Directory of Open Access Journals (Sweden)
L. I. Rozonoer
1999-01-01
Full Text Available Necessary and sufficient conditions for existence of optimal control for all initial data are proved for LQ-optimization problem. If these conditions are fulfilled, necessary and sufficient conditions of optimality are formulated. Basing on the results, some general hypotheses on optimal control in terms of Pontryagin's maximum condition and Bellman's equation are proposed.
Optimization and Optimal Control
Chinchuluun, Altannar; Enkhbat, Rentsen; Tseveendorj, Ider
2010-01-01
During the last four decades there has been a remarkable development in optimization and optimal control. Due to its wide variety of applications, many scientists and researchers have paid attention to fields of optimization and optimal control. A huge number of new theoretical, algorithmic, and computational results have been observed in the last few years. This book gives the latest advances, and due to the rapid development of these fields, there are no other recent publications on the same topics. Key features: Provides a collection of selected contributions giving a state-of-the-art accou
Aschepkov, Leonid T; Kim, Taekyun; Agarwal, Ravi P
2016-01-01
This book is based on lectures from a one-year course at the Far Eastern Federal University (Vladivostok, Russia) as well as on workshops on optimal control offered to students at various mathematical departments at the university level. The main themes of the theory of linear and nonlinear systems are considered, including the basic problem of establishing the necessary and sufficient conditions of optimal processes. In the first part of the course, the theory of linear control systems is constructed on the basis of the separation theorem and the concept of a reachability set. The authors prove the closure of a reachability set in the class of piecewise continuous controls, and the problems of controllability, observability, identification, performance and terminal control are also considered. The second part of the course is devoted to nonlinear control systems. Using the method of variations and the Lagrange multipliers rule of nonlinear problems, the authors prove the Pontryagin maximum principle for prob...
Special Issue on Advances in Integrated Energy Systems Design, Control and Optimization
DEFF Research Database (Denmark)
Anvari-Moghaddam, Amjad; Guerrero, Josep M.
2017-01-01
In the face of climate change and resource scarcity, energy supply systems are on the verge of a major transformation, which mainly includes the introduction of new components and their integration into the existing infrastructures, new network configurations and reliable topologies, optimal desi...
Optimal obstacle control problem
Institute of Scientific and Technical Information of China (English)
ZHU Li; LI Xiu-hua; GUO Xing-ming
2008-01-01
In the paper we discuss some properties of the state operators of the optimal obstacle control problem for elliptic variational inequality. Existence, uniqueness and regularity of the optimal control problem are established. In addition, the approximation of the optimal obstacle problem is also studied.
Control and optimization system
Xinsheng, Lou
2013-02-12
A system for optimizing a power plant includes a chemical loop having an input for receiving an input parameter (270) and an output for outputting an output parameter (280), a control system operably connected to the chemical loop and having a multiple controller part (230) comprising a model-free controller. The control system receives the output parameter (280), optimizes the input parameter (270) based on the received output parameter (280), and outputs an optimized input parameter (270) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.
Schaft, A.J. van der
1987-01-01
It is argued that the existence of symmetries may simplify, as in classical mechanics, the solution of optimal control problems. A procedure for obtaining symmetries for the optimal Hamiltonian resulting from the Maximum Principle is given; this avoids the actual calculation of the optimal
Optimal control computer programs
Kuo, F.
1992-01-01
The solution of the optimal control problem, even with low order dynamical systems, can usually strain the analytical ability of most engineers. The understanding of this subject matter, therefore, would be greatly enhanced if a software package existed that could simulate simple generic problems. Surprisingly, despite a great abundance of commercially available control software, few, if any, address the part of optimal control in its most generic form. The purpose of this paper is, therefore, to present a simple computer program that will perform simulations of optimal control problems that arise from the first necessary condition and the Pontryagin's maximum principle.
Integrated controls design optimization
Lou, Xinsheng; Neuschaefer, Carl H.
2015-09-01
A control system (207) for optimizing a chemical looping process of a power plant includes an optimizer (420), an income algorithm (230) and a cost algorithm (225) and a chemical looping process models. The process models are used to predict the process outputs from process input variables. Some of the process in puts and output variables are related to the income of the plant; and some others are related to the cost of the plant operations. The income algorithm (230) provides an income input to the optimizer (420) based on a plurality of input parameters (215) of the power plant. The cost algorithm (225) provides a cost input to the optimizer (420) based on a plurality of output parameters (220) of the power plant. The optimizer (420) determines an optimized operating parameter solution based on at least one of the income input and the cost input, and supplies the optimized operating parameter solution to the power plant.
Colonius, Fritz
1988-01-01
This research monograph deals with optimal periodic control problems for systems governed by ordinary and functional differential equations of retarded type. Particular attention is given to the problem of local properness, i.e. whether system performance can be improved by introducing periodic motions. Using either Ekeland's Variational Principle or optimization theory in Banach spaces, necessary optimality conditions are proved. In particular, complete proofs of second-order conditions are included and the result is used for various versions of the optimal periodic control problem. Furthermore a scenario for local properness (related to Hopf bifurcation) is drawn up, giving hints as to where to look for optimal periodic solutions. The book provides mathematically rigorous proofs for results which are potentially of importance in chemical engineering and aerospace engineering.
Discrete Variational Optimal Control
Jimenez, Fernando; de Diego, David Martin
2012-01-01
This paper develops numerical methods for optimal control of mechanical systems in the Lagrangian setting. It extends the theory of discrete mechanics to enable the solutions of optimal control problems through the discretization of variational principles. The key point is to solve the optimal control problem as a variational integrator of a specially constructed higher-dimensional system. The developed framework applies to systems on tangent bundles, Lie groups, underactuated and nonholonomic systems with symmetries, and can approximate either smooth or discontinuous control inputs. The resulting methods inherit the preservation properties of variational integrators and result in numerically robust and easily implementable algorithms. Several theoretical and a practical examples, e.g. the control of an underwater vehicle, will illustrate the application of the proposed approach.
Discrete Variational Optimal Control
Jiménez, Fernando; Kobilarov, Marin; Martín de Diego, David
2013-06-01
This paper develops numerical methods for optimal control of mechanical systems in the Lagrangian setting. It extends the theory of discrete mechanics to enable the solutions of optimal control problems through the discretization of variational principles. The key point is to solve the optimal control problem as a variational integrator of a specially constructed higher dimensional system. The developed framework applies to systems on tangent bundles, Lie groups, and underactuated and nonholonomic systems with symmetries, and can approximate either smooth or discontinuous control inputs. The resulting methods inherit the preservation properties of variational integrators and result in numerically robust and easily implementable algorithms. Several theoretical examples and a practical one, the control of an underwater vehicle, illustrate the application of the proposed approach.
On Symmetries in Optimal Control
van der Schaft, A. J.
1986-01-01
We discuss the use of symmetries in solving optimal control problems. In particular a procedure for obtaining symmetries is given which can be performed before the actual calculation of the optimal control and optimal Hamiltonian.
On Symmetries in Optimal Control
Schaft, A.J. van der
1986-01-01
We discuss the use of symmetries in solving optimal control problems. In particular a procedure for obtaining symmetries is given which can be performed before the actual calculation of the optimal control and optimal Hamiltonian.
Optimized joystick controller.
Ding, D; Cooper, R A; Spaeth, D
2004-01-01
The purpose of the study was to develop an optimized joystick control interface for electric powered wheelchairs and thus provide safe and effective control of electric powered wheelchairs to people with severe physical disabilities. The interface enables clinicians to tune joystick parameters for each individual subject through selecting templates, dead zones, and bias axes. In terms of hand tremor usually associated with people with traumatic brain injury, cerebral palsy, and multiple sclerosis, fuzzy logic rules were applied to suppress erratic hand movements and extract the intended motion from the joystick. Simulation results were presented to show the graphical tuning interface as well as the performance of the fuzzy logic controller.
Optimal control for chemical engineers
Upreti, Simant Ranjan
2013-01-01
Optimal Control for Chemical Engineers gives a detailed treatment of optimal control theory that enables readers to formulate and solve optimal control problems. With a strong emphasis on problem solving, the book provides all the necessary mathematical analyses and derivations of important results, including multiplier theorems and Pontryagin's principle.The text begins by introducing various examples of optimal control, such as batch distillation and chemotherapy, and the basic concepts of optimal control, including functionals and differentials. It then analyzes the notion of optimality, de
Power, control and optimization
Vasant, Pandian; Barsoum, Nader
2013-01-01
The book consists of chapters based on selected papers of international conference „Power, Control and Optimization 2012”, held in Las Vegas, USA. Readers can find interesting chapters discussing various topics from the field of power control, its distribution and related fields. Book discusses topics like energy consumption impacted by climate, mathematical modeling of the influence of thermal power plant on the aquatic environment, investigation of cost reduction in residential electricity bill using electric vehicle at peak times or allocation and size evaluation of distributed generation using ANN model and others. Chapter authors are to the best of our knowledge the originators or closely related to the originators of presented ideas and its applications. Hence, this book certainly is one of the few books discussing the benefit from intersection of those modern and fruitful scientific fields of research with very tight and deep impact on real life and industry. This book is devoted to the studies o...
Oil Reservoir Production Optimization using Optimal Control
DEFF Research Database (Denmark)
Völcker, Carsten; Jørgensen, John Bagterp; Stenby, Erling Halfdan
2011-01-01
Practical oil reservoir management involves solution of large-scale constrained optimal control problems. In this paper we present a numerical method for solution of large-scale constrained optimal control problems. The method is a single-shooting method that computes the gradients using the adjo......Practical oil reservoir management involves solution of large-scale constrained optimal control problems. In this paper we present a numerical method for solution of large-scale constrained optimal control problems. The method is a single-shooting method that computes the gradients using...... the adjoint method. We use an Explicit Singly Diagonally Implicit Runge-Kutta (ESDIRK) method for the integration and a quasi-Newton Sequential Quadratic Programming (SQP) algorithm for the constrained optimization. We use this algorithm in a numerical case study to optimize the production of oil from an oil...... reservoir using water ooding and smart well technology. Compared to the uncontrolled case, the optimal operation increases the Net Present Value of the oil field by 10%....
Optimal Control of Mechanical Systems
Directory of Open Access Journals (Sweden)
Vadim Azhmyakov
2007-01-01
Full Text Available In the present work, we consider a class of nonlinear optimal control problems, which can be called “optimal control problems in mechanics.” We deal with control systems whose dynamics can be described by a system of Euler-Lagrange or Hamilton equations. Using the variational structure of the solution of the corresponding boundary-value problems, we reduce the initial optimal control problem to an auxiliary problem of multiobjective programming. This technique makes it possible to apply some consistent numerical approximations of a multiobjective optimization problem to the initial optimal control problem. For solving the auxiliary problem, we propose an implementable numerical algorithm.
Linear optimal control of tokamak fusion devices
Energy Technology Data Exchange (ETDEWEB)
Kessel, C.E.; Firestone, M.A.; Conn, R.W.
1989-05-01
The control of plasma position, shape and current in a tokamak fusion reactor is examined using linear optimal control. These advanced tokamaks are characterized by non up-down symmetric coils and structure, thick structure surrounding the plasma, eddy currents, shaped plasmas, superconducting coils, vertically unstable plasmas, and hybrid function coils providing ohmic heating, vertical field, radial field, and shaping field. Models of the electromagnetic environment in a tokamak are derived and used to construct control gains that are tested in nonlinear simulations with initial perturbations. The issues of applying linear optimal control to advanced tokamaks are addressed, including complex equilibrium control, choice of cost functional weights, the coil voltage limit, discrete control, and order reduction. Results indicate that the linear optimal control is a feasible technique for controlling advanced tokamaks where the more common classical control will be severely strained or will not work. 28 refs., 13 figs.
Optimal Control of Evolutionary Dynamics
Chakrabarti, Raj; McLendon, George
2008-01-01
Elucidating the fitness measures optimized during the evolution of complex biological systems is a major challenge in evolutionary theory. We present experimental evidence and an analytical framework demonstrating how biochemical networks exploit optimal control strategies in their evolutionary dynamics. Optimal control theory explains a striking pattern of extremization in the redox potentials of electron transport proteins, assuming only that their fitness measure is a control objective functional with bounded controls.
Optimal Control of Mechanical Systems
Vadim Azhmyakov
2007-01-01
In the present work, we consider a class of nonlinear optimal control problems, which can be called “optimal control problems in mechanics.” We deal with control systems whose dynamics can be described by a system of Euler-Lagrange or Hamilton equations. Using the variational structure of the solution of the corresponding boundary-value problems, we reduce the initial optimal control problem to an auxiliary problem of multiobjective programming. This technique makes it possible to apply some ...
Issues related to topology optimization of snap-through problems
DEFF Research Database (Denmark)
Lindgaard, Esben; Dahl, Jonas
2012-01-01
This work focuses on issues related to topology optimization of static geometrically nonlinear structures experiencing snap-through behaviour. Different compliance and buckling criterion functions are studied and applied to topology optimization of a point loaded curved beam problem with the aim ...
Optimization Issues in a Harmonic Cascade FEL
De Ninno, G
2005-01-01
Presently there is significant interest by multiple groups (e.g. BNL, ELETTRA, LBNL, BESSY, MIT) to reach short output wavelengths via a harmonic cascade FEL using an external seed laser. In a multistage device, there are a number of "free" parameters such as the nominal power of the input seed, the lengths of the individual modulator and radiator undulators, the strengths (i.e. the R56's) of the dispersive sections, the choice of the actual harmonic numbers to reach a given wavelength, etc., whose optimization is a non-trivial exercise. In particular, one can choose whether to operate predominantly in the "high gain" regime such as was proposed by Yu [1] in which case each radiator undulator is many gain lengths long or, alternatively, in the "low gain" regime in which case all undulators (except possibly the last radiator) are a couple gain lengths or less long and the output from each radiator essentially corresponds to coherent spontaneous emission from a pre-bunched beam. With particular emphasis upon th...
Optimization Issues with Complex Rotorcraft Comprehensive Analysis
Walsh, Joanne L.; Young, Katherine C.; Tarzanin, Frank J.; Hirsh, Joel E.; Young, Darrell K.
1998-01-01
This paper investigates the use of the general purpose automatic differentiation (AD) tool called Automatic Differentiation of FORTRAN (ADIFOR) as a means of generating sensitivity derivatives for use in Boeing Helicopter's proprietary comprehensive rotor analysis code (VII). ADIFOR transforms an existing computer program into a new program that performs a sensitivity analysis in addition to the original analysis. In this study both the pros (exact derivatives, no step-size problems) and cons (more CPU, more memory) of ADIFOR are discussed. The size (based on the number of lines) of the VII code after ADIFOR processing increased by 70 percent and resulted in substantial computer memory requirements at execution. The ADIFOR derivatives took about 75 percent longer to compute than the finite-difference derivatives. However, the ADIFOR derivatives are exact and are not functions of step-size. The VII sensitivity derivatives generated by ADIFOR are compared with finite-difference derivatives. The ADIFOR and finite-difference derivatives are used in three optimization schemes to solve a low vibration rotor design problem.
Optimal magnetic attitude control
DEFF Research Database (Denmark)
Wisniewski, Rafal; Markley, F.L.
1999-01-01
because control torques can only be generated perpendicular to the local geomagnetic field vector. This has been a serious obstacle for using magnetorquer based control for three-axis stabilization of a low earth orbit satellite. The problem of controlling the spacecraft attitude using only magnetic...
Optimal control studies for steamflooding
Energy Technology Data Exchange (ETDEWEB)
Liu, Wei.
1992-01-01
A system science approach using optimal control theory of distributed parameter systems has been developed to determine operating strategies that maximize the economic attractiveness of the steamflooding Enhanced Oil Recovery (EOR) process. Necessary conditions for optimization are established by using the calculus of variations and Pontryagin's Maximum Principle. The objective criterion is to maximize the difference between oil revenue and injected steam cost. A stable and efficient numerical algorithm, based on an iterative gradient method, is developed. The optimal control model is based on a three-dimensional, three-phase (oil, steam and water) steam injection numerical simulator. A discrete form of the model is formulated. The optimized operating variables are the optimal bottom-hole pressure, the optimal injection rate of steam and water, and the optimal steam quality policies. Another optimal control study is also conducted on a simplified one-dimensional model (the extended Neuman model) to provide quick and reliable preliminary information on the economic feasibility of steamflooding processes. The simplified control model only considers the injection rate of steam as the control variable. The performance of this system science approach is investigated through various one-, two- and three-dimensional steamflooding problems. The effects of reservoir properties and heterogeneity on optimal policies as well as the sensitivity of the control variables are also studied. Results show this approach yields significant insight into the steamflooding EOR process. Improvement of the economic objective is significant under optimal operation conditions. These optimization results are quite important in a successful application of the steamflooding EOR method.
1979-12-01
with Uncertain Components 44 13 Component Uncertainty Representation of Uncertain Pole-Zero Locations 46 12 A Feedback Control System 60 i 1 I vii €in...OF FEEDBACK SYSTEM ROBUSTNESS A feedback control system design is said to be robust if it is able to meet design specifications despite differences... feedback control system design problems, the design specifications usually demand that the system be "robust" against the effects of deviations within
Optimal control in thermal engineering
Badescu, Viorel
2017-01-01
This book is the first major work covering applications in thermal engineering and offering a comprehensive introduction to optimal control theory, which has applications in mechanical engineering, particularly aircraft and missile trajectory optimization. The book is organized in three parts: The first part includes a brief presentation of function optimization and variational calculus, while the second part presents a summary of the optimal control theory. Lastly, the third part describes several applications of optimal control theory in solving various thermal engineering problems. These applications are grouped in four sections: heat transfer and thermal energy storage, solar thermal engineering, heat engines and lubrication.Clearly presented and easy-to-use, it is a valuable resource for thermal engineers and thermal-system designers as well as postgraduate students.
System Optimization by Periodic Control.
1979-09-30
extended re- sults are now contained in a single report [3] which will appear as a regular paper in the December, 1979 issue of the IEEE Transactions on Automatic Control . The...Test Revisited, " to appear in the IEEE Transactions on Automatic Control . 4. D. J. Lyons, "Improved Aircraft Cruise by Periodic Control," Ph. D
Manufacturing plant control challenges and issues
Morel, Gérard; Valckenaers, Paul; Faure, Jean-Marc; Pereira, Carlos Eduardo; Diedrich, Christian
2007-01-01
International audience; Enterprise control system integration between business systems, manufacturing execution systems and shop-floor process-control systems remains a key issue for facilitating the deployment of plant-wide information control systems for practical e-business-to-manufacturing industry-led issues. Achievement of the integration-in-manufacturing paradigm based on centralized/distributed hardware/software automation architectures is evolving using the intelligence-in-manufactur...
Symposium on Optimal Control Theory
1987-01-01
Control theory can be roughly classified as deterministic or stochastic. Each of these can further be subdivided into game theory and optimal control theory. The central problem of control theory is the so called constrained maximization (which- with slight modifications--is equivalent to minimization). One can then say, heuristically, that the major problem of control theory is to find the maximum of some performance criterion (or criteria), given a set of constraints. The starting point is, of course, a mathematical representation of the performance criterion (or criteria)- sometimes called the objective functional--along with the constraints. When the objective functional is single valued (Le. , when there is only one objective to be maximized), then one is dealing with optimal control theory. When more than one objective is involved, and the objectives are generally incompatible, then one is dealing with game theory. The first paper deals with stochastic optimal control, using the dynamic programming ...
Optimal control theory an introduction
Kirk, Donald E
2004-01-01
Optimal control theory is the science of maximizing the returns from and minimizing the costs of the operation of physical, social, and economic processes. Geared toward upper-level undergraduates, this text introduces three aspects of optimal control theory: dynamic programming, Pontryagin's minimum principle, and numerical techniques for trajectory optimization.Chapters 1 and 2 focus on describing systems and evaluating their performances. Chapter 3 deals with dynamic programming. The calculus of variations and Pontryagin's minimum principle are the subjects of chapters 4 and 5, and chapter
Optimality principles in sensorimotor control.
Todorov, Emanuel
2004-09-01
The sensorimotor system is a product of evolution, development, learning and adaptation-which work on different time scales to improve behavioral performance. Consequently, many theories of motor function are based on 'optimal performance': they quantify task goals as cost functions, and apply the sophisticated tools of optimal control theory to obtain detailed behavioral predictions. The resulting models, although not without limitations, have explained more empirical phenomena than any other class. Traditional emphasis has been on optimizing desired movement trajectories while ignoring sensory feedback. Recent work has redefined optimality in terms of feedback control laws, and focused on the mechanisms that generate behavior online. This approach has allowed researchers to fit previously unrelated concepts and observations into what may become a unified theoretical framework for interpreting motor function. At the heart of the framework is the relationship between high-level goals, and the real-time sensorimotor control strategies most suitable for accomplishing those goals.
Optimal actuation in vibration control
Guzzardo, C. A.; Pang, S. S.; Ram, Y. M.
2013-02-01
The paper addresses the problem of finding the optimal location of actuators and their relative gain so that the control effort in an actively controlled vibrating system is minimized. In technical terms the problem is finding the optimal input vector of unit norm that minimizes the norm of the control gain vector. This problem is addressed in the context of the active natural frequency modification problem associated with resonance avoidance in undamped systems, and in the context of the single-input-multi-output pole assignment problem for second order systems.
Optimal Control of Teaching Process
Institute of Scientific and Technical Information of China (English)
BAO Man; ZHANG Guo-zhi
2002-01-01
The authors first put forward quadratic form performance index as a criterion of measuringmerits and demerits of teaching process. On this base, we got a low of optimal control after the quantificationof the teacher's functions. It must play a leading role on how the teacher fully controls the whole teachingprocess.
Optimal control of quantum measurement
Energy Technology Data Exchange (ETDEWEB)
Egger, Daniel; Wilhelm, Frank [Theoretical Physics, Saarland University, 66123 Saarbruecken (Germany)
2015-07-01
Pulses to steer the time evolution of quantum systems can be designed with optimal control theory. In most cases it is the coherent processes that can be controlled and one optimizes the time evolution towards a target unitary process, sometimes also in the presence of non-controllable incoherent processes. Here we show how to extend the GRAPE algorithm in the case where the incoherent processes are controllable and the target time evolution is a non-unitary quantum channel. We perform a gradient search on a fidelity measure based on Choi matrices. We illustrate our algorithm by optimizing a measurement pulse for superconducting phase qubits. We show how this technique can lead to large measurement contrast close to 99%. We also show, within the validity of our model, that this algorithm can produce short 1.4 ns pulses with 98.2% contrast.
Optimality Conditions for Inventory Control
Feinberg, Eugene A.
2016-01-01
This tutorial describes recently developed general optimality conditions for Markov Decision Processes that have significant applications to inventory control. In particular, these conditions imply the validity of optimality equations and inequalities. They also imply the convergence of value iteration algorithms. For total discounted-cost problems only two mild conditions on the continuity of transition probabilities and lower semi-continuity of one-step costs are needed. For average-cost pr...
Optimal control linear quadratic methods
Anderson, Brian D O
2007-01-01
This augmented edition of a respected text teaches the reader how to use linear quadratic Gaussian methods effectively for the design of control systems. It explores linear optimal control theory from an engineering viewpoint, with step-by-step explanations that show clearly how to make practical use of the material.The three-part treatment begins with the basic theory of the linear regulator/tracker for time-invariant and time-varying systems. The Hamilton-Jacobi equation is introduced using the Principle of Optimality, and the infinite-time problem is considered. The second part outlines the
Optimal control of motorsport differentials
Tremlett, A. J.; Massaro, M.; Purdy, D. J.; Velenis, E.; Assadian, F.; Moore, A. P.; Halley, M.
2015-12-01
Modern motorsport limited slip differentials (LSD) have evolved to become highly adjustable, allowing the torque bias that they generate to be tuned in the corner entry, apex and corner exit phases of typical on-track manoeuvres. The task of finding the optimal torque bias profile under such varied vehicle conditions is complex. This paper presents a nonlinear optimal control method which is used to find the minimum time optimal torque bias profile through a lane change manoeuvre. The results are compared to traditional open and fully locked differential strategies, in addition to considering related vehicle stability and agility metrics. An investigation into how the optimal torque bias profile changes with reduced track-tyre friction is also included in the analysis. The optimal LSD profile was shown to give a performance gain over its locked differential counterpart in key areas of the manoeuvre where a quick direction change is required. The methodology proposed can be used to find both optimal passive LSD characteristics and as the basis of a semi-active LSD control algorithm.
Recent developments in cooperative control and optimization
Murphey, Robert; Pardalos, Panos
2004-01-01
Over the past several years, cooperative control and optimization has un questionably been established as one of the most important areas of research in the military sciences. Even so, cooperative control and optimization tran scends the military in its scope -having become quite relevant to a broad class of systems with many exciting, commercial, applications. One reason for all the excitement is that research has been so incredibly diverse -spanning many scientific and engineering disciplines. This latest volume in the Cooperative Systems book series clearly illustrates this trend towards diversity and creative thought. And no wonder, cooperative systems are among the hardest systems control science has endeavored to study, hence creative approaches to model ing, analysis, and synthesis are a must! The definition of cooperation itself is a slippery issue. As you will see in this and previous volumes, cooperation has been cast into many different roles and therefore has assumed many diverse meanings. P...
Optimization for efficient structure-control systems
Oz, Hayrani; Khot, Narendra S.
1993-01-01
The efficiency of a structure-control system is a nondimensional parameter which indicates the fraction of the total control power expended usefully in controlling a finite-dimensional system. The balance of control power is wasted on the truncated dynamics serving no useful purpose towards the control objectives. Recently, it has been demonstrated that the concept of efficiency can be used to address a number of control issues encountered in the control of dynamic systems such as the spillover effects, selection of a good input configuration and obtaining reduced order control models. Reference (1) introduced the concept and presented analyses of several Linear Quadratic Regulator designs on the basis of their efficiencies. Encouraged by the results of Ref. (1), Ref. (2) introduces an efficiency modal analysis of a structure-control system which gives an internal characterization of the controller design and establishes the link between the control design and the initial disturbances to affect efficient structure-control system designs. The efficiency modal analysis leads to identification of principal controller directions (or controller modes) distinct from the structural natural modes. Thus ultimately, many issues of the structure-control system revolve around the idea of insuring compatibility of the structural modes and the controller modes with each other, the better the match the higher the efficiency. A key feature in controlling a reduced order model of a high dimensional (or infinity-dimensional distributed parameter system) structural dynamic system must be to achieve high efficiency of the control system while satisfying the control objectives and/or constraints. Formally, this can be achieved by designing the control system and structural parameters simultaneously within an optimization framework. The subject of this paper is to present such a design procedure.
Control and optimal control theories with applications
Burghes, D N
2004-01-01
This sound introduction to classical and modern control theory concentrates on fundamental concepts. Employing the minimum of mathematical elaboration, it investigates the many applications of control theory to varied and important present-day problems, e.g. economic growth, resource depletion, disease epidemics, exploited population, and rocket trajectories. An original feature is the amount of space devoted to the important and fascinating subject of optimal control. The work is divided into two parts. Part one deals with the control of linear time-continuous systems, using both transfer fun
Optimal control with aerospace applications
Longuski, James M; Prussing, John E
2014-01-01
Want to know not just what makes rockets go up but how to do it optimally? Optimal control theory has become such an important field in aerospace engineering that no graduate student or practicing engineer can afford to be without a working knowledge of it. This is the first book that begins from scratch to teach the reader the basic principles of the calculus of variations, develop the necessary conditions step-by-step, and introduce the elementary computational techniques of optimal control. This book, with problems and an online solution manual, provides the graduate-level reader with enough introductory knowledge so that he or she can not only read the literature and study the next level textbook but can also apply the theory to find optimal solutions in practice. No more is needed than the usual background of an undergraduate engineering, science, or mathematics program: namely calculus, differential equations, and numerical integration. Although finding optimal solutions for these problems is a...
Issues and Strategies in Solving Multidisciplinary Optimization Problems
Patnaik, Surya
2013-01-01
Optimization research at NASA Glenn Research Center has addressed the design of structures, aircraft and airbreathing propulsion engines. The accumulated multidisciplinary design activity is collected under a testbed entitled COMETBOARDS. Several issues were encountered during the solution of the problems. Four issues and the strategies adapted for their resolution are discussed. This is followed by a discussion on analytical methods that is limited to structural design application. An optimization process can lead to an inefficient local solution. This deficiency was encountered during design of an engine component. The limitation was overcome through an augmentation of animation into optimization. Optimum solutions obtained were infeasible for aircraft and airbreathing propulsion engine problems. Alleviation of this deficiency required a cascading of multiple algorithms. Profile optimization of a beam produced an irregular shape. Engineering intuition restored the regular shape for the beam. The solution obtained for a cylindrical shell by a subproblem strategy converged to a design that can be difficult to manufacture. Resolution of this issue remains a challenge. The issues and resolutions are illustrated through a set of problems: Design of an engine component, Synthesis of a subsonic aircraft, Operation optimization of a supersonic engine, Design of a wave-rotor-topping device, Profile optimization of a cantilever beam, and Design of a cylindrical shell. This chapter provides a cursory account of the issues. Cited references provide detailed discussion on the topics. Design of a structure can also be generated by traditional method and the stochastic design concept. Merits and limitations of the three methods (traditional method, optimization method and stochastic concept) are illustrated. In the traditional method, the constraints are manipulated to obtain the design and weight is back calculated. In design optimization, the weight of a structure becomes the
Optimal control of hybrid vehicles
Jager, Bram; Kessels, John
2013-01-01
Optimal Control of Hybrid Vehicles provides a description of power train control for hybrid vehicles. The background, environmental motivation and control challenges associated with hybrid vehicles are introduced. The text includes mathematical models for all relevant components in the hybrid power train. The power split problem in hybrid power trains is formally described and several numerical solutions detailed, including dynamic programming and a novel solution for state-constrained optimal control problems based on Pontryagin’s maximum principle. Real-time-implementable strategies that can approximate the optimal solution closely are dealt with in depth. Several approaches are discussed and compared, including a state-of-the-art strategy which is adaptive for vehicle conditions like velocity and mass. Two case studies are included in the book: · a control strategy for a micro-hybrid power train; and · experimental results obtained with a real-time strategy implemented in...
Optimization and optimal control in automotive systems
Kolmanovsky, Ilya; Steinbuch, Maarten; Re, Luigi
2014-01-01
This book demonstrates the use of the optimization techniques that are becoming essential to meet the increasing stringency and variety of requirements for automotive systems. It shows the reader how to move away from earlier approaches, based on some degree of heuristics, to the use of more and more common systematic methods. Even systematic methods can be developed and applied in a large number of forms so the text collects contributions from across the theory, methods and real-world automotive applications of optimization. Greater fuel economy, significant reductions in permissible emissions, new drivability requirements and the generally increasing complexity of automotive systems are among the criteria that the contributing authors set themselves to meet. In many cases multiple and often conflicting requirements give rise to multi-objective constrained optimization problems which are also considered. Some of these problems fall into the domain of the traditional multi-disciplinary optimization applie...
Optimal control of hydroelectric facilities
Zhao, Guangzhi
This thesis considers a simple yet realistic model of pump-assisted hydroelectric facilities operating in a market with time-varying but deterministic power prices. Both deterministic and stochastic water inflows are considered. The fluid mechanical and engineering details of the facility are described by a model containing several parameters. We present a dynamic programming algorithm for optimizing either the total energy produced or the total cash generated by these plants. The algorithm allows us to give the optimal control strategy as a function of time and to see how this strategy, and the associated plant value, varies with water inflow and electricity price. We investigate various cases. For a single pumped storage facility experiencing deterministic power prices and water inflows, we investigate the varying behaviour for an oversimplified constant turbine- and pump-efficiency model with simple reservoir geometries. We then generalize this simple model to include more realistic turbine efficiencies, situations with more complicated reservoir geometry, and the introduction of dissipative switching costs between various control states. We find many results which reinforce our physical intuition about this complicated system as well as results which initially challenge, though later deepen, this intuition. One major lesson of this work is that the optimal control strategy does not differ much between two differing objectives of maximizing energy production and maximizing its cash value. We then turn our attention to the case of stochastic water inflows. We present a stochastic dynamic programming algorithm which can find an on-average optimal control in the face of this randomness. As the operator of a facility must be more cautious when inflows are random, the randomness destroys facility value. Following this insight we quantify exactly how much a perfect hydrological inflow forecast would be worth to a dam operator. In our final chapter we discuss the
Optimal control of radiator systems; Optimal reglering av radiatorsystem
Energy Technology Data Exchange (ETDEWEB)
Wollerstrand, J.; Ljunggren, P.; Johansson, P.O.
2007-07-01
This report presents results from a study aiming to considerably improve the development towards minimizing the primary return temperature from a district heating (DH) substation by optimizing the control algorithm for the space heating system. The investigation of this research field started about 20 years ago in Sweden when low flow operation of space heating systems was introduced. Following a couple of years of partly confused discussions, the method was accepted by many, but was rejected by others. Our thesis is that further improvement of cooling of DH water is possible when advanced, but robust, control algorithms are used for the space heating system. A space heating system is traditionally designed for a specific constant circulation flow combined with a suitable control curve for the space heating supply temperature as a function of the outdoor temperature. Optimal choice of the control curve varies from case to case and is an issue both we and others have dealt with in previous work. A large step was to derive theoretical control curves for optimal control of the space heating system, with an analysis of how temperature and circulation flow varies with heat load. The estimated gain varies strongly depending on the conditions, however, with realistic conditions it can be as much as 5 deg C decreased DH return temperature on yearly average. To be able to work properly under varying physical circumstances, a control algorithm must be able to combine variation of space heating supply temperature and circulation flow as a function of the heat load. By regulating the rotation speed of the circulation pump this can be achieved. Such regulation can be adjusted for each and every building by regulating a few parameters in a regulator. The results from this work are, that important theoretical knowledge has been completed, to show results systematically and to find support from practical experiments. A hands-on description of the method for optimizing DH water
Iterative learning control an optimization paradigm
Owens, David H
2016-01-01
This book develops a coherent theoretical approach to algorithm design for iterative learning control based on the use of optimization concepts. Concentrating initially on linear, discrete-time systems, the author gives the reader access to theories based on either signal or parameter optimization. Although the two approaches are shown to be related in a formal mathematical sense, the text presents them separately because their relevant algorithm design issues are distinct and give rise to different performance capabilities. Together with algorithm design, the text demonstrates that there are new algorithms that are capable of incorporating input and output constraints, enable the algorithm to reconfigure systematically in order to meet the requirements of different reference signals and also to support new algorithms for local convergence of nonlinear iterative control. Simulation and application studies are used to illustrate algorithm properties and performance in systems like gantry robots and other elect...
Optimal Control of Electrodynamic Tethers
2008-06-01
left with ( ) ( ) 1 2 1 2 23 3 3 32 1 2 1 2 3 3 ˆ ˆ 2 2 2 ˆ ˆ 6 6 t t t t t t m m m m m T m L m L M M m LM M M MLm M M... Contract RH4-394049, March 1985, p 31. 9 Pelaez, J. and Lorenzini, E. C., “Libration Control of Electrodynamic Tethers in Inclined Orbit,” Journal of...COVERED (From – To) Aug 2006 – Jul 2008 4. TITLE AND SUBTITLE Optimal Control of Electrodynamic Tethers 5a. CONTRACT NUMBER 5b
HCCI Engine Optimization and Control
Energy Technology Data Exchange (ETDEWEB)
Rolf D. Reitz
2005-09-30
The goal of this project was to develop methods to optimize and control Homogeneous-Charge Compression Ignition (HCCI) engines, with emphasis on diesel-fueled engines. HCCI offers the potential of nearly eliminating IC engine NOx and particulate emissions at reduced cost over Compression Ignition Direct Injection engines (CIDI) by controlling pollutant emissions in-cylinder. The project was initiated in January, 2002, and the present report is the final report for work conducted on the project through December 31, 2004. Periodic progress has also been reported at bi-annual working group meetings held at USCAR, Detroit, MI, and at the Sandia National Laboratories. Copies of these presentation materials are available on CD-ROM, as distributed by the Sandia National Labs. In addition, progress has been documented in DOE Advanced Combustion Engine R&D Annual Progress Reports for FY 2002, 2003 and 2004. These reports are included as the Appendices in this Final report.
Power optimized programmable embedded controller
Kamaraju, M; Tilak, A V N; 10.5121/ijcnc.2010.2409
2010-01-01
Now a days, power has become a primary consideration in hardware design, and is critical in computer systems especially for portable devices with high performance and more functionality. Clock-gating is the most common technique used for reducing processor's power. In this work clock gating technique is applied to optimize the power of fully programmable Embedded Controller (PEC) employing RISC architecture. The CPU designed supports i) smart instruction set, ii) I/O port, UART iii) on-chip clocking to provide a range of frequencies , iv) RISC as well as controller concepts. The whole design is captured using VHDL and is implemented on FPGA chip using Xilinx .The architecture and clock gating technique together is found to reduce the power consumption by 33.33% of total power consumed by this chip.
Optimal control of induction heating processes
Rapoport, Edgar
2006-01-01
This book introduces new approaches to solving optimal control problems in induction heating process applications. Optimal Control of Induction Heating Processes demonstrates how to apply and use new optimization techniques for different types of induction heating installations. Focusing on practical methods for solving real engineering optimization problems, the text features a variety of specific optimization examples for induction heater modes and designs, particularly those used in industrial applications. The book describes basic physical phenomena in induction heating and induction
Optimal control of sun tracking solar concentrators
Hughes, R. O.
1979-01-01
Application of the modern control theory to derive an optimal sun tracking control for a point focusing solar concentrator is presented. A standard tracking problem converted to regulator problem using a sun rate input achieves an almost zero steady state tracking error with the optimal control formulation. However, these control techniques are costly because optimal type algorithms require large computing systems, thus they will be used mainly as comparison standards for other types of control algorithms and help in their development.
CT enterography for Crohn's disease: optimal technique and imaging issues.
Baker, Mark E; Hara, Amy K; Platt, Joel F; Maglinte, Dean D T; Fletcher, Joel G
2015-06-01
CT enterography (CTE) is a common examination for patients with Crohn's disease. In order to achieve high quality, diagnostic images, proper technique is required. The purpose of this treatise is to review the processes and techniques that can optimize CTE for patients with suspected or known Crohn's disease. We will review the following: (1) how to start a CT enterography program; (2) workflow issues, including patient and ordering physician education and preparation; (3) oral contrast media options and administration regimens; (4) intravenous contrast media injection for uniphasic and multiphasic studies; (5) CTE radiation dose reduction strategies and the use of iterative reconstruction in lower dose examinations; (6) image reconstruction and interpretation; (7) imaging Crohn's patients in the acute or emergency department setting; (8) limitations of CTE as well as alternatives such as MRE or barium fluoroscopic examinations; and (9) dictation templates and a common nomenclature for reporting findings of CTE in Crohn's disease. Many of the issues discussed are summarized in the Abdominal Radiology Society Consensus MDCT Enterography Acquisition Protocol for Crohn's Disease.
Temperature controller optimization by computational intelligence
Directory of Open Access Journals (Sweden)
Ćojbašić Žarko M.
2016-01-01
Full Text Available In this paper a temperature control system for an automated educational classroom is optimized with several advanced computationally intelligent methods. Controller development and optimization has been based on developed and extensively tested mathematical and simulation model of the observed object. For the observed object cascade P-PI temperature controller has been designed and conventionally tuned. To improve performance and energy efficiency of the system, several metaheuristic optimizations of the controller have been attempted, namely genetic algorithm optimization, simulated annealing optimization, particle swarm optimization and ant colony optimization. Efficiency of the best results obtained with proposed computationally intelligent optimization methods has been compared with conventional controller tuning. Results presented in this paper demonstrate that heuristic optimization of advanced temperature controller can provide improved energy efficiency along with other performance improvements and improvements regarding equipment wear. Not only that presented methodology provides for determination and tuning of the core controller, but it also allows that advanced control concepts such as anti-windup controller gain are optimized simultaneously, which is of significant importance since interrelation of all control system parameters has important influence on the stability and performance of the system as a whole. Based on the results obtained, general conclusions are presented indicating that meta-heuristic computationally intelligent optimization of heating, ventilation, and air conditioning control systems is a feasible concept with strong potential in providing improved performance, comfort and energy efficiency. [Projekat Ministarstva nauke Republike Srbije, br. TR 33047 i br. TR 35016
Constrained Optimization and Optimal Control for Partial Differential Equations
Leugering, Günter; Griewank, Andreas
2012-01-01
This special volume focuses on optimization and control of processes governed by partial differential equations. The contributors are mostly participants of the DFG-priority program 1253: Optimization with PDE-constraints which is active since 2006. The book is organized in sections which cover almost the entire spectrum of modern research in this emerging field. Indeed, even though the field of optimal control and optimization for PDE-constrained problems has undergone a dramatic increase of interest during the last four decades, a full theory for nonlinear problems is still lacking. The cont
Fuzzy logic control and optimization system
Lou, Xinsheng [West Hartford, CT
2012-04-17
A control system (300) for optimizing a power plant includes a chemical loop having an input for receiving an input signal (369) and an output for outputting an output signal (367), and a hierarchical fuzzy control system (400) operably connected to the chemical loop. The hierarchical fuzzy control system (400) includes a plurality of fuzzy controllers (330). The hierarchical fuzzy control system (400) receives the output signal (367), optimizes the input signal (369) based on the received output signal (367), and outputs an optimized input signal (369) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.
AN APPLICATION OF OPTIMAL CONTROL THEORY.
The purpose of this article is to show that optimal control theory can be used to develop a control strategy for a practical system, namely a distillation column. The approach will be to model the complex system with a simple model, use optimal control theory to determine a control strategy for the simple model, and then apply the results to the original system. (Author)
Optimal Tracking Controller Design for a Small Scale Helicopter
Institute of Scientific and Technical Information of China (English)
Agus Budiyono; Singgih S. Wibowo
2007-01-01
A model helicopter is more difficult to control than its full scale counterpart. This is due to its greater sensitivity to control inputs and disturbances as well as higher bandwidth of dynamics. This work is focused on designing practical tracking controller for a small scale helicopter following predefined trajectories. A tracking controller based on optimal control theory is synthesized as a part of the development of an autonomous helicopter. Some issues with regards to control constraints are addressed.The weighting between state tracking performance and control power expenditure is analyzed. Overall performance of the control design is evaluated based on its time domain histories of trajectories as well as control inputs.
A Quasi Time Optimal Receding Horizon Control
Bania, Piotr
2007-01-01
This paper presents a quasi time optimal receding horizon control algorithm. The proposed algorithm generates near time optimal control when the state of the system is far from the target. When the state attains a certain neighbourhood of the aim, it begins the adaptation of the cost function. The purpose of this adaptation is to move from the time optimal control to the stabilizing control. Sufficient conditions for the stability of the closed loop system and the manner of the adaptation of ...
Control issues in oxy-fuel combustion
Energy Technology Data Exchange (ETDEWEB)
Snarheim, Dagfinn
2009-08-15
Combustion of fossil fuels is the major energy source in todays society. While the use of fossil fuels is a necessity for our society to function, there has been an increasing concern on the emissions of CO{sub 2} resulting from human activities. Emissions of CO{sub 2} are considered to be the main cause for the global warming and climate changes we have experienced in recent years. To fight the climate changes, the emissions of CO{sub 2} must be reduced in a timely fashion. Strategies to achieve this include switching to less carbon intensive fuels, renewable energy sources, nuclear energy and combustion with CO{sub 2} capture. The use of oxy-fuel combustion is among the alternative post- and pre combustion capture concepts, a strategy to achieve power production from fossil fuels with CO{sub 2} capture. In an oxy-fuel process, the fuel is burned in a mixture of oxygen and CO{sub 2} (or steam), leaving the exhaust consisting mainly of CO{sub 2} and steam. The steam can be removed by use of a condenser, leaving (almost) pure CO{sub 2} ready to be captured. The downside to CO{sub 2} capture is that it is expensive, both in capital cost of extra equipment, and in operation as it costs energy to capture the CO{sub 2}. Thus it is important to maximize the efficiency in such plants. One attractive concept to achieve CO{sub 2} capture by use of oxy-fuel, is a semi-closed oxy-fuel gas turbine cycle. The dynamics of such a plant are highly integrated, involving energy and mass recycle, and optimizing efficiency might lead to operational (control) challenges. In these thesis we investigate how such a power cycle should be controlled. By looking at control at such an early stage in the design phase, it is possible to find control solutions otherwise not feasible, that leads to better overall performance. Optimization is used on a nonlinear model based on first principles, to compare different control structures. Then, closed loop simulations using MPC, are used to validate
A Controlled Particle Filter for Global Optimization
Zhang, Chi; Taghvaei, Amirhossein; Mehta, Prashant G.
2017-01-01
A particle filter is introduced to numerically approximate a solution of the global optimization problem. The theoretical significance of this work comes from its variational aspects: (i) the proposed particle filter is a controlled interacting particle system where the control input represents the solution of a mean-field type optimal control problem; and (ii) the associated density transport is shown to be a gradient flow (steepest descent) for the optimal value function, with respect to th...
Optimizing Dynamical Network Structure for Pinning Control
Orouskhani, Yasin; Jalili, Mahdi; Yu, Xinghuo
2016-04-01
Controlling dynamics of a network from any initial state to a final desired state has many applications in different disciplines from engineering to biology and social sciences. In this work, we optimize the network structure for pinning control. The problem is formulated as four optimization tasks: i) optimizing the locations of driver nodes, ii) optimizing the feedback gains, iii) optimizing simultaneously the locations of driver nodes and feedback gains, and iv) optimizing the connection weights. A newly developed population-based optimization technique (cat swarm optimization) is used as the optimization method. In order to verify the methods, we use both real-world networks, and model scale-free and small-world networks. Extensive simulation results show that the optimal placement of driver nodes significantly outperforms heuristic methods including placing drivers based on various centrality measures (degree, betweenness, closeness and clustering coefficient). The pinning controllability is further improved by optimizing the feedback gains. We also show that one can significantly improve the controllability by optimizing the connection weights.
Adaptive optimization and control using neural networks
Energy Technology Data Exchange (ETDEWEB)
Mead, W.C.; Brown, S.K.; Jones, R.D.; Bowling, P.S.; Barnes, C.W.
1993-10-22
Recent work has demonstrated the ability of neural-network-based controllers to optimize and control machines with complex, non-linear, relatively unknown control spaces. We present a brief overview of neural networks via a taxonomy illustrating some capabilities of different kinds of neural networks. We present some successful control examples, particularly the optimization and control of a small-angle negative ion source.
Optimal Control of Switched Systems based on Bezier Control Points
FatemeGhomanjani; Mohammad HadiFarahi
2012-01-01
This paper presents a new approach for solving optimal control problems for switched systems. We focus on problems in which a pre-specified sequence of active subsystems is given. For such problems, we need to seek both the optimal switching instants and the optimal continuous inputs. A Bezier control points method is applied for solving an optimal control problem which is supervised by a switched dynamic system. Two steps of approximation exist here. First, the time interval is divided into ...
Optimal Control and Optimization of Stochastic Supply Chain Systems
Song, Dong-Ping
2013-01-01
Optimal Control and Optimization of Stochastic Supply Chain Systems examines its subject in the context of the presence of a variety of uncertainties. Numerous examples with intuitive illustrations and tables are provided, to demonstrate the structural characteristics of the optimal control policies in various stochastic supply chains and to show how to make use of these characteristics to construct easy-to-operate sub-optimal policies. In Part I, a general introduction to stochastic supply chain systems is provided. Analytical models for various stochastic supply chain systems are formulated and analysed in Part II. In Part III the structural knowledge of the optimal control policies obtained in Part II is utilized to construct easy-to-operate sub-optimal control policies for various stochastic supply chain systems accordingly. Finally, Part IV discusses the optimisation of threshold-type control policies and their robustness. A key feature of the book is its tying together of ...
Optimization of Temperature Controller for Electric Furnace
Institute of Scientific and Technical Information of China (English)
2000-01-01
Genetic algorithms are based on the principle of natural selection and the optimization of natural generation. We can select the number of the bit strings and mutation rate reasonably, the global optimal solution can be obtained. GAs adopt the binary code as optimizing parameter and this binary code can be used in computer controller easily. This paper studies the application of the GAs to the electric furnace temperature control. When the electric furnace mathematics model varies with the working condition, the parameter of controller can be optimized on line. So the system performance can be improved effectively.
OPTIMAL CONTROL PROBLEM FOR PARABOLIC VARIATIONAL INEQUALITIES
Institute of Scientific and Technical Information of China (English)
汪更生
2001-01-01
This paper deals with the optimal control problems of systems governed by a parabolic variational inequality coupled with a semilinear parabolic differential equations.The maximum principle and some kind of approximate controllability are studied.
Fast Solvers of Fredholm Optimal Control Problems
Institute of Scientific and Technical Information of China (English)
Mario; Borzì
2010-01-01
The formulation of optimal control problems governed by Fredholm integral equations of second kind and an efficient computational framework for solving these control problems is presented. Existence and uniqueness of optimal solutions is proved.A collective Gauss-Seidel scheme and a multigrid scheme are discussed. Optimal computational performance of these iterative schemes is proved by local Fourier analysis and demonstrated by results of numerical experiments.
Almost optimal adaptive LQ control: SISO case
Polderman, Jan W.; Daams, Jasper
2002-01-01
In this paper an almost optimal indirect adaptive controller for input/output dynamical systems is proposed. The control part of the adaptive control scheme is based on a modified LQ control law: by adding a time-varying gain to the certainty equivalent control law the conflict between
Efficient evolutionary algorithms for optimal control
López Cruz, I.L.
2002-01-01
If optimal control problems are solved by means of gradient based local search methods, convergence to local solutions is likely. Recently, there has been an increasing interest in the use of global optimisation algorithms to solve optimal control problems, wh
Connections Between Singular Control and Optimal Switching
Guo, Xin; Tomecek, Pascal
2007-01-01
This paper builds a new theoretical connection between singular control of finite variation and optimal switching problems. This correspondence provides a novel method for solving high-dimensional singular control problems, and enables us to extend the theory of reversible investment: sufficient conditions are derived for the existence of optimal controls and for the regularity of value functions. Consequently, our regularity result links singular controls and Dynkin games through sequential ...
Neural Networks for Optimal Control
DEFF Research Database (Denmark)
Sørensen, O.
1995-01-01
Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process.......Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process....
Neural Networks for Optimal Control
DEFF Research Database (Denmark)
Sørensen, O.
1995-01-01
Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process.......Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process....
Optimal switching using coherent control
DEFF Research Database (Denmark)
Kristensen, Philip Trøst; Heuck, Mikkel; Mørk, Jesper
2013-01-01
that the switching time, in general, is not limited by the cavity lifetime. Therefore, the total energy required for switching is a more relevant figure of merit than the switching speed, and for a particular two-pulse switching scheme we use calculus of variations to optimize the switching in terms of input energy....
Optimal control, optimization and asymptotic analysis of Purcell's microswimmer model
Wiezel, Oren; Or, Yizhar
2016-11-01
Purcell's swimmer (1977) is a classic model of a three-link microswimmer that moves by performing periodic shape changes. Becker et al. (2003) showed that the swimmer's direction of net motion is reversed upon increasing the stroke amplitude of joint angles. Tam and Hosoi (2007) used numerical optimization in order to find optimal gaits for maximizing either net displacement or Lighthill's energetic efficiency. In our work, we analytically derive leading-order expressions as well as next-order corrections for both net displacement and energetic efficiency of Purcell's microswimmer. Using these expressions enables us to explicitly show the reversal in direction of motion, as well as obtaining an estimate for the optimal stroke amplitude. We also find the optimal swimmer's geometry for maximizing either displacement or energetic efficiency. Additionally, the gait optimization problem is revisited and analytically formulated as an optimal control system with only two state variables, which can be solved using Pontryagin's maximum principle. It can be shown that the optimal solution must follow a "singular arc". Numerical solution of the boundary value problem is obtained, which exactly reproduces Tam and Hosoi's optimal gait.
USING OPTIMAL FEEDBACK CONTROL FOR CHAOS TARGETING
Institute of Scientific and Technical Information of China (English)
PENG ZHAO-WANG; ZHONG TING-XIU
2000-01-01
Since the conventional open-loop optimal targeting of chaos is very sensitive to noise, a close-loop optimal targeting method is proposed to improve the targeting performance under noise. The present optimal targeting model takes into consideration both precision and speed of the targeting procedure. The parameters, rather than the output, of the targeting controller, are directly optimized to obtain optimal chaos targeting. Analysis regarding the mechanism is given from physics aspect and numerical experiment on the Hénon map is carried out to compare the targeting performance under noise between the close-loop and the open-loop methods.
Optimal Control of Switched Systems based on Bezier Control Points
Directory of Open Access Journals (Sweden)
FatemeGhomanjani
2012-06-01
Full Text Available This paper presents a new approach for solving optimal control problems for switched systems. We focus on problems in which a pre-specified sequence of active subsystems is given. For such problems, we need to seek both the optimal switching instants and the optimal continuous inputs. A Bezier control points method is applied for solving an optimal control problem which is supervised by a switched dynamic system. Two steps of approximation exist here. First, the time interval is divided into k sub-intervals. Second, the trajectory and control functions are approximatedby Bezier curves in each subinterval. Bezier curves have been considered as piecewise polynomials of degree n, then they will be determined by n+1 control points on any subinterval. The optimal control problem is there by converted into a nonlinear programming problem (NLP, which can be solved by known algorithms. However in this paper the MATLAB optimization routine FMINCON is used for solving resulting NLP.
Optimal Control Development System for Electrical Drives
Directory of Open Access Journals (Sweden)
Marian GAICEANU
2008-08-01
Full Text Available In this paper the optimal electrical drive development system is presented. It consists of both electrical drive types: DC and AC. In order to implement the optimal control for AC drive system an Altivar 71 inverter, a Frato magnetic particle brake (as load, three-phase induction machine, and dSpace 1104 controller have been used. The on-line solution of the matrix Riccati differential equation (MRDE is computed by dSpace 1104 controller, based on the corresponding feedback signals, generating the optimal speed reference for the AC drive system. The optimal speed reference is tracked by Altivar 71 inverter, conducting to energy reduction in AC drive. The classical control (consisting of rotor field oriented control with PI controllers and the optimal one have been implemented by designing an adequate ControlDesk interface. The three-phase induction machine (IM is controlled at constant flux. Therefore, the linear dynamic mathematical model of the IM has been obtained. The optimal control law provides transient regimes with minimal energy consumption. The obtained solution by integration of the MRDE is orientated towards the numerical implementation-by using a zero order hold. The development system is very useful for researchers, doctoral students or experts training in electrical drive. The experimental results are shown.
Dynamic optimization and adaptive controller design
Inamdar, S. R.
2010-10-01
In this work I present a new type of controller which is an adaptive tracking controller which employs dynamic optimization for optimizing current value of controller action for the temperature control of nonisothermal continuously stirred tank reactor (CSTR). We begin with a two-state model of nonisothermal CSTR which are mass and heat balance equations and then add cooling system dynamics to eliminate input multiplicity. The initial design value is obtained using local stability of steady states where approach temperature for cooling action is specified as a steady state and a design specification. Later we make a correction in the dynamics where material balance is manipulated to use feed concentration as a system parameter as an adaptive control measure in order to avoid actuator saturation for the main control loop. The analysis leading to design of dynamic optimization based parameter adaptive controller is presented. The important component of this mathematical framework is reference trajectory generation to form an adaptive control measure.
Attitude Optimal Backstepping Controller Based Quaternion for a UAV
Directory of Open Access Journals (Sweden)
Kaddouri Djamel
2016-01-01
Full Text Available A hierarchical controller design based on nonlinear H∞ theory and backstepping technique is developed for a nonlinear and coupled dynamic attitude system using conventional quaternion based method. The derived controller combines the attractive features of H∞ optimal controller and the advantages of the backstepping technique leading to a control law which avoids winding phenomena. Performance issues of the controller are illustrated in a simulation study made for a four-rotor vertical take-off and landing (VTOL aerial robot prototype known as the quadrotor aircraft.
Optimal control of renewable economic resources
Energy Technology Data Exchange (ETDEWEB)
Adelani, L.A.
1987-01-01
Two main problems are studied: economic optimization, and determination of the optimal age of harvest for an initially immature population which follows a Bertalanffy-type growth law. Conditions are derived on the economic parameters that make maximization of economic rent biologically superior to maximization of sustainable yield. A general equation is derived for the optimal equilibrium biomass size when maximization of present value is the control objective. Also, it is shown that under perfectly elastic demand for the resource, a critical price level exists beyond which economic optimization has to be sacrificed in order to enhance conservation of the resource. An equation is derived whose solution represents the optimal age of harvest for an initially immature population stock. In certain circumstances, analytic forms are obtained for the optimal age of harvest. Some properties of the optimal age of harvest are also investigated.
Optimal Control Problems for Partial Differential Equations on Reticulated Domains
Kogut, Peter I
2011-01-01
In the development of optimal control, the complexity of the systems to which it is applied has increased significantly, becoming an issue in scientific computing. In order to carry out model-reduction on these systems, the authors of this work have developed a method based on asymptotic analysis. Moving from abstract explanations to examples and applications with a focus on structural network problems, they aim at combining techniques of homogenization and approximation. Optimal Control Problems for Partial Differential Equations on Reticulated Domains is an excellent reference tool for gradu
Optimal Control of Isometric Muscle Dynamics
Directory of Open Access Journals (Sweden)
Robert Rockenfeller
2015-03-01
Full Text Available We use an indirect optimal control approach to calculate the optimal neural stimulation needed to obtain measured isometric muscle forces. The neural stimulation of the nerve system is hereby considered to be a control function (input of the system ’muscle’ that solely determines the muscle force (output. We use a well-established muscle model and experimental data of isometric contractions. The model consists of coupled activation and contraction dynamics described by ordinary differential equations. To validate our results, we perform a comparison with commercial optimal control software.
Optimal Control of Evolution Mixed Variational Inclusions
Energy Technology Data Exchange (ETDEWEB)
Alduncin, Gonzalo, E-mail: alduncin@geofisica.unam.mx [Universidad Nacional Autónoma de México, Departamento de Recursos Naturales, Instituto de Geofísica (Mexico)
2013-12-15
Optimal control problems of primal and dual evolution mixed variational inclusions, in reflexive Banach spaces, are studied. The solvability analysis of the mixed state systems is established via duality principles. The optimality analysis is performed in terms of perturbation conjugate duality methods, and proximation penalty-duality algorithms to mixed optimality conditions are further presented. Applications to nonlinear diffusion constrained problems as well as quasistatic elastoviscoplastic bilateral contact problems exemplify the theory.
MDP Optimal Control under Temporal Logic Constraints
Ding, Xu Chu; Belta, Calin; Rus, Daniela
2011-01-01
In this paper, we develop a method to automatically generate a control policy for a dynamical system modeled as a Markov Decision Process (MDP). The control specification is given as a Linear Temporal Logic (LTL) formula over a set of propositions defined on the states of the MDP. We synthesize a control policy such that the MDP satisfies the given specification almost surely, if such a policy exists. In addition, we designate an "optimizing proposition" to be repeatedly satisfied, and we formulate a novel optimization criterion in terms of minimizing the expected cost in between satisfactions of this proposition. We propose a sufficient condition for a policy to be optimal, and develop a dynamic programming algorithm that synthesizes a policy that is optimal under some conditions, and sub-optimal otherwise. This problem is motivated by robotic applications requiring persistent tasks, such as environmental monitoring or data gathering, to be performed.
Energy Optimal Control of Induction Motor Drives
DEFF Research Database (Denmark)
Abrahamsen, Flemming
This thesis deals with energy optimal control of small and medium-size variable speed induction motor drives for especially Heating, Ventilation and Air-Condition (HVAC) applications. Optimized efficiency is achieved by adapting the magnetization level in the motor to the load, and the basic...... purpose is demonstrate how this can be done for low-cost PWM-VSI drives without bringing the robustness of the drive below an acceptable level. Four drives are investigated with respect to energy optimal control: 2.2 kW standard and high-efficiency motor drives, 22 kW and 90 kW standard motor drives....... The method has been to make extensive efficiency measurements within the specified operating area with optimized efficiency and with constant air-gap flux, and to establish reliable converter and motor loss models based on those measurements. The loss models have been used to analyze energy optimal control...
Optimal Speed Control for Cruising
DEFF Research Database (Denmark)
Blanke, M.
1994-01-01
With small profit margins in merchant shipping and more than eighty percent of sailing time being cross ocean voyages, speed control is crucial for vessel profitability......With small profit margins in merchant shipping and more than eighty percent of sailing time being cross ocean voyages, speed control is crucial for vessel profitability...
Optimal Speed Control for Cruising
DEFF Research Database (Denmark)
Blanke, M.
1994-01-01
With small profit margins in merchant shipping and more than eighty percent of sailing time being cross ocean voyages, speed control is crucial for vessel profitability......With small profit margins in merchant shipping and more than eighty percent of sailing time being cross ocean voyages, speed control is crucial for vessel profitability...
Modeling, Optimization & Control of Hydraulic Networks
DEFF Research Database (Denmark)
Tahavori, Maryamsadat
2014-01-01
to check if the network is controllable. Afterward the pressure control problem in water supply systems is formulated as an optimal control problem. The goal is to minimize the power consumption in pumps and also to regulate the pressure drop at the end-users to a desired value. The formulated optimal...... in water network is pressure management. By reducing the pressure in the water network, the leakage can be reduced significantly. Also it reduces the amount of energy consumption in water networks. The primary purpose of this work is to develop control algorithms for pressure control in water supply...... systems. To have better understanding of water leakage, to control pressure and leakage effectively and for optimal design of water supply system, suitable modeling is an important prerequisite. Therefore a model with the main objective of pressure control and consequently leakage reduction is presented...
Greenhouse climate management : an optimal control approach
Henten, van E.J.
1994-01-01
In this thesis a methodology is developed for the construction and analysis of an optimal greenhouse climate control system.
In chapter 1, the results of a literature survey are presented and the research objectives are defined. In the literature, optimal greenhouse climate
Optimal control and the calculus of variations
Pinch, Enid R
1993-01-01
This introduction to optimal control theory is intended for undergraduate mathematicians and for engineers and scientists with some knowledge of classical analysis. It includes sections on classical optimization and the calculus of variations. All the important theorems are carefully proved. There are many worked examples and exercises for the reader to attempt.
Optimization and control of metal forming processes
Havinga, Gosse Tjipke
2016-01-01
Inevitable variations in process and material properties limit the accuracy of metal forming processes. Robust optimization methods or control systems can be used to improve the production accuracy. Robust optimization methods are used to design production processes with low sensitivity to the distu
Greenhouse climate management: an optimal control approach.
Henten, van E.J.
1994-01-01
In this thesis a methodology is developed for the construction and analysis of an optimal greenhouse climate control system.In chapter 1, the results of a literature survey are presented and the research objectives are defined. In the literature, optimal greenhouse climate management systems have be
Optimal control problems with switching points
Seywald, Hans
1991-09-01
An overview is presented of the problems and difficulties that arise in solving optimal control problems with switching points. A brief discussion of existing optimality conditions is given and a numerical approach for solving the multipoint boundary value problems associated with the first-order necessary conditions of optimal control is presented. Two real-life aerospace optimization problems are treated explicitly. These are altitude maximization for a sounding rocket (Goddard Problem) in the presence of a dynamic pressure limit, and range maximization for a supersonic aircraft flying in the vertical, also in the presence of a dynamic pressure limit. In the second problem singular control appears along arcs with active dynamic pressure limit, which in the context of optimal control, represents a first-order state inequality constraint. An extension of the Generalized Legendre-Clebsch Condition to the case of singular control along state/control constrained arcs is presented and is applied to the aircraft range maximization problem stated above. A contribution to the field of Jacobi Necessary Conditions is made by giving a new proof for the non-optimality of conjugate paths in the Accessory Minimum Problem. Because of its simple and explicit character, the new proof may provide the basis for an extension of Jacobi's Necessary Condition to the case of the trajectories with interior point constraints. Finally, the result that touch points cannot occur for first-order state inequality constraints is extended to the case of vector valued control functions.
A Feedback Optimal Control Algorithm with Optimal Measurement Time Points
Directory of Open Access Journals (Sweden)
Felix Jost
2017-02-01
Full Text Available Nonlinear model predictive control has been established as a powerful methodology to provide feedback for dynamic processes over the last decades. In practice it is usually combined with parameter and state estimation techniques, which allows to cope with uncertainty on many levels. To reduce the uncertainty it has also been suggested to include optimal experimental design into the sequential process of estimation and control calculation. Most of the focus so far was on dual control approaches, i.e., on using the controls to simultaneously excite the system dynamics (learning as well as minimizing a given objective (performing. We propose a new algorithm, which sequentially solves robust optimal control, optimal experimental design, state and parameter estimation problems. Thus, we decouple the control and the experimental design problems. This has the advantages that we can analyze the impact of measurement timing (sampling independently, and is practically relevant for applications with either an ethical limitation on system excitation (e.g., chemotherapy treatment or the need for fast feedback. The algorithm shows promising results with a 36% reduction of parameter uncertainties for the Lotka-Volterra fishing benchmark example.
Optimized chaos control with simple limiters.
Wagner, C; Stoop, R
2001-01-01
We present an elementary derivation of chaos control with simple limiters using the logistic map and the Henon map as examples. This derivation provides conditions for optimal stabilization of unstable periodic orbits of a chaotic attractor.
Sample-Path Optimization of Buffer Allocations in a Tandem Queue - Part I : Theoretical Issues
Gürkan, G.; Ozge, A.Y.
1996-01-01
This is the first of two papers dealing with the optimal bu er allocation problem in tandem manufacturing lines with unreliable machines.We address the theoretical issues that arise when using sample-path optimization, a simulation-based optimization method, to solve this problem.Sample-path optimiz
The optimal control and its multiple applications
2009-01-01
In this work we refer to motivations, applications, and relations of control theory with other areas of mathematics. We present a brief historical review of optimal control theory, from its roots in the calculus of variations and the classical theory of control to the present time, giving particular emphasis to the Pontryagin maximum principle.
Multiple Objective Optimization and Optimal Control of Fermentation Processes
Directory of Open Access Journals (Sweden)
Mitko Petrov
2008-10-01
Full Text Available A multiple objective optimization is applied for finding an optimum policy of fed-batch processes of whey fermentation and L-lysine production. The multiple objective optimization problems are transformed to a standard problem of optimization with single objective function by a general utility function with weight coefficients for each single utility coefficient criteria. A combined algorithm is applied when solving the maximizing decision problem. The algorithm includes a method for random search of finding an initial point and a method based on the fuzzy sets theory, combined in order to find the best solution of the optimization problem. The application of the combined algorithm eliminates the main disadvantage of the used fuzzy optimization method, namely it decreases the number of discrete values of the control variables. Thus, the algorithm allows problems with larger scale to be solved. After this multiple optimization, the useful product quality rises and the residual substrate concentration at the end of the process decreases. In this way, the process productivity is increased.
Optimizing controllability of complex networks by minimum structural perturbations.
Wang, Wen-Xu; Ni, Xuan; Lai, Ying-Cheng; Grebogi, Celso
2012-02-01
To drive a large, complex, networked dynamical system toward some desired state using as few external signals as possible is a fundamental issue in the emerging field of controlling complex networks. Optimal control is referred to the situation where such a network can be fully controlled using only one driving signal. We propose a general approach to optimizing the controllability of complex networks by judiciously perturbing the network structure. The principle of our perturbation method is validated theoretically and demonstrated numerically for homogeneous and heterogeneous random networks and for different types of real networks as well. The applicability of our method is discussed in terms of the relative costs of establishing links and imposing external controllers. Besides the practical usage of our approach, its implementation elucidates, interestingly, the intricate relationship between certain structural properties of the network and its controllability.
Optimal impulse control problems and linear programming.
Bauso, D.
2009-01-01
Optimal impulse control problems are, in general, difficult to solve. A current research goal is to isolate those problems that lead to tractable solutions. In this paper, we identify a special class of optimal impulse control problems which are easy to solve. Easy to solve means that solution algorithms are polynomial in time and therefore suitable to the on-line implementation in real-time problems. We do this by using a paradigm borrowed from the Operations Research field. As main result, ...
Neuro-optimal control of helicopter UAVs
Nodland, David; Ghosh, Arpita; Zargarzadeh, H.; Jagannathan, S.
2011-05-01
Helicopter UAVs can be extensively used for military missions as well as in civil operations, ranging from multirole combat support and search and rescue, to border surveillance and forest fire monitoring. Helicopter UAVs are underactuated nonlinear mechanical systems with correspondingly challenging controller designs. This paper presents an optimal controller design for the regulation and vertical tracking of an underactuated helicopter using an adaptive critic neural network framework. The online approximator-based controller learns the infinite-horizon continuous-time Hamilton-Jacobi-Bellman (HJB) equation and then calculates the corresponding optimal control input that minimizes the HJB equation forward-in-time. In the proposed technique, optimal regulation and vertical tracking is accomplished by a single neural network (NN) with a second NN necessary for the virtual controller. Both of the NNs are tuned online using novel weight update laws. Simulation results are included to demonstrate the effectiveness of the proposed control design in hovering applications.
The effects of redundant control inputs in optimal control
Institute of Scientific and Technical Information of China (English)
DUAN ZhiSheng; HUANG Lin; YANG Ying
2009-01-01
For a stabillzable system,the extension of the control inputs has no use for stabllizability,but it is important for optimal control.In this paper,a necessary and sufficient condition is presented to strictly decrease the quadratic optimal performance index after control input extensions.A similar result is also provided for H_2 optimal control problem.These results show an essential difference between single-input and multi-input control systems.Several examples are taken to illustrate related problems.
Hybrid optimization schemes for quantum control
Energy Technology Data Exchange (ETDEWEB)
Goerz, Michael H.; Koch, Christiane P. [Universitaet Kassel, Theoretische Physik, Kassel (Germany); Whaley, K. Birgitta [University of California, Department of Chemistry, Berkeley, CA (United States)
2015-12-15
Optimal control theory is a powerful tool for solving control problems in quantum mechanics, ranging from the control of chemical reactions to the implementation of gates in a quantum computer. Gradient-based optimization methods are able to find high fidelity controls, but require considerable numerical effort and often yield highly complex solutions. We propose here to employ a two-stage optimization scheme to significantly speed up convergence and achieve simpler controls. The control is initially parametrized using only a few free parameters, such that optimization in this pruned search space can be performed with a simplex method. The result, considered now simply as an arbitrary function on a time grid, is the starting point for further optimization with a gradient-based method that can quickly converge to high fidelities. We illustrate the success of this hybrid technique by optimizing a geometric phase gate for two superconducting transmon qubits coupled with a shared transmission line resonator, showing that a combination of Nelder-Mead simplex and Krotov's method yields considerably better results than either one of the two methods alone. (orig.)
Chemical optimization algorithm for fuzzy controller design
Astudillo, Leslie; Castillo, Oscar
2014-01-01
In this book, a novel optimization method inspired by a paradigm from nature is introduced. The chemical reactions are used as a paradigm to propose an optimization method that simulates these natural processes. The proposed algorithm is described in detail and then a set of typical complex benchmark functions is used to evaluate the performance of the algorithm. Simulation results show that the proposed optimization algorithm can outperform other methods in a set of benchmark functions. This chemical reaction optimization paradigm is also applied to solve the tracking problem for the dynamic model of a unicycle mobile robot by integrating a kinematic and a torque controller based on fuzzy logic theory. Computer simulations are presented confirming that this optimization paradigm is able to outperform other optimization techniques applied to this particular robot application
OPTIMAL OPERATIONAL CONTROL OF INTERCEPTOR SEWER SYSTEM
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
In this paper, a mathematical model was built up to solve the problem of optimal operational control by analysing the factors on an interceptor sewer system and a Fortran program was produced for this model. This paper shows that the optimal control states can be determined by working out the optimal flow rates by means of Linear Programming (LP). The result is very sensitive to interception points and the concentration weight coefficients over time. The result further highlights some practical applications for the existing sewer systems or the sewer systems under design.
Investigation on evolutionary optimization of chaos control
Energy Technology Data Exchange (ETDEWEB)
Zelinka, Ivan [Faculty of Applied Informatics, Tomas Bata University in Zli' n, Nad Stranemi 4511, 762 72 Zli' n (Czech Republic)], E-mail: zelinka@fai.utb.cz; Senkerik, Roman [Faculty of Applied Informatics, Tomas Bata University in Zli' n, Nad Stranemi 4511, 762 72 Zli' n (Czech Republic)], E-mail: senkerik@fai.utb.cz; Navratil, Eduard [Faculty of Applied Informatics, Tomas Bata University in Zli' n, Nad Stranemi 4511, 762 72 Zli' n (Czech Republic)], E-mail: enavratil@fai.utb.cz
2009-04-15
This work deals with an investigation on optimization of the feedback control of chaos based on the use of evolutionary algorithms. The main objective is to show that evolutionary algorithms are capable of optimization of chaos control. As models of deterministic chaotic systems, one-dimensional Logistic equation and two-dimensional Henon map were used. The optimizations were realized in several ways, each one for another set of parameters of evolution algorithms or separate cost functions. The evolutionary algorithm SOMA (self-organizing migrating algorithm) was used in four versions. For each version simulations were repeated several times to show and check for robustness of the applied method.
Rapid Optimal Generation Algorithm for Terrain Following Trajectory Based on Optimal Control
Institute of Scientific and Technical Information of China (English)
杨剑影; 张海; 谢邦荣; 尹健
2004-01-01
Based on the optimal control theory, a 3-dimensionnal direct generation algorithm is proposed for anti-ground low altitude penetration tasks under complex terrain. By optimizing the terrain following(TF) objective function,terrain coordinate system, missile dynamic model and control vector, the TF issue is turning into the improved optimal control problem whose mathmatical model is simple and need not solve the second order terrain derivative. Simulation results prove that this method is reasonable and feasible. The TF precision is in the scope from 0.3 m to 3.0 m,and the planning time is less than 30 min. This method have the strongpionts such as rapidness, precision and has great application value.
Optimal Wentzell Boundary Control of Parabolic Equations
Energy Technology Data Exchange (ETDEWEB)
Luo, Yousong, E-mail: yousong.luo@rmit.edu.au [RMIT University, School of Mathematical and Geospatial Sciences (Australia)
2017-04-15
This paper deals with a class of optimal control problems governed by an initial-boundary value problem of a parabolic equation. The case of semi-linear boundary control is studied where the control is applied to the system via the Wentzell boundary condition. The differentiability of the state variable with respect to the control is established and hence a necessary condition is derived for the optimal solution in the case of both unconstrained and constrained problems. The condition is also sufficient for the unconstrained convex problems. A second order condition is also derived.
Optimal control problem for the extended Fisher–Kolmogorov equation
Indian Academy of Sciences (India)
Ning Duan
2016-02-01
In this paper, the optimal control problem for the extended Fisher–Kolmogorov equation is studied. The optimal control under boundary condition is given, the existence of optimal solution to the equation is proved and the optimality system is established.
Optimal control novel directions and applications
Aronna, Maria; Kalise, Dante
2017-01-01
Focusing on applications to science and engineering, this book presents the results of the ITN-FP7 SADCO network’s innovative research in optimization and control in the following interconnected topics: optimality conditions in optimal control, dynamic programming approaches to optimal feedback synthesis and reachability analysis, and computational developments in model predictive control. The novelty of the book resides in the fact that it has been developed by early career researchers, providing a good balance between clarity and scientific rigor. Each chapter features an introduction addressed to PhD students and some original contributions aimed at specialist researchers. Requiring only a graduate mathematical background, the book is self-contained. It will be of particular interest to graduate and advanced undergraduate students, industrial practitioners and to senior scientists wishing to update their knowledge.
OPTIMAL CONTROL FOR ELECTRIC VEHICLE STABILIZATION
Directory of Open Access Journals (Sweden)
MARIAN GAICEANU
2016-01-01
Full Text Available This main objective of the paper is to stabilize an electric vehicle in optimal manner to a step lane change maneuver. To define the mathematical model of the vehicle, the rigid body moving on a plane is taken into account. An optimal lane keeping controller delivers the adequate angles in order to stabilize the vehicle’s trajectory in an optimal way. Two degree of freedom linear bicycle model is adopted as vehicle model, consisting of lateral and yaw motion equations. The proposed control maintains the lateral stability by taking the feedback information from the vehicle transducers. In this way only the lateral vehicle’s dynamics are enough to considerate. Based on the obtained linear mathematical model the quadratic optimal control is designed in order to maintain the lateral stability of the electric vehicle. The numerical simulation results demonstrate the feasibility of the proposed solution.
Directory of Open Access Journals (Sweden)
Serrao L.
2013-03-01
Full Text Available Energy management of hybrid propulsion systems is considered, presenting new issues that extend the energy management role beyond the standard torque splitting to maximize system efficiency. The new issues include additional optimization criteria, constraints and relevant dynamics to deal with. New optimization criteria in addition the sole fuel consumption minimization include engine-out pollutant emissions and battery aging. State constraints are modified to account for plug-in hybrid vehicles. Moreover, specific supervisory control problems are recognized to need additional state variables. The latter comprise: engine and catalyst temperature to deal with engine warm-up effects on fuel consumption and after-catalyst emissions; thermal dynamics of heat recovery systems (Rankine or Thermo-Electric Generators, TEGs; and battery temperature, which influences battery performance and aging. It is shown that all these control problems can be treated in an unified fashion by extending the well-known ECMS (Equivalent Consumption Minimization Strategy, which is an implementation of Pontryagin Minimum Principle (PMP as formulated by optimal control theory. Extended definitions of the Hamiltonian function and Lagrange multipliers are introduced. Optimization runs performed off line are reported. Results show the benefits of the proposed unified approach and enlighten some first online implementation issues. Cet article a pour objet la gestion optimale de l’énergie pour un système de propulsion hybride. Le problème traditionnel de répartition de la puissance est modifié avec des nouveaux objectifs d’optimisation et des nouvelles contraintes. Les nouveaux objectifs d’optimisation incluent les émissions de polluants et le vieillissement de la batterie. Les contraintes sont modifiées pour prendre en compte des batteries à recharge externe (hybrides plug-in. De plus, des problèmes spécifiques sont traités avec une modélisation plus d
Optimal control of a CSTR process
Directory of Open Access Journals (Sweden)
A. Soukkou
2008-12-01
Full Text Available Designing an effective criterion and learning algorithm for find the best structure is a major problem in the control design process. In this paper, the fuzzy optimal control methodology is applied to the design of the feedback loops of an Exothermic Continuous Stirred Tank Reactor system. The objective of design process is to find an optimal structure/gains of the Robust and Optimal Takagi Sugeno Fuzzy Controller (ROFLC. The control signal thus obtained will minimize a performance index, which is a function of the tracking/regulating errors, the quantity of the energy of the control signal applied to the system, and the number of fuzzy rules. The genetic learning is proposed for constructing the ROFLC. The chromosome genes are arranged into two parts, the binary-coded part contains the control genes and the real-coded part contains the genes parameters representing the fuzzy knowledge base. The effectiveness of this chromosome formulation enables the fuzzy sets and rules to be optimally reduced. The performances of the ROFLC are compared to these found by the traditional PD controller with Genetic Optimization (PD_GO. Simulations demonstrate that the proposed ROFLC and PD_GO has successfully met the design specifications.
Optimal Control of Active Recoil Mechanisms
1977-02-01
pressures in different chambers, rod pull are available and can be plotted. A linear state feedback control system is proposed to adapt this...desirable. A linear state feedback control system with variable gains is proposed in the report. A separate control law is designed for each...optimization algorithm to choose a feasible solution. 27 3.3 Results for M-37 Recoil Mechanism The linear state feedback control system and
Controlling Stock and Other Inventory Issues
Institute of Scientific and Technical Information of China (English)
CHRIS; DEVONSHIRE-ELLIS
2008-01-01
Inventory control is one of the most important business processes during the operation of a trading or manufacturing company as it relates to purchases,sales and logistic activities.In order to have clear inventory management,a company should not only focus on logistic management but also on sales and purchase management. Commonly,we think of the warehouse as the most important component of inventory management and the accounting department is responsible for the inventory management. However,inventory control is not only the responsibility of the accounting department and the warehouse,but also the responsibility of the entire organization.Actually,there are many departments involved in the inventory control process,such as sales,purchasing, production,logistics and accounting.All these departments must work together in or- der to achieve effective inventory controls.
Optimization problems for switched systems with impulsive control
Institute of Scientific and Technical Information of China (English)
Junhao HU; Huayou WANG; Xinzhi LIU; Bin LIU
2005-01-01
By using Impulsive Maximum Principal and three stage optimization method,this paper discusses optimization problems for linear impulsive switched systems with hybrid controls,which includes continuous control and impulsive control.The linear quadratic optimization problems without constraints such as optimal hybrid control,optimal stability and optimal switching instants are addressed in detail.These results are applicable to optimal control problems in economics,mechanics,and management.
Centralized Stochastic Optimal Control of Complex Systems
Energy Technology Data Exchange (ETDEWEB)
Malikopoulos, Andreas [ORNL
2015-01-01
In this paper we address the problem of online optimization of the supervisory power management control in parallel hybrid electric vehicles (HEVs). We model HEV operation as a controlled Markov chain using the long-run expected average cost per unit time criterion, and we show that the control policy yielding the Pareto optimal solution minimizes the average cost criterion online. The effectiveness of the proposed solution is validated through simulation and compared to the solution derived with dynamic programming using the average cost criterion.
Cyclic Control Optimization for a Smart Rotor
DEFF Research Database (Denmark)
Bergami, Leonardo; Henriksen, Lars Christian
2012-01-01
The paper presents a method to determine cyclic control trajectories for a smart rotor undergoing periodic-deterministic load variations. The control trajectories result from a constrained optimization problem, where the cost function to minimize is given by the variation of the blade root flapwise...... bending moment within a rotor revolution. The method is applied to a rotor equipped with trailing edge flaps, and capable of individual blade pitching. Results show that the optimized cyclic control significantly alleviates the load variations from periodic disturbances; the combination of both cyclic...
An example in linear quadratic optimal control
Weiss, George; Zwart, Heiko J.
1998-01-01
We construct a simple example of a quadratic optimal control problem for an infinite-dimensional linear system based on a shift semigroup. This system has an unbounded control operator. The cost is quadratic in the input and the state, and the weighting operators are bounded. Despite its extreme
An example in linear quadratic optimal control
Weiss, George; Zwart, Heiko J.
1998-01-01
We construct a simple example of a quadratic optimal control problem for an infinite-dimensional linear system based on a shift semigroup. This system has an unbounded control operator. The cost is quadratic in the input and the state, and the weighting operators are bounded. Despite its extreme sim
Optimal control of nonsmooth distributed parameter systems
Tiba, Dan
1990-01-01
The book is devoted to the study of distributed control problems governed by various nonsmooth state systems. The main questions investigated include: existence of optimal pairs, first order optimality conditions, state-constrained systems, approximation and discretization, bang-bang and regularity properties for optimal control. In order to give the reader a better overview of the domain, several sections deal with topics that do not enter directly into the announced subject: boundary control, delay differential equations. In a subject still actively developing, the methods can be more important than the results and these include: adapted penalization techniques, the singular control systems approach, the variational inequality method, the Ekeland variational principle. Some prerequisites relating to convex analysis, nonlinear operators and partial differential equations are collected in the first chapter or are supplied appropriately in the text. The monograph is intended for graduate students and for resea...
Optimal performance of constrained control systems
Harvey, P. Scott, Jr.; Gavin, Henri P.; Scruggs, Jeffrey T.
2012-08-01
This paper presents a method to compute optimal open-loop trajectories for systems subject to state and control inequality constraints in which the cost function is quadratic and the state dynamics are linear. For the case in which inequality constraints are decentralized with respect to the controls, optimal Lagrange multipliers enforcing the inequality constraints may be found at any time through Pontryagin’s minimum principle. In so doing, the set of differential algebraic Euler-Lagrange equations is transformed into a nonlinear two-point boundary-value problem for states and costates whose solution meets the necessary conditions for optimality. The optimal performance of inequality constrained control systems is calculable, allowing for comparison to previous, sub-optimal solutions. The method is applied to the control of damping forces in a vibration isolation system subjected to constraints imposed by the physical implementation of a particular controllable damper. An outcome of this study is the best performance achievable given a particular objective, isolation system, and semi-active damper constraints.
Computational Methods for Design, Control and Optimization
2007-10-01
34scenario" that applies to channel flows ( Poiseuille flows , Couette flow ) and pipe flows . Over the past 75 years many complex "transition theories" have...other areas of flow control, optimization and aerodynamic design. approximate sensitivity calculations and optimization codes. The effort was built on a...for fluid flow problems. The improved robustness and computational efficiency of this approach makes it practical for a wide class of problems. The
FEEDBACK CONTROL OPTIMIZATION FOR SEISMICALLY EXCITED BUILDINGS
Institute of Scientific and Technical Information of China (English)
Xueping Li; Zuguang Ying
2007-01-01
A feedback control optimization method of partially observable linear structures via stationary response is proposed and analyzed with linear building structures equipped with control devices and sensors. First, the partially observable control problem of the structure under horizontal ground acceleration excitation is converted into a completely observable control problem. Then the It(o) stochastic differential equations of the system are derived based on the stochastic averaging method for quasi-integrable Hamiltonian systems and the stationary solution to the Fokker-Plank-Kolmogorov (FPK) equation associated with the It(o) equations is obtained.The performance index in terms of the mean system energy and mean square control force is established and the optimal control force is obtained by minimizing the performance index. Finally, the numerical results for a three-story building structure model under El Centro, Hachinohe,Northridge and Kobe earthquake excitations are given to illustrate the application and the effectiveness of the proposed method.
Multimodel methods for optimal control of aeroacoustics.
Energy Technology Data Exchange (ETDEWEB)
Chen, Guoquan (Rice University, Houston, TX); Collis, Samuel Scott
2005-01-01
A new multidomain/multiphysics computational framework for optimal control of aeroacoustic noise has been developed based on a near-field compressible Navier-Stokes solver coupled with a far-field linearized Euler solver both based on a discontinuous Galerkin formulation. In this approach, the coupling of near- and far-field domains is achieved by weakly enforcing continuity of normal fluxes across a coupling surface that encloses all nonlinearities and noise sources. For optimal control, gradient information is obtained by the solution of an appropriate adjoint problem that involves the propagation of adjoint information from the far-field to the near-field. This computational framework has been successfully applied to study optimal boundary-control of blade-vortex interaction, which is a significant noise source for helicopters on approach to landing. In the model-problem presented here, the noise propagated toward the ground is reduced by 12dB.
Optimal control applications in electric power systems
Christensen, G S; Soliman, S A
1987-01-01
Significant advances in the field of optimal control have been made over the past few decades. These advances have been well documented in numerous fine publications, and have motivated a number of innovations in electric power system engineering, but they have not yet been collected in book form. Our purpose in writing this book is to provide a description of some of the applications of optimal control techniques to practical power system problems. The book is designed for advanced undergraduate courses in electric power systems, as well as graduate courses in electrical engineering, applied mathematics, and industrial engineering. It is also intended as a self-study aid for practicing personnel involved in the planning and operation of electric power systems for utilities, manufacturers, and consulting and government regulatory agencies. The book consists of seven chapters. It begins with an introductory chapter that briefly reviews the history of optimal control and its power system applications and also p...
2016 Network Games, Control, and Optimization Conference
Jimenez, Tania; Solan, Eilon
2017-01-01
This contributed volume offers a collection of papers presented at the 2016 Network Games, Control, and Optimization conference (NETGCOOP), held at the University of Avignon in France, November 23-25, 2016. These papers highlight the increasing importance of network control and optimization in many networking application domains, such as mobile and fixed access networks, computer networks, social networks, transportation networks, and, more recently, electricity grids and biological networks. Covering a wide variety of both theoretical and applied topics in the areas listed above, the authors explore several conceptual and algorithmic tools that are needed for efficient and robust control operation, performance optimization, and better understanding the relationships between entities that may be acting cooperatively or selfishly in uncertain and possibly adversarial environments. As such, this volume will be of interest to applied mathematicians, computer scientists, engineers, and researchers in other relate...
Hypertension: issues in control and resistance.
Wofford, Marion R; Minor, Deborah S
2009-10-01
Hypertension remains uncontrolled in more than 50% of treated patients. Barriers to hypertension control include those that are patient-related, physician-related, and related to the health system. Identification of uncontrolled hypertension, pseudoresistant hyper-tension, and resistant hypertension require thoughtful attention to accurate blood pressure measurement, lifestyle factors, evaluation for secondary causes of hypertension, and proper treatment. Recent guidelines emphasize the importance of aggressive treatment and referral to hypertension specialists for patients with resistant hypertension, defined as blood pressure that remains above goal despite the use of three appropriate anti-hypertensive agents.
Optimal design issues of a gas-to-liquid process
Energy Technology Data Exchange (ETDEWEB)
Rafiee, Ahmad
2012-07-01
Interests in Fischer-Tropsch (FT) synthesis is increasing rapidly due to the recent improvements of the technology, clean-burning fuels (low sulphur, low aromatics) derived from the FT process and the realization that the process can be used to monetize stranded natural gas resources. The economy of GTL plants depends very much on the natural gas price and there is a strong incentive to reduce the investment cost and in addition there is a need to improve energy efficiency and carbon efficiency. A model is constructed based on the available information in open literature. This model is used to simulate the GTL process with UNISIM DESIGN process simulator. In the FT reactor with cobalt based catalyst, Co2 is inert and will accumulate in the system. Five placements of Co2 removal unit in the GTL process are evaluated from an economical point of view. For each alternative, the process is optimized with respect to steam to carbon ratio, purge ratio of light ends, amount of tail gas recycled to syngas and FT units, reactor volume, and Co2 recovery. The results show that carbon and energy efficiencies and the annual net cash flow of the process with or without Co2 removal unit are not significantly different and there is not much to gain by removing Co2 from the process. It is optimal to recycle about 97 % of the light ends to the process (mainly to the FT unit) to obtain higher conversion of CO and H2 in the reactor. Different syngas configurations in a gas-to-liquid (GTL) plant are studied including auto-thermal reformer (ATR), combined reformer, and series arrangement of Gas Heated Reformer (GHR) and ATR. The Fischer-Tropsch (FT) reactor is based on cobalt catalyst and the degrees of freedom are; steam to carbon ratio, purge ratio of light ends, amount of tail gas recycled to synthesis gas (syngas) and Fischer-Tropsch (FT) synthesis units, and reactor volume. The production rate of liquid hydrocarbons is maximized for each syngas configuration. Installing a steam
Stochastic Optimal Control Models for Online Stores
Bradonjić, Milan
2011-01-01
We present a model for the optimal design of an online auction/store by a seller. The framework we use is a stochastic optimal control problem. In our setting, the seller wishes to maximize her average wealth level, where she can control her price per unit via her reputation level. The corresponding Hamilton-Jacobi-Bellmann equation is analyzed for an introductory case. We then turn to an empirically justified model, and present introductory analysis. In both cases, {\\em pulsing} advertising strategies are recovered for resource allocation. Further numerical and functional analysis will appear shortly.
Optimal control application to an Ebola model
Institute of Scientific and Technical Information of China (English)
Ebenezer Bonyah; Kingsley Badu; Samuel Kwesi Asiedu-Addo
2016-01-01
Ebola virus is a severe,frequently fatal illness,with a case fatality rate up to 90%.The outbreak of the disease has been acknowledged by World Health Organization as Public Health Emergency of International Concern.The threat of Ebola in West Africa is still a major setback to the socioeconomic development.Optimal control theory is applied to a system of ordinary differential equations which is modeling Ebola infection through three different routes including contact between humans and a dead body.In an attempt to reduce infection in susceptible population,a preventive control is put in the form of education and campaign and two treatment controls are applied to infected and late-stage infected(super) human population.The Pontryagins maximum principle is employed to characterize optimality control,which is then solved numerically.It is observed that time optimal control is existed in the model.The activation of each control showed a positive reduction of infection.The overall effect of activation of all the controls simultaneously reduced the effort required for the reduction of the infection quickly.The obtained results present a good framework for planning and designing cost-effective strategies for good interventions in dealing with Ebola disease.It is established that in order to reduce Ebola threat all the three controls must be taken into consideration concurrently.
OPTIMAL CONTROL ALGORITHMS FOR SECOND ORDER SYSTEMS
Directory of Open Access Journals (Sweden)
Danilo Pelusi
2013-01-01
Full Text Available Proportional Integral Derivative (PID controllers are widely used in industrial processes for their simplicity and robustness. The main application problems are the tuning of PID parameters to obtain good settling time, rise time and overshoot. The challenge is to improve the timing parameters to achieve optimal control performances. Remarkable findings are obtained through the use of Artificial Intelligence techniques as Fuzzy Logic, Genetic Algorithms and Neural Networks. The combination of these theories can give good results in terms of settling time, rise time and overshoot. In this study, suitable controllers able of improving timing performance of second order plants are proposed. The results show that the PID controller has good overshoot values and shows optimal robustness. The genetic-fuzzy controller gives a good value of settling time and a very good overshoot value. The neural-fuzzy controller gives the best timing parameters improving the control performances of the others two approaches. Further improvements are achieved designing a real-time optimization algorithm which works on a genetic-neuro-fuzzy controller.
Directory of Open Access Journals (Sweden)
Alireza Khosravi
2012-03-01
Full Text Available This paper deals with the design of optimal backstepping controller, by using the chaotic particle swarm optimization (CPSO algorithm to control of chaos in Lure like chaotic system. The backstepping method consists of parameters which could have positive values. The parameters are usually chosen optional by trial and error method. The controlled system provides different behaviors for different values of the parameters. It is necessary to select proper parameters to obtain a good response, because the improper selection of the parameters leads to inappropriate responses or even may lead to instability of the system. The proposed optimal backstepping controller without trial and error determines the parameters of backstepping controller automatically and intelligently by minimizing the Integral of Time multiplied Absolute Error (ITAE and squared controller output. Finally, the efficiency of the proposed optimal backstepping controller (OBSC is illustrated by implementing the method on the Lure like chaotic system.
Optimal Investment Control of Macroeconomic Systems
Institute of Scientific and Technical Information of China (English)
ZHAO Ke-jie; LIU Chuan-zhe
2006-01-01
Economic growth is always accompanied by economic fluctuation. The target of macroeconomic control is to keep a basic balance of economic growth, accelerate the optimization of economic structures and to lead a rapid, sustainable and healthy development of national economies, in order to propel society forward. In order to realize the above goal, investment control must be regarded as the most important policy for economic stability. Readjustment and control of investment includes not only control of aggregate investment, but also structural control which depends on economic-technology relationships between various industries of a national economy. On the basis of the theory of a generalized system, an optimal investment control model for government has been developed. In order to provide a scientific basis for government to formulate a macroeconomic control policy, the model investigates the balance of total supply and aggregate demand through an adjustment in investment decisions realizes a sustainable and stable growth of the national economy. The optimal investment decision function proposed by this study has a unique and specific expression, high regulating precision and computable characteristics.
Optimal control of anthracnose using mixed strategies.
Fotsa Mbogne, David Jaures; Thron, Christopher
2015-11-01
In this paper we propose and study a spatial diffusion model for the control of anthracnose disease in a bounded domain. The model is a generalization of the one previously developed in [15]. We use the model to simulate two different types of control strategies against anthracnose disease. Strategies that employ chemical fungicides are modeled using a continuous control function; while strategies that rely on cultivational practices (such as pruning and removal of mummified fruits) are modeled with a control function which is discrete in time (though not in space). For comparative purposes, we perform our analyses for a spatially-averaged model as well as the space-dependent diffusion model. Under weak smoothness conditions on parameters we demonstrate the well-posedness of both models by verifying existence and uniqueness of the solution for the growth inhibition rate for given initial conditions. We also show that the set [0, 1] is positively invariant. We first study control by impulsive strategies, then analyze the simultaneous use of mixed continuous and pulse strategies. In each case we specify a cost functional to be minimized, and we demonstrate the existence of optimal control strategies. In the case of pulse-only strategies, we provide explicit algorithms for finding the optimal control strategies for both the spatially-averaged model and the space-dependent model. We verify the algorithms for both models via simulation, and discuss properties of the optimal solutions. Copyright © 2015 Elsevier Inc. All rights reserved.
Optimal Control Design with Limited Model Information
Farokhi, F; Johansson, K H
2011-01-01
We introduce the family of limited model information control design methods, which construct controllers by accessing the plant's model in a constrained way, according to a given design graph. We investigate the achievable closed-loop performance of discrete-time linear time-invariant plants under a separable quadratic cost performance measure with structured static state-feedback controllers. We find the optimal control design strategy (in terms of the competitive ratio and domination metrics) when the control designer has access to the local model information and the global interconnection structure of the plant-to-be-controlled. At last, we study the trade-off between the amount of model information exploited by a control design method and the best closed-loop performance (in terms of the competitive ratio) of controllers it can produce.
Optimally Controlled Flexible Fuel Powertrain System
Energy Technology Data Exchange (ETDEWEB)
Hakan Yilmaz; Mark Christie; Anna Stefanopoulou
2010-12-31
The primary objective of this project was to develop a true Flex Fuel Vehicle capable of running on any blend of ethanol from 0 to 85% with reduced penalty in usable vehicle range. A research and development program, targeting 10% improvement in fuel economy using a direct injection (DI) turbocharged spark ignition engine was conducted. In this project a gasoline-optimized high-technology engine was considered and the hardware and configuration modifications were defined for the engine, fueling system, and air path. Combined with a novel engine control strategy, control software, and calibration this resulted in a highly efficient and clean FFV concept. It was also intended to develop robust detection schemes of the ethanol content in the fuel integrated with adaptive control algorithms for optimized turbocharged direct injection engine combustion. The approach relies heavily on software-based adaptation and optimization striving for minimal modifications to the gasoline-optimized engine hardware system. Our ultimate objective was to develop a compact control methodology that takes advantage of any ethanol-based fuel mixture and not compromise the engine performance under gasoline operation.
An asymptotically optimal nonparametric adaptive controller
Institute of Scientific and Technical Information of China (English)
郭雷; 谢亮亮
2000-01-01
For discrete-time nonlinear stochastic systems with unknown nonparametric structure, a kernel estimation-based nonparametric adaptive controller is constructed based on truncated certainty equivalence principle. Global stability and asymptotic optimality of the closed-loop systems are established without resorting to any external excitations.
On Optimal Control of a Brownian Motion.
1982-06-01
barriers. Puterman [9] uses diffusion processes to model production and inventory processes. In both cases they assume the existence of a stationary... Puterman , A diffusion model for a storage system, Logistic, M. Geisler ed., North-Holland 197S. [101 J. Rath, The optimal policy for a controlled
Optimizing discrete control systems with phase limitations
Energy Technology Data Exchange (ETDEWEB)
Shakhverdian, S.B.; Abramian, A.K.
1981-01-01
A new method is proposed for solving discrete problems of optimizing control systems with limitations on the phase coordinates. Results are given from experimental research which demonstrate the need to introduce tangential limitations independent of the method of accounting for the phase limitations.
Efficient evolutionary algorithms for optimal control
López Cruz, I.L.
2002-01-01
If optimal control problems are solved by means of gradient based local search methods, convergence to local solutions is likely. Recently, there has been an increasing interest in the use
Determination of optimal gains for constrained controllers
Energy Technology Data Exchange (ETDEWEB)
Kwan, C.M.; Mestha, L.K.
1993-08-01
In this report, we consider the determination of optimal gains, with respect to a certain performance index, for state feedback controllers where some elements in the gain matrix are constrained to be zero. Two iterative schemes for systematically finding the constrained gain matrix are presented. An example is included to demonstrate the procedures.
Optimization-based controller design for rotorcraft
Tsing, N.-K.; Fan, M. K. H.; Barlow, J.; Tits, A. L.; Tischler, M. B.
1993-01-01
An optimization-based methodology for linear control system design is outlined by considering the design of a controller for a UH-60 rotorcraft in hover. A wide range of design specifications is taken into account: internal stability, decoupling between longitudinal and lateral motions, handling qualities, and rejection of windgusts. These specifications are investigated while taking into account physical limitations in the swashplate displacements and rates of displacement. The methodology crucially relies on user-machine interaction for tradeoff exploration.
Efstratiadis, Andreas; Tsoukalas, Ioannis; Kossieris, Panayiotis; Karavokiros, George; Christofides, Antonis; Siskos, Alexandros; Mamassis, Nikos; Koutsoyiannis, Demetris
2015-04-01
Modelling of large-scale hybrid renewable energy systems (HRES) is a challenging task, for which several open computational issues exist. HRES comprise typical components of hydrosystems (reservoirs, boreholes, conveyance networks, hydropower stations, pumps, water demand nodes, etc.), which are dynamically linked with renewables (e.g., wind turbines, solar parks) and energy demand nodes. In such systems, apart from the well-known shortcomings of water resources modelling (nonlinear dynamics, unknown future inflows, large number of variables and constraints, conflicting criteria, etc.), additional complexities and uncertainties arise due to the introduction of energy components and associated fluxes. A major difficulty is the need for coupling two different temporal scales, given that in hydrosystem modeling, monthly simulation steps are typically adopted, yet for a faithful representation of the energy balance (i.e. energy production vs. demand) a much finer resolution (e.g. hourly) is required. Another drawback is the increase of control variables, constraints and objectives, due to the simultaneous modelling of the two parallel fluxes (i.e. water and energy) and their interactions. Finally, since the driving hydrometeorological processes of the integrated system are inherently uncertain, it is often essential to use synthetically generated input time series of large length, in order to assess the system performance in terms of reliability and risk, with satisfactory accuracy. To address these issues, we propose an effective and efficient modeling framework, key objectives of which are: (a) the substantial reduction of control variables, through parsimonious yet consistent parameterizations; (b) the substantial decrease of computational burden of simulation, by linearizing the combined water and energy allocation problem of each individual time step, and solve each local sub-problem through very fast linear network programming algorithms, and (c) the substantial
Helicopter trajectory planning using optimal control theory
Menon, P. K. A.; Cheng, V. H. L.; Kim, E.
1988-01-01
A methodology for optimal trajectory planning, useful in the nap-of-the-earth guidance of helicopters, is presented. This approach uses an adjoint-control transformation along with a one-dimensional search scheme for generating the optimal trajectories. In addition to being useful for helicopter nap-of-the-earth guidance, the trajectory planning solution is of interest in several other contexts, such as robotic vehicle guidance and terrain-following guidance for cruise missiles and aircraft. A distinguishing feature of the present research is that the terrain constraint and the threat envelopes are incorporated in the equations of motion. Second-order necessary conditions are examined.
Optimal control of vibrational transitions of HCl
Indian Academy of Sciences (India)
KRISHNA REDDY NANDIPATI; ARUN KUMAR KANAKATI
2016-10-01
Control of fundamental and overtone transitions of a vibration are studied for the diatomic molecule, HCl. Specifically, the results of the effect of variation of the penalty factor on the physical attributes of the system (i.e., probabilities) and pulse (i.e., amplitudes) considering three different pulse durations for each value of the penalty factor are shown and discussed. We have employed the optimal control theory to obtain infrared pulses for selective vibrational transitions. The optimization of initial guess field with Gaussian envelope, phrased as maximization of cost functional, is done using the conjugate gradient method. The interaction of the field with the molecule is treated within the semiclassical dipole approximation. The potential and the dipole moment functions used in the calculations of control dynamics are obtained from high level ab-initio calculations.
Maximum process problems in optimal control theory
Directory of Open Access Journals (Sweden)
Goran Peskir
2005-01-01
Full Text Available Given a standard Brownian motion (Btt≥0 and the equation of motion dXt=vtdt+2dBt, we set St=max0≤s≤tXs and consider the optimal control problem supvE(Sτ−Cτ, where c>0 and the supremum is taken over all admissible controls v satisfying vt∈[μ0,μ1] for all t up to τ=inf{t>0|Xt∉(ℓ0,ℓ1} with μ0g∗(St, where s↦g∗(s is a switching curve that is determined explicitly (as the unique solution to a nonlinear differential equation. The solution found demonstrates that the problem formulations based on a maximum functional can be successfully included in optimal control theory (calculus of variations in addition to the classic problem formulations due to Lagrange, Mayer, and Bolza.
On the Optimal Controller for LTV Measurement Feedback Control Problem
Institute of Scientific and Technical Information of China (English)
Ting GONG; Yu Feng LU
2011-01-01
In this paper, we consider the measurement feedback control problem for discrete linear time-varying systems within the framework of nest algebra consisting of causal and bounded linear operators. Based on the inner-outer factorization of operators, we reduce the control problem to a distance from a certain operator to a special subspace of a nest algebra and show the existence of the optimal LTV controller in two different ways: one via the characteristic of the subspace in question directly, the other via the duality theory. The latter also gives a new formula for computing the optimal cost.
Optimization Algorithms for Nuclear Reactor Power Control
Energy Technology Data Exchange (ETDEWEB)
Kim, Yeong Min; Oh, Won Jong; Oh, Seung Jin; Chun, Won Gee; Lee, Yoon Joon [Jeju National University, Jeju (Korea, Republic of)
2010-10-15
One of the control techniques that could replace the present conventional PID controllers in nuclear plants is the linear quadratic regulator (LQR) method. The most attractive feature of the LQR method is that it can provide the systematic environments for the control design. However, the LQR approach heavily depends on the selection of cost function and the determination of the suitable weighting matrices of cost function is not an easy task, particularly when the system order is high. The purpose of this paper is to develop an efficient and reliable algorithm that could optimize the weighting matrices of the LQR system
Robust Structured Control Design via LMI Optimization
DEFF Research Database (Denmark)
Adegas, Fabiano Daher; Stoustrup, Jakob
2011-01-01
This paper presents a new procedure for discrete-time robust structured control design. Parameter-dependent nonconvex conditions for stabilizable and induced L2-norm performance controllers are solved by an iterative linear matrix inequalities (LMI) optimization. A wide class of controller...... structures including decentralized of any order, ﬁxed-order dynamic output feedback, static output feedback can be designed robust to polytopic uncertainties. Stability is proven by a parameter-dependent Lyapunov function. Numerical examples on robust stability margins shows that the proposed procedure can...
Optimal coordinated voltage control of power systems
Institute of Scientific and Technical Information of China (English)
LI Yan-jun; HILL David J.; WU Tie-jun
2006-01-01
An immune algorithm solution is proposed in this paper to deal with the problem of optimal coordination of local physically based controllers in order to preserve or retain mid and long term voltage stability. This problem is in fact a global coordination control problem which involves not only sequencing and timing different control devices but also tuning the parameters of controllers. A multi-stage coordinated control scheme is presented, aiming at retaining good voltage levels with minimal control efforts and costs after severe disturbances in power systems. A self-pattern-recognized vaccination procedure is developed to transfer effective heuristic information into the new generation of solution candidates to speed up the convergence of the search procedure to global optima. An example of four bus power system case study is investigated to show the effectiveness and efficiency of the proposed algorithm, compared with several existing approaches such as differential dynamic programming and tree-search.
Price-based Optimal Control of Electrical Power Systems
Energy Technology Data Exchange (ETDEWEB)
Jokic, A.
2007-09-10
The research presented in this thesis is motivated by the following issue of concern for the operation of future power systems: Future power systems will be characterized by significantly increased uncertainties at all time scales and, consequently, their behavior in time will be difficult to predict. In Chapter 2 we will present a novel explicit, dynamic, distributed feedback control scheme that utilizes nodal-prices for real-time optimal power balance and network congestion control. The term explicit means that the controller is not based on solving an optimization problem on-line. Instead, the nodal prices updates are based on simple, explicitly defined and easily comprehensible rules. We prove that the developed control scheme, which acts on the measurements from the current state of the system, always provide the correct nodal prices. In Chapter 3 we will develop a novel, robust, hybrid MPC control (model predictive controller) scheme for power balance control with hard constraints on line power flows and network frequency deviations. The developed MPC controller acts in parallel with the explicit controller from Chapter 2, and its task is to enforce the constraints during the transient periods following suddenly occurring power imbalances in the system. In Chapter 4 the concept of autonomous power networks will be presented as a concise formulation to deal with economic, technical and reliability issues in power systems with a large penetration of distributed generating units. With autonomous power networks as new market entities, we propose a novel operational structure of ancillary service markets. In Chapter 5 we will consider the problem of controlling a general linear time-invariant dynamical system to an economically optimal operating point, which is defined by a multiparametric constrained convex optimization problem related with the steady-state operation of the system. The parameters in the optimization problem are values of the exogenous inputs to
Aerodynamic shape optimization using control theory
Reuther, James
1996-01-01
Aerodynamic shape design has long persisted as a difficult scientific challenge due its highly nonlinear flow physics and daunting geometric complexity. However, with the emergence of Computational Fluid Dynamics (CFD) it has become possible to make accurate predictions of flows which are not dominated by viscous effects. It is thus worthwhile to explore the extension of CFD methods for flow analysis to the treatment of aerodynamic shape design. Two new aerodynamic shape design methods are developed which combine existing CFD technology, optimal control theory, and numerical optimization techniques. Flow analysis methods for the potential flow equation and the Euler equations form the basis of the two respective design methods. In each case, optimal control theory is used to derive the adjoint differential equations, the solution of which provides the necessary gradient information to a numerical optimization method much more efficiently then by conventional finite differencing. Each technique uses a quasi-Newton numerical optimization algorithm to drive an aerodynamic objective function toward a minimum. An analytic grid perturbation method is developed to modify body fitted meshes to accommodate shape changes during the design process. Both Hicks-Henne perturbation functions and B-spline control points are explored as suitable design variables. The new methods prove to be computationally efficient and robust, and can be used for practical airfoil design including geometric and aerodynamic constraints. Objective functions are chosen to allow both inverse design to a target pressure distribution and wave drag minimization. Several design cases are presented for each method illustrating its practicality and efficiency. These include non-lifting and lifting airfoils operating at both subsonic and transonic conditions.
Bulgakov, V. K.; Strigunov, V. V.
2009-05-01
The Pontryagin maximum principle is used to prove a theorem concerning optimal control in regional macroeconomics. A boundary value problem for optimal trajectories of the state and adjoint variables is formulated, and optimal curves are analyzed. An algorithm is proposed for solving the boundary value problem of optimal control. The performance of the algorithm is demonstrated by computing an optimal control and the corresponding optimal trajectories.
Institute of Scientific and Technical Information of China (English)
Ben M.CHEN; Gang FENG
2010-01-01
@@ It is our great pleasure to put up this special issue in Journal of Control Theory and Applications in honor of the 60th birthday of Professor Frank Lewis, who has made many significant contributions to the field of control engineering through the years, and who is regarded as a pioneer in many areas in control and automation, which includes applied optimal control and geometric systems theory in his earlier research period, and his recent focus on intelligent nonlinear control, neural network feedback control, optimal control for nonlinear systems, H-infinity (game theory) control, approximate dynamic programming, discrete event supervisory control, intelligent diagnostics and prognostics, to name a few.
A Survey of Control Issues in PMSG-Based Small Wind-Turbine Systems
DEFF Research Database (Denmark)
Orlando, Natalia Angela; Liserre, Marco; Mastromauro, Rosa Anna
2013-01-01
In the field of wind energy generation particular interest has been focused in recent years on distributed generation through small wind-turbines (power unit 200 kW) because of their limited size and lower environmental impact. The field of small generation was dominated by the use of asynchronous...... generators directly connected to the grid, while recently permanent magnet synchronous generators (PMSG) with power converter, either partially or fully controlled, became popular. This paper reviews the control issues related to these small wind-turbine systems: generator torque control, speed....../position estimation, pitch control, braking chopper control, dc/dc converter control, and grid converter control. Specific issues for small wind-turbines arise in the wind energy extraction optimization and limitation and in the innovative concept of “universal” wind-turbine operation, that leads these system...
Linear systems optimal and robust control
Sinha, Alok
2007-01-01
Introduction Overview Contents of the Book State Space Description of a Linear System Transfer Function of a Single Input/Single Output (SISO) System State Space Realizations of a SISO System SISO Transfer Function from a State Space Realization Solution of State Space Equations Observability and Controllability of a SISO System Some Important Similarity Transformations Simultaneous Controllability and Observability Multiinput/Multioutput (MIMO) Systems State Space Realizations of a Transfer Function Matrix Controllability and Observability of a MIMO System Matrix-Fraction Description (MFD) MFD of a Transfer Function Matrix for the Minimal Order of a State Space Realization Controller Form Realization from a Right MFD Poles and Zeros of a MIMO Transfer Function Matrix Stability Analysis State Feedback Control and Optimization State Variable Feedback for a Single Input System Computation of State Feedback Gain Matrix for a Multiinput System State Feedback Gain Matrix for a Multi...
Dynamics of Dengue epidemics using optimal control
Rodrigues, Helena Sofia; Torres, Delfim F M
2010-01-01
We present an application of optimal control theory to Dengue epidemics. This epidemiologic disease is an important theme in tropical countries due to the growing number of infected individuals. The dynamic model is described by a set of nonlinear ordinary differential equations, that depend on the dynamic of the Dengue mosquito, the number of infected individuals, and the people's motivation to combat the mosquito. The cost functional depends not only on the costs of medical treatment of the infected people but also on the costs related to educational and sanitary campaigns. Two approaches to solve the problem are considered: one using optimal control theory, another one by discretizing first the problem and then solving it with nonlinear programming. The results obtained with OC-ODE and IPOPT solvers are given and discussed. We observe that with current computational tools it is easy to obtain, in an efficient way, better solutions to Dengue problems, leading to a decrease of infected mosquitoes and individ...
Game theory approach to optimal capital cost allocation in pollution control
Institute of Scientific and Technical Information of China (English)
1998-01-01
This paper tries to integrate game theory, a very usefultool to resolve conflict phenomena, with optimal capital costallocation issue in total emission control. First the necessity ofallocating optimal capital costs fairly and reasonably amongpolluters in total emission control is analyzed. Then thepossibility of applying game theory to the issue of the optimalcapital cost allocation is expounded. Next the cooperative N-person game model of the optimal capital cost allocation and itssolution ways including method based on Shapley value, least coremethod, weak least core methods, proportional least core method,CGA method, MCRS method and so on are delineated. Finally throughapplication of these methods it is concluded that to apply gamethory in the optimal capital cost allocation issue is helpful toimplement the total emission control planning schemes successfully,to control pollution effectively, and to ensure sustainable development.
Mesh refinement strategy for optimal control problems
Paiva, Luis Tiago; Fontes, Fernando,
2013-01-01
International audience; Direct methods are becoming the most used technique to solve nonlinear optimal control problems. Regular time meshes having equidistant spacing are frequently used. However, in some cases these meshes cannot cope accurately with nonlinear behavior. One way to improve the solution is to select a new mesh with a greater number of nodes. Another way, involves adaptive mesh refinement. In this case, the mesh nodes have non equidistant spacing which allow a non uniform node...
Optimal control of complex atomic quantum systems
van Frank, S.; Bonneau, M.; Schmiedmayer, J.; Hild, S.; Gross, C.; Cheneau, M.; Bloch, I.; Pichler, T.; Negretti, A.; Calarco, T.; Montangero, S.
2016-10-01
Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit – the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations.
Active control of transient rotordynamic vibration by optimal control methods
Palazzolo, A. B.; Lin, R. R.; Alexander, R. M.; Kascak, A. F.
1988-01-01
Although considerable effort has been put into the study of steady state vibration control, there are few methods applicable to transient vibration control of rotorbearing systems. In this paper optimal control theory has been adopted to minimize rotor vibration due to sudden imbalance, e.g., blade loss. The system gain matrix is obtained by choosing the weighting matrices and solving the Riccati equation. Control forces are applied to the system via a feedback loop. A seven mass rotor system is simulated for illustration. A relationship between the number of sensors and the number of modes used in the optimal control model is investigated. Comparisons of responses are made for various configurations of modes, sensors, and actuators. Furthermore, spillover effect is examined by comparing results from collocated and noncollocated sensor configurations. Results show that shaft vibration is significantly attenuated in the closed loop system.
An optimal promotion cost control model for a markovian manpower ...
African Journals Online (AJOL)
An optimal promotion cost control model for a markovian manpower system. ... Log in or Register to get access to full text downloads. ... A theory concerning the existence of an optimal promotion control strategy for controlling a Markovian ...
Automatic Synthesis of Robust and Optimal Controllers
DEFF Research Database (Denmark)
Cassez, Franck; Jessen, Jan Jacob; Larsen, Kim Guldstrand;
2009-01-01
In this paper, we show how to apply recent tools for the automatic synthesis of robust and near-optimal controllers for a real industrial case study. We show how to use three different classes of models and their supporting existing tools, Uppaal-TiGA for synthesis, phaver for verification......, and Simulink for simulation, in a complementary way. We believe that this case study shows that our tools have reached a level of maturity that allows us to tackle interesting and relevant industrial control problems....
Tractable problems in optimal decentralized control
Rotkowitz, Michael Charles
2005-07-01
This thesis considers the problem of constructing optimal decentralized controllers. The problem is formulated as one of minimizing the closed-loop norm of a feedback system subject to constraints on the controller structure. The notion of quadratic invariance of a constraint set with respect to a system is defined. It is shown that quadratic invariance is necessary and sufficient for the constraint set to be preserved under feedback. It is further shown that if the constraint set has this property, this allows the constrained minimum-norm problem to be solved via convex programming. These results are developed in a very general framework, and are shown to hold for continuous-time systems, discrete-time systems, or operators on Banach spaces, for stable or unstable plants, and for the minimization of any norm. The utility of these results is then demonstrated on some specific constraint classes. An explicit test is derived for sparsity constraints on a controller to be quadratically invariant, and thus amenable to convex synthesis. Symmetric synthesis is also shown to be quadratically invariant. The problem of control over networks with delays is then addressed as another constraint class. Multiple subsystems are considered, each with its own controller, such that the dynamics of each subsystem may affect those of other subsystems with some propagation delays, and the controllers may communicate with each other with some transmission delays. It is shown that if the communication delays are less than the propagation delays, then the associated constraints are quadratically invariant, and thus optimal controllers can be synthesized. We further show that this result still holds in the presence of computational delays. This thesis unifies the few previous results on specific tractable decentralized control problems, identifies broad and useful classes of new solvable problems, and delineates the largest known class of convex problems in decentralized control.
Can price controls induce optimal physician behavior?
Wedig, G; Mitchell, J B; Cromwell, J
1989-01-01
Recently, budget-conscious policymakers have shifted their attention to the physician services market and have begun to consider a wide variety of price regulatory schemes for moderating expenditures in this market. In a recent article in this journal, Feldman and Sloan warned that price controls on physician services may cause undesirable declines in service quality, independent of their budgetary ramifications. Our aim in this article is to reconsider the effects of price controls in the broader context of insurance coverage and moral hazard. Our ultimate goal is to assess the benefits of price controls independent of specific assumptions about the controversial issues of demand inducement and income targeting. Using a simple extension of the Feldman/Sloan model, we find that price controls can be and almost certainly are welfare-improving as long as consumers are sufficiently well insured, regardless of where one stands on the inducement issue. The salutary effects of price controls, on the other hand, can be compromised by income-targeting behavior on the part of physicians. We also introduce evidence from Medicare's recent fee freeze to evaluate the possibility of income-targeting behavior empirically. While formal studies of income targeting suggest that its magnitude is small in cross-section, we warn that its effects may be larger over time; this is what our descriptive evidence suggests. We conclude that more dramatic short-term progress on physician fee inflation will require stronger measures, such as putting physicians at risk for consumer expenditures.
Airfoil Roll Control by Bang-Bang Optimal Control Method with Plasma Actuators
Wei, Qingkai; Chen, Bao; Huang, Xun
2012-01-01
The bang-bang optimal control method was proposed for glow discharge plasma actuators, taking account of practical issues, such as limited actuation states with instantaneously varied aerodynamic control performance. Hence, the main contribution of this Note is to integrate flight control with active flow control in particular for plasma actuators. Flow control effects were examined in wind tunnel experiments, which show that the plasma authority for flow control is limited. Flow control effects are only obvious at pitch angles near stall. However, flight control simulations suggest that even those small plasma-induced roll moments can satisfactorily fulfill the maneuver tasks and meet flight quality specifications. In addition, the disturbance from volatile plasma-induced roll moments can be rejected. Hence, the proposed bang-bang control method is a promising candidate of control design methodology for plasma actuators.
On necessary optimality conditions in discrete control systems
Mardanov, M. J.; Melikov, T. K.; Mahmudov, N. I.
2015-10-01
The paper deals with a nonlinear discrete-time optimal control problem with a cost functional of terminal type. Using a new variation of the control and new properties of optimal controls, we prove the linearised optimality conditions extending such classical optimality conditions. Along with this, various optimality conditions of quasi-singular controls are obtained. Finally, the examples illustrating the rich content of the obtained results are illustrated.
Optimal feedback scheduling of model predictive controllers
Institute of Scientific and Technical Information of China (English)
Pingfang ZHOU; Jianying XIE; Xiaolong DENG
2006-01-01
Model predictive control (MPC) could not be reliably applied to real-time control systems because its computation time is not well defined. Implemented as anytime algorithm, MPC task allows computation time to be traded for control performance, thus obtaining the predictability in time. Optimal feedback scheduling (FS-CBS) of a set of MPC tasks is presented to maximize the global control performance subject to limited processor time. Each MPC task is assigned with a constant bandwidth server (CBS), whose reserved processor time is adjusted dynamically. The constraints in the FSCBS guarantee scheduler of the total task set and stability of each component. The FS-CBS is shown robust against the variation of execution time of MPC tasks at runtime. Simulation results illustrate its effectiveness.
Applied optimal control theory of distributed systems
Lurie, K A
1993-01-01
This book represents an extended and substantially revised version of my earlierbook, Optimal Control in Problems ofMathematical Physics,originally published in Russian in 1975. About 60% of the text has been completely revised and major additions have been included which have produced a practically new text. My aim was to modernize the presentation but also to preserve the original results, some of which are little known to a Western reader. The idea of composites, which is the core of the modern theory of optimization, was initiated in the early seventies. The reader will find here its implementation in the problem of optimal conductivity distribution in an MHD-generatorchannel flow.Sincethen it has emergedinto an extensive theory which is undergoing a continuous development. The book does not pretend to be a textbook, neither does it offer a systematic presentation of the theory. Rather, it reflects a concept which I consider as fundamental in the modern approach to optimization of dis tributed systems. ...
Optimal control theory--closing the gap between theory and experiment.
von den Hoff, Philipp; Thallmair, Sebastian; Kowalewski, Markus; Siemering, Robert; de Vivie-Riedle, Regina
2012-11-14
Optimal control theory and optimal control experiments are state-of-the-art tools to control quantum systems. Both methods have been demonstrated successfully for numerous applications in molecular physics, chemistry and biology. Modulated light pulses could be realized, driving these various control processes. Next to the control efficiency, a key issue is the understanding of the control mechanism. An obvious way is to seek support from theory. However, the underlying search strategies in theory and experiment towards the optimal laser field differ. While the optimal control theory operates in the time domain, optimal control experiments optimize the laser fields in the frequency domain. This also implies that both search procedures experience a different bias and follow different pathways on the search landscape. In this perspective we review our recent developments in optimal control theory and their applications. Especially, we focus on approaches, which close the gap between theory and experiment. To this extent we followed two ways. One uses sophisticated optimization algorithms, which enhance the capabilities of optimal control experiments. The other is to extend and modify the optimal control theory formalism in order to mimic the experimental conditions.
Energy Optimal Control Strategy of PHEV Based on PMP Algorithm
Directory of Open Access Journals (Sweden)
Tiezhou Wu
2017-01-01
Full Text Available Under the global voice of “energy saving” and the current boom in the development of energy storage technology at home and abroad, energy optimal control of the whole hybrid electric vehicle power system, as one of the core technologies of electric vehicles, is bound to become a hot target of “clean energy” vehicle development and research. This paper considers the constraints to the performance of energy storage system in Parallel Hybrid Electric Vehicle (PHEV, from which lithium-ion battery frequently charges/discharges, PHEV largely consumes energy of fuel, and their are difficulty in energy recovery and other issues in a single cycle; the research uses lithium-ion battery combined with super-capacitor (SC, which is hybrid energy storage system (Li-SC HESS, working together with internal combustion engine (ICE to drive PHEV. Combined with PSO-PI controller and Li-SC HESS internal power limited management approach, the research proposes the PHEV energy optimal control strategy. It is based on revised Pontryagin’s minimum principle (PMP algorithm, which establishes the PHEV vehicle simulation model through ADVISOR software and verifies the effectiveness and feasibility. Finally, the results show that the energy optimization control strategy can improve the instantaneity of tracking PHEV minimum fuel consumption track, implement energy saving, and prolong the life of lithium-ion batteries and thereby can improve hybrid energy storage system performance.
Optimal control of circular cylinder wakes using long control horizons
Flinois, Thibault L B
2015-01-01
The classical problem of minimizing the drag of a circular cylinder by using body rotation is revisited in an adjoint-based optimal control framework. The cylinder's unsteady and fully unconstrained rotation rate is optimized at Reynolds numbers of 100 and 200 and over horizons that are longer than in previous studies, where they are typically of the order of a vortex shedding period or shorter. In the best configuration, the drag is reduced by $19\\%$, the vortex shedding is effectively suppressed, and this low drag state is maintained with minimal cylinder rotation after transients. Without closed-loop control, which maintains a specific phase relationship between the actuation and the shedding, the wake is not stabilized. A comparison is also given between the performance of optimizations for different horizon lengths and cost functions. It is shown that the long horizons used are necessary in order to stabilize the vortex shedding efficiently.
Blasting neuroblastoma using optimal control of chemotherapy.
Collins, Craig; Fister, K Renee; Key, Bethany; Williams, Mary
2009-07-01
A mathematical model is used to investigate the effectiveness of the chemotherapy drug Topotecan against neuroblastoma. Optimal control theory is applied to minimize the tumor volume and the amount of drug utilized. The model incorporates a state constraint that requires the level of circulating neutrophils (white blood cells that form an integral part of the immune system) to remain above an acceptable value. The treatment schedule is designed to simultaneously satisfy this constraint and achieve the best results in fighting the tumor. Existence and uniqueness of the solution of the optimality system, which is the state system coupled with the adjoint system, is established. Numerical simulations are given to demonstrate the behavior of the tumor and the immune system components represented in the model.
Optimization-Based Approaches to Control of Probabilistic Boolean Networks
Directory of Open Access Journals (Sweden)
Koichi Kobayashi
2017-02-01
Full Text Available Control of gene regulatory networks is one of the fundamental topics in systems biology. In the last decade, control theory of Boolean networks (BNs, which is well known as a model of gene regulatory networks, has been widely studied. In this review paper, our previously proposed methods on optimal control of probabilistic Boolean networks (PBNs are introduced. First, the outline of PBNs is explained. Next, an optimal control method using polynomial optimization is explained. The finite-time optimal control problem is reduced to a polynomial optimization problem. Furthermore, another finite-time optimal control problem, which can be reduced to an integer programming problem, is also explained.
Optimal control of HIV/AIDS dynamic: Education and treatment
Sule, Amiru; Abdullah, Farah Aini
2014-07-01
A mathematical model which describes the transmission dynamics of HIV/AIDS is developed. The optimal control representing education and treatment for this model is explored. The existence of optimal Control is established analytically by the use of optimal control theory. Numerical simulations suggest that education and treatment for the infected has a positive impact on HIV/AIDS control.
Institute of Scientific and Technical Information of China (English)
吴俊; 胡协和; 陈生; 褚健
2003-01-01
The closed-loop stability issue of finite-precision realizations was investigated for digital control-lers implemented in block-floating-point format. The controller coefficient perturbation was analyzed resultingfrom using finite word length (FWL) block-floating-point representation scheme. A block-floating-point FWL closed-loop stability measure was derived which considers both the dynamic range and precision. To facilitate the design of optimal finite-precision controller realizations, a computationally tractable block-floating-point FWL closed-loop stability measure was then introduced and the method of computing the value of this measure for a given controller realization was developed. The optimal controller realization is defined as the solution that maximizes the corresponding measure, and a numerical optimization approach was adopted to solve the resulting optimal realization problem. A numerical example was used to illustrate the design procedure and to compare the optimal controller realization with the initial realization.
Optimal design and motion control of biomimetic robotic fish
Institute of Scientific and Technical Information of China (English)
YU JunZhi; WANG Long; ZHAO Wei; TAN Min
2008-01-01
This paper is concerned with the design, optimization, and motion control of a radio-controlled, multi-link, free-swimming biomimetic robotic fish based on an opti-mized kinematic and dynamic model of fish swimming. The performance of the robotic fish is determined by both the fish's morphological characteristics and ki-nematic parameters. By applying ichthyologic theories of propulsion, a design framework that takes into consideration both mechatronic constraints in physical realization and feasibility of control methods is presented, under which a multiple linked robotic fish that integrates both the carangiform and anguilliform swimming modes can be easily developed. Taking account of both theoretic hydrodynamic issues and practical problems in engineering realization, the optimal link-length-ratios are numerically calculated by an improved constrained cyclic variable method, which are successfully applied to a series of real robotic fishes. The rhythmic movements of swimming are driven by a central pattern generator (CPG) based on nonlinear oscillations, and up-and-down motion by regulating the rotating angle of pectoral fins. The experimental results verify that the presented scheme and method are effective in design and implementation.
Issues in human/computer control of dexterous remote hands
Salisbury, K.
1987-01-01
Much research on dexterous robot hands has been aimed at the design and control problems associated with their autonomous operation, while relatively little research has addressed the problem of direct human control. It is likely that these two modes can be combined in a complementary manner yielding more capability than either alone could provide. While many of the issues in mixed computer/human control of dexterous hands parallel those found in supervisory control of traditional remote manipulators, the unique geometry and capabilities of dexterous hands pose many new problems. Among these are the control of redundant degrees of freedom, grasp stabilization and specification of non-anthropomorphic behavior. An overview is given of progress made at the MIT AI Laboratory in control of the Salisbury 3 finger hand, including experiments in grasp planning and manipulation via controlled slip. It is also suggested how we might introduce human control into the process at a variety of functional levels.
Fractional conservation laws in optimal control theory
Frederico, Gastao S F
2007-01-01
Using the recent formulation of Noether's theorem for the problems of the calculus of variations with fractional derivatives, the Lagrange multiplier technique, and the fractional Euler-Lagrange equations, we prove a Noether-like theorem to the more general context of the fractional optimal control. As a corollary, it follows that in the fractional case the autonomous Hamiltonian does not define anymore a conservation law. Instead, it is proved that the fractional conservation law adds to the Hamiltonian a new term which depends on the fractional-order of differentiation, the generalized momentum, and the fractional derivative of the state variable.
Optimal control of Rydberg lattice gases
Cui, Jian; van Bijnen, Rick; Pohl, Thomas; Montangero, Simone; Calarco, Tommaso
2017-09-01
We present optimal control protocols to prepare different many-body quantum states of Rydberg atoms in optical lattices. Specifically, we show how to prepare highly ordered many-body ground states, GHZ states as well as some superposition of symmetric excitation number Fock states, that inherit the translational symmetry from the Hamiltonian, within sufficiently short excitation times minimising detrimental decoherence effects. For the GHZ states, we propose a two-step detection protocol to experimentally verify the optimised preparation of the target state based only on standard measurement techniques. Realistic experimental constraints and imperfections are taken into account by our optimisation procedure making it applicable to ongoing experiments.
Control Issues in Single-Stage Photovoltaic Systems
DEFF Research Database (Denmark)
A. Mastromauro, Rosa; Liserre, Marco; Dell’Aquila, Antonio
2012-01-01
Photovoltaic Systems (PVS) can be easily integrated in residential buildings hence they will be the main responsible of making low-voltage grid power flow bidirectional. Control issues on both the PV side and on the grid side have received much attention from manufacturers, competing for efficiency...
Control Issues in Single-Stage Photovoltaic Systems
DEFF Research Database (Denmark)
A. Mastromauro, Rosa; Liserre, Marco; Dell’Aquila, Antonio
2012-01-01
Photovoltaic Systems (PVS) can be easily integrated in residential buildings hence they will be the main responsible of making low-voltage grid power flow bidirectional. Control issues on both the PV side and on the grid side have received much attention from manufacturers, competing for efficiency...
Optimal Control of Non-well-posed Heat Equations
Institute of Scientific and Technical Information of China (English)
Geng Sheng WANG
2005-01-01
This work is concerned with Pontryagin's maximum principle of optimal control problems governed by some non-well-posed semilinear heat equations. A type of approach to the non-well-posed optimal control problem is given.
Optimal Control of Pseudoparabolic Variational Inequalities Involving State Constraint
Directory of Open Access Journals (Sweden)
Youjun Xu
2014-01-01
Full Text Available We establish the necessary condition of optimality for optimal control problem governed by some pseudoparabolic differential equations involving monotone graphs. Some approximating control process and examples are given.
Controlling automobile thermal comfort using optimized fuzzy controller
Energy Technology Data Exchange (ETDEWEB)
Farzaneh, Yadollah; Tootoonchi, Ali A. [Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad (Iran)
2008-10-15
Providing thermal comfort and saving energy are two main goals of heating, ventilation and air conditioning (HVAC) systems. A controller with temperature feedback cannot best achieve the thermal comfort. This is because thermal comfort is influenced by many variables such as, temperature, relative humidity, air velocity, environment radiation, activity level and cloths insulation. In this study Fanger's predicted mean value (PMV) index is used as controller feedback. It is simplified without introducing significant error. Thermal models of the cabin and HVAC system are developed. Evaporator cooling capacity is selected as a criterion for energy consumption. Two fuzzy controllers one with temperature as its feedback and the other PMV index as its feedback are designed. Results show that the PMV feedback controller better controls the thermal comfort and energy consumption than the system with temperature feedback. Next, the parameters of the fuzzy controller are optimized by genetic algorithm. Results indicate that thermal comfort level is further increased while energy consumption is decreased. Finally, robustness analysis is performed which shows the robustness of optimized controller to variables variations. (author)
Optimal Control of Finite Dimensional Quantum Systems
Mendonca, Paulo E M F
2009-01-01
This thesis addresses the problem of developing a quantum counter-part of the well established classical theory of control. We dwell on the fundamental fact that quantum states are generally not perfectly distinguishable, and quantum measurements typically introduce noise in the system being measured. Because of these, it is generally not clear whether the central concept of the classical control theory -- that of observing the system and then applying feedback -- is always useful in the quantum setting. We center our investigations around the problem of transforming the state of a quantum system into a given target state, when the system can be prepared in different ways, and the target state depends on the choice of preparation. We call this the "quantum tracking problem" and show how it can be formulated as an optimization problem that can be approached both numerically and analytically. This problem provides a simple route to the characterization of the quantum trade-off between information gain and distu...
Reproducibility, controllability, and optimization of LENR experiments
Energy Technology Data Exchange (ETDEWEB)
Nagel, David J. [The George Washington University, Washington DC 20052 (United States)
2006-07-01
Low-energy nuclear reaction (LENR) measurements are significantly, and increasingly reproducible. Practical control of the production of energy or materials by LENR has yet to be demonstrated. Minimization of costly inputs and maximization of desired outputs of LENR remain for future developments. The paper concludes by underlying that it is now clearly that demands for reproducible experiments in the early years of LENR experiments were premature. In fact, one can argue that irreproducibility should be expected for early experiments in a complex new field. As emphasized in the paper and as often happened in the history of science, experimental and theoretical progress can take even decades. It is likely to be many years before investments in LENR experiments will yield significant returns, even for successful research programs. However, it is clearly that a fundamental understanding of the anomalous effects observed in numerous experiments will significantly increase reproducibility, improve controllability, enable optimization of processes, and accelerate the economic viability of LENR.
Optimal second order sliding mode control for nonlinear uncertain systems.
Das, Madhulika; Mahanta, Chitralekha
2014-07-01
In this paper, a chattering free optimal second order sliding mode control (OSOSMC) method is proposed to stabilize nonlinear systems affected by uncertainties. The nonlinear optimal control strategy is based on the control Lyapunov function (CLF). For ensuring robustness of the optimal controller in the presence of parametric uncertainty and external disturbances, a sliding mode control scheme is realized by combining an integral and a terminal sliding surface. The resulting second order sliding mode can effectively reduce chattering in the control input. Simulation results confirm the supremacy of the proposed optimal second order sliding mode control over some existing sliding mode controllers in controlling nonlinear systems affected by uncertainty.
Institute of Scientific and Technical Information of China (English)
吴俊; 胡协和; 陈生; 褚健
2003-01-01
The closed-loop stability issue of finite-precision realizations was investigated for digital controllers implemented in block-floating-point format. The controller coefficient perturbation was analyzed resulting from using finite word length (FWL) block-floating-point representation scheme. A block-floating-point FWL closed-loop stability measure was derived which considers both the dynamic range and precision. To facilitate the design of optimal finite-precision controller realizations, a computationally tractable block-floating-point FWL closed-loop stability measure was then introduced and the method of computing the value of this measure for a given controller realization was developed. The optimal controller realization is defined as the solution that maximizes the corresponding measure, and a numerical optimization approach was adopted to solve the resulting optimal realization problem. A numerical example was used to illustrate the design procedure and to compare the optimal controller realization with the initial realization.
Carpentier, Pierre; Cohen, Guy; De Lara, Michel
2015-01-01
The focus of the present volume is stochastic optimization of dynamical systems in discrete time where - by concentrating on the role of information regarding optimization problems - it discusses the related discretization issues. There is a growing need to tackle uncertainty in applications of optimization. For example the massive introduction of renewable energies in power systems challenges traditional ways to manage them. This book lays out basic and advanced tools to handle and numerically solve such problems and thereby is building a bridge between Stochastic Programming and Stochastic Control. It is intended for graduates readers and scholars in optimization or stochastic control, as well as engineers with a background in applied mathematics.
Optimal control of quantum systems by chirped pulses
DEFF Research Database (Denmark)
Amstrup, Bjarne; Doll, J. D.; Sauerbrey, R. A.
1993-01-01
Research on optimal control of quantum systems has been severely restricted by the lack of experimentally feasible control pulses. Here, to overcome this obstacle, optimal control is considered with the help of chirped pulses. Simulated annealing is used as the optimizing procedure. The examples ...
Optimal Control Problems for Nonlinear Variational Evolution Inequalities
Directory of Open Access Journals (Sweden)
Eun-Young Ju
2013-01-01
Full Text Available We deal with optimal control problems governed by semilinear parabolic type equations and in particular described by variational inequalities. We will also characterize the optimal controls by giving necessary conditions for optimality by proving the Gâteaux differentiability of solution mapping on control variables.
The status and latest issues on KAERI export control implementation
Energy Technology Data Exchange (ETDEWEB)
Kim, Hyun Sook; Park, Ho Jun; Kim, Hyun Jo; Ko, Han Suk; Lee, Byung Doo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2010-10-15
There are four informal non-proliferation arrangements which seek to control the proliferation of weapons of mass destruction and their missile delivery systems and the transfer of conventional weapons and dual-use technologies. The four arrangements are Wassenaar Arrangement (WA) on export controls for conventional arms and dual use goods and technologies, Nuclear Supplies Group(NSG), Missile Technology Control Regime(MTCR) and Australia Group(AG) on chemical and biological weapons materials. ROK participates in four arrangements to seek to encourage responsible practice in the trade of strategic goods and technologies. It is achieved through the implementation of export control list. MKE Notification (Ministry of Knowledge Economy Notification No. 2009-250) specifies those items and technologies subject to control. In this paper, the status and latest issues on KAERI export control implementation are described
Optimal Sliding Mode Controllers for Attitude Stabilization of Flexible Spacecraft
Directory of Open Access Journals (Sweden)
Chutiphon Pukdeboon
2011-01-01
Full Text Available The robust optimal attitude control problem for a flexible spacecraft is considered. Two optimal sliding mode control laws that ensure the exponential convergence of the attitude control system are developed. Integral sliding mode control (ISMC is applied to combine the first-order sliding mode with optimal control and is used to control quaternion-based spacecraft attitude manoeuvres with external disturbances and an uncertainty inertia matrix. For the optimal control part the state-dependent Riccati equation (SDRE and optimal Lyapunov techniques are employed to solve the infinite-time nonlinear optimal control problem. The second method of Lyapunov is used to guarantee the stability of the attitude control system under the action of the proposed control laws. An example of multiaxial attitude manoeuvres is presented and simulation results are included to verify the usefulness of the developed controllers.
Control Optimization of Solar Thermally Driven Chillers
Directory of Open Access Journals (Sweden)
Antoine Dalibard
2016-10-01
Full Text Available Many installed solar thermally driven cooling systems suffer from high auxiliary electric energy consumption which makes them not more efficient than conventional compression cooling systems. A main reason for this is the use of non-efficient controls with constant set points that do not allow a chiller power modulation at partial-load and therefore lead to unnecessary high power consumption of the parasitics. The aims of this paper are to present a method to control efficiently solar thermally driven chillers, to demonstrate experimentally its applicability and to quantify the benefits. It has been shown that the cooling capacity of a diffusion absorption chiller can be modulated very effectively by adjusting both the temperature and the flow rate of the cooling water. With the developed approach and the use of optimization algorithms, both the temperature and the flow rate can be controlled simultaneously in a way that the cooling load is matched and the electricity consumption is minimized. Depending on the weather and operating conditions, electricity savings between 20% and 60% can be achieved compared to other tested control approaches. The highest savings are obtained when the chiller is operated at partial load. The presented method is not restricted to solar cooling systems and can also be applied to other conventional heating ventilation and air conditioning (HVAC systems.
Continuous Control Artificial Potential Function Methods and Optimal Control
2014-03-27
Method, namely r̈VDSVAPF = −K̇SKR∇φ−KSK̇R∇φ−KSKRH(φ)ṙ −KD (KSKR∇φ+ ṙ) . The above dynamics are very nonlinear due to the trigonometric functions (inside...constraints (on KS and θ) and the deletion of trigonometric functions . The suspected reasons for the larger computa- tional expense are twofold. First, this...Continuous Control Artificial Potential Function Methods and Optimal Control THESIS R. Andrew Fields, Civ, USAF AFIT-ENY-14-M-20 DEPARTMENT OF THE
Molecular Alignment and Orientation From Laser-Induced Mechanisms to Optimal Control
Atabek, O
2002-01-01
Genetic algorithms, as implemented in optimal control strategies, are currently successfully exploited in a wide range of problems in molecular physics. In this context, laser control of molecular alignment and orientation remains a very promising issue with challenging applications extending from chemical reactivity to nanoscale design. We emphasize the complementarity between basic quantum mechanisms monitoring alignment/orientation processes and optimal control scenarios. More explicitly, if on one hand we can help the optimal control scheme to take advantage of such mechanisms by appropriately building the targets and delineating the parameter sampling space, on the other hand we expect to learn, from optimal control results, some robust and physically sound dynamical mechanisms. We present basic mechanisms for alignment and orientation, such as pendular states accommodated by the molecule-plus-field effective potential and the "kick" mechanism obtained by a sudden excitation. Very interestingly, an optim...
ON THE ISSUE OF VECTOR CONTROL OF THE ASYNCHRONOUS MOTORS
Directory of Open Access Journals (Sweden)
B. I. Firago
2015-01-01
Full Text Available The paper considers the issue of one of the widespread types of vector control realization for the asynchronous motors with a short-circuited rotor. Of all more than 20 vector control types known presently, the following are applied most frequently: direct vector control with velocity pickup (VP, direct vector control without VP, indirect vector control with VP and indirect vector control without VP. Despite the fact that the asynchronous-motor indirect vector control without VP is the easiest and most spread, the absence of VP does not allow controlling the motor electromagnetic torque at zero velocity. This is the reason why for electric motor drives of such requirements they utilize the vector control with a velocity transducer. The systems of widest dissemination became the direct and indirect vector control systems with X-axis alignment of the synchronously rotating x–y-coordinate frame along the rotor flux-linkage vector inasmuch as this provides the simplest correlations for controlling variables. Although these two types of vector control are well presented in literature, a number of issues concerning their realization and practical application require further elaboration. These include: the block schemes adequate representation as consisted with the modern realization of vector control and clarification of the analytical expressions for evaluating the regulator parameters.The authors present a technique for evaluating the dynamics of an asynchronous electric motor drive with direct vector control and x-axis alignment along the vector of rotor flux linkage. The article offers a generalized structure of this vector control type with detailed description of its principal blocks: controlling system, frequency converter, and the asynchronous motor.The paper presents a direct vector control simulating model developed in the MatLab environment on the grounds of this structure. The authors illustrate the described technique with the results
Energy Technology Data Exchange (ETDEWEB)
NONE
1995-12-31
;Partial Contents: Special Issue `Sensing/Control System and Mechatronics`: A New Control System at Keihin Coke Plant; Theoretical Model for Optimal Control of TAKAHAX Desulfurization Process; Development of Automatic Rod-exchanging Machine for Rod Mill; High Performance Temperature Distribution Optical Fiber Sensor; Temperature Measurement of Molten Metal by Immersion-type Optical Fiber Radiation Thermometer; Application of Robust Control for Iron and Steel Making Process; Automization of No. 6 Slab Caster in Fukuyama Works; The Development of the Control Technology for the Higher Quality Strip; Development of Automatic Flatness Control System in Cluster Type Rolling Mill; Ultrasonic Nondestructive Testing with Digital Signal Processing Aimed for New Quality Assurance; Development of Mobile Grinding Robot; On-site Analysis by Laser Ablation ICP-AES; Development of the Membrane Automatic Welding Machine with Rotating TIG Process; and Automatic Combustion Control System for Refuse Incineration Plant. (Copyright (c) 1995 NKK.)
Optimal control theory for sustainable environmental management.
Shastri, Yogendra; Diwekar, Urmila; Cabezas, Heriberto
2008-07-15
Sustainable ecosystem management aims to promote the structure and operation of the human components of the system while simultaneously ensuring the persistence of the structures and operation of the natural component. Given the complexity of this task owing to the diverse temporal and spatial scales and multidisciplinary interactions, a systems theory approach based on sound mathematical techniques is essential. Two important aspects of this approach are formulation of sustainability-based objectives and development of the management strategies. Fisher information can be used as the basis of a sustainability hypothesis to formulate relevant mathematical objectives for disparate systems, and optimal control theory provides the means to derive time-dependent management strategies. Partial correlation coefficient analysis is an efficient technique to identify the appropriate control variables for policy development. This paper represents a proof of concept for this approach using a model system that includes an ecosystem, humans, a very rudimentary industrial process, and a very simple agricultural system. Formulation and solution of the control problems help in identifying the effective management options which offer guidelines for policies in real systems. The results also emphasize that management using multiple parameters of different nature can be distinctly effective.
Credit creation and control: an unresolved issue in Islamic banking
Hasan, Zubair
2008-01-01
Abstract. This paper deals with a still unresolved issue - credit creation and control- in an interest free banking system. The available literature on the subject is scanty, controversial and inconclusive. The paper holds that credit creation per se is not un-Islamic; the essential point is how credit is generated and used. It argues that credit creation cannot be banished; it is an imperative for frictionless adjustment of money supply to unavoidable fluctuations in its demand in modern...
Optimizing controllability of edge dynamics in complex networks by perturbing network structure
Pang, Shaopeng; Hao, Fei
2017-03-01
Using the minimum input signals to drive the dynamics in complex networks toward some desired state is a fundamental issue in the field of network controllability. For a complex network with the dynamical process defined on its edges, the controllability of this network is optimal if it can be fully controlled by applying one input signal to an arbitrary non-isolated vertex of it. In this paper, the adding-edge strategy and turning-edge strategy are proposed to optimize the controllability by minimum structural perturbations. Simulations and analyses indicate that the minimum number of adding-edges required for the optimal controllability is equal to the minimum number of turning-edges, and networks with positively correlated in- and out-degrees are easier to achieve optimal controllability. Furthermore, both the strategies have the capacity to reveal the relationship between certain structural properties of a complex network and its controllability of edge dynamics.
Numerical methods for control optimization in linear systems
Tyatyushkin, A. I.
2015-05-01
Numerical methods are considered for solving optimal control problems in linear systems, namely, terminal control problems with control and phase constraints and time-optimal control problems. Several algorithms with various computer storage requirements are proposed for solving these problems. The algorithms are intended for finding an optimal control in linear systems having certain features, for example, when the reachable set of a system has flat faces.
Minimizing Energy Cost in Electric Arc Furnace Steel Making by Optimal Control Designs
Directory of Open Access Journals (Sweden)
Er-wei Bai
2014-01-01
Full Text Available Production cost in steel industry is a challenge issue and energy optimization is an important part. This paper proposes an optimal control design aiming at minimizing the production cost of the electric arc furnace steel making. In particular, it is shown that with the structure of an electric arc furnace, the production cost which is a linear programming problem can be solved by the tools of linear quadratic regulation control design that not only provides an optimal solution but also is in a feedback form. Modeling and control designs are validated by the actual production data sets.
Symbolics in control design: prospects and research issues
DEFF Research Database (Denmark)
Christensen, Anders
1994-01-01
The symbolic processor is targeted as a novel basic service in computer aided control system design. Basic symbolic tools are exemplified. A design process model is formulated for control design, with subsets manipulator, tools, target and goals. It is argued, that symbolic processing will give...... substantial contributions to future design environments, as it provides flexibility of representation not possible with traditional numerics. Based on the design process, views on research issues in the incorporation of symbolic processing into traditional numerical design environments are given...
Strategic Design, Optimization, and Modelling Issues of Net-Zero Energy Solar Buildings
ATHIENITIS, Andreas; Attia, Shady
2010-01-01
The design of net-zero energy solar buildings (NZESBs) presents a challenge because there is no established design strategy to systematically reach this goal and many of the available building energy tools have limited applicability for such advanced buildings. This paper reviews current design practice and tools for designing NZESBs through a literature review and a survey. It also discusses modelling issues and presents the procedure used in several redesign and optimization case studies of...
On a Highly Nonlinear Self-Obstacle Optimal Control Problem
Energy Technology Data Exchange (ETDEWEB)
Di Donato, Daniela, E-mail: daniela.didonato@unitn.it [University of Trento, Department of Mathematics (Italy); Mugnai, Dimitri, E-mail: dimitri.mugnai@unipg.it [Università di Perugia, Dipartimento di Matematica e Informatica (Italy)
2015-10-15
We consider a non-quadratic optimal control problem associated to a nonlinear elliptic variational inequality, where the obstacle is the control itself. We show that, fixed a desired profile, there exists an optimal solution which is not far from it. Detailed characterizations of the optimal solution are given, also in terms of approximating problems.
Optimal Control for Bufferbloat Queue Management Using Indirect Method with Parametric Optimization
Directory of Open Access Journals (Sweden)
Amr Radwan
2016-01-01
Full Text Available Because memory buffers become larger and cheaper, they have been put into network devices to reduce the number of loss packets and improve network performance. However, the consequences of large buffers are long queues at network bottlenecks and throughput saturation, which has been recently noticed in research community as bufferbloat phenomenon. To address such issues, in this article, we design a forward-backward optimal control queue algorithm based on an indirect approach with parametric optimization. The cost function which we want to minimize represents a trade-off between queue length and packet loss rate performance. Through the integration of an indirect approach with parametric optimization, our proposal has advantages of scalability and accuracy compared to direct approaches, while still maintaining good throughput and shorter queue length than several existing queue management algorithms. All numerical analysis, simulation in ns-2, and experiment results are provided to solidify the efficiency of our proposal. In detailed comparisons to other conventional algorithms, the proposed procedure can run much faster than direct collocation methods while maintaining a desired short queue (≈40 packets in simulation and 80 (ms in experiment test.
CONGESTION MANAGEMENT BY OPTIMAL ALLOCATION OF FACTS CONTROLLERS USING HYBRID FISH BEE OPTIMIZATION
Directory of Open Access Journals (Sweden)
S. Thangalakshmi
2014-01-01
Full Text Available The role of Independent System Operator (ISO in the restructured power industry includes system control, capacity planning, transmission tariff and congestion management; the challenging task being minimizing the congestion. One of the popular techniques used to alleviate congestion is using Flexible AC Transmission Systems (FACTS devices. The power system generally operates near its rated capacity in deregulated market because of intensive usage of transmission grids. So, the major issues that need to be addressed are improving the voltage profile and reducing the power loss in the electrical network. Motivation: The location of FACTS devices can improve the power flow in the line, maintain the bus profile and reduce the losses. However locating the ideal location is a NP problem. This study presents a novel heuristic method to determine the types of FACTS devices and its optimal location in a power system without violating the thermal and voltage limits. Power flow sensitivity index to find the optimal location of UPFC is suggested in this study. A hybrid fish bee swarm optimization is proposed which is based on Artificial Bee Colony (ABC and Fish School Search (FSS methods. This proposed algorithm is tested based on IEEE 30 bus system and line performances are studied.
Optimized Fuzzy Control For Natural Trajectory Based Fes- Swinging Motion
Directory of Open Access Journals (Sweden)
B.S.K.K Ibrahim
2011-12-01
Full Text Available The use of electrical signals to restore the function of paralyzed muscles is called functional electrical stimulation (FES. FES is a promising method to restore mobility to individuals paralyzed due to spinal cord injury (SCI. A crucial issue of FES is the control of motor function by the artificial activation of paralyzed muscles due to the various characteristics of the underlying physiological/biomechanical system. Muscle response characteristics are nonlinear and time-varying. After developing a nonlinear model describing the dynamic behavior of the knee joint and muscles, a closed-loop approach of control strategy to track the reference trajectory is assessed in computer simulations. Then, the controller was validated through experimental work. In this approach only the quadriceps muscle is stimulated to perform the swinging motion by controlling the amount of stimulation pulsewidth. An approach of fuzzy trajectory tracking control of swinging motion optimized with genetic algorithm is presented. The results show the effectiveness of the approach in controlling FES-induced swinging motion in the simulation as well as in the practical environment.
Skinner Rusk unified formalism for optimal control systems and applications
Barbero-Liñán, María; Echeverría-Enríquez, Arturo; Martín de Diego, David; Muñoz-Lecanda, Miguel C.; Román-Roy, Narciso
2007-10-01
A geometric approach to time-dependent optimal control problems is proposed. This formulation is based on the Skinner and Rusk formalism for Lagrangian and Hamiltonian systems. The corresponding unified formalism developed for optimal control systems allows us to formulate geometrically the necessary conditions given by a weak form of Pontryagin's maximum principle, provided that the differentiability with respect to controls is assumed and the space of controls is open. Furthermore, our method is also valid for implicit optimal control systems and, in particular, for the so-called descriptor systems (optimal control problems including both differential and algebraic equations).
Feed Forward Neural Network and Optimal Control Problem with Control and State Constraints
Kmet', Tibor; Kmet'ová, Mária
2009-09-01
A feed forward neural network based optimal control synthesis is presented for solving optimal control problems with control and state constraints. The paper extends adaptive critic neural network architecture proposed by [5] to the optimal control problems with control and state constraints. The optimal control problem is transcribed into a nonlinear programming problem which is implemented with adaptive critic neural network. The proposed simulation method is illustrated by the optimal control problem of nitrogen transformation cycle model. Results show that adaptive critic based systematic approach holds promise for obtaining the optimal control with control and state constraints.
Neural Network for Optimization of Existing Control Systems
DEFF Research Database (Denmark)
Madsen, Per Printz
1995-01-01
The purpose of this paper is to develop methods to use Neural Network based Controllers (NNC) as an optimization tool for existing control systems.......The purpose of this paper is to develop methods to use Neural Network based Controllers (NNC) as an optimization tool for existing control systems....
A novel optimal PID plus second order derivative controller for AVR system
Directory of Open Access Journals (Sweden)
Mouayad A. Sahib
2015-06-01
Full Text Available This paper proposes a novel controller for automatic voltage regulator (AVR system. The controller is a four term control type consisting of proportional, integral, derivative, and second order derivative terms (PIDD2. The four parameters of the proposed controller are optimized using particle swarm optimization (PSO algorithm. The performance of the proposed PIDD2 is compared with various PID controllers tuned by modern heuristic optimization algorithms. In addition, a comparison with the fractional order PID (FOPID controller tuned by Chaotic Ant Swarm (CAS algorithm is also performed. Furthermore, a frequency response, zero-pole map, and robustness analysis of the AVR system with PIDD2 is performed. Practical implementation issues of the proposed controller are also addressed. Simulation results showed a superior response performance of the PIDD2 controller in comparison to PID and FOPID controllers. Moreover, the proposed PIDD2 can highly improve the system robustness with respect to model uncertainties.
Control Methods Utilizing Energy Optimizing Schemes in Refrigeration Systems
DEFF Research Database (Denmark)
Larsen, L.S; Thybo, C.; Stoustrup, Jakob
2003-01-01
The potential energy savings in refrigeration systems using energy optimal control has been proved to be substantial. This however requires an intelligent control that drives the refrigeration systems towards the energy optimal state. This paper proposes an approach for a control, which drives th...... the condenser pressure towards an optimal state. The objective of this is to present a feasible method that can be used for energy optimizing control. A simulation model of a simple refrigeration system will be used as basis for testing the control method.......The potential energy savings in refrigeration systems using energy optimal control has been proved to be substantial. This however requires an intelligent control that drives the refrigeration systems towards the energy optimal state. This paper proposes an approach for a control, which drives...
Optimal Power Flow Control by Rotary Power Flow Controller
Directory of Open Access Journals (Sweden)
KAZEMI, A.
2011-05-01
Full Text Available This paper presents a new power flow model for rotary power flow controller (RPFC. RPFC injects a series voltage into the transmission line and provides series compensation and phase shifting simultaneously. Therefore, it is able to control the transmission line impedance and the active power flow through it. An RPFC is composed mainly of two rotary phase shifting transformers (RPST and two conventional (series and shunt transformers. Structurally, an RPST consists of two windings (stator and rotor windings. The rotor windings of the two RPSTs are connected in parallel and their stator windings are in series. The injected voltage is proportional to the vector sum of the stator voltages and so its amplitude and angle are affected by the rotor position of the two RPSTs. This paper, describes the steady state operation and single-phase equivalent circuit of the RPFC. Also in this paper, a new power flow model, based on power injection model of flexible ac transmission system (FACTS controllers, suitable for the power flow analysis is introduced. Proposed model is used to solve optimal power flow (OPF problem in IEEE standard test systems incorporating RPFC and the optimal settings and location of the RPFC is determined.
Dynamic optimization the calculus of variations and optimal control in economics and management
Kamien, Morton I
2012-01-01
Since its initial publication, this text has defined courses in dynamic optimization taught to economics and management science students. The two-part treatment covers the calculus of variations and optimal control. 1998 edition.
Optimality of feedback control strategies for qubit purification
Wiseman, Howard M.; Bouten, Luc
2007-01-01
Recently two papers [K. Jacobs, Phys. Rev. A {\\bf 67}, 030301(R) (2003); H. M. Wiseman and J. F. Ralph, New J. Physics {\\bf 8}, 90 (2006)] have derived control strategies for rapid purification of qubits, optimized with respect to various goals. In the former paper the proof of optimality was not mathematically rigorous, while the latter gave only heuristic arguments for optimality. In this paper we provide rigorous proofs of optimality in all cases, by applying simple concepts from optimal c...
Physics aspects of prostate tomotherapy: Planning optimization and image-guidance issues
Energy Technology Data Exchange (ETDEWEB)
Fiorino, Claudio; Alongi, Filippo; Broggi, Sara (Medical Physics, S. Raffaele Inst., Milano (Italy)) (and others)
2008-08-15
Purpose. To review planning and image-guidance aspects of more than 3 years experience in the treatment of prostate cancer with Helical Tomotherapy (HT). Methods and materials. Planning issues concerning two Phase I-II clinical studies were addressed: in the first one, 58 Gy in 20 fractions were delivered to the prostatic bed for post-prostatectomy patients: in the second one, a simultaneous integrated boost (SIB) approach was applied for radical treatment, delivering 71.4-74.2 Gy to the prostate in 28 fractions. On-line daily MVCT image guidance was applied: bone match was used for post-operative patients while prostate match was applied for radically treated patients. MVCT data of a large sample of both categories of patients were reviewed. Results. At now, more than 250 patients were treated. Planning data show the ability of HT in creating highly homogeneous dose distributions within PTVs. Organs at risk (OAR) sparing also showed to be excellent. HT was also found to favorably compare to inversely-optimized IMAT in terms of PTVs coverage and dose distribution homogeneity. In the case of pelvic nodes irradiation, a large sparing of bowel was evident compared to 3DCRT and conventional 5-fields IMRT. The analysis of MVCT data showed a limited motion of the prostate (about 5% of the fractions show a deviation =3 mm in posterior-anterior direction), due to the careful application of rectal emptying procedures. Based on phantom measurements and on the comparison with intra-prostatic calcification-based match, direct visualization prostate match seems to be sufficiently reliable in assessing shifts =3 mm. Conclusions. HT offers excellent planning solutions for prostate cancer, showing to be highly efficient in a SIB scenario. Daily MVCT information showed evidence of a limited motion of the prostate in the context of rectal filling control obtained by instructing patients in self-administrating a rectal enema
Robust and optimal attitude control of spacecraft with disturbances
Park, Yonmook
2015-05-01
In this paper, a robust and optimal attitude control design that uses the Euler angles and angular velocities feedback is presented for regulation of spacecraft with disturbances. In the control design, it is assumed that the disturbance signal has the information of the system state. In addition, it is assumed that the disturbance signal tries to maximise the same performance index that the control input tries to minimise. After proposing a robust attitude control law that can stabilise the complete attitude motion of spacecraft with disturbances, the optimal attitude control problem of spacecraft is formulated as the optimal game-theoretic problem. Then it is shown that the proposed robust attitude control law is the optimal solution of the optimal game-theoretic problem. The stability of the closed-loop system for the proposed robust and optimal control law is proven by the LaSalle invariance principle. The theoretical results presented in this paper are illustrated by a numerical example.
Kumar, Ajeet
2009-01-01
We introduce a new and efficient numerical method for multicriterion optimal control and single criterion optimal control under integral constraints. The approach is based on extending the state space to include information on a "budget" remaining to satisfy each constraint; the augmented Hamilton-Jacobi-Bellman PDE is then solved numerically. The efficiency of our approach hinges on the causality in that PDE, i.e., the monotonicity of characteristic curves in one of the newly added dimensions. A semi-Lagrangian "marching" method is used to approximate the discontinuous viscosity solution efficiently. We compare this to a recently introduced "weighted sum" based algorithm for the same problem. We illustrate our method using examples from flight path planning and robotic navigation in the presence of friendly and adversarial observers.
A Multiobjective Optimization Framework for Stochastic Control of Complex Systems
Energy Technology Data Exchange (ETDEWEB)
Malikopoulos, Andreas [ORNL; Maroulas, Vasileios [ORNL; Xiong, Professor Jie [The University of Tennessee
2015-01-01
This paper addresses the problem of minimizing the long-run expected average cost of a complex system consisting of subsystems that interact with each other and the environment. We treat the stochastic control problem as a multiobjective optimization problem of the one-stage expected costs of the subsystems, and we show that the control policy yielding the Pareto optimal solution is an optimal control policy that minimizes the average cost criterion for the entire system. For practical situations with constraints consistent to those we study here, our results imply that the Pareto control policy may be of value in deriving online an optimal control policy in complex systems.
Mesh refinement strategy for optimal control problems
Paiva, L. T.; Fontes, F. A. C. C.
2013-10-01
Direct methods are becoming the most used technique to solve nonlinear optimal control problems. Regular time meshes having equidistant spacing are frequently used. However, in some cases these meshes cannot cope accurately with nonlinear behavior. One way to improve the solution is to select a new mesh with a greater number of nodes. Another way, involves adaptive mesh refinement. In this case, the mesh nodes have non equidistant spacing which allow a non uniform nodes collocation. In the method presented in this paper, a time mesh refinement strategy based on the local error is developed. After computing a solution in a coarse mesh, the local error is evaluated, which gives information about the subintervals of time domain where refinement is needed. This procedure is repeated until the local error reaches a user-specified threshold. The technique is applied to solve the car-like vehicle problem aiming minimum consumption. The approach developed in this paper leads to results with greater accuracy and yet with lower overall computational time as compared to using a time meshes having equidistant spacing.
Optimal control theory for unitary transformations
Palao, J P; Palao, Jose P.
2003-01-01
The dynamics of a quantum system driven by an external field is well described by a unitary transformation generated by a time dependent Hamiltonian. The inverse problem of finding the field that generates a specific unitary transformation is the subject of study. The unitary transformation which can represent an algorithm in a quantum computation is imposed on a subset of quantum states embedded in a larger Hilbert space. Optimal control theory (OCT) is used to solve the inversion problem irrespective of the initial input state. A unified formalism, based on the Krotov method is developed leading to a new scheme. The schemes are compared for the inversion of a two-qubit Fourier transform using as registers the vibrational levels of the $X^1\\Sigma^+_g$ electronic state of Na$_2$. Raman-like transitions through the $A^1\\Sigma^+_u$ electronic state induce the transitions. Light fields are found that are able to implement the Fourier transform within a picosecond time scale. Such fields can be obtained by pulse-...
Directory of Open Access Journals (Sweden)
Petros K. Gkotsis
2014-10-01
Full Text Available Membrane fouling is one of the most important considerations in the design and operation of membrane systems as it affects pretreatment needs, cleaning requirements, operating conditions, cost and performance. Given that membrane fouling represents the main limitation to membrane process operation, it is unsurprising that the majority of membrane material and process research and development conducted is dedicated to its characterization and amelioration. This work presents the fundamentals of fouling issues in membrane separations, with specific regard to membrane fouling in Membrane Bioreactors (MBRs and the most frequently applied preventive-control strategies. Feed pretreatment, physical and chemical cleaning protocols, optimal operation of MBR process and membrane surface modification are presented and discussed in detail. Membrane fouling is the major obstacle to the widespread application of the MBR technology and, therefore, fouling preventive-control strategies is a hot issue that strongly concerns not only the scientific community, but industry as well.
Directory of Open Access Journals (Sweden)
Weifeng Wang
2014-01-01
Full Text Available We study an optimal control problem governed by a semilinear parabolic equation, whose control variable is contained only in the boundary condition. An existence theorem for the optimal control is obtained.
Optimal Control Of Nonlinear Wave Energy Point Converters
DEFF Research Database (Denmark)
Nielsen, Søren R.K.; Zhou, Qiang; Kramer, Morten
2013-01-01
In this paper the optimal control law for a single nonlinear point absorber in irregular sea-states is derived, and proven to be a closed-loop controller with feedback from measured displacement, velocity and acceleration of the floater. However, a non-causal integral control component dependent...... idea behind the control strategy is to enforce the stationary velocity response of the absorber into phase with the wave excitation force at any time. The controller is optimal under monochromatic wave excitation. It is demonstrated that the devised causal controller, in plane irregular sea states......, absorbs almost the same power as the optimal controller....
Optimal Control for a Parallel Hybrid Hydraulic Excavator Using Particle Swarm Optimization
Directory of Open Access Journals (Sweden)
Dong-yun Wang
2013-01-01
Full Text Available Optimal control using particle swarm optimization (PSO is put forward in a parallel hybrid hydraulic excavator (PHHE. A power-train mathematical model of PHHE is illustrated along with the analysis of components’ parameters. Then, the optimal control problem is addressed, and PSO algorithm is introduced to deal with this nonlinear optimal problem which contains lots of inequality/equality constraints. Then, the comparisons between the optimal control and rule-based one are made, and the results show that hybrids with the optimal control would increase fuel economy. Although PSO algorithm is off-line optimization, still it would bring performance benchmark for PHHE and also help have a deep insight into hybrid excavators.
Aircraft nonlinear optimal control using fuzzy gain scheduling
Nusyirwan, I. F.; Kung, Z. Y.
2016-10-01
Fuzzy gain scheduling is a common solution for nonlinear flight control. The highly nonlinear region of flight dynamics is determined throughout the examination of eigenvalues and the irregular pattern of root locus plots that show the nonlinear characteristic. By using the optimal control for command tracking, the pitch rate stability augmented system is constructed and the longitudinal flight control system is established. The outputs of optimal control for 21 linear systems are fed into the fuzzy gain scheduler. This research explores the capability in using both optimal control and fuzzy gain scheduling to improve the efficiency in finding the optimal control gains and to achieve Level 1 flying qualities. The numerical simulation work is carried out to determine the effectiveness and performance of the entire flight control system. The simulation results show that the fuzzy gain scheduling technique is able to perform in real time to find near optimal control law in various flying conditions.
Presentation of Malaria Epidemics Using Multiple Optimal Controls
Directory of Open Access Journals (Sweden)
Abid Ali Lashari
2012-01-01
Full Text Available An existing model is extended to assess the impact of some antimalaria control measures, by re-formulating the model as an optimal control problem. This paper investigates the fundamental role of three type of controls, personal protection, treatment, and mosquito reduction strategies in controlling the malaria. We work in the nonlinear optimal control framework. The existence and the uniqueness results of the solution are discussed. A characterization of the optimal control via adjoint variables is established. The optimality system is solved numerically by a competitive Gauss-Seidel-like implicit difference method. Finally, numerical simulations of the optimal control problem, using a set of reasonable parameter values, are carried out to investigate the effectiveness of the proposed control measures.
Control Methods Utilizing Energy Optimizing Schemes in Refrigeration Systems
DEFF Research Database (Denmark)
Larsen, L.S; Thybo, C.; Stoustrup, Jakob;
2003-01-01
The potential energy savings in refrigeration systems using energy optimal control has been proved to be substantial. This however requires an intelligent control that drives the refrigeration systems towards the energy optimal state. This paper proposes an approach for a control, which drives...
Combined Optimal Sizing and Control for a Hybrid Tracked Vehicle
Directory of Open Access Journals (Sweden)
Huei Peng
2012-11-01
Full Text Available The optimal sizing and control of a hybrid tracked vehicle is presented and solved in this paper. A driving schedule obtained from field tests is used to represent typical tracked vehicle operations. Dynamics of the diesel engine-permanent magnetic AC synchronous generator set, the lithium-ion battery pack, and the power split between them are modeled and validated through experiments. Two coupled optimizations, one for the plant parameters, forming the outer optimization loop and one for the control strategy, forming the inner optimization loop, are used to achieve minimum fuel consumption under the selected driving schedule. The dynamic programming technique is applied to find the optimal controller in the inner loop while the component parameters are optimized iteratively in the outer loop. The results are analyzed, and the relationship between the key parameters is observed to keep the optimal sizing and control simultaneously.
Optimization and control methods in industrial engineering and construction
Wang, Xiangyu
2014-01-01
This book presents recent advances in optimization and control methods with applications to industrial engineering and construction management. It consists of 15 chapters authored by recognized experts in a variety of fields including control and operation research, industrial engineering, and project management. Topics include numerical methods in unconstrained optimization, robust optimal control problems, set splitting problems, optimum confidence interval analysis, a monitoring networks optimization survey, distributed fault detection, nonferrous industrial optimization approaches, neural networks in traffic flows, economic scheduling of CCHP systems, a project scheduling optimization survey, lean and agile construction project management, practical construction projects in Hong Kong, dynamic project management, production control in PC4P, and target contracts optimization. The book offers a valuable reference work for scientists, engineers, researchers and practitioners in industrial engineering and c...
Optimal control of a fed-batch fermentation
Energy Technology Data Exchange (ETDEWEB)
Dekkers, R.M.
1984-01-01
The common cultivation of bakers' yeast is an aerobic fed-batch fermentation under sugar-limited growth. The ultimate objective of on-line computer control is to optimize the process through maximizing the productivity of biomass formation while minimizing the consumption of raw materials for the product. Results obtained on the optimal control of a fed-batch fermentation are given. The aspects to be considered are instrumentation, state estimation, optimization and process control.
Dynamic consistency for Stochastic Optimal Control problems
Carpentier, Pierre; Cohen, Guy; De Lara, Michel; Girardeau, Pierre
2010-01-01
For a sequence of dynamic optimization problems, we aim at discussing a notion of consistency over time. This notion can be informally introduced as follows. At the very first time step $t_0$, the decision maker formulates an optimization problem that yields optimal decision rules for all the forthcoming time step $t_0, t_1, ..., T$; at the next time step $t_1$, he is able to formulate a new optimization problem starting at time $t_1$ that yields a new sequence of optimal decision rules. This process can be continued until final time $T$ is reached. A family of optimization problems formulated in this way is said to be time consistent if the optimal strategies obtained when solving the original problem remain optimal for all subsequent problems. The notion of time consistency, well-known in the field of Economics, has been recently introduced in the context of risk measures, notably by Artzner et al. (2007) and studied in the Stochastic Programming framework by Shapiro (2009) and for Markov Decision Processes...
Use of feedback control to address flight safety issues
Ganguli, Subhabrata
This thesis addresses three control problems related to flight safety. The first problem relates to the scope of improvement in performance of conventional flight control laws. In particular, aircraft longitudinal axis control based on the Total Energy Control System (TECS) is studied. The research draws attention to a potentially sluggish and undesirable aircraft response when the engine dynamics is slow (typically the case). The proposed design method uses a theoretically well-developed modern design method based on Hinfinity optimization to improve the aircraft dynamic behavior in spite of slow engine characteristics. At the same time, the proposed design method achieves other desirable performance goals such as insensitivity to sensor noise and wind gust rejection: all addressed in one unified framework. The second problem is based on a system level analysis of control structure hierarchy for aircraft flight control. The objective of the analysis problem is to translate outer-loop stability and performance specifications into a comprehensive inner-loop metric. The prime motivation is to make the flight control design process more systematic and the system-integration reliable and independent of design methodology. The analysis problem is posed within the robust control analysis framework. Structured singular value techniques and free controller parameterization ideas are used to impose a hierarchical structure for flight control architecture. The third problem involves development and demonstration of a new reconfiguration strategy in the flight control architecture that has the potential of improving flight safety while keeping cost and complexity low. This research proposes a fault tolerant feature based on active robust reconfiguration. The fault tolerant control problem is formulated in the Linear Parameter Varying (LPV) design framework. A prime advantage of this approach is that the synthesis results in a single nonlinear controller (as opposed to a bank
Hospital infection prevention and control issues relevant to extensive floods.
Apisarnthanarak, Anucha; Mundy, Linda M; Khawcharoenporn, Thana; Glen Mayhall, C
2013-02-01
The devastating clinical and economic implications of floods exemplify the need for effective global infection prevention and control (IPC) strategies for natural disasters. Reopening of hospitals after excessive flooding requires a balance between meeting the medical needs of the surrounding communities and restoration of a safe hospital environment. Postflood hospital preparedness plans are a key issue for infection control epidemiologists, healthcare providers, patients, and hospital administrators. We provide recent IPC experiences related to reopening of a hospital after extensive black-water floods necessitated hospital closures in Thailand and the United States. These experiences provide a foundation for the future design, execution, and analysis of black-water flood preparedness plans by IPC stakeholders.
Calculus of variations and optimal control theory a concise introduction
Liberzon, Daniel
2011-01-01
This textbook offers a concise yet rigorous introduction to calculus of variations and optimal control theory, and is a self-contained resource for graduate students in engineering, applied mathematics, and related subjects. Designed specifically for a one-semester course, the book begins with calculus of variations, preparing the ground for optimal control. It then gives a complete proof of the maximum principle and covers key topics such as the Hamilton-Jacobi-Bellman theory of dynamic programming and linear-quadratic optimal control. Calculus of Variations and Optimal Control Theory
A mathematical formulation for optimal control of air pollution
Institute of Scientific and Technical Information of China (English)
朱江; 曾庆存
2003-01-01
The problem of optimal control of air pollution using weather forecastresults and numerical air pollution models is discussed. A mathematical formulation of the problem is presented. The control is an act on pollution sources with feasible constraints. Based on forecasted weather conditions, the objective ofthe optimal control is to minimize total cost caused by control under the constraint that the pollution concentrations over a certain period and a certain spatial domain are less than some specified values. Using the adjoint method, an effective algorithm is given. Since the optimal solutions are based on weather forecasts, the errors in weather forecasts will cause uncertainties in the optimal solutions. Estimation of impacts of weather forecast errors on the optimal solutions is discussed using the adjoint sensitivity analysis technique that is an approximated, however very effective method. The adjoint sensitivity analysis technique can be used to calculate the impacts of errors in wind, temperature and initial pollutant concentration fields on performances of the optimal control.
Optimal parametric sensitivity control for a fed-batch reactor
Stigter, J.D.; Keesman, K.J.
2001-01-01
The paper presents a method to derive an optimal parametric sensitivity controller for optimal estimation of a set of parameters in an experiment. The method is demonstrated for a fed batch bio-reactor case study for optimal estimation of the saturation constant Ks and, albeit intuitively, the param
Minimum energy control and optimal-satisfactory control of Boolean control network
Energy Technology Data Exchange (ETDEWEB)
Li, Fangfei, E-mail: li_fangfei@163.com; Lu, Xiwen
2013-12-09
In the literatures, to transfer the Boolean control network from the initial state to the desired state, the expenditure of energy has been rarely considered. Motivated by this, this Letter investigates the minimum energy control and optimal-satisfactory control of Boolean control network. Based on the semi-tensor product of matrices and Floyd's algorithm, minimum energy, constrained minimum energy and optimal-satisfactory control design for Boolean control network are given respectively. A numerical example is presented to illustrate the efficiency of the obtained results.
Using Lyapunov function to design optimal controller for AQM routers
Institute of Scientific and Technical Information of China (English)
ZHANG Peng; YE Cheng-qing; MA Xue-ying; CHEN Yan-hua; LI Xin
2007-01-01
It was shown that active queue management schemes implemented in the routers of communication networks supporting transmission control protocol (TCP) flows can be modelled as a feedback control system. In this paper based on Lyapunov function we developed an optimal controller to improve active queue management (AQM) router's stability and response time,which are often in conflict with each other in system performance. Ns-2 simulations showed that optimal controller outperforms PI controller significantly.
A Case Study of Some Issues in the Optimization of Fortran 90 Array Notation
Directory of Open Access Journals (Sweden)
John D. McCalpin
1996-01-01
Full Text Available Some issues in the relationship of coding style and compiler optimization are discussed with regard to Fortran 90 array notation. A review of several important Fortran 90 array constructs and their performance on vector and scalar hardware sets the stage for a more detailed example based on the kernel of a finite difference computational fluid dynamics model, specifically the nonlinear shallow water equations. Special attention is paid to the optimization of memory use and memory traffic. It is shown that the style of coding interacts with the rules of Fortran 90 and the current state of the art of Fortran 90 compilers to produce a fairly wide range of performance levels. Although performance degradations are typically small, a few cases of more serious loss of effciency are identified and discussed.
Directory of Open Access Journals (Sweden)
Ruisheng Sun
2016-01-01
Full Text Available This paper presents a new parametric optimization approach based on a modified particle swarm optimization (PSO to design a class of impulsive-correction projectiles with discrete, flexible-time interval, and finite-energy control. In terms of optimal control theory, the task is described as the formulation of minimum working number of impulses and minimum control error, which involves reference model linearization, boundary conditions, and discontinuous objective function. These result in difficulties in finding the global optimum solution by directly utilizing any other optimization approaches, for example, Hp-adaptive pseudospectral method. Consequently, PSO mechanism is employed for optimal setting of impulsive control by considering the time intervals between two neighboring lateral impulses as design variables, which makes the briefness of the optimization process. A modification on basic PSO algorithm is developed to improve the convergence speed of this optimization through linearly decreasing the inertial weight. In addition, a suboptimal control and guidance law based on PSO technique are put forward for the real-time consideration of the online design in practice. Finally, a simulation case coupled with a nonlinear flight dynamic model is applied to validate the modified PSO control algorithm. The results of comparative study illustrate that the proposed optimal control algorithm has a good performance in obtaining the optimal control efficiently and accurately and provides a reference approach to handling such impulsive-correction problem.
Hierarchical control based on Hopfield network for nonseparable optimization problems
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
The nonseparable optimization control problem is considered, where the overall objective function is not of an additive form with respect to subsystems. Since there exists the problem that computation is very slow when using iterative algorithms in multiobjective optimization, Hopfield optimization hierarchical network based on IPM is presented to overcome such slow computation difficulty. Asymptotic stability of this Hopfield network is proved and its equilibrium point is the optimal point of the original problem. The simulation shows that the net is effective to deal with the optimization control problem for large-scale nonseparable steady state systems.
H2-optimal control with generalized state-space models for use in control-structure optimization
Wette, Matt
1991-01-01
Several advances are provided solving combined control-structure optimization problems. The author has extended solutions from H2 optimal control theory to the use of generalized state space models. The generalized state space models preserve the sparsity inherent in finite element models and hence provide some promise for handling very large problems. Also, expressions for the gradient of the optimal control cost are derived which use the generalized state space models.
Study on optimization control method based on artificial neural network
Institute of Scientific and Technical Information of China (English)
FU Hua; SUN Shao-guang; XU Zhen-Iiang
2005-01-01
In the goal optimization and control optimization process the problems with common artificial neural network algorithm are unsure convergence, insufficient post-training network precision, and slow training speed, in which partial minimum value question tends to occur. This paper conducted an in-depth study on the causes of the limitations of the algorithm, presented a rapid artificial neural network algorithm, which is characterized by integrating multiple algorithms and by using their complementary advantages. The salient feature of the method is self-organization, which can effectively prevent the optimized results from tending to be partial minimum values. Overall optimization can be achieved with this method, goal function can be searched for in overall scope. With optimization control of coal mine ventilator as a practical application, the paper proves that by integrating multiple artificial neural network algorithms, best control optimization and goal optimized can be achieved.
OPTIMAL CONTROL OF CNC CUTTING PROCESS
Institute of Scientific and Technical Information of China (English)
无
1999-01-01
The intelligent optimizing method of cutting parameters and the cutting stable districts searching method are set up. The cutting parameters of each cutting pass could be optimized automatically, the cutting chatter is predicted through setting up the dynamic cutting force AR(2) model on-line, the spindle rotation speed is adjusted according to the predicting results so as to ensure the cutting system work in stable district.
The Merlin Control Language for strategic optimization
Papageorgiou, D. G.; Demetropoulos, I. N.; Lagaris, I. E.
1998-04-01
MCL is the programming language of the MERLIN optimization environment. It can be used for the implementation of efficient optimization strategies, abolishing to a great extend the need for user intervention. The language is simple to learn and its structure is similar to Fortran. We report on successful applications where MCL played an instrumental role, as for example in molecular physics problems and in the training of neural networks.
Nonlinear model predictive control based on collective neurodynamic optimization.
Yan, Zheng; Wang, Jun
2015-04-01
In general, nonlinear model predictive control (NMPC) entails solving a sequential global optimization problem with a nonconvex cost function or constraints. This paper presents a novel collective neurodynamic optimization approach to NMPC without linearization. Utilizing a group of recurrent neural networks (RNNs), the proposed collective neurodynamic optimization approach searches for optimal solutions to global optimization problems by emulating brainstorming. Each RNN is guaranteed to converge to a candidate solution by performing constrained local search. By exchanging information and iteratively improving the starting and restarting points of each RNN using the information of local and global best known solutions in a framework of particle swarm optimization, the group of RNNs is able to reach global optimal solutions to global optimization problems. The essence of the proposed collective neurodynamic optimization approach lies in the integration of capabilities of global search and precise local search. The simulation results of many cases are discussed to substantiate the effectiveness and the characteristics of the proposed approach.
Ruiz-Cruz, Riemann; Sanchez, Edgar N; Ornelas-Tellez, Fernando; Loukianov, Alexander G; Harley, Ronald G
2013-12-01
In this paper, the authors propose a particle swarm optimization (PSO) for a discrete-time inverse optimal control scheme of a doubly fed induction generator (DFIG). For the inverse optimal scheme, a control Lyapunov function (CLF) is proposed to obtain an inverse optimal control law in order to achieve trajectory tracking. A posteriori, it is established that this control law minimizes a meaningful cost function. The CLFs depend on matrix selection in order to achieve the control objectives; this matrix is determined by two mechanisms: initially, fixed parameters are proposed for this matrix by a trial-and-error method and then by using the PSO algorithm. The inverse optimal control scheme is illustrated via simulations for the DFIG, including the comparison between both mechanisms.
Robust output LQ optimal control via integral sliding modes
Fridman, Leonid; Bejarano, Francisco Javier
2014-01-01
Featuring original research from well-known experts in the field of sliding mode control, this monograph presents new design schemes for implementing LQ control solutions in situations where the output system is the only information provided about the state of the plant. This new design works under the restrictions of matched disturbances without losing its desirable features. On the cutting-edge of optimal control research, Robust Output LQ Optimal Control via Integral Sliding Modes is an excellent resource for both graduate students and professionals involved in linear systems, optimal control, observation of systems with unknown inputs, and automatization. In the theory of optimal control, the linear quadratic (LQ) optimal problem plays an important role due to its physical meaning, and its solution is easily given by an algebraic Riccati equation. This solution turns out to be restrictive, however, because of two assumptions: the system must be free from disturbances and the entire state vector must be kn...
Optimal fault-tolerant control strategy of a solid oxide fuel cell system
Wu, Xiaojuan; Gao, Danhui
2017-10-01
For solid oxide fuel cell (SOFC) development, load tracking, heat management, air excess ratio constraint, high efficiency, low cost and fault diagnosis are six key issues. However, no literature studies the control techniques combining optimization and fault diagnosis for the SOFC system. An optimal fault-tolerant control strategy is presented in this paper, which involves four parts: a fault diagnosis module, a switching module, two backup optimizers and a controller loop. The fault diagnosis part is presented to identify the SOFC current fault type, and the switching module is used to select the appropriate backup optimizer based on the diagnosis result. NSGA-II and TOPSIS are employed to design the two backup optimizers under normal and air compressor fault states. PID algorithm is proposed to design the control loop, which includes a power tracking controller, an anode inlet temperature controller, a cathode inlet temperature controller and an air excess ratio controller. The simulation results show the proposed optimal fault-tolerant control method can track the power, temperature and air excess ratio at the desired values, simultaneously achieving the maximum efficiency and the minimum unit cost in the case of SOFC normal and even in the air compressor fault.
Optimization and Convergence of Observation Channels in Stochastic Control
Yüksel, Serdar
2010-01-01
This paper studies the optimization of observation channels (stochastic kernels) in partially observed stochastic control problems. In particular, existence, continuity, and convexity properties are investigated. Continuity properties of the optimal cost in channels are explored under total variation, setwise convergence and weak convergence. Sufficient conditions for sequential compactness under total variation and setwise convergence are presented. It is shown that the optimization is concave in observation channels. This implies that the optimization problem is non-convex in quantization/coding policies for a class of networked control problems. Applications in optimal quantizer/coder design and robust control are presented, where new results on the existence of optimal quantizers are obtained. Furthermore, the paper explains why a class of decentralized control problems, under the non-classical information structure, is non-convex when {\\em signaling} is present. Finally, empirical con sistency of a class...
Optimal control of stochastic difference Volterra equations an introduction
Shaikhet, Leonid
2015-01-01
This book showcases a subclass of hereditary systems, that is, systems with behaviour depending not only on their current state but also on their past history; it is an introduction to the mathematical theory of optimal control for stochastic difference Volterra equations of neutral type. As such, it will be of much interest to researchers interested in modelling processes in physics, mechanics, automatic regulation, economics and finance, biology, sociology and medicine for all of which such equations are very popular tools. The text deals with problems of optimal control such as meeting given performance criteria, and stabilization, extending them to neutral stochastic difference Volterra equations. In particular, it contrasts the difference analogues of solutions to optimal control and optimal estimation problems for stochastic integral Volterra equations with optimal solutions for corresponding problems in stochastic difference Volterra equations. Optimal Control of Stochastic Difference Volterra Equation...
Optimal control of photoelectron emission by realistic waveforms
Solanpää, Janne; Räsänen, Esa
2016-01-01
Recent experimental techniques in multicolor waveform synthesis allow the temporal shaping of strong femtosecond laser pulses with applications in the control of quantum mechanical processes in atoms, molecules, and nanostructures. Prediction of the shapes of the optimal waveforms can be done computationally using quantum optimal control theory (QOCT). In this work we bring QOCT to experimental feasibility by providing an optimal control scheme with realistic pulse representation. We apply the technique to optimal control of above-threshold photoelectron emission from a one-dimensional hydrogen atom. By mixing different spectral channels and thus lowering the intensity requirements for individual channels, the resulting optimal pulses can extend the cutoff energies by at least up to 50% and bring up the electron yield by several orders of magnitude. Insights into the electron dynamics for optimized photoelectron emission are obtained with a semiclassical two-step model.
Optimal Control of Vehicular Formations with Nearest Neighbor Interactions
Lin, Fu; Jovanović, Mihailo R
2011-01-01
We consider the design of optimal localized feedback gains for one-dimensional formations in which vehicles only use information from their immediate neighbors. The control objective is to enhance coherence of the formation by making it behave like a rigid lattice. For the single-integrator model with symmetric gains, we establish convexity, implying that the globally optimal controller can be computed efficiently. We also identify a class of convex problems for double-integrators by restricting the controller to symmetric position and uniform diagonal velocity gains. To obtain the optimal non-symmetric gains for both the single- and the double-integrator models, we solve a parameterized family of optimal control problems ranging from an easily solvable problem to the problem of interest as the underlying parameter increases. When this parameter is kept small, we employ perturbation analysis to decouple the matrix equations that result from the optimality conditions, thereby rendering the unique optimal feedb...
Optimal Control for a Class of Chaotic Systems
Directory of Open Access Journals (Sweden)
Jianxiong Zhang
2012-01-01
Full Text Available This paper proposes the optimal control methods for a class of chaotic systems via state feedback. By converting the chaotic systems to the form of uncertain piecewise linear systems, we can obtain the optimal controller minimizing the upper bound on cost function by virtue of the robust optimal control method of piecewise linear systems, which is cast as an optimization problem under constraints of bilinear matrix inequalities (BMIs. In addition, the lower bound on cost function can be achieved by solving a semidefinite programming (SDP. Finally, numerical examples are given to illustrate the results.
PID control for chaotic synchronization using particle swarm optimization
Energy Technology Data Exchange (ETDEWEB)
Chang, W.-D. [Department of Computer and Communication, Shu-Te University, Kaohsiung 824, Taiwan (China)], E-mail: wdchang@mail.stu.edu.tw
2009-01-30
In this paper, we attempt to use the proportional-integral-derivative (PID) controller to achieve the chaos synchronization for delayed discrete chaotic systems. Three PID control gains can be optimally determined by means of using a novel optimization algorithm, called the particle swarm optimization (PSO). The algorithm is motivated from the organism behavior of fish schooling and bird flocking, and involves the social psychology principles in socio-cognition human agents and evolutionary computations. It has a good numerical convergence for solving optimization problem. To show the validity of the PSO-based PID control for chaos synchronization, several cases with different initial populations are considered and some simulation results are shown.
Stochastic Optimal Control for Series Hybrid Electric Vehicles
Energy Technology Data Exchange (ETDEWEB)
Malikopoulos, Andreas [ORNL
2013-01-01
Increasing demand for improving fuel economy and reducing emissions has stimulated significant research and investment in hybrid propulsion systems. In this paper, we address the problem of optimizing online the supervisory control in a series hybrid configuration by modeling its operation as a controlled Markov chain using the average cost criterion. We treat the stochastic optimal control problem as a dual constrained optimization problem. We show that the control policy that yields higher probability distribution to the states with low cost and lower probability distribution to the states with high cost is an optimal control policy, defined as an equilibrium control policy. We demonstrate the effectiveness of the efficiency of the proposed controller in a series hybrid configuration and compare it with a thermostat-type controller.
Optimal Vibration Control for Tracked Vehicle Suspension Systems
Directory of Open Access Journals (Sweden)
Yan-Jun Liang
2013-01-01
Full Text Available Technique of optimal vibration control with exponential decay rate and simulation for vehicle active suspension systems is developed. Mechanical model and dynamic system for a class of tracked vehicle suspension vibration control is established and the corresponding system of state space form is described. In order to prolong the working life of suspension system and improve ride comfort, based on the active suspension vibration control devices and using optimal control approach, an optimal vibration controller with exponential decay rate is designed. Numerical simulations are carried out, and the control effects of the ordinary optimal controller and the proposed controller are compared. Numerical simulation results illustrate the effectiveness of the proposed technique.
Fuzzy controller based on chaos optimal design and its application
Institute of Scientific and Technical Information of China (English)
邹恩; 李祥飞; 张泰山
2004-01-01
In order to overcome difficulty of tuning parameters of fuzzy controller, a chaos optimal design method based on annealing strategy is proposed. First, apply the chaotic variables to search for parameters of fuzzy controller, and transform the optimal variables into chaotic variables by carrier-wave method. Making use of the intrinsic stochastic property and ergodicity of chaos movement to escape from the local minimum and direct optimization searching within global range, an approximate global optimal solution is obtained. Then, the chaos local searching and optimization based on annealing strategy are cited, the parameters are optimized again within the limits of the approximate global optimal solution, the optimization is realized by means of combination of global and partial chaos searching, which can converge quickly to global optimal value. Finally, the third order system and discrete nonlinear system are simulated and compared with traditional method of fuzzy control. The results show that the new chaos optimal design method is superior to fuzzy control method, and that the control results are of high precision, with no overshoot and fast response.
Robustified time-optimal control of uncertain structural dynamic systems
Liu, Qiang; Wie, Bong
1991-01-01
A new approach for computing open-loop time-optimal control inputs for uncertain linear dynamical systems is developed. In particular, the single-axis, rest-to-rest maneuvering problem of flexible spacecraft in the presence of uncertainty in model parameters is considered. Robustified time-optimal control inputs are obtained by solving a parameter optimization problem subject to robustness constraints. A simple dynamical system with a rigid-body mode and one flexible mode is used to illustrate the concept.
ON THE OPTIMAL CONTROL COMPUTATION OF LINEAR SYSTEMS
Directory of Open Access Journals (Sweden)
H. Tjahjana
2012-05-01
Full Text Available In this paper, we consider a numerical method for designing optimal controlon Linear Quadratic Regulator (LQR problem. In the optimal control design process through Pontryagin Maximum Principle (PMP, we obtain a system of diferential equations in state and costate variables. This system lacks of initial condition on the adjoint variables, and this situation creates classic dificulty for solving optimal control problems.This paper proposes a constructive method to approximate the initial condition of the adjoint system.
Optimal Control with Time Delays via the Penalty Method
Directory of Open Access Journals (Sweden)
Mohammed Benharrat
2014-01-01
Full Text Available We prove necessary optimality conditions of Euler-Lagrange type for a problem of the calculus of variations with time delays, where the delay in the unknown function is different from the delay in its derivative. Then, a more general optimal control problem with time delays is considered. Main result gives a convergence theorem, allowing us to obtain a solution to the delayed optimal control problem by considering a sequence of delayed problems of the calculus of variations.
A combined stochastic programming and optimal control approach to personal finance and pensions
DEFF Research Database (Denmark)
Konicz, Agnieszka Karolina; Pisinger, David; Rasmussen, Kourosh Marjani
2015-01-01
The paper presents a model that combines a dynamic programming (stochastic optimal control) approach and a multi-stage stochastic linear programming approach (SLP), integrated into one SLP formulation. Stochastic optimal control produces an optimal policy that is easy to understand and implement....... However, explicit solution may not exist, especially when we want to deal with constraints, such as the limits on the portfolio composition, the limits on the insured sum, an inclusion of transaction costs or taxes on capital gains, which are important issues regularly mentioned in the scientic literature....... Two applications are considered: (A) optimal investment, consumption and insured sum for an individual maximizing the expected utility of consumption and bequest, and (B) optimal investment for a pension saver who wishes to maximize the expected utility of retirement benets. Numerical results show...
Hocker, David Lance
The control of quantum systems occurs across a broad range of length and energy scales in modern science, and efforts have demonstrated that locating suitable controls to perform a range of objectives has been widely successful. The justification for this success arises from a favorable topology of a quantum control landscape, defined as a mapping of the controls to a cost function measuring the success of the operation. This is summarized in the landscape principle that no suboptimal extrema exist on the landscape for well-suited control problems, explaining a trend of successful optimizations in both theory and experiment. This dissertation explores what additional lessons may be gleaned from the quantum control landscape through numerical and theoretical studies. The first topic examines the experimentally relevant problem of assessing and reducing disturbances due to noise. The local curvature of the landscape is found to play an important role on noise effects in the control of targeted quantum unitary operations, and provides a conceptual framework for assessing robustness to noise. Software for assessing noise effects in quantum computing architectures was also developed and applied to survey the performance of current quantum control techniques for quantum computing. A lack of competition between robustness and perfect unitary control operation was discovered to fundamentally limit noise effects, and highlights a renewed focus upon system engineering for reducing noise. This convergent behavior generally arises for any secondary objective in the situation of high primary objective fidelity. The other dissertation topic examines the utility of quantum control for a class of nonlinear Hamiltonians not previously considered under the landscape principle. Nonlinear Schrodinger equations are commonly used to model the dynamics of Bose-Einstein condensates (BECs), one of the largest known quantum objects. Optimizations of BEC dynamics were performed in which the
Pseudospectral Optimal Control: Hidden Properties and Flight Results
2011-11-30
on solving optimal control problems , we focus on developing PS methods over arbitrary grids for Problem B. Such research can provides a unified...more efficient algorithms for solving optimal control problems , for example, multiscale PS methods for dynamical systems with different timescales
Educational Tool for Optimal Controller Tuning Using Evolutionary Strategies
Carmona Morales, D.; Jimenez-Hornero, J. E.; Vazquez, F.; Morilla, F.
2012-01-01
In this paper, an optimal tuning tool is presented for control structures based on multivariable proportional-integral-derivative (PID) control, using genetic algorithms as an alternative to traditional optimization algorithms. From an educational point of view, this tool provides students with the necessary means to consolidate their knowledge on…
On-line optimal control of greenhouse crop cultivation.
Straten, van G.
1996-01-01
Thus far, optimal control has primarily been investigated for seasonal crop growth optimization. On-line aspects have received much less attention. The decomposition between long term strategies and on-line control, however, is not trivial. Appreciable losses occur when set-points generated by seaso
On-line optimal control of greenhouse crop cultivation.
Straten, van G.
1996-01-01
Thus far, optimal control has primarily been investigated for seasonal crop growth optimization. On-line aspects have received much less attention. The decomposition between long term strategies and on-line control, however, is not trivial. Appreciable losses occur when set-points generated by seaso
Exploiting Higher-order Derivatives in Computational Optimal Control
Ross, I. Michael; Rea, Jeremy; Fahroo, Fariba
2002-01-01
Proceedings of the 10th Mediterranean Conference on Control and Automation -- MED 2002 , Lisbon, Portugal, July7 9-12, 2002 To facilitate generation of real-time solutions to nonlinear optimal control problems, we present a new way of approximating higher-order derivatives that arise in control systems. A Legendre pseudospectral method is presented to efficiently and accurately discretize optimal control problems governed by higher-order dynamical constraints. For mechanical systems, a re...
Analysis and control of issues that delay pharmaceutical projects
Directory of Open Access Journals (Sweden)
Nallam Sai Nandeswara Rao
2015-10-01
Full Text Available Every project will have certain objectives and service levels to be achieved. The success of a project depends on several dimensions like time, cost/budget, quality, etc. and managing a project involves completing the project within time, within budget and with quality to satisfy the users. Because of the significance of health, pharmaceutical companies realized the importance of project management methods and techniques to make available the life saving drugs in time to the needy patients and hospitals. In literature, there is meager information about pharmaceutical project management oriented towards analysis of issues and factors that contribute to the failure or success of projects. This study attempts to analyse different issues that contribute to time delays in pharmaceutical product-based projects, group them under a finite set of prominent factors and identify remedial measures to control those delays. The feedback of project people of some big pharmaceutical firms of Indian sub-continent was collected for this purpose. Exploratory factor analysis (EFA has been used to reduce the reasons for time delays to a limited number of prominent factors and the EFA model has been further examined by confirmatory factor analysis (CFA for its validation. Remedial measures under each factor of time delays have been gathered and a framework designed to mitigate the time delays in pharmaceutical projects. The derived factors that delay the pharmaceutical projects include resource, monitoring & control, scheduling and planning problems. Important remedial measures like blended resource approach, estimation and forecast of shortage of labour and skills, regular quality training, etc. have been recommended.
Statistical issues in randomised controlled trials: a narrative synthesis
Directory of Open Access Journals (Sweden)
Bolaji Emmanuel Egbewale
2015-05-01
Full Text Available Randomised controlled trials (RCT s are gold standard in the evaluation of treatment efficacy in medical investigations, only if well designed and implemented. Till date, distorted views and misapplications of statistical procedures involved in RCTs are still in practice. Hence, clarification of concepts and acceptable practices related to certain statistical issues involved in the design, conduct and reporting of randomised controlled trials is needed. This narrative synthesis aimed at providing succinct but clear information on the concepts and practices of selected statistical issues in RCT s to inform correct applications. The use of tests of significance is no longer acceptable as means to compare baseline similarity between treatment groups and in determining which covariate(s should be included in the model for adjustment. Distribution of baseline attributes simply presented in tabular form is however, rather preferred. Regarding covariate selection, such approach that makes use of information on the degree of correlation between the covariate(s and the outcome variable is more in tandem with statistical principle(s than that based on tests of significance. Stratification and minimisation are not alternatives to covariate adjusted analysis; in fact they establish the need for one. Intention-to-treat is the preferred approach for the evaluation of primary outcome measures and researchers have responsibility to report whether or not the procedure was followed. A major use of results from subgroup analysis is to generate hypothesis for future clinical trials. Since RCT s are gold standard in the comparison of medical interventions, researchers cannot afford the practices of distorted allocation or statistical procedures in this all important experimental design method.
Statistical issues in randomised controlled trials: a narrative synthesis
Institute of Scientific and Technical Information of China (English)
Bolaji; Emmanuel; Egbewale
2015-01-01
Randomised controlled trials(RCTs) are gold standard in the evaluation of treatment efficacy in medical investigations, only if well designed and implemented. Till date, distorted views and misapplications of statistical procedures involved in RCTs are still in practice. Hence, clarification of concepts and acceptable practices related to certain statistical issues involved in the design, conduct and reporting of randomised controlled trials is needed. This narrative synthesis aimed at providing succinct but clear information on the concepts and practices of selected statistical issues in RCTs to inform correct applications. The use of tests of significance is no longer acceptable as means to compare baseline similarity between treatment groups and in determining which covariate(s) should be included in the model for adjustment. Distribution of baseline attributes simply presented in tabular form is however, rather preferred. Regarding covariate selection, such approach that makes use of information on the degree of correlation between the covariate(s) and the outcome variable is more in tandem with statistical principle(s) than that based on tests of significance. Stratification and minimisation are not alternatives to covariate adjusted analysis; in fact they establish the need for one. Intention-totreat is the preferred approach for the evaluation of primary outcome measures and researchers have responsibility to report whether or not the procedure was followed. A major use of results from subgroup analysis is to generate hypothesis for future clinical trials. Since RCTs are gold standard in the comparison of medical interventions, researchers cannot afford the practices of distorted allocation or statistical procedures in this all important experimental design method.
Automation and Systems Issues in Air Traffic Control
Directory of Open Access Journals (Sweden)
Gabriela STROE
2016-12-01
Full Text Available This paper is dedicated to the study and analysis of a successfully designed control system in ATM. The aircraft's motion is affected by other factors, besides the pilot controls in the form of external disturbances, such as wind, and internal errors, due to unmodelled dynamics, tracking error and system noise. Navigation equipment tracks the exact real-time location of the aircraft in 4D space and provides feedback to both the pilot in the cockpit and ATC via ADS-B. ATM was expressed as a large, decentralized, dynamic, variable size, infinite horizon, multi-parameter, constrained, nonlinear, non-causal, non-convex, multi-objective, high-dimensionality, hybrid (continuous and combinatorial, optimal control problem. Rapidly increasing growth and demand in CNS/ATM, the advanced scheme for ATM, ADS-B system which is based on digital communication is being implemented in the field of surveillance. ADS-B is a radically new technology that is redefining the paradigm of CNS in ATM today. Automatic Dependent Surveillance-Broadcast (ADS-B is the next generation air surveillance system which supplants and complements the limitations of conventional radar, since conventional ATM radar systems will reach their limits soon due to the increases in air traffic.
Optimization and Control of Electric Power Systems
Energy Technology Data Exchange (ETDEWEB)
Lesieutre, Bernard C. [Univ. of Wisconsin, Madison, WI (United States); Molzahn, Daniel K. [Univ. of Wisconsin, Madison, WI (United States)
2014-10-17
The analysis and optimization needs for planning and operation of the electric power system are challenging due to the scale and the form of model representations. The connected network spans the continent and the mathematical models are inherently nonlinear. Traditionally, computational limits have necessitated the use of very simplified models for grid analysis, and this has resulted in either less secure operation, or less efficient operation, or both. The research conducted in this project advances techniques for power system optimization problems that will enhance reliable and efficient operation. The results of this work appear in numerous publications and address different application problems include optimal power flow (OPF), unit commitment, demand response, reliability margins, planning, transmission expansion, as well as general tools and algorithms.
OPTIMAL THICKNESS OF A CYLINDRICAL SHELL - AN OPTIMAL CONTROL PROBLEM IN LINEAR ELASTICITY THEORY
Directory of Open Access Journals (Sweden)
Peter Nestler
2013-01-01
Full Text Available In this paper we discuss optimization problems for cylindrical tubeswhich are loaded by an applied force. This is a problem of optimal control in linear elasticity theory (shape optimization. We are looking for an optimal thickness minimizing the deflection (deformation of the tube under the influence of an external force. From basic equations of mechanics, we derive the equation of deformation. We apply the displacement approach from shell theory and make use of the hypotheses of Mindlin and Reissner. A corresponding optimal control problem is formulated and first order necessary conditions for the optimal solution (optimal thickness are derived. We present numerical examples which were solved by the finite element method.
Discrete-time optimal control and games on large intervals
Zaslavski, Alexander J
2017-01-01
Devoted to the structure of approximate solutions of discrete-time optimal control problems and approximate solutions of dynamic discrete-time two-player zero-sum games, this book presents results on properties of approximate solutions in an interval that is independent lengthwise, for all sufficiently large intervals. Results concerning the so-called turnpike property of optimal control problems and zero-sum games in the regions close to the endpoints of the time intervals are the main focus of this book. The description of the structure of approximate solutions on sufficiently large intervals and its stability will interest graduate students and mathematicians in optimal control and game theory, engineering, and economics. This book begins with a brief overview and moves on to analyze the structure of approximate solutions of autonomous nonconcave discrete-time optimal control Lagrange problems.Next the structures of approximate solutions of autonomous discrete-time optimal control problems that are discret...
Intrinsic Optimal Control for Mechanical Systems on Lie Group
Directory of Open Access Journals (Sweden)
Chao Liu
2017-01-01
Full Text Available The intrinsic infinite horizon optimal control problem of mechanical systems on Lie group is investigated. The geometric optimal control problem is built on the intrinsic coordinate-free model, which is provided with Levi-Civita connection. In order to obtain an analytical solution of the optimal problem in the geometric viewpoint, a simplified nominal system on Lie group with an extra feedback loop is presented. With geodesic distance and Riemann metric on Lie group integrated into the cost function, a dynamic programming approach is employed and an analytical solution of the optimal problem on Lie group is obtained via the Hamilton-Jacobi-Bellman equation. For a special case on SO(3, the intrinsic optimal control method is used for a quadrotor rotation control problem and simulation results are provided to show the control performance.
Constrained optimal steady-state control for isolated traffic intersections
Institute of Scientific and Technical Information of China (English)
Jack HADDAD; David MAHALEL; Ilya IOSLOVICH; Per-Olof GUTMAN
2014-01-01
The steady-state or cyclic control problem for a simplified isolated traffic intersection is considered. The optimization problem for the green-red switching sequence is formulated with the help of a discrete-event max-plus model. Two steady-state control problems are formulated: optimal steady-state with green duration constraints, and optimal steady-state control with lost time. In the case when the criterion is a strictly increasing, linear function of the queue lengths, the steady-state control problems can be solved analytically. The structure of constrained optimal steady-state traffic control is revealed, and the effect of the lost time on the optimal solution is illustrated.
Optimal control of ratchets without spatial asymmetry
Energy Technology Data Exchange (ETDEWEB)
Chacon, Ricardo [Departamento de Fisica Aplicada, Escuela de IngenierIas Industriales, Universidad de Extremadura, Apartado Postal 382, E-06071 Badajoz (Spain)
2007-06-01
This work presents the following conjecture: to optimally enhance directed transport by symmetry breaking of temporal forces there exists a particular force waveform which allows us to deduce simple scaling laws from a quantitative interpretation of Curie's principle. These scaling laws explain in a general setting previous results for a great diversity of systems subjected to a standard biharmonic force and provide a quantitative criterion to optimize the application of the ratchet effect induced by symmetry breaking of temporal forces. Mathematical arguments justifying this conjecture are discussed. (fast track communication)
New Applications of Variational Analysis to Optimization and Control
Mordukhovich, Boris S.
We discuss new applications of advanced tools of variational analysis and generalized differentiation to a number of important problems in optimization theory, equilibria, optimal control, and feedback control design. The presented results are largely based on the recent work by the author and his collaborators. Among the main topics considered and briefly surveyed in this paper are new calculus rules for generalized differentiation of nonsmooth and set-valued mappings; necessary and sufficient conditions for new notions of linear subextremality and suboptimality in constrained problems; optimality conditions for mathematical problems with equilibrium constraints; necessary optimality conditions for optimistic bilevel programming with smooth and nonsmooth data; existence theorems and optimality conditions for various notions of Pareto-type optimality in problems of multiobjective optimization with vector-valued and set-valued cost mappings; Lipschitzian stability and metric regularity aspects for constrained and variational systems.
Zhang, Huaguang; Feng, Tao; Yang, Guang-Hong; Liang, Hongjing
2015-07-01
In this paper, the inverse optimal approach is employed to design distributed consensus protocols that guarantee consensus and global optimality with respect to some quadratic performance indexes for identical linear systems on a directed graph. The inverse optimal theory is developed by introducing the notion of partial stability. As a result, the necessary and sufficient conditions for inverse optimality are proposed. By means of the developed inverse optimal theory, the necessary and sufficient conditions are established for globally optimal cooperative control problems on directed graphs. Basic optimal cooperative design procedures are given based on asymptotic properties of the resulting optimal distributed consensus protocols, and the multiagent systems can reach desired consensus performance (convergence rate and damping rate) asymptotically. Finally, two examples are given to illustrate the effectiveness of the proposed methods.
Stable MIMO Constrained Predictive Control with Steady state Objective Optimization
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
A two-stage multi-objective optimization model-predictive control algorithms(MPC) strategy is pre sented. A domain MPC controller with input constraints is used to increase freedom for steady-state objective and enhance stabilization of the controller. A steady-state objective optimization algorithm oriented to transient process is adopted to realize optimization of objectives else than dynamic control. It is proved that .the stabilization for both dynamic control and steady-state objective optimization can be guaranteed. The theoretical results are demonstrated and discussed using a distillation tower as the model. Theoretical analysis and simulation results show that this control strategy is efficient and provides a good strategic solution to practical process control.
Investigation of optimal control system for arc spraying
Institute of Scientific and Technical Information of China (English)
Li Heqi; Li Chunxu
2005-01-01
Arc-voltage feedback PID ( Proportional plus Integral plus Differential) controller and arc-current feedback PID controller are designed with an algorithm of discrete PID. In order to realize parameters optimization and adaptation of the arc-spraying process and to reduce blindness in selecting process parameters, a serial communication interface between PC and MCU (Micro Control Unit) is designed so that on-line modification of the PID control parameters is implemented. A genetic algorithm is adopted to optimize PID control parameters. Meanwhile, the error between the actual value and the setting value of spraying current is selected as the judgment criterion to determine the adaptability for the algorithm. The best optimal population of PID control parameters can be obtained, so that the optimal controlling in arc-spraying process is realized and an excellent coating of arc-spraying is obtained.
Edge orientation for optimizing controllability of complex networks.
Xiao, Yan-Dong; Lao, Song-Yang; Hou, Lv-Lin; Bai, Liang
2014-10-01
Recently, as the controllability of complex networks attracts much attention, how to design and optimize the controllability of networks has become a common and urgent problem in the field of controlling complex networks. Previous work focused on the structural perturbation and neglected the role of edge direction to optimize the network controllability. In a recent work [Phys. Rev. Lett. 103, 228702 (2009)], the authors proposed a simple method to enhance the synchronizability of networks by assignment of link direction while keeping network topology unchanged. However, the controllability is fundamentally different from synchronization. In this work, we systematically propose the definition of assigning direction to optimize controllability, which is called the edge orientation for optimal controllability problem (EOOC). To solve the EOOC problem, we construct a switching network and transfer the EOOC problem to find the maximum independent set of the switching network. We prove that the principle of our optimization method meets the sense of unambiguity and optimum simultaneously. Furthermore, the relationship between the degree-degree correlations and EOOC are investigated by experiments. The results show that the disassortativity pattern could weaken the orientation for optimal controllability, while the assortativity pattern has no correlation with EOOC. All the experimental results of this work verify that the network structure determines the network controllability and the optimization effects.
Dynamics systems vs. optimal control--a unifying view.
Schaal, Stefan; Mohajerian, Peyman; Ijspeert, Auke
2007-01-01
In the past, computational motor control has been approached from at least two major frameworks: the dynamic systems approach and the viewpoint of optimal control. The dynamic system approach emphasizes motor control as a process of self-organization between an animal and its environment. Nonlinear differential equations that can model entrainment and synchronization behavior are among the most favorable tools of dynamic systems modelers. In contrast, optimal control approaches view motor control as the evolutionary or development result of a nervous system that tries to optimize rather general organizational principles, e.g., energy consumption or accurate task achievement. Optimal control theory is usually employed to develop appropriate theories. Interestingly, there is rather little interaction between dynamic systems and optimal control modelers as the two approaches follow rather different philosophies and are often viewed as diametrically opposing. In this paper, we develop a computational approach to motor control that offers a unifying modeling framework for both dynamic systems and optimal control approaches. In discussions of several behavioral experiments and some theoretical and robotics studies, we demonstrate how our computational ideas allow both the representation of self-organizing processes and the optimization of movement based on reward criteria. Our modeling framework is rather simple and general, and opens opportunities to revisit many previous modeling results from this novel unifying view.
Pharmaceuticals: pharmaceutical cost controls--2005. End of Year Issue Brief.
Seay, Melicia; Varma, Priya
2005-12-31
The enactment of the Omnibus Budget Reconciliation Act of 1990 (OBRA '90) gave states the option of offering pharmaceutical benefits within their Medicaid programs. But the law placed restrictions on states' flexibility to control what prescriptions they would cover and required the states to reimburse outpatient prescription drugs from manufacturers that signed rebate agreements with the U.S. Department of Health and Human Services. Forty-nine states--Arizona is excluded, based on its program structure--and the District of Columbia currently offer prescription drug coverage under the Medicaid Drug Rebate Program. During the past four years, states all over the country have been plagued with revenue shortfalls in their state Medicaid budgets. While the fiscal situation improved for most states in the 2004 legislative session, many states still face budget pressures in 2005. Compounding existing budget pressures are threats from the Bush Administration to shift increased costs of the Medicaid program on to the states. All things considered, the economic pressure of funding Medicaid is at the top of legislative agendas in 2005. As in previous years, states are attempting to reduce costs to their Medicaid programs by seeking savings in their pharmaceutical programs. Prescription drug costs are highly attributed as a contributing factor to the fiscal climate of state Medicaid programs. Currently, prescription drug spending outpaces that of every other category of health care and drug prices are rising faster than inflation. In response, states are instituting a variety of pharmaceutical cost control measures such as creating preferred drug lists (PDLs), negotiating supplemental rebates, forming bulk purchasing pools, promoting generic drug substitution and implementing price controls. As prescription drug cost containment tools have gained acceptance and momentum, they continue to be controversial. This issue brief explores the debate, history, methodology, utilization
Urban malaria control situation and environmental issues, Madras City, India.
Hyma, B; Ramesh, A; Chakrapani, K P
1983-01-01
Madras was one of 22 urban places in India where centrally sponsored urban malaria control schemes were introduced in 1971-1972. Yet since 1970, malaria cases have actually registered a significant increase in Madras. This paper deals with some critical environmental issues facing malaria control schemes. The overall spatial trends and patterns of malaria incidence are illustrated through maps for the years 1975-1981. Areas of high incidence are shown in the northern part of the city which is also traditionally an endemic area. The City Corporation has identified 17 high risk divisions accounting for 75% of the total registered cases in the city. High risk areas were found to be related to environmentally deteriorating areas such as high density, older, residential areas, slums and squatter settled areas along stretches of two rivers and a canal which traverse the city, and the low-lying poorly drained areas scattered over many parts of the city. The typical breeding grounds and sources of major vectors (anophelines and culicines) are presented. A relationship exists between the density of breeding sources (of Anopheles stephensi), such as private and public wells (in use and in disuse), overhead tanks and cisterns, and malaria cases. Field observations were made in detail in four selected high risk areas. Each area presents different environmental, epidemiological and human (social) factors in understanding malaria resurgence situation and demand different types of control measures. The problems of implementation of urban control schemes are found to be political, administrative, economic, social as well as environmental in nature. The persistence of malaria problems in the city has been attributed to slackening of malaria eradication measures, rapid urban growth and deteriorating environmental conditions with sewage, drainage and sanitation programmes lagging far behind the plans. The advantages and drawbacks of various antimalaria (mostly larval) measures in
A STABILITY THEOREM FOR CONSTRAINED OPTIMAL CONTROL PROBLEMS
Institute of Scientific and Technical Information of China (English)
M.H. Farag
2004-01-01
This paper presents the stability of difference approximations of an optimal control problem for a quasilinear parabolic equation with controls in the coefficients, boundary conditions and additional restrictions. The optimal control problem has been convered to one of the optimization problem using a penalty function technique. The difference approximations problem for the considered problem is obtained. The estimations of stability of the solution of difference approximations problem are proved. The stability estimation of the solution of difference approximations problem by the controls is obtained.
Analysis of Controlled Trajectory Optimization for Canard Trajectory Correction Fuze
Institute of Scientific and Technical Information of China (English)
郭泽荣; 李世义; 申强
2004-01-01
The optimization method of the canard trajectory correction fuze's controlled trajectory phase is researched by using the aerodynamics of aerocraft and the optimal control theory, the trajectory parameters of the controlled trajectory phase based on the least energy cost are determined. On the basis of determining the control starting point and the target point, the optimal trajectory and the variation rule of the normal overload with the least energy cost are provided, when there is no time restriction in the simulation process. The results provide a theoretical basis for the structure design of the canard mechanism.
Optimal control structure of combustion in coke oven battery
Directory of Open Access Journals (Sweden)
Karol Kostúr
2006-10-01
Full Text Available Big energetic aggregates require a complicated control system, which provide an effective running or production. Among these aggregates belongs the coke – oven battery. This article contains a proposal of the two – level control system. The basic control is realized by a direct digital control. The advanced control continuously optimalizes regulator parameters of the basic control. The present control system has been verified in real conditions of a coking plant.
Optimal Control and Forecasting of Complex Dynamical Systems
Grigorenko, Ilya
2006-01-01
This important book reviews applications of optimization and optimal control theory to modern problems in physics, nano-science and finance. The theory presented here can be efficiently applied to various problems, such as the determination of the optimal shape of a laser pulse to induce certain excitations in quantum systems, the optimal design of nanostructured materials and devices, or the control of chaotic systems and minimization of the forecast error for a given forecasting model (for example, artificial neural networks). Starting from a brief review of the history of variational calcul
Optimization of nonlinear controller with an enhanced biogeography approach
Directory of Open Access Journals (Sweden)
Mohammed Salem
2014-07-01
Full Text Available This paper is dedicated to the optimization of nonlinear controllers basing of an enhanced Biogeography Based Optimization (BBO approach. Indeed, The BBO is combined to a predator and prey model where several predators are used with introduction of a modified migration operator to increase the diversification along the optimization process so as to avoid local optima and reach the optimal solution quickly. The proposed approach is used in tuning the gains of PID controller for nonlinear systems. Simulations are carried out over a Mass spring damper and an inverted pendulum and has given remarkable results when compared to genetic algorithm and BBO.
A New Optimal Control System Design for Chemical Processes
Institute of Scientific and Technical Information of China (English)
丛二丁; 胡明慧; 涂善东; 邵惠鹤
2013-01-01
Based on frequency response and convex optimization, a novel optimal control system was developed for chemical processes. The feedforward control is designed to improve the tracking performance of closed loop chemical systems. The parametric model is not required because the system directly utilizes the frequency response of the loop transfer function, which can be measured accurately. In particular, the extremal values of magnitude and phase can be solved according to constrained quadratic programming optimizer and convex optimization. Simula-tion examples show the effectiveness of the method. The design method is simple and easily adopted in chemical industry.
Investigation of Optimal Control System for Arc Spraying
Institute of Scientific and Technical Information of China (English)
LIHe-qi; LIChun-xu; CHENKe-xuan; LUGuang
2004-01-01
An arc voltage feedback PID controller and arc current feedback PID controller are designed with a controlal gorithm of discrete PID separately to realize optimal control in computer controlling arc-spraying system. In order to realize optimization and adaptation of the arc-spraying process parameters as well as to reduce blindness in selecting process parameters, a serial communication interface between a PC for spraying data acquisition and a MCU of the control system is designed so that on-line modification of the PID control parameters is implemented. At the same time, a genetic algorithm is adopted to optimize the control parameters of PID controller, where the difference between the actually sampled value and the setting value of spraying current is made as the judgment criterion to determine the adaptability. The given range of control parameters varies from 0 to 15 and is to be encoded by a coding of four-bit binary string. The optimal population of control parameters of the PID controller can be obtained through reproduction, crossing and mutation, so that the optimal controlling in arc-spraying process is realized and an excellent coating of arc spraying is obtained.
Investigation of Optimal Control System for Arc Spraying
Institute of Scientific and Technical Information of China (English)
LI He-qi; LI Chun-xu; CHEN Ke-xuan; LU Guang
2004-01-01
An arc voltage feedback PID controller and arc current feedback PID controller are designed with a control algorithm of discrete PID separately to realize optimal control in computer controlling arc-spraying system. In order to realize optimization and adaptation of the arc-spraying process parameters as well as to reduce blindness in selecting process parameters, a serial communication interface between a PC for spraying data acquisition and a MCU of the control system is designed so that on-line modification of the PID control parameters is implemented. At the same time, a genetic algorithm is adopted to optimize the control parameters of PID controller, where the difference between the actually sampled value and the setting value of spraying current is made as the judgment criterion to determine the adaptability. The given range of control parameters varies from 0 to 15 and is to be encoded by a coding of four-bit binary string. The optimal population of control parameters of the PID controller can be obtained through reproduction, crossing and mutation,so that the optimal controlling in arc-spraying process is realized and an excellent coating of arc spraying is obtained.
5th International Conference on Optimization and Control with Applications
Teo, Kok; Zhang, Yi
2014-01-01
This book presents advances in state-of-the-art solution methods and their applications to real life practical problems in optimization, control and operations research. Contributions from world-class experts in the field are collated here in two parts, dealing first with optimization and control theory and then with techniques and applications. Topics covered in the first part include control theory on infinite dimensional Banach spaces, history-dependent inclusion and linear programming complexity theory. Chapters also explore the use of approximations of Hamilton-Jacobi-Bellman inequality for solving periodic optimization problems and look at multi-objective semi-infinite optimization problems, and production planning problems. In the second part, the authors address techniques and applications of optimization and control in a variety of disciplines, such as chaos synchronization, facial expression recognition and dynamic input-output economic models. Other applications considered here include image retr...
Optimal control of switched systems arising in fermentation processes
Liu, Chongyang
2014-01-01
The book presents, in a systematic manner, the optimal controls under different mathematical models in fermentation processes. Variant mathematical models – i.e., those for multistage systems; switched autonomous systems; time-dependent and state-dependent switched systems; multistage time-delay systems and switched time-delay systems – for fed-batch fermentation processes are proposed and the theories and algorithms of their optimal control problems are studied and discussed. By putting forward novel methods and innovative tools, the book provides a state-of-the-art and comprehensive systematic treatment of optimal control problems arising in fermentation processes. It not only develops nonlinear dynamical system, optimal control theory and optimization algorithms, but can also help to increase productivity and provide valuable reference material on commercial fermentation processes.
A weak Hamiltonian finite element method for optimal control problems
Hodges, Dewey H.; Bless, Robert R.
1990-01-01
A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.
Weak Hamiltonian finite element method for optimal control problems
Hodges, Dewey H.; Bless, Robert R.
1991-01-01
A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.
Optimization of Feedback Control of Flow over a Circular Cylinder
Son, Donggun; Kim, Euiyoung; Choi, Haecheon
2012-11-01
We perform a feedback gain optimization of the proportional-integral-differential (PID) control for flow over a circular cylinder at Re = 60 and 100. We measure the transverse velocity at a centerline location in the wake as a sensing variable and provide blowing and suction at the upper and lower slots on the cylinder surface as an actuation. The cost function to minimize is defined as the mean square of the sensing variable, and the PID control gains are optimized by iterative feedback tuning method which is a typical model free gain optimization method. In this method, the control gains are iteratively updated by the gradient of cost function until the control system satisfies a certain stopping criteria. The PID control with optimal control gains successfully reduces the velocity fluctuations at the sensing location and attenuates (or annihilates) vortex shedding in the wake, resulting in the reduction in the mean drag and lift fluctuations. Supported by the NRF Program (2011-0028032).
Asymptotically optimal feedback control for a system of linear oscillators
Ovseevich, Alexander; Fedorov, Aleksey
2013-12-01
We consider problem of damping of an arbitrary number of linear oscillators under common bounded control. We are looking for a feedback control steering the system to the equilibrium. The obtained control is asymptotically optimal: the ratio of motion time to zero with this control to the minimum one is close to 1, if the initial energy of the system is large.
Gollub, Caroline; Kowalewski, Markus; de Vivie-Riedle, Regina
2008-08-15
We present a modified optimal control scheme based on the Krotov method, which allows for strict limitations on the spectrum of the optimized laser fields. A frequency constraint is introduced and derived mathematically correct, without losing monotonic convergence of the algorithm. The method guarantees a close link to learning loop control experiments and is demonstrated for the challenging control of nonresonant Raman transitions, which are used to implement a set of global quantum gates for molecular vibrational qubits.
J. Lang; J.G. Verwer (Jan)
2013-01-01
htmlabstractThis paper addresses consistency and stability of W-methods up to order three for nonlinear ODE-constrained control problems with possible restrictions on the control. The analysis is based on the transformed adjoint system and the control uniqueness property. These methods can also be
Optimal resonant control of flexible structures
DEFF Research Database (Denmark)
Krenk, Steen; Høgsberg, Jan Becker
2009-01-01
When introducing a resonant controller for a particular vibration mode in a structure this mode splits into two. A design principle is developed for resonant control based oil equal damping of these two modes. First the design principle is developed for control of a system with a single degree of...
Stochastic processes, optimization, and control theory a volume in honor of Suresh Sethi
Yan, Houmin
2006-01-01
This edited volume contains 16 research articles. It presents recent and pressing issues in stochastic processes, control theory, differential games, optimization, and their applications in finance, manufacturing, queueing networks, and climate control. One of the salient features is that the book is highly multi-disciplinary. The book is dedicated to Professor Suresh Sethi on the occasion of his 60th birthday, in view of his distinguished career.
Trajectory Control and Optimization for Responsive Spacecraft
2012-03-22
functions. The scalar function φ defines the cost associated with the terminal conditions, and is referred to as the Mayer cost. The scalar function L...defines the cost associated with the values of x and u throughout the trajectory, and is referred to as the Lagrange cost. When J contains both a Mayer ...optimal space trajectories and is a fundamental reference in a vast majority of the literature on this subject. [22] Building on Lawden’s work, Jean
A Riccati approach for constrained linear quadratic optimal control
Sideris, Athanasios; Rodriguez, Luis A.
2011-02-01
An active-set method is proposed for solving linear quadratic optimal control problems subject to general linear inequality path constraints including mixed state-control and state-only constraints. A Riccati-based approach is developed for efficiently solving the equality constrained optimal control subproblems generated during the procedure. The solution of each subproblem requires computations that scale linearly with the horizon length. The algorithm is illustrated with numerical examples.
Adaptive Mixed Finite Element Methods for Parabolic Optimal Control Problems
Zuliang Lu
2011-01-01
We will investigate the adaptive mixed finite element methods for parabolic optimal control problems. The state and the costate are approximated by the lowest-order Raviart-Thomas mixed finite element spaces, and the control is approximated by piecewise constant elements. We derive a posteriori error estimates of the mixed finite element solutions for optimal control problems. Such a posteriori error estimates can be used to construct more efficient and reliable adaptive mixed finite element ...
Design Gradient Descent Optimal Sliding Mode Control of Continuum Robots
Farzin Piltan; Shahnaz Tayebi Haghighi
2012-01-01
In this research, a new approach for gradient descent optimal sliding mode controller for continuum robots is proposed. Based on the new dynamic models developed, a novel technique for nonlinear control of continuum manipulators to be employed in various situations has also been proposed and developed. A section of a continuum arm is modeled using lumped model elements (masses, springs and dampers) and control by nonlinear methodology (sliding mode method) and optimization the sliding surface...
On an optimal control design for Roessler system
Energy Technology Data Exchange (ETDEWEB)
Rafikov, Marat [Universidade Regional do Noroeste do Estado do Rio Grande do Sul, 98700-000 Ijui, RS (Brazil)]. E-mail: rafikov@admijui.unijui.tche.br; Balthazar, Jose Manoel [Universidade Estadual Paulista, C.P. 178, 13500-230 Rio Claro, SP (Brazil)
2004-12-06
In this Letter, an optimal control strategy that directs the chaotic motion of the Roessler system to any desired fixed point is proposed. The chaos control problem is then formulated as being an infinite horizon optimal control nonlinear problem that was reduced to a solution of the associated Hamilton-Jacobi-Bellman equation. We obtained its solution among the correspondent Lyapunov functions of the considered dynamical system.
Optimal control design that accounts for model mismatch errors
Energy Technology Data Exchange (ETDEWEB)
Kim, T.J. [Sandia National Labs., Albuquerque, NM (United States); Hull, D.G. [Texas Univ., Austin, TX (United States). Dept. of Aerospace Engineering and Engineering Mechanics
1995-02-01
A new technique is presented in this paper that reduces the complexity of state differential equations while accounting for modeling assumptions. The mismatch controls are defined as the differences between the model equations and the true state equations. The performance index of the optimal control problem is formulated with a set of tuning parameters that are user-selected to tune the control solution in order to achieve the best results. Computer simulations demonstrate that the tuned control law outperforms the untuned controller and produces results that are comparable to a numerically-determined, piecewise-linear optimal controller.
Neighboring extremal optimal control design including model mismatch errors
Energy Technology Data Exchange (ETDEWEB)
Kim, T.J. [Sandia National Labs., Albuquerque, NM (United States); Hull, D.G. [Texas Univ., Austin, TX (United States). Dept. of Aerospace Engineering and Engineering Mechanics
1994-11-01
The mismatch control technique that is used to simplify model equations of motion in order to determine analytic optimal control laws is extended using neighboring extremal theory. The first variation optimal control equations are linearized about the extremal path to account for perturbations in the initial state and the final constraint manifold. A numerical example demonstrates that the tuning procedure inherent in the mismatch control method increases the performance of the controls to the level of a numerically-determined piecewise-linear controller.
Discrete-time inverse optimal control for nonlinear systems
Sanchez, Edgar N
2013-01-01
Discrete-Time Inverse Optimal Control for Nonlinear Systems proposes a novel inverse optimal control scheme for stabilization and trajectory tracking of discrete-time nonlinear systems. This avoids the need to solve the associated Hamilton-Jacobi-Bellman equation and minimizes a cost functional, resulting in a more efficient controller. Design More Efficient Controllers for Stabilization and Trajectory Tracking of Discrete-Time Nonlinear Systems The book presents two approaches for controller synthesis: the first based on passivity theory and the second on a control Lyapunov function (CLF). Th
Scalable algorithms for optimal control of stochastic PDEs
Ghattas, Omar
2016-01-07
We present methods for the optimal control of systems governed by partial differential equations with infinite-dimensional uncertain parameters. We consider an objective function that involves the mean and variance of the control objective, leading to a risk-averse optimal control formulation. To make the optimal control problem computationally tractable, we employ a local quadratic approximation of the objective with respect to the uncertain parameter. This enables computation of the mean and variance of the control objective analytically. The resulting risk-averse optimization problem is formulated as a PDE-constrained optimization problem with constraints given by the forward and adjoint PDEs for the first and second-order derivatives of the quantity of interest with respect to the uncertain parameter, and with an objective that involves the trace of a covariance-preconditioned Hessian (of the objective with respect to the uncertain parameters) operator. A randomized trace estimator is used to make tractable the trace computation. Adjoint-based techniques are used to derive an expression for the infinite-dimensional gradient of the risk-averse objective function via the Lagrangian, leading to a quasi-Newton method for solution of the optimal control problem. A specific problem of optimal control of a linear elliptic PDE that describes flow of a fluid in a porous medium with uncertain permeability field is considered. We present numerical results to study the consequences of the local quadratic approximation and the efficiency of the method.
Yen, John; Wang, Haojin; Daugherity, Walter C.
1992-01-01
Fuzzy logic controllers have some often-cited advantages over conventional techniques such as PID control, including easier implementation, accommodation to natural language, and the ability to cover a wider range of operating conditions. One major obstacle that hinders the broader application of fuzzy logic controllers is the lack of a systematic way to develop and modify their rules; as a result the creation and modification of fuzzy rules often depends on trial and error or pure experimentation. One of the proposed approaches to address this issue is a self-learning fuzzy logic controller (SFLC) that uses reinforcement learning techniques to learn the desirability of states and to adjust the consequent part of its fuzzy control rules accordingly. Due to the different dynamics of the controlled processes, the performance of a self-learning fuzzy controller is highly contingent on its design. The design issue has not received sufficient attention. The issues related to the design of a SFLC for application to a petrochemical process are discussed, and its performance is compared with that of a PID and a self-tuning fuzzy logic controller.
Structured controllers for uncertain systems a stochastic optimization approach
Toscano, Rosario
2013-01-01
Structured Controllers for Uncertain Systems focuses on the development of easy-to-use design strategies for robust low-order or fixed-structure controllers (particularly the industrially ubiquitous PID controller). These strategies are based on a recently-developed stochastic optimization method termed the "Heuristic Kalman Algorithm" (HKA) the use of which results in a simplified methodology that enables the solution of the structured control problem without a profusion of user-defined parameters. An overview of the main stochastic methods employable in the context of continuous non-convex optimization problems is also provided and various optimization criteria for the design of a structured controller are considered; H∞, H2, and mixed H2/H∞ each merits a chapter to itself. Time-domain-performance specifications can be easily incorporated in the design. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technolo...
Optimal Multilevel Control for Large Scale Interconnected Systems
Directory of Open Access Journals (Sweden)
Ahmed M. A. Alomar,
2014-04-01
Full Text Available A mathematical model of the finishing mill as an example of a large scale interconnected dynamical system is represented. First the system response due to disturbance only is presented. Then,the control technique applied to the finishing hot rolling steel mill is the optimal multilevel control using state feedback. An optimal controller is developed based on the integrated system model, but due to the complexity of the controllers and tremendous computational efforts involved, a multilevel technique is used in designing and implementing the controllers .The basis of the multilevel technique is described and a computational algorithm is discussed for the control of the finishing mill system . To reduce the mass storage , memory requirements and the computational time of the processor, a sub-optimal multilevel technique is applied to design the controllers of the finishing mill . Comparison between these controllers and conclusion is presented.
Coupled Low-thrust Trajectory and System Optimization via Multi-Objective Hybrid Optimal Control
Vavrina, Matthew A.; Englander, Jacob Aldo; Ghosh, Alexander R.
2015-01-01
The optimization of low-thrust trajectories is tightly coupled with the spacecraft hardware. Trading trajectory characteristics with system parameters ton identify viable solutions and determine mission sensitivities across discrete hardware configurations is labor intensive. Local independent optimization runs can sample the design space, but a global exploration that resolves the relationships between the system variables across multiple objectives enables a full mapping of the optimal solution space. A multi-objective, hybrid optimal control algorithm is formulated using a multi-objective genetic algorithm as an outer loop systems optimizer around a global trajectory optimizer. The coupled problem is solved simultaneously to generate Pareto-optimal solutions in a single execution. The automated approach is demonstrated on two boulder return missions.
Time-optimal control of the magnetically levitated photolithography platen
Energy Technology Data Exchange (ETDEWEB)
Redmond, J.; Tucker, S.
1995-01-01
This report summarizes two approaches to time-optimal control of a nonlinear magnetically levitated platen. The system of interest is a candidate technology for next-generation photolithography machines used in the manufacture of integrated circuits. The dynamics and the variable peak control force of the electro-magnetic actuators preclude the direct application of classical time-optimal control methodologies for determining optimal rest-to-rest maneuver strategies. Therefore, this study explores alternate approaches using a previously developed computer simulation. In the first approach, conservative estimates of the available control forces are used to generate suboptimal switching curves. In the second approach, exact solutions are determined iteratively and used as a training set for an artificial neural network. The trained network provides optimal actuator switching times that incorporate the full nonlinearities of the magnetic levitation actuators. Sample problems illustrate the effectiveness of these techniques as compared to traditional proportional-derivative control.
Galerkin approximations of nonlinear optimal control problems in Hilbert spaces
Directory of Open Access Journals (Sweden)
Mickael D. Chekroun
2017-07-01
Full Text Available Nonlinear optimal control problems in Hilbert spaces are considered for which we derive approximation theorems for Galerkin approximations. Approximation theorems are available in the literature. The originality of our approach relies on the identification of a set of natural assumptions that allows us to deal with a broad class of nonlinear evolution equations and cost functionals for which we derive convergence of the value functions associated with the optimal control problem of the Galerkin approximations. This convergence result holds for a broad class of nonlinear control strategies as well. In particular, we show that the framework applies to the optimal control of semilinear heat equations posed on a general compact manifold without boundary. The framework is then shown to apply to geoengineering and mitigation of greenhouse gas emissions formulated here in terms of optimal control of energy balance climate models posed on the sphere $\\mathbb{S}^2$.
Flocking in Distributed Control and Optimization
2015-06-01
IEEE Transactions on Automatic Control . In this paper, In this paper we develop a mathematical model for analyzing the benefits...Z. Lin “Noise Reduction by Swarming in Social Foraging” under review at IEEE Transactions on Automatic Control . 10. P. Shi and A. Garcia “Flocking...P. Shi, A. Garcia and Z. Lin ``Noise Reduction by Swarming in Social Foraging" under review at IEEE Transactions on Automatic Control . 10. P.
Optimization-Based Robust Nonlinear Control
2006-08-01
IEEE Transactions on Automatic Control , vol. 51, no. 4, pp. 661...systems with two time scales", A.R. Teel, L. Moreau and D. Nesic, IEEE Transactions on Automatic Control , vol. 48, no. 9, pp. 1526-1544, September 2003...Turner, L. Zaccarian, IEEE Transactions on Automatic Control , vol. 48, no. 9, pp. 1509- 1525, September 2003. 5. "Nonlinear Scheduled anti-windup
A Computationally Efficient Aggregation Optimization Strategy of Model Predictive Control
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Model Predictive Control (MPC) is a popular technique and has been successfully used in various industrial applications. However, the big drawback of MPC involved in the formidable on-line computational effort limits its applicability to relatively slow and/or small processes with a moderate number of inputs. This paper develops an aggregation optimization strategy for MPC that can improve the computational efficiency of MPC. For the regulation problem, an input decaying aggregation optimization algorithm is presented by aggregating all the original optimized variables on control horizon with the decaying sequence in respect of the current control action.
Engineering applications of discrete-time optimal control
DEFF Research Database (Denmark)
Vidal, Rene Victor Valqui; Ravn, Hans V.
1990-01-01
of some well-known and new results in discrete time optimal control methods applicable to practical problem solving within engineering. Emphasis is placed on dynamic programming, the classical maximum principle and generalized versions of the maximum principle for optimal control of discrete time systems......Many problems of design and operation of engineering systems can be formulated as optimal control problems where time has been discretisized. This is also true even if 'time' is not involved in the formulation of the problem, but rather another one-dimensional parameter. This paper gives a review...
Engineering applications of discrete-time optimal control
DEFF Research Database (Denmark)
Vidal, Rene Victor Valqui; Ravn, Hans V.
1990-01-01
Many problems of design and operation of engineering systems can be formulated as optimal control problems where time has been discretisized. This is also true even if 'time' is not involved in the formulation of the problem, but rather another one-dimensional parameter. This paper gives a review...... of some well-known and new results in discrete time optimal control methods applicable to practical problem solving within engineering. Emphasis is placed on dynamic programming, the classical maximum principle and generalized versions of the maximum principle for optimal control of discrete time systems...
Time dependent optimal switching controls in online selling models
Energy Technology Data Exchange (ETDEWEB)
Bradonjic, Milan [Los Alamos National Laboratory; Cohen, Albert [MICHIGAN STATE UNIV
2010-01-01
We present a method to incorporate dishonesty in online selling via a stochastic optimal control problem. In our framework, the seller wishes to maximize her average wealth level W at a fixed time T of her choosing. The corresponding Hamilton-Jacobi-Bellmann (HJB) equation is analyzed for a basic case. For more general models, the admissible control set is restricted to a jump process that switches between extreme values. We propose a new approach, where the optimal control problem is reduced to a multivariable optimization problem.
IMPORTANCE OF KINETIC MEASURES IN TRAJECTORY PREDICTION WITH OPTIMAL CONTROL
Directory of Open Access Journals (Sweden)
Ömer GÜNDOĞDU
2001-02-01
Full Text Available A two-dimensional sagittally symmetric human-body model was established to simulate an optimal trajectory for manual material handling tasks. Nonlinear control techniques and genetic algorithms were utilized in the optimizations to explore optimal lifting patterns. The simulation results were then compared with the experimental data. Since the kinetic measures such as joint reactions and moments are vital parameters in injury determination, the importance of comparing kinetic measures rather than kinematical ones was emphasized.
Optimal control of electrostatic self-assembly of binary monolayers
Shestopalov, N. V.; Henkelman, G.; Powell, C. T.; Rodin, G. J.
2009-05-01
A simple macroscopic model is used to determine an optimal annealing schedule for self-assembly of binary monolayers of spherical particles. The model assumes that a single rate-controlling mechanism is responsible for the formation of spatially ordered structures and that its rate follows an Arrhenius form. The optimal schedule is derived in an analytical form using classical optimization methods. Molecular dynamics simulations of the self-assembly demonstrate that the proposed schedule outperforms other schedules commonly used for simulated annealing.
Joint optimization traffic signal control for an urban arterial road
Institute of Scientific and Technical Information of China (English)
LI Yin-fei; CHEN Shu-ping
2009-01-01
This paper considers the optimal traffic signal setting for an urban arterial road. By introducing the concepts of synchronization rate and non-synchronization degree, a mathematical model is constructed and an optimization problem is posed. Then, a new iterative algorithm is developed to solve this optimal traffic control signal setting problem. Convergence properties for this iterative algorithm are established. Finally, a numerical example is solved to illustrate the effectiveness of the method.
Optimization of PID Controllers Using Ant Colony and Genetic Algorithms
Ünal, Muhammet; Topuz, Vedat; Erdal, Hasan
2013-01-01
Artificial neural networks, genetic algorithms and the ant colony optimization algorithm have become a highly effective tool for solving hard optimization problems. As their popularity has increased, applications of these algorithms have grown in more than equal measure. While many of the books available on these subjects only provide a cursory discussion of theory, the present book gives special emphasis to the theoretical background that is behind these algorithms and their applications. Moreover, this book introduces a novel real time control algorithm, that uses genetic algorithm and ant colony optimization algorithms for optimizing PID controller parameters. In general, the present book represents a solid survey on artificial neural networks, genetic algorithms and the ant colony optimization algorithm and introduces novel practical elements related to the application of these methods to process system control.
Optimal Selective Harmonic Control for Power Harmonics Mitigation
DEFF Research Database (Denmark)
Zhou, Keliang; Yang, Yongheng; Blaabjerg, Frede
2015-01-01
the cost, the complexity and the performance: high accuracy, fast transient response, easy-implementation, cost-effective, and also easy-to-design. The analysis and synthesis of the optimal SHC system are addressed. The proposed SHC offers power convert-ers a tailor-made optimal control solution......This paper proposes an Internal Model Principle (IMP) based optimal Selective Harmonic Controller (SHC) for power converters to mitigate power harmonics. According to the harmonics distribution caused by power converters, a universal recursive SHC module is developed to deal with a featured group...... of power harmonics. The proposed optimal SHC is of hybrid structure: all recursive SHC modules with weighted gains are connected in parallel. It bridges the real “nk+-m order RC” and the complex “parallel structure RC”. Compared to other IMP based control solutions, it offers an optimal trade-off among...
Soft Computing Applications in Optimization, Control, and Recognition
Castillo, Oscar
2013-01-01
Soft computing includes several intelligent computing paradigms, like fuzzy logic, neural networks, and bio-inspired optimization algorithms. This book describes the application of soft computing techniques to intelligent control, pattern recognition, and optimization problems. The book is organized in four main parts. The first part deals with nature-inspired optimization methods and their applications. Papers included in this part propose new models for achieving intelligent optimization in different application areas. The second part discusses hybrid intelligent systems for achieving control. Papers included in this part make use of nature-inspired techniques, like evolutionary algorithms, fuzzy logic and neural networks, for the optimal design of intelligent controllers for different kind of applications. Papers in the third part focus on intelligent techniques for pattern recognition and propose new methods to solve complex pattern recognition problems. The fourth part discusses new theoretical concepts ...
Design Gradient Descent Optimal Sliding Mode Control of Continuum Robots
Directory of Open Access Journals (Sweden)
Farzin Piltan
2012-08-01
Full Text Available In this research, a new approach for gradient descent optimal sliding mode controller for continuum robots is proposed. Based on the new dynamic models developed, a novel technique for nonlinear control of continuum manipulators to be employed in various situations has also been proposed and developed. A section of a continuum arm is modeled using lumped model elements (masses, springs and dampers and control by nonlinear methodology (sliding mode method and optimization the sliding surface slope by gradient descent method. It is shown that this type of control methodology, although used to a certain model, can be used to conveniently control the dynamics of the arm with suitable tradeoff in accuracy of modeling. This relatively controller is more plausible to implement in an actual real-time when compared to other techniques of nonlinear controller methodology of continuum arms. Principles of sliding mode methodology is based on derive the sliding surface slope and nonlinear dynamic model and applied in the system. Based on the gradient descent optimization method, the sliding surface slope and gain updating factor has been developed in certain and partly uncertain continuum robots. This methodology is represented in certain and uncertain area whose only optimization for certain area and test this optimization for uncertainty. The new techniques proposed and methodologies adopted in this paper supported by MATLAB/SIMULINK results represent a significant contribution to the field of design an optimized nonlinear sliding mode controller for continuum robots.
Saline water pollution in groundwater: issues and its control
Directory of Open Access Journals (Sweden)
Setyawan Purnama
2012-10-01
Full Text Available Nowadays, saline water pollution has been gaining its importance as the major issue around the world, especially in the urban coastal area. Saline water pollution has major impact on human life and livelihood. It´s mainly a result from static fossil water and the dynamics of sea water intrusion.. The problem of saline water pollution caused by seawater intrusion has been increasing since the beginning of urban population. The problem of sea water intrusion in the urban coastal area must be anticipated as soon as possible especially in the urban areas developed in coastal zones,. This review article aims to; (i analyze the distribution of saline water pollution on urban coastal area in Indonesia and (ii analyze some methods in controlling saline water pollution, especially due to seawater intrusion in urban coastal area. The strength and weakness of each method have been compared, including (a applying different pumping patterns, (b artificial recharge, (c extraction barrier, (d injection barrier and (e subsurface barrier. The best method has been selected considering its possible development in coastal areas of developing countries. The review is based considering the location of Semarang coastal area, Indonesia. The results have shown that artificial recharge and extraction barrier are the most suitable methods to be applied in the area.
On optimal temperature control in hothouses
Astashova, I. V.; Filinovskiy, A. V.; Lashin, D. A.
2017-07-01
We study the problem of control over the temperature conditions in industrial hothouses. We consider a model based on the one-dimensional heat equation on a bounded interval with quadratic cost functional, examine the existence and uniqueness of a control function from a prescribed set, and study the structure of the set of accessible temperature functions.
Optimal actuator location of minimum norm controls for heat equation with general controlled domain
Guo, Bao-Zhu; Xu, Yashan; Yang, Dong-Hui
2016-09-01
In this paper, we study optimal actuator location of the minimum norm controls for a multi-dimensional heat equation with control defined in the space L2 (Ω × (0 , T)). The actuator domain is time-varying in the sense that it is only required to have a prescribed Lebesgue measure for any moment. We select an optimal actuator location so that the optimal control takes its minimal norm over all possible actuator domains. We build a framework of finding the Nash equilibrium so that we can develop a sufficient and necessary condition to characterize the optimal relaxed solutions for both actuator location and corresponding optimal control of the open-loop system. The existence and uniqueness of the optimal classical solutions are therefore concluded. As a result, we synthesize both optimal actuator location and corresponding optimal control into a time-varying feedbacks.
Control and Optimization Methods for Electric Smart Grids
Ilić, Marija
2012-01-01
Control and Optimization Methods for Electric Smart Grids brings together leading experts in power, control and communication systems,and consolidates some of the most promising recent research in smart grid modeling,control and optimization in hopes of laying the foundation for future advances in this critical field of study. The contents comprise eighteen essays addressing wide varieties of control-theoretic problems for tomorrow’s power grid. Topics covered include: Control architectures for power system networks with large-scale penetration of renewable energy and plug-in vehicles Optimal demand response New modeling methods for electricity markets Control strategies for data centers Cyber-security Wide-area monitoring and control using synchronized phasor measurements. The authors present theoretical results supported by illustrative examples and practical case studies, making the material comprehensible to a wide audience. The results reflect the exponential transformation that today’s grid is going...
An Optimal Controller Architecture for Poset-Causal Systems
Shah, Parikshit
2011-01-01
We propose a novel and natural architecture for decentralized control that is applicable whenever the underlying system has the structure of a partially ordered set (poset). This controller architecture is based on the concept of Moebius inversion for posets, and enjoys simple and appealing separation properties, since the closed-loop dynamics can be analyzed in terms of decoupled subsystems. The controller structure provides rich and interesting connections between concepts from order theory such as Moebius inversion and control-theoretic concepts such as state prediction, correction, and separability. In addition, using our earlier results on H_2-optimal decentralized control for arbitrary posets, we prove that the H_2-optimal controller in fact possesses the proposed structure, thereby establishing the optimality of the new controller architecture.
Modelling and optimization of computer network traffic controllers
Directory of Open Access Journals (Sweden)
N. U. Ahmed
2005-01-01
operation of the controller and evaluate the benefits of using a genetic algorithm approach to speed up the optimization process. Our results show that the use of the genetic algorithm proves particularly useful in reducing the computation time required to optimize the operation of a system consisting of multiple token-bucket-regulated sources.
Evolutionary Computing for Intelligent Power System Optimization and Control
DEFF Research Database (Denmark)
This new book focuses on how evolutionary computing techniques benefit engineering research and development tasks by converting practical problems of growing complexities into simple formulations, thus largely reducing development efforts. This book begins with an overview of the optimization the...... theory and modern evolutionary computing techniques, and goes on to cover specific applications of evolutionary computing to power system optimization and control problems....
Optimal parametric sensitivity control of a fed-batch reactor
Stigter, J.D.; Keesman, K.J.
2004-01-01
The paper presents an optimal parametric sensitivity controller for estimation of a set of parameters in an experiment. The method is demonstrated for a fed-batch bioreactor case study for optimal estimation of the half-saturation constant KS and the parameter combination µmaxX/Y in which µmax is th
Optimal Control Strategies in Delayed Sharing Information Structures
Nayyar, Ashutosh; Teneketzis, Demosthenis
2010-01-01
The $n$-step delayed sharing information structure is investigated. This information structure comprises of $K$ controllers that share their information with a delay of $n$ time steps. This information structure is a link between the classical information structure, where information is shared perfectly between the controllers, and a non-classical information structure, where there is no "lateral" sharing of information among the controllers. Structural results for optimal control strategies for systems with such information structures are presented. A sequential methodology for finding the optimal strategies is also derived. The solution approach provides an insight for identifying structural results and sequential decomposition for general decentralized stochastic control problems.
Wang, M.
2003-12-01
Contamination of groundwater systems is an increasingly critical problem. The limited available resources or budget for groundwater protection and restoration and sustainable development in a country or region require a corresponding strategy for groundwater protection and restoration to maximize resource or budget utilization and minimize an adverse impact on the sustainable development. An innovative strategy for groundwater protection and restoration has been established based on the optimization principles and considerations of both risk assessments of groundwater contamination and difficulties or costs of groundwater remediation and protection measures. Site investigations and groundwater modeling are two critical components to implement this strategy. Cost for groundwater protection and restoration can be categorized as Existing Contaminated Site Investigation Cost (ECSIC), Existing Contaminated Site Remediation Cost (ECSRC), Projected Contamination Site Investigation Cost (PCSIC), Projected Contamination Site Protection Cost (PCSPC), and Projected Contamination Site Remediation Cost (PCSRC). The objective function for optimization analyses consists of risk reduction components with variables of the above different costs from all individual site remediation and protection measures. The optimal distribution of the limited available resources is determined by such proper selections of those variables that the objective function reaches its maximum. Several important issues related to implementations of the strategy for groundwater protection and restoration are discussed. Those issues include uncertainty from aquifer heterogeneity, modeling for fractured geologic media, irreversible sorption, and implementations of natural attenuation. Specifically, Monte Carlo simulations through a numerical flow and transport model can be performed to develop a heterogeneity dispersivity matrix to account for the effects of different attributes of aquifer heterogeneity. In
Videoconferencing across cultures : A conceptual framework for floor control issues
Dustdar,; Schahram,; Hofstede, G.J.
1999-01-01
This paper discusses critical issues in cross-cultural communication and collaboration using desktop videoconferencing tools. Our first objective is to propose a conceptual framework for predicting which issues will be important for communication in cross-cultural desktop videoconferencing. Using th
Optimal design of distributed control and embedded systems
Çela, Arben; Li, Xu-Guang; Niculescu, Silviu-Iulian
2014-01-01
Optimal Design of Distributed Control and Embedded Systems focuses on the design of special control and scheduling algorithms based on system structural properties as well as on analysis of the influence of induced time-delay on systems performances. It treats the optimal design of distributed and embedded control systems (DCESs) with respect to communication and calculation-resource constraints, quantization aspects, and potential time-delays induced by the associated communication and calculation model. Particular emphasis is put on optimal control signal scheduling based on the system state. In order to render this complex optimization problem feasible in real time, a time decomposition is based on periodicity induced by the static scheduling is operated. The authors present a co-design approach which subsumes the synthesis of the optimal control laws and the generation of an optimal schedule of control signals on real-time networks as well as the execution of control tasks on a single processor. The a...
Survey of wind farm control - power and fatigue optimization
DEFF Research Database (Denmark)
Knudsen, Torben; Bak, Thomas; Svenstrup, Mikael
2015-01-01
the following important control issues: choice of input and output, control method and modelling used for controller design and simulation. The available literature from industry is also considered. Finally, a conclusion is presented discussing the established results, open challenges and necessary research....
Divisive gain modulation of motoneurons by inhibition optimizes muscular control.
Vestergaard, Mikkel; Berg, Rune W
2015-02-25
When using muscles, the precision with which force is delivered is as important as the delivery of force itself. Force is regulated by both the number of recruited motoneurons and their spike frequency. While it is known that the recruitment is ordered to reduce variability in force, it remains unclear whether the motoneuron gain, i.e., the slope of the transformation between synaptic input and spiking output, is also modulated to reduce variability in force. To address this issue, we use turtle hindlimb scratching as a model for fine motor control, since this behavior involves precise limb movement to rub the location of somatic nuisance touch. We recorded intracellularly from motoneurons in a reduced preparation where the limbs were removed to increase mechanical stability and the motor nerve activity served as a surrogate for muscle force. We found that not only is the gain of motoneurons regulated on a subsecond timescale, it is also adjusted to minimize variability. The modulation is likely achieved via an expansive nonlinearity between spike rate and membrane potential with inhibition having a divisive influence. These findings reveal a versatile mechanism of modulating neuronal sensitivity and suggest that such modulation is fundamentally linked to optimization.
Modelling Driver Assitance Systems by Optimal Control
Wang, M.; Daamen, W.; Hoogendoorn, S.P.; Van Arem, B.
2012-01-01
Driver assistance systems support drivers in operating vehicles in a safe, comfortable and efficient way, and thus may induce changes in traffic flow characteristics. This paper put forward a receding horizon control framework to model driver assistance systems. The accelerations of automated vehicles are determined to optimise a cost function, assuming other vehicles driving at stationary conditions over a prediction horizon. The flexibility of the framework is demonstrated with controller d...
Rethinking optimal control of human movements
Huh, Dongsung
2012-01-01
The complex bio-mechanics of human body is capable of generating an unlimited repertoire of movements, which on one hand yields highly versatile motor behavior but on the other hand presents a formidable control problem for the brain. Understanding the computational process that allows us to easily perform various motor tasks with a high degree of coordination is of central interest to both neuroscience and robotics control. In recent decades, it became widely accepted that the observed movem...
Optimal Control Surface Layout for an Aeroservoelastic Wingbox
Stanford, Bret K.
2017-01-01
This paper demonstrates a technique for locating the optimal control surface layout of an aeroservoelastic Common Research Model wingbox, in the context of maneuver load alleviation and active utter suppression. The combinatorial actuator layout design is solved using ideas borrowed from topology optimization, where the effectiveness of a given control surface is tied to a layout design variable, which varies from zero (the actuator is removed) to one (the actuator is retained). These layout design variables are optimized concurrently with a large number of structural wingbox sizing variables and control surface actuation variables, in order to minimize the sum of structural weight and actuator weight. Results are presented that demonstrate interdependencies between structural sizing patterns and optimal control surface layouts, for both static and dynamic aeroelastic physics.
Adjoint optimal control problems for the RANS system
Attavino, A.; Cerroni, D.; Da Vià, R.; Manservisi, S.; Menghini, F.
2017-01-01
Adjoint optimal control in computational fluid dynamics has become increasingly popular recently because of its use in several engineering and research studies. However the optimal control of turbulent flows without the use of Direct Numerical Simulation is still an open problem and various methods have been proposed based on different approaches. In this work we study optimal control problems for a turbulent flow modeled with a Reynolds-Averaged Navier-Stokes system. The adjoint system is obtained through the use of a Lagrangian multiplier method by setting as objective of the control a velocity matching profile or an increase or decrease in the turbulent kinetic energy. The optimality system is solved with an in-house finite element code and numerical results are reported in order to show the validity of this approach.
Optimal control of wind turbines in a turbulent boundary layer
Yilmaz, Ali Emre; Meyers, Johan
2016-11-01
In recent years, optimal control theory was combined with large-eddy simulations to study the optimal control of wind farms and their interaction with the atmospheric boundary layer. The individual turbine's induction factors were dynamically controlled in time with the aim of increasing overall power extraction. In these studies, wind turbines were represented using an actuator disk method. In the current work, we focus on optimal control on a much finer mesh (and a smaller computational domain), representing turbines with an actuator line method. Similar to Refs., optimization is performed using a gradient-based method, and gradients are obtained employing an adjoint formulation. Different cases are investigated, that include a single and a double turbine case both with uniform inflow, and with turbulent-boundary-layer inflow. The authors acknowledge support from the European Research Council (FP7-Ideas, Grant No. 306471).
Relaxed error control in shape optimization that utilizes remeshing
CSIR Research Space (South Africa)
Wilke, DN
2013-02-01
Full Text Available . These discontinuities may trap conventional optimization algorithms, which rely on both function and gradient evaluations, in local minima. This has the drawback that multiple analyses and error computations are often required per design to control the error...
Optimal False Discovery Rate Control for Dependent Data
Xie, Jichun; Cai, T. Tony; Maris, John; Li, Hongzhe
2013-01-01
This paper considers the problem of optimal false discovery rate control when the test statistics are dependent. An optimal joint oracle procedure, which minimizes the false non-discovery rate subject to a constraint on the false discovery rate is developed. A data-driven marginal plug-in procedure is then proposed to approximate the optimal joint procedure for multivariate normal data. It is shown that the marginal procedure is asymptotically optimal for multivariate normal data with a short-range dependent covariance structure. Numerical results show that the marginal procedure controls false discovery rate and leads to a smaller false non-discovery rate than several commonly used p-value based false discovery rate controlling methods. The procedure is illustrated by an application to a genome-wide association study of neuroblastoma and it identifies a few more genetic variants that are potentially associated with neuroblastoma than several p-value-based false discovery rate controlling procedures. PMID:23378870
Design of a Helicopter Stability and Control Augmentation System Using Optimal Control Theory.
technique is described for the design of multivariable feedback controllers based upon results in optimal control theory . For a specified performance...helicopter flight envelope. The results show that optimal control theory can be used to design a helicopter stability and control augmentation system
Near Optimal Decentralized H-infinity Control: Bounded vs. Unbounded Controller Order
DEFF Research Database (Denmark)
Stoustrup, Jakob; Niemann, H.H.
1997-01-01
It is shown that for a class of decentralized control problems there does not exist a sequence of controllers of bounded order which obtains near optimal control. Neither does there exist an infinite dimensional optimal controller. Using the insight of the line of proof of these results, a heuris...
Optimal Inventory Control with Advance Supply Information
Directory of Open Access Journals (Sweden)
Marko Jaksic
2016-09-01
Full Text Available It has been shown in numerous situations that sharing information between the companies leads to improved performance of the supply chain. We study a positive lead time periodic-review inventory system of a retailer facing stochastic demand from his customer and stochastic limited supply capacity of the manufacturer supplying the products to him. The consequence of stochastic supply capacity is that the orders might not be delivered in full, and the exact size of the replenishment might not be known to the retailer. The manufacturer is willing to share the so-called advance supply information (ASI about the actual replenishment of the retailer's pipeline order with the retailer. ASI is provided at a certain time after the orders have been placed and the retailer can now use this information to decrease the uncertainty of the supply, and thus improve its inventory policy. For this model, we develop a dynamic programming formulation, and characterize the optimal ordering policy as a state-dependent base-stock policy. In addition, we show some properties of the base-stock level. While the optimal policy is highly complex, we obtain some additional insights by comparing it to the state-dependent myopic inventory policy. We conduct the numerical analysis to estimate the in uence of the system parameters on the value of ASI. While we show that the interaction between the parameters is relatively complex, the general insight is that due to increasing marginal returns, the majority of the benets are gained only in the case of full, or close to full, ASI visibility.
Optimal Control of Stochastic Systems Driven by Fractional Brownian Motions
2014-10-09
motions and other stochastic processes. For the control of both continuous time and discrete time finite dimensional linear systems with quadratic...problems for stochastic partial differential equations driven by fractional Brownian motions are explicitly solved. For the control of a continuous time...2010 30-Jun-2014 Approved for Public Release; Distribution Unlimited Final Report: Optimal Control of Stochastic Systems Driven by Fractional Brownian
Optimal and robust feedback controller estimation for a vibrating plate
Fraanje, P.R.; Verhaegen, M.; Doelman, N.J.; Berkhoff, A.
2004-01-01
This paper presents a method to estimate the H2 optimal and a robust feedback controller by means of Subspace Model Identification using the internal model control (IMC) approach. Using IMC an equivalent feed forward control problem is obtained, which is solved by the Causal Wiener filter for the H2
Optimal Excitation Controller Design for Wind Turbine Generator
Directory of Open Access Journals (Sweden)
A. K. Boglou
2011-01-01
Full Text Available An optimal excitation controller design based on multirate-output controllers (MROCs having a multirate sampling mechanismwith different sampling period in each measured output of the system is presented. The proposed H∞ -control techniqueis applied to the discrete linear open-loop system model which represents a wind turbine generator supplying an infinite busthrough a transmission line.
Using Chemicals to Optimize Conformance Control in Fractured Reservoirs
Energy Technology Data Exchange (ETDEWEB)
Seright, Randall S.; Liang, Jenn-Tai; Schrader, Richard; Hagstrom II, John; Wang, Ying; Kumar, Ananad; Wavrik, Kathryn
2001-10-29
This report describes work performed during the third and final year of the project, Using Chemicals to Optimize Conformance Control in Fractured Reservoirs. This research project had three objectives. The first objective was to develop a capability to predict and optimize the ability of gels to reduce permeability to water more than that to oil or gas. The second objective was to develop procedures for optimizing blocking agent placement in wells where hydraulic fractures cause channeling problems. The third objective was to develop procedures to optimize blocking agent placement in naturally fractured reservoirs.
Optimal control of stochastic magnetization dynamics by spin current
Wang, Yong; Zhang, Fu-Chun
2013-05-01
Fluctuation-induced stochastic magnetization dynamics plays an important role in spintronics devices. Here we propose that it can be optimally controlled by spin currents to minimize or maximize the Freidlin-Wentzell action functional of the system hence to increase or decrease the probability of the large fluctuations. We apply this method to study the thermally activated magnetization switching problem and to demonstrate the merits of the optimal control strategy.
Model-based dynamic control and optimization of gas networks
Energy Technology Data Exchange (ETDEWEB)
Hofsten, Kai
2001-07-01
This work contributes to the research on control, optimization and simulation of gas transmission systems to support the dispatch personnel at gas control centres for the decision makings in the daily operation of the natural gas transportation systems. Different control and optimization strategies have been studied. The focus is on the operation of long distance natural gas transportation systems. Stationary optimization in conjunction with linear model predictive control using state space models is proposed for supply security, the control of quality parameters and minimization of transportation costs for networks offering transportation services. The result from the stationary optimization together with a reformulation of a simplified fluid flow model formulates a linear dynamic optimization model. This model is used in a finite time control and state constrained linear model predictive controller. The deviation from the control and the state reference determined from the stationary optimization is penalized quadratically. Because of the time varying status of infrastructure, the control space is also generally time varying. When the average load is expected to change considerably, a new stationary optimization is performed, giving a new state and control reference together with a new dynamic model that is used for both optimization and state estimation. Another proposed control strategy is a control and output constrained nonlinear model predictive controller for the operation of gas transmission systems. Here, the objective is also the security of the supply, quality control and minimization of transportation costs. An output vector is defined, which together with a control vector are both penalized quadratically from their respective references in the objective function. The nonlinear model predictive controller can be combined with a stationary optimization. At each sampling instant, a non convex nonlinear programming problem is solved giving a local minimum
Performance investigation of multigrid optimization for DNS-based optimal control problems
Nita, Cornelia; Vandewalle, Stefan; Meyers, Johan
2016-11-01
Optimal control theory in Direct Numerical Simulation (DNS) or Large-Eddy Simulation (LES) of turbulent flow involves large computational cost and memory overhead for the optimization of the controls. In this context, the minimization of the cost functional is typically achieved by employing gradient-based iterative methods such as quasi-Newton, truncated Newton or non-linear conjugate gradient. In the current work, we investigate the multigrid optimization strategy (MGOpt) in order to speed up the convergence of the damped L-BFGS algorithm for DNS-based optimal control problems. The method consists in a hierarchy of optimization problems defined on different representation levels aiming to reduce the computational resources associated with the cost functional improvement on the finest level. We examine the MGOpt efficiency for the optimization of an internal volume force distribution with the goal of reducing the turbulent kinetic energy or increasing the energy extraction in a turbulent wall-bounded flow; problems that are respectively related to drag reduction in boundary layers, or energy extraction in large wind farms. Results indicate that in some cases the multigrid optimization method requires up to a factor two less DNS and adjoint DNS than single-grid damped L-BFGS. The authors acknowledge support from OPTEC (OPTimization in Engineering Center of Excellence, KU Leuven, Grant No PFV/10/002).
Optimal second order sliding mode control for linear uncertain systems.
Das, Madhulika; Mahanta, Chitralekha
2014-11-01
In this paper an optimal second order sliding mode controller (OSOSMC) is proposed to track a linear uncertain system. The optimal controller based on the linear quadratic regulator method is designed for the nominal system. An integral sliding mode controller is combined with the optimal controller to ensure robustness of the linear system which is affected by parametric uncertainties and external disturbances. To achieve finite time convergence of the sliding mode, a nonsingular terminal sliding surface is added with the integral sliding surface giving rise to a second order sliding mode controller. The main advantage of the proposed OSOSMC is that the control input is substantially reduced and it becomes chattering free. Simulation results confirm superiority of the proposed OSOSMC over some existing.
Optimal boundary control and boundary stabilization of hyperbolic systems
Gugat, Martin
2015-01-01
This brief considers recent results on optimal control and stabilization of systems governed by hyperbolic partial differential equations, specifically those in which the control action takes place at the boundary. The wave equation is used as a typical example of a linear system, through which the author explores initial boundary value problems, concepts of exact controllability, optimal exact control, and boundary stabilization. Nonlinear systems are also covered, with the Korteweg-de Vries and Burgers Equations serving as standard examples. To keep the presentation as accessible as possible, the author uses the case of a system with a state that is defined on a finite space interval, so that there are only two boundary points where the system can be controlled. Graduate and post-graduate students as well as researchers in the field will find this to be an accessible introduction to problems of optimal control and stabilization.
Boumediene ALLAOUA; Laoufi, Abdellah; Brahim GASBAOUI; Nasri, Abdelfatah; Abdessalam ABDERRAHMANI
2008-01-01
In this paper, an intelligent controller of the DC (Direct current) Motor drive is designed using fuzzy logic-genetic algorithms optimization. First, a controller is designed according to fuzzy rules such that the systems are fundamentally robust. To obtain the globally optimal values, parameters of the fuzzy controller are improved by genetic algorithms optimization model. Computer MATLAB work space demonstrate that the fuzzy controller associated to the genetic algorithms approach became ve...
Preconception optimization of glycaemic control in diabetes.
Islam, Najmul
2016-09-01
The prevalence of Diabetes Mellitus is increasing worldwide. In developing countries 25% of adult females with diabetes are in the reproductive age. Thus in developing countries increased number of pregnancies are complicated by diabetes. Uncontrolled diabetes in pregnancy is associated with increased risk for both mother and foetus. These risks can be minimized by good control of diabetes before and during pregnancy. Management in the preconception period is discussed in this review article. Detailed management involves general advice of lifestyle modification followed by specific details of screening for complications of diabetes. Changes in the drugs for both glycaemic control and other co-morbid conditions are discussed. The recommended insulin regimen in the preconception period and monitoring of glycaemic control by self-monitoring of blood glucose (SMBG) and HbA1C has also been highlighted.
Laboratory Transferability of Optimally Shaped Laser Pulses for Quantum Control
Tibbetts, Katharine Moore; Rabitz, Herschel
2013-01-01
Optimal control experiments can readily identify effective shaped laser pulses, or "photonic reagents", that achieve a wide variety of objectives. For many practical applications, an important criterion is that a particular photonic reagent prescription still produce a good, if not optimal, target objective yield when transferred to a different system or laboratory, {even if the same shaped pulse profile cannot be reproduced exactly. As a specific example, we assess the potential for transferring optimal photonic reagents for the objective of optimizing a ratio of photoproduct ions from a family of halomethanes through three related experiments.} First, applying the same set of photonic reagents with systematically varying second- and third-order chirp on both laser systems generated similar shapes of the associated control landscape (i.e., relation between the objective yield and the variables describing the photonic reagents). Second, optimal photonic reagents obtained from the first laser system were found...
Multidimensional optimal droop control for wind resources in DC microgrids
Bunker, Kaitlyn J.
Two important and upcoming technologies, microgrids and electricity generation from wind resources, are increasingly being combined. Various control strategies can be implemented, and droop control provides a simple option without requiring communication between microgrid components. Eliminating the single source of potential failure around the communication system is especially important in remote, islanded microgrids, which are considered in this work. However, traditional droop control does not allow the microgrid to utilize much of the power available from the wind. This dissertation presents a novel droop control strategy, which implements a droop surface in higher dimension than the traditional strategy. The droop control relationship then depends on two variables: the dc microgrid bus voltage, and the wind speed at the current time. An approach for optimizing this droop control surface in order to meet a given objective, for example utilizing all of the power available from a wind resource, is proposed and demonstrated. Various cases are used to test the proposed optimal high dimension droop control method, and demonstrate its function. First, the use of linear multidimensional droop control without optimization is demonstrated through simulation. Next, an optimal high dimension droop control surface is implemented with a simple dc microgrid containing two sources and one load. Various cases for changing load and wind speed are investigated using simulation and hardware-in-the-loop techniques. Optimal multidimensional droop control is demonstrated with a wind resource in a full dc microgrid example, containing an energy storage device as well as multiple sources and loads. Finally, the optimal high dimension droop control method is applied with a solar resource, and using a load model developed for a military patrol base application. The operation of the proposed control is again investigated using simulation and hardware-in-the-loop techniques.
Optimal Control of Gas Pipelines via Infinite-Dimensional Analysis
Durgut, Ismail; Leblebiciolu, Kemal
1996-05-01
A general optimal control approach employing the principles of calculus of variations has been developed to determine the best operating strategies for keeping the outlet pressure of gas transmission pipelines around a predetermined value while achieving reasonable energy consumption. The method exploits analytical tools of optimal control theory. A set of partial differential equations characterizing the dynamics of gas flow through a pipeline is directly used. The necessary conditions to minimize the specific performance index come from the infinite-dimensional model. The optimization scheme has been tested on a pipeline subject to stepwise change in demand.
Optimal control of a waste water cleaning plant
Directory of Open Access Journals (Sweden)
Ellina V. Grigorieva
2010-09-01
Full Text Available In this work, a model of a waste water treatment plant is investigated. The model is described by a nonlinear system of two differential equations with one bounded control. An optimal control problem of minimizing concentration of the polluted water at the terminal time T is stated and solved analytically with the use of the Pontryagin Maximum Principle. Dependence of the optimal solution on the initial conditions is established. Computer simulations of a model of an industrial waste water treatment plant show the advantage of using our optimal strategy. Possible applications are discussed.
Combining optimal control theory and molecular dynamics for protein folding.
Arkun, Yaman; Gur, Mert
2012-01-01
A new method to develop low-energy folding routes for proteins is presented. The novel aspect of the proposed approach is the synergistic use of optimal control theory with Molecular Dynamics (MD). In the first step of the method, optimal control theory is employed to compute the force field and the optimal folding trajectory for the Cα atoms of a Coarse-Grained (CG) protein model. The solution of this CG optimization provides an harmonic approximation of the true potential energy surface around the native state. In the next step CG optimization guides the MD simulation by specifying the optimal target positions for the Cα atoms. In turn, MD simulation provides an all-atom conformation whose Cα positions match closely the reference target positions determined by CG optimization. This is accomplished by Targeted Molecular Dynamics (TMD) which uses a bias potential or harmonic restraint in addition to the usual MD potential. Folding is a dynamical process and as such residues make different contacts during the course of folding. Therefore CG optimization has to be reinitialized and repeated over time to accomodate these important changes. At each sampled folding time, the active contacts among the residues are recalculated based on the all-atom conformation obtained from MD. Using the new set of contacts, the CG potential is updated and the CG optimal trajectory for the Cα atoms is recomputed. This is followed by MD. Implementation of this repetitive CG optimization-MD simulation cycle generates the folding trajectory. Simulations on a model protein Villin demonstrate the utility of the method. Since the method is founded on the general tools of optimal control theory and MD without any restrictions, it is widely applicable to other systems. It can be easily implemented with available MD software packages.
Genetic Algorithm Optimizes Q-LAW Control Parameters
Lee, Seungwon; von Allmen, Paul; Petropoulos, Anastassios; Terrile, Richard
2008-01-01
A document discusses a multi-objective, genetic algorithm designed to optimize Lyapunov feedback control law (Q-law) parameters in order to efficiently find Pareto-optimal solutions for low-thrust trajectories for electronic propulsion systems. These would be propellant-optimal solutions for a given flight time, or flight time optimal solutions for a given propellant requirement. The approximate solutions are used as good initial solutions for high-fidelity optimization tools. When the good initial solutions are used, the high-fidelity optimization tools quickly converge to a locally optimal solution near the initial solution. Q-law control parameters are represented as real-valued genes in the genetic algorithm. The performances of the Q-law control parameters are evaluated in the multi-objective space (flight time vs. propellant mass) and sorted by the non-dominated sorting method that assigns a better fitness value to the solutions that are dominated by a fewer number of other solutions. With the ranking result, the genetic algorithm encourages the solutions with higher fitness values to participate in the reproduction process, improving the solutions in the evolution process. The population of solutions converges to the Pareto front that is permitted within the Q-law control parameter space.
Robust balance shift control with posture optimization
Kavafoglu, Z.; Kavafoglu, Ersan; Egges, J.
2015-01-01
In this paper we present a control framework which creates robust and natural balance shifting behaviours during standing. Given high-level features such as the position of the center of mass projection and the foot configurations, a kinematic posture satisfying these features is synthesized using o
Optimal Control through Biologically-Inspired Pursuit
2004-01-01
Transactions on Automatic Control 48, 988– 1001. Roumeliotis, S.I. and G.A. Bekey (2002). Distributed multi-robot localization. IEEE Transactions on Robotics and...1999). Distributed covering by ant- robots using evaporating traces. IEEE Transactions on Robotics and Automation 15(5), 918–933.
Numerical methods for solving terminal optimal control problems
Gornov, A. Yu.; Tyatyushkin, A. I.; Finkelstein, E. A.
2016-02-01
Numerical methods for solving optimal control problems with equality constraints at the right end of the trajectory are discussed. Algorithms for optimal control search are proposed that are based on the multimethod technique for finding an approximate solution of prescribed accuracy that satisfies terminal conditions. High accuracy is achieved by applying a second-order method analogous to Newton's method or Bellman's quasilinearization method. In the solution of problems with direct control constraints, the variation of the control is computed using a finite-dimensional approximation of an auxiliary problem, which is solved by applying linear programming methods.
Backward bifurcation and optimal control of Plasmodium Knowlesi malaria
Abdullahi, Mohammed Baba; Hasan, Yahya Abu; Abdullah, Farah Aini
2014-07-01
A deterministic model for the transmission dynamics of Plasmodium Knowlesi malaria with direct transmission is developed. The model is analyzed using dynamical system techniques and it shows that the backward bifurcation occurs for some range of parameters. The model is extended to assess the impact of time dependent preventive (biological and chemical control) against the mosquitoes and vaccination for susceptible humans, while treatment for infected humans. The existence of optimal control is established analytically by the use of optimal control theory. Numerical simulations of the problem, suggest that applying the four control measure can effectively reduce if not eliminate the spread of Plasmodium Knowlesi in a community.
Quadratic Optimal Regulator Design of a Pneumatic Control Valve
Directory of Open Access Journals (Sweden)
Mohammad Heidari
2013-01-01
Full Text Available Pneumatic control valves are still the most used devices in the process industries, due to their low cost and simplicity. This paper presents a regulator for pneumatic control valves using pole-placement method, optimal control, full-order state observer, and minimum-order state observer and their responses will be compared with each other. Bondgraph method has been used to model the control valve. Simulation results have been made for four models of regulator. The results show that minimum overshoot and settling time are achieved using optimal regulator of pneumatic valve.
Stability and optimal parameters for continuous feedback chaos control.
Kouomou, Y Chembo; Woafo, P
2002-09-01
We investigate the conditions under which an optimal continuous feedback control can be achieved. Chaotic oscillations in the single-well Duffing model, with either a positive or a negative nonlinear stiffness term, are tuned to their related Ritz approximation. The Floquet theory enables the stability analysis of the control. Critical values of the feedback control coefficient fulfilling the optimization criteria are derived. The influence of the chosen target orbit, of the feedback coefficient, and of the onset time of control on its duration is discussed. The analytic approach is confirmed by numerical simulations.
Developments in model-based optimization and control distributed control and industrial applications
Grancharova, Alexandra; Pereira, Fernando
2015-01-01
This book deals with optimization methods as tools for decision making and control in the presence of model uncertainty. It is oriented to the use of these tools in engineering, specifically in automatic control design with all its components: analysis of dynamical systems, identification problems, and feedback control design. Developments in Model-Based Optimization and Control takes advantage of optimization-based formulations for such classical feedback design objectives as stability, performance and feasibility, afforded by the established body of results and methodologies constituting optimal control theory. It makes particular use of the popular formulation known as predictive control or receding-horizon optimization. The individual contributions in this volume are wide-ranging in subject matter but coordinated within a five-part structure covering material on: · complexity and structure in model predictive control (MPC); · collaborative MPC; · distributed MPC; · optimization-based analysis and desi...
Multiobjective optimization design of a fractional order PID controller for a gun control system.
Gao, Qiang; Chen, Jilin; Wang, Li; Xu, Shiqing; Hou, Yuanlong
2013-01-01
Motion control of gun barrels is an ongoing topic for the development of gun control equipments possessing excellent performances. In this paper, a typical fractional order PID control strategy is employed for the gun control system. To obtain optimal parameters of the controller, a multiobjective optimization scheme is developed from the loop-shaping perspective. To solve the specified nonlinear optimization problem, a novel Pareto optimal solution based multiobjective differential evolution algorithm is proposed. To enhance the convergent rate of the optimization process, an opposition based learning method is embedded in the chaotic population initialization process. To enhance the robustness of the algorithm for different problems, an adapting scheme of the mutation operation is further employed. With assistance of the evolutionary algorithm, the optimal solution for the specified problem is selected. The numerical simulation results show that the control system can rapidly follow the demand signal with high accuracy and high robustness, demonstrating the efficiency of the proposed controller parameter tuning method.
Determination of Optimal Control Strength of Delayed Feedback Control Using Time Series
Institute of Scientific and Technical Information of China (English)
YIN Hua-Wei; LU Wei-Ping; WANG Peng-Ye
2004-01-01
@@ We study controlling chaos using time-delayed feedback control based on chaotic time series without prior knowl edge of dynamical systems, and determine the optimal control parameters for stabilizing unstable periodic orbits with maximal stability.
Optimal design of coordination control strategy for distributed generation system
Institute of Scientific and Technical Information of China (English)
WANG Ai-hua; Norapon Kanjanapadit
2009-01-01
This paper presents a novel design procedure for optimizing the power distribution strategy in distributed generation system. A coordinating controller, responsible to distribute the total load power request among multiple DG units, is suggested based on the conception of hierarchical control structure in the dynamic system.The optimal control problem was formulated as a nonlinear optimization problem subject to set of constraints.The resulting problem was solved using the Kutm-Tucker method. Computer simulation results demonstrate that the proposed method can provide better efficiency in terms of reducing total costs compared to existing methods.In addition, the proposed optimal load distribution strategy can be easily implemented in real-time thanks to the simplicity of closed-form solutions.
Application of Improved Genetic Algorithm in PID Controller Parameters Optimization
Directory of Open Access Journals (Sweden)
Ying Chen
2013-01-01
Full Text Available Ying Chen, Yong-jie Ma, Wen-xia Yun College of Physics and Electronic Engineering, Northwest Normal University, Anning Road no.967 ,Lanzhou,China,0931-7971503 e-mail:chenying1386685@126.com Abstract The setting and optimization of Proportion Integration Differentiation(PID parameters have been always the important study topics in the automatic control field. The current optimization design methods are often difficult to consider the system requirements for quickness ,reliability and robustness .So a method of PID controller parameters optimization based on Improved Genetic Algorithm(IGA is presented .Simulations with Matlab have proved that the control performance index based on IGA is better than that of the GA method and Z-N method, and is a method which has good practical value of the PID parameter setting and optimization .
Process control and optimization with simple interval calculation method
DEFF Research Database (Denmark)
Pomerantsev, A.; Rodionova, O.; Høskuldsson, Agnar
2006-01-01
the series of expanding PLS/SIC models in order to support the on-line process improvements. This method helps to predict the effect of planned actions on the product quality and thus enables passive quality control. We have also considered an optimization approach that proposes the correcting actions......Methods of process control and optimization are presented and illustrated with a real world example. The optimization methods are based on the PLS block modeling as well as on the simple interval calculation methods of interval prediction and object status classification. It is proposed to employ...... for the quality improvement in the course of production. The latter is an active quality optimization, which takes into account the actual history of the process. The advocate approach is allied to the conventional method of multivariate statistical process control (MSPC) as it also employs the historical process...
Optimizing wind turbine control system parameters
Energy Technology Data Exchange (ETDEWEB)
Schluter, L.L. [Sandia National Labs., Albuquerque, NM (United States); Vachon, W.A. [Vachon (W.A.) and Associates, Inc., Manchester, MA (United States)
1993-08-01
The impending expiration of the levelized period in the Interim Standard Offer Number 4 (ISO4) utility contracts for purchasing wind-generated power in California mandates, more than ever, that windplants be operated in a cost-effective manner. Operating plans and approaches are needed that maximize the net revenue from wind parks--after accounting for operation and maintenance costs. This paper describes a design tool that makes it possible to tailor a control system of a wind turbine (WT) to maximize energy production while minimizing the financial consequences of fatigue damage to key structural components. Plans for code enhancements to include expert systems and fuzzy logic are discussed, and typical results are presented in which the code is applied to study the controls of a generic Danish 15-m horizontal axis wind turbine (HAWT).
Optimal Opinion Control: The Campaign Problem
2015-01-01
Opinion dynamics is nowadays a very common field of research. In this article we formulate and then study a novel, namely strategic perspective on such dynamics: There are the usual normal agents that update their opinions, for instance according the well-known bounded confidence mechanism. But, additionally, there is at least one strategic agent. That agent uses opinions as freely selectable strategies to get control on the dynamics: The strategic agent of our benchmark problem tries, during...
Control Variates and Optimal Designs in Metamodeling
2013-03-01
and a series of tasks. Henderson and Kim (2004) apply CVs to a discrete time-finite state space markov chain . Adewunmi and Aickelin (2012) describe...going into further detail with an example in machine repair, an inventory system, and an M/M/1 queue . Fort and Moulines (2008) apply CVs to financial...are not always effective. Because of the long queue length these control variates are ineffective, additional iterations of the model will show that
Optimal chaos control through reinforcement learning.
Gadaleta, Sabino; Dangelmayr, Gerhard
1999-09-01
A general purpose chaos control algorithm based on reinforcement learning is introduced and applied to the stabilization of unstable periodic orbits in various chaotic systems and to the targeting problem. The algorithm does not require any information about the dynamical system nor about the location of periodic orbits. Numerical tests demonstrate good and fast performance under noisy and nonstationary conditions. (c) 1999 American Institute of Physics.
Optimally Controlled Flexible Fuel Powertrain System
Energy Technology Data Exchange (ETDEWEB)
Duncan Sheppard; Bruce Woodrow; Paul Kilmurray; Simon Thwaite
2011-06-30
A multi phase program was undertaken with the stated goal of using advanced design and development tools to create a unique combination of existing technologies to create a powertrain system specification that allowed minimal increase of volumetric fuel consumption when operating on E85 relative to gasoline. Although on an energy basis gasoline / ethanol blends typically return similar fuel economy to straight gasoline, because of its lower energy density (gasoline ~ 31.8MJ/l and ethanol ~ 21.1MJ/l) the volume based fuel economy of gasoline / ethanol blends are typically considerably worse. This project was able to define an initial engine specification envelope, develop specific hardware for the application, and test that hardware in both single and multi-cylinder test engines to verify the ability of the specified powertrain to deliver reduced E85 fuel consumption. Finally, the results from the engine testing were used in a vehicle drive cycle analysis tool to define a final vehicle level fuel economy result. During the course of the project, it was identified that the technologies utilized to improve fuel economy on E85 also enabled improved fuel economy when operating on gasoline. However, the E85 fueled powertrain provided improved vehicle performance when compared to the gasoline fueled powertrain due to the improved high load performance of the E85 fuel. Relative to the baseline comparator engine and considering current market fuels, the volumetric fuel consumption penalty when running on E85 with the fully optimized project powertrain specification was reduced significantly. This result shows that alternative fuels can be utilized in high percentages while maintaining or improving vehicle performance and with minimal or positive impact on total cost of ownership to the end consumer. The justification for this project was two-fold. In order to reduce the US dependence on crude oil, much of which is imported, the US Environmental Protection Agency (EPA
Optimal Bilinear Control of Gross--Pitaevskii Equations
Hintermüller, Michael
2013-01-01
A mathematical framework for optimal bilinear control of nonlinear Schrödinger equations of Gross--Pitaevskii type arising in the description of Bose--Einstein condensates is presented. The obtained results generalize earlier efforts found in the literature in several aspects. In particular, the cost induced by the physical workload over the control process is taken into account rather than the often used L^2- or H^1-norms for the cost of the control action. Well-posedness of the problem and existence of an optimal control are proved. In addition, the first order optimality system is rigorously derived. Also a numerical solution method is proposed, which is based on a Newton-type iteration, and used to solve several coherent quantum control problems.
Feedback and Feedforward Optimal Control for Offshore Jacket Platforms
Institute of Scientific and Technical Information of China (English)
王薇; 唐功友
2004-01-01
The optimal control is investigated for linear systems affected by external harmonic disturbance and applied to vibration control systems of offshore steel jacket platforms. The wave-induced force is the dominant load that offshore structures are subjected to, and it can be taken as harmonic excitation for the system. The linearized Morison equation is employed to estimate the wave loading. The main result concerns the existence and design of a realizable optimal regulator, which is proposed to damp the forced oscillation in an optimal fashion. For demonstration of the effectiveness of the control scheme, the platform performance is investigated for different wave states. The simulations are based on the tuned mass damper (TMD) and the active mass damper (AMD) control devices. It is demonstrated that the control scheme is useful in reducing the displacement response of jacket-type offshore platforms.
Optimal traffic control in highway transportation networks using linear programming
Li, Yanning
2014-06-01
This article presents a framework for the optimal control of boundary flows on transportation networks. The state of the system is modeled by a first order scalar conservation law (Lighthill-Whitham-Richards PDE). Based on an equivalent formulation of the Hamilton-Jacobi PDE, the problem of controlling the state of the system on a network link in a finite horizon can be posed as a Linear Program. Assuming all intersections in the network are controllable, we show that the optimization approach can be extended to an arbitrary transportation network, preserving linear constraints. Unlike previously investigated transportation network control schemes, this framework leverages the intrinsic properties of the Halmilton-Jacobi equation, and does not require any discretization or boolean variables on the link. Hence this framework is very computational efficient and provides the globally optimal solution. The feasibility of this framework is illustrated by an on-ramp metering control example.
Neural network learning of optimal Kalman prediction and control
Linsker, Ralph
2008-01-01
Although there are many neural network (NN) algorithms for prediction and for control, and although methods for optimal estimation (including filtering and prediction) and for optimal control in linear systems were provided by Kalman in 1960 (with nonlinear extensions since then), there has been, to my knowledge, no NN algorithm that learns either Kalman prediction or Kalman control (apart from the special case of stationary control). Here we show how optimal Kalman prediction and control (KPC), as well as system identification, can be learned and executed by a recurrent neural network composed of linear-response nodes, using as input only a stream of noisy measurement data. The requirements of KPC appear to impose significant constraints on the allowed NN circuitry and signal flows. The NN architecture implied by these constraints bears certain resemblances to the local-circuit architecture of mammalian cerebral cortex. We discuss these resemblances, as well as caveats that limit our current ability to draw ...
Multi-objective optimization framework for networked predictive controller design.
Das, Sourav; Das, Saptarshi; Pan, Indranil
2013-01-01
Networked Control Systems (NCSs) often suffer from random packet dropouts which deteriorate overall system's stability and performance. To handle the ill effects of random packet losses in feedback control systems, closed over communication network, a state feedback controller with predictive gains has been designed. To achieve improved performance, an optimization based controller design framework has been proposed in this paper with Linear Matrix Inequality (LMI) constraints, to ensure guaranteed stability. Different conflicting objective functions have been optimized with Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The methodology proposed in this paper not only gives guaranteed closed loop stability in the sense of Lyapunov, even in the presence of random packet losses, but also gives an optimization trade-off between two conflicting time domain control objectives.
Embedded Optimal Control of Robot Manipulators with Passive Joints
Directory of Open Access Journals (Sweden)
Alberto Olivares
2015-01-01
Full Text Available This paper studies the optimal control problem for planar underactuated robot manipulators with two revolute joints and brakes at the unactuated joints in the presence of gravity. The presence of a brake at an unactuated joint gives rise to two operating modes for that joint: free and braked. As a consequence, there exist two operating modes for a robot manipulator with one unactuated joint and four operating modes for a manipulator with two unactuated joints. Since these systems can change dynamics, they can be regarded as switched dynamical systems. The optimal control problem for these systems is solved using the so-called embedding approach. The main advantages of this technique are that assumptions about the number of switches are not necessary, integer or binary variables do not have to be introduced to model switching decisions between modes, and the optimal switching times between modes are not unknowns of the optimal control problem. As a consequence, the resulting problem is a classical continuous optimal control problem. In this way, a general method for the solution of optimal control problems for switched dynamical systems is obtained. It is shown in this paper that it can deal with nonintegrable differential constraints.
Robust and optimal control a two-port framework approach
Tsai, Mi-Ching
2014-01-01
A Two-port Framework for Robust and Optimal Control introduces an alternative approach to robust and optimal controller synthesis procedures for linear, time-invariant systems, based on the two-port system widespread in electrical engineering. The novel use of the two-port system in this context allows straightforward engineering-oriented solution-finding procedures to be developed, requiring no mathematics beyond linear algebra. A chain-scattering description provides a unified framework for constructing the stabilizing controller set and for synthesizing H2 optimal and H∞ sub-optimal controllers. Simple yet illustrative examples explain each step. A Two-port Framework for Robust and Optimal Control features: · a hands-on, tutorial-style presentation giving the reader the opportunity to repeat the designs presented and easily to modify them for their own programs; · an abundance of examples illustrating the most important steps in robust and optimal design; and · �...
Correlations in state space can cause sub-optimal adaptation of optimal feedback control models.
Aprasoff, Jonathan; Donchin, Opher
2012-04-01
Control of our movements is apparently facilitated by an adaptive internal model in the cerebellum. It was long thought that this internal model implemented an adaptive inverse model and generated motor commands, but recently many reject that idea in favor of a forward model hypothesis. In theory, the forward model predicts upcoming state during reaching movements so the motor cortex can generate appropriate motor commands. Recent computational models of this process rely on the optimal feedback control (OFC) framework of control theory. OFC is a powerful tool for describing motor control, it does not describe adaptation. Some assume that adaptation of the forward model alone could explain motor adaptation, but this is widely understood to be overly simplistic. However, an adaptive optimal controller is difficult to implement. A reasonable alternative is to allow forward model adaptation to 're-tune' the controller. Our simulations show that, as expected, forward model adaptation alone does not produce optimal trajectories during reaching movements perturbed by force fields. However, they also show that re-optimizing the controller from the forward model can be sub-optimal. This is because, in a system with state correlations or redundancies, accurate prediction requires different information than optimal control. We find that adding noise to the movements that matches noise found in human data is enough to overcome this problem. However, since the state space for control of real movements is far more complex than in our simple simulations, the effects of correlations on re-adaptation of the controller from the forward model cannot be overlooked.
Total energy control system autopilot design with constrained parameter optimization
Ly, Uy-Loi; Voth, Christopher
1990-01-01
A description is given of the application of a multivariable control design method (SANDY) based on constrained parameter optimization to the design of a multiloop aircraft flight control system. Specifically, the design method is applied to the direct synthesis of a multiloop AFCS inner-loop feedback control system based on total energy control system (TECS) principles. The design procedure offers a structured approach for the determination of a set of stabilizing controller design gains that meet design specifications in closed-loop stability, command tracking performance, disturbance rejection, and limits on control activities. The approach can be extended to a broader class of multiloop flight control systems. Direct tradeoffs between many real design goals are rendered systematic by proper formulation of the design objectives and constraints. Satisfactory designs are usually obtained in few iterations. Performance characteristics of the optimized TECS design have been improved, particularly in the areas of closed-loop damping and control activity in the presence of turbulence.
Optimal placement of piezoelectric active bars in vibration control by topological optimization
Institute of Scientific and Technical Information of China (English)
Guozhong Zhao; Jian Wang; Yuanxian Gu
2008-01-01
A continuous variable optimization method and a topological optimization method are proposed for the vibra-tion control of piezoelectric truss structures by means of the optimal placements of active bars. In this optimization model, a zero-one discrete variable is defined in order to solve the optimal placement of piezoelectric active bars. At the same time, the feedback gains are also optimized as conti-nuous design variables. A two-phase procedure is proposed to solve the optimization problem. The sequential linear pro-gramming algorithm is used to solve optimization problem and the sensitivity analysis is carried out for objective and constraint functions to make linear approximations. On the basis of the Newmark time integration of structural tran-sient dynamic responses, a new sensitivity analysis method is developed in this paper for the vibration control problem of piezoelectric truss structures with respect to various kinds of design variables. Numerical examples are given in the paper to demonstrate the effectiveness of the methods.
Cleaning the Produced Water in Offshore Oil Production by Using Plant-wide Optimal Control Strategy
DEFF Research Database (Denmark)
Yang, Zhenyu; Pedersen, Simon; Løhndorf, Petar Durdevic
2014-01-01
To clean the produced water is always a challenging critical issue in the offshore oil & gas industry. By employing the plant-wide control technology, this paper discussed the opportunity to optimize the most popular hydrocyclone-based Produced Water Treatment (PWT) system. The optimizations...... of the efficiency control of the de-oiling hydrocyclone and the water level control of the upstream separator, are discussed and formulated. Some of our latest research results on the analysis and control of slugging flows in production well-pipeline-riser systems are also presented. The ultimate objective...... of this research is to promote a technical breakthrough in the PWT control design, which can lead to the best environmental protection in the oil & gas production, without sacrificing the production capability and production costs....
An Optimization Model of the Single-Leg Air Cargo Space Control Based on Markov Decision Process
Directory of Open Access Journals (Sweden)
Chun-rong Qin
2012-01-01
Full Text Available Based on the single-leg air cargo issues, we establish a dynamic programming model to consider the overbooking and space inventory control problem. We analyze the structure of optimal booking policy for every kind of booking requests and show that the optimal booking decision is of threshold type (known as booking limit policy. Our research provides a theoretical support for the air cargo space control.
A toolbox for robust PID controller tuning using convex optimization
Sadeghpour, Mehdi; de Oliveira, Vinicius; Karimi, Alireza
2012-01-01
A robust PID controller design toolbox for Matlab is presented in this paper. The design is based on linearizing or convexifying the conventional non-convex constraints on the classical robustness margins or H∞ constraints. Then the existing optimization solvers can be used to compute the controller parameters. The software can be used in a wide range of controller design problems, including multi-model systems and gain-scheduled controllers. The models can be parametric or non-parametric whi...
Lyapunov optimal feedback control of a nonlinear inverted pendulum
Grantham, W. J.; Anderson, M. J.
1989-01-01
Liapunov optimal feedback control is applied to a nonlinear inverted pendulum in which the control torque was constrained to be less than the nonlinear gravity torque in the model. This necessitates a control algorithm which 'rocks' the pendulum out of its potential wells, in order to stabilize it at a unique vertical position. Simulation results indicate that a preliminary Liapunov feedback controller can successfully overcome the nonlinearity and bring almost all trajectories to the target.
An approximation scheme for optimal control of Volterra integral equations
Belbas, S. A.
2006-01-01
We present and analyze a new method for solving optimal control problems for Volterra integral equations, based on approximating the controlled Volterra integral equations by a sequence of systems of controlled ordinary differential equations. The resulting approximating problems can then be solved by dynamic programming methods for ODE controlled systems. Other, straightforward versions of dynamic programming, are not applicable to Volterra integral equations. We also derive the connection b...
Lyapunov optimal feedback control of a nonlinear inverted pendulum
Grantham, W. J.; Anderson, M. J.
1989-01-01
Liapunov optimal feedback control is applied to a nonlinear inverted pendulum in which the control torque was constrained to be less than the nonlinear gravity torque in the model. This necessitates a control algorithm which 'rocks' the pendulum out of its potential wells, in order to stabilize it at a unique vertical position. Simulation results indicate that a preliminary Liapunov feedback controller can successfully overcome the nonlinearity and bring almost all trajectories to the target.
Directory of Open Access Journals (Sweden)
Mohd Ariffanan Mohd Basri
2015-09-01
Full Text Available Quadrotor unmanned aerial vehicle (UAV is an unstable nonlinear control system. Therefore, the development of a high performance controller for such a multi-input and multi-output (MIMO system is important. The backstepping controller (BC has been successfully applied to control a variety of nonlinear systems. Conventionally, control parameters of a BC are usually chosen arbitrarily. The problems in this method are the adjustment is time demanding and a designer can never tell exactly what are the optimal control parameters should be selected. In this paper, the contribution is focused on an optimal control design for stabilization and trajectory tracking of a quadrotor UAV. Firstly, a dynamic model of the aerial vehicle is mathematically formulated. Then, an optimal backstepping controller (OBC is proposed. The particle swarm optimization (PSO algorithm is used to compute control parameters of the OBC. Finally, simulation results of a highly nonlinear quadrotor system are presented to demonstrate the effectiveness of the proposed control method. From the simulation results it is observed that the OBC tuned by PSO provides a high control performance of an autonomous quadrotor UAV.
Robust Optimal Adaptive Control Method with Large Adaptive Gain
Nguyen, Nhan T.
2009-01-01
In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly. However, a large adaptive gain can lead to high-frequency oscillations which can adversely affect robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient stability robustness. Simulations were conducted for a damaged generic transport aircraft with both standard adaptive control and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model while maintaining a sufficient time delay margin.
Optimal Pid Controller Design Using Adaptive Vurpso Algorithm
Zirkohi, Majid Moradi
2015-04-01
The purpose of this paper is to improve theVelocity Update Relaxation Particle Swarm Optimization algorithm (VURPSO). The improved algorithm is called Adaptive VURPSO (AVURPSO) algorithm. Then, an optimal design of a Proportional-Integral-Derivative (PID) controller is obtained using the AVURPSO algorithm. An adaptive momentum factor is used to regulate a trade-off between the global and the local exploration abilities in the proposed algorithm. This operation helps the system to reach the optimal solution quickly and saves the computation time. Comparisons on the optimal PID controller design confirm the superiority of AVURPSO algorithm to the optimization algorithms mentioned in this paper namely the VURPSO algorithm, the Ant Colony algorithm, and the conventional approach. Comparisons on the speed of convergence confirm that the proposed algorithm has a faster convergence in a less computation time to yield a global optimum value. The proposed AVURPSO can be used in the diverse areas of optimization problems such as industrial planning, resource allocation, scheduling, decision making, pattern recognition and machine learning. The proposed AVURPSO algorithm is efficiently used to design an optimal PID controller.
Solving Optimal Control Problems by Exploiting Inherent Dynamical Systems Structures
Flaßkamp, Kathrin; Ober-Blöbaum, Sina; Kobilarov, Marin
2012-08-01
Computing globally efficient solutions is a major challenge in optimal control of nonlinear dynamical systems. This work proposes a method combining local optimization and motion planning techniques based on exploiting inherent dynamical systems structures, such as symmetries and invariant manifolds. Prior to the optimal control, the dynamical system is analyzed for structural properties that can be used to compute pieces of trajectories that are stored in a motion planning library. In the context of mechanical systems, these motion planning candidates, termed primitives, are given by relative equilibria induced by symmetries and motions on stable or unstable manifolds of e.g. fixed points in the natural dynamics. The existence of controlled relative equilibria is studied through Lagrangian mechanics and symmetry reduction techniques. The proposed framework can be used to solve boundary value problems by performing a search in the space of sequences of motion primitives connected using optimized maneuvers. The optimal sequence can be used as an admissible initial guess for a post-optimization. The approach is illustrated by two numerical examples, the single and the double spherical pendula, which demonstrates its benefit compared to standard local optimization techniques.
Parametric optimal bounded feedback control for smart parameter-controllable composite structures
Ying, Z. G.; Ni, Y. Q.; Duan, Y. F.
2015-03-01
Deterministic and stochastic parametric optimal bounded control problems are presented for smart composite structures such as magneto-rheological visco-elastomer based sandwich beam with controllable bounded parameters subjected to initial disturbances and stochastic excitations. The parametric controls by actively adjusting system parameters differ from the conventional additive controls by systemic external inputs. The dynamical programming equations for the optimal parametric controls are derived based on the deterministic and stochastic dynamical programming principles. The optimal bounded functions of controls are firstly obtained from the equations with the bounded control constraints based on the bang-bang control strategy. Then the optimal bounded parametric control laws are obtained by the inversion of the nonlinear functions. The stability of the optimally controlled systems is proved according to the Lyapunov method. Finally, the proposed optimal bounded parametric feedback control strategy is applied to single-degree-of-freedom and two-degree-of-freedom dynamic systems with nonlinear parametric bounded control terms under initial disturbances and earthquake excitations and then to a magneto-rheological visco-elastomer based sandwich beam system with nonlinear parametric bounded control terms under stochastic excitations. The effective vibration suppression is illustrated with numerical results. The proposed optimal parametric control strategy is applicable to other smart composite structures with nonlinear controllable parameters.
Polynomial method for PLL controller optimization.
Wang, Ta-Chung; Lall, Sanjay; Chiou, Tsung-Yu
2011-01-01
The Phase-Locked Loop (PLL) is a key component of modern electronic communication and control systems. PLL is designed to extract signals from transmission channels. It plays an important role in systems where it is required to estimate the phase of a received signal, such as carrier tracking from global positioning system satellites. In order to robustly provide centimeter-level accuracy, it is crucial for the PLL to estimate the instantaneous phase of an incoming signal which is usually buried in random noise or some type of interference. This paper presents an approach that utilizes the recent development in the semi-definite programming and sum-of-squares field. A Lyapunov function will be searched as the certificate of the pull-in range of the PLL system. Moreover, a polynomial design procedure is proposed to further refine the controller parameters for system response away from the equilibrium point. Several simulation results as well as an experiment result are provided to show the effectiveness of this approach.
Polynomial Method for PLL Controller Optimization
Directory of Open Access Journals (Sweden)
Tsung-Yu Chiou
2011-06-01
Full Text Available The Phase-Locked Loop (PLL is a key component of modern electronic communication and control systems. PLL is designed to extract signals from transmission channels. It plays an important role in systems where it is required to estimate the phase of a received signal, such as carrier tracking from global positioning system satellites. In order to robustly provide centimeter-level accuracy, it is crucial for the PLL to estimate the instantaneous phase of an incoming signal which is usually buried in random noise or some type of interference. This paper presents an approach that utilizes the recent development in the semi-definite programming and sum-of-squares field. A Lyapunov function will be searched as the certificate of the pull-in range of the PLL system. Moreover, a polynomial design procedure is proposed to further refine the controller parameters for system response away from the equilibrium point. Several simulation results as well as an experiment result are provided to show the effectiveness of this approach.
Optimization of controllability and robustness of complex networks by edge directionality
Liang, Man; Jin, Suoqin; Wang, Dingjie; Zou, Xiufen
2016-09-01
Recently, controllability of complex networks has attracted enormous attention in various fields of science and engineering. How to optimize structural controllability has also become a significant issue. Previous studies have shown that an appropriate directional assignment can improve structural controllability; however, the evolution of the structural controllability of complex networks under attacks and cascading has always been ignored. To address this problem, this study proposes a new edge orientation method (NEOM) based on residual degree that changes the link direction while conserving topology and directionality. By comparing the results with those of previous methods in two random graph models and several realistic networks, our proposed approach is demonstrated to be an effective and competitive method for improving the structural controllability of complex networks. Moreover, numerical simulations show that our method is near-optimal in optimizing structural controllability. Strikingly, compared to the original network, our method maintains the structural controllability of the network under attacks and cascading, indicating that the NEOM can also enhance the robustness of controllability of networks. These results alter the view of the nature of controllability in complex networks, change the understanding of structural controllability and affect the design of network models to control such networks.
Directory of Open Access Journals (Sweden)
Mykola Bokalo
2017-03-01
Full Text Available We consider an optimal control problem for systems described by a Fourier problem for parabolic equations. We prove the existence of solutions, and obtain necessary conditions of the optimal control in the case of final observation when the control functions occur in the coefficients.
OPTIMAL CONTROL APPLIED IN AUTOMATIC CLUTCH ENGAGEMENTS OF VEHICLES
Institute of Scientific and Technical Information of China (English)
Sun Chengshun; Zhang Jianwu
2004-01-01
Start-up working condition is the key to the research of optimal engagement of automatic clutch for AMT.In order to guarantee an ideal dynamic performance of the clutch engagement,an optimal controller is designed by considering throttle angle,engine speed,gear ratio,vehicle acceleration and road condition.The minimum value principle is also introduced to achieve an optimal dynamic performance of the nonlinear system compromised in friction plate wear and vehicle drive quality.The optimal trajectory of the clutch engagement can be described in the form of explicit and analytical expressions and characterized by the deterministic and accurate control strategy in stead of indeterministic and soft control techniques which need thousands of experiments.For validation of the controller,test work is carried out for the automated clutch engagements in a commercial car with an traditional mechanical transmission,a hydraulic actuator,a group of sensors and a portable computer system.It is shown through experiments that dynamic behaviors of the clutch engagement operated by the optimal control are more effective and efficient than those by fuzzy control.
Addressing the human factors issues associated with control room modifications
Energy Technology Data Exchange (ETDEWEB)
O`Hara, J.; Stubler, W. [Brookhaven National Lab., Upton, NY (United States). Dept. of Advanced Technology; Kramer, J. [Nuclear Regulatory Commission, Washington, DC (United States). Office of Nuclear Regulatory Research
1998-03-01
Advanced human-system interface (HSI) technology is being integrated into existing nuclear plants as part of plant modifications and upgrades. The result of this trend is that hybrid HSIs are created, i.e., HSIs containing a mixture of conventional (analog) and advanced (digital) technology. The purpose of the present research is to define the potential effects of hybrid HSIs on personnel performance and plant safety and to develop human factors guidance for safety reviews of them where necessary. In support of this objective, human factors issues associated with hybrid HSIs were identified. The issues were evaluated for their potential significance to plant safety, i.e., their human performance concerns have the potential to compromise plant safety. The issues were then prioritized and a subset was selected for design review guidance development.
Optimal control and design of a cold store using dynamic optimization
Lukasse, L.; Broeze, J.; Sluis, S. van der
2009-01-01
The design of controlled processes is a combined optimal control and design problem (OCDP). Literature on solving large OCDPs is rare. This paper presents an algorithm for solving large OCDPs. For this algorithm system dynamics, objective function and their first-order derivatives must be continuous
Optimal control and design of a cold store using dynamic optimization
Lukasse, L.; Broeze, J.; Sluis, S. van der
2009-01-01
The design of controlled processes is a combined optimal control and design problem (OCDP). Literature on solving large OCDPs is rare. This paper presents an algorithm for solving large OCDPs. For this algorithm system dynamics, objective function and their first-order derivatives must be continuous
Reynoso Meza, Gilberto; Sanchis Saez, Javier; Herrero Durá, Juan Manuel
2017-01-01
This book is devoted to Multiobjective Optimization Design (MOOD) procedures for controller tuning applications, by means of Evolutionary Multiobjective Optimization (EMO). It presents developments in tools, procedures and guidelines to facilitate this process, covering the three fundamental steps in the procedure: problem definition, optimization and decision-making. The book is divided into four parts. The first part, Fundamentals, focuses on the necessary theoretical background and provides specific tools for practitioners. The second part, Basics, examines a range of basic examples regarding the MOOD procedure for controller tuning, while the third part, Benchmarking, demonstrates how the MOOD procedure can be employed in several control engineering problems. The fourth part, Applications, is dedicated to implementing the MOOD procedure for controller tuning in real processes.
Discrete Time Optimal Adaptive Control for Linear Stochastic Systems
Institute of Scientific and Technical Information of China (English)
JIANG Rui; LUO Guiming
2007-01-01
The least-squares(LS)algorithm has been used for system modeling for a long time. Without any excitation conditions, only the convergence rate of the common LS algorithm can be obtained. This paper analyzed the weighted least-squares(WLS)algorithm and described the good properties of the WLS algorithm. The WLS algorithm was then used for daptive control of linear stochastic systems to show that the linear closed-loop system was globally stable and that the system identification was consistent. Compared to the past optimal adaptive controller,this controller does not impose restricted conditions on the coefficients of the system, such as knowing the first coefficient before the controller. Without any persistent excitation conditions, the analysis shows that, with the regulation of the adaptive control, the closed-loop system was globally stable and the adaptive controller converged to the one-step-ahead optimal controller in some sense.
Riccati difference equation in optimal control for magnetic bearings
Institute of Scientific and Technical Information of China (English)
ZHANG Li; LIU Kun
2012-01-01
A model predictive optimal control method for magnetically suspended flywheel is presented.In order to suppress the conical whirl of the rotor caused by gyroscopic effect,the synchronization error is added to the traditional quadratic performance index.The target performance index is composed of the translatory error,the synchronization error,and the control output predicted by the discrete-time state model.The optimal controller is obtained by means of iterating a Riccati difference equation (RDE).Stability of the control scheme is investigated through fake algebraic Riccati technique (FART).The robust performance of the controller with respect to control parameters is studied by simulation.Results of the simulation and experiment on a compact magnetically suspended flywheel demonstrate that the proposed controller with consideration of the synchronization error is very effective to suppress the conical whirl caused by gyroscopic effect.
Hard and Soft Sub-Time-Optimal Robust Controllers
DEFF Research Database (Denmark)
Kulczycki, Piotr; Wisniewski, Rafal; Kowalski, Piotr
2010-01-01
has been treated as a stochastic process, is presented in this paper. As a result, through a generalization of the classic switching curve occurring in the time-optimal approach, two control structures have been investigated: the hard, defined on the basis of the rules of the statistical decision...... theory, and also the soft, which additionally allows the elimination of rapid changes in control values. The methodology proposed here may be easily adopted for other elements commonly found in mechanical systems, e.g. parameters of drive or motion resistance, giving the sub-time-optimal controlling...
Optimal control theory applications to management science and economics
Sethi, Suresh P
2006-01-01
Optimal control methods are used to determine the best ways to control a dynamic system. This book applies theoretical work to business management problems developed from the authors' research and classroom instruction. The thoroughly revised new edition has been refined with careful attention to the text and graphic material presentation. Chapters cover a range of topics including finance, production and inventory problems, marketing problems, machine maintenance and replacement, problems of optimal consumption of natural resources, and applications of control theory to economics. The book in
Optimal control problems for impulsive systems with integral boundary conditions
Directory of Open Access Journals (Sweden)
Allaberen Ashyralyev
2013-03-01
Full Text Available In this article, the optimal control problem is considered when the state of the system is described by the impulsive differential equations with integral boundary conditions. Applying the Banach contraction principle the existence and uniqueness of the solution is proved for the corresponding boundary problem by the fixed admissible control. The first and second variation of the functional is calculated. Various necessary conditions of optimality of the first and second order are obtained by the help of the variation of the controls.
Solving the optimal attention allocation problem in manual control
Kleinman, D. L.
1976-01-01
Within the context of the optimal control model of human response, analytic expressions for the gradients of closed-loop performance metrics with respect to human operator attention allocation are derived. These derivatives serve as the basis for a gradient algorithm that determines the optimal attention that a human should allocate among several display indicators in a steady-state manual control task. Application of the human modeling techniques are made to study the hover control task for a CH-46 VTOL flight tested by NASA.
Optimal control of a dengue epidemic model with vaccination
Rodrigues, Helena Sofia; Torres, Delfim F M
2011-01-01
We present a SIR+ASI epidemic model to describe the interaction between human and dengue fever mosquito populations. A control strategy in the form of vaccination, to decrease the number of infected individuals, is used. An optimal control approach is applied in order to find the best way to fight the disease.
A monotonic method for solving nonlinear optimal control problems
Salomon, Julien
2009-01-01
Initially introduced in the framework of quantum control, the so-called monotonic algorithms have shown excellent numerical results when dealing with various bilinear optimal control problems. This paper aims at presenting a unified formulation of such procedures and the intrinsic assumptions they require. In this framework, we prove the feasibility of the general algorithm. Finally, we explain how these assumptions can be relaxed.
Optimal Control of Residential Heating and Cooling Systems.
1982-01-01
best possible. The question of optimal flow control versus several different bang-bang flow controls was addressed by Piessens, et al. [13). Using TRNSYS ...most 113 simulation programs, for example, TRNSYS [ 15]. For an air collector, however, the collector efficiency factor may not be constant
Study of optimal control problems for hybrid dynamical systems
Institute of Scientific and Technical Information of China (English)
Gao Rui; Wang Lei; Wang Yuzhen
2006-01-01
From the viewpoint of continuous systems, optimal control problem is proposed for a class of controlled Hybrid dynamical systems. Then a mathematical method- HDS minimum principle is put forward, which can solve the above problem. The HDS minimum principle is proved by means of Ekeland's variational principle.
A Decomposition Algorithm for Optimal Control of Distributed Energy System
DEFF Research Database (Denmark)
Sokoler, Leo Emil; Edlund, Kristian; Standardi, Laura
2013-01-01
In economic model predictive control of distributed energy systems, the constrained optimal control problem can be expressed as a linear program with a block-angular structure. In this paper, we present an efficient Dantzig-Wolfe decomposition algorithm specifically tailored to problems...
Verification and optimization of a PLC control schedule
Brinksma, Ed; Mader, Angelika; Fehnker, Ansgar
2002-01-01
We report on the use of model checking techniques for both the verification of a process control program and the derivation of optimal control schedules. Most of this work has been carried out as part of a case study for the EU VHS project (Verification of Hybrid Systems), in which the program for a
Controller Design Automation for Aeroservoelastic Design Optimization of Wind Turbines
Ashuri, T.; Van Bussel, G.J.W.; Zaayer, M.B.; Van Kuik, G.A.M.
2010-01-01
The purpose of this paper is to integrate the controller design of wind turbines with structure and aerodynamic analysis and use the final product in the design optimization process (DOP) of wind turbines. To do that, the controller design is automated and integrated with an aeroelastic simulation
Stochastic optimal control of single neuron spike trains
DEFF Research Database (Denmark)
Iolov, Alexandre; Ditlevsen, Susanne; Longtin, Andrë
2014-01-01
Objective. External control of spike times in single neurons can reveal important information about a neuron's sub-threshold dynamics that lead to spiking, and has the potential to improve brain–machine interfaces and neural prostheses. The goal of this paper is the design of optimal electrical...... stimulation of a neuron to achieve a target spike train under the physiological constraint to not damage tissue. Approach. We pose a stochastic optimal control problem to precisely specify the spike times in a leaky integrate-and-fire (LIF) model of a neuron with noise assumed to be of intrinsic or synaptic...... to the spike times (open-loop control). Main results. We have developed a stochastic optimal control algorithm to obtain precise spike times. It is applicable in both the supra-threshold and sub-threshold regimes, under open-loop and closed-loop conditions and with an arbitrary noise intensity; the accuracy...
Optimal Acquisition and Inventory Control for a Remanufacturing System
Directory of Open Access Journals (Sweden)
Zhigang Jiang
2013-01-01
Full Text Available Optimal acquisition and inventory control can often make the difference between successful and unsuccessful remanufacturing. However, there is a greater degree of uncertainty and complexity in a remanufacturing system, which leads to a critical need for planning and control models designed to deal with this added uncertainty and complexity. In this paper, a method for optimal acquisition and inventory control of a remanufacturing system is presented. The method considers three inventories, one for returned item and the other for serviceable and recoverable items. Taking the holding cost for returns, recoverable and remanufactured products, remanufacturing cost, disposal cost, and the loss caused by backlog into account, the optimal inventory control model is established to minimize the total costs. Finally, a numerical example is provided to illustrate the proposed methods.
Hybrid Quantum-Classical Approach to Quantum Optimal Control.
Li, Jun; Yang, Xiaodong; Peng, Xinhua; Sun, Chang-Pu
2017-04-14
A central challenge in quantum computing is to identify more computational problems for which utilization of quantum resources can offer significant speedup. Here, we propose a hybrid quantum-classical scheme to tackle the quantum optimal control problem. We show that the most computationally demanding part of gradient-based algorithms, namely, computing the fitness function and its gradient for a control input, can be accomplished by the process of evolution and measurement on a quantum simulator. By posing queries to and receiving answers from the quantum simulator, classical computing devices update the control parameters until an optimal control solution is found. To demonstrate the quantum-classical scheme in experiment, we use a seven-qubit nuclear magnetic resonance system, on which we have succeeded in optimizing state preparation without involving classical computation of the large Hilbert space evolution.
Optimizing Optics For Remotely Controlled Underwater Vehicles
Billet, A. B.
1984-09-01
The past decade has shown a dramatic increase in the use of unmanned tethered vehicles in worldwide marine fields. These vehicles are used for inspection, debris removal and object retrieval. With advanced robotic technology, remotely operated vehicles (ROVs) are now able to perform a variety of jobs previously accomplished only by divers. The ROVs can be used at greater depths and for riskier jobs, and safety to the diver is increased, freeing him for safer, more cost-effective tasks requiring human capabilities. Secondly, the ROV operation becomes more cost effective to use as work depth increases. At 1000 feet a diver's 10 minutes of work can cost over $100,000 including support personnel, while an ROV operational cost might be 1/20 of the diver cost per day, based on the condition that the cost for ROV operation does not change with depth, as it does for divers. In the ROV operation the television lens must be as good as the human eye, with better light gathering capability than the human eye. The RCV-150 system is an example of these advanced technology vehicles. With the requirements of manueuverability and unusual inspection, a responsive, high performance, compact vehicle was developed. The RCV-150 viewing subsystem consists of a television camera, lights, and topside monitors. The vehicle uses a low light level Newvicon television camera. The camera is equipped with a power-down iris that closes for burn protection when the power is off. The camera can pan f 50 degrees and tilt f 85 degrees on command from the surface. Four independently controlled 250 watt quartz halogen flood lamps illuminate the viewing area as required; in addition, two 250 watt spotlights are fitted. A controlled nine inch CRT monitor provides real time camera pictures for the operator. The RCV-150 vehicle component system consists of the vehicle structure, the vehicle electronics, and hydraulic system which powers the thruster assemblies and the manipulator. For this vehicle, a light
Optimal control of information epidemics modeled as Maki Thompson rumors
Kandhway, Kundan; Kuri, Joy
2014-12-01
We model the spread of information in a homogeneously mixed population using the Maki Thompson rumor model. We formulate an optimal control problem, from the perspective of single campaigner, to maximize the spread of information when the campaign budget is fixed. Control signals, such as advertising in the mass media, attempt to convert ignorants and stiflers into spreaders. We show the existence of a solution to the optimal control problem when the campaigning incurs non-linear costs under the isoperimetric budget constraint. The solution employs Pontryagin's Minimum Principle and a modified version of forward backward sweep technique for numerical computation to accommodate the isoperimetric budget constraint. The techniques developed in this paper are general and can be applied to similar optimal control problems in other areas. We have allowed the spreading rate of the information epidemic to vary over the campaign duration to model practical situations when the interest level of the population in the subject of the campaign changes with time. The shape of the optimal control signal is studied for different model parameters and spreading rate profiles. We have also studied the variation of the optimal campaigning costs with respect to various model parameters. Results indicate that, for some model parameters, significant improvements can be achieved by the optimal strategy compared to the static control strategy. The static strategy respects the same budget constraint as the optimal strategy and has a constant value throughout the campaign horizon. This work finds application in election and social awareness campaigns, product advertising, movie promotion and crowdfunding campaigns.
Channel adaptive rate control for energy optimization
Institute of Scientific and Technical Information of China (English)
BLANCH Carolina; POLLIN Sofie; LAFRUIT Gauthier; EBERLE Wolfgang
2006-01-01
Low energy consumption is one of the main challenges for wireless video transmission on battery limited devices. The energy invested at the lower layers of the protocol stack involved in data communication, such as link and physical layer, represent an important part of the total energy consumption. This communication energy highly depends on the channel conditions and on the transmission data rate. Traditionally, video coding is unaware of varying channel conditions. In this paper, we propose a cross-layer approach in which the rate control mechanism of the video codec becomes channel-aware and steers the instantaneous output rate according to the channel conditions to reduce the communication energy. Our results show that energy savings of up to30% can be obtained with a reduction of barely 0.1 dB on the average video quality. The impact of feedback delays is shown to be small. In addition, this adaptive mechanism has low complexity, which makes it suitable for real-time applications.
Optimal Control of Polymer Flooding Based on Maximum Principle
Directory of Open Access Journals (Sweden)
Yang Lei
2012-01-01
Full Text Available Polymer flooding is one of the most important technologies for enhanced oil recovery (EOR. In this paper, an optimal control model of distributed parameter systems (DPSs for polymer injection strategies is established, which involves the performance index as maximum of the profit, the governing equations as the fluid flow equations of polymer flooding, and the inequality constraint as the polymer concentration limitation. To cope with the optimal control problem (OCP of this DPS, the necessary conditions for optimality are obtained through application of the calculus of variations and Pontryagin’s weak maximum principle. A gradient method is proposed for the computation of optimal injection strategies. The numerical results of an example illustrate the effectiveness of the proposed method.
Optimal control of switched linear systems based on Migrant Particle Swarm Optimization algorithm
Xie, Fuqiang; Wang, Yongji; Zheng, Zongzhun; Li, Chuanfeng
2009-10-01
The optimal control problem for switched linear systems with internally forced switching has more constraints than with externally forced switching. Heavy computations and slow convergence in solving this problem is a major obstacle. In this paper we describe a new approach for solving this problem, which is called Migrant Particle Swarm Optimization (Migrant PSO). Imitating the behavior of a flock of migrant birds, the Migrant PSO applies naturally to both continuous and discrete spaces, in which definitive optimization algorithm and stochastic search method are combined. The efficacy of the proposed algorithm is illustrated via a numerical example.
Optimal pinning controllability of complex networks: dependence on network structure.
Jalili, Mahdi; Askari Sichani, Omid; Yu, Xinghuo
2015-01-01
Controlling networked structures has many applications in science and engineering. In this paper, we consider the problem of pinning control (pinning the dynamics into the reference state), and optimally placing the driver nodes, i.e., the nodes to which the control signal is fed. Considering the local controllability concept, a metric based on the eigenvalues of the Laplacian matrix is taken into account as a measure of controllability. We show that the proposed optimal placement strategy considerably outperforms heuristic methods including choosing hub nodes with high degree or betweenness centrality as drivers. We also study properties of optimal drivers in terms of various centrality measures including degree, betweenness, closeness, and clustering coefficient. The profile of these centrality values depends on the network structure. For homogeneous networks such as random small-world networks, the optimal driver nodes have almost the mean centrality value of the population (much lower than the centrality value of hub nodes), whereas the centrality value of optimal drivers in heterogeneous networks such as scale-free ones is much higher than the average and close to that of hub nodes. However, as the degree of heterogeneity decreases in such networks, the profile of centrality approaches the population mean.
Strong stabilization servo controller with optimization of performance criteria.
Sarjaš, Andrej; Svečko, Rajko; Chowdhury, Amor
2011-07-01
Synthesis of a simple robust controller with a pole placement technique and a H(∞) metrics is the method used for control of a servo mechanism with BLDC and BDC electric motors. The method includes solving a polynomial equation on the basis of the chosen characteristic polynomial using the Manabe standard polynomial form and parametric solutions. Parametric solutions are introduced directly into the structure of the servo controller. On the basis of the chosen parametric solutions the robustness of a closed-loop system is assessed through uncertainty models and assessment of the norm ‖•‖(∞). The design procedure and the optimization are performed with a genetic algorithm differential evolution - DE. The DE optimization method determines a suboptimal solution throughout the optimization on the basis of a spectrally square polynomial and Šiljak's absolute stability test. The stability of the designed controller during the optimization is being checked with Lipatov's stability condition. Both utilized approaches: Šiljak's test and Lipatov's condition, check the robustness and stability characteristics on the basis of the polynomial's coefficients, and are very convenient for automated design of closed-loop control and for application in optimization algorithms such as DE.
Control optimization, stabilization and computer algorithms for aircraft applications
Athans, M. (Editor); Willsky, A. S. (Editor)
1982-01-01
The analysis and design of complex multivariable reliable control systems are considered. High performance and fault tolerant aircraft systems are the objectives. A preliminary feasibility study of the design of a lateral control system for a VTOL aircraft that is to land on a DD963 class destroyer under high sea state conditions is provided. Progress in the following areas is summarized: (1) VTOL control system design studies; (2) robust multivariable control system synthesis; (3) adaptive control systems; (4) failure detection algorithms; and (5) fault tolerant optimal control theory.
Optimal nonlinear feedback control of quasi-Hamiltonian systems
Institute of Scientific and Technical Information of China (English)
朱位秋; 应祖光
1999-01-01
An innovative strategy for optimal nonlinear feedback control of linear or nonlinear stochastic dynamic systems is proposed based on the stochastic averaging method for quasi-Hamiltonian systems and stochastic dynamic programming principle. Feedback control forces of a system are divided into conservative parts and dissipative parts. The conservative parts are so selected that the energy distribution in the controlled system is as requested as possible. Then the response of the system with known conservative control forces is reduced to a controlled diffusion process by using the stochastic averaging method. The dissipative parts of control forces are obtained from solving the stochastic dynamic programming equation.
Comparison of time optimal control for two level quantum systems
Institute of Scientific and Technical Information of China (English)
Shuang Cong; Jie Wen; Xubo Zou
2014-01-01
The time optimal problem for a two level quantum sys-tem is studied. We compare two different control strategies of bang-bang control and the geometric control, respectively, es-pecial y in the case of minimizing the time of steering the state from North Pole to South Pole on the Bloch sphere with bounded control. The time performances are compared for different param-eters by the individual numerical simulation experiments, and the experimental results are analyzed. The results show that the ge-ometric control spends less time than the bang-bang control does.
Real-time sail and heading optimization for a surface sailing vessel by extremum seeking control
DEFF Research Database (Denmark)
Treichel, Kai; Jouffroy, Jerome
2010-01-01
In this paper we develop a simplified mathematical model representing the main elements of the behaviour of sailing vessels as a basis for simulation and controller design. For adaptive real-time optimization of the sail and heading angle we then apply extremum seeking control (which is a gradient...... based control law that drives the output of a linear or nonlinear system to its extremum) as an approach to maximize the longitudinal velocity. The basic idea behind extremum seeking and “how it works” is presented, as well as a simulation study on noise, convergence and stability issues....
Computational Issues in Linear Least-Squares Estimation and Control
1979-06-06
Algorithms for Parallel Processing in Optimal Estimation," to appear in Automatica, May, 1979. Newton, Issac, [1926], Philosophe Naturalis Principia ... Mathematica , Ii. Pemberton, Ed. (G. & J. Innys, London, ed. 3). , [1934], Mathematical Principles of Natural Philosophy, A. Motte, Translation, 7. Cajori, Ed
Intelligent particle swarm optimized fuzzy PID controller for AVR system
Energy Technology Data Exchange (ETDEWEB)
Mukherjee, V. [Department of Electrical Engineering, Asansol Engineering College, Asansol, West Bengal (India); Ghoshal, S.P. [Department of Electrical Engineering, National Institute of Technology, Durgapur, West Bengal (India)
2007-10-15
In process plants like thermal power plants, biomedical instrumentation the popular use of proportional-integral-derivative (PID) controllers can be noted. Proper tuning of such controllers is obviously a prime priority as any other alternative situation will require a high degree of industrial expertise. So in order to get the best results of PID controllers the optimal tuning of PID gains is required. This paper, thus, deals with the determination of off-line, nominal, optimal PID gains of a PID controller of an automatic voltage regulator (AVR) for nominal system parameters and step reference voltage input. Craziness based particle swarm optimization (CRPSO) and binary coded genetic algorithm (GA) are the two props used to get the optimal PID gains. CRPSO proves to be more robust than GA in performing optimal transient performance even under various nominal operating conditions. Computational time required by CRPSO is lesser than that of GA. Factors that have influenced the enhancement of global searching ability of PSO are the incorporation of systematic and intelligent velocity, position updating procedure and introduction of craziness. This modified from of PSO is termed as CRPSO. For on-line off-nominal system parameters Sugeno fuzzy logic (SFL) is applied to get on-line terminal voltage response. The work of SFL is to extrapolate intelligently and linearly, the nominal optimal gains in order to determine off-nominal optimal gains. The on-line computational burden of SFL is noticeably low. Consequently, on-line optimized transient response of incremental change in terminal voltage is obtained. (author)
Efficient algorithms for the laboratory discovery of optimal quantum controls.
Turinici, Gabriel; Le Bris, Claude; Rabitz, Herschel
2004-01-01
The laboratory closed-loop optimal control of quantum phenomena, expressed as minimizing a suitable cost functional, is currently implemented through an optimization algorithm coupled to the experimental apparatus. In practice, the most commonly used search algorithms are variants of genetic algorithms. As an alternative choice, a direct search deterministic algorithm is proposed in this paper. For the simple simulations studied here, it outperforms the existing approaches. An additional algorithm is introduced in order to reveal some properties of the cost functional landscape.
Analysis and optimization of delays in networked control systems
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
The minimization problem of time delays in networked control system (NCS) is concered, which is a hot area of such research field. First, some analysis and comments on time-delayed NCS model listed in previous work are given.Then, time delay minimization problem based on average behavior of network queuing delay is presented. Under fixed routing scheme and certain optimization performance indexes, the delay minimization problem is translated into convex optimization problem. And the solution of the delay minimization problems is attained through optimized allocation of flow rates among network links.
Optimal control of three-dimensional steamflooding processes
Energy Technology Data Exchange (ETDEWEB)
Liu, Wei; Fred Ramirez, W. (Dept. of Chemical Engineering, Univ. of Colorado, Boulder, CO (United States))
1994-06-01
A system science approach using optimal control theory of distributed parameter systems has been developed to determine operating strategies that maximize the economic profitability of the steamflooding processes. Necessary conditions of optimization are established by using the discrete form of calculus of variations and Pontryagin's Maximum Principle. The performance of this approach is investigated through two actual three-dimensional steamflooding projects. The optimization results show this method yields significant improvements over the original operating strategies. These improvements cannot be achieved through traditional design methods
Optimal location of piezoelectric patches for active vibration control
Labanie, Mohammad F.; Ali, J. S. Mohamed; Shaik Dawood, M. S. I.
2017-03-01
This paper focuses on finding the optimal location for a piezoelectric patch for minimizing the settling time of an excited isotropic and orthotropic plate. COMSOL Multiphysics has been used to design and model the plate with PID controller. Classical Optimization tool called Parametric Sweep has been used to achieve the objective of the experiment. Five different stacking sequences were used in the study of orthotropic plate. The results obtained by the FEA software indicated that by placing the piezoelectric patches at the optimal location, the settling time of a plate can decrease by 40% compared to placing it at the centre of the fixed end.
Optimal control and quantum simulations in superconducting quantum devices
Energy Technology Data Exchange (ETDEWEB)
Egger, Daniel J.
2014-10-31
Quantum optimal control theory is the science of steering quantum systems. In this thesis we show how to overcome the obstacles in implementing optimal control for superconducting quantum bits, a promising candidate for the creation of a quantum computer. Building such a device will require the tools of optimal control. We develop pulse shapes to solve a frequency crowding problem and create controlled-Z gates. A methodology is developed for the optimisation towards a target non-unitary process. We show how to tune-up control pulses for a generic quantum system in an automated way using a combination of open- and closed-loop optimal control. This will help scaling of quantum technologies since algorithms can calibrate control pulses far more efficiently than humans. Additionally we show how circuit QED can be brought to the novel regime of multi-mode ultrastrong coupling using a left-handed transmission line coupled to a right-handed one. We then propose to use this system as an analogue quantum simulator for the Spin-Boson model to show how dissipation arises in quantum systems.
Parameter Optimization of Linear Quadratic Controller Based on Genetic Algorithm
Institute of Scientific and Technical Information of China (English)
LI Jimin; SHANG Chaoxuan; ZOU Minghu
2007-01-01
The selection of weighting matrix in design of the linear quadratic optimal controller is an important topic in the control theory. In this paper, an approach based on genetic algorithm is presented for selecting the weighting matrix for the optimal controller. Genetic algorithm is adaptive heuristic search algorithm premised on the evolutionary ideas of natural selection and genetic. In this algorithm, the fitness function is used to evaluate individuals and reproductive success varies with fitness. In the design of the linear quadratic optimal controller, the fitness function has relation to the anticipated step response of the system. Not only can the controller designed by this approach meet the demand of the performance indexes of linear quadratic controller, but also satisfy the anticipated step response of close-loop system. The method possesses a higher calculating efficiency and provides technical support for the optimal controller in engineering application. The simulation of a three-order single-input single-output (SISO) system has demonstrated the feasibility and validity of the approach.
Directory of Open Access Journals (Sweden)
Mostafa Lotfi Forushani
2012-04-01
Full Text Available This paper presents an optimized controller around the longitudinal axis of multivariable system in one of the aircraft flight conditions. The controller is introduced in order to control the angle of attack from the pitch attitude angle independently (that is required for designing a set of direct force-modes for the longitudinal axis based on particle swarm optimization (PSO algorithm. The autopilot system for military or civil aircraft is an essential component and in this paper, the autopilot system via 6 degree of freedom model for the control and guidance of aircraft in which the autopilot design will perform based on defining the longitudinal and the lateral-directional axes are supposed. The effectiveness of the proposed controller is illustrated by considering HIMAT aircraft. The simulation results verify merits of the proposed controller.
Finite Set Control Transcription for Optimal Control Applications
2009-05-01
local eigenstructure of the linear system. Along with Hsiao,46 they developed a stabilizing control law intended for a low-thrust ion engine. Gurfil...asymptotically stabilizing control to track to an arbitrary trajectory from any epoch position and velocity. Of course, when the epoch values are along the...propul- sion suite like this, a spacecraft attitude can be in any orientation and still implement a stabilizing control law. Unfortunately, it may not be
A NEW STOCHASTIC OPTIMAL CONTROL STRATEGY FOR HYSTERETIC MR DAMPERS
Institute of Scientific and Technical Information of China (English)
YingZuguang; NiYiqing; KoJanming
2004-01-01
A new stochastic optimal control strategy for randomly excited quasi-integrable Hamiltonian systems using magneto-theological (MR) dampers is proposed. The dynamic behavior of an MR damper is characterized by the Bouc-Wen hysteretic model. The control force produced by the MR damper is separated into a passive part incorporated in the uncontrolled system and a semi-active part to be determined. The system combining the Bouc-Wen hysteretic force is converted into an equivalent non-hysteretic nonlinear stochastic control system. Then Ito stochastic differential equations are derived from the equivalent system by using the stochastic averaging method. A dynamical programming equation for the controlled diffusion processes is established based on the stochastic dynamical programming principle. The non-clipping nonlinear optimal control law is obtained for a certain performance index by minimizing the dynamical programming equation. Finally, an example is given to illustrate the application and effectiveness of the proposed control strategy.
Bi-Objective Optimal Control Modification Adaptive Control for Systems with Input Uncertainty
Nguyen, Nhan T.
2012-01-01
This paper presents a new model-reference adaptive control method based on a bi-objective optimal control formulation for systems with input uncertainty. A parallel predictor model is constructed to relate the predictor error to the estimation error of the control effectiveness matrix. In this work, we develop an optimal control modification adaptive control approach that seeks to minimize a bi-objective linear quadratic cost function of both the tracking error norm and predictor error norm simultaneously. The resulting adaptive laws for the parametric uncertainty and control effectiveness uncertainty are dependent on both the tracking error and predictor error, while the adaptive laws for the feedback gain and command feedforward gain are only dependent on the tracking error. The optimal control modification term provides robustness to the adaptive laws naturally from the optimal control framework. Simulations demonstrate the effectiveness of the proposed adaptive control approach.
Theory, Design, and Algorithms for Optimal Control of wireless Networks
2010-06-09
significantly outperform existing protocols (such as AODV ) in terms of total network cost Furthermore, we have shown that even when components of our...achieved through distributed control algorithms that jointly optimize power control, routing , and congestion factors. A second stochastic model approach...updates the network queue state, node-transmission powers amongst others, allowing for power control, scheduling, and routing algorithms to maximize
Accelerator optimization using a network control and acquisition system
Energy Technology Data Exchange (ETDEWEB)
Geddes, Cameron, G.R.; Catravas, P.E.; Faure, Jerome; Toth, Csaba; van Tilborg, J.; Leemans, Wim P.
2002-06-30
Accelerator optimization requires detailed study of many parameters, indicating the need for remote control and automated data acquisition systems. A control and data acquisition system based on a network of commodity PCs and applications with standards based inter-application communication is being built for the l'OASIS accelerator facility. This system allows synchronous acquisition of data at high (> 1 Hz) rates and remote control of the accelerator at low cost, allowing detailed study of the acceleration process.
Convergence rates of symplectic pontryagin approximations in optimal control theory
Sandberg, Mattias; Szepessy, Anders
2006-01-01
Many inverse problems for differential equations can be formulated as optimal control problems. It is well known that inverse problems often need to be regularized to obtain good approximations. This work presents a systematic method to regularize and to establish error estimates for approximations to some control problems in high dimension, based on symplectic approximation of the Hamiltonian system for the control problem. In particular the work derives error estimates and constructs regul...
Humanoid robot simulation with a joint trajectory optimized controller
2008-01-01
This paper describes a joint trajectory optimized controller for a humanoid robot simulator following the real robot characteristics. As simulation is a powerful tool for speeding up the control software development, the proposed accurate simulator allows to fulfil this goal. The simulator, based on the Open Dynamics Engine and GLScene graphics library, provides instant visual feedback. The proposed simulator, with realistic dynamics, allows to design and test behaviours and control strat...
Optimal Discrete Event Supervisory Control of Aircraft Gas Turbine Engines
Litt, Jonathan (Technical Monitor); Ray, Asok
2004-01-01
This report presents an application of the recently developed theory of optimal Discrete Event Supervisory (DES) control that is based on a signed real measure of regular languages. The DES control techniques are validated on an aircraft gas turbine engine simulation test bed. The test bed is implemented on a networked computer system in which two computers operate in the client-server mode. Several DES controllers have been tested for engine performance and reliability.
Institute of Scientific and Technical Information of China (English)
Hai-bin Duan; Guan-jun Ma; De-lin Luo
2008-01-01
Optimal formation reconfiguration control of multiple Uninhabited Combat Air Vehicles (UCAVs) is a complicated global optimum problem. Particle Swarm Optimization (PSO) is a population based stochastic optimization technique inspired by social behaviour of bird flocking or fish schooling. PSO can achieve better results in a faster, cheaper way compared with other bio-inspired computational methods, and there are few parameters to adjust in PSO. In this paper, we propose an improved PSO model for solving the optimal formation reconfiguration control problem for multiple UCAVs. Firstly, the Control Parameteri-zation and Time Discretization (CPTD) method is designed in detail. Then, the mutation strategy and a special mutation-escape operator are adopted in the improved PSO model to make particles explore the search space more efficiently. The proposed strategy can produce a large speed value dynamically according to the variation of the speed, which makes the algorithm explore the local and global minima thoroughly at the same time. Series experimental results demonstrate the feasibility and effectiveness of the proposed method in solving the optimal formation reconfiguration control problem for multiple UCAVs.
Optimal control of single flux quantum (SFQ) pulse sequences
Liebermann, Per; Wilhelm, Frank
Single flux quantum (SFQ) pulses are a natural candidate for on-chip control of superconducting qubits. High accuracy quantum gates are accessible with quantum optimal control methods. We apply trains of SFQ pulses to operate single qubit gates, under the constraint of fixed amplitude and duration of each pulse. Timing of the control pulses is optimized using genetic algorithms and simulated annealing, decreasing the average fidelity errorby several orders of magnitude. Furthermore we are able to reduce the gate time to the quantum speed limit. Leakage out of the qubit subspace as well as timing errors of the pulses are considered, exploring the robustness of our optimized sequence.This takes usone step further to a scalable quantum processor
An optimal control approach to probabilistic Boolean networks
Liu, Qiuli
2012-12-01
External control of some genes in a genetic regulatory network is useful for avoiding undesirable states associated with some diseases. For this purpose, a number of stochastic optimal control approaches have been proposed. Probabilistic Boolean networks (PBNs) as powerful tools for modeling gene regulatory systems have attracted considerable attention in systems biology. In this paper, we deal with a problem of optimal intervention in a PBN with the help of the theory of discrete time Markov decision process. Specifically, we first formulate a control model for a PBN as a first passage model for discrete time Markov decision processes and then find, using a value iteration algorithm, optimal effective treatments with the minimal expected first passage time over the space of all possible treatments. In order to demonstrate the feasibility of our approach, an example is also displayed.
Optimal bounded control for maximizing reliability of Duhem hysteretic systems
Institute of Scientific and Technical Information of China (English)
Ming XU; Xiaoling JIN; Yong WANG; Zhilong HUANG
2015-01-01
The optimal bounded control of stochastic-excited systems with Duhem hysteretic components for maximizing system reliability is investigated. The Duhem hysteretic force is transformed to energy-depending damping and stiffness by the energy dissipation balance technique. The controlled system is transformed to the equivalent non-hysteretic system. Stochastic averaging is then implemented to obtain the Itˆo stochastic equation associated with the total energy of the vibrating system, appropriate for eval-uating system responses. Dynamical programming equations for maximizing system re-liability are formulated by the dynamical programming principle. The optimal bounded control is derived from the maximization condition in the dynamical programming equa-tion. Finally, the conditional reliability function and mean time of first-passage failure of the optimal Duhem systems are numerically solved from the Kolmogorov equations. The proposed procedure is illustrated with a representative example.
Turbine Control Strategies for Wind Farm Power Optimization
DEFF Research Database (Denmark)
Mirzaei, Mahmood; Göçmen Bozkurt, Tuhfe; Giebel, Gregor
2015-01-01
In recent decades there has been increasing interest in green energies, of which wind energy is the most important one. In order to improve the competitiveness of the wind power plants, there are ongoing researches to decrease cost per energy unit and increase the efficiency of wind turbines...... and wind farms. One way of achieving these goals is to optimize the power generated by a wind farm. One optimization method is to choose appropriate operating points for the individual wind turbines in the farm. We have made three models of a wind farm based on three difference control strategies....... Basically, the control strategies determine the steady state operating points of the wind turbines. Except the control strategies of the individual wind turbines, the wind farm models are similar. Each model consists of a row of 5MW reference wind turbines. In the models we are able to optimize...
A Hamiltonian Algorithm for Singular Optimal LQ Control Systems
Delgado-Tellez, M
2012-01-01
A Hamiltonian algorithm, both theoretical and numerical, to obtain the reduced equations implementing Pontryagine's Maximum Principle for singular linear-quadratic optimal control problems is presented. This algorithm is inspired on the well-known Rabier-Rheinhboldt constraints algorithm used to solve differential-algebraic equations. Its geometrical content is exploited fully by implementing a Hamiltonian extension of it which is closer to Gotay-Nester presymplectic constraint algorithm used to solve singular Hamiltonian systems. Thus, given an optimal control problem whose optimal feedback is given in implicit form, a consistent set of equations is obtained describing the first order differential conditions of Pontryaguine's Maximum Principle. Such equations are shown to be Hamiltonian and the set of first class constraints corresponding to controls that are not determined, are obtained explicitly. The strength of the algorithm is shown by exhibiting a numerical implementation with partial feedback on the c...
Single step optimization of manipulator maneuvers with variable structure control
Chen, N.; Dwyer, T. A. W., III
1987-01-01
One step ahead optimization has been recently proposed for spacecraft attitude maneuvers as well as for robot manipulator maneuvers. Such a technique yields a discrete time control algorithm implementable as a sequence of state-dependent, quadratic programming problems for acceleration optimization. Its sensitivity to model accuracy, for the required inversion of the system dynamics, is shown in this paper to be alleviated by a fast variable structure control correction, acting between the sampling intervals of the slow one step ahead discrete time acceleration command generation algorithm. The slow and fast looping concept chosen follows that recently proposed for optimal aiming strategies with variable structure control. Accelerations required by the VSC correction are reserved during the slow one step ahead command generation so that the ability to overshoot the sliding surface is guaranteed.
Tuning PID Controller Using Multiobjective Ant Colony Optimization
Directory of Open Access Journals (Sweden)
Ibtissem Chiha
2012-01-01
Full Text Available This paper treats a tuning of PID controllers method using multiobjective ant colony optimization. The design objective was to apply the ant colony algorithm in the aim of tuning the optimum solution of the PID controllers (Kp, Ki, and Kd by minimizing the multiobjective function. The potential of using multiobjective ant algorithms is to identify the Pareto optimal solution. The other methods are applied to make comparisons between a classic approach based on the “Ziegler-Nichols” method and a metaheuristic approach based on the genetic algorithms. Simulation results demonstrate that the new tuning method using multiobjective ant colony optimization has a better control system performance compared with the classic approach and the genetic algorithms.
Optimal control of large space structures via generalized inverse matrix
Nguyen, Charles C.; Fang, Xiaowen
1987-01-01
Independent Modal Space Control (IMSC) is a control scheme that decouples the space structure into n independent second-order subsystems according to n controlled modes and controls each mode independently. It is well-known that the IMSC eliminates control and observation spillover caused when the conventional coupled modal control scheme is employed. The independent control of each mode requires that the number of actuators be equal to the number of modelled modes, which is very high for a faithful modeling of large space structures. A control scheme is proposed that allows one to use a reduced number of actuators to control all modeled modes suboptimally. In particular, the method of generalized inverse matrices is employed to implement the actuators such that the eigenvalues of the closed-loop system are as closed as possible to those specified by the optimal IMSC. Computer simulation of the proposed control scheme on a simply supported beam is given.
Optimized PID control of depth of hypnosis in anesthesia.
Padula, Fabrizio; Ionescu, Clara; Latronico, Nicola; Paltenghi, Massimiliano; Visioli, Antonio; Vivacqua, Giulio
2017-06-01
This paper addresses the use of proportional-integral-derivative controllers for regulating the depth of hypnosis in anesthesia by using propofol administration and the bispectral index as a controlled variable. In fact, introducing an automatic control system might provide significant benefits for the patient in reducing the risk for under- and over-dosing. In this study, the controller parameters are obtained through genetic algorithms by solving a min-max optimization problem. A set of 12 patient models representative of a large population variance is used to test controller robustness. The worst-case performance in the considered population is minimized considering two different scenarios: the induction case and the maintenance case. Our results indicate that including a gain scheduling strategy enables optimal performance for induction and maintenance phases, separately. Using a single tuning to address both tasks may results in a loss of performance up to 102% in the induction phase and up to 31% in the maintenance phase. Further on, it is shown that a suitably designed low-pass filter on the controller output can handle the trade-off between the performance and the noise effect in the control variable. Optimally tuned PID controllers provide a fast induction time with an acceptable overshoot and a satisfactory disturbance rejection performance during maintenance. These features make them a very good tool for comparison when other control algorithms are developed. Copyright © 2017 Elsevier B.V. All rights reserved.
Force control of a tri-layer conducting polymer actuator using optimized fuzzy logic control
Itik, Mehmet; Sabetghadam, Mohammadreza; Alici, Gursel
2014-12-01
Conducting polymers actuators (CPAs) are potential candidates for replacing conventional actuators in various fields, such as robotics and biomedical engineering, due to their advantageous properties, which includes their low cost, light weight, low actuation voltage and biocompatibility. As these actuators are very suitable for use in micro-nano manipulation and in injection devices in which the magnitude of the force applied to the target is of crucial importance, the force generated by CPAs needs to be accurately controlled. In this paper, a fuzzy logic (FL) controller with a Mamdani inference system is designed to control the blocking force of a trilayer CPA with polypyrrole electrodes, which operates in air. The particle swarm optimization (PSO) method is employed to optimize the controller’s membership function parameters and therefore enhance the performance of the FL controller. An adaptive neuro-fuzzy inference system model, which can capture the nonlinear dynamics of the actuator, is utilized in the optimization process. The optimized Mamdani FL controller is then implemented on the CPA experimentally, and its performance is compared with a non-optimized fuzzy controller as well as with those obtained from a conventional PID controller. The results presented indicate that the blocking force at the tip of the CPA can be effectively controlled by the optimized FL controller, which shows excellent transient and steady state characteristics but increases the control voltage compared to the non-optimized fuzzy controllers.
Information fusion based optimal control for large civil aircraft system.
Zhen, Ziyang; Jiang, Ju; Wang, Xinhua; Gao, Chen
2015-03-01
Wind disturbance has a great influence on landing security of Large Civil Aircraft. Through simulation research and engineering experience, it can be found that PID control is not good enough to solve the problem of restraining the wind disturbance. This paper focuses on anti-wind attitude control for Large Civil Aircraft in landing phase. In order to improve the riding comfort and the flight security, an information fusion based optimal control strategy is presented to restrain the wind in landing phase for maintaining attitudes and airspeed. Data of Boeing707 is used to establish a nonlinear mode with total variables of Large Civil Aircraft, and then two linear models are obtained which are divided into longitudinal and lateral equations. Based on engineering experience, the longitudinal channel adopts PID control and C inner control to keep longitudinal attitude constant, and applies autothrottle system for keeping airspeed constant, while an information fusion based optimal regulator in the lateral control channel is designed to achieve lateral attitude holding. According to information fusion estimation, by fusing hard constraint information of system dynamic equations and the soft constraint information of performance index function, optimal estimation of the control sequence is derived. Based on this, an information fusion state regulator is deduced for discrete time linear system with disturbance. The simulation results of nonlinear model of aircraft indicate that the information fusion optimal control is better than traditional PID control, LQR control and LQR control with integral action, in anti-wind disturbance performance in the landing phase. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Optimal control problems related to the navigation channel engineering
Institute of Scientific and Technical Information of China (English)
朱江; 曾庆存; 郭冬建; 刘卓
1997-01-01
The navigation channel engineering poses optimal control problems of how to find the optimal way of engineering such that the water depth of the channel is maximum under certain budget constraint, or the cost of me en-gineering is minimum while certain goals are achieved. These are typical control problems of distributed system gov erned by hydraulic/sedimentation models. The problems and methods of solutions are discussed Since the models, usually complicated, are nonlinear, they can be solved by solving a series of linear problems For linear problems the solutions are given. Thus the algorithms are simplified.
Optimal quantum circuit synthesis from Controlled-U gates
Zhang, J; Sastry, S; Whaley, K B; Zhang, Jun; Vala, Jiri; Sastry, Shankar
2003-01-01
From a geometric approach, we derive the minimum number of applications needed for an arbitrary Controlled-Unitary gate to construct a universal quantum circuit. A new analytic construction procedure is presented and shown to be either optimal or close to optimal. This result can be extended to improve the efficiency of universal quantum circuit construction from any entangling gate. Specifically, for both the Controlled-NOT and Double-CNOT gates, we develop simple analytic ways to construct universal quantum circuits with three applications, which is the least possible.
Impedance Controller Tuned by Particle Swarm Optimization for Robotic Arms
Directory of Open Access Journals (Sweden)
Haifa Mehdi
2011-11-01
Full Text Available This paper presents an efficient and fast method for fine tuning the controller parameters of robot manipulators in constrained motion. The stability of the robotic system is proved using a Lyapunov‐based impedance approach whereas the optimal design of the controller parameters are tuned, in offline, by a Particle Swarm Optimization (PSO algorithm. For designing the PSOmethod,differentindexperformancesare considered in both joint and Cartesian spaces. A 3DOF manipulator constrained to a circular trajectory is finally used to validate the performances of the proposed approach. The simulation results show the stability and the performances of the proposed approach.
Cartesian Trajectory Tracking for Manipulators Using Optimal Control Theory
Directory of Open Access Journals (Sweden)
Olav Egeland
1987-07-01
Full Text Available A Cartesian trajectory tracking system for manipulators is developed using optimal control theory. By including the Cartesian position in the state vector, transformation of the trajectory from Cartesian space to manipulator joint space is avoided, and the Jacobian matrix need not be inverted. The tracking system may also be applied to kinematically redundant manipulators. For this type of manipulator, singularities are avoided by choosing a suitable performance index in the optimal control problem. Simulation using a simple kinematically redundant manipulator shows that a small tracking error can be achieved with low motor torques.
Optimal control of underactuated mechanical systems: A geometric approach
Colombo, Leonardo; Martín De Diego, David; Zuccalli, Marcela
2010-08-01
In this paper, we consider a geometric formalism for optimal control of underactuated mechanical systems. Our techniques are an adaptation of the classical Skinner and Rusk approach for the case of Lagrangian dynamics with higher-order constraints. We study a regular case where it is possible to establish a symplectic framework and, as a consequence, to obtain a unique vector field determining the dynamics of the optimal control problem. These developments will allow us to develop a new class of geometric integrators based on discrete variational calculus.
Optimal Control of Underactuated Mechanical Systems: A Geometric Approach
Colombo, L; Zuccalli, M
2009-01-01
In this paper, we consider a geometric formalism for optimal control of underactuated mechanical systems. Our techniques are an adaptation of the classical Skinner and Rusk approach for the case of Lagrangian dynamics with higher-order constraints. We study a regular case where it is possible to establish a symplectic framework and, as a consequence, to obtain a unique vector field determining the dynamics of the optimal control problem. These developments will allow us to develop a new class of geometric integrators based on discrete variational calculus.
Searching for pathways involving dressed states in optimal control theory.
von den Hoff, Philipp; Kowalewski, Markus; de Vivie-Riedle, Regina
2011-01-01
Selective population of dressed states has been proposed as an alternative control pathway in molecular reaction dynamics [Wollenhaupt et al., J. Photochem. Photobiol. A: Chem., 2006, 180, 248]. In this article we investigate if, and under which conditions, this strong field pathway is included in the search space of optimal control theory. For our calculations we used the proposed example of the potassium dimer, in which the different target states can be reached via dressed states by resonant transition. Especially, we investigate whether the optimization algorithm is able to find the route involving the dressed states although the target state lies out of resonance in the bare state picture.
On the optimal control problem for two regions’ macroeconomic model
Directory of Open Access Journals (Sweden)
Surkov Platon G.
2015-12-01
Full Text Available In this paper we consider a model of joint economic growth of two regions. This model bases on the classical Kobb-Douglas function and is described by a nonlinear system of differential equations. The interaction between regions is carried out by changing the balance of trade. The optimal control problem for this system is posed and the Pontryagin maximum principle is used for analysis the problem. The maximized functional represents the global welfare of regions. The numeric solution of the optimal control problem for particular regions is found. The used parameters was obtained from the basic scenario of the MERGE
A "Hybrid" Approach for Synthesizing Optimal Controllers of Hybrid Systems
DEFF Research Database (Denmark)
Zhao, Hengjun; Zhan, Naijun; Kapur, Deepak
2012-01-01
We propose an approach to reduce the optimal controller synthesis problem of hybrid systems to quantifier elimination; furthermore, we also show how to combine quantifier elimination with numerical computation in order to make it more scalable but at the same time, keep arising errors due...... to discretization manageable and within bounds. A major advantage of our approach is not only that it avoids errors due to numerical computation, but it also gives a better optimal controller. In order to illustrate our approach, we use the real industrial example of an oil pump provided by the German company HYDAC...
Unlocking Flexibility: Integrated Optimization and Control of Multienergy Systems
Energy Technology Data Exchange (ETDEWEB)
Dall' Anese, Emiliano; Mancarella, Pierluigi; Monti, Antonello
2017-01-01
Electricity, natural gas, water, and dis trict heating/cooling systems are predominantly planned and operated independently. However, it is increasingly recognized that integrated optimization and control of such systems at multiple spatiotemporal scales can bring significant socioeconomic, operational efficiency, and environmental benefits. Accordingly, the concept of the multi-energy system is gaining considerable attention, with the overarching objectives of 1) uncovering fundamental gains (and potential drawbacks) that emerge from the integrated operation of multiple systems and 2) developing holistic yet computationally affordable optimization and control methods that maximize operational benefits, while 3) acknowledging intrinsic interdependencies and quality-of-service requirements for each provider.
Migrating Storms and Optimal Control of Urban Sewer Networks
Directory of Open Access Journals (Sweden)
Upaka Rathnayake
2015-11-01
Full Text Available Uniform storms are generally applied in most of the research on sewer systems. This is for modeling simplicity. However, in the real world, these conditions may not be applicable. It is very important to consider the migration behavior of storms not only in the design of combined sewers, but also in controlling them. Therefore, this research was carried out to improve Rathnayake and Tanyimboh’s optimal control algorithm for migrating storms. Promising results were found from the model improvement. Feasible solutions were obtained from the multi-objective optimization and, in addition, the role of on-line storage tanks was well placed.
Decentralized Optimization for a Novel Control Structure of HVAC System
Directory of Open Access Journals (Sweden)
Shiqiang Wang
2016-01-01
Full Text Available A decentralized control structure is introduced into the heating, ventilation, and air conditioning (HVAC system to solve the high maintenance and labor cost problem in actual engineering. Based on this new control system, a decentralized optimization method is presented for sensor fault repair and optimal group control of HVAC equipment. Convergence property of the novel method is theoretically analyzed considering both convex and nonconvex systems with constraints. In this decentralized control system, traditional device is fitted with a control chip such that it becomes a smart device. The smart device can communicate and operate collaboratively with the other devices to accomplish some designated tasks. The effectiveness of the presented method is verified by simulations and hardware tests.
Circulating fluidized bed coal-saving optimization control method
Energy Technology Data Exchange (ETDEWEB)
Jiang, Tengfei; Li, Dewei; Xi, Yugeng; Zhou, Wu [Shanghai Jiao Tong Univ., Shanghai (China). Dept. of Automation; Ministry of Education, Shanghai (China). Key Lab. of System Control and Information Processing; Yin, Debin [Shanghai Xinhua Control Technology (Group) Co., Ltd., Shanghai (China)
2013-07-01
The circulating fluidized bed boiler is widely used in thermal power plants. With the proposal of energy-saving emission reduction, how to reduce coal consumption while ensure the output steam quality at the same time has become an important topic. This paper combines the technology of RTO (real-time optimization) and zone control in DMC (dynamic matrix control) to achieve this goal. The proposed method adds the coal consumption into the objective function of DMC controller and the operation point of the boiler is permitted to change within a zone which can be set according to the actual requirements of the circulating fluidized bed boiler. The zone control in DMC provides the freedom to reduce the coal consumption and achieves the economic optimal target. Compared to the simple use of constrained DMC control, the proposed method is verified to be remarkable coal-saving by the case study of a 150 t/h boiler of a power plant in Sichuan.
Model-based dynamic control and optimization of gas networks
Energy Technology Data Exchange (ETDEWEB)
Hofsten, Kai
2001-07-01
This work contributes to the research on control, optimization and simulation of gas transmission systems to support the dispatch personnel at gas control centres for the decision makings in the daily operation of the natural gas transportation systems. Different control and optimization strategies have been studied. The focus is on the operation of long distance natural gas transportation systems. Stationary optimization in conjunction with linear model predictive control using state space models is proposed for supply security, the control of quality parameters and minimization of transportation costs for networks offering transportation services. The result from the stationary optimization together with a reformulation of a simplified fluid flow model formulates a linear dynamic optimization model. This model is used in a finite time control and state constrained linear model predictive controller. The deviation from the control and the state reference determined from the stationary optimization is penalized quadratically. Because of the time varying status of infrastructure, the control space is also generally time varying. When the average load is expected to change considerably, a new stationary optimization is performed, giving a new state and control reference together with a new dynamic model that is used for both optimization and state estimation. Another proposed control strategy is a control and output constrained nonlinear model predictive controller for the operation of gas transmission systems. Here, the objective is also the security of the supply, quality control and minimization of transportation costs. An output vector is defined, which together with a control vector are both penalized quadratically from their respective references in the objective function. The nonlinear model predictive controller can be combined with a stationary optimization. At each sampling instant, a non convex nonlinear programming problem is solved giving a local minimum
Optimizing the performance of a VSC HVDC control system
Energy Technology Data Exchange (ETDEWEB)
Nguyen, Mau Cuong; Rudion, Krzystof; Styczynski, Zbigniew Antoni [Magdeburg Univ. (Germany). Chair for Electric Power Networks and Renewable Energy Sources
2011-07-01
This paper deals with the optimization of the parameters in the various control loops of a voltage source converter based high voltage direct current (VSC HVDC) transmission system connected to a doubly fed induction generator (DFIG) based wind farm. These control loops include a number of proportional-integral (PI) controllers. The performance of VSC HVDC depends on the parameters of these PI controllers. In this paper, the control strategy of each converter of the VSC HVDC is first introduced to investigate a VSC HVDC transmission system that transfers DFIG wind power over a long distance. Secondly, the optimization process, based on the simplex method which is proposed in the literature, is applied with the initial values of the PI controller's parameters, which are obtained by studying the classical frequency response of the open-loop transfer function of the VSC HVDC. The objective is to simultaneously minimize the weighted sum of the integral of the time absolute-error products (ITAE) of the AC voltage, reactive power, DC voltage and inner current controllers of both VSC stations. The effectiveness of the optimized parameters is assessed in the field of requirements of the VSC HVDC control system as mentioned above during voltage down to zero to reduce the generated power from wind farm. (orig.)