WorldWideScience

Sample records for optics and photonics

  1. Nonlinear optics and photonics

    CERN Document Server

    He, Guang S

    2015-01-01

    This book provides a comprehensive presentation on most of the major topics in nonlinear optics and photonics, with equal emphasis on principles, experiments, techniques, and applications. It covers many major new topics including optical solitons, multi-photon effects, nonlinear photoelectric effects, fast and slow light , and Terahertz photonics. Chapters 1-10 present the fundamentals of modern nonlinear optics, and could be used as a textbook with problems provided at the end of each chapter. Chapters 11-17 cover the more advanced topics of techniques and applications of nonlinear optics and photonics, serving as a highly informative reference for researchers and experts working in related areas. There are also 16 pages of color photographs to illustrate the visual appearances of some typical nonlinear optical effects and phenomena. The book could be adopted as a textbook for both undergraduates and graduate students, and serve as a useful reference work for researchers and experts in the fields of physics...

  2. Photonic Astronomy and Quantum Optics

    CERN Document Server

    Dravins, Dainis

    2015-01-01

    Quantum optics potentially offers an information channel from the Universe beyond the established ones of imaging and spectroscopy. All existing cameras and all spectrometers measure aspects of the first-order spatial and/or temporal coherence of light. However, light has additional degrees of freedom, manifest in the statistics of photon arrival times, or in the amount of photon orbital angular momentum. Such quantum-optical measures may carry information on how the light was created at the source, and whether it reached the observer directly or via some intermediate process. Astronomical quantum optics may help to clarify emission processes in natural laser sources and in the environments of compact objects, while high-speed photon-counting with digital signal handling enables multi-element and long-baseline versions of the intensity interferometer. Time resolutions of nanoseconds are required, as are large photon fluxes, making photonic astronomy very timely in an era of large telescopes.

  3. Nonlinear Photonics and Novel Optical Phenomena

    CERN Document Server

    Morandotti, Roberto

    2012-01-01

    Nonlinear Photonics and Novel Optical Phenomena contains contributed chapters from leading experts in nonlinear optics and photonics, and provides a comprehensive survey of fundamental concepts as well as hot topics in current research on nonlinear optical waves and related novel phenomena. The book covers self-accelerating airy beams, integrated photonics based on high index doped-silica glass, linear and nonlinear spatial beam dynamics in photonic lattices and waveguide arrays, polariton solitons and localized structures in semiconductor microcavities, terahertz waves, and other novel phenomena in different nanophotonic and optical systems.

  4. Interfacing superconducting qubits and single optical photons

    CERN Document Server

    Das, Sumanta; Sørensen, Anders S

    2016-01-01

    We propose an efficient light-matter interface at optical frequencies between a superconducting qubit and a single photon. The desired interface is based on a hybrid architecture composed of an organic molecule embedded inside an optical waveguide and electrically coupled to a superconducting qubit far from the optical axis. We show that high fidelity, photon-mediated, entanglement between distant superconducting qubits can be achieved with incident pulses at the single photon level. Such low light level is highly sought for to overcome the decoherence of the superconducting qubit caused by absorption of optical photons.

  5. Photonics and Fiber Optics Processor Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Photonics and Fiber Optics Processor Lab develops, tests and evaluates high speed fiber optic network components as well as network protocols. In addition, this...

  6. Advances in information optics and photonics

    CERN Document Server

    Friberg, Ari T

    2008-01-01

    This volume is the sixth in a series of books initiated in 1989 by the International Commission for Optics (ICO). These books highlight the advances and trends in the research and development of optical sciences, technologies, and applications at the time of their publication. In this age of the photon, information optics and photonics represent the key technologies to sustain our knowledge-based society. New concepts in classical and quantum-entangled light, coherent interaction with matter, and novel materials and processes have led to remarkable advances in today's information science and t

  7. Interfacing superconducting qubits and single optical photons

    NARCIS (Netherlands)

    Das, Sumanta; Faez, Sanli; Sørensen, Anders S.

    2016-01-01

    We propose an efficient light-matter interface at optical frequencies between a superconducting qubit and a single photon. The desired interface is based on a hybrid architecture composed of an organic molecule embedded inside an optical waveguide and electrically coupled to a superconducting qubit

  8. Optical trapping apparatus, methods and applications using photonic crystal resonators

    Science.gov (United States)

    Erickson, David; Chen, Yih-Fan

    2015-06-16

    A plurality of photonic crystal resonator optical trapping apparatuses and a plurality optical trapping methods using the plurality of photonic crystal resonator optical trapping apparatuses include located and formed over a substrate a photonic waveguide that is coupled (i.e., either separately coupled or integrally coupled) with a photonic crystal resonator. In a particular embodiment, the photonic waveguide and the photonic crystal resonator comprise a monocrystalline silicon (or other) photonic material absent any chemical functionalization. In another particular embodiment, the photonic waveguide and the photonic crystal resonator comprise a silicon nitride material which when actuating the photonic crystal resonator optical trapping apparatus with a 1064 nanometer resonant photonic radiation wavelength (or other resonant photonic radiation wavelength in a range from about 700 to about 1200 nanometers) provides no appreciable heating of an aqueous sample fluid that is analyzed by the photonic crystal resonator optical trapping apparatus.

  9. Optical interference coatings for optics and photonics [Invited].

    Science.gov (United States)

    Lee, Cheng-Chung

    2013-01-01

    Optical interference coatings play as an important role in the progress in optics and photonics. In this article we give a minireview of the evolution of optical interference coatings from the theory, the design, to the manufacture. Some interesting but challenging topics for the future are also discussed.

  10. Hybrid materials for optics and photonics.

    Science.gov (United States)

    Lebeau, Benedicte; Innocenzi, Plinio

    2011-02-01

    The interest in organic-inorganic hybrids as materials for optics and photonics started more than 25 years ago and since then has known a continuous and strong growth. The high versatility of sol-gel processing offers a wide range of possibilities to design tailor-made materials in terms of structure, texture, functionality, properties and shape modelling. From the first hybrid material with optical functional properties that has been obtained by incorporation of an organic dye in a silica matrix, the research in the field has quickly evolved towards more sophisticated systems, such as multifunctional and/or multicomponent materials, nanoscale and self-assembled hybrids and devices for integrated optics. In the present critical review, we have focused our attention on three main research areas: passive and active optical hybrid sol-gel materials, and integrated optics. This is far from exhaustive but enough to give an overview of the huge potential of these materials in photonics and optics (254 references).

  11. Active learning in optics and photonics

    Science.gov (United States)

    Niemela, Joseph J.

    2016-09-01

    Active learning in optics and photonics (ALOP) is a program of the International Basic Sciences Program at UNESCO, in collaboration with the Abdus Salam International Centre for Theoretical Physics (ICTP) and supported by SPIE, which is designed to help teachers in the developing world attract and retain students in the physical sciences. Using optics and photonics, it naturally attracts the interest of students and can be implemented using relatively low cost technologies, so that it can be more easily reproduced locally. The active learning methodology is student-centered, meaning the teachers give up the role of lecturer in favor of guiding and facilitating a learning process in which students engage in hands-on activities and active peer-peer discussions, and is shown to effectively enhance basic conceptual understanding of physics.

  12. The current trends of optics and photonics

    CERN Document Server

    2015-01-01

    Optics and photonics offer new and vibrant approaches to meeting the challenges of the 21st century concerning energy conservation, education, agriculture, personal health and the environment. One of the most effective ways to address these global problems is to provide updated and reliable content on light-based technologies. Optical thin films and meta-materials, lasers, optical communications, light-emitting diodes, solar cells, liquid crystal technology, nanophotonics and biophotonics all play vital roles in enriching our lives. We hope to raise readers’ awareness of how optical technologies are now promoting sustainable development and providing reliable solutions to basic human needs. Furthermore, in order to broaden new research fields, we hope to inspire them to pursue further cutting-edge breakthroughs on the basis of the accomplishments that have already been made.

  13. Special Polymer Optical Fibres and Devices for Photonic Applications

    Institute of Scientific and Technical Information of China (English)

    Gang-Ding Peng

    2003-01-01

    Remarkable progresses have been made in developing special polymer optical fibres and devices for photonic applications in recent years. This presentation will mainly report on the development of electro-optic, photosensitive and photorefractive polymer optical fibres and related devices.

  14. Information Optics and Photonics Algorithms, Systems, and Applications

    CERN Document Server

    Javidi, Bahram

    2010-01-01

    This book addresses applications, recent advances, and emerging areas in fields with applications in information optics and photonics systems. The objective of this book is to illustrate and discuss novel approaches, analytical techniques, models, and technologies that enhance sensing, measurement, processing, interpretation, and visualization of information using free space optics and photonics. The material in this book concentrates on integration of diverse fields for cross-disciplinary applications including bio-photonics, digitally enhanced sensing and imaging systems, multi-dimensional optical imaging and image processing, bio-inspired imaging, 3D visualization, 3D displays, imaging on the nano-scale, quantum optics, super resolution imaging, photonics for biological applications, and holographic information systems. As a result, this book is a useful resource for researchers, engineers, and graduate students who work in the diverse fields comprising information optics and photonics.

  15. Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices.

    Science.gov (United States)

    He, Li; Li, Huan; Li, Mo

    2016-09-01

    Photons carry linear momentum and spin angular momentum when circularly or elliptically polarized. During light-matter interaction, transfer of linear momentum leads to optical forces, whereas transfer of angular momentum induces optical torque. Optical forces including radiation pressure and gradient forces have long been used in optical tweezers and laser cooling. In nanophotonic devices, optical forces can be significantly enhanced, leading to unprecedented optomechanical effects in both classical and quantum regimes. In contrast, to date, the angular momentum of light and the optical torque effect have only been used in optical tweezers but remain unexplored in integrated photonics. We demonstrate the measurement of the spin angular momentum of photons propagating in a birefringent waveguide and the use of optical torque to actuate rotational motion of an optomechanical device. We show that the sign and magnitude of the optical torque are determined by the photon polarization states that are synthesized on the chip. Our study reveals the mechanical effect of photon's polarization degree of freedom and demonstrates its control in integrated photonic devices. Exploiting optical torque and optomechanical interaction with photon angular momentum can lead to torsional cavity optomechanics and optomechanical photon spin-orbit coupling, as well as applications such as optomechanical gyroscopes and torsional magnetometry.

  16. Coherent conversion between optical and microwave photons in Rydberg gases

    CERN Document Server

    Kiffner, Martin; Kaczmarek, Krzysztof T; Jaksch, Dieter; Nunn, Joshua

    2016-01-01

    Quantum information encoded in optical photons can be transmitted over long distances with very high information density, and suffers from negligible thermal noise at room temperature. On the other hand, microwave photons at cryogenic temperatures can be confined in high quality resonators and strongly coupled to solid-state qubits, providing a quantum bus to connect qubits and a route to deterministic photonic non-linearities. The coherent interconversion of microwave and optical photons has therefore recently emerged as a highly desirable capability that would enable freely-scalable networks of optically-linked qubits, or large-scale photonic information processing with multi-photon interactions mediated by microwaves. Here, we propose a route to efficient and coherent microwave-optical conversion based on frequency mixing in Rydberg atoms. The interaction requires no microfabricated components or cavities, and is tunable, broadband, and both spatially and spectrally multimode.

  17. Ultrafast photonic crystal optical switching

    Institute of Scientific and Technical Information of China (English)

    GONG Qi-huang; HU Xiao-yong

    2006-01-01

    Photonic crystal,a novel and artificial photonic material with periodic dielectric distribution,possesses photonic bandgap and can control the propagation states of photons.Photonic crystal has been considered to be a promising candidate for the future integrated photonic devices.The properties and the fabrication method of photonic crystal are expounded.The progresses of the study of ultrafast photonic crystal optical switching are discussed in detail.

  18. Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices

    CERN Document Server

    He, Li; Li, Mo

    2016-01-01

    Photons carry linear momentum, and spin angular momentum when circularly or elliptically polarized. During light-matter interaction, transfer of linear momentum leads to optical forces, while angular momentum transfer induces optical torque. Optical forces including radiation pressure and gradient forces have long been utilized in optical tweezers and laser cooling. In nanophotonic devices optical forces can be significantly enhanced, leading to unprecedented optomechanical effects in both classical and quantum regimes. In contrast, to date, the angular momentum of light and the optical torque effect remain unexplored in integrated photonics. Here, we demonstrate the measurement of the spin angular momentum of photons propagating in a birefringent waveguide and the use of optical torque to actuate rotational motion of an optomechanical device. We show that the sign and magnitude of the optical torque are determined by the photon polarization states that are synthesized on the chip. Our study reveals the mecha...

  19. Microcontrollers and optical sensors for education in optics and photonics

    Science.gov (United States)

    Dressler, Paul; Wielage, Heinz; Haiss, Ulrich; Vauderwange, Oliver; Wozniak, P.; Curticapean, Dan

    2014-09-01

    The digital revolution is going full steam ahead, with a constantly growing number of new devices providing a steady increase in complexity and power. Most of the success is based on one important invention: the microprocessor/microcontroller. In this paper the authors present how to integrate microcontrollers and optical sensors in the curricula of media engineering by combining subjects of media technology, optics, information technology and media design. Hereby the aim is not to teach these topics separate from each other, but to bring them together in interdisciplinary lectures, projects and applications. Microcontrollers can be applied in various ways to teach content from the fields of optics and photonics. They can be used to control LEDs, displays, light detectors and infrared sensors, which makes it possible to build measuring instruments like e.g. a lux meter, a light barrier or an optical distance meter. The learning goals are to stimulate the student's interest in the multiplicity of subjects related to this course and to support a deeper understanding of the close connections between them. The teaching method that the authors describe in their paper turned out to be very successful, as the participants are motivated to bring in their own ideas for projects, they spend more time than requested and as many students return to the courses as tutors. It is an example for effectual knowledge transfer and exchange of ideas among students.

  20. Quantum Optics with Photonic Nanowires and Photonic Trumpets: Basics and Applications

    DEFF Research Database (Denmark)

    Gerard, J.; Claudon, J.; Munsch, M.

    Optimizing the coupling between a localized quantum emitter and a single-mode optical channel represents a powerful route to realise bright sources of non-classical light states. Reversibly, the e±cient absorption of a photon impinging on the emitter is key to realise a spin-photon interface......, the node of future quantum networks. Besides optical microcavities [1], photonic wires have recently demonstrated in this context an appealing potential [2, 3]. For instance, single photon sources (SPS) based on a single quantum dot in a vertical photonic wire with integrated bottom mirror and tapered tip...... have enabled for the ¯rst time to achieve simultaneously a very high e±ciency (0.72 photon per pulse) and a very pure single photon emission (g(2)(0)

  1. Recent advances in liquid-crystal fiber optics and photonics

    Science.gov (United States)

    Woliński, T. R.; Siarkowska, A.; Budaszewski, D.; Chychłowski, M.; Czapla, A.; Ertman, S.; Lesiak, P.; Rutkowska, K. A.; Orzechowski, K.; Sala-Tefelska, M.; Sierakowski, M.; DÄ browski, R.; Bartosewicz, B.; Jankiewicz, B.; Nowinowski-Kruszelnicki, E.; Mergo, P.

    2017-02-01

    Liquid crystals over the last two decades have been successfully used to infiltrate fiber-optic and photonic structures initially including hollow-core fibers and recently micro-structured photonic crystal fibers (PCFs). As a result photonic liquid crystal fibers (PLCFs) have been created as a new type of micro-structured fibers that benefit from a merge of "passive" PCF host structures with "active" LC guest materials and are responsible for diversity of new and uncommon spectral, propagation, and polarization properties. This combination has simultaneously boosted research activities in both fields of Liquid Crystals Photonics and Fiber Optics by demonstrating that optical fibers can be more "special" than previously thought. Simultaneously, photonic liquid crystal fibers create a new class of fiber-optic devices that utilize unique properties of the photonic crystal fibers and tunable properties of LCs. Compared to "classical" photonic crystal fibers, PLCFs can demonstrate greatly improved control over their optical properties. The paper discusses the latest advances in this field comprising PLCFs that are based on nanoparticles-doped LCs. Doping of LCs with nanoparticles has recently become a common method of improving their optical, magnetic, electrical, and physical properties. Such a combination of nanoparticles-based liquid crystals and photonic crystal fibers can be considered as a next milestone in developing a new class of fiber-based optofluidic systems.

  2. Storage and control of optical photons using Rydberg polaritons.

    Science.gov (United States)

    Maxwell, D; Szwer, D J; Paredes-Barato, D; Busche, H; Pritchard, J D; Gauguet, A; Weatherill, K J; Jones, M P A; Adams, C S

    2013-03-08

    We use a microwave field to control the quantum state of optical photons stored in a cold atomic cloud. The photons are stored in highly excited collective states (Rydberg polaritons) enabling both fast qubit rotations and control of photon-photon interactions. Through the collective read-out of these pseudospin rotations it is shown that the microwave field modifies the long-range interactions between polaritons. This technique provides a powerful interface between the microwave and optical domains, with applications in quantum simulations of spin liquids, quantum metrology and quantum networks.

  3. Optics and photonics: essential technologies for our nation (technology & engineering)

    CERN Document Server

    Research, Committee on Harnessing Light: Capitalizing on Optical Science Trends and Challenges for Future; Sciences, Division on Engineering and Physical; Council, National Research

    2013-01-01

    Optics and photonics technologies are ubiquitous: they are responsible for the displays on smart phones and computing devices, optical fiber that carries the information in the internet, advanced precision manufacturing, enhanced defense capabilities, and a plethora of medical diagnostics tools. The opportunities arising from optics and photonics offer the potential for even greater societal impact in the next few decades, including solar power generation and new efficient lighting that could transform the nation's energy landscape and new optical capabilities that will be essential to support the continued exponential growth of the Internet. As described in the National Research Council report Optics and Photonics: Essential Technologies for our Nation, it is critical for the United States to take advantage of these emerging optical technologies for creating new industries and generating job growth. The report assesses the current state of optical science and engineering in the United States and abroad--incl...

  4. Photon momentum and optical forces in cavities

    DEFF Research Database (Denmark)

    Partanen, Mikko; Häyrynen, Teppo; Oksanen, Jani

    2016-01-01

    forces in cavity structures in the cases of dynamical and steady-state fields. In the description of the single-photon transmission process, we use a field-kinetic one-photon theory. Our model suggests that in the medium photons couple with the induced atomic dipoles forming polariton quasiparticles....... When describing the steady-state nonequilibrium field distributions we use the recently developed quantized fluctuational electrodynamics (QFED) formalism. While allowing detailed studies of light propagation and quantum field fluctuations in interfering structures, our methods also provide practical...

  5. Photonic crystal optical memory

    Science.gov (United States)

    Lima, A. Wirth; Sombra, A. S. B.

    2011-06-01

    After several decades pushing the technology and the development of the world, the electronics is giving space for technologies that use light. We propose and analyze an optical memory embedded in a nonlinear photonic crystal (PhC), whose system of writing and reading data is controlled by an external command signal. This optical memory is based on optical directional couplers connected to a shared optical ring. Such a device can work over the C-Band of ITU (International Telecommunication Union).

  6. Silicon photonics: optical modulators

    Science.gov (United States)

    Reed, G. T.; Gardes, F. Y.; Hu, Youfang; Thomson, D.; Lever, L.; Kelsall, R.; Ikonic, Z.

    2010-01-01

    Silicon Photonics has the potential to revolutionise a whole raft of application areas. Currently, the main focus is on various forms of optical interconnects as this is a near term bottleneck for the computing industry, and hence a number of companies have also released products onto the market place. The adoption of silicon photonics for mass production will significantly benefit a range of other application areas. One of the key components that will enable silicon photonics to flourish in all of the potential application areas is a high performance optical modulator. An overview is given of the major Si photonics modulator research that has been pursued at the University of Surrey to date as well as a worldwide state of the art showing the trend and technology available. We will show the trend taken toward integration of optical and electronic components with the difficulties that are inherent in such a technology.

  7. Fast Cherenkov model of optical photons generation and transportation

    CERN Document Server

    The ATLAS collaboration

    2017-01-01

    This note describes the technical details of Fast Cherenkov model of optical photons generation and transportation: in particular, the mechanism of Cherenkov photons transportation through the straight bar geometry. As an example of usage, the implemetation of the method inside Quartic detector simulation in GEANT4 will be presented and compared to the nominal results.

  8. Optical fibers and photonics applications: topical tracks at Wilga conferences

    Science.gov (United States)

    Romaniuk, Ryszard S.

    2013-01-01

    This paper is a research survey of WILGA Symposium work, 2010-2012 Editions, concerned with Optical Fibers, Optoelectronic Devices, Sensors, Communication and Photonics Applications. It presents a digest of chosen technical work results shown by young researchers from different technical universities from this country during the three recent Wilga Symposia on Photonics and Web Engineering. Topical tracks of the symposia embraced, among others, nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, photonic equipment for JET tokamak and pi-of-the sky experiments development. The symposium is an annual summary in the development of numerable Ph.D. theses carried out in this country in the area of advanced electronic and photonic systems. It is also a great occasion for SPIE, IEEE, OSA and PSP students to meet together in a large group spanning the whole country with guests from this part of Europe. A digest of Wilga references is presented [1-274]. Wilga Symposia play a role of an universal integrator of young science in photonics and related areas in this country and also in this part of Europe. More than 5000 young scientists participated in scientific Wilga meetings and discussions during the last nearly two decades. Over 2500 papers were published, including over 1000 in Proc. SPIE.

  9. Intense harmonics generation with customized photon frequency and optical vortex

    Science.gov (United States)

    Zhang, Xiaomei; Shen, Baifei; Shi, Yin; Zhang, Lingang; Ji, Liangliang; Wang, Xiaofeng; Xu, Zhizhan; Tajima, Toshiki

    2016-08-01

    An optical vortex with orbital angular momentum (OAM) enriches the light and matter interaction process, and helps reveal unexpected information in relativistic nonlinear optics. A scheme is proposed for the first time to explore the origin of photons in the generated harmonics, and produce relativistic intense harmonics with expected frequency and an optical vortex. When two counter-propagating Laguerre-Gaussian laser pulses impinge on a solid thin foil and interact with each other, the contribution of each input pulse in producing harmonics can be distinguished with the help of angular momentum conservation of photons, which is almost impossible for harmonic generation without an optical vortex. The generation of tunable, intense vortex harmonics with different photon topological charge is predicted based on the theoretical analysis and three-dimensional particle-in-cell simulations. Inheriting the properties of OAM and harmonics, the obtained intense vortex beam can be applied in a wide range of fields, including atom or molecule control and manipulation.

  10. Macroscopic optical response and photonic bands

    CERN Document Server

    Perez-Huerta, J S; Mendoza, Bernardo S; Mochan, W Luis

    2012-01-01

    We develop a formalism for the calculation of the macroscopic dielectric response of composite systems made of particles of one material embedded periodically within a matrix of another material, each of which is characterized by a well defined dielectric function. The nature of these dielectric functions is arbitrary, and could correspond to dielectric or conducting, transparent or opaque, absorptive and dispersive materials. The geometry of the particles and the Bravais lattice of the composite are also arbitrary. Our formalism goes beyond the longwavelenght approximation as it fully incorporates retardation effects. We test our formalism through the study the propagation of electromagnetic waves in 2D photonic crystals made of periodic arrays of cylindrical holes in a dispersionless dielectric host. Our macroscopic theory yields a spatially dispersive macroscopic response which allows the calculation of the full photonic band structure of the system, as well as the characterization of its normal modes, upo...

  11. Optical phase estimation via coherent state and displaced photon counting

    CERN Document Server

    Izumi, Shuro; Wakui, Kentaro; Fujiwara, Mikio; Ema, Kazuhiro; Sasaki, Masahide

    2016-01-01

    We consider the phase sensing via weak optical coherent state at quantum limit precision. A new detection scheme for the phase estimation is proposed which is inspired by the suboptimal quantum measurement in coherent optical communication. We theoretically analyze a performance of our detection scheme, which we call the displaced-photon counting, for phase sensing in terms of the Fisher information and show that the displaced-photon counting outperforms the static homodyne and heterodyne detections in wide range of the target phase. The proof-of-principle experiment is performed with linear optics and a superconducting nanowire single photon detector. The result shows that our scheme overcomes the limit of the ideal homodyne measurement even under practical imperfections.

  12. Computer optics and photonics for students of laser engineering disciplines

    Science.gov (United States)

    Zakharov, V. P.

    2005-10-01

    The concept of teaching in optics and photonics for undergraduate and post-graduate students of laser engineering disciplines are discussed. The designed curriculum include as fundamental knowledge on modern mathematics, physics and computer methods as up-to-date industrial optical engineering software training. Distributed Web-server technology with Alpha cluster station background allow to support real-time training and teaching with a set of computer optical laboratories, which are used as a framework for most university special courses. Remote access to facilities of Russian Academy of Science make it possible to accumulate modern science achievements in optical education.

  13. Photonic Crystal Optical Tweezers

    CERN Document Server

    Wilson, Benjamin K; Bachar, Stephanie; Knouf, Emily; Bendoraite, Ausra; Tewari, Muneesh; Pun, Suzie H; Lin, Lih Y

    2009-01-01

    Non-invasive optical manipulation of particles has emerged as a powerful and versatile tool for biological study and nanotechnology. In particular, trapping and rotation of cells, cell nuclei and sub-micron particles enables unique functionality for various applications such as tissue engineering, cancer research and nanofabrication. We propose and demonstrate a purely optical approach to rotate and align particles using the interaction of polarized light with photonic crystal nanostructures to generate enhanced trapping force. With a weakly focused laser beam we observed efficient trapping and transportation of polystyrene beads with sizes ranging from 10 um down to 190 nm as well as cancer cell nuclei. In addition, we demonstrated alignment of non-spherical particles using a 1-D photonic crystal structure. Bacterial cells were trapped, rotated and aligned with optical intensity as low as 17 uW/um^2. Finite-difference time domain (FDTD) simulations of the optical near-field and far-field above the photonic c...

  14. Few-photon optical diode

    CERN Document Server

    Roy, Dibyendu

    2010-01-01

    We propose a novel scheme of realizing an optical diode at the few-photon level. The system consists of a one-dimensional waveguide coupled asymmetrically to a two-level system. The two or multi-photon transport in this system is strongly correlated. We derive exactly the single and two-photon current and show that the two-photon current is asymmetric for the asymmetric coupling. Thus the system serves as an optical diode which allows transmission of photons in one direction much more efficiently than the opposite.

  15. Few-photon optical diode

    OpenAIRE

    Roy, Dibyendu

    2010-01-01

    We propose a novel scheme of realizing an optical diode at the few-photon level. The system consists of a one-dimensional waveguide coupled asymmetrically to a two-level system. The two or multi-photon transport in this system is strongly correlated. We derive exactly the single and two-photon current and show that the two-photon current is asymmetric for the asymmetric coupling. Thus the system serves as an optical diode which allows transmission of photons in one direction much more efficie...

  16. Few-photon optical diode

    OpenAIRE

    Roy, Dibyendu

    2010-01-01

    We propose a novel scheme of realizing an optical diode at the few-photon level. The system consists of a one-dimensional waveguide coupled asymmetrically to a two-level system. The two or multi-photon transport in this system is strongly correlated. We derive exactly the single and two-photon current and show that the two-photon current is asymmetric for the asymmetric coupling. Thus the system serves as an optical diode which allows transmission of photons in one direction much more efficie...

  17. Inkjet Printing of Functional Materials for Optical and Photonic Applications

    Directory of Open Access Journals (Sweden)

    Jorge Alamán

    2016-11-01

    Full Text Available Inkjet printing, traditionally used in graphics, has been widely investigated as a valuable tool in the preparation of functional surfaces and devices. This review focuses on the use of inkjet printing technology for the manufacturing of different optical elements and photonic devices. The presented overview mainly surveys work done in the fabrication of micro-optical components such as microlenses, waveguides and integrated lasers; the manufacturing of large area light emitting diodes displays, liquid crystal displays and solar cells; as well as the preparation of liquid crystal and colloidal crystal based photonic devices working as lasers or optical sensors. Special emphasis is placed on reviewing the materials employed as well as in the relevance of inkjet in the manufacturing of the different devices showing in each of the revised technologies, main achievements, applications and challenges.

  18. Phase Transition and Superfluid of Photons and Photon Pairs in a Two-Dimensional Optical Microcavity

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian-Jun; YUAN Jian-Hui; ZHANG Jun-Pei; CHENG Ze

    2012-01-01

    We analyze the ground-state properties and the excitation spectrum of Bose Einstein condensates of photons and PPs in a two-dimensional optical microcavity. First, using the variational method, we discuss the ground- state phase transition of the two-component system. We also investigate the energy gap between the ground state and the first excited state. Moreover, by investigating the excitation spectrum, we also illustrate how the superfluid behavior of photons and PPs can be associated with the phase transition of the system.

  19. Photonic encryption : modeling and functional analysis of all optical logic.

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jason D.; Schroeppel, Richard Crabtree; Robertson, Perry J.

    2004-10-01

    With the build-out of large transport networks utilizing optical technologies, more and more capacity is being made available. Innovations in Dense Wave Division Multiplexing (DWDM) and the elimination of optical-electrical-optical conversions have brought on advances in communication speeds as we move into 10 Gigabit Ethernet and above. Of course, there is a need to encrypt data on these optical links as the data traverses public and private network backbones. Unfortunately, as the communications infrastructure becomes increasingly optical, advances in encryption (done electronically) have failed to keep up. This project examines the use of optical logic for implementing encryption in the photonic domain to achieve the requisite encryption rates. This paper documents the innovations and advances of work first detailed in 'Photonic Encryption using All Optical Logic,' [1]. A discussion of underlying concepts can be found in SAND2003-4474. In order to realize photonic encryption designs, technology developed for electrical logic circuits must be translated to the photonic regime. This paper examines S-SEED devices and how discrete logic elements can be interconnected and cascaded to form an optical circuit. Because there is no known software that can model these devices at a circuit level, the functionality of S-SEED devices in an optical circuit was modeled in PSpice. PSpice allows modeling of the macro characteristics of the devices in context of a logic element as opposed to device level computational modeling. By representing light intensity as voltage, 'black box' models are generated that accurately represent the intensity response and logic levels in both technologies. By modeling the behavior at the systems level, one can incorporate systems design tools and a simulation environment to aid in the overall functional design. Each black box model takes certain parameters (reflectance, intensity, input response), and models the optical ripple

  20. Nano-Structures for Optics and Photonics: Optical Strategies for Enhancing

    CERN Document Server

    Collins, John; Silvestri, Luciano

    2015-01-01

    The contributions in this volume were presented at a NATO Advanced Study Institute held in Erice, Italy, 4-19 July 2013. Many aspects of important research into nanophotonics, plasmonics, semiconductor materials and devices, instrumentation for bio sensing to name just a few, are covered in depth in this volume.  The growing connection between optics and electronics, due to the increasing important role plaid by semiconductor materials and devices, find their expression in the term photonics, which also reflects the importance of the photon aspect of light in the description of the performance of several optical systems. Nano-structures have unique capabilities that allow the enhanced performance of processes of interest in optical and photonic devices. In particular these structures permit the nanoscale manipulation of photons, electrons and atoms; they represent a very hot topic of research and are relevant to many devices and applications. The various subjects bridge over the disciplines of physics, biolo...

  1. Near-field optics and quantum optics: an assignation arranged by four kinds of photons.

    Science.gov (United States)

    Keller, O

    2003-03-01

    In the process of emergence a photon emitted from an atom (or a molecule) is usually no better localized in space than to the near-field zone of the source. Near-field optics therefore is of central importance for understanding fundamental statistical aspects related to single-photon tunnelling, the space-time description of photon dynamics, and the photon position-operator problem. In the present work an attempt is made to study the microscopic near-field optical interaction from a quantum statistical point of view. In near-field quantum electrodynamics (QED) scalar and longitudinal photons always are involved and this makes the covariant formulation of QED attractive also in the low-energy regime. We show that the Lorenz gauge condition on the global state vector relates to the near-field electrodynamics of the d-photons. The gauge photon is shown to be of no importance in near-field interactions. To understand the role of the lack of photon localizability we finally study near-field quantum optical correlations in a new so-called propagator gauge.

  2. Nonlinear Dynamics of Photonics for Optical Signal Processing - Optical Frequency Conversion and Optical DSB-to-SSB Conversion

    Science.gov (United States)

    2015-09-17

    processing - optical frequency conversion and optical DSB -to-SSB conversion 5a. CONTRACT NUMBER FA2386-14-1-0006 5b. GRANT NUMBER Grant 134113...nonlinear dynamics of semiconductor lasers for certain optical signal processing functionalities, including optical DSB -to-SSB conversion, photonic...conversion and optical DSB -to-SSB conversion Performance Period May 30, 2014 ~ May 29, 2015 Principal Investigator Name: Sheng-Kwang Hwang Position

  3. 3rd International Conference on Photonics, Optics and Laser Technology

    CERN Document Server

    Raposo, Maria

    2016-01-01

    The book provides a collection of selected papers presented to the third International Conference on Photonics, Optics and Laser Technology PHOTOPTICS 2015, covering the three main conference scientific areas of “Optics”, “Photonics” and “Lasers”. The selected papers, in two classes full and short, result from a double blind review carried out by the conference program committee members which are highly qualified experts in conference topic areas.

  4. 2nd International Conference on Photonics, Optics and Laser Technology

    CERN Document Server

    Raposo, Maria

    2016-01-01

    This collection of the selected papers presented to the Second International Conference on Photonics, Optics and laser technology PHOTOPTICS 2014 covers the three main conference scientific areas of “Optics”, “Photonics” and “Lasers”. The selected papers, in two classes full and short, result from a double blind review carried out by conference Program Committee members who are highly qualified experts in the conference topic areas.

  5. Conditionally Teleported States Using Optical Squeezers and Photon Counting

    Institute of Scientific and Technical Information of China (English)

    FAN Hong-Yi; FAN Yue; CHENG Hai-Ling

    2002-01-01

    By virtue of the neat expression of the two-mode squeezing operator in the Einstein,Podolsky and Rosen entangled state representation,we provide a new approach for discussing the teleportation scheme using optical squeezers and photon counting devices.We derive the explicit form of the teleported states,so that the conditional property of teleportation and teleportation fidelity of this protocol can be scen more clcarly.The derivation is concise.

  6. From optical MEMS to photonic crystal

    Science.gov (United States)

    Lee, Sukhan; Kim, Jideog; Lee, Hong-Seok; Moon, Il-Kwon; Won, JongHwa; Ku, Janam; Choi, Hyung; Shin, Hyungjae

    2002-10-01

    This paper presents the emergence of photonic crystals as significant optomechatronics components, following optical MEMS. It is predicted that, in the coming years, optical MEMS and photonic crystals may go through dynamic interactions leading to synergy as well as competition. First, we present the Structured Defect Photonic Crystal (SDPCTM) devised by the authors for providing the freedom of designing photonic bandgap structures, such that the application of photonic crystals be greatly extended. Then, we present the applications of optical MEMS and photonic crystals to displays and telecommunications. It is shown that many of the applications that optical MEMS can contribute to telecommunications and displays may be implemented by photonic crystals.

  7. Optics history as effective instrument for education in optics and photonics

    Science.gov (United States)

    Stafeef, S. K.; Tomilin, M. G.

    2009-06-01

    The education problem in optics and photonics is to draw young generation on the side of light, optical science and technology. The main goal is to prove the slogan that "physics is a small part of optics": during the thousand years optics formulated the clear worldview for humanity. In fact optics is itself presents multidisciplinary collection of independent scientific arias from one hand and was a generator of new fields of knowledge from the other hand. Optics and photonics are the regions where the fundamental problems of our reality have to be solved. The mentioned functions belonged to optics during the period of civilizations development. This is a basic idea of books serial by S. Stafeev and M. Tomilin "Five Millennium of Optics" including 3 volumes. The first volume devoted to optics prehistory was edit in 2006 in Russian. Its main chapters devoted to relations between Sun and Life, the beginnings of human intelligence, megalithic viewfinders, gnomons and ancient temples orientation, archaic optical materials and elements. It also consist the optical riddles of that period. The volume II is devoted to Greek and Roman antiquity and is in the process of publishing. It consist the chapters on the beginning of optics, mathematical fundaments and applied optics evolution. Volume III would be devoted to Medieval and Renaissance optics history. The materials are used at our university in a course "The Modern Natural Science Conceptions" for students and graduate students. In our paper the possibilities of optics history as effective instrument for education in optics and photonics are discussed.

  8. Hands-on optics and photonics outreach in Riga

    Science.gov (United States)

    Lesina, Natalija; Spigulis, Janis

    2014-07-01

    A long-term exposition focused on optics and photonics was created in Institute of Atomic Physics and Spectroscopy at University of Latvia in 2010. Considering unpopularity of science in Latvia and lack of broadly accessible hands-on outreach activities for school children, as well as rapid development of advanced photonic technologies, this exposition was meant to involve more students to the natural sciences and modern technologies. Exposition covers 10 topics of optics - colors, diffraction, interference, polarization, reflection, liquid crystals, gas discharge, lasers, fluorescence, infrared and ultraviolet radiation. Students' visits are organized as an exciting adventure, which differs from ordinary school lessons. The visit mainly includes own actions with hands-on exhibits, lecturer's explanations about the most difficult topics and some demonstrations shown by the lecturer. The main accent is made on hands-on experiments due to the fact that students, who had performed hands-on experiments, will be emboldened to choose their career in the field of science and technologies. The exposition now is running and is part of Riga Photonics Center. Nearly 300 students from the 8th till 12th grades visited it during academic years 2011/2012 and 2012/2013 and their generally positive feedback has been analyzed.

  9. Photonic microsystems micro and nanotechnology applied to optical devices and systems

    CERN Document Server

    Solgaard, Olav

    2009-01-01

    ""Photonic Microsystems: Micro and Nanotechnology Applied to Optical Devices and Systems"", describes MEMS technology and demonstrates how MEMS allow miniaturization, parallel fabrication, and efficient packaging of optics, as well as integration of optics and electronics. It shows how the characteristics of MEMS enable practical implementations of a variety of applications, including projection displays, fiber switches, interferometers, spectrometers. The book describes the phenomenon of Photonic crystals (nanophotonics) and demonstrates how Photonic crystals enable synthesis of materials wit

  10. Graphene photonics for resonator-enhanced electro-optic devices and all-optical interactions

    Science.gov (United States)

    Englund, Dirk R.; Gan, Xuetao

    2017-03-21

    Techniques for coupling light into graphene using a planar photonic crystal having a resonant cavity characterized by a mode volume and a quality factor and at least one graphene layer positioned in proximity to the planar photonic crystal to at least partially overlap with an evanescent field of the resonant cavity. At least one mode of the resonant cavity can couple into the graphene layer via evanescent coupling. The optical properties of the graphene layer can be controlled, and characteristics of the graphene-cavity system can be detected. Coupling light into graphene can include electro-optic modulation of light, photodetection, saturable absorption, bistability, and autocorrelation.

  11. Graphene photonics for resonator-enhanced electro-optic devices and all-optical interactions

    Energy Technology Data Exchange (ETDEWEB)

    Englund, Dirk R.; Gan, Xuetao

    2017-03-21

    Techniques for coupling light into graphene using a planar photonic crystal having a resonant cavity characterized by a mode volume and a quality factor and at least one graphene layer positioned in proximity to the planar photonic crystal to at least partially overlap with an evanescent field of the resonant cavity. At least one mode of the resonant cavity can couple into the graphene layer via evanescent coupling. The optical properties of the graphene layer can be controlled, and characteristics of the graphene-cavity system can be detected. Coupling light into graphene can include electro-optic modulation of light, photodetection, saturable absorption, bistability, and autocorrelation.

  12. Deterministic quantum nonlinear optics with single atoms and virtual photons

    Science.gov (United States)

    Kockum, Anton Frisk; Miranowicz, Adam; Macrı, Vincenzo; Savasta, Salvatore; Nori, Franco

    2017-06-01

    We show how analogs of a large number of well-known nonlinear-optics phenomena can be realized with one or more two-level atoms coupled to one or more resonator modes. Through higher-order processes, where virtual photons are created and annihilated, an effective deterministic coupling between two states of such a system can be created. In this way, analogs of three-wave mixing, four-wave mixing, higher-harmonic and -subharmonic generation (i.e., up- and down-conversion), multiphoton absorption, parametric amplification, Raman and hyper-Raman scattering, the Kerr effect, and other nonlinear processes can be realized. In contrast to most conventional implementations of nonlinear optics, these analogs can reach unit efficiency, only use a minimal number of photons (they do not require any strong external drive), and do not require more than two atomic levels. The strength of the effective coupling in our proposed setups becomes weaker the more intermediate transition steps are needed. However, given the recent experimental progress in ultrastrong light-matter coupling and improvement of coherence times for engineered quantum systems, especially in the field of circuit quantum electrodynamics, we estimate that many of these nonlinear-optics analogs can be realized with currently available technology.

  13. Intrinsic Localized Modes in Optical Photonic Lattices and Arrays

    Science.gov (United States)

    Christodoulides, Demetrios

    Discretizing light behavior requires optical elements that can confine optical energy at distinct sites. One possible scenario in implementing such arrangements is to store energy within low loss high Q-microcavities and then allow photon exchange between such components in time. This scheme requires high-contrast dielectric elements that became available with the advent of photonic crystal technologies. Another possible avenue where such light discretization can be directly observed and studied is that based on evanescently coupled waveguide arrays. As indicated in several studies, discrete systems open up whole new directions in terms of modifying light transport properties. One such example is that of discrete solitons. By nature, discrete solitons represent self-trapped wavepackets in nonlinear periodic structures and result from the interplay between lattice diffraction (or dispersion) and material nonlinearity. In optics, this class of self-localized states has been successfully observed in both one- and two-dimensional nonlinear waveguide arrays. In recent years such photonic lattices have been implemented or induced in a variety of material systems, including those with cubic (Kerr), quadratic, photorefractive, and liquid-crystal nonlinearities. In all cases the underlying periodicity or discreteness can lead to new families of optical solitons that have no counterpart whatsoever in continuous systems. Interestingly, these results paved the way for observations in other physical systems obeying similar evolution equations like Bose-Einstein condensates. New developments in laser writing ultrashort femtosecond laser pulses, now allow the realization of all-optical switching networks in fully 3D environments using nonlinear discrete optics. Using this approach all-optical routing can be achieved using blocking operations. The spatio-temporal evolution of optical pulses in both normally and anomalously dispersive arrays can lead to novel schemes for mode

  14. Sharp photonic Crystal Defect Modes and Their Response to Ultrashort Optical Pulses

    Institute of Scientific and Technical Information of China (English)

    Kyozo; Kanamoto; Sheng; Lan; Naoki; Ikeda; Yoshimasa; Sugimoto; Kiyoshi; Asakawa; Hiroshi; Ishikawa

    2003-01-01

    Single photonic crystal defects based on an air-bridge structure were fabricated. We obtained sharp defect modes with quality factors higher than 600 and observed their response to ultrashort optical pulses by utilizing two-photon absorption.

  15. Optical Photon Reassignment Microscopy (OPRA)

    CERN Document Server

    Roth, Stephan; Wicker, Kai; Heintzmann, Rainer

    2013-01-01

    To enhance the resolution of a confocal laser scanning microscope the additional information of a pinhole plane image taken at every excitation scan position can be used [C. J. R. Sheppard, Super-resolution in confocal imaging, Optik 80, 5354 (1988)]. This photon reassignment principle is based on the fact that the most probable position of an emitter is at half way between the nominal focus of the excitation laser and the position corresponding to the (off centre) detection position. Therefore, by reassigning the detected photons to this place, an image with enhanced detection efficiency and resolution is obtained. Here we present optical photon reassignment microscopy (OPRA) which realises this concept in an all-optical way obviating the need for image-processing. With the help of an additional intermediate optical beam expansion between descanning and a further rescanning of the detected light, an image with the advantages of photon reassignment can be acquired. Due to its simplicity and flexibility this m...

  16. Optical microcavities based on surface modes in two-dimensional photonic crystals and silicon-on-insulator photonic crystals

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Qiu, M.

    2007-01-01

    Surface-mode optical microcavities based on two-dimensional photonic crystals and silicon-on-insulator photonic crystals are studied. We demonstrate that a high-quality-factor microcavity can be easily realized in these structures. With an increasing of the cavity length, the quality factor...... is gradually enhanced and the resonant frequency converges to that of the corresponding surface mode in the photonic crystals. These structures have potential applications such as sensing....

  17. Optical micromachines for photonic networks

    Science.gov (United States)

    Katagiri, Yoshitada

    2001-10-01

    The optical micromachines controlling the light in spatial and wavelength domains are based on the micro- optomechatronics which handles small objects in micrometers and covers the fields from monolithic fabrication and control techniques. Their advantageous features include quick response, high mechanical stability, and low driving power because of the small inertia effects. A wide variety of functions such as wavelength tuning and optical path switching has been realized. This paper describes typical applications corresponding to these functions and their possible implementations: optical manipulation for small optical components based on momentum transfer of photons, micro lenses fabricated monolithically on a substrate for optical integration circuits, tunable filters with moving mirrors driven by the electrostatic force fro pulse shaping, and optical switches based on thermo capillary for cross connect or add/drop multiplexing operations in network systems. These applications are useful for next-generation photonic reconfigurable networks.

  18. Application of visual cryptography for learning in optics and photonics

    Science.gov (United States)

    Mandal, Avikarsha; Wozniak, Peter; Vauderwange, Oliver; Curticapean, Dan

    2016-09-01

    In the age data digitalization, important applications of optics and photonics based sensors and technology lie in the field of biometrics and image processing. Protecting user data in a safe and secure way is an essential task in this area. However, traditional cryptographic protocols rely heavily on computer aided computation. Secure protocols which rely only on human interactions are usually simpler to understand. In many scenarios development of such protocols are also important for ease of implementation and deployment. Visual cryptography (VC) is an encryption technique on images (or text) in which decryption is done by human visual system. In this technique, an image is encrypted into number of pieces (known as shares). When the printed shares are physically superimposed together, the image can be decrypted with human vision. Modern digital watermarking technologies can be combined with VC for image copyright protection where the shares can be watermarks (small identification) embedded in the image. Similarly, VC can be used for improving security of biometric authentication. This paper presents about design and implementation of a practical laboratory experiment based on the concept of VC for a course in media engineering. Specifically, our contribution deals with integration of VC in different schemes for applications like digital watermarking and biometric authentication in the field of optics and photonics. We describe theoretical concepts and propose our infrastructure for the experiment. Finally, we will evaluate the learning outcome of the experiment, performed by the students.

  19. Optical microcavities based on surface modes in two-dimensional photonic crystals and silicon-on-insulator photonic crystals

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Qiu, M.

    2007-01-01

    Surface-mode optical microcavities based on two-dimensional photonic crystals and silicon-on-insulator photonic crystals are studied. We demonstrate that a high-quality-factor microcavity can be easily realized in these structures. With an increasing of the cavity length, the quality factor is gr...

  20. Photonic layer security in fiber-optic networks and optical OFDM transmission

    Science.gov (United States)

    Wang, Zhenxing

    Currently the Internet is experiencing an explosive growth in the world. Such growth leads to an increased data transmission rate demand in fiber-optical networks. Optical orthogonal frequency multiplexing (OFDM) is considered as a promising solution to achieve data rate beyond 100Gb/s per wavelength channel. In the meanwhile, because of extensive data transmission and sharing, data security has become an important problem and receives considerable attention in current research literature. This thesis focuses on data security issues at the physical layer of optical networks involving code-division multiple access (CDMA) systems and steganography methods. The thesis also covers several implementation issues in optical OFDM transmission. Optical CDMA is regarded as a good candidate to provide photonic layer security in multi-access channels. In this thesis we provide a systematic analysis of the security performance of incoherent optical CDMA codes. Based on the analysis, we proposed and experimentally demonstrated several methods to improve the security performance of the optical CDMA systems, such as applying all-optical encryption, and code hopping using nonlinear wavelength conversion. Moreover, we demonstrate that the use of wireless CDMA codes in optical systems can enhance the security in one single-user end-to-end optical channel. Optical steganography is another method to provide photonic data security and involves hiding the existence of data transmissions. In the thesis, we demonstrate that an optical steganography channel can exist in phase modulated public channels as well as traditional on-off-keying (OOK) modulated channels, without data synchronization. We also demonstrate an optical steganography system with enhanced security by utilizing temporal phase modulation techniques. Additionally, as one type of an overlay channel, the optical steganography technology can carry the sensor data collected by wireless sensor network on top of public optical

  1. Nonclassical correlation between optical and microwave photons in a hybrid electro-optomechanical system

    Science.gov (United States)

    Xie, Hong; Chen, Xiang; Lin, Gongwei; Lin, Xiumin

    2016-10-01

    A scheme to correlate optical and microwave photons is proposed in a hybrid electro-optomechanical system, where mechanical resonator is coupled to both optical and microwave fields. Analytical and numerical simulation results show that the cross-correlation function between Stokes and anti-Stokes photons strongly violates the Cauchy-Schwarz inequality, which confirms the nonclassical correlation between the optical and microwave photons. It is worth noting that the nonclassical photon pairs with vast different wavelengths, which may be useful for quantum communication, are generated under the experimentally accessible weak coupling limit rather than single-photon strong coupling regime. In addition, the protocol provides a possible route to combine the respective advantages of optical photons, microwave photons, and phonons in a hybrid electro-optomechanical system.

  2. Optical characterisation of photonic wire and photonic crystal waveguides fabricated using nanoimprint lithography

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Frandsen, Lars Hagedorn; Lavrinenko, Andrei;

    2006-01-01

    We have characterised photonic-crystal and photonic-wire waveguides fabricated by thermal nanoimprint lithography. The structures, with feature sizes down below 20 nm, are benchmarked against similar structures defined by direct electron beam lithography....

  3. Photonic Nanojet in Optical Tweezers

    CERN Document Server

    Neves, Antonio Alvaro Ranha

    2015-01-01

    Photonic nanojets has been brought into attention ten years ago for potential application as ultramicroscopy technique, using its sub-wavelength resolution to enhance detection and interaction with matter. For these novel applications under development, optically trapping a sphere, acts as an ideal framework to employ these nanojets. In this case, the nanojet is generated by a highly focused incident beam contrary to the traditional plane wave. It inherits the advantage from optical trapping, with the microsphere in equilibrium on the beam propagation axis, and be positioned arbitrarily in space, especially for intracellular applications. Moreover, due to optical scattering forces, when in equilibrium, there is a shift of the sphere centre with respect to the beam focus. However, within the stable equilibrium of an optical tweezers configuration, it does not allow the formation of a photonic nanojet. To overcome this, a double optical tweezers, in an unorthodox configuration of two collinearly and co-propagat...

  4. Electromagnetically induced absorption and transparency in an optical-rf two-photon coupling configuration

    Energy Technology Data Exchange (ETDEWEB)

    Fu Guangsheng [College of Physical Science and Technology, Hebei University, Baoding 071002 (China); Li Xiaoli [College of Physical Science and Technology, Hebei University, Baoding 071002 (China)], E-mail: xiaolixiaoli001@yahoo.com.cn; Zhuang Zhonghong; Zhang Lianshui; Yang Lijun; Li Xiaowei; Han Li [College of Physical Science and Technology, Hebei University, Baoding 071002 (China); Manson, Neil B.; Wei Changjiang [Laser Physics Center, Research School of Physical Sciences and Engineering, Australian Nation University, Canberra, ACT 0200 (Australia)

    2008-01-07

    We study electromagnetically induced absorption (EIA) and transparency (EIT) in an optical-rf two-photon coupling configuration. It is shown that the interference effect due to interacting dark resonances results in an EIA for a resonant two-photon coupling and this EIA is observed to evolve into an EIT when there is a detuning in the two-photon coupling.

  5. Long-lasting inverted photon echo and optical memory

    Energy Technology Data Exchange (ETDEWEB)

    Akhmediev, N.N.; Borisov, B.S.; Zuikov, V.A.; Samartsev, V.V.; Stel' makh, M.F.

    1988-06-01

    Experimental results are presented on the formation of the long-lasting inverted stimulated photon echo in the LaF3:Pr(3+) crystal. The physics of this phenomenon is explained on the basis of a three-level model. The feasibility of using this echo effect in the development of optical-memory systems is considered. 18 references.

  6. Preparing students for research excellence in optics and photonics

    Science.gov (United States)

    Zwickl, Benjamin

    2015-05-01

    Initial results will be described from an ongoing study that is investigating both academic and industrial career paths in optics and photonics. The dual goals of the project are developing useful information for physics departments and linking physics education research with the national dialog on the role of higher education in training the STEM workforce. The study is refining our understanding of the broad skills needed for success and how specific math, physics, and communication skills are utilized in academic and industrial labs. While physics education research has extensively studied conceptual learning and problem solving at the undergraduate level, this project connects that research with expertise and skills used in physics-intensive careers.

  7. Enhancing Stellar Spectroscopy with Extreme Adaptive Optics and Photonics

    Science.gov (United States)

    Jovanovic, N.; Schwab, C.; Cvetojevic, N.; Guyon, O.; Martinache, F.

    2016-12-01

    Extreme adaptive optics (AO) systems are now in operation across the globe. These systems, capable of high order wavefront correction, deliver Strehl ratios of ∼ 90 % in the near-infrared. Originally intended for the direct imaging of exoplanets, these systems are often equipped with advanced coronagraphs that suppress the on-axis-star, interferometers to calibrate wavefront errors, and low order wavefront sensors to stabilize any tip/tilt residuals to a degree never seen before. Such systems are well positioned to facilitate the detailed spectroscopic characterization of faint substellar companions at small angular separations from the host star. Additionally, the increased light concentration of the point-spread function and the unprecedented stability create opportunities in other fields of astronomy as well, including spectroscopy. With such Strehl ratios, efficient injection into single-mode fibers (SMFs) or photonic lanterns becomes possible. With diffraction-limited components feeding the instrument, calibrating a spectrograph’s line profile becomes considerably easier, as modal noise or imperfect scrambling of the fiber output are no longer an issue. It also opens up the possibility of exploiting photonic technologies for their advanced functionalities, inherent replicability, and small, lightweight footprint to design and build future instrumentation. In this work, we outline how extreme AO systems will enable advanced photonic and diffraction-limited technologies to be exploited in spectrograph design and the impact it will have on spectroscopy. We illustrate that the precision of an instrument based on these technologies, with light injected from an efficient SMF feed would be entirely limited by the spectral content and stellar noise alone on cool stars and would be capable of achieving a radial velocity precision of several m/s; the level required for detecting an exo-Earth in the habitable zone of a nearby M-dwarf.

  8. Enhancing stellar spectroscopy with extreme adaptive optics and photonics

    CERN Document Server

    Jovanovic, Nemanja; Cvetojevic, Nick; Guyon, Olivier; Martinache, Frantz

    2016-01-01

    Extreme adaptive optics systems are now in operation across the globe. These systems, capable of high order wavefront correction, deliver Strehl ratios of 90% in the near-infrared. Originally intended for the direct imaging of exoplanets, these systems are often equipped with advanced coronagraphs that suppress the on-axis-star, interferometers to calibrate wavefront errors, and low order wavefront sensors to stabilize any tip/tilt residuals to a degree never seen before. Such systems are well positioned to facilitate the detailed spectroscopic characterization of faint substellar companions at small angular separations from the host star. Additionally, the increased light concentration of the point-spread function and the unprecedented stability create opportunities in other fields of astronomy as well, including spectroscopy. With such Strehl ratios, efficient injection into single-mode fibers or photonic lanterns becomes possible. With diffraction-limited components feeding the instrument, calibrating a sp...

  9. Physical Properties and Behaviour of Highly Bi-Substituted Magneto-Optic Garnets for Applications in Integrated Optics and Photonics

    Directory of Open Access Journals (Sweden)

    Mohammad Nur-E-Alam

    2011-01-01

    Full Text Available Rare-earth and Bi-substituted iron garnet thin film materials exhibit strong potential for application in various fields of science and frontier optical technologies. Bi-substituted iron garnets possess extraordinary optical and MO properties and are still considered as the best MO functional materials for various emerging integrated optics and photonics applications. However, these MO garnet materials are rarely seen in practical photonics use due to their high optical losses in the visible spectral region. In this paper, we report on the physical properties and magneto-optic behaviour of high-performance RF sputtered highly bismuth-substituted iron garnet and garnet-oxide nanocomposite films of generic composition type (Bi, Dy/Lu3(Fe, Ga/Al5O12. Our newly synthesized garnet materials form high-quality nanocrystalline thin film layers which demonstrate excellent optical and MO properties suitable for a wide range of applications in integrated optics and photonics.

  10. Optical Properties of Photonic Crystals

    CERN Document Server

    Sakoda, Kazuaki

    2005-01-01

    This is the first comprehensive textbook on the optical properties of photonic crystals. It deals not only with the properties of the radiation modes inside the crystals but also with their peculiar optical response to external fields. A general theory of linear and nonlinear optical response is developed in a clear and detailed fashion using the Green's function method. The symmetry of the eigenmodes is treated systematically using group theory to show how it affects the optical properties of photonic crystals. Important recent developments such as the enhancement of stimulated emission, second harmonic generation, quadrature-phase squeezing, and low-threshold lasing are also treated in detail and made understandable. Numerical methods are also emphasized. Thus this book provides both an introduction for graduate and undergraduate students and also key information for researchers in this field. This second edition has been updated and includes a new chapter on superfluorescence.

  11. Optical resonators and quantum dots: An excursion into quantum optics, quantum information and photonics

    Science.gov (United States)

    Bianucci, Pablo

    Modern communications technology has encouraged an intimate connection between Semiconductor Physics and Optics, and this connection shows best in the combination of electron-confining structures with light-confining structures. Semiconductor quantum dots are systems engineered to trap electrons in a mesoscopic scale (the are composed of ≈ 10000 atoms), resulting in a behavior resembling that of atoms, but much richer. Optical microresonators are engineered to confine light, increasing its intensity and enabling a much stronger interaction with matter. Their combination opens a myriad of new directions, both in fundamental Physics and in possible applications. This dissertation explores both semiconductor quantum dots and microresonators, through experimental work done with semiconductor quantum dots and microsphere resonators spanning the fields of Quantum Optics, Quantum Information and Photonics; from quantum algorithms to polarization converters. Quantum Optics leads the way, allowing us to understand how to manipulate and measure quantum dots with light and to elucidate the interactions between them and microresonators. In the Quantum Information area, we present a detailed study of the feasibility of excitons in quantum dots to perform quantum computations, including an experimental demonstration of the single-qubit Deutsch-Jozsa algorithm performedin a single semiconductor quantum dot. Our studies in Photonics involve applications of microsphere resonators, which we have learned to fabricate and characterize. We present an elaborate description of the experimental techniques needed to study microspheres, including studies and proof of concept experiments on both ultra-sensitive microsphere sensors and whispering gallery mode polarization converters.

  12. Experiments on Linear and Nonlinear Localization of Optical Vortices in Optically Induced Photonic Lattices

    Directory of Open Access Journals (Sweden)

    Daohong Song

    2012-01-01

    Full Text Available We provide a brief overview on our recent experimental work on linear and nonlinear localization of singly charged vortices (SCVs and doubly charged vortices (DCVs in two-dimensional optically induced photonic lattices. In the nonlinear case, vortex propagation at the lattice surface as well as inside the uniform square-shaped photonic lattices is considered. It is shown that, apart from the fundamental (semi-infinite gap discrete vortex solitons demonstrated earlier, the SCVs can self-trap into stable gap vortex solitons under the normal four-site excitation with a self-defocusing nonlinearity, while the DCVs can be stable only under an eight-site excitation inside the photonic lattices. Moreover, the SCVs can also turn into stable surface vortex solitons under the four-site excitation at the surface of a semi-infinite photonics lattice with a self-focusing nonlinearity. In the linear case, bandgap guidance of both SCVs and DCVs in photonic lattices with a tunable negative defect is investigated. It is found that the SCVs can be guided at the negative defect as linear vortex defect modes, while the DCVs tend to turn into quadrupole-like defect modes provided that the defect strength is not too strong.

  13. Optical Foucault Pendulum: photons and the Coriolis effect

    Science.gov (United States)

    Rogers, Charles; Selvaggi, Richard

    2012-10-01

    Consider the motion of photons within a rotating photon clock. Will light behave as a particle as it reflects back and forth between two parallel mirrors rotating in a manner similar to the motion of a Foucault pendulum? An experiment to measure the trajectory of light in a rotating cavity is presented. Implementation details for this experiment and initial data collected are also reported.

  14. PHOTONICS AND OPTICAL INFORMATICS IN EUROPE: TRENDS OF 2003–2013

    Directory of Open Access Journals (Sweden)

    I. L. Livshits

    2014-07-01

    Full Text Available Retrospective structure analysis of the European scientific and technological platforms – photonics, nanomaterials and photovoltaics – is represented from the point of view of their structure, interpenetration of subjects and dynamics of the changes which have occurred over the last ten years. Geoinformation component of the European optical education is analyzed. Criteria of research and the ontological models, giving the possibility to reveal correlations between development of scientific researches and industrial applications, on the one hand, and dynamics of educational programs on optics, photonics and optical informatics are described. Data on quantitative and high-quality changes in educational programs and appropriate academic degrees on the corresponding training directions are submitted. The material is illustrated with fragments of the associative card "Modern Directions of Researches in the Field of Optics, Photonics and Optical Information" and the conceptual card "European Scientific and Technological Platforms". The tag cloud is given in lower ontological level for two concrete subject domains of "Lasers" and "Optics Communications". Convergent and divergent trends, characteristic for the last decade development of optics, photonics and optical informatics in Europe are formulated. The main trends are: the directions and rates of the market development correlate with geoinformation data on the European scientific and educational tendencies; telecommunications and information technologies are dominating spheres of knowledge application and competences of the European experts in optics, photonics and optical informatics; the ontological structure of knowledge bases in the field of biophotonics, polymeric optics, photon crystals and "clever" optical metamaterials becomes more branched; a number of conceptual ontological knots in optics, photonics and optical informatics are gradually losing their relevance, being replaced by new

  15. Photonic devices and systems for optical signal processing

    Science.gov (United States)

    Parker, Michael A.; Swanson, Paul D.; Libby, Stuart I.

    1993-08-01

    This report is a compilation of the preliminary designs, fabrication, and test results for multiquantum well optical amplifiers, stripe and square broad area lasers, mode switched optical memory elements, optical RS flip flops, NOR gates, photodetectors, and acousto-optic switches.

  16. Protecting an optical qubit against photon loss

    CERN Document Server

    Wasilewski, W; Wasilewski, Wojciech; Banaszek, Konrad

    2007-01-01

    We consider quantum error-correction codes for multimode bosonic systems, such as optical fields, that are affected by amplitude damping. Such a process is a generalization of an erasure channel. We demonstrate that the most accessible method of transforming optical systems with the help of passive linear networks has limited usefulness in preparing and manipulating such codes. These limitations stem directly from the recoverability condition for one-photon loss. We introduce a three-photon code protecting against the first order of amplitude damping, i.e. a single photon loss, and discuss its preparation using linear optics with single-photon sources and conditional detection. Quantum state and process tomography in the code subspace can be implemented using passive linear optics and photon counting. An experimental proof-of-principle demonstration of elements of the proposed quantum error correction scheme for a one-photon erasure lies well within present technological capabilites.

  17. Photonic Downconversion and Optically Controlled Reconfigurable Antennas in mm-waves Wireless Networks

    DEFF Research Database (Denmark)

    da Costa, I. F.; Rodríguez Páez, Juan Sebastián; Vegas Olmos, Juan José

    2016-01-01

    We report on optically controlled antennas and photonic downconversion for mm-wave wireless communication applications. Experimental results demonstrate a transmission of 1.25 Gb/s using 28 and 38GHz frequency bands......We report on optically controlled antennas and photonic downconversion for mm-wave wireless communication applications. Experimental results demonstrate a transmission of 1.25 Gb/s using 28 and 38GHz frequency bands...

  18. Nonreciprocal conversion between microwave and optical photons in electro-optomechanical systems

    CERN Document Server

    Xu, Xun-Wei; Chen, Ai-Xi; Liu, Yu-xi

    2015-01-01

    We propose to demonstrate nonreciprocal conversion between microwave photons and optical photons in an electro-optomechanical system where a microwave mode and an optical mode are coupled indirectly via two non-degenerate mechanical modes. The nonreciprocal conversion is obtained in the broken time-reversal symmetry regime, where the conversion of photons from one frequency to the other is enhanced for constructive quantum interference while the conversion in the reversal direction is suppressed due to destructive quantum interference. It is interesting that the nonreciprocal response between the microwave and optical modes in the electro-optomechanical system appears at two different frequencies with opposite directions. The proposal can be used to realize nonreciprocal conversion between photons of any two distinctive modes with different frequencies. Moreover, the electro-optomechanical system can also be used to construct a three-port circulator for three optical modes with distinctively different frequen...

  19. Optical imaging with photonic hyper-crystals: Veselago lens and beyond

    Science.gov (United States)

    Huang, Zun; Narimanov, Evgenii E.

    2014-11-01

    We present an optical imaging system based on the recently introduced concept of photonic hyper-crystal, an artificial optical medium combining the properties of hyperbolic materials and photonic crystals. The proposed device functions as a Veselago lens with a nearly constant negative refractive index and substantially reduced image aberrations. The planar nature of this lens offers significant applications in nano-photolithography and hot-spots diagnosis in silicon-based semiconductor devices.

  20. Optical coherent and envelope detection for photonic wireless communication links

    DEFF Research Database (Denmark)

    Prince, Kamau; Zibar, Darko; Yu, Xianbin;

    We present two novel optical detection techniques for radio over fiber (RoF) communication links. Firstly, we present recent results obtained with optical digital coherent detection of optical phase-modulated ROF signals supporting error-free transmission over 25 km standard SMF with BPSK and QPSK...

  1. Biological inspiration in optics and photonics: harnessing nature's light manipulation strategies for multifunctional optical materials (Conference Presentation)

    Science.gov (United States)

    Kolle, Mathias; Sandt, Joseph D.; Nagelberg, Sara N.; Zarzar, Lauren D.; Kreysing, Moritz; Vukusic, Peter

    2016-03-01

    The precise control of light-matter interactions is crucial for the majority of known biological organisms in their struggle to survive. Many species have evolved unique methods to manipulate light in their environment using a variety of physical effects including pigment-induced, spectrally selective absorption or light interference in photonic structures that consist of micro- and nano-periodic material morphologies. In their optical performance, many of the known biological photonic systems are subject to selection criteria not unlike the requirements faced in the development of novel optical technology. For this reason, biological light manipulation strategies provide inspiration for the creation of tunable, stimuli-responsive, adaptive material platforms that will contribute to the development of multifunctional surfaces and innovative optical technology. Biomimetic and bio-inspired approaches for the manufacture of photonic systems rely on self-assembly and bottom-up growth techniques often combined with conventional top-down manufacturing. In this regard, we can benefit in several ways from highly sophisticated material solutions that have convergently evolved in various organisms. We explore design concepts found in biological photonic architectures, seek to understand the mechanisms underlying morphogenesis of bio-optical systems, aim to devise viable manufacturing strategies that can benefit from insight in biological formation processes and the use of established synthetic routines alike, and ultimately strive to realize new photonic materials with tailor-made optical properties. This talk is focused on the identification of biological role model photonic architectures, a brief discussion of recently developed bio-inspired photonic structures, including mechano-sensitive color-tunable photonic fibers and reconfigurable fluid micro-lenses. Potentially, early-stage results in studying and harnessing the structure-forming capabilities of living cells that

  2. Latest electro-optic and photonic devices for security and military applications

    Science.gov (United States)

    Jha, A. R.

    2006-09-01

    This paper reveals performance capabilities of state-of-the-art electro-optic and photonic devices, which are best suited for security and defense system applications. These devices can be used in battlefield, space surveillance, medical diagnosis, and detection of terrorist activities. Performance capabilities of fiber optic components for possible applications in WDM and DWDM systems are summarized. Photonic devices for covert military and security communication applications are identified with particular emphasis on performance and reliability. Performance parameters of Erbium-doped fiber amplifiers (EDFAs), Erbium-doped waveguide amplifiers (EDWAs), and optical hybrid amplifiers (OHAs) comprising of EDFAs and Raman amplifiers are discussed with emphasis on bandwidth, gain-flatness, data handling capability, channel capacity and cost-effectiveness. Performance parameters of very long wavelength infrared (VLWIR) detectors are summarized, which have potential applications in remote sensing and ballistic missile defense applications. Electro-optic and photonic devices best suited for security and defense applications are identified.

  3. Dispersion spreading of biphotons in optical fibres and two-photon interference

    CERN Document Server

    Brida, G; Genovèse, M; Gramegna, M; Krivitsky, L A

    2006-01-01

    We present the first observation of two-photon polarization interference structure in the second-order Glauber's correlation function of two-photon light generated via type-II spontaneous parametric down-conversion. In order to obtain this result, two-photon light is transmitted through an optical fibre and the coincidence distribution is analyzed by means of the START-STOP method. Beyond the experimental demonstration of an interesting effect in quantum optics, these results also have considerable relevance for quantum communications.

  4. Dispersion spreading of biphotons in optical fibers and two-photon interference.

    Science.gov (United States)

    Brida, G; Chekhova, M V; Genovese, M; Gramegna, M; Krivitsky, L A

    2006-04-14

    We present the first observation of two-photon polarization interference structure in the second-order Glauber correlation function of two-photon light generated via type-II spontaneous parametric down-conversion. In order to obtain this result, two-photon light is transmitted through an optical fiber and the coincidence distribution is analyzed by means of the start-stop method. Beyond the experimental demonstration of an interesting effect in quantum optics, these results also have considerable relevance for quantum communications.

  5. Bio-optofluidics and Bio-photonics: Programmable Phase Optics activities at DTU Fotonik

    DEFF Research Database (Denmark)

    Bañas, Andrew Rafael; Palima, Darwin; Pedersen, Finn

    We present ongoing research and development activities for constructing a compact next generation BioPhotonics Workstation and a Bio-optofluidic Cell Sorter (cell-BOCS) for all-optical micromanipulation platforms utilizing low numerical aperture beam geometries. Unlike conventional high NA optica...... the BioPhotonics Workstation platform more photon efficient by studying the 3D distribution of the counter propagating beams and utilizing the Generalized Phase Contrast (GPC) method for illuminating the applied spatial light modulators.......We present ongoing research and development activities for constructing a compact next generation BioPhotonics Workstation and a Bio-optofluidic Cell Sorter (cell-BOCS) for all-optical micromanipulation platforms utilizing low numerical aperture beam geometries. Unlike conventional high NA optical...

  6. Topological photonics: an observation of Landau levels for optical photons

    Science.gov (United States)

    Schine, Nathan; Ryou, Albert; Sommer, Ariel; Simon, Jonathan

    Creating photonic materials with nontrivial topological characteristics has seen burgeoning interest in recent years; however, a major route to topology, a magnetic field for continuum photons, has remained elusive. We present the first experimental realization of a bulk magnetic field for optical photons. By using a non-planar ring resonator, we induce an image rotation on each round trip through the resonator. This results in a Coriolis/Lorentz force and a centrifugal anticonfining force, the latter of which is cancelled by mirror curvature. Spatial- and energy- resolved spectroscopy tracks photonic eigenstates as residual trapping is reduced, and we observe photonic Landau levels as the eigenstates become degenerate. We will discuss the conical geometry of the resulting manifold for photon dynamics and present a measurement of the local density of states that is consistent with Landau levels on a cone. While our work already demonstrates an integer quantum Hall material composed of photons, we have ensured compatibility with strong photon-photon interactions, which will allow quantum optical studies of entanglement and correlation in manybody systems including fractional quantum Hall fluids. This work was supported by DOE, DARPA, and AFOSR.

  7. Quantum Optics with Quantum Dots in Photonic Wires: Basics and Application to “Ultrabright” Single Photon Sources

    DEFF Research Database (Denmark)

    Gérard, J. M.; Claudon, J.; Bleuse, J.

    2011-01-01

    We review recent experimental and theoretical results, which highlight the strong interest of the photonic wire (PW) geometry for quantum optics experiments with solid-state emitters, and for quantum optoelectronic devices. By studying single InAs QDs embedded within single-mode cylindrical GaAs PW......, we have noticeably observed a very strong (16 fold) inhibition of their spontaneous emission rate in the thin-wire limit, and a nearly perfect funnelling of their spontaneous emission into the guided mode for larger PWs. We present a novel single -photon-source based on the emission of a quantum dot...... embedded in an engineered PW, comprising a tapered tip so as to control the radiation pattern, and an integrated hybrid bottom mirror. Unlike microcavity-based devices, this source displays for the first time simultaneously a record-high efficiency (0.73 photon per pulse) and a very low g(2) parameter...

  8. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    This book covers modern photonics accessibly and discusses the basic physical principles underlying all the applications and technology of photonicsThis volume covers the basic physical principles underlying the technology and all applications of photonics from statistical optics to quantum optics. The topics discussed in this volume are: Photons in perspective; Coherence and Statistical Optics; Complex Light and Singular Optics; Electrodynamics of Dielectric Media; Fast and slow Light; Holography; Multiphoton Processes; Optical Angular Momentum; Optical Forces, Trapping and Manipulation; Pol

  9. Optical properties of periodic, quasi-periodic, and disordered one-dimensional photonic structures

    Science.gov (United States)

    Bellingeri, Michele; Chiasera, Alessandro; Kriegel, Ilka; Scotognella, Francesco

    2017-10-01

    Photonic structures are building blocks for many optical applications in which light manipulation is required spanning optical filtering, lasing, light emitting diodes, sensing and photovoltaics. The fabrication of one-dimensional photonic structures is achievable with a variety of different techniques, such as spin coating, sputtering, evaporation, pulse laser deposition, or extrusion. Such different techniques enable facile integration of the photonic structure with many types of devices. Photonic crystals are characterized by a spatial modulation of the dielectric constant on the length scale of the wavelength of light giving rise to energy ranges where light cannot propagate through the crystal - the photonic band gap. While mostly photonic crystals are referred to as periodic arrangements, in this review we aim to highlight as well how aperiodicity and disorder affects light modulation. In this review article, we introduce the concepts of periodicity, quasi-periodicity, and disorder in photonic crystals, focussing on the one-dimensional case. We discuss in detail the physical peculiarities, the fabrication techniques, and the applications of periodic, quasi-periodic, and disorder photonic structures, highlighting how the degree of crystallinity matters in the manipulation of light. We report different types of disorder in 1D photonic structures and we discuss their properties in terms of light transmission. We discuss the relationship between the average total transmission, in a range of wavelengths around the photonic band gap of the corresponding photonic crystal, and the homogeneity of the photonic structures, quantified by the Shannon index. Then we discuss the light transmission in structures in which the high refractive index layers are aggregated in clusters following a power law distribution. Finally, in the case of structures in which the high refractive index layers are aggregated in clusters with a truncated uniform distribution, we discuss: i) how

  10. Optical Isolation Can Occur in Linear and Passive Silicon Photonic Structures

    CERN Document Server

    Wang, Chen

    2012-01-01

    On-chip optical isolators play a key role in optical communications and computing based on silicon integrated photonic structures. Recently there have raised great attentions and hot controversies upon isolation of light via linear and passive photonic structures. Here we analyze the optical isolation properties of a silicon photonic crystal slab heterojunction diode by comparing the forward transmissivity and round-trip reflectivity of in-plane infrared light across the structure. The round-trip reflectivity is much smaller than the forward transmissivity, justifying good isolation. The considerable effective nonreciprocal transport of in-plane signal light in the linear and passive silicon optical diode is attributed to the information dissipation and selective modal conversion in the multiple-channel structure and has no conflict with reciprocal principle.

  11. Optical Properties and Wave Propagation in Semiconductor-Based Two-Dimensional Photonic Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Agio, Mario [Iowa State Univ., Ames, IA (United States)

    2002-12-31

    This work is a theoretical investigation on the physical properties of semiconductor-based two-dimensional photonic crystals, in particular for what concerns systems embedded in planar dielectric waveguides (GaAs/AlGaAs, GaInAsP/InP heterostructures, and self-standing membranes) or based on macro-porous silicon. The photonic-band structure of photonic crystals and photonic-crystal slabs is numerically computed and the associated light-line problem is discussed, which points to the issue of intrinsic out-of-lane diffraction losses for the photonic bands lying above the light line. The photonic states are then classified by the group theory formalism: each mode is related to an irreducible representation of the corresponding small point group. The optical properties are investigated by means of the scattering matrix method, which numerically implements a variable-angle-reflectance experiment; comparison with experiments is also provided. The analysis of surface reflectance proves the existence of selection rules for coupling an external wave to a certain photonic mode. Such rules can be directly derived from symmetry considerations. Lastly, the control of wave propagation in weak-index contrast photonic-crystal slabs is tackled in view of designing building blocks for photonic integrated circuits. The proposed designs are found to comply with the major requirements of low-loss propagation, high and single-mode transmission. These notions are then collected to model a photonic-crystal combiner for an integrated multi-wavelength-source laser.

  12. Quantum entanglement between an optical photon and a solid-state spin qubit.

    Science.gov (United States)

    Togan, E; Chu, Y; Trifonov, A S; Jiang, L; Maze, J; Childress, L; Dutt, M V G; Sørensen, A S; Hemmer, P R; Zibrov, A S; Lukin, M D

    2010-08-01

    Quantum entanglement is among the most fascinating aspects of quantum theory. Entangled optical photons are now widely used for fundamental tests of quantum mechanics and applications such as quantum cryptography. Several recent experiments demonstrated entanglement of optical photons with trapped ions, atoms and atomic ensembles, which are then used to connect remote long-term memory nodes in distributed quantum networks. Here we realize quantum entanglement between the polarization of a single optical photon and a solid-state qubit associated with the single electronic spin of a nitrogen vacancy centre in diamond. Our experimental entanglement verification uses the quantum eraser technique, and demonstrates that a high degree of control over interactions between a solid-state qubit and the quantum light field can be achieved. The reported entanglement source can be used in studies of fundamental quantum phenomena and provides a key building block for the solid-state realization of quantum optical networks.

  13. Optically Reconfigurable Photonic Devices

    CERN Document Server

    Wang, Qian; Gholipour, Behrad; Wang, Chih-Ming; Yuan, Guanghui; Teng, Jinghua; Zheludev, Nikolay I

    2015-01-01

    Optoelectronic components with adjustable parameters, from variable-focal-length lenses to spectral filters that can change functionality upon stimulation, have enormous technological importance. Tuning of such components is conventionally achieved by either micro- or nano-mechanical actuation of their consitutive parts, stretching or application of thermal stimuli. Here we report a new dielectric metasurface platform for reconfigurable optical components that are created with light in a non-volatile and reversible fashion. Such components are written, erased and re-written as two-dimensional binary or grey-scale patterns into a nanoscale film of phase change material by inducing a refractive-index-changing phase-transition with tailored trains of femtosecond pulses. We combine germanium-antimony-tellurium-based films optimized for high-optical-contrast ovonic switching with a sub-wavelength-resolution optical writing process to demonstrate technologically relevant devices: visible-range reconfigurable bi-chr...

  14. Optically switchable photonic metasurfaces

    Energy Technology Data Exchange (ETDEWEB)

    Waters, R. F.; MacDonald, K. F. [Centre for Photonic Metamaterials and Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ (United Kingdom); Hobson, P. A. [QinetiQ Ltd., Cody Technology Park, Farnborough, Hampshire GU14 0LX (United Kingdom); Zheludev, N. I. [Centre for Photonic Metamaterials and Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ (United Kingdom); Centre for Disruptive Photonic Technologies and The Photonics Institute, Nanyang Technological University, Singapore 637371 (Singapore)

    2015-08-24

    We experimentally demonstrate an optically switchable gallium-based metasurface, in which a reversible light-induced transition between solid and liquid phases occurring in a confined nanoscale surface layer of the metal drives significant changes in reflectivity and absorption. The metasurface architecture resonantly enhances the metal's “active plasmonic” phase-change nonlinearity by an order of magnitude, offering high contrast all-optical switching in the near-infrared range at low, μW μm{sup −2}, excitation intensities.

  15. Silicon photonic switch technology for optical networks in telecom and datacom areas

    Science.gov (United States)

    Nakamura, Shigeru; Yanagimachi, Shigeyuki; Takeshita, Hitoshi; Tajima, Akio

    2017-01-01

    As a promising platform technology for optical switches, silicon photonics is recently attracting much attention. In this paper, we demonstrate compact 8 × 8 silicon photonic switch modules with low loss, low polarization sensitivity, and low cross-talk properties. An optical circuit including 152 thermo-optical switch elements and spot size converters were formed within a silicon chip size of 12 mm × 14 mm. The developed module where a silicon photonic chip was assembled with a fiber array showed about 6-dB average excess optical loss, including optical coupling loss, on all 64 paths of the 8 × 8 optical switch. Measured polarization dependent loss was about 0.6 dB on average over 64 paths and cross-talk was less than -35 dB. These optical switch modules are intended for applying to ROADMs in telecom optical networks, but, the port count extensibility using multiple compact modules and the faster switching capability of the optical switch are also useful for datacenter applications where hybrid network scheme with electronic packet switches and optical circuit switches is intensively investigated.

  16. Si-based integrated optical and photonic microstructures

    Science.gov (United States)

    Leppihalme, Matti J.; Aalto, Timo T.; Katila, Pekka; Heimala, Paeivi; Blomberg, Martti; Tammela, Simo K. T.

    2000-03-01

    The design, fabrication and properties of various types of optical waveguides on silicon substrates as well as Fabry- Perot devices accomplished mainly at the Microelectronics Center of VTT Electronics are introduced. Different waveguides, directional couplers, multimode interference couplers, switches and power splitters have been studied. For waveguide fabrication on silicon substrates principally three materials were used depending on the application: silicon oxynitride, silicon on insulator (SOI). Silicon waveguides with large Si-core and a thermo-optical switch have been fabricated by SOI technology. Silicon Fabry-Perot structures have been fabricated for wavelength scanning applications in instrumentation and to measure chirp properties of lasers used in optical communications.

  17. Optically and Electrically Tunable Dirac Points and Zitterbewegung in Graphene-Based Photonic Superlattices

    CERN Document Server

    Deng, Hanying; Malomed, Boris A; Chen, Xianfeng; Panoiu, Nicolae C

    2015-01-01

    We demonstrate that graphene-based photonic superlattices provide a versatile platform for electrical and all-optical control of photonic beams with deep-subwavelength accuracy. Specifically, by inserting graphene sheets into periodic metallo-dielectric structures one can design optical superlattices that posses photonic Dirac points (DPs) at frequencies at which the spatial average of the permittivity of the superlattice, $\\bar{ \\varepsilon}$, vanishes. Similar to the well-known zero-$\\bar{n}$ bandgaps, we show that these zero-$\\bar{\\varepsilon}$ DPs are highly robust against structural disorder. We also show that, by tuning the graphene permittivity via the optical Kerr effect or electrical doping, one can induce a spectral variation of the DP exceeding \\SI{30}{\

  18. Photonic materials, structures and devices for Reststrahlen optics.

    Science.gov (United States)

    Feng, K; Streyer, W; Zhong, Y; Hoffman, A J; Wasserman, D

    2015-11-30

    We present a review of existing and potential next-generation far-infrared (20-60 μm) optical materials and devices. The far-infrared is currently one of the few remaining frontiers on the optical spectrum, a space underdeveloped and lacking in many of the optical and optoelectronic materials and devices taken for granted in other, more technologically mature wavelength ranges. The challenges associated with developing optical materials, structures, and devices at these wavelengths are in part a result of the strong phonon absorption in the Reststrahlen bands of III-V semiconductors that collectively span the far-infrared. More than just an underexplored spectral band, the far-IR may also be of potential importance for a range of sensing applications in astrochemistry, biology, and industrial and geological processes. Additionally, with a suitable far-IR optical infrastructure, it is conceivable that even more applications could emerge. In this review, we will present recent progress on far-infrared materials and phenomena such as phononic surface modes, engineered composite materials, and optoelectronic devices that have the potential to serve as the next generation of components in a far-infrared optical tool-kit.

  19. PLANAR OPTICAL WAVEGUIDES WITH PHOTONIC CRYSTAL STRUCTURE

    DEFF Research Database (Denmark)

    2003-01-01

    Planar optical waveguide comprising a core region and a cladding region comprising a photonic crystal material, said photonic crystal material having a lattice of column elements, wherein at least a number of said column elements are elongated substantially in an axial direction for said core reg...

  20. Optical experiments on 3D photonic crystals

    NARCIS (Netherlands)

    Koenderink, F.; Vos, W.

    2003-01-01

    Photonic crystals are optical materials that have an intricate structure with length scales of the order of the wavelength of light. The flow of photons is controlled in a manner analogous to how electrons propagate through semiconductor crystals, i.e., by Bragg diffraction and the formation of band

  1. Optical parametric oscillators in isotropic photonic crystals and cavities: 3D time domain analysis

    OpenAIRE

    Conti, Claudio; Di Falco, Andrea; Assanto, Gaetano

    2004-01-01

    We investigate optical parametric oscillations through four-wave mixing in resonant cavities and photonic crystals. The theoretical analysis underlines the relevant features of the phenomenon and the role of the density of states. Using fully vectorial 3D time-domain simulations, including both dispersion and nonlinear polarization, for the first time we address this process in a face centered cubic lattice and in a photonic crystal slab. The results lead the way to the development of novel p...

  2. Quantum nonlinear optics without photons

    Science.gov (United States)

    Stassi, Roberto; Macrı, Vincenzo; Kockum, Anton Frisk; Di Stefano, Omar; Miranowicz, Adam; Savasta, Salvatore; Nori, Franco

    2017-08-01

    Spontaneous parametric down-conversion is a well-known process in quantum nonlinear optics in which a photon incident on a nonlinear crystal spontaneously splits into two photons. Here we propose an analogous physical process where one excited atom directly transfers its excitation to a pair of spatially separated atoms with probability approaching 1. The interaction is mediated by the exchange of virtual rather than real photons. This nonlinear atomic process is coherent and reversible, so the pair of excited atoms can transfer the excitation back to the first one: the atomic analog of sum-frequency generation of light. The parameters used to investigate this process correspond to experimentally demonstrated values in ultrastrong circuit quantum electrodynamics. This approach can be extended to realize other nonlinear interatomic processes, such as four-atom mixing, and is an attractive architecture for the realization of quantum devices on a chip. We show that four-qubit mixing can efficiently implement quantum repetition codes and, thus, can be used for error-correction codes.

  3. Optical gaps, mode patterns and dipole radiation in two-dimensional aperiodic photonic structures

    Science.gov (United States)

    Boriskina, Svetlana V.; Gopinath, Ashwin; Negro, Luca Dal

    2009-05-01

    Based on the rigorous generalized Mie theory solution of Maxwell's equations for dielectric cylinders we theoretically investigate the optical properties of two-dimensional deterministic structures based on the Fibonacci, Thue-Morse and Rudin-Shapiro aperiodic sequences. In particular, we investigate bandgap formation and mode localization properties in aperiodic photonic structures based on the accurate calculation of their local density of states (LDOS). In addition, we explore the potential of photonic structures based on aperiodic order for the engineering of radiative rates and emission patterns in erbium-doped silicon-rich nitride photonic structures.

  4. Terahertz all-optical NOR and AND logic gates based on 2D photonic crystals

    Science.gov (United States)

    Parandin, Fariborz; Karkhanehchi, Mohammad Mehdi

    2017-01-01

    Usually, photonic crystals are used in designing optical logic gates. This study focuses on the design and simulation of an all optical NOR and AND logic gates based on two dimensional photonic crystals. The simplicity of the proposed structure is a characteristic feature of this designation. Finite Difference Time Domain (FDTD) as well as Plane Wave Expansion (PWE) methods have been used for this structural analysis. The simulation results revealed an increase in the interval between "zero" and "one" logic levels. Also, the simple structure and its small size demonstrate the usefulness of this structure in optical integrated circuits. The proposed optical gates can operate with a bit rate of about 1.54 Tbit/s.

  5. Digital Photonic Receivers for Wireless and Wireline Optical Fiber Transmission Links

    DEFF Research Database (Denmark)

    Guerrero Gonzalez, Neil

    investigations on the performance of data-aided optical channel estimation based on constant-amplitude zero-autocorrelation (CAZAC) sequences for 112 Gb/s polarization-diversity coherent optical fiber transmission links. The benefits of introducing digital signal processing functions in optically envelope......This PhD thesis addresses the design and performance evaluation of digital photonic receivers in hybrid optical fiber-wireless transmission systems. The research results presented in this thesis are pioneering in two areas. First, it is shown the first experimental demonstration of automatic...... demodulation of signals with mixed modulation formats and bit rates in a single digital coherent photonic receiver. The demodulated signals were generated on baseband and optical phase-modulated (PM) radio-over-fiber (RoF) systems. Secondly, it is presented the first known analytical and numerical...

  6. Realisation and optical engineering of linear variable bandpass filters in nanoporous anodic alumina photonic crystals.

    Science.gov (United States)

    Sukarno; Law, Cheryl Suwen; Santos, Abel

    2017-06-08

    We present the first realisation of linear variable bandpass filters in nanoporous anodic alumina (NAA-LVBPFs) photonic crystal structures. NAA gradient-index filters (NAA-GIFs) are produced by sinusoidal pulse anodisation and used as photonic crystal platforms to generate NAA-LVBPFs. The anodisation period of NAA-GIFs is modified from 650 to 850 s to systematically tune the characteristic photonic stopband of these photonic crystals across the UV-visible-NIR spectrum. Then, the nanoporous structure of NAA-GIFs is gradually widened along the surface under controlled conditions by wet chemical etching using a dip coating approach aiming to create NAA-LVBPFs with finely engineered optical properties. We demonstrate that the characteristic photonic stopband and the iridescent interferometric colour displayed by these photonic crystals can be tuned with precision across the surface of NAA-LVBPFs by adjusting the fabrication and etching conditions. Here, we envisage for the first time the combination of the anodisation period and etching conditions as a cost-competitive, facile, and versatile nanofabrication approach that enables the generation of a broad range of unique LVBPFs covering the spectral regions. These photonic crystal structures open new opportunities for multiple applications, including adaptive optics, hyperspectral imaging, fluorescence diagnostics, spectroscopy, and sensing.

  7. Controllable Photonic Band Gap and Defect Mode in a 1D CO2-Laser Optical Lattice

    Institute of Scientific and Technical Information of China (English)

    ZHOU Qi; YIN Jian-Ping

    2008-01-01

    We Dropose a new method to form a novel controllable photonic crystal with cold atoms and study the photonic band gap(PBG)of an infinite 1D CO2-laser optical lattice of 85Rb atoms under the condition of quantum coherence.A significant gap generated near the resonant frequency of the atom is founded and its dependence on physical parameters is also discussed.Using the eigenquation of defect mode,we calculate the defect mode when a defect is introduced into such a lattice.Our study shows that the proposed new method can be used to optically probe optical lattice in situ and to design some novel and controllable photonic crystals.

  8. Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering

    Directory of Open Access Journals (Sweden)

    Heck Martijn J.R.

    2017-01-01

    Full Text Available Technologies for efficient generation and fast scanning of narrow free-space laser beams find major applications in three-dimensional (3D imaging and mapping, like Lidar for remote sensing and navigation, and secure free-space optical communications. The ultimate goal for such a system is to reduce its size, weight, and power consumption, so that it can be mounted on, e.g. drones and autonomous cars. Moreover, beam scanning should ideally be done at video frame rates, something that is beyond the capabilities of current opto-mechanical systems. Photonic integrated circuit (PIC technology holds the promise of achieving low-cost, compact, robust and energy-efficient complex optical systems. PICs integrate, for example, lasers, modulators, detectors, and filters on a single piece of semiconductor, typically silicon or indium phosphide, much like electronic integrated circuits. This technology is maturing fast, driven by high-bandwidth communications applications, and mature fabrication facilities. State-of-the-art commercial PICs integrate hundreds of elements, and the integration of thousands of elements has been shown in the laboratory. Over the last few years, there has been a considerable research effort to integrate beam steering systems on a PIC, and various beam steering demonstrators based on optical phased arrays have been realized. Arrays of up to thousands of coherent emitters, including their phase and amplitude control, have been integrated, and various applications have been explored. In this review paper, I will present an overview of the state of the art of this technology and its opportunities, illustrated by recent breakthroughs.

  9. Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering

    Science.gov (United States)

    Heck, Martijn J. R.

    2017-01-01

    Technologies for efficient generation and fast scanning of narrow free-space laser beams find major applications in three-dimensional (3D) imaging and mapping, like Lidar for remote sensing and navigation, and secure free-space optical communications. The ultimate goal for such a system is to reduce its size, weight, and power consumption, so that it can be mounted on, e.g. drones and autonomous cars. Moreover, beam scanning should ideally be done at video frame rates, something that is beyond the capabilities of current opto-mechanical systems. Photonic integrated circuit (PIC) technology holds the promise of achieving low-cost, compact, robust and energy-efficient complex optical systems. PICs integrate, for example, lasers, modulators, detectors, and filters on a single piece of semiconductor, typically silicon or indium phosphide, much like electronic integrated circuits. This technology is maturing fast, driven by high-bandwidth communications applications, and mature fabrication facilities. State-of-the-art commercial PICs integrate hundreds of elements, and the integration of thousands of elements has been shown in the laboratory. Over the last few years, there has been a considerable research effort to integrate beam steering systems on a PIC, and various beam steering demonstrators based on optical phased arrays have been realized. Arrays of up to thousands of coherent emitters, including their phase and amplitude control, have been integrated, and various applications have been explored. In this review paper, I will present an overview of the state of the art of this technology and its opportunities, illustrated by recent breakthroughs.

  10. On the role of professional societies in optics and photonics education

    Science.gov (United States)

    Nantel, Marc; Robinson, Kathleen

    2012-10-01

    Professional associations can play an important role in the optics and photonics education landscape, enhancing the work done at traditional institutions like colleges and universities. In what way can they best contribute? Should they concentrate on school-children, on working scientists/engineers, or on undergraduate and graduate students? How does one measure the success of their programs? We will present an overview of some programs available, with an eye on their place in the continuum of optics and photonics education and training; we will place a particular emphasis on the need to measure the impact and outcomes of these learning tools, and will drill down on SPIE's case.

  11. Photonic crystal negative refractive optics.

    Science.gov (United States)

    Baba, Toshihiko; Abe, Hiroshi; Asatsuma, Tomohiko; Matsumoto, Takashi

    2010-03-01

    Photonic crystals (PCs) are multi-dimensional periodic gratings, in which the light propagation is dominated by Bragg diffraction that appears to be refraction at the flat surfaces of the PC. The refraction angle from positive to negative, perfectly or only partially obeying Snell's law, can be tailored using photonic band theory. The negative refraction enables novel prism, collimation, and lens effects. Because PCs usually consist of two transparent media, these effects occur at absorption-free frequencies, affording significant design flexibility for free-space optics. The PC slab, a high-index membrane with a two-dimensional airhole array, must be carefully designed to avoid reflection and diffraction losses. Light focusing based on negative refraction forms a parallel image of a light source, facilitating optical couplers and condenser lenses for wavelength demultiplexing. A compact wavelength demultiplexer can be designed by combining the prism and lens effects. The collimation effect is obtainable not only inside but also outside of the PC by optimizing negative refractive condition.

  12. Radio frequency phototube and optical clock: High resolution, high rate and highly stable single photon timing technique

    Energy Technology Data Exchange (ETDEWEB)

    Margaryan, Amur

    2011-10-01

    A new timing technique for single photons based on the radio frequency phototube and optical clock or femtosecond optical frequency comb generator is proposed. The technique has a 20 ps resolution for single photons, is capable of operating with MHz frequencies and achieving 10 fs instability level.

  13. Bio-optofluidics and Bio-photonics: Programmable Phase Optics activities at DTU Fotonik

    DEFF Research Database (Denmark)

    Bañas, Andrew Rafael; Palima, Darwin; Pedersen, Finn

    We present ongoing research and development activities for constructing a compact next generation BioPhotonics Workstation and a Bio-optofluidic Cell Sorter (cell-BOCS) for all-optical micromanipulation platforms utilizing low numerical aperture beam geometries. Unlike conventional high NA optical...... tweezers, the BioPhotonics workstation is e.g. capable of long range 3D manipulation. This enables a variety of biological studies such as manipulation of intricate microfabricated assemblies or for automated and parallel optofluidic cell sorting. To further reduce its overhead, we propose ways of making...

  14. Silicon photonics: Design, fabrication, and characterization of on-chip optical interconnects

    Science.gov (United States)

    Hsieh, I.-Wei

    In recent years, the research field of silicon photonics has been developing rapidly from a concept to a demonstrated technology, and has gathered much attention from both academia and industry communities. Its many potential applications in long-haul telecommunication, mid-range data-communication, on-chip optical interconnection networks, and nano-scale sensing as well as its compatibility with electronic integrated circuits have driven much effort in realizing silicon photonics both as a disruptive technology for existing markets and as an enabling technology for new ones. Despite the promising future of silicon photonics, many fundamental issues still remain to be understood---both in the linear- and nonlinear-optical regimes. There are also many engineering challenges to make silicon photonics the gold standard in photonic integrated circuits. In this thesis, we focus on the design, fabrication, and characterization of active and passive silicon-on-insulator (SOI) photonic devices. The SOI material system differs from most conventional optical material platforms because of its high-refractive-index-contrast, which enables engineers to design very compact integrated photonic networks with sub-micron transverse waveguide dimensions and sharp bends. On the other hand, because most analytical formulas for designing waveguide devices are valid only in low-index-contrast cases, SOI photonic devices need to be analyzed numerically for accurate results. The second chapter of this thesis describes some common numerical methods such as Beam Propagation Method (BPM) and Finite Element Method (FEM) for waveguide-design simulations, and presents two design studies based on these methods. The compatibility of silicon photonic integrated circuits with conventional CMOS fabrication technology is another important aspect that distinguishes silicon photonics from others such as III-V materials and lithium niobate. However, the requirements for fabricating silicon photonic

  15. Harnessing optical forces in integrated photonic circuits.

    Science.gov (United States)

    Li, Mo; Pernice, W H P; Xiong, C; Baehr-Jones, T; Hochberg, M; Tang, H X

    2008-11-27

    The force exerted by photons is of fundamental importance in light-matter interactions. For example, in free space, optical tweezers have been widely used to manipulate atoms and microscale dielectric particles. This optical force is expected to be greatly enhanced in integrated photonic circuits in which light is highly concentrated at the nanoscale. Harnessing the optical force on a semiconductor chip will allow solid state devices, such as electromechanical systems, to operate under new physical principles. Indeed, recent experiments have elucidated the radiation forces of light in high-finesse optical microcavities, but the large footprint of these devices ultimately prevents scaling down to nanoscale dimensions. Recent theoretical work has predicted that a transverse optical force can be generated and used directly for electromechanical actuation without the need for a high-finesse cavity. However, on-chip exploitation of this force has been a significant challenge, primarily owing to the lack of efficient nanoscale mechanical transducers in the photonics domain. Here we report the direct detection and exploitation of transverse optical forces in an integrated silicon photonic circuit through an embedded nanomechanical resonator. The nanomechanical device, a free-standing waveguide, is driven by the optical force and read out through evanescent coupling of the guided light to the dielectric substrate. This new optical force enables all-optical operation of nanomechanical systems on a CMOS (complementary metal-oxide-semiconductor)-compatible platform, with substantial bandwidth and design flexibility compared to conventional electrical-based schemes.

  16. Theoretical analysis and system design of two-photon based optical frequency standards

    Science.gov (United States)

    Burger, J. P.; Jivan, P.; Matthee, C.; Kritzinger, R.; Hussein, H.; Terra, O.

    2014-06-01

    The National Metrology Institute of South Africa (NMISA) is developing a new optical frequency standard based on the Rubidium two-photon transition in collaboration with the National Institute of Standards (NIS, Egypt) that will use both bulk and fiber optics in the system. This is system is called A-POD; an acronym for a portable photonic oscillator device. Rubidium two-photon standards can yield relatively simple and precise standards that are compatible with standard Ti:Sapphire optical frequency combs, as well as the need for a precise frequency standard in the optical telecommunication domain and for measurement of length with a visible beam. The robustness and transportability of the standard are important considerations for the optical frequency standard. This projects implements a framework for better two-photon standards that can be highly accurate, and possibly compete with much more complex clocks in the metrology environment, and especially so in the smaller national metrology institutes found in the developing world. This paper discusses the design constraints and the development considerations towards the optical setup. The robustness and transportability was greatly improved via the usage of optical fiber in the light source of the system, or even in atom-light interaction region. Of particular importance are the beam parameters inside the atomic interaction area. The extent of Doppler broadening and the intensity dependent line shift have to be optimized within practical extents, where both these aspects are affected by the beam shape and optical geometry. A way to fully treat the optical beam effects together with atomic movement is proposed. Furthermore a method is proposed to do real time compensation of intensity dependent light shift, which could have major applicability to frequency standards in general - the complexity is shifted from physical setups to digital signal processing, which is easily adaptable and stable.

  17. Ultrafast polarization optical switch constructed from one-dimensional photonic crystal and its performance analysis

    Institute of Scientific and Technical Information of China (English)

    WANG Tao; LI Qing; GAO DingShan

    2009-01-01

    All-optical switch with the ultrafast optical switching rate is a key device in the next generation optical network. In this article, we propose a polarization switch with ps switching time, which is constructed from one-dimensional resonant photonic crystal (1D RPC). The model of switch operating at 1.5 μm is established based on the optical stark effect (OSE). We calculate the performance indices of the switch and the influences of errors of periods and refractive index on the performance characteristics.

  18. Photonic crystal nanostructures for optical biosensing applications

    DEFF Research Database (Denmark)

    Dorfner, D.; Zabel, T.; Hürlimann, T.;

    2009-01-01

    We present the design, fabrication and optical investigation of photonic crystal (PhC) nanocavity drop filters for use as optical biosensors. The resonant cavity mode wavelength and Q-factor are studied as a function of the ambient refractive index and as a function of adsorbed proteins (bovine s...

  19. Integrated optical devices for photonics instrumentation systems

    Energy Technology Data Exchange (ETDEWEB)

    McWright, G.M.; Lafaw, D.A.; Lowry, M.; Tindall, W.

    1990-01-01

    We discuss the design, fabrication, and evaluation of high speed integrated optical devices for application to photonics instrumentation systems. Specifically, we have demonstrated integrated optical devices with bandwidths in excess of 25 GHz and implemented these devices in single-shot, streak camera based recording schemes. 5 refs., 6 figs.

  20. DEFI Photonique: a French national training project for optics and photonics industry

    Science.gov (United States)

    Boéri, E.; Cormier, E.

    2014-07-01

    The French government supports a structuring project for French Photonics. This project name DEFI Photonique is carried by the CNOP (National Committee for Optics and Photonics) for a period of 5 years (2013-2017). One of the most important tasks is dedicated to training for industry, particularly SMEs. The project aims at elaborating a training offer based on the experience of PYLA, the Bordeaux training facility for Optics and Photonics, and create a national network throughout all the French Photonics clusters. The project plans to initiate, develop and coordinate training courses based on the players skills in the sector, in particular regional clusters, depending on their field of excellence. This deployment of training courses should enable a mesh structure both thematically and geographically. Collaborative work between training players in each pole, including joint actions, will facilitate access to training courses for companies, especially SMEs. A market survey is already being conducted in 2013 in photonics industry and application sectors. Implementation of actions involves all French photonics clusters as well as professional organizations. We will rely on the feedback we have with PYLA to show how training courses can be a strategic tool for development of technologies and industries. At this stage of the DEFI Photonique project we will be able to present the results of different analyses that have been conducted in key sectors and plans that will be implemented for the realization of the first actions.

  1. Optical tweezers and multiphoton microscopies integrated photonic tool for mechanical and biochemical cell processes studies

    Science.gov (United States)

    de Thomaz, A. A.; Faustino, W. M.; Fontes, A.; Fernandes, H. P.; Barjas-Castro, M. d. L.; Metze, K.; Giorgio, S.; Barbosa, L. C.; Cesar, C. L.

    2007-09-01

    The research in biomedical photonics is clearly evolving in the direction of the understanding of biological processes at the cell level. The spatial resolution to accomplish this task practically requires photonics tools. However, an integration of different photonic tools and a multimodal and functional approach will be necessary to access the mechanical and biochemical cell processes. This way we can observe mechanicaly triggered biochemical events or biochemicaly triggered mechanical events, or even observe simultaneously mechanical and biochemical events triggered by other means, e.g. electricaly. One great advantage of the photonic tools is its easiness for integration. Therefore, we developed such integrated tool by incorporating single and double Optical Tweezers with Confocal Single and Multiphoton Microscopies. This system can perform 2-photon excited fluorescence and Second Harmonic Generation microscopies together with optical manipulations. It also can acquire Fluorescence and SHG spectra of specific spots. Force, elasticity and viscosity measurements of stretched membranes can be followed by real time confocal microscopies. Also opticaly trapped living protozoas, such as leishmania amazonensis. Integration with CARS microscopy is under way. We will show several examples of the use of such integrated instrument and its potential to observe mechanical and biochemical processes at cell level.

  2. Mitigating Photon Jitter in Optical PPM Communication

    Science.gov (United States)

    Moision, Bruce

    2008-01-01

    A theoretical analysis of photon-arrival jitter in an optical pulse-position-modulation (PPM) communication channel has been performed, and now constitutes the basis of a methodology for designing receivers to compensate so that errors attributable to photon-arrival jitter would be minimized or nearly minimized. Photon-arrival jitter is an uncertainty in the estimated time of arrival of a photon relative to the boundaries of a PPM time slot. Photon-arrival jitter is attributable to two main causes: (1) receiver synchronization error [error in the receiver operation of partitioning time into PPM slots] and (2) random delay between the time of arrival of a photon at a detector and the generation, by the detector circuitry, of a pulse in response to the photon. For channels with sufficiently long time slots, photon-arrival jitter is negligible. However, as durations of PPM time slots are reduced in efforts to increase throughputs of optical PPM communication channels, photon-arrival jitter becomes a significant source of error, leading to significant degradation of performance if not taken into account in design. For the purpose of the analysis, a receiver was assumed to operate in a photon- starved regime, in which photon counts follow a Poisson distribution. The analysis included derivation of exact equations for symbol likelihoods in the presence of photon-arrival jitter. These equations describe what is well known in the art as a matched filter for a channel containing Gaussian noise. These equations would yield an optimum receiver if they could be implemented in practice. Because the exact equations may be too complex to implement in practice, approximations that would yield suboptimal receivers were also derived.

  3. Picosecond Photon Echoes Detected by Optical Mixing

    NARCIS (Netherlands)

    Hesselink, Wim H.; Wiersma, Douwe A.

    1978-01-01

    Picosecond photon echoes are shown to be easily detected by optical mixing. The synchronized picosecond excitation and probe pulses are generated by amplifying pulses from two dye lasers, synchronously pumped by a mode-locked argon-ion laser. The technique is used to study optical dephasing in the o

  4. Perspectives of mobile learning in optics and photonics

    Science.gov (United States)

    Curticapean, Dan; Christ, Andreas; Feißt, Markus

    2010-08-01

    Mobile learning (m-learning) can be considered as a new paradigm of e-learning. The developed solution enables the presentation of animations and 3D virtual reality (VR) on mobile devices and is well suited for mobile learning. Difficult relations in physics as well as intricate experiments in optics can be visualised on mobile devices without need for a personal computer. By outsourcing the computational power to a server, the coverage is worldwide.

  5. Whispering-gallery microcavity semiconductor lasers suitable for photonic integrated circuits and optical interconnects

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The characteristics of whispering-gallery-like modes in the equilateral triangle and square microresonators are introduced,including directional emission triangle and square microlasers connected to an output waveguide.We propose a photonic interconnect scheme by connecting two directional emission microlasers with an optical waveguide on silicon integrated circuit chip.The measurement indicates that the triangle microlasers can work as a resonance enhanced photodetector for optical interconnect.

  6. Semiconductor quantum optics with tailored photonic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Laucht, Arne

    2011-06-15

    This thesis describes detailed investigations of the effects of photonic nanostructures on the light emission properties of self-assembled InGaAs quantum dots. Nanoscale optical cavities and waveguides are employed to enhance the interaction between light and matter, i.e. photons and excitons, up to the point where optical non-linearities appear at the quantum (single photon) level. Such non-linearities are an essential component for the realization of hardware for photon based quantum computing since they can be used for the creation and detection of non-classical states of light and may open the way to new genres of quantum optoelectronic devices such as optical modulators and optical transistors. For single semiconductor quantum dots in photonic crystal nanocavities we investigate the coupling between excitonic transitions and the highly localized mode of the optical cavity. We explore the non-resonant coupling mechanisms which allow excitons to couple to the cavity mode, even when they are not spectrally in resonance. This effect is not observed for atomic cavity quantum electrodynamics experiments and its origin is traced to phonon-assisted scattering for small detunings ({delta}E<{proportional_to}5 meV) and a multi-exciton-based, Auger-like process for larger detunings ({delta}E >{proportional_to}5 meV). For quantum dots in high-Q cavities we observe the coherent coupling between exciton and cavity mode in the strong coupling regime of light-matter interaction, probe the influence of pure dephasing on the coherent interaction at high excitation levels and high lattice temperatures, and examine the coupling of two spatially separated quantum dots via the exchange of real and virtual photons mediated by the cavity mode. Furthermore, we study the spontaneous emission properties of quantum dots in photonic crystal waveguide structures, estimate the fraction of all photons emitted into the propagating waveguide mode, and demonstrate the on-chip generation of

  7. Highly efficient optical filter based on vertically coupled photonic crystal cavity and bus waveguide

    Science.gov (United States)

    Debnath, Kapil; Welna, Karl; Ferrera, Marcello; Deasy, Kieran; Lidzey, David G.; O'Faolain, Liam

    2013-01-01

    We experimentally demonstrate a new optical filter design based on a vertically coupled photonic crystal cavity and a bus waveguide monolithically integrated on the silicon on insulator platform. The use of a vertically coupled waveguide gives flexibility in the choice of the waveguide material and dimensions, dramatically lowering the insertion loss while achieving very high coupling efficiencies to wavelength scale resonators

  8. Highly efficient optical filter based on vertically coupled Photonic crystal cavity and bus waveguide

    CERN Document Server

    Debnath, Kapil; Ferrera, Marcello; Deasy, Kieran; Lidzey, David G; O'Faolain, Liam

    2012-01-01

    We experimentally demonstrate a new optical filter design based on a vertically coupled photonic crystal cavity and a bus waveguide monolithically integrated on the silicon on insulator platform. The use of a vertically coupled waveguide gives flexibility in the choice of the waveguide material and dimensions, dramatically lowering the insertion loss while achieving very high coupling efficiencies to wavelength scale resonators

  9. Quantum state engineering, purification, and number-resolved photon detection with high-finesse optical cavities

    DEFF Research Database (Denmark)

    Nielsen, Anne Ersbak Bang; Muschik, Christine A.; Giedke, Geza

    2010-01-01

    We propose and analyze a multifunctional setup consisting of high-finesse optical cavities, beam splitters, and phase shifters. The basic scheme projects arbitrary photonic two-mode input states onto the subspace spanned by the product of Fock states |n>|n> with n=0,1,2,.... This protocol does no...

  10. Entangled-photon Fourier optics

    CERN Document Server

    Abouraddy, A F; Sergienko, A V; Teich, M C; Abouraddy, Ayman F.; Saleh, Bahaa E. A.; Sergienko, Alexander V.; Teich, Malvin C.

    2002-01-01

    Entangled photons, generated by spontaneous parametric down-conversion from a second-order nonlinear crystal, present a rich potential for imaging and image-processing applications. Since this source is an example of a three-wave mixing process, there is more flexibility in the choices of illumination and detection wavelengths and in the placement of object(s) to be imaged. Moreover, this source is entangled, a fact that allows for imaging configurations and capabilities that cannot be achieved using classical sources of light. In this paper we examine a number of imaging and image-processing configurations that can be realized using this source. The formalism that we utilize facilitates the determination of the dependence of imaging resolution on the physical parameters of the optical arrangement.

  11. Optical waveguiding and applied photonics technological aspects, experimental issue approaches and measurements

    CERN Document Server

    Massaro, Alessandro

    2012-01-01

    Optoelectronics--technology based on applications light such as micro/nano quantum electronics, photonic devices, laser for measurements and detection--has become an important field of research. Many applications and physical problems concerning optoelectronics are analyzed in Optical Waveguiding and Applied Photonics.The book is organized in order to explain how to implement innovative sensors starting from basic physical principles. Applications such as cavity resonance, filtering, tactile sensors, robotic sensor, oil spill detection, small antennas and experimental setups using lasers are a

  12. Exploring Divisibility and Summability of 'Photon' Wave Packets in Nonlinear Optical Phenomena

    Science.gov (United States)

    Prasad, Narasimha; Roychoudhuri, Chandrasekhar

    2009-01-01

    Formulations for second and higher harmonic frequency up and down conversions, as well as multi photon processes directly assume summability and divisibility of photons. Quantum mechanical (QM) interpretations are completely congruent with these assumptions. However, for linear optical phenomena (interference, diffraction, refraction, material dispersion, spectral dispersion, etc.), we have a profound dichotomy. Most optical engineers innovate and analyze all optical instruments by propagating pure classical electromagnetic (EM) fields using Maxwell s equations and gives only lip-service to the concept "indivisible light quanta". Further, irrespective of linearity or nonlinearity of the phenomena, the final results are always registered through some photo-electric or photo-chemical effects. This is mathematically well modeled by a quadratic action (energy absorption) relation. Since QM does not preclude divisibility or summability of photons in nonlinear & multi-photon effects, it cannot have any foundational reason against these same possibilities in linear optical phenomena. It implies that we must carefully revisit the fundamental roots behind all light-matter interaction processes and understand the common origin of "graininess" and "discreteness" of light energy.

  13. Adaptive optics in multiphoton microscopy: comparison of two, three and four photon fluorescence.

    Science.gov (United States)

    Sinefeld, David; Paudel, Hari P; Ouzounov, Dimitre G; Bifano, Thomas G; Xu, Chris

    2015-11-30

    We demonstrate adaptive optics system based on nonlinear feedback from 3- and 4-photon fluorescence. The system is based on femtosecond pulses created by soliton self-frequency shift of a 1550-nm fiber-based femtosecond laser together with micro-electro-mechanical system (MEMS) phase spatial light modulator (SLM). We perturb the 1020-segment SLM using an orthogonal Walsh sequence basis set with a modified version of three-point phase shifting interferometry. We show the improvement after aberrations correction in 3-photon signal from fluorescent beads. In addition, we compare the improvement obtained in the same adaptive optical system for 2-, 3- and 4-photon fluorescence using dye pool. We show that signal improvement resulting from aberration correction grows exponentially as a function of the order of nonlinearity.

  14. Coupled optical defect microcavities in one-dimensional photonic crystals and quasi-normal modes

    NARCIS (Netherlands)

    Maksimovic, Milan; Lohmeyer, Manfred; van Groesen, Embrecht W.C.

    2008-01-01

    We analyze coupled optical defect cavities realized in finite one-dimensional photonic crystals (PC). Viewing these as open systems, where waves are permitted to leave the structures, one obtains eigenvalue problems for complex frequencies (eigenvalues) and quasi-normal modes (QNM) (eigenfunctions).

  15. Coupled optical defect microcavities in 1D photonic crystals and quasi-normal modes

    NARCIS (Netherlands)

    Maksimovic, Milan; Lohmeyer, Manfred; van Groesen, Embrecht W.C.; Greiner, C.M.; Waechter, C.A.

    2008-01-01

    We analyze coupled optical defect cavities realized in finite one-dimensional Photonic Crystals. Viewing these as open systems where waves are permitted to leave the structures, one obtains eigenvalue problems for complex frequencies (eigenvalues) and Quasi-Normal-Modes (eigenfunctions). Single

  16. Tunable RF photonic phase shifter based on optical DSB modulation and FBG filtering

    Science.gov (United States)

    Wei, Yongfeng; Huang, Shanguo; Sun, Kai; Gao, Xinlu; Gu, Wanyi

    2016-01-01

    A broadband RF photonic phase shifter that can achieve the tunable phase shift with little RF amplitude variation is presented. It is based on homodyne mixing technique. The beating between phase-modulated optical carrier and the sidebands can generate RF signal with desired phase shift. Results show the RF phase shifter can achieve a continuous phase shift with low amplitude variation.

  17. Tuning optical and three photon absorption properties in graphene oxide-polyvinyl alcohol free standing films

    Science.gov (United States)

    Karthikeyan, B.; Udayabhaskar, R.; Hariharan, S.

    2016-07-01

    We report the optical and nonlinear optical properties of graphene oxide (GO)-polyvinyl alcohol (PVA) free standing films. The composite polymer films were prepared in ex-situ method. The variation in optical absorption spectra and optical constants with the amount of GO loading was noteworthy from the optical absorption spectroscopic studies. Nonlinear optical studies done at 532 nm using 5 ns laser pulses show three photon absorption like behaviour. Both steady state and time resolved fluorescence studies reveal that the GO was functioning as a pathway for the decay of fluorescence from PVA. This is attributed to the energy level modifications of GO through hydroxyl groups with PVA. Raman spectroscopy also supports the interaction between GO and PVA ions through OH radicals.

  18. Optical fiber loops and helices: tools for integrated photonic device characterization and microfluidic trapping

    Science.gov (United States)

    Ren, Yundong; Zhang, Rui; Ti, Chaoyang; Liu, Yuxiang

    2016-09-01

    Tapered optical fibers can deliver guided light into and carry light out of micro/nanoscale systems with low loss and high spatial resolution, which makes them ideal tools in integrated photonics and microfluidics. Special geometries of tapered fibers are desired for probing monolithic devices in plane as well as optical manipulation of micro particles in fluids. However, for many specially shaped tapered fibers, it remains a challenge to fabricate them in a straightforward, controllable, and repeatable way. In this work, we fabricated and characterized two special geometries of tapered optical fibers, namely fiber loops and helices, that could be switched between one and the other. The fiber loops in this work are distinct from previous ones in terms of their superior mechanical stability and high optical quality factors in air, thanks to a post-annealing process. We experimentally measured an intrinsic optical quality factor of 32,500 and a finesse of 137 from a fiber loop. A fiber helix was used to characterize a monolithic cavity optomechanical device. Moreover, a microfluidic "roller coaster" was demonstrated, where microscale particles in water were optically trapped and transported by a fiber helix. Tapered fiber loops and helices can find various applications ranging from on-the-fly characterization of integrated photonic devices to particle manipulation and sorting in microfluidics.

  19. Photonics and application of dipyrrinates in the optical devices

    Science.gov (United States)

    Aksenova, Iu; Bashkirtsev, D.; Prokopenko, A.; Kuznetsova, R.; Dudina, N.; Berezin, M.

    2016-08-01

    In this paper spectral-luminescent, lasing, photochemical, and sensory characteristics of a number of Zn(II) and B(III) coordination complexes with dipyrrinates with different structures are presented. We have discussed relations of the structure of investigated compounds and formed solvates with their optical characteristics. The results showed that alkyl substituted dipyrrinates derivatives have excellent luminescent characteristics and demonstrated effective lasing upon excitation of Nd:YAG-laser. They can be used as active media for liquid tunable lasers. Zinc and boron fluoride complexes of dipyrrinates with heavy atoms in structure don't have fluorescence but have long-lived emission due to increased nonradiative intersystem processes in the excited state by the mechanism of a heavy atom. For solid samples based on halogenated complexes was found dependency of the long-lived emission intensity of the oxygen concentration in gas flow. The presence of line segment indicates the possibility of the use of these complexes as a basis for creation of optical sensors for oxygen. Moreover, results of a study of halogen-substituted aza-complexes under irradiation are presented. Such complexes are promising for the creating media for generation of singlet oxygen (1O2), which is important for photodynamic therapy in medicine and photocatalytic reactions in the industry.

  20. Photonic Crystal Optical Tweezers with High Efficiency for Live Biological Samples and Viability Characterization.

    Science.gov (United States)

    Jing, Peifeng; Wu, Jingda; Liu, Gary W; Keeler, Ethan G; Pun, Suzie H; Lin, Lih Y

    2016-01-27

    We propose and demonstrate a new optical trapping method for single cells that utilizes modulated light fields to trap a wide array of cell types, including mammalian, yeast, and Escherichia coli cells, on the surface of a two-dimensional photonic crystal. This method is capable of reducing the required light intensity, and thus minimizing the photothermal damage to living cells, thereby extending cell viability in optical trapping and cell manipulation applications. To this end, a thorough characterization of cell viability in optical trapping environments was performed. This study also demonstrates the technique using spatial light modulation in patterned manipulation of live cell arrays over a broad area.

  1. Optical and acoustic sensing using Fano-like resonances in dual phononic and photonic crystal plate

    Energy Technology Data Exchange (ETDEWEB)

    Amoudache, Samira [Institut d' Electronique, de Microélectronique et de Nanotechnologie, Université de Lille 1, 59655 Villeneuve d' Ascq (France); Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, B.P. 17 RP, 15000 Tizi-Ouzou (Algeria); Moiseyenko, Rayisa [Department of Physics, Technical University of Denmark, DTU Physics, Building 309, DK-2800 Kongens Lyngby (Denmark); Pennec, Yan, E-mail: yan.pennec@univ-lille1.fr; Rouhani, Bahram Djafari [Institut d' Electronique, de Microélectronique et de Nanotechnologie, Université de Lille 1, 59655 Villeneuve d' Ascq (France); Khater, Antoine [Institut des Molécules et Matériaux du Mans (IMMM), UMR CNRS 6283, l' UNAM, Université du Maine, 72085 Le Mans (France); Lucklum, Ralf [Institute of Micro and Sensor Systems (IMOS), Otto-von-Guericke-University, P.O. Box 4120, D-39016 Magdeburg (Germany); Tigrine, Rachid [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, B.P. 17 RP, 15000 Tizi-Ouzou (Algeria)

    2016-03-21

    We perform a theoretical study based on the transmissions of optical and acoustic waves normally impinging to a periodic perforated silicon plate when the embedded medium is a liquid and show the existence of Fano-like resonances in both cases. The signature of the resonances appears as well-defined asymmetric peaks in the phononic and photonic transmission spectra. We show that the origin of the Fano-like resonances is different with respect to the nature of the wave. In photonic, the origin comes from guided modes in the photonic plate while in phononic we show that it comes from the excitation of standing waves confined inside the cavity coming from the deformation of the water/silicon edges of the cylindrical inclusion. We finally use these features for sensing and show ultra-sensitivity to the light and sound velocities for different concentrations of analytes.

  2. Emerging Low-Dimensional Materials for Nonlinear Optics and Ultrafast Photonics.

    Science.gov (United States)

    Liu, Xiaofeng; Guo, Qiangbing; Qiu, Jianrong

    2017-02-22

    Low-dimensional (LD) materials demonstrate intriguing optical properties, which lead to applications in diverse fields, such as photonics, biomedicine and energy. Due to modulation of electronic structure by the reduced structural dimensionality, LD versions of metal, semiconductor and topological insulators (TIs) at the same time bear distinct nonlinear optical (NLO) properties as compared with their bulk counterparts. Their interaction with short pulse laser excitation exhibits a strong nonlinear character manifested by NLO absorption, giving rise to optical limiting or saturated absorption associated with excited state absorption and Pauli blocking in different materials. In particular, the saturable absorption of these emerging LD materials including two-dimensional semiconductors as well as colloidal TI nanoparticles has recently been utilized for Q-switching and mode-locking ultra-short pulse generation across the visible, near infrared and middle infrared wavelength regions. Beside the large operation bandwidth, these ultrafast photonics applications are especially benefit from the high recovery rate as well as the facile processibility of these LD materials. The prominent NLO response of these LD materials have also provided new avenues for the development of novel NLO and photonics devices for all-optical control as well as optical circuits beyond ultrafast lasers.

  3. Silicon Photonics Research in Hong Kong: Microresonator Devices and Optical Nonlinearities

    Science.gov (United States)

    Poon, Andrew W.; Zhou, Linjie; Xu, Fang; Li, Chao; Chen, Hui; Liang, Tak-Keung; Liu, Yang; Tsang, Hon K.

    In this review paper we showcase recent activities on silicon photonics science and technology research in Hong Kong regarding two important topical areas-microresonator devices and optical nonlinearities. Our work on silicon microresonator filters, switches and modulators have shown promise for the nascent development of on-chip optoelectronic signal processing systems, while our studies on optical nonlinearities have contributed to basic understanding of silicon-based optically-pumped light sources and helium-implanted detectors. Here, we review our various passive and electro-optic active microresonator devices including (i) cascaded microring resonator cross-connect filters, (ii) NRZ-to-PRZ data format converters using a microring resonator notch filter, (iii) GHz-speed carrier-injection-based microring resonator modulators and 0.5-GHz-speed carrier-injection-based microdisk resonator modulators, and (iv) electrically reconfigurable microring resonator add-drop filters and electro-optic logic switches using interferometric resonance control. On the nonlinear waveguide front, we review the main nonlinear optical effects in silicon, and show that even at fairly modest average powers two-photon absorption and the accompanied free-carrier linear absorption could lead to optical limiting and a dramatic reduction in the effective lengths of nonlinear devices.

  4. Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs

    DEFF Research Database (Denmark)

    Couny, F.; Benabid, F.; Roberts, John;

    2007-01-01

    crystal fiber. The waveguidance results not from a photonic band gap but from the inhibited coupling between the core and cladding modes. The spectrum consists of up to 45 high-order Stokes and anti-Stokes lines and is generated by driving the confined gas with a single, moderately powerful (10-kilowatt......Ultrabroad coherent comb-like optical spectra spanning several octaves are a chief ingredient in the emerging field of attoscience. We demonstrate generation and guidance of a three-octave spectral comb, spanning wavelengths from 325 to 2300 nanometers, in a hydrogen-filled hollow-core photonic...

  5. Optical bound state in the continuum in the one-dimensional photonic crystal slab: Theory and experiment

    DEFF Research Database (Denmark)

    Sadrieva, Z. F.; Sinev, I. S.; Samusev, A. K.;

    2016-01-01

    In this work, we implement CMOS-compatible one-dimensional photonic structure based on silicon-on-insulator wafer supporting optical bound states in the continuum at telecommunication wavelengths — localized optical state with energy lying above the light line of the surrounding space. Such high-......-Q states are very promising for many potential applications ranging from on-chip photonics and optical communications to biological sensing and photovoltaics....

  6. Photonic Rutherford Scattering: A Classical and Quantum Mechanical Analogy in Ray- and Wave-Optics

    CERN Document Server

    Selmke, Markus

    2012-01-01

    Using Fermat's least optical path principle the family of ray-trajectories through a special but common type of a gradient refractive index lens, n(r)=n_0+\\Delta n R/r, is solved analytically. The solution, i.e. the ray-equation r(phi), is shown to be closely related to the famous Rutherford scattering and therefore termed photonic Rutherford scattering. It is shown that not only do these classical limits correspond, but also the wave-mechanical pictures coincide: The time-independent Schr\\"odingier equation and the inhomogeneous Helmholz equation permit the same mapping between massive particle scattering and diffracted optical scalar waves. Scattering of narrow wave-packets finally recovers the classical trajectories. The analysis suggests that photothermal single particle microscopy infact measures photonic Rutherford scattering in specific limits.

  7. Slow and fast light effects in semiconductor optical amplifiers for applications in microwave photonics

    DEFF Research Database (Denmark)

    Xue, Weiqi

    This thesis analyzes semiconductor optical amplifiers based slow and fast light effects with particular focus on the applications in microwave photonics. We conceive novel ideas and demonstrate a great enhancement of light slow down. Furthermore, by cascading several slow light stages, >360 degree...... microwave phase shifts over a bandwidth of several tens of gigahertz are achieved. These also satisfy the basic requirements of microwave photonic systems. As an application demonstration, a tunable microwave notch filter is realized, where slow light based phase shifters provide 100% fractional tuning over...

  8. Photonic transistor and router using a single quantum-dot-confined spin in a single-sided optical microcavity.

    Science.gov (United States)

    Hu, C Y

    2017-03-28

    The future Internet is very likely the mixture of all-optical Internet with low power consumption and quantum Internet with absolute security guaranteed by the laws of quantum mechanics. Photons would be used for processing, routing and com-munication of data, and photonic transistor using a weak light to control a strong light is the core component as an optical analogue to the electronic transistor that forms the basis of modern electronics. In sharp contrast to previous all-optical tran-sistors which are all based on optical nonlinearities, here I introduce a novel design for a high-gain and high-speed (up to terahertz) photonic transistor and its counterpart in the quantum limit, i.e., single-photon transistor based on a linear optical effect: giant Faraday rotation induced by a single electronic spin in a single-sided optical microcavity. A single-photon or classical optical pulse as the gate sets the spin state via projective measurement and controls the polarization of a strong light to open/block the photonic channel. Due to the duality as quantum gate for quantum information processing and transistor for optical information processing, this versatile spin-cavity quantum transistor provides a solid-state platform ideal for all-optical networks and quantum networks.

  9. Photonic transistor and router using a single quantum-dot-confined spin in a single-sided optical microcavity

    Science.gov (United States)

    Hu, C. Y.

    2017-01-01

    The future Internet is very likely the mixture of all-optical Internet with low power consumption and quantum Internet with absolute security guaranteed by the laws of quantum mechanics. Photons would be used for processing, routing and com-munication of data, and photonic transistor using a weak light to control a strong light is the core component as an optical analogue to the electronic transistor that forms the basis of modern electronics. In sharp contrast to previous all-optical tran-sistors which are all based on optical nonlinearities, here I introduce a novel design for a high-gain and high-speed (up to terahertz) photonic transistor and its counterpart in the quantum limit, i.e., single-photon transistor based on a linear optical effect: giant Faraday rotation induced by a single electronic spin in a single-sided optical microcavity. A single-photon or classical optical pulse as the gate sets the spin state via projective measurement and controls the polarization of a strong light to open/block the photonic channel. Due to the duality as quantum gate for quantum information processing and transistor for optical information processing, this versatile spin-cavity quantum transistor provides a solid-state platform ideal for all-optical networks and quantum networks. PMID:28349960

  10. Siloxane-based photonic structures and their application in optic and optoelectronic devices

    Science.gov (United States)

    Pudiš, Dušan; Šušlik, Łuboš; Jandura, Daniel; Goraus, Matej; Figurová, Mária; Martinček, Ivan; Gašo, Peter

    2016-12-01

    Polymer based photonics brings simple and cheap solutions often with interesting results. We present capabilities of some siloxanes focusing on polydimethylsiloxane (PDMS) with unique mechanical and optical properties. In combination of laser lithography technologies with siloxane embossing we fabricate different grating structures with one- and two-dimensional symmetry. Concept of PDMS based thin membranes with patterned surface as an effective diffraction element for modification of radiation pattern diagram of light emitting diodes is here shown. Also the PDMS was used as an alternative material for fabrication of complicated waveguide with implemented Bragg grating. For lab-on-chip applications, we patterned PDMS microstructures for microfluidic and micro-optic devices.

  11. Efforts of the National Center for Optics and Photonics Education (OP-TEC) to prepare the technician workforce for photonics industries

    Science.gov (United States)

    Hull, Dan; Souders, John

    2009-06-01

    The mission of the National Center for Optics and Photonics Education (OP-TEC) is to create a secondary-to-postsecondary "pipeline" of highly qualified and strongly motivated students and to empower high schools and community colleges to meet the urgent need for technicians in optics and photonics. This paper describes the methodologies and processes OP-TEC has developed to carry out that mission. A recently completed assessment of the need for optics and photonics technicians in American industry concluded that U.S. colleges lack the capacity to produce an adequate supply. OP-TEC's challenge is to close the gap between the supply of and demand for photonics technicians. To help increase college capacity, OP-TEC has developed and implemented a recruitment process for initiating photonics programs in U.S. colleges. This paper describes the recruitment process and its results, along with the relevant support services provided by OP-TEC. In support of its mission, OP-TEC has developed curriculum and instructional materials that prepare students for the photonics workforce. To help ensure that completers of U.S. photonics programs are workforce ready, OP-TEC uses a skill-standards-based process for developing curriculum and instructional materials. This paper reviews the foundational skill standards and explains the process for integrating them into the materials development process. The curriculum and instructional materials that result from this process are also described.1

  12. Optical Magnetometer Incorporating Photonic Crystals

    Science.gov (United States)

    Kulikov, Igor; Florescu, Lucia

    2007-01-01

    According to a proposal, photonic crystals would be used to greatly increase the sensitivities of optical magnetometers that are already regarded as ultrasensitive. The proposal applies, more specifically, to a state-of-the-art type of quantum coherent magnetometer that exploits the electromagnetically-induced-transparency (EIT) method for determining a small change in a magnetic field indirectly via measurement of the shift, induced by that change, in the hyperfine levels of resonant atoms exposed to the field.

  13. Photonic nanowires for quantum optics

    DEFF Research Database (Denmark)

    Munsch, M.; Claudon, J.; Bleuse, J.;

    Photonic nanowires (PWs) are simple dielectric structures for which a very efficient and broadband spontaneous emission (SE) control has been predicted [1]. Recently, a single photon source featuring a record high efficiency was demonstrated using this geometry [2]. Using time-resolved micro......-photoluminescence, we investigate directly the SE of single InAs quantum dots (QDs) embedded in GaAs PWs and demonstrate performances that fully confirm the theoretical predictions [3]. In addition, we discuss recent results obtained on elliptical wires that ensure an efficient control of the photon polarization [4......, equivalent to the one obtained in state-of-the-art 2D photonic crystals, is measured. Moreover, a PW featuring an elliptical section provides a very efficient control over the polarization of the emitted photon. In that case, only one guided mode, with a linear polarization oriented along the major axis...

  14. Tuning the optical forces on- and off-resonance in microspherical photonics

    CERN Document Server

    Li, Yangcheng; Jofre, Ana; Astratov, Vasily N

    2015-01-01

    Light pressure effect has been discovered long ago and has been used as an optical method to manipulate microand nanoparticles. It is usually considered as a nonresonant effect determined by the transfer of the momentum of light. However, recently we have observed that large polystyrene microspheres of 15-20 {\\mu}m diameters supporting high quality whispering gallery resonances can be optically propelled in water at an extraordinary high velocity along tapered fibers under resonant conditions. In this work we compare on- and off-resonant optical forces in microspherical photonics by controlling the detuning between the laser emission line and whispering gallery resonances. Our approach involves manipulation with microspheres using conventional optical tweezers and their advanced spectroscopic characterization in fiber-integrated setups. We demonstrate dramatic difference in the optical forces exerted on microspheres in the on-resonant and off-resonant cases. This method can be used to study spectral propertie...

  15. Noise analysis in photonic true time delay systems based on broadband optical source and dispersion components.

    Science.gov (United States)

    Xue, Xiaoxiao; Wen, He; Zheng, Xiaoping; Zhang, Hanyi; Guo, Yili; Zhou, Bingkun

    2009-02-01

    The noise in photonic true time delay systems based on broadband optical source and dispersion components is investigated. It is found that the beat noise induced by the optical source begins to dominate and grows far larger than other noise terms quickly, as long as the detected optical power is above some certain value P(thr). When the system dispersion is nonzero, the output carrier-to-noise ratio (CNR) will change periodically with the optical bandwidth due to the noise power increment and the dispersion induced radio frequency signal power degradation. The maximum CNR is the peak value of the first period. For a set of specified system conditions, the P(thr) is calculated to be -21 dBm, and the optimal optical bandwidth is 0.8 nm, at which the maximum CNR is 93.3 dB by considering the noise in a 1 Hz bandwidth. The results are verified experimentally.

  16. Linear-optic heralded photon source

    Science.gov (United States)

    Ferreira da Silva, Thiago; Amaral, Gustavo C.; Temporão, Guilherme P.; von der Weid, Jean Pierre

    2015-09-01

    We present a heralded photon source based only on linear optics and weak coherent states. By time-tuning a Hong-Ou-Mandel interferometer fed with frequency-displaced coherent states, the output photons can be synchronously heralded following sub-Poisson statistics, which is indicated by the second-order correlation function [ g2(0 )=0.556 ]. The absence of phase-matching restrictions makes the source widely tunable, with 100-nm spectral tunability on the telecom bands. The technique presents yield comparable to state-of-the-art spontaneous parametric down-conversion-based sources, with high coherence and fiber-optic quantum communication compatibility.

  17. Quantum optics with quantum dots in photonic nanowires

    DEFF Research Database (Denmark)

    We will review recent studies performed on InAs quantum dots embedded in GaAs photonic wires, which highlight the strong interest of the photonic wire geometry for quantum optics experiments and quantum optoelectronic devices.......We will review recent studies performed on InAs quantum dots embedded in GaAs photonic wires, which highlight the strong interest of the photonic wire geometry for quantum optics experiments and quantum optoelectronic devices....

  18. Quantum Optics with Quantum Dots in Photonic Nanowires

    DEFF Research Database (Denmark)

    Gérard, J.-M.; Claudon, J.; Bleuse, J.;

    2011-01-01

    We review recent studies performed on InAs quantum dots embedded in GaAs photonic wires, which highlight the strong interest of the photonic wire geometry for quantum optics experiments and quantum optoelectronic devices.......We review recent studies performed on InAs quantum dots embedded in GaAs photonic wires, which highlight the strong interest of the photonic wire geometry for quantum optics experiments and quantum optoelectronic devices....

  19. Two-photon or higher-order absorbing optical materials and methods of use

    Science.gov (United States)

    Marder, Seth (Inventor); Perry, Joseph (Inventor)

    2012-01-01

    Compositions capable of simultaneous two-photon absorption and higher order absorptivities are provided. Compounds having a donor-pi-donor or acceptor-pi-acceptor structure are of particular interest, where the donor is an electron donating group, acceptor is an electron accepting group, and pi is a pi bridge linking the donor and/or acceptor groups. The pi bridge may additionally be substituted with electron donating or withdrawing groups to alter the absorptive wavelength of the structure. Also disclosed are methods of generating an excited state of such compounds through optical stimulation with light using simultaneous absorption of photons of energies individually insufficient to achieve an excited state of the compound, but capable of doing so upon simultaneous absorption of two or more such photons. Applications employing such methods are also provided, including controlled polymerization achieved through focusing of the light source(s) used.

  20. Coherent optical propagation and ultrahigh resolution mass sensor based on photonic molecules optomechanics

    Science.gov (United States)

    Chen, Hua-Jun; Chen, Chang-Zhao; Li, Yang; Fang, Xian-Wen; Tang, Xu-Dong

    2017-01-01

    We theoretically demonstrate the coherent optical propagation properties based on a photonic molecules optomechanics. With choosing a suitable detuning of the pump field from optomechanical cavity resonance, both the slow- and fast-light effect of the probe field appear in the system. The coupling strength of the two cavities play a key role, which affords a quantum channel and influences the width of the transparency window. Based on the photonic molecules optomechanical system, a high resolution mass sensor is also proposed. The mass of external nanoparticles deposited onto the cavity can be measured straightforward via tracking the mechanical resonance frequency shifts due to mass changes in the probe transmission spectrum. Compared with the single-cavity optomechanics mass sensors, the mass resolution is improved significantly due to the cavity-cavity coupling. The photonic molecules optomechanics provide a new platform for on-chip applications in quantum information processing and ultrahigh resolution sensor devices.

  1. Quantum simulations with photons and polaritons merging quantum optics with condensed matter physics

    CERN Document Server

    2017-01-01

    This book reviews progress towards quantum simulators based on photonic and hybrid light-matter systems, covering theoretical proposals and recent experimental work. Quantum simulators are specially designed quantum computers. Their main aim is to simulate and understand complex and inaccessible quantum many-body phenomena found or predicted in condensed matter physics, materials science and exotic quantum field theories. Applications will include the engineering of smart materials, robust optical or electronic circuits, deciphering quantum chemistry and even the design of drugs. Technological developments in the fields of interfacing light and matter, especially in many-body quantum optics, have motivated recent proposals for quantum simulators based on strongly correlated photons and polaritons generated in hybrid light-matter systems. The latter have complementary strengths to cold atom and ion based simulators and they can probe for example out of equilibrium phenomena in a natural driven-dissipative sett...

  2. Photonic processing and realization of an all-optical digital comparator based on semiconductor optical amplifiers

    Science.gov (United States)

    Singh, Simranjit; Kaur, Ramandeep; Kaler, Rajinder Singh

    2015-01-01

    A module of an all-optical 2-bit comparator is analyzed and implemented using semiconductor optical amplifiers (SOAs). By employing SOA-based cross phase modulation, the optical XNOR logic is used to get an A=B output signal, where as AB¯ and A¯B> logics operations are used to realize A>B and Aoptical high speed networks and computing systems.

  3. No Photon Left Behind: Advanced Optics at ARPA-E for Buildings and Solar Energy

    Science.gov (United States)

    Branz, Howard M.

    2015-04-01

    Key technology challenges in building efficiency and solar energy utilization require transformational optics, plasmonics and photonics technologies. We describe advanced optical technologies funded by the Advanced Research Projects Agency - Energy. Buildings technologies include a passive daytime photonic cooler, infra-red computer vision mapping for energy audit, and dual-band electrochromic windows based on plasmonic absorption. Solar technologies include novel hybrid energy converters that combine high-efficiency photovoltaics with concentrating solar thermal collection and storage. Because the marginal cost of thermal energy storage is low, these systems enable generation of inexpensive and dispatchable solar energy that can be deployed when the sun doesn't shine. The solar technologies under development include nanoparticle plasmonic spectrum splitting, Rugate filter interference structures and photovoltaic cells that can operate efficiently at over 400° C.

  4. Optical Microfibre Based Photonic Components and Their Applications in Label-Free Biosensing

    Directory of Open Access Journals (Sweden)

    Pengfei Wang

    2015-07-01

    Full Text Available Optical microfibre photonic components offer a variety of enabling properties, including large evanescent fields, flexibility, configurability, high confinement, robustness and compactness. These unique features have been exploited in a range of applications such as telecommunication, sensing, optical manipulation and high Q resonators. Optical microfibre biosensors, as a class of fibre optic biosensors which rely on small geometries to expose the evanescent field to interact with samples, have been widely investigated. Due to their unique properties, such as fast response, functionalization, strong confinement, configurability, flexibility, compact size, low cost, robustness, ease of miniaturization, large evanescent field and label-free operation, optical microfibres based biosensors seem a promising alternative to traditional immunological methods for biomolecule measurements. Unlabeled DNA and protein targets can be detected by monitoring the changes of various optical transduction mechanisms, such as refractive index, absorption and surface plasmon resonance, since a target molecule is capable of binding to an immobilized optical microfibre. In this review, we critically summarize accomplishments of past optical microfibre label-free biosensors, identify areas for future research and provide a detailed account of the studies conducted to date for biomolecules detection using optical microfibres.

  5. PHOTONICS AND OPTICAL INFORMATICS IN EUROPE: TRENDS OF 2003–2013

    OpenAIRE

    Livshits, I.L.; A. V. Olshevskaya; V. A. Zhogina; E. A. Denisova; G. L. Markina; U. H. Paul

    2014-01-01

    Retrospective structure analysis of the European scientific and technological platforms – photonics, nanomaterials and photovoltaics – is represented from the point of view of their structure, interpenetration of subjects and dynamics of the changes which have occurred over the last ten years. Geoinformation component of the European optical education is analyzed. Criteria of research and the ontological models, giving the possibility to reveal correlations between development of scientific r...

  6. Photonic Devices and Systems for Optical Signal Processing

    Science.gov (United States)

    1993-08-01

    68 Figure 8.3: Spectra for the Gain Guided Arrayed Laser ...................................................................... 69 Figure 8.4...The GGA laser is extinguished in the direction F for reverse bias voltages Vf larger than -2.5 volts. Applying reverse 68 IN MA ID mAV ,& -05 WAVELENGTH...beam etching of GaAs," J. Vac. Sci. Technol., Vol. B8. No. 5, pp. 1075-1079, September/October 1990. 18. Marcuse , D., Theory of Dielectric Optical

  7. Optical Bloch oscillations and Zener tunneling of Airy beams in ionic-type photonic lattices.

    Science.gov (United States)

    Xiao, Fajun; Zhu, Weiren; Shang, Wuyun; Wang, Meirong; Zhang, Peng; Liu, Sheng; Premaratne, Malin; Zhao, Jianlin

    2016-08-01

    We report on the existence of optical Bloch oscillations (OBOs) and Zener tunneling (ZT) of Airy beams in ionic-type photonic lattices with a refractive index ramp. Different from their counterparts in uniform lattices, Airy beams undergoing OBOs show an alternatively switched concave and convex trajectory as well as a periodical revival of input beam profiles. Moreover, the ionic-type photonic lattice established in photorefractive crystal exhibits a reconfigurable lattice structure, which provides a flexible way to tune the amplitude and period of the OBOs. Remarkably, it is demonstrated that the band gap of the lattice can be readily controlled by rotating the lattice inducing beam, which forces the ZT rate to follow two significant different decay curves amidst decreasing index gradient. Our results open up new possibilities for all-optical switching, routing and manipulation of Airy beams.

  8. Erbium doped tellurite photonic crystal optical fiber

    Science.gov (United States)

    Osorio, Sergio P.; Fernandez, Enver; Rodriguez, Eugenio; Cesar, Carlos L.; Barbosa, Luiz C.

    2005-04-01

    In this work we present the fabrication of tellurite glass photonic crystal fiber doped with a very large erbium concentration. Tellurite glasses are important hosts for rare earth ions due to its very high solubility, which allows up to 10,000 ppm Er3+ concentrations. The photonic crystal optical fibers and tellurite glasses can be, therefore, combined in an efficient way to produce doped fibers for large bandwidth optical amplifiers. The preform was made of a 10 mm external diameter tellurite tube filled with an array of non-periodic tellurite capillaries and an erbium-doped telluride rod that constitute the fiber core. The preform was drawn in a Heathway Drawing Tower, producing fibers with diameters between 120 - 140 μm. We show optical microscope photography of the fiber"s transverse section. The ASE spectra obtained with a spectra analyzer show a red shift as the length of the optical fiber increases.

  9. Harnessing Light with Photonic Nanowires: Fundamentals and Applications to Quantum Optics

    DEFF Research Database (Denmark)

    Claudon, Julien; Gregersen, Niels; Lalanne, Philippe;

    2013-01-01

    The efficient feeding of spontaneous emission (SE) into a controlled optical mode lies at the heart of a new generation of advanced optoelectronic devices, such as low-threshold microlasers and bright sources of quantum light. In the solid state, single-mode emission was first demonstrated by using...... the Purcell effect that arises in a resonant microcavity. Recently, the need to relax the constraints inherent to such a narrow-band approach has motivated large effort to develop structures ensuring broadband and efficient SE control. This minireview deals with fiber-like photonic nanowires, a class of high....... As an application in the field of quantum optics, we review the realization of an ultrabright single-photon source. This first device was based on a self-assembled quantum dot embedded in a wire antenna realized with a top-down fabrication process. Considering recent advances in the direct growth of tapered...

  10. Ultralow loss, high Q, four port resonant couplers for quantum optics and photonics.

    Science.gov (United States)

    Rokhsari, H; Vahala, K J

    2004-06-25

    We demonstrate a low-loss, optical four port resonant coupler (add-drop geometry), using ultrahigh Q (>10(8)) toroidal microcavities. Different regimes of operation are investigated by variation of coupling between resonator and fiber taper waveguides. As a result, waveguide-to-waveguide power transfer efficiency of 93% (0.3 dB loss) and nonresonant insertion loss of 0.02% (photonic networks.

  11. Student chapters: effective dissemination networks for informal optics and photonics education

    Science.gov (United States)

    Fabian, Dirk; Vermeulen, Nathalie; Van Overmeire, Sara

    2009-06-01

    Professional societies sponsor student chapters in order to foster scholarship and training in photonics at the college and graduate level, but they are also an excellent resource for disseminating photonics knowledge to pre-college students and teachers. Starting in 2006, we tracked the involvement of SPIE student chapter volunteers in informal pre-college education settings. Chapter students reached 2800, 4900 and 11800 pre-college students respectively from 2006-2008 with some form of informal instruction in optics and photonics. As a case study, the EduKit, a self-contained instruction module featuring refractive and diffractive micro-optics developed by the European Network of Excellence on Micro-Optics (NEMO), was disseminated through student chapters in Argentina, Belgium, Canada, China, Colombia, India, Latvia, Mexico, Peru, Russia, Singapore, South Africa, and the United States. We tracked the movement of this material through the network, up to the student-teacher feedback stage. The student chapter network provided rapid dissemination of the material, translation of the material into the local language, and leveraged existing chapter contacts in schools to provide an audience. We describe the student chapter network and its impact on the development of the EduKit teaching module.

  12. Photonic crystal dumbbell resonators in silicon and aluminum nitride integrated optical circuits

    CERN Document Server

    Pernice, W H P; Tang, H X

    2014-01-01

    Tight confinement of light in photonic cavities provides an efficient template for the realization of high optical intensity with strong field gradients. Here we present such a nanoscale resonator device based on a one-dimensional photonic crystal slot cavity. Our design allows for realizing highly localized optical modes with theoretically predicted Q factors in excess of 106. The design is demonstrated experimentally both in a high-contrast refractive index system (silicon), as well as in medium refractive index contrast devices made from aluminum nitride. We achieve extinction ratio of 21dB in critically coupled resonators using an on-chip readout platform with loaded Q factors up to 33,000. Our approach holds promise for realizing ultra-small opto-mechanical resonators for high-frequency operation and sensing applications.

  13. Optical dephasing by uncorrelated phonon scattering to librations. An optical and picosecond photon echo study of a photosite of pentacene in benzoic acid

    NARCIS (Netherlands)

    Molenkamp, L.W.; Wiersma, Douwe A.

    1984-01-01

    We report results of an optical and picosecond photon echo study on the zero-phonon line of photosite I of pentacene in benzoic acid. The results show that optical dephasing in this system proceeds via uncorrelated phonon scattering processes from the ground and optically excited state to singly exc

  14. Siloxane based Organic-Inorganic Hybrid Polymers and their Applications for Nanostructured Optical/Photonic Components

    Directory of Open Access Journals (Sweden)

    Rahmat Hidayat

    2014-11-01

    Full Text Available We have studied the preparation of organic-inorganic hybrid polymer precursors by sol-gel technique and their utilization for nanostructured optical components for photonic applications. The gel polymer precursors were prepared from siloxane modified by polymerizable acrylate groups, which can be processed further by photopolymerization process. Molecular structure characterizations by means of the FTIR measurements indicate the conversion of C=C bonds into C-C bonds after photopolymerization. This bond conversion produces high cross-linking between the organic and inorganic moieties, resulting in thermally stable and chemically resistant thin polymer layer which provide unique advantages of this material for particular optical/photonic applications. By employing laser interference technique, gratings with periodicity between 400-1000 nm have been successfully fabricated. Application of those sub-micron periodicity of grating structure as active elements in optically pumped polymer laser system and Surface Plasmon Resonance (SPR based measurement system have been also explored. The experimental results therefore also show the potential applications of this hybrid polymer as a building material for micro/nano-photonics components.

  15. Silicon Photonics: All-Optical Devices for Linear and Nonlinear Applications

    Science.gov (United States)

    Driscoll, Jeffrey B.

    Silicon photonics has grown rapidly since the first Si electro-optic switch was demonstrated in 1987, and the field has never grown more quickly than it has over the past decade, fueled by milestone achievements in semiconductor processing technologies for low loss waveguides, high-speed Si modulators, Si lasers, Si detectors, and an enormous toolbox of passive and active integrated devices. Silicon photonics is now on the verge of major commercialization breakthroughs, and optical communication links remain the force driving integrated and Si photonics towards the first commercial telecom and datacom transceivers; however other potential and future applications are becoming uncovered and refined as researchers reveal the benefits of manipulating photons on the nanoscale. This thesis documents an exploration into the unique guided-wave and nonlinear properties of deeply-scaled high-index-contrast sub-wavelength Si waveguides. It is found that the tight confinement inherent to single-mode channel waveguides on the silicon-on-insulator platform lead to a rich physics, which can be leveraged for new devices extending well beyond simple passive interconnects and electro-optic devices. The following chapters will concentrate, in detail, on a number of unique physical features of Si waveguides and extend these attributes towards new and interesting devices. Linear optical properties and nonlinear optical properties are investigated, both of which are strongly affected by tight optical confinement of the guided waveguide modes. As will be shown, tight optical confinement directly results in strongly vectoral modal components, where the electric and magnetic fields of the guided modes extend into all spatial dimensions, even along the axis of propagation. In fact, the longitudinal electric and magnetic field components can be just as strong as the transverse fields, directly affecting the modal group velocity and energy transport properties since the longitudinal fields

  16. Stimulated Brillouin scattering gain bandwidth reduction and applications in microwave photonics and optical signal processing

    Science.gov (United States)

    Preussler, Stefan; Schneider, Thomas

    2016-03-01

    Stimulated Brillouin scattering (SBS) is one of the most dominant nonlinear effects in standard single-mode fibers and its unique spectral characteristics, especially the narrow bandwidth, enable many different applications. Most of the applications would benefit from a narrower bandwidth. Different methods for the bandwidth reduction of SBS in optical fibers are presented and discussed. A bandwidth reduction down to 17% of the natural gain can be achieved by the superposition of the gain with two losses or the utilization of a multistage system. Furthermore, applications in the field of microwave photonics and optical signal processing like high-resolution spectroscopy of communication signals, the storage of optical data packets as well as the processing of frequency combs including generation of millimeter waves and ideal sinc-shaped Nyquist pulses are presented.

  17. Mie scattering of Laguerre-Gaussian beams: photonic nanojets and near-field optical vortices

    CERN Document Server

    Kiselev, Alexei D

    2014-01-01

    We study Mie scattering of Laguerre-Gaussian (LG) light beams remodelled using the method of far-field matching. The theoretical results are used to analyze the optical field in the near-field region for purely azimuthal LG beams characterized by a nonzero azimuthal mode number $m_{LG}$. The mode number $m_{LG}$ is found to have a profound effect on the morphology of photonic nanojets and the near-field structure of optical vortices associated with the components of the electric field.

  18. A three-photon microscope with adaptive optics for deep-tissue in vivo structural and functional brain imaging

    Science.gov (United States)

    Tao, Xiaodong; Lu, Ju; Lam, Tuwin; Rodriguez, Ramiro; Zuo, Yi; Kubby, Joel

    2017-02-01

    We developed a three-photon adaptive optics add-on to a commercial two-photon laser scanning microscope. We demonstrated its capability for structural and functional imaging of neurons labeled with genetically encoded red fluorescent proteins or calcium indicators deep in the living mouse brain with cellular and subcellular resolution.

  19. Two-photon microscopy with diffractive optical elements and spatial light modulators

    Directory of Open Access Journals (Sweden)

    Brendon O Watson

    2010-09-01

    Full Text Available Two-photon microscopy is often performed at slow frame rates, due to the need to serially scan all points in a field of view with a single laser beam. To overcome this problem, we have developed two optical methods that split and multiplex a laser beam across the sample. In the first method a diffractive optical element (DOE generates a fixed number of beamlets that are scanned in parallel, resulting in a corresponding increase in speed, or in signal-to-noise ratio, in time-lapse measurements. The second method uses a computer-controlled spatial light modulator (SLM, to generate any arbitrary spatio-temporal light pattern. With an SLM one can image or photostimulate any predefined region of the image, such as neurons or dendritic spines. In addition, SLMs can be used to mimic a large number of optical transfer functions, including light path corrections or as adaptive optical devices.

  20. Harnessing Light with Photonic Nanowires: Fundamentals and Applications to Quantum Optics (ChemPhysChem 11/2013)

    DEFF Research Database (Denmark)

    Claudon, Julien; Gregersen, Niels; Lalanne, Philippe

    2013-01-01

    Artist view of an optical antenna based on a tailored photonic wire, as it is discussed by J. Claudon et al. on p. 2393. The antenna exploits both the broadband spontaneous emission control offered by a single-mode photonic wire and the engineering of its far-field emission, using a planar mirror...

  1. Design and analysis of polarization independent all-optical logic gates in silicon-on-insulator photonic crystal

    Science.gov (United States)

    Rani, Preeti; Kalra, Yogita; Sinha, R. K.

    2016-09-01

    In this paper, we have reported design and analysis of polarization independent all optical logic gates in silicon-on-insulator photonic crystal consisting of two dimensional honeycomb lattices with two different air holes exhibiting photonic band gap for both TE and TM mode in the optical communication window. The proposed structures perform as an AND optical logic gate and all the optical logic gates based on the phenomenon of interference. The response period and bit rate for TE and TM polarizations at a wavelength of 1.55 μm show improved results as reported earlier.

  2. Demonstration of tunable microwave photonic notch filters using slow and fast light effects in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Sales, Salvador; Mørk, Jesper

    2009-01-01

    We introduce a novel scheme based on slow and fast light effects in semiconductor optical amplifiers, to implement a microwave photonic notch filter with ~100% fractional tuning range at a microwave frequency of 30 GHz.......We introduce a novel scheme based on slow and fast light effects in semiconductor optical amplifiers, to implement a microwave photonic notch filter with ~100% fractional tuning range at a microwave frequency of 30 GHz....

  3. Demonstration of tunable microwave photonic notch filters using slow and fast light effects in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Sales, Salvador; Mørk, Jesper;

    2009-01-01

    We introduce a novel scheme based on slow and fast light effects in semiconductor optical amplifiers, to implement a microwave photonic notch filter with ~100% fractional tuning range at a microwave frequency of 30 GHz.......We introduce a novel scheme based on slow and fast light effects in semiconductor optical amplifiers, to implement a microwave photonic notch filter with ~100% fractional tuning range at a microwave frequency of 30 GHz....

  4. Enhanced and preferential optical trapping in a slot-graphite photonic crystal (Conference Presentation)

    Science.gov (United States)

    Krishnan, Aravind; Povinelli, Michelle L.; Wu, Shao-Hua; Huang, Ningfeng

    2016-09-01

    Optical trapping serves as a powerful tool for the manipulation of matter on the nanoscale and ultra-precise measurement of weak forces. However, the applicability of these tools is limited by the available laser power and trap efficiency. We utilized the strong confinement of light in a slot-graphite photonic crystal to develop high-efficiency parallel trapping over a large area. The stiffness is several orders of magnitude higher than conventional optical tweezers and two orders of magnitude higher than our previously demonstrated on-chip, near field traps. We demonstrate the ability to trap both dielectric and metallic nanoparticles of sub-micron size. We find that the growth kinetics of nanoparticle arrays on the slot-graphite template depends on particle size. Smaller particles diffuse more, more readily occupying the available trap sites and inhibiting the trapping of larger particles. Smaller particles also sink more into the holes in the photonic crystal, resulting in stronger mechanical confinement and a deeper potential well. We use these differences to selectively trap one type of particle out of a binary colloidal mixture, creating an efficient optical sieve. This technique has rich potential in the fields of trace analysis, optical diagnostics, and enrichment and sorting of microscopic entities and molecules.

  5. Active photonic sensor communication cable for field application of optical data and power transmission

    Science.gov (United States)

    Suthau, Eike; Rieske, Ralf; Zerna, Thomas

    2014-10-01

    Omitting electrically conducting wires for sensor communication and power supply promises protection for sensor systems and monitored structures against lightning or high voltages, prevention of explosion hazards, and reduction of susceptibility to tampering. The ability to photonically power remote systems opens up the full range of electrical sensors. Power-over-fiber is an attractive option in electromagnetically sensitive environments, particularly for longterm, maintenance-free applications. It can deliver uninterrupted power sufficient for elaborate sensors, data processing or even actuators alongside continuous high speed data communication for remote sensor application. This paper proposes an active photonic sensor communication system, which combines the advantages of optical data links in terms of immunity to electromagnetic interference (EMI), high bandwidth, hardiness against tampering or eavesdropping, and low cable weight with the robustness one has come to expect from industrial or military electrical connectors. An application specific integrated circuit (ASIC) is presented that implements a closed-loop regulation of the sensor power supply to guarantee continuous, reliable data communications while maintaining a highly efficient, adaptive sensor supply scheme. It is demonstrated that the resulting novel photonic sensor communication cable can handle sensors and actuators differing orders of magnitude with respect to power consumption. The miniaturization of the electro-optical converters and driving electronics is as important to the presented development as the energy efficiency of the detached, optically powered sensor node. For this reason, a novel photonic packaging technology based on wafer-level assembly of the laser power converters by means of passive alignment will be disclosed in this paper.

  6. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying the technology instrumentation of photonics This volume discusses photonics technology and instrumentation. The topics discussed in this volume are: Communication Networks; Data Buffers; Defense and Security Applications; Detectors; Fiber Optics and Amplifiers; Green Photonics; Instrumentation and Metrology; Interferometers; Light-Harvesting Materials; Logic Devices; Optical Communications; Remote Sensing; Solar Energy; Solid-State Lighting; Wavelength Conversion Comprehensive and accessible coverage of the whole of modern photonics Emphas

  7. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying Biomedical Photonics, spectroscopy and microscopy This volume discusses biomedical photonics, spectroscopy and microscopy, the basic physical principles underlying the technology and its applications. The topics discussed in this volume are: Biophotonics; Fluorescence and Phosphorescence; Medical Photonics; Microscopy; Nonlinear Optics; Ophthalmic Technology; Optical Tomography; Optofluidics; Photodynamic Therapy; Image Processing; Imaging Systems; Sensors; Single Molecule Detection; Futurology in Photonics. Comprehensive and accessible cov

  8. Optical properties of photonic crystals

    CERN Document Server

    Sakoda, Kazuaki

    2001-01-01

    The interaction between the radiation field and matter is the most fundamen­ tal source of dynamics in nature. It brings about the absorption and emission of photons, elastic and inelastic light scattering, the radiative lifetime of elec­ tronic excited states, and so on. The huge amount of energy carried from the sun by photons is the source of all activities of creatures on the earth. The absorption of photons by chlorophylls and the successive electronic excita­ tion initiate a series of chemical reactions that are known as photosynthesis, which support all life on the earth. Radiative energy is also the main source of all meteorological phenomena. The fundamentals of the radiation field and its interaction with matter were clarified by classical electromagnetism and quantum electrodynamics. These theories, we believe, explain all electromagnetic phenomena. They not only provide a firm basis for contemporary physics but also generate a vast range of technological applications. These include television, ...

  9. Geometric Phases for Photons in an Optical Fibre and Some Related Predictions

    Institute of Scientific and Technical Information of China (English)

    高孝纯

    2002-01-01

    We propose a quantum electrodynamic model for the description of the time evolution of the quantum states of the photons in an optical fibre. By means of this model, we are able to make three interesting predicticons related to the geometric phases for photons.

  10. Optical and thermal properties of periodic photonic structures on a silicon-on-insulator platform

    Science.gov (United States)

    Song, Weiwei

    Silicon photonics is the leading candidate to fulfill the high bandwidth requirement for the future communication networks. Periodic photonic structures, due to their fascinating properties including compact size, high efficiency, and ease of design, play an important role in photonic systems. In this dissertation, SOI-based one-dimensional and two-dimensional periodic photonic structures are studied. Low crosstalk, high density integration of bus waveguides is demonstrated by employing a novel waveguide array structure. Inspired by the low coupling strength shown by initial pair waveguide experiments, novel waveguide array structures are studied by generalizing the nearest-neighbor tight-bonding model. Based on the theory, waveguide arrays have been designed and fabricated. The waveguide arrays have been characterized to demonstrate high density bus waveguides with minimal crosstalk. Two-dimensional photonic crystal waveguide (PCW) structure was then investigated aiming at reducing the propagation loss. A general cross-sectional eigenmode orthogonality relation is first derived for a one dimensional periodic system. Assisted by this orthogonality, analytic formulas are obtained to describe the propagation loss in PCW structures. By introducing the radiation and backscattering loss factors alpha1 and alpha2, the total loss coefficient alpha can be written as alpha = alpha1ng + alpha2ng2 ( ng is the group index). It is analytically shown the backscattering loss generally dominates the radiation loss for ng>10. Combined with systematic simulations of loss dependences on key structure parameters, this analytic study helps identify promising strategies to reduce the slow light loss. The influence of the substrate on the performance of a thermo-optic tuning photonic crystal device was studied in the following section. The substrate-induced thermo-optic tuning is obtained as a function of key physical parameters, based on a semi-analytic theory that agrees well with

  11. Virtual single-photon transition interrupted: time-gated optical gain and loss

    CERN Document Server

    Herrmann, Jens; Locher, Reto; Sabbar, Mazyar; Rivière, Paula; Saalmann, Ulf; Rost, Jan-Michael; Gallmann, Lukas; Keller, Ursula

    2012-01-01

    The optical response of a virtual dipole transition triggered by an ultra-short light pulse intrinsically consists of both absorption and emission in time and frequency. So far, this fundamental feature has been hidden by the time-integrated detection. However, as we will demonstrate, the time-dependence during a virtual single-photon transition can be mapped out and controlled by a second electromagnetic field. The resulting time-gated optical signal shows previously unexpected radiation gain and loss at different delays of the control pulse. The model presented here can be applied to any system that assumes a two-level character through near-resonant optical dipole excitation, whether they are of atomic, molecular or even solid-state nature. We validate the theoretical model by an attosecond transient absorption spectroscopy experiment in helium. Our model and the experimental data display excellent qualitative agreement.

  12. The Origin and Optical Depth of Ionizing Photons in the Green Pea Galaxies

    Science.gov (United States)

    Jaskot, A. E.; Oey, M. S.

    2014-09-01

    Our understanding of radiative feedback and star formation in galaxies at high redshift is hindered by the rarity of similar systems at low redshift. However, the recently identified Green Pea (GP) galaxies are similar to high-redshift galaxies in their morphologies and star formation rates and are vital tools for probing the generation and transmission of ionizing photons. The GPs contain massive star clusters that emit copious amounts of high-energy radiation, as indicated by intense [OIII] 5007 emission and HeII 4686 emission. We focus on six GP galaxies with high ratios of [O III] 5007,4959/[O II] 3727 ~10 or more. Such high ratios indicate gas with a high ionization parameter or a low optical depth. The GP line ratios and ages point to chemically homogeneous massive stars, Wolf-Rayet stars, or shock ionization as the most likely sources of the He II emission. Models including shock ionization suggest that the GPs may have low optical depths, consistent with a scenario in which ionizing photons escape along passageways created by recent supernovae. The GPs and similar galaxies can shed new light on cosmic reionization by revealing how ionizing photons propagate from massive star clusters to the intergalactic medium.

  13. Broadband sensitive pump-probe setup for ultrafast optical switching of photonic nanostructures and semiconductors.

    Science.gov (United States)

    Euser, Tijmen G; Harding, Philip J; Vos, Willem L

    2009-07-01

    We describe an ultrafast time resolved pump-probe spectroscopy setup aimed at studying the switching of nanophotonic structures. Both femtosecond pump and probe pulses can be independently tuned over broad frequency range between 3850 and 21,050 cm(-1). A broad pump scan range allows a large optical penetration depth, while a broad probe scan range is crucial to study strongly photonic crystals. A new data acquisition method allows for sensitive pump-probe measurements, and corrects for fluctuations in probe intensity and pump stray light. We observe a tenfold improvement of the precision of the setup compared to laser fluctuations, allowing a measurement accuracy of better than DeltaR=0.07% in a 1 s measurement time. Demonstrations of the improved technique are presented for a bulk Si wafer, a three-dimensional Si inverse opal photonic bandgap crystal, and z-scan measurements of the two-photon absorption coefficient of Si, GaAs, and the three-photon absorption coefficient of GaP in the infrared wavelength range.

  14. Deterministic Photon Pairs and Coherent Optical Control of a Single Quantum Dot

    Science.gov (United States)

    Jayakumar, Harishankar; Predojević, Ana; Huber, Tobias; Kauten, Thomas; Solomon, Glenn S.; Weihs, Gregor

    2013-03-01

    The strong confinement of semiconductor excitons in a quantum dot gives rise to atomlike behavior. The full benefit of such a structure is best observed in resonant excitation where the excited state can be deterministically populated and coherently manipulated. Because of the large refractive index and device geometry it remains challenging to observe resonantly excited emission that is free from laser scattering in III/V self-assembled quantum dots. Here we exploit the biexciton binding energy to create an extremely clean single photon source via two-photon resonant excitation of an InAs/GaAs quantum dot. We observe complete suppression of the excitation laser and multiphoton emissions. Additionally, we perform full coherent control of the ground-biexciton state qubit and observe an extended coherence time using an all-optical echo technique. The deterministic coherent photon pair creation makes this system suitable for the generation of time-bin entanglement and experiments on the interaction of photons from dissimilar sources.

  15. Large-core photonic microcells for coherent optics and laser metrology

    Science.gov (United States)

    Wheeler, N. V.; Grogan, M. D. W.; Wang, Y. Y.; Murphy, D. F.; Birks, T. A.; Benabid, F.

    2011-03-01

    A photonic microcell (PMC) is a length of gas-filled hollow core-photonic crystal fiber (HC-PCF) which is hermetically sealed at both ends by splicing to standard single mode fiber. We describe advances in the fabrication technique of PMCs which enable large core Kagome-lattice HC-PCFs to be integrated into PMC form. The modified fabrication technique uses fiber-tapering to accommodate the large dimensions of the fiber and enables low loss splices with single mode fiber by reducing mode field mismatch. Splice losses as low as 0.6 dB are achieved between 1-cell defect Kagome HC-PCF and single mode fiber. Relative to the previously reported PMCs, which were based on photonic bandgap HC-PCF, the present Kagome HC-PCF based PMC provides broad optical transmission, surface mode-free guidance and larger core at the cost of slightly increased fiber attenuation (~0.2 dB/m). Therefore, the integration of this fiber into PMC form opens up new applications for PMC-based devices. The advantage of the large core dimensions and surface mode free guidance for quantum optics in gas-filled HC-PCF are demonstrated by generation of narrow sub-Doppler features in an acetylenefilled large core PMC.

  16. Linear-Optic Heralded Photon Source

    OpenAIRE

    da Silva, Thiago Ferreira; Amaral, Gustavo C; Temporão, Guilherme P.; von der Weid, Jean Pierre

    2015-01-01

    We present a Heralded Photon Source based only on linear optics and weak coherent states. By time-tuning a Hong-Ou-Mandel interferometer fed with frequency-displaced coherent states, the output photons can be synchronously heralded following sub-Poisson statistics, which is indicated by the second-order correlation function ($g^2\\left(0\\right)=0.556$). The absence of phase-matching restrictions makes the source widely tunable, with 100-nm spectral tunability on the telecom bands. The techniqu...

  17. Photonic encryption using all optical logic.

    Energy Technology Data Exchange (ETDEWEB)

    Blansett, Ethan L.; Schroeppel, Richard Crabtree; Tang, Jason D.; Robertson, Perry J.; Vawter, Gregory Allen; Tarman, Thomas David; Pierson, Lyndon George

    2003-12-01

    With the build-out of large transport networks utilizing optical technologies, more and more capacity is being made available. Innovations in Dense Wave Division Multiplexing (DWDM) and the elimination of optical-electrical-optical conversions have brought on advances in communication speeds as we move into 10 Gigabit Ethernet and above. Of course, there is a need to encrypt data on these optical links as the data traverses public and private network backbones. Unfortunately, as the communications infrastructure becomes increasingly optical, advances in encryption (done electronically) have failed to keep up. This project examines the use of optical logic for implementing encryption in the photonic domain to achieve the requisite encryption rates. In order to realize photonic encryption designs, technology developed for electrical logic circuits must be translated to the photonic regime. This paper examines two classes of all optical logic (SEED, gain competition) and how each discrete logic element can be interconnected and cascaded to form an optical circuit. Because there is no known software that can model these devices at a circuit level, the functionality of the SEED and gain competition devices in an optical circuit were modeled in PSpice. PSpice allows modeling of the macro characteristics of the devices in context of a logic element as opposed to device level computational modeling. By representing light intensity as voltage, 'black box' models are generated that accurately represent the intensity response and logic levels in both technologies. By modeling the behavior at the systems level, one can incorporate systems design tools and a simulation environment to aid in the overall functional design. Each black box model of the SEED or gain competition device takes certain parameters (reflectance, intensity, input response), and models the optical ripple and time delay characteristics. These 'black box' models are interconnected and

  18. Ultrahigh and persistent optical depths of cesium in Kagomé-type hollow-core photonic crystal fibers.

    Science.gov (United States)

    Kaczmarek, Krzysztof T; Saunders, Dylan J; Sprague, Michael R; Kolthammer, W Steven; Feizpour, Amir; Ledingham, Patrick M; Brecht, Benjamin; Poem, Eilon; Walmsley, Ian A; Nunn, Joshua

    2015-12-01

    Alkali-filled hollow-core fibers are a promising medium for investigating light-matter interactions, especially at the single-photon level, due to the tight confinement of light and high optical depths achievable by light-induced atomic desorption (LIAD). However, until now these large optical depths could only be generated for seconds, at most once per day, severely limiting the practicality of the technology. Here we report the generation of the highest observed transient (>10(5) for up to a minute) and highest observed persistent (>2000 for hours) optical depths of alkali vapors in a light-guiding geometry to date, using a cesium-filled Kagomé-type hollow-core photonic crystal fiber (HC-PCF). Our results pave the way to light-matter interaction experiments in confined geometries requiring long operation times and large atomic number densities, such as generation of single-photon-level nonlinearities and development of single photon quantum memories.

  19. Ultrahigh and persistent optical depths of cesium in Kagomé-type hollow-core photonic crystal fibers

    Science.gov (United States)

    Kaczmarek, Krzysztof T.; Saunders, Dylan J.; Sprague, Michael R.; Kolthammer, W. Steven; Feizpour, Amir; Ledingham, Patrick M.; Brecht, Benjamin; Poem, Eilon; Walmsley, Ian A.; Nunn, Joshua

    2015-12-01

    Alkali-filled hollow-core fibres are a promising medium for investigating light-matter interactions, especially at the single-photon level, due to the tight confinement of light and high optical depths achievable by light-induced atomic desorption. However, until now these large optical depths could only be generated for seconds at most once per day, severely limiting the practicality of the technology. Here we report the generation of highest observed transient ($>10^5$ for up to a minute) and highest observed persistent ($>2000$ for hours) optical depths of alkali vapours in a light-guiding geometry to date, using a caesium-filled Kagom\\'e-type hollow-core photonic crystal fibre. Our results pave the way to light-matter interaction experiments in confined geometries requiring long operation times and large atomic number densities, such as generation of single-photon-level nonlinearities and development of single photon quantum memories.

  20. Fabrication and optical characterization of macroporous silicon photonic crystals

    OpenAIRE

    Balbo, Matteo

    2014-01-01

    The computer revolution experienced in recent years has been possible thanks to semiconductor materials, such as silicon, germanium and gallium arsenide. The success of the silicon-based microelectronics is due to the ability to integrate multiple elements on the same chip such as processors, memories, and interfaces. However, the increasing miniaturization and the realization of faster devices have revealed the difficulty to overcome the intrinsic limits of these materials. For example, devi...

  1. The photon angular momentum controversy: Resolution of a conflict between laser optics and particle physics

    Science.gov (United States)

    Leader, Elliot

    2016-05-01

    The claim some years ago, contrary to all textbooks, that the angular momentum of a photon (and gluon) can be split in a gauge-invariant way into an orbital and spin term, sparked a major controversy in the Particle Physics community, exacerbated by the realization that many different forms of the angular momentum operators are, in principle, possible. A further cause of upset was the realization that the gluon polarization in a nucleon, a supposedly physically meaningful quantity, corresponds only to the gauge-variant gluon spin derived from Noether's theorem, evaluated in a particular gauge. On the contrary, Laser Physicists have, for decades, been happily measuring physical quantities which correspond to photon orbital and spin angular momentum evaluated in a particular gauge. This paper reconciles the two points of view, and shows that it is the gauge invariant version of the canonical angular momentum which agrees with the results of a host of laser optics experiments.

  2. The photon angular momentum controversy: Resolution of a conflict between laser optics and particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Leader, Elliot, E-mail: e.leader@imperial.ac.uk

    2016-05-10

    The claim some years ago, contrary to all textbooks, that the angular momentum of a photon (and gluon) can be split in a gauge-invariant way into an orbital and spin term, sparked a major controversy in the Particle Physics community, exacerbated by the realization that many different forms of the angular momentum operators are, in principle, possible. A further cause of upset was the realization that the gluon polarization in a nucleon, a supposedly physically meaningful quantity, corresponds only to the gauge-variant gluon spin derived from Noether's theorem, evaluated in a particular gauge. On the contrary, Laser Physicists have, for decades, been happily measuring physical quantities which correspond to photon orbital and spin angular momentum evaluated in a particular gauge. This paper reconciles the two points of view, and shows that it is the gauge invariant version of the canonical angular momentum which agrees with the results of a host of laser optics experiments.

  3. The photon angular momentum controversy: Resolution of a conflict between laser optics and particle physics

    Directory of Open Access Journals (Sweden)

    Elliot Leader

    2016-05-01

    Full Text Available The claim some years ago, contrary to all textbooks, that the angular momentum of a photon (and gluon can be split in a gauge-invariant way into an orbital and spin term, sparked a major controversy in the Particle Physics community, exacerbated by the realization that many different forms of the angular momentum operators are, in principle, possible. A further cause of upset was the realization that the gluon polarization in a nucleon, a supposedly physically meaningful quantity, corresponds only to the gauge-variant gluon spin derived from Noether's theorem, evaluated in a particular gauge. On the contrary, Laser Physicists have, for decades, been happily measuring physical quantities which correspond to photon orbital and spin angular momentum evaluated in a particular gauge. This paper reconciles the two points of view, and shows that it is the gauge invariant version of the canonical angular momentum which agrees with the results of a host of laser optics experiments.

  4. Quantum Optics with Quantum Dots in Photonic Nanowires

    DEFF Research Database (Denmark)

    Gérard, J. M.; Claudon, J.; Bleuse, J.;

    2012-01-01

    We review recent experimental and theoretical results, which highlight the strong interest of the photonic wire geometry for solid-state quantum optics and quantum optoelectronic devices.......We review recent experimental and theoretical results, which highlight the strong interest of the photonic wire geometry for solid-state quantum optics and quantum optoelectronic devices....

  5. All-optical tunable photonic crystal cavity

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Ou, Haiyan

    2010-01-01

    We demonstrate an ultra-small photonic crystal cavity with two resonant modes. An all-optical tuning operation based on the free-carrier plasma effect is, for the first time, realized utilizing a continuous wave light source. The termo-optical effect is minimized by isoproponal infiltration...... of the photonic crystal structure....

  6. All-optical tunable photonic crystal cavity

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Ou, Haiyan;

    2010-01-01

    We demonstrate an ultra-small photonic crystal cavity with two resonant modes. An all-optical tuning operation based on the free-carrier plasma effect is, for the first time, realized utilizing a continuous wave light source. The termo-optical effect is minimized by isoproponal infiltration...... of the photonic crystal structure....

  7. Using single photons to improve fiber optic communication systems

    Science.gov (United States)

    Pinto, Armando N.; Silva, Nuno A.; Almeida, Álvaro J.; Muga, Nelson J.

    2014-08-01

    We show how to generate, encode, transmit and detect single photons. By using single photons we can address two of the more challenging problems that communication engineers face nowadays: capacity and security. Indeed, by decreasing the number of photons used to encode each bit, we can efficiently explore the full capacity to carry information of optical fibers, and we can guarantee privacy at the physical layer. We present results for single and entangled photon generation. We encode information in the photons polarization and after transmission we retrieve that information. We discuss the impact of fiber birefringence on the photons polarization.

  8. Position dependent optical coupling between single quantum dots and photonic crystal nanocavities

    Science.gov (United States)

    Kuruma, K.; Ota, Y.; Kakuda, M.; Takamiya, D.; Iwamoto, S.; Arakawa, Y.

    2016-08-01

    We demonstrate precise and quick detection of the positions of quantum dots (QDs) embedded in two-dimensional photonic crystal nanocavities. We apply this technique to investigate the QD position dependence of the optical coupling between the QD and the nanocavity. We use a scanning electron microscope (SEM) operating at a low acceleration voltage to detect surface bumps induced by the QDs buried underneath. This enables QD detection with a sub-10 nm precision. We then experimentally measure the vacuum Rabi spectra to extract the optical coupling strengths (gs) between single QDs and cavities, and compare them to the values estimated by a combination of the SEM-measured QD positions and electromagnetic cavity field simulations. We found a highly linear relationship between the local cavity field intensities and the QD-cavity gs, suggesting the validity of the point dipole approximation used in the estimation of the gs. The estimation using SEM has a small standard deviation of ±6.2%, which potentially enables the high accuracy prediction of g prior to optical measurements. Our technique will play a key role for deeply understanding the interaction between QDs and photonic nanostructures and for advancing QD-based cavity quantum electrodynamics.

  9. Real-time optical-fibre luminescence dosimetry for radiotherapy: physical characteristics and applications in photon beams

    DEFF Research Database (Denmark)

    Aznar, M.C.; Andersen, C.E.; Bøtter-Jensen, L.;

    2004-01-01

    A new optical-fibre radiation dosimeter system, based on radioluminescence and optically stimulated luminescence from carbon-doped aluminium oxide, was developed and tested in clinical photon beams. This prototype offers several features, such as a small detector (1 x 1 x 2 mm), high sensitivity...

  10. Two-photon phase gate with linear optical elements and atom-cavity system

    Science.gov (United States)

    Kang, Yi-Hao; Xia, Yan; Lu, Pei-Min

    2016-09-01

    We propose a protocol for implementing π phase gate of two photons with linear optical elements and an atom-cavity system. The evolution of the atom-cavity system is based on the quantum Zeno dynamics. The devices in the present protocol are simple and feasible with current experimental technology. Moreover, the method we proposed here is deterministic with a high fidelity. Numerical simulation shows that the evolution in cavity is efficient and robust. Therefore, the protocol may be helpful for quantum computation field.

  11. Tunable All-Optical Filtering and Buffering in a Coupled Quantum Dot-Planar Photonic Crystal Structure

    Institute of Scientific and Technical Information of China (English)

    QIAN Yong; QIAN Jun; WANG Yu-Zhu

    2009-01-01

    We theoretically investigate controlled tunable all-optical filtering and buffering of optical pulses in a hybrid nano-photonic structure,where a single quantum dot (QD) embedded in a photonic crystal nanocavity is sidecoupled between a bare nanocavity and a photonic crystal waveguide.We demonstrate that there is a sharp low-loss transmission peak in the transmission spectrum under even low QD-nanocavity coupling strength and the input optical pulses can be delayed up to several hundred piceseconds within the dephasing time of the QD.The filtering regime can be shifted readily by manipulating the detuning between the QD excitonic transition frequency and resonant frequency of the nanocavity mode,which can be explored in future for on-clup all-optical logic and signal processing.

  12. Sequential and coherent, optical and x-ray two-photon processes in atoms and molecules

    Science.gov (United States)

    Mills, Jeffrey Dean

    1997-09-01

    Vibronic and rovibronic implementations of conventional semiclassical theories, employing a phenomenological lineshape and descriptive of the absorption of a single photon by isolated chemical particles, are used to account for the absolute magnitude of the highly structured, broadband optical absorption, emission, radiation transfer, and refractive index of high- temperature (T ≈ 2000K), rare-gas-buffered, and locally equilibrated atomic and diatomic metal vapors (Li, Na, Al, and Li/Al). The polarized, resonant, inelastic scattering of x-rays (hν /approx 2.5 keV) from the K-edges of unoriented, chlorine- and sulfur- containing molecular gases (CH3Cl, H2S, and Cl2) is also modeled by means of the fully quantum- mechanical, time-independent Kramers-Heisenberg formalism applied in electronic and vibronic resolution. This accounts for the energy, polarization, and direction dependence of the anisotropic signal, concretely treats the demise of core-excited states by Auger-electron emission within the Feshbach-Fano theory of resonance- continuum mixing, and is in general valid for resonant, nonresonant, inelastic, and 'distinguishable' elastic scattering. Unusual, coherent interference phenomena within and between vibronic and electronic channels and related novel, otherwise-forbidden nondipole features expected to arise in molecules with equivalent atomic centers and recently observed in the chlorine molecule are explored along with their implications for common conceptions of 'localized, equivalent core-hole excited states.' Transition coherence, especially as manifested within the quantum-mechanical treatment of the spectral lineshape, is shown to provide the key to unifying the present single-step interpretation of two-photon x-ray scattering with that involving a pair of successive absorption and emission transitions generally regarded as two independent single-photon processes of the type described in the first portion of the work.

  13. Photonic crystals principles and applications

    CERN Document Server

    Gong, Qihuang

    2013-01-01

    IntroductionPrimary Properties of Photonic CrystalsFabrication of Photonic CrystalsPhotonic Crystal All-Optical SwitchingTunable Photonic Crystal FilterPhotonic Crystal LaserPhotonic Crystal Logic DevicesPhotonic Crystal Sensors

  14. Optical isolation via unidirectional resonant photon tunneling

    CERN Document Server

    Moccia, Massimo; Galdi, Vincenzo; Alu', Andrea; Engheta, Nader

    2013-01-01

    We show that tri-layer structures combining epsilon-negative and magneto-optical material layers can exhibit unidirectional resonant photon tunneling phenomena that can discriminate between circularly-polarized (CP) waves of given handedness impinging from opposite directions, or between CP waves with different handedness impinging from the same direction. This physical principle may be utilized to design compact optical isolators for CP waves. Within this framework, we derive simple analytical conditions and design formulae, and quantitatively assess the isolation performance, also taking into account the unavoidable imperfections and nonidealities.

  15. Mono-Cycle Photonics and Optical Scanning Tunneling Microscopy Route to Femtosecond Ångstrom Technology

    CERN Document Server

    Yamashita, Mikio; Morita, Ryuji

    2005-01-01

    "Mono-Cycle Photonics and Optical Scanning Tunneling Microscopy" deals with both the ultrashort laser-pulse technology in the few- to mono-cycle region and the laser-surface-controlled scanning-tunneling microscopy (STM) extending into the spatiotemporal extreme technology. The former covers the theory of nonlinear pulse propagation beyond the slowly-varing-envelope approximation, the generation and active chirp compensation of ultrabroadband optical pulses, the amplitude and phase characterization of few- to mono-cycle pulses, and the feedback field control for the mono-cycle-like pulse generation. In addition, the wavelength-multiplex shaping of ultrabroadband pulse is described. The latter covers the CW-laser-excitation STM, the femtosecond-time-resolved STM and atomic-level surface phenomena controlled by femtosecond pulses.

  16. Photonics technology development for optical fuzing

    Science.gov (United States)

    Geib, K. M.; Serkland, D. K.; Keeler, G. A.; Peake, G. M.; Mar, A.; von der Lippe, C. M.; Liu, J. J.

    2005-09-01

    This paper describes the photonic component development taking place at Sandia National Laboratories, ARDEC and the Army Research Laboratory in support of an effort to develop a robust, compact, and affordable photonic proximity sensor for munitions fuzing applications. Successful implementation of this sensor will provide a new capability for direct fire applications. The technologies under investigation for the optical fuze design covered in this paper are vertical-cavity surface-emitting lasers (VCSELs), vertical-external-cavity surface-emitting lasers (VECSELs), integrated resonant-cavity photodetectors (RCPDs), and refractive micro-optics. The culmination of this work will be low cost, robust, fully integrated, g-hardened components suitable for proximity fuzing applications. The use of advanced photonic components will enable replacement of costly assemblies that employ discrete lasers, photodetectors, and bulk optics. The integrated devices will be mass produced and impart huge savings for a variety of Army applications. The specific application under investigation is for gun-fired munitions. Nevertheless, numerous civilian uses exist for this proximity sensor in automotive, robotics and aerospace applications. This technology is also applicable to robotic ladar and short-range 3-D imaging.

  17. Optical Search for QED vacuum magnetic birefringence, Axions and photon Regeneration

    CERN Multimedia

    Pugnat, P; Hryczuk, A; Slunecka, M; Finger, M; Finger, M; Jary, V; Kral, M

    2007-01-01

    Since its prediction in 1936 by Euler, Heisenberg and Weisskopf in the earlier development of the Quantum Electrodynamic (QED) theory, the Vacuum Magnetic Birefringence (VMB) is still a challenge for optical metrology techniques. According to QED, the vacuum behaves as an optically active medium in the presence of an external magnetic field. It can be experimentally probed with a linearly polarized laser beam. After propagating through the vacuum submitted to a transverse magnetic field, the polarization of the laser beam will change to elliptical and the parameters of the polarization are directly related to fundamental constants such as the fine structure constant and the electron Compton wavelength. Contributions to the VMB could also arise from the existence of light scalar or pseudo-scalar particles like axions that couple to two photons and this would manifest itself as a sizeable deviation from the initial QED prediction. On one side, the interest in axion search, providing an answer to the strong-CP p...

  18. Two-photon Absorption and Nonlinear Optical Properties of A New Organic Dye DEASPI

    Institute of Scientific and Technical Information of China (English)

    Guangyong ZHOU; Xiaomei WANG; Dong WANG; Chun WANG; Xian ZHAO; Zongshu SHAO; Minhua JIANG

    2001-01-01

    A new organic dye trans-4- [p-(N,N-diethylamino) styryl ]-N-methylpyridinium iodide (abbreviatedas DEASPI thereafter) with large two-photon absorption (TPA) cross section and excellent upconverted lasing properties was synthesized. The melting point and decompound point were measured to be 230℃ and 264.7℃ respectively. The molecular TPA cross section was meaThe linear and nonlinear optical properties of this dye were systematically studied. The highest net upconversion efficiency from the absorbed pump energy to the output upconverted lasing energy is as high as 18.6% at the pump energy of 2.17 mJ from a mode-locked Nd:YAG ps laser.The nonlinear transmittance at the wavelengths from 720 to 1100 nm was measured. The dye solution also shows a clear optical power limiting effect.

  19. Enhanced and selective optical trapping in a slot-graphite photonic crystal.

    Science.gov (United States)

    Krishnan, Aravind; Huang, Ningfeng; Wu, Shao-Hua; Martínez, Luis Javier; Povinelli, Michelle L

    2016-10-03

    Applicability of optical trapping tools for nanomanipulation is limited by the available laser power and trap efficiency. We utilized the strong confinement of light in a slot-graphite photonic crystal to develop high-efficiency parallel trapping over a large area. The stiffness is 35 times higher than our previously demonstrated on-chip, near field traps. We demonstrate the ability to trap both dielectric and metallic particles of sub-micron size. We find that the growth kinetics of nanoparticle arrays on the slot-graphite template depends on particle size. This difference is exploited to selectively trap one type of particle out of a binary colloidal mixture, creating an efficient optical sieve. This technique has rich potential for analysis, diagnostics, and enrichment and sorting of microscopic entities.

  20. Photon bunching and anti-bunching with two dipole-coupled atoms in an optical cavity

    Science.gov (United States)

    Zheng, Ya-Mei; Hu, Chang-Sheng; Yang, Zhen-Biao; Wu, Huai-Zhi

    2016-10-01

    We investigate the effect of the dipole-dipole interaction (DDI) on the photon statistics with two atoms trapped in an optical cavity driven by a laser field and subjected to cooperative emission. By means of the quantum trajectory analysis and the second-order correlation functions, we show that the photon statistics of the cavity transmission can be flexibly modulated by the DDI while the incoming coherent laser selectively excites the atom-cavity system’s nonlinear Jaynes-Cummings ladder of excited states. Finally, we find that the effect of the cooperatively atomic emission can also be revealed by the numerical simulations and can be explained with a simplified picture. The DDI induced nonlinearity gives rise to highly nonclassical photon emission from the cavity that is significant for quantum information processing and quantum communication. Project supported by the National Natural Science Foundation of China (Grant Nos. 11305037, 11347114, and 11374054) and the Natural Science Foundation of Fujian Province, China (Grant No. 2013J01012).

  1. A photon-photon quantum gate based on a single atom in an optical resonator.

    Science.gov (United States)

    Hacker, Bastian; Welte, Stephan; Rempe, Gerhard; Ritter, Stephan

    2016-08-11

    That two photons pass each other undisturbed in free space is ideal for the faithful transmission of information, but prohibits an interaction between the photons. Such an interaction is, however, required for a plethora of applications in optical quantum information processing. The long-standing challenge here is to realize a deterministic photon-photon gate, that is, a mutually controlled logic operation on the quantum states of the photons. This requires an interaction so strong that each of the two photons can shift the other's phase by π radians. For polarization qubits, this amounts to the conditional flipping of one photon's polarization to an orthogonal state. So far, only probabilistic gates based on linear optics and photon detectors have been realized, because "no known or foreseen material has an optical nonlinearity strong enough to implement this conditional phase shift''. Meanwhile, tremendous progress in the development of quantum-nonlinear systems has opened up new possibilities for single-photon experiments. Platforms range from Rydberg blockade in atomic ensembles to single-atom cavity quantum electrodynamics. Applications such as single-photon switches and transistors, two-photon gateways, nondestructive photon detectors, photon routers and nonlinear phase shifters have been demonstrated, but none of them with the ideal information carriers: optical qubits in discriminable modes. Here we use the strong light-matter coupling provided by a single atom in a high-finesse optical resonator to realize the Duan-Kimble protocol of a universal controlled phase flip (π phase shift) photon-photon quantum gate. We achieve an average gate fidelity of (76.2 ± 3.6) per cent and specifically demonstrate the capability of conditional polarization flipping as well as entanglement generation between independent input photons. This photon-photon quantum gate is a universal quantum logic element, and therefore could perform most existing two-photon operations

  2. Photonic crystal surface waves for optical biosensors.

    Science.gov (United States)

    Konopsky, Valery N; Alieva, Elena V

    2007-06-15

    We present a new optical biosensor technique based on registration of dual optical s-polarized modes on a photonic crystal surface. The simultaneous registration of two optical surface waves with different evanescent depths from the same surface spot permits the segregation of the volume and the surface contributions from an analyte, while the absence of metal damping permits an increase in the propagation length of the optical surface waves and the sensitivity of the biosensor. Our technique was tested with the binding of biotin molecules to a streptavidin monolayer that has been detected with signal/noise ratio of approximately 15 at 1-s signal accumulation time. The detection limit is approximately 20 fg of the analyte on the probed spot of the surface.

  3. On Approaching the Ultimate Limits of Photon-Efficient and Bandwidth-Efficient Optical Communication

    CERN Document Server

    Dolinar, Sam; Erkmen, Baris I; Moision, Bruce

    2011-01-01

    It is well known that ideal free-space optical communication at the quantum limit can have unbounded photon information efficiency (PIE), measured in bits per photon. High PIE comes at a price of low dimensional information efficiency (DIE), measured in bits per spatio-temporal-polarization mode. If only temporal modes are used, then DIE translates directly to bandwidth efficiency. In this paper, the DIE vs. PIE tradeoffs for known modulations and receiver structures are compared to the ultimate quantum limit, and analytic approximations are found in the limit of high PIE. This analysis shows that known structures fall short of the maximum attainable DIE by a factor that increases linearly with PIE for high PIE. The capacity of the Dolinar receiver is derived for binary coherent-state modulations and computed for the case of on-off keying (OOK). The DIE vs. PIE tradeoff for this case is improved only slightly compared to OOK with photon counting. An adaptive rule is derived for an additive local oscillator th...

  4. Integrated wideband optical frequency combs with high stability and their application in microwave photonic filters

    Science.gov (United States)

    Sun, Wenhui; Wang, Sunlong; Zhong, Xin; Liu, Jianguo; Wang, Wenting; Tong, Youwan; Chen, Wei; Yuan, Haiqing; Yu, Lijuan; Zhu, Ninghua

    2016-08-01

    An integrated wideband optical frequency comb (OFC) based on a semiconductor quantum dot laser is realized with high stability. The OFC module is packaged in our lab. A circuit which is designed to provide a low-ripple current and control the temperature regards as a servo system to enhance the stability of the OFC. The frequency stability of the OFC is 2.7×10-9 (Allan Variance). The free spectral range (FSR) of the OFC is 40 GHz and the number of comb lines is up to 55. The flatness of the OFC over span of 4 nm can be limited to 0.5 dB. Negative coefficients microwave photonic filters with multiple taps are generated based on the proposed OFC. For the 10 taps microwave photonic filter, the pass-band at 8.74 GHz has a 3 dB bandwidth of 630 MHz with 16.58 dB side-lobe suppression. Compared with the published microwave photonic filters, the proposed system is more stable, of more compact structures, and of less power consumption.

  5. Optical trapping and control of nanoparticles inside evacuated hollow core photonic crystal fibers

    Energy Technology Data Exchange (ETDEWEB)

    Grass, David, E-mail: david.grass@univie.ac.at; Fesel, Julian; Hofer, Sebastian G.; Kiesel, Nikolai; Aspelmeyer, Markus, E-mail: markus.aspelmeyer@univie.ac.at [Vienna Center for Quantum Science and Technology (VCQ), Faculty of Physics, University of Vienna, A-1090 Vienna (Austria)

    2016-05-30

    We demonstrate an optical conveyor belt for levitated nanoparticles over several centimeters inside both air-filled and evacuated hollow-core photonic crystal fibers (HCPCF). Detection of the transmitted light field allows three-dimensional read-out of the particle center-of-mass motion. An additional laser enables axial radiation pressure based feedback cooling over the full fiber length. We show that the particle dynamics is a sensitive local probe for characterizing the optical intensity profile inside the fiber as well as the pressure distribution along the fiber axis. In contrast to some theoretical predictions, we find a linear pressure dependence inside the HCPCF, extending over three orders of magnitude from 0.2 mbar to 100 mbar. A targeted application is the controlled delivery of nanoparticles from ambient pressure into medium vacuum.

  6. Optical trapping and control of nanoparticles inside evacuated hollow core photonic crystal fibers

    CERN Document Server

    Grass, David; Hofer, Sebastian G; Kiesel, Nikolai; Aspelmeyer, Markus

    2016-01-01

    We demonstrate an optical conveyor belt for levitated nano-particles over several centimeters inside both air-filled and evacuated hollow-core photonic crystal fibers (HCPCF). Detection of the transmitted light field allows three-dimensional read-out of the particle center-of-mass motion. An additional laser enables axial radiation pressure based feedback cooling over the full fiber length. We show that the particle dynamics is a sensitive local probe for characterizing the optical intensity profile inside the fiber as well as the pressure distribution along the fiber axis. In contrast to previous indirect measurement methods we find a linear pressure dependence inside the HCPCF extending over three orders of magnitude from 0.2 mbar to 100 mbar. A targeted application is the controlled delivery of nano-particles from ambient pressure into medium vacuum.

  7. The Origin and Optical Depth of Ionizing Photons in the Green Pea Galaxies

    CERN Document Server

    Jaskot, A E

    2014-01-01

    Our understanding of radiative feedback and star formation in galaxies at high redshift is hindered by the rarity of similar systems at low redshift. However, the recently identified Green Pea (GP) galaxies are similar to high-redshift galaxies in their morphologies and star formation rates and are vital tools for probing the generation and transmission of ionizing photons. The GPs contain massive star clusters that emit copious amounts of high-energy radiation, as indicated by intense [OIII] 5007 emission and HeII 4686 emission. We focus on six GP galaxies with high ratios of [O III] 5007,4959/[O II] 3727 ~10 or more. Such high ratios indicate gas with a high ionization parameter or a low optical depth. The GP line ratios and ages point to chemically homogeneous massive stars, Wolf-Rayet stars, or shock ionization as the most likely sources of the He II emission. Models including shock ionization suggest that the GPs may have low optical depths, consistent with a scenario in which ionizing photons escape alo...

  8. Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells.

    Science.gov (United States)

    Meng, Xianqin; Depauw, Valérie; Gomard, Guillaume; El Daif, Ounsi; Trompoukis, Christos; Drouard, Emmanuel; Jamois, Cécile; Fave, Alain; Dross, Frédéric; Gordon, Ivan; Seassal, Christian

    2012-07-02

    In this paper, we present the integration of an absorbing photonic crystal within a monocrystalline silicon thin film photovoltaic stack fabricated without epitaxy. Finite difference time domain optical simulations are performed in order to design one- and two-dimensional photonic crystals to assist crystalline silicon solar cells. The simulations show that the 1D and 2D patterned solar cell stacks would have an increased integrated absorption in the crystalline silicon layer would increase of respectively 38% and 50%, when compared to a similar but unpatterned stack, in the whole wavelength range between 300 nm and 1100 nm. In order to fabricate such patterned stacks, we developed an effective set of processes based on laser holographic lithography, reactive ion etching and inductively coupled plasma etching. Optical measurements performed on the patterned stacks highlight the significant absorption increase achieved in the whole wavelength range of interest, as expected by simulation. Moreover, we show that with this design, the angle of incidence has almost no influence on the absorption for angles as high as around 60°.

  9. Tomography of photon-added and photon-subtracted states

    NARCIS (Netherlands)

    Bazrafkan, MR; Man'ko, [No Value

    2003-01-01

    The purpose of this paper is to introduce symplectic and optical tomograms of photon-added and photon-subtracted quantum states. Explicit relations for the tomograms of photon-added and photon-subtracted squeezed coherent states and squeezed number states are obtained. Generating functions for the m

  10. Tomography of photon-added and photon-subtracted states

    NARCIS (Netherlands)

    Bazrafkan, MR; Man'ko, [No Value

    The purpose of this paper is to introduce symplectic and optical tomograms of photon-added and photon-subtracted quantum states. Explicit relations for the tomograms of photon-added and photon-subtracted squeezed coherent states and squeezed number states are obtained. Generating functions for the

  11. Acousto-optic multiphoton laser scanning microscopy and multiphoton photon counting spectroscopy: Applications and implications for optical neurobiology

    Science.gov (United States)

    Iyer, Vijay

    Multiphoton excitation of molecular probes has become an important tool in experimental neurobiology owing to the intrinsic optical sectioning and low light scattering it affords. Using molecular functional indicators, multiphoton excitation allows physiological signals within single neurons to be observed from within living brain tissue. Ideally, it would be possible to record from multiple sites located throughout the elaborately branching dendritic arbors, in order to study the correlations of structure and function both within and across experiments. However, existing multiphoton microscope systems based on scanning mirrors do not allow optical recordings to be obtained from more than a handful of sites simultaneously at the high rates required to capture the fast physiological signals of interest (>100Hz for Ca2+ signals, >1kHz for membrane potential transients). In order to overcome this limitation, two-dimensional acousto-optic deflection was employed, to allow an ultrafast laser beam suited for multiphoton excitation to be rapidly repositioned with low latency (˜15mus). This supports a random-access scanning mode in which the beam can repeatedly visit a succession of user-selected sites of interest within the microscope's field-of-view at high rates, with minimal sacrifice of pixel dwell time. This technique of acousto-optic multiphoton laser scanning microscope (AO-MPLSM) was demonstrated to allow the spatial profile of signals arising in response to physiological stimulation to be rapidly mapped. Means to compensate or avoid problems of dispersion which have hampered AO-MPLSM in the past are presented, with the latter being implemented. Separately, the combination of photon counting detection with multiphoton excitation, termed generally multiphoton photon counting spectroscopy (MP-PCS), was also considered, with particular emphasis on the technique of fluorescence correlation spectroscopy (FCS). MP-PCS was shown to allow information about molecular

  12. Polarization and dynamical properties of VCSELs-based photonic neuron subject to optical pulse injection

    Science.gov (United States)

    Xiang, Shuiying; Wen, Aijun; Zhang, Hao; Li, Jiafu; Guo, Xingxing; Shang, Lei; Lin, Lin

    2016-11-01

    The polarization-resolved nonlinear dynamics of vertical-cavity surface-emitting lasers (VCSELs) subject to orthogonally polarized optical pulse injection are investigated numerically based on the spin flip model. By extensive numerical bifurcation analysis, the responses dynamics of photonic neuron based on VCSELs under the arrival of external stimuli of orthogonally polarized optical pulse injection are mainly discussed. It is found that, several neuron-like dynamics, such as phasic spiking of a single abrupt large amplitude pulse followed with or without subthreshold oscillation, and tonic spiking with multiple periodic pulses, are successfully reproduced in the numerical model of VCSELs. Besides, the effects of stimuli strength, pump current, frequency detuning, as well as the linewidth enhancement factor on the neuron-like response dynamics are examined carefully. The operating parameters ranges corresponding to different neuron-like dynamics are further identified. Thus, the numerical model and simulation results are very useful and interesting for the ultrafast brain-inspired neuromorphic photonics systems based on VCSELs.

  13. A photon-photon quantum gate based on a single atom in an optical resonator

    Science.gov (United States)

    Hacker, Bastian; Welte, Stephan; Rempe, Gerhard; Ritter, Stephan

    2016-08-01

    That two photons pass each other undisturbed in free space is ideal for the faithful transmission of information, but prohibits an interaction between the photons. Such an interaction is, however, required for a plethora of applications in optical quantum information processing. The long-standing challenge here is to realize a deterministic photon-photon gate, that is, a mutually controlled logic operation on the quantum states of the photons. This requires an interaction so strong that each of the two photons can shift the other’s phase by π radians. For polarization qubits, this amounts to the conditional flipping of one photon’s polarization to an orthogonal state. So far, only probabilistic gates based on linear optics and photon detectors have been realized, because “no known or foreseen material has an optical nonlinearity strong enough to implement this conditional phase shift”. Meanwhile, tremendous progress in the development of quantum-nonlinear systems has opened up new possibilities for single-photon experiments. Platforms range from Rydberg blockade in atomic ensembles to single-atom cavity quantum electrodynamics. Applications such as single-photon switches and transistors, two-photon gateways, nondestructive photon detectors, photon routers and nonlinear phase shifters have been demonstrated, but none of them with the ideal information carriers: optical qubits in discriminable modes. Here we use the strong light-matter coupling provided by a single atom in a high-finesse optical resonator to realize the Duan-Kimble protocol of a universal controlled phase flip (π phase shift) photon-photon quantum gate. We achieve an average gate fidelity of (76.2 ± 3.6) per cent and specifically demonstrate the capability of conditional polarization flipping as well as entanglement generation between independent input photons. This photon-photon quantum gate is a universal quantum logic element, and therefore could perform most existing two-photon

  14. Dose response of commercially available optically stimulated luminescent detector, Al2O3:C for megavoltage photons and electrons.

    Science.gov (United States)

    Kim, Dong Wook; Chung, Weon Kuu; Shin, Dong Oh; Yoon, Myonggeun; Hwang, Ui-Jung; Rah, Jeong-Eun; Jeong, Hojin; Lee, Sang Yeob; Shin, Dongho; Lee, Se Byeong; Park, Sung Yong

    2012-04-01

    This study examined the dose response of an optically stimulated luminescence dosemeter (OSLD) to megavoltage photon and electron beams. A nanoDot™ dosemeter was used to measure the dose response of the OSLD. Photons of 6-15 MV and electrons of 9-20 MeV were delivered by a Varian 21iX machine (Varian Medical System, Inc. Milpitas, CA, USA). The energy dependency was photons, the dose was linear until 200 cGy. The superficial dose measurements revealed photon irradiation to have an angular dependency. The nanoDot™ dosemeter has potential use as an in vivo dosimetric tool that is independent of the energy, has dose linearity and a rapid response compared with normal in vivo dosimetric tools, such as thermoluminescence detectors. However, the OSLD must be treated very carefully due to the high angular dependency of the photon beam.

  15. CMOS single-photon avalanche diodes and micromachined optical filters for integrated fluorescence sensing

    Science.gov (United States)

    Dandin, Marc Peralte

    This dissertation presents a body of work that addresses the two most pressing challenges in the field of integrated fluorescence sensing, namely, the design of integrated optical sensors and the fabrication of high-rejection micro-scale optical filters. Two novel enabling technologies were introduced. They are: the perimeter-gated single-photon avalanche diode (PGSPAD), for on-chip photon counting, and the benzotriazole (BTA)-doped thin-film polymer filter, for on-chip ultraviolet light rejection. Experimental results revealed that the PGSPAD front-end, fabricated in a 0.5 μm standard mixed-signal CMOS process, had the capability of counting photons in the MHz regime. In addition, it was found that a perimeter gate, a structural feature used to suppress edge breakdown in the diode, also maximized the signal-to-noise-ratio in the high-count rate regime whereas it maximized sensitivity at low count rates. On the other hand, BTA-doped filters were demonstrated utilizing three commonly used polymers as hosts. The filters were patternable, utilizing the same procedures traditionally used to pattern the undoped polymer hosts, a key advantage for integration into microsystems. Filter performance was analyzed using a set of metrics developed for optoelectronic characterization of integrated fluorescence sensors; high rejection levels (nearing -40 dB) of UV light were observed in films of only 5 μm in thickness. Ultimately, BTA-doped filters were integrated into a portable sensor, and their use was demonstrated in two types of bioassays.

  16. Optical limiter based on two-dimensional nonlinear photonic crystals

    Science.gov (United States)

    Belabbas, Amirouche; Lazoul, Mohamed

    2016-04-01

    The aim behind this work is to investigate the capabilities of nonlinear photonic crystals to achieve ultra-fast optical limiters based on third order nonlinear effects. The purpose is to combine the actions of nonlinear effects with the properties of photonic crystals in order to activate the photonic band according to the magnitude of the nonlinear effects, themselves a function of incident laser power. We are interested in designing an optical limiter based nonlinear photonic crystal operating around 1064 nm and its second harmonic at 532 nm. Indeed, a very powerful solid-state laser that can blind or destroy optical sensors and is widely available and easy to handle. In this work, we perform design and optimization by numerical simulations to determine the better structure for the nonlinear photonic crystal to achieve compact and efficient integrated optical limiter. The approach consists to analyze the band structures in Kerr-nonlinear two-dimensional photonic crystals as a function of the optical intensity. We confirm that these bands are dynamically red-shifted with regard to the bands observed in linear photonic crystals or in the case of weak nonlinear effects. The implemented approach will help to understand such phenomena as intensitydriven optical limiting with Kerr-nonlinear photonic crystals.

  17. Ultra compact and fast All Optical Flip Flop design in photonic crystal platform

    Science.gov (United States)

    Abbasi, Amin; Noshad, Morteza; Ranjbar, Reza; Kheradmand, Reza

    2012-11-01

    In this work we present a heterostructure All Optical Flip-Flop configuration based on all optical switching with Kerr nonlinear photonic crystal. In this square-hexagonal structure, we propose three different schemes for the cavities in order to show the trade-off between switching time and triggering power. Loss in the system is reasonably low because of the perfect band gap matching at bending points where two lattices join. The proposed RS-Flip Flop has exceptional features, which make it one of the well optimized and most practical structures to be used in the all optical integrated circuits. The novel design has a fast switching action (on the order of a few picoseconds), and low input power (on the order of 100 mW). Furthermore, high contrast of the output signals for ON and OFF states, can help the easy detection or its coupling to the other devices. The structure is fascinatingly uncomplicated, which results in ultra small dimensions which make it suitable to be placed in an all optical integrated circuit. Besides, we provide a profound analytical view on the functioning of the system, as analyzed by the finite difference time domain (FDTD) method.

  18. Quantum optics and cavity QED Quantum network with individual atoms and photons

    Directory of Open Access Journals (Sweden)

    Rempe G.

    2013-08-01

    Full Text Available Quantum physics allows a new approach to information processing. A grand challenge is the realization of a quantum network for long-distance quantum communication and large-scale quantum simulation. This paper highlights a first implementation of an elementary quantum network with two fibre-linked high-finesse optical resonators, each containing a single quasi-permanently trapped atom as a stationary quantum node. Reversible quantum state transfer between the two atoms and entanglement of the two atoms are achieved by the controlled exchange of a time-symmetric single photon. This approach to quantum networking is efficient and offers a clear perspective for scalability. It allows for arbitrary topologies and features controlled connectivity as well as, in principle, infinite-range interactions. Our system constitutes the largest man-made material quantum system to date and is an ideal test bed for fundamental investigations, e.g. quantum non-locality.

  19. Optical Realization of Deterministic Entanglement Concentration of Polarized Photons

    Institute of Scientific and Technical Information of China (English)

    GU Yong-Jian; XIAN Liang; LI Wen-Dong; MA Li-Zhen

    2008-01-01

    @@ We propose a scheme for optical realization of deterministic entanglement concentration of polarized photons.To overcome the difficulty due to the lack of sufficiently strong interactions between photons, teleportation is employed to transfer the polarization states of two photons onto the path and polarization states of a third photon, which is made possible by the recent experimental realization of the deterministic and complete Bell state measurement. Then the required positive operator-valued measurement and further operations can be implemented deterministically by using a linear optical setup. All these are within the reach of current technology.

  20. Nano- and micro-scale Bi-substituted iron garnet films for photonics and magneto-optic eddy current defectoscopy

    Science.gov (United States)

    Berzhansky, V. N.; Karavainikov, A. V.; Mikhailova, T. V.; Prokopov, A. R.; Shaposhnikov, A. N.; Shumilov, A. G.; Lugovskoy, N. V.; Semuk, E. Yu.; Kharchenko, M. F.; Lukienko, I. M.; Kharchenko, Yu. M.; Belotelov, V. I.

    2017-10-01

    Synthesis technology of nano-scale Bi-substituted iron garnets films with high magneto-optic activity for photonics and plasmonics applications were proposed. The micro-scale single-crystal garnet films with different types of magnetic anisotropy as a magneto-optic sensors were synthesized. It was shown that easy-axis anisotropy films demonstrated the best results for visualization of redistribution eddy current magnetic field near defects.

  1. Slow light enhanced correlated photon pair generation in photonic-crystal coupled-resonator optical waveguides

    CERN Document Server

    Matsuda, Nobuyuki; Shimizu, Kaoru; Tokura, Yasuhiro; Kuramochi, Eiichi; Notomi, Masaya; 10.1364/OE.21.008596

    2013-01-01

    We demonstrate the generation of quantum-correlated photon pairs from a Si photonic-crystal coupled-resonator optical waveguide. A slow-light supermode realized by the collective resonance of high-Q and small-mode-volume photonic-crystal cavities successfully enhanced the efficiency of the spontaneous four-wave mixing process. The generation rate of photon pairs was improved by two orders of magnitude compared with that of a photonic-crystal line defect waveguide without a slow-light effect.

  2. Slow light enhanced correlated photon pair generation in photonic-crystal coupled-resonator optical waveguides.

    Science.gov (United States)

    Matsuda, Nobuyuki; Takesue, Hiroki; Shimizu, Kaoru; Tokura, Yasuhiro; Kuramochi, Eiichi; Notomi, Masaya

    2013-04-08

    We demonstrate the generation of quantum-correlated photon pairs from a Si photonic-crystal coupled-resonator optical waveguide. A slow-light supermode realized by the collective resonance of high-Q and small-mode-volume photonic-crystal cavities successfully enhanced the efficiency of the spontaneous four-wave mixing process. The generation rate of photon pairs was improved by two orders of magnitude compared with that of a photonic-crystal line defect waveguide without a slow-light effect.

  3. Thermoluminescence Responses of Photon and Electron Irradiated Ge- and Al-Doped SiO2 Optical Fibres

    Institute of Scientific and Technical Information of China (English)

    H. Wagiran; I. Hossain; D. Bradley; A. N. H. Yaakob; T. Ramli

    2012-01-01

    We carry out a comparison of the thermoluminescence (TL) response of photon and electron irradiated Ge- and Al-doped SiO2 optical fibres,as well as cross-comparison with that of TLD-100.Irradiation is made with 6 MeV electrons and 6 MV photons,for doses ranging from 0.2 Gy to 4.0Gy.The commercially available Al- and Gedoped optical fibres produce a linear dose-TL response.The TL yield for both of the doped fibres and also for TLD-100 is greater for electron irradiation than for photon irradiation.The TL yield of the Al-doped fibres is a small fraction of that of Ge-doped fibres (by a factor of 25),the Ge-doped fibres offering a response of 59%o of that of TLD-100.%We carry out a comparison of the thermoluminescence (TL) response of photon and electron irradiated Ge- and Al-doped SiO2 optical fibres, as well as cross-comparison with that of TLD-100. Irradiation is made with 6 MeV electrons and 6MV photons, for doses ranging from 0.2 Gy to 4.0Gy. The commercially available Al- and Ge-doped optical fibres produce a linear dose-TL response. The TL yield for both of the doped fibres and also for TLD-100 is greater for electron irradiation than for photon irradiation. The TL yield of the Al-doped fibres is a small fraction of that of Ge-doped fibres (by a factor of 25), the Ge-doped fibres offering a response of 59% of that of TLD-100.

  4. Optomechanical oscillator pumped and probed by optically two isolated photonic crystal cavity systems.

    Science.gov (United States)

    Tian, Feng; Sumikura, Hisashi; Kuramochi, Eiichi; Taniyama, Hideaki; Takiguchi, Masato; Notomi, Masaya

    2016-11-28

    Optomechanical control of on-chip emitters is an important topic related to integrated all-optical circuits. However, there is neither a realization nor a suitable optomechanical structure for this control. The biggest obstacle is that the emission signal can hardly be distinguished from the pump light because of the several orders' power difference. In this study, we designed and experimentally verified an optomechanical oscillation system, in which a lumped mechanical oscillator connected two optically isolated pairs of coupled one-dimensional photonic crystal cavities. As a functional device, the two pairs of coupled cavities were respectively used as an optomechanical pump for the lumped oscillator (cavity pair II, wavelengths were designed to be within a 1.5 μm band) and a modulation target of the lumped oscillator (cavity pair I, wavelengths were designed to be within a 1.2 μm band). By conducting finite element method simulations, we found that the lumped-oscillator-supported configurations of both cavity pairs enhance the optomechanical interactions, especially for higher order optical modes, compared with their respective conventional side-clamped configurations. Besides the desired first-order in-plane antiphase mechanical mode, other mechanical modes of the lumped oscillator were investigated and found to possibly have optomechanical applications with a versatile degree of freedom. In experiments, the oscillator's RF spectra were probed using both cavity pairs I and II, and the results matched those of the simulations. Dynamic detuning of the optical spectrum of cavity pair I was then implemented with a pumped lumped oscillator. This was the first demonstration of an optomechanical lumped oscillator connecting two optically isolated pairs of coupled cavities, whose biggest advantage is that one cavity pair can be modulated with an lumped oscillator without interference from the pump light in the other cavity pair. Thus, the oscillator is a suitable

  5. Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing.

    Science.gov (United States)

    Xiong, Chi; Pernice, Wolfram H P; Tang, Hong X

    2012-07-11

    Photonic miniaturization requires seamless integration of linear and nonlinear optical components to achieve passive and active functions simultaneously. Among the available material systems, silicon photonics holds immense promise for optical signal processing and on-chip optical networks. However, silicon is limited to wavelengths above 1.1 μm and does not provide the desired lowest order optical nonlinearity for active signal processing. Here we report the integration of aluminum nitride (AlN) films on silicon substrates to bring active functionalities to chip-scale photonics. Using CMOS-compatible sputtered thin films we fabricate AlN-on-insulator waveguides that exhibit low propagation loss (0.6 dB/cm). Exploiting AlN's inherent Pockels effect we demonstrate electro-optic modulation up to 4.5 Gb/s with very low energy consumption (down to 10 fJ/bit). The ultrawide transparency window of AlN devices also enables high speed modulation at visible wavelengths. Our low cost, wideband, carrier-free photonic circuits hold promise for ultralow power and high-speed signal processing at the microprocessor chip level.

  6. Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing

    CERN Document Server

    Xiong, Chi; Tang, Hong X

    2014-01-01

    Photonic miniaturization requires seamless integration of linear and nonlinear optical components to achieve passive and active functions simultaneously. Among the available material systems, silicon photonics holds immense promise for optical signal processing and on-chip optical networks. However, silicon is limited to wavelengths above 1100 nm and does not provide the desired lowest order optical nonlinearity for active signal processing. Here we report the integration of aluminum nitride (AlN) films on silicon substrates to bring active functionalities to chip-scale photonics. Using CMOS-compatible sputtered thin films we fabricate AlN-on-insulator waveguides that exhibit low propagation loss (0.6 dB/cm). Exploiting AlN's inherent Pockels effect we demonstrate electro-optic modulation up to 4.5 Gb/s with very low energy consumption (down to 10 fJ/bit). The ultra-wide transparency window of AlN devices also enables high speed modulation at visible wavelengths. Our low cost, wideband, carrier-free photonic ...

  7. Silicon Photonics for All-Optical Processing and High-Bandwidth-Density Interconnects

    Science.gov (United States)

    Ophir, Noam

    The first chapter of the thesis provides motivation for the integration of silicon photonic modules into compute systems and surveys some of the recent developments in the field. The second chapter then proceeds to detail a technical case study of silicon photonic microring-based WDM links' scalability and power efficiency for these chip I/O applications which could be developed in the intermediate future. The analysis, initiated originally for a workshop on optical and electrical board and rack level interconnects, looks into a detailed model of the optical power budget for such a link capturing both single-channel aspects as well as WDM-operation-related considerations which are unique for a microring physical characteristics. The third chapter, while continuing on the theme silicon photonic high bandwidth density links, proceeds to detail the first experimental demonstration and characterization of an on-chip spatial division multiplexing (SDM) scheme based on microrings for the multiplexing and demultiplexing functionalities. In the context of more forward looking optical network-on-chip environments, SDM-enabled WDM photonic interconnects can potentially achieve superior bandwidth densities per waveguide compared to WDM-only photonic interconnects. The microring-based implementation allows dynamic tuning of the multiplexing and demultiplexing characteristic of the system which allows operation on WDM grid as well device tuning to combat intra-channel crosstalk. The characterization focuses on the first reported power penalty measurements for on-chip silicon photonic SDM link showing minimal penalties achievable with 3 spatial modes concurrently operating on a single waveguide with 10-Gb/s data carried by each mode. The fourth, fifth, and sixth chapters shift in topic from the application of silicon photonics to communication links to the evolving use of silicon waveguides for nonlinear all-optical processing. Chapter four primarily introduces and motivates

  8. Packaged semiconductor laser optical phase locked loop for photonic generation, processing and transmission of microwave signals

    DEFF Research Database (Denmark)

    Langley, L.N.; Elkin, M.D.; Edege, C.

    1999-01-01

    In this paper, we present the first fully packaged semiconductor laser optical phase-locked loop (OPLL) microwave photonic transmitter. The transmitter is based on semiconductor lasers that are directly phase locked without the use of any other phase noise-reduction mechanisms. In this transmitter...

  9. Photonic generation of ultrawideband monocycle and doublet pulses by using a semiconductor-optical-amplifier-based wavelength converter

    DEFF Research Database (Denmark)

    Zhou, Enbo; Yu, Xianbin; Zhang, Xinliang;

    2009-01-01

    Photonic generation of ultrawideband (UWB) monocycle and doublet pulses is experimentally demonstrated using a cascaded electroabsorption modulator (EAM) and semiconductor optical amplifier by exploiting a combination of cross-absorption modulation and cross-gain modulation. The polarities...... and shapes of UWB monocycle and doublet pulses can be simply controlled using an optical time-delay controller and the reverse voltage applied to the EAM. The corresponding measured rf spectra meet the UWB criteria....

  10. Background simulation for the Spherical Proportional Counter and its use for the detection of optical photons

    Science.gov (United States)

    Bougamont, E.; Colas, P.; Dastgheibi-Fard, A.; Derre, J.; Giomataris, I.; Gerbier, G.; Gros, M.; Magnier, P.; Navick, X. F.; Salin, P.; Savvidis, I.; Tsiledakis, G.; Vergados, J. D.

    2013-10-01

    The recently developed Spherical Proportional Counter [1] allows to instrument large target masses with good energy resolution and sub-keV energy threshold. The moderate cost of this detector, its simplicity and robustness, makes this technology a promising approach for many domains of physics and applications, like dark matter detection and low energy neutrino searches. Detailed Monte Carlo simulations are essential to evaluate the background level expected at the sub-keV energy regime. The simulated background here, it refers to the contribution of the construction material of the detector and the effect of the environmental gamma radiation. This detector due to its spherical shape could be also served as an optical photon detector provided it is equipped with PMTs, for Double Beta decay and Dark Matter searches. All calculations shown here are obtained using the FLUKA Monte Carlo code.

  11. Continuous all-optical deceleration and single-photon cooling of molecular beams

    CERN Document Server

    Jayich, A M; Hummon, M T; Porto, J V; Campbell, W C

    2013-01-01

    Ultracold molecular gases are promising as an avenue to rich many-body physics, quantum chemistry, quantum information, and precision measurements. This richness, which flows from the complex internal structure of molecules, makes the creation of ultracold molecular gases using traditional methods (laser plus evaporative cooling) a challenge, in particular due to the spontaneous decay of molecules into dark states. We propose a way to circumvent this key bottleneck using an all-optical method for decelerating molecules using stimulated absorption and emission with a single ultrafast laser. We further describe single-photon cooling of the decelerating molecules that exploits their high dark state pumping rates, turning the principal obstacle to molecular laser cooling into an advantage. Cooling and deceleration may be applied simultaneously and continuously to load molecules into a trap. We discuss implementation details including multi-level numerical simulations of strontium monohydride (SrH). These techniqu...

  12. The optical Tamm states at the interface between a photonic crystal and nanoporous silver

    Science.gov (United States)

    Bikbaev, R. G.; Vetrov, S. Ya; Timofeev, I. V.

    2017-01-01

    The optical Tamm states (OTSs) localized at the edges of a photonic crystal bounded by a nanoporous silver (NPS) film are investigated. NPS involves spherical vacuum nanopores dispersed in the metal matrix and is characterized by the effective resonance permittivity. The transmission, reflection, and absorption spectra of the structures under study at the normal incidence of light are calculated. It is shown that each Tamm state has its own frequency range where the real part of effective permittivity is negative. The light field localization at the high- and low-frequency OTSs is investigated. The specific features of spectral manifestation of the OTSs are studied in dependence on the nanopore concentration in the metal matrix and on the NPS film thickness.

  13. Application of optical tweezers using DOE and SLM to control of beads with information-DNA for photonic DNA computing

    Science.gov (United States)

    Zheng, M. J.; Ogura, Y.; Tanida, J.

    2008-03-01

    We have proposed photonic DNA computing as a new parallel computing paradigm, in which optical techniques are used to manipulate information-coded DNA. In this paper, we present a parallel transportation of multiple beads bound with hairpin-structure DNA using a dynamic optical tweezers system which combines a spatial light modulator (SLM) with a diffractive optical element (DOE). This system provides and effective method for parallel manipulations of DNA-bound beads at multiple positions. In the experiments, three 2.8-μm-diameter beads bound with hairpin DNA were trapped and transported in 1 μm of step by switching of the SLM patterns. The results demonstrate that the dynamic holographic optical tweezers system with combination of the DOE and the SLM is useful in spatially parallel processing required for photonic DNA computing.

  14. Two-Photon Absorption and Optical Power Limiting Based on New Organic Dyes

    Institute of Scientific and Technical Information of China (English)

    周广勇; 王东; 邵宗书; 蒋民华; 雷虹

    2001-01-01

    Two new organic dye samples J and L with a large two-photon absorption (TPA) cross section have been reported.The linear absorption spectra show that there is no linear absorption at the wavelength from 650 to 1200 nm.The molecular TPA cross section was measured to be as high as 2.59×10-47 cm4.s and 2.98×10-47 cm4.s at 1064 nm for samples J and L, respectively. The input-output curves indicate that there is a clear optical power limiting behaviour when the input intensity is higher than 0.4 GW/cm2. Furthermore, the basic theory of the TPA process has been discussed.

  15. All-fiber photonic devices and system for advanced optical communications

    Science.gov (United States)

    Dong, Xiaoyi; Qin, Zixiong; Ding, Lei; Yuan, Shuzhong; Kai, Guiyun; Liu, Zhiguo; Feng, Dejun; Zhao, Chunliu; Ma, Ning; Zhang, Ying; Ning, Ding

    2000-10-01

    The objective of this paper is to give an overview of the different studies we have performed at the research level regarding the design and implementation of a photonic wavelength division multiplexing layer providing transparent transport services to client layer. Such a network requires a number of enabling factors to be accessed in order to become a reality. Among these factors are the availability of high- capacity WDM transmission systems and efficient optical routing nodes based on mature technology, etc. In this paper, based on several key build blocks we developed such as fiber lasers, flattened EDFA's, and WADM's, an all-fiber WDM system was demonstrated. A cost effective alternative to OSA was proposed.

  16. Omnidirectional Photonic Band Gap Using Low Refractive Index Contrast Materials and its Application in Optical Waveguides

    KAUST Repository

    Vidal Faez, Angelo

    2012-07-01

    Researchers have argued for many years that one of the conditions for omnidirectional reflection in a one-dimensional photonic crystal is a strong refractive index contrast between the two constituent dielectric materials. Using numerical simulations and the theory of Anderson localization of light, in this work we demonstrate that an omnidirectional band gap can indeed be created utilizing low refractive index contrast materials when they are arranged in a disordered manner. Moreover, the size of the omnidirectional band gap becomes a controllable parameter, which now depends on the number of layers and not only on the refractive index contrast of the system, as it is widely accepted. This achievement constitutes a major breakthrough in the field since it allows for the development of cheaper and more efficient technologies. Of particular interest is the case of high index contrast one-dimensional photonic crystal fibers, where the propagation losses are mainly due to increased optical scattering from sidewall roughness at the interfaces of high index contrast materials. By using low index contrast materials these losses can be reduced dramatically, while maintaining the confinement capability of the waveguide. This is just one of many applications that could be proven useful for this discovery.

  17. Variation around a Pyramid theme: optical recombination and optimal use of photons

    CERN Document Server

    Fauvarque, O; Fusco, T; Sauvage, J F

    2015-01-01

    We propose a new type of Wave Front Sensor (WFS) derived from the Pyramid WFS (PWFS). This new WFS, called the Flattened Pyramid-WFS (FPWFS), has a reduced Pyramid angle in order to optically overlap the four pupil images into an unique intensity. This map is then used to derive the phase information. In this letter this new WFS is compared to three existing WFSs, namely the PWFS, the Modulated PWFS (MPWFS) and the Zernike WFS (ZWFS) following tests about sensitivity, linearity range and low photon flux behavior. The FPWFS turns out to be more linear than a modulated pyramid for the high-spatial order aberrations but it provides an improved sensitivity compared to the non-modulated pyramid. The noise propagation may even be as low as the ZWFS for some given radial orders. Furthermore, the pixel arrangement being more efficient than for the PWFS, the FPWFS seems particularly well suited for high-contrast applications.

  18. Variation around a pyramid theme: optical recombination and optimal use of photons.

    Science.gov (United States)

    Fauvarque, Olivier; Neichel, Benoit; Fusco, Thierry; Sauvage, Jean-Francois

    2015-08-01

    We propose a new type of wave-front sensor (WFS) derived from the pyramid WFS (PWFS). This new WFS, called the flattened pyramid-WFS (FPWFS), has a reduced pyramid angle in order to optically overlap the four pupil images into an unique intensity. This map is then used to derive the phase information. In this Letter, this new WFS is compared to three existing WFSs, namely the PWFS, the modulated PWFS (MPWFS), and the Zernike WFS (ZWFS) following tests about sensitivity, linearity range, and low-photon-flux behavior. The FPWFS turns out to be more linear than a modulated pyramid for the high-spatial order aberrations, but it provides an improved sensitivity compared to the non-modulated pyramid. The noise propagation may even be as low as the ZWFS for some given radial orders. Furthermore, the pixel arrangement being more efficient than for the PWFS, the FPWFS seems particularly well suited for high-contrast applications.

  19. All-optical histology using two photon laser scanning microscopy and ablation with ultrashort pulses

    Science.gov (United States)

    Tsai, Philbert S.

    This dissertation discusses the use of ultrashort laser pulses to image and manipulate tissue for the purpose of three-dimensional histological reconstruction of extended brain structures. Two photon laser scanning microscopy (TPLSM) and ultrashort pulsed laser ablation are used to provide in situ three-dimensional imaging through thick preparations of fixed tissue. Surface regions of fixed tissue are first imaged using TPLSM. The imaged regions are then removed by ablation with amplified, ultrashort laser pulses, thereby exposing a previously underlying tissue region for imaging. This process of imaging and ablation proceeds iteratively until the desired tissue volume has been processed. First, the principles, design, and construction of a two photon laser scanning microscope are discussed, followed by a discussion of the physical mechanisms of tissue ablation with ultrashort laser pulses. The compatibility of tissue ablation using ultrashort pulses with subsequent histological analysis, particularly with fluorescent microscopy, is evaluated. Tissue ablation with ultrashort laser pulses is found to produce ablated tissue surfaces that are smooth to within a micrometer. Intrinsic fluorescence as well as immunoreactivity are found to be resilient to the ablation process. The all-optical histological technique is demonstrated on brain tissue from rats and mice, including tissue from embryonic mouse as early at E15. The ablation process is shown to preserve both macroscopic and microscopic structures within tissue. To facilitate the all-optical histological analysis of neuronal vasculature and its relative distribution to surrounding neuronal tissue, a fluorescent gel perfusion technique is developed that provides a temperature-stabilized fluorescent label of the neuronal vasculature. The use of immunohistochemistry to label specific cell populations throughout an 800 micrometer-thick tissue section is demonstrated. Additionally, the immersion of fixed tissue in high

  20. The magic of light! An entertaining optics and photonics awareness program

    Science.gov (United States)

    Florensa, Carlos; Martí, Míriam; Kumar, S. Chaitanya; Carrasco, Silvia

    2014-07-01

    Illusionism provides a surprising and unforgettable way of explaining photonics to a wide audience. Imagine grabbing with your own hand an egg-sized photon with the same incredible properties as in a quantum computer! And what about touching the light beam which detects and removes diseased cells like in cutting edge medical prototypes? The art of magic allows promoting photonics, exploring advanced subjects in an understandable and palpable fashion that strongly inspires all ages.

  1. Stabilization and frequency control of a DFB laser with a tunable optical reflector integrated in a Silicon Photonics PIC

    CERN Document Server

    Hauck, Johannes; Romero-García, Sebastían; Müller, Juliana; Shen, Bin; Richter, Jens; Merget, Florian; Witzens, Jeremy

    2016-01-01

    We investigate the effect of tunable optical feedback on a commercial DFB laser edge coupled to a Silicon Photonics planar integrated circuit in which a tunable reflector has been implemented by means of a ring resonator based add-drop multiplexer. Controlled optical feedback allows for fine-tuning of the laser oscillation frequency. Under certain conditions it also allows suppression of bifurcation modes triggered by reflections occurring elsewhere on the chip. A semi-analytical model describing laser dynamics under combined optical feedback from the input facet of the edge coupler and from the tunable on-chip reflector fits the measurements. Compensation of detrimental effects from reflections induced elsewhere on a transceiver chip may allow moving isolators downstream in future communications systems, facilitating direct hybrid laser integration in Silicon Photonics chips, provided a suitable feedback signal for a control system can be identified. Moreover, the optical frequency tuning at lower feedback l...

  2. Soliton fission and supercontinuum generation in photonic crystal fibre for optical coherence tomography application

    Indian Academy of Sciences (India)

    K Porsezian; R Vasantha Jayakantha Raja

    2015-11-01

    We present a practical design of novel photonic crystal fibre (PCF) to investigate the nonlinear propagation of femtosecond pulses for the application of optical coherence tomography (OCT) based on supercontinuum generation (SCG) process. In addition, this paper contains a brief introduction of the physical phenomena of soliton and SCG. Typically, here we discuss how the ultrabroadband radiation in PCF can be generated by SCG through various nonlinear effects of the fibre. To accomplish the proposed aim, we put forth liquid core PCF (LCPCF) structure filled with chloroform for OCT measurements of the eye. From the proposed design, we observe that proposed LCPCFs with liquid material exhibit significant broadened wavelength spectrum with low input pulse energy over small propagation distances for the OCT application.

  3. Ultra-high and persistent optical depths of caesium in Kagom\\'e-type hollow-core photonic crystal fibres

    CERN Document Server

    Kaczmarek, Krzysztof T; Sprague, Michael R; Kolthammer, W Steven; Feizpour, Amir; Ledingham, Patrick M; Brecht, Benjamin; Poem, Eilon; Abdolvand, Amir; Russell, Philip St J; Walmsley, Ian A; Nunn, Joshua

    2015-01-01

    Alkali-filled hollow-core fibres are a promising medium for investigating light-matter interactions, especially at the single-photon level, due to the tight confinement of light and high optical depths achievable by light-induced atomic desorption. However, until now these large alkali vapour densities could only be generated for seconds at most once per day, severely limiting the practicality of the technology. Here we report the generation of highest observed transient ($>10^5$ for minutes) and highest observed persistent (>2000 for hours) optical depths of alkali vapours in hollow-core fibres to date, using a caesium-filled Kagom\\'e-type hollow-core photonic crystal fibre. Our results pave the way to light-matter interaction experiments in confined geometries requiring long operation times and large atomic number densities, such as single-photon-level light-matter interaction experiments and fundamental investigations of hot dense atomic gases.

  4. Nonlinear optical and multiphoton processes for in situ manipulation and conversion of photons: applications to energy and healthcare (Conference Presentation)

    Science.gov (United States)

    Prasad, Paras N.

    2017-02-01

    Chiral control of nonlinear optical functions holds a great promise for a wide range of applications including optical signal processing, bio-sensing and chiral bio-imaging. In chiral polyfluorene thin films, we demonstrated extremely large chiral nonlinearity. The physics of manipulating excitation dynamics for photon transformation will be discussed, along with nanochemistry control of upconversion in hierarchically built organic chromophore coupled-core-multiple shell nanostructures which enable introduce new, organic-inorganic energy transfer routes for broadband light harvesting and increased upconversion efficiency via multistep cascaded energy transfer. We are pursuing the applications of photon conversion technology in IR harvesting for photovoltaics, high contrast bioimaging, photoacoustic imaging, photodynamic therapy, and optogenetics. An important application is in Brain research and Neurophotonics for functional mapping and modulation of brain activities. Another new direction pursued is magnetic field control of light in in a chiral polymer nanocomposite to achieve large magneto-optic coefficient which can enable sensing of extremely weak magnetic field due to brain waves. Finally, we will consider the thought provoking concept of utilizing photons to quantify, through magneto-optics, and augment - through nanoptogenetics, the cognitive states, thus paving the path way to a quantified human paradigm.

  5. All-optical gates based on photonic crystal resonators

    Science.gov (United States)

    Moille, Grégory; De Rossi, Alfredo; Combrié, Sylvain

    2016-04-01

    We briefly review the technology of advanced nonlinear resonators for all-optical gating with a specific focus on the application of high-performance signal sampling and on the properties of III-V semiconductor photonic crystals

  6. Photonic integrated circuits for the generation of coherent optical signals

    OpenAIRE

    Morrissey, Padraic E.

    2014-01-01

    The demand for optical bandwidth continues to increase year on year and is being driven primarily by entertainment services and video streaming to the home. Current photonic systems are coping with this demand by increasing data rates through faster modulation techniques, spectrally efficient transmission systems and by increasing the number of modulated optical channels per fibre strand. Such photonic systems are large and power hungry due to the high number of discrete components required i...

  7. Optically Pumped Atomic Rubidium Lasers: Two-Photon and Exciplex Excitation Mechanisms

    Science.gov (United States)

    Gallagher, Jeffrey E.

    The Doppler-broadened two-photon absorption (TPA) cross-section for the 52S1/2 → 52 D5/2 transition in Rb is measured using direct absorption methods. The selection rule |DeltaF| ≤ 2 applied to both isotopes yields 17 transitions in 3 Doppler limited lines. A detailed model of the intensity profile was also developed to account for a focused Gaussian beam (with an M2 value of 1.09) propagating through a two-photon absorption medium. A peak absorbance of 24% was observed for an intensity of 6.28 kWcm2 at the focus, a Rb density of 4.6x1015 cm-3 , and a path length of 15 cm. Alkali concentrations from 1.61 - 8.52x1015 cm -3 were monitored in the far wing of the D 2 line. Extracting the hyperfine-broadened TPA cross-section from 87 test configurations, while varying the pump power, alkali concentration and focal length, yielded an error-weighted average of 6.75x10^-21 cm4W with a standard deviation of 3.61x10-21 cm4W. This cross-section is sufficient for a pulsed dye laser to bleach the pump transition in the Two-Photon Pumped Alkali Laser (TPAL) that lases at 420 nm and 5.2 microm. Optically pumped atomic rubidium lasers pumped in the blue satellite of the D2 line from the ground Rb-Ar or Rb-Kr collision pair to the dissociative B2S+1/2 state produce laser emission at 780.2 nm. Lasing is achieved for pump wavelengths of 752.3 to greater than 760 nm for the Rb-Ar system and 757.1 -- 760.4 nm for the Rb-Kr system. Slope efficiencies increase with both Rb and Ar concentrations and exceed 0.25% using a heat pipe configuration. The gain is very high with photon build-up times of 1--3.7 ns. Laser induced heating and subsequent condensation of alkali vapor in the heat pipe configuration currently limits operation to less than 2500 Torr.

  8. OPTIMUM STOICHIOMETRY OF CADMIUM ZINC TELLURIDE THIN FILMS IN THE LIGHT OF OPTICAL, STRUCTURAL AND PHOTON GENERATED GAIN STUDIES

    Directory of Open Access Journals (Sweden)

    Dr. MONISHA CHAKRABORTY

    2011-05-01

    Full Text Available Cadmium Zinc Telluride (Cd1-xZnxTe is a potential material for high energy imaging devices. Proper methods are adopted in this work to fabricate large area device grade Cd1-xZnxTe thin films for ‘x’ varying from 0.0567 to 0.2210. Large work function Nickel (Ni is the contact points on these films. The fabricated films are subjected to optical characterization, structural characterization and photon generated gain studies. Properties of fabricated films are found to vary with ‘x’. Photon generated gains of Ni-Cd1-xZnxTe structures are obtained. The present paper dealt with the estimation of optimum ‘x’ in Cd1-xZnxTe thin films in the light of optical, structural and photon generated gain studies.

  9. Ultra-compact and wide-spectrum-range thermo-optic switch based on silicon coupled photonic crystal microcavities

    CERN Document Server

    Zhang, Xingyu; Chung, Chi-Jui; Pan, Zeyu; Yan, Hai; Chen, Ray T

    2016-01-01

    We design, fabricate, and experimentally demonstrate a compact thermo-optic gate switch comprising a 3.78 um-long coupled L0-type photonic crystalmicrocavities on a silicon-on-insulator substrate. A nanohole is inserted in the center of each individual L0 photonic crystalmicrocavity. Coupling between identical microcavities gives rise to bonding and anti-bonding states of the coupled photonic molecules. The coupled photonic crystalmicrocavities are numerically simulated and experimentally verified with a 6 nm-wide flat-bottom resonance in its transmission spectrum, which enables wider operational spectrum range than microring resonators. An integrated micro-heater is in direct contact with the silicon core to efficiently drive the device. The thermo-optic switch is measured with an optical extinction ratio of 20 dB, an on-off switching power of 18.2 mW, a thermo-optic tuning efficiency of 0.63 nm/mW, a rise time of 14.8 us, and a fall time of 18.5 us. The measured on-chip loss on the transmission band is as l...

  10. Ultra-compact and wide-spectrum-range thermo-optic switch based on silicon coupled photonic crystal microcavities

    Science.gov (United States)

    Zhang, Xingyu; Chakravarty, Swapnajit; Chung, Chi-Jui; Pan, Zeyu; Yan, Hai; Chen, Ray T.

    2015-11-01

    We design, fabricate, and experimentally demonstrate a compact thermo-optic gate switch comprising a 3.78 μm-long coupled L0-type photonic crystal microcavities on a silicon-on-insulator substrate. A nanohole is inserted in the center of each individual L0 photonic crystal microcavity. Coupling between identical microcavities gives rise to bonding and anti-bonding states of the coupled photonic molecules. The coupled photonic crystal microcavities are numerically simulated and experimentally verified with a 6 nm-wide flat-bottom resonance in its transmission spectrum, which enables wider operational spectrum range than microring resonators. An integrated micro-heater is in direct contact with the silicon core to efficiently drive the device. The thermo-optic switch is measured with an optical extinction ratio of 20 dB, an on-off switching power of 18.2 mW, a thermo-optic tuning efficiency of 0.63 nm/mW, a rise time of 14.8 μs, and a fall time of 18.5 μs. The measured on-chip loss on the transmission band is as low as 1 dB.

  11. Optical and acoustic sensing using Fano-like resonances in dual phononic and photonic crystal plate

    DEFF Research Database (Denmark)

    Amoudache, Samira; Moiseyenko, Rayisa; Pennec, Yan;

    2016-01-01

    -defined asymmetric peaks in the phononic and photonic transmission spectra. We show that the origin of the Fano-like resonances is different with respect to the nature of the wave. In photonic, the origin comes from guided modes in the photonic plate while in phononic we show that it comes from the excitation...... of standing waves confined inside the cavity coming from the deformation of the water/silicon edges of the cylindrical inclusion. We finally use these features for sensing and show ultra-sensitivity to the light and sound velocities for different concentrations of analytes....

  12. Photonic quantum information: science and technology.

    Science.gov (United States)

    Takeuchi, Shigeki

    2016-01-01

    Recent technological progress in the generation, manipulation and detection of individual single photons has opened a new scientific field of photonic quantum information. This progress includes the realization of single photon switches, photonic quantum circuits with specific functions, and the application of novel photonic states to novel optical metrology beyond the limits of standard optics. In this review article, the recent developments and current status of photonic quantum information technology are overviewed based on the author's past and recent works.

  13. Graphene Photonics and Optoelectronics

    OpenAIRE

    Bonaccorso, F.; Z. Sun; Hasan, T.; Ferrari, A. C.

    2010-01-01

    The richness of optical and electronic properties of graphene attracts enormous interest. Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability. So far, the main focus has been on fundamental physics and electronic devices. However, we believe its true potential to be in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited, even in the absence of a bandgap, ...

  14. Hollow-core photonic crystal fiber based multifunctional optical system for trapping, position sensing, and detection of fluorescent particles.

    Science.gov (United States)

    Shinoj, V K; Murukeshan, V M

    2012-05-15

    We demonstrate a novel multifunctional optical system that is capable of trapping, imaging, position sensing, and fluorescence detection of micrometer-sized fluorescent test particles using hollow-core photonic crystal fiber (HC-PCF). This multifunctional optical system for trapping, position sensing, and fluorescent detection is designed such that a near-IR laser light is used to create an optical trap across a liquid-filled HC-PCF, and a 473 nm laser is employed as a source for fluorescence excitation. This proposed system and the obtained results are expected to significantly enable an efficient integrated trapping platform employing HC-PCF for diagnostic biomedical applications.

  15. Quantum-optical coherence tomography with collinear entangled photons.

    Science.gov (United States)

    Lopez-Mago, Dorilian; Novotny, Lukas

    2012-10-01

    Quantum-optical coherence tomography (QOCT) combines the principles of classical OCT with the correlation properties of entangled photon pairs [Phys. Rev. A 65, 053817 (2002)]. The standard QOCT configuration is based on the Hong-Ou-Mandel interferometer, which uses entangled photons propagating in separate interferometer arms. This noncollinear configuration imposes practical limitations, e.g., misalignment due to drift and low signal-to-noise. Here, we introduce and implement QOCT based on collinear entangled photons. It makes use of a two-photon Michelson interferometer and offers several advantages, such as simplicity, robustness, and adaptability.

  16. All-optical information processing in photonic crystals

    Science.gov (United States)

    Yanik, Mehmet Fatih

    This thesis covers coherent and incoherent all-optical information processing using photonic bandgap nanostructures and microcavities. The first 3 chapters introduce all-optical bistable switching, transistor and memory elements with sub-micron scale dimensions. A strategy for large scale integration without optical isolators is also described. In chapters 4 and 5, dynamically modulated photonic crystal structures are introduced. It is shown that light pulses can be stopped and stored all-optically without requiring any coherent or resonant light-matter interaction. In chapter 6, it is shown that light pulses can be coherently time-reversed by using only index modulations and linear optics. In chapter 7, a supercomputer implementation of an object oriented finite difference time domain simulation is described to simulate photonic nanostructures with arbitrary material & geometric features.

  17. Negative Avalanche Feedback Detectors for Photon-Counting Optical Communications

    Science.gov (United States)

    Farr, William H.

    2009-01-01

    Negative Avalanche Feedback photon counting detectors with near-infrared spectral sensitivity offer an alternative to conventional Geiger mode avalanche photodiode or phototube detectors for free space communications links at 1 and 1.55 microns. These devices demonstrate linear mode photon counting without requiring any external reset circuitry and may even be operated at room temperature. We have now characterized the detection efficiency, dark count rate, after-pulsing, and single photon jitter for three variants of this new detector class, as well as operated these uniquely simple to use devices in actual photon starved free space optical communications links.

  18. Negative Avalanche Feedback Detectors for Photon-Counting Optical Communications

    Science.gov (United States)

    Farr, William H.

    2009-01-01

    Negative Avalanche Feedback photon counting detectors with near-infrared spectral sensitivity offer an alternative to conventional Geiger mode avalanche photodiode or phototube detectors for free space communications links at 1 and 1.55 microns. These devices demonstrate linear mode photon counting without requiring any external reset circuitry and may even be operated at room temperature. We have now characterized the detection efficiency, dark count rate, after-pulsing, and single photon jitter for three variants of this new detector class, as well as operated these uniquely simple to use devices in actual photon starved free space optical communications links.

  19. Line defects on photonic crystals for the design of all-optical power splitters and digital logic gates

    Science.gov (United States)

    Saghaei, Hamed; Zahedi, Abdulhamid; Karimzadeh, Rouhollah; Parandin, Fariborz

    2017-10-01

    In this paper, a triangular two-dimensional photonic crystal (PhC) of silicon rods in air is presented and its photonic band diagram is calculated by plane wave method. In this structure, an optical waveguide is obtained by creating a line defect (eliminating rods) in diagonal direction of PhC. Numerical simulations based on finite difference time domain method show that when self-collimated beams undergo total internal reflection at the PhC-air interface, a total reflection of 90° occurs for the output beams. We also demonstrate that by decreasing the radius of silicon rods instead of eliminating a diagonal line, a two-channel optical splitter will be designed. In this case, incoming self-collimated beams can be divided into the reflected and transmitted beams with arbitrary power ratio by adjusting the value of their radii. Based on these results, we propose a four-channel optical splitter using four line defects. The power ratio among output channels can be controlled systematically by varying the radius of rods in the line defects. We also demonstrate that by launching two optical sources with the same intensity and 90° phase difference from both perpendicular faces of the PhC, two logic OR and XOR gates will be achieved at the output channels. These optical devices have some applications in photonic integrated circuits for controlling and steering (managing) the light as desired.

  20. Optical diode based on the chirality of guided photons

    CERN Document Server

    Sayrin, C; Mitsch, R; Albrecht, B; O'Shea, D; Schneeweiss, P; Volz, J; Rauschenbeutel, A

    2015-01-01

    Photons are nonchiral particles: their handedness can be both left and right. However, when light is transversely confined, it can locally exhibit a transverse spin whose orientation is fixed by the propagation direction of the photons. Confined photons thus have chiral character. Here, we employ this to demonstrate nonreciprocal transmission of light at the single-photon level through a silica nanofibre in two experimental schemes. We either use an ensemble of spin-polarised atoms that is weakly coupled to the nanofibre-guided mode or a single spin-polarised atom strongly coupled to the nanofibre via a whispering-gallery-mode resonator. We simultaneously achieve high optical isolation and high forward transmission. Both are controlled by the internal atomic state. The resulting optical diode is the first example of a new class of nonreciprocal nanophotonic devices which exploit the chirality of confined photons and which are, in principle, suitable for quantum information processing and future quantum optica...

  1. Three-dimensional photonic crystal fluorinated tin oxide (FTO) electrodes: synthesis and optical and electrical properties.

    Science.gov (United States)

    Yang, Zhenzhen; Gao, Shanmin; Li, Wei; Vlasko-Vlasov, Vitalii; Welp, Ulrich; Kwok, Wai-Kwong; Xu, Tao

    2011-04-01

    Photovoltaic (PV) schemes often encounter a pair of fundamentally opposing requirements on the thickness of semiconductor layer: a thicker PV semiconductor layer provides enhanced optical density, but inevitably increases the charge transport path length. An effective approach to solve this dilemma is to enhance the interface area between the terminal electrode, i.e., transparent conducting oxide (TCO) and the semiconductor layer. As such, we report a facile, template-assisted, and solution chemistry-based synthesis of 3-dimensional inverse opal fluorinated tin oxide (IO-FTO) electrodes. Synergistically, the photonic crystal structure possessed in the IO-FTO exhibits strong light trapping capability. Furthermore, the electrical properties of the IO-FTO electrodes are studied by Hall effect and sheet resistance measurement. Using atomic layer deposition method, an ultrathin TiO(2) layer is coated on all surfaces of the IO-FTO electrodes. Cyclic voltammetry study indicates that the resulting TiO(2)-coated IO-FTO shows excellent potentials as electrodes for electrolyte-based photoelectrochemical solar cells.

  2. Theoretical Studies on the Third-order Nonlinear Optical Properties and Two-photon Absorption of Stilbene Derivatives

    Institute of Scientific and Technical Information of China (English)

    REN, Ai-Min(任爱民); FENG, Ji-Kang(封继康); LIU, Xiao-Juan(刘孝娟)

    2004-01-01

    Different types of stilbene derivatives (D-π-D, A-π-A, D-π-A) were investigated with AM1, and specially, equilibrium geometries of symmetrical stilbene derivatives (D-π-D) were studied using of PM3. With the same method INDO/CI, the UV-vis spectra were explored and the position and strength of the two-photon absorption were predicated by Sum-Over-States expression. The relationships of the structures, spectra and nonlinear optical properties have been examined. The influence of various substituents on two photon absorption cross-sections was discussed micromechanically.

  3. PREFACE: Proceedings of the International Conference on Optical, Optoelectronic and Photonic Materials and Applications (ICOOPMA) 2014

    Science.gov (United States)

    Sweeney, Stephen J.; Jha, Animesh

    2015-06-01

    Developments in the connected fields of optics, optoelectronics and photonics have had a profound effect on the emergence of modern technologies and their influence on our lives. In all of these fields, understanding and improving the basic underlying materials is of crucial importance for the development of systems and applications. The International Conference on Optical, Optoelectronic and Photonic Materials and Applications (ICOOPMA) has successfully married these fields and become a regular feature in the conference calendar. The 6th conference in the series, held at the University of Leeds from 27th July - 1st August, 2014, continued the ICOOPMA tradition and attracted 220 international delegates with a diverse range of disciplines and interests. The 59 papers in this Proceedings provide an excellent overview of the topics presented. The conference consisted of four thematic areas in the fields of inorganic semiconductors, carbon and polymeric materials, inorganic glasses and crystalline materials, and metamaterials and plasmonics where each theme area included research on basic materials through to device applications. The conference began with a Workshop organised by Professor Dan Hewak (University of Southampton) with speakers covering Organic Optoelectronic Complexes (Dr Richard Curry, University of Surrey), Metamaterials (Dr Vassili Fedotov, University of Southampton), Graphene (Dr Monica Craciun, University of Exeter) and Amorphous Semiconductors (Dr Jiri Orava, University of Cambridge and Tohoku University). This provided an excellent overview of a representative range of the important topics that were discussed further at the conference. The conference included a banquet which successfully combined excellent food with a relaxing opportunity for the conference delegates to socialise and network. The pinnacle of the evening was the after dinner speech given by our distinguished guest, Professor Sir David Payne (University of Southampton), who gave a

  4. Controllable transmission photonic band gap and all-optical switching behaviors of 1-D InAs/GaAs quantum-dot photonic crystal

    Science.gov (United States)

    Hu, Zhenhua; Xiang, Bowen; Xing, Yunsheng

    2016-12-01

    Transmission optical properties of one-dimensional (1-D) InAs/GaAs quantum-dot photonic crystal (QD-PC), composed of 400 elementary cells, were analyzed by using transfer matrix method. In our calculations, a homogeneous broadening with temperature and other inhomogeneous broadening with quantum dot (QD) size fluctuations are introduced. Our results show that a large optical Stark shift occurs at the high energy edge of the transmission photonic band-gap (TPBG) when, which exhibits the function of light with light, an external laser field acts resonantly on the excitons in the InAs QDs. Utilized this TPBG based on the pump-probe geometry, an all-optical switch can be constructed and the on-off switching extinction ratio (SER) is varied with both the temperature and the inhomogeneity of QDs. Significantly, it still maintains switching behavior and can process the data sequence of return-to-zero codes of 250 Gb/s even if the QD standard deviation of relative size fluctuations (SD-RSF) is up to 3% and the temperature is at 100 K.

  5. Linear Amplification of Optical Signal in Coupled Photonic Crystal Waveguides

    CERN Document Server

    Jandieri, Vakhtang

    2015-01-01

    We introduce a weakly coupled photonic crystal waveguide as a promising and realistic model for all-optical amplification. A symmetric pillar type coupled photonic crystal waveguide consisting of dielectric rods periodically distributed in a free space is proposed as all-optical amplifier. Using the unique features of the photonic crystals to control and guide the light, we have properly chosen the frequency at which only one mode (odd mode) becomes the propagating mode in the coupled photonic crystal waveguide, whereas another mode (even mode) is completely reflected from the guiding structure. Under this condition, the all-optical amplification is fully realized. The amplification coefficient for the continuous signal and the Gaussian pulse is calculated.

  6. Passive thermo-optic feedback for robust athermal photonic systems

    Science.gov (United States)

    Rakich, Peter T.; Watts, Michael R.; Nielson, Gregory N.

    2015-06-23

    Thermal control devices, photonic systems and methods of stabilizing a temperature of a photonic system are provided. A thermal control device thermally coupled to a substrate includes a waveguide for receiving light, an absorption element optically coupled to the waveguide for converting the received light to heat and an optical filter. The optical filter is optically coupled to the waveguide and thermally coupled to the absorption element. An operating point of the optical filter is tuned responsive to the heat from the absorption element. When the operating point is less than a predetermined temperature, the received light is passed to the absorption element via the optical filter. When the operating point is greater than or equal to the predetermined temperature, the received light is transmitted out of the thermal control device via the optical filter, without being passed to the absorption element.

  7. Strain-optic active control for quantum integrated photonics

    CERN Document Server

    Humphreys, Peter C; Spring, Justin B; Moore, Merritt; Salter, Patrick S; Booth, Martin J; Kolthammer, W Steven; Walmsley, Ian A

    2014-01-01

    We present a practical method for active phase control on a photonic chip that has immediate applications in quantum photonics. Our approach uses strain-optic modification of the refractive index of individual waveguides, effected by a millimeter-scale mechanical actuator. The resulting phase change of propagating optical fields is rapid and polarization-dependent, enabling quantum applications that require active control and polarization encoding. We demonstrate strain-optic control of non-classical states of light in silica, showing the generation of 2-photon polarisation N00N states by manipulating Hong-Ou-Mandel interference. We also demonstrate switching times of a few microseconds, which are sufficient for silica-based feed-forward control of photonic quantum states.

  8. High-Speed Electro-Optic Modulator Integrated with Graphene-Boron Nitride Heterostructure and Photonic Crystal Nanocavity

    CERN Document Server

    Gao, Yuanda; Gan, Xuetao; Li, Luozhou; Peng, Cheng; Meric, Inanc; Wang, Lei; Szep, Attila; Walker, Dennis; Hone, James; Englund, Dirk

    2014-01-01

    Nanoscale and power-efficient electro-optic (EO) modulators are essential components for optical interconnects that are beginning to replace electrical wiring for intra- and inter-chip communications. Silicon-based EO modulators show sufficient figures of merits regarding device footprint, speed, power consumption and modulation depth. However, the weak electro-optic effect of silicon still sets a technical bottleneck for these devices, motivating the development of modulators based on new materials. Graphene, a two-dimensional carbon allotrope, has emerged as an alternative active material for optoelectronic applications owing to its exceptional optical and electronic properties. Here, we demonstrate a high-speed graphene electro-optic modulator based on a graphene-boron nitride (BN) heterostructure integrated with a silicon photonic crystal nanocavity. Strongly enhanced light-matter interaction of graphene in a submicron cavity enables efficient electrical tuning of the cavity reflection. We observe a modul...

  9. Conditional linear-optical measurement schemes generate effective photon nonlinearities

    CERN Document Server

    Lapaire, G G; Dowling, J P; Sipe, J E; Dowling, Jonathan P.

    2003-01-01

    We provide a general approach for the analysis of optical state evolution under conditional measurement schemes, and identify the necessary and sufficient conditions for such schemes to simulate unitary evolution on the freely propagating modes. If such unitary evolution holds, an effective photon nonlinearity can be identified. Our analysis extends to conditional measurement schemes more general than those based solely on linear optics.

  10. Ultrafast optical switching in three-dimensional photonic crystals

    NARCIS (Netherlands)

    Mazurenko, D.A.

    2004-01-01

    The rapidly expanding research on photonic crystals is driven by potential applications in all-optical switches, optical computers, low-threshold lasers, and holographic data storage. The performance of such devices might surpass the speed of traditional electronics by several orders of magnitude an

  11. Ultrafast optical switching in three-dimensional photonic crystals

    NARCIS (Netherlands)

    Mazurenko, D.A.

    2004-01-01

    The rapidly expanding research on photonic crystals is driven by potential applications in all-optical switches, optical computers, low-threshold lasers, and holographic data storage. The performance of such devices might surpass the speed of traditional electronics by several orders of magnitude

  12. Adaptive gain, equalization, and wavelength stabilization techniques for silicon photonic microring resonator-based optical receivers

    Science.gov (United States)

    Palermo, Samuel; Chiang, Patrick; Yu, Kunzhi; Bai, Rui; Li, Cheng; Chen, Chin-Hui; Fiorentino, Marco; Beausoleil, Ray; Li, Hao; Shafik, Ayman; Titriku, Alex

    2016-03-01

    Interconnect architectures based on high-Q silicon photonic microring resonator devices offer a promising solution to address the dramatic increase in datacenter I/O bandwidth demands due to their ability to realize wavelength-division multiplexing (WDM) in a compact and energy efficient manner. However, challenges exist in realizing efficient receivers for these systems due to varying per-channel link budgets, sensitivity requirements, and ring resonance wavelength shifts. This paper reports on adaptive optical receiver design techniques which address these issues and have been demonstrated in two hybrid-integrated prototypes based on microring drop filters and waveguide photodetectors implemented in a 130nm SOI process and high-speed optical front-ends designed in 65nm CMOS. A 10Gb/s powerscalable architecture employs supply voltage scaling of a three inverter-stage transimpedance amplifier (TIA) that is adapted with an eye-monitor control loop to yield the necessary sensitivity for a given channel. As reduction of TIA input-referred noise is more critical at higher data rates, a 25Gb/s design utilizes a large input-stage feedback resistor TIA cascaded with a continuous-time linear equalizer (CTLE) that compensates for the increased input pole. When tested with a waveguide Ge PD with 0.45A/W responsivity, this topology achieves 25Gb/s operation with -8.2dBm sensitivity at a BER=10-12. In order to address microring drop filters sensitivity to fabrication tolerances and thermal variations, efficient wavelength-stabilization control loops are necessary. A peak-power-based monitoring loop which locks the drop filter to the input wavelength, while achieving compatibility with the high-speed TIA offset-correction feedback loop is implemented with a 0.7nm tuning range at 43μW/GHz efficiency.

  13. Modeling of dispersion and nonlinear characteristics of tapered photonic crystal fibers for applications in nonlinear optics

    Science.gov (United States)

    Pakarzadeh, H.; Rezaei, S. M.

    2016-01-01

    In this article, we investigate for the first time the dispersion and the nonlinear characteristics of the tapered photonic crystal fibers (PCFs) as a function of length z, via solving the eigenvalue equation of the guided mode using the finite-difference frequency-domain method. Since the structural parameters such as the air-hole diameter and the pitch of the microstructured cladding change along the tapered PCFs, dispersion and nonlinear properties change with the length as well. Therefore, it is important to know the exact behavior of such fiber parameters along z which is necessary for nonlinear optics applications. We simulate the z dependency of the zero-dispersion wavelength, dispersion slope, effective mode area, nonlinear parameter, and the confinement loss along the tapered PCFs and propose useful relations for describing dispersion and nonlinear parameters. The results of this article, which are in a very good agreement with the available experimental data, are important for simulating pulse propagation as well as investigating nonlinear effects such as supercontinuum generation and parametric amplification in tapered PCFs.

  14. Waveguidance by the photonic bandgap effect in optical fibres

    DEFF Research Database (Denmark)

    Broeng, Jes; Søndergaard, Thomas; Barkou, Stig Eigil;

    1999-01-01

    Photonic crystals form a new class of intriguing building blocks to be utilized in future optoelectronics and electromagnetics. One of the most exciting possiblilties offered by phtonic crystals is the realization of new types of electromagnetic waveguides. In the optical domain, the most mature...... technology for such photonic bandgap (PBG) waveguides is in optical fibre configurations. These new fibres can be classified in a fundamentally different way to all optical waveguides and possess radically different guiding properties due to PBG guidance, as opposed to guidance by total internal refelction...

  15. Ultra-high-speed Optical Signal Processing using Silicon Photonics

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Ji, Hua; Jensen, Asger Sellerup

    on silicon photonics. In particular we use nano-engineered silicon waveguides (nanowires) [1] enabling efficient phasematched four-wave mixing (FWM), cross-phase modulation (XPM) or self-phase modulation (SPM) for ultra-high-speed optical signal processing of ultra-high bit rate serial data signals. We show......— In supercomputers, the optical inter-connects are getting closer and closer to the processing cores. Today, a single supercomputer system has as many optical links as the whole worldwide web together, and it is envisaged that future computing chips will contain multiple electronic processor cores...... with a photonic layer on top to interconnect them. For such systems, silicon is an attractive candidate enabling both electronic and photonic control. For some network scenarios, it may be beneficial to use optical on-chip packet switching, and for high data-density environments one may take advantage...

  16. Continuous all-optical deceleration and single-photon cooling of molecular beams

    Science.gov (United States)

    Jayich, A. M.; Vutha, A. C.; Hummon, M. T.; Porto, J. V.; Campbell, W. C.

    2014-02-01

    Ultracold molecular gases are promising as an avenue to rich many-body physics, quantum chemistry, quantum information, and precision measurements. This richness, which flows from the complex internal structure of molecules, makes the creation of ultracold molecular gases using traditional methods (laser plus evaporative cooling) a challenge, in particular due to the spontaneous decay of molecules into dark states. We propose a way to circumvent this key bottleneck using an all-optical method for decelerating molecules using stimulated absorption and emission with a single ultrafast laser. We further describe single-photon cooling of the decelerating molecules that exploits their high dark state pumping rates, turning the principal obstacle to molecular laser cooling into an advantage. Cooling and deceleration may be applied simultaneously and continuously to load molecules into a trap. We discuss implementation details including multilevel numerical simulations of strontium monohydride. These techniques are applicable to a large number of molecular species and atoms with the only requirement being an electric dipole transition that can be accessed with an ultrafast laser.

  17. All-optical photon echo on a chip

    Science.gov (United States)

    Moiseev, E. S.; Moiseev, S. A.

    2017-01-01

    We demonstrate that a photon echo can be implemented by all-optical means using an array of on-chip high-finesse ring cavities whose parameters are chirped in such a way as to support equidistant spectra of cavity modes. When launched into such a system, a classical or quantum optical signal—even a single-photon field—becomes distributed between individual cavities, giving rise to prominent coherence echo revivals at well-defined delay times, controlled by the chirp of cavity parameters. This effect enables long storage times for high-throughput broadband optical delay and quantum memory.

  18. Slow and fast light effects and their applications to microwave photonics using semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Sales, Salvador; Xue, Weiqi; Mørk, Jesper;

    2010-01-01

    We provide a comprehensive review of the application of slow and fast light (SFL) techniques to the field of microwave photonics. Basic principles leading to the implementation of phase shifting and true time delay operations which are instrumental in this field are first considered. We then focu....... Finally, the main results obtained for several microwave photonic applications such as filtering, arbitrary waveform generation and optoelectronic scillators (OEOs)are reviewed, and other directions for future research in the field are discussed.......We provide a comprehensive review of the application of slow and fast light (SFL) techniques to the field of microwave photonics. Basic principles leading to the implementation of phase shifting and true time delay operations which are instrumental in this field are first considered. We then focus...

  19. Stabilization and Frequency Control of a DFB Laser With a Tunable Optical Reflector Integrated in a Silicon Photonics PIC

    Science.gov (United States)

    Hauck, Johannes; Schrammen, Matthias; Romero-Garcia, Sebastian; Muller, Juliana; Shen, Bin; Richter, Jens; Merget, Florian; Witzens, Jeremy

    2016-12-01

    We investigate the effect of tunable optical feedback on a commercial DFB laser edge coupled to a Silicon Photonics planar integrated circuit in which a tunable reflector has been implemented by means of a ring resonator based add-drop multiplexer. Controlled optical feedback allows for fine-tuning of the laser oscillation frequency. Under certain conditions it also allows suppression of bifurcation modes triggered by reflections occurring elsewhere on the chip. A semi-analytical model describing laser dynamics under combined optical feedback from the input facet of the edge coupler and from the tunable on-chip reflector fits the measurements. Compensation of detrimental effects from reflections induced elsewhere on a transceiver chip may allow moving isolators downstream in future communications systems, facilitating direct hybrid laser integration in Silicon Photonics chips, provided a suitable feedback signal for a control system can be identified. Moreover, the optical frequency tuning at lower feedback levels can be used to form a rapidly tunable optical oscillator as part of an optical phase locked loop, circumventing the problem of the thermal to free carrier effect crossover in the FM response of injection current controlled semiconductor laser diodes.

  20. Parametric optimization of optical devices based on strong photonic localization

    Science.gov (United States)

    Gui, Minmin; Yang, Xiangbo

    2017-07-01

    Symmetric two-segment-connected triangular defect waveguide networks (STSCTDWNs) can produce strong photonic localization, which is useful for designing highly efficient energy storage devices, high power superluminescent light emitting diodes, all-optical switches, and more. Although STSCTDWNs have been studied in previous works, in this paper we systematically optimize the parameters of STSCTDWNs to further enhance photonic localization so that the function of optical devices based on strong photonic localization can be improved. When optimizing the parameters, we find a linear relationship between the logarithm of photonic localization and the broken degree of networks. Furthermore, the slope and intercept of the linear relationship are larger than previous results. This means that the increasing speed of photonic localization is improved. The largest intensity of photonic localizations can reach 1036, which is 16 orders of magnitude larger than previous reported results. These optimized networks provide practical solutions for all optical devices based on strong photonic localization in the low frequency range, such as nanostructured devices.

  1. Optical wave propagation in photonic crystal metamaterials

    Science.gov (United States)

    Khan, Kaisar; Mnaymneh, Khaled; Awad, Hazem; Hasan, Imad; Hall, Trevor

    2014-09-01

    Metamaterials that provide negative refraction can be implemented in photonic crystals (PhCs) through careful design of the devices. Theoretically, we demonstrate that the dispersion can be altered to achieve negative refraction. This can be done through engineering the geometry of the device as well as selecting appropriate materials. The PhC also demonstrates slow light that facilitate sensing chemicals or biological agents. Using metallic materials such as gold nano-particle enables PhCs to guide optical waves in desired pathways. Also using magnetic materials such as highly doped n-GaAs, we can tune the band gap by changing magnetic field. The simulated results are consistent with some of the previously reported experimental results and give us guidance for future experiments.

  2. Optical properties of active photonic materials

    OpenAIRE

    Zeng, Yong

    2007-01-01

    Because of the generation of polaritons, which are quasiparticles possessing the characteristics of both photonics and electronics, active photonic materials offer a possible solution to transfer electromagnetic energy below the diffraction limit and further increase the density of photonic integrated circuits. A theoretical investigation of these exciting materials is, therefore, very important for practical applications. Four different kinds of polaritons have been studied in this thesis, (...

  3. Femtosecond laser inscription of asymmetric directional couplers for in-fiber optical taps and fiber cladding photonics.

    Science.gov (United States)

    Grenier, Jason R; Fernandes, Luís A; Herman, Peter R

    2015-06-29

    Precise alignment of femtosecond laser tracks in standard single mode optical fiber is shown to enable controllable optical tapping of the fiber core waveguide light with fiber cladding photonic circuits. Asymmetric directional couplers are presented with tunable coupling ratios up to 62% and bandwidths up to 300 nm at telecommunication wavelengths. Real-time fiber monitoring during laser writing permitted a means of controlling the coupler length to compensate for micron-scale alignment errors and to facilitate tailored design of coupling ratio, spectral bandwidth and polarization properties. Laser induced waveguide birefringence was harnessed for polarization dependent coupling that led to the formation of in-fiber polarization-selective taps with 32 dB extinction ratio. This technology enables the interconnection of light propagating in pre-existing waveguides with laser-formed devices, thereby opening a new practical direction for the three-dimensional integration of optical devices in the cladding of optical fibers and planar lightwave circuits.

  4. Preliminary Flight Results of the Microelectronics and Photonics Test Bed: NASA DR1773 Fiber Optic Data Bus Experiment

    Science.gov (United States)

    Jackson, George L.; LaBel, Kenneth A.; Marshall, Cheryl; Barth, Janet; Seidleck, Christina; Marshall, Paul

    1998-01-01

    NASA Goddard Spare Flight Center's (GSFC) Dual Rate 1773 (DR1773) Experiment on the Microelectronic and Photonic Test Bed (MPTB) has provided valuable information on the performance of the AS 1773 fiber optic data bus in the space radiation environment. Correlation of preliminary experiment data to ground based radiation test results show the AS 1773 bus is employable in future spacecraft applications requiring radiation tolerant communication links.

  5. Calculation of BER in multi-channel silicon optical interconnects: comparative analysis of strip and photonic crystal waveguides

    Science.gov (United States)

    You, Jie; Lavdas, Spyros; Panoiu, Nicolae C.

    2016-05-01

    We present an effective approach to evaluate the performance of multi-channel silicon (Si) photonic systems. The system is composed of strip Si photonic waveguides (Si-PhWs) with uniform cross-section or photonic-crystal (PhC) Si waveguides (Si-PhCWs), combined with a set of direct-detection receivers. Moreover, the optical field in each channel is the superposition of a continuous-wave nonreturn-to-zero ON-OFF keying modulated signal and a white Gaussian noise. In order to characterize the optical signal propagation in the waveguides, an accurate mathematical model describing all relevant linear and nonlinear optical effects and its linearized version is employed. In addition, two semi-analytical methods, time- and frequency-domain Karhunen-Loève series expansion, are used to assess the system bit-error-rate (BER). Our analysis reveals that Si-PhCWs provide similar performance as Si-PhWs, but for 100× shorter length. Importantly, much worse BER is achieved in Si-PhCWs when one operates in slow-light regime, due to the enhanced linear and nonlinear effects.

  6. Single- and Multiband OFDM Photonic Wireless Links in the 75−110 GHz Band Employing Optical Combs

    DEFF Research Database (Denmark)

    Beltrán, M.; Deng, Lei; Pang, Xiaodan

    2012-01-01

    The photonic generation of electrical orthogonal frequency-division multiplexing (OFDM) modulated wireless signals in the 75−110 GHz band is experimentally demonstrated employing in-phase/quadrature electrooptical modulation and optical heterodyn upconversion. The wireless transmission of 16......-quadrature-amplitude-modulation OFDM signals is demonstrated with a bit error rate performance within the forward error correction limits. Signals of 19.1 Gb/s in 6.3-GHz bandwidth are transmitted over up to 1.3-m wireless distance. Optical comb generation is further employed to support different channels...

  7. Photonic synthesis of continuous‐wave millimeter‐wave signals using a passively mode‐locked laser diode and selective optical filtering

    DEFF Research Database (Denmark)

    Acedo, P.; Carpintero, G.; Criado, A.R.

    2012-01-01

    We report a photonic synthesis scheme for continuous wave millimeter‐wave signal generation using a single passively mode‐locked laser diode (PMLLD), optical filtering and photomixing in a fast photodiode.The phase noise of the photonically synthesized signals is evaluated and inherits...... the characteristics of the PMLLD electrical power spectrum....

  8. Suppressing Spectral Diffusion of the Emitted Photons with Optical Pulses

    CERN Document Server

    Fotso, H F; Awschalom, D D; Dobrovitski, V V

    2016-01-01

    In many quantum architectures the solid-state qubits, such as quantum dots or color centers, are interfaced via emitted photons. However, the frequency of photons emitted by solid-state systems exhibits slow uncontrollable fluctuations over time (spectral diffusion), creating a serious problem for implementation of the photon-mediated protocols. Here we show that a sequence of optical pulses applied to the solid-state emitter can stabilize the emission line at the desired frequency. We demonstrate efficiency, robustness, and feasibility of the method analytically and numerically. Taking nitrogen-vacancy (NV) center in diamond as an example, we show that only several pulses, with the width of 1 ns, separated by few ns (which is not difficult to achieve) can suppress spectral diffusion. Our method provides a simple and robust way to greatly improve the efficiency of photon-mediated entanglement and/or coupling to photonic cavities for solid-state qubits.

  9. Scheme for Realizing Probabilistic Teleportation of Bipartite Photonic States via Linear Optical Elements

    Institute of Scientific and Technical Information of China (English)

    DONG Ping; LIN Ji-Cheng; YANG Ming; CAO Zhuo-Liang

    2006-01-01

    We propose a probabilistic scheme for realizing teleportation of bipartite photonic states using linear optical elements where only requires a two-photon Bell state used as quantum channel. It reduces the requirement of the entanglement of quantum channel, but requires an additional photon and an auxiliary maximally entangled photon pair locally.

  10. Search for new optical, structural and electronic properties: From photons to electrons

    Science.gov (United States)

    Zhang, Feng

    With the development of modern computers, scientific computation has been an important facet in designing materials with desired properties. This thesis is devoted to predicting novel optical, structural and electronic properties from first-principles computation, by solving the fundamental governing Maxwell equations for photons and Schrodinger equation for electrons. In Chapter 1, we introduce a method of gradient-based optimization that continuously deforms a periodic dielectric distribution to generate photonic structures that possess any desired figure of merit expressible in terms of the electromagnetic eigenmodes and eigen-frequencies. The gradient is readily available from a perturbation theory that describes the change of eigenmodes and eigen-frequencies to small changes in dielectric pattern. As an example, we generate 2D forbidden regions between specified bands at very low dielectric contrast and very large gaps at a fixed dielectric contrast corresponding to a real material GaAs. In Chapter 2, we demonstrate that well-defined pi bonds can also be formed in two prototypical crystalline Si structures: Schwarzite Si-168 and dilated diamond. The sp2-bonded Si-168 is thermodynamically preferred over diamond silicon at a modest negative pressure of -2.5 GPa. Ab-initio molecular dynamics simulations of Si-168 at 1000 K reveal significant thermal stability. Si-168 is metallic in density functional theory, but with distinct pi-like and pi*-like valence and conduction band complexes just above and below the Fermi energy. A bandgap buried in the valence band but close to the Fermi level can be accessed via hole doping in semiconducting Si144B24. A less-stable crystalline system with a silicon-silicon triple bond is also examined: a rare-gas intercalated open framework on a dilated diamond lattice. In Chapter 3, we propose that microstructured optical fibers could be an attractive candidate for the imposition of negative pressure on materials deposited inside them

  11. Quantum optics with quantum dots in photonic nanowires

    DEFF Research Database (Denmark)

    Claudon, Julien; Munsch, Matthieu; Bleuse, Joel;

    2012-01-01

    Besides microcavities and photonic crystals, photonic nanowires have recently emerged as a novel resource for solidstate quantum optics. We will review recent studies which demonstrate an excellent control over the spontaneous emission of InAs quantum dots (QDs) embedded in single-mode Ga...... quantum optoelectronic devices. Quite amazingly, this approach has for instance permitted (unlike microcavity-based approaches) to combine for the first time a record-high efficiency (72%) and a negligible g(2) in a QD single photon source....

  12. Optical Tamm States in Dielectric Photonic Crystal Heterostructure

    Institute of Scientific and Technical Information of China (English)

    GUO Ji-Yong; SUN Yong; LI Hong-Qiang; ZHANG Ye-Wen; CHEN Hong

    2008-01-01

    We investigate one-dimensional dielectric photonic crystal and optical Tamm modes formed by superposition of two band gaps and find that this kind of mode can be explained by the single negative materials tunnelling effect. A finite-size dielectric photonic band gap can mimic one kind of effective single negative material and this property sensitively depends on the frequency Iocation in stop-band regions and surface termination and so on. The effective impedance match and effective phase match give the precise position of the optical Tamm mode. Complete transparency via tunnelling is achieved by two opaque media and demonstrates the validity of our approach.

  13. Synthesis,structure and nonlinear optical properties of two novel two-photon absorption chromophores

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Two triphenylamine-based derivatives that can be used as two-photon absorption chromophore,tris{4-[4-(3-trifluoromethyl-3-oxopanoyl)]phenyl}amine (1) and tris{4-[4-(3-phenyl-3-oxopanoyl)] phenyl} amine (2) were successfully synthesized and fully characterized by elemental analysis,IR,1H NMR and MS. The single crystal X-ray diffraction analysis showed that the molecules possess D-(π-A)3 structures. One-and two-photon absorption and fluorescence in various solvents were experimentally investigated. A data recording experiment proved the potential application of these chromophores.

  14. Continuous outreach activities performed by a student project team of undergraduates and their program topics in optics and photonics

    Science.gov (United States)

    Hasegawa, Makoto; Tokumitsu, Seika

    2016-09-01

    The out-of-curriculum project team "Rika-Kobo", organized by undergraduate students, has been actively engaged in a variety of continuous outreach activities in the fields of science and technology including optics and photonics. The targets of their activities cover wide ranges of generations from kids to parents and elderly people, with aiming to promote their interests in various fields of science and technologies. This is an out-of-curriculum project team with about 30 to 40 undergraduate students in several grades and majors. The total number of their activities per year tends to reach 80 to 90 in recent years. Typical activities to be performed by the project team include science classes in elementary and/or secondary schools, science classes at other educational facilities such as science museums, and experiment demonstrations at science events. Popular topics cover wide ranges from explanations and demonstrations of nature phenomena, such as rainbow colors, blue sky, sunset color, to demonstration experiments related to engineering applications, such as polarization of light, LEDs, and optical communications. Experimental topics in optics and photonics are especially popular to the audiences. Those activities are very effective to enhance interests of the audiences in learning related knowledges, irrespective of their generations. Those activities are also helpful for the student members to achieve and/or renew scientific knowledges. In addition, each of the activities provides the student members with effective and advantageous Project-Based-Learning (PBL) style experiences including manufacturing experiences, which are advantageous to cultivate their engineering skills.

  15. Microspherical photonics: Giant resonant light forces, spectrally resolved optical manipulation, and coupled modes of microcavity arrays

    CERN Document Server

    Li, Yangcheng

    2015-01-01

    In this dissertation novel resonant propulsion of dielectric microspheres is studied with the goal of sorting spheres with identical resonances, which are critical for developing microspherical photonics. First, evanescent field couplers were developed by fixing tapered microfibers in mechanically robust platforms. The tapers were obtained by chemical etching techniques. Using these platforms, WGMs modal numbers, coupling regimes and quality factors were determined for various spheres and compared with theory. Second, the spectroscopic properties of photonic molecules formed by spheres with better than 0.05% uniformity of WGM resonances were studied. It was shown that various spatial configurations of coupled-cavities present relatively stable mode splitting patterns in the fiber transmission spectra which can be used as spectral signatures to distinguish such photonic molecules. The third part is the study of giant resonant propulsion forces exerted on microspheres. This effect was observed in suspensions of...

  16. Ultrafast optics. Ultrafast optical control by few photons in engineered fiber.

    Science.gov (United States)

    Nissim, R; Pejkic, A; Myslivets, E; Kuo, B P; Alic, N; Radic, S

    2014-07-25

    Fast control of a strong optical beam by a few photons is an outstanding challenge that limits the performance of quantum sensors and optical processing devices. We report that a fast and efficient optical gate can be realized in an optical fiber that has been engineered with molecular-scale accuracy. Highly efficient, distributed phase-matched photon-photon interaction was achieved in the fiber with locally controlled, nanometer-scale core variations. A three-photon input was used to manipulate a Watt-scale beam at a speed exceeding 500 gigahertz. In addition to very fast beam control, the results provide a path to developing a new class of sensitive receivers capable of operating at very high rates.

  17. OSA Trends in Optics and Photonics Series. Volume 13: Ultrafast Electronics and Optoelectronics

    Science.gov (United States)

    1997-01-01

    Ramadas M. R. Pillai in construction of the Er/Yb optical amplifier, and that of David 0. Ca- plan in optically measuring the various fiber lengths...operation of the nonlinear fiber loop mirror," Opt. Lett., 1990, 15, pp. 248-250. [5] D. M. Patrick , A. D. Ellis, and D. M. Spirit, "Bit-rate flexible all

  18. Optical fiber tips functionalized with semiconductor photonic crystal cavities

    CERN Document Server

    Shambat, Gary; Rivoire, Kelley; Sarmiento, Tomas; Harris, James; Vuckovic, Jelena

    2011-01-01

    We demonstrate a simple and rapid epoxy-based method for transferring photonic crystal cavities to the facets of optical fibers. Passive Si cavities were measured via fiber taper coupling as well as direct transmission from the fiber facet. Active quantum dot containing GaAs cavities showed photoluminescence that was collected both in free space and back through the original fiber. Cavities maintain a high quality factor (2000-4000) in both material systems. This new design architecture provides a practical mechanically stable platform for the integration of photonic crystal cavities with macroscale optics and opens the door for novel research on fiber-coupled cavity devices.

  19. Achieving Giant Magneto-optic Effects with Optical Tamm States in Graphene-based Photonics

    OpenAIRE

    Da, Haixia; Qiu, Cheng-Wei; Bao, Qiaoliang; Teng, Jinghua; Loh, Kian Ping; Garcia-Vidal, Francisco J.

    2013-01-01

    We manipulate optical Tamm states in graphene-based photonics to achieve and steer large magneto-optical effects. Here we report the presence of a giant Faraday rotation via a single graphene layer of atomic thickness while keeping a high transmission. The Faraday rotation is enhanced across the interface between two photonic crystals due to the presence of an interface mode, which presents a strong electromagnetic field confinement at the location of the graphene sheet. Our proposed scheme o...

  20. A novel approach to photonic generate microwave signals based on optical injection locking and four-wave mixing

    Science.gov (United States)

    Zhu, Huatao; Wang, Rong; Xiang, Peng; Pu, Tao; Fang, Tao; Zheng, Jilin; Li, Yuandong

    2017-10-01

    In this paper, a novel approach for photonic generation of microwave signals based on frequency multiplication using an injected distributed-feedback (DFB) semiconductor laser is proposed and demonstrated by a proof-of-concept experiment. The proposed system is mainly made up of a dual-parallel Mach-Zehnder modulator (DPMZM) and an injected DFB laser. By properly setting the bias voltage of the DPMZM, ±2-order sidebands with carrier suppression are generated, which are then injected into the slave laser. Due to the optical sideband locking and four-wave mixing (FWM) nonlinearity in the slave laser, new sidebands are generated. Then these sidebands are sent to an optical notch filter where all the undesired sidebands are removed. Finally, after photodetector detection, frequency multiplied microwave signals can be generated. Thanks to the flexibility of the optical sideband locking and FWM, frequency octupling, 12-tupling, 14-tupling and 16-tupling can be obtained.

  1. Interfacing single photons and single quantum dots with photonic nanostructures

    CERN Document Server

    Lodahl, Peter; Stobbe, Søren

    2013-01-01

    Photonic nanostructures provide a way of tailoring the interaction between light and matter and the past decade has witnessed a tremendous experimental and theoretical progress on this subject. In particular, the combination with semiconductor quantum dots has proven very successful. This manuscript reviews quantum optics with excitons in single quantum dots embedded in photonic nanostructures. The ability to engineer the interaction strength in integrated photonic nanostructures enables a range of fundamental quantum-electrodynamics experiments on, e.g., spontaneous-emission control, modified Lamb shifts, and enhanced dipole-dipole interaction. Furthermore, highly efficient single-photon sources and giant photon nonlinearities may be constructed with immediate applications for photonic quantum-information processing. The review summarizes the general theoretical framework of photon emission including the role of dephasing processes, and applies it to photonic nanostructures of current interest, such as photo...

  2. Sub-diffraction positioning of a two-photon excited and optically trapped quantum dot

    DEFF Research Database (Denmark)

    Jauffred, L.; Kyrsting, A.; Christensen, Eva Arnspang;

    2014-01-01

    Colloidal quantum dots are luminescent long-lived probes that can be two-photon excited and manipulated by a single laser beam. Therefore, quantum dots can be used for simultaneous single molecule visualization and force manipulation using an infra-red laser. Here, we show that even a single opti...

  3. Photonic wires and trumpets for ultrabright single photon sources

    DEFF Research Database (Denmark)

    Gérard, Jean-Michel; Claudon, Julien; Bleuse, Joël

    2013-01-01

    Photonic wires have recently demonstrated very attractive assets in the field of high-efficiency single photon sources. After presenting the basics of spontaneous emission control in photonic wires, we compare the two possible tapering strategies that can be applied to their output end so...... as to tailor their radiation diagram in the far-field. We highlight the novel “photonic trumpet” geometry, which provides a clean Gaussian beam, and is much less sensitive to fabrication imperfections than the more common needle-like taper geometry. S4Ps based on a single QD in a PW with integrated bottom...... mirror and tapered tip display jointly a record-high efficiency (0.75±0.1 photon per pulse) and excellent single photon purity. Beyond single photon sources, photonic wires and trumpets appear as a very attractive resource for solid-state quantum optics experiments....

  4. Optical and physical properties of solgel-derived GeO2:SiO2 films in photonic applications.

    Science.gov (United States)

    Ho, Charles K F; Pal, Rajni; Djie, H S; Pita, Kantisara; Ngo, Nam Quoc; Osipowicz, T

    2007-07-10

    The functionality of optical components relies heavily on the composition-dependent properties of germanosilicate materials, which include the refractive index, photosensitivity, and microstructural properties. Recent studies and parallel developments are presented of germanosilicate films with composition x of Ge content (i.e., xGeO(2):(1-x)SiO(2)) that were synthesized by the solgel process for various integrated photonic applications undertaken. The following novel aspects are discussed with respect to the effect of composition of the glassy films (0.05properties, UV imprinting of optical waveguides with relatively large index change (Dn), and quantum-well intermixing enhancement observed in InGaAs(P)/InP quantum-well optical devices. The implications of the results are discussed.

  5. Plasmonic Photonic-Crystal Slabs: Visualization of the Bloch Surface Wave Resonance for an Ultrasensitive, Robust and Reusable Optical Biosensor

    Directory of Open Access Journals (Sweden)

    Alexander V. Baryshev

    2014-12-01

    Full Text Available A one-dimensional photonic crystal (PhC with termination by a metal film—a plasmonic photonic-crystal slab—has been theoretically analyzed for its optical response at a variation of the dielectric permittivity of an analyte and at a condition simulating the molecular binding event. Visualization of the Bloch surface wave resonance (SWR was done with the aid of plasmon absorption in a dielectric/metal/dielectric sandwich terminating a PhC. An SWR peak in spectra of such a plasmonic photonic crystal (PPhC slab comprising a noble or base metal layer was shown to be sensitive to a negligible variation of refractive index of a medium adjoining to the slab. As a consequence, the considered PPhC-based optical sensors exhibited an enhanced sensitivity and a good robustness in comparison with the conventional surface-plasmon and Bloch surface wave sensors. The PPhC biosensors can be of practical importance because the metal layer is protected by a capping dielectric layer from contact with analytes and, consequently, from deterioration.

  6. Multi-Beam Interference Advances and Applications: Nano-Electronics, Photonic Crystals, Metamaterials, Subwavelength Structures, Optical Trapping, and Biomedical Structures

    Directory of Open Access Journals (Sweden)

    Thomas K. Gaylord

    2011-06-01

    Full Text Available Research in recent years has greatly advanced the understanding and capabilities of multi-beam interference (MBI. With this technology it is now possible to generate a wide range of one-, two-, and three-dimensional periodic optical-intensity distributions at the micro- and nano-scale over a large length/area/volume. These patterns may be used directly or recorded in photo-sensitive materials using multi-beam interference lithography (MBIL to accomplish subwavelength patterning. Advances in MBI and MBIL and a very wide range of applications areas including nano-electronics, photonic crystals, metamaterials, subwavelength structures, optical trapping, and biomedical structures are reviewed and put into a unified perspective.

  7. Photon BLOCH oscillations in porous silicon optical superlattices.

    Science.gov (United States)

    Agarwal, V; del Río, J A; Malpuech, G; Zamfirescu, M; Kavokin, A; Coquillat, D; Scalbert, D; Vladimirova, M; Gil, B

    2004-03-01

    We report the first observation of oscillations of the electromagnetic field in an optical superlattice based on porous silicon. These oscillations are an optical equivalent of well-known electronic Bloch oscillations in crystals. Elementary cells of our structure are composed by microcavities whose coupling gives rise to the extended collective modes forming optical minigaps and minibands. By varying thicknesses of the cavities along the structure axis, we have created an effective electric field for photons. A very high quality factor of the confined optical state of the Wannier-Stark ladder may allow lasing in porous silicon-based superlattices.

  8. Influence of disorder and deformation on the optical properties of a two-dimensional photonic crystal waveguide

    Institute of Scientific and Technical Information of China (English)

    Sun Wen-Qian; Liu Yu-Min; Wang Dong-Lin; Han Li-Hong; Guo Xuan; Yu Zhong-Yuan

    2013-01-01

    We investigate the effect of disorder and mechanical deformation on a two-dimensional photonic crystal waveguide.The dispersion characteristics and transmittance of the waveguide are studied using the finite element method.Results show that the geometric change of the dielectric material perpendicular to the light propagation direction has a larger influence on the waveguide characteristics than that parallel to the light propagation direction.Mechanical deformation has an obvious influence on the performance of the waveguide.In particular,longitudinal deformed structure exhibits distinct optical characteristics from the ideal one.Studies on this work will provide useful guideline to the fabrication and practical applications based on photonic crystal waveguides.

  9. Off-axis phonon and photon propagation in porous silicon superlattices studied by Brillouin spectroscopy and optical reflectance

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, L. C., E-mail: lcparsons@mun.ca; Andrews, G. T., E-mail: tandrews@mun.ca [Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John' s, Newfoundland A1B 3X7 (Canada)

    2014-07-21

    Brillouin light scattering experiments and optical reflectance measurements were performed on a pair of porous silicon-based optical Bragg mirrors which had constituent layer porosity ratios close to unity. For off-axis propagation, the phononic and photonic band structures of the samples were modeled as a series of intersecting linear dispersion curves. Zone-folding was observed for the longitudinal bulk acoustic phonon and the frequency of the probed zone-folded longitudinal phonon was shown to be dependent on the propagation direction as well as the folding order of the mode branch. There was no conclusive evidence of coupling between the transverse and the folded longitudinal modes. Two additional observed Brillouin peaks were attributed to the Rayleigh surface mode and a possible pseudo-surface mode. Both of these modes were dispersive, with the velocity increasing as the wavevector decreased.

  10. Microscopic theory of photonic band gaps in optical lattices

    CERN Document Server

    Samoylova, M; Bachelard, R; Courteille, Ph W

    2013-01-01

    We propose a microscopic model to describe the scattering of light by atoms in optical lattices. The model is shown to efficiently capture Bragg scattering, spontaneous emission and photonic band gaps. A connection to the transfer matrix formalism is established in the limit of a one-dimensional optical lattice, and we find the two theories to yield results in good agreement. The advantage of the microscopic model is, however, that it suits better for studies of finite-size and disorder effects.

  11. Atomization efficiency and photon yield in laser-induced breakdown spectroscopy analysis of single nanoparticles in an optical trap

    Science.gov (United States)

    Purohit, Pablo; Fortes, Francisco J.; Laserna, J. Javier

    2017-04-01

    Laser-induced breakdown spectroscopy (LIBS) was employed for investigating the influence of particle size on the dissociation efficiency and the absolute production of photons per mass unit of airborne solid graphite spheres under single-particle regime. Particles of average diameter of 400 nm were probed and compared with 2 μm particles. Samples were first catapulted into aerosol form and then secluded in an optical trap set by a 532 nm laser. Trap stability was quantified before subjecting particles to LIBS analysis. Fine alignment of the different lines comprising the optical catapulting-optical trapping-laser-induced breakdown spectroscopy instrument and tuning of excitation parameters conditioning the LIBS signal such as fluence and acquisition delay are described in detail with the ultimate goal of acquiring clear spectroscopic data on masses as low as 75 fg. The atomization efficiency and the photon yield increase as the particle size becomes smaller. Time-resolved plasma imaging studies were conducted to elucidate the mechanisms leading to particle disintegration and excitation.

  12. Superconducting single-photon detectors for integrated quantum optics

    Energy Technology Data Exchange (ETDEWEB)

    Kahl, Oliver

    2016-01-29

    This thesis reports on the implementation and characterization of a fully integrated single-photon detector. Several detector circuits are realized and it is shown that the detectors exhibit supreme detection performance over a wide optical spectrum. The detectors' scalability is showcased by the parallel operation of multiple detectors within a single integrated circuit. These demonstrations are essential for future developments in integrated quantum optics.

  13. Overview of selected seminal optical science and photonics processes in nature

    Science.gov (United States)

    Alfano, Robert R.

    2016-03-01

    This presentation gives an overview on some of seminal research in optical science, condensed matter physics, biophysics, biology, biomedical, nonlinear optics, and structure light propagation and interactions at CCNY and GTE Labs over past 46 years. The advent of ultrafast laser pulses with picosecond and femtosecond pulses and optical spectroscopy (label free native fluorescence and Raman) has led to unravel some of mysteries in the molecular world leading to breakthroughs in various areas of science and medicine. The following topics are discussed: white light continuum called now Supercontinuum (SC); first direct measurement of Optical Phonon's lifetimes; first observation of creation of daughter vibrations in time from excited mother vibration in liquids; first direct measurement of creation and decay of Spin Angular Momentum of electrons in GaAs where picosecond Circular Polarized Light carrying Optical Spin Angular Momentum is generated; Pulse break up into ballistic, snake and diffusive components in scattering media such as um beads and tissues; and use of optical spectroscopy for first cancer detection in label free tissues. Most recently, advances in Biomedical Optics showed that Tryptophan as a key biomarker for aggressive cancers; there are three new optical windows with the Golden window #3 the best for penetrating tissue from 1600 nm to 1800 nm; Complex light with OAM offers potential deeper tissue penetration and Resonance Raman excited using magic 532 nm wavelength in tissues.

  14. Nonlinear optics at the single-photon level inside a hollow core fiber

    DEFF Research Database (Denmark)

    Hofferberth, Sebastian; Peyronel, Thibault; Liang, Qiyu

    2011-01-01

    Cold atoms inside a hollow core fiber provide an unique system for studying optical nonlinearities at the few-photon level. Confinement of both atoms and photons inside the fiber core to a diameter of just a few wavelengths results in high electric field intensity per photon and large optical...... depths with a relatively small number of atoms. We present our experimental apparatus and discuss results regarding all-optical switching at ultra-low light levels....

  15. Breakthroughs in photonics 2012: 2012 breakthroughs in lab-on-a-chip and optical biosensors

    OpenAIRE

    Duval, Daphné; Lechuga, Laura M.

    2013-01-01

    We review the most important achievements published in 2012 in the field of lab-on-a-chip (LOC) and optical biosensors. We will specially focus on optical label-free biosensors and their implementation into lab-on-a-chip platforms, with an emphasis on manuscripts demonstrating bioanalytical applications. © 2009-2012 IEEE.

  16. Hybrid quantum gates between flying photon and diamond nitrogen-vacancy centers assisted by optical microcavities

    Science.gov (United States)

    Wei, Hai-Rui; Lu Long, Gui

    2015-01-01

    Hybrid quantum gates hold great promise for quantum information processing since they preserve the advantages of different quantum systems. Here we present compact quantum circuits to deterministically implement controlled-NOT, Toffoli, and Fredkin gates between a flying photon qubit and diamond nitrogen-vacancy (NV) centers assisted by microcavities. The target qubits of these universal quantum gates are encoded on the spins of the electrons associated with the diamond NV centers and they have long coherence time for storing information, and the control qubit is encoded on the polarizations of the flying photon and can be easily manipulated. Our quantum circuits are compact, economic, and simple. Moreover, they do not require additional qubits. The complexity of our schemes for universal three-qubit gates is much reduced, compared to the synthesis with two-qubit entangling gates. These schemes have high fidelities and efficiencies, and they are feasible in experiment. PMID:26271899

  17. One-way optical transmission in silicon photonic crystal heterojunction with circular and square scatterers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dan, E-mail: liudanhu725@126.com [School of Physics and Mechanical & Electrical Engineering, Hubei University of Education, Wuhan, 430205 (China); Hu, Sen [School of Physics and Mechanical & Electrical Engineering, Hubei University of Education, Wuhan, 430205 (China); Gao, Yihua [Wuhan National Laboratory for Optoelectronics (WNLO), School of Physics, Huazhong University of Science and Technology (HUST), Wuhan, 430074 (China)

    2017-07-12

    A 2D orthogonal square-lattice photonic crystal (PC) heterojunction consisting of circular and square air holes in silicon is presented. Band structures are calculated using the plane wave expansion method, and the transmission properties are investigated by the finite-different time-domain simulations. Thanks to the higher diffraction orders excited when the circular and square holes are interlaced along the interface, one-way transmission phenomena can exist within wide frequency regions. The higher order diffraction is further enhanced through two different interface optimization designs proposed by modifying the PC structure of the hetero-interface. An orthogonal PC heterojunction for wide-band and efficient one-way transmission is constructed, and the maximum transmissivity is up to 78%. - Highlights: • Photonic crystal heterojunction with circular and square scatterers is first studied. • One-way transmission efficiency is closely related to the hetero-interface. • Wide-band and efficient one-way transmission is realized.

  18. An empirical approach to estimate near-infra-red photon propagation and optically induced drug release in brain tissues

    Science.gov (United States)

    Prabhu Verleker, Akshay; Fang, Qianqian; Choi, Mi-Ran; Clare, Susan; Stantz, Keith M.

    2015-03-01

    The purpose of this study is to develop an alternate empirical approach to estimate near-infra-red (NIR) photon propagation and quantify optically induced drug release in brain metastasis, without relying on computationally expensive Monte Carlo techniques (gold standard). Targeted drug delivery with optically induced drug release is a noninvasive means to treat cancers and metastasis. This study is part of a larger project to treat brain metastasis by delivering lapatinib-drug-nanocomplexes and activating NIR-induced drug release. The empirical model was developed using a weighted approach to estimate photon scattering in tissues and calibrated using a GPU based 3D Monte Carlo. The empirical model was developed and tested against Monte Carlo in optical brain phantoms for pencil beams (width 1mm) and broad beams (width 10mm). The empirical algorithm was tested against the Monte Carlo for different albedos along with diffusion equation and in simulated brain phantoms resembling white-matter (μs'=8.25mm-1, μa=0.005mm-1) and gray-matter (μs'=2.45mm-1, μa=0.035mm-1) at wavelength 800nm. The goodness of fit between the two models was determined using coefficient of determination (R-squared analysis). Preliminary results show the Empirical algorithm matches Monte Carlo simulated fluence over a wide range of albedo (0.7 to 0.99), while the diffusion equation fails for lower albedo. The photon fluence generated by empirical code matched the Monte Carlo in homogeneous phantoms (R2=0.99). While GPU based Monte Carlo achieved 300X acceleration compared to earlier CPU based models, the empirical code is 700X faster than the Monte Carlo for a typical super-Gaussian laser beam.

  19. Schemes generating entangled states and entanglement swapping between photons and three-level atoms inside optical cavities for quantum communication

    Science.gov (United States)

    Heo, Jino; Kang, Min-Sung; Hong, Chang-Ho; Yang, Hyeon; Choi, Seong-Gon

    2017-01-01

    We propose quantum information processing schemes based on cavity quantum electrodynamics (QED) for quantum communication. First, to generate entangled states (Bell and Greenberger-Horne-Zeilinger [GHZ] states) between flying photons and three-level atoms inside optical cavities, we utilize a controlled phase flip (CPF) gate that can be implemented via cavity QED). Subsequently, we present an entanglement swapping scheme that can be realized using single-qubit measurements and CPF gates via optical cavities. These schemes can be directly applied to construct an entanglement channel for a communication system between two users. Consequently, it is possible for the trust center, having quantum nodes, to accomplish the linked channel (entanglement channel) between the two separate long-distance users via the distribution of Bell states and entanglement swapping. Furthermore, in our schemes, the main physical component is the CPF gate between the photons and the three-level atoms in cavity QED, which is feasible in practice. Thus, our schemes can be experimentally realized with current technology.

  20. Design and optical characterization of high-Q guided-resonance modes in the slot-graphite photonic crystal lattice.

    Science.gov (United States)

    Martínez, Luis Javier; Huang, Ningfeng; Ma, Jing; Lin, Chenxi; Jaquay, Eric; Povinelli, Michelle L

    2013-12-16

    A new photonic crystal structure is generated by using a regular graphite lattice as the base and adding a slot in the center of each unit cell to enhance field confinement. The theoretical Q factor in an ideal structure is over 4 × 10(5). The structure was fabricated on a silicon-on-insulator wafer and optically characterized by transmission spectroscopy. The resonance wavelength and quality factor were measured as a function of slot height. The measured trends show good agreement with simulation.

  1. Optically controlled photonic bandgap structures for microstrip circuits

    CERN Document Server

    Cadman, D A

    2003-01-01

    This thesis is concerned with the optical control of microwave photonic bandgap circuits using high resistivity silicon. Photoconducting processes that occur within silicon are investigated. The influence of excess carrier density on carrier mobility and lifetime is examined. In addition, electron-hole pair recombination mechanisms (Shockley-Read-Hall, Auger, radiative and surface) are investigated. The microwave properties of silicon are examined, in particular the variation of silicon reflectivity with excess carrier density. Filtering properties of microstrip photonic bandgap structures and how they may be controlled optically are studied. A proof-of-concept microstrip photonic bandgap structure with optical control is designed, simulated and measured. With no optical illumination incident upon the silicon, the microstrip photonic bandgap structure's filtering properties are well-defined; a 3dB stopband width of 2.6GHz, a 6dB bandwidth of 2GHz and stopband depth of -11.6dB at the centre frequency of 9.9GHz...

  2. Mesa-top quantum dot single photon emitter arrays: Growth, optical characteristics, and the simulated optical response of integrated dielectric nanoantenna-waveguide systems

    Science.gov (United States)

    Zhang, Jiefei; Chattaraj, Swarnabha; Lu, Siyuan; Madhukar, Anupam

    2016-12-01

    Nanophotonic quantum information processing systems require spatially ordered, spectrally uniform single photon sources (SPSs) integrated on-chip with co-designed light manipulating elements providing emission rate enhancement, emitted photon guidance, and lossless propagation. Towards this goal, we consider systems comprising an SPS array with each SPS coupled to a dielectric building block (DBB) based multifunctional light manipulation unit (LMU). For the SPS array, we report triggered single photon emission from GaAs(001)/InGaAs single quantum dots grown selectively on top of nanomesas using the approach of substrate-encoded size-reducing epitaxy (SESRE). Systematic temperature and power dependent photoluminescence (PL), PL excitation, time-resolved PL, and emission statistics studies reveal high spectral uniformity and single photon emission at 8 K with g(2)(0) of 0.19 ± 0.03. The SESRE based SPS arrays, following growth of a planarizing overlayer, are readily integrable with LMUs fabricated subsequently using either the 2D photonic crystal approach or, as theoretically examined here, DBB based LMUs. We report the simulated optical response of SPS embedded in DBB based nanoantenna-waveguide structures as the multifunctional LMU. The multiple functions of emission rate enhancement, guiding, and lossless propagation are derived from the behavior of the same collective Mie resonance (dominantly magnetic) of the interacting DBB based LMU tuned to the SPS targeted emission wavelength of 980 nm. The simulation utilizes an analytical approach that provides physical insight into the obtained numerical results. Together, the combined experimental and modelling demonstrations open a rich approach to implementing co-designed on-chip integrated SPS-LMUs that, in turn, serve as basic elements of integrated nanophotonic information processing systems.

  3. Every photon counts: improving low, mid, and high-spatial frequency errors on astronomical optics and materials with MRF

    Science.gov (United States)

    Maloney, Chris; Lormeau, Jean Pierre; Dumas, Paul

    2016-07-01

    Many astronomical sensing applications operate in low-light conditions; for these applications every photon counts. Controlling mid-spatial frequencies and surface roughness on astronomical optics are critical for mitigating scattering effects such as flare and energy loss. By improving these two frequency regimes higher contrast images can be collected with improved efficiency. Classically, Magnetorheological Finishing (MRF) has offered an optical fabrication technique to correct low order errors as well has quilting/print-through errors left over in light-weighted optics from conventional polishing techniques. MRF is a deterministic, sub-aperture polishing process that has been used to improve figure on an ever expanding assortment of optical geometries, such as planos, spheres, on and off axis aspheres, primary mirrors and freeform optics. Precision optics are routinely manufactured by this technology with sizes ranging from 5-2,000mm in diameter. MRF can be used for form corrections; turning a sphere into an asphere or free form, but more commonly for figure corrections achieving figure errors as low as 1nm RMS while using careful metrology setups. Recent advancements in MRF technology have improved the polishing performance expected for astronomical optics in low, mid and high spatial frequency regimes. Deterministic figure correction with MRF is compatible with most materials, including some recent examples on Silicon Carbide and RSA905 Aluminum. MRF also has the ability to produce `perfectly-bad' compensating surfaces, which may be used to compensate for measured or modeled optical deformation from sources such as gravity or mounting. In addition, recent advances in MRF technology allow for corrections of mid-spatial wavelengths as small as 1mm simultaneously with form error correction. Efficient midspatial frequency corrections make use of optimized process conditions including raster polishing in combination with a small tool size. Furthermore, a novel MRF

  4. Optical parametric chirped pulse amplification and spectral shaping of a continuum generated in a photonic band gap fiber.

    Science.gov (United States)

    Hugonnot, E; Somekh, M; Villate, D; Salin, F; Freysz, E

    2004-05-31

    A chirped pulse, spectrally broadened in a photonic bandgap optical fiber by 120 fs Ti:Sapphire laser pulses, is parametrically amplified in a BBO crystal pumped by a frequency doubled nanosecond Nd:YAG laser pulse. Without changing the frequency of the Ti:Sapphire, a spectral tunability of the amplified pulses is demonstrated. The possibility to achieve broader spectral range amplification is confirmed for a non-collinear pump-signal interaction geometry. For optimal non-collinear interaction geometry, the pulse duration of the original and amplified pulse are similar. Finally, we demonstrate that the combination of two BBO crystals makes it possible to spectrally shape the amplified pulses.

  5. Radiative electronic energy transfer-time studies of naphthalene-biacetyl system by one and two-photon excitation, and optical antenna mechanism.

    Science.gov (United States)

    Bayrakceken, Fuat

    2005-04-01

    In principle, the optical energy absorbed by a complex molecule raises that molecule to one of its excited states, and afterwards this excitation energy decays through the relaxation channels. Initially, electronically excited naphthalene emits photons and these emitted photons are absorbed by the acceptor molecule biacetyl, then excited biacetyl fluoresces. In this investigation radiative energy transfer-time is measured in cyclohexane by one and two-photon excitations. The UV-vis spectrum of biacetyl vapor at room temperature conditions was broad and structureless.

  6. Optical microscope using an interferometric source of two-color, two-beam entangled photons

    Science.gov (United States)

    Dress, William B.; Kisner, Roger A.; Richards, Roger K.

    2004-07-13

    Systems and methods are described for an optical microscope using an interferometric source of multi-color, multi-beam entangled photons. A method includes: downconverting a beam of coherent energy to provide a beam of multi-color entangled photons; converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; transforming at least a portion of the converged multi-color entangled photon beam by interaction with a sample to generate an entangled photon specimen beam; and combining the entangled photon specimen beam with an entangled photon reference beam within a single beamsplitter. An apparatus includes: a multi-refringent device providing a beam of multi-color entangled photons; a condenser device optically coupled to the multi-refringent device, the condenser device converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; a beam probe director and specimen assembly optically coupled to the condenser device; and a beam splitter optically coupled to the beam probe director and specimen assembly, the beam splitter combining an entangled photon specimen beam from the beam probe director and specimen assembly with an entangled photon reference beam.

  7. Optical biosensing of bacteria and cells using porous silicon based, photonic lamellar gratings

    Science.gov (United States)

    Mirsky, Y.; Nahor, A.; Edrei, E.; Massad-Ivanir, N.; Bonanno, L. M.; Segal, E.; Sa'ar, A.

    2013-07-01

    We report on a method to extend the optical sensing capabilities of conventional RIFTS (reflective interferometric Fourier transform spectroscopy) biosensors for real-time detection of large microorganisms, such as bacteria and cells. Using macro porous silicon based 2D arrays of phase (lamellar) grating, we demonstrate that the zero-order optical reflectivity exhibits a similar interference pattern to that obtained for ordinary RIFTS biosensors, which can be Fourier transformed into optical thickness and exploited for biosensing. The sensing capabilities are demonstrated for Escherichia coli bacteria that were captured inside the macro-pores. The entrapment process is monitored and verified by confocal laser scanning microscopy.

  8. Atoms, molecules and optical physics 2. Molecules and photons - Spectroscopy and collisions

    Energy Technology Data Exchange (ETDEWEB)

    Hertel, Ingolf V.; Schulz, Claus-Peter [Max-Born-Institut fuer Nichtlineare Optik und Kurzzeitspektroskopie im Forschungsverbund Berlin e.V. (Germany)

    2015-09-01

    This is the second volume of textbooks on atomic, molecular and optical physics, aiming at a comprehensive presentation of this highly productive branch of modern physics as an indispensable basis for many areas in physics and chemistry as well as in state of the art bio- and material-sciences. It primarily addresses advanced students (including PhD students), but in a number of selected subject areas the reader is lead up to the frontiers of present research. Thus even the active scientist is addressed. This volume 2 introduces lasers and quantum optics, while the main focus is on the structure of molecules and their spectroscopy, as well as on collision physics as the continuum counterpart to bound molecular states. The emphasis is always on the experiment and its interpretation, while the necessary theory is introduced from this perspective in a compact and occasionally somewhat heuristic manner, easy to follow even for beginners.

  9. Photonic Microresonator Research and Applications

    CERN Document Server

    Chremmos, Ioannis; Uzunoglu, Nikolaos

    2010-01-01

    Photonic Microresonator Research and Applications explores advances in the fabrication process that enable nanometer waveguide separations. The technology surrounding the design and fabrication of optical microresonators has matured to a point where there is a need for commercialization. Consequently, there is a need for device research involving more advanced architectures and more esoteric operating princples. This volume discusses these issues, while also: Showing a reader how to design and fabricate microresonators Discussing microresonators in photonic crystals, microsphere circuits, and sensors, and provides application oriented examples Covering the latest in microresonator research with contributions from the leading researchers Photonic Microresonator Research and Applications would appeal to researchers and academics working in the optical sciences.

  10. OSA Trends in Optics and Photonics Series, Volume 14 Spatial Light Modulators

    Science.gov (United States)

    2007-11-02

    100mm from the optical antenna . In most cases AEL=Emitted power. 2.AEL is equal to power passing through a 50mm aperture 100mm from the antenna...8217s of MHz, and appear to be an attractive source for long wavelength, low cost systems. The optical ’ antenna ’ consists of an array of surface...used to create an optical antenna , using the design il- lustrated in figure 2. Figure 4 shows the antenna opti- cal system, that uses commercial

  11. Application-specific specialty microstructured optical fibers for mid-IR and THz photonics (Invited)

    DEFF Research Database (Denmark)

    Pal, Bishnu P.; Barh, Ajanta; Varshney, Ravi K.

    2016-01-01

    A review of several of our designed specialty microstructured optical fibers (MOFs) for mid-IR and THz generation and transmission including high power transmission is presented. Extensive results on performance of the designed MOFs are described.......A review of several of our designed specialty microstructured optical fibers (MOFs) for mid-IR and THz generation and transmission including high power transmission is presented. Extensive results on performance of the designed MOFs are described....

  12. Resonance-enhanced optical forces between coupled photonic crystal slabs.

    Science.gov (United States)

    Liu, Victor; Povinelli, Michelle; Fan, Shanhui

    2009-11-23

    The behaviors of lateral and normal optical forces between coupled photonic crystal slabs are analyzed. We show that the optical force is periodic with displacement, resulting in stable and unstable equilibrium positions. Moreover, the forces are strongly enhanced by guided resonances of the coupled slabs. Such enhancement is particularly prominent near dark states of the system, and the enhancement effect is strongly dependent on the types of guided resonances involved. These structures lead to enhancement of light-induced pressure over larger areas, in a configuration that is directly accessible to externally incident, free-space optical beams.

  13. Fast-channel LSO detectors and fiber-optic encoding for excellent dual photon transmission measurements in PET

    Energy Technology Data Exchange (ETDEWEB)

    Jones, W.F.; Moyers, J.C.; Casey, M.E.; Watson, C.C.; Nutt, R. [CTI PET Systems, Inc., Knoxville, TN (United States)

    1999-08-01

    Improved attenuation correction remains critical to PET. Currently with dual photon rotating rod sources, benefits of windowing are limited by counting losses of detectors nearest the rods, the near detectors. With single photon sources, improved statistics are offset by a greater need for collimation and more complex emission background correction. Now, a dual photon point source array with fast-channel, near detectors improves on these earlier techniques -- here, adding transmission measurement to dual-head rotating PET. Arrays of collimated point sources are aligned axially and orbit the FOV. With each source is a dedicated near detector (LSO crystal). Crystals couple to photomultipliers (PMTs). As the crystals are not ``block`` encoded, pulse-processing time is reduced (to 120 ns). Reduced processing time lowers dead time and permits hotter sources. For improved axial sampling, larger arrays (21 sources/head) may be configured. To reduce costs, crystals couple fiber-optically into unique PMT pairs -- decreasing the total number of near-detector PMTs by 71%.

  14. Electrifying photonic metamaterials for tunable nonlinear optics.

    Science.gov (United States)

    Kang, Lei; Cui, Yonghao; Lan, Shoufeng; Rodrigues, Sean P; Brongersma, Mark L; Cai, Wenshan

    2014-08-11

    Metamaterials have not only enabled unprecedented flexibility in producing unconventional optical properties that are not found in nature, they have also provided exciting potential to create customized nonlinear media with high-order properties correlated to linear behaviour. Two particularly compelling directions are active metamaterials, whose optical properties can be purposely tailored by external stimuli in a reversible manner, and nonlinear metamaterials, which enable intensity-dependent frequency conversion of light waves. Here, by exploring the interaction of these two directions, we leverage the electrical and optical functions simultaneously supported in nanostructured metals and demonstrate electrically controlled nonlinear optical processes from a metamaterial. Both second harmonic generation and optical rectification, enhanced by the resonance behaviour in the metamaterial absorber, are modulated externally with applied voltage signals. Our results reveal an opportunity to exploit optical metamaterials as self-contained, dynamic electro-optic systems with intrinsically embedded electrical functions and optical nonlinearities.

  15. Optical encryption using photon-counting polarimetric imaging.

    Science.gov (United States)

    Maluenda, David; Carnicer, Artur; Martínez-Herrero, Rosario; Juvells, Ignasi; Javidi, Bahram

    2015-01-26

    We present a polarimetric-based optical encoder for image encryption and verification. A system for generating random polarized vector keys based on a Mach-Zehnder configuration combined with translucent liquid crystal displays in each path of the interferometer is developed. Polarization information of the encrypted signal is retrieved by taking advantage of the information provided by the Stokes parameters. Moreover, photon-counting model is used in the encryption process which provides data sparseness and nonlinear transformation to enhance security. An authorized user with access to the polarization keys and the optical design variables can retrieve and validate the photon-counting plain-text. Optical experimental results demonstrate the feasibility of the encryption method.

  16. Silicon photonics fundamentals and devices

    CERN Document Server

    Deen, M Jamal

    2012-01-01

    The creation of affordable high speed optical communications using standard semiconductor manufacturing technology is a principal aim of silicon photonics research. This would involve replacing copper connections with optical fibres or waveguides, and electrons with photons. With applications such as telecommunications and information processing, light detection, spectroscopy, holography and robotics, silicon photonics has the potential to revolutionise electronic-only systems. Providing an overview of the physics, technology and device operation of photonic devices using exclusively silicon and related alloys, the book includes: * Basic Properties of Silicon * Quantum Wells, Wires, Dots and Superlattices * Absorption Processes in Semiconductors * Light Emitters in Silicon * Photodetectors , Photodiodes and Phototransistors * Raman Lasers including Raman Scattering * Guided Lightwaves * Planar Waveguide Devices * Fabrication Techniques and Material Systems Silicon Photonics: Fundamentals and Devices outlines ...

  17. Optical amplification and pulse interleaving for low noise photonic microwave generation

    CERN Document Server

    Quinlan, Franklyn; Fortier, Tara M; Zhou, Qiugui; Cross, Allen; Campbell, Joe C; Diddams, Scott A

    2013-01-01

    We investigate the impact of pulse interleaving and optical amplification on the spectral purity of microwave signals generated by photodetecting the pulsed output of an Er:fiber-based optical frequency comb. It is shown that the microwave phase noise floor can be extremely sensitive to delay length errors in the interleaver, and the contribution of the quantum noise from optical amplification to the phase noise can be reduced ~10 dB for short pulse detection. We exploit optical amplification, in conjunction with high power handling modified uni-traveling carrier photodetectors, to generate a phase noise floor on a 10 GHz carrier of -175 dBc/Hz, the lowest ever demonstrated in the photodetection of a mode-locked fiber laser. At all offset frequencies, the photodetected 10 GHz phase noise performance is comparable to or better than the lowest phase noise results yet demonstrated with stabilized Ti:sapphire frequency combs.

  18. Optical properties of GaAs 2D hexagonal and cubic photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Arab, F., E-mail: farab@CDTA.DZ; Assali, A.; Grain, R.; Kanouni, F. [Centre for Development of Advanced Technologies (CDTA) Research Unit in Optics and Photonics (UROP), University of Setif 1, El Bez, 19000 Setif (Algeria)

    2015-03-30

    In this paper we present our theoretical study of 2D hexagonal and cubic rods GaAs in air, with plan wave expansion (PWE) and finite difference time domain (FDTD) by using BandSOLVE and FullWAVE of Rsoft photonic CAD package. In order to investigate the effect of symmetry and radius, we performed calculations of the band structures for both TM and TE polarization, contour and electromagnetic propagation and transmission spectra. Our calculations show that the hexagonal structure gives a largest band gaps compare to cubic one for a same filling factor.

  19. Compressive sensing in a photonic link with optical integration

    DEFF Research Database (Denmark)

    Chen, Ying; Yu, Xianbin; Chi, Hao

    2014-01-01

    In this Letter, we present a novel structure to realize photonics-assisted compressive sensing (CS) with optical integration. In the system, a spectrally sparse signal modulates a multiwavelength continuous-wave light and then is mixed with a random sequence in optical domain. The optical signal......, which is equivalent to the function of integration required in CS. A proof-of-concept experiment with four wavelengths, corresponding to a compression factor of 4, is demonstrated. More simulation results are also given to show the potential of the technique....

  20. Quantum nonlinear optics with single photons enabled by strongly interacting atoms

    DEFF Research Database (Denmark)

    Peyronel, Thibault; Firstenberg, Ofer; Liang, Qi Yu

    2012-01-01

    The realization of strong nonlinear interactions between individual light quanta (photons) is a long-standing goal in optical science and engineering, being of both fundamental and technological significance. In conventional optical materials, the nonlinearity at light powers corresponding...

  1. Photonic Applications Using Electrooptic Optical Signal Processors

    Science.gov (United States)

    2011-11-16

    DPMZM transmitter, the laser source of 1550nm, the erbium-doped fiber amplifier ( EDFA ), the local oscillator (LO), and the optical filter (FBG). The LO...is generated using an optical modulator, operating at 12.25278 GHz along with an optical filter (FBG) to separate the sideband. The EDFA was used to

  2. Optimizing optical Bragg scattering for single-photon frequency conversion

    CERN Document Server

    Lefrancois, Simon; Eggleton, Benjamin J

    2014-01-01

    We develop a systematic theory for optimising single-photon frequency conversion using optical Bragg scattering. The efficiency and phase-matching conditions for the desired Bragg scattering conversion as well as spurious scattering and modulation instability are identified. We find that third-order dispersion can suppress unwanted processes, while dispersion above the fourth order limits the maximum conversion efficiency. We apply the optimisation conditions to frequency conversion in highly nonlinear fiber, silicon nitride waveguides and silicon nanowires. Efficient conversion is confirmed using full numerical simulations. These design rules will assist the development of efficient quantum frequency conversion between multicolour single photon sources for integration in complex quantum networks.

  3. Giant optical forces in planar dielectric photonic metamaterials.

    Science.gov (United States)

    Zhang, Jianfa; MacDonald, Kevin F; Zheludev, Nikolay I

    2014-08-15

    We demonstrate that resonant optical forces generated within all-dielectric planar photonic metamaterials at near-infrared illumination wavelengths can be an order of magnitude larger than in corresponding plasmonic metamaterials, reaching levels many tens of times greater than the force resulting from radiation pressure. This is made possible by the dielectric structures' freedom from Joule losses and the consequent ability to sustain Fano-resonances with high quality factors that are unachievable in plasmonic nanostructures. Dielectric nano-optomechanical metamaterials can thus provide a functional platform for a range of novel dynamically controlled and self-adaptive nonlinear, tunable/switchable photonic metamaterials.

  4. Dynamic increase and decrease of photonic crystal nanocavity Q factors for optical pulse control.

    Science.gov (United States)

    Upham, Jeremy; Tanaka, Yoshinori; Asano, Takashi; Noda, Susumu

    2008-12-22

    We introduce recent advances in dynamic control over the Q factor of a photonic crystal nanocavity system. By carefully timing a rapid increase of the Q factor from 3800 to 22,000, we succeed in capturing a 4ps signal pulse within the nanocavity with a photon lifetime of 18ps. By performing an additional transition of the Q factor within the photon lifetime, the held light is once again ejected from of the system on demand.

  5. Natural Silk as a Photonics Component: a Study on Its Light Guiding and Nonlinear Optical Properties

    Science.gov (United States)

    Kujala, Sami; Mannila, Anna; Karvonen, Lasse; Kieu, Khanh; Sun, Zhipei

    2016-03-01

    Silk fibers are expected to become a pathway to biocompatible and bioresorbable waveguides, which could be used to deliver localized optical power for various applications, e.g., optical therapy or imaging inside living tissue. Here, for the first time, the linear and nonlinear optical properties of natural silk fibers have been studied. The waveguiding properties of silk fibroin of largely unprocessed Bombyx mori silkworm silk are assessed using two complementary methods, and found to be on the average 2.8 dB mm-1. The waveguide losses of degummed silk are to a large extent due to scattering from debris on fiber surface and helical twisting of the fiber. Nonlinear optical microscopy reveals both configurational defects such as torsional twisting, and strong symmetry breaking at the center of the fiber, which provides potential for various nonlinear applications. Our results show that nonregenerated B. mori silk can be used for delivering optical power over short distances, when the waveguide needs to be biocompatible and bioresorbable, such as embedding the waveguide inside living tissue.

  6. Efficient optical pumping and high optical depth in a hollow-core photonic-crystal fibre for a broadband quantum memory

    CERN Document Server

    Sprague, Michael R; Abdolvand, Amir; Nunn, Joshua; Jin, Xian-Min; Kolthammer, W Steven; Barbieri, Marco; Rigal, Bruno; Michelberger, Patrick S; Champion, Tessa F M; Russell, Philip St J; Walmsley, Ian A

    2012-01-01

    The generation of large multiphoton quantum states - for applications in computing, metrology, and simulation - requires a network of high-efficiency quantum memories capable of storing broadband pulses. Integrating these memories into a fibre offers a number of advantages towards realising this goal: strong light-matter coupling at low powers, simplified alignment, and compatibility with existing photonic architectures. Here, we introduce a large-core kagome-structured hollow-core fibre as a suitable platform for an integrated fibre-based quantum memory with a warm atomic vapour. We demonstrate, for the first time, efficient optical pumping in a hollow-core photonic-crystal fibre with a warm atomic vapour, where (90 $\\pm$ 1)% of atoms are prepared in the ground state. We measure high optical depths (3$\\times 10^{4}$) and, also, narrow homogeneous linewidths that do not exhibit significant transit-time broadening. Our results establish that kagome fibres are suitable for implementing a broadband, room-tempera...

  7. All-optical high performance graphene-photonic crystal switch

    Science.gov (United States)

    Hoseini, Mehrdad; Malekmohammad, Mohammad

    2017-01-01

    The all-optical switch is realized based on nonlinear transmission changes in Fano resonance of 2D photonic crystals (PhC) which enhances the light intensity on the graphene in PhC; and in this study, the graphene layer is used as the nonlinear material. The refractive index change of graphene layer leads to a shift in the Fano resonance frequency due to the input light intensity through the Kerr nonlinear effect. Through finite-difference time-domain simulation, it is found that the high performance of all-optical switching can be achieved by the designed structure with a threshold pump intensity as low as MW/cm2. This structure is featured by optical bistability. The obtained results are applicable in micro optical integrated circuits for modulators, switches and logic elements for optical computation.

  8. Photon pair generation in multimode optical fibers via intermodal phase-matching

    CERN Document Server

    Pourbeyram, Hamed

    2016-01-01

    We present a detailed study of photon-pair generation in a multimode optical fiber via nonlinear four-wave mixing and intermodal phase-matching. We show that in multimode optical fibers, it is possible to generate correlated photon pairs in different fiber modes with large spectral shifts from the pump wavelength, such that the photon pairs are immune to contamination from spontaneous Raman scattering and residual pump photons. We also show that it is possible to generate factorable two-photon states exhibiting minimal spectral correlations between the photon pair components in conventional multimode fibers using commonly available pump lasers. It is also possible to simultaneously generate multiple factorable states from different FWM processes in the same fiber and over a wide range of visible spectrum by varying the pump wavelength without affecting the factorability of the states. Therefore, photon-pair generation in multimode optical fibers exhibits considerable potential for producing state engineered p...

  9. Linear-optics manipulations of photon-loss codes

    CERN Document Server

    Banaszek, K; Banaszek, Konrad; Wasilewski, Wojciech

    2007-01-01

    We discuss codes for protecting logical qubits carried by optical fields from the effects of amplitude damping, i.e. linear photon loss. We demonstrate that the correctability condition for one-photon loss imposes limitations on the range of manipulations than can be implemented with passive linear-optics networks.

  10. An on-chip coupled resonator optical waveguide single-photon buffer.

    Science.gov (United States)

    Takesue, Hiroki; Matsuda, Nobuyuki; Kuramochi, Eiichi; Munro, William J; Notomi, Masaya

    2013-01-01

    Integrated quantum optical circuits are now seen as one of the most promising approaches with which to realize single-photon quantum information processing. Many of the core elements for such circuits have been realized, including sources, gates and detectors. However, a significant missing function necessary for photonic quantum information processing on-chip is a buffer, where single photons are stored for a short period of time to facilitate circuit synchronization. Here we report an on-chip single-photon buffer based on coupled resonator optical waveguides (CROW) consisting of 400 high-Q photonic crystal line-defect nanocavities. By using the CROW, a pulsed single photon is successfully buffered for 150 ps with 50-ps tunability while maintaining its non-classical properties. Furthermore, we show that our buffer preserves entanglement by storing and retrieving one photon from a time-bin entangled state. This is a significant step towards an all-optical integrated quantum information processor.

  11. An on-chip coupled resonator optical waveguide single-photon buffer

    CERN Document Server

    Takesue, Hiroki; Kuramochi, Eiichi; Munro, Willian J; Notomi, Masaya

    2013-01-01

    Integrated quantum optical circuits are now seen as one of the most promising approaches with which to realize single photon quantum information processing. Many of the core elements for such circuits have been realized including sources, gates and detectors. However, a significant missing function necessary for photonic information processing on-chip is a buffer, where single photons are stored for a short period of time to facilitate circuit synchronization. Here we report an on-chip single photon buffer based on coupled resonator optical waveguides (CROW) consisting of 400 high-Q photonic crystal line defect nanocavities. By using the CROW, a pulsed single photon was successfully buffered for 150 ps with 50-ps tunability while maintaining its non-classical properties. Furthermore, we showed that our buffer preserves entanglement by storing and retrieving one photon from a time-bin entangled state. This is a significant step towards an all-optical integrated quantum information processor.

  12. Spin-optical metamaterial route to spin-controlled photonics.

    Science.gov (United States)

    Shitrit, Nir; Yulevich, Igor; Maguid, Elhanan; Ozeri, Dror; Veksler, Dekel; Kleiner, Vladimir; Hasman, Erez

    2013-05-10

    Spin optics provides a route to control light, whereby the photon helicity (spin angular momentum) degeneracy is removed due to a geometric gradient onto a metasurface. The alliance of spin optics and metamaterials offers the dispersion engineering of a structured matter in a polarization helicity-dependent manner. We show that polarization-controlled optical modes of metamaterials arise where the spatial inversion symmetry is violated. The emerged spin-split dispersion of spontaneous emission originates from the spin-orbit interaction of light, generating a selection rule based on symmetry restrictions in a spin-optical metamaterial. The inversion asymmetric metasurface is obtained via anisotropic optical antenna patterns. This type of metamaterial provides a route for spin-controlled nanophotonic applications based on the design of the metasurface symmetry properties.

  13. Roadmap on biosensing and photonics with advanced nano-optical methods

    Science.gov (United States)

    Di Fabrizio, Enzo; Schlücker, Sebastian; Wenger, Jérôme; Regmi, Raju; Rigneault, Hervé; Calafiore, Giuseppe; West, Melanie; Cabrini, Stefano; Fleischer, Monika; van Hulst, Niek F.; Garcia-Parajo, Maria F.; Pucci, Annemarie; Cojoc, Dan; Hauser, Charlotte A. E.; Ni, Ming

    2016-06-01

    This roadmap, through the contributions of ten groups worldwide, contains different techniques, methods and materials devoted to sensing in nanomedicine. Optics is used in different ways in the detection schemes. Raman, fluorescence and infrared spectroscopies, plasmonics, second harmonic generation and optical tweezers are all used in applications from single molecule detection (both in highly diluted and in highly concentrated solutions) to single cell manipulation. In general, each optical scheme, through device miniaturization and electromagnetic field localization, exploits an intrinsic optical enhancement mechanism in order to increase the sensitivity and selectivity of the device with respect to the complex molecular construct. The materials used for detection include nanoparticles and nanostructures fabricated with different 2D and 3D lithographic methods. It is shown that sensitivity to a single molecule is already accessible whether the system under study is a single cell or a multitude of cells in a molecular mixture. Throughout the roadmap there is an attempt to foresee and to suggest future directions in this interdisciplinary field.

  14. Roadmap on biosensing and photonics with advanced nano-optical methods

    KAUST Repository

    Di Fabrizio, Enzo M.

    2016-05-10

    This roadmap, through the contributions of ten groups worldwide, contains different techniques, methods and materials devoted to sensing in nanomedicine. Optics is used in different ways in the detection schemes. Raman, fluorescence and infrared spectroscopies, plasmonics, second harmonic generation and optical tweezers are all used in applications from single molecule detection (both in highly diluted and in highly concentrated solutions) to single cell manipulation. In general, each optical scheme, through device miniaturization and electromagnetic field localization, exploits an intrinsic optical enhancement mechanism in order to increase the sensitivity and selectivity of the device with respect to the complex molecular construct. The materials used for detection include nanoparticles and nanostructures fabricated with different 2D and 3D lithographic methods. It is shown that sensitivity to a single molecule is already accessible whether the system under study is a single cell or a multitude of cells in a molecular mixture. Throughout the roadmap there is an attempt to foresee and to suggest future directions in this interdisciplinary field. © 2016 IOP Publishing Ltd.

  15. Broadband sensitive pump-probe setup for ultrafast optical switching of photonic nanostructures and semiconductors

    NARCIS (Netherlands)

    Euser, T.G.; Harding, P.J.; Vos, Willem L.

    2009-01-01

    We describe an ultrafast time resolved pump-probe spectroscopy setup aimed at studying the switching of nanophotonic structures. Both femtosecond pump and probe pulses can be independently tuned over broad frequency range between 3850 and 21 050 cm−1. A broad pump scan range allows a large optical

  16. All-optical tailoring of single-photon spectra in a quantum-dot microcavity system

    CERN Document Server

    Breddermann, Dominik; Binder, Rolf; Zrenner, Artur; Schumacher, Stefan

    2016-01-01

    Semiconductor quantum-dot cavity systems are promising sources for solid-state based on-demand generation of single photons for quantum communication. Commonly, the spectral characteristics of the emitted single photon are fixed by system properties such as electronic transition energies and spectral properties of the cavity. In the present work we study single-photon generation from the quantum-dot biexciton through a partly stimulated non-degenerate two-photon emission. We show that frequency and linewidth of the single photon can be fully controlled by the stimulating laser pulse, ultimately allowing for efficient all-optical spectral shaping of the single photon.

  17. One-way optical transmission in silicon photonic crystal heterojunction with circular and square scatterers

    Science.gov (United States)

    Liu, Dan; Hu, Sen; Gao, Yihua

    2017-07-01

    A 2D orthogonal square-lattice photonic crystal (PC) heterojunction consisting of circular and square air holes in silicon is presented. Band structures are calculated using the plane wave expansion method, and the transmission properties are investigated by the finite-different time-domain simulations. Thanks to the higher diffraction orders excited when the circular and square holes are interlaced along the interface, one-way transmission phenomena can exist within wide frequency regions. The higher order diffraction is further enhanced through two different interface optimization designs proposed by modifying the PC structure of the hetero-interface. An orthogonal PC heterojunction for wide-band and efficient one-way transmission is constructed, and the maximum transmissivity is up to 78%.

  18. Photonic Integrated Circuits for Cost-Effective, High Port Density, and Higher Capacity Optical Communications Systems

    Science.gov (United States)

    Chiappa, Pierangelo

    Bandwidth-hungry services, such as higher speed Internet, voice over IP (VoIP), and IPTV, allow people to exchange and store huge amounts of data among worldwide locations. In the age of global communications, domestic users, companies, and organizations around the world generate new contents making bandwidth needs grow exponentially, along with the need for new services. These bandwidth and connectivity demands represent a concern for operators who require innovative technologies to be ready for scaling. To respond efficiently to these demands, Alcatel-Lucent is fast moving toward photonic integration circuits technologies as the key to address best performances at the lowest "bit per second" cost. This article describes Alcatel-Lucent's contribution in strategic directions or achievements, as well as possible new developments.

  19. Description of the states of two-photon interference in an optical gating Michelson interferometer

    Science.gov (United States)

    Pongophas, Ekkarat; Sriklin, Watthana; Sinsarp, Asawin; Suwanna, Sujin; Chunwachirasiri, Withoon; Singhsomroje, Wisit

    2016-01-01

    We investigate the interference of two photons in an optical gating Michelson interferometer. The phenomenon is studied using two different representations of photons: the space-time domain and a step-by-step two-photon state evolution. Both representations lead to identical results. The evolution analysis describes the result by the interference of four two-photon traveling states, whereas the space-time domain analysis reveals that the classical interference of the high-intensity light source is identical to two-photon interference in the quantum regime, except for a multiplicative factor of (n2), where n is the number of photons.

  20. Optical devices based on liquid crystal photonic bandgap fibers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard

    2005-01-01

    In this ph.d. work, an experimental and theoretical study on Liquid Crystal (LC) infiltrated Photonic Crystal Fibers (PCFs) has been carried out. PCFs usually, consists of an air/silica microstructure of air holes arranged in a triangular lattice surrounding a core defect defined by a missing air...... hole. The presence of a LC in the holes of the PCF transforms the fiber from a Total Internal Reflection (TIR) guiding type into a Photonic BandGap (PBG) guiding type, where light is confined to the silica core by coherent scattering from the LC-billed holes. The high dielectric and optical anisotropy...... of LCs combined with the unique waveguiding features of PBG fibers gives the LC filled PCFs unique tunable properties. PBG guidance has been demonstrated for different mesophases of LCs and various functional compact fibers has been demonstrated, which utilitzes the high thermo-optical and electro...

  1. Thermo-optically tuned photonic resonators with concurrent electrical connection and thermal isolation

    Science.gov (United States)

    Lentine, Anthony L.; Kekatpure, Rohan Deodatta; Zortman, William A.; Savignon, Daniel J.

    2016-06-14

    A photonic resonator system is designed to use thermal tuning to adjust the resonant wavelength of each resonator in the system, with a separate tuning circuit associated with each resonator so that individual adjustments may be made. The common electrical ground connection between the tuning circuits is particularly formed to provide thermal isolation between adjacent resonators by including a capacitor along each return path to ground, where the presence of the capacitor's dielectric material provides the thermal isolation. The use of capacitively coupling necessarily requires the use of an AC current as an input to the heater element (conductor/resistor) of each resonator, where the RMS value of the AC signal is indicative of the amount of heat that is generated along the element and the degree of wavelength tuning that is obtained.

  2. Color-Coded Batteries - Electro-Photonic Inverse Opal Materials for Enhanced Electrochemical Energy Storage and Optically Encoded Diagnostics.

    Science.gov (United States)

    O'Dwyer, Colm

    2016-07-01

    For consumer electronic devices, long-life, stable, and reasonably fast charging Li-ion batteries with good stable capacities are a necessity. For exciting and important advances in the materials that drive innovations in electrochemical energy storage (EES), modular thin-film solar cells, and wearable, flexible technology of the future, real-time analysis and indication of battery performance and health is crucial. Here, developments in color-coded assessment of battery material performance and diagnostics are described, and a vision for using electro-photonic inverse opal materials and all-optical probes to assess, characterize, and monitor the processes non-destructively in real time are outlined. By structuring any cathode or anode material in the form of a photonic crystal or as a 3D macroporous inverse opal, color-coded "chameleon" battery-strip electrodes may provide an amenable way to distinguish the type of process, the voltage, material and chemical phase changes, remaining capacity, cycle health, and state of charge or discharge of either existing or new materials in Li-ion or emerging alternative battery types, simply by monitoring its color change.

  3. All-optical signal processing at 10 GHz using a photonic crystal molecule

    Energy Technology Data Exchange (ETDEWEB)

    Combrié, Sylvain; Lehoucq, Gaëlle; Junay, Alexandra; De Rossi, Alfredo, E-mail: alfredo.derossi@thalesgroup.com [Thales Research and Technology, 1 Avenue A. Fresnel, 91767 Palaiseau (France); Malaguti, Stefania; Bellanca, Gaetano; Trillo, Stefano [Department of Engineering, Università di Ferrara, v. Saragat 1, 44122 Ferrara (Italy); Ménager, Loic [Thales Systèmes Aeroportés, 2 Av. Gay Lussac, 78851 Elancourt (France); Peter Reithmaier, Johann [Institute of Nanostructure Technologies and Analytics, CINSaT, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel (Germany)

    2013-11-04

    We report on 10 GHz operation of an all-optical gate based on an Indium Phosphide Photonic Crystal Molecule. Wavelength conversion and all-optical mixing of microwave signals are demonstrated using the 2 mW output of a mode locked diode laser. The spectral separation of the optical pump and signal is crucial in suppressing optical cross-talk.

  4. Optical vortex knots – one photon at a time

    Science.gov (United States)

    Tempone-Wiltshire, Sebastien J.; Johnstone, Shaun P.; Helmerson, Kristian

    2016-01-01

    Feynman described the double slit experiment as “a phenomenon which is impossible, absolutely impossible, to explain in any classical way and which has in it the heart of quantum mechanics”. The double-slit experiment, performed one photon at a time, dramatically demonstrates the particle-wave duality of quantum objects by generating a fringe pattern corresponding to the interference of light (a wave phenomenon) from two slits, even when there is only one photon (a particle) at a time passing through the apparatus. The particle-wave duality of light should also apply to complex three dimensional optical fields formed by multi-path interference, however, this has not been demonstrated. Here we observe particle-wave duality of a three dimensional field by generating a trefoil optical vortex knot – one photon at a time. This result demonstrates a fundamental physical principle, that particle-wave duality implies interference in both space (between spatially distinct modes) and time (through the complex evolution of the superposition of modes), and has implications for topologically entangled single photon states, orbital angular momentum multiplexing and topological quantum computing. PMID:27087642

  5. Optical vortex knots - one photon at a time

    Science.gov (United States)

    Tempone-Wiltshire, Sebastien J.; Johnstone, Shaun P.; Helmerson, Kristian

    2016-04-01

    Feynman described the double slit experiment as “a phenomenon which is impossible, absolutely impossible, to explain in any classical way and which has in it the heart of quantum mechanics”. The double-slit experiment, performed one photon at a time, dramatically demonstrates the particle-wave duality of quantum objects by generating a fringe pattern corresponding to the interference of light (a wave phenomenon) from two slits, even when there is only one photon (a particle) at a time passing through the apparatus. The particle-wave duality of light should also apply to complex three dimensional optical fields formed by multi-path interference, however, this has not been demonstrated. Here we observe particle-wave duality of a three dimensional field by generating a trefoil optical vortex knot - one photon at a time. This result demonstrates a fundamental physical principle, that particle-wave duality implies interference in both space (between spatially distinct modes) and time (through the complex evolution of the superposition of modes), and has implications for topologically entangled single photon states, orbital angular momentum multiplexing and topological quantum computing.

  6. Optical absorption enhancement in 40 nm ultrathin film silicon solar cells assisted by photonic and plasmonic modes

    Science.gov (United States)

    Saravanan, S.; Dubey, R. S.

    2016-10-01

    Presently, energy problems and environmental issues have attracted the scientific community for the development of cost-effective and high-performance solar cells. Thin film solar cells are cheaper but weak light absorption in longer wavelength has demanded an efficient light trapping scheme for the better harvesting of solar radiation to a maximum possibility. In this paper, we numerically explore the design efforts of an ultrathin film silicon solar cell, integrated with top dielectric and bottom metal gratings. The proposed design is influenced by the localized surface plasmon modes, surface plasmon polariton and optical resonances which leads to the optimal harvesting of sunlight within 40 nm thick absorbing layer. The optimized design of solar cell shows enhanced light absorption with cell efficiency ∼25% at normal transverse magnetic polarization condition. Our design approach assisted by photonic and plasmonic modes is promising for the realization of new generation, low-cost ultrathin film solar cells.

  7. Amplifying and compressing optical filter based on one-dimensional ternary photonic crystal structure containing gain medium

    Science.gov (United States)

    Jamshidi-Ghaleh, Kazem; Ebrahimpour, Zeinab; Moslemi, Fatemeh

    2015-07-01

    The transmission spectrum properties of the one-dimensional ternary photonic crystal (1DTPC) structure, composed of dielectric (D), metal (M) and gain (G) materials, with three different arrangements of (DGM)N, (GDM)N and (DMG)N, where N is the number of periodicity, were investigated. Two full photonic band gaps and N-1 resonant peaks, localized between them, were observed on transmittance spectra on near-UV spectrum region. When the gained layer was placed in front of the metal, the peaks appeared with higher resolution. There is a peak, localized on the higher band-edge of the first gap, which shows very interesting property than the other peaks. Thus, it amplifies and compresses faster with increase in the N and strength of the gain coefficient. The effects of the gain coefficient and periodicity number are graphically illustrated. This communication presents a PC structure that can be a good candidate to design an amplifying and compressing single or multi-channel optical filter in the UV region.

  8. Biomedical photonics handbook fundamentals, devices, and techniques

    CERN Document Server

    Vo-Dinh, Tuan

    2012-01-01

    Photonics and Tissue OpticsOptical Properties of TissuesJoel Mobley, Tuan Vo-Dinh and Valery TuchinLight-Tissue InteractionsValery V. TuchinTheoretical Models and Algorithms in Optical Diffusion TomographyStephen J. Norton and Tuan Vo-DinhBasic InstrumentationBasic Instrumentation in PhotonicsTuan Vo-DinhOptical Fibers and Waveguides for Medical ApplicationsIsrael Gannot and Moshe Ben DavidFiberoptics Probe DesignUrs Ut

  9. PECASE: All-Optical Photonic Integrated Circuits in Silicon

    Science.gov (United States)

    2011-01-14

    Soltani , and A. Adibi, “High Quality Planar Silicon Nitride Microdisk Resonators for Integrated Photonics in the Visible Wavelength Range,” Optics...contrast, high-Q resonators in chalcogenide glass for sensing,” Opt. Lett. 33, 2500–2502 (2008). [4] B. Momeni, S. Yegnanarayanan, M. Soltani , A. A...lightwave circuits,” J. Lightwave Technol. 17(11), 2032–2038 (1999). [14] B. Momeni, J. Huang, M. Soltani , M. Askari, S. Mohammadi, M. Rakhshandehroo, and

  10. One-dimensional photonic band gaps in optical lattices

    CERN Document Server

    Samoylova, Marina; Holynski, Michael; Courteille, Philippe Wilhelm; Bachelard, Romain

    2013-01-01

    The phenomenon of photonic band gaps in one-dimensional optical lattices is reviewed using a microscopic approach. Formally equivalent to the transfer matrix approach in the thermodynamic limit, a microscopic model is required to study finite-size effects, such as deviations from the Bragg condition. Microscopic models describing both scalar and vectorial light are proposed, as well as for two- and three-level atoms. Several analytical results are compared to experimental data, showing a good agreement.

  11. Photonic Crystals Physics and Practical Modeling

    CERN Document Server

    Sukhoivanov, Igor A

    2009-01-01

    The great interest in photonic crystals and their applications in the past decade requires a thorough training of students and professionals who can practically apply the knowledge of physics of photonic crystals together with skills of independent calculation of basic characteristics of photonic crystals and modelling of various photonic crystal elements for application in all-optical communication systems. This book combines basic backgrounds in fiber and integrated optics with detailed analysis of mathematical models for 1D, 2D and 3D photonic crystals and microstructured fibers, as well as with descriptions of real algorithms and codes for practical realization of the models.

  12. Photonic crystal-adaptive optical devices

    DEFF Research Database (Denmark)

    Buss, Thomas

    -doped liquid crystal gain medium for the realization of cheap and compact optically pumped, electrically tunable lasers. Finally, a transparent projection display is presented which uses sub-wavelength gratings for redirection of light guided inside a waveguide and facilitates electro-optic switching by means...

  13. Change energy photons of radiation, stimulating a photoluminescence in glasses and optical fiber, activated by bismuth

    CERN Document Server

    Ogluzdin, Valeriy E

    2011-01-01

    In the offered review ordering received and published by domestic and foreign researchers of the experimental results showing the phenomenon of a photoluminescence in glasses and optical fiber, activated by bismuth is executed, and from uniform positions representations about the process responsible for a photoluminescence in case of use for excitation of this environment of various laser sources are considered. At interpretation of process of a photoluminescence the known model considering mirror symmetry of features of frequency spectra of a photoluminescence (in this case the maximum values is used: humps or peaks of spectra of a photoluminescence) and the spectra characterising optical losses (absorption) of glass, activated by (atomic) bismuth. For the analysis values of lines of the bismuth, published in reference media are used. This model is added by earlier published specification of the author, according to which to a point of mirror symmetry of such spectra there corresponds frequency of radiation ...

  14. Excited state assisted three-photon absorption based optical limiting in nanocrystalline Cu2Se and FeSe2

    Science.gov (United States)

    Anand, Benoy; Molli, Muralikrishna; Aditha, Saikiran; Mimani Rattan, Tanu; Siva Sankara Sai, S.; Kamisetti, Venkataramaniah

    2013-09-01

    Transition metal selenides (FeSe2 and Cu2Se) are synthesized by the hydrothermal co-reduction method. XRD results revealed the crystalline nature of their single phase and the elemental compositions are obtained using EDS. TEM images of the as-prepared samples show the formation of nanorods of 10-20 nm diameter in case of iron selenide and nanoparticles of 10-35 nm diameter in case of copper selenide. The energy bandgap values are calculated using tauc plots obtained from UV-Visible absorption spectra. The open aperture Z-scan measurements carried out using 5 ns pulses at 532 nm revealed that the samples showed excellent optical limiting behavior owing to strong nonlinear absorption (NLA). Through numerical simulations, the mechanism of NLA is found to be effective three-photon absorption which has significant contribution from excited state absorption.

  15. Photons-based medical imaging - Radiology, X-ray tomography, gamma and positrons tomography, optical imaging; Imagerie medicale a base de photons - Radiologie, tomographie X, tomographie gamma et positons, imagerie optique

    Energy Technology Data Exchange (ETDEWEB)

    Fanet, H.; Dinten, J.M.; Moy, J.P.; Rinkel, J. [CEA Leti, Grenoble (France); Buvat, I. [IMNC - CNRS, Orsay (France); Da Silva, A. [Institut Fresnel, Marseille (France); Douek, P.; Peyrin, F. [INSA Lyon, Lyon Univ. (France); Frija, G. [Hopital Europeen George Pompidou, Paris (France); Trebossen, R. [CEA-Service hospitalier Frederic Joliot, Orsay (France)

    2010-07-01

    This book describes the different principles used in medical imaging. The detection aspects, the processing electronics and algorithms are detailed for the different techniques. This first tome analyses the photons-based techniques (X-rays, gamma rays and visible light). Content: 1 - physical background: radiation-matter interaction, consequences on detection and medical imaging; 2 - detectors for medical imaging; 3 - processing of numerical radiography images for quantization; 4 - X-ray tomography; 5 - positrons emission tomography: principles and applications; 6 - mono-photonic imaging; 7 - optical imaging; Index. (J.S.)

  16. Absolute optical responsivity down to the photon counting level with a photomultiplier tube

    Science.gov (United States)

    Tanabe, M.; Niwa, K.; Kinoshita, K.

    2017-04-01

    A novel method is presented for evaluation of the absolute optical responsivity of a photomultiplier tube (PMT) at optical powers down to the photon counting level under visible light. This method is based on a combination of the calibrated responsivity and nonlinearity corrections using a silicon photodiode and a PMT. The evaluation results with the PMT enable accurate determination of the absolute optical responsivity over a wide power range of 10-11 W to 10-16 W under visible light. This method provides validation of both the photon counting efficiency of a PMT and of accurate optical measurement with attenuators at the photon counting level.

  17. All-optical slow-light on a photonic chip.

    Science.gov (United States)

    Okawachi, Yoshitomo; Foster, Mark; Sharping, Jay; Gaeta, Alexander; Xu, Qianfan; Lipson, Michal

    2006-03-20

    We demonstrate optically tunable delays in a silicon-on-insulator planar waveguide based on slow light induced by stimulated Raman scattering (SRS). Inside an 8-mm-long nanoscale waveguide, we produce a group-index change of 0.15 and generate controllable delays as large as 4 ps for signal pulses as short as 3 ps. The scheme can be implemented at bandwidths exceeding 100 GHz for wavelengths spanning the entire low-loss fiber-optics communications window and thus represents an important step in the development of chip-scale photonics devices that process light with light.

  18. Silicon technology compatible photonic molecules for compact optical signal processing

    Energy Technology Data Exchange (ETDEWEB)

    Barea, Luis A. M., E-mail: barea@ifi.unicamp.br; Vallini, Felipe; Jarschel, Paulo F.; Frateschi, Newton C. [Device Research Laboratory, Applied Physics Department, “GlebWataghin” Physics Institute, University of Campinas–UNICAMP, 13083-859 Campinas, SP (Brazil)

    2013-11-11

    Photonic molecules (PMs) based on multiple inner coupled microring resonators allow to surpass the fundamental constraint between the total quality factor (Q{sub T}), free spectral range (FSR), and resonator size. In this work, we use a PM that presents doublets and triplets resonance splitting, all with high Q{sub T}. We demonstrate the use of the doublet splitting for 34.2 GHz signal extraction by filtering the sidebands of a modulated optical signal. We also demonstrate that very compact optical modulators operating 2.75 times beyond its resonator linewidth limit may be obtained using the PM triplet splitting, with separation of ∼55 GHz.

  19. Optically Pumped Atomic Rubidium Lasers: Two-Photon and Exciplex Excitation Mechanisms

    Science.gov (United States)

    2013-06-01

    atomic oxygen”. Physical Review A, 34(1):185–198, 1986. 21. D. Touahri, A. Clairon J. Zondy R. Felder -L. Hilico B. de Beauvoir F. Biraben, O. Acef and F...979, 2004. 24. F. Nez, R. Felder , F. Biraben and Y. Millerioux. “Optical frequency determina- tion of the hyperfine components of the 5S1/2 − 5D3/2

  20. Ionic two photon states and optical nonlinearity in. pi. -conjugated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Dixit, S.N. (Lawrence Livermore National Lab., CA (USA)); Guo, D.; Mazumdar, S. (Arizona Univ., Tucson, AZ (USA). Dept. of Physics)

    1990-11-06

    A microscopic mechanism of optical nonlinearity in {pi}-conjugated polymers is presented. It is shown that the bulk of the nonlinearity is determined by only two well defined channels, even though an infinite number of channels are possible in principle. The above conclusion is true for both short and long range Coulomb interactions. The complete frequency dependence of the third harmonic generation in both trans-polyacetylene and polydiacetylene are explained within the same theoretical picture. 19 refs., 4 figs.

  1. Optical signal processing by silicon photonics

    CERN Document Server

    Ahmed, Jameel; Adeel, Freeha; Hussain, Ashiq

    2014-01-01

    The main objective of this book is to make respective graduate students understand the nonlinear effects inside SOI waveguide and possible applications of SOI waveguides in this emerging research area of optical fibre communication. This book focuses on achieving successful optical frequency shifting by Four Wave Mixing (FWM) in silicon-on-insulator (SOI) waveguide by exploiting a nonlinear phenomenon.

  2. A monolithically integrated dual-mode laser for photonic microwave generation and all-optical clock recovery

    Science.gov (United States)

    Yu, Liqiang; Zhou, Daibing; Zhao, Lingjuan

    2014-09-01

    We demonstrate a monolithically integrated dual-mode laser (DML) with narrow-beat-linewidth and wide-beat-tunability. Using a monolithic DFB laser subjected to amplified feedback, photonic microwave generation of up to 45 GHz is obtained with higher than 15 GHz beat frequency tunability. Thanks to the high phase correlation of the two modes and the narrow mode linewidth, a RF linewidth of lower than 50 kHz is measured. Simulations are also carried out to illustrate the dual-mode beat characteristic. Furthermore, using the DML, an all-optical clock recovery for 40  Gbaud NRZ-QPSK signals is demonstrated. Timing jitter of lower than 363 fs (integrated within a frequency range from 100 Hz to 1 GHz) is obtained.

  3. Photons and (artificial) atoms: an overview of optical spectroscopy techniques on quantum dots

    Science.gov (United States)

    Vamivakas, A. N.; Atatüre, M.

    2010-01-01

    In most branches within experimental physics technical prowess lies at the heart of many seminal works. From the observation of the photoelectric effect and the ultraviolet catastrophe that led to the development of quantum mechanics to the first transistor that shaped the modern age of electronics, significant physical insight has been achieved on the shoulders of technical advances and progress. Research on self-assembled quantum dots may be a drop in the sea of physics, but it still is no exception to this trend, and more physical insight continues to be revealed as the tools of the trade get increasingly more complex and advanced. This article is written primarily for senior undergraduate students and first year graduate students of experimental physics involving optically active quantum dots. More often than not, we have seen students shuffling through journal articles trying to relate the reported physics to the used experimental techniques. What we want to cover here is not in any way the history or the recent progress in quantum dot research - there are an ample number of topical books and review articles for that - but rather to highlight a selection of optics-based measurement techniques that have led to significant progress in our understanding of quantum dot physics as well as their applications in the last two decades. We hope a basic survey of the relevant optical spectroscopy techniques will help the newcomers in connecting the dots between measurements and physics.

  4. Efficient optical pumping and high optical depth in a hollow-core photonic-crystal fibre for a broadband quantum memory

    Science.gov (United States)

    Sprague, Michael R.; England, Duncan G.; Abdolvand, Amir; Nunn, Joshua; Jin, Xian-Min; Kolthammer, W. Steven; Barbieri, Marco; Rigal, Bruno; Michelberger, Patrick S.; Champion, Tessa F. M.; Russell, Philip St. J.; Walmsley, Ian A.

    2013-05-01

    The generation of large multiphoton quantum states—for applications in computing, metrology and simulation—requires a network of high-efficiency quantum memories capable of storing broadband pulses. Integrating these memories into a fibre offers a number of advantages towards realizing this goal: strong light-matter coupling at low powers, simplified alignment and compatibility with existing photonic architectures. Here, we introduce a large-core kagome-structured hollow-core fibre as a suitable platform for an integrated fibre-based quantum memory with a warm atomic vapour. We demonstrate, for the first time, efficient optical pumping in such a system, where 90 ± 1% of atoms are prepared in the ground state. We measure high optical depths (3 × 104) and narrow homogeneous linewidths (6 ± 2 MHz) that do not exhibit significant transit-time broadening, showing that we can prepare a Λ-level system in a pure state. Our results establish that kagome fibres are suitable for implementing a broadband, room-temperature quantum memory, as well as a range of nonlinear optical effects.

  5. EDITORIAL: Fluctuations and noise in photonics and quantum optics: a special issue in memory of Hermann Haus

    Science.gov (United States)

    Abbott, Derek; Shapiro, Jeffrey H.; Yamamoto, Yoshihisa

    2004-08-01

    This Special Issue of Journal of Optics B: Quantum and Semiclassical Optics brings together the contributions of various researchers working on theoretical and experimental aspects of fluctuational phenomena in photonics and quantum optics. The topics discussed in this issue extend from fundamental physics to applications of noise and fluctuational methods from quantum to classical systems, and include: bullet Quantum measurement bullet Quantum squeezing bullet Solitons and fibres bullet Gravitational wave inferometers bullet Fluorescence phenomena bullet Cavity QED bullet Photon statistics bullet Noise in lasers and laser systems bullet Quantum computing and information bullet Quantum lithography bullet Teleportation. This Special Issue is published in connection with the SPIE International Symposium on Fluctuations and Noise, held in Santa Fe, New Mexico, on 1-4 June 2003. The symposium contained six parallel conferences, and the papers in this Special Issue are connected to the conference entitled `Fluctuations and Noise in Photonics and Quantum Optics'. This was the first in a series of symposia organized with the support of the SPIE that have greatly contributed to progress in this area. The co-founders of the symposium series were Laszlo B Kish (Texas A&M University) and Derek Abbott (The University of Adelaide). The Chairs of the `Fluctuations and Noise in Photonics and Quantum Optics' conference were Derek Abbott, Jeffrey H Shapiro and Yoshihisa Yamamoto. The practical aspects of the organization were ably handled by Kristi Kelso and Marilyn Gorsuch of the SPIE, USA. Sadly, less than two weeks before the conference, Hermann A Haus passed away. Hermann Haus was a founding father of the field of noise in optics and quantum optics. He submitted three papers to the conference and was very excited to attend; as can be seen in the collection of papers, he was certainly present in spirit. In honour of his creativity and pioneering work in this field, we have

  6. Extreme optical confinement in a slotted photonic crystal waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Caër, Charles; Le Roux, Xavier; Cassan, Eric, E-mail: eric.cassan@u-psud.fr [Institut d' Électronique Fondamentale, Université Paris-Sud CNRS UMR 8622 Bat. 220, Centre scientifique d' Orsay, 91405 Orsay (France); Combrié, Sylvain, E-mail: sylvain.combrie@thalesgroup.com; De Rossi, Alfredo [Thales Research and Technology, 1 Av. Augustin Fresnel, 91767 Palaiseau (France)

    2014-09-22

    Using Optical Coherence Tomography, we measure the attenuation of slow light modes in slotted photonic crystal waveguides. When the group index is close to 20, the attenuation is below 300 dB cm{sup −1}. Here, the optical confinement in the empty slot is very strong, corresponding to an ultra-small effective cross section of 0.02 μm{sup 2}. This is nearly 10 times below the diffraction limit at λ = 1.5 μm, and it enables an effective interaction with a very small volume of functionalized matter.

  7. Universal discrete Fourier optics RF photonic integrated circuit architecture.

    Science.gov (United States)

    Hall, Trevor J; Hasan, Mehedi

    2016-04-04

    This paper describes a coherent electro-optic circuit architecture that generates a frequency comb consisting of N spatially separated orders using a generalised Mach-Zenhder interferometer (MZI) with its N × 1 combiner replaced by an optical N × N Discrete Fourier Transform (DFT). Advantage may be taken of the tight optical path-length control, component and circuit symmetries and emerging trimming algorithms offered by photonic integration in any platform that offers linear electro-optic phase modulation such as LiNbO3, silicon, III-V or hybrid technology. The circuit architecture subsumes all MZI-based RF photonic circuit architectures in the prior art given an appropriate choice of output port(s) and dimension N although the principal application envisaged is phase correlated subcarrier generation for all optical orthogonal frequency division multiplexing. A transfer matrix approach is used to model the operation of the architecture. The predictions of the model are validated by simulations performed using an industry standard software tool. Implementation is found to be practical.

  8. Photon counts modulation in optical time domain reflectometry

    Institute of Scientific and Technical Information of China (English)

    Wang Xiao-Bo; Wang Jing-Jing; Zhang Guo-Feng; Xiao Lian-Tuan; Jia Suo-Tang

    2011-01-01

    The quantum fluctuation of photon counting limits the field application of optical time domain reflection. A method of photon counts modulation optics time domain reflection with single photon detection at 1.55 un is presented. The influence of quantum fluctuation can be effectively controlled by demodulation technology since quantum fluctuation shows a uniform distribution in the frequency domain. Combined with the changing of the integration time of the lock-in amplifier, the signal to noise ratio is significantly enhanced. Accordingly the signal to noise improvement ratio reaches 31.7 dB compared with the direct photon counting measurement.

  9. 40 GHz electro-optic modulation in hybrid silicon-organic slotted photonic crystal waveguides.

    Science.gov (United States)

    Wülbern, Jan Hendrik; Prorok, Stefan; Hampe, Jan; Petrov, Alexander; Eich, Manfred; Luo, Jingdong; Jen, Alex K-Y; Jenett, Martin; Jacob, Arne

    2010-08-15

    In this Letter we demonstrate broadband electro-optic modulation with frequencies of up to 40 GHz in slotted photonic crystal waveguides based on silicon-on-insulator substrates covered and infiltrated with a nonlinear optical polymer. Two-dimensional photonic crystal waveguides in silicon enable integrated optical devices with an extremely small geometric footprint on the scale of micrometers. The slotted waveguide design optimizes the overlap of the optical and electric fields in the second-order nonlinear optical medium and, hence, the interaction of the optical and electric waves.

  10. Optical gain in single tensile-strained germanium photonic wire.

    Science.gov (United States)

    de Kersauson, M; El Kurdi, M; David, S; Checoury, X; Fishman, G; Sauvage, S; Jakomin, R; Beaudoin, G; Sagnes, I; Boucaud, P

    2011-09-12

    We have investigated the optical properties of tensile-strained germanium photonic wires. The photonic wires patterned by electron beam lithography (50 μm long, 1 μm wide and 500 nm thick) are obtained by growing a n-doped germanium film on a GaAs substrate. Tensile strain is transferred in the germanium layer using a Si₃N₄ stressor. Tensile strain around 0.4% achieved by the technique corresponds to an optical recombination of tensile-strained germanium involving light hole band around 1690 nm at room temperature. We show that the waveguided emission associated with a single tensile-strained germanium wire increases superlinearly as a function of the illuminated length. A 20% decrease of the spectral broadening is observed as the pump intensity is increased. All these features are signatures of optical gain. A 80 cm⁻¹ modal optical gain is derived from the variable strip length method. This value is accounted for by the calculated gain material value using a 30 band k · p formalism. These germanium wires represent potential building blocks for integration of nanoscale optical sources on silicon.

  11. Properties of defect mode and optical enhancement of 1D photonic crystals with a defect layer of negative refractive index material

    Institute of Scientific and Technical Information of China (English)

    CHEN Xian-feng; SHEN Xiao-ming; JIANG Mei-ping; SHI Du-fang

    2005-01-01

    The band gap properties of one-dimensional photonic crystals with a defect layer of negative refractive index materials are studied.The defect mode width is bigger than that of conventional one-dimensional photonic crystals with a defect layer of positive refractive index materials.The defect mode of the former is different from that of the latter,shifts towards the direction of high frequency (short wavelength),and has a bigger shifting velocity.Furthermore the effects on the transmission properties of the former photonic crystals caused by change in the position of the defect layer of negative refractive index are investigated.Finally the optical enhancement of the former photonic crystals is also investigated.

  12. Optical amplification in photonic integrated circuits

    NARCIS (Netherlands)

    Pollnau, Markus

    2005-01-01

    The recent results in the field of fabrication, characterization, and applications of optical waveguides in doped hard crystalline materials, specifically in Ti-doped sapphire and Yb-doped $KY(WO_4)_2$, are reviewed.

  13. Applications of optical fibers and miniature photonic elements in medical diagnostics

    Science.gov (United States)

    Blaszczak, Urszula; Gilewski, Marian; Gryko, Lukasz; Zajac, Andrzej; Kukwa, Andrzej; Kukwa, Wojciech

    2014-05-01

    Construction of endoscopes which are known for decades, in particular in small devices with the diameter of few millimetres, are based on the application of fibre optic imaging bundles or bundles of fibers in the illumination systems (usually with a halogen source). Cameras - CCD and CMOS - with the sensor size of less than 5 mm emerging commercially and high power LED solutions allow to design and construct modern endoscopes characterized by many innovative properties. These constructions offer higher resolution. They are also relatively cheaper especially in the context of the integration of the majority of the functions on a single chip. Mentioned features of the CMOS sensors reduce the cycle of introducing the newly developed instruments to the market. The paper includes a description of the concept of the endoscope with a miniature camera built on the basis of CMOS detector manufactured by Omni Vision. The set of LEDs located at the operator side works as the illuminating system. Fibre optic system and the lens of the camera are used in shaping the beam illuminating the observed tissue. Furthermore, to broaden the range of applications of the endoscope, the illuminator allows to control the spectral characteristics of emitted light. The paper presents the analysis of the basic parameters of the light-and-optical system of the endoscope. The possibility of adjusting the magnifications of the lens, the field of view of the camera and its spatial resolution is discussed. Special attention was drawn to the issues related to the selection of the light sources used for the illumination in terms of energy efficiency and the possibility of providing adjusting the colour of the emitted light in order to improve the quality of the image obtained by the camera.

  14. Incorporation of a Redfern Integrated Optics ORION Laser Module with an IPG Photonics Erbium Fiber Laser to Create a Frequency Conversion Photon Doppler Velocimeter for US Army Research Laboratory Measurements: Hardware, Data Analysis, and Error Quantification

    Science.gov (United States)

    2017-04-01

    ARL-MR-0953● Apr 2017 US Army Research Laboratory Incorporation of a Redfern Integrated Optics ORION Laser Module with an IPG...Photonics Erbium Fiber Laser to Create a Frequency- Conversion Photon Doppler Velocimeter for US Army Research Laboratory Measurements: Hardware...Laboratory Incorporation of a Redfern Integrated Optics ORION Laser Module with an IPG Photonics Erbium Fiber Laser to Create a Frequency- Conversion

  15. Investigation on nonlinear optical and dielectric properties of L-arginine doped ZTC crystal to explore photonic device applications

    Directory of Open Access Journals (Sweden)

    Anis Mohd

    2016-09-01

    Full Text Available The present study is focused to explore the photonic device applications of L-arginine doped ZTC (LA-ZTC crystals using nonlinear optical (NLO and dielectric studies. The LA-ZTC crystals have been grown by slow evaporation solution technique. The chemical composition and surface of LA-ZTC crystal have been analyzed by means of energy dispersive spectroscopy (EDS and surface scanning electron microscopy (SEM techniques. The Vicker’s microhardness study has been carried out to determine the hardness, work hardening index, yield strength and elastic stiffness of LA-ZTC crystal. The enhanced SHG efficiency of LA-ZTC crystal has been ascertained using the Kurtz-Perry powder SHG test. The closed-and-open aperture Z-scan technique has been employed to confirm the third order nonlinear optical nature of LA-ZTC crystal. The Z-scan transmittance data has been utilized to calculate the superior cubic susceptibility, nonlinear refractive index, nonlinear absorption coefficient and figure of merit of LA-ZTC crystal. The behavior of dielectric constant and dielectric loss of LA-ZTC crystal at different temperatures has been investigated using the dielectric analysis.

  16. Optical characterication of probes for photon scanning tunnelling microscopy

    DEFF Research Database (Denmark)

    Vohnsen, Brian; Bozhevolnyi, Sergey I.

    1999-01-01

    The photon scanning tunnelling microscope is a well-established member of the family of scanning near-field optical microscopes used for optical imaging at the sub-wavelength scale. The quality of the probes, typically pointed uncoated optical fibres, used is however difficult to evaluate...

  17. INVESTIGATION OF ASYNCHRONOUS OPTICAL COMMUNICATION CHANNEL THROUGHPUT CONTAINING A RECEIVER ON THE BASIS OF PHOTON COUNTER

    Directory of Open Access Journals (Sweden)

    I. R. Gulakov

    2013-01-01

    Full Text Available A mathematical model of asynchronous optical communication channel with a photon counter applied as a receiving module has been built. The expression for calculating of data throughput of this channel has been obtained. As a result of implemented experimental investigations it has been established that the data throughput of asynchronous optical communication channel containing a photon counter on the basis of avalanche photodetector as a receiving module depends on optical radiation and photodetector supply voltage.

  18. Visualization of unidirectional optical waveguide using topological photonic crystals made of dielectric material

    CERN Document Server

    Yang, Yuting; Xu, Tao; Wang, Hai-Xiao; Jiang, Jian-Hua; Hu, Xiao; Hang, Zhi Hong

    2016-01-01

    The introduction of topology unravels a new chapter of physics. Topological systems provide unique edge/interfacial quantum states which are expected to contribute to the development of novel spintronics and open the door to robust quantum computation. Optical systems can also benefit from topology. Engineering locally in real space a honeycomb photonic crystal with double Dirac cone in its photonic dispersion, topology transition in photonic band structure is induced and a pseudospin unidirectional optical channel is created and demonstrated by the backscattering immune electromagnetic transportation. The topological photonic crystal made of dielectric material can pave the road towards steering light propagations and contribute to novel communication technology.

  19. Hybrid optical antennas with photonic resistors.

    Science.gov (United States)

    Butakov, N A; Schuller, J A

    2015-11-16

    Hybrid optical antennas, comprising active materials placed in the gaps of plasmonic split-ring-resonators and nano-dimers, have been the subject of numerous recent investigations. Engineered coupling between the two plasmonic resonators is achieved by modulating the active material, enabling control over the near- and far-field electromagnetic properties. Here, using electromagnetics calculations, we study the evolving optical response of a hybrid metal-semiconductor-metal nanorod antenna as the semiconductor free charge carrier density is continuously varied. In particular, we demonstrate qualitatively new behavior arising from epsilon-near-zero properties in intermediately doped semiconductors. In agreement with optical nano-circuit theory, we show that in the epsilon-near-zero regime such a load acts as an ideal optical resistor with an optimized damping response and strongly suppressed electromagnetic scattering. In periodic arrays, or metasurfaces, we then show how to use these effects to construct high-efficiency nanophotonic intensity modulators for dynamically shaping light.

  20. Printed polymer photonic devices for optical interconnect systems

    Science.gov (United States)

    Subbaraman, Harish; Pan, Zeyu; Zhang, Cheng; Li, Qiaochu; Guo, L. J.; Chen, Ray T.

    2016-03-01

    Polymer photonic device fabrication usually relies on the utilization of clean-room processes, including photolithography, e-beam lithography, reactive ion etching (RIE) and lift-off methods etc, which are expensive and are limited to areas as large as a wafer. Utilizing a novel and a scalable printing process involving ink-jet printing and imprinting, we have fabricated polymer based photonic interconnect components, such as electro-optic polymer based modulators and ring resonator switches, and thermo-optic polymer switch based delay networks and demonstrated their operation. Specifically, a modulator operating at 15MHz and a 2-bit delay network providing up to 35.4ps are presented. In this paper, we also discuss the manufacturing challenges that need to be overcome in order to make roll-to-roll manufacturing practically viable. We discuss a few manufacturing challenges, such as inspection and quality control, registration, and web control, that need to be overcome in order to realize true implementation of roll-to-roll manufacturing of flexible polymer photonic systems. We have overcome these challenges, and currently utilizing our inhouse developed hardware and software tools, communication, sensing, medicine, security, imaging, energy, lighting etc.

  1. Photon-Photon Collisions -- Past and Future

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC

    2005-12-02

    I give a brief review of the history of photon-photon physics and a survey of its potential at future electron-positron colliders. Exclusive hadron production processes in photon-photon and electron-photon collisions provide important tests of QCD at the amplitude level, particularly as measures of hadron distribution amplitudes. There are also important high energy {gamma}{gamma} and e{gamma} tests of quantum chromodynamics, including the production of jets in photon-photon collisions, deeply virtual Compton scattering on a photon target, and leading-twist single-spin asymmetries for a photon polarized normal to a production plane. Since photons couple directly to all fundamental fields carrying the electromagnetic current including leptons, quarks, W's and supersymmetric particles, high energy {gamma}{gamma} collisions will provide a comprehensive laboratory for Higgs production and exploring virtually every aspect of the Standard Model and its extensions. High energy back-scattered laser beams will thus greatly extend the range of physics of the International Linear Collider.

  2. Nanowires and nanoribbons as subwavelength optical waveguides and their use as components in photonic circuits and devices

    Science.gov (United States)

    Yang, Peidong; Law, Matt; Sirbuly, Donald J.; Johnson, Justin C.; Saykally, Richard; Fan, Rong; Tao, Andrea

    2012-10-02

    Nanoribbons and nanowires having diameters less than the wavelength of light are used in the formation and operation of optical circuits and devices. Such nanostructures function as subwavelength optical waveguides which form a fundamental building block for optical integration. The extraordinary length, flexibility and strength of these structures enable their manipulation on surfaces, including the precise positioning and optical linking of nanoribbon/wire waveguides and other nanoribbon/wire elements to form optical networks and devices. In addition, such structures provide for waveguiding in liquids, enabling them to further be used in other applications such as optical probes and sensors.

  3. Design of Optical Tunable CNOT (XOR) and XNOR Logic Gates Based on 2D-Photonic Crystal Cavity Using Electro-Optic Effect

    CERN Document Server

    Abbasian, Karim; Sadeghi, Parvin

    2016-01-01

    We have proposed optical tunable CNOT (XOR) and XNOR logic gates using two-dimensional photonic crystal (2DPhC) cavities. Where, air rods with square lattice array have been embedded in Ag-Polymer substrate with refractive index of 1.59. In this work, we have enhanced speed of logic gates by applying two input signals with a phase dif?ference at the same wavelength for 2DPhC cavities. Where, we have adjusted the phases of input and control signals equal with {\\pi}/3 and zero, respectively. The response time of the structure and quality factor of the cavities are in the range of femtosecond and 2000, respectively. Then, we have used electro-optic property of the substrate material to change the cavities resonance wavelengths. By this means, we could design the logic gates and demonstrate a tunable range of 23nm for their operation wavelength. The quality factor and the response times of cavities remain constant in the tunable range of wavelength, approximately. The evaluated least ON to OFF logic-level contras...

  4. Plant photonics: application of optical coherence tomography to monitor defects and rots in onion

    Science.gov (United States)

    Meglinski, I. V.; Buranachai, C.; Terry, L. A.

    2010-04-01

    The incidence of physiological and/or pathological defects in many fresh produce types is still unacceptably high and accounts for a large proportion of waste. With increasing interest in food security their remains strong demand in developing reliable and cost effective technologies for non-destructive screening of internal defects and rots, these being deemed unacceptable by consumers. It is well recognized that the internal defects and structure of turbid scattering media can be effectively visualized by using optical coherence tomography (OCT). In the present study, the high spatial resolution and advantages of OCT have been demonstrated for imaging the skins and outer laminae (concentric tissue layers) of intact whole onion bulbs with a view to non-invasively visualizing potential incidence/severity of internal defects.

  5. Controlling Single-Photon Transport along an Optical Waveguide by using a Three-Level Atom

    Institute of Scientific and Technical Information of China (English)

    TIAN Wei; CHEN Bin; XU Wei-Dong

    2012-01-01

    We theoretically investigate the single-photon transport properties in an optical waveguide embedded with a V-type three-level atom (VTLA) based on symmetric and asymmetric couplings between the photon and the VTLA.Our numerical results show that the transmission spectrum of the incident photon can be well controlled by virtue of both symmetric and asymmetric coupling interactions.A multifrequency photon attenuator is realized by controlling the asymmetric coupling interactions.Furthermore,the influences of dissipation of the VTLA for the realistic physical system on single-photon transport properties are also analyzed.

  6. Polarised two-photon excitation of quantum well excitons for manipulation of optically pumped terahertz lasers

    Energy Technology Data Exchange (ETDEWEB)

    Slavcheva, G., E-mail: gsk23@bath.ac.uk [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Kavokin, A.V., E-mail: A.Kavokin@soton.ac.uk [School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Spin Optics Laboratory, St. Petersburg State University, 1, Ulyanovskaya 198504 (Russian Federation)

    2014-11-15

    Optical pumping of excited exciton states in a semiconductor quantum well embedded in a microcavity is a tool for realisation of ultra-compact terahertz (THz) lasers based on stimulated optical transition between excited (2p) and ground (1s) exciton state. We show that the probability of two-photon absorption by a 2p-exciton is strongly dependent on the polarisation of both pumping photons. Five-fold variation of the threshold power for terahertz lasing by switching from circular to co-linear pumping is predicted. We identify photon polarisation configurations for achieving maximum THz photon generation quantum efficiency.

  7. The use of one- and two- photon induced fluorescence spectroscopy for the optical characterization of carcinogenic aflatoxins

    Science.gov (United States)

    Smeesters, L.; Meulebroeck, W.; Raeymaekers, S.; Thienpont, H.

    2014-09-01

    Carcinogenic and toxic contaminants in food and feed products are nowadays mostly detected by destructive, time-consuming chemical analyses, like HPLC and LC-MS/MS methods. However, as a consequence of the severe and growing regulations on food products by the European Union, there arose an increased demand for the ultra-fast, high-sensitive and non-destructive detection of contaminants in food and feed products. Therefore, we have investigated fluorescence spectroscopy for the characterization of carcinogenic aflatoxins. With the use of a tunable titanium-sapphire laser in combination with second and third harmonic wavelength generation, both one- and two-photon induced fluorescence excitation wavelengths could be generated using the same setup. We characterized and compared the one- and two-photon induced fluorescence spectra of pure aflatoxin powder, after excitation with 365nm and 730nm respectively. Moreover, we investigated the absolute fluorescence intensity as function of the excitation power density. Afterwards, we applied our characterization setup to the detection of aflatoxins in maize grains. The fluorescence spectra of both healthy and contaminated maize samples were experimentally characterized. In addition to the fluorescence spectrum of the pure aflatoxin, we observed an unwanted influence of the intrinsic fluorescence of the maize. Depending on the excitation wavelength, a varying contrast between the fluorescence spectra of the healthy and contaminated samples was obtained. After a comparison of the measured fluorescence signals, a detection criterion for the optical identification of the contaminated maize samples could be defined. As a result, this illustrates the use of fluorescence spectroscopy as a valuable tool for the non-destructive, real-time and high-sensitive detection of aflatoxins in maize.

  8. Optimizing Photon Collection from Point Sources with Adaptive Optics

    Science.gov (United States)

    Hill, Alexander; Hervas, David; Nash, Joseph; Graham, Martin; Burgers, Alexander; Paudel, Uttam; Steel, Duncan; Kwiat, Paul

    2015-05-01

    Collection of light from point-like sources is typically poor due to the optical aberrations present with very high numerical-aperture optics. In the case of quantum dots, the emitted mode is nonisotropic and may be quite difficult to couple into single- or even few-mode fiber. Wavefront aberrations can be corrected using adaptive optics at the classical level by analyzing the wavefront directly (e.g., with a Shack-Hartmann sensor); however, these techniques are not feasible at the single-photon level. We present a new technique for adaptive optics with single photons using a genetic algorithm to optimize collection from point emitters with a deformable mirror. We first demonstrate our technique for improving coupling from a subwavelength pinhole, which simulates isotropic emission from a point source. We then apply our technique in situto InAs/GaAs quantum dots, obtaining coupling increases of up to 50% even in the presence of an artificial source of drift.

  9. Interaction of electron beams with optical nanostructures and metamaterials: from coherent photon sources towards shaping the wave function

    Science.gov (United States)

    Talebi, Nahid

    2017-10-01

    Investigating the interaction of electron beams with materials and light has been a field of research for more than a century. The field was advanced theoretically by the rise of quantum mechanics and technically by the introduction of electron microscopes and accelerators. It is possible nowadays to uncover a multitude of information from electron-induced excitations in matter by means of advanced techniques like holography, tomography, and, most recently, photon-induced near-field electron microscopy. The question is whether the interaction can be controlled in an even, more efficient way in order to unravel important questions like modal decomposition of the electron-induced polarization by performing experiments with better spatial, temporal, and energy resolutions. This review discusses recent advances in controlling electron and light interactions at the nanoscale. Theoretical and numerical aspects of the interaction of electrons with nanostructures and metamaterials will be discussed with the aim of understanding the mechanisms of radiation in the interaction of electrons with even more sophisticated structures. Based on these mechanisms of radiation, state-of-the art and novel electron-driven few-photon sources will be discussed. Applications of such sources to gain an understanding of quantum optical effects and also to perform spectral interferometry with electron microscopes will be covered. In an inverse approach, as in the case of the inverse Smith–Purcell effect, laser-induced excitations of nanostructures can cause electron beams traveling in the near-field of such structures to accelerate, provided a synchronization criterion is satisfied. This effect is the basis for linear dielectric and metallic electron accelerators. Moreover, acceleration is accompanied by bunching of the electrons. When single electrons are considered, an efficient design of nanostructures can lead to the shaping of the electron wave function travelling adjacent to them, for

  10. Two-photon interference : spatial aspects of two-photon entanglement, diffraction, and scattering

    NARCIS (Netherlands)

    Peeters, Wouter Herman

    2010-01-01

    This dissertation contains scientific research within the realm of quantum optics, which is a branch of physics. An experimental and theoretical study is made of two-photon interference phenomena in various optical systems. Spatially entangled photon pairs are produced via the nonlinear optical proc

  11. Optical study of Sb-S-I glass photonic crystals

    Science.gov (United States)

    Starczewska, Anna; Kępińska, Mirosława; Nowak, Marian; Szperlich, Piotr

    2015-12-01

    This work is focused on optical investigations of Sb-S-I glass photonic crystals based on three-dimensional opal template with a closed-packed face centered cubic (fcc) lattice prepared from monodisperse silicon (SiO2) spheres by gravity sedimentation. Three types of photonic structures have been examined: SiO2-opals, opals filled with Sb-S-I glass (direct opals) and Sb-S-I inverted opals obtained after removing SiO2 templates. Optical properties have been investigated by reflectance spectroscopy for wavelengths from 250 nm to 1100 nm. These measurements exhibit Bragg's peaks connected with photonic band gap that is tunable in position and width by varying the diameter of spheres and medium filling the opal. Values of the real parts of refractive index of the Sb-S-I in the fabricated inverted opals nmed[λ ∈ (850-950) nm] = 2.42 ± 0.08 and nmed[λ ∈ (675-750) nm] = 2.39 ± 0.11 have been determined.

  12. Growth and optical properties of CMOS-compatible silicon nanowires for photonic devices

    Science.gov (United States)

    Guichard, Alex Richard

    Silicon (Si) is the dominant semiconductor material in both the microelectronic and photovoltaic industries. Despite its poor optical properties, Si is simply too abundant and useful to be completely abandoned in either industry. Since the initial discovery of efficient room temperature photoluminescence (PL) from porous Si and the following discoveries of PL and time-resolved optical gain from Si nanocrystals (Si-nc) in SiO2, many groups have studied the feasibility of making Si-based, CMOS-compatible electroluminescent devices and electrically pumped lasers. These studies have shown that for Si-ne sizes below about 10 nm, PL can be attributed to radiative recombination of confined excitons and quantum efficiencies can reach 90%. PL peak energies are blue-shifted from the bulk Si band edge of 1.1 eV due to the quantum confinement effect and PL decay lifetimes are on mus timescales. However, many unanswered questions still exist about both the ease of carrier injection and various non-radiative and loss mechanisms that are present. A potential alternative material system to porous Si and Si-nc is Si nanowires (SiNWs). In this thesis, I examine the optical properties of SiNWs with diameters in the range of 3-30 nm fabricated by a number of compound metal oxide semiconductor (CMOS) compatible fabrication techniques including Chemical Vapor Deposition on metal nanoparticle coated substrates, catalytic wet etching of bulk Si and top-down electron-beam lithographic patterning. Using thermal oxidation and etching, we can increase the degree of confinement in the SiNWs. I demonstrate PL peaked in the visible and near-infrared (NIR) wavelength ranges that is tunable by controlling the crystalline SiNW core diameter, which is measured with dark field and high-resolution transmission electron microscopy. PL decay lifetimes of the SiNWs are on the order of 50 mus after proper surface passivation, which suggest that the PL is indeed from confined carriers in the SiNW cores

  13. Optical properties of one-dimensional photonic crystals obtained by micromatchining silicon (a review)

    Science.gov (United States)

    Tolmachev, V. A.

    2017-04-01

    The theoretical and experimental investigations of photonic band gaps in one-dimensional photonic crystals created by micromatchining silicon, which have been performed by the author as part of his doctoral dissertation, are presented. The most important result of the work is the development of a method of modeling photonic crystals based on photonic band gap maps plotted in structure-property coordinates, which can be used with any optical materials and in any region of electromagnetic radiation, and also for nonperiodic structures. This method made it possible to realize the targeted control of the optical contrast of photonic crystals and to predict the optical properties of optical heterostructures and three-component and composite photonic crystals. The theoretical findings were experimentally implemented using methods of micromatchining silicon, which can be incorporated into modern technological lines for the production of microchips. In the IR spectra of a designed and a fabricated optical heterostructure (a composite photonic crystal), extended bands with high reflectivities were obtained. In a Si-based three-component photonic crystal, broad transmission bands and photonic band gaps in the middle IR region have been predicted and experimentally demonstrated for the first time. Si-liquid crystal periodic structures with electric-field tunable photonic band-gap edges have been investigated. The one-dimensional photonic crystals developed based on micromatchining silicon can serve as a basis for creating components of optical processors, as well as highly sensitive chemical and biological sensors in a wide region of the IR spectrum (from 1 to 20 μm) for lab-on-a-chip applications.

  14. Evaluation of higher-order time-domain perturbation theory of photon diffusion on breast-equivalent phantoms and optical mammograms.

    Science.gov (United States)

    Grosenick, D; Kummrow, A; Macdonald, R; Schlag, P M; Rinneberg, H

    2007-12-01

    Time-domain perturbation theory of photon diffusion up to third order was evaluated for its accuracy in deducing optical properties of breast tumors using simulated and physical phantoms and by analyzing 141 projection mammograms of 87 patients with histology-validated tumors that had been recorded by scanning time-domain optical mammography. The slightly compressed breast was modeled as (partially) homogeneous diffusely scattering infinite slab containing a scattering and absorbing spherical heterogeneity representing the tumor. Photon flux densities were calculated from densities of transmitted photons, assuming extended boundary conditions. Explicit formulas are provided for second-order changes in transmitted photon density due to the presence of absorbers or scatterers. The results on phantoms obtained by perturbation theory carried up to third order were compared with measured temporal point spread functions, with numerical finite-element method (FEM) simulations of transmitted photon flux density, with results obtained from the diffraction of diffuse photon density waves, and from Padé approximants. The breakdown of first-, second-, and third-order perturbation theory is discussed for absorbers and a general expression was derived for the convergence of the Born series in this case. Taking tumor optical properties derived by the diffraction model as reference we conclude that estimates of tumor absorption coefficients by perturbation theory agree with reference values within +/-25% in only 65% (first order), 66% (second order), and 77% (third order) of all mammograms analyzed. In the remaining cases tumor absorption is generally underestimated due to the breakdown of perturbation theory. On average the empirical Padé approximants yield tumor absorption coefficients similar to third-order perturbation theory, yet at noticeable lower computational efforts.

  15. Compressive sensing in a photonic link with optical integration.

    Science.gov (United States)

    Chen, Ying; Yu, Xianbin; Chi, Hao; Jin, Xiaofeng; Zhang, Xianmin; Zheng, Shilie; Galili, Michael

    2014-04-15

    In this Letter, we present a novel structure to realize photonics-assisted compressive sensing (CS) with optical integration. In the system, a spectrally sparse signal modulates a multiwavelength continuous-wave light and then is mixed with a random sequence in optical domain. The optical signal passes through a length of dispersive fiber, the dispersion amount of which is set to ensure that the group delay between the adjacent wavelength channels is equal to the bit duration of the applied random sequence. As a result, the detected signal is a delay-and-sum version of the randomly mixed signal, which is equivalent to the function of integration required in CS. A proof-of-concept experiment with four wavelengths, corresponding to a compression factor of 4, is demonstrated. More simulation results are also given to show the potential of the technique.

  16. Material and optical properties of low-temperature NH3-free PECVD SiN x layers for photonic applications

    Science.gov (United States)

    Domínguez Bucio, Thalía; Khokhar, Ali Z.; Lacava, Cosimo; Stankovic, Stevan; Mashanovich, Goran Z.; Petropoulos, Periklis; Gardes, Frederic Y.

    2017-01-01

    SiN x layers intended for photonic applications are typically fabricated using LPCVD and PECVD. These techniques rely on high-temperature processing (>400 °C) to obtain low propagation losses. An alternative version of PECVD SiN x layers deposited at temperatures below 400 °C with a recipe that does not use ammonia (NH3-free PECVD) was previously demonstrated to be a good option to fabricate strip waveguides with propagation losses   <3 dB cm-1. We have conducted a systematic investigation of the influence of the deposition parameters on the material and optical properties of NH3-free PECVD SiN x layers fabricated at 350 °C using a design of experiments methodology. In particular, this paper discusses the effect of the SiH4 flow, RF power, chamber pressure and substrate on the structure, uniformity, roughness, deposition rate, refractive index, chemical composition, bond structure and H content of NH3-free PECVD SiN x layers. The results show that the properties and the propagation losses of the studied SiN x layers depend entirely on their compositional N/Si ratio, which is in fact the only parameter that can be directly tuned using the deposition parameters along with the film uniformity and deposition rate. These observations provide the means to optimise the propagation losses of the layers for photonic applications through the deposition parameters. In fact, we have been able to fabricate SiN x waveguides with H content  <20%, good uniformity and propagation losses of 1.5 dB cm-1 at 1550 nm and   <1 dB cm-1 at 1310 nm. As a result, this study can potentially help optimise the properties of the studied SiN x layers for different applications.

  17. Observation of optical-fiber Kerr nonlinearity at the single-photon level

    CERN Document Server

    Matsuda, Nobuyuki; Mitsumori, Yasuyoshi; Kosaka, Hideo; Edamatsu, Keiichi; 10.1038/nphoton.2008.292

    2012-01-01

    Optical fibers have been enabling numerous distinguished applications involving the operation and generation of light, such as soliton transmission, light amplification, all-optical switching and supercontinuum generation. The active function of optical fibers in the quantum regime is expected to be applicable to ultralow-power all-optical signal processing and quantum information processing. Here we demonstrate the first experimental observation of optical nonlinearity at the single-photon level in an optical fiber. Taking advantage of large nonlinearity and managed dispersion of a photonic crystal fiber, we have successfully measured very small (10^(-7) ~ 10^(-8)) conditional phase shifts induced by weak coherent pulses that contain one or less than one photon per pulse on average. In spite of its tininess, the phase shift was measurable using much (~10^6 times) stronger coherent probe pulses than the pump pulses. We discuss the feasibility of quantum information processing using optical fibers, taking into...

  18. Structural and Optical Analysis of the Bio-mineralized Photonic Structures in the Shell of the Blue- Rayed Limpet Ansates Pellucida

    Science.gov (United States)

    Kolle, Mathias; Li, Ling; Kolle, Stefan; Weaver, James; Ortiz, Christine; Aizenberg, Joanna

    2013-03-01

    Many terrestrial biological organisms have evolved a variety of micro- and nanostructures that provide unique optical signatures including distinctive, dynamic coloration, high reflectivity or superior whiteness. Recently, photonic structures have also been found in the shells or spines of marine animals. Life under water imposes very distinct constraints on organisms relying on visual communication and on the designs and the materials involved in aquatic photonic structures. Here, we present a bio-mineralized calcium carbonate - based crystalline photonic system buried in the shell of the blue-rayed limpet Ansates pellucida. The structure consists of a layered stack of calcite lamellae with uniform thickness and inter-lamella spacing. This arrangement lies at the origin of the blue-green iridescence of the organism's characteristic stripes, which is caused by multilayer interference. The multilayer is supported by a disordered array of spherical particles with an average diameter of 300nm, likely serving to enhance the contrast of the blue stripes. We present a full structural and optical characterization of this bio-mineralised marine photonic system, supported by optical FDTD modeling. The authors gratefully acknowledge financial support by the Air Force Office of Scientific Research under Award No. FA9550-09-1-0669-DOD35CAP. M. Kolle is grateful for support from the Alexander von Humboldt - Foundation.

  19. A proposed fibre optic time domain optical coherence tomography system using a micro-photonic stationary optical delay line

    Science.gov (United States)

    Jansz, Paul Vernon; Wild, Graham; Hinckley, Steven

    2008-04-01

    Conventional time domain Optical Coherence Tomography (OCT) relies on a reference Optical Delay Line (ODL). These reference ODLs require the physical movement of a mirror to scan a given depth range. This movement results in instrument degradation. We propose a new optical fibre based time domain OCT system that makes use of a micro-photonic structure as a stationary ODL. The proposed system uses an in-fibre interferometer, either a Michelson or a Mach-Zhender. The reference ODL makes use of a collimator to expand the light from the optical fibre. This is them expanded in one dimension via planar optics, that is, a cylindrical lens based telescope, using a concave and convex lens. The expanded beam is them passed through a transmissive Spatial Light Modulator (SLM), specifically a liquid crystal light valve used as an optical switch. Light is then reflected back through the system off the micro-photonic structure. The micro-photonic structure is a one dimensional array of stagged mirror steps, called a Stepped Mirror Structure (SMS). The system enables the selection of discrete optical delay lengths. The proposed ODL is capable of depth hoping and multicasting. We discuss the fabrication of the SMS, which consists of eight steps, each approximately 150 μm high. A change in notch frequency using an in-fibre Mach Zhender interferometer was used to gauge the average step height. The results gave an average step height of 146 μm.

  20. 40-Gb/s all-optical processing systems using hybrid photonic integration technology

    DEFF Research Database (Denmark)

    Kehayas, E.; Tsiokos, D.I.; Bakopoulos, P.;

    2006-01-01

    This paper presents an experimental performance characterization of all-optical subsystems at 40 Gb/s using interconnected hybrid integrated all-optical semiconductor optical amplifier (SOA) Mach-Zehnder interferometer (MZI) gates and flip-flop prototypes. It was shown that optical gates can...... the potential that all-optical technology can find application in future data-centric networks with efficient and dynamic bandwidth utilization. This paper also reports on the latest photonic integration breakthroughs as a potential migration path for reducing fabrication cost by developing photonic systems...

  1. Fabrication and evaluation of propagation loss of Si/SiGe/Si photonic-wire waveguides for Si based optical modulator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Younghyun, E-mail: yhkim@mosfet.t.u-tokyo.ac.jp [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Takenaka, Mitsuru [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Osada, Takenori; Hata, Masahiko [Sumitomo Chemical Co. Ltd., 6 Kitahara, Tsukuba, Ibaraki 300-3294 (Japan); Takagi, Shinichi [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2014-04-30

    We have characterized photonic-wire waveguides with Si/SiGe/Si heterostructure ribs for Si-based optical modulators. The Si (80 nm)/Si{sub 0.72}Ge{sub 0.28} (40 nm) layers grown on Si-on-insulator by molecular beam epitaxy for optical modulators were evaluated by in-situ reflection high-energy electron diffraction, atomic force microscope, X-ray diffraction and Raman spectroscopy, exhibiting that the fully-strained highly-crystalline SiGe layer was obtained. We have evaluated the propagation loss of the Si/strained SiGe/Si photonic-wire waveguides. The wavelength dependence of the propagation loss exhibits the bandgap narrowing of the strained Si{sub 0.72}Ge{sub 0.28}, while the optical absorption of the strained Si{sub 0.72}Ge{sub 0.28} is not significant for the optical modulator application at 1.55-μm wavelength. - Highlights: • We have characterized photonic-wire waveguides with Si/SiGe/Si heterostructure ribs. • The Si/Si{sub 0.72}Ge{sub 0.28} grown on Si-on-insulator were evaluated to be fully strained. • We have fabricated and evaluated the Si/strained SiGe/Si photonic-wire waveguides. • The wavelength dependence exhibits bandgap narrowing of the strained Si{sub 0.72}Ge{sub 0.28}. • Optical absorption of the SiGe is not significant for optical modulators at 1.55 μm.

  2. Optical biosensors based on photonic crystal surface waves.

    Science.gov (United States)

    Konopsky, Valery N; Alieva, Elena V

    2009-01-01

    Optical biosensors have played a key role in the selective recognition of target biomolecules and in biomolecular interaction analysis, providing kinetic data about biological binding events in real time without labeling. The advantages of the label-free concept are the elimination of detrimental effects from labels that may interfere with fundamental interaction and the absence of a time-consuming pretreatment. The disadvantages of all label-free techniques--including the most mature one, surface plasmon resonance (SPR) technique, are a deficient sensitivity to a specific signal and undesirable susceptibilities to non-specific signals, e.g., to the volume effect of refraction index variations. These variations arise from temperature fluctuations and drifts and they are the limiting factor for many state-of-the-art optical biosensors. Here we describe a new optical biosensor technique based on the registration of dual optical s-polarized waves on a photonic crystal surface. The simultaneous registration of two different optical modes from the same surface spot permits the segregation of the volume and the surface signals, while the absence of metal damping permits an increase in the propagation length of the optical surface waves and the sensitivity of the biosensor. The technique was tested with the binding of biotin molecules to a streptavidin monolayer that has been detected with a signal/noise ratio of about 15 at 1 s signal accumulation time. The detection limit is about 20 fg of the analyte on the probed spot of the surface.

  3. Comparative study of optical properties of the one-dimensional multilayer Period-Doubling and Thue-Morse quasi-periodic photonic crystals

    Directory of Open Access Journals (Sweden)

    Yassine Bouazzi

    2012-10-01

    Full Text Available The last decades have witnessed the growing interest in the use of photonic crystal as a new material that can be used to control electromagnetic wave. Actually, not only the periodic structures but also the quasi-periodic systems have become significant structures of photonic crystals. This work deals with optical properties of dielectric Thue-Morse multilayer and Period-Doubling multilayer. We use the so-called Transfer Matrix Method (TMM to determine the transmission spectra of the structures. Based on the representation of the transmittance spectra in the visible range a comparative analysis depending on the iteration number, number of layers and incidence angle is presented.

  4. Green photonics realized by optical complex systems

    Science.gov (United States)

    Nanri, Hiroto; Sasaki, Wakao

    2013-12-01

    We have experimentally demonstrated a new smart grid model which can control DC electric power flow autonomously among individual homes, by using an optical self-organized node with optical non-linear characteristics, and these homes are assumed to be installed by distributed power supplies, and electric power storage devices, and also supposed to be supplied partly by the commercial electric power grid utilities. An electric power network is composed of nodes and devises called Power Gate Unit (PGU). The nodes have optical nonlinearity for self-organizing informations about surplus or shortage of electric power as to individual homes. The PGU is a distributing unit of actual electric power based on above informations of power surplus or shortage at each home. The PGU at each home is electrically connected to both the onsite power supplies and household load such as a solar panel, a DC motor, and a storage battery as well as the commercial electric power grid utilities. In this work, we composed our experimental self-organized DC power grid with above components and supposed the supplied maximum power from the commercial electric power grid utilities to be limited to 5V-0.5A. In this network, information about surplus or shortage of electric power will propagate through the nodes. In the experiments, surplus electric current 0.4A at a particular node was distributed toward a PGU of another node suffering from shortage of electric current. We also confirmed in the experiments and simulations that even when signal propagation path was disconnected accidentally the network could recover an optimized path. The present smart grid system we have attained may be applied by optical fiber link in the near future because our essential components controlling PGU, i.e. the nodes are electro-optical hybrid which are easily applicable to fiber optical link so as to control electric power transmission line.

  5. Slow-light enhanced optical detection in liquid-infiltrated photonic crystals

    DEFF Research Database (Denmark)

    Pedersen, Martin Erland Vestergaard; Rishøj, Lars Søgaard; Steffensen, Henrik;

    2007-01-01

    Slow-light enhanced optical detection in liquid-infiltrated photonic crystals is theoretically studied. Using a scattering-matrix approach and the Wigner–Smith delay time concept, we show that optical absorbance benefits both from slow-light phenomena as well as a high filling factor of the energy...... residing in the liquid. Utilizing strongly dispersive photonic crystal structures, we numerically demonstrate how liquid-infiltrated photonic crystals facilitate enhanced light–matter interactions, by potentially up to an order of magnitude. The proposed concept provides strong opportunities for improving...... existing miniaturized absorbance cells for optical detection in lab-on-a-chip systems....

  6. New Experimental limit on Optical Photon Coupling to Neutral, Scalar Bosons

    CERN Document Server

    Afanasev, A; Beard, K B; Biallas, G; Boyce, J; Minarni, M; Ramdon, R; Shinn, M; Slocum, P

    2008-01-01

    We report on the first results of a sensitive search for scalar coupling of photons to a light neutral boson in the mass range of approximately 1.0 milli-electron volts and coupling strength greater than 10$^-6$ GeV$^-1$ using optical photons. This was a photon regeneration experiment using the "light shining through a wall" technique in which laser light was passed through a strong magnetic field upstream of an optical beam dump; regenerated laser light was then searched for downstream of a second magnetic field region optically shielded from the former. Our results show no evidence for scalar coupling in this region of parameter space.

  7. Photon Sieve Bandwidth Broadening by Reduction of Chromatic Aberration Effects Using Second-Stage Diffractive Optics

    Science.gov (United States)

    2015-03-26

    Large optical photon sieve,” Optics Letters , 30(22): 2976-2978 (November 2005). 2. Andersen, Geoff. Senior Researcher, Laser and Optics ...EFFECTS USING SECOND-STAGE DIFFRACTIVE OPTICS THESIS Presented to the Faculty Department of Engineering Physics Graduate School of Engineering...SECOND-STAGE DIFFRACTIVE OPTICS Christopher M. Tulip Major, USAF Committee Membership: Lt Col Anthony L. Franz, PhD Chair

  8. On-chip photonic tweezers for photonics, microfluidics, and biology

    Science.gov (United States)

    Pin, Christophe; Renaut, Claude; Tardif, Manon; Jager, Jean-Baptiste; Delamadeleine, Eric; Picard, Emmanuel; Peyrade, David; Hadji, Emmanuel; de Fornel, Frédérique; Cluzel, Benoît

    2017-04-01

    Near-field optical forces arise from evanescent electromagnetic fields and can be advantageously used for on-chip optical trapping. In this work, we investigate how evanescent fields at the surface of photonic cavities can efficiently trap micro-objects such as polystyrene particles and bacteria. We study first the influence of trapped particle's size on the trapping potential and introduce an original optofluidic near-field optical microscopy technique. Then we analyze the rotational motion of trapped clusters of microparticles and investigate their possible use as microfluidic micro-tools such as integrated micro-flow vane. Eventually, we demonstrate efficient on-chip optical trapping of various kinds of bacteria.

  9. Left-handed extraordinary optical transmission through a photonic crystal of subwavelength hole arrays.

    Science.gov (United States)

    Beruete, Miguel; Sorolla, Mario; Campillo, Igor

    2006-06-12

    Metamaterial structures are artificial materials that show unconventional electromagnetic properties such as photonic band-gap, extraordinary optical transmission and left-handed propagation. Up to now, relations of photonic crystals and negative refraction have been shown as well as of photonic crystals and sub-wavelength hole arrays. Here we report a left-handed metamaterial engineered by a combination of sub-wavelength hole array plates periodically stacked to form a photonic crystal structure. It is shown the possibility of fine-tuning the metamaterial in order to permit extraordinary optical transmission and left-handed behaviour. Our work demonstrates the feasibility of engineering left-handed metamaterials by just drilling holes in metallic plates and brings together single structure photonic crystals, extraordinary optical transmission and left-handed behaviour.

  10. Two-Photon-Absorption Scheme for Optical Beam Tracking

    Science.gov (United States)

    Ortiz, Gerardo G.; Farr, William H.

    2011-01-01

    A new optical beam tracking approach for free-space optical communication links using two-photon absorption (TPA) in a high-bandgap detector material was demonstrated. This tracking scheme is part of the canonical architecture described in the preceding article. TPA is used to track a long-wavelength transmit laser while direct absorption on the same sensor simultaneously tracks a shorter-wavelength beacon. The TPA responsivity was measured for silicon using a PIN photodiode at a laser beacon wavelength of 1,550 nm. As expected, the responsivity shows a linear dependence with incident power level. The responsivity slope is 4.5 x 10(exp -7) A/W2. Also, optical beam spots from the 1,550-nm laser beacon were characterized on commercial charge coupled device (CCD) and complementary metal-oxide semiconductor (CMOS) imagers with as little as 13.7 microWatts of optical power (see figure). This new tracker technology offers an innovative solution to reduce system complexity, improve transmit/receive isolation, improve optical efficiency, improve signal-to-noise ratio (SNR), and reduce cost for free-space optical communications transceivers.

  11. Few-photon coherent nonlinear optics with a single molecule

    CERN Document Server

    Maser, Andreas; Utikal, Tobias; Götzinger, Stephan; Sandoghdar, Vahid

    2015-01-01

    The pioneering experiments of linear spectroscopy were performed using flames in the 1800s, but nonlinear optical measurements had to wait until lasers became available in the twentieth century. Because the nonlinear cross section of materials is very small, usually macroscopic bulk samples and pulsed lasers are used. Numerous efforts have explored coherent nonlinear signal generation from individual nanoparticles or small atomic ensembles with millions of atoms. Experiments on a single semiconductor quantum dot have also been reported, albeit with a very small yield. Here, we report on coherent nonlinear spectroscopy of a single molecule under continuous-wave single-pass illumination, where efficient photon-molecule coupling in a tight focus allows switching of a laser beam by less than a handful of pump photons nearly resonant with the sharp molecular transition. Aside from their fundamental importance, our results emphasize the potential of organic molecules for applications such as quantum information pro...

  12. Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity.

    Science.gov (United States)

    Wei, Hai-Rui; Deng, Fu-Guo

    2013-07-29

    We investigate the possibility of achieving scalable photonic quantum computing by the giant optical circular birefringence induced by a quantum-dot spin in a double-sided optical microcavity as a result of cavity quantum electrodynamics. We construct a deterministic controlled-not gate on two photonic qubits by two single-photon input-output processes and the readout on an electron-medium spin confined in an optical resonant microcavity. This idea could be applied to multi-qubit gates on photonic qubits and we give the quantum circuit for a three-photon Toffoli gate. High fidelities and high efficiencies could be achieved when the side leakage to the cavity loss rate is low. It is worth pointing out that our devices work in both the strong and the weak coupling regimes.

  13. Quantum optics shines in the photon's centenary

    CERN Multimedia

    Cho, Adrian

    2005-01-01

    Hundred years after Einstein's hypothesis, the 2005 Nobel Prize in physics honors three researchers who have pioneered the frontier between the wave and particle views of light and laid the foundation for the field of "quantum optics" (1/2 page)

  14. Self-Assembly of Nanocomposite Nonlinear Optical Materials for Photonic Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This program targets the development of new highly anisotropic nonlinear optical nanocomposite materials for NASA and non-NASA applications in advanced photonic and...

  15. Microwaves photonic links components and circuits

    CERN Document Server

    Rumelhard, Christian; Billabert, Anne-Laure

    2013-01-01

    This book presents the electrical models for the different elements of a photonic microwave link like lasers, external modulators, optical fibers, photodiodes and phototransistors. The future trends of these components are also introduced: lasers to VCSEL, external modulators to electro-absorption modulators, glass optical fibers to plastic optical fibers, photodiodes to UTC photodiodes or phototransistors. It also describes an original methodology to evaluate the performance of a microwave photonic link, based on the developed elcetrical models, that can be easily incorporated in

  16. Epsilon-Near-Zero Photonics Wires for Mid-Infrared Optical Lumped Circuitry

    CERN Document Server

    Liu, Runyu; Zhong, Yujun; Podolskiy, Viktor; Wasserman, Daniel

    2016-01-01

    There has been recent interest in the development of optical analogues of lumped element circuitry, where optical elements act as effective optical inductors, capacitors, and resistors. Such optical circuitry requires the photonic equivalent of electrical wires, structures able carry optical frequency signals to and from the lumped circuit elements while simultaneously maintaining signal carrier wavelengths much larger than the size of the lumped elements. Here we demonstrate the design, fabrication, and characterization of hybrid metal/doped-semiconductor 'photonic wires' operating at optical frequencies with effective indices of propagation near-zero. Our samples are characterized by polarization and angle-dependent FTIR spectroscopy and modeled by finite element methods and rigorous coupled wave analysis. We demonstrate coupling to such photonic wires from free space, and show the effective wavelength of the excited mode to be approximately an order of magnitude larger than the free-space wavelength of our...

  17. Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal

    NARCIS (Netherlands)

    Van Leest, T.; Caroa, J.

    2013-01-01

    On-chip optical trapping and manipulation of cells based on the evanescent field of photonic structures is emerging as a promising technique, both in research and for applications in broader context. Relying on mass fabrication techniques, the involved integration of photonics and microfluidics allo

  18. Photonic Crystal Biosensor Based on Optical Surface Waves

    Directory of Open Access Journals (Sweden)

    Giovanni Dietler

    2013-02-01

    Full Text Available A label-free biosensor device based on registration of photonic crystal surface waves is described. Angular interrogation of the optical surface wave resonance is used to detect changes in the thickness of an adsorbed layer, while an additional simultaneous detection of the critical angle of total internal reflection provides independent data of the liquid refractive index. The abilities of the device are demonstrated by measuring of biotin molecule binding to a streptavidin monolayer, and by measuring association and dissociation kinetics of immunoglobulin G proteins. Additionally, deposition of PSS / PAH polyelectrolytes is recorded in situ resulting calculation of PSS and PAH monolayer thicknesses separately.

  19. Photonic crystal biosensor based on optical surface waves.

    Science.gov (United States)

    Konopsky, Valery N; Karakouz, Tanya; Alieva, Elena V; Vicario, Chiara; Sekatskii, Sergey K; Dietler, Giovanni

    2013-02-19

    A label-free biosensor device based on registration of photonic crystal surface waves is described. Angular interrogation of the optical surface wave resonance is used to detect changes in the thickness of an adsorbed layer, while an additional simultaneous detection of the critical angle of total internal reflection provides independent data of the liquid refractive index. The abilities of the device are demonstrated by measuring of biotin molecule binding to a streptavidin monolayer, and by measuring association and dissociation kinetics of immunoglobulin G proteins. Additionally, deposition of PSS / PAH polyelectrolytes is recorded in situ resulting calculation of PSS and PAH monolayer thicknesses separately.

  20. Photonic Crystal Fibres: A New Calss of Optical Waveguides

    DEFF Research Database (Denmark)

    Broeng, Jes; Mogilevstev, D.; Barkou, Stig Eigil

    1999-01-01

    . With an emphasis on the applicational aspects of the fibers, we study their single-mode operation, bending losses, and dispersion properties. While exhibiting certain unique properties, the high-index core photonic crystal fibres share many common features with conventional optical fibers, attributed...... and a central low-index ´structural defect along which the light is guided. The novel fiber has several unique features due to its different waveguidance mechanism, including remarkable dispersion properties and the potential to localize part of the guided mode in air regions. The results presented...

  1. Secured Optical Communications Using Quantum Entangled Two-Photon Transparency Modulation

    Science.gov (United States)

    Kojima, Jun (Inventor); Nguyen, Quang-Viet (Inventor); Lekki, John (Inventor)

    2015-01-01

    A system and method is disclosed wherein optical signals are coded in a transmitter by tuning or modulating the interbeam delay time (which modulates the fourth-order coherence) between pairs of entangled photons. The photon pairs are either absorbed or not absorbed (transparent) by an atomic or molecular fluorescer in a receiver, depending on the inter-beam delay that is introduced in the entangled photon pairs. Upon the absorption, corresponding fluorescent optical emissions follow at a certain wavelength, which are then detected by a photon detector. The advantage of the disclosed system is that it eliminates a need of a coincidence counter to realize the entanglement-based secure optical communications because the absorber acts as a coincidence counter for entangled photon pairs.

  2. Rabi oscillations of two-photon states in nonlinear optical resonators

    Science.gov (United States)

    Sherkunov, Y.; Whittaker, David M.; Fal'ko, Vladimir

    2016-02-01

    We demonstrate that four-wave mixing processes in high-quality nonlinear resonators can lead to Rabi-like oscillations in photon occupation numbers and second-order correlation functions, being a characteristic feature of the presence of entangled photon pairs in the optical signal. In the case of a system driven by a continuous coherent pump, the oscillations occur in the transient regime. We show that driving the system with pulsed coherent pumping would generate strongly antibunched photon states.

  3. Optical laue diffraction on photonic structures designed by laser lithography

    Science.gov (United States)

    Samusev, K. B.; Rybin, M. V.; Lukashenko, S. Yu.; Limonov, M. F.

    2016-06-01

    Two-dimensional photonic crystals with square symmetry C 4v were obtained using the laser lithography method. The structure of these samples was studied by scanning electron microscopy. Optical Laue diffraction for monochromatic light was studied experimentally depending on the incidence angle of laser beam and lattice constant. Interpretation of the observed diffraction patterns is given in the framework of the Laue diffraction mechanism for an one-dimensional chain of scattering elements. Red thresholds for different diffraction orders were determined experimentally and theoretically. The results of calculations are in an excellent agreement with experiment.

  4. Electron and Photon ID

    CERN Document Server

    Hryn'ova, Tetiana; The ATLAS collaboration

    2017-01-01

    The identification of prompt photons and the rejection of background coming mostly from photons from hadron decays relies on the high granularity of the ATLAS calorimeter. The electron identification used in ATLAS for run 2 is based on a likelihood discrimination to separate isolated electron candidates from candidates originating from photon conversions, hadron misidentification and heavy flavor decays. In addition, isolation variables are used as further handles to separate signal and background. Several methods are used to measure with data the efficiency of the photon identification requirements, to cover a broad energy spectrum. At low energy, photons from radiative Z decays are used. In the medium energy range, similarities between electrons and photon showers are exploited using Z->ee decays. At high energy, inclusive photon samples are used. The measurement of the efficiencies of the electron identification and isolation cuts are performed with the data using tag and probe techniques with large statis...

  5. The optical Tamm states at the interface between a photonic crystal and a nanocomposite containing core-shell particles

    Science.gov (United States)

    Vetrov, S. Ya; Pankin, P. S.; Timofeev, I. V.

    2016-06-01

    We investigate the optical Tamm states (OTSs) localized at the interface between a photonic crystal (PC) and a nanocomposite consisting of spherical nanoparticles with a dielectric core and a metallic shell, which are dispersed in a transparent matrix, and is characterized by the resonance permittivity. Spectra of transmission, reflection, and absorption of normally incident light waves by the investigated structure are calculated. The spectral manifestation of the Tamm states caused by negative values of the real part of the effective permittivity in the visible spectral range is studied. It is demonstrated that, along with the significantly extended band gap of the PC, the transmission spectrum contains an additional stopband caused by nanocomposite absorption near the resonance frequency. It is shown that the OTSs can be implemented in two band gaps of the PCs, each corresponding to a certain plasmon resonance frequency of the nanocomposite. It is established that the characteristics of the Tamm state localized at the edge of the PCs significantly depend on the ratio between the particle core volume and the total particle volume.

  6. An integrable optical-fiber source of polarization entangled photon-pairs in the telecom band

    CERN Document Server

    Li, X; Kumar, P; Lee, K F; Liang, C; Voss, P L; Chen, Jun; Kumar, Prem; Lee, Kim Fook; Li, Xiaoying; Liang, Chuang; Voss, Paul L.

    2006-01-01

    We demonstrate an optical-fiber based source of polarization entangled photon-pairs with improved quality and efficiency, which has been integrated with off-the-shelf telecom components and is, therefore, well suited for quantum communication applications in the 1550\\,nm telecom band. Polarization entanglement is produced by simultaneously pumping a loop of standard dispersion-shifted fiber with two orthogonally-polarized pump pulses, one propagating in the clockwise and the other in the counter-clockwise direction. We characterize this source by investigating two-photon interference between the generated signal-idler photon-pairs under various conditions. The experimental parameters are carefully optimized to maximize the generated photon-pair correlation and to minimize contamination of the entangled photon-pairs from extraneously scattered background photons that are produced by the pump pulses for two reasons: i) spontaneous Raman scattering causes uncorrelated photons to be emitted in the signal/idler ba...

  7. PPLN-based photon-pair source compatible with solid state quantum memories and telecom optical fibers

    Science.gov (United States)

    Latypov, I. Z.; Shkalikov, A. V.; Akat'ev, D. O.; Kalachev, A. A.

    2017-06-01

    We report on the realization of a tunable source of correlated photon pairs compatible with telecommunication networks and quantum memories involving dielectric crystals doped by Nd3+ ions. The source is based on spontaneous parametric down-conversion in a 25 mm periodically poled lithium niobate crystal pumped by 532 nm cw laser. Spectral and correlation characteristics of the corresponding heralded single-photon source compatible with quantum memories are presented.

  8. Increased illumination uniformity and reduced photodamage offered by the Lissajous scanning in fiber-optic two-photon endomicroscopy.

    Science.gov (United States)

    Liang, Wenxuan; Murari, Kartikeya; Zhang, Yuying; Chen, Yongping; Li, Ming-Jun; Li, Xingde

    2012-02-01

    We compare the illumination uniformity and the associated effects of the spiral and Lissajous scanning patterns that are commonly used in an endomicroscope. Theoretical analyses and numerical simulations were first performed to quantitatively investigate the area illumination density in the spiral scanning pattern. The results revealed the potential problem of manifest photodamage due to the very high illumination density in the center of the spiral scan. Similar analyses of the Lissajous scanning pattern, which can be conveniently implemented on the same endomicroscope with no hardware modifications, showed a more uniform illumination density with about an 80-fold reduction in the peak illumination density. To underscore the benefit offered by the improved illumination uniformity, we conducted in vitro two-photon fluorescence imaging of cultured cells stained with a LIVE/DEAD viability assay using our home-built, fiber-optic, two-channel endomicroscopy system. Both the spiral and the Lissajous scans were implemented. Our experimental results showed that cells near the spiral scan center experienced obvious photodamage, whereas cells remained alive over the entire region under the Lissajous beam scanning, confirming the predicted advantage offered by the Lissajous scan over this spiral scan in an endomicroscopy setting.

  9. Highly Sensitive Photon Counting Detectors for Deep Space Optical Communications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A new type of a photon-counting photodetector is proposed to advance the state-of the-art in deep space optical communications technology. The proposed detector...

  10. Modified Optical Properties of Semiconductor Quantum Dots by Photonic Structures

    Institute of Scientific and Technical Information of China (English)

    XIAO Min

    2004-01-01

    @@ Specially designed photonic structures, such as photonic crystals, can prevent light from propagating in certain directions with specified frequencies.Such photonic stsuctures exhibit many unique features that are highly desirable for the manufacture of photonic integrated circuits.There has been great interest in controlling light-emitters via photonic structures, which can partially suppress and redirect spontaneous emission.Encapsulating an active material in a well-designed photonic structure can successively reduce the active volume.Because the dimensions of the active volume are reduced to a few micrometers, spontaneous emission control can be achieved, which can provide lasing with improved directional, modal control, and reduced noise.

  11. Local density of optical states of an asymmetric waveguide grating at photonic band gap resonant wavelength

    Science.gov (United States)

    Alatas, Husin; Sumaryada, Tony I.; Ahmad, Faozan

    2015-01-01

    We have investigated the characteristics of local density of optical states (LDOS) at photonic band gap resonant wavelength of an asymmetric waveguide grating based on Green's function formulation. It is found that the LDOS of the considered structure exhibits different characteristics in its localization between the upper and lower resonant wavelengths of the corresponding photonic band gap edges.

  12. Experimental Study of Electronic Quantum Interference, Photonic Crystal Cavity, Photonic Band Edge Effects for Optical Amplification

    Science.gov (United States)

    2016-01-26

    performed. 2.0 INTRODUCTION Three dimensional (3D) photonic crystals and their optical properties have attracted a lot of attention in the past decade... physical phenomena. The band gap frequency of this system can be varied to tailor to the electronic transition levels of a gain medium such as InAs...quantum dot or an InGaAs quantum well. The band gap can be varied in addition to include either one or two electronic levels of a multi-level system

  13. All-Optical Switching in Photonic Crystal Cavities

    DEFF Research Database (Denmark)

    Heuck, Mikkel

    All-Optical switching in photonic crystal waveguide-cavity structures is studied predominantly theoretically and numerically, but also from an experimental point of view. We have calculated the first order perturbations to the resonance frequency and decay rate of cavity modes, using a mathematical...... separated. This device was fabricated and characterized by colleagues within the group, and it was shown to perform very well in terms of cross-talk between the signal and pump. Theoretical investigations as well as practical design proposals have resulted from a study of waveguide-cavity structures...... exhibiting Fano resonances. These devices were predicted to be superior to structures with the more well-known Lorentzian line shape in terms of energy consumption and switching contrast. Finally, the mathematical framework of optimal control theory was employed as a general setting, in which the optical...

  14. Creation technique and nonlinear optics of dynamic one-dimensional photonic crystals in colloidal solution of quantum dots

    Science.gov (United States)

    Smirnov, A. M.; Golinskaya, A. D.; Ezhova, K.; Kozlova, M.; Stebakova, J. V.; Valchuk, Y. V.

    2017-05-01

    One-dimensional dynamic photonic crystal was formed by a periodic spatial modulation of dielectric permittivity induced by the two ultrashort laser pulses interference in semiconductor quantum dots CdSe/ZnS (QDs) colloidal solution intersecting at angle θ. The fundamental differences of dynamic photonic crystals from static ones which determine the properties of these transient structures are the following. I. Dynamic photonic crystals lifetimes are determined by the nature of nonlinear changes of dielectric permittivity. II. The refractive index changing is determined by the intensity of the induced standing wave maxima and nonlinear susceptibility of the sample. We use the pump and probe method to create the dynamic one-dimensional photonic crystal and to analyze its features. Two focused laser beams are the pump beams, that form in the colloidal solution of quantum dots dynamic one-dimensional photonic crystal. The picosecond continuum, generated by the first harmonic of laser (1064 nm) passing through a heavy water is used as the probe beam. The self-diffraction of pumping beams on self induced dynamic one-dimensional photonic crystal provides information about spatial combining of laser beams.

  15. Description of states of two-photon interference in optical gating Michelson interferometer

    Science.gov (United States)

    Pongophas, Ekkarat; Sinsarp, Asawin; Suwanna, Sujin; Chunwachirasiri, Withoon; Singhsomroje, Wisit

    2015-07-01

    The interference of two photons in the optical gating Michelson interferometer is investigated. The phenomenon is studied using two different representations of photons: the space-time domain and a step-by-step two photon state evolution. Both representations lead to an equivalent description of the two-photon states which is the interference of four cases of two-photon traveling states, as implied by the evolution analysis. Additionally, the space-time domain analysis reveals that the classical interference of high-intensity light source is identical to the two-photon interference in the quantum regime except for a multiplicative factor of (n 2), where n is the number of photons.

  16. Comparative analysis of four-wave mixing of optical pulses in slow- and fast-light regimes of a silicon photonic crystal waveguide.

    Science.gov (United States)

    Lavdas, Spyros; Panoiu, Nicolae C

    2015-09-15

    We present an in-depth study of four-wave mixing (FWM) of optical pulses in silicon photonic crystal waveguides. Our analysis is based on a rigorous model that includes all relevant linear and nonlinear optical effects and their dependence on the group velocity, as well as the influence of free carriers on pulse dynamics. In particular, we reveal key differences between FWM in the slow- and fast-light regimes and how they are related to the physical parameters of the pulses and waveguide. Finally, we illustrate how these results can be used to design waveguides with optimized FWM conversion efficiency.

  17. Wannier-Stark electro-optical effect, quasi-guided and photonic modes in 2D macroporous silicon structures with SiO2 coatings

    Science.gov (United States)

    Karachevtseva, L.; Goltviansky, Yu.; Sapelnikova, O.; Lytvynenko, O.; Stronska, O.; Bo, Wang; Kartel, M.

    2016-12-01

    Opportunities to enhance the properties of structured surfaces were demonstrated on 2D macroporous silicon structures with SiO2 coatings. We investigated the IR light absorption oscillations in macroporous silicon structures with SiO2 coatings 0-800 nm thick. The Wannier-Stark electro-optical effect due to strong electric field on Si-SiO2boundary and an additional electric field of quasi-guided optical modes were taken into account. The photonic modes and band gaps were also considered as peculiarities in absorbance spectra of macroporous silicon structures with a thick SiO2 coating. The photonic modes do not coincide with the quasi-guided modes in the silicon matrix and do not appear in absorption spectra of 2D macroporous silicon structures with surface nanocrystals.

  18. Broad optical bandwidth based on nonlinear effect of intensity and phase modulators through intense four-wave mixing in photonic crystal fiber

    Science.gov (United States)

    Eltaif, Tawfig

    2017-05-01

    This work investigates the advantages of nonlinear optics of a cascaded intensity modulator (IM) and phase modulator (PM) to generate an initial optical frequency comb. The results show that when the direct current bias to amplitude ratio, α=0.1, and the IM and PM have the same modulation index and are equal 10, seed comb is achieved; it is generated by the modulation of two continuous wave lasers. Hence, based on these parameters, an intense four-wave mixing is created through 9 m of photonic crystal fiber. Moreover, a broadband spectrum was achieved, spaced by a 30-GHz microwave frequency.

  19. Analysis on optical bistability parameters in photonic switching devices

    Science.gov (United States)

    Sarafraz, Hossein; Sayeh, Mohammad R.

    2016-06-01

    An investigation has been done on the parameters of a hysteretic bistable optical Schmitt trigger device. From a design point of view, it is important to know the regions where this bistability occurs and is fully functional with respect to its subsystem parameters. Otherwise experimentally reaching such behavior will be very time-consuming and frustrating, especially with multiple devices employed in a single photonic circuit. A photonic Schmitt trigger consisting of two feedbacked inverting amplifiers, each characterized by -m (slope), A (y-intercept), and B (constant base) parameters is considered. This system is investigated dynamically with a varying input to find its stable and unstable states both mathematically and with simulation. In addition to a complete mathematical analysis of the system, we also describe how m, A, and B can be properly chosen in order to satisfy certain system conditions that result in bistability. More restrictions are also imposed to these absolute conditions by the system conditions as will be discussed. Finally, all results are verified in a more realistic photonic simulation.

  20. Optical precursors from classical waves to single photons

    CERN Document Server

    Chen, JF; Loy, MMT; Du, Shengwang

    2013-01-01

    Ever since Einstein’s special relativity in 1905, the principle of invariant light speed in vacuum has been attracting attention from a wide range of disciplines. How to interpret the principle of light speed? Is light referred to continuous light, or light pulse with definite boundaries? Recent discovery of superluminal medium triggered vigorous discussion within the Physics community. Can communication via such “superluminal channel” break the speed limit and thus violate causality principle? Or, will a single photon, which is not governed by classical laws of Physics, tend to break the speed limit? To solve these problems, in this Brief we bring in optical precursor, the theoretical works for which started as early as 1914. This is a typical optical phenomenon combining wave propagation theory and light-wave interaction. Both theory and experimental works are covered in this Brief. The study of precursor verifies that the effective information carried by light pulses can never exceed the speed of lig...

  1. Optical Approach for the Thermal Partition Function of Photons

    CERN Document Server

    Moretti, V; Moretti, Valter; Iellici, Devis

    1997-01-01

    The optical manifold method to compute the one-loop effective action in a static space-time is extended from the massless scalar field to the Maxwell field in any Feynman-like covariant gauge. The method applied in the case of the Rindler space obtaining the same results as the point-splitting procedure. The result is free from Kabat's surface terms which instead affect the manifold containing conical singularities. The relation between the optical method and the direct $\\zeta$-function approach on the Euclidean Rindler manifold is discussed both in the scalar and the photon case. Problems with the thermodynamic consistency of the results obtained from the point-splitting thermal stress tensor in the case of the Rindler space are pointed out.

  2. Optical bistability and four-wave mixing with a single nitrogen-vacancy center coupled to a photonic crystal nanocavity in the weak-coupling regime.

    Science.gov (United States)

    Li, Jiahua; Yu, Rong; Ding, Chunling; Wu, Ying

    2014-06-16

    We explore optical bistability and degenerate four-wave mixing of a hybrid optical system composed of a photonic crystal nanocavity, a single nitrogen-vacancy center embedded in the cavity, and a nearby photonic waveguide serving for in- and outcoupling of light into the cavity in the weak-coupling regime. Here the hybrid system is coherently driven by a continuous-wave bichromatic laser field consisting of a strong control field and a weak probe field. We take account of the nonlinear nature of the nitrogen-vacancy center in the Heisenberg-Langevin equations and give an effective perturbation method to deal with such problems in the continuous-wave-operation regime. The results clearly show that the bistability region of the population inversion and the intensity of the generated four-wave mixing field can be well controlled by properly adjusting the system practical parameters. The nanophotonic platform can be used to implement our proposal. This investigation may be useful for gaining further insight into the properties of solid-state cavity quantum electrodynamics system and find applications in all-optical wavelength converter and switch in a photonic crystal platform.

  3. Ultrahigh resolution optical coherence tomography with femtosecond Ti:sapphire laser and photonic crystal fiber

    Institute of Scientific and Technical Information of China (English)

    XUE Ping; James G FUJIMOTO

    2008-01-01

    Optical coherence tomography (OCT) with ultrahigh axial resolution was achieved by the super-contin- uum generated by coupling femtosecond pulses from a commercial Ti :sapphire laser into an air-silica microstructure fiber. The visible spectrum of the super-continuum from 450 to 700 nm centered at 540 nm can be generated. A free-space axial OCT resolution of 0.64 IJm was achieved. The sensitivity of OCT system was 108 dB with incident light power 3 mW at sample, only 7dB below the theoretical limit. Subcellular OCT imaging was also demonstrated, showing great potential for biomedical application.

  4. Extraction of a single photon from an optical pulse

    Science.gov (United States)

    Rosenblum, Serge; Bechler, Orel; Shomroni, Itay; Lovsky, Yulia; Guendelman, Gabriel; Dayan, Barak

    2016-01-01

    Removing a single photon from a pulse is one of the most elementary operations that can be performed on light, having both fundamental significance and practical applications in quantum communication and computation. So far, photon subtraction, in which the removed photon is detected and therefore irreversibly lost, has been implemented in a probabilistic manner with inherently low success rates using low-reflectivity beam splitters. Here we demonstrate a scheme for the deterministic extraction of a single photon from an incoming pulse. The removed photon is diverted to a different mode, enabling its use for other purposes, such as a photon number-splitting attack on quantum key distribution protocols. Our implementation makes use of single-photon Raman interaction (SPRINT) with a single atom near a nanofibre-coupled microresonator. The single-photon extraction probability in our current realization is limited mostly by linear loss, yet probabilities close to unity should be attainable with realistic experimental parameters.

  5. Near-field reflection backscattering apertureless optical microscopy: Application to spectroscopy experiments on opaque samples, comparison between lock-in and digital photon counting detection techniques

    Energy Technology Data Exchange (ETDEWEB)

    Diziain, S. [Institut Charles Delaunay, CNRS FRE 2848, Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France); Bijeon, J.-L. [Institut Charles Delaunay, CNRS FRE 2848, Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France)]. E-mail: bijeon@utt.fr; Adam, P.-M. [Institut Charles Delaunay, CNRS FRE 2848, Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France); Lamy de la Chapelle, M. [Institut Charles Delaunay, CNRS FRE 2848, Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France); Thomas, B. [Institut Charles Delaunay, CNRS FRE 2848, Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France); Deturche, R. [Institut Charles Delaunay, CNRS FRE 2848, Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France); Royer, P. [Institut Charles Delaunay, CNRS FRE 2848, Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France)

    2007-01-15

    An apertureless scanning near-field optical microscope (ASNOM) in reflection backscattering configuration is designed to conduct spectroscopic experiments on opaque samples constituted of latex beads. The ASNOM proposed takes advantage of the depth-discrimination properties of confocal microscopes to efficiently extract the near-field optical signal. Given their importance in a spectroscopic experiment, we systematically compare the lock-in and synchronous photon counting detection methods. Some results of Rayleigh's scattering in the near field of the test samples are used to illustrate the possibilities of this technique for reflection backscattering spectroscopy.

  6. Scattering in the ultrastrong regime: nonlinear optics with one photon

    OpenAIRE

    Sánchez-Burillo, Eduardo; Zueco, David; García-Ripoll, Juanjo; Martín-Moreno, Luis

    2014-01-01

    The scattering of a flying photon by a two-level system ultrastrongly coupled to a one-dimensional photonic waveguide is studied numerically. The photonic medium is modeled as an array of coupled cavities and the whole system is analyzed beyond the rotating wave approximation using Matrix Product States. It is found that the scattering is strongly influenced by the single- and multi-photon dressed bound states present in the system. In the ultrastrong coupling regime a new channel for inelast...

  7. All-optical mode unscrambling on a silicon photonic chip

    CERN Document Server

    Morichetti, Francesco; Grillanda, Stefano; Peserico, Nicola; Carminati, Marco; Ciccarella, Pietro; Ferrari, Giorgio; Guglielmi, Emanuele; Sorel, Marc; Melloni, Andrea

    2015-01-01

    We demonstrate a 4-channel silicon photonic MIMO demultiplexer performing all-optical unscrambling of four mixed modes. Mode unscrambling is achieved by means of a cascaded Mach-Zehnder architecture that is sequentially reconfigured by individually monitoring each stage though integrated transparent detectors, namely Contact Less Integrated Photonic Probes (CLIPPs). Robust demultiplexing of 10 Gbit/s channels with less than -20 dB crosstalk is achieved.

  8. Aspherical photon and anti-photon surfaces

    Directory of Open Access Journals (Sweden)

    G.W. Gibbons

    2016-12-01

    Full Text Available In this note we identify photon surfaces and anti-photon surfaces in some physically interesting spacetimes, which are not spherically symmetric. All of our examples solve physically reasonable field equations, including for some cases the vacuum Einstein equations, albeit they are not asymptotically flat. Our examples include the vacuum C-metric, the Melvin solution of Einstein–Maxwell theory and generalisations including dilaton fields. The (anti-photon surfaces are not round spheres, and the lapse function is not always constant.

  9. Metallic nanocone array photonic substrate for high-uniformity surface deposition and optical detection of small molecules

    Science.gov (United States)

    Coppé, Jean-Philippe; Xu, Zhida; Chen, Yi; Logan Liu, G.

    2011-06-01

    Molecular probe arrays printed on solid surfaces such as DNA, peptide, and protein microarrays are widely used in chemical and biomedical applications especially genomic and proteomic studies (Pollack et al 1999 Nat. Genet. 23 41-6, Houseman et al 2002 Nat. Biotechnol. 20 270-4, Sauer et al 2005 Nat. Rev. Genet. 6 465-76) as well as surface imaging and spectroscopy (Mori et al 2008 Anal. Biochem. 375 223-31, Liu et al 2006 Nat. Nanotechnol. 1 47-52, Liu 2010 IEEE J. Sel. Top. Quantum Electron. 16 662-71). Unfortunately the printed molecular spots on solid surfaces often suffer low distribution uniformity due to the lingering 'coffee stain' (Deegan et al 1997 Nature 389 827-9) problem of molecular accumulations and blotches, especially around the edge of deposition spots caused by solvent evaporation and convection processes. Here we present, without any surface chemistry modification, a unique solid surface of high-aspect-ratio silver-coated silicon nanocone arrays that allows highly uniform molecular deposition and thus subsequent uniform optical imaging and spectroscopic molecular detection. Both fluorescent Rhodamine dye molecules and unlabeled oligopeptides are printed on the metallic nanocone photonic substrate surface as circular spot arrays. In comparison with the printed results on ordinary glass slides and silver-coated glass slides, not only high printing density but uniform molecular distribution in every deposited spot is achieved. The high-uniformity and repeatability of molecular depositions on the 'coffee stain'-free nanocone surface is confirmed by laser scanning fluorescence imaging and surface enhanced Raman imaging experiments. The physical mechanism for the uniform molecular deposition is attributed to the superhydrophobicity and localized pinned liquid-solid-air interface on the silver-coated silicon nanocone surface. The unique surface properties of the presented nanocone surface enabled high-density, high-uniformity probe spotting beneficial

  10. Metallic nanocone array photonic substrate for high-uniformity surface deposition and optical detection of small molecules

    Energy Technology Data Exchange (ETDEWEB)

    Coppe, Jean-Philippe [Kinogea Inc., 2168 Shattuck Ave, Berkeley, CA 94704 (United States); Xu Zhida; Chen Yi; Logan Liu, G, E-mail: loganliu@illinois.edu [Micro and Nanotechnology Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL (United States)

    2011-06-17

    Molecular probe arrays printed on solid surfaces such as DNA, peptide, and protein microarrays are widely used in chemical and biomedical applications especially genomic and proteomic studies (Pollack et al 1999 Nat. Genet. 23 41-6, Houseman et al 2002 Nat. Biotechnol. 20 270-4, Sauer et al 2005 Nat. Rev. Genet. 6 465-76) as well as surface imaging and spectroscopy (Mori et al 2008 Anal. Biochem. 375 223-31, Liu et al 2006 Nat. Nanotechnol. 1 47-52, Liu 2010 IEEE J. Sel. Top. Quantum Electron. 16 662-71). Unfortunately the printed molecular spots on solid surfaces often suffer low distribution uniformity due to the lingering 'coffee stain' (Deegan et al 1997 Nature 389 827-9) problem of molecular accumulations and blotches, especially around the edge of deposition spots caused by solvent evaporation and convection processes. Here we present, without any surface chemistry modification, a unique solid surface of high-aspect-ratio silver-coated silicon nanocone arrays that allows highly uniform molecular deposition and thus subsequent uniform optical imaging and spectroscopic molecular detection. Both fluorescent Rhodamine dye molecules and unlabeled oligopeptides are printed on the metallic nanocone photonic substrate surface as circular spot arrays. In comparison with the printed results on ordinary glass slides and silver-coated glass slides, not only high printing density but uniform molecular distribution in every deposited spot is achieved. The high-uniformity and repeatability of molecular depositions on the 'coffee stain'-free nanocone surface is confirmed by laser scanning fluorescence imaging and surface enhanced Raman imaging experiments. The physical mechanism for the uniform molecular deposition is attributed to the superhydrophobicity and localized pinned liquid-solid-air interface on the silver-coated silicon nanocone surface. The unique surface properties of the presented nanocone surface enabled high-density, high-uniformity probe

  11. Two dimensional thermo-optic beam steering using a silicon photonic optical phased array

    Science.gov (United States)

    Mahon, Rita; Preussner, Marcel W.; Rabinovich, William S.; Goetz, Peter G.; Kozak, Dmitry A.; Ferraro, Mike S.; Murphy, James L.

    2016-03-01

    Components for free space optical communication terminals such as lasers, amplifiers, and receivers have all seen substantial reduction in both size and power consumption over the past several decades. However, pointing systems, such as fast steering mirrors and gimbals, have remained large, slow and power-hungry. Optical phased arrays provide a possible solution for non-mechanical beam steering devices that can be compact and lower in power. Silicon photonics is a promising technology for phased arrays because it has the potential to scale to many elements and may be compatible with CMOS technology thereby enabling batch fabrication. For most free space optical communication applications, two-dimensional beam steering is needed. To date, silicon photonic phased arrays have achieved two-dimensional steering by combining thermo-optic steering, in-plane, with wavelength tuning by means of an output grating to give angular tuning, out-of-plane. While this architecture might work for certain static communication links, it would be difficult to implement for moving platforms. Other approaches have required N2 controls for an NxN element phased array, which leads to complexity. Hence, in this work we demonstrate steering using the thermo-optic effect for both dimensions with a simplified steering mechanism requiring only two control signals, one for each steering dimension.

  12. Photonic Crystal Fibres as the Transmission Medium for Future Optical Communication Systems

    DEFF Research Database (Denmark)

    Zsigri, Beata

    2006-01-01

    During this Ph.D. work, air-silica photonic crystal fibres(PCFs) have been investigated for telecommunication applications. PCFs have a complicated cladding structure, where air holes, running along the entire fibre length, ensure light guidance. Photonic crystal fibres can be classified into two......, and exploited for building fully functional, entirely PCF based optical transmission links and networks. The first 40 Gbit/s transmission over 5.6 km PCF with mid-span spectral inversion dispersion compensation realised in a highly nonlinear photonic crystal fibre is demonstrated. The first optical network...

  13. Investigation of Electron Transfer-Based Photonic and Electro-Optic Materials and Devices

    Energy Technology Data Exchange (ETDEWEB)

    Bromenshenk, Jerry J; Abbott, Edwin H; Dickensheets, David; Donovan, Richard P; Hobbs, J D; Spangler, Lee; McGuirl, Michele A; Spangler, Charles; Rebane, Aleksander; Rosenburg, Edward; Schmidt, V H; Singel, David J

    2008-03-28

    Montana's state program began its sixth year in 2006. The project's research cluster focused on physical, chemical, and biological materials that exhibit unique electron-transfer properties. Our investigators have filed several patents and have also have established five spin-off businesses (3 MSU, 2 UM) and a research center (MT Tech). In addition, this project involved faculty and students at three campuses (MSU, UM, MT Tech) and has a number of under-represented students, including 10 women and 5 Native Americans. In 2006, there was an added emphasis on exporting seminars and speakers via the Internet from UM to Chief Dull Knife Community College, as well as work with the MT Department of Commerce to better educate our faculty regarding establishing small businesses, licensing and patent issues, and SBIR program opportunities.

  14. Probing plasmonic nanostructures by photons and electrons

    DEFF Research Database (Denmark)

    Kneipp, Katrin; Kneipp, Harald; Kneipp, Janina

    2015-01-01

    We discuss recent developments for studying plasmonic metal nanostructures. Exploiting photons and electrons opens up new capabilities to probe the complete plasmon spectrum including bright and dark modes and related local optical fields at subnanometer spatial resolution. This comprehensive...

  15. Nonlinear optical effects of ultrahigh-Q silicon photonic nanocavities immersed in superfluid helium

    CERN Document Server

    Sun, Xiankai; Schuck, Carsten; Tang, Hong X

    2013-01-01

    Photonic nanocavities are a key component in many applications because of their capability of trapping and storing photons and enhancing interactions of light with various functional materials and structures. The maximal number of photons that can be stored in silicon photonic cavities is limited by the free-carrier and thermo-optic effects at room temperature. To reduce such effects, we performed the first experimental study of optical nonlinearities in ultrahigh-Q silicon disk nanocavities at cryogenic temperatures in a superfluid helium environment. At elevated input power, the cavity transmission spectra exhibit distinct blue-shifted bistability behavior when temperature crosses the liquid helium lambda point. At even lower temperatures, the spectra restore to symmetric Lorentzian shapes. Under this condition, we obtain a large stored intracavity photon number of about 40,000, which is limited ultimately by the local helium phase transition. These new discoveries are explained by theoretical calculations ...

  16. Bi-photon propagation control with optimized wavefront by means of Adaptive Optics

    CERN Document Server

    Minozzi, M; Sergienko, A V; Vallone, G; Villoresi, P

    2012-01-01

    We present an efficient method to control the spatial modes of entangled photons produced through SPDC process. Bi-photon beam propagation is controlled by a deformable mirror, that shapes a 404nm CW diode laser pump interacting with a nonlinear BBO type-I crystal. Thanks to adaptive optical system, the propagation of 808nm SPDC light produced is optimized over a distance of 2m. The whole system optimization is carried out by a feedback between deformable mirror action and entangled photon coincidence counts. We also demonstrated the improvement of the two-photon coupling into single mode fibers.

  17. The Optical Bloch oscillation in chirped one-dimensional superconducting photonic crystal

    Science.gov (United States)

    Zhang, Zhengren; Long, Yang; Zhang, Liwei; Yin, Pengfei; Xue, Chunhua

    2017-09-01

    We exploit theoretically the propagation properties of electromagnetic waves in nanoscale one-dimensional superconducting photonic crystal. The Wannier Stark ladders can be formed in the photonic crystal by varying the thickness of the dielectric layers linearly across the structure. The dynamics behavior of a Gaussian pulse transmitting through the structure is simulated theoretically. We find that photons undergo Bloch oscillations inside tilted photonic bands and the Bloch oscillations are sensitive to the change of temperature in the range of 3-8 K. It is demonstrated that our structure is possible to realize tunable optical Bloch oscillations by controlling the temperature of superconducting material.

  18. Two-photon absorption, nonlinear optical and UV-vis spectral properties of 2-furanylmethyleneaminoantipyrine, benzylideneaminoantipyrine and cinnamilideneaminoantipyrine

    Energy Technology Data Exchange (ETDEWEB)

    Sun Yuxi, E-mail: yuxisun@163.com [Key Laboratory for Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing 210094 (China) and Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165 (China); Hao Qingli; Tang Weihua; Wang Yufeng [Key Laboratory for Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing 210094 (China); Yang Xujie, E-mail: yangx@mail.njust.edu.cn [Key Laboratory for Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing 210094 (China); Lu Lude; Wang Xin [Key Laboratory for Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2011-09-15

    Highlights: {yields} Three imine-bridged aromatic antipyrine derivatives as photo-responsive materials. {yields} The compounds exhibit two-photon absorption and first-hyperpolarization properties {yields} The compounds have long-range electron transfer characteristics. - Abstract: Organic compounds as functional materials have attracted much keen interest in the past three decades owing to their potential applications in science and technology. Currently, great efforts have been made in looking for suitable photo-responsive materials among the multifarious organic compounds. Herein we reported the photophysical properties of 2-furanylmethylene-aminoantipyrine (FMAAP), benzylideneaminoantipyrine (BIAAP) and cinnamilideneamino-antipyrine (CIAAP) studied by a combined experimental and theoretical investigation. Two-photon absorption measurements give the cross-section values of 1.350 x 10{sup -50} cm{sup 4} s/photon for FMAAP, 1.046 x 10{sup -50} cm{sup 4} s/photon for BIAAP and 2.047 x 10{sup -50} cm{sup 4} s/photon for CIAAP. The calculated first-hyperpolarization values are of 2.303 x 10{sup -30}, 1.257 x 10{sup -29}, 2.889 x 10{sup -29} cm{sup 5}/esu for FMAAP, BIAAP and CIAAP, respectively. UV-vis spectroscopy technique further reveals that the studied compounds display long-range electron transfer characteristics by absorbing light of specific wavelengths of 294.5 nm for FMAAP, 293.2 nm for BIAAP and 303.1 nm for CIAAP. All the results indicate that the studied compounds are promising candidates of functionally photo-responsive materials.

  19. Simulation of Astronomical Images from Optical Survey Telescopes using a Comprehensive Photon Monte Carlo Approach

    CERN Document Server

    Peterson, J R; Kahn, S M; Rasmussen, A P; Peng, E; Ahmad, Z; Bankert, J; Chang, C; Claver, C; Gilmore, D K; Grace, E; Hannel, M; Hodge, M; Lorenz, S; Lupu, A; Meert, A; Nagarajan, S; Todd, N; Winans, A; Young, M

    2015-01-01

    We present a comprehensive methodology for the simulation of astronomical images from optical survey telescopes. We use a photon Monte Carlo approach to construct images by sampling photons from models of astronomical source populations, and then simulating those photons through the system as they interact with the atmosphere, telescope, and camera. We demonstrate that all physical effects for optical light that determine the shapes, locations, and brightnesses of individual stars and galaxies can be accurately represented in this formalism. By using large scale grid computing, modern processors, and an efficient implementation that can produce 400,000 photons/second, we demonstrate that even very large optical surveys can be now be simulated. We demonstrate that we are able to: 1) construct kilometer scale phase screens necessary for wide-field telescopes, 2) reproduce atmospheric point-spread-function moments using a fast novel hybrid geometric/Fourier technique for non-diffraction limited telescopes, 3) ac...

  20. Formation of Photonic Structures in Photorefractive Lithium Niobate by 1D and 2D Bessel-like Optical Fields

    Science.gov (United States)

    Inyushov, A.; Safronova, P.; Trushnikov, I.; Sarkyt, A.; Shandarov, V.

    2017-06-01

    Both, one-dimensional (1D) and two-dimensional (2D) Bessel-like beams with different topology of 2D beam cross-sections are formed from Gaussian laser beams using the amplitude masks and Fresnel biprisms. These almost diffraction-free light fields with wavelengths of 532 and 633 nm can change the refractive indices of photorefractive lithium niobate samples and form within them the nonlinear photonic diffraction structures. The characteristics of photonic structures induced in this way are studied by diffraction of monochromatic light with wavelengths of 633 and 532 nm.