable conditions for an assured safe and reliable operation. An overview of various issues pertaining to this aspect is presented. (author). 4 figs

  8. Nuclear reactor coolant and cover gas system

    International Nuclear Information System (INIS)

    George, J.A.; Redding, A.H.; Tower, S.N.

    1976-01-01

    A core cooling system is disclosed for a nuclear reactor of the type utilizing a liquid coolant with a cover gas above free surfaces of the coolant. The disclosed system provides for a large inventory of reactor coolant and a balanced low pressure cover gas arrangement. A flow restricting device disposed within a reactor vessel achieves a pressure of the cover gas in the reactor vessel lower than the pressure of the reactor coolant in the vessel. The low gas pressure is maintained over all free surfaces of the coolant in the cooling system including a coolant reservoir tank. Reactor coolant stored in the reservoir tank allows for the large reactor coolant inventory provided by the invention

  9. Investigating Liquid CO2 as a Coolant for a MTSA Heat Exchanger Design

    Science.gov (United States)

    Paul, Heather L.; Padilla, Sebastian; Powers, Aaron; Iacomini, Christie

    2009-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO 2) control for a future Portable Life Support System (PLSS), as well as water recycling. CO 2 removal and rejection is accomplished by driving a sorbent through a temperature swing of approximately 210 K to 280 K . The sorbent is cooled to these sub-freezing temperatures by a Sublimating Heat Exchanger (SHX) with liquid coolant expanded to sublimation temperatures. Water is the baseline coolant available on the moon, and if used, provides a competitive solution to the current baseline PLSS schematic. Liquid CO2 (LCO2) is another non-cryogenic coolant readily available from Martian resources which can be produced and stored using relatively low power and minimal infrastructure. LCO 2 expands from high pressure liquid (5800 kPa) to Mars ambient (0.8 kPa) to produce a gas / solid mixture at temperatures as low as 156 K. Analysis and experimental work are presented to investigate factors that drive the design of a heat exchanger to effectively use this sink. Emphasis is given to enabling efficient use of the CO 2 cooling potential and mitigation of heat exchanger clogging due to solid formation. Minimizing mass and size as well as coolant delivery are also considered. The analysis and experimental work is specifically performed in an MTSA-like application to enable higher fidelity modeling for future optimization of a SHX design. In doing so, the work also demonstrates principles and concepts so that the design can be further optimized later in integrated applications (including Lunar application where water might be a choice of coolant).

  10. Coolant clean-up and recycle systems

    International Nuclear Information System (INIS)

    Ito, Takao.

    1979-01-01

    Purpose: To increase the service life of mechanical seals in a shaft sealing device, eliminate leakages and improve the safety by providing a recycle pump for feeding coolants to a coolant clean-up device upon reactor shut-down and adapting the pump treat only low temperature and low pressure coolants. Constitution: The system is adapted to partially take out coolants from the pipeways of a recycling pump upon normal operation and feed them to a clean-up device. Upon reactor shut-down, the recycle pump is stopped and coolants are extracted by the recycle pump for shut-down into the clean-up device. Since the coolants are not fed to the clean-up device by the recycle pump during normal operation as conducted so far, high temperature and high pressure coolants are not directly fed to the recycle pump, thereby enabling to avoid mechanical problems in the pump. (Kamimura, M.)

  11. Numerical study on coolant flow distribution at the core inlet for an integral pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Lin; Peng, Min Jun; Xia, Genglei; Lv, Xing; Li, Ren [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin (China)

    2017-02-15

    When an integral pressurized water reactor is operated under low power conditions, once-through steam generator group operation strategy is applied. However, group operation strategy will cause nonuniform coolant flow distribution at the core inlet and lower plenum. To help coolant flow mix more uniformly, a flow mixing chamber (FMC) has been designed. In this paper, computational fluid dynamics methods have been used to investigate the coolant distribution by the effect of FMC. Velocity and temperature characteristics under different low power conditions and optimized FMC configuration have been analyzed. The results illustrate that the FMC can help improve the nonuniform coolant temperature distribution at the core inlet effectively; at the same time, the FMC will induce more resistance in the downcomer and lower plenum.

  12. Comparative design study of FR plants with various coolants. 1. Studies on Na coolant FR, Pb-Bi coolant FR, gas coolant FR

    International Nuclear Information System (INIS)

    Konomura, Mamoru; Shimakawa, Yoshio; Hori, Toru; Kawasaki, Nobuchika; Enuma, Yasuhiro; Kida, Masanori; Kasai, Shigeo; Ichimiya, Masakazu

    2001-01-01

    In Phase I of the Feasibility Studies on the Commercialized Fast Reactor (FR) Cycle System, plant designs on FR were performed with various coolants. This report describes the plant designs on FR with sodium, lead-bismuth, CO 2 gas and He gas coolants. A construction cost of 0.2 million yen/kWe was set up as a design goal. The result is as follows: The sodium reactor has a capability to obtain the goal, and lead-bismuth and gas reactors may satisfy the goal with further improvements. (author)

  13. Coolant leakage detecting device

    International Nuclear Information System (INIS)

    Yamauchi, Kiyoshi; Kawai, Katsunori; Ishihara, Yoshinao.

    1995-01-01

    The device of the present invention judges an amount of leakage of primary coolants of a PWR power plant at high speed. Namely, a mass of coolants contained in a pressurizer, a volume controlling tank and loop regions is obtained based on a preset relational formula and signals of each of process amount, summed up to determine the total mass of coolants for every period of time. The amount of leakage for every period of time is calculated by a formula of Karman's filter based on the total mass of the primary coolants for every predetermined period of time, and displays it on CRT. The Karman's filter is formed on every formula for several kinds of states formed based on the preset amount of the leakage, to calculate forecasting values for every mass of coolants. An adaptable probability for every preset leakage amount is determined based on the difference between the forecast value and the observed value and the scattering thereof. The adaptable probability is compared with a predetermined threshold value, which is displayed on the CRT. This device enables earlier detection of leakage and identification of minute leakage amount as compared with the prior device. (I.S.)

  14. Coolant inlet device for nuclear reactors

    International Nuclear Information System (INIS)

    Ando, Hiroshi; Abe, Yasuhiro; Iwabuchi, Toshihiko; Yamamoto, Kenji.

    1969-01-01

    Herein disclosed is a coolant inlet device for liquid-metal cooled reactors which employs a coolant distributor serving also as a supporting means for the reactor core. The distributor is mounted within the reactor vessel so as to slide horizontally on supporting lugs, and is further slidably connected via a junction pipe to a coolant inlet conduit protruding through the floor of the vessel. The distributor is adapted to uniformly disperse the highly pressured coolant over the reactor core so as to reduce the stresses sustained by the reactor vessel as well as the supporting lugs. Moreover, the slidable nature of the distributor allows thermal shock and excessive coolant pressures to be prevented or alleviated, factors which posed major difficulties in conventional coolant inlet devices. (Owens, K. J.)

  15. Behaviour of radiation fields in the Spanish PWR by the changes in coolant chemistry and primary system materials

    International Nuclear Information System (INIS)

    Llovet, R.; Fernandez Lillo, E.

    1995-01-01

    The Spanish PWR Owners Group established a program to evaluate the behavior of ex-core radiation fields and discriminate the effects of changes in coolant chemistry and primary system materials. Data from Vandellos, Asco, Almaraz and Trillo NPPs were analyzed Vandellos 2 was chosen as the lead plant and its data were thoroughly studied. The dose-rates evolution could be explained at each plant as a consequence of this sucessful program.Actions derived from the developed knowledge on this field have produced the stabilization or even reduction of radiation fields at these plants

  16. Influence of coolant motion on structure of hardened steel element

    Directory of Open Access Journals (Sweden)

    A. Kulawik

    2008-08-01

    Full Text Available Presented paper is focused on volumetric hardening process using liquid low melting point metal as a coolant. Effect of convective motion of the coolant on material structure after hardening is investigated. Comparison with results obtained for model neglecting motion of liquid is executed. Mathematical and numerical model based on Finite Element Metod is described. Characteristic Based Split (CBS method is used to uncouple velocities and pressure and finally to solve Navier-Stokes equation. Petrov-Galerkin formulation is employed to stabilize convective term in heat transport equation. Phase transformations model is created on the basis of Johnson-Mehl and Avrami laws. Continuous cooling diagram (CTPc for C45 steel is exploited in presented model of phase transformations. Temporary temperatures, phases participation, thermal and structural strains in hardening element and coolant velocities are shown and discussed.

  17. Organic coolant for ARIES-III

    International Nuclear Information System (INIS)

    Sze, D.K.; Sviatoslavsky, I.; Sawan, M.; Gierszewski, P.; Hollies, R.; Sharafat, S.; Herring, S.

    1991-04-01

    ARIES-III is a D-He 3 reactor design study. It is found that the organic coolant is well suited for the D-He 3 reactor. This paper discusses the unique features of the D-He 3 reactor, and the reason that the organic coolant is compatible with those features. The problems associated with the organic coolant are also discussed. 8 refs., 2 figs., 6 tabs

  18. The sodium coolant

    International Nuclear Information System (INIS)

    Rodriguez, G.

    2004-01-01

    The sodium is the best appropriate coolant for the fast neutrons reactors technology. Thus the fast neutrons reactors development is intimately bound to the sodium technology. This document presents the sodium as a coolant point of view: atomic structure and characteristics, sodium impacts on the fast neutron reactors technology, chemical properties of the sodium and the consequences, quality control in a nuclear reactor, sodium treatment. (A.L.B.)

  19. Major activated corrosion products cobalt, silver and antimony in the primary coolant of PWR power plants

    International Nuclear Information System (INIS)

    Xu Mingxia

    2012-01-01

    The production of the major activated corrosion products such as cobalt, silver and antimony in the primary coolant of PWR power plants and the impacts on the increase of the dose rates caused by these corrosion products during the shutdown are described in the paper. Investigating the corrosion product behavior during the operation and shutdown periods aims at detecting the appearance of these radiological pollutants in the early time and searching relevant solutions that may enable eventually to decrease the dose rate. The solutions may include: Replacing critical material in the primary system's equipment and components, which contact with primary coolant circuit to possibly limit the source term, Elaborating strictly the specific chemical and shutdown procedure to optimize the purification capacity and to minimize the over-contaminations; Improving purification techniques according to the real operation circumstance, and limiting the impacts of these pollutants. It is obvious in the real practices that implementing appropriate solution will be benefit to decrease or limit the pollutants species like cobalt, silver and antimony. (author)

  20. Experimental interaction of magma and “dirty” coolants

    Science.gov (United States)

    Schipper, C. Ian; White, James D. L.; Zimanowski, Bernd; Büttner, Ralf; Sonder, Ingo; Schmid, Andrea

    2011-03-01

    The presence of water at volcanic vents can have dramatic effects on fragmentation and eruption dynamics, but little is known about how the presence of particulate matter in external water will further alter eruptions. Volcanic edifices are inherently “dirty” places, where particulate matter of multiple origins and grainsizes typically abounds. We present the results of experiments designed to simulate non-explosive interactions between molten basalt and various “coolants,” ranging from homogeneous suspensions of 0 to 30 mass% bentonite clay in pure water, to heterogeneous and/or stratified suspensions including bentonite, sand, synthetic glass beads and/or naturally-sorted pumice. Four types of data are used to characterise the interactions: (1) visual/video observations; (2) grainsize and morphology of resulting particles; (3) heat-transfer data from a network of eight thermocouples; and (4) acoustic data from three force sensors. In homogeneous coolants with ~20% sediment, heat transfer is by forced convection and conduction, and thermal granulation is less efficient, resulting in fewer blocky particles, larger grainsizes, and weaker acoustic signals. Many particles are droplet-shaped or/and “vesicular,” containing bubbles filled with coolant. Both of these particle types indicate significant hydrodynamic magma-coolant mingling, and many of them are rewelded into compound particles. The addition of coarse material to heterogeneous suspensions further slows heat transfer thus reducing thermal granulation, and variable interlocking of large particles prevents efficient hydrodynamic mingling. This results primarily in rewelded melt piles and inefficient distribution of melt and heat throughout the coolant volume. Our results indicate that even modest concentrations of sediment in water will significantly limit heat transfer during non-explosive magma-water interactions. At high concentrations, the dramatic reduction in cooling efficiency and increase in

  1. Some aspects of influence of coolant water chemistry on reliability of WWER and RBMK type fuels

    International Nuclear Information System (INIS)

    Solyany, V.I.; Bibilashvili, Yu.K.; Sukhanov, G.I.; Pimenov, Yu.V.; Gosudarstvennyj Komitet po Ispol'zovaniyu Atomnoj Ehnergii SSSR, Moscow)

    1983-01-01

    In WWER and RBMK reactors now in operation a good quality of primary coolant is achieved and the required corrosion resistance of structural materials and normal irradiation conditions are ensured. Data on commercial fuel operation and clad material (Zr 1% Nb alloy) condition are briefly generalized. Some results of reactor investigations of corrosion behaviour of commercial Zr 1% Nb alloy under the condition of WWER and RBMK coolant are discussed and compared. It is established that the chemical effect of coolant on fuel cladding does not in itself limit its serviceability at design burn-ups but due to the possible processes of crud formation, corrosion (total and local), fretting-corrosion and hydriding it can influence the fuel reliability. This influence is qualitatively assessed through a rise in the clad temperature, a reduction of material plasticity and clad thickness. (author)

  2. Some aspects of influence of coolant water chemistry on reliability of WWER and RBMK type fuels

    Energy Technology Data Exchange (ETDEWEB)

    Solyany, V I; Bibilashvili, Yu K; Sukhanov, G I; Pimenov, Yu V [Vsesoyuznyj Nauchno-Issledovatel' skij Inst. Neorganicheskikh Materialov, Moscow (USSR); Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Moscow)

    1983-12-01

    In WWER and RBMK reactors now in operation a good quality of primary coolant is achieved and the required corrosion resistance of structural materials and normal irradiation conditions are ensured. Data on commercial fuel operation and clad material (Zr 1% Nb alloy) condition are briefly generalized. Some results of reactor investigations of corrosion behaviour of commercial Zr 1% Nb alloy under the condition of WWER and RBMK coolant are discussed and compared. It is established that the chemical effect of coolant on fuel cladding does not in itself limit its serviceability at design burn-ups but due to the possible processes of crud formation, corrosion (total and local), fretting-corrosion and hydriding it can influence the fuel reliability. This influence is qualitatively assessed through a rise in the clad temperature, a reduction of material plasticity and clad thickness.

  3. Data mining-aided materials discovery and optimization

    Directory of Open Access Journals (Sweden)

    Wencong Lu

    2017-09-01

    Full Text Available Recent developments in data mining-aided materials discovery and optimization are reviewed in this paper, and an introduction to the materials data mining (MDM process is provided using case studies. Both qualitative and quantitative methods in machine learning can be adopted in the MDM process to accomplish different tasks in materials discovery, design, and optimization. State-of-the-art techniques in data mining-aided materials discovery and optimization are demonstrated by reviewing the controllable synthesis of dendritic Co3O4 superstructures, materials design of layered double hydroxide, battery materials discovery, and thermoelectric materials design. The results of the case studies indicate that MDM is a powerful approach for use in materials discovery and innovation, and will play an important role in the development of the Materials Genome Initiative and Materials Informatics.

  4. Multi-Material Design Optimization of Composite Structures

    DEFF Research Database (Denmark)

    Hvejsel, Christian Frier

    properties. The modeling encompasses discrete orientationing of orthotropic materials, selection between different distinct materials as well as removal of material representing holes in the structure within a unified parametrization. The direct generalization of two-phase topology optimization to any number...... of a relaxation-based search heuristic that accelerates a Generalized Benders' Decomposition technique for global optimization and enables the solution of medium-scale problems to global optimality. Improvements in the ability to solve larger problems to global optimality are found and potentially further...... improvements may be obtained with this technique in combination with cheaper heuristics....

  5. Coolant monitoring systems for PWR reactors

    International Nuclear Information System (INIS)

    Luzhnov, A.M.; Morozov, V.V.; Tsypin, S.G.

    1987-01-01

    The ways of improving information capacity of existing monitoring systems and the necessity of designing new ones for coolant monitoring are reviewed. A wide research program on development of coolant monitoring systems in PWR reactors is analyzed. The possible applications of in-core and out-of-core detectors for coolant monitoring are demonstrated

  6. Organic coolant in Winnipeg riverbed sediments

    International Nuclear Information System (INIS)

    Guthrie, J.E.; Acres, O.E.

    1979-03-01

    Between January and May 1977 a prolonged leak of organic coolant occurred from the Whiteshell Nuclear Research Establishment's nuclear reactor, and a minimum of 1450 kg of coolant entered the Winnipeg River and was deposited on the riverbed. The level of radioactivity associated with this coolant was low, contributing less than 0.2 μGy (0.02 mrad) a year to the natural background gamma radiation field from the riverbed. The concentration of coolant in the water samples never exceeded 0.02 mg/L, the lower limit of detection. The mortality of crayfish, held in cages where the riverbed was covered with the largest deposits of coolant, was not significantly different from that in the control cages upstream of the outfall. No evidence of fish kill was found. (author)

  7. Correlation between Ni base alloys surface conditioning and cation release mitigation in primary coolant

    Energy Technology Data Exchange (ETDEWEB)

    Clauzel, M.; Guillodo, M.; Foucault, M. [AREVA NP SAS, Technical Centre, Le Creusot (France); Engler, N.; Chahma, F.; Brun, C. [AREVA NP SAS, Chemistry and Radiochemistry Group, Paris La Defense (France)

    2010-07-01

    The mastering of the reactor coolant system radioactive contamination is a real stake of performance for operating plants and new builds. The reduction of activated corrosion products deposited on RCS surfaces allows minimizing the global dose integrated by workers which supports the ALARA approach. Moreover, the contamination mastering limits the volumic activities in the primary coolant and thus optimizes the reactor shutdown duration and environment releases. The main contamination sources on PWR are due to Co-60 and Co-58 nuclides which come respectively Co-59 and Ni-58, naturally present in alloys used in the RCS. Co is naturally present as an impurity in alloys or as the main component of hardfacing materials (Stellites™). Ni is released mainly by SG tubes which represent the most important surface of the RCS. PWR steam generators (SG), due to the huge wetted surface are the main source of corrosion products release in the primary coolant circuit. As corrosion products may be transported throughout the whole circuit, activated in the core, and redeposited all over circuit surfaces, resulting in an increase of activity buildup, it is of primary importance to gain a better understanding of phenomenon leading to corrosion product release from SG tubes before setting up mitigation measures. Previous studies have shown that SG tubing made of the same material had different release rates. To find the origin of these discrepancies, investigations have been performed on tubes at the as-received state and after exposure to a nominal primary chemistry in titanium recirculating loop. These investigations highlighted the existence of a correlation between the inner surface metallurgical properties and the release of corrosion products in primary coolant. Oxide films formed in nominal primary chemistry are always protective, their morphology and their composition depending strongly on the geometrical, metallurgical and physico-chemical state of the surface on which they

  8. Operation diagnostics of the reactor coolant pumps in the Jaslovske Bohunice nuclear power plant, CSSR

    International Nuclear Information System (INIS)

    Bahna, J.; Jaros, I.; Oksa, G.

    1990-01-01

    The state of the art of the materials basis, the diagnostics methods used, organization of data collection and processing, and some results of routine and specific investigations concerned with diagnosis of the reactor coolant pump in the Jaslovske Bohunice NPP V-1 are presented. Some information is given about the reactor coolant pump monitor developed in the VUJE. (author)

  9. Analysis of a water-coolant leak into a very high-temperature vitrification chamber

    International Nuclear Information System (INIS)

    Felicione, F. S.

    1998-01-01

    A coolant-leakage incident occurred during non-radioactive operation of the Plasma Hearth Process waste-vitrification development system at Argonne National Laboratory when a stray electric arc ruptured az water-cooling jacket. Rapid evaporation of the coolant that entered the very high-temperature chamber pressurized the normally sub-atmospheric system above ambient pressure for over 13 minutes. Any positive pressurization, and particularly a lengthy one, is a safety concern since this can cause leakage of contaminants from the system. A model of the thermal phenomena that describe coolant/hot-material interactions was developed to better understand the characteristics of this type of incident. The model is described and results for a variety of hypothetical coolant-leak incidents are presented. It is shown that coolant leak rates above a certain threshold will cause coolant to accumulate in the chamber, and evaporation from this pool can maintain positive pressure in the system long after the leak has been stopped. Application of the model resulted in reasonably good agreement with the duration of the pressure measured during the incident. A closed-form analytic solution is shown to be applicable to the initial leak period in which the peak pressures are generated, and is presented and discussed

  10. Fracture mechanics evaluation for at typical PWR primary coolant pipe

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T. [Kansai Electric Power Company, Osaka (Japan); Shimizu, S.; Ogata, Y. [Mitsubishi Heavy Industries, Ltd., Kobe (Japan)

    1997-04-01

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years.

  11. Fracture mechanics evaluation for at typical PWR primary coolant pipe

    International Nuclear Information System (INIS)

    Tanaka, T.; Shimizu, S.; Ogata, Y.

    1997-01-01

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years

  12. LWR and HTGR coolant dynamics: the containment of severe accidents

    International Nuclear Information System (INIS)

    Theofanous, T.G.; Gherson, P.; Nourbakhsh, H.P.; Hu, K.; Iyer, K.; Viskanta, R.; Lommers, L.

    1983-07-01

    This is the final report of a project containing three major tasks. Task I deals with the fundamental aspects of energetic fuel/coolant interactions (steam explosions) as they pertain to LWR core melt accidents. Task II deals with the applied aspects of LWR core melt accident sequences and mechanisms important to containment response, and includes consideration of energetic fuel/coolant interaction events, as well as non-explosive ones, corium material disposition and eventual coolability, and containment pressurization phenomena. Finally, Task III is concerned with HTGR loss of forced circulation accidents. This report is organized into three major parts corresponding to these three tasks respectively

  13. Assessment of effects of Fort St. Vrain HTGR primary coolant on Alloy 800. Final report

    International Nuclear Information System (INIS)

    Trester, P.W.; Johnson, W.R.; Simnad, M.T.; Burnette, R.D.; Roberts, D.I.

    1982-08-01

    A comprehensive review was conducted of primary helium coolant chemistry data, based on current and past operating histories of helium-cooled, high-temperature reactors (HTGRs), including the Fort St. Vrain (FSV) HTGR. A reference observed FSV reactor coolant environment was identified. Further, a slightly drier expected FSV coolant chemistry was predicted for reactor operation at 100% of full power. The expected environment was compared with helium test environments used in the US, United Kingdom, Germany, France, and Japan. Based on a comprehensive review and analysis of mechanical property data reported for Alloy 800 tested in controlled-impurity helium environments (and in air when appropriate for comparison), an assessment was made of the effect of FSV expected helium chemistry on material properties of alloy 800, with emphasis on design properties of the Alloy 800 material utilized in the FSV steam generators

  14. Free material optimization for laminated plates and shells

    DEFF Research Database (Denmark)

    Weldeyesus, Alemseged Gebrehiwot; Stolpe, Mathias

    2016-01-01

    Free Material Optimization (FMO) is a powerful approach for conceptual optimal design of composite structures. The design variable in FMO is the entire elastic material tensor which is allowed to vary almost freely over the design domain. The imposed requirements on the tensor are that it is symm......Free Material Optimization (FMO) is a powerful approach for conceptual optimal design of composite structures. The design variable in FMO is the entire elastic material tensor which is allowed to vary almost freely over the design domain. The imposed requirements on the tensor...

  15. CANDU with supercritical water coolant: conceptual design features

    International Nuclear Information System (INIS)

    Spinks, N.

    1997-01-01

    An advanced CANDU reactor, with supercritical water as coolant, has many attractive design features. The pressure exceeds 22 MPa but coolant temperatures in excess of 370 degrees C can be reached without encountering the two-phase region with its associated fuel-dry-out and flow-instability problems. Increased coolant temperature leads to increased plant thermodynamic efficiency reducing unit energy cost through reduced specific capital cost and reduced fueling cost. Increased coolant temperature leads to reduced void reactivity via reduced coolant in-core density. Light water becomes a coolant option. To preserve neutron economy, an advanced fuel channel is needed and is described below. A supercritical-water-cooled CANDU can evolve as fuel capabilities evolve to withstand increasing coolant temperatures. (author)

  16. Nanofluid as coolant for grinding process: An overview

    Science.gov (United States)

    Kananathan, J.; Samykano, M.; Sudhakar, K.; Subramaniam, S. R.; Selavamani, S. K.; Manoj Kumar, Nallapaneni; Keng, Ngui Wai; Kadirgama, K.; Hamzah, W. A. W.; Harun, W. S. W.

    2018-04-01

    This paper reviews the recent progress and applications of nanoparticles in lubricants as a coolant (cutting fluid) for grinding process. The role of grinding machining in manufacturing and the importance of lubrication fluids during material removal are discussed. In grinding process, coolants are used to improve the surface finish, wheel wear, flush the chips and to reduce the work-piece thermal deformation. The conventional cooling technique, i.e., flood cooling delivers a large amount of fluid and mist which hazardous to the environment and humans. Industries are actively looking for possible ways to reduce the volume of coolants used in metal removing operations due to the economical and ecological impacts. Thus as an alternative, an advanced cooling technique known as Minimum Quantity Lubrication (MQL) has been introduced to the enhance the surface finish, minimize the cost, to reduce the environmental impacts and to reduce the metal cutting fluid consumptions. Nanofluid is a new-fangled class of fluids engineered by dispersing nanometre-size solid particles into base fluids such as water, lubrication oils to further improve the properties of the lubricant or coolant. In addition to advanced cooling technique review, this paper also reviews the application of various nanoparticles and their performance in grinding operations. The performance of nanoparticles related to the cutting forces, surface finish, tool wear, and temperature at the cutting zone are briefly reviewed. The study reveals that the excellent properties of the nanofluid can be beneficial in cooling and lubricating application in the manufacturing process.

  17. Transient heat transfer phenomena of the liquid metal layer cooled by overlying R113 coolant

    International Nuclear Information System (INIS)

    Cho, J. S.; Seo, K. R.; Jung, C. H.; Park, R. J.; Kim, S. B.

    1999-01-01

    To understand the fundamental relationship of the natural convection heat transfer in the molten metal pool and the boiling mechanism of the overlying coolant, experiments were performed for the transient heat transfer of the liquid metal pool with overlying R113 coolant with boiling. The simulant molten pool material is tin (Sn) with the melting temperature of 232 deg C. The metal pool is heated from the bottom surface and the coolant is injected onto the molten metal pool. Tests were conducted by changing the bottom surface boundary condition. The bottom heating condition was varied from 8kW to 14kW. As a result the boiling mechanism of the R113 coolant is changed from the nuclear boiling to film boiling. The Nusselt number and the Rayleigh number in the molten metal pool region obtained as functions of time. Analysis was made for the relationship between the heat flux and the temperature difference of the metal layer surface temperature and the boiling coolant bulk temperature

  18. Nuclear reactor coolant channels

    International Nuclear Information System (INIS)

    Macbeth, R.V.

    1978-01-01

    A nuclear reactor coolant channel is described that is suitable for sub-cooled reactors as in pressurised water reactors as well as for bulk boiling, as in boiling water reactors and steam generating nuclear reactors. The arrangement aims to improve heat transfer between the fuel elements and the coolant. Full constructional details are given. See also other similar patents by the author. (U.K.)

  19. Crack stability analysis of low alloy steel primary coolant pipe

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T.; Kameyama, M. [Kansai Electric Power Company, Osaka (Japan); Urabe, Y. [Mitsubishi Heavy Industries, Ltd., Takasago (Japan)] [and others

    1997-04-01

    At present, cast duplex stainless steel has been used for the primary coolant piping of PWRs in Japan and joints of dissimilar material have been applied for welding to reactor vessels and steam generators. For the primary coolant piping of the next APWR plants, application of low alloy steel that results in designing main loops with the same material is being studied. It means that there is no need to weld low alloy steel with stainless steel and that makes it possible to reduce the welding length. Attenuation of Ultra Sonic Wave Intensity is lower for low alloy steel than for stainless steel and they have advantageous inspection characteristics. In addition to that, the thermal expansion rate is smaller for low alloy steel than for stainless steel. In consideration of the above features of low alloy steel, the overall reliability of primary coolant piping is expected to be improved. Therefore, for the evaluation of crack stability of low alloy steel piping to be applied for primary loops, elastic-plastic future mechanics analysis was performed by means of a three-dimensioned FEM. The evaluation results for the low alloy steel pipings show that cracks will not grow into unstable fractures under maximum design load conditions, even when such a circumferential crack is assumed to be 6 times the size of the wall thickness.

  20. EDF PWRs primary coolant purification strategies

    International Nuclear Information System (INIS)

    Gressier, Frederic; Mascarenhas, Darren; Taunier, Stephane; Le-Calvar, Marc; Bretelle, Jean-Luc; Ranchoux, Gilles

    2012-09-01

    In order to achieve a good physico-chemical quality of the primary coolant fluid, the primary water is continuously treated by the Chemical and Volume Control System (CVCS). This system is composed of a treatment chain containing filters and ion-exchange resins. In the EDF design, an upstream filter is placed before the resin so as to prevent it from being saturated with insoluble particles. Then, the fluid passes through several resin beds (up to 3 depending on the configuration) and again through a downstream filter that prevents resin fines dissemination into the reactor coolant. Much work has been conducted in the last 5 years on the homogenisation of products and usage on French EDF NPP primary coolant treatment, while taking into account the compromise between source term reduction, liquid and solid waste, and buying and disposal costs. Two national markets have been created, and two operational documents for chemists on site have been published: a filtration guideline and an ion-exchange resin guideline. Both documents give general information about the products used, how are they characterized and selected for national market (technical requirements, standards and tests), how they should be used and what are the change-out criteria. They are also periodically updated based on feedback from sites. The positive impact on resin and filter lifetime (extension of some, limitation of others), homogenisation of products and usage will be presented. Moreover, EDF is constantly in the process of improving the current purification methods, as well as researching the use of existing and novel technologies. In this field, recent experiments on short loading of resin during reactor shutdown has been tested on site with success. In addition, work is done on silica free filters, filter consumption and filter chemical release. An overview of these optimization methods will be given. (authors)

  1. Optimizing a reconfigurable material via evolutionary computation

    Science.gov (United States)

    Wilken, Sam; Miskin, Marc Z.; Jaeger, Heinrich M.

    2015-08-01

    Rapid prototyping by combining evolutionary computation with simulations is becoming a powerful tool for solving complex design problems in materials science. This method of optimization operates in a virtual design space that simulates potential material behaviors and after completion needs to be validated by experiment. However, in principle an evolutionary optimizer can also operate on an actual physical structure or laboratory experiment directly, provided the relevant material parameters can be accessed by the optimizer and information about the material's performance can be updated by direct measurements. Here we provide a proof of concept of such direct, physical optimization by showing how a reconfigurable, highly nonlinear material can be tuned to respond to impact. We report on an entirely computer controlled laboratory experiment in which a 6 ×6 grid of electromagnets creates a magnetic field pattern that tunes the local rigidity of a concentrated suspension of ferrofluid and iron filings. A genetic algorithm is implemented and tasked to find field patterns that minimize the force transmitted through the suspension. Searching within a space of roughly 1010 possible configurations, after testing only 1500 independent trials the algorithm identifies an optimized configuration of layered rigid and compliant regions.

  2. Safety and environmental impact of the dual coolant blanket concept. SEAL subtask 6.2, final report

    International Nuclear Information System (INIS)

    Kleefeldt, K.; Dammel, F.; Gabel, K.; Jordan, T.; Schmuck, I.

    1996-03-01

    The European Union has been engaged since 1989 in a programme to develop tritium breeding blankets for application in a fusion power reactor. There are four concepts under development, namely two of the solid breeder type and two of the liquid breeder type. At the Forschungszentrum Karlsruhe one blanket concept of each line has been pursued so far with the so-called dual coolant type representing the liquid breeder line. In the dual coolant concept the breeder material (Pb-17Li) is circulated to external heat exchangers to carry away the bulk of the generated heat and to extract the tritium. Additionally, the heavily loaded first wall is cooled by high pressure helium gas. The safety and environmental impact of the dual coolant blanket concept has been assessed as part of the blanket concept selection excercise, a European concerted action, aiming at selecting the two most promising concepts for futher development. The topics investigated are: (a) Blanket materials and toxic materials inventory, (b) energy sources for mobilisation, (c) fault tolerance, (d) tritium and activation products release, and (e) waste generation and management. No insurmountable safety problems have been identified for the dual coolant blanket. The results of the assessment are described in this report. The information collected is also intended to serve as input to the EU 'Safety and Environmental Assessment of Fusion longterm Programme' (SEAL). The unresolved issues pertaining to the dual coolant blanket which would need further investigations in future programmes are outlined herein. (orig.) [de

  3. Water quality control device and water quality control method for reactor primary coolant system

    International Nuclear Information System (INIS)

    Wada, Yoichi; Ibe, Eishi; Watanabe, Atsushi.

    1995-01-01

    The present invention is suitable for preventing defects due to corrosion of structural materials in a primary coolant system of a BWR type reactor. Namely, a concentration measuring means measures the concentration of oxidative ingredients contained in a reactor water. A reducing electrode is disposed along a reactor water flow channel in the primary coolant system and reduces the oxidative ingredients. A reducing counter electrode is disposed along the reactor water flow channel in the primary coolant system, and electrically connected to the reducing electrode. The reactor structural materials are used as a reference electrode providing a reference potential to the reducing electrode and the reducing counter electrode. A potential control means controls the potential of the reducing electrode relative to the reference potential based on the signals from the concentration measuring means. A stable reference potential in a region where an effective oxygen concentration is stable can be obtained irrespective of the change of operation conditions by using the reactor structural materials disposed to a boiling region in the reactor core as a reference electrode. As a result, the water quality can be controlled at high accuracy. (I.S.)

  4. Flow boiling test of GDP replacement coolants

    International Nuclear Information System (INIS)

    Park, S.H.

    1995-01-01

    The tests were part of the CFC replacement program to identify and test alternate coolants to replace CFC-114 being used in the uranium enrichment plants at Paducah and Portsmouth. The coolants tested, C 4 F 10 and C 4 F 8 , were selected based on their compatibility with the uranium hexafluoride process gas and how well the boiling temperature and vapor pressure matched that of CFC-114. However, the heat of vaporization of both coolants is lower than that of CFC-114 requiring larger coolant mass flow than CFC-114 to remove the same amount of heat. The vapor pressure of these coolants is higher than CFC-114 within the cascade operational range, and each coolant can be used as a replacement coolant with some limitation at 3,300 hp operation. The results of the CFC-114/C 4 F 10 mixture tests show boiling heat transfer coefficient degraded to a minimum value with about 25% C 4 F 10 weight mixture in CFC-114 and the degree of degradation is about 20% from that of CFC-114 boiling heat transfer coefficient. This report consists of the final reports from Cudo Technologies, Ltd

  5. Cleaning of aluminum after machining with coolants

    International Nuclear Information System (INIS)

    Roop, B.

    1992-01-01

    An x-ray photoemission spectroscopic study was undertaken to compare the cleaning of the Advanced Photon Source (APS) aluminum extrusion storage ring vacuum chambers after machining with and without water soluble coolants. While there was significant contamination left by the coolants, the cleaning process was capable of removing the residue. The variation of the surface and near surface composition of samples machined either dry or with coolants was negligible after cleaning. The use of such coolants in the machining process is therefore recommended

  6. Prototypic corium oxidation and hydrogen release during the Fuel-Coolant Interaction

    Czech Academy of Sciences Publication Activity Database

    Tyrpekl, J.; Piluso, P.; Bakardjieva, Snejana; Nižňanský, D.; Rehspringer, J.L.; Bezdička, Petr; Dugne, O.

    2015-01-01

    Roč. 75, JAN (2015), s. 210-218 ISSN 0306-4549 Institutional support: RVO:61388980 Keywords : Corium * Fuel -Coolant Interaction * Hydrogen release * Material effect * Nuclear reactor severe accident Subject RIV: CA - Inorganic Chemistry Impact factor: 1.174, year: 2015

  7. Coolant radiolysis studies in the high temperature, fuelled U-2 loop in the NRU reactor

    International Nuclear Information System (INIS)

    Elliot, A.J.; Stuart, C.R.

    2008-06-01

    An understanding of the radiolysis-induced chemistry in the coolant water of nuclear reactors is an important key to the understanding of materials integrity issues in reactor coolant systems. Significant materials and chemistry issues have emerged in Pressurized Water Reactors (PWR), Boiling Water Reactors (BWR) and CANDU reactors that have required a detailed understanding of the radiation chemistry of the coolant. For each reactor type, specific computer radiolysis models have been developed to gain insight into radiolysis processes and to make chemistry control adjustments to address the particular issue. In this respect, modelling the radiolysis chemistry has been successful enough to allow progress to be made. This report contains a description of the water radiolysis tests performed in the U-2 loop, NRU reactor in 1995, which measured the CHC under different physical conditions of the loop such as temperature, reactor power and steam quality. (author)

  8. Optimization strategies for discrete multi-material stiffness optimization

    DEFF Research Database (Denmark)

    Hvejsel, Christian Frier; Lund, Erik; Stolpe, Mathias

    2011-01-01

    Design of composite laminated lay-ups are formulated as discrete multi-material selection problems. The design problem can be modeled as a non-convex mixed-integer optimization problem. Such problems are in general only solvable to global optimality for small to moderate sized problems. To attack...... which numerically confirm the sought properties of the new scheme in terms of convergence to a discrete solution....

  9. Enhanced heat transport in environmental systems using microencapsulated phase change materials

    Science.gov (United States)

    Colvin, D. P.; Mulligan, J. C.; Bryant, Y. G.

    1992-01-01

    A methodology for enhanced heat transport and storage that uses a new two-component fluid mixture consisting of a microencapsulated phase change material (microPCM) for enhanced latent heat transport is outlined. SBIR investigations for NASA, USAF, SDIO, and NSF since 1983 have demonstrated the ability of the two-component microPCM coolants to provide enhancements in heat transport up to 40 times over that of the carrier fluid alone, enhancements of 50 to 100 percent in the heat transfer coefficient, practically isothermal operation when the coolant flow is circulated in an optimal manner, and significant reductions in pump work.

  10. Effect of parameter variation of reactor coolant pump on loss of coolant accident consequence

    International Nuclear Information System (INIS)

    Dang Gaojian; Huang Daishun; Gao Yingxian; He Xiaoqiang

    2015-01-01

    In this paper, the analyses were carried out on Ling'ao nuclear power station phase II to study the consequence of the loss of coolant accident when the homologous characteristic curves and free volumes of the reactor coolant pump changed. Two different pumps used in the analysis were 100D (employed on Ling'ao nuclear power station phase II) and ANDRITZ. The thermal characteristics in the large break LOCA accident were analyzed using CATHRE GB and CONPATE4, and the reactor coolant system hydraulics load during blow-clown phase of LOCA accident was analyzed using ATHIS and FORCET. The calculated results show that the homologous characteristic curves have great effect on the thermal characteristics of reactor core during the reflood phase of the large break LOCA accident. The maximum cladding surface temperatures are quite different when the pump's homologous characteristic curves change. On the other hand, the pump's free volume changing results in the variation of the LOCA rarefaction wave propagation, and therefore, the reactor coolant system hydraulic load in LOCA accident would be different. (authors)

  11. Radionuclide deposits on heat transfer surfaces in a circumt with dissociating N2O4 coolant

    International Nuclear Information System (INIS)

    Dolgov, V.M.; Katanaev, A.O.; Komissarov, F.D.

    1984-01-01

    Radionuclides deposits on heat transfer surfaces of a circuit with dissociating coolant are studied. The areas of preferential deposition of 54 Mn, 51 Cr, 134 Cs and their distribution along the heating and cooling surfaces are determined. The comparison of the obtained data on the nuclide and chemical compositions of the deposits in the areas of N 2 O 4 coolant heating and cooling shows that 54 Mn, 51 Cr, 134 Cs deposit preferentially on heat transfer surfaces in the area of the coolant heating. Fixed and movable deposits consists of the structural material oxides. The quantity of radionuclides in the deposits on the surfaces of heat transfer tubes in the area of cooling decreases with the coolant temperature drop

  12. Coolant make-up device for BWR type reactor

    International Nuclear Information System (INIS)

    Sasagawa, Hiroshi.

    1994-01-01

    In a coolant make-up device, an opening of a pressure equalizing pipeline in a pressure vessel is disposed in coolants above a reactor core and below a usual fluctuation range of a reactor vessel water level. Further, a float check valve is disposed to the pressure equalizing pipeline for preventing coolants in the pressure vessel flowing into the pipeline. If the water level in the pressure vessel is lowered than the setting position for the float check valve, the float drops by its own weight to open the opening of the pressure equalizing pipeline. Then, steams in the pressure vessel are flown into the pipeline, to equalize the pressure between a coolant storage tank and the pressure vessel of the reactor. Coolants in the coolant storage tank is injected to the pressure vessel by way of the water injection pipeline due to the difference of the pressure head between the water level in the coolants storage tank and the water level in the pressure vessel. If the coolants are lowered than the setting position for the float check value, the float check valve does not close unless the water level is recovered to the setting position for the float valve and, accordingly, the coolant make-up is continued. (N.H.)

  13. Natural convection heat transfer characteristics of the molten metal pool with solidification by boiling coolant

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jae Seon; Suh, Kune Yull; Chung, Chang Hyun [Seoul National University, Seoul (Korea, Republic of); Paark, Rae Joon; Kim, Sang Baik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    This paper presents results of experimental studies on the heat transfer and solidification of the molten metal pool with overlying coolant with boiling. The metal pool is heated from the bottom surface and coolant is injected onto the molten metal pool. Ad a result, the crust, which is a solidified layer, may form at the top of the molten metal pool. Heat transfer is accomplished by a conjugate mechanism, which consists of the natural convection of the molten metal pool, the conduction in the crust layer and the convective boiling heat transfer in the coolant. This work examines the crust formation and the heat transfer rate on the molten metal pool with boiling coolant. The simulant molten pool material is tin (Sn) with the melting temperature of 232 deg C. Demineralized water is used as the working coolant. The crust layer thickness was ostensibly varied by the heated bottom surface temperature of the test section, but not much affected by the coolant injection rate. The correlation between the Nusselt number and the Rayleigh number in the molten metal pool region of this study is compared against the crust formation experiment without coolant boiling and the literature correlations. The present experimental results are higher than those from the experiment without coolant boiling, but show general agreement with the Eckert correlation, with some deviations in the high and low ends of the Rayleigh number. This discrepancy is currently attributed to concurrent rapid boiling of the coolant on top of the metal layer. 10 refs., 4 figs., 1 tab. (Author)

  14. Natural convection heat transfer characteristics of the molten metal pool with solidification by boiling coolant

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jae Seon; Suh, Kune Yull; Chung, Chang Hyun [Seoul National University, Seoul (Korea, Republic of); Paark, Rae Joon; Kim, Sang Baik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    This paper presents results of experimental studies on the heat transfer and solidification of the molten metal pool with overlying coolant with boiling. The metal pool is heated from the bottom surface and coolant is injected onto the molten metal pool. Ad a result, the crust, which is a solidified layer, may form at the top of the molten metal pool. Heat transfer is accomplished by a conjugate mechanism, which consists of the natural convection of the molten metal pool, the conduction in the crust layer and the convective boiling heat transfer in the coolant. This work examines the crust formation and the heat transfer rate on the molten metal pool with boiling coolant. The simulant molten pool material is tin (Sn) with the melting temperature of 232 deg C. Demineralized water is used as the working coolant. The crust layer thickness was ostensibly varied by the heated bottom surface temperature of the test section, but not much affected by the coolant injection rate. The correlation between the Nusselt number and the Rayleigh number in the molten metal pool region of this study is compared against the crust formation experiment without coolant boiling and the literature correlations. The present experimental results are higher than those from the experiment without coolant boiling, but show general agreement with the Eckert correlation, with some deviations in the high and low ends of the Rayleigh number. This discrepancy is currently attributed to concurrent rapid boiling of the coolant on top of the metal layer. 10 refs., 4 figs., 1 tab. (Author)

  15. Natural convection heat transfer characteristics of the molten metal pool with solidification by boiling coolant

    International Nuclear Information System (INIS)

    Cho, Jae Seon; Suh, Kune Yull; Chung, Chang Hyun; Park, Rae Joon; Kim, Sang Baik

    1997-01-01

    This paper presents results of experimental studies on the heat transfer and solidifcation of the molten metal pool with overlying coolant with boiling. The metal pool is heated from the bottom surface and coolant is injected onto the molten metal pool. As a result, the crust, which is a solidified layer, may form at the top of the molten metal pool. Heat transfer is accomplished by a conjugate mechanism, which consists of the natural convection of the molten metal pool, the conduction in the crust layer and the convective boiling heat transfer in the coolant. This work examines the crust formation and the heat transfer rate on the molten metal pool with boiling coolant. The simulant molten pool material is tin (Sn) with the melting temperature of 232 .deg. C. Demineralized water is used as the working coolant. The crust layer thickness was ostensibly varied by the heated bottom surface temperature of the test section, but not much affected by the coolant injection rate. The correlation between the Nusselt number and the Rayleight number in the molten metal pool region of this study is compared against the crust formation experiment without coolant boiling and the literature correlations. The present experimental results are higher than those from the experiment without coolant boiling, but show general agreement with the Eckert correlation, with some deviations in the high and low ends of the Rayleigh number. This discrepancy is currently attributed to concurrent rapid boiling of the coolant on top of the metal layer

  16. Reactor coolant cleanup device

    International Nuclear Information System (INIS)

    Igarashi, Noboru.

    1986-01-01

    Purpose: To enable to introduce reactor water at high temperature and high pressure as it is, as well as effectively adsorb to eliminate cobalt in reactor water. Constitution: The coolant cleanup device comprises a vessel main body inserted to coolant pipeway circuits in a water cooled reactor power plant and filters contained within the vessel main body. The filters are prepared by coating and baking powder of metal oxides such as manganese ferrite having a function capable of adsorbing cobalt in the coolants onto the surface of supports made of metals or ceramics resistant to strong acids and alkalies in the form of three-dimensional network structure, for example, zircaloy-2, SUS 303 and the zirconia (baking) to form a basic filter elements. The basic filter elements are charged in plurality to the vessel main body. (Kawaiami, Y.)

  17. Coolant cleanup method in a nuclear reactor

    International Nuclear Information System (INIS)

    Kubota, Masayoshi; Nishimura, Shigeoki; Takahashi, Sankichi; Izumi, Kenkichi; Motojima, Kenji.

    1983-01-01

    Purpose : To effectively adsorb to remove low molecular weight organic substances from iron exchange resins for use in the removal of various radioactive nucleides contained in reactor coolants. Method : Reactor coolants are recycled by a main recyling pump in a nuclear reactor and a portion of the coolants is cooled and, thereafter, purified in a coolant desalter. While on the other hand, high pressure steams generated from the reactor are passed through a turbine, cooled in a condensator, eliminated with claddings or the likes by the passage through a filtration desalter using powderous ion exchange resins and then further passed through a desalter (filled with granular ion exchange resins). For instance, an adsorption and removing device for organic substances (resulted through the decomposition of ion exchange resins) precoated with activated carbon powder or filled with granular activated carbon is disposed at the downstream for each of the desalters. In this way, the organic substances in the coolants are eliminated to prevent the reduction in the desalting performance of the ion exchange resins caused by the formation of complexes between organic substances and cobalt in the coolants, etc. In this way, the coolant cleanup performance is increased and the amount of wasted ion exchange resins can be decreased. (Horiuchi, T.)

  18. Physical properties of organic coolants

    International Nuclear Information System (INIS)

    Debbage, A.G.; Garton, D.A.; Kinneir, J.H.

    1963-03-01

    Density, viscosity, specific heat, vapour pressure and calorific value were measured within the temperature range 100 - 400 deg C for mixtures of Santowax R with pyrolytic high boiler and Santowax R with O.M.R.E. radiolytic high boiler; in addition measurements were made on Santowax OM, X-7 standard, X-7 loop coolant and O.M.R.E. coolant supplied by Atomic Energy of Canada Ltd. The accuracy of the measurements made were density (± 1/4%), viscosity (± 2%), specific heat (± 2%), vapour pressure (± 2%) and calorific value (± 1/2%). Thermal conductivity was calculated from an improved form of the Smiths equation with an accuracy within ± 6%. Equations fitted to the vapour pressure results were used to provide data outside the experimental range for burnout correlation purposes. The general effect of high boiler content on the specific heat and calorific values was small. The differences in physical property values for corresponding values of either pyrolytic or radiolytic high boiler were small for density (0.3%) and specific heat (2%), but quite large for viscosity (70%) with the pyrolytic high boiler mixture giving the higher value. The chemical analysis of all materials was based on gas chromatography and the relationship between this and an earlier distillation method established. (author)

  19. Fuel cladding interaction with water coolant in power reactors

    International Nuclear Information System (INIS)

    1985-11-01

    Water coolant chemistry and corrosion processes are important factors in reliable operation of NPP's, as at elevated temperatures water is aggressive towards structural materials. Water regimes for commercial Pressurized Water Reactors and Boiling Water Reactors were developed and proved to be satisfactory. Nevertheless, studies of operation experience continue and an amount of new Research and Development work is being conducted for further improvements of technology and better understanding of the physicochemical nature of those processes. In this report information is presented on the IAEA programme on fuel element cladding interaction with water coolant. Some results of this survey and recommendations made by the group of consultants who participated in this work are given as well as recommendations for continuation of this study. Separate abstracts were prepared for 6 papers of this report

  20. Monte Carlo modeling for realizing optimized management of failed fuel replacement

    International Nuclear Information System (INIS)

    Morishita, Kazunori; Yamamoto, Yasunori; Nakasuji, Toshiki

    2014-01-01

    Fuel cladding is one of the key components in a fission reactor to keep confining radioactive materials inside a fuel tube. During reactor operation, the cladding is however sometimes breached and radioactive materials leak from the fuel ceramic pellet into the coolant water through the breach. The primary coolant water is therefore monitored so that any leak is quickly detected, where the coolant water is periodically sampled and the concentration of, for example the radioactive iodine 131 (I-131), is measured. Depending on the measured concentration, the faulty fuel assembly with leaking rod is removed from the reactor and replaced by new one immediately or at the next refueling. In the present study, an effort has been made to develop a methodology to optimize the management for replacement of failed fuels due to cladding failures using the I-131 concentration measured in the sampled coolant water. A model numerical equation is proposed to describe the time evolution of I-131 concentration due to fuel leaks, and is then solved using the Monte-Carlo method as a function of sampling rate. Our results have indicated that, in order to achieve the rationalized management of failed fuels, higher resolution to detect a small amount of I-131 is not necessarily required but more frequent sampling is favorable. (author)

  1. Multirods burst tests under loss-of-coolant conditions

    International Nuclear Information System (INIS)

    Kawasaki, S.; Uetsuka, H.; Furuta, T.

    1983-01-01

    In order to know the upper limit of coolant flow area restriction in a fuel assembly under loss-of-coolant accidents in LWRs, burst tests of fuel bundles were performed. Each bundle consisted of 49 rods(7x7 rods), and bursts were conducted in flowing steam. In some cases, 4 rods were replaced by control rods with guide tubes in a bundle. After the burst, the ballooning behavior of each rod and the degree of coolant flow area restriction in the bundle were measured. Ballooning behavior of rods and degree of coolant flow channel restriction in bundles with control rods were not different from those without control rods. The upper limit of coolant flow channel restriction under loss-of-coolant conditions was estimated to be about 80%. (author)

  2. Extended Life Coolant Testing

    Science.gov (United States)

    2016-06-06

    number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 06-06-2016 2. REPORT TYPE Interim Report 3. DATES COVERED ... Corrosion Testing of Traditional and Extended Life Coolants 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Hansen, Gregory A. T...providing vehicle specific coolants. Several laboratory corrosion tests were performed according to ASTM D1384 and D2570, but with a 2.5x extended time

  3. Phenomena occuring in the reactor coolant system during severe core damage accidents

    International Nuclear Information System (INIS)

    Malinauskas, A.P.

    1990-01-01

    The reactor coolant system (RCS) of a nuclear power plant consists of the reactor pressure vessel and the piping and associated components that are required for the continuous circulation of the coolant which is used to maintain thermal equilibrium throughout the system. This paper discusses, how in the event of an accident, the RCS also serves as one of several barriers to the escape of radiotoxic material into the biosphere. The physical and chemical processes occurring within the RCS during normal operation of the reactor are relatively uncomplicated and are reasonably well understood. When the flow of coolant is properly adjusted, the thermal energy resulting from nuclear fission (or, in the shutdown mode, from radioactive decay processes) and secondary inputs, such as pumps, are exactly balanced by thermal losses through the RCS boundaries and to the various heat sinks that are employed to effect the conversion of heat to electrical energy. Because all of the heat and mass fluxes remain sensibly constant with time, mathematical descriptions of the thermophysical processes are relatively straightforward, even for boiling water reactor (BWR) systems. Although the coolant in a BWR does undergo phase changes, the phase boundaries remain well-defined and time-invariant

  4. Limits to fuel/coolant mixing

    International Nuclear Information System (INIS)

    Corradini, M.L.; Moses, G.A.

    1985-01-01

    The vapor explosion process involves the mixing of fuel with coolant prior to the explosion. A number of analysts have identified limits to the amount of fuel/coolant mixing that could occur within the reactor vessel following a core melt accident. Past models are reviewed and a sim plified approach is suggested to estimate the upper limit on the amount of fuel/coolant mixing pos sible. The approach uses concepts first advanced by Fauske in a different way. The results indicat that water depth is an important parameter as well as the mixing length scale D /SUB mix/ , and for large values of D /SUB mix/ the fuel mass mixed is limited to <7% of the core mass

  5. Effects of LWR coolant environments on fatigue design curves of carbon and low-alloy steels

    International Nuclear Information System (INIS)

    Chopra, O.K.; Shack, W.J.

    1998-03-01

    The ASME Boiler and Pressure Vessel Code provides rules for the construction of nuclear power plant components. Figures I-9.1 through I-9.6 of Appendix I to Section III of the code specify fatigue design curves for structural materials. While effects of reactor coolant environments are not explicitly addressed by the design curves, test data indicate that the Code fatigue curves may not always be adequate in coolant environments. This report summarizes work performed by Argonne National Laboratory on fatigue of carbon and low-alloy steels in light water reactor (LWR) environments. The existing fatigue S-N data have been evaluated to establish the effects of various material and loading variables such as steel type, dissolved oxygen level, strain range, strain rate, temperature, orientation, and sulfur content on the fatigue life of these steels. Statistical models have been developed for estimating the fatigue S-N curves as a function of material, loading, and environmental variables. The results have been used to estimate the probability of fatigue cracking of reactor components. The different methods for incorporating the effects of LWR coolant environments on the ASME Code fatigue design curves are presented

  6. Chemistry of liquid metal coolants and sensors

    International Nuclear Information System (INIS)

    Gnanasekaran, T.

    2015-01-01

    Liquid sodium is the coolant of choice for the current generation fast breeder reactors. When sodium contains low levels of dissolved non-metallic impurities, it is highly compatible with structural steels. When the dissolved oxygen level is high, corrosion and mass transfer in sodium-steel circuits are enhanced and this involves formation of NaxMyOz type of species (M = alloying components in steels). Experience has shown that this enhancement of corrosion in a sodium circuit with all austenitic steel structural materials would not be encountered if oxygen level in sodium is below ~ 5ppm. For understanding this observation, a complete knowledge on the phase diagrams of Na-M-O systems and the thermochemical data of all relevant NaxMyOz compounds is essential. This presentation would highlight the work carried out at IGCAR on the chemistry of liquid sodium and heavy liquid metal coolants. Work carried out on various sensors for their use in these liquid metal circuits would be described and their current status would be discussed

  7. Optimal configuration of microstructure in ferroelectric materials by stochastic optimization

    Science.gov (United States)

    Jayachandran, K. P.; Guedes, J. M.; Rodrigues, H. C.

    2010-07-01

    An optimization procedure determining the ideal configuration at the microstructural level of ferroelectric (FE) materials is applied to maximize piezoelectricity. Piezoelectricity in ceramic FEs differs significantly from that of single crystals because of the presence of crystallites (grains) possessing crystallographic axes aligned imperfectly. The piezoelectric properties of a polycrystalline (ceramic) FE is inextricably related to the grain orientation distribution (texture). The set of combination of variables, known as solution space, which dictates the texture of a ceramic is unlimited and hence the choice of the optimal solution which maximizes the piezoelectricity is complicated. Thus, a stochastic global optimization combined with homogenization is employed for the identification of the optimal granular configuration of the FE ceramic microstructure with optimum piezoelectric properties. The macroscopic equilibrium piezoelectric properties of polycrystalline FE is calculated using mathematical homogenization at each iteration step. The configuration of grains characterized by its orientations at each iteration is generated using a randomly selected set of orientation distribution parameters. The optimization procedure applied to the single crystalline phase compares well with the experimental data. Apparent enhancement of piezoelectric coefficient d33 is observed in an optimally oriented BaTiO3 single crystal. Based on the good agreement of results with the published data in single crystals, we proceed to apply the methodology in polycrystals. A configuration of crystallites, simultaneously constraining the orientation distribution of the c-axis (polar axis) while incorporating ab-plane randomness, which would multiply the overall piezoelectricity in ceramic BaTiO3 is also identified. The orientation distribution of the c-axes is found to be a narrow Gaussian distribution centered around 45°. The piezoelectric coefficient in such a ceramic is found to

  8. Reactor coolant pump transportation incident

    International Nuclear Information System (INIS)

    Noce, D.

    1992-01-01

    This paper reports on an incident, which occurred on August 27, 1991, in which a Reactor Coolant Pump motor en route from Surry Power Station to Westinghouse repair facilities struck the overpass at the junction of Interstate 64 and Jefferson Avenue in Newport News, Virginia. The transport container that housed the reactor coolant pump motor failed to clear the overpass. The force of the impact dislodged the container and motor from the truck bed, and it landed on the acceleration land and road shoulder. Upon impact, the container broke open and exposed the reactor coolant pump motor. Incidental radioactively contaminated water that remained in the motor coolers drained onto the road, contaminating the aggregate as well as the underlying gravel

  9. Grain size control method for the nozzles of AP1000 primary coolant pipes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shenglong [State Key Laboratory for Advanced Metals and Materials, University of Science & Technology Beijing, Beijing 100083 (China); Sun, Yanhui [Collaborative Innovation Center of Steel Technology, University of Science & Technology Beijing, Beijing 100083 (China); Yang, Bin, E-mail: byang@ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science & Technology Beijing, Beijing 100083 (China); Collaborative Innovation Center of Steel Technology, University of Science & Technology Beijing, Beijing 100083 (China); Zhang, Mingxian [State Key Laboratory for Advanced Metals and Materials, University of Science & Technology Beijing, Beijing 100083 (China)

    2017-04-01

    Highlights: • Design a new forging technology for AP1000 primary coolant pipe. • Method combining FEM and scale-down experiments is adopted. • The grain size and distribution in simulation and experiment are consistent. • Get optimal forging parameters for production guiding. - Abstract: AP1000 primary coolant pipe is made of 316LN austenitic stainless steel. It is a large special-shaped pipe manufactured by integral forging technology. Owing to non-uniform temperature and deformation during forging, coarse grains often occur in the boss sections of the pipe especially in the nozzles’ parts. In the present study, a new forging technology was proposed to control the grain size. The finite element method was used to optimize the forging speed and friction coefficient, then the scale-down experiments were performed for comparison. The forging speed is suggested to be less than 20 mm/s, and effective lubricants should be used to decrease the friction coefficient. The errors of the grain size between the experiment and simulation are less than 20%.

  10. Grain size control method for the nozzles of AP1000 primary coolant pipes

    International Nuclear Information System (INIS)

    Wang, Shenglong; Sun, Yanhui; Yang, Bin; Zhang, Mingxian

    2017-01-01

    Highlights: • Design a new forging technology for AP1000 primary coolant pipe. • Method combining FEM and scale-down experiments is adopted. • The grain size and distribution in simulation and experiment are consistent. • Get optimal forging parameters for production guiding. - Abstract: AP1000 primary coolant pipe is made of 316LN austenitic stainless steel. It is a large special-shaped pipe manufactured by integral forging technology. Owing to non-uniform temperature and deformation during forging, coarse grains often occur in the boss sections of the pipe especially in the nozzles’ parts. In the present study, a new forging technology was proposed to control the grain size. The finite element method was used to optimize the forging speed and friction coefficient, then the scale-down experiments were performed for comparison. The forging speed is suggested to be less than 20 mm/s, and effective lubricants should be used to decrease the friction coefficient. The errors of the grain size between the experiment and simulation are less than 20%.

  11. Magnetic forces on a ferromagnetic HT-9 first wall/blanket and coolant pipe

    International Nuclear Information System (INIS)

    Lechtenberg, T.A.; Dahms, C.; Attaya, H.; Univ. of Wisconsin, Madison)

    1984-01-01

    The GFUN 3D code was used to model the toroidal fields and determine the magnetic body forces on the STARFIRE design for coolant pipes exiting the first wall sector and first wall/blanket modules. The HT-9 coolant pipes were modeled on the basis of a square bar having the same length and material volume as the coolant pipes. The stress analysis was performed using these magnetic forces applied to a pipe of 4 meters length, 8.25 cm O.D., and 0.75 cm thickness by the MODSAP stress analysis code. For the first wall/blanket module, GFUN 3D does not allow full modeling of the complex thin-walled structure or numerous small tubes because of the element aspect ratio limitations. Therefore, to obtain three dimensional loads, a solid homogeneous equivalent structure was used

  12. Primary coolant circuits in FBR type reactors

    International Nuclear Information System (INIS)

    Kutani, Masushiro.

    1985-01-01

    Purpose: To eliminate the requirement of a pump for the forcive circulation of primary coolants and avoid the manufacturing difficulty of equipments. Constitution: In primary coolant circuits of an LMFBR type reactor having a recycling path forming a closed loop between a reactor core and a heat exchanger, coolants recycled through the recycling path are made of a magnetic fluid comprising liquid sodium incorporated with fine magnetic powder, and an electromagnet is disposed to the downstream of the heat exchanger. In the above-mentioned structure, since the magnetic fluid as the primary coolants losses its magnetic property when heated in the reactor core but recovers the property at a lower temperature after the completion of the heat exchange, the magnetic fluid can forcively be flown through the recycling path under the effect of the electromagnet disposed to the down stream of the heat exchanger to thereby forcively recycle the primary coolants. (Kawakami, Y.)

  13. Upper internals of PWR with coolant flow separator

    International Nuclear Information System (INIS)

    Chevereau, G.; Heuze, A.

    1989-01-01

    The upper internals for a PWR has a collecting volume for the coolant merging from the core and an apparatus for separating the flow of coolant. This apparatus has a guide for the control rods, a lower plate perforated to allow the coolant through from the core, an upper plate also perforated to allow the coolant through to the collecting volume and a peripheral binding ring joining the two plates. Each guide comprises an envelope without holes and joined perceptibly tight to the plates [fr

  14. Prevention of nuclear fuel cladding materials corrosion

    International Nuclear Information System (INIS)

    Yang, K.R.; Yang, J.C.; Lee, I.C.; Kang, H.D.; Cho, S.W.; Whang, C.K.

    1983-01-01

    The only way which could be performed by the operator of nuclear power plant to minimizing the degradation of nuclear fuel cladding material is to control the water quality of primary coolant as specified standard conditions which dose not attack the cladding material. If the water quality of reactor coolant does not meet far from the specification, the failure will occure not only cladding material itself but construction material of primary system which contact with the coolant. The corrosion product of system material are circulate through the whole primary system with the coolant and activated by the neutron near the reactor core. The activated corrosion products and fission products which released from fuel rod to the coolant, so called crud, will repeate deposition and redeposition continuously on the fuel rod and construction material surface. As a result we should consider heat transfer problem. In this study following activities were performed; 1. The crud sample was taken from the spent fuel rod surface of Kori unit one and analized for radioactive element and non radioactive chemical species. 2. The failure mode of nuclear fuel cladding material was estimated by the investigation of releasing type of fission products from the fuel rod to the reactor coolant using the iodine isotopes concentration of reactor coolants. 3. A study was carried out on the sipping test results of spent fuel and a discussion was made on the water quality control records through the past three cycle operation period of Kori unit one plant. (Author)

  15. Optimal Design of Gradient Materials and Bi-Level Optimization of Topology Using Targets (BOTT)

    Science.gov (United States)

    Garland, Anthony

    The objective of this research is to understand the fundamental relationships necessary to develop a method to optimize both the topology and the internal gradient material distribution of a single object while meeting constraints and conflicting objectives. Functionally gradient material (FGM) objects possess continuous varying material properties throughout the object, and they allow an engineer to tailor individual regions of an object to have specific mechanical properties by locally modifying the internal material composition. A variety of techniques exists for topology optimization, and several methods exist for FGM optimization, but combining the two together is difficult. Understanding the relationship between topology and material gradient optimization enables the selection of an appropriate model and the development of algorithms, which allow engineers to design high-performance parts that better meet design objectives than optimized homogeneous material objects. For this research effort, topology optimization means finding the optimal connected structure with an optimal shape. FGM optimization means finding the optimal macroscopic material properties within an object. Tailoring the material constitutive matrix as a function of position results in gradient properties. Once, the target macroscopic properties are known, a mesostructure or a particular material nanostructure can be found which gives the target material properties at each macroscopic point. This research demonstrates that topology and gradient materials can both be optimized together for a single part. The algorithms use a discretized model of the domain and gradient based optimization algorithms. In addition, when considering two conflicting objectives the algorithms in this research generate clear 'features' within a single part. This tailoring of material properties within different areas of a single part (automated design of 'features') using computational design tools is a novel benefit

  16. Coolant processing device for nuclear reactor

    International Nuclear Information System (INIS)

    Kizawa, Hideo; Funakoshi, Toshio; Izumoji, Yoshiaki

    1981-01-01

    Purpose: To reduce an entire facility cost by concentrating and isolating tritium accumulated in coolants, removing the tritium out of the system, and returning hydrogen gas generated at a reactor accident to a recombiner in a closed loop by the switching of a valve. Constitution: Coolant from a reactor cooling system processed by a chemical volume control system facility (CVCS) and coolant drain from various devices processed by a liquid waste disposing system facility (LWDS) are fed to a tritium isolating facility, in which they are isolated into concentrated tritium water and dilute tritium water. The concentrated tritium water is removed out of the system and stored. The dilute tritium water is reused as supply water for coolant. If an accident occurs to cause hydrogen to be generated, a closed loop is formed between the containment vessel and the recombiner, the hydrogen is recombined with oxygen in the air of the closed loop to be thus returned to water. (Kamimura, M.)

  17. Data Science and Optimal Learning for Material Discovery and Design

    Science.gov (United States)

    ; Optimal Learning for Material Discovery & Design Data Science and Optimal Learning for Material inference and optimization methods that can constrain predictions using insights and results from theory directions in the application of information theoretic tools to materials problems related to learning from

  18. Optimized nanoporous materials.

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Paul V. (University of Illinois at Urbana-Champaign, Urbana, IL); Langham, Mary Elizabeth; Jacobs, Benjamin W.; Ong, Markus D.; Narayan, Roger J. (North Carolina State University, Raleigh, NC); Pierson, Bonnie E. (North Carolina State University, Raleigh, NC); Gittard, Shaun D. (North Carolina State University, Raleigh, NC); Robinson, David B.; Ham, Sung-Kyoung (Korea Basic Science Institute, Gangneung, South Korea); Chae, Weon-Sik (Korea Basic Science Institute, Gangneung, South Korea); Gough, Dara V. (University of Illinois at Urbana-Champaign, Urbana, IL); Wu, Chung-An Max; Ha, Cindy M.; Tran, Kim L.

    2009-09-01

    Nanoporous materials have maximum practical surface areas for electrical charge storage; every point in an electrode is within a few atoms of an interface at which charge can be stored. Metal-electrolyte interfaces make best use of surface area in porous materials. However, ion transport through long, narrow pores is slow. We seek to understand and optimize the tradeoff between capacity and transport. Modeling and measurements of nanoporous gold electrodes has allowed us to determine design principles, including the fact that these materials can deplete salt from the electrolyte, increasing resistance. We have developed fabrication techniques to demonstrate architectures inspired by these principles that may overcome identified obstacles. A key concept is that electrodes should be as close together as possible; this is likely to involve an interpenetrating pore structure. However, this may prove extremely challenging to fabricate at the finest scales; a hierarchically porous structure can be a worthy compromise.

  19. Device for preventing coolant outflow in a reactor

    International Nuclear Information System (INIS)

    Nemoto, Kiyomitsu; Mochizuki, Keiichi.

    1975-01-01

    Object: To prevent outflow of coolant from a reactor vessel even in an occurrence of leaking trouble at a low position in a primary cooling system or the like in the reactor vessel. Structure: An inlet at the foremost end of a coolant inlet pipe inserted into a reactor vessel is arranged at a level lower than a core, and a check valve is positioned at a level higher than the core in a rising portion of the inlet. In normal condition, the check valve is pushed up by discharge pressure of a main circulating pump and remains closed, and hence, producing no flow loss of coolant, sodium. However, when a trouble such as rupture occurs at the lower position in the primary cooling system, the attractive force for allowing the coolant to back-flow outside the reactor vessel and the load force of the coolant within the reactor vessel cause the check valve to actuate, as a consequence of which a liquid level of the coolant downwardly moves to the position of the check valve to intake the cover gases into a gas intake, thereby cutting off a flow passage of the coolant to stop outflow thereof. (Kamimura, M.)

  20. Exergy analysis and optimization of a thermal management system with phase change material for hybrid electric vehicles

    International Nuclear Information System (INIS)

    Javani, N.; Dincer, I.; Naterer, G.F.; Yilbas, B.S.

    2014-01-01

    In the present study, energy and exergy analyses are conducted to investigate a new cooling system of hybrid electric vehicles (HEVs). A latent heat thermal energy storage system is integrated with an active refrigeration cycle where octadecane is selected as the phase change material (PCM). The liquid cooling system flows through the chiller following a conventional vapor compression cooling cycle. The latent heat shell and the tube heat exchanger operate in parallel with the chiller and a fraction of coolant enters the heat exchanger and, therefore, decreases the heat load of the chiller, leading to a lower work required by the compressor. The exergy destruction rate and the exergy efficiency of each component in a hybrid thermal management system (TMS) are calculated. In addition, the effects of parameters such as the fraction of coolant entering the heat storage system (PCM mass fraction), evaporator temperature, and compressor pressure ratio on the system performance are investigated. The findings of the exergy analysis reveal that the overall exergy efficiency of the system with PCM presence is 31%, having the largest exergy destruction rate of 0.4 kW and the heat exchangers have lower exergy efficiency as compared to other components. In addition, the results of the parametric study show that an increase in PCM mass fraction results in an increase in exergy efficiency of the system. An environmental impact assessment is also conducted and the results show that an increase in exergy efficiency of the cooling system reduces greenhouse gasses and also increases the sustainability of the system. Moreover, a multi-objective optimization using the genetic algorithm is performed by incorporating two objective functions, namely exergy efficiency to be maximized and total cost rate of the system to be minimized. A Pareto frontier is obtained and a single desirable optimal solution is selected based on LINMAP decision-making process. The results show that the maximum

  1. Zinc corrosion after loss-of-coolant accidents in pressurized water reactors – Physicochemical effects

    Energy Technology Data Exchange (ETDEWEB)

    Kryk, Holger, E-mail: h.kryk@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, P.O. Box 510119, D-01314 Dresden (Germany); Hoffmann, Wolfgang [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, P.O. Box 510119, D-01314 Dresden (Germany); Kästner, Wolfgang; Alt, Sören; Seeliger, André; Renger, Stefan [Hochschule Zittau/Görlitz, Institute of Process Technology, Process Automation and Measuring Technology, Theodor-Körner-Allee 16, D-02763 Zittau (Germany)

    2014-12-15

    Highlights: • Physicochemical effects due to post-LOCA zinc corrosion in PWR were elucidated. • Decreasing solubility of corrosion products with increasing temperature was found. • Solid corrosion products may be deposited on hot surfaces and/or within hot-spots. • Corrosion products precipitating from coolant were identified as zinc borates. • Depending on coolant temperature, different types of zinc borate are formed. - Abstract: Within the framework of the reactor safety research, generic experimental investigations were carried out aiming at the physicochemical background of possible zinc corrosion product formation, which may occur inside the reactor pressure vessel during the sump circulation operation after loss-of-coolant accidents in pressurized water reactors. The contact of the boric acid containing coolant with hot-dip galvanized steel containment internals causes corrosion of the corresponding materials resulting in dissolution of the zinc coat. A retrograde solubility of zinc corrosion products with increasing temperature was observed during batch experiments of zinc corrosion in boric acid containing coolants. Thus, the formation and deposition of solid corrosion products cannot be ruled out if the coolant containing dissolved zinc is heated up during its recirculation into hot regions within the emergency cooling circuit (e.g. hot-spots in the core). Corrosion experiments at a lab-scale test facility, which included formation of corrosion products at a single heated cladding tube, proved that dissolved zinc, formed at low temperatures in boric acid solution by zinc corrosion, turns into solid deposits of zinc borates when contacting heated zircaloy surfaces during the heating of the coolant. Moreover, the temperature of formation influences the chemical composition of the zinc borates and thus the deposition and mobilization behavior of the products.

  2. Zinc corrosion after loss-of-coolant accidents in pressurized water reactors – Physicochemical effects

    International Nuclear Information System (INIS)

    Kryk, Holger; Hoffmann, Wolfgang; Kästner, Wolfgang; Alt, Sören; Seeliger, André; Renger, Stefan

    2014-01-01

    Highlights: • Physicochemical effects due to post-LOCA zinc corrosion in PWR were elucidated. • Decreasing solubility of corrosion products with increasing temperature was found. • Solid corrosion products may be deposited on hot surfaces and/or within hot-spots. • Corrosion products precipitating from coolant were identified as zinc borates. • Depending on coolant temperature, different types of zinc borate are formed. - Abstract: Within the framework of the reactor safety research, generic experimental investigations were carried out aiming at the physicochemical background of possible zinc corrosion product formation, which may occur inside the reactor pressure vessel during the sump circulation operation after loss-of-coolant accidents in pressurized water reactors. The contact of the boric acid containing coolant with hot-dip galvanized steel containment internals causes corrosion of the corresponding materials resulting in dissolution of the zinc coat. A retrograde solubility of zinc corrosion products with increasing temperature was observed during batch experiments of zinc corrosion in boric acid containing coolants. Thus, the formation and deposition of solid corrosion products cannot be ruled out if the coolant containing dissolved zinc is heated up during its recirculation into hot regions within the emergency cooling circuit (e.g. hot-spots in the core). Corrosion experiments at a lab-scale test facility, which included formation of corrosion products at a single heated cladding tube, proved that dissolved zinc, formed at low temperatures in boric acid solution by zinc corrosion, turns into solid deposits of zinc borates when contacting heated zircaloy surfaces during the heating of the coolant. Moreover, the temperature of formation influences the chemical composition of the zinc borates and thus the deposition and mobilization behavior of the products

  3. Method of decontaminating primary coolant circuits

    International Nuclear Information System (INIS)

    Ishibashi, Masaru; Sumi, Masao.

    1981-01-01

    Purpose: To eliminate hard contaminated layers as well as soft contaminated layers without injuring substrate materials, upon decontamination of radiation contaminated portions in equipments and pipeways constituting primary coolant circuits. Constitution: High pressure water from a high pressure pump is jetted out from the nozzle of a spray gun to the radiation contaminated portions in equipments, for example, to the surface of water chamber in a vapor evaporator. High pressure pure water or aqueous boric acid is jetted out from the periphery and boric oxide particles (of about 1 - 100 μ particle size) are jetted out from the center of the nozzle of the spray gun. The particles (blasting material) jetted out together with the high pressure water impinge on the contaminated surfaces to remove the contaminated layers. Upon impingement, the high pressure water acts as the shock absorber for the blasting material and, after the impingement, it flows down to the bottom of the water chamber, and the blasting material is dissolved in the high pressure water. (Horiuchi, T.)

  4. Monte Carlo method in ADS transmutation reactor coolant and the research of optimal placement of the fuel

    International Nuclear Information System (INIS)

    Niu Yunlong; Wei Qianglin; Liu Yibao; Wang Aixing; Zhang Peng

    2014-01-01

    This paper calculated the effects of different coolants to neutron energy spectrum in different position of the transmutation reactor by Monte Carlo N-Particle Transport Code (MCNP5). After having chosen the coolant and particular parameters, different nuclides in fuel rods of the transmutation reactor were calculated and compared. According to the actual situation, nuclides of 99 Tc and 241 Am were chosen and compared. Then the nonuniform-arrangement scheme of different spent fuels were proposed. By comparison of the diagram, it is found that it is more effective to promote the neutron utilization in the reactor by the non-uniform arrangement scheme, which is more reasonable than traditional uniform one. Thus, it would be helpful for transmutation technology by the application of the scheme. (authors)

  5. Method of charging instruments into liquid metal coolant

    International Nuclear Information System (INIS)

    Yamazaki, Hiroshi

    1980-01-01

    Purpose: To alleviate the thermal shock of a reactor charging machine when charging the machine into liquid metal coolant after the machine is preheated in cover gas. Method: When a reactor fueling machine reaches at the lowermost portion the position immediately above liquid metal coolant surface level, the machine is stopped moving down. The reactor fueling machine is heated at the lowermost portion by thermal radiation from the surface of the liquid metal coolant. After the machine is thus preheated in cover gas, it is again steadily moved down by a winch and charged into the liquid metal coolant. Therefore, the thermal shock of the machine becomes low when charging the machine into the liquid metal coolant to eliminate the damage and deformation at the machine. (Yoshihara, H.)

  6. Contribution to the optimization of the chemical and radiochemical purification of pressurized water nuclear power plants primary coolant

    International Nuclear Information System (INIS)

    Elain, L.

    2004-12-01

    The primary coolant of pressurised water reactors is permanently purified thanks to a device, composed of filters and the demineralizers furnished with ion exchange resins (IER), located in the chemical and volume control system (CVCS). The study of the retention mechanisms of the radio-contaminants by the IER implies, initially, to know the speciation of the primary coolant percolant through the demineralizers. Calculations of theoretical speciation of the primary coolant were carried out on the basis of known composition of the primary coolant and thanks to the use of an adapted chemical speciation code. A complementary study, dedicated to silver behaviour, considered badly extracted, suggests metallic aggregates existence generated by the radiolytic reduction of the Ag + ions. An analysis of the purification curves of the elements Ni, Fe, Co, Cr, Mn, Sb and their principal radionuclides, relating to the cold shutdown of Fessenheim 1-cycle 20 and Tricastin 2-cycle 21, was carried out, in the light of a model based on the concept of a coupling well term - source term. Then, a thermodynamic modelling of ion exchange phenomena in column was established. The formation of the permutation front and the enrichment zones planned was validated by frontal analysis experiments of synthetic fluids (mixtures of Ni(B(OH) 4 ) 2 , LiB(OH) 4 and AgB(OH) 4 in medium B(OH) 3 )), and of real fluid during the putting into service of the device mini-CVCS at the time of Tricastin 2 cold shutdown. New tools are thus proposed, opening the way with an optimised management of demineralizers and a more complete interpretation of the available experience feedback. (author)

  7. Reactor auxiliary cooling facility and coolant supplying method therefor

    International Nuclear Information System (INIS)

    Ando, Koji; Kinoshita, Shoichiro.

    1996-01-01

    A reactor auxiliary cooling facility of the present invention comprises a coolant recycling line for recycling coolants by way of a reactor auxiliary coolant pump and a cooling load, a gravitational surge tank for supplying coolants to the coolant recycling line and a supplemental water supplying line for supplying a supply the supplemental water to the tank. Then, a pressurization-type supply water surge tank is disposed for operating the coolant recycling line upon performing an initial system performance test in parallel with the gravitational surge tank. With such a constitution, the period of time required from the start of the installation of reactor auxiliary cooling facilities to the completion of the system performance test can be shortened at a reduced cost without enlarging the scale of the facility. (T.M.)

  8. Reactor auxiliary cooling facility and coolant supplying method therefor

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Koji; Kinoshita, Shoichiro

    1996-06-07

    A reactor auxiliary cooling facility of the present invention comprises a coolant recycling line for recycling coolants by way of a reactor auxiliary coolant pump and a cooling load, a gravitational surge tank for supplying coolants to the coolant recycling line and a supplemental water supplying line for supplying a supply the supplemental water to the tank. Then, a pressurization-type supply water surge tank is disposed for operating the coolant recycling line upon performing an initial system performance test in parallel with the gravitational surge tank. With such a constitution, the period of time required from the start of the installation of reactor auxiliary cooling facilities to the completion of the system performance test can be shortened at a reduced cost without enlarging the scale of the facility. (T.M.)

  9. Small break loss of coolant accident analysis of advanced PWR plant designs utilizing DVI line venturis

    International Nuclear Information System (INIS)

    Kemper, Robert M.; Gagnon, Andre F.; McNamee, Kevin; Cheung, Augustine C.

    1995-01-01

    The Westinghouse Advanced Passive and evolutionary Pressurizer Water Reactors (i.e. AP600 and APWR) incorporate direct vessel injection (DVI) of emergency core coolant as a means of minimizing the potential spilling of emergency core cooling water during a loss of coolant accident (LOCA). As a result, the most limiting small break LOCA (SBLOCA) event for these designs, with respect core inventory makeup capability, is a postulated double ended rupture of one of the DVI lines. This paper presents the results of a design optimization study that examines the installation of a venturi in the DVI line as a means of limiting the reactor coolant lost from the reactor vessel. The comparison results demonstrate that by incorporating a properly sized venturi in the DVI line, core uncovery concerns as a result of a DVI line break can be eliminated for both the AP600 and APWR plants. (author)

  10. Coolant clean up system in nuclear reactor

    International Nuclear Information System (INIS)

    Tajima, Fumio; Iwami, Hiroshi.

    1981-01-01

    Purpose: To decrease the amount of main steams and improve the plant heat efficiency by the use of condensated water as coolants for not-regenerative heat exchangers in a coolant clean up system of a nuclear reactor. Constitution: In a coolant clean up system of a nuclear reactor, a portion of condensates is transferred to the shell of a non-regenerative heat exchanger by way of a condensate pump for non-regenerative heat exchanger through a branched pipeway provided to the outlet of a condensate desalter for using the condensates as the coolants for the shell of the heat exchanger and the condensates are then returned to the inlet of a feedwater heater after the heat exchange. The branched flow rate of the condensates is controlled by the flow rate control valve mounted in the pipeway. Condensates passed through the heat exchanger and the condensates not passed through the heat exchanger are mixed and heated in a heater and then fed to the nuclear reactor. In a case where no feedwater is necessary to the nuclear reactor such as upon shutdown of the reactor, the condensates are returned by way of feedwater bypass pipeway to the condensator. By the use of the condensates as the coolants for the heat exchanger, the main steam loss can be decreased and the thermal load for the auxiliary coolant facility can be reduced. (Kawakami, Y.)

  11. Continuous surveillance of reactor coolant circuit integrity

    International Nuclear Information System (INIS)

    1986-01-01

    Continuous surveillance is important to assuring the integrity of a reactor coolant circuit. It can give pre-warning of structural degradation and indicate where off-line inspection should be focussed. These proceedings describe the state of development of several techniques which may be used. These involve measuring structural vibration, core neutron noise, acoustic emission from cracks, coolant leakage, or operating parameters such as coolant temperature and pressure. Twenty three papers have been abstracted and indexed separately for inclusion in the data base

  12. Evaluation of organic coolants for the transportation of LMFBR spent fuel rods

    International Nuclear Information System (INIS)

    Arnold, C. Jr.

    1978-05-01

    The physical and chemical processes that are likely to occur when sodium coated LMFBR spent fuel rods are submerged in various aromatic organic coolants was defined by means of immersion experiments carried out with sodium coated 304 stainless steel coupons. Upon immersion of sodium coated coupons at 220 0 C in hydrocarbon type coolants such as Therminol 88, a mixture of terphenyls, not only was the metallic sodium retained on the coupon, but a carbonaceous coating formed on the surface of the sodium. In contrast, coolants that contained aromatic ether bonds, such as Dowtherm A, reacted with sodium at 220 0 C to form phenolate and other salts, which precipitated from the coolant in the form of a dark sludge. With Dowtherm A, removal of metallic sodium from the coupon was essentially complete in a matter of hours at temperatures of 160--220 0 C. Data on the rate and efficiency of sodium removal upon immersion in Dowtherm A at elevated temperatures were obtained. In addition the kinetics and chemistry of the sodium/Dowtherm A reaction were defined. Because sodium sludges are potentially incompatible with the containing structural materials and the fuel elements, it is recommended that sodium be removed prior to immersion in the coolant via reaction with benzoic acid; this method should be adaptable to the facilities at reactor sites. In aging studies Dowtherm A was found to be thermally stable up to 400 0 C and radiatively stable at ambient conditions. The combined effect of heat and radiation was not defined

  13. In-plane material continuity for the discrete material optimization method

    DEFF Research Database (Denmark)

    Sørensen, Rene; Lund, Erik

    2015-01-01

    When performing discrete material optimization of laminated composite structures, the variation of the in-plane material continuity is typically governed by the size of the finite element discretization. For a fine mesh, this can lead to designs that cannot be manufactured due to the complexity...

  14. Recent developments of discrete material optimization of laminated composite structures

    DEFF Research Database (Denmark)

    Lund, Erik; Sørensen, Rene

    2015-01-01

    This work will give a quick summary of recent developments of the Discrete Material Optimization approach for structural optimization of laminated composite structures. This approach can be seen as a multi-material topology optimization approach for selecting the best ply material and number...... of plies in a laminated composite structure. The conceptual combinatorial design problem is relaxed to a continuous problem such that well-established gradient based optimization techniques can be applied, and the optimization problem is solved on basis of interpolation schemes with penalization...

  15. Inverse design of dielectric materials by topology optimization

    DEFF Research Database (Denmark)

    Otomori, M.; Andkjær, Jacob Anders; Sigmund, Ole

    2012-01-01

    The capabilities and operation of electromagnetic devices can be dramatically enhanced if artificial materials that provide certain prescribed properties can be designed and fabricated. This paper presents a systematic methodology for the design of dielectric materials with prescribed electric...... permittivity. A gradient-based topology optimization method is used to find the distribution of dielectric material for the unit cell of a periodic microstructure composed of one or two dielectric materials. The optimization problem is formulated as a problem to minimize the square of the difference between...

  16. Efficiency of water coolant for DEMO divertor

    International Nuclear Information System (INIS)

    Fetzer, Renate; Igitkhanov, Yuri; Bazylev, Boris

    2015-01-01

    Up to now, water-cooled divertor concepts have been developed for limited incident fluxes without taking into account transient power loadings. In this paper we analyzed the efficiency of water as a coolant for the particular PFC tungsten monoblock shield with a cooling tube made from Cu alloy (Cu OFHC) as a laminate adjacent to W and a low activation martensitic steel (Eurofer) as inner tube contacting the coolant. Thermal analysis is carried out by using the code MEMOS, which simulates W armour damage under the repetitive ELM heat loads. We consider cooling conditions which allow one to keep relatively high material temperatures (in the range 300–600 °C) thus minimizing Eurofer embrittlement under neutron irradiation. Expected DEMO I and DEMO II heat loads including type I ELMs are found to cause melting of the W surface during unmitigated ELMs. By mitigation of the ELMs melting of W is avoided. DEMO I operation under these conditions is save for cooling at water pressure 15.5 MPa and temperature 325 °C, while for DEMO II with mitigated ELMs the critical heat flux is exceeded and safe operation is not provided.

  17. Efficiency of water coolant for DEMO divertor

    Energy Technology Data Exchange (ETDEWEB)

    Fetzer, Renate, E-mail: renate.fetzer@kit.edu; Igitkhanov, Yuri; Bazylev, Boris

    2015-10-15

    Up to now, water-cooled divertor concepts have been developed for limited incident fluxes without taking into account transient power loadings. In this paper we analyzed the efficiency of water as a coolant for the particular PFC tungsten monoblock shield with a cooling tube made from Cu alloy (Cu OFHC) as a laminate adjacent to W and a low activation martensitic steel (Eurofer) as inner tube contacting the coolant. Thermal analysis is carried out by using the code MEMOS, which simulates W armour damage under the repetitive ELM heat loads. We consider cooling conditions which allow one to keep relatively high material temperatures (in the range 300–600 °C) thus minimizing Eurofer embrittlement under neutron irradiation. Expected DEMO I and DEMO II heat loads including type I ELMs are found to cause melting of the W surface during unmitigated ELMs. By mitigation of the ELMs melting of W is avoided. DEMO I operation under these conditions is save for cooling at water pressure 15.5 MPa and temperature 325 °C, while for DEMO II with mitigated ELMs the critical heat flux is exceeded and safe operation is not provided.

  18. Decontamination of main coolant pumps

    International Nuclear Information System (INIS)

    Roofthooft, R.

    1988-01-01

    Last year a number of main coolant pumps in Belgian nuclear power plants were decontaminated. A new method has been developed to reduce the time taken for decontamination and the volume of waste to be treated. The method comprises two phases: Oxidation with permanganate in nitric acid and dissolution in oxalic acid. The decontamination of main coolant pumps can now be achieved in less than one day. The decontamination factors attained range between 15 and 150. (orig.) [de

  19. Blanket materials for DT fusion reactors

    International Nuclear Information System (INIS)

    Smith, D.L.

    1981-01-01

    This paper presents an overview of the critical materials issues that must be considered in the development of a tritium breeding blanket for a tokamak fusion reactor that operates on the D-T-Li fuel cycle. The primary requirements of the blanket system are identified and the important criteria that must be considered in the development of blanket technology are summarized. The candidate materials are listed for the different blanket components, e.g., breeder, coolant, structure and neutron multiplier. Three blanket concepts that appear to offer the most potential are: (1) liquid-metal breeder/coolant, (2) liquid-metal breeder/separate coolant, and (3) solid breeder/separate coolant. The major uncertainties associated with each of the design concepts are discussed and the key materials R and D requirements for each concept are identified

  20. Evaluation of alternate secondary (and tertiary) coolants for the molten-salt breeder reactor

    International Nuclear Information System (INIS)

    Kelmers, A.D.; Baes, C.F.; Bettis, E.S.; Brynestad, J.; Cantor, S.; Engel, J.R.; Grimes, W.R.; McCoy, H.E.; Meyer, A.S.

    1976-04-01

    The three most promising coolant selections for an MSBR have been identified and evaluated in detail from the many coolants considered for application either as a secondary coolant in 1000-MW(e) MSBR configurations using only one coolant, or as secondary and tertiary coolants in an MSBR dual coolant configuration employing two different coolants. These are, as single secondary coolants: (1) a ternary sodium--lithium--beryllium fluoride melt; (2) the sodium fluoroborate--sodium fluoride eutectic melt, the present reference design secondary coolant. In the case of the dual coolant configuration, the preferred system is molten lithium--beryllium fluoride (Li 2 BeF 4 ) as the secondary coolant and helium gas as the tertiary coolant

  1. Neutronic analysis of a dual He/LiPb coolant breeding blanket for DEMO

    International Nuclear Information System (INIS)

    Catalan, J.P.; Ogando, F.; Sanz, J.; Palermo, I.; Veredas, G.; Gomez-Ros, J.M.; Sedano, L.

    2011-01-01

    A conceptual design of a DEMO fusion reactor is being developed under the Spanish Breeding Blanket Technology Programme: TECNO F US based on a He/LiPb dual coolant blanket as reference design option. The following issues have been analyzed to address the demonstration of the neutronic reliability of this conceptual blanket design: power amplification capacity of the blanket, tritium breeding capability for fuel self-sufficiency, power deposition due to nuclear heating in superconducting coils and material damage (dpa, gas production) to estimate the operational life of the steel-made structural components in the blanket and vacuum vessel (VV). In order to optimize the shielding of the coils different combinations of water and steel have been considered for the gap of the VV. The used neutron source is based on an axi-symmetric 2D fusion reaction profile for the given plasma equilibrium configuration. MCNPX has been used for transport calculations and ACAB has been used to handle gas production and damage energy cross sections.

  2. Condition monitoring of main coolant pumps, Dhruva

    International Nuclear Information System (INIS)

    Prasad, V.; Satheesh, C.; Acharya, V.N.; Tikku, A.C.; Mishra, S.K.

    2002-01-01

    Full text: Dhruva is a 100 MW research reactor with natural uranium fuel, heavy water as moderator and primary coolant. Three Centrifugal pumps circulate the primary coolant across the core and the heat exchangers. Each pump is coupled to a flywheel (FW) assembly in order to meet operational safety requirements. All the 3 main coolant pump (MCP) sets are required to operate during operation of the reactor. The pump-sets are in operation since the year 1984 and have logged more than 1,00,000 hrs. Frequent breakdowns of its FW bearings were experienced during initial years of operation. Condition monitoring of these pumps, largely on vibration based parameters, was initiated on regular basis. Break-downs of main coolant pumps reduced considerably due to the fair accurate predictions of incipient break-downs and timely maintenance efforts. An effort is made in this paper to share the experience

  3. Development of in-situ laser cutting technique for removal of single selected coolant channel from pressurized heavy water reactor

    International Nuclear Information System (INIS)

    Vishwakarma, S.C.; Upadhyaya, B.N.

    2016-01-01

    We report on the development of a pulsed Nd:YAG laser based cutting technique for removal of single coolant channel from pressurized heavy water reactor (PHWR). It includes development of special tools/manipulators and optimization of laser cutting process parameters for cutting of liner tube, end fitting, bellow lip weld joint, and pressure tube stubs. For each cutting operation, a special tool with precision motion control is utilized. These manipulators/tools hold and move the laser cutting nozzle in the required manner and are fixed on the same coolant channel, which has to be removed. This laser cutting technique has been successfully deployed for removal of selected coolant channels Q-16, Q-15 and N-6 of KAPS-2 reactor with minimum radiation dose consumption and in short time. (author)

  4. Optimal estimate of the coolant flow in the assemblies of a BWR of natural circulation in real time; Estimacion optima del flujo de refrigerante en los ensambles de un BWR de circulacion natural en tiempo real

    Energy Technology Data Exchange (ETDEWEB)

    Valle H, J.; Morales S, J. B. [UNAM, Facultad de Ingenieria, Division de Estudios de Posgrado, Laboratorio de Analisis de Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, Col. Progreso, 62550 Jiutepec, Morelos (Mexico); Espinosa P, G., E-mail: julfi_jg@yahoo.com.mx [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (Mexico)

    2012-10-15

    The present work exposes the design and the implementation of an advanced controller that allows estimating the coolant flow in the fuel assemblies of a BWR reactor of natural circulation in real time. To be able to reduce the penalizations that are established in the calculations of the operation limits due to the magnitude of the uncertainties in the coolant flows of a natural circulation reactor, is the objective of this research. In this work the construction of the optimal controller that allows estimating the coolant flows in a fuel channels group of the reactor is shown, as well as the operation of this applied to a reduced order model that simulates the dynamics of a natural circulation reactor. The controller design required of an estimator of the valuation variables not directly of the plant and of the estimates use of the local distributions of the coolant flow. The controller construction of the estimator was based mathematically in the filter Kalman whose algorithm allows to be carried out an advanced control of the system. To prove the estimator operation was development a simplified model that reproduces the basic dynamics of the flowing coolant in the reactor, which works as observer of the system, this model is coupled by means of the estimator controller to a detail model of the plant. The results are presented by means of graphics of the interest variables and the estimate flow, and they are documented in the chart that is presented at the end of this article. (Author)

  5. The effect of coolant quantity on local fuel–coolant interactions in a molten pool

    International Nuclear Information System (INIS)

    Cheng, Songbai; Matsuba, Ken-ichi; Isozaki, Mikio; Kamiyama, Kenji; Suzuki, Tohru; Tobita, Yoshiharu

    2015-01-01

    Highlights: • We investigate local fuel–coolant interactions in a molten pool. • As water volume increases, limited pressurization and mechanical energy observed. • Only a part of water is evaporated and responsible for the pressurization. - Abstract: Studies on local fuel–coolant interactions (FCI) in a molten pool are important for severe accident analyses of sodium-cooled fast reactors (SFRs). Motivated by providing some evidence for understanding this interaction, in this study several experimental tests, with comparatively larger difference in coolant volumes, were conducted by delivering a given quantity of water into a simulated molten fuel pool (formed with a low-melting-point alloy). Interaction characteristics including the pressure-buildup as well as mechanical energy release and its conversion efficiency are evaluated and compared. It is found that as water quantity increases, a limited pressure-buildup and the resultant mechanical energy release are observable. The performed analyses also suggest that only a part of water is probably vaporized during local FCIs and responsible for the pressurization and mechanical energy release, especially for those cases with much larger water volumes

  6. On line monitoring of temperatures of coolant channels by thermal imaging in a laboratory set-up fabricated for the detection of leakage of coolants

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, S; Ghosh, J K [Bhabha Atomic Research Centre, Bombay (India). Radiometallurgy Div.; Patel, R J [Bhabha Atomic Research Centre, Mumbai (India). Refuelling Technology Division

    1994-12-31

    Leakage from coolant channels in Pressurised Heavy Water Reactors (PHWR) increases the temperatures of the faulty channels. Measurement of temperatures of the coolant channels is, therefore, one way to detect the leaking channel. Thermal imaging technique offers a unique means for this detection providing a fast, non-contact, on-line measurement. An experiment was carried out for the detection of leakage of coolants through the seal plugs of the coolant channels in PHWR using an experimental setup under the simulated conditions of temperature and pressure of the coolant channels inside the reactor and using an infrared imaging system. The experimental details and the observations have been presented. 7 figs.

  7. On line monitoring of temperatures of coolant channels by thermal imaging in a laboratory set-up fabricated for the detection of leakage of coolants

    International Nuclear Information System (INIS)

    Mukherjee, S.; Ghosh, J.K.; Patel, R.J.

    1994-01-01

    Leakage from coolant channels in Pressurised Heavy Water Reactors (PHWR) increases the temperatures of the faulty channels. Measurement of temperatures of the coolant channels is, therefore, one way to detect the leaking channel. Thermal imaging technique offers a unique means for this detection providing a fast, non-contact, on-line measurement. An experiment was carried out for the detection of leakage of coolants through the seal plugs of the coolant channels in PHWR using an experimental setup under the simulated conditions of temperature and pressure of the coolant channels inside the reactor and using an infrared imaging system. The experimental details and the observations have been presented. 7 figs

  8. LWR primary coolant pipe rupture test rig

    International Nuclear Information System (INIS)

    Yoshitoshi, Shyoji

    1978-01-01

    The rupture test rig for primary coolant pipes is constructed in the Japan Atomic Energy Research Institute to verify the reliability of the primary coolant pipes for both PWRs and BWRs. The planned test items consisted of reaction force test, restraint test, whip test, jet test and continuous release test. A pressure vessel of about 4 m 3 volume, a circulating pump, a pressurizer, a heater, an air cooler and the related instrumentation and control system are included in this test rig. The coolant test condition is 160 kg/cm 2 g, 325 deg C for PWR test, and 70 kg/cm 2 g, saturated water and steam for BWR test, 100 ton of test load for the ruptured pipe bore of 8B Schedule 160, and 20 lit/min. discharge during 20 h for continuous release of coolant. The maximum pit internal pressure was estimated for various pipe diameters and time under the PWR and BWR conditions. The spark rupturing device was adopted for the rupture mechanics in this test rig. The computer PANAFACOM U-300 is used for the data processing. This test rig is expected to operate in 1978 effectively for the improvement of reliability of LWR primary coolant pipes. (Nakai, Y.)

  9. Microstructural characterization of primary coolant pipe steel

    International Nuclear Information System (INIS)

    Miller, M.K.; Bentley, J.

    1986-01-01

    Atom probe field-ion microscopy, analytical electron microscopy, and optical microscopy have been used to investigate the changes that occur in the microstructure of cast CF 8 primary coolant pipe stainless steel after long term thermal aging. The cast duplex microstructure consisted of austenite with 15% delta-ferrite. Investigation of the aged material revealed that the ferrite spinodally decomposed into a fine scaled network of α and α'. A fine G-phase precipitate was also observed in the ferrite. The observed degradation in mechanical properties is probably a consequence of the spinodal decomposition in the ferrite

  10. Apparatus for controlling coolant level in a liquid-metal-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Jones, R.D.

    1978-01-01

    A liquid-metal-cooled fast-breeder reactor which has a thermal liner spaced inwardly of the pressure vessel and includes means for passing bypass coolant through the annulus between the thermal liner and the pressure vessel to insulate the pressure vessel from hot outlet coolant includes control ports in the thermal liner a short distance below the normal operating coolant level in the reactor and an overflow nozzle in the pressure vessel below the control ports connected to an overflow line including a portion at an elevation such that overflow coolant flow is established when the coolant level in the reactor is above the top of the coolant ports. When no makeup coolant is added, bypass flow is inwardly through the control ports and there is no overflow; when makeup coolant is being added, coolant flow through the overflow line will maintain the coolant level

  11. Apparatus for controlling coolant level in a liquid-metal-cooled nuclear reactor

    Science.gov (United States)

    Jones, Robert D.

    1978-01-01

    A liquid-metal-cooled fast-breeder reactor which has a thermal liner spaced inwardly of the pressure vessel and includes means for passing bypass coolant through the annulus between the thermal liner and the pressure vessel to insulate the pressure vessel from hot outlet coolant includes control ports in the thermal liner a short distance below the normal operating coolant level in the reactor and an overflow nozzle in the pressure vessel below the control ports connected to an overflow line including a portion at an elevation such that overflow coolant flow is established when the coolant level in the reactor is above the top of the coolant ports. When no makeup coolant is added, bypass flow is inwardly through the control ports and there is no overflow; when makeup coolant is being added, coolant flow through the overflow line will maintain the coolant level.

  12. Real-time reactor coolant system pressure/temperature limit system

    International Nuclear Information System (INIS)

    Newton, D.G.; Schemmel, R.R.; Van Scooter, W.E. Jr.

    1991-01-01

    This patent describes an system, used in controlling the operating of a nuclear reactor coolant system, which automatically calculates and displays allowable reactor coolant system pressure/temperature limits within the nuclear reactor coolant system based upon real-time inputs. It comprises: means for producing signals representative of real-time operating parameters of the nuclear reactor cooling system; means for developing pressure and temperature limits relating the real-time operating parameters of the nuclear reactor coolant system, for normal and emergency operation thereof; means for processing the signals representative of real-time operating parameters of the nuclear reactor coolant system to perform calculations of a best estimate of signals, check manual inputs against permissible valves and test data acquisition hardware for validity and over/under range; and means for comparing the representative signals with limits for the real-time operating parameters to produce a signal for a real-time display of the pressure and temperature limits and of the real-time operating parameters use an operator in controlling the operation of the nuclear reactor coolant system

  13. Molten fuel/coolant interaction studies: some results obtained with the Windscale small shock tube rig

    International Nuclear Information System (INIS)

    Higham, E.J.; Vaughan, G.J.

    1978-02-01

    Experiments are described in which water has been brought into contact with various molten metals in a shock tube, thus simulating the fall of coolant into molten uranium dioxide in a postulated reactor accident. Impact velocities of the water on to the molten material were in the range 5 to 7 m/s. Shock-pulse pressures in the water column after impact and particle size distributions of the dispersed resolidified material that was recovered were measured. The proportion of dispersed material and the size of the shock pulse (by comparison with that expected from water hammer alone) have been used as criteria for the occurrence of a molten fuel/coolant interaction and such interactions of varying degrees of violence have been found for water/aluminium, water/bismuth, water/tin, over a range of temperatures from 350 0 C to 950 0 C, for water/boric oxide, but not for water/magnesium. (author)

  14. Thickness optimization of fiber reinforced laminated composites using the discrete material optimization method

    DEFF Research Database (Denmark)

    Sørensen, Søren Nørgaard; Lund, Erik

    2012-01-01

    This work concerns a novel large-scale multi-material topology optimization method for simultaneous determination of the optimum variable integer thickness and fiber orientation throughout laminate structures with fixed outer geometries while adhering to certain manufacturing constraints....... The conceptual combinatorial/integer problem is relaxed to a continuous problem and solved on basis of the so-called Discrete Material Optimization method, explicitly including the manufacturing constraints as linear constraints....

  15. Models and Methods for Free Material Optimization

    DEFF Research Database (Denmark)

    Weldeyesus, Alemseged Gebrehiwot

    Free Material Optimization (FMO) is a powerful approach for structural optimization in which the design parametrization allows the entire elastic stiffness tensor to vary freely at each point of the design domain. The only requirement imposed on the stiffness tensor lies on its mild necessary...

  16. Surface Treatment to Improve Corrosion Resistance in Lead-Alloy Coolants

    International Nuclear Information System (INIS)

    Todd R. Allen; Kumar Sridharan; McLean T. Machut; Lizhen Tan

    2007-01-01

    One of the six proposed advanced reactor designs of the Generation IV Initiative, the Lead-cooled Fast Reactor (LFR) possesses many characteristics that make it a desirable candidate for future nuclear energy production and responsible actinide management. These characteristics include favorable heat transfer, fluid dynamics, and neutronic performance compared to other candidate coolants. However, the use of a heavy liquid metal coolant presents a challenge for reactor designers in regards to reliable structural and fuel cladding materials in both a highly corrosive high temperature liquid metal and an intense radiation field. Flow corrosion studies at the University of Wisconsin have examined the corrosion performance of candidate materials for application in the LFR concept as well as the viability of various surface treatments to improve the materials compatibility. To date this research has included several focus areas, which include the formulation of an understanding of corrosion mechanisms and the examination of the effects of chemical and mechanical surface modifications on the materials performance in liquid lead-bismuth by experimental testing in Los Alamos National Laboratory's DELTA Loop, as well as comparison of experimental findings to numerical and physical models for long term corrosion prediction. This report will first review the literature and introduce the experiments and data that will be used to benchmark theoretical calculations. The experimental results will be followed by a brief review of the underlying theory and methodology for the physical and theoretical models. Finally, the results of theoretical calculations as well as experimentally obtained benchmarks and comparisons to the literature are presented

  17. Calculation and analysis of neutron and radiation characteristics of lead coolants with isotopic tailoring for future nuclear power facilities

    Energy Technology Data Exchange (ETDEWEB)

    Blokhin, A.I.; Ivanov, A.P.; Korobeinikov, V.V.; Lunev, V.P.; Manokhin, V.N.; Khorasanov, G.L. [SSC RF A. I. Leypunsky Institute for Physics and Power Engineering, Obninsk, Kaluga Region (Russian Federation)

    2000-03-01

    A new type of safe fast reactor with lead coolant was proposed in Russia. The use of coolants with low moderating properties is one of the ways to get a hard neutron spectrum and an increase in the burning of Np-237, Am-243 and other miner actinides(MA) fissionable preferentially in the fast reactor. The stable lead isotope, Pb-208, is proposed as the one of such coolants. The neutron inelastic scattering cross-section of Pb-208 is 3.0-3.5 times less than the one of other lead isotopes. Calculation of the MA transmutation rates in the standard BN-type fast reactor with different coolants is performed by Monte-Carlo method using Code MMKFK. Six various models are simulated for the fast reactor blanket with different kinds of fuel and coolant. The fast reactor with natural-lead coolant practically does not differ from the reactor with sodium coolant relative to MA incineration. The use of Pb-208 as a coolant in the fast reactor results in increasing incineration of MA from 18 to 26% in comparison with a usual fast reactor. Calculation of induced radioactivity was performed using the FISPACT-3 inventory code, also. The results include total induced radioactivity and dose rate for initial material composition and selected long-lived radionuclides. The calculations show that the coolant consisting of lead isotope, Pb-206, or Pb-207, can be considered as the low-activation one because it does not practically contain long-lived toxic radionuclides. (M. Suetake)

  18. Primary coolant recycling device for FBR type reactor

    International Nuclear Information System (INIS)

    Kanbe, Mitsuru; Tokiwai, Moriyasu

    1998-01-01

    A primary coolants (liquid sodium) recycling device comprises a plurality of recycling pumps. The recycling pumps are operated while using, as a power source, electric power generated by a thermoelectric power generation system by utilizing heat stored in the coolants. The thermoelectric power generation system comprises a thermo-electric conversion module, heat collecting heat pipes as a high temperature side heat conduction means and heat dissipating pipes as a low temperature side heat conduction means. The heat of coolants is transferred to the surface of the high temperature side of each thermo-electric conversion elements of the thermal power generation system by the heat collecting heat pipes. The heat on the low temperature side of each of the thermo-electric conversion elements is removed by the heat dissipating pipes. Accordingly, temperature difference is caused between both surfaces of the thermo-electric conversion elements. Even upon loss of a main power source due to stoppage of electricity, electric power is generated by utilizing heat of coolants, so that the recycling pumps circulate coolants to cool a reactor core continuously. (I.N.)

  19. An investigation on the material effect on the result of fuel coolant interactions in the TROI experiments

    International Nuclear Information System (INIS)

    Park, I. K.; Kim, J. H.; Min, B. T.; Hong, S. W.

    2008-01-01

    One of the findings from the TROI experiments is that the results of the fuel coolant interaction (FCI) are strongly dependent on the composition of the corium, which is composed of UO 2 , ZrO 2 , Zr, steel. TEXAS- V simulation for the TROI experiments indicated that a relatively low void fraction seems to have resulted in a strong steam explosion and the low voided mixture must be induced by big size particles. The particle sizes of the non-explosive TROI tests were analyzed because the explosive tests do not represent the particles during mixing. It indicates that the debris size seems to reflect the material difference, and the trend is the same as the debris size in the TEXAS-V simulation. TEXAS-V calculation for the alumina/water system indicates that the conductivity is also related to the material effect on the FCI result. The heat loss evaluation using a single sphere film boiling model shows that a reasonable conductivity and particle size give a reliable estimation for the FCI result. Thus reliable values for the physical properties such as the surface tension and a better understanding for the breakup process would be necessary for a more convincible nuclear safety analysis. (authors)

  20. Fuel coolant interaction experiment by direct electrical heating method

    International Nuclear Information System (INIS)

    Takeda, Tsuneo; Hirano, Kenmei

    1979-01-01

    In the PCM (Power Cooling Mismatch) experiments, the FCI (Fuel Coolant Interaction) test is one of necessary tests in order to predict various phenomena that occur during PCM in the core. A direct electrical heating method is used for the FCI tests for fuel pellet temperature of over 1000 0 C. Therefore, preheating is required before initiating the direct electrical heating. The fuel pin used in the FCI tests is typical LWR fuel element, which is surrounded by coolant water. It is undersirable to heat up the coolant water during preheating of the fuel pin. Therefore, a zirconia (ZrO 2 ) pellet which is similar to a UO 2 pellet in physical and chemical properties is used. Electric property (electric conductivity) of ZrO 2 is particularly suitable for direct electrical heating as in the case of UO 2 . In this experiment, ZrO 2 pellet (melting point 2500 0 C) melting was achieved by use of both preheating and direct electrical heating. Temperature changes of coolant and fuel surface, as well as the pressure change of coolant water, were measured. The molten fuel interacted with the coolant and generated shock waves. A portion of this molten fuel fragmented into small particles during this interaction. The peak pressure of the observed shock wave was about 35 bars. The damaged fuel pin was photographed after disassembly. This report shows the measured coolant pressure changes and the coolant temperature changes, as well as photographs of damaged fuel pin and fuel fragments. (author)

  1. Numerical FEM Analyses of primary coolant system at NPP Temelin

    International Nuclear Information System (INIS)

    Junek, L.; Slovacek, M.; Ruzek, L.; Moulis, P.

    2003-01-01

    The main goal of this paper is to inform about the beginning and first steps of implementation of an aging management system at the Temelin NPP. The aging management system is important not only for achieving the current safety level but also for reaching operational reliability of a production unit equipment above the life time assumed by the original design, typically over 40 years. A method to locate the most prominent degradation regions is described. A global shell model of the primary coolant system including all loops and their components - reactor pressure vessel (RPV), steam generator (SG), main coolant pump (MCP), pressurizer, feed water and steam pipelines system is presented. The results of stress-strain analysis on the measured service parameters base are given. Validation of the results is very important and the method to compare the service measurement data with the numerical results is described. The global/local approach is mentioned and discussed. The effects of the complete global system on the individual components under monitoring are transformed into more accurate local spatial models. The local spatial models are used to analyze the gradual lifetime exhaustion of a facility during its service operation. Two spatial local models are presented, viz. feed water nozzle of SG and main coolant piping system T-brunch. The results of analysis of the local spatial models are processed by the neural network computing method, which is also described. The actual gradual damage of the material of the components under monitoring can be obtained based on the analyses performed and on the results from the neural network in combination with the knowledge of the real material characteristics. The procedures applied are included in the DIALIFE diagnostic system

  2. Composition and concentration of soluble and particulate matter in the coolant of the reactor primary cooling system of the Embalse nuclear power plant; Composicion y concentracion del material soluble y particulado en el refrigerante del SPTC de la central nuclear Embalse

    Energy Technology Data Exchange (ETDEWEB)

    Chocron, Mauricio; Garcia Rodenas, Luis; La Gamma, Ana M; Villegas, Marina [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Quimica; Fernandez, Alberto N; Allemandi, Walter; Manera, Raul; Rosales, Hugo [Nucleoelectrica Argentina SA (NASA), Embalse (Argentina). Central Nuclear Embalse

    2000-07-01

    Nuclear power plants type PWR and PHWR (pressurized water reactor and pressurized heavy water reactor) have three coolant circuits which only exchange energy among them. The primary circuit, whose coolant extracts the reactor energy, the secondary circuit or water-steam cycle and the tertiary circuit which could be lake, river or sea water. The chemistry of the primary and secondary coolants is carefully controlled with the aim of minimizing the corrosion of structural materials. However, very low rates of corrosion are inevitable and one of the consequences of the corrosion processes is the presence of soluble and particulate matter in the coolant from where several problems associated with mass transfer arisen. In this way radioactive nuclides are transported out of the core to the steam generators, hydraulic resistance increases and heat transfer capability degrades. In the present paper some alternative techniques are proposed for the quantification of both, the particulate and soluble matter present in the coolant and their correspondent composition. Some results are also included and discussed. (author)

  3. Optimal Material Layout - Applied on Reinforced Concrete Slabs

    DEFF Research Database (Denmark)

    Dollerup, Niels; Jepsen, Michael S.; Damkilde, Lars

    2015-01-01

    This paper introduces a general, finite-element-based optimisation tool for improving the material layout of concrete structures. The application presented is general and exemplified by material optimisation of reinforced concrete slabs. By utilising the optimisation tool, it is possible to deter......This paper introduces a general, finite-element-based optimisation tool for improving the material layout of concrete structures. The application presented is general and exemplified by material optimisation of reinforced concrete slabs. By utilising the optimisation tool, it is possible...... to determine the optimal material layout of a slab in the ultimate load state, based on simple inputs such as outer geometry, boundary conditions, multiple load cases and design domains. The material layout of the optimal design can either be fully orthotropic or isotropic, or a combination with a predefined...

  4. Analysis of molten fuel-coolant interaction during a reactivity-initiated accident experiment

    International Nuclear Information System (INIS)

    El-Genk, M.S.; Hobbins, R.R.

    1981-01-01

    The results of a reactivity-initiated accident experiment, designated RIA-ST-4, are discussed and analyzed with regard to molten fuel-coolant interaction (MFCI). In this experiment, extensive amounts of molten UO 2 fuel and zircaloy cladding were produced and fragmented upon mixing with the coolant. Coolant pressurization up to 35 MPa and coolant overheating in excess of 940 K occurred after fuel rod failure. The initial coolant conditions were similar to those in boiling water reactors during a hot startup (that is, coolant pressure of 6.45 MPa, coolant temperature of 538 K, and coolant flow rate of 85 cm 3 /s). It is concluded that the high coolant pressure recorded in the RIA-ST-4 experiment was caused by an energetic MFCI and was not due to gas release from the test rod at failure, Zr/water reaction, or to UO 2 fuel vapor pressure. The high coolant temperature indicated the presence of superheated steam, which may have formed during the expansion of the working fluid back to the initial coolant pressure; yet, the thermal-to-mechanical energy conversion ratio is estimated to be only 0.3%

  5. Fuel-Coolant Interactions - some Basic Studies at the UKAEA Culham Laboratory

    International Nuclear Information System (INIS)

    Reynolds, J.A.; Dullforce, T.A.; Peckover, R.S.; Vaughan, G.J.

    1976-01-01

    In a hypothetical fault sequence important effects of fuel-coolant interactions include voiding and dispersion of core debris as well as the pressure damage usually discussed. The development of the fuel-coolant interaction probably depends on any pre-mixing Weber break-up that may occur, and is therefore a function of the way the fuel and coolant come together. Four contact modes are identified: jetting, shock tube, drops and static, and Culham's experiments have been mainly concerned with simulating the falling drop mode by using molten tin in water. It was observed that the fuel-coolant interaction is a short series of violent coolant oscillations centred at a localized position on the drop, generating a spray of submillimeter sized debris. The interaction started spontaneously at a specific time after the drop first contacted the water. There was a definite limited fuel-coolant interaction zone on a plot of initial coolant temperature versus initial fuel temperature outside which interactions never occurred. The. interaction time was a function of the initial temperatures. Theoretical scaling formulae are given which describe the fuel-coolant interaction zone and dwell time. Bounds of fuel and coolant temperature below which fuel-coolant interactions do not occur are explained by freezing. Upper bounds of fuel and coolant temperatures above which there were no fuel-coolant interactions are interpreted in terms of heat transfer through vapour films of various thicknesses. In conclusion: We have considered the effects of fuel-coolant interactions in a hypothetical fault sequence, emphasising that debris and vapour production as well as the pressure pulse can be important factors. The fuel-coolant interaction has been classified into types, according to possible modes of mixing in the fault sequence. Culham has been studying one type, the self-triggering of falling drops, by simulant experiments. It is found that there is a definite zone of interaction on a plot

  6. Phenomena occurring in the reactor coolant system during severe core damage accidents

    International Nuclear Information System (INIS)

    Malinauskas, A.P.

    1989-01-01

    The reactor coolant system (RCS) of a nuclear power plant consists of the reactor pressure vessel and the piping and associated components that are required for the continuous circulation of the coolant which is used to maintain thermal equilibrium throughout the system. In the event of an accident, the RCS also serves as one of several barriers to the escape of radiotoxic material into the biosphere. In contrast to normal operating conditions, severe core damage accidents are characterized by significant temporal and spatial variations in heat and mass fluxes, and by eventual geometrical changes within the RCS. Furthermore, the difficulties in describing the system in the severe accident mode are compounded by the occurrence of chemical reactions. These reactions can influence both the thermal and the mass transport behavior of the system. In addition, behavior of the reactor vessel internals and of materials released from the core region (especially the radioactive fission products) in the course of the accident likewise become of concern to the analyst. This report addresses these concerns. 9 refs., 1 tab

  7. A study of the potential influence of frame coolant distribution on the radiation-induced damage of HCLL-TBM structural material

    International Nuclear Information System (INIS)

    Chiovaro, P.; Di Maio, P.A.; Oliveri, E.; Vella, G.

    2007-01-01

    Within the European Fusion Technology Programme, the Helium-Cooled Lithium Lead (HCLL) breeding blanket concept is one of the two EU lines to be developed for a Long Term fusion reactor, in particular with the aim of manufacturing a Test Blanket Module (TBM) to be implemented in ITER. The HCLL-TBM is foreseen to be located in an ITER equatorial port, being housed inside a steel supporting frame, actively cooled by pressurized water. That supporting frame has been designed to house two different TBMs, providing two cavities separated by a dividing plate 20 cm thick. As the nuclear response of HCLL-TBM might vary accordingly to the supporting frame configuration and composition, at the Department of Nuclear Engineering of the University of Palermo, a parametric study has been launched to investigate such an influence. Previous works dealt with the dependence of the nuclear response of HCLL-TBM on the configuration of a homogeneous frame, the present one has been focused on the investigation of the potential influence of coolant distribution within the frame on the radiation-induced damage of HCLL-TBM structural material. To this purpose, a detailed parametric study of the HCLL-TBM nuclear response has been performed by means of 3D-Monte Carlo neutronic analyses to asses both the rates of displacements per atom and helium production within the structural material. A semi-heterogeneous model of the supporting frame, assuming a realistic coolant distribution, and a 3D heterogeneous model of the HCLL-TBM, taking into account 9% Cr martensitic steel (Z 10 CDV Nb 9-1) as structural material, have been set-up. Both the two models have been inserted into the existing 3D ITER-FEAT one, simulating realistically the reactor lay-out up to the cryostat and providing for a proper D-T neutron source. The analyses have been performed by means of the MCNP-4C code, running a large number of histories for each one of them in such a way that results obtained are affected by statistical

  8. Comparative assessment of thermophysical and thermohydraulic characteristics of lead, lead-bismuth and sodium coolants for fast reactors

    International Nuclear Information System (INIS)

    2002-06-01

    All prototype, demonstration and commercial liquid metal cooled fast reactors (LMFRs) have used liquid sodium as a coolant. Sodium cooled systems, operating at low pressure, are characterised by very large thermal margins relative to the coolant boiling temperature and a very low structural material corrosion rate. In spite of the negligible thermal energy stored in the liquid sodium available for release in case of leakage, there is some safety concern because of its chemical reactivity with respect to air and water. Lead, lead-bismuth or other alloys of lead, appear to eliminate these concerns because the chemical reactivity of these coolants with respect to air and water is very low. Some experts believe that conceptually, these systems could be attractive if high corrosion activity inherent in lead, long term materials compatibility and other problems will be resolved. Extensive research and development work is required to meet this goal. Preliminary studies on lead-bismuth and lead cooled reactors and ADS (accelerator driven systems) have been initiated in France, Japan, the United States of America, Italy, and other countries. Considerable experience has been gained in the Russian Federation in the course of development and operation of reactors cooled with lead-bismuth eutectic, in particular, propulsion reactors. Studies on lead cooled fast reactors are also under way in this country. The need to exchange information on alternative fast reactor coolants was a major consideration in the recommendation by the Technical Working Group on Fast Reactors (TWGFRs) to collect, review and document the information on lead and lead-bismuth alloy coolants: technology, thermohydraulics, physical and chemical properties, as well as to make an assessment and comparison with respective sodium characteristics

  9. Zero waste machine coolant management strategy at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Carlson, B.; Algarra, F.; Wilburn, D.

    1998-01-01

    Machine coolants are used in machining equipment including lathes, grinders, saws and drills. The purpose of coolants is to wash away machinery debris in the form of metal fines, lubricate, and disperse heat between the part and the machine tool. An effective coolant prolongs tool life and protects against part rejection, commonly due to scoring or scorching. Traditionally, coolants have a very short effective life in the machine, often times being disposed of as frequently as once per week. The cause of coolant degradation is primarily due to the effects of bacteria, which thrive in the organic rich coolant environment. Bacteria in this environment reproduce at a logarithmic rate, destroying the coolant desirable aspects and causing potential worker health risks associated with the use of biocides to control the bacteria. The strategy described in this paper has effectively controlled bacterial activity without the use of biocides, avoided disposal of a hazardous waste, and has extended coolant life indefinitely. The Machine Coolant Management Strategy employed a combination of filtration, heavy lubricating oil removal, and aeration, which maintained the coolant peak performance without the use of biocides. In FY96, the Laboratory generated and disposed of 19,880 kg of coolants from 9 separate sites at a cost of $145K. The single largest generator was the main machine shop producing an average 14,000 kg annually. However, in FY97, the waste generation for the main machine shop dropped to 4,000 kg after the implementation of the zero waste strategy. It is expected that this value will be further reduced in FY98

  10. Optimization of a phase change material wallboard for building use

    International Nuclear Information System (INIS)

    Kuznik, Frederic; Virgone, Joseph; Noel, Jean

    2008-01-01

    In construction, the use of phase change materials (PCM) allows the storage/release of energy from the solar radiation and/or internal loads. The application of such materials for lightweight construction (e.g., a wood house) makes it possible to improve thermal comfort and reduce energy consumption. A wallboard composed of a new PCM material is investigated in this paper to enhance the thermal behavior of a lightweight internal partition wall. The paper focuses on the optimization of phase change material thickness. The in-house software CODYMUR is used to optimize the PCM wallboard by the means of numerical simulations. The results show that an optimal PCM thickness exists. The optimal PCM thickness value is then calculated for use in construction

  11. Optimization of a phase change material wallboard for building use

    Energy Technology Data Exchange (ETDEWEB)

    Kuznik, Frederic; Virgone, Joseph [Thermal Sciences Center of Lyon, CNRS, UMR 5008, INSA de Lyon, Universite Lyon 1, Bat Freyssinet, 40 Rue des Arts, 69621 Villeurbanne Cedex (France); Noel, Jean [Free-lance Scientific Software Developer, 15 Place Carnot, 69002 Lyon (France)

    2008-08-15

    In construction, the use of phase change materials (PCM) allows the storage/release of energy from the solar radiation and/or internal loads. The application of such materials for lightweight construction (e.g., a wood house) makes it possible to improve thermal comfort and reduce energy consumption. A wallboard composed of a new PCM material is investigated in this paper to enhance the thermal behavior of a lightweight internal partition wall. The paper focuses on the optimization of phase change material thickness. The in-house software CODYMUR is used to optimize the PCM wallboard by the means of numerical simulations. The results show that an optimal PCM thickness exists. The optimal PCM thickness value is then calculated for use in construction. (author)

  12. Impact of high-pressure coolant supply on chip formation in milling

    Science.gov (United States)

    Klocke, F.; Döbbeler, B.; Lakner, T.

    2017-10-01

    Machining of titanium alloys is considered as difficult, because of their high temperature strength, low thermal conductivity and low E-modulus, which contributes to high mechanical loads and high temperatures in the contact zone between tool and workpiece. The generated heat in the cutting zone can be dissipated only in a low extent. When cutting steel materials, up to 75% of the process heat is transported away by the chips, contrary to only 25% when machining titanium alloys. As a result, the cutting tool heats up, which leads to high tool wear. Therefore, machining of titanium alloys is only possible with relatively low cutting speeds. This leads to low levels of productivity for milling processes with titanium alloys. One way to increase productivity is to use more cutting edges in tools with the same diameter. However, the limiting factor of adding more cutting edges to a milling tool is the minimum size of the chip spaces, which are sufficient for a stable chip evacuation. This paper presents experimental results on the chip formation and chip size influenced by high-pressure coolant supply, which can lead to smaller chips and to smaller sizes of the chip spaces, respectively. Both influences, the pressure of the supplied coolant and the volumetric flow rate were individually examined. Alpha-beta annealed titanium TiAl6V4 was examined in relation to the reference material quenched and tempered steel 42CrMo4+QT (AISI 4140+QT). The work shows that with proper chip control due to high-pressure coolant supply in milling, the number of cutting edges on the same diameter tool can be increased, which leads to improved productivity.

  13. Deposition and incorporation of corrosion product to primary coolant suppressing method

    International Nuclear Information System (INIS)

    Tsuzuki, Yasuo; Hasegawa, Naoyoshi; Fujioka, Tsunaaki.

    1992-01-01

    In a PWR type nuclear power plant, the concentration of dissolved nitrogen in primary coolants is increased by controlling the nitrogen partial pressure in a volume controlling tank gas phase portion or addition of water in a primary system water supply tank containing dissolved nitrogen to a primary system. Then ammonium is formed by a reaction with hydrogen dissolved in the primary coolants in the field of radiation rays, to control the concentration of ammonium in the coolants within a range from 0.5 to 3.5 ppm, and operate the power plant. As a result, deposition and incorporation of corrosion products to the structural materials of the primary system equipments during plant operation (pH 6.8 to 8.0) are suppressed. In other words, deposition of particulate corrosion products on the surface of fuel cladding tubes and the inner surface of pipelines in the primary system main equipments is prevented and incorporation of ionic radioactive corrosion products to the oxide membranes on the inner surface of the pipelines of the primary system main equipments is suppressed, to greatly reduce the radiation dose rate of the primary system pipelines. Thus, operator's radiation exposure can be decreased upon shut down of the plant. (N.H.)

  14. Thermal-hydraulic analysis and design improvement for coolant channel of ITER shield block

    International Nuclear Information System (INIS)

    Zhao Ling; Li Huaqi; Zheng Jiantao; Yi Jingwei; Kang Weishan; Chen Jiming

    2013-01-01

    As an important part for ITER, shield block is used to shield the neutron heat. The structure design of shield block, especially the inner coolant channel design will influence its cooling effect and safety significantly. In this study, the thermal-hydraulic analysis for shield block has been performed by the computational fluid dynamics software, some optimization suggestions have been proposed and thermal-hydraulic characteristics of the improved model has been analyzed again. The analysis results for improved model show that pressure drop through flow path near the inlet and outlet region of the shield block has been reduced, and the total pressure drop in cooling path has been reduced too; the uniformity of the mass flowrate distribution and the velocity distribution have been improved in main cooling branches; the local highest temperature of solid domain reduced considerably, which could avoid thermal stress becoming too large because of coolant effect unevenly. (authors)

  15. Fuel-coolant interactions: preliminary experiments on the effect of gases dissolved in the 'coolant'

    International Nuclear Information System (INIS)

    Asher, R.C.; Davies, D.; Jones, P.G.

    1976-12-01

    A simple apparatus has been used to study fuel-coolant interactions under reasonably well controlled conditions. Preliminary experiments have used water as the 'coolant' and molten tin at 800 0 C as the 'fuel' and have investigated how the violence of the interaction is affected by dissolving gases (oxygen, nitrogen, carbon dioxide and nitrous oxide) in the water. It was found that saturating the water with carbon dioxide or nitrous oxide completely suppresses the violent interaction. Experiments in which the concentrations of these gases were varied showed that a certain critical concentration was needed; below this concentration the dissolved gas has no significant effect but above it the suppression is

  16. 14C Behaviour in PWR coolant

    International Nuclear Information System (INIS)

    Sims, Howard; Dickinson Shirley; Garbett, Keith

    2012-09-01

    Although 14 C is produced in relatively small amounts in PWR coolant, it is important to know its fate, for example whether it is released by gaseous discharge, removed by absorption on ion exchange (IX) resins or deposited on the fuel pin surfaces. 14 C can exist in a range of possible chemical forms: inorganic carbon compounds (probably mainly CO 2 ), elemental carbon, and organic compounds such as hydrocarbons. This paper presents results from a preliminary survey of the possible reactions of 14 C in PWR coolant. The main conclusions of the study are: - A combination of thermal and radiolytic reactions controls the chemistry of 14 C in reactor coolant. A simple chemical kinetic model predicts that CH 3 OH would be the initial product from radiolytic reactions of 14 C following its formation from 17 O. CH 3 OH is predicted to arise as a result of reactions of OH . with CH 4 and CH 3 , and it persists because there is no known radiation chemical reduction mechanism. - Thermodynamic considerations show that CH 3 OH can be thermally reduced to CH 4 in PWR conditions, although formation of CO 2 from small organics is the most thermodynamically favourable outcome. Such reactions could be catalysed on active nickel surfaces in the primary circuit. - Limited plant data would suggest that CH 4 is the dominant form in PWR and CO 2 in BWR. This implies that radiation chemistry may be important in determining the speciation. - Addition of acetate does not affect the amount of 14 C formed, but the addition of large amounts of stable carbon would lead to a large range of additional products, some of which would be expected to deposit on fuel pin surfaces as high molecular weight hydrocarbons. However, the subsequent thermal decomposition reactions of these products are not known. - Acetate addition may represent a small input of 12 C compared with organic material released from CVCS resins, although the importance of this may depend on whether that is predominantly soluble

  17. Optimal interface between principal deterrent systems and material accounting

    International Nuclear Information System (INIS)

    Deiermann, P.J.; Opelka, J.H.

    1983-01-01

    The purpose of this study is to find an optimal blend between three safeguards systems for special nuclear material (SNM), the material accounting system and the physical security and material control systems. The latter two are denoted as principal deterrent systems. The optimization methodology employed is a two-stage decision algorithm, first an explicit maximization of expected diverter benefits and subsequently a minimization of expected defender costs for changes in material accounting procedures and incremental improvements in the principal deterrent systems. The probability of diverter success function dependent upon the principal deterrents and material accounting system variables is developed. Within the range of certainty of the model, existing material accounting, material control and physical security practices are justified

  18. ISS Internal Active Thermal Control System (IATCS) Coolant Remediation Project

    Science.gov (United States)

    Morrison, Russell H.; Holt, Mike

    2005-01-01

    The IATCS coolant has experienced a number of anomalies in the time since the US Lab was first activated on Flight 5A in February 2001. These have included: 1) a decrease in coolant pH, 2) increases in inorganic carbon, 3) a reduction in phosphate buffer concentration, 4) an increase in dissolved nickel and precipitation of nickel salts, and 5) increases in microbial concentration. These anomalies represent some risk to the system, have been implicated in some hardware failures and are suspect in others. The ISS program has conducted extensive investigations of the causes and effects of these anomalies and has developed a comprehensive program to remediate the coolant chemistry of the on-orbit system as well as provide a robust and compatible coolant solution for the hardware yet to be delivered. The remediation steps include changes in the coolant chemistry specification, development of a suite of new antimicrobial additives, and development of devices for the removal of nickel and phosphate ions from the coolant. This paper presents an overview of the anomalies, their known and suspected system effects, their causes, and the actions being taken to remediate the coolant.

  19. Materials and fabrication requirements for APWR systems

    International Nuclear Information System (INIS)

    Boothby, R.M.; Hippsley, C.A.; Gorton, O.K.; Garwood, S.J.

    1995-01-01

    Materials specifications for advanced pressurized water-cooled reactor (APWR) systems are generally based on existing designs, with improved materials and fabrication procedures being developed to counter known degradation effects. In this paper, materials ageing and degradation mechanisms in PWR primary circuit pressure boundary components (i.e. the reactor pressure vessel (RPV), control rod drive mechanisms (CRDMs), coolant piping, coolant pump casing, pressurizer, and steam generators) are reviewed. Important degradation mechanisms include irradiation embrittlement of the RPV, thermal ageing embrittlement of ferritic (e.g. the pressurizer) and cast austenitic (e.g. coolant pump casing and pipe elbows) steel components and environmentally assisted cracking of steam generator tubing and CRDM penetrations. Improved materials specifications and component design and fabrication issues affecting the integrity of the pressure boundary are discussed in the light of these materials problems. Improved fabrication procedures adopted for Sizewell B, such as the utilization of ring forgings to eliminate axial welds in the RPV and steam generator shells and the use of one-piece castings for coolant pump casings, provide a benchmark against which other APWR designs may be judged. (author)

  20. Nuclear reactor of pressurized liquid coolant type

    International Nuclear Information System (INIS)

    Costes, D.

    1976-01-01

    The reactor comprises a vertical concrete pressure vessel, a bell-housing having an open lower end and disposed coaxially with the interior of the pressure vessel so as to delimit therewith a space filled with gas under pressure for the thermal insulation of the internal vessel wall, a pressurizing device for putting the coolant under pressure within the bell-housing and comprising a volume of control gas in contact with a large free surface of coolant in order that an appreciable variation in volume of liquid displaced within the coolant circuit inside the bell-housing should correspond to a small variation in pressure of the control gas. 9 claims, 3 drawing figures

  1. Hard alloys testing-machine for values of PWR primary coolant circuits

    International Nuclear Information System (INIS)

    Campan, J.L.; Sauze, A.

    1980-01-01

    Testing of valve parts or material used in valve fabrication and particularly seizing conditions in friction of plane surfaces coated with hard alloys of the type stellite. The testing equipment called Marguerite is composed of a hot pressurized water loop in conditions similar to PWR primary coolant circuits (320 0 C, 150 bars) and a testing-machine with measuring instruments. Testing conditions and samples are described [fr

  2. Neutronic optimization of a LiAlO2 solid breeder blanket

    International Nuclear Information System (INIS)

    Levin, P.; Ghoniem, N.M.

    1986-02-01

    In this report, a pressurized lobular blanket configuration is neutronically optimized. Among the features of this blanket configuration are the use of beryllium and LiAlO 2 solid breeder pins in a cross-flow configuration in a helium coolant. One-dimensional neutronic optimization calculations are performed to maximize the tritium breeding ratio (TER). The procedure involves spatial allocations of Be, LiAlO 2 , 9-C (ferritic steel), and He; in such a way as to maximize the TBR subject to several material, engineering and geometrical constraints. A TBR of 1.17 is achieved for a relatively thin blanket (approx. = 43 cm depth), and consistency with all imposed constraints

  3. Steam as turbine blade coolant: Experimental data generation

    Energy Technology Data Exchange (ETDEWEB)

    Wilmsen, B.; Engeda, A.; Lloyd, J.R. [Michigan State Univ., East Lansing, MI (United States)

    1995-10-01

    Steam as a coolant is a possible option to cool blades in high temperature gas turbines. However, to quantify steam as a coolant, there exists practically no experimental data. This work deals with an attempt to generate such data and with the design of an experimental setup used for the purpose. Initially, in order to guide the direction of experiments, a preliminary theoretical and empirical prediction of the expected experimental data is performed and is presented here. This initial analysis also compares the coolant properties of steam and air.

  4. Stress Analysis of Fuel Rod under Axial Coolant Flow

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hai Lan; Lee, Young Shin; Lee, Hyun Seung [Chungnam National University, Daejeon (Korea, Republic of); Park, Num Kyu; Jeon, Kyung Rok [Kerea Nuclear Fuel., Daejeon (Korea, Republic of)

    2010-05-15

    A pressurized water reactor(PWR) fuel assembly, is a typical bundle structure, which uses light water as a coolant in most commercial nuclear power plants. Fuel rods that have a very slender and long clad are supported by fuel assembly which consists of several spacer grids. A coolant is a fluid which flows through device to prevent its overheating, transferring the heat produced by the device to other devices that use or dissipate it. But at the same time, the coolant flow will bring out the fluid induced vibration(FIV) of fuel rods and even damaged the fuel rod. This study has been conducted to investigate the flow characteristics and nuclear reactor fuel rod stress under effect of coolant. Fluid structure interaction(FSI) analysis on nuclear reactor fuel rod was performed. Fluid analysis of the coolant which flow along the axial direction and structural analysis under effect of flow velocity were carried out under different output flow velocity conditions

  5. Stress Analysis of Fuel Rod under Axial Coolant Flow

    International Nuclear Information System (INIS)

    Jin, Hai Lan; Lee, Young Shin; Lee, Hyun Seung; Park, Num Kyu; Jeon, Kyung Rok

    2010-01-01

    A pressurized water reactor(PWR) fuel assembly, is a typical bundle structure, which uses light water as a coolant in most commercial nuclear power plants. Fuel rods that have a very slender and long clad are supported by fuel assembly which consists of several spacer grids. A coolant is a fluid which flows through device to prevent its overheating, transferring the heat produced by the device to other devices that use or dissipate it. But at the same time, the coolant flow will bring out the fluid induced vibration(FIV) of fuel rods and even damaged the fuel rod. This study has been conducted to investigate the flow characteristics and nuclear reactor fuel rod stress under effect of coolant. Fluid structure interaction(FSI) analysis on nuclear reactor fuel rod was performed. Fluid analysis of the coolant which flow along the axial direction and structural analysis under effect of flow velocity were carried out under different output flow velocity conditions

  6. Device for preventing coolant in a reactor from being lost

    International Nuclear Information System (INIS)

    Maruyama, Hiromi; Matsumoto, Tomoyuki.

    1975-01-01

    Object: To prevent all of coolant from being lost from the core at the time of failure in rupture of pipe in a recirculation system to cool the core with the coolant remained within the reactor. Structure: A valve, which will be closed when a water level of the coolant within the core is in a level less than a predetermined level, is provided on a recirculating water outlet nozzle in a pressure vessel to thereby prevent the coolant from being lost when the pipe is broken, thus cooling the core by means of reduced-pressure boiling of coolant remained within the core and boiling due to heat, and restraining core reactivity by means of void produced at that time. (Kamimura, M.)

  7. Assessment of Loss-of-Coolant Effect on Pressurized Heavy Water Reactors

    International Nuclear Information System (INIS)

    Kim, Won Young; Park, Joo Hwan; Kim, Bong Ghi

    2009-01-01

    A CANDU reactor is a heavy-water-moderated, natural uranium fuelled reactor with a pressure tube. The reactor contains a horizontal cylindrical vessel (calandria) and each pressure tube is isolated from the heavy-water moderator in a calandria. This allows the moderator system to be operated of a high-pressure and of a high-temperature coolant in pressure tube. This causes the pressurized liquid coolant in the channel to void and therefore give rise to a reactivity transient in the event of a break or fault in the coolant circuit. In particular, all CANDU reactors are well known to have a positive void reactivity coefficient and thus this phenomenon may lead to a positive feedback, which can cause a large power pulse. We assess the loss-of-coolant effect by coolant void reactivity versus fuel burnup, four factor parameters for fresh fuel and equilibrium fuel, reactivity change due to the change of coolant density and reactivity change in the case of half- and full-core coolant

  8. Predicted Variations of Water Chemistry in the Primary Coolant Circuit of a Supercritical Water Reactor

    International Nuclear Information System (INIS)

    Yeh, Tsung-Kuang; Wang, Mei-Ya; Liu, Hong-Ming; Lee, Min

    2012-09-01

    In response to the demand over a higher efficiency for a nuclear power plant, various types of Generation IV nuclear reactors have been proposed. One of the new generation reactors adopts supercritical light water as the reactor coolant. While current in-service light water reactors (LWRs) bear an average thermal efficiency of 33%, the thermal efficiency of a supercritical water reactor (SCWR) could generally reach more than 44%. For LWRs, the coolants are oxidizing due to the presence of hydrogen peroxide and oxygen, and the degradation of structural materials has mainly resulted from stress corrosion cracking. Since oxygen is completely soluble in supercritical water, similar or even worse degradation phenomena are expected to appear in the structural and core components of an SCWR. To ensure proper designs of the structural components and suitable selections of the materials to meet the requirements of operation safety, it would be of great importance for the design engineers of an SCWR to be fully aware of the state of water chemistry in the primary coolant circuit (PCC). Since SCWRs are still in the stage of conceptual design and no practical data are available, a computer model was therefore developed for analyzing water chemistry variation and corrosion behavior of metallic materials in the PCC of a conceptual SCWR. In this study, a U.S. designed SCWR with a rated thermal power of 3575 MW and a coolant flow rate of 1843 kg/s was selected for investigating the variations in redox species concentration in the PCC. Our analyses indicated that the [H 2 ] and [H 2 O 2 ] at the core channel were higher than those at the other regions in the PCC of this SCWR. Due to the self-decomposition of H 2 O 2 , the core channel exhibited a lower [O 2 ] than the upper plenum. Because the middle water rod region was in parallel with the core channel region with relatively high dose rates, the [H 2 ] and [H 2 O 2 ] in this region were higher than those in the other regions

  9. Optimization of a radially cooled pebble bed reactor - HTR2008-58117

    International Nuclear Information System (INIS)

    Boer, B.; Kloosterman, J. L.; Lathouwers, D.; Van Der Hagen, T. H. J. J.; Van Dam, H.

    2008-01-01

    By altering the coolant flow direction in a pebble bed reactor from axial to radial, the pressure drop can be reduced tremendously. In this case the coolant flows from the outer reflector through the pebble bed and finally to flow paths in the inner reflector. As a consequence, the fuel temperatures are elevated due to the reduced heat transfer of the coolant. However, the power profile and pebble size in a radially cooled pebble bed reactor can be optimized to achieve lower fuel temperatures than current axially cooled designs, while the low pressure drop can be maintained. The radial power profile in the core can be altered by adopting multi-pass fuel management using several radial fuel zones in the core. The optimal power profile yielding a flat temperature profile is derived analytically and is approximated by radial fuel zoning. In this case, the pebbles pass through the outer region of the core first and each consecutive pass is located in a fuel zone closer to the inner reflector. Thereby, the resulting radial distribution of the fissile material in the core is influenced and the temperature profile is close to optimal. The fuel temperature in the pebbles can be further reduced by reducing the standard pebble diameter from 6 cm to a value as low as I cm. An analytical investigation is used to demonstrate the effects on the fuel temperature and pressure drop for both radial and axial cooling. Finally, two-dimensional numerical calculations were performed, using codes for neutronics, thermal-hydraulics and fuel depletion analysis, in order to validate the results for the optimized design that were obtained from the analytical investigations. It was found that for a radially cooled design with an optimized power profile and reduced pebble diameter (below 3.5 cm) both a reduction in the pressure drop (Δp = -2.6 bar), which increases the reactor efficiency with several percent, and a reduction in the maximum fuel temperature (ΔT = -50 deg. C) can be achieved

  10. Simulation of steam explosion in stratified melt-coolant configuration

    International Nuclear Information System (INIS)

    Leskovar, Matjaž; Centrih, Vasilij; Uršič, Mitja

    2016-01-01

    Highlights: • Strong steam explosions may develop spontaneously in stratified configurations. • Considerable melt-coolant premixed layer formed in subcooled water with hot melts. • Analysis with MC3D code provided insight into stratified steam explosion phenomenon. • Up to 25% of poured melt was mixed with water and available for steam explosion. • Better instrumented experiments needed to determine dominant mixing process. - Abstract: A steam explosion is an energetic fuel coolant interaction process, which may occur during a severe reactor accident when the molten core comes into contact with the coolant water. In nuclear reactor safety analyses steam explosions are primarily considered in melt jet-coolant pool configurations where sufficiently deep coolant pool conditions provide complete jet breakup and efficient premixture formation. Stratified melt-coolant configurations, i.e. a molten melt layer below a coolant layer, were up to now believed as being unable to generate strong explosive interactions. Based on the hypothesis that there are no interfacial instabilities in a stratified configuration it was assumed that the amount of melt in the premixture is insufficient to produce strong explosions. However, the recently performed experiments in the PULiMS and SES (KTH, Sweden) facilities with oxidic corium simulants revealed that strong steam explosions may develop spontaneously also in stratified melt-coolant configurations, where with high temperature melts and subcooled water conditions a considerable melt-coolant premixed layer is formed. In the article, the performed study of steam explosions in a stratified melt-coolant configuration in PULiMS like conditions is presented. The goal of this analytical work is to supplement the experimental activities within the PULiMS research program by addressing the key questions, especially regarding the explosivity of the formed premixed layer and the mechanisms responsible for the melt-water mixing. To

  11. Mathematical model of the reactor coolant pump

    International Nuclear Information System (INIS)

    Kozuh, M.

    1989-01-01

    The mathematical model of reactor coolant pump is described in this paper. It is based on correlations for centrifugal reactor coolant pumps. This code is one of the elements needed for the simulation of the whole NPP primary system. In subroutine developed according to this model we tried in every possible detail to incorporate plant specific data for Krsko NPP. (author)

  12. Optimized adhesives for strong, lightweight, damage-resistant, nanocomposite materials: new insights from natural materials

    International Nuclear Information System (INIS)

    Hansma, P K; Turner, P J; Ruoff, R S

    2007-01-01

    From our investigations of natural composite materials such as abalone shell and bone we have learned the following. (1) Nature is frugal with resources: it uses just a few per cent glue, by weight, to glue together composite materials. (2) Nature does not avoid voids. (3) Nature makes optimized glues with sacrificial bonds and hidden length. We discuss how optimized adhesives combined with high specific stiffness/strength structures such as carbon nanotubes or graphene sheets could yield remarkably strong, lightweight, and damage-resistant materials

  13. Optimized adhesives for strong, lightweight, damage-resistant, nanocomposite materials: new insights from natural materials

    Energy Technology Data Exchange (ETDEWEB)

    Hansma, P K [Physics Department, Broida Hall, University of California, Santa Barbara, CA 93106 (United States); Turner, P J [Physics Department, Broida Hall, University of California, Santa Barbara, CA 93106 (United States); Ruoff, R S [Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3111 (United States)

    2007-01-31

    From our investigations of natural composite materials such as abalone shell and bone we have learned the following. (1) Nature is frugal with resources: it uses just a few per cent glue, by weight, to glue together composite materials. (2) Nature does not avoid voids. (3) Nature makes optimized glues with sacrificial bonds and hidden length. We discuss how optimized adhesives combined with high specific stiffness/strength structures such as carbon nanotubes or graphene sheets could yield remarkably strong, lightweight, and damage-resistant materials.

  14. Improvements of primary coolant shutdown chemistry and reactor coolant system cleanup

    International Nuclear Information System (INIS)

    Gaudard, G.; Gilles, B.; Mesnage, F.; Cattant, F.

    2002-01-01

    In the framework of a radiation exposure management program entitled >, EDF aims at decreasing the mass dosimetry of nuclear power plants workers. So, the annual dose per unit, which has improved from 2.44 m.Sv in 1991 to 1.08 in 2000, should target 0.8 mSv in the year 2005 term in order to meet the results of the best nuclear operators. One of the guidelines for irradiation source term reduction is the optimization of operation parameters, including reactor coolant system (RCS) chemistry in operation, RCS shutdown chemistry and RCS cleanup improvement. This paper presents the EDF strategy for the shutdown and start up RCS chemistry optimization. All the shutdown modes have been reviewed and for each of them, the chemical specifications will be fine tuned. A survey of some US PWRs shutdown practices has been conducted for an acid and reducing shutdown chemistry implementation test at one EDF unit. This survey shows that deviating from the EPRI recommended practice for acid and reducing shutdown chemistry is possible and that critical path impact can be minimized. The paper also presents some investigations about soluble and insoluble species behavior and characterization; the study focuses here on 110m Ag, 122 Sb, 124 Sb and iodine contamination. Concerning RCS cleanup improvement, the paper presents two studies. The first one highlights some limited design modifications that are either underway or planned, for an increased flow rate during the most critical periods of the shutdown. The second one focuses on the strategy EDF envisions for filters and resins selection criteria. Matching the study on contaminants behavior with the study of filters and resins selection criteria should allow improving the cleanup efficiency. (authors)

  15. On-Line Coolant Chemistry Analysis

    International Nuclear Information System (INIS)

    LM Bachman

    2006-01-01

    Impurities in the gas coolant of the space nuclear power plant (SNPP) can provide valuable indications of problems in the reactor and an overall view of system health. By monitoring the types and amounts of these impurities, much can be implied regarding the status of the reactor plant. However, a preliminary understanding of the expected impurities is important before evaluating prospective detection and monitoring systems. Currently, a spectroscopy system is judged to hold the greatest promise for monitoring the impurities of interest in the coolant because it minimizes the number of entry and exit points to the plant and provides the ability to detect impurities down to the 1 ppm level

  16. Modular 3-D solid finite element model for fatigue analyses of a PWR coolant system

    International Nuclear Information System (INIS)

    Garrido, Oriol Costa; Cizelj, Leon; Simonovski, Igor

    2012-01-01

    Highlights: ► A 3-D model of a reactor coolant system for fatigue usage assessment. ► The performed simulations are a heat transfer and stress analyses. ► The main results are the expected ranges of fatigue loadings. - Abstract: The extension of operational licenses of second generation pressurized water reactor (PWR) nuclear power plants depends to a large extent on the analyses of fatigue usage of the reactor coolant pressure boundary. The reliable estimation of the fatigue usage requires detailed thermal and stress analyses of the affected components. Analyses, based upon the in-service transient loads should be compared to the loads analyzed at the design stage. The thermal and stress transients can be efficiently analyzed using the finite element method. This requires that a 3-D solid model of a given system is discretized with finite elements (FE). The FE mesh density is crucial for both the accuracy and the cost of the analysis. The main goal of the paper is to propose a set of computational tools which assist a user in a deployment of modular spatial FE model of main components of a typical reactor coolant system, e.g., pipes, pressure vessels and pumps. The modularity ensures that the components can be analyzed individually or in a system. Also, individual components can be meshed with different mesh densities, as required by the specifics of the particular transient studied. For optimal accuracy, all components are meshed with hexahedral elements with quadratic interpolation. The performance of the model is demonstrated with simulations performed with a complete two-loop PWR coolant system (RCS). Heat transfer analysis and stress analysis for a complete loading and unloading cycle of the RCS are performed. The main results include expected ranges of fatigue loading for the pipe lines and coolant pump components under the given conditions.

  17. Analysis of an Advanced Test Reactor Small-Break Loss-of-Coolant Accident with an Engineered Safety Feature to Automatically Trip the Primary Coolant Pumps

    International Nuclear Information System (INIS)

    Polkinghorne, Steven T.; Davis, Cliff B.; McCracken, Richard T.

    2000-01-01

    A new engineered safety feature that automatically trips the primary coolant pumps following a low-pressure reactor scram was recently installed in the Advanced Test Reactor (ATR). The purpose of this engineered safety feature is to prevent the ATR's surge tank, which contains compressed air, from emptying during a small-break loss-of-coolant accident (SBLOCA). If the surge tank were to empty, the air introduced into the primary coolant loop could potentially cause the performance of the primary and/or emergency coolant pumps to degrade, thereby reducing core thermal margins. Safety analysis performed with the RELAP5 thermal-hydraulic code and the SINDA thermal analyzer shows that adequate thermal margins are maintained during an SBLOCA with the new engineered safety feature installed. The analysis also shows that the surge tank will not empty during an SBLOCA even if one of the primary coolant pumps fails to trip

  18. Identification of flow patterns by neutron noise analysis during actual coolant boiling in thin rectangular channels

    International Nuclear Information System (INIS)

    Kozma, R.; van Dam, H.; Hoogenboom, J.E.

    1992-01-01

    The primary objective of this paper is to introduce results of coolant boiling experiments in a simulated materials test reactor-type fuel assembly with plate fuel in an actual reactor environment. The experiments have been performed in the Hoger Onderwijs Reactor (HOR) research reactor at the Interfaculty Reactor Institute, Delft, The Netherlands. In the analysis, noise signals of self-powered neutron detectors located in the neighborhood of the boiling region and thermocouple in the channel wall and in the coolant are used. Flow patterns in the boiling coolant have been identified by means of analysis of probability density functions and power spectral densities of neutron noise. It is shown that boiling has an oscillating character due to partial channel blockage caused by steam slugs generated periodically between the plates. The observed phenomenon can serve as a basis for a boiling detection method in reactors with plate-type fuels

  19. Fission Product Releases from a Core into a Coolant of a Prismatic 350-MWth HTR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Min; Jo, C. K. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    A prismatic 350-MW{sub th} high temperature reactor (HTR) is a means to generate electricity and process heat for hydrogen production. The HTR will be operated for an extended fuel burnup of more than 150 GWd/MTU. Korea Atomic Energy Research Institute (KAERI) is performing a point design for the HTR which is a pre-conceptual design for the analysis and assessment of engineering feasibility of the reactor. In a prismatic HTR, metallic and gaseous fission products (FPs) are produced in the fuel, moved through fuel materials, and released into a primary coolant. The FPs released into the coolant are deposited on the various helium-wetted surfaces in the primary circuit, or they are sorbed on particulate matters in the primary coolant. The deposited or sorbed FPs are released into the environment through the leakage or venting of the primary coolant. It is necessary to rigorously estimate such radioactivity releases into the environment for securing the health and safety of the occupational personnel and the public. This study treats the FP releases from a core into a coolant of a prismatic 350-MW{sub th} HTR. These results can be utilized as input data for the estimation of FP migration from a coolant into the environment. The analysis of fission product release within a prismatic 350-MW{sub th} HTR has been done. It was assumed that the HTR was operated at constant temperature and power for 1500 EFPDs. - The final burnup is 152 GWd/tHM at packing fraction of 25 %, and the final fast fluence is about 8 X 10{sup 21} n/cm{sup 2}, E{sub n} > 0.1 MeV. - The temperatures at the compact center and at the center of a kernel located at the compact center are 884 and 893 .deg. C, respectively, when the packing fraction is 25 % and the coolant temperature is 850 .deg. C. - Xenon is the most radioactive fission product in a coolant of a prismatic HTR when there are broken TRISOs and fuel component contaminated with heavy metals. For metallic fission products, the radioactivity

  20. Fuel-Coolant Interactions: Visualization and Mixing Measurements

    International Nuclear Information System (INIS)

    Loewen, Eric P.; Bonazza, Riccardo; Corradini, Michael L.; Johannesen, Robert E.

    2002-01-01

    Dynamic X-ray imaging of fuel-coolant interactions (FCI), including quantitative measurement of fuel-coolant volume fractions and length scales, has been accomplished with a novel imaging system at the Nuclear Safety Research Center at the University of Wisconsin, Madison. The imaging system consists of visible-light high-speed digital video, low-energy X-ray digital imaging, and high-energy X-ray digital imaging subsystems. The data provide information concerning the melt jet velocity, melt jet configuration, melt volume fractions, void fractions, and spatial and temporal quantification of premixing length scales for a model fuel-coolant system of molten lead poured into a water pool (fuel temperatures 500 to 1000 K; jet diameters 10 to 30 mm; coolant temperatures 20 to 90 deg. C). Overall results indicate that the FCI has three general regions of behavior, with the high fuel-coolant temperature region similar to what might be expected under severe accident conditions. It was observed that the melt jet leading edge has the highest void fraction and readily fragments into discrete masses, which then subsequently subdivide into smaller masses of length scales <10 mm. The intact jet penetrates <3 to 5 jet length/jet diameter before this breakup occurs into discrete masses, which continue to subdivide. Hydrodynamic instabilities can be visually identified at the leading edge and along the jet column with an interfacial region that consists of melt, vapor, and water. This interface region was observed to grow in size as the water pool temperature was increased, indicating mixing enhancement by boiling processes

  1. Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator)

    International Nuclear Information System (INIS)

    Leong, K.Y.; Saidur, R.; Kazi, S.N.; Mamun, A.H.

    2010-01-01

    Water and ethylene glycol as conventional coolants have been widely used in an automotive car radiator for many years. These heat transfer fluids offer low thermal conductivity. With the advancement of nanotechnology, the new generation of heat transfer fluids called, 'nanofluids' have been developed and researchers found that these fluids offer higher thermal conductivity compared to that of conventional coolants. This study focused on the application of ethylene glycol based copper nanofluids in an automotive cooling system. Relevant input data, nanofluid properties and empirical correlations were obtained from literatures to investigate the heat transfer enhancement of an automotive car radiator operated with nanofluid-based coolants. It was observed that, overall heat transfer coefficient and heat transfer rate in engine cooling system increased with the usage of nanofluids (with ethylene glycol the basefluid) compared to ethylene glycol (i.e. basefluid) alone. It is observed that, about 3.8% of heat transfer enhancement could be achieved with the addition of 2% copper particles in a basefluid at the Reynolds number of 6000 and 5000 for air and coolant respectively. In addition, the reduction of air frontal area was estimated.

  2. Estimation of the mechanical behavior of irradiated coolant channels at a nuclear plant for its decomissing

    International Nuclear Information System (INIS)

    Piquin, Ruben; Zanni, Pablo

    2003-01-01

    The widespread replacement of reactor internals generates a substantial volume of active material.It is essential to work with these components at least in a partial way before the next planned stop.Due to the fact that the reactor internals pool and the storage pools for irradiated nuclear fuel have limited capacities, it has been proposed to compact an experimental shift of 50 irradiated coolant channels, that are currently placed in storage pools.Basically the processed waste will be put in baskets at the bottom of the storage pools.The alternative choice proposes to divide an irradiation coolant channel tube into different parts: stainless steel section, zircaloy-4 section and stainless steel section with hardened zones with cobalt alloys named Estelite-6.Having planned the constructive and operative solutions, the mechanical characterization of the different parts of the channel tube remains to be done.In the present paper, the necessary compacted strength of the irradiation coolant channel tube will be estimated for the stainless steel section and for the zircaloy-4 section, starting from experiment with unirradiated material and considering effects of radiation damage and hydrides on the ductility.These results will be used to design the necessary compacted tools for the semi-industrial installation

  3. Ferroelectric materials for piezoelectric actuators by optimal design

    International Nuclear Information System (INIS)

    Jayachandran, K.P.; Guedes, J.M.; Rodrigues, H.C.

    2011-01-01

    Research highlights: → Microstructure optimization of ferroelectric materials by stochastic optimization. → Polycrystalline ferroelectrics possess better piezo actuation than single crystals. → Randomness of the grain orientations would enhance the overall piezoelectricity. - Abstract: Optimization methods provide a systematic means of designing heterogeneous materials with tailored properties and microstructures focussing on a specific objective. An optimization procedure incorporating a continuum modeling is used in this work to identify the ideal orientation distribution of ferroelectrics (FEs) for application in piezoelectric actuators. Piezoelectric actuation is dictated primarily by the piezoelectric strain coefficients d iμ . Crystallographic orientation is inextricably related to the piezoelectric properties of FEs. This suggests that piezoelectric properties can be tailored by a proper choice of the parameters which control the orientation distribution. Nevertheless, this choice is complicated and it is impossible to analyze all possible combinations of the distribution parameters or the angles themselves. Stochastic optimization combined with a generalized Monte Carlo scheme is used to optimize the objective functions, the effective piezoelectric coefficients d 31 and d 15 . The procedure is applied to heterogeneous, polycrystalline, FE ceramics which are essentially an aggregate of variously oriented grains (crystallites). Global piezoelectric properties are calculated using the homogenization method at each grain configuration chosen by the optimization algorithm. Optimal design variables and microstructure that would generate polycrystalline configurations that multiply the macroscopic piezoelectricity are identified.

  4. Design of the solid target structure and the study on the coolant flow distribution in the solid target using the 2-dimensional flow analysis

    International Nuclear Information System (INIS)

    Haga, Katsuhiro; Terada, Atsuhiko; Ishikura, Shuichi; Teshigawara, Makoto; Kinoshita, Hidetaka; Kobayashi, Kaoru; Kaminaga, Masaki; Hino, Ryutaro; Susuki, Akira

    1999-11-01

    A solid target cooled by heavy water is presently under development under the Neutron Science Research Project of the Japan Atomic Energy Research Institute (JAERI). Target plates of several millimeters thickness made of heavy metal are used as the spallation target material and they are put face to face in a row with one to two millimeters gaps in between though which heavy water flows, as the coolant. Based on the design criteria regarding the target plate cooling, the volume percentage of the coolant, and the thermal stress produced in the target plates, we conducted thermal and hydraulic analysis with a one dimensional target plate model. We choosed tungsten as the target material, and decided on various target plate thicknesses. We then calculated the temperature and the thermal stress in the target plates using a two dimensional model, and confirmed the validity of the target plate thicknesses. Based on these analytical results, we proposed a target structure in which forty target plates are divided into six groups and each group is cooled using a single pass of coolant. In order to investigate the relationship between the distribution of the coolant flow, the pressure drop, and the coolant velocity, we conducted a hydraulic analysis using the general purpose hydraulic analysis code. As a result, we realized that an uniform coolant flow distribution can be achieved under a wide range of flow velocity conditions in the target plate cooling channels from 1 m/s to 10 m/s. The pressure drop along the coolant path was 0.09 MPa and 0.17 MPa when the coolant flow velocity was 5 m/s and 7 m/s respectively, which is required to cool the 1.5 MW and 2.5 MW solid targets. (author)

  5. Lead-Bismuth technology ; corrosion resistance of structural materials

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ji Young; Park, Won Seok [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-02-01

    Lead-Bismuth (Pb-Bi) eutectic alloy was determined as a coolant material for the HYPER system being studied by KAERI. The Pb-Bi alloy as a coolant, has a number of the favorable thermo-physical and technological properties, while it is comparatively corrosive to the structural materials. It is necessary to solve this problem for providing a long failure-proof operation of the facilities with Pb-Bi coolant. It seems to be possible to maintain corrosion resistance on structural material up to 600 deg C by using of various technologies, but it needs more studies for application to large-scale NPPs. 22 refs., 11 figs., 7 tabs. (Author)

  6. Power reactors and sub-critical blanket systems with lead and lead-bismuth as coolant and/or target material. Utilization and transmutation of actinides and long lived fission products

    International Nuclear Information System (INIS)

    2003-05-01

    High level radioactive waste disposal is an issue of great importance in the discussion of the sustainability of nuclear power generation. The main contributors to the high radioactivity are the fission products and the minor actinides. The long lived fission products and minor actinides set severe demands on the arrangements for safe waste disposal. Fast reactors and accelerator driven systems (ADS) are under development in Member States to reduce the long term hazard of spent fuel and radioactive waste, taking advantage of their incineration and transmutation capability. Important R and D programmes are being undertaken in many Member States to substantiate this option and advance the basic knowledge in this innovative area of nuclear energy development. The conceptual design of the lead cooled fast reactor concept BREST-OD-300, as well as various other conceptual designs of lead/lead-bismuth cooled fast reactors have been developed to meet enhanced safety and non-proliferation requirements, aiming at both energy production and transmutation of nuclear waste. Some R and D studies indicate that the use of lead and lead-bismuth coolant has some advantages in comparison with existing sodium cooled fast reactor systems, e.g.: simplified design of fast reactor core and BOP, enhanced inherent safety, and easier radwaste management in related fuel cycles. Moreover, various ADS conceptual designs with lead and lead-bismuth as target material and coolant also have been pursued. The results to date are encouraging, indicating that the ADS has the potential to offer an option for meeting the challenges of the back end fuel cycle. During the last decade, there have been substantial advances in several countries with their own R and D programme in the fields of lead/lead-bismuth cooled critical and sub-critical concepts. coolant technology, and experimental validation. In this context, international exchange of information and experience, as well as international

  7. Research on loss of coolant accident of pressurized-water reactor based on PSO algorithm

    International Nuclear Information System (INIS)

    Ma Jie; Guo Lifeng; Peng Qiao

    2012-01-01

    In order to improve the diagnosis performance of Loss of Coolant Accident (LOCA), based on Back Propagation (BP) algorithm study, a fault diagnosis network is established based on Particle Swarm Optimization (PSO) algorithm in this paper. The PSO algorithm is used to train the weights and the thresholds of neural network, which can conquer part convergence problem of BP algorithm. The test results show that the diagnosis network has higher accuracy of LOCA. (authors)

  8. BWR fuel assembly bottom nozzle with one-way coolant flow valve

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.

    1987-01-01

    In a nuclear reactor having a flow of coolant/moderator fluid therein, at least one fuel assembly installed in the fluid flow, the fuel assembly is described comprising in combination: a bundle of elongated fuel rods disposed in side-by-side relationship so as to form an array of spaced fuel rods; an outer tubular flow channel surrounding the fuel rods so as to direct the flow of coolant/moderator fluid along the fuel rods; bottom and top nozzles mounted at opposite ends of the flow channel and having an inlet and outlet respectively for allowing entry and exit of the flow of coolant/moderator fluid into and from the flow channel and along the fuel rods therein; and a coolant flow direction control device operatively disposed in the bottom nozzle so as to open the inlet thereof to the flow of coolant/moderator fluid in an inflow direction into the flow channel through the bottom nozzle inlet but close the inlet to the flow of coolant/moderator fluid from the flow channel through the bottom nozzle inlet upon reversal of coolant/moderator fluid flow from the inflow direction

  9. Reactor coolant pumps for nuclear reactors

    International Nuclear Information System (INIS)

    Harand, E.; Richter, G.; Tschoepel, G.

    1975-01-01

    A brake for the pump rotor of a main coolant pump or a shutoff member on the pump are provided in order to prevent excess speeds of the pump rotor. Such excess speeds may occur in PWR type reactors with water at a pressure below, e.g., 150 bars if there is leakage from a coolant line associated with the main coolant pump. As a brake, a centrifugal brake depending upon the pump speed or a brake ring arranged on the pump housing and acting on the pump rotor, which ring would be activated by pressure differentials in the pump, may be used. If the pressure differences between suction and pressure sockets are very small, a controlled hydraulic increase of the pressure force on the brake may also be provided. Furthermore, a turbine brake may be provided. A slide which is automatically movable in closing position along the pump rotor axis is used as a shutoff element. It is of cylindrical configuration and is arranged concentrically with the rotor axis. (DG) [de

  10. Design of automotive engine coolant hoses

    Directory of Open Access Journals (Sweden)

    Hrishikesh D BACHCHHAV

    2018-03-01

    Full Text Available In this paper, we are present the performance of engine coolant hoses (radiator hoses used in passenger cars by checking various physical behaviours such as hose leakage, hose burst, hose collapse or any mechanical damage as studied-thru design guidelines, CFD analysis and product validation testing and also check pressure drop of the hoses when engine will be running. The design term is more likely used for technical part modelling using CAD tool. Later on, we will focus on the transformation of the part design to process design. The process design term is more likely used for "tooling design" for manufacturing of the product using CAD Tool. Then inlet hose carries coolant from engine to radiator inlet tank, then coolant circulated in radiator and passed through radiator outlet tank to water pump of engine with the help of outlet hose. After that …nding any leakage, Burst, damage or collapse of hose and pressure drop of the hose with the help of design checklist, CFD Analysis and product validation testing.

  11. Transient two-phase performance of LOFT reactor coolant pumps

    International Nuclear Information System (INIS)

    Chen, T.H.; Modro, S.M.

    1983-01-01

    Performance characteristics of Loss-of-Fluid Test (LOFT) reactor coolant pumps under transient two-phase flow conditions were obtained based on the analysis of two large and small break loss-of-coolant experiments conducted at the LOFT facility. Emphasis is placed on the evaluation of the transient two-phase flow effects on the LOFT reactor coolant pump performance during the first quadrant operation. The measured pump characteristics are presented as functions of pump void fraction which was determined based on the measured density. The calculated pump characteristics such as pump head, torque (or hydraulic torque), and efficiency are also determined as functions of pump void fractions. The importance of accurate modeling of the reactor coolant pump performance under two-phase conditions is addressed. The analytical pump model, currently used in most reactor analysis codes to predict transient two-phase pump behavior, is assessed

  12. Reactor coolant pump shaft seal behavior during station blackout

    International Nuclear Information System (INIS)

    Kittmer, C.A.; Wensel, R.G.; Rhodes, D.B.; Metcalfe, R.; Cotnam, B.M.; Gentili, H.; Mings, W.J.

    1985-04-01

    A testing program designed to provide fundamental information pertaining to the behavior of reactor coolant pump (RCP) shaft seals during a postulated nuclear power plant station blackout has been completed. One seal assembly, utilizing both hydrodynamic and hydrostatic types of seals, was modeled and tested. Extrusion tests were conducted to determine if seal materials could withstand predicted temperatures and pressures. A taper-face seal model was tested for seal stability under conditions when leaking water flashes to steam across the seal face. Test information was then used as the basis for a station blackout analysis. Test results indicate a potential problem with an elastomer material used for O-rings by a pump vendor; that vendor is considering a change in material specification. Test results also indicate a need for further research on the generic issue of RCP seal integrity and its possible consideration for designation as an unresolved safety issue

  13. Reactor coolant pump seals: improving their performance

    International Nuclear Information System (INIS)

    Pothier, N.E.; Metcalfe, R.

    1986-06-01

    Large CANDU plants are benefitting from transient-resistant four-year reliable reactor coolant pump seal lifetimes, a direct result of AECL's 20-year comprehensive seal improvement program involving R and D staff, manufacturers, and plant designers and operators. An overview of this program is presented, which covers seal modification design, testing, post-service examination, specialized maintenance and quality control. The relevancy of this technology to Light Water Reactor Coolant Pump Seals is also discussed

  14. The Analysis of the Effect of Coolant Channel Width on Fuel Loading of the RSG-GAS Core

    International Nuclear Information System (INIS)

    Surbakti; Tukiran

    2004-01-01

    The RGS-GAS using uranium silicide fuel, plate type and 250 g U of loading is planned to increase the fuel loading to 300 g U even to 400 g U. The silicide fuel has advantages when increase the fuel loading in the same volume. Because of that case, it is necessary to analyze the effect of coolant channel width on fuel loading of the RSG-GAS core. Analyzing the effect the work which done is to generate cell and core calculation using WIMSD/4 and Batan-2DIFF codes. The WIMSD/4 code is used to generate cross section of core material and Batan-2DIFF is used to calculate the effective multiplication factor. The model that used in this calculation there are three kind of fuel loading namely, 250 g U, 300 g U and 400 g U. The coolant channel width is simulated from 1.75 mm to 2.55 mm. From that fuel loadings, it is analyzed which coolant channel width gave the best effective multiplication factor. From result of analysis showed that the best effective multiplication factor is on the coolant channel width of 2.55 mm for third of fuel loadings. (author)

  15. Analyses of Decrease in Reactor Coolant Flow Rate in SMART

    International Nuclear Information System (INIS)

    Kim, Hyung Rae; Bae, Kyoo Hwan; Choi, Suhn

    2011-01-01

    SMART is a small integral reactor, which is under development at KAERI to get the standard design approval by the end of 2011. SMART works like a pressurized light-water reactor in principle though it is more compact than large commercial reactors. SMART houses major components such as steam generators, a pressurizer, and reactor coolant pumps inside the reactor pressure vessel. Due to its compact design, SMART adopts a canned-motor type reactor coolant pump which has much smaller rotational inertia than the ones used in commercial reactors. As a consequence, the reactor coolant pump has very short coastdown time and reactor coolant flow rate decreases more severely compared to commercial reactors. The transients initiated by reduction of reactor coolant flow rate have been analyzed to ensure that SMART can be safely shutdown on such transients. The design basis events in this category are complete loss of flow, single pump locked rotor with loss of offsite power, and single pump shaft break with loss of offsite power

  16. Improvement of Measurement Accuracy of Coolant Flow in a Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jintae; Kim, Jong-Bum; Joung, Chang-Young; Ahn, Sung-Ho; Heo, Sung-Ho; Jang, Seoyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this study, to improve the measurement accuracy of coolant flow in a coolant flow simulator, elimination of external noise are enhanced by adding ground pattern in the control panel and earth around signal cables. In addition, a heating unit is added to strengthen the fluctuation signal by heating the coolant because the source of signals are heat energy. Experimental results using the improved system shows good agreement with the reference flow rate. The measurement error is reduced dramatically compared with the previous measurement accuracy and it will help to analyze the performance of nuclear fuels. For further works, out of pile test will be carried out by fabricating a test rig mockup and inspect the feasibility of the developed system. To verify the performance of a newly developed nuclear fuel, irradiation test needs to be carried out in the research reactor and measure the irradiation behavior such as fuel temperature, fission gas release, neutron dose, coolant temperature, and coolant flow rate. In particular, the heat generation rate of nuclear fuels can be measured indirectly by measuring temperature variation of coolant which passes by the fuel rod and its flow rate. However, it is very difficult to measure the flow rate of coolant at the fuel rod owing to the narrow gap between components of the test rig. In nuclear fields, noise analysis using thermocouples in the test rig has been applied to measure the flow velocity of coolant which circulates through the test loop.

  17. Discrete Material and Thickness Optimization of laminated composite structures including failure criteria

    DEFF Research Database (Denmark)

    Lund, Erik

    2017-01-01

    This work extends the Discrete Material and Thickness Optimization approach to structural optimization problems where strength considerations in the form of failure criteria are taken into account for laminated composite structures. It takes offset in the density approaches applied for stress...... constrained topology optimization of single-material problems and develops formulations for multi-material topology optimization problems applied for laminated composite structures. The method can be applied for both stress- and strain-based failure criteria. The large number of local constraints is reduced...

  18. Cobalt-60 simulation of LOCA [loss of coolant accident] radiation effects

    International Nuclear Information System (INIS)

    Buckalew, W.H.

    1989-07-01

    The consequences of simulating nuclear reactor loss of coolant accident (LOCA) radiation effects with Cobalt-60 gamma ray irradiators have been investigated. Based on radiation induced damage in polymer base materials, it was demonstrated that electron/photon induced radiation damage could be related on the basis of average absorbed radiation dose. This result was used to estimate the relative effectiveness of the mixed beta/gamma LOCA and Cobalt-60 radiation environments to damage both bare and jacketed polymer base electrical insulation materials. From the results obtained, it is concluded that present simulation techniques are a conservative method for simulating LOCA radiation effects and that the practices have probably substantially overstressed both bare and jacketed materials during qualification testing. 9 refs., 8 figs., 5 tabs

  19. Comparative analysis of coolants for FBR of future nuclear power

    International Nuclear Information System (INIS)

    Toshinsky, G.I.; Grigoryev, O.G.; Pylchenkov, E.H.; Skorikov, D.E.; Komkova, O.I.

    2001-01-01

    Selection of a fast reactor (FR) coolant for future nuclear reactors is a complex task that has not a single solution. Safety requirements are expected to grow in the future. The requirements to FR are reconsidered. Gradual transition from the FR as a builder up of plutonium to the FR as an economically effective energy source, is taking place. Among all types of coolants viable for FR, LMC (light molten salt coolants) cover the most complete range of requirements to advanced reactors and have a complete database. Sodium and lead-bismuth coolant (LBC) are selected because there is a complete package of technologies for their handling. Heavy liquid metal coolant (HLMC), being at a disadvantage of heat transfer rate in relation to sodium, make it possible to give the inherent safety properties to the reactor and, as a result, to simplify essentially the reactor design and its safety systems. This results in capital and costs reduction. Neutronic characteristics of HLMC cooled reactors make possible to transmute their own minor actinides (MA) safely, and LBC cooled reactors are able to transmute LWR'MA with high safety characteristics. Basing on the comparison carried out, it can be concluded, that both LBC and sodium are perspective coolants for future FR

  20. Comparative analysis of coolants for FBR of future nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Toshinsky, G.I.; Grigoryev, O.G.; Pylchenkov, E.H.; Skorikov, D.E.; Komkova, O.I. [State Scientific Center of Russian Federation, Institute for Physics and Power Engineering named after Academician A.I. Leipusky, Kaluga Region (Russian Federation)

    2001-07-01

    Selection of a fast reactor (FR) coolant for future nuclear reactors is a complex task that has not a single solution. Safety requirements are expected to grow in the future. The requirements to FR are reconsidered. Gradual transition from the FR as a builder up of plutonium to the FR as an economically effective energy source, is taking place. Among all types of coolants viable for FR, LMC (light molten salt coolants) cover the most complete range of requirements to advanced reactors and have a complete database. Sodium and lead-bismuth coolant (LBC) are selected because there is a complete package of technologies for their handling. Heavy liquid metal coolant (HLMC), being at a disadvantage of heat transfer rate in relation to sodium, make it possible to give the inherent safety properties to the reactor and, as a result, to simplify essentially the reactor design and its safety systems. This results in capital and costs reduction. Neutronic characteristics of HLMC cooled reactors make possible to transmute their own minor actinides (MA) safely, and LBC cooled reactors are able to transmute LWR'MA with high safety characteristics. Basing on the comparison carried out, it can be concluded, that both LBC and sodium are perspective coolants for future FR.

  1. Knock-limited performance of several internal coolants

    Science.gov (United States)

    Bellman, Donald R; Evvard, John C

    1945-01-01

    The effect of internal cooling on the knock-limited performance of an-f-28 fuel was investigated in a CFR engine, and the following internal coolants were used: (1) water, (2), methyl alcohol-water mixture, (3) ammonia-methyl alcohol-water mixture, (4) monomethylamine-water mixture, (5) dimethylamine-water mixture, and (6) trimethylamine-water mixture. Tests were run at inlet-air temperatures of 150 degrees and 250 degrees F. to indicate the temperature sensitivity of the internal-coolant solutions.

  2. ENVIRONMENTALLY REDUCING OF COOLANTS IN METAL CUTTING

    Directory of Open Access Journals (Sweden)

    Veijo KAUPPINEN

    2012-11-01

    Full Text Available Strained environment is a global problem. In metal industries the use of coolant has become more problematic in terms of both employee health and environmental pollution. It is said that the use of coolant forms approximately 8 - 16 % of the total production costs.The traditional methods that use coolants are now obviously becoming obsolete. Hence, it is clear that using a dry cutting system has great implications for resource preservation and waste reduction. For this purpose, a new cooling system is designed for dry cutting. This paper presents the new eco-friendly cooling innovation and the benefits gained by using this method. The new cooling system relies on a unit for ionising ejected air. In order to compare the performance of using this system, cutting experiments were carried out. A series of tests were performed on a horizontal turning machine and on a horizontal machining centre.

  3. A comparative neutronic analysis of KALIMER breeder core using Na or Pb-Bi coolant

    International Nuclear Information System (INIS)

    Yoo, J. W.; Kim, S. J.; Kim, Y. I.

    2000-01-01

    A comparative neutronic study has been conducted on KALIMER breeder core according to the replacement of sodium coolant by Pb-Bi coolant. Since the atomic weight of Pb and Bi is about 9 times heavier than that of Na, the energy loss by neutron colliding with Pb-Bi nucleus will be very small. Therefore, the reactor with Pb-Bi coolant will have a harder neutron spectrum than that with Na coolant. Consequently, the breeding ratio and burnup reactivity swing is expected to be enhanced. In addition, when Pb-Bi coolant is voided, a negative coolant void coefficient can be obtained by the net effects of smaller spectrum hardening and large neutron leakage. As a result, the breeding ratio was increased from 1.18 to 1.23 and burnup reactivity swing was reduced from 631 pcm to 150 pcm. When the coolant in the whole region of active core is voided, the coolant void coefficient was found to be -539 and -264 pcm at BOEC and EOEC, respectively. In the local voided case, the smaller coolant void coefficient was obtained than that of Na coolant. Accordingly, the use of Pb-Bi coolant in KALIMER gives an advantage of higher breeding ratio, smaller burnup reactivity swing and negative coolant void coefficient without any significant degradation of nuclear performance

  4. Design technology development of the main coolant pump for an integral reactor

    International Nuclear Information System (INIS)

    Park, J. S.; Lee, J. S.; Kim, M. H.; Kim, D. W.; Kim, J. I.

    2004-01-01

    All of the reactor coolant pump currently used in commercial nuclear power plant were imported from foreign country. Now, the developing program of design technology for the reactor coolant pump will be started in a few future by domestic researchers. At this stage, the design technology of the main coolant pump for an integral reactor is developed based on the regulation of domestic nuclear power plant facilities. The main coolant pump is a canned motor axial pump, which accommodates all constraints required from the integral reactor system. The main coolant pump does not have mechanical seal device because the rotor of motor and the shaft of impeller are the same one. There is no flywheel on the rotating shaft of main coolant pump so that the coastdown duration time is short when the electricity supply is cut off

  5. Experimental investigation of material chemical effects on emergency core cooling pump suction filter performance after loss of coolant accident

    International Nuclear Information System (INIS)

    Park, Jong Woon; Park, Byung Gi; Kim, Chang Hyun

    2009-01-01

    Integral tests of head loss through an emergency core cooling filter screen are conducted, simulating reactor building environmental conditions for 30 days after a loss of coolant accident. A test rig with five individual loops each of whose chamber is established to test chemical product formation and measure the head loss through a sample filter. The screen area at each chamber and the amounts of reactor building materials are scaled down according to specific plant condition. A series of tests have been performed to investigate the effects of calcium-silicate, reactor building spray, existence of calcium-silicate with tri-sodium phosphate (TSP), and composition of materials. The results showed that head loss across the chemical bed with even a small amount of calcium-silicate insulation instantaneously increased as soon as TSP was added to the test solution. Also, the head loss across the filter screen is strongly affected by spray duration and the head loss increase is rapid at the early stage, because of high dissolution and precipitation of aluminum and zinc. After passivation of aluminum and zinc by corrosion, the head loss increase is much slowed down and is mainly induced by materials such as calcium, silicon, and magnesium leached from NUKON TM and concrete. Furthermore, it is newly found that the spay buffer agent, tri-sodium phosphate, to form protective coating on the aluminum surface and reduce aluminum leaching is not effective for a large amount of aluminum and a long spray.

  6. Channel type reactors with supercritical water coolant. Russian experience

    International Nuclear Information System (INIS)

    Kuznetsov, Y.N.; Gabaraev, B.A.

    2003-01-01

    Transition to coolant of supercritical parameters allows for principle engineering-andeconomic characteristics of light-water nuclear power reactors to be substantially enhanced. Russian experience in development of channel-type reactors with supercritical water coolant has demonstrated advantages and practical feasibility of such reactors. (author)

  7. Low-activation lead coolant for advanced small modular NPP

    International Nuclear Information System (INIS)

    Khorasanov, G.L.; Ivanov, A.P.; Blokhin, A.I.

    2001-01-01

    The purpose of the paper is in studying perspectives of a new heavy liquid metal coolant for a small fast reactor (FR) concept. To reduce the post irradiation activity of the coolant the using of lead isotope, Pb-206, instead of natural lead, Pb-nat, is offered. In this case the accumulation of such hazardous radionuclides, as Po-210, Bi-208, Bi-207, essentially decreases. The interval of the lead-206 coolant cost which does not exceed 20% of the overall FR cost is estimated. The possibility of lead-206 obtaining for FR needs with the centrifugal separation technique is pointed out. (author)

  8. Calculational advance in the modeling of fuel-coolant interactions

    International Nuclear Information System (INIS)

    Bohl, W.R.

    1982-01-01

    A new technique is applied to numerically simulate a fuel-coolant interaction. The technique is based on the ability to calculate separate space- and time-dependent velocities for each of the participating components. In the limiting case of a vapor explosion, this framework allows calculation of the pre-mixing phase of film boiling and interpenetration of the working fluid by hot liquid, which is required for extrapolating from experiments to a reactor hypothetical accident. Qualitative results are compared favorably to published experimental data where an iron-alumina mixture was poured into water. Differing results are predicted with LMFBR materials

  9. Systematic design of phononic band-gap materials and structures by topology optimization

    DEFF Research Database (Denmark)

    Sigmund, Ole; Jensen, Jakob Søndergaard

    2003-01-01

    Phononic band-gap materials prevent elastic waves in certain frequency ranges from propagating, and they may therefore be used to generate frequency filters, as beam splitters, as sound or vibration protection devices, or as waveguides. In this work we show how topology optimization can be used...... to design and optimize periodic materials and structures exhibiting phononic band gaps. Firstly, we optimize infinitely periodic band-gap materials by maximizing the relative size of the band gaps. Then, finite structures subjected to periodic loading are optimized in order to either minimize the structural...

  10. Assessment of fiber optic sensors for aging monitoring of industrial liquid coolants

    Science.gov (United States)

    Riziotis, Christos; El Sachat, Alexandros; Markos, Christos; Velanas, Pantelis; Meristoudi, Anastasia; Papadopoulos, Aggelos

    2015-03-01

    Lately the demand for in situ and real time monitoring of industrial assets and processes has been dramatically increased. Although numerous sensing techniques have been proposed, only a small fraction can operate efficiently under harsh industrial environments. In this work the operational properties of a proposed photonic based chemical sensing scheme, capable to monitor the ageing process and the quality characteristics of coolants and lubricants in industrial heavy machinery for metal finishing processes is presented. The full spectroscopic characterization of different coolant liquids revealed that the ageing process is connected closely to the acidity/ pH value of coolants, despite the fact that the ageing process is quite complicated, affected by a number of environmental parameters such as the temperature, humidity and development of hazardous biological content as for example fungi. Efficient and low cost optical fiber sensors based on pH sensitive thin overlayers, are proposed and employed for the ageing monitoring. Active sol-gel based materials produced with various pH indicators like cresol red, bromophenol blue and chorophenol red in tetraethylorthosilicate (TEOS), were used for the production of those thin film sensitive layers deposited on polymer's and silica's large core and highly multimoded optical fibers. The optical characteristics, sensing performance and environmental robustness of those optical sensors are presented, extracting useful conclusions towards their use in industrial applications.

  11. Distributed material density and anisotropy for optimized eigenfrequency of 2D continua

    DEFF Research Database (Denmark)

    Pedersen, Pauli; Pedersen, Niels Leergaard

    2015-01-01

    A practical approach to optimize a continuum/structural eigenfrequency is presented, including design of the distribution of material anisotropy. This is often termed free material optimization (FMO). An important aspect is the separation of the overall material distribution from the local design...... with respect to material density and from this values of the element OC. Each factor of this expression has a physical interpretation. Stated alternatively, the optimization problem of material distribution is converted into a problem of determining a design of uniform OC values. The constitutive matrices...... are described by non-dimensional matrices with unity norms of trace and Frobenius, and thus this part of the optimized design has no influence on the mass distribution. Gradients of eigenfrequency with respect to the components of these non-dimensional constitutive matrices are therefore simplified...

  12. Main coolant pump testing at Ontario Hydro

    International Nuclear Information System (INIS)

    Hartlen, R.

    1991-01-01

    This article describes Ontario Hydro Research Division's experience with a computerized data acquisition and analysis system for monitoring mechanical vibration in reactor coolant pumps. The topics covered include bench-marking of the computer system and the coolant pumps, signatures of normal and malfunctioning pumps, analysis of data collected by the monitoring system, simulation of faults, and concerns that have been expressed about data interpretation, sensor types and locations, alarm/shutdown limits and confirmation of nondestructive examination testing. This presentation consists of overheads only

  13. Material effect in the nuclear fuel-coolant interaction: Analyses of prototypic melt fragmentation and solidification in the KROTOS facility

    Czech Academy of Sciences Publication Activity Database

    Tyrpekl, V.; Piluso, P.; Bakardjieva, Snejana; Dugne, O.

    2014-01-01

    Roč. 186, č. 2 (2014), s. 229-240 ISSN 0029-5450 Institutional support: RVO:61388980 Keywords : fuel-coolant interaction * melt fragmentation * KROTOS facility Subject RIV: CA - Inorganic Chemistry Impact factor: 0.725, year: 2014

  14. Iron crud supply device to reactor coolant

    International Nuclear Information System (INIS)

    Baba, Takao.

    1993-01-01

    In a device for supplying iron cruds into reactor coolants in a BWR type power plant, a system in which feed water containing iron cruds is supplied to the reactor coolants after once passing through an ion exchange resin is disposed. As a result, iron cruds having characteristics similar with those of naturally occurring iron cruds in the plant are obtained and they react with ionic radioactivity, to form composite oxides. Then, iron cruds having high performance of being secured to the surface of a fuel cladding tube can be supplied to the reactor coolants, thereby enabling to greatly reduce the density of reactor water ionic radioactivity. In its turn, dose rate on the surface of pipelines can be reduced, thereby enabling to reduce operators' radiation exposure dose in the plant. Further, contamination of a condensate desalting device due to iron cruds can be prevented, and further, the density of the iron cruds supplied can easily be controlled. (N.H.)

  15. Robust buckling optimization of laminated composite structures using discrete material optimization considering “worst” shape imperfections

    DEFF Research Database (Denmark)

    Henrichsen, Søren Randrup; Lindgaard, Esben; Lund, Erik

    2015-01-01

    Robust buckling optimal design of laminated composite structures is conducted in this work. Optimal designs are obtained by considering geometric imperfections in the optimization procedure. Discrete Material Optimization is applied to obtain optimal laminate designs. The optimal geometric...... imperfection is represented by the “worst” shape imperfection. The two optimization problems are combined through the recurrence optimization. Hereby the imperfection sensitivity of the considered structures can be studied. The recurrence optimization is demonstrated through a U-profile and a cylindrical panel...... example. The imperfection sensitivity of the optimized structure decreases during the recurrence optimization for both examples, hence robust buckling optimal structures are designed....

  16. Organic coolants and their applications to fusion reactors

    International Nuclear Information System (INIS)

    Gierszewski, P.; Hollies, B.

    1986-08-01

    Organic coolants offer a unique set of characteristics for fusion applications. Their advantages include high-temperature (670 K or 400 degrees C) but low-pressure (2 MPa) operation, limited reactivity with lithium and lithium-lead, reduced corrosion and activation, good heat-transfer capabilities, no magnetohydrodynamic (MHD) effects, and an operating temperature range that extends to room temperature. The major disadvantages are decomposition and flammability. However, organic coolants have been extensively studied in Canada, including nineteen years with an operating 60-MW organic-cooled reactor. Proper attention to design and coolant chemistry controlled these potential problems to acceptable levels. This experience provides an extensive data base for design under fusion conditions. The organic fluid characteristics are described in sufficient detail to allow fusion system designers to evaluate organic coolants for specific applications. To illustrate and assess the potential applications, analyses are presented for organic-cooled blankets, first walls, high heat flux components and thermal power cycles. Designs are identified that take advantage of organic coolant features, yet have fluid decomposition related costs that are a small fraction of the overall cost of electricity. For example, organic-cooled first walls make lithium/ferritic steel blankets possible in high-field, high-surface-heat-flux tokamaks, and organic-cooled limiters (up to about 8 MW/m 2 surface heating) are a safer alternative to water cooling for liquid metal blanket concept. Organics can also be used in intermediate heat exchanger loops to provide efficient heat transfer with low reactivity and a large tritium barrier. 55 refs

  17. Leak detection device for reactor coolant

    International Nuclear Information System (INIS)

    Oshima, Koichiro.

    1990-01-01

    In a light water cooled reactor, if reactor coolants are leaked from pipelines in a pipeline chamber, activated products (N-16) are diffused together to an atmosphere in the pipeline chamber. N-16 is sucked from an extracting tube which is always sucking the atmosphere in the pipeline chamber to a sucking blower. Then, β-rays released from N-16 are monitored by a radiation monitor in a measuring chamber which is radiation-shielded from the pipeline chamber. Accordingly, since the radiation monitor can detect even slight leakage, the slight leakage of reactor coolants in the pipelines can be detected at an early stage. (I.N.)

  18. Analysis of Coolant Options for Advanced Metal Cooled Nuclear Reactors

    National Research Council Canada - National Science Library

    Can, Levent

    2006-01-01

    .... The overall focus of this study is the build up of induced radioactivity in the coolant of metal cooled reactors as well as the evaluation of other physical and chemical properties of such coolants...

  19. Physics study of Canada deuterium uranium lattice with coolant void reactivity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Su; Lee, Hyun Suk; Tak, Tae Woo; Lee, Deok Jung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Shin, Ho Cheol [Korea Hydro and Nuclear Power Central Research Institute (KHNP-CRI), Daejeon (Korea, Republic of)

    2017-02-15

    This study presents a coolant void reactivity analysis of Canada Deuterium Uranium (CANDU)-6 and Advanced Canada Deuterium Uranium Reactor-700 (ACR-700) fuel lattices using a Monte Carlo code. The reactivity changes when the coolant was voided were assessed in terms of the contributions of four factors and spectrum shifts. In the case of single bundle coolant voiding, the contribution of each of the four factors in the ACR-700 lattice is large in magnitude with opposite signs, and their summation becomes a negative reactivity effect in contrast to that of the CANDU-6 lattice. Unlike the coolant voiding in a single fuel bundle, the 2 x 2 checkerboard coolant voiding in the ACR-700 lattice shows a positive reactivity effect. The neutron current between the no-void and voided bundles, and the four factors of each bundle were analyzed to figure out the mechanism of the positive coolant void reactivity of the checkerboard voiding case. Through a sensitivity study of fuel enrichment, type of burnable absorber, and moderator to fuel volume ratio, a design strategy for the CANDU reactor was suggested in order to achieve a negative coolant void reactivity even for the checkerboard voiding case.

  20. ISS Internal Active Thermal Control System (IATCS) Coolant Remediation Project -2006 Update

    Science.gov (United States)

    Morrison, Russell H.; Holt, Mike

    2006-01-01

    The IATCS coolant has experienced a number of anomalies in the time since the US Lab was first activated on Flight 5A in February 2001. These have included: 1) a decrease in coolant pH, 2) increases in inorganic carbon, 3) a reduction in phosphate concentration, 4) an increase in dissolved nickel and precipitation of nickel salts, and 5) increases in microbial concentration. These anomalies represent some risk to the system, have been implicated in some hardware failures and are suspect in others. The ISS program has conducted extensive investigations of the causes and effects of these anomalies and has developed a comprehensive program to remediate the coolant chemistry of the on-orbit system as well as provide a robust and compatible coolant solution for the hardware yet to be delivered. This paper presents a status of the coolant stability over the past year as well as results from destructive analyses of hardware removed from the on-orbit system and the current approach to coolant remediation.

  1. Optimal selection for shielding materials by fuzzy linear programming

    International Nuclear Information System (INIS)

    Kanai, Y.; Miura, N.; Sugasawa, S.

    1996-01-01

    An application of fuzzy linear programming methods to optimization of a radiation shield is presented. The main purpose of the present study is the choice of materials and the search of the ratio of mixture-component as the first stage of the methodology on optimum shielding design according to individual requirements of nuclear reactor, reprocessing facility, shipping cask installing spent fuel, ect. The characteristic values for the shield optimization may be considered their cost, spatial space, weight and some shielding qualities such as activation rate and total dose rate for neutron and gamma ray (includes secondary gamma ray). This new approach can reduce huge combination calculations for conventional two-valued logic approaches to representative single shielding calculation by group-wised optimization parameters determined in advance. Using the fuzzy linear programming method, possibilities for reducing radiation effects attainable in optimal compositions hydrated, lead- and boron-contained materials are investigated

  2. Material saving by means of CWR technology using optimization techniques

    Science.gov (United States)

    Pérez, Iñaki; Ambrosio, Cristina

    2017-10-01

    Material saving is currently a must for the forging companies, as material costs sum up to 50% for parts made of steel and up to 90% in other materials like titanium. For long products, cross wedge rolling (CWR) technology can be used to obtain forging preforms with a suitable distribution of the material along its own axis. However, defining the correct preform dimensions is not an easy task and it could need an intensive trial-and-error campaign. To speed up the preform definition, it is necessary to apply optimization techniques on Finite Element Models (FEM) able to reproduce the material behaviour when being rolled. Meta-models Assisted Evolution Strategies (MAES), that combine evolutionary algorithms with Kriging meta-models, are implemented in FORGE® software and they allow reducing optimization computation costs in a relevant way. The paper shows the application of these optimization techniques to the definition of the right preform for a shaft from a vehicle of the agricultural sector. First, the current forging process, based on obtaining the forging preform by means of an open die forging operation, is showed. Then, the CWR preform optimization is developed by using the above mentioned optimization techniques. The objective is to reduce, as much as possible, the initial billet weight, so that a calculation of flash weight reduction due to the use of the proposed preform is stated. Finally, a simulation of CWR process for the defined preform is carried out to check that most common failures (necking, spirals,..) in CWR do not appear in this case.

  3. Evaluation of filtration and distillation methods for recycling automotive coolant

    International Nuclear Information System (INIS)

    Randall, P.M.; Gavaskar, A.R.

    1992-01-01

    Government regulations and high waste disposal cost of spent automotive coolant have driven the vehicle maintenance industry to explore on-site recycling. The USEPA in cooperation with the New Jersey Department of Environmental Protection (NJDEP) and the New Jersey Department of Transportation (NJDOT) evaluated two commercially available technologies that have potential for reducing the volume of spent automotive coolant. The objective of this study was to evaluate the quality of the recycled coolant, the pollution prevention potential, and the economic feasibility of the technologies

  4. Technical findings related to Generic Issue 23: Reactor coolant pump seal failure

    International Nuclear Information System (INIS)

    Ruger, C.J.; Luckas, W.J. Jr.

    1989-03-01

    Reactor coolant pumps contain mechanical seals to limit the leakage of pressurized coolant from the reactor coolant system to the containment. These seals have the potential to leak, and a few have degraded and even failed resulting in a small break loss of coolant accident (LOCA). As a result, ''Reactor Coolant Pump Seal Failure,'' Generic Issue 23 was established. This report summarizes the findings of a technical investigation generated as part of the program to resolve this issue. These technical findings address the various fact-finding issue tasks developed for the action plan associated with the generic issue, namely background information on seal failure, evaluation of seal cooling, and mechanical- and maintenance-induced failure mechanisms. 46 refs., 15 figs., 14 tabs

  5. Composition and concentration of soluble and particulate matter in the coolant of the reactor primary cooling system of the Embalse nuclear power plant

    International Nuclear Information System (INIS)

    Chocron, Mauricio; Garcia Rodenas, Luis; La Gamma, Ana M.; Villegas, Marina; Fernandez, Alberto N.; Allemandi, Walter; Manera, Raul; Rosales, Hugo

    2000-01-01

    Nuclear power plants type PWR and PHWR (pressurized water reactor and pressurized heavy water reactor) have three coolant circuits which only exchange energy among them. The primary circuit, whose coolant extracts the reactor energy, the secondary circuit or water-steam cycle and the tertiary circuit which could be lake, river or sea water. The chemistry of the primary and secondary coolants is carefully controlled with the aim of minimizing the corrosion of structural materials. However, very low rates of corrosion are inevitable and one of the consequences of the corrosion processes is the presence of soluble and particulate matter in the coolant from where several problems associated with mass transfer arisen. In this way radioactive nuclides are transported out of the core to the steam generators, hydraulic resistance increases and heat transfer capability degrades. In the present paper some alternative techniques are proposed for the quantification of both, the particulate and soluble matter present in the coolant and their correspondent composition. Some results are also included and discussed. (author)

  6. Reactor coolant pump for a nuclear reactor

    International Nuclear Information System (INIS)

    Burkhardt, W.; Richter, G.

    1976-01-01

    An improvement is proposed concerning the easier disengagement of the coupling at the reactor coolant pump for a nuclear reactor transporting a pressurized coolant. According to the invention the disengaging coupling consists of two parts separated by screws. At least one of the screws contains a propellent charge ananged within a bore and provided with a speed-dependent ignition device in such a way that by separation of the screws at overspeeds the coupling is disengaged. The sub-claims are concerned with the kind of ignition ot the propellent charge. (UWI) [de

  7. Revised Mark 22 coolant temperature coefficients

    International Nuclear Information System (INIS)

    Graves, W.E.

    1987-01-01

    Coolant temperature coefficients for the Mark 22 charge published previously are non-conservative because of the neglect of a significant mechanism which has a positive contribution to reactivity. Even after correcting for this effect, dynamic tests made on a Mark VIB charge in the early 60's suggest the results are still non-conservative. This memorandum takes both of these sources of information into account in making a best estimate of the prompt (coolant plus metal) temperature coefficient. Although no safety issues arise from this work (the overall temperature coefficient still strongly contributes to reactor stability), it is obviously desirable to use best estimates for prompt coefficients in limits and other calculations

  8. SMART core power control method by coolant temperature variation

    International Nuclear Information System (INIS)

    Lee, Chung Chan; Cho, Byung Oh

    2001-08-01

    SMART is a soluble boron-free integral type pressurized water reactor. Its moderator temperature coefficient (MTC) is strongly negative throughout the cycle. The purpose of this report is how to utilize the primary coolant temperature as a second reactivity control system using the strong negative MTC. The reactivity components associated with reactor power change are Doppler reactivity due to fuel temperature change, moderator temperature reactivity and xenon reactivity. Doppler reactivity and moderator temperature reactivity take effects almost as soon as reactor power changes. On the other hand, xenon reactivity change takes more than several hours to reach an equilibrium state. Therefore, coolant temperature at equilibrium state is chosen as the reference temperature. The power dependent reference temperature line is limited above 50% power not to affect adversely in reactor safety. To compensate transient xenon reactivity, coolant temperature operating range is expanded. The suggested coolant temperature operation range requires minimum control rod motion for 50% power change. For smaller power changes such as 25% power change, it is not necessary to move control rods to assure that fuel design limits are not exceeded

  9. Final Report of Optimization Algorithms for Hierarchical Problems, with Applications to Nanoporous Materials

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Stephen G.

    2013-11-11

    The research focuses on the modeling and optimization of nanoporous materials. In systems with hierarchical structure that we consider, the physics changes as the scale of the problem is reduced and it can be important to account for physics at the fine level to obtain accurate approximations at coarser levels. For example, nanoporous materials hold promise for energy production and storage. A significant issue is the fabrication of channels within these materials to allow rapid diffusion through the material. One goal of our research is to apply optimization methods to the design of nanoporous materials. Such problems are large and challenging, with hierarchical structure that we believe can be exploited, and with a large range of important scales, down to atomistic. This requires research on large-scale optimization for systems that exhibit different physics at different scales, and the development of algorithms applicable to designing nanoporous materials for many important applications in energy production, storage, distribution, and use. Our research has two major research thrusts. The first is hierarchical modeling. We plan to develop and study hierarchical optimization models for nanoporous materials. The models have hierarchical structure, and attempt to balance the conflicting aims of model fidelity and computational tractability. In addition, we analyze the general hierarchical model, as well as the specific application models, to determine their properties, particularly those properties that are relevant to the hierarchical optimization algorithms. The second thrust was to develop, analyze, and implement a class of hierarchical optimization algorithms, and apply them to the hierarchical models we have developed. We adapted and extended the optimization-based multigrid algorithms of Lewis and Nash to the optimization models exemplified by the hierarchical optimization model. This class of multigrid algorithms has been shown to be a powerful tool for

  10. RETRAN analysis of inter-system LOCA within the primary coolant pump

    International Nuclear Information System (INIS)

    Gangadharan, A.; Pratt, G.F.

    1992-01-01

    One example of an inter-system loss of coolant accident is the failure of the tubing within the primary coolant pump (PCP) thermal barrier heat exchanger. Such a failure would result in the entry of primary coolant into the component cooling water (CCW) system. The primary coolant flowrate through the break would rapidly pressurize the CCW system when the relief valves are too small. The piping in the CCW system at Palisades has a low pressure rating. Failures in this system outside the containment boundary could lead to primary coolant release to the atmosphere. RETRAN-02 was used to perform a simulation of the break in the PCP integral heat exchanger. The model included a detailed nodalization of the Byron-Jackson primary coolant pump internals leading up to the CCW system relief valves. Preliminary studies show the need for increased relief capacity in the CCW system. A case was run using a larger relief valve. Critical flow in the system upstream of the relief valves maintains the pressures in those volumes above the CCW design pressure. The pressures downstream from the relief valves and outside containment will be at or below the design pressure. This paper presents the results of the transient analysis

  11. EXPERIMENTAL STUDY OF LOCAL HYDRODYNAMICS AND MASS EXCHANGE PROCESSES OF COOLANT IN FUEL ASSEMBLIES OF PRESSURIZED WATER REACTORS

    Directory of Open Access Journals (Sweden)

    S. M. Dmitriev

    2016-01-01

    Full Text Available The results of experimental studies of local hydrodynamics and mass exchange of coolant flow behind spacer and mixing grids of different structural versions that were developed for fuel assemblies of domestic and foreign nuclear reactors are presented in the article. In order to carry out the study the models of the following fuel assemblies have been fabricated: FA for VVER and VBER, FA-KVADRAT for PWR-reactor and FA for KLT-40C reactor. All the models have been fabricated with a full geometrical similarity with full-scale fuel assemblies. The study was carried out by simulating the flow of coolant in a core by air on an aerodynamic test rig. In order to measure local hydrodynamic characteristics of coolant flow five-channel Pitot probes were used that enable to measure the velocity vector in a point by its three components. The tracerpropane method was used for studying mass transfer processes. Flow hydrodynamics was studied by measuring cross-section velocities of coolant flow and coolant rates according to the model cells. The investigation of mass exchange processes consisted of a study of concentration distribution for tracer in experimental model, in determination of attenuation lengths of mass transfer processes behind mixing grids, in calculating of inter-cellar mass exchange coefficient. The database on coolant flow in fuel assemblies for different types of reactors had been accumulated that formed the basis of the engineering substantiation of reactor cores designs. The recommendations on choice of optimal versions of mixing grids have been taken into consideration by implementers of the JSC “OKBM Afrikantov” when creating commissioned fuel assemblies. The results of the study are used for verification of CFD-codes and CFD programs of detailed cell-by-cell calculation of reactor cores in order to decrease conservatism for substantiation of thermal-mechanical reliability.

  12. Evaluation of a coolant injection into the in-vessel with a RCS depressurization by using SCDAP/RELAP5

    International Nuclear Information System (INIS)

    Rae-Joon, Park; Sang-Baik, Kim; Hee-Dong, Kim

    2007-01-01

    As part of the evaluations of a severe accident management strategy, a coolant injection in the vessel with a reactor coolant system (RCS) depressurization has been evaluated by using the SCDAP/RELAP5 computer code. Two high pressure sequences of a small break loss of coolant accident (LOCA) without safety injection (SI) and a total loss of feed water (LOFW) accident have been analyzed in optimized power reactor OPR-1000. The SCDAP/RELAP5 results have shown that only one train operation of a high pressure safety injection at 30,000 seconds with a RCS depressurization by using one condenser dump valve at 6 minutes after an entrance of the severe accident management guidance prevents a reactor vessel failure for the small break LOCA without SI. In this case, only train operation of the low pressure safety injection (LPSI) without the high pressure safety injection (HPSI) does not prevent a reactor vessel failure. Only one train operation of the HPSI at 20,208 seconds with a RCS depressurization by using two safety depressurization system valves at 40 minutes after an initial opening of the safety relief valve prevents a reactor vessel failure for the total LOFW. (authors)

  13. Integrity of the reactor coolant boundary of the European pressurized water reactor (EPR)

    Energy Technology Data Exchange (ETDEWEB)

    Goetsch, D.; Bieniussa, K.; Schulz, H.; Jalouneix, J.

    1997-04-01

    This paper is an abstract of the work performed in the frame of the development of the IPSN/GRS approach in view of the EPR conceptual safety features. EPR is a pressurized water reactor which will be based on the experience gained by utilities and designers in France and in Germany. The reactor coolant boundary of a PWR includes the reactor pressure vessel (RPV), those parts of the steam generators (SGs) which contain primary coolant, the pressurizer (PSR), the reactor coolant pumps (RCPs), the main coolant lines (MCLs) with their branches as well as the other connecting pipes and all branching pipes including the second isolation valves. The present work covering the integrity of the reactor coolant boundary is mainly restricted to the integrity of the main coolant lines (MCLs) and reflects the design requirements for the main components of the reactor coolant boundary. In the following the conceptual aspects, i.e. design, manufacture, construction and operation, will be assessed. A main aspect is the definition of break postulates regarding overall safety implications.

  14. Integrity of the reactor coolant boundary of the European pressurized water reactor (EPR)

    International Nuclear Information System (INIS)

    Goetsch, D.; Bieniussa, K.; Schulz, H.; Jalouneix, J.

    1997-01-01

    This paper is an abstract of the work performed in the frame of the development of the IPSN/GRS approach in view of the EPR conceptual safety features. EPR is a pressurized water reactor which will be based on the experience gained by utilities and designers in France and in Germany. The reactor coolant boundary of a PWR includes the reactor pressure vessel (RPV), those parts of the steam generators (SGs) which contain primary coolant, the pressurizer (PSR), the reactor coolant pumps (RCPs), the main coolant lines (MCLs) with their branches as well as the other connecting pipes and all branching pipes including the second isolation valves. The present work covering the integrity of the reactor coolant boundary is mainly restricted to the integrity of the main coolant lines (MCLs) and reflects the design requirements for the main components of the reactor coolant boundary. In the following the conceptual aspects, i.e. design, manufacture, construction and operation, will be assessed. A main aspect is the definition of break postulates regarding overall safety implications

  15. Development of Coolant Radioactivity Interpretation Code

    International Nuclear Information System (INIS)

    Kim, Kiyoung; Jung, Youngsuk; Kim, Kyounghyun; Kim, Jangwook

    2013-01-01

    In Korea, the coolant radioactivity analysis has been performed by using the computer codes of foreign companies such as CADE (Westinghouse), IODYNE and CESIUM (ABB-CE). However, these computer codes are too conservative and have involved considerable errors. Furthermore, since these codes are DOS-based program, their easy operability is not satisfactory. Therefore it is required development of an enhanced analysis algorithm applying an analytical method reflecting the change of operational environments of domestic nuclear power plants and a fuel failure evaluation software considering user' conveniences. We have developed a nuclear fuel failure evaluation code able to estimate the number of failed fuel rods and the burn-up of failed fuels during nuclear power plant operation cycle. A Coolant Radio-activity Interpretation Code (CRIC) for LWR has been developed as the output of the project 'Development of Fuel Reliability Enhanced Technique' organized by Korea Institute of Energy Technology Evaluation and Planning (KETEP). The CRIC is Windows based-software able to evaluate the number of failed fuel rods and the burn-up of failed fuel region by analyzing coolant radioactivity of LWR in operation. The CRIC is based on the model of fission products release commonly known as 'three region model' (pellet region, gap region, and coolant region), and we are verifying the CRIC results based on the cases of domestic fuel failures. CRIC users are able to estimate the number of failed fuel rods, burn-up and regions of failed fuel considered enrichment and power distribution of fuel region by using operational cycle data, coolant activity data, fuel loading pattern, Cs-134/Cs-137 ratio according to burn-up and U-235 enrichment provided in the code. Due to development of the CRIC, it is secured own unique fuel failure evaluation code. And, it is expected to have the following significant meaning. This is that the code reflecting a proprietary technique for quantitatively

  16. Coolant rate distribution in horizontal steam generator under natural circulation

    International Nuclear Information System (INIS)

    Blagovechtchenski, A.; Leontieva, V.; Mitrioukhin, A.

    1997-01-01

    In the presentation the major factors determining the conditions of NCC (Natural Coolant Circulation) in the primary circuit and in particular conditions of coolant rate distribution on the horizontal tubes of PGV-1000 in NPP with VVER-1000 under NCC are considered

  17. Surface Treatment to Improve Corrosion Resistance in Lead-Alloy Coolants

    Energy Technology Data Exchange (ETDEWEB)

    Todd R. Allen; Kumar Sridharan; McLean T. Machut; Lizhen Tan

    2007-08-29

    One of the six proposed advanced reactor designs of the Generation IV Initiative, the Leadcooled Fast Reactor (LFR) possesses many characteristics that make it a desirable candidate for future nuclear energy production and responsible actinide management. These characteristics include favorable heat transfer, fluid dynamics, and neutronic performance compared to other candidate coolants. However, the use of a heavy liquid metal coolant presents a challenge for reactor designers in regards to reliable structural and fuel cladding materials in both a highly corrosive high temperature liquid metal and an intense radiation fieldi. Flow corrosion studies at the University of Wisconsin have examined the corrosion performance of candidate materials for application in the LFR concept as well as the viability of various surface treatments to improve the materials’ compatibility. To date this research has included several focus areas, which include the formulation of an understanding of corrosion mechanisms and the examination of the effects of chemical and mechanical surface modifications on the materials’ performance in liquid lead-bismuth by experimental testing in Los Alamos National Laboratory’s DELTA Loop, as well as comparison of experimental findings to numerical and physical models for long term corrosion prediction. This report will first review the literature and introduce the experiments and data that will be used to benchmark theoretical calculations. The experimental results will be followed by a brief review of the underlying theory and methodology for the physical and theoretical models. Finally, the results of theoretical calculations as well as experimentally obtained benchmarks and comparisons to the literature are presented.

  18. Flow rate control systems for coolants for BWR type reactors

    International Nuclear Information System (INIS)

    Igarashi, Yoko; Kato, Naoyoshi.

    1981-01-01

    Purpose: To increase spontaneous recycling flow rate of coolants in BWR type reactors when the water level in the reactor decreases, by communicating a downcomer with a lower plenum. Constitution: An opening is provided to the back plate disposed at the lower end of a reactor core shroud for communicating a downcomer with a lower plenum, and an ON-OFF valve actuated by an operation rod is provided to the opening. When abnormal water level or pressure in the reactor is detected by a level metal or pressure meter, the operation rod is driven to open the ON-OFF valve, whereby coolants fed from a jet pump partially flows through the opening to increase the spontaneous recycling flow rate of the coolants. This can increase the spontaneous recycling flow rate of the coolants upon spontaneous recycling operation, thereby maintaining the reactor safety and the fuel soundness. (Moriyama, K.)

  19. Transient behaviour of main coolant pump in nuclear power plants

    International Nuclear Information System (INIS)

    Delja, A.

    1986-01-01

    A basic concept of PWR reactor coolant pump thermo-hydraulic modelling in transient and accident operational condition is presented. The reactor coolant pump is a component of the nuclear steam supply system which forces the coolant through the reactor and steam generator, maintaining design heat transfer condition. The pump operating conditions have strong influence on the flow and thermal behaviour of NSSS, both in the stationary and nonstationary conditions. A mathematical model of the reactor coolant pump is formed by using dimensionless homologous relations in the four-quadrant regimes: normal pump, turbine, dissipation and reversed flow. Since in some operational regimes flow of mixture, liquid and steam may occur, the model has additional correction members for two-phase homologous relations. Modular concept has been used in developing computer program. The verification is performed on the simulation loss of offsite power transient and obtained results are presented. (author)

  20. Nuclear reactors: physics and materials

    Energy Technology Data Exchange (ETDEWEB)

    Yadigaroglu, G

    2005-07-01

    In the form of a tutorial addressed to non-specialists, the article provides an introduction to nuclear reactor technology and more specifically to Light Water Reactors (LWR); it also shows where materials and chemistry problems are encountered in reactor technology. The basics of reactor physics are reviewed, as well as the various strategies in reactor design and the corresponding choices of materials (fuel, coolant, structural materials, etc.). A brief description of the various types of commercial power reactors follows. The design of LWRs is discussed in greater detail; the properties of light water as coolant and moderator are put in perspective. The physicochemical and metallurgical properties of the materials impose thermal limits that determine the performance and the maximum power a reactor can deliver. (author)

  1. Vertical reactor coolant pump instabilities

    International Nuclear Information System (INIS)

    Jones, R.M.

    1985-01-01

    The investigation conducted at the Tennessee Valley Authority's Sequoyah Nuclear Power Plant to determine and correct increasing vibrations in the vertical reactor coolant pumps is described. Diagnostic procedures to determine the vibration causes and evaluate the corractive measures taken are also described

  2. Loss-of-coolant accident analysis of the Savannah River new production reactor design

    International Nuclear Information System (INIS)

    Maloney, K.J.; Pryor, R.J.

    1990-11-01

    This document contains the loss-of-coolant accident analysis of the representative design for the Savannah River heavy water new production reactor. Included in this document are descriptions of the primary system, reactor vessel, and loss-of-coolant accident computer input models, the results of the cold leg and hot leg loss-of-coolant accident analyses, and the results of sensitivity calculations for the cold leg loss-of-coolant accident. 5 refs., 50 figs., 4 tabs

  3. Optimizing the microstructure of dissipative materials

    DEFF Research Database (Denmark)

    Andreassen, Erik; Lazarov, Boyan Stefanov; Jensen, Jakob Søndergaard

    the material’s loss factor, however, only for large wave lengths (small wave numbers) and constant material parameters (Andreasen et al., 2012). An alternative way to determine the material’s loss factor is to consider the material’s band diagram (Sigalas and Economou, 1992), from which the loss factor can......The aim of this work is to present a method to design material microstructures with high dissipation using topology optimization. In order to compute the macroscopic energy dissipation in periodic structures, we focus both on capturing the physical dissipation mechanism and to find the effective...... from experimental results in (Schaedler, 2011), where a highly energy absorbing material, constructed from structural elements with a small cross sectional area but large area moment of inertia, is presented. Furthermore, the applicability of multiscale finite element methods (Efendiev, 2009...

  4. Coolant rate distribution in horizontal steam generator under natural circulation

    Energy Technology Data Exchange (ETDEWEB)

    Blagovechtchenski, A.; Leontieva, V.; Mitrioukhin, A. [St. Petersburg State Technical Univ. (Russian Federation)

    1997-12-31

    In the presentation the major factors determining the conditions of NCC (Natural Coolant Circulation) in the primary circuit and in particular conditions of coolant rate distribution on the horizontal tubes of PGV-1000 in NPP with VVER-1000 under NCC are considered. 5 refs.

  5. Coolant rate distribution in horizontal steam generator under natural circulation

    Energy Technology Data Exchange (ETDEWEB)

    Blagovechtchenski, A; Leontieva, V; Mitrioukhin, A [St. Petersburg State Technical Univ. (Russian Federation)

    1998-12-31

    In the presentation the major factors determining the conditions of NCC (Natural Coolant Circulation) in the primary circuit and in particular conditions of coolant rate distribution on the horizontal tubes of PGV-1000 in NPP with VVER-1000 under NCC are considered. 5 refs.

  6. Preliminary design of reactor coolant pump canned motor for AC600

    International Nuclear Information System (INIS)

    Deng Shaowen

    1998-01-01

    The reactor coolant pump canned motor of AC600 PWR is the kind of shielded motors with high moment of inertia, high reliability, high efficiency and nice starting performance. The author briefly presents the main feature, design criterion and technical requirements, preliminary design, computation results and analysis of performance of AC600 reactor coolant pump canned motor, and proposes some problems to be solved for study and design of AC600 reactor coolant pump canned motor

  7. Evaluation of primary coolant leaks and assessment of detection methods

    International Nuclear Information System (INIS)

    Cassette, P.; Giroux, C.; Roche, H.; Seveon, J.J.

    1986-01-01

    A review of the French PWR situation concerning primary coolant leaks is presented, including a description of operating technical specifications, of the collecting system of primary coolant leakage into the containment and of the detection methods. It is mainly based on a compilation over three years, 1981 to 1983, of almost all actual leaks, their natures, causes, consequences and methods used for their detection. By analysing these data it is possible to evaluate the efficiency of the primary coolant leak detection system and the problems raised by compliance with the criteria defined in the operating technical specifications

  8. Evaluation of primary coolant leaks and assessment of detection methods

    International Nuclear Information System (INIS)

    Cassette, P.; Giroux, C.; Roche, H.; Seveon, J.J.

    1984-11-01

    A review of French PWR situation concerning primary coolant leaks is presented, including a description of operating technical specifications, of the collecting system of primary coolant leakage into the containment and of the detection methods. It is mainly based on a compilation over three years, 1981 to 1983, of almost all occurred leaks, their natures, causes, consequences and methods used for their detection. By analysing these data it is possible to evaluate the efficiency of the primary coolant leak detection system and the problems raised by the compliance with the criteria defined in the operating technical specifications

  9. Material optimization: bridging the gap between conceptual and preliminary design

    Czech Academy of Sciences Publication Activity Database

    Hörnlein, H. R. E. M.; Kočvara, Michal; Werner, R.

    2001-01-01

    Roč. 5, č. 1 (2001), s. 541-554 ISSN 1270-9638 R&D Projects: GA AV ČR IAA1075005 Grant - others:BMBF(DE) 03ZOM3ER Institutional research plan: CEZ:AV0Z1075907 Keywords : topology optimization * material optimization * structural optimization Subject RIV: BA - General Mathematics Impact factor: 0.340, year: 2001

  10. Preliminary assessment of water-based nano-fluids for use as coolants in PWRs

    International Nuclear Information System (INIS)

    Jacopo Buongiorno

    2005-01-01

    Full text of publication follows: The impact of using water-based fluids with small additions (<2% vol.) of nano-sized (10-100 nm) particle populations as coolants for current and advanced PWRs is evaluated. Such 'engineered' fluids (known as nano-fluids) are attractive because the presence of the nano-particles enhances energy transport considerably. As a result, nano-fluids are known to have (i) higher thermal conductivity than water (up to 20% depending on nano-particle material, size and volumetric fraction), (ii) higher heat transfer coefficients (up to 40%), (iii) higher CHF (up to 300% in pool boiling), and (iv) comparable pressure drop. Furthermore, nano-fluids appear to be very stable suspensions with little or no sedimentation, because of the small size of the dispersed particles and their typically low volumetric fractions. The ultimate objective of this work is to assess whether existing PWRs could be retro-fitted with a water-based nano-fluid coolant, to increase safety margins, reduce stored energy, and/or allow for power up-rates. Also, advanced PWRs could be designed with nano-fluids. The linear heat generation rate in PWRs is limited by a) fuel centerline melting, b) cladding overheating (CHF), and c) stored energy release following a large-break LOCA. Mechanisms b) and c) are usually the most limiting. For given geometry and linear power, it is obvious that the core with the nano-fluid coolant will have higher margins to CHF and LOCA limits. Conversely, for given margins, a higher linear power can be accommodated by the nano-fluid-cooled core. Standard thermal-hydraulic models for the PWR hot fuel pin (including a RELAP model for the LOCA) have been used to quantify the benefit of using nano-fluid coolants on the performance of a PWR. (author)

  11. Radioactivity analysis of KAMINI reactor coolant from regulatory perspectives

    International Nuclear Information System (INIS)

    Srinivasan, T.K.; Sulthan, Bajeer; Sarangapani, R.; Jose, M.T.; Venkatraman, B.; Thilagam, L.

    2016-01-01

    KAMINI (a 30kWt) research reactor is operated for neutron radiography of fuel subassemblies and pyro devices and activation analysis of various samples. The reactor is fueled by 233 U and DM water is used as the coolant. During reactor operation, fission product noble gasses (FPNGs) such as 85m Kr, 87 Kr, 88 Kr, 135 Xe, 135m Xe and 138 Xe are detected in the coolant water. In order to detect clad failure, the water is sampled during reactor operation at regular intervals as per the technical specifications. In the present work, analysis of measured activities in coolant samples collected during reactor operation at 25 kWt are presented and compared with computed values obtained using ORIGEN (Isotope Generation) code

  12. Physical model and calculation code for fuel coolant interactions

    International Nuclear Information System (INIS)

    Goldammer, H.; Kottowski, H.

    1976-01-01

    A physical model is proposed to describe fuel coolant interactions in shock-tube geometry. According to the experimental results, an interaction model which divides each cycle into three phases is proposed. The first phase is the fuel-coolant-contact, the second one is the ejection and recently of the coolant, and the third phase is the impact and fragmentation. Physical background of these phases are illustrated in the first part of this paper. Mathematical expressions of the model are exposed in the second part. A principal feature of the computational method is the consistent application of the fourier-equation throughout the whole interaction process. The results of some calculations, performed for different conditions are compiled in attached figures. (Aoki, K.)

  13. LOFT advanced densitometer for nuclear loss-of-coolant experiments

    International Nuclear Information System (INIS)

    Johnson, L.O.; Lassahn, G.D.; Wood, D.B.

    1979-01-01

    A ''nuclear hardened'' gamma densitometer, a device which uses radiation attenuation to measure fluid density in the presence of a background radiation field, is described. Data from the nuclear hardened gamma densitometer are acquired by time sampling the coolant fluid piping and fluid attenuated source energy spectrum. The data are used to calculate transient coolant fluid cross sectional average density to analyze transient mass flow and other thermal-hydraulic characteristics during the Loss-of-Fluid Test (LOFT) loss-of-coolant experiments. The nuclear hardened gamma densitometer uses a pulse height analysis or energy discrimination, pulse counting technique which makes separation of the gamma radiation source signal from the reactor generated gamma radiation background noise signal possible by processing discrete pulses which retain their pulse amplitude information

  14. A primal-dual interior point method for large-scale free material optimization

    DEFF Research Database (Denmark)

    Weldeyesus, Alemseged Gebrehiwot; Stolpe, Mathias

    2015-01-01

    Free Material Optimization (FMO) is a branch of structural optimization in which the design variable is the elastic material tensor that is allowed to vary over the design domain. The requirements are that the material tensor is symmetric positive semidefinite with bounded trace. The resulting...... optimization problem is a nonlinear semidefinite program with many small matrix inequalities for which a special-purpose optimization method should be developed. The objective of this article is to propose an efficient primal-dual interior point method for FMO that can robustly and accurately solve large...... of iterations the interior point method requires is modest and increases only marginally with problem size. The computed optimal solutions obtain a higher precision than other available special-purpose methods for FMO. The efficiency and robustness of the method is demonstrated by numerical experiments on a set...

  15. Upgradation of design features of primary coolant pumps of Indian 220 MWe PHWR

    International Nuclear Information System (INIS)

    Sharma, S.S.; Mhetre, S.G.; Manna, M.M.

    1994-01-01

    Evolution in the design features of Primary Coolant Pump (PCP) had started in fifties for catering to stringent specification requirements of reactor coolant systems of larger capacity reactors of various kinds. Primary coolant pumps of PWR and PHWR are employed for circulating radioactive, pressurized hot water in a circuit consisting of reactor (heat source) and steam generator (heat sink). As primary coolant pump capacity decides the station capacity, larger capacity primary coolant pumps have been evolved. Since primary coolant pump pressure containing parts are part of Primary Heat Transport system envelope, the parts are designed, manufactured, inspected and tested in accordance with the applicable system guidelines. Flywheel is mounted on the motor shaft for increasing mass moment of inertia of pump motor rotor to meet the coast down requirements of reactor cooling system under Class-IV electrical power supply failure. Due to limited accessibility of the PCP (PCP installed in shut down accessible area), quick maintenance, condition monitoring, reliable shaft seal system/bearing system aspects have been of great concern to reactor owners and pump manufacturers. In this paper upgradation of design features of RAPS, MAPS and NAPS primary coolant pumps have been covered. (author). 4 figs., 1 tab

  16. Analysis of loss-of-coolant accidents in pressurized water reactors

    International Nuclear Information System (INIS)

    Moldaschl, H.

    1982-01-01

    Analysis of loss-of-coolant accidents in pressurized water reactors -Quantification of the influence of leak size, control assembly worth, boron concentration and initial power by a dynamic operations criterion. Neutronic and thermohydraulic behaviour of a pressurized water reactor during a loss-of-coolant accident (LOCA) is mainly influenced by -change of fuel temperature, -void in the primary coolant. They cause a local stabilization of power density, that means that also in the case of small leaks local void is the main stabilization effect. As a consequence the increase of fuel temperature remains very small even under extremely hypothetical assumptions: small leak, positive reactivity feedback (positive coolant temperature coefficient, negative density coefficient) at the beginning of the accident and all control assemblies getting stuck. Restrictions which have been valid up to now for permitted start-up conditions to fulfill inherent safety requirements can be lossened substantially by a dynamic operations criterion. Burnable poisons for compensation of reactivity theorefore can be omitted. (orig.)

  17. Effect of spacer grid mixing vanes on coolant outlet temperature distribution

    Energy Technology Data Exchange (ETDEWEB)

    Raemae, Tommi; Lahtinen, Tuukka; Brandt, Tellervo; Toppila, Timo [Fortum Power and Heat, Fortum (Finland). Nuclear Competence Center

    2012-08-15

    In Loviisa VVER-440-type NPP the coolant outlet temperature of the hot subchannel is constantly monitored during the operation. According to the authority requirement the maximum subchannel outlet temperature must not exceed the saturation temperature. Coolant temperature distribution inside the fuel assembly is affected by the efficiency of the coolant mixing. In order to enhance the coolant mixing the fuel manufacturer is introducing the additional mixing vanes on the fuel bundle spacer grids. In the paper the effect of the different mixing vane modifications is studied with computational fluid dynamics (CFD) simulation. Goal of the modelling is to find vane modifications with which sufficient mixing is reached with acceptable increase in the spacer grid pressure loss. The results of the studies are discussed in the paper. (orig.)

  18. Reactor primary coolant system pipe rupture study. Progress report No. 33, January--June 1975

    International Nuclear Information System (INIS)

    1975-10-01

    The pipe rupture study is designed to extend the understanding of failure-causing mechanisms and to provide improved capability for evaluating reactor piping systems to minimize the probability of failures. Following a detailed review to determine the effort most needed to improve nuclear system piping (Phase 1), analytical and experimental efforts (Phase 2) were started in 1965. This progress report summarizes the recent accomplishments of a broad program in (a) basic fatigue crack growth rate studies focused on LWR primary piping materials in a simulated BWR primary coolant environment, (b) at-reactor tests of the effect of primary coolant environment on the fatigue behavior of piping steels, (c) studies directed at quantifying weld sensitization in Type 304 stainless steel, (d) support studies to characterize the electrochemical potential behavior of a typical BWR primary water environment and (e) special tests related to simulation of fracture surfaces characteristic of IGSCC field failures

  19. Modular Porous Plate Sublimator /MPPS/ requires only water supply for coolant

    Science.gov (United States)

    Rathbun, R. J.

    1966-01-01

    Modular porous plate sublimators, provided for each location where heat must be dissipated, conserve the battery power of a space vehicle by eliminating the coolant pump. The sublimator requires only a water supply for coolant.

  20. Coolant voiding analysis following SGTR for an HLMC reactor

    International Nuclear Information System (INIS)

    Farmer, M.T.; Spencer, B.W.; Sienicki, J.J.

    2000-01-01

    Concepts are under development at Argonne National Laboratory for a small, modular, proliferation-resistant nuclear power steam supply system. Of primary interest here is the simplified system design, featuring steam generators that are directly immersed in the lead-bismuth eutectic (LBE) coolant of the primary system. To support the safety case for this design approach, model development and analysis of transient coolant voiding during a postulated guillotine-type steam generator tube rupture event has been carried out. For the current design, the blowdown will occur from the steam generator shell into the ruptured 12.7-mm-inside-diameter tube through which the LBE coolant passes. The steam will expand biaxially in the tube, with a portion of the flow vented upward to eventually expand into the cover-gas region, while the balance of the flow is vented downward as a jet into the surrounding downward-flowing LBE. Coolant freezing is not an issue in this case because of high feedwater temperature in relation to the freezing point of the LBE. The specific objectives of the current work are to (a) determine the penetration behavior of the steam jet into the lower cold-leg region, (b) characterize the resultant void behavior in terms of coherent bubble versus breakup into a size distribution of small bubbles, and (c) characterize the motion of the bubbles with regard to rise to the cover-gas region (via the liner-to-coolant vessel gap) versus downward transport with the flowing LBE and subsequent upflow through the core to the cover-gas region

  1. Labelling Of Coolant Flow Anomaly Using Fractal Structure

    International Nuclear Information System (INIS)

    Djainal, Djen Djen

    1996-01-01

    This research deals with the instrumentation of the detection and characterization of vertical two-phase flow coolant. This type of work is particularly intended to find alternative method for the detection and identification of noise in vertical two-phase flow in a nuclear reactor environment. Various new methods have been introduced in the past few years, an attempt to developed an objective indicator off low patterns. One of new method is Fractal analysis which can complement conventional methods in the description of highly irregular fluctuations. In the present work, Fractal analysis was applied to analyze simulated boiling coolant signal. This simulated signals were built by sum random elements in small subchannels of the coolant channel. Two modes are defined and both are characterized by their void fractions. In the case of uni modal -PDF signals, the difference between these modes is relatively small. On other hand, bimodal -PDF signals have relative large range. In this research, Fractal dimension can indicate the characters of that signals simulation

  2. Sloshing of coolant in a seismically isolated reactor

    International Nuclear Information System (INIS)

    Wu, T.S.; Guildys, J.; Seidensticker, R.W.

    1988-01-01

    During a seismic event, the liquid coolant inside the reactor vessel has sloshing motion which is a low-frequency phenomenon. In a reactor system incorporated with seismic isolation, the isolation frequency usually is also very low. There is concern on the potential amplification of sloshing motion of the liquid coolant. This study investigates the effects of seismic isolation on the sloshing of liquid coolant inside the reactor vessel of a liquid metal cooled reactor. Based on a synthetic ground motion whose response spectra envelop those specified by the NRC Regulator Guide 1.60, it is found that the maximum sloshing wave height increases from 18 in. to almost 30 in. when the system is seismically isolated. Since higher sloshing wave may introduce severe impact forces and thermal shocks to the reactor closure and other components within the reactor vessel, adequate design considerations should be made either to suppress the wave height or to reduce the effects caused by high waves

  3. CANDU steam generator tubing material service experience and allied development

    International Nuclear Information System (INIS)

    Hart, A.E.; Lesurf, J.E.

    1976-01-01

    This paper covers the following aspects for the tube materials in CANDU-PHW steam generators: inservice performance with respect to tube leaks and coolant activity attributable to boiler tube corrosion, selection of tube materials for use with non-boiling and boiling primary coolants, supporting development on corrosion, vibration, fretting wear, tube inspection, leak detection and plugging of defective tubes. (author)

  4. Work related to increasing the exploitation and experimental possibilities of the RA reactor, 05. Independent CO2 loop for cooling the samples irradiated in the RA vertical experimental channels (IIV), Part I, IZ-240-o379-1963, Vol. I, Head of the low temperature RA reactor coolant loop

    International Nuclear Information System (INIS)

    Pavicevic, M.

    1963-07-01

    The objective of the project was to design the head of the CO 2 coolant loop for cooling the materials during irradiation in the RA reactor. Six heads of coolant loops will be placed in the RA reactor, two in the region of heavy water in the experimental channels VEK-6 and four in the graphite reflector in the channels VEK-G. Materials for irradiation are metallurgy and chemical samples. In addition to the project objectives, this volume includes technical specifications of the coolant loop head, thermal calculations, calculations of mechanical stress, antireactivity and activation of the construction materials, cost estimation, scheme of the coolant loop head, diagrams of CO 2 gas temperature, thermal neutron flux distribution, design specifications of two proposed solutions for head of low temperature coolant loop [sr

  5. A passively-safe fusion reactor blanket with helium coolant and steel structure

    Energy Technology Data Exchange (ETDEWEB)

    Crosswait, Kenneth Mitchell [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    1994-04-01

    Helium is attractive for use as a fusion blanket coolant for a number of reasons. It is neutronically and chemically inert, nonmagnetic, and will not change phase during any off-normal or accident condition. A significant disadvantage of helium, however, is its low density and volumetric heat capacity. This disadvantage manifests itself most clearly during undercooling accident conditions such as a loss of coolant accident (LOCA) or a loss of flow accident (LOFA). This thesis describes a new helium-cooled tritium breeding blanket concept which performs significantly better during such accidents than current designs. The proposed blanket uses reduced-activation ferritic steel as a structural material and is designed for neutron wall loads exceeding 4 MW/m{sup 2}. The proposed geometry is based on the nested-shell concept developed by Wong, but some novel features are used to reduce the severity of the first wall temperature excursion. These features include the following: (1) A ``beryllium-joint`` concept is introduced, which allows solid beryllium slabs to be used as a thermal conduction path from the first wall to the cooler portions of the blanket. The joint concept allows for significant swelling of the beryllium (10 percent or more) without developing large stresses in the blanket structure. (2) Natural circulation of the coolant in the water-cooled shield is used to maintain shield temperatures below 100 degrees C, thus maintaining a heat sink close to the blanket during the accident. This ensures the long-term passive safety of the blanket.

  6. Work related to increasing the exploitation and experimental possibilities of the RA reactor, 05. Independent CO2 loop for cooling the samples irradiated in the RA vertical experimental channels (I-IV), Part II, IZ-240-0379-1963, Vol. II Head of the low temperature RA reactor coolant loop

    International Nuclear Information System (INIS)

    Pavicevic, M.

    1963-07-01

    The objective of the project was to design the head of the CO 2 coolant loop for cooling the materials during irradiation in the RA reactor. Six heads of coolant loops will be placed in the RA reactor, two in the region of heavy water in the experimental channels VEK-6 and four in the graphite reflector in the channels VEK-G. maximum generated heat in the heads of the coolant loop is 10500 kcal/h and minimum generated heat is 1500 kcal/h. The loops are cooled by CO 2 gas, coolant flow is 420 kg/h, and the pressure is 4.5 atu. There is a need to design and construct the secondary coolant loop for the low temperature coolant loop. This volume includes technical specifications of the secondary CO 2 loop with instructions for construction and testing; needed calculations; specification of materials; cost estimation for materials, equipment and construction; and graphical documentation [sr

  7. Formation and hydraulic effects of deposits in high temperature sodium coolant systems

    International Nuclear Information System (INIS)

    Yunker, W.

    1976-01-01

    Deposition of sodium impurities in the high temperature (600 0 C), high flow (Reynolds Number approximately equal to 8 x 10 4 ) regions of a sodium coolant circuit is being studied to determine its possible hydraulic effects. Increases in flow impedance (pressure drop/volume flow 2 ) of up to 30 percent have been detected in an annular flow sensor. The apparatus and preliminary results of these tests are presented. Continuing tests are to specifically identify the materials involved and the system conditions under which the formations occur

  8. Optimized cylindrical invisibility cloak with minimum layers of non-magnetic isotropic materials

    International Nuclear Information System (INIS)

    Yu Zhenzhong; Feng Yijun; Xu Xiaofei; Zhao Junming; Jiang Tian

    2011-01-01

    We present optimized design of cylindrical invisibility cloak with minimum layers of non-magnetic isotropic materials. Through an optimization procedure based on genetic algorithm, simpler cloak structure and more realizable material parameters can be achieved with better cloak performance than that of an ideal non-magnetic cloak with a reduced set of parameters. We demonstrate that a cloak shell with only five layers of two normal materials can result in an average 20 dB reduction in the scattering width for all directions when covering the inner conducting cylinder with the cloak. The optimized design can substantially simplify the realization of the invisibility cloak, especially in the optical range.

  9. Investigation of circulating temperature fluctuations of the primary coolant in order to develop an enhanced MTC estimator for VVER-440 reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kiss, Sandor; Lipcsei, Sandor [Hungarian Academy of Sciences, Budapest (Hungary). Centre for Energy Research - MTA

    2017-09-15

    Our aim was to develop a method based on noise diagnostics for the estimation of the moderator temperature coefficient of reactivity (MTC) for the Paks VVER-440 units in normal operation. The method requires determining core average neutron flux and temperature fluctuations. The circulation period of the primary coolant, transfer properties of the steam generators, as well as the source and the propagation of the temperature perturbations and the proportions of the perturbation components were investigated in order to estimate the feedback caused by the circulation of the primary coolant. Finally, after developing the new MTC estimator, determining its frequency range and optimal parameters, trends were produced based on an overall evaluation of measurements made with standard instrumentation during a one-year-long period at Paks NPP.

  10. Reverse osmosis and its use at the nuclear power plants. Purification of primary circuit coolant by the means of reverse osmosis

    International Nuclear Information System (INIS)

    Kus, Pavel; Vonkova, Katerina; Kunesova, Katerina; Bartova, Sarka; Skala, Martin; Moucha, Tomáš

    2014-01-01

    This contribution is focused on the use of membrane technologies (e.g. reverse osmosis) for the primary coolant purification at the nuclear power plants. Currently, boric acid present in the primary coolant is preconcentrated at the evaporators, but their operation is very inefficient and expensive. Therefore, reverse osmosis was proposed as one of promising methods possibly replacing evaporators. The aim of the purification process is to achieve boric acid solution of a defined concentration (40 g/l) in the retentate stream in order to recycle it and reuse it in the primary circuit. Additionally, permeate flow should consist solely of pure water. To study the efficiency of several reverse osmosis modulus in the boric acid removal form the water solutions, experimental apparatus was constructed in our laboratory. It consists of the solution reservoir, pump and reverse osmosis modulus. The arrangement of experiments was batch and the retentate flow was refluxed to the feed solution. Several modulus of commercial reverse osmosis membranes were tested. The feed solution contained various concentrations of H 3 BO 3 , KOH, LiOH and NH 3 in order to simulate real primary coolant composition. Based on the experimental results, mathematical model was developed in order to optimize experimental conditions for the best results in primary coolant purification and boric acid preconcentration. (author)

  11. Peaking cladding temperature and break equivalent size of intermediate break loss of coolant accident

    International Nuclear Information System (INIS)

    Luo Bangqi

    2012-01-01

    The analysis results of intermediate break loss of coolant accident for the nuclear power plant of million kw level showed to be as following: (1) At the begin of life, the break occur simultaneity reactor shutdown with L(X)P. it's equivalent break size and peaking cladding temperature is respectively 20 cm and 849℃. (2) At the begin of life, the break occur simultaneity reactor shutdown without loop. the reactor coolant pumps will be stop after reactor shutdown 10 minutes, it's equivalent break size and peaking cladding temperature is respectively 10.5 cm and 921℃. (3) At the bur up of 31 GWd/t(EOC1). the break occur simultaneity reactor shutdown without loop, the reactor coolant pumps will be stop after reactor shutdown 20 minutes, it's equivalent break size and peaking cladding temperature is respectively 8 cm and 1145℃. The above analysis results showed that the peaking cladding temperature of intermediate break loss of coolant accident is not only related with the break equivalent size and core bur up, and is closely related with the stop time of coolant pumps because the coolant pumps would drive the coolant from safety system to produce the seal loop in break loop and affect the core coolant flow, results in the fuel cladding temperature increasing or damaging. Therefore, the break spectrum, burn up spectrum, the stop time of coolant pumps and operator action time will need to detail analysis and provide appropriate operating procedure, otherwise the peaking cladding temperature will exceed 1204℃ and threaten the safety of the reactor core when the intermediate break loss of coolant accident occur in some break equivalent size, burn up, stop pumps time and operator action not appropriate. The pressurizer pressure low signal simultaneity containment pressure higher signal were used as the operator manual close the signal of reactor coolant pumps after reactor shutdown of 20 minutes. have successful solved the operator intervention time from 10 minutes

  12. Breakup of jet and drops during premixing phase of fuel coolant interactions

    Energy Technology Data Exchange (ETDEWEB)

    Haraldsson, Haraldur Oskar

    2000-05-01

    During the course of a hypothetical severe accident in a light water reactor, molten liquid may be introduced into a volatile coolant, which, under certain conditions, results in explosive interactions. Such fuel-coolant interactions (FCI) are characterised by an initial pre-mixing phase during which the molten liquid, metallic or oxidic in nature, undergoes a breakup (fragmentation) process which significantly increase the area available for melt-coolant contact, and thus energy transfer. Although substantial progress in the understanding of phenomenology of the FCI events has been achieved in recent years, there remain uncertainties in describing the primary and secondary breakup processes. The focus of this work is on the melt jet and drop breakup during the premixing phase of FCI. The objectives are to gain insight into the premixing phase of the FCI phenomena, to determine what fraction of the melt fragments and determine the size distribution. The approach is to perform experiments with various simulant materials, at different scales, different conditions and with variation of controlling parameters affecting jet and drop breakup processes. The analysis approach is to investigate processes at different level of detail and complexity to understand the physics, to rationalise experimental results and to develop and validate models. In the first chapter a brief introduction and review of the status of the FCI phenomena is performed. A review of previous and current experimental projects is performed. The status of the experimental projects and major findings are outlined. The first part of the second chapter deals with experimental investigation of jet breakup. Two series of experiments were performed with low and high temperature jets. The low temperature experiments employed cerrobend-70 as jet liquid. A systematic investigation of thermal hydraulic conditions and melt physical properties on the jet fragmentation and particle debris characteristics was

  13. Standardized sampling system for reactor coolants

    International Nuclear Information System (INIS)

    Divine, J.R.; Munson, L.F.; Nelson, J.L.; McDowell, R.L.; Jankowski, M.W.

    1982-09-01

    A three-pronged approach was developed to reach the objectives of acceptable coolant sampling, assessment of occupational exposure from corrosion products, and model development for the transport and buildup of corrosion products. Emphasis is on sampler design

  14. Coolant controls of a PEM fuel cell system

    Science.gov (United States)

    Ahn, Jong-Woo; Choe, Song-Yul

    When operating the polymer electrolyte membrane (PEM) fuel cell stack, temperatures in the stack continuously change as the load current varies. The temperature directly affects the rate of chemical reactions and transport of water and reactants. Elevated temperature increases the mobility of water vapor, which reduces the ohmic over-potential in the membrane and eases removal of water produced. Adversely, the high temperature might impose thermal stress on the membrane and cathode catalyst and cause degradation. Conversely, excessive supply of coolants lowers the temperature in the stack and reduces the rate of the chemical reactions and water activity. Corresponding parasitic power dissipated at the electrical coolant pump increases and overall efficiency of the power system drops. Therefore, proper design of a control for the coolant flow plays an important role in ensuring highly reliable and efficient operations of the fuel cell system. Herein, we propose a new temperature control strategy based on a thermal circuit. The proposed thermal circuit consists of a bypass valve, a radiator with a fan, a reservoir and a coolant pump, while a blower and inlet and outlet manifolds are components of the air supply system. Classic proportional and integral (PI) controllers and a state feedback control for the thermal circuit were used in the design. In addition, the heat source term, which is dependent upon the load current, was feed-forwarded to the closed loop and the temperature effects on the air flow rate were minimized. The dynamics and performance of the designed controllers were evaluated and analyzed by computer simulations using developed dynamic fuel cell system models, where a multi-step current and an experimental current profile measured at the federal urban driving schedule (FUDS) were applied. The results show that the proposed control strategy cannot only suppress a temperature rise in the catalyst layer and prevent oxygen starvation, but also reduce the

  15. Automatic coolant flow control device for a nuclear reactor assembly

    Science.gov (United States)

    Hutter, Ernest

    1986-01-01

    A device which controls coolant flow through a nuclear reactor assembly comprises a baffle means at the exit end of said assembly having a plurality of orifices, and a bimetallic member in operative relation to the baffle means such that at increased temperatures said bimetallic member deforms to unblock some of said orifices and allow increased coolant flow therethrough.

  16. Hydrodynamic problems of heavy liquid metal coolants technology in loop-type and mono-block-type reactor installations

    International Nuclear Information System (INIS)

    Orlov, Yuri I.; Efanov, Alexander D.; Martynov, Pyotr N.; Gulevsky, Valery A.; Papovyants, Albert K.; Levchenko, Yuri D.; Ulyanov, Vladimir V.

    2007-01-01

    In the report, the influence of hydrodynamics of the loop with heavy liquid metal coolants (Pb and Pb-Bi) on the realization methods and efficiency of the coolant technology for the reactor installations of loop, improved loop and mono-block type of design has been studied. The last two types of installations, as a rule, are characterized by the following features: availability of loop sections with low hydraulic head and low coolant velocities, large squares of coolant free surfaces; absence of stop and regulating valve, auxiliary pumps on the coolant pumping-over lines. Because of the different hydrodynamic conditions in the installation types, the tasks of the coolant technology have specific solutions. The description of the following procedures of coolant technology is given in the report: purification by hydrogen (purification using gas mixture containing hydrogen), regulation of dissolved oxygen concentration in coolant, coolant filtrating, control of dissolved oxygen concentration in coolant. It is shown that change of the loop design made with economic purpose and for improvement of the installation safety cause additional requirements to the procedures and apparatuses of the coolant technology realization

  17. SU-D-218-05: Material Quantification in Spectral X-Ray Imaging: Optimization and Validation.

    Science.gov (United States)

    Nik, S J; Thing, R S; Watts, R; Meyer, J

    2012-06-01

    To develop and validate a multivariate statistical method to optimize scanning parameters for material quantification in spectral x-rayimaging. An optimization metric was constructed by extensively sampling the thickness space for the expected number of counts for m (two or three) materials. This resulted in an m-dimensional confidence region ofmaterial quantities, e.g. thicknesses. Minimization of the ellipsoidal confidence region leads to the optimization of energy bins. For the given spectrum, the minimum counts required for effective material separation can be determined by predicting the signal-to-noise ratio (SNR) of the quantification. A Monte Carlo (MC) simulation framework using BEAM was developed to validate the metric. Projection data of the m-materials was generated and material decomposition was performed for combinations of iodine, calcium and water by minimizing the z-score between the expected spectrum and binned measurements. The mean square error (MSE) and variance were calculated to measure the accuracy and precision of this approach, respectively. The minimum MSE corresponds to the optimal energy bins in the BEAM simulations. In the optimization metric, this is equivalent to the smallest confidence region. The SNR of the simulated images was also compared to the predictions from the metric. TheMSE was dominated by the variance for the given material combinations,which demonstrates accurate material quantifications. The BEAMsimulations revealed that the optimization of energy bins was accurate to within 1keV. The SNRs predicted by the optimization metric yielded satisfactory agreement but were expectedly higher for the BEAM simulations due to the inclusion of scattered radiation. The validation showed that the multivariate statistical method provides accurate material quantification, correct location of optimal energy bins and adequateprediction of image SNR. The BEAM code system is suitable for generating spectral x- ray imaging simulations.

  18. Experimental Investigation of Heat Transfer Characteristics of Automobile Radiator using TiO2-Nanofluid Coolant

    Science.gov (United States)

    Salamon, V.; Senthil kumar, D.; Thirumalini, S.

    2017-08-01

    The use of nanoparticle dispersed coolants in automobile radiators improves the heat transfer rate and facilitates overall reduction in size of the radiators. In this study, the heat transfer characteristics of water/propylene glycol based TiO2 nanofluid was analyzed experimentally and compared with pure water and water/propylene glycol mixture. Two different concentrations of nanofluids were prepared by adding 0.1 vol. % and 0.3 vol. % of TiO2 nanoparticles into water/propylene glycol mixture (70:30). The experiments were conducted by varying the coolant flow rate between 3 to 6 lit/min for various coolant temperatures (50°C, 60°C, 70°C, and 80°C) to understand the effect of coolant flow rate on heat transfer. The results showed that the Nusselt number of the nanofluid coolant increases with increase in flow rate. At low inlet coolant temperature the water/propylene glycol mixture showed higher heat transfer rate when compared with nanofluid coolant. However at higher operating temperature and higher coolant flow rate, 0.3 vol. % of TiO2 nanofluid enhances the heat transfer rate by 8.5% when compared to base fluids.

  19. Combinatorial materials synthesis and high-throughput screening: an integrated materials chip approach to mapping phase diagrams and discovery and optimization of functional materials.

    Science.gov (United States)

    Xiang, X D

    Combinatorial materials synthesis methods and high-throughput evaluation techniques have been developed to accelerate the process of materials discovery and optimization and phase-diagram mapping. Analogous to integrated circuit chips, integrated materials chips containing thousands of discrete different compositions or continuous phase diagrams, often in the form of high-quality epitaxial thin films, can be fabricated and screened for interesting properties. Microspot x-ray method, various optical measurement techniques, and a novel evanescent microwave microscope have been used to characterize the structural, optical, magnetic, and electrical properties of samples on the materials chips. These techniques are routinely used to discover/optimize and map phase diagrams of ferroelectric, dielectric, optical, magnetic, and superconducting materials.

  20. Design on Hygrometry System of Primary Coolant Circuit of HTR-PM

    International Nuclear Information System (INIS)

    Sun Yanfei; Zhong Shuoping; Huang Xiaojin

    2014-01-01

    Helium is the primary coolant in HTR-PM. If vapor get into the helium in primary coolant circuit because of some special reasons, such as the broken of steam-generator tube, chemical reaction will take effect between the graphite in reactor core and vapor in primary coolant circuit, and the safety of the reactor operation will be influenced. So the humidity of the helium in primary coolant circuit is one key parameter of HTR-PM to be monitored in-line. Once the humidity is too high, trigger signal of turning off the reactor must be issued. The hygrometry system of HTR-PM is consisting of filter, cooler, hygrometry sensor, flow meter, and some valves and tube. Helium with temperature of 250℃ is lead into the hygrometry system from the outlet of the main helium blower. After measuring, the helium is re-injected back to the primary circuit. No helium loses in this processing, and no other pump is needed. Key factors and calculations in design on hygrometry system of HTR-PM are described. A sample instrument has been made. Results of experiments proves that this hygrometry system is suitable for monitoring the humidity of the primary coolant of HTR-PM. (author)

  1. Evolution of fast reactor core spectra in changing a heavy liquid metal coolant by molten PB-208

    Energy Technology Data Exchange (ETDEWEB)

    Blokhin, D. A.; Mitenkova, E. F. [Nuclear Safety Inst., Russian Academy of Sciences, B. Tulskaya 52, Moscow, 115119 (Russian Federation); Khorasanov, G. L.; Zemskov, E. A.; Blokhin, A. I. [State Scientific Center, Russian Federation, Inst. of Physics and Power Engineering, Bondarenko Square 1, Obninsk, 249033 (Russian Federation)

    2012-07-01

    In the paper neutron spectra of fast reactor cooled with lead-bismuth or lead-208 are given. It is shown that in changing the coolant from lead-bismuth to lead-208 the core neutron spectra of the fast reactor FR RBEC-M are hardening in whole by several percents when a little share of low energy neutrons (5 eV - 50 keV) is slightly increasing. The shift of spectra to higher energies permits to enhance the fuel fission while the increased share of low energy neutrons provides more effective conversion of uranium-238 into plutonium due to peculiarity of {sup 238}U neutron capture cross section. Good neutron and physical features of molten {sup 208}Pb permit to assume it as perspective coolant for fast reactors and accelerator driven systems. The one-group cross sections of neutron radiation capture, {sigma}(n,g), by {sup 208}Pb, {sup 238}U, {sup 99}Tc, mix of lead and bismuth, {sup nat}Pb-Bi, averaged over neutron spectra of the fast reactor RBEC-M are given. It is shown that one-group cross sections of neutron capture by material of the liquid metal coolant consisted from lead enriched with the stable lead isotope, {sup 208}Pb, are by 4-7 times smaller {sigma}(n,g) for the coolant {sup nat}Pb-Bi. The economy of neutrons in the core cooled with {sup 208}Pb can be used for reducing reactor's initial fuel load, increasing fuel breeding and transmutation of long lived fission products, for example {sup 99}Tc. Good neutron and physical features of lead enriched with {sup 208}Pb permit to consider it as a perspective low neutron absorbing coolant for fast reactors and accelerator driven systems. (authors)

  2. Coolant Design System for Liquid Propellant Aerospike Engines

    Science.gov (United States)

    McConnell, Miranda; Branam, Richard

    2015-11-01

    Liquid propellant rocket engines burn at incredibly high temperatures making it difficult to design an effective coolant system. These particular engines prove to be extremely useful by powering the rocket with a variable thrust that is ideal for space travel. When combined with aerospike engine nozzles, which provide maximum thrust efficiency, this class of rockets offers a promising future for rocketry. In order to troubleshoot the problems that high combustion chamber temperatures pose, this research took a computational approach to heat analysis. Chambers milled into the combustion chamber walls, lined by a copper cover, were tested for their efficiency in cooling the hot copper wall. Various aspect ratios and coolants were explored for the maximum wall temperature by developing our own MATLAB code. The code uses a nodal temperature analysis with conduction and convection equations and assumes no internal heat generation. This heat transfer research will show oxygen is a better coolant than water, and higher aspect ratios are less efficient at cooling. This project funded by NSF REU Grant 1358991.

  3. Multi-material size optimization of a ladder frame chassis

    Science.gov (United States)

    Baker, Michael

    The Corporate Average Fuel Economy (CAFE) is an American fuel standard that sets regulations on fuel economy in vehicles. This law ultimately shapes the development and design research for automakers. Reducing the weight of conventional cars offers a way to improve fuel efficiency. This research investigated the optimality of an automobile's ladder frame chassis (LFC) by conducting multi-objective optimization on the LFC in order to reduce the weight of the chassis. The focus of the design and optimization was a ladder frame chassis commonly used for mass production light motor vehicles with an open-top rear cargo area. This thesis is comprised of two major sections. The first looked to perform thickness optimization in the outer walls of the ladder frame. In the second section, many multi-material distributions, including steel and aluminium varieties, were investigated. A simplified model was used to do an initial hand calculation analysis of the problem. This was used to create a baseline validation to compare the theory with the modeling. A CAD model of the LFC was designed. From the CAD model, a finite element model was extracted and joined using weld and bolt connectors. Following this, a linear static analysis was performed to look at displacement and stresses when subjected to loading conditions that simulate harsh driving conditions. The analysis showed significant values of stress and displacement on the ends of the rails, suggesting improvements could be made elsewhere. An optimization scheme was used to find the values of an all steel frame an optimal thickness distribution was found. This provided a 13% weight reduction over the initial model. To advance the analysis a multi-material approach was used to push the weight savings even further. Several material distributions were analyzed and the lightest utilized aluminium in all but the most strenuous subjected components. This enabled a reduction in weight of 15% over the initial model, equivalent to

  4. 1D Piezoelectric Material Based Nanogenerators: Methods, Materials and Property Optimization.

    Science.gov (United States)

    Li, Xing; Sun, Mei; Wei, Xianlong; Shan, Chongxin; Chen, Qing

    2018-03-23

    Due to the enhanced piezoelectric properties, excellent mechanical properties and tunable electric properties, one-dimensional (1D) piezoelectric materials have shown their promising applications in nanogenerators (NG), sensors, actuators, electronic devices etc. To present a clear view about 1D piezoelectric materials, this review mainly focuses on the characterization and optimization of the piezoelectric properties of 1D nanomaterials, including semiconducting nanowires (NWs) with wurtzite and/or zinc blend phases, perovskite NWs and 1D polymers. Specifically, the piezoelectric coefficients, performance of single NW-based NG and structure-dependent electromechanical properties of 1D nanostructured materials can be respectively investigated through piezoresponse force microscopy, atomic force microscopy and the in-situ scanning/transmission electron microcopy. Along with the introduction of the mechanism and piezoelectric properties of 1D semiconductor, perovskite materials and polymers, their performance improvement strategies are summarized from the view of microstructures, including size-effect, crystal structure, orientation and defects. Finally, the extension of 1D piezoelectric materials in field effect transistors and optoelectronic devices are simply introduced.

  5. Method for controlling a coolant liquid surface of cooling system instruments in an atomic power plant

    International Nuclear Information System (INIS)

    Monta, Kazuo.

    1974-01-01

    Object: To prevent coolant inventory within a cooling system loop in an atomic power plant from being varied depending on loads thereby relieving restriction of varied speed of coolant flow rate to lowering of a liquid surface due to short in coolant. Structure: Instruments such as a superheater, an evaporator, and the like, which constitute a cooling system loop in an atomic power plant, have a plurality of free liquid surface of coolant. Portions whose liquid surface is controlled and portions whose liquid surface is varied are adjusted in cross-sectional area so that the sum total of variation in coolant inventory in an instrument such as a superheater provided with an annulus portion in the center thereof and an inner cylindrical portion and a down-comer in the side thereof comes equal to that of variation in coolant inventory in an instrument such as an evaporator similar to the superheater. which is provided with an overflow pipe in its inner cylindrical portion or down-comer, thereby minimizing variation in coolant inventory of the entire coolant due to loads thus minimizing variation in varied speed of the coolant. (Kamimura, M.)

  6. International nuclear safety center database on material properties

    International Nuclear Information System (INIS)

    Fink, J.K.

    1996-01-01

    International nuclear safety center database on the following material properties is described: fuel, cladding,absorbers, moderators, structural materials, coolants, concretes, liquid mixtures, uranium dioxide

  7. Neutronic Analysis on Coolant Options in a Hybrid Reactor System for High Level Waste Transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Hee; Kim, Myung Hyun [Kyung Hee University, Seoul (Korea, Republic of)

    2014-10-15

    A fusion-fission hybrid reactor (FFHR) which is a combination of plasma fusion tokamak as a fast neutron source and a fission reactor as of fusion blanket is another potential candidate. In FFHR, fusion plasma machine can supply high neutron-rich and energetic 14.1MeV (D, T) neutrons compared to other options. Therefore it has better capability in HLW incineration. While, it has lower requirements compared to pure fusion. Much smaller-sized tokamak can be achievable in a near term because it needs relatively low plasma condition. FFHR has also higher safety potential than fast reactors just as ADSR because it is subcritical reactor system. FFHR proposed up to this time has many design concepts depending on the design purpose. FFHR may also satisfy many design requirement such as energy multiplication, tritium production, radiation shielding for magnets, fissile breeding for self-sustain ability also waste transmutation. Many types of fuel compositions and coolant options have been studied. Effect of choices for fuel and coolant was studied for the transmutation purpose FFHR by our team. In this study LiPb coolant was better than pure Li coolant both for neutron multiplication and tritium breeding. However, performance of waste transmutation was reduced with increased neutron absorption at coolant caused by tritium breeding. Also, LiPb as metal coolant has a problem of massive MHD pressure drop in coolant channels. Therefore, in a previous study, waste transmutation performance was evaluated with light water coolant option which may be a realistic choice. In this study, a neutronic analysis was done for the various coolant options with a detailed computation. One of solutions suggested is to use the pressure tubes inside of first wall and second wall In this work, performance of radioactive waste transmutation was compared with various coolant options. On the whole, keff increases with all coolants except for FLiBe, therefore required fusion power is decreased. In

  8. The 10B(n,α)7Li reaction in PWR coolants: calculations of the effect on coolant pH and on decreases in 10B isotopic fractions

    International Nuclear Information System (INIS)

    Polley, M.V.

    1988-07-01

    Boron is used as a chemical shim in PWRs for reactivity control and is added in the form of boric acid to the primary coolant. The 10 B(n,α) 7 Li reaction leads to a continuous increase in 7 Li in the primary coolant and to a continuous decrease in 10 B the isotope of boron responsible for control of reactivity. The rate of increase in coolant pH due to 7 Li production is calculated for the Sizewell 'B' PWR to enable judgements to be made on the frequency of sampling and removal of lithium required to maintain the pH of the primary coolant within the desired limits. Calculations are contrasted for the cases of natural boron and 100% 10 B chemical shims, for both a normal cycle and an extended 18 month cycle. Calculations of 10 B depletion over 30 years of operation as a function of the quantity of boron discharged to waste are also presented. 10 B isotopic fractions are calculated for the reactor coolant (RC), boric acid tanks (BATs) and refuelling water storage tank (RWST) assuming rapid mixing of BAT and RC boron for tritium control and other reasons. Such predictions enable assessments of the reactor physics implications of 10 B consumption to be made. (author)

  9. Feeding and purge systems of coolant primary circuit and coolant secondary circuit control of the I sup(123) target

    International Nuclear Information System (INIS)

    Almeida, G.L. de.

    1986-01-01

    The Radiation Protection Service of IEN (Brazilian-CNEN) detected three faults in sup(123)I target cooling system during operation process for producing sup(123)I: a) non hermetic vessel containing contaminated water from primary coolant circuit; possibility of increasing radioactivity in the vessel due to accumulation of contaminators in cooling water and; situation in region used for personnels to arrange and adjust equipments in nuclear physics area, to carried out maintenance of cyclotron and target coupling in irradiation room. The primary circuit was changed by secondary circuit for target coolant circulating through coil of tank, which receive weater from secondary circuit. This solution solved the three problems simultaneously. (M.C.K.)

  10. Design and development of remotely operated coolant channel cutting machine

    International Nuclear Information System (INIS)

    Suthar, R.L.; Sinha, A.K.; Srikrishnamurty, G.

    1994-01-01

    One of the coolant tubes of Narora Atomic Power Station (NAPS) reactor needs to be removed. To remove a coolant tube, four cutting operations, (liner tube cutting, end-fitting cutting, machining of seal weld of bellow ring and finally coolant tube cutting) are required to be carried out. A remotely operated cutting machine to carry out all these operations has been designed and developed by Central Workshops. This machine is able to cut at the exact location because of numerically controlled axial and radial travel of tool. Only by changing the tool head and tool holder, same machine can be used for various types of cutting/machining operations. This report details the design, manufacture, assembly and testing work done on the machine. (author). 4 figs

  11. Integrated Fuel-Coolant Interaction (IFCI 6.0) code

    International Nuclear Information System (INIS)

    Davis, F.J.; Young, M.F.

    1994-04-01

    The integrated Fuel-Coolant interaction (IFCI) computer code is being developed at Sandia National Laboratories to investigate the fuel-coolant interaction (FCI) problem at large scale using a two-dimensional, four-field hydrodynamic framework and physically based models. IFCI will be capable of treating all major FCI processes in an integrated manner. This document is a product of the effort to generate a stand-alone version of IFCI, IFCI 6.0. The User's Manual describes in detail the hydrodynamic method and physical models used in IFCI 6.0. Appendix A is an input manual, provided for the creation of working decks

  12. Probabilistic analyses of failure in reactor coolant piping

    International Nuclear Information System (INIS)

    Holman, G.S.

    1984-01-01

    LLNL is performing probabilistic reliability analyses of PWR and BWR reactor coolant piping for the NRC Office of Nuclear Regulatory Research. Specifically, LLNL is estimating the probability of a double-ended guillotine break (DEGB) in the reactor coolant loop piping in PWR plants, and in the main stream, feedwater, and recirculation piping of BWR plants. In estimating the probability of DEGB, LLNL considers two causes of pipe break: pipe fracture due to the growth of cracks at welded joints (direct DEGB), and pipe rupture indirectly caused by the seismically-induced failure of critical supports or equipment (indirect DEGB)

  13. Sodium as a reactor coolant

    International Nuclear Information System (INIS)

    Cesar, S.B.G.

    1989-01-01

    This work is related to the use of sodium as a reactor coolant, to the advantages and problems related to its use, its mechanical, thermophysics, eletronical, magnetic and nuclear properties. It is mainly a bibliographic review, with the aim of gathering the necessary information to persons initiating in the study of sodium and also as reference source. (author) [pt

  14. Petri Net-Based R&D Process Modeling and Optimization for Composite Materials

    Directory of Open Access Journals (Sweden)

    Xiaomei Hu

    2013-01-01

    Full Text Available Considering the current R&D process for new composite materials involves some complex details, such as formula design, specimen/sample production, materials/sample test, assessment, materials/sample feedback from customers, and mass production, the workflow model of Petri net-based R&D process for new composite materials’ is proposed. By analyzing the time property of the whole Petri net, the optimized model for new composite materials R&D workflow is further proposed. By analyzing the experiment data and application in some materials R&D enterprise, it is demonstrated that the workflow optimization model shortens the period of R&D on new materials for 15%, definitely improving the R&D efficiency. This indicates the feasibility and availability of the model.

  15. Design of channel experiment equipment for measuring coolant velocity of innovative research reactor

    International Nuclear Information System (INIS)

    Muhammad Subekti; Endiah Puji Hastuti; Dedi Heriyanto

    2014-01-01

    The design of innovative high flux research reactor (RRI) requires high power so that the capability core cooling requires to be improved by designing the faster core coolant velocity near to the critical velocity limit. Hence, the critical coolant velocity as the one of the important parameter of the reactor safety shall be measured by special equipment to the velocity limit that may induce fuel element degradation. The research aims is to calculate theoretically the critical coolant velocity and to design the special experiment equipment namely EXNal for measuring the critical coolant velocity in fuel element subchannel of the RRI. EXNal design considers the critical velocity calculation result of 20.52 m/s to determine the variation of flow rate of 4.5-29.2 m 3 /h, in which the experiment could simulate the 1-4X standard coolant velocity of RSG-GAS as well as destructive test of RRI's fuel plate. (author)

  16. Performance of Helical Coil Heat Recovery Exchanger using Nanofluid as Coolant

    Directory of Open Access Journals (Sweden)

    Navid Bozorgan

    2015-07-01

    Full Text Available Nanofluids are expected to be a promising coolant condidate in chemical processes for heat transfer system size reduction. This paper focuses on reducing the number of turns in a helical coil heat recovery exchanger with a given heat exchange capacity in a biomass heating plant using γ-Al2O3/n-decane nanofluid as coolant. The nanofluid flows through the tubes and the hot n-hexane flows through the shell. The numerical results show that using nanofluid as coolant in a helical coil heat exchanger can reduce the manufacturing cost of the heat exchanger and pumping power by reducing the number of turns of the coil.

  17. Aero-thermal optimization of film cooling flow parameters on the suction surface of a high pressure turbine blade

    Science.gov (United States)

    El Ayoubi, Carole; Hassan, Ibrahim; Ghaly, Wahid

    2012-11-01

    This paper aims to optimize film coolant flow parameters on the suction surface of a high-pressure gas turbine blade in order to obtain an optimum compromise between a superior cooling performance and a minimum aerodynamic penalty. An optimization algorithm coupled with three-dimensional Reynolds-averaged Navier Stokes analysis is used to determine the optimum film cooling configuration. The VKI blade with two staggered rows of axially oriented, conically flared, film cooling holes on its suction surface is considered. Two design variables are selected; the coolant to mainstream temperature ratio and total pressure ratio. The optimization objective consists of maximizing the spatially averaged film cooling effectiveness and minimizing the aerodynamic penalty produced by film cooling. The effect of varying the coolant flow parameters on the film cooling effectiveness and the aerodynamic loss is analyzed using an optimization method and three dimensional steady CFD simulations. The optimization process consists of a genetic algorithm and a response surface approximation of the artificial neural network type to provide low-fidelity predictions of the objective function. The CFD simulations are performed using the commercial software CFX. The numerical predictions of the aero-thermal performance is validated against a well-established experimental database.

  18. Effect of ribbed and smooth coolant cross-flow channel on film cooling

    International Nuclear Information System (INIS)

    Peng, Wei; Sun, Xiaokai; Jiang, Peixue; Wang, Jie

    2017-01-01

    Highlights: • Little different for plenum model and the cross-flow model at M = 0.5. • Crossflow model is much better than plenum model at M = 1.0, especially with ribs. • Coolant flow channel with V-shaped ribs has the best adiabatic film cooling. • Film cooling with the plenum model is better at M = 0.5 than at M = 1.0. • Crossflow model is better at M = 0.5 near film hole and at M = 1.0 for downstream. - Abstract: The influence of ribbed and unribbed coolant cross-flow channel on film cooling was investigated with the coolant supply being either a plenum-coolant feed or a coolant cross-flow feed. Validation experiments were conducted with comparison to numerical results using different RANS turbulence models showed that the RNG k–ε turbulence model and the RSM model gave closer predictions to the experimental data than the other RANS models. The results indicate that at a low blowing ratio of M = 0.5, the coolant supply channel structure has little effect on the film cooling. However, at a high blowing ratio of M = 1.0, the adiabatic wall film cooling effectiveness is significantly lower with the plenum feed than with the cross-flow feed, especially for the cases with ribs. The film cooling with the plenum model is better at M = 0.5 than at M = 1.0. The film cooling with the cross-flow model is better at a blowing ratio of M = 0.5 in the near hole region, while further downstream, it is better at M = 1.0. The results also show that the coolant cross-flow channel with V-shaped ribs has the best adiabatic film cooling effectiveness.

  19. Effect of ribbed and smooth coolant cross-flow channel on film cooling

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Wei; Sun, Xiaokai [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China); Jiang, Peixue, E-mail: jiangpx@tsinghua.edu.cn [Key Laboratory for Thermal Science and Power Engineering of Ministry of Educations, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Wang, Jie [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China)

    2017-05-15

    Highlights: • Little different for plenum model and the cross-flow model at M = 0.5. • Crossflow model is much better than plenum model at M = 1.0, especially with ribs. • Coolant flow channel with V-shaped ribs has the best adiabatic film cooling. • Film cooling with the plenum model is better at M = 0.5 than at M = 1.0. • Crossflow model is better at M = 0.5 near film hole and at M = 1.0 for downstream. - Abstract: The influence of ribbed and unribbed coolant cross-flow channel on film cooling was investigated with the coolant supply being either a plenum-coolant feed or a coolant cross-flow feed. Validation experiments were conducted with comparison to numerical results using different RANS turbulence models showed that the RNG k–ε turbulence model and the RSM model gave closer predictions to the experimental data than the other RANS models. The results indicate that at a low blowing ratio of M = 0.5, the coolant supply channel structure has little effect on the film cooling. However, at a high blowing ratio of M = 1.0, the adiabatic wall film cooling effectiveness is significantly lower with the plenum feed than with the cross-flow feed, especially for the cases with ribs. The film cooling with the plenum model is better at M = 0.5 than at M = 1.0. The film cooling with the cross-flow model is better at a blowing ratio of M = 0.5 in the near hole region, while further downstream, it is better at M = 1.0. The results also show that the coolant cross-flow channel with V-shaped ribs has the best adiabatic film cooling effectiveness.

  20. Reactor Coolant Pump seal issues and their applicability to new reactor designs

    International Nuclear Information System (INIS)

    Ruger, C.J.; Higgins, J.C.

    1993-01-01

    Reactor Coolant Pumps (RCPs) of various types are used to circulate the primary coolant through the reactor in most reactor designs. RCPs generally contain mechanical seals to limit the leakage of pressurized reactor coolant along the pump drive shaft into the containment. The relatively large number of RCP seal and seal auxiliary system failures experienced at US operating plants during the 1970's and early 1980's raised concerns from the US Nuclear Regulatory Commission (NRC) that gross failures may lead to reactor core uncovery and subsequent core damage. Some seal failure events resulted in a loss of primary coolant to the containment at flow rates greater than the normal makeup capacity of Pressurized Water Reactor (PWR) plants. This is an example of RCP seal failures resulting in a small Loss of Coolant Accident (LOCA). This paper discusses observed and potential causes of RCP seal failure and the recommendations for limiting the likelihood of a seal induced small LOCA. Issues arising out of the research supporting these recommendations and subsequent public comments by the utility industry on them, serve as lessons learned, which are applicable to the design of new reactor plants

  1. Reactor coolant pump seal issues and their applicability to new reactor designs

    International Nuclear Information System (INIS)

    Ruger, C.J.; Higgins, J.C.

    1993-01-01

    Reactor Coolant Pumps (RCPs) of various types are used to circulate the primary coolant through the reactor in most reactor designs. RCPs generally contain mechanical seals to limit the leakage of pressurized reactor coolant along the pump drive shaft into the containment. The relatively large number of RCP seal and seal auxiliary system failures experienced at U.S. operating plants during the 1970's and early 1980's raised concerns from the U.S. Nuclear Regulatory Commission (NRC) that gross failures may lead to reactor core uncovery and subsequent core damage. Some seal failure events resulted in a loss of primary coolant to the containment at flow rates greater than the normal makeup capacity of Pressurized Water Reactor (PWR) plants. This is an example of RCP seal failures resulting in a small Loss of Coolant Accident (LOCA). This paper discusses observed and potential causes of RCP seal failure and the recommendations for limiting the likelihood of a seal induced small LOCA. Issues arising out of the research supporting these recommendations and subsequent public comments by the utility industry on them, serve as lessons learned, which are applicable to the design of new reactor plants

  2. Application of mapping crossover genetic algorithm in nuclear power equipment optimization design

    International Nuclear Information System (INIS)

    Li Guijiang; Yan Changqi; Wang Jianjun; Liu Chengyang

    2013-01-01

    Genetic algorithm (GA) has been widely applied in nuclear engineering. An improved method, named the mapping crossover genetic algorithm (MCGA), was developed aiming at improving the shortcomings of traditional genetic algorithm (TGA). The optimal results of benchmark problems show that MCGA has better optimizing performance than TGA. MCGA was applied to the reactor coolant pump optimization design. (authors)

  3. Coolant void effect investigation - case of a na-cooled fast reactor

    International Nuclear Information System (INIS)

    Glinatsis, G.; Gugiu, D.

    2013-01-01

    In the frame of the last EURATOM-FP7 Program, a large sized Sodium-cooled FR (SFR) has been studied. Mixed carbides fuel (U, Pu)C has been adopted for the backup core solution and important work has been also performed in order to obtain an ''optimised'' backup configuration ''close'' to the reference one, which is fueled by mixed oxides fuel (U, Pu)Ox. The peculiarity of both core designs (the reference configuration and the optimised backup configuration) is the adoption of a 60 cm Plenum zone in the upper part of each fuel assembly (FA), that is filled by coolant, in order to mitigate (when emptied) the core positive coolant void effect. This paper presents some results of a detailed study of the coolant void effect for the above SFR with mixed carbides core. Many aspects, like geometric heterogeneity, the burnup state, the operating conditions, etc., have been taken into consideration in order to obtain information about the ''propagation'' and the behaviour of the coolant void effect itself. The performed study investigates also the coolant void effect consequences on some reactivity coefficients, which are important for a safe behaviour of the reactor. The investigation consisted in the steady state simulations of the reactor on different operating conditions in Monte Carlo approach. (authors)

  4. Decision-making methodology of optimal shielding materials by using fuzzy linear programming

    International Nuclear Information System (INIS)

    Kanai, Y.; Miura, T.; Hirao, Y.

    2000-01-01

    The main purpose of our studies are to select materials and determine the ratio of constituent materials as the first stage of optimum shielding design to suit the individual requirements of nuclear reactors, reprocessing facilities, casks for shipping spent fuel, etc. The parameters of the shield optimization are cost, space, weight and some shielding properties such as activation rates or individual irradiation and cooling time, and total dose rate for neutrons (including secondary gamma ray) and for primary gamma ray. Using conventional two-valued logic (i.e. crisp) approaches, huge combination calculations are needed to identify suitable materials for optimum shielding design. Also, re-computation is required for minor changes, as the approach does not react sensitively to the computation result. Present approach using a fuzzy linear programming method is much of the decision-making toward the satisfying solution might take place in fuzzy environment. And it can quickly and easily provide a guiding principle of optimal selection of shielding materials under the above-mentioned conditions. The possibility or reducing radiation effects by optimizing the ratio of constituent materials is investigated. (author)

  5. Level Set-Based Topology Optimization for the Design of an Electromagnetic Cloak With Ferrite Material

    DEFF Research Database (Denmark)

    Otomori, Masaki; Yamada, Takayuki; Andkjær, Jacob Anders

    2013-01-01

    . A level set-based topology optimization method incorporating a fictitious interface energy is used to find optimized configurations of the ferrite material. The numerical results demonstrate that the optimization successfully found an appropriate ferrite configuration that functions as an electromagnetic......This paper presents a structural optimization method for the design of an electromagnetic cloak made of ferrite material. Ferrite materials exhibit a frequency-dependent degree of permeability, due to a magnetic resonance phenomenon that can be altered by changing the magnitude of an externally...

  6. Primary coolant pipe rupture event in liquid metal cooled reactors. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2004-08-01

    In liquid-metal cooled fast reactors (LMFR) the primary coolant pipes (PCP) connect the primary coolant pumps to the grid plate. A rupture in one of these pipes could cause significant loss of coolant flow to the core with severe consequences. In loop type reactors, all primary pipelines are provided with double envelopes and inter-space coolant leak monitoring systems that permit leak detection before break. Thus, the PCP rupture event can be placed in the beyond design basis event (BDBE) category. Such an arrangement is difficult to incorporate for pool type reactors, and hence it could be argued that the PCP rupture event needs to be analysed in detail as a design basis event (DBE, category 4 event). However, the primary coolant pipes are made of ductile austenitic stainless steel material and operate at temperatures of the cold pool and at comparatively low pressures. For such low stressed piping with negligible creep and embrittlement effects, it is of interest to discuss under what design provisions, for pool type reactors, the guillotine rupture of PCP could be placed in the BDBE category. The topical Technical Meeting (TM) on Primary Coolant Pipe Rupture Event in Liquid Metal Cooled Reactors (Indira Gandhi Centre for Atomic Research, Kalpakkam, India, 13-17 January 2003) was called to enable the specialists to present the philosophy and analyses applied on this topic in the various Member States for different LMFRs. The scope of the technical meeting was to provide a global forum for information exchange on the philosophy applied in the various participating Member States and the analyses performed for different LMFRs with regard to the primary coolant pipe rupture event. More specifically, the objectives of the technical meeting were to review the safety philosophy for the PCP rupture event in pool type LMFR, to assess the structural reliability of the PCP and the probability of rupture under different conditions (with/without in-service inspection), to

  7. THE PROBLEM OF ENERGY EFFICIENCY OF THE GEOTHERMAL CIRCULATION SYSTEM IN DIFFERENT MODES OF REINJECTION OF THE COOLANT

    Directory of Open Access Journals (Sweden)

    D. K. Djavatov

    2017-01-01

    Full Text Available Aim. Advanced technologies are crucial for widespread use of geothermal energy to ensure its competitiveness with conventional forms of energy. To date, the basis for the development of geothermal energy is the technology of extracting the heat transfer fluids from the subsoil. There are the following ways to extract the coolant: freeflow; pumping and circular methods. Of greatest interest is the technology to harness the geothermal energy based on geothermal circulatory system (GCS. There is the problem of the right choice of technological parameters for geothermal systems to ensure their effective functioning.Methods. We consider the development of geothermal energy technology based on geothermal circulatory system, as this technology solves the dumping of the waste water containing environmentally harmful substances. In addition to the environmental issues, this technology makes it possible to intensify the process of production and the degree of extraction of thermal resources, which significantly increases the potential for geothermal heat resources in terms of the fuel and energy balance.Findings. Were carried out optimization calculations for Ternairsky deposits of thermal waters. In the calculations, was taken into account the temperature dependence of important characteristics, such as the density and heat capacity of the coolant.Conclusions. There is the critical temperature of the coolant injected, depending on the flow rate and the diameter of the well, ensuring the effective functioning of the geothermal circulatory systems. 

  8. LimitS - A system for limit state analysis and optimal material layout

    DEFF Research Database (Denmark)

    Damkilde, Lars; Krenk, Steen

    1997-01-01

    distribution or an optimal material layout is determined. Through linearization of the yield criteria the optimization problem is stated as a linear programming problem. Within the formulation of the discretized model the optimal lower-bound solution is shown to be an upper-bound solution, and thereby both...

  9. Optimization of Progressive Freeze Concentration on Apple Juice via Response Surface Methodology

    Science.gov (United States)

    Samsuri, S.; Amran, N. A.; Jusoh, M.

    2018-05-01

    In this work, a progressive freeze concentration (PFC) system was developed to concentrate apple juice and was optimized by response surface methodology (RSM). The effects of various operating conditions such as coolant temperature, circulation flowrate, circulation time and shaking speed to effective partition constant (K) were investigated. Five different level of central composite design (CCD) was employed to search for optimal concentration of concentrated apple juice. A full quadratic model for K was established by using method of least squares. A coefficient of determination (R2) of this model was found to be 0.7792. The optimum conditions were found to be coolant temperature = -10.59 °C, circulation flowrate = 3030.23 mL/min, circulation time = 67.35 minutes and shaking speed = 30.96 ohm. A validation experiment was performed to evaluate the accuracy of the optimization procedure and the best K value of 0.17 was achieved under the optimized conditions.

  10. Recommended reactor coolant water chemistry requirements for WWER-1000 units with 235U higher enriched fuel

    International Nuclear Information System (INIS)

    Dobrevski, I.; Zaharieva, N.

    2011-01-01

    The last decade worldwide experience of PWRs and WWERs confirms the trends for the improvement of the nuclear power industry electricity production through the implementation of high burn-up or high fuel duty, which are usually accompanied with the usage of UO 2 fuel with higher content of 235 U - 4.0% - 4.5% (5.0%). It was concluded that the onset of sub-cooled nucleate boiling (SNB) on the fuel cladding surfaces and the initial excess reactivity of the core are the primary and basic factors accompanying the implementation of uranium fuel with higher 235 U content, aiming extended fuel cycles and higher burn-up of the fuel in Pressurized Water Reactors. As main consequences of the presence of these factors the modifications of chemical / electrochemical environments of nuclear fuel cladding- and reactor coolant system- surfaces are evaluated. These conclusions are the reason for: 1) The determination of the choices of the type of fuel cladding materials in respect with their enough corrosion resistance to the specific fuel cladding environment, created by the presence of SNB; 2) The development and implementation of primary circuit water chemistry guidelines ensuring the necessary low corrosion rates of primary circuit materials and limitation of cladding deposition and out-of-core radioactivity buildup; 3) Implementation of additional neutron absorbers which allow enough decrease of the initial concentration of H 3 BO 3 in coolant, so that its neutralization will be possible with the permitted alkalising agent concentrations. In this paper the specific features of WWER-1000 units in Bulgarian Nuclear Power Plant; use of 235 U higher enriched fuel in the WWER-1000 reactors in the Kozloduy NPP; coolant water chemistry and radiochemistry plant data during the power operation period of the Kozloduy NPP Unit 5, 15 th fuel cycle; evaluation of the approaches and results by the conversion of the WWER-1000 Units at the Kozloduy NPP to the uranium fuel with 4.3% 235 U as

  11. Optimization of Materials and Interfaces for Spintronic Devices

    Science.gov (United States)

    Clark, Billy

    In recent years' Spintronic devices have drawn a significant amount of research attention. This interest comes in large part from their ability to enable interesting and new technology such as Spin Torque Transfer Random Access Memory or improve existing technology such as High Signal Read Heads for Hard Disk Drives. For the former we worked on optimizing and improving magnetic tunnel junctions by optimizing their thermal stability by using Ta insertion layers in the free layer. We further tried to simplify the design of the MTJ stack by attempting to replace the Co/Pd multilayer with CoPd alloy. In this dissertation, we detail its development and examine the switching characteristics. Lastly we look at a highly spin polarized material, Fe2MnGe, for optimizing Hard Drive Disk read heads.

  12. Breakup of jet and drops during premixing phase of fuel coolant interactions

    International Nuclear Information System (INIS)

    Haraldsson, Haraldur Oskar

    2000-05-01

    During the course of a hypothetical severe accident in a light water reactor, molten liquid may be introduced into a volatile coolant, which, under certain conditions, results in explosive interactions. Such fuel-coolant interactions (FCI) are characterised by an initial pre-mixing phase during which the molten liquid, metallic or oxidic in nature, undergoes a breakup (fragmentation) process which significantly increase the area available for melt-coolant contact, and thus energy transfer. Although substantial progress in the understanding of phenomenology of the FCI events has been achieved in recent years, there remain uncertainties in describing the primary and secondary breakup processes. The focus of this work is on the melt jet and drop breakup during the premixing phase of FCI. The objectives are to gain insight into the premixing phase of the FCI phenomena, to determine what fraction of the melt fragments and determine the size distribution. The approach is to perform experiments with various simulant materials, at different scales, different conditions and with variation of controlling parameters affecting jet and drop breakup processes. The analysis approach is to investigate processes at different level of detail and complexity to understand the physics, to rationalise experimental results and to develop and validate models. In the first chapter a brief introduction and review of the status of the FCI phenomena is performed. A review of previous and current experimental projects is performed. The status of the experimental projects and major findings are outlined. The first part of the second chapter deals with experimental investigation of jet breakup. Two series of experiments were performed with low and high temperature jets. The low temperature experiments employed cerrobend-70 as jet liquid. A systematic investigation of thermal hydraulic conditions and melt physical properties on the jet fragmentation and particle debris characteristics was

  13. A system for cooling electronic elements with an EHD coolant flow

    International Nuclear Information System (INIS)

    Tanski, M; Kocik, M; Barbucha, R; Garasz, K; Mizeraczyk, J; Kraśniewski, J; Oleksy, M; Hapka, A; Janke, W

    2014-01-01

    A system for cooling electronic components where the liquid coolant flow is forced with ion-drag type EHD micropumps was tested. For tests we used isopropyl alcohol as the coolant and CSD02060 diodes in TO-220 packages as cooled electronic elements. We have studied thermal characteristics of diodes cooled with EHD flow in the function of a coolant flow rate. The transient thermal impedance of the CSD02060 diode cooled with 1.5 ml/min EHD flow was 7.8°C/W. Similar transient thermal impedance can be achieved by applying to the diode a large RAD-A6405A/150 heat sink. We found out that EHD pumps can be successfully applied for cooling electronic elements.

  14. Analysis of loss-of-coolant accident for a fast-spectrum lithium-cooled nuclear reactor for space-power applications

    Science.gov (United States)

    Turney, G. E.; Petrik, E. J.; Kieffer, A. W.

    1972-01-01

    A two-dimensional, transient, heat-transfer analysis was made to determine the temperature response in the core of a conceptual space-power nuclear reactor following a total loss of reactor coolant. With loss of coolant from the reactor, the controlling mode of heat transfer is thermal radiation. In one of the schemes considered for removing decay heat from the core, it was assumed that the 4 pi shield which surrounds the core acts as a constant-temperature sink (temperature, 700 K) for absorption of thermal radiation from the core. Results based on this scheme of heat removal show that melting of fuel in the core is possible only when the emissivity of the heat-radiating surfaces in the core is less than about 0.40. In another scheme for removing the afterheat, the core centerline fuel pin was replaced by a redundant, constant temperature, coolant channel. Based on an emissivity of 0.20 for all material surfaces in the core, the calculated maximum fuel temperature for this scheme of heat removal was 2840 K, or about 90 K less than the melting temperature of the UN fuel.

  15. Responses to Small Break Loss of Coolant Accidents for SMART

    International Nuclear Information System (INIS)

    Bae, Kyoo Hwan; Kim, Hee C.; Chang, Moon H.; Zee, Sung Q.; Kim, Si-Hwan; Lee, Un-Chul

    2004-01-01

    The SMART NSSS adopts the design characteristics of containing most of the primary circuit components, such as the reactor core, main coolant pumps (MCPs), steam generators (SGs), and N 2 gas pressurizer (PZR) in a single leak-tight Reactor Pressure Vessel (RPV) with a relatively large ratio of the primary coolant inventory to the core power compared to the conventional loop-type PWR. Due to these design characteristics, the SMART can fundamentally eliminate the possibility of Large Break Loss of Coolant Accidents (LBLOCAs), improve the natural circulation capability, and assure a sufficient time to mitigate the possibility of core uncover. Also, SMART adopts inherent safety improving features and passive engineered safety systems such as the substantially large negative moderator temperature coefficients, passive residual heat removal system, emergency core cooling system, and a steel-made leak-tight Safeguard Vessel (SV) housing the RPV. This paper presents the results of the safety analyses using a MARS/SMR code for the instantaneous guillotine ruptures of the major pipelines penetrating the RPV. The analysis results, employing conservative initial/boundary conditions and assumptions, show that the safety systems of the SMART basic design adequately remove the core decay heat without causing core uncover for all the cases of the Small Break Loss of Coolant Accidents (SBLOCAs). The sensitivity study results with variable SV conditions show that the reduced SV net free volume can shorten the time for reaching the thermal and mechanical equilibrium condition between the RPV and SV. Under these boundary conditions, the primary system inventory loss can be minimized and the core remains covered for a longer period of time without any makeup of the coolant. (authors)

  16. Dryout heat flux in a debris bed with forced coolant flow from below

    International Nuclear Information System (INIS)

    Bang, Kwang-Hyun; Kim, Jong-Myung

    2004-01-01

    The objective of the present study is to experimentally investigate the enhancement of dryout heat flux in debris beds with coolant flow from below. The experimental facility consists mainly of an induction heater (40 kW, 35 kHz), a double-wall quartz-tube test section containing steel-particle bed and coolant injection and recovery condensing loop. A fairly uniform heating of particle bed was achieved by induction heating. This paper reports the experimental data for 5 mm particle bed and 300 mm bed height. The dryout heat rate data were obtained of both top-flooding case and forced coolant injection from below with the injection mass flux up to 1.5 kg/m 2 s. For the top-flooded case, the volumetric dryout heat rate was about 4 MW/m 3 and it increased as the rate of coolant injection from below was increased. At the coolant injection mass flux of 1.5 kg/m 2 s, the volumetric dryout heat rate was about 10 MW/m 3 , the enhancement factor was more than two. (author)

  17. Steam generator for a pressurized-water coolant nuclear reactor

    International Nuclear Information System (INIS)

    Schroeder, H.J.; Berger, W.

    1975-01-01

    A description is given of a steam generator which has a vertical cylindrical housing having a steam output outlet, a horizontal tube sheet closing the lower end of this housing, and an inverted U-shaped tube bundle inside of the housing and having vertical inlet and outlet legs with their ends mounted in the tube sheet. Beneath the tube sheet there are inlet and outlet manifolds for the respective ends of the tube bundle so that pressurized-water coolant from a pressurized-water coolant nuclear reactor can be circulated through the tube bundle

  18. Review on research of small break loss of coolant accident

    International Nuclear Information System (INIS)

    Bo Jinhai; Wang Fei

    1998-01-01

    The Small Break Loss of Coolant Accident (SBLOCA) and its research art-of -work are reviewed. A typical SBLOCA process in Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) and the influence of break size, break location and reactor coolant pump on the process are described. The existing papers are classified in two categories: experimental and numerical modeling, with the primary experimental apparatuses in the world listed and the research works on SBLOCA summarized

  19. Experimental and numerical investigation of the coolant mixing during fast deboration transients

    International Nuclear Information System (INIS)

    Hoehne, T.; Rohde, U.; Weiss, F.P.

    1999-01-01

    For the analysis of boron dilution transients and main steam line break scenarios the modeling of the coolant mixing inside the reactor vessel is important, because the reactivity insertion strongly depends on boron acid concentration or the coolant temperature distribution. Calculations for steady state flow conditions for the VVER-440 were performed with a CFD code (CFX-4). The comparison with experimental data and an analytical mixing model which is implemented in the neutron-kinetic code DYN3D showed a good agreement for near-nominal conditions. First experiments at the Rossendorf Mixing Test Facility ROCOM were performed simulating the start-up of the first main coolant pump. The reference reactor for the geometrically 1:5 scaled Plexiglas model is the German Konvoi type PWR. After demonstrating the capability of the CFD code to simulate these complicated flow transients, calculations were performed for the start-up of the first pump in a VVER-440 type reactor. These calculations are a first step of understanding the coolant mixing in the RPV of a VVER-440 type reactor under transient conditions. The results of the calculation show a very complex flow in the downcomer. A high downcomer of VVER-440 and the existence of the lower control rod chamber support coolant mixing is concluded. (author)

  20. An n -material thresholding method for improving integerness of solutions in topology optimization

    International Nuclear Information System (INIS)

    Watts, Seth; Engineering); Tortorelli, Daniel A.; Engineering)

    2016-01-01

    It is common in solving topology optimization problems to replace an integer-valued characteristic function design field with the material volume fraction field, a real-valued approximation of the design field that permits "fictitious" mixtures of materials during intermediate iterations in the optimization process. This is reasonable so long as one can interpolate properties for such materials and so long as the final design is integer valued. For this purpose, we present a method for smoothly thresholding the volume fractions of an arbitrary number of material phases which specify the design. This method is trivial for two-material design problems, for example, the canonical topology design problem of specifying the presence or absence of a single material within a domain, but it becomes more complex when three or more materials are used, as often occurs in material design problems. We take advantage of the similarity in properties between the volume fractions and the barycentric coordinates on a simplex to derive a thresholding, method which is applicable to an arbitrary number of materials. As we show in a sensitivity analysis, this method has smooth derivatives, allowing it to be used in gradient-based optimization algorithms. Finally, we present results, which show synergistic effects when used with Solid Isotropic Material with Penalty and Rational Approximation of Material Properties material interpolation functions, popular methods of ensuring integerness of solutions.

  1. Welded joints integrity analysis and optimization for fiber laser welding of dissimilar materials

    Science.gov (United States)

    Ai, Yuewei; Shao, Xinyu; Jiang, Ping; Li, Peigen; Liu, Yang; Liu, Wei

    2016-11-01

    Dissimilar materials welded joints provide many advantages in power, automotive, chemical, and spacecraft industries. The weld bead integrity which is determined by process parameters plays a significant role in the welding quality during the fiber laser welding (FLW) of dissimilar materials. In this paper, an optimization method by taking the integrity of the weld bead and weld area into consideration is proposed for FLW of dissimilar materials, the low carbon steel and stainless steel. The relationships between the weld bead integrity and process parameters are developed by the genetic algorithm optimized back propagation neural network (GA-BPNN). The particle swarm optimization (PSO) algorithm is taken for optimizing the predicted outputs from GA-BPNN for the objective. Through the optimization process, the desired weld bead with good integrity and minimum weld area are obtained and the corresponding microstructure and microhardness are excellent. The mechanical properties of the optimized joints are greatly improved compared with that of the un-optimized welded joints. Moreover, the effects of significant factors are analyzed based on the statistical approach and the laser power (LP) is identified as the most significant factor on the weld bead integrity and weld area. The results indicate that the proposed method is effective for improving the reliability and stability of welded joints in the practical production.

  2. Tailoring vibration mode shapes using topology optimization and functionally graded material concepts

    International Nuclear Information System (INIS)

    Rubio, Wilfredo Montealegre; Paulino, Glaucio H; Silva, Emilio Carlos Nelli

    2011-01-01

    Tailoring specified vibration modes is a requirement for designing piezoelectric devices aimed at dynamic-type applications. A technique for designing the shape of specified vibration modes is the topology optimization method (TOM) which finds an optimum material distribution inside a design domain to obtain a structure that vibrates according to specified eigenfrequencies and eigenmodes. Nevertheless, when the TOM is applied to dynamic problems, the well-known grayscale or intermediate material problem arises which can invalidate the post-processing of the optimal result. Thus, a more natural way for solving dynamic problems using TOM is to allow intermediate material values. This idea leads to the functionally graded material (FGM) concept. In fact, FGMs are materials whose properties and microstructure continuously change along a specific direction. Therefore, in this paper, an approach is presented for tailoring user-defined vibration modes, by applying the TOM and FGM concepts to design functionally graded piezoelectric transducers (FGPT) and non-piezoelectric structures (functionally graded structures—FGS) in order to achieve maximum and/or minimum vibration amplitudes at certain points of the structure, by simultaneously finding the topology and material gradation function. The optimization problem is solved by using sequential linear programming. Two-dimensional results are presented to illustrate the method

  3. Design of materials with extreme thermal expansion using a three-phase topology optimization method

    DEFF Research Database (Denmark)

    Sigmund, Ole; Torquato, S.

    1997-01-01

    We show how composites with extremal or unusual thermal expansion coefficients can be designed using a numerical topology optimization method. The composites are composed of two different material phases and void. The optimization method is illustrated by designing materials having maximum therma...

  4. Regulatory analysis for the resolution of Generic Safety Issue 105: Interfacing system loss-of-coolant accident in light-water reactors

    International Nuclear Information System (INIS)

    1993-07-01

    An interfacing systems loss of coolant accident (ISLOCA) involves failure or improper operation of pressure isolation valves (PIVs) that compose the boundary between the reactor coolant system and low-pressure rated systems. Some ISLOCAs can bypass containment and result in direct release of fission products to the environment. A cost/benefit evaluation, using three PWR analyses, calculated the benefit of two potential modifications to the plants. Alternative 1 is improved plant operations to optimize the operator's performance and reduce human error probabilities. Alternative 2 adds pressure sensing devices, cabling, and instrumentation between two PIVs to provide operators with continuous monitoring of the first PIV. These two alternatives were evaluated for the base case plants (Case 1) and for each plant, assuming the plants had a particular auxiliary building design in which severe flooding would be a problem if an ISLOCA occurred. The auxiliary building design (Case 2) was selected from a survey that revealed a number of designs with features that provided less than optimal resistance to ECCS equipment loss caused by a ISLOCA-induced environment. The results were judged not to provide sufficient basis for generic requirements. It was concluded that the most viable course of action to resolve Generic Issue 105 is licensee participation in individual plant examinations (IPEs)

  5. Maintenance modeling and optimization integrating human and material resources

    International Nuclear Information System (INIS)

    Martorell, S.; Villamizar, M.; Carlos, S.; Sanchez, A.

    2010-01-01

    Maintenance planning is a subject of concern to many industrial sectors as plant safety and business depend on it. Traditionally, the maintenance planning is formulated in terms of a multi-objective optimization (MOP) problem where reliability, availability, maintainability and cost (RAM+C) act as decision criteria and maintenance strategies (i.e. maintenance tasks intervals) act as the only decision variables. However the appropriate development of each maintenance strategy depends not only on the maintenance intervals but also on the resources (human and material) available to implement such strategies. Thus, the effect of the necessary resources on RAM+C needs to be modeled and accounted for in formulating the MOP affecting the set of objectives and constraints. In this paper RAM+C models to explicitly address the effect of human resources and material resources (spare parts) on RAM+C criteria are proposed. This extended model allows accounting for explicitly how the above decision criteria depends on the basic model parameters representing the type of strategies, maintenance intervals, durations, human resources and material resources. Finally, an application case is performed to optimize the maintenance plan of a motor-driven pump equipment considering as decision variables maintenance and test intervals and human and material resources.

  6. Maintenance modeling and optimization integrating human and material resources

    Energy Technology Data Exchange (ETDEWEB)

    Martorell, S., E-mail: smartore@iqn.upv.e [Dpto. Ingenieria Quimica y Nuclear, Universidad Politecnica Valencia (Spain); Villamizar, M.; Carlos, S. [Dpto. Ingenieria Quimica y Nuclear, Universidad Politecnica Valencia (Spain); Sanchez, A. [Dpto. Estadistica e Investigacion Operativa Aplicadas y Calidad, Universidad Politecnica Valencia (Spain)

    2010-12-15

    Maintenance planning is a subject of concern to many industrial sectors as plant safety and business depend on it. Traditionally, the maintenance planning is formulated in terms of a multi-objective optimization (MOP) problem where reliability, availability, maintainability and cost (RAM+C) act as decision criteria and maintenance strategies (i.e. maintenance tasks intervals) act as the only decision variables. However the appropriate development of each maintenance strategy depends not only on the maintenance intervals but also on the resources (human and material) available to implement such strategies. Thus, the effect of the necessary resources on RAM+C needs to be modeled and accounted for in formulating the MOP affecting the set of objectives and constraints. In this paper RAM+C models to explicitly address the effect of human resources and material resources (spare parts) on RAM+C criteria are proposed. This extended model allows accounting for explicitly how the above decision criteria depends on the basic model parameters representing the type of strategies, maintenance intervals, durations, human resources and material resources. Finally, an application case is performed to optimize the maintenance plan of a motor-driven pump equipment considering as decision variables maintenance and test intervals and human and material resources.

  7. Radiolytic reactions in the coolant of helium cooled reactors

    International Nuclear Information System (INIS)

    Tingey, G.L.; Morgan, W.C.

    1975-01-01

    The success of helium cooled reactors is dependent upon the ability to prevent significant reaction between the coolant and the other components in the reactor primary circuit. Since the thermal reaction of graphite with oxidizing gases is rapid at temperatures of interest, the thermal reactions are limited primarily by the concentration of impurity gases in the helium coolant. On the other hand, the rates of radiolytic reactions in helium are shown to be independent of reactive gas concentration until that concentration reaches a very low level. Calculated steady-state concentrations of reactive species in the reactor coolant and core burnoff rates are presented for current U. S. designed, helium cooled reactors. Since precise base data are not currently available for radiolytic rates of some reactions and thermal reaction rate data are often variable, the accuracy of the predicted gas composition is being compared with the actual gas compositions measured during startup tests of the Fort Saint Vrain high temperature gas-cooled reactor. The current status of these confirmatory tests is discussed. 12 references

  8. A open-quotes zero wasteclose quotes coolant management strategy

    International Nuclear Information System (INIS)

    Kennicott, M.A.

    1994-01-01

    In June of 1992 the Waste Minimization Program at Rocky Flats Plant (RFP) began a study to determine the best methods of managing water-based industrial metalworking fluids in the plant's Tool Manufacturing Shop. The shop was faced with the challenge of managing fluids that could no longer be disposed of in the traditional manner, through the plant's liquid process waste drains, due to a problem they, were having causing in the Liquid Waste Operations Evaporator. The study's goal was to reduce the waste coolants being generated and to reduce worker exposure to a serious health risk. Results of this study and those of a subsequent study to determine relative compatibilities of various coolants and metals, led to the application of a open-quotes zero wasteclose quotes machine coolant management program. This program is currently saving the generation of 10,000 gallons of liquid waste annually, has eliminated worker exposure to harmful bacteria and biocides, and should result in extended machine tool life, increased product quality, fewer rejected parts, and decreases labor costs

  9. TRANSENERGY S: computer codes for coolant temperature prediction in LMFBR cores during transient events

    International Nuclear Information System (INIS)

    Glazer, S.; Todreas, N.; Rohsenow, W.; Sonin, A.

    1981-02-01

    This document is intended as a user/programmer manual for the TRANSENERGY-S computer code. The code represents an extension of the steady state ENERGY model, originally developed by E. Khan, to predict coolant and fuel pin temperatures in a single LMFBR core assembly during transient events. Effects which may be modelled in the analysis include temporal variation in gamma heating in the coolant and duct wall, rod power production, coolant inlet temperature, coolant flow rate, and thermal boundary conditions around the single assembly. Numerical formulations of energy equations in the fuel and coolant are presented, and the solution schemes and stability criteria are discussed. A detailed description of the input deck preparation is presented, as well as code logic flowcharts, and a complete program listing. TRANSENERGY-S code predictions are compared with those of two different versions of COBRA, and partial results of a 61 pin bundle test case are presented

  10. Health physics aspects of processing EBR-I coolant

    International Nuclear Information System (INIS)

    Burke, L.L.; Thalgott, J.O.; Poston, J.W. Jr.

    1998-01-01

    The sodium-potassium reactor coolant removed from the Experimental Breeder Reactor Number One after a partial reactor core meltdown had been stored at the Idaho National Engineering and Environmental Laboratory for 40 years. The State of Idaho considered this waste the most hazardous waste stored in the state and required its processing. The reactor coolant was processed in three phases. The first phase converted the alkali metal into a liquid sodium-potassium hydroxide. The second phase converted this caustic to a liquid sodium-potassium carbonate. The third phase solidified the sodium-potassium carbonate into a form acceptable for land disposal. Health physics aspects and dose received during each phase of the processing are discussed

  11. HTGR-GT primary coolant transient resulting from postulated turbine deblading

    International Nuclear Information System (INIS)

    Cadwallader, G.J.; Deremer, R.K.

    1980-11-01

    The turbomachine is located within the primary coolant system of a nuclear closed cycle gas turbine plant (HTGR-GT). The deblading of the turbine can cause a rapid pressure equilibration transient that generates significant loads on other components in the system. Prediction of and design for this transient are important aspects of assuring the safety of the HTGR-GT. This paper describes the adaptation and use of the RATSAM program to analyze the rapid fluid transient throughout the primary coolant system during a spectrum of turbine deblading events. Included are discussions of (1) specific modifications and improvements to the basic RATSAM program, which is also briefly described; (2) typical results showing the expansion wave moving upstream from the debladed turbine through the primary coolant system; and (3) the effect on the transient results of different plenum volumes, flow resistances, times to deblade, and geometries that can choke the flow

  12. A material optimization model to approximate energy bounds for cellular materials under multiload conditions

    DEFF Research Database (Denmark)

    Guedes, J.M.; Rodrigues, H.C.; Bendsøe, Martin P.

    2003-01-01

    This paper describes a computational model, based on inverse homogenization and topology design, for approximating energy bounds for two-phase composites under multiple load cases. The approach allows for the identification of possible single-scale cellular materials that give rise to the optimal...

  13. Fine element (F.E.) modelling of hydrogen migration and blister formation in PHWR coolant channels

    International Nuclear Information System (INIS)

    Prasad, P.S.; Dutta, B.K.; Sinha, R.K.; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.

    1995-01-01

    The formation of a cold spot in pressure tube due to its contact with calandria tube of PHWR coolant results in the migration of Hydrogen in pressure tube towards contact zone from its surrounding material. A 3-D finite element code SPARSH is developed to model the hydrogen redistribution and consequent hydride blister formation due to thermal and Hydrogen concentration gradients. In the present paper, the details and performance of this code are presented. (author). 6 refs., 2 figs

  14. Numerical study and design optimization of electromagnetic energy harvesters integrated with flexible magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sang Won [Hanyang University, Seoul (Korea, Republic of)

    2017-05-15

    This study presents a new design of an electromagnetic energy harvester integrated with a soft magnetic material. The harvester design optimizes the magnetic material characteristics and the size of a rectangular permanent magnet. The design employs a complete magnetic circuit made of (1) a thin-film soft magnetic material that facilitates a flexible but highly (magnetically) permeable beam and (2) an optimally-sized magnet that maximizes the harvester performance. The design is demonstrated to reduce magnetic flux leakage, and thus considerably enhances both magnetic flux density (B) and its change by time (dB/dt), which both influence harvester performance. The improvement in harvester performances strongly depends on critical design parameters, especially, the magnet size and characteristics of magnetic materials, including permeability, stiffness, and thickness. The analyses conclude that recently-introduced nanomaterials (having ultrahigh magnetic permeability) can potentially innovate harvester performances. However, the performance may be degraded without design optimization. Once optimized, the integrated nanomaterials facilitate a significant improvement compared with a conventional design without integrated magnetic materials.

  15. Numerical study and design optimization of electromagnetic energy harvesters integrated with flexible magnetic materials

    International Nuclear Information System (INIS)

    Yoon, Sang Won

    2017-01-01

    This study presents a new design of an electromagnetic energy harvester integrated with a soft magnetic material. The harvester design optimizes the magnetic material characteristics and the size of a rectangular permanent magnet. The design employs a complete magnetic circuit made of (1) a thin-film soft magnetic material that facilitates a flexible but highly (magnetically) permeable beam and (2) an optimally-sized magnet that maximizes the harvester performance. The design is demonstrated to reduce magnetic flux leakage, and thus considerably enhances both magnetic flux density (B) and its change by time (dB/dt), which both influence harvester performance. The improvement in harvester performances strongly depends on critical design parameters, especially, the magnet size and characteristics of magnetic materials, including permeability, stiffness, and thickness. The analyses conclude that recently-introduced nanomaterials (having ultrahigh magnetic permeability) can potentially innovate harvester performances. However, the performance may be degraded without design optimization. Once optimized, the integrated nanomaterials facilitate a significant improvement compared with a conventional design without integrated magnetic materials.

  16. Radionuclide buildup in BWR [boiling water reactor] reactor coolant recirculation piping

    International Nuclear Information System (INIS)

    Duce, S.W.; Marley, A.W.; Freeman, A.L.

    1989-12-01

    Since the spring of 1985, thermoluminescent dosimeter, dose rate, and gamma spectral data have been acquired on the contamination of boiling water reactor primary coolant recirculation systems as part of a Nuclear Regulatory Commission funded study. Data have been gathered for twelve facilities by taking direct measurements and/or obtaining plant and vendor data. The project titled, ''Effectiveness and Safety Aspects of Selected Decontamination Processes'' (October 1983) initially reviewed the application of chemical decontamination processes on primary coolant recirculation system piping. Recontamination of the system following pipe replacement or chemical decontamination was studied as a second thrust of this program. During the course of this study, recontamination measurements were made at eight different commercial boiling water reactors. At four of the reactors the primary coolant recirculation system piping was chemically decontaminated. At the other four the piping was replaced. Vendor data were obtained from two boiling water reactors that had replaced the primary coolant recirculation system piping. Contamination measurements were made at two newly operating boiling water reactors. This report discusses the results of these measurements as they apply to contamination and recontamination of boiling water reactor recirculation piping. 16 refs., 29 figs., 9 tabs

  17. Reactor coolant pressure boundary leakage detection system

    International Nuclear Information System (INIS)

    Dissing, E.; Svansson, L.

    1980-01-01

    This study deals with a system for monitoring the leakage of reactor coolant. This system is based primarily on the detection of the 13 N content in the containment atmosphere. 13 N is produced from the oxygen of the reactor water via the recoil proton nuclear process Hl+016/yields/ 13 N+ 4 He. The generation is therefore independent of fuel element leakage and of the corrosion product content in the water. It is solely related to the neutron flux level in the reactor core. Typical figures for the equilibrium 13 N concentration in the containment atmosphere following a 4 kg/minute coolant leakage are 5 kBq m/sup -3/ and 7 kBq m/sup -3/ for BWR and PWR respectively. These levels are readily measured with a 10 liter Ge(Li) flow detector assembly operated at elevated pressure. 8 refs

  18. Reactor coolant pressure boundary leakage detection system

    International Nuclear Information System (INIS)

    Dissing, E.; Svansson, L.

    1980-01-01

    This study deals with a system for monitoring the leakage of reactor coolant. This system is based primarily on the detection of the N13 content in the containment atmosphere. N13 is produced from the oxygen of the reactor water via the recoil proton nuclear process Hl+016/yields/Nl3+He4. The generation is therefore independent of fuel element leakage and of the corrosion product content in the water. It is solely related to the neutron flux level in the reactor core. Typical figures for the equilibrium N13 concentration in the containment atmosphere following a 4 kg/minute coolant leakage are 5 kBq m/sup -3/ and 7 kBq m/sup -3/ for BWR and PWR respectively. These levels are readily measured with a 10 liter Ge(Li) flow detector assembly operated at elevated pressure. 8 refs

  19. Reactor coolant pressure boundary leakage detection system

    International Nuclear Information System (INIS)

    Dissing, E.; Svansson, L.

    1979-08-01

    The present paper deals with a system for monitoring the leakage of reactor coolant. This system is based primarily on the detection of the N13 content in the containment atmosphere. N13 is produced from the oxygen of the reactor water via the recoil proton nuclear process H1+016 → N13+He4. The generation is therefore independent of fuel element leakage and of the corrosion product content in the water. It is solely related to the neutron flux level in the reactor core. Typical figures for the equilibrium N13 concentration in the containment atmosphere following a 4 kg/minute coolant leakage are 5 kBq m -3 and 7 kBq m -3 for BWR and PWR respectively. These levels are readily measured with a 10 liter Ge (Li) flow detector assembly operated at elevated pressure. (Auth.)

  20. Detection of coolant void in lead-cooled fast reactors

    International Nuclear Information System (INIS)

    Wolniewicz, Peter; Håkansson, Ane; Jansson, Peter

    2015-01-01

    Highlights: • We model the ALFRED LFR using different Monte-Carlo codes. • We study the impact on coolant void on the fission cross section in fission chambers. • We develop a methodology to detect coolant void. • We study the impact of detector fissile coating burn-up. • We conclude that the developed methodology may be an attractive complement to LFR monitoring. - Abstract: Previous work (Wolniewicz et al., 2013) has indicated that using fission chambers coated with 242 Pu and 235 U, respectively, can provide the means of detecting changes in the neutron flux that are connected to coolant density changes in a small lead-cooled fast reactor. Such density changes may be due to leakages of gas into the coolant, which, over time, may coalesce to large bubbles implying a high risk of causing severe damage of the core. By using the ratio of the information provided by the two types of detectors a quantity is obtained that is sensitive to these density changes and, to the first order approximation, independent of the power level of the reactor. In this work we continue the investigation of this proposed methodology by applying it to the Advanced LFR European Demonstrator (ALFRED) and using realistic modelling of the neutron detectors. The results show that the methodology may be used to detect density changes indicating the initial stages of a coalescence process that may result in a large bubble. Also, it is shown that under certain circumstances, large bubbles passing through the core could be detected with this methodology

  1. An optimization model for transportation of hazardous materials

    International Nuclear Information System (INIS)

    Seyed-Hosseini, M.; Kheirkhah, A. S.

    2005-01-01

    In this paper, the optimal routing problem for transportation of hazardous materials is studied. Routing for the purpose of reducing the risk of transportation of hazardous materials has been studied and formulated by many researcher and several routing models have been presented up to now. These models can be classified into the categories: the models for routing a single movement and the models for routing multiple movements. In this paper, according to the current rules and regulations of road transportations of hazardous materials in Iran, a routing problem is designed. In this problem, the routs for several independent movements are simultaneously determined. To examine the model, the problem the transportations of two different dangerous materials in the road network of Mazandaran province in the north of Iran is formulated and solved by applying Integer programming model

  2. Design and optimization analysis of dual material gate on DG-IMOS

    Science.gov (United States)

    Singh, Sarabdeep; Raman, Ashish; Kumar, Naveen

    2017-12-01

    An impact ionization MOSFET (IMOS) is evolved for overcoming the constraint of less than 60 mV/decade sub-threshold slope (SS) of conventional MOSFET at room temperature. In this work, first, the device performance of the p-type double gate impact ionization MOSFET (DG-IMOS) is optimized by adjusting the device design parameters. The adjusted parameters are ratio of gate and intrinsic length, gate dielectric thickness and gate work function. Secondly, the DMG (dual material gate) DG-IMOS is proposed and investigated. This DMG DG-IMOS is further optimized to obtain the best possible performance parameters. Simulation results reveal that DMG DG-IMOS when compared to DG-IMOS, shows better I ON, I ON/I OFF ratio, and RF parameters. Results show that by properly tuning the lengths of two materials at a ratio of 1.5 in DMG DG-IMOS, optimized performance is achieved including I ON/I OFF ratio of 2.87 × 109 A/μm with I ON as 11.87 × 10-4 A/μm and transconductance of 1.06 × 10-3 S/μm. It is analyzed that length of drain side material should be greater than the length of source side material to attain the higher transconductance in DMG DG-IMOS.

  3. Computational analysis of battery optimized reactor integral system

    International Nuclear Information System (INIS)

    Hwang, J. S.; Son, H. M.; Jeong, W. S.; Kim, T. W.; Suh, K. Y.

    2007-01-01

    Battery Optimized Reactor Integral System (BORIS) is being developed as a multi-purpose fast spectrum reactor cooled by lead (Pb). BORIS is an integral optimized reactor with an ultra-long life core. BORIS aims to satisfy various energy demands maintaining inherent safety with the primary coolant Pb, and improving economics. BORIS is being designed to generate 23 MW t h with 10 MW e for at least twenty consecutive years without refueling and to meet the Generation IV Nuclear Energy System goals of sustainability, safety, reliability, and economics. BORIS is conceptualized to be used as the main power and heat source for remote areas and barren lands, and also considered to be deployed for desalinisation purpose. BORIS, based on modular components to be viable for rapid construction and easy maintenance, adopts an integrated heat exchanger system operated by natural circulation of Pb without pumps to realize a small sized reactor. The BORIS primary system is designed through an optimization study. Thermal hydraulic characteristics during a reactor steady state with heat source and sink by core and heat exchanger, respectively, have been carried out by utilizing a computational fluid dynamics code and hand calculations based on first principles. This paper analyzes a transient condition of the BORIS primary system. The Pb coolant was selected for its lower chemical activity with air or water than sodium (Na) and good thermal characteristics. The reactor transient conditions such as core blockage, heat exchanger failure, and loss of heat sink, were selected for this study. Blockage in the core or its inlet structure causes localized flow starvation in one or several fuel assemblies. The coolant loop blockages cause a more or less uniform flow reduction across the core, which may trigger coolant temperature transient. General conservation equations were applied to model the primary system transients. Numerical approaches were adopted to discretized the governing

  4. Method and apparatus for suppressing water-solid overpressurization of coolant in nuclear reactor power apparatus

    International Nuclear Information System (INIS)

    Aanstad, O.J.; Sklencar, A.M.

    1983-01-01

    A reactor-coolant relief valve is opened for increase in mass influx if the rate of change of coolant pressure exceeds a setpoint during a predetermined interval, if, during this interval, the coolant temperature is less than a setpoint and if the level of the fluid in the pressurizer is above a predetermined setpoint (water-solid state). (author)

  5. Data-driven design optimization for composite material characterization

    Science.gov (United States)

    John G. Michopoulos; John C. Hermanson; Athanasios Iliopoulos; Samuel G. Lambrakos; Tomonari Furukawa

    2011-06-01

    The main goal of the present paper is to demonstrate the value of design optimization beyond its use for structural shape determination in the realm of the constitutive characterization of anisotropic material systems such as polymer matrix composites with or without damage. The approaches discussed are based on the availability of massive experimental data...

  6. Optimization of Surrounding Reflector Material for Hyb-WT

    International Nuclear Information System (INIS)

    Tariq Siddique, M.; Hong, Song Hee; Kim, Myung Hyun

    2013-01-01

    The choice of reflector material is crucial for fusion and hybrid reactors as it was for the fission reactors. Multiple reflector materials were studied for pure fusion blanket design. The purpose of reflector in fusion blanket is to enhance the tritium breeding ratio (TBR). In fusion fission hybrid blanket the roll of reflector is slightly changed as it include the fission core and the performance of fission core also needs to be optimized and evaluated with the choice of reflector material, along with the enhancement of TBR. The performance parameters of Hyb-WT are significantly influenced by the choice of reflector material. TiC is best for TRU transmutation, TBR and reduced the neutron wall loading and graphite is best for FP transmutation. Strategy of multi reflector materials gives the best TRU and FP transmutation performance and also enhanced TBR with reduced neutron wall loading and it is a better choice for Hyb-WT reflector. The neutron flux is primarily dominated by the fission neutrons

  7. Evaluation of CRUDTRAN code to predict transport of corrosion products and radioactivity in the PWR primary coolant system

    International Nuclear Information System (INIS)

    Lee, C.B.

    2002-01-01

    CRUDTRAN code is to predict transport of the corrosion products and their radio-activated nuclides such as cobalt-58 and cobalt-60 in the PWR primary coolant system. In CRUDTRAN code the PWR primary circuit is divided into three principal sections such as the core, the coolant and the steam generator. The main driving force for corrosion product transport in the PWR primary coolant comes from coolant temperature change throughout the system and a subsequent change in corrosion product solubility. As the coolant temperature changes around the PWR primary circuit, saturation status of the corrosion products in the coolant also changes such that under-saturation in steam generator and super-saturation in the core. CRUDTRAN code was evaluated by comparison with the results of the in-reactor loop tests simulating the PWR primary coolant system and PWR plant data. It showed that CRUDTRAN could predict variations of cobalt-58 and cobalt-60 radioactivity with time, plant cycle and coolant chemistry in the PWR plant. (author)

  8. Improvement of lifetime availability through design, inspection, repair and replacement of coolant channels of Indian Pressurized Heavy Water Reactors

    International Nuclear Information System (INIS)

    Rupani, B.B.; Sinha, R.K.

    1998-01-01

    This paper covers an overview of the work carried out for the life management of the coolant channels of Indian Pressurised Heavy Water Reactors. In order to improve maintainability of the coolant channels and reduce down time needed for periodical creep adjustment, improved design of channel hardware were developed. The modular insulation panel, designed as a substitute for the jig saw panels, reduces the time needed for accessing the space around the end-fitting significantly. A compact mechanical snubber has been developed to totally eliminate the need for periodic creep adjustment. In addition, the paper also describes the technologies developed for performing some special inspection, repair and replacement tasks for the coolant channels. These include systems for garter spring repositioning by Mechanical Flexing Technique for fresh reactors and Integrated Garter Spring Repositioning System for operating reactors. A tooling system, developed for in-situ retrieval of sliver scrape samples from pressure tubes, is also described. These samples can be analysed in laboratories to yield valuable information on hydrogen concentration in pressure tube material. The current and planned activities towards development of technologies for improvement of the life time availability of the power plants are addressed. (author)

  9. Lubrication analysis of the journal bearing in the main coolant pump of SMART

    International Nuclear Information System (INIS)

    Lee, J. S.; Park, J. S.; Kim, J. H.; Kim, J. I.; Jang, M. H.

    2000-01-01

    Special type journal bearings are installed in the main coolant pump for SMART to support the rotating shaft with proper lubrication. The canned motor type main coolant pumps are arranged vertically on the reactor vessel. The MCP bearings are lubricated with water without external lubricating oil supply. Long bearing with vertical grooves is designed with relatively large bearing clearance to accommodate the long shaft. Lubricational analysis method for journal bearing with vertical grooves in the main coolant pump of SMART is proposed, and lubricational characteristics of the bearings are examined in this paper

  10. Coating material innovation in conjunction with optimized deposition technologies

    International Nuclear Information System (INIS)

    Stolze, M.; Leitner, K.

    2009-01-01

    Concentrating on physical vapour deposition methods several examples of recently developed coating materials for optical applications were studied for film deposition with optimized coating technologies: mixed evaporation materials for ion assisted deposition with modern plasma ion sources, planar metal and oxide sputter targets for Direct Current (DC) and Mid-Frequency (MF) pulsed sputter deposition and planar and rotatable sputter targets of transparent conductive oxides (TCO) for large-area sputter deposition. Films from specially designed titania based mixed evaporation materials deposited with new plasma ion sources and possible operation with pure oxygen showed extended ranges of the ratio between refractive index and structural film stress, hence there is an increased potential for the reduction of the total coating stress in High-Low alternating stacks and for coating plastics. DC and MF-pulsed sputtering of niobium metal and suboxide targets for optical coatings yielded essential benefits of the suboxide targets in a range of practical coating conditions (for absent in-situ post-oxidation ability): higher refractive index and deposition rate, better reproducibility and easier process control, and the potential for co-deposition of several targets. Technological progress in the manufacture of rotatable indium tin oxide (ITO) targets with regard to higher wall-thickness and density was shown to be reflected in higher material stock and coater up-time, economical deposition rates and stable process behaviour. Both for the rotatable ITO targets and higher-dense aluminum-doped zinc oxide (AZO) planar targets values of film transmittance and resistivity were in the range of the best values industrially achieved for films from the respective planar targets. The results for the rotatable ITO and planar AZO targets point to equally optimized process and film properties for the optimized rotatable AZO targets currently in testing

  11. Reactor core design optimization of the 200 MWt Pb-Bi cooled fast reactor for hydrogen production

    International Nuclear Information System (INIS)

    Bahrum, Epung Saepul; Su'ud, Zaki; Waris, Abdul; Fitriyani, Dian; Wahjoedi, Bambang Ari

    2008-01-01

    In this study reactor core geometrical optimization of 200 MWt Pb-Bi cooled long life fast reactor for hydrogen production has been conducted. The reactor life time is 20 years and the fuel type is UN-PuN. Geometrical core configurations considered in this study are balance, pancake and tall cylindrical cores. For the hydrogen production unit we adopt steam membrane reforming hydrogen gas production. The optimum operating temperature for the catalytic reaction is 540degC. Fast reactor design optimization calculation was run by using FI-ITB-CHI software package. The design criteria were restricted by the multiplication factor that should be less than 1.002, the average outlet coolant temperature 550degC and the maximum coolant outlet temperature less than 700degC. By taking into account of the hydrogen production as well as corrosion resulting from Pb-Bi, the balance cylindrical geometrical core design with diameter and height of the active core of 157 cm each, the inlet coolant temperature of 350degC and the coolant flow rate of 7000 kg/s were preferred as the best design parameters. (author)

  12. Design of materials with extreme thermal expansion using a three-phase topology optimization method

    DEFF Research Database (Denmark)

    Sigmund, Ole; Torquato, S.

    1997-01-01

    Composites with extremal or unusual thermal expansion coefficients are designed using a three-phase topology optimization method. The composites are made of two different material phases and a void phase. The topology optimization method consists in finding the distribution of material phases...... materials having maximum directional thermal expansion (thermal actuators), zero isotropic thermal expansion, and negative isotropic thermal expansion. It is shown that materials with effective negative thermal expansion coefficients can be obtained by mixing two phases with positive thermal expansion...

  13. Experiments on simulation of coolant mixing in fuel assembly head and core exit channel of WWER-440 reactor

    International Nuclear Information System (INIS)

    Kobzar, L.L; Oleksyuk, D.A.

    2006-01-01

    RRC 'Kurchatov Institute' has performed coolant mixing investigation in a head of a full-size simulator of WWER-440 fuel assembly. The experiments were focused on obtaining the data important for investigating the trends in temperature difference between the value registered by a ICIS thermocouple and the value of average temperature. The completed experiments ensure representative of configuration simulation by reproducing every construction peculiar feature of flow part of fuel assembly in the domain between the lower spacing grid and thermocouple location, and also by slightly modified fuel assembly regular elements (or analogues thereof). For the purpose of effectiveness of coolant mixing assessment within the head cross section of FA simulator, we measured coolant temperature distribution both in the place where coolant flow leaves the rod bundle simulator (in 39 data points along the cross section) and in the cross section location of regular ICIS thermocouple simulator (30 data points). The testing was conducted with pressure of (90 - 95) bar, mass coolant flow rates up to 2000 kg/(m 2 .s), temperature of coolant heating in 'hot' parts of the bundle up to 35.. and differences between coolant temperature extremes measured in rod bundle simulator outlet up to 20... Temperature fields were registered in 63 conditions that differ in coolant flow and inlet coolant temperature, electrical heating rate of FA simulator, and radial coolant distribution. In certain registered conditions we simulated coolant leakage to the space between the fuel assemblies. The received test data may be important both for investigation of dependencies between the coolant temperature in regular thermocouple location or average outlet temperature in assembly head, and for validation of CFD codes or subchannel codes (Authors)

  14. APPLICATION OF MULTIHOLE PRESSURE PROBE FOR RESEARCH OF COOLANT VELOCITY PROFILE IN NUCLEAR REACTOR FUEL ASSEMBLIES

    Directory of Open Access Journals (Sweden)

    S. M. Dmitriev

    2015-01-01

    Full Text Available Development of heat and mass transfer intensifiers is a major engineering task in the design of new and modernization of existing fuel assemblies. These devices create lateral mass flow of coolant. Design of intensifiers affects both the coolant mixing and the hydraulic resistance. The aim of this work is to develop a methodology of measuring coolant local velocity in the fuel assembly models with different mixing grids. To solve the problems was manufactured and calibrated multihole pressure probe. The air flow velocity measuring method with multihole pressure probe was used in the experimental studies on the coolant local hydrodynamics in fuel assemblies with mixing grids. Analysis of the coolant lateral velocity vector fields allowed to study the formation of the secondary vortex flows behind the mixing grids, and to determine the basic laws of coolant flow in experimental models. Quantitative data on the coolant flow velocity distribution obtained with a multihole pressure probe make possible to determine the magnitude of the flow lateral velocities in fuel rod gaps, as well as to determine the distance at which damping occurs during mixing. 

  15. Robust optimal control of material flows in demand-driven supply networks

    NARCIS (Netherlands)

    Laumanns, M.; Lefeber, A.A.J.

    2006-01-01

    We develop a model based on stochastic discrete-time controlleddynamical systems in order to derive optimal policies for controllingthe material flow in supply networks. Each node in the network isdescribed as a transducer such that the dynamics of the material andinformation flows within the entire

  16. Exhaust temperature analysis of four stroke diesel engine by using MWCNT/Water nanofluids as coolant

    Science.gov (United States)

    Muruganandam, M.; Mukesh Kumar, P. C.

    2017-10-01

    There has been a continuous improvement in designing of cooling system and in quality of internal combustion engine coolants. The liquid engine coolant used in early days faced many difficulties such as low boiling, freezing points and inherently poor thermal conductivity. Moreover, the conventional coolants have reached their limitations of heat dissipating capacity. New heat transfer fluids have been developed and named as nanofluids to try to replace traditional coolants. Moreover, many works are going on the application of nanofluids to avail the benefits of them. In this experimental investigation, 0.1, 0.3 and 0.5% volume concentrations of multi walled carbon nanotube (MWCNT)/water nanofluids have been prepared by two step method with surfactant and is used as a coolant in four stroke single cylinder diesel engine to assess the exhaust temperature of the engine. The nanofluid prepared is characterized with scanning electron microscope (SEM) to confirm uniform dispersion and stability of nanotube with zeta potential analyzer. Experimental tests are performed by various mass flow rate such as 270 300 330 LPH (litre per hour) of coolant nanofluids and by changing the load in the range of 0 to 2000 W and by keeping the engine speed constant. It is found that the exhaust temperature decreases by 10-20% when compared to water as coolant at the same condition.

  17. Investigation of loss of coolant accidents in pressurized water reactors using the ''Dynamic Best-Estimate Safety Analysis'' (DYBESA) method for considering of uncertainties in TRACE

    International Nuclear Information System (INIS)

    Sporn, Michael; Hurtado, Antonio

    2016-01-01

    Loss of coolant accident must take uncertainties with potentially strong effects on the accident sequence prediction into account. For example, uncertainties in computational model input parameters resulting from varying geometry and material data due to manufacturing tolerances or unavailable measurements should be considered. The uncertainties of physical models used by the software program are also significant. In this paper, use of the ''Dynamic Best-Estimate Safety Analysis'' (DYBESA) method to quantify the uncertainties in the TRACE thermal-hydraulic program is demonstrated. For demonstration purposes loss of coolant accidents with breaks of various types and sizes in a DN 700 reactor coolant pipe are used as an example Application.

  18. Qualitative infrared spectral analysis of products adsorbed by silica gel from ditolylmethane coolant and their adsorption isotherm

    International Nuclear Information System (INIS)

    Ermakov, V.A.; Benderskaya, O.S.

    1987-01-01

    The IR-spectral analysis has been applied to study the products adsorbed from ditolylmethane first-circuit coolant, as well as from still bottoms after coolant distillation on silicagel of various makes. The qualitative study of desorbate IR-spectra has shown that they refer to the classes of arylaldehydes, diarylketones and carbonic acids. Under actual conditions first-circuit reactor coolant also has a wide set of products of its radiolysis, therefore the spectrum of coolant oxidaton products must be wider. It is noted that adsorption on silica gel, ASK of oxygen-bearing compounds which are present in ditolyl methane coolant has 2 stages

  19. Particle image velocimetry measurement of complex flow structures in the diffuser and spherical casing of a reactor coolant pump

    Directory of Open Access Journals (Sweden)

    Yongchao Zhang

    2018-04-01

    Full Text Available Understanding of turbulent flow in the reactor coolant pump (RCP is a premise of the optimal design of the RCP. Flow structures in the RCP, in view of the specially devised spherical casing, are more complicated than those associated with conventional pumps. Hitherto, knowledge of the flow characteristics of the RCP has been far from sufficient. Research into the nonintrusive measurement of the internal flow of the RCP has rarely been reported. In the present study, flow measurement using particle image velocimetry is implemented to reveal flow features of the RCP model. Velocity and vorticity distributions in the diffuser and spherical casing are obtained. The results illuminate the complexity of the flows in the RCP. Near the lower end of the discharge nozzle, three-dimensional swirling flows and flow separation are evident. In the diffuser, the imparity of the velocity profile with respect to different axial cross sections is verified, and the velocity increases gradually from the shroud to the hub. In the casing, velocity distribution is nonuniform over the circumferential direction. Vortices shed consistently from the diffuser blade trailing edge. The experimental results lend sound support for the optimal design of the RCP and provide validation of relevant numerical algorithms. Keywords: Diffuser, Flow Structures, Particle Image Velocimetry, Reactor Coolant Pump, Spherical Casing, Velocity Distribution

  20. Method of eliminating cruds in the primary coolants of reactors

    International Nuclear Information System (INIS)

    Tamura, Takaaki.

    1984-01-01

    Purpose: To eliminate cruds in the primary coolants by using rind of onions or peanuts. Method: Since cruds contained in the reactor primary coolants increase the radioactive exposure to reactor operators, they have been intended to remove by ion exchange resins. In this invention, rind of onions or peanuts are crushed into an adequate particle size and packed into an absorption column instead of ion exchange resins into which primary coolants are circulated. The powderous onions or peanuts rind contain glucoside such as cosmosiin and has an effect of cationic exchanger, they satisfactorily catch heavy metals such as Fe and Cu. They have an excellent filtering effect even under a high pH condition and are excellent in economical point of view. They can be decrease the volume of the absorption column, reduce their devolume after use through corrosion and easily subjected to waste procession through oxidizing combustion in liquid. (Nakamoto, H.)

  1. CFD analyses of coolant channel flowfields

    Science.gov (United States)

    Yagley, Jennifer A.; Feng, Jinzhang; Merkle, Charles L.

    1993-01-01

    The flowfield characteristics in rocket engine coolant channels are analyzed by means of a numerical model. The channels are characterized by large length to diameter ratios, high Reynolds numbers, and asymmetrical heating. At representative flow conditions, the channel length is approximately twice the hydraulic entrance length so that fully developed conditions would be reached for a constant property fluid. For the supercritical hydrogen that is used as the coolant, the strong property variations create significant secondary flows in the cross-plane which have a major influence on the flow and the resulting heat transfer. Comparison of constant and variable property solutions show substantial differences. In addition, the property variations prevent fully developed flow. The density variation accelerates the fluid in the channels increasing the pressure drop without an accompanying increase in heat flux. Analyses of the inlet configuration suggest that side entry from a manifold can affect the development of the velocity profile because of vortices generated as the flow enters the channel. Current work is focused on studying the effects of channel bifurcation on the flow field and the heat transfer characteristics.

  2. Natural circulation in reactor coolant system

    International Nuclear Information System (INIS)

    Han, J.T.

    1987-01-01

    Reactor coolant system (RCS) natural circulation in a PWR is the buoyancy-driven coolant circulation between the core and the upper-plenum region (in-vessel circulation) with or without a countercurrent flow in the hot leg piping between the vessel and steam generators (ex-vessel circulation). This kind of multidimensional bouyancy-driven flow circulation serves as a means of transferring the heat from the core to the structures in the upper plenum, hot legs, and possibly steam generators. As a result, the RCS piping and other pressure boundaries may be heated to high temperatures at which the structural integrity is challenged. RCS natural circulation is likely to occur during the core uncovery period of the TMLB' accident in a PWR when the vessel upper plenum and hot leg are already drained and filled with steam and possibly other gaseous species. RCS natural circulation is being studied for the Surry plant during the TMLB' accident in which station blackout coincides with the loss of auxiliary feedwater and no operator actions. The effects of the multidimensional RCS natural circulation during the TMLB' accident are discussed

  3. Rapid thermal transient in a reactor coolant channel

    International Nuclear Information System (INIS)

    Cherubini, A.

    1986-01-01

    This report deals with the problem of one-dimensional thermo-fluid-dynamics in a reactor coolant channel, with the aim of determining the evolution in time of the coolant (H*L2O), in one-and/or two-phase regimes, subjected to a great and rapid increase in heat flux (accident conditions). To this aim, the following are set out: a) the physical model used; b) the equations inherent in the above model; c) the numerical methods employed to solve them by means of a computer programme called CABO (CAnale BOllente). Next a typical problem of rapid thermal transient resolved by CABO is reported. The results obtained, expressed in form of graphs, are fully discussed. Finally comments on possible developments of CABO follow

  4. Method of detecting coolant leakages from the pipeways in FBR type reactors

    International Nuclear Information System (INIS)

    Sonoda, Yukio; Tamaoki, Tetsuo

    1986-01-01

    Purpose: To detect coolant leakage in the incore pipeways of loop type FBR type reactors in the initial stage at high sensitivity. Constitution: Temperature of the coolants sealed between incore pipeways and the buffle surrounding them is measured by thermocouples and coolant leakage is detected due to fluctuating components. A well-insertion type in which electrode is sealed with argon is used as the thermo-couples. Signals from the thermocouples are once amplified, removed with DC components and then only the fluctuating components are outputted. The fluctuating components are digitalized, passed through an adaptive digital filter and the RMS value as the difference between the output signal and the thermocouple signal is calculated. The calculated value is compared with a threshold value in a comparative calculator. If it exceeds the threshold value, it is judged as abnormal to display an alarm on an alarm display. In this way, the coolant leakage for the pipeways in the FBR type reactor can be detected on real time and at high sensitivity. (Kamimura, M.)

  5. A non-linear optimal control problem in obtaining homogeneous concentration for semiconductor materials

    International Nuclear Information System (INIS)

    Huang, C.-H.; Li, J.-X.

    2006-01-01

    A non-linear optimal control algorithm is examined in this study for the diffusion process of semiconductor materials. The purpose of this algorithm is to estimate an optimal control function such that the homogeneity of the concentration can be controlled during the diffusion process and the diffusion-induced stresses for the semiconductor materials can thus be reduced. The validation of this optimal control analysis utilizing the conjugate gradient method of minimization is analysed by using numerical experiments. Three different diffusion processing times are given and the corresponding optimal control functions are to be determined. Results show that the diffusion time can be shortened significantly by applying the optimal control function at the boundary and the homogeneity of the concentration is also guaranteed. This control function can be obtained within a very short CPU time on a Pentium III 600 MHz PC

  6. Fast measurements of the in-core coolant velocity in a BWR by neutron noise analysis

    International Nuclear Information System (INIS)

    Hagen, T.H.J.J. van der; Hoogenboom, J.E.

    1988-01-01

    A method to determine in-core coolant velocities from neutron noise within short time intervals has been developed. The accuracy of the method was determined by using a simulation set-up and by using signals of a twin self-powered neutron detector installed in the core of the Dodewaard BWR in the Netherlands. In-core coolant velocities can be estimated within 2.5 s with a standard deviation (due to statistics) less than 2.1%. The method is suitable for velocity monitoring as is shown by the application to a stepwise velocity change of the coolant in a model of a coolant channel of a BWR. The presented technique was applied to determine the variations of the coolant velocity in the Dodewaard core during normal operation and during pressure steps. Only minor variations of the coolant velocity were detected during normal reactor conditions. An increase of those variations with pressure lowering - indicating a lower thermal hydraulic stability - could be detected. A clear velocity response to pressure steps could be determined which was also reflected in the cross-spectrum of the velocity with the vessel pressure and with the in-core neutron flux. (author)

  7. Freeform Deposition Method for Coolant Channel Closeout

    Science.gov (United States)

    Gradl, Paul R. (Inventor); Reynolds, David Christopher (Inventor); Walker, Bryant H. (Inventor)

    2017-01-01

    A method is provided for fabricating a coolant channel closeout jacket on a structure having coolant channels formed in an outer surface thereof. A line of tangency relative to the outer surface is defined for each point on the outer surface. Linear rows of a metal feedstock are directed towards and deposited on the outer surface of the structure as a beam of weld energy is directed to the metal feedstock so-deposited. A first angle between the metal feedstock so-directed and the line of tangency is maintained in a range of 20-90.degree.. The beam is directed towards a portion of the linear rows such that less than 30% of the cross-sectional area of the beam impinges on a currently-deposited one of the linear rows. A second angle between the beam and the line of tangency is maintained in a range of 5-65 degrees.

  8. Pressurized-water coolant nuclear reactor steam generator

    International Nuclear Information System (INIS)

    Mayer, H.; Schroder, H.J.

    1975-01-01

    A description is given of a pressurized-water coolant nuclear reactor steam generator having a vertical housing for the steam generating water and containing an upstanding heat exchanger to which the pressurized-water coolant passes and which is radially surrounded by a guide jacket supporting a water separator on its top. By thermosiphon action the steam generating water flows upward through and around the heat exchanger within the guide chamber to the latter's top from which it flows radially outwardly and downwardly through a down draft space formed between the outside of the jacket and the housing. The water separator discharges separated water downwardly. The housing has a feedwater inlet opening adjacent to the lower portion of the heat exchanger, providing preheating of the introduced feedwater. This preheated feedwater is conveyed by a duct upwardly to a location where it mixes with the water discharged from the water separator

  9. Fission product source from Ignalina NPP in case of loss-of-coolant accidents

    International Nuclear Information System (INIS)

    Ubonavicius, E.; Rimkevicius, S.

    2001-01-01

    The release of radioactive materials to the environment is of special importance in the case of any accident at Nuclear Power Plants (NPP). The integrated analysis of thermal-hydraulic parameters behavior and radioactive fission products (FP) transport and deposition in the compartments play an important role in the evaluation of FP release to the environment and determines the irradiation dozes of personnel and public. In this report the transport and the deposition of radioactive material in the Ignalina NPP unit 1 compartments as well as the FP source term to the environment in the case of design basis loss-of-coolant accidents are discussed. The calculation models for the evaluation of FP transport and deposition as well as the results of performed calculations of several accidents at Ignalina NPP are presented. (author)

  10. Topology optimization of periodic microstructures for enhanced dynamic properties of viscoelastic composite materials

    DEFF Research Database (Denmark)

    Andreassen, Erik; Jensen, Jakob Søndergaard

    2014-01-01

    We present a topology optimization method for the design of periodic composites with dissipative materials for maximizing the loss/attenuation of propagating waves. The computational model is based on a finite element discretization of the periodic unit cell and a complex eigenvalue problem...... with a prescribed wave frequency. The attenuation in the material is described by its complex wavenumber, and we demonstrate in several examples optimized distributions of a stiff low loss and a soft lossy material in order to maximize the attenuation. In the examples we cover different frequency ranges and relate...... the results to previous studies on composites with high damping and stiffness based on quasi-static conditions for low frequencies and the bandgap phenomenon for high frequencies. Additionally, we consider the issues of stiffness and connectivity constraints and finally present optimized composites...

  11. Parallel algorithms for islanded microgrid with photovoltaic and energy storage systems planning optimization problem: Material selection and quantity demand optimization

    Science.gov (United States)

    Cao, Yang; Liu, Chun; Huang, Yuehui; Wang, Tieqiang; Sun, Chenjun; Yuan, Yue; Zhang, Xinsong; Wu, Shuyun

    2017-02-01

    With the development of roof photovoltaic power (PV) generation technology and the increasingly urgent need to improve supply reliability levels in remote areas, islanded microgrid with photovoltaic and energy storage systems (IMPE) is developing rapidly. The high costs of photovoltaic panel material and energy storage battery material have become the primary factors that hinder the development of IMPE. The advantages and disadvantages of different types of photovoltaic panel materials and energy storage battery materials are analyzed in this paper, and guidance is provided on material selection for IMPE planners. The time sequential simulation method is applied to optimize material demands of the IMPE. The model is solved by parallel algorithms that are provided by a commercial solver named CPLEX. Finally, to verify the model, an actual IMPE is selected as a case system. Simulation results on the case system indicate that the optimization model and corresponding algorithm is feasible. Guidance for material selection and quantity demand for IMPEs in remote areas is provided by this method.

  12. Problems of hydrogen - water vapor - inert gas mixture use in heavy liquid metal coolant technology

    International Nuclear Information System (INIS)

    Ul'yanov, V.V.; Martynov, P.N.; Gulevskij, V.A.; Teplyakov, Yu.A.; Fomin, A.S.

    2014-01-01

    The reasons of slag deposit formation in circulation circuits with heavy liquid metal coolants, which can cause reactor core blockage, are considered. To prevent formation of deposits hydrogen purification of coolant and surfaces of circulation circuit is used. It consists in introduction of gaseous mixtures hydrogen - water vapor - rare gas (argon or helium) directly into coolant flow. The principle scheme of hydrogen purification and the processes occurring during it are under consideration. Measures which make it completely impossible to overlap of the flow cross section of reactor core, steam generators, pumps and other equipment by lead oxides in reactor facilities with heavy liquid metal coolants are listed [ru

  13. Application of damage function analysis to reactor coolant circuits

    International Nuclear Information System (INIS)

    MacDonald, D.D.

    2002-01-01

    The application of deterministic models for simulating stress corrosion cracking phenomena in Boiling Water Reactor primary coolant circuits is described. The first generation code, DAMAGE-PREDICTOR, has been used to model the radiolysis of the coolant, to estimate the electrochemical corrosion potential (ECP), and to calculate the crack growth rate (CGR) at fixed state points during reactor operation in about a dozen plants worldwide. This code has been validated in ''double-blind'' comparisons between the calculated and measured hydrogen concentration, oxygen concentration, and ECP in the recirculation system of the Leibstadt BWR in Switzerland, as well as through less formal comparisons with data from other plants. Second generation codes have now been developed, including REMAIN for simulating BWRs with internal coolant pumps and the ALERT series for modeling reactors with external pumps. One of this series, ALERT, yields the integrated damage function (IDF), which is the crack length versus time, on a component-by-component basis for a specified future operating scenario. This code therefore allows one to explore proposed future operating protocols, with the objective of identifying those that are most cost-effective and which minimizes the risk of failure of components in the coolant circuit by stress corrosion cracking. The application of this code is illustrated by exploring the benefits of partial hydrogen water chemistry (HWC) for an actual reactor, in which hydrogen is added to the feedwater over only limited periods during operation. The simulations show that the benefits, in terms of reduction in the IDFs for various components, are sensitive to when HWC was initiated in the plant life and to the length of time over which it is applied. (author)

  14. Application of damage function analysis to reactor coolant circuits

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, D.D. [Center for Electrochemical Science and Technology, Pennsylvania State Univ., University Park, PA (United States)

    2002-07-01

    The application of deterministic models for simulating stress corrosion cracking phenomena in Boiling Water Reactor primary coolant circuits is described. The first generation code, DAMAGE-PREDICTOR, has been used to model the radiolysis of the coolant, to estimate the electrochemical corrosion potential (ECP), and to calculate the crack growth rate (CGR) at fixed state points during reactor operation in about a dozen plants worldwide. This code has been validated in ''double-blind'' comparisons between the calculated and measured hydrogen concentration, oxygen concentration, and ECP in the recirculation system of the Leibstadt BWR in Switzerland, as well as through less formal comparisons with data from other plants. Second generation codes have now been developed, including REMAIN for simulating BWRs with internal coolant pumps and the ALERT series for modeling reactors with external pumps. One of this series, ALERT, yields the integrated damage function (IDF), which is the crack length versus time, on a component-by-component basis for a specified future operating scenario. This code therefore allows one to explore proposed future operating protocols, with the objective of identifying those that are most cost-effective and which minimizes the risk of failure of components in the coolant circuit by stress corrosion cracking. The application of this code is illustrated by exploring the benefits of partial hydrogen water chemistry (HWC) for an actual reactor, in which hydrogen is added to the feedwater over only limited periods during operation. The simulations show that the benefits, in terms of reduction in the IDFs for various components, are sensitive to when HWC was initiated in the plant life and to the length of time over which it is applied. (author)

  15. Design of Reactor Coolant Pump Seal Online Monitoring System

    International Nuclear Information System (INIS)

    Ah, Sang Ha; Chang, Soon Heung; Lee, Song Kyu

    2008-01-01

    As a part of a Department of Korea Power Engineering Co., (KOPEC) Project, Statistical Quality Control techniques have been applied to many aspects of industrial engineering. An application to nuclear power plant maintenance and control is also presented that can greatly improve plant safety. As a demonstration of such an approach, a specific system is analyzed: the reactor coolant pumps (RCPs) and the fouling resistance of heat exchanger. This research uses Shewart X-bar, R charts, Cumulative Sum charts (CUSUM), and Sequential Probability Ratio Test (SPRT) to analyze the process for the state of statistical control. And the Control Chart Analyzer (CCA) has been made to support these analyses that can make a decision of error in process. The analysis shows that statistical process control methods can be applied as an early warning system capable of identifying significant equipment problems well in advance of traditional control room alarm indicators. Such a system would provide operators with enough time to respond to possible emergency situations and thus improve plant safety and reliability. RCP circulates reactor coolant to transfer heat from the reactor to the steam generators. RCP seals are in the pressure part of reactor coolant system, so if it breaks, it can cause small break LOCA. And they are running on high pressure, and high temperature, so they can be easily broken. Since the reactor coolant pumps operate within the containment building, physical access to the pumps occurs only during refueling outages. Engineers depend on process variables transmitted to the control room and through the station's data historian to assess the pumps' condition during normal operation

  16. Design of Reactor Coolant Pump Seal Online Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Ah, Sang Ha; Chang, Soon Heung [KAIST, Daejeon (Korea, Republic of); Lee, Song Kyu [Korea Power Engineering Co., Yongin (Korea, Republic of)

    2008-05-15

    As a part of a Department of Korea Power Engineering Co., (KOPEC) Project, Statistical Quality Control techniques have been applied to many aspects of industrial engineering. An application to nuclear power plant maintenance and control is also presented that can greatly improve plant safety. As a demonstration of such an approach, a specific system is analyzed: the reactor coolant pumps (RCPs) and the fouling resistance of heat exchanger. This research uses Shewart X-bar, R charts, Cumulative Sum charts (CUSUM), and Sequential Probability Ratio Test (SPRT) to analyze the process for the state of statistical control. And the Control Chart Analyzer (CCA) has been made to support these analyses that can make a decision of error in process. The analysis shows that statistical process control methods can be applied as an early warning system capable of identifying significant equipment problems well in advance of traditional control room alarm indicators. Such a system would provide operators with enough time to respond to possible emergency situations and thus improve plant safety and reliability. RCP circulates reactor coolant to transfer heat from the reactor to the steam generators. RCP seals are in the pressure part of reactor coolant system, so if it breaks, it can cause small break LOCA. And they are running on high pressure, and high temperature, so they can be easily broken. Since the reactor coolant pumps operate within the containment building, physical access to the pumps occurs only during refueling outages. Engineers depend on process variables transmitted to the control room and through the station's data historian to assess the pumps' condition during normal operation.

  17. Coolant Void Reactivity Analysis of CANDU Lattice

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Su; Lee, Hyun Suk; Tak, Tae Woo; Lee, Deok Jung [UNIST, Ulsan (Korea, Republic of)

    2016-05-15

    Models of CANDU-6 and ACR-700 fuel lattices were constructed for a single bundle and 2 by 2 checkerboard to understand the physics related to CVR. Also, a familiar four factor formula was used to predict the specific contributions to reactivity change in order to achieve an understanding of the physics issues related to the CVR. At the same time, because the situation of coolant voiding should bring about a change of neutron behavior, the spectral changes and neutron current were also analyzed. The models of the CANDU- 6 and ACR-700 fuel lattices were constructed using the Monte Carlo code MCNP6 using the ENDF/B-VII.0 continuous energy cross section library based on the specification from AECL. The CANDU fuel lattice was searched through sensitivity studies of each design parameter such as fuel enrichment, fuel pitch, and types of burnable absorber for obtaining better behavior in terms of CVR. Unlike the single channel coolant voiding, the ACR-700 bundle has a positive reactivity change upon 2x2 checkerboard coolant voiding. Because of the new path for neutron moderation, the neutrons from the voided channel move to the no-void channel where they lose energy and come back to the voided channel as thermal neutrons. This phenomenon causes the positive CVR when checkerboard voiding occurs. The sensitivity study revealed the effects of the moderator to fuel volume ratio, fuel enrichment, and burnable absorber on the CVR. A fuel bundle with low moderator to fuel volume ratio and high fuel enrichment can help achieve negative CVR.

  18. On-line real time gamma analysis of primary coolant

    International Nuclear Information System (INIS)

    Kalechstein, W.; Kupca, S.; Lipsett, J.J.

    1985-10-01

    The evolution of failed fuel monitoring at CANDU power stations is briefly summarized and the design of the latest system for failed fuel detection at a multi-unit power station is described. At each reactor, the system employs a germanium spectrometer combined with a novel spectrum analyzer that simultaneously accumulates the gamma-ray spectrum of the coolant and provides the control room with the concentration of radioisotope activity in the coolant for the gaseous fission products Xe-133, Xe-135, Kr-88 and I-131 in real time and with statistical precision independent of count rate. A gross gamma monitor is included to provide independent information on the level of radioactivity in the coolant and extend the measurement range at very high count rates. A central computer system archives spectra received from all four spectrum analyzers and provides both the activity concentrations and the release rates of specified isotopes. Compared with previous systems the current design offers improvements in that the activity concentrations are updated much more frequently, improved tools are provided for long term surveillance of the heat transport system and the monitor is more reliable and less costly

  19. Hydrodynamics and heat transfer in reactor components cooled by liquid metal coolants in single/two phase. 11. meeting of the International Association for Hydraulic Research (IAHR) Working Group. Working material

    International Nuclear Information System (INIS)

    2005-01-01

    This Working Material includes the papers presented at the International Meeting 'Hydrodynamics and heat transfer in reactor components cooled by liquid metal coolants in single/two-phase', which was held 5-9 July 2004 at the State Scientific Center of Russian Federation - Institute for Physics and Power Engineering named after A.I. Leypunsky, in Obninsk near Moscow. The objectives of the meeting were to discuss new results obtained in the field of liquid metal coolant and to recommend the lines of further general physics and applied investigations, with the purpose of validating existing and codes under development for liquid metal cooled advanced and new generation nuclear reactors. Most of the contributions present results of experimental and numerical investigations into velocity, temperature and heat transfer in fuel subassemblies of fast reactors cooled by sodium or lead. In the frame of the meeting a benchmark problem devoted to heat transfer in the model subassembly of the fast reactor BREST-OD-300 was proposed. Experts from 5 countries (Japan, Netherlands, Spain, Republic of Korea, and Russia) took part in this benchmark exercise. The results of the benchmark calculations are summarized in the Working Material. The results of hydrodynamic studies of pressure head chambers and collector systems of liquid metal cooled reactors are presented in a number of papers. Also attention was given to the generalization of experimental data on hydraulic losses in the pipelines in case of mutual influence of local pressure drops, and to the modeling of natural convection in the fuel subassemblies and circuits with liquid metal cooling. Special emphasis at the meeting was placed on thermal hydraulics issues related to the development and design of target systems, such as heat removal in the target unit of the cascade subcritical reactor cooled by liquid salt; the target complex MK-1 for accelerator driven systems cooled by eutectic lead-bismuth alloy; and the test

  20. Hydrodynamics and heat transfer in reactor components cooled by liquid metal coolants in single/two phase. 11. meeting of the International Association for Hydraulic Research (IAHR) Working Group. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This Working Material includes the papers presented at the International Meeting 'Hydrodynamics and heat transfer in reactor components cooled by liquid metal coolants in single/two-phase', which was held 5-9 July 2004 at the State Scientific Center of Russian Federation - Institute for Physics and Power Engineering named after A.I. Leypunsky, in Obninsk near Moscow. The objectives of the meeting were to discuss new results obtained in the field of liquid metal coolant and to recommend the lines of further general physics and applied investigations, with the purpose of validating existing and codes under development for liquid metal cooled advanced and new generation nuclear reactors. Most of the contributions present results of experimental and numerical investigations into velocity, temperature and heat transfer in fuel subassemblies of fast reactors cooled by sodium or lead. In the frame of the meeting a benchmark problem devoted to heat transfer in the model subassembly of the fast reactor BREST-OD-300 was proposed. Experts from 5 countries (Japan, Netherlands, Spain, Republic of Korea, and Russia) took part in this benchmark exercise. The results of the benchmark calculations are summarized in the Working Material. The results of hydrodynamic studies of pressure head chambers and collector systems of liquid metal cooled reactors are presented in a number of papers. Also attention was given to the generalization of experimental data on hydraulic losses in the pipelines in case of mutual influence of local pressure drops, and to the modeling of natural convection in the fuel subassemblies and circuits with liquid metal cooling. Special emphasis at the meeting was placed on thermal hydraulics issues related to the development and design of target systems, such as heat removal in the target unit of the cascade subcritical reactor cooled by liquid salt; the target complex MK-1 for accelerator driven systems cooled by eutectic lead-bismuth alloy; and the test

  1. Optimization of cask for transport of radioactive material under impact loading

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Kuldeep, E-mail: kuldeep.brit@gmail.com [Indian Institute of Technology Bombay (India); Pawaskar, D.N.; Guha, Anirban [Indian Institute of Technology Bombay (India); Singh, R.K. [Bhabha Atomic Research Center (India)

    2014-07-01

    Highlights: • Cost and weight are important criteria for fabrication and transportation of cask used for transportation of radioactive material. • Reduction of cask cost by modifying few cask geometry parameters using complex search method. • Maximum von Mises stress generated and deformation after impact as design constraints. • Up to 6.9% reduction in cost and 4.6% reduction in weight observed in the examples used. - Abstract: Casks used for transporting radioactive material need to be certified fit by subjecting them to a specific set of tests (IAEA, 2012). The high cost of these casks gives rise to the need for optimizing them. Conducting actual experiments for the process of design iterations is very costly. This work outlines a procedure for optimizing Type B(U) casks through simulations of the 9 m drop test conducted in ABAQUS{sup ®}. Standard designs and material properties were chosen, thus making the process as realistic as reasonable even at the cost of reducing the options (design variables) available for optimization. The results, repeated for different source cavity sizes, show a scope for 6.9% reduction in cost and 4.6% reduction in weight over currently used casks.

  2. Topology optimization of compliant adaptive wing leading edge with composite materials

    Directory of Open Access Journals (Sweden)

    Tong Xinxing

    2014-12-01

    Full Text Available An approach for designing the compliant adaptive wing leading edge with composite material is proposed based on the topology optimization. Firstly, an equivalent constitutive relationship of laminated glass fiber reinforced epoxy composite plates has been built based on the symmetric laminated plate theory. Then, an optimization objective function of compliant adaptive wing leading edge was used to minimize the least square error (LSE between deformed curve and desired aerodynamics shape. After that, the topology structures of wing leading edge of different glass fiber ply-orientations were obtained by using the solid isotropic material with penalization (SIMP model and sensitivity filtering technique. The desired aerodynamics shape of compliant adaptive wing leading edge was obtained based on the proposed approach. The topology structures of wing leading edge depend on the glass fiber ply-orientation. Finally, the corresponding morphing experiment of compliant wing leading edge with composite materials was implemented, which verified the morphing capability of topology structure and illustrated the feasibility for designing compliant wing leading edge. The present paper lays the basis of ply-orientation optimization for compliant adaptive wing leading edge in unmanned aerial vehicle (UAV field.

  3. Study of core characteristics on fuel and coolant type. Results of F/S phase-I

    International Nuclear Information System (INIS)

    Ikegami, Tetsuo; Hayashi, Hideyuki; Sasaki, Makoto; Mizuno, Tomoyasu; Yamadate, Megumi; Takaki, Naoyuki; Kurosawa, Norifumi; Sakashita, Yoshiaki; Naganuma, Masayuki

    2001-03-01

    The phase-I of the Feasibility Study of Commercialized Fast Reactor Cycle Systems (F/S) were started from July, 1999 and terminated at the end of FY2000 in order to executed examination about technology alternatives of various commercialized fast reactor (FR) recycle concepts, in response to the JNC middle long term enterprise plan. In the phase-I of this F/S, a number of conceptual candidates have been selected from the following 5 viewpoints: a) ensuring safety, b) economic competitiveness to future LWRs, c) efficient utilization of resources, d) reduction of environmental burden, e) enhancement of nuclear non-proliferation. As for this study from the above viewpoints, core characteristics of many kinds of reactors have been investigated, analyzed and examined a core / a fuel characteristic in the combinations of fuel and coolant types and power output scales. Based on these results, R and D plans of the phase-II to be performed have been proposed, and a database to select candidate reactor concepts has been prepared. The conclusions have been obtained in the phase-I are as follows: (1) Evaluation of a fuel form in every each coolant was compared. A promising fuel form was extracted as follows: an oxide and a metal fuel for sodium coolant cores, a metal and a nitride fuel for heavy metal coolant cores, an oxide and a nitride fuel for carbon dioxide coolant cores and a nitride fuel for He gas coolant cores. (2) As the general idea that performance of a core nucleus can be compatible with re-criticality evasion in sodium coolant large-sized oxide fuel cores, a axial blanket particle elimination radial heterogeneous core is one influential candidate. (3) In case of Pb-Bi coolant nature circulation medium size core with an oxide fuel, it is difficult to simultaneously achieve higher discharged burn-up and higher breeding ratio according to the viewpoints of the phase-I. (4) Core characteristics of a carbon dioxide coolant core shows to be almost equivalent to that of

  4. Hextran-Smabre calculation of the VVER-1000 coolant transient benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Elina Syrjaelahti; Anitta Haemaelaeinen [VTT Processes, P.O.Box 1604, FIN-02044 VTT (Finland)

    2005-07-01

    Full text of publication follows: The VVER-1000 Coolant Transient benchmark is intended for validation of couplings of the thermal hydraulic codes and three dimensional neutron kinetic core models. It concerns a switching on a main coolant pump when the other three main coolant pumps are in operation. Problem is based on experiment performed in Kozloduy NPP in Bulgaria. In addition to the real plant transient, two extreme scenarios concerning control rod ejection after switching on a main coolant pump were calculated. In VTT the three-dimensional advanced nodal code HEXTRAN is used for the core kinetics and dynamics, and thermohydraulic system code SMABRE as a thermal hydraulic model for the primary and secondary loop. Parallelly coupled HEXTRAN-SMABRE code has been in production use since early 90's, and it has been extensively used for analysis of VVER NPPs. The SMABRE input model is based on the standard VVER-1000 input used in VTT. Last plant specific modifications to the input model have been made in EU projects. The whole core calculation is performed in the core with HEXTRAN. Also the core model is based on earlier VVER-1000 models. Nuclear data for the calculation was specified in the benchmark. The paper outlines the input models used for both codes. Calculated results are introduced both for the coupled core system with inlet and outlet boundary conditions and for the whole plant model. Sensitivity studies have been performed for selected parameters. (authors)

  5. Hextran-Smabre calculation of the VVER-1000 coolant transient benchmark

    International Nuclear Information System (INIS)

    Elina Syrjaelahti; Anitta Haemaelaeinen

    2005-01-01

    Full text of publication follows: The VVER-1000 Coolant Transient benchmark is intended for validation of couplings of the thermal hydraulic codes and three dimensional neutron kinetic core models. It concerns a switching on a main coolant pump when the other three main coolant pumps are in operation. Problem is based on experiment performed in Kozloduy NPP in Bulgaria. In addition to the real plant transient, two extreme scenarios concerning control rod ejection after switching on a main coolant pump were calculated. In VTT the three-dimensional advanced nodal code HEXTRAN is used for the core kinetics and dynamics, and thermohydraulic system code SMABRE as a thermal hydraulic model for the primary and secondary loop. Parallelly coupled HEXTRAN-SMABRE code has been in production use since early 90's, and it has been extensively used for analysis of VVER NPPs. The SMABRE input model is based on the standard VVER-1000 input used in VTT. Last plant specific modifications to the input model have been made in EU projects. The whole core calculation is performed in the core with HEXTRAN. Also the core model is based on earlier VVER-1000 models. Nuclear data for the calculation was specified in the benchmark. The paper outlines the input models used for both codes. Calculated results are introduced both for the coupled core system with inlet and outlet boundary conditions and for the whole plant model. Sensitivity studies have been performed for selected parameters. (authors)

  6. Primary Coolant pH Control for Soluble Boron-Free PWRs

    International Nuclear Information System (INIS)

    Cheon, Yang Ho; Lee, Nam Yeong; Park, Byeong Ho; Park, Seong Chan; Kim, Eun Kee

    2015-01-01

    These should be considered when evaluating and designing the operating pH program for nuclear power plants. This paper discusses the advanced water chemistry strategies to keep pace with the recent global trends related to pH control in the primary water system for soluble boron pressurized water reactor (PWR) plants. Finally, the objective of this work is to study primary coolant pH control for soluble boron-free PWR plants. This paper reviewed the advanced water chemistry strategies to keep pace with the recent global trends related to pH control in the primary water chemistry system for soluble boron PWR plants. The new chemistry trend for the primary coolant is towards adaption of the constant and elevated chemistry. Finally, this work studied primary coolant pH control for soluble boron-free PWR plants. The ammonia-based water chemistry related to pH control for boron-free PWR plants was discussed. The ammonia-based water chemistry is not recommended to avoid fluctuation of the pH value by ammonia radiolysis and to reduce C-14 production in reactor coolant from reaction with dissolved nitrogen. Also, the potassium-based water chemistry related to pH control for boron-free PWR plants was discussed. KOH has a potential as an alternative pH control agent for soluble boron-free PWR plants. The potassium-based water chemistry related to pH control is recommended for boron-free operation as follows

  7. The 1994 loss of coolant incident at Pickering NGS

    Energy Technology Data Exchange (ETDEWEB)

    Charlebois, P R; Clarke, T R; Goodman, R M; McEwan, W F [Ontario Hydro, Pickering, ON (Canada). Pickering Generating Station; Cuttler, J M [Atomic Energy of Canada Ltd., Mississauga, ON (Canada)

    1996-12-31

    Fracture of the rubber diaphragm in a liquid relief valve initiated events leading to a loss of coolant in Unit 2, on December 10. The valve failed open, filling the bleed condenser. The reactor shut itself down. When pressure recovered, two spring-loaded safety relief valves opened and one of them chattered. The shock and pulsations cracked the inlet pipe to the chattering valve, and the subsequent loss of coolant triggered the emergency core cooling system. The incident was terminated by operator action. No abnormal radioactivity was released. The four reactor units of Pickering A remained shut down until the corrective actions were completed in April/May 1995. (author). 4 figs.

  8. Reactor coolant pump shaft seal behavior during blackout conditions

    International Nuclear Information System (INIS)

    Mings, W.J.

    1985-01-01

    The United States Nuclear Regulatory Commission has classified the problem of reactor coolant pump seal failures as an unresolved safety issue. This decision was made in large part due to experimental results obtained from a research program developed to study shaft seal performance during station blackout and reported in this paper. Testing and analysis indicated a potential for pump seal failure under postulated blackout conditions leading to a loss of primary coolant with a concomitant danger of core uncovery. The work to date has not answered all the concerns regarding shaft seal failure but it has helped scope the problem and focus future research needed to completely resolve this issue

  9. Control rod drive mechanism stator loss of coolant test

    International Nuclear Information System (INIS)

    Besel, L.; Ibatuan, R.

    1977-04-01

    This report documents the stator loss of coolant test conducted at HEDL on the lead unit Control Rod Drive Mechanism (CRDM) in February, 1977. The purpose of the test was to demonstrate scram capability of the CRDM with an uncooled stator and to obtain a time versus temperature curve of an uncooled stator under power. Brief descriptions of the test, hardware used, and results obtained are presented in the report. The test demonstrated that the CRDM could be successfully scrammed with no anomalies in both the two-phase and three-phase stator winding hold conditions after the respective equilibrium stator temperatures had been obtained with no stator coolant

  10. The operating reliability of the reactor coolant pump

    International Nuclear Information System (INIS)

    Grancy, W.

    1996-01-01

    There is a strong tendency among operating companies and manufacturers of nuclear power stations to further increase safety and operating availability of the plant and of its components. This applies also and particularly to reactor coolant pumps for the primary circuit of nuclear power stations of the type PWR. For 3 decades, ANDRITZ has developed and built such pumps and has attached great importance to the design of the complete pump rotor and of its essential surrounding elements, such as bearing and shaft seal. Apart from questions connected with design functioning of the pump there is one question of top priority: the operating reliability of the reactor coolant pump. The pump rotor (together with the rotor of the drive motor) is the only component within the primary system that permanently rotates at high speed during operation of the reactor plant. Many questions concerning design and configuration of such components cannot be answered purely theoretically, or they can only be answered partly. Therefore comprehensive development work and testing was necessary to increase the operating reliability of the pump rotor itself and of its surrounding elements. This contribution describes the current status of development and, as a focal point, discusses shaft sealing solutions elaborated so far. In this connection also a sealing system will be presented which aims for the first time at using a two-stage mechanical seal in reactor coolant pumps

  11. Cladding embrittlement during postulated loss-of-coolant accidents.

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M.; Yan, Y.; Burtseva, T.; Daum, R.; Nuclear Engineering Division

    2008-07-31

    The effect of fuel burnup on the embrittlement of various cladding alloys was examined with laboratory tests conducted under conditions relevant to loss-of-coolant accidents (LOCAs). The cladding materials tested were Zircaloy-4, Zircaloy-2, ZIRLO, M5, and E110. Tests were performed with specimens sectioned from as-fabricated cladding, from prehydrided (surrogate for high-burnup) cladding, and from high-burnup fuel rods which had been irradiated in commercial reactors. The tests were designed to determine for each cladding material the ductile-to-brittle transition as a function of steam oxidation temperature, weight gain due to oxidation, hydrogen content, pre-transient cladding thickness, and pre-transient corrosion-layer thickness. For short, defueled cladding specimens oxidized at 1000-1200 C, ring compression tests were performed to determine post-quench ductility at {le} 135 C. The effect of breakaway oxidation on embrittlement was also examined for short specimens oxidized at 800-1000 C. Among other findings, embrittlement was found to be sensitive to fabrication processes--especially surface finish--but insensitive to alloy constituents for these dilute zirconium alloys used as cladding materials. It was also demonstrated that burnup effects on embrittlement are largely due to hydrogen that is absorbed in the cladding during normal operation. Some tests were also performed with longer, fueled-and-pressurized cladding segments subjected to LOCA-relevant heating and cooling rates. Recommendations are given for types of tests that would identify LOCA conditions under which embrittlement would occur.

  12. Mechanical and Radiological Characterization of Different parts of an Irradiation Coolant Channel Tube from Atucha I Nuclear Plant

    International Nuclear Information System (INIS)

    Piquin, Ruben

    2001-01-01

    The widespread replacement of reactor internals has generated a substantial volume of active material. It is essential to work with these components at least in a partial way before the next planned stop, which will take place during the second semester of the year 2002. Due to the fact that the reactor internals pool and the storage pool for irradiated nuclear fuel have limited capacities, it has been proposed to compact an experimental shift of 50 irradiated coolant channels, that are currently placed in storage pools. Basically the processed waste will be put in baskets at the bottom pools.The alternative choice proposes to divide an irradiation coolant channel tube into different parts: stainless steel section, zircaloy-4 section and stainless steel section with hardened zones with cobalt alloys named Estelite-6. The person in charge has already planned the constructive and operative solutions but the mechanical characterization of the different parts of the channel tube is necessary in order to dimension the compaction tool needed for the semi-industrial installation.In the present special report, two well-differentiated actions will be described. The necessary compacted strength of the irradiation coolant channel tube will be estimated for the stainless steel section and the zircaloy-4 section starting from experiment with unirradiated material and considering effects of radiation damage and hydrides on the ductility.These results will be used to design the necessary compacted tools for the semi-industrial installation. The necessary equipment for the radiological characterization of the different material sections already specified will be described and the most important emitting particles of radiation that could be detected will be mentioned. Also the decontamination process to use including the radiological characterization of every stage of the process will be described in order to establish the decontamination factor. Finally the most important

  13. Influence of coolant pH on corrosion of 6061 aluminum under reactor heat transfer conditions

    International Nuclear Information System (INIS)

    Pawel, S.J.; Felde, D.K.; Pawel, R.E.

    1995-10-01

    To support the design of the Advanced Neutron Source (ANS), an experimental program was conducted wherein aluminum alloy specimens were exposed at high heat fluxes to high-velocity aqueous coolants in a corrosion test loop. The aluminum alloys selected for exposure were candidate fuel cladding materials, and the loop system was constructed to emulate the primary coolant system for the proposed ANS reactor. One major result of this program has been the generation of an experimental database defining oxide film growth on 6061 aluminum alloy cladding. Additionally, a data correlation was developed from the database to permit the prediction of film growth for any reasonable thermal-hydraulic excursion. This capability was utilized effectively during the conceptual design stages of the reactor. During the course of this research, it became clear that the kinetics of film growth on the aluminum alloy specimens were sensitively dependent on the chemistry of the aqueous coolant and that relatively small deviations from the intended pH 5 operational level resulted in unexpectedly large changes in the corrosion behavior. Examination of the kinetic influences and the details of the film morphology suggested that a mechanism involving mass transport from other parts of the test loop was involved. Such a mechanism would also be expected to be active in the operating reactor. This report emphasizes the results of experiments that best illustrate the influence of the nonthermal-hydraulic parameters on film growth and presents data to show that comparatively small variations in pH near 5.0 invoke a sensitive response. Simply, for operation in the temperature and heat flux range appropriate for the ANS studies, coolant pH levels from 4.5 to 4.9 produced significantly less film growth than those from pH 5.1 to 6. A mechanism for this behavior based on the concept of treating the entire loop as an active corrosion system is presented

  14. Results and Prospects of Development of Works on Structural Core Materials for Russian Fast Reactors

    International Nuclear Information System (INIS)

    Nikitina, A.A.; Ageev, V.S.; Leontyeva-Smirnova, M.V.; Mitrofanova, N.M.; Tselishchev, A.V.

    2015-01-01

    The strategy of development of atomic energy in Russia in the first half of XXI century contemplates construction and putting in operation of fast reactors of new generation with different types of coolant: sodium (BN-800, BN-1200, MBIR), lead (BREST-OD-300) and lead-bismuth eutectic (SVBR-100). For assurance of the working capacity of reactors that are under construction and achievement of economically reasonable burn-up of nuclear fuel the structural core materials with necessary level of radiation resistance, heat resistance, corrosion resistance to products of fuel fission, corrosion resistance in coolant and in water must be developed and justified. For sodium cooled reactors the key challenge is creation of radiation resistant and heat resistant cladding materials, which must ensure the achievement of damage doses at least 140 dpa. The solution of this problem is provided by phased use as cladding materials of austenitic steels ChS68 and EK164 (maximum damage doses ~ 92 and ~110-115 dpa, respectively), precipitation-hardening heat resistant ferritic-martensitic steels EK181 and ChS139 (maximum damage dose ~140 dpa) and oxide dispersion strengthened (ODS) steels (maximum damage dose more than 140 dpa). For development of core materials for reactors with lead and lead-bismuth eutectic coolants the most serious challenge is corrosion resistance of materials in coolant. Therefore at present time a very wide range of works on study of corrosion resistance of candidate materials is carrying out. As the basic material for the cladding tubes is considered a ferritic-martensitic steel EP823 with high silicon content. In this report the main results of works on justification of the working capacity of materials of different classes in respect to use it in cores of operating and prospective fast reactors with different types of coolant and prospects of further development of works are presented. (author)

  15. Integrated Fuel-Coolant Interaction (IFCI 7.0) Code User's Manual

    International Nuclear Information System (INIS)

    Young, Michael F.

    1999-01-01

    The integrated fuel-coolant interaction (IFCI) computer code is being developed at Sandia National Laboratories to investigate the fuel-coolant interaction (FCI) problem at large scale using a two-dimensional, three-field hydrodynamic framework and physically based models. IFCI will be capable of treating all major FCI processes in an integrated manner. This document is a description of IFCI 7.0. The user's manual describes the hydrodynamic method and physical models used in IFCI 7.0. Appendix A is an input manual provided for the creation of working decks

  16. Flat plate film cooling at the coolant supply into triangular and cylindrical craters

    Directory of Open Access Journals (Sweden)

    Khalatov Artem A.

    2017-01-01

    Full Text Available The results are given of the film cooling numerical simulation of three different schemes including single-array of the traditional round inclined holes, as well as inclined holes arranged in the cylindrical or triangular dimples (craters. The results of simulation showed that at the medium and high values of the blowing ratio (m > 1.0 the scheme with coolant supply into triangular craters improves the adiabatic film cooling efficiency by 1.5…2.7 times compared to the traditional array of inclined holes, or by 1.3…1.8 times compared to the scheme with coolant supply into cylindrical craters. The greater film cooling efficiency with the coolant supply into triangular craters is explained by decrease in the intensity of secondary vortex structures (“kidney” vortex. This is due to the partial destruction and transformation of the coolant jets structure interacting with front wall of the crater. Simultaneously, the film cooling uniformity is increased in the span-wise direction.

  17. Simulation of small break loss of coolant accident in pressurized water reactor (PWR)

    International Nuclear Information System (INIS)

    Abass, N. M. N.

    2012-02-01

    A major safety concern in pressurized-water-reactor (PWR) design is the loss-of-coolant accident (LOCA),in which a break in the primary coolant circuit leads to depressurization, boiling of the coolant, consequent reduced cooling of the reactor core, and , unless remedial measures are taken, overheating of the fuel rods. This concern has led to the development of several simulators for safety analysis. This study demonstrates how the passive and active safety systems in conventional and advanced PWR behave during the small break loss of Coolant Accident (SBLOCA). The consequences of SBOLOCA have been simulated using IAEA Generic pressurized Water Reactor Simulator (GPWRS) and personal Computer Transient analyzer (PCTRAN) . The results were presented and discussed. The study has confirmed the major safety advantage of passive plants versus conventional PWRs is that the passive safety systems provide long-term core cooling and decay heat removal without the need for operator actions and without reliance on active safety-related system. (Author)

  18. Membrane technology for treating of waste nanofluids coolant: A review

    Science.gov (United States)

    Mohruni, Amrifan Saladin; Yuliwati, Erna; Sharif, Safian; Ismail, Ahmad Fauzi

    2017-09-01

    The treatment of cutting fluids wastes concerns a big number of industries, especially from the machining operations to foster environmental sustainability. Discharging cutting fluids, waste through separation technique could protect the environment and also human health in general. Several methods for the separation emulsified oils or oily wastewater have been proposed as three common methods, namely chemical, physicochemical and mechanical and membrane technology application. Membranes are used into separate and concentrate the pollutants in oily wastewater through its perm-selectivity. Meanwhile, the desire to compensate for the shortcomings of the cutting fluid media in a metal cutting operation led to introduce the using of nanofluids (NFs) in the minimum quantity lubricant (MQL) technique. NFs are prepared based on nanofluids technology by dispersing nanoparticles (NPs) in liquids. These fluids have potentially played to enhance the performance of traditional heat transfer fluids. Few researchers have studied investigation of the physical-chemical, thermo-physical and heat transfer characteristics of NFs for heat transfer applications. The use of minimum quantity lubrication (MQL) technique by NFs application is developed in many metal cutting operations. MQL did not only serve as a better alternative to flood cooling during machining operation and also increases better-finished surface, reduces impact loads on the environment and fosters environmental sustainability. Waste coolant filtration from cutting tools using membrane was treated by the pretreated process, coagulation technique and membrane filtration. Nanomaterials are also applied to modify the membrane structure and morphology. Polyvinylidene fluoride (PVDF) is the better choice in coolant wastewater treatment due to its hydrophobicity. Using of polyamide nanofiltration membranes BM-20D and UF-PS-100-100, 000, it resulted in the increase of permeability of waste coolant filtration. Titanium dioxide

  19. Application of heat-resistant non invasive acoustic transducers for coolant control in the NPP pipelines

    International Nuclear Information System (INIS)

    Melnikov, V.; Nigmatulin, B.

    1997-01-01

    The use of ultrasonic waves enables remote testing of the coolant flow, detection of solid and gaseous occlusions and measuring of the water velocity and level. Analysis of the acoustic noise makes it possible to detect coolant leaks and diagnose the state and operation of the rotating mechanisms and bearings. Results are given of the research in the development of highly reliable waveguide-type non-invasive acoustic transducers with a long service life. Examples are given of the use of transducers in various fields of nuclear technology: detection of gas in coolant, indication of the coolant level, control of pipe filling and drainage, measurement of liquid film velocity at the pipe inner surface. (M.D.)

  20. Optimization-Based Inverse Identification of the Parameters of a Concrete Cap Material Model

    Science.gov (United States)

    Král, Petr; Hokeš, Filip; Hušek, Martin; Kala, Jiří; Hradil, Petr

    2017-10-01

    Issues concerning the advanced numerical analysis of concrete building structures in sophisticated computing systems currently require the involvement of nonlinear mechanics tools. The efforts to design safer, more durable and mainly more economically efficient concrete structures are supported via the use of advanced nonlinear concrete material models and the geometrically nonlinear approach. The application of nonlinear mechanics tools undoubtedly presents another step towards the approximation of the real behaviour of concrete building structures within the framework of computer numerical simulations. However, the success rate of this application depends on having a perfect understanding of the behaviour of the concrete material models used and having a perfect understanding of the used material model parameters meaning. The effective application of nonlinear concrete material models within computer simulations often becomes very problematic because these material models very often contain parameters (material constants) whose values are difficult to obtain. However, getting of the correct values of material parameters is very important to ensure proper function of a concrete material model used. Today, one possibility, which permits successful solution of the mentioned problem, is the use of optimization algorithms for the purpose of the optimization-based inverse material parameter identification. Parameter identification goes hand in hand with experimental investigation while it trying to find parameter values of the used material model so that the resulting data obtained from the computer simulation will best approximate the experimental data. This paper is focused on the optimization-based inverse identification of the parameters of a concrete cap material model which is known under the name the Continuous Surface Cap Model. Within this paper, material parameters of the model are identified on the basis of interaction between nonlinear computer simulations

  1. Monitoring of coolant temperature stratification on piping components in WWER-440 NPPs

    International Nuclear Information System (INIS)

    Hudcovsky, S.; Slanina, M.; Badiar, S.

    2001-01-01

    The presentation deals with the aims of non-standard temperature measurements installed on primary and secondary circuit in WWER-440 NPPs, explains reasons of coolant temperature stratification on the piping components. It describes methods of the measurements on pipings, range of installation of the temperature measurements in EBO and EMO units and illustrates results of measurements of coolant temperature stratification. (Authors)

  2. Benders decomposition for discrete material optimization in laminate design with local failure criteria

    DEFF Research Database (Denmark)

    Munoz, Eduardo; Stolpe, Mathias; Bendsøe, Martin P.

    2009-01-01

    in any discrete angle optimization design, or material selection problems. The mathematical modeling of this problem is more general than the one of standard topology optimization. When considering only two material candidates with a considerable difference in stiffness, it corresponds exactly...... to a topology optimization problem. The problem is modeled as a discrete design problem coming from a finite element discretization of the continuum problem. This discretization is made of shell or plate elements. For each element (selection domain), only one of the material candidates must be selected...... of the relaxed master problem and the current best compliance (weight) found get close enough with respect to certain tolerance. The method is investigated by computational means, using the finite element method to solve the analysis problems, and a commercial branch and cut method for solving the relaxed master...

  3. Topology optimization of coated structures and material interface problems

    DEFF Research Database (Denmark)

    Clausen, Anders; Aage, Niels; Sigmund, Ole

    2015-01-01

    This paper presents a novel method for including coated structures and prescribed material interface properties into the minimum compliance topology optimization problem. Several elements of the method are applicable to a broader range of interface problems. The approach extends the standard SIMP......-step filtering/projection approach. The modeled coating thickness is derived analytically, and the coating is shown to be accurately controlled and applied in a highly uniform manner over the structure. An alternative interpretation of the model is to perform single-material design for additive manufacturing...

  4. Computer program MCAP-TOSS calculates steady-state fluid dynamics of coolant in parallel channels and temperature distribution in surrounding heat-generating solid

    Science.gov (United States)

    Lee, A. Y.

    1967-01-01

    Computer program calculates the steady state fluid distribution, temperature rise, and pressure drop of a coolant, the material temperature distribution of a heat generating solid, and the heat flux distributions at the fluid-solid interfaces. It performs the necessary iterations automatically within the computer, in one machine run.

  5. Hydrogen permeation preventive structural materials

    International Nuclear Information System (INIS)

    Fukushima, Kimichika; Nakahigashi, Shigeo; Imura, Masashi; Terasawa, Michitaka; Ebisawa, Katsuyuki.

    1986-01-01

    Purpose: To provide highly practical wall materials for use in thermonuclear reactors capable of effectively preventing the permeation of hydrogen isotopes such as tritium thereby preventing the contamination of coolants. Constitution: Helium gas is injected into or at the surface of base materials comprising stainless steel plates to form a helium gas region. Alternatively, boron, nitrogen or the compound thereof having a greater helium forming nuclear reaction cross section than that of the base materials is mixed or injected into the base material to form the helium gas region through (n,α) reaction under neutron irradiation. Since the helium gas region constitutes a diffusion barrier for the tritium as the hydrogen isotope, the permeation amount of tritium is significantly suppressed. Helium gas bubbles or lattice defects are formed in the helium gas region under the neutron irradiation, by which the hydrogen isotope capturing effect can also be effected. In this way, permeation of the hydrogen isotope, contamination of the coolants, etc. can be prevented to provide great practical effectives. (Kawakami, Y.)

  6. Fuel-coolant interaction visualization test for in-vessel corium retention external reactor vessel cooling (IVR-ERVC) condition

    Energy Technology Data Exchange (ETDEWEB)

    Na, Young Su; Hong, Seong Ho; Song, Jin Ho; Hong, Seong Wan [Severe Accident and PHWR Safety Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    A visualization test of the fuel-coolant interaction in the Test for Real cOrium Interaction with water (TROI) test facility was carried out. To experimentally simulate the In-Vessel corium Retention (IVR)- External Reactor Vessel Cooling (ERVC) conditions, prototypic corium was released directly into the coolant water without a free fall in a gas phase before making contact with the coolant. Corium (34.39 kg) consisting of uranium oxide and zirconium oxide with a weight ratio of 8:2 was superheated, and 22.54 kg of the 34.39 kg corium was passed through water contained in a transparent interaction vessel. An image of the corium jet behavior in the coolant was taken by a high-speed camera every millisecond. Thermocouple junctions installed in the vertical direction of the coolant were cut sequentially by the falling corium jet. It was clearly observed that the visualization image of the corium jet taken during the fuel-coolant interaction corresponded with the temperature variations in the direction of the falling melt. The corium penetrated through the coolant, and the jet leading edge velocity was 2.0 m/s. Debris smaller than 1 mm was 15% of the total weight of the debris collected after a fuel-coolant interaction test, and the mass median diameter was 2.9 mm.

  7. Loss-of-coolant accident mitigation for the Advanced Neutron Source Reactor

    International Nuclear Information System (INIS)

    Chen, N.C.J.; Wendel, M.W.; Yoder, G.L. Jr.

    1994-01-01

    A RELAP5 Advanced Neutron Source Reactor system model has been developed for the conceptual design safety analysis. Three major regions modeled are the core, the heat exchanger loops, and letdown/pressurizing system. The model has been used to examine design alternatives for mitigation of loss-of-coolant accident (LOCA) transients. The safety margins to the flow excursion limit and critical heat flux are presented. The results show that the core can survive an instantaneous double-ended guillotine of the core outlet piping break (610 mm-diameter) provided a cavitating venturi is employed. RELAP5 calculations were also used to determine the effects of using a non-instantaneous break opening times. Both break opening time and break formation characteristics were included in these parametric calculations. Accumulator optimization studies were also performed which suggest that an optimum accumulator bubble size exists which improves system performance under some break scenarios

  8. Design optimization of first wall and breeder unit module size for the Indian HCCB blanket module

    Science.gov (United States)

    Deepak, SHARMA; Paritosh, CHAUDHURI

    2018-04-01

    The Indian test blanket module (TBM) program in ITER is one of the major steps in the Indian fusion reactor program for carrying out the R&D activities in the critical areas like design of tritium breeding blankets relevant to future Indian fusion devices (ITER relevant and DEMO). The Indian Lead–Lithium Cooled Ceramic Breeder (LLCB) blanket concept is one of the Indian DEMO relevant TBM, to be tested in ITER as a part of the TBM program. Helium-Cooled Ceramic Breeder (HCCB) is an alternative blanket concept that consists of lithium titanate (Li2TiO3) as ceramic breeder (CB) material in the form of packed pebble beds and beryllium as the neutron multiplier. Specifically, attentions are given to the optimization of first wall coolant channel design and size of breeder unit module considering coolant pressure and thermal loads for the proposed Indian HCCB blanket based on ITER relevant TBM and loading conditions. These analyses will help proceeding further in designing blankets for loads relevant to the future fusion device.

  9. First-wall/blanket materials selection for STARFIRE tokamak reactor

    International Nuclear Information System (INIS)

    Smith, D.L.; Mattas, R.F.; Clemmer, R.G.; Davis, J.W.

    1980-01-01

    The development of the reference STARFIRE first-wall/blanket design involved numerous trade-offs in the materials selection process for the breeding material, coolant structure, neutron multiplier, and reflector. The major parameters and properties that impact materials selection and design criteria are reviewed

  10. New Configurations of Micro Plate-Fin Heat Sink to Reduce Coolant Pumping Power

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Rosendahl, Lasse

    2012-01-01

    the optimum heat sink configuration. The particular focus of this study is to reduce the coolant mass flow rate by considering the thermal resistances of the heat sinks and, thereby, to reduce the coolant pumping power in the system. The threedimensional governing equations for the fluid flow and the heat......The thermal resistance of heat exchangers has a strong influence on the electric power produced by a thermoelectric generator (TEG). In this work, a real TEG device is applied to three configurations of micro plate-fin heat sink. The distance between certain microchannels is varied to find...... heat sink configurations reduces the coolant pumping power in the system....

  11. Applied model of through-wall crack of coolant vessels of WWER-type reactors

    International Nuclear Information System (INIS)

    Petrosyan, V.; Hovakimyan, T.; Vardanyan, M.; Khachatryan, A.; Minasyan, K.

    2010-01-01

    We propose an applied-model of Through-Wall Crack (TWC) for WWER-type units primary vessels. The model allows to simulate the main morphological parameters of real TWC, i.e. length, area of inlet and outlet openings, channel depth and small and large size unevenness of the crack surface. The model can be used for developing and improving the coolant-leak detectors for the primary circuit vessels of WWER-units. Also, it can be used for research of the coolant two-phase leakage phenomenon through narrow cracks/channels and thermo-physical processes in heat-insulation layer of the Main Coolant Piping (MCP) during the leak

  12. In-Service Inspection system for coolant channels of Indian PHWRS - evolution and experience

    International Nuclear Information System (INIS)

    Puri, R.K.; Singh, M.

    2006-01-01

    In-Service Inspection (ISI) is the most important of all periodic monitoring and surveillance activities for assuring the structural integrity of coolant channels in the life extension and management of pressurized heavy water reactors (PHWR-CANDU). Indian PHWRs (220 MWe) are characterized by consists by 306 coolant channels in each unit. These channels have to be inspected for various parameters over the operating life of the reactor. ISI of coolant channels necessitated the indigenous development of an inspection system called BARCIS (BARC Channel Inspection System) at Bhabha Atomic Research Center. BARCIS consists of mainly three parts; drive and control unit, special sealing plug and an inspection head carrying various NDT sensors. Five such systems have been built and deployed at various power plants. The paper deals with the development of the BARCIS system for meeting the ISI requirements of coolant channels, development cycle of this system from its conception to evolution to the present state, challenges, data generated and experience gained (ISI of nearly 900 coolant channels has been completed). Prior to BARCIS, pressure tube gauging equipment for pre-service inspection of coolant tubes was developed in 1980. Moreover a tool for ISI of coolant channels in dry condition was developed in 1990. The paper also describes evolution of various contingency procedures and devices developed over the last one decade. Future plans taking into account technological advancement, changes in the scope of inspection due to design and operating experiences and plant layout will also be covered. The paper describes the efforts put in to develop drive and control mechanism to suit the different vault layouts. The drive mechanism is responsible for linear and rotary movement of the inspection head to carry out 100% volumetric inspection. Special emphasis has been laid on the safety devices required during the inspection activity. Special measures for heavy water retention in

  13. A {open_quotes}zero waste{close_quotes} coolant management strategy

    Energy Technology Data Exchange (ETDEWEB)

    Kennicott, M.A.

    1994-04-01

    In June of 1992 the Waste Minimization Program at Rocky Flats Plant (RFP) began a study to determine the best methods of managing water-based industrial metalworking fluids in the plant`s Tool Manufacturing Shop. The shop was faced with the challenge of managing fluids that could no longer be disposed of in the traditional manner, through the plant`s liquid process waste drains, due to a problem they, were having causing in the Liquid Waste Operations Evaporator. The study`s goal was to reduce the waste coolants being generated and to reduce worker exposure to a serious health risk. Results of this study and those of a subsequent study to determine relative compatibilities of various coolants and metals, led to the application of a {open_quotes}zero waste{close_quotes} machine coolant management program. This program is currently saving the generation of 10,000 gallons of liquid waste annually, has eliminated worker exposure to harmful bacteria and biocides, and should result in extended machine tool life, increased product quality, fewer rejected parts, and decreases labor costs.

  14. Sound velocity in the coolant of boiling nuclear reactors

    International Nuclear Information System (INIS)

    Proskuryakov, K.N.; Parshin, D.A.; Novikov, K.S.; Galivec, E.Yu.

    2009-01-01

    To prevent resonant interaction between acoustic resonance and natural frequencies of FE, FA and RI oscillations, it is necessary to determine the value of EACPO. Based on results of calculations of EACPO and natural frequencies of FR, FA and RI oscillations values, it would be possible to reveal the dynamical loadings on metal that are dangerous for the initiation of cracking process in the early stage of negative condition appearance. To calculate EACPO it is necessary to know the Speed Velocity in Coolant. Now we do not have any data about real values of such important parameter as pressure pulsations propagation velocity in two phase environments, especially in conditions with variations of steam content along the length of FR, with taking into account the type of local resistances, flow geometry etc. While areas of resonant interaction of the single-phase liquid coolant with equipment and internals vibrations are estimated well enough, similar estimations in the conditions of presence of a gas and steam phase in the liquid coolant are inconvenient till now. Paper presents results of calculation of velocity of pressure pulsations distribution in two-phase flow formed in core of RBMK-1000 reactors. Feature of the developed techniques is that not only thermodynamic factors and effect of a speed difference between water and steam in a two phase flow but also geometrical features of core, local resistance, non heterogeneity in the two phase environment and power level of a reactor are considered. Obtained results evidence noticeable decreasing of velocity propagation of pressure pulsations in the presence of steam actions in the liquids. Such estimations for real RC of boiling nuclear reactors with steam-liquid coolant are obtained for the first time. (author)

  15. Factors governing particulate corrosion product adhesion to surfaces in water reactor coolant circuits

    International Nuclear Information System (INIS)

    1979-03-01

    Gravity, van der Waals, magnetic, electrical double layer and hydrodynamic forces are considered as potential contributors to the adhesion of particulate corrosion products to surfaces in water reactor coolant circuits. These forces are renewed and evaluated, and the following are amongst the conclusions drawn; adequate theories are available to estimate the forces governing corrosion product particle adhesion to surfaces in single phase flow in water reactor coolant circuits. Some uncertainty is introduced by the geometry of real particle-surface systems. The major uncertainties are due to inadequate data on the Hamaker constant and the zeta potential for the relevant materials, water chemistry and radiation chemistry at 300 0 C; van der Waals force is dominant over the effect of gravity for particles smaller than about 100 m; quite modest zeta potentials, approximately 50mV, are capable of inhibiting particle deposition throughout the size range relevant to water reactors; for surfaces exposed to typical water reactor flow conditions, particles smaller than approximately 1 m will be stable against resuspension in the absence of electrical double layer repulsion; and the magnitude of the electrical double layer repulsion for a given potential depends on whether the interaction is assumed to occur at constant potential or constant change. (author)

  16. Real-time algorithm for the measurement of liquid metal coolant flow velocity with correlated thermal signals

    International Nuclear Information System (INIS)

    Moazzeni, Taleb; Jiang, Yingtao; Ma, Jian; Li, Ning

    2009-01-01

    One flow meter was developed especially for the environment of high irradiation, pressure, and temperature. The transit time of natural random temperature fluctuation in process, for example nuclear reactor, can be obtained based on the cross-correlation method, which has already been shown that it is capable in situations where no other flow meter can be used. Thereby, the flow rate can be derived in pipe flow if the area of cross-section is known. In practice, the evaluation of the integrals over the measurement time in cross-correlation method will lead errors caused by peak detection from flat cross correlation coefficient distribution or additional peaks. One Auto-Adaptive Impulse Response Function estimation is introduced and significantly narrower peak will be obtained. Fiber optic sensors are advantageous for temperature measurements in the reactor pressure vessels. However, the corrosive coolant (as liquid lead/lead alloy or molten salt coolant) is a barrier of the optic sensor in such application. Thermocouple with grounded stainless steel shielding material would have same life time with structure material in reactor, although thermocouple has relatively slow response. The degradation due to corrosion/erosion will not introduce measurement error or necessary calibration, because only the correlation between signals is taken into consideration during measurements. Experiments conducted in a testing hydraulic facility approved the considerable improvement of accuracy by this new algorithm using thermocouple temperature sensors. (author)

  17. Modelling nonstationary thermohydrodynamic processes in heat-exchange circuits with a two-phase coolant

    International Nuclear Information System (INIS)

    Blinkov, V.N.

    1993-01-01

    This paper presents a mathematical model and a open-quotes fastclose quotes computer program for analyzing nonstationary thermohydrodynamic processes in distributed multi-element circuits containing a two-phase coolant. The author's approach is based on representing the distributed multi-element circuits with the two-phase coolant (such as cooling circuits of the reactor of an atomic power station) in the form of equivalent thermohydrodynamic chains composed of idealized elements with the intrinsic properties of the structure elements of real systems. The author has developed the nomenclature of such conceptual elements for objects which can be modelled; the nomenclature encompasses the control volumes (with a single-phase or two-phase coolant or a moving boundary of boiling/condensation) and the branch lines (type of tube and connections in dependence on the inertia of the coolant being taken into account) for a hydrodynamic submodel and the thermal components and lines for a thermal submodel. The mathematical models which have been developed and the program using them are designated for various forms of calculating slow thermohydrodynamic processes in multi-element coolant circuits in reactors and modeling test stands. The program facilitates calculation of the range of stable operation, detailed studies of stationary and nonstationary modes of operation, and forecasts of effective engineering measures to obtain stability with the aid of microcomputers

  18. Numerical analysis of the induction melting process of oxide fuel material

    International Nuclear Information System (INIS)

    Kondala Rao, R.; Mangarjuna Rao, P.; Nashine, B.K.; Selvaraj, P.

    2015-01-01

    For the experimental simulation of Molten Fuel-Coolant Interaction (MFCI) phenomenon under hypothetical core meltdown accident scenario in a nuclear reactor, it is required to generate the molten pool of core materials. For this purpose, a laboratory scale Cold wall Crucible induction melting system has been developed. To optimize the system for efficient and reliable melting process, it is required to have comprehensive knowledge on the heat and mass transfer processes along with electromagnetic process that occur during the melting of core materials. Hence, a 2D axi-symmetric numerical model has been developed using a multiphysics software to simulate the induction melting process. The phase change phenomenon is taken into account by using enthalpy formulation. The experimental data available in literature for magnetic field and flow field are used for model validation. The model predicted temperatures are also in good agreement with experimentally measured values. The validated model has been used to study the induction melting behavior of UO_2 fuel material. (author)

  19. Global blending optimization of laminated composites with discrete material candidate selection and thickness variation

    DEFF Research Database (Denmark)

    Sørensen, Søren N.; Stolpe, Mathias

    2015-01-01

    rate. The capabilities of the method and the effect of active versus inactive manufacturing constraints are demonstrated on several numerical examples of limited size, involving at most 320 binary variables. Most examples are solved to guaranteed global optimality and may constitute benchmark examples...... but is, however, convex in the original mixed binary nested form. Convexity is the foremost important property of optimization problems, and the proposed method can guarantee the global or near-global optimal solution; unlike most topology optimization methods. The material selection is limited...... for popular topology optimization methods and heuristics based on solving sequences of non-convex problems. The results will among others demonstrate that the difficulty of the posed problem is highly dependent upon the composition of the constitutive properties of the material candidates....

  20. TACT1- TRANSIENT THERMAL ANALYSIS OF A COOLED TURBINE BLADE OR VANE EQUIPPED WITH A COOLANT INSERT

    Science.gov (United States)

    Gaugler, R. E.

    1994-01-01

    As turbine-engine core operating conditions become more severe, designers must develop more effective means of cooling blades and vanes. In order to design reliable, cooled turbine blades, advanced transient thermal calculation techniques are required. The TACT1 computer program was developed to perform transient and steady-state heat-transfer and coolant-flow analyses for cooled blades, given the outside hot-gas boundary condition, the coolant inlet conditions, the geometry of the blade shell, and the cooling configuration. TACT1 can analyze turbine blades, or vanes, equipped with a central coolant-plenum insert from which coolant-air impinges on the inner surface of the blade shell. Coolant-side heat-transfer coefficients are calculated with the heat transfer mode at each station being user specified as either impingement with crossflow, forced convection channel flow, or forced convection over pin fins. A limited capability to handle film cooling is also available in the program. The TACT1 program solves for the blade temperature distribution using a transient energy equation for each node. The nodal energy balances are linearized, one-dimensional, heat-conduction equations which are applied at the wall-outer-surface node, at the junction of the cladding and the metal node, and at the wall-inner-surface node. At the mid-metal node a linear, three-dimensional, heat-conduction equation is used. Similarly, the coolant pressure distribution is determined by solving the set of transfer momentum equations for the one-dimensional flow between adjacent fluid nodes. In the coolant channel, energy and momentum equations for one-dimensional compressible flow, including friction and heat transfer, are used for the elemental channel length between two coolant nodes. The TACT1 program first obtains a steady-state solution using iterative calculations to obtain convergence of stable temperatures, pressures, coolant-flow split, and overall coolant mass balance. Transient

  1. Improving Battery Reactor Core Design Using Optimization Method

    International Nuclear Information System (INIS)

    Son, Hyung M.; Suh, Kune Y.

    2011-01-01

    The Battery Omnibus Reactor Integral System (BORIS) is a small modular fast reactor being designed at Seoul National University to satisfy various energy demands, to maintain inherent safety by liquid-metal coolant lead for natural circulation heat transport, and to improve power conversion efficiency with the Modular Optimal Balance Integral System (MOBIS) using the supercritical carbon dioxide as working fluid. This study is focused on developing the Neutronics Optimized Reactor Analysis (NORA) method that can quickly generate conceptual design of a battery reactor core by means of first principle calculations, which is part of the optimization process for reactor assembly design of BORIS

  2. Method of suppressing the deposition of Co-60 to primary coolant pipeways in a nuclear reactor

    International Nuclear Information System (INIS)

    Hoshi, Michio; Tachikawa, Enzo; Goto, Satoshi; Sagawa, Chiaki; Yonezawa, Chushiro.

    1987-01-01

    Purpose: To suppress the deposition of Co-60 to primary coolant pipeways in a nuclear reactor. Method: To reduce the accumulation of Co-60 by causing chemical species of extremely similar chemical property with soluble Co-60 to be present together in coolants and replacing the deposition of Co-60 to the primary coolant pipeways in a nuclear reactor with that of the coexistent chemical spacies. Ni or Zn is used as the coexistet chemical spacies of similar chemical property with Co-60. The coexistent amount is from 5 to 10 times of the soluble Co-60 in the primary coolants. Ni or Zn solution adjusted with concentration is poured into and mixed with the coolants from a water feed source by using a high pressure constant volume pump. The amount of Co-60 taken into the pipeways caused by corrosion due to high temperature coolant is reduced to about 1/5 as compared with the case of Co-60 alone if 1 ppb of soluble Co-60 is present in water and 5 ppb of soluble Ni or Zn is added and, reduced to 1/12 if the amount of Ni or Zn is 10 ppb. (Kamimura, M.)

  3. Method of determination of thermo-acoustic coolant instability boundaries in reactor core at NPPs with WWER

    International Nuclear Information System (INIS)

    Skalozubov, Volodymyr; Kolykhanov, Viktor; Kovryzhkin, Yuriy

    2007-01-01

    The regulatory body of Ukraine, the National Atomic Energy Company and the Scientific and Production Centre have led team-works concerned with previously unstudied factors or phenomena affecting reactor safety. As a result it is determined that the thermo-acoustic coolant instability conditions can appear in the core at definite operating WWER regimes. Considerable cyclic dynamic loads affect fuel claddings over thermo-acoustic pressure oscillations. These loads can result in inadmissible cassette design damage and containment damage. Taking into account calculation and experimental research authors submit a method of on-line assessment of WWER core state concerning thermo-acoustic coolant instability. According to this method, the thermo-acoustic coolant instability appearance conditions can be estimated using normal registered parameters (pressure, temperature, heat demand etc.). At operative modes, a WWER-1000 core is stable to tracheotomies oscillations, but reduction of coolant discharge through the core for some times can result in thermo-acoustic coolant instability. Thermo-acoustic instability appears at separate transitional modes concerned with reactor scram and unloading/loading at all power units. When thermo-acoustic instability begins in transitional modes, core elements are under influence of high-frequency coolant pressure pulsations for a long time (tens of hours)

  4. Loss-of-coolant accident analyses of the Advanced Neutron Source Reactor

    International Nuclear Information System (INIS)

    Chen, N.C.J.; Yoder, G.L.; Wendel, M.W.

    1991-01-01

    Currently in the conceptual design stage, the Advanced Neutron Source Reactor (ANSR) will operate at a high heat flux, a high mass flux, an a high degree of coolant subcooling. Loss-of-coolant accident (LOCA) analyses using RELAP5 have been performed as part of an early evaluation of ANSR safety issues. This paper discusses the RELAP5 ANSR conceptual design system model and preliminary LOCA simulation results. Some previous studies were conducted for the preconceptual design. 12 refs., 7 figs

  5. Effects of different rod spacers (helical types) on coolant crossmixing

    International Nuclear Information System (INIS)

    Zhukov, A.V.; Sviridenko, E.Ya.; Matyukhin, N.M.; Rymkevich, K.S.; Ushakov, P.A.

    1981-11-01

    The results of investigations (electromagnetic measuring method) on coolant cross mixing in rod clusters with spiral wire spacers with different winding directions, with alternating unfinned and finned rods (case 'fin to rod'), as well as in rod clusters with much space between the rods, (case 'fin to fin') are reported. The local fluid dynamics parameters (distribution of the transversal and longitudinal velocity component) that define the physical processes of the coolant exchange in the rod clusters with helical spacers are explained. The investigation results for different helical spacer types are compared with each other. (orig.) [de

  6. Sensitivity calculation of the coolant temperature regarding the thermohydraulic parameters

    International Nuclear Information System (INIS)

    Andrade Lima, F.R. de; Silva, F.C. da; Thome Filho, Z.D.; Alvim, A.C.M.; Oliveira Barroso, A.C. de.

    1985-01-01

    It's studied the application of the Generalized Perturbation Theory (GPT) in the sensitivity calculation of thermalhydraulic problems, aiming at verifying the viability of the extension of the method. For this, the axial distribution, transient, of the coolant temperature in a PWR channel are considered. Perturbation expressions are developed using the GPT formalism, and a computer code (Tempera) is written, to calculate the channel temperature distribution and the associated importance function, as well as the effect of the thermalhydraulic parameters variations in the coolant temperature (sensitivity calculation). The results are compared with those from the direct calculation. (E.G.) [pt

  7. Optimized materials for the future breeder line

    International Nuclear Information System (INIS)

    Ohrt, E.; Heesen, E. te

    1991-01-01

    This paper presents a survey of developments which form part of ongoing activities for the construction of breeder plants. Following a brief introduction it describes the history of an internationally coordinated material for the major components of a European breeder. Some material properties which are of importance for the design are discussed. The task of finding a suitable filler metal for steel 316L(N) (1.4909) is considered in greater detail. In this case too, selection criteria are the mechanical properties of the weld metal, its chemical and thermal resistance and its behaviour during welding. Finally, processes which are absolutely necessary in the construction phase of a power plant are discussed in the outlook. These have not been optimized to date and will therefore be the subject of internationally distributed activities in the subsequent phase. (orig.)

  8. Vision system for precision alignment of coolant channels

    International Nuclear Information System (INIS)

    Kar, S.; Rao, Y.V.; Valli Kumar; Joshi, D.G.; Chadda, V.K.; Nigam, R.K.; Kayal, J.N.; Panwar, S.; Sinha, R.K.

    1997-01-01

    This paper describes a vision system which has been developed for precision alignment of Coolant Channel Replacement Machine (CCRM) with respect to the front face of the coolant channel under repair/replacement. It has provisions for automatic as well as semi-automatic alignment. A special lighting scheme has been developed for providing illumination to the front face of the channel opening. This facilitates automatic segmentation of the digitized image. The segmented image is analysed to obtain the centre of the front face of the channel opening and thus the extent of misalignment i.e. offset of the camera with respect to the front face of the channel opening. The offset information is then communicated to the PLC to generate an output signal to drive the DC servo motors for precise positioning of the co-ordinate table. 2 refs., 5 figs

  9. The corrosion products in the coolant circuits of pressurized water nuclear power plants

    International Nuclear Information System (INIS)

    Darras, R.

    1983-01-01

    The characteristics of the corrosion products formed in the primary and secondary coolant circuits of light-water pressurized reactors are reviewed. The problem induced by the pollution of coolants and metallic surface are examined. Then, the recommendations to follow to minimize the disturbing effects of this pollution by the corrosion products are indicated [fr

  10. Experiments for simulating a great leak in the primary coolant circuit of a PWR type reactor

    International Nuclear Information System (INIS)

    Liebig, E.

    1977-01-01

    A loss of coolant accident is to be simulated on a high pressure test rig. The accident is initiated by an externally induced rupture of a pair of rupture-disks installed in a coolant ejection device. Several problems of simulating leaks in the primary coolant circuit of PWR type reactors are dealt with. The selection of appropriate rupture-disks for such experiments is described

  11. The application of release models to the interpretation of rare gas coolant activities

    International Nuclear Information System (INIS)

    Wise, C.

    1985-01-01

    Much research is carried out into the release of fission products from UO 2 fuel and from failed pins. A significant application of this data is to define models of release which can be used to interpret measured coolant activities of rare gas isotopes. Such interpretation is necessary to extract operationally relevant parameters, such as the number and size of failures in the core and the 131 I that might be released during depressurization faults. The latter figure forms part of the safety case for all operating CAGRs. This paper describes and justifies the models which are used in the ANAGRAM program to interpret CAGR coolant activities, highlighting any remaining uncertainties. The various methods by which the program can extract relevant information from the measurements are outlined, and examples are given of the analysis of coolant data. These analyses point to a generally well understood picture of fission gas release from low temperature failures. Areas of higher temperature release are identified where further research would be beneficial to coolant activity analysis. (author)

  12. Development of treatment technology of radio-contaminated coolant in fuel test loop

    International Nuclear Information System (INIS)

    Kim, J. Y.

    1997-10-01

    In 1995, the installation of KMRR located in KAERI provided a milestone in independence of nuclear technologies in Korea. The independence of technologies is only possible through the enormous investment for research and through the active approaches for various experiments. The performance of various experiments enhanced the risk of environmental pollution and the nuclear fuel irradiation test is one of those experiments. The damage of fuel which might happen any time in irradiation test, will discharge high level radioactive materials from the inside of failed fuel and will gradually contaminate the cooling water in near vicinity. Accordingly, the proper management of coolant having high temperature and high level . (author). refs., tabs., figs

  13. Development of treatment technology of radio-contaminated coolant in fuel test loop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. Y.

    1997-10-01

    In 1995, the installation of KMRR located in KAERI provided a milestone in independence of nuclear technologies in Korea. The independence of technologies is only possible through the enormous investment for research and through the active approaches for various experiments. The performance of various experiments enhanced the risk of environmental pollution and the nuclear fuel irradiation test is one of those experiments. The damage of fuel which might happen any time in irradiation test, will discharge high level radioactive materials from the inside of failed fuel and will gradually contaminate the cooling water in near vicinity. Accordingly, the proper management of coolant having high temperature and high level . (author). refs., tabs., figs.

  14. Adjoint-based optimization of mechanical performance in polycrystalline materials and structures through texture control

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Grace [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brown, Judith Alice [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bishop, Joseph E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-08-01

    The texture of a polycrystalline material refers to the preferred orientation of the grains within the material. In metallic materials, texture can significantly affect the mechanical properties such as elastic moduli, yield stress, strain hardening, and fracture toughness. Recent advances in additive manufacturing of metallic materials offer the possibility in the not too distant future of controlling the spatial variation of texture. In this work, we investigate the advantages, in terms of mechanical performance, of allowing the texture to vary spatially. We use an adjoint-based gradient optimization algorithm within a finite element solver (COMSOL) to optimize several engineering quantities of interest in a simple structure (hole in a plate) and loading (uniaxial tension) condition. As a first step to general texture optimization, we consider the idealized case of a pure fiber texture in which the homogenized properties are transversely isotropic. In this special case, the only spatially varying design variables are the three Euler angles that prescribe the orientation of the homogenized material at each point within the structure. This work paves a new way to design metallic materials for tunable mechanical properties at the microstructure level.

  15. High temperature brazing of reactor materials

    International Nuclear Information System (INIS)

    Orlov, A.V.; Nechaev, V.A.; Rybkin, B.V.; Ponimash, I.D.

    1990-01-01

    Application of high-temperature brazing for joining products of such materials as molybdenum, tungsten, zirconium, beryllium, magnesium, nickel and aluminium alloys, graphite ceramics etc. is described. Brazing materials composition and brazed joints properties are presented. A satisfactory strength of brazed joints is detected under reactor operation temperatures and coolant and irradiation effect

  16. Lubrication analysis of the thrust bearing in the main coolant pump of SMART

    International Nuclear Information System (INIS)

    Lee, J. S.; Park, J. S.; Kim, J. H.; Hur, H.; Kim, J. I.

    2001-01-01

    Thrust bearing and journal bearings are installed in the main coolant pump for SMART to support the rotating shaft with proper lubrication. The canned motor type main coolant pumps are arranged vertically on the reactor vessel and especially the MCP bearings are lubricated with water without external lubricating oil supply. Because axial load capacity of the thrust bearing can hardly meet requirement to acquire hydrodynamic or fluid film lubrication state, self-lubrication characteristics of silicon graphite meterials would be needed. Lubricational analysis method for thrust bearing for the main coolant pump of SMART is proposed, and lubricational characteristics of the bearing generated by solving the Reynolds equation are examined in this paper

  17. Acoustical characterization and parameter optimization of polymeric noise control materials

    Science.gov (United States)

    Homsi, Emile N.

    2003-10-01

    The sound transmission loss (STL) characteristics of polymer-based materials are considered. Analytical models that predict, characterize and optimize the STL of polymeric materials, with respect to physical parameters that affect performance, are developed for single layer panel configuration and adapted for layered panel construction with homogenous core. An optimum set of material parameters is selected and translated into practical applications for validation. Sound attenuating thermoplastic materials designed to be used as barrier systems in the automotive and consumer industries have certain acoustical characteristics that vary in function of the stiffness and density of the selected material. The validity and applicability of existing theory is explored, and since STL is influenced by factors such as the surface mass density of the panel's material, a method is modified to improve STL performance and optimize load-bearing attributes. An experimentally derived function is applied to the model for better correlation. In-phase and out-of-phase motion of top and bottom layers are considered. It was found that the layered construction of the co-injection type would exhibit fused planes at the interface and move in-phase. The model for the single layer case is adapted to the layered case where it would behave as a single panel. Primary physical parameters that affect STL are identified and manipulated. Theoretical analysis is linked to the resin's matrix attribute. High STL material with representative characteristics is evaluated versus standard resins. It was found that high STL could be achieved by altering materials' matrix and by integrating design solution in the low frequency range. A suggested numerical approach is described for STL evaluation of simple and complex geometries. In practice, validation on actual vehicle systems proved the adequacy of the acoustical characterization process.

  18. The chemistry of the X-7 (organic) loop coolant part I, May 1960 to April 1965

    International Nuclear Information System (INIS)

    Smee, J.L.

    1966-01-01

    The report describes in detail the X-7 coolant chemistry from the start of loop operation in May 1960 to April 1965. During this period the coolant was Santowax OM containing a nominal 30% high boilers or high molecular weight decomposition products. During the first few months of operation it became apparent that there wa.s a serious problem in the fouling of fuel element heat transfer surfaces. This was overcome by continuous purification of the coolant by Attapulgus clay and filters. Since clay purification has been in use, the fouling rate has been less than 0.2 μg.cm -2 .h -1 (10 μm per year), the target value for successful operation of an organic cooled power reactor. Control of the fouling promoter chlorine has been accomplished by completely excluding it from the vicinity of the loop. Any which does get into the coolant is removed by a bed of Mg ribbon and Pd pellets. Since such a bed has been in use, the Cl content of the coolant has been less than 3 ppm. Also given in this report are: (a) a brief history of the loop since its inception in 1959. (b) the effect of the clay column on the coolant chemistry. (c) a complete description of the current purification, degas and make-up circuits, (d) a summary of the coolant chemistry during all fuel irradiations. (author)

  19. In-core failure of the instrumented BWR rod by locally induced high coolant temperature

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki

    1985-12-01

    In the BWR type light water loop instrumented in HBWR, a current BWR type fuel rod pre-irradiated up to 5.6 MWd/kgU was power ramped to 50 kW/m. During the ramp, the diameter of the rod was expanded significantly at the bottom end. The behaviour was different from which caused by pellet-cladding interaction (PCI). In the post-irradiation examination, the rod was found to be failed. In this paper, the cause of the failure was studied and obtained the followings. (1) The significant expansion of the rod diameter was attributed to marked oxidation of cladding outer diameter, appeared in the direction of 0 0 -180 0 degree with a shape of nodular. (2) The cladding in the place was softened by high coolant temperature. Coolant pressure, 7MPa intruded the cladding into inside chamfer void at pellet interface. (3) At the place of the significant oxidation, an instrumented transformer was existed and the coolant flow area was very little. The reduction of the coolant flow was enhanced by the bending of the cladding which was caused in pre-irradiation stage. They are considered to be a principal cause of local closure of coolant flow and resultant high temperature in the place. (author)

  20. Radiolysis of the VVER-1000 reactor coolant: An experimental study and mathematical modeling

    International Nuclear Information System (INIS)

    Arkhipov, O.P.; Bugaenko, V.L.; Kabakchi, S.A.

    1995-01-01

    Variations in the composition of the coolant for the primary circuit of a VVER-1000 reactor of the Kalinin nuclear power plant upon transition from power-level operation to shutdown was studied experimentally. The data obtained were used for verification of the MORAVA-H2 program developed earlier for simulation of the coolant state in pressurized-water power reactors