WorldWideScience

Sample records for optics aided imaging

  1. AIDS (image)

    Science.gov (United States)

    AIDS (acquired immune deficiency syndrome) is caused by HIV (human immunodeficiency virus), and is a syndrome that ... life-threatening illnesses. There is no cure for AIDS, but treatment with antiviral medicine can suppress symptoms. ...

  2. Microsphere-aided optical microscopy and its applications for super-resolution imaging

    Science.gov (United States)

    Upputuri, Paul Kumar; Pramanik, Manojit

    2017-12-01

    The spatial resolution of a standard optical microscope (SOM) is limited by diffraction. In visible spectrum, SOM can provide ∼ 200 nm resolution. To break the diffraction limit several approaches were developed including scanning near field microscopy, metamaterial super-lenses, nanoscale solid immersion lenses, super-oscillatory lenses, confocal fluorescence microscopy, techniques that exploit non-linear response of fluorophores like stimulated emission depletion microscopy, stochastic optical reconstruction microscopy, etc. Recently, photonic nanojet generated by a dielectric microsphere was used to break the diffraction limit. The microsphere-approach is simple, cost-effective and can be implemented under a standard microscope, hence it has gained enormous attention for super-resolution imaging. In this article, we briefly review the microsphere approach and its applications for super-resolution imaging in various optical imaging modalities.

  3. Radiographic imaging of aids

    International Nuclear Information System (INIS)

    Mahmoud, Mohammed Bashir

    2002-07-01

    The acquired immunodeficiency syndrome (AIDS) has impacted the civilized world like no other disease. This research aimed to discuss some of the main aids-related complications and their detection by radiology tests, specifically central nervous system and musculoskeletal system disorders. The objectives are: to show specific characteristics of various diseases of HIV patient, to analyze the effect of pathology in patients by radiology, to enhance the knowledge of technologists in aids imaging and to improve communication skills between patient and radiology technologists

  4. Optical coherence tomography (OCT) imaging and computer aided diagnosis of human cervical tissue specimens

    Science.gov (United States)

    Bazant-Hegemark, F.; Stone, N.; Read, M. D.; McCarthy, K.; Wang, R. K.

    2007-07-01

    The keyword for management of cervical cancer is prevention. The present program within the UK, the 'National Health Service (NHS) cervical screening programme' (NHSCSP), is based on cytology. Although the program has reduced the incidence of cervical cancer, this program requires patient follow ups and relies on diagnostic biopsying. There is potential for reducing costs and workload within the NHS, and relieving anxiety of patients. In this study, Optical Coherence Tomography (OCT) was investigated for its capability to improve this situation. Our time domain bench top system used a superluminescent diode (Superlum), centre wave length ~1.3 μm, resolution (air) ~15 μm. Tissue samples were obtained according to the ethics approval by Gloucestershire LREC, Nr. 05/Q2005/123. 1387 images of 199 participants have been compared with histopathology results and categorized accordingly. Our OCT images do not reach the clarity and resolution of histopathology. Further, establishing and recognizing features of diagnostic significance seems difficult. Automated classification would allow one to take decision-making to move from the subjective appraisal of a physician to an objective assessment. Hence we investigated a classification algorithm for its ability in recognizing pre-cancerous stages from OCT images. The initial results show promise.

  5. Microscope-integrated optical coherence tomography for image-aided positioning of glaucoma surgery

    Science.gov (United States)

    Li, Xiqi; Wei, Ling; Dong, Xuechuan; Huang, Ping; Zhang, Chun; He, Yi; Shi, Guohua; Zhang, Yudong

    2015-07-01

    Most glaucoma surgeries involve creating new aqueous outflow pathways with the use of a small surgical instrument. This article reported a microscope-integrated, real-time, high-speed, swept-source optical coherence tomography system (SS-OCT) with a 1310-nm light source for glaucoma surgery. A special mechanism was designed to produce an adjustable system suitable for use in surgery. A two-graphic processing unit architecture was used to speed up the data processing and real-time volumetric rendering. The position of the surgical instrument can be monitored and measured using the microscope and a grid-inserted image of the SS-OCT. Finally, experiments were simulated to assess the effectiveness of this integrated system. Experimental results show that this system is a suitable positioning tool for glaucoma surgery.

  6. Microscope-integrated optical coherence tomography for image-aided positioning of glaucoma surgery.

    Science.gov (United States)

    Li, Xiqi; Wei, Ling; Dong, Xuechuan; Huang, Ping; Zhang, Chun; He, Yi; Shi, Guohua; Zhang, Yudong

    2015-07-01

    Most glaucoma surgeries involve creating new aqueous outflow pathways with the use of a small surgical instrument. This article reported a microscope-integrated, real-time, high-speed, swept-source optical coherence tomography system (SS-OCT) with a 1310-nm light source for glaucoma surgery. A special mechanism was designed to produce an adjustable system suitable for use in surgery. A two-graphic processing unit architecture was used to speed up the data processing and real-time volumetric rendering. The position of the surgical instrument can be monitored and measured using the microscope and a grid-inserted image of the SS-OCT. Finally, experiments were simulated to assess the effectiveness of this integrated system. Experimental results show that this system is a suitable positioning tool for glaucoma surgery.

  7. Advances in optical imaging

    International Nuclear Information System (INIS)

    Bremer, C.; Ntziachristos, V.; Mahmood, U.; Tung, C.H.; Weissleder, R.

    2001-01-01

    Different optical imaging technologies have significantly progressed over the last years. Besides advances in imaging techniques and image reconstruction, new 'smart' optical contrast agents have been developed which can be used to detect molecular targets (such as endogenous enzymes) in vivo. The combination of novel imaging technologies coupled with smart agents bears great diagnostic potential both clinically and experimentally. This overview outlines the basic principles of optical imaging and summarizes the current state of the art. (orig.) [de

  8. Optical imaging and spectroscopy

    CERN Document Server

    Brady, David J

    2009-01-01

    An essential reference for optical sensor system design This is the first text to present an integrated view of the optical and mathematical analysis tools necessary to understand computational optical system design. It presents the foundations of computational optical sensor design with a focus entirely on digital imaging and spectroscopy. It systematically covers: Coded aperture and tomographic imaging Sampling and transformations in optical systems, including wavelets and generalized sampling techniques essential to digital system analysis Geometric, wave, and statis

  9. Abdominal imaging in AIDS patients

    International Nuclear Information System (INIS)

    Zhao Dawei; Wang Wei; Yuan Chunwang; Jia Cuiyu; Zhao Xuan; Zhang Tong; Ma Daqing

    2007-01-01

    Objective: To evaluate abdominal imaging in AIDS. Methods: The imaging examinations (including US, CT and MR) of 6 patients with AIDS associated abdominal foci were analysed retrospectively. All the cases were performed US, and CT scan, of which 4 performed enhanced CT scan and 1 with MR. Results: Abdominal tuberculosis were found in 4 patients, including abdominal lymph nodes tuberculosis (3 cases) and pancreatic tuberculosis (1 case). The imaging of lymph nodes tuberculosis typically showed enlarged peripheral tim enhancement with central low-attenuation on contrast-enhanced CT. Pancreatic tuberculosis demonstrated low-attenuation area in pancreatic head and slightly peripheral enhancement. Disseminated Kaposi's sarcoma was seen in 1 case: CT and MRI scan demonstrated tumour infiltrated along hepatic portal vein and bronchovascular bundles. Pelvic tumor was observed in 1 case: CT scan showed large mass with thick and irregular wall and central low attenuation liquefacient necrotic area in the pelvic cavity. Conclusion: The imaging findings of AIDS with abdominal foci is extraordinarily helpful to the diagnosis of such disease. Tissue biopsy is needed to confirm the diagnosis. (authors)

  10. Dynamic Optically Multiplexed Imaging

    Science.gov (United States)

    2015-07-29

    Dynamic Optically Multiplexed Imaging Yaron Rachlin, Vinay Shah, R. Hamilton Shepard, and Tina Shih Lincoln Laboratory, Massachusetts Institute of...V. Shah, and T. Shih “Design Architectures for Optically Multiplexed Imaging,” in submission 9 R. Gupta , P. Indyk, E. Price, and Y. Rachlin

  11. Optic Nerve Imaging

    Science.gov (United States)

    ... News About Us Donate In This Section Optic Nerve Imaging email Send this article to a friend ... measurements of nerve fiber damage (or loss). The Nerve Fiber Analyzer (GDx) uses laser light to measure ...

  12. Integration of 3D anatomical data obtained by CT imaging and 3D optical scanning for computer aided implant surgery

    Directory of Open Access Journals (Sweden)

    Paoli Alessandro

    2011-02-01

    Full Text Available Abstract Background A precise placement of dental implants is a crucial step to optimize both prosthetic aspects and functional constraints. In this context, the use of virtual guiding systems has been recognized as a fundamental tool to control the ideal implant position. In particular, complex periodontal surgeries can be performed using preoperative planning based on CT data. The critical point of the procedure relies on the lack of accuracy in transferring CT planning information to surgical field through custom-made stereo-lithographic surgical guides. Methods In this work, a novel methodology is proposed for monitoring loss of accuracy in transferring CT dental information into periodontal surgical field. The methodology is based on integrating 3D data of anatomical (impression and cast and preoperative (radiographic template models, obtained by both CT and optical scanning processes. Results A clinical case, relative to a fully edentulous jaw patient, has been used as test case to assess the accuracy of the various steps concurring in manufacturing surgical guides. In particular, a surgical guide has been designed to place implants in the bone structure of the patient. The analysis of the results has allowed the clinician to monitor all the errors, which have been occurring step by step manufacturing the physical templates. Conclusions The use of an optical scanner, which has a higher resolution and accuracy than CT scanning, has demonstrated to be a valid support to control the precision of the various physical models adopted and to point out possible error sources. A case study regarding a fully edentulous patient has confirmed the feasibility of the proposed methodology.

  13. Integration of 3D anatomical data obtained by CT imaging and 3D optical scanning for computer aided implant surgery

    Science.gov (United States)

    2011-01-01

    Background A precise placement of dental implants is a crucial step to optimize both prosthetic aspects and functional constraints. In this context, the use of virtual guiding systems has been recognized as a fundamental tool to control the ideal implant position. In particular, complex periodontal surgeries can be performed using preoperative planning based on CT data. The critical point of the procedure relies on the lack of accuracy in transferring CT planning information to surgical field through custom-made stereo-lithographic surgical guides. Methods In this work, a novel methodology is proposed for monitoring loss of accuracy in transferring CT dental information into periodontal surgical field. The methodology is based on integrating 3D data of anatomical (impression and cast) and preoperative (radiographic template) models, obtained by both CT and optical scanning processes. Results A clinical case, relative to a fully edentulous jaw patient, has been used as test case to assess the accuracy of the various steps concurring in manufacturing surgical guides. In particular, a surgical guide has been designed to place implants in the bone structure of the patient. The analysis of the results has allowed the clinician to monitor all the errors, which have been occurring step by step manufacturing the physical templates. Conclusions The use of an optical scanner, which has a higher resolution and accuracy than CT scanning, has demonstrated to be a valid support to control the precision of the various physical models adopted and to point out possible error sources. A case study regarding a fully edentulous patient has confirmed the feasibility of the proposed methodology. PMID:21338504

  14. 21 CFR 886.5915 - Optical vision aid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Optical vision aid. 886.5915 Section 886.5915 Food... DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5915 Optical vision aid. (a) Identification. An optical vision aid is a device that consists of a magnifying lens with an accompanying AC-powered or...

  15. Applications of optical imaging

    International Nuclear Information System (INIS)

    Schellenberger, E.

    2005-01-01

    Optical imaging in the form of near infrared fluorescence and bioluminescence has proven useful for a wide range of applications in the field of molecular imaging. Both techniques provide a high sensitivity (in the nanomolar range), which is of particular importance for molecular imaging. Imaging with near infrared fluorescence is especially cost-effective and can be performed, in contrast to radioactivity-based methods, with fluorescence dyes that remain stable for months. The most important advantage of bioluminescence, in turn, is the lack of background signal. Although molecular imaging with these techniques is still in the experimental phase, an application of near infrared fluorescence is already foreseeable for the imaging of superficial structures. (orig.)

  16. Holography Experiments on Optical Imaging.

    Science.gov (United States)

    Bonczak, B.; Dabrowski, J.

    1979-01-01

    Describes experiments intended to produce a better understanding of the holographic method of producing images and optical imaging by other optical systems. Application of holography to teaching physics courses is considered. (Author/SA)

  17. Optical Imaging of the Breast

    International Nuclear Information System (INIS)

    Kim, Min Jung; Kim, Eun Kyung

    2011-01-01

    As the increased prevalence of breast cancer and the advances in breast evaluation awareness have resulted in an increased number of breast examinations and benign breast biopsies, several investigations have been performed to improve the diagnostic accuracy for breast lesions. Optical imaging of the breast that uses nearinfrared light to assess the optical properties of breast tissue is a novel non-invasive imaging technique to characterize breast lesions in clinical practice. This review provides a summary of the current state of optical breast imaging and it describes the basic concepts of optical imaging, the potential clinical applications for breast cancer imaging and its potential incorporation with other imaging modalities

  18. Advances in Retinal Optical Imaging

    Directory of Open Access Journals (Sweden)

    Yanxiu Li

    2018-04-01

    Full Text Available Retinal imaging has undergone a revolution in the past 50 years to allow for better understanding of the eye in health and disease. Significant improvements have occurred both in hardware such as lasers and optics in addition to software image analysis. Optical imaging modalities include optical coherence tomography (OCT, OCT angiography (OCTA, photoacoustic microscopy (PAM, scanning laser ophthalmoscopy (SLO, adaptive optics (AO, fundus autofluorescence (FAF, and molecular imaging (MI. These imaging modalities have enabled improved visualization of retinal pathophysiology and have had a substantial impact on basic and translational medical research. These improvements in technology have translated into early disease detection, more accurate diagnosis, and improved management of numerous chorioretinal diseases. This article summarizes recent advances and applications of retinal optical imaging techniques, discusses current clinical challenges, and predicts future directions in retinal optical imaging.

  19. Image hiding using optical interference

    Science.gov (United States)

    Zhang, Yan; Wang, Weining

    2010-09-01

    Optical image encryption technology has attracted a lot of attentions due to its large capacitance and fast speed. In conventional image encryption methods, the random phase masks are used as encryption keys to encode the images into white noise distribution. Therefore, this kind of methods requires interference technology to record complex amplitude and is vulnerable to attack techniques. The image hiding methods which employ the phase retrieve algorithm to encode the images into two or more phase masks are proposed, the hiding process is carried out within a computer using iterative algorithm. But the iterative algorithms are time consumed. All method mentioned above are based on the optical diffraction of the phase masks. In this presentation, a new optical image hiding method based on optical interference is proposed. The coherence lights which pass through two phase masks are combined by a beam splitter. Two beams interfere with each other and the desired image appears at the pre-designed plane. Two phase distribution masks are design analytically; therefore, the hiding speed can be obviously improved. Simulation results are carried out to demonstrate the novelty of the new proposed methods. This method can be expanded for double images hiding.

  20. Imaging of the optic nerve

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Minerva [Head and Neck and Maxillofacial Radiology, Department of Radiology, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, CH - 1211 Geneva 14 (Switzerland)], E-mail: minerva.becker@hcuge.ch; Masterson, Karen [Head and Neck and Maxillofacial Radiology, Department of Radiology, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, CH - 1211 Geneva 14 (Switzerland); Delavelle, Jacqueline [Neuroradiology, Department of Radiology, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, CH - 1211 Geneva 14 (Switzerland); Viallon, Magalie [Department of Radiology, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, CH - 1211 Geneva 14 (Switzerland); Vargas, Maria-Isabel [Neuroradiology, Department of Radiology, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, CH - 1211 Geneva 14 (Switzerland); Becker, Christoph D. [Department of Radiology, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, CH - 1211 Geneva 14 (Switzerland)

    2010-05-15

    This article provides an overview of the imaging findings of diseases affecting the optic nerve with special emphasis on clinical-radiological correlation and on the latest technical developments in MR imaging and CT. The review deals with congenital malformations, tumors, toxic/nutritional and degenerative entities, inflammatory and infectious diseases, compressive neuropathy, vascular conditions and trauma involving the optic nerve from its ocular segment to the chiasm. The implications of imaging findings on patient management and outcome and the importance of performing high-resolution tailored examinations adapted to the clinical situation are discussed.

  1. Imaging of the optic nerve

    International Nuclear Information System (INIS)

    Becker, Minerva; Masterson, Karen; Delavelle, Jacqueline; Viallon, Magalie; Vargas, Maria-Isabel; Becker, Christoph D.

    2010-01-01

    This article provides an overview of the imaging findings of diseases affecting the optic nerve with special emphasis on clinical-radiological correlation and on the latest technical developments in MR imaging and CT. The review deals with congenital malformations, tumors, toxic/nutritional and degenerative entities, inflammatory and infectious diseases, compressive neuropathy, vascular conditions and trauma involving the optic nerve from its ocular segment to the chiasm. The implications of imaging findings on patient management and outcome and the importance of performing high-resolution tailored examinations adapted to the clinical situation are discussed.

  2. Underwater Inherent Optical Properties Estimation Using a Depth Aided Deep Neural Network

    Directory of Open Access Journals (Sweden)

    Zhibin Yu

    2017-01-01

    Full Text Available Underwater inherent optical properties (IOPs are the fundamental clues to many research fields such as marine optics, marine biology, and underwater vision. Currently, beam transmissometers and optical sensors are considered as the ideal IOPs measuring methods. But these methods are inflexible and expensive to be deployed. To overcome this problem, we aim to develop a novel measuring method using only a single underwater image with the help of deep artificial neural network. The power of artificial neural network has been proved in image processing and computer vision fields with deep learning technology. However, image-based IOPs estimation is a quite different and challenging task. Unlike the traditional applications such as image classification or localization, IOP estimation looks at the transparency of the water between the camera and the target objects to estimate multiple optical properties simultaneously. In this paper, we propose a novel Depth Aided (DA deep neural network structure for IOPs estimation based on a single RGB image that is even noisy. The imaging depth information is considered as an aided input to help our model make better decision.

  3. Underwater Inherent Optical Properties Estimation Using a Depth Aided Deep Neural Network.

    Science.gov (United States)

    Yu, Zhibin; Wang, Yubo; Zheng, Bing; Zheng, Haiyong; Wang, Nan; Gu, Zhaorui

    2017-01-01

    Underwater inherent optical properties (IOPs) are the fundamental clues to many research fields such as marine optics, marine biology, and underwater vision. Currently, beam transmissometers and optical sensors are considered as the ideal IOPs measuring methods. But these methods are inflexible and expensive to be deployed. To overcome this problem, we aim to develop a novel measuring method using only a single underwater image with the help of deep artificial neural network. The power of artificial neural network has been proved in image processing and computer vision fields with deep learning technology. However, image-based IOPs estimation is a quite different and challenging task. Unlike the traditional applications such as image classification or localization, IOP estimation looks at the transparency of the water between the camera and the target objects to estimate multiple optical properties simultaneously. In this paper, we propose a novel Depth Aided (DA) deep neural network structure for IOPs estimation based on a single RGB image that is even noisy. The imaging depth information is considered as an aided input to help our model make better decision.

  4. Biomedical Optical Imaging Technologies Design and Applications

    CERN Document Server

    2013-01-01

    This book provides an introduction to design of biomedical optical imaging technologies and their applications. The main topics include: fluorescence imaging, confocal imaging, micro-endoscope, polarization imaging, hyperspectral imaging, OCT imaging, multimodal imaging and spectroscopic systems. Each chapter is written by the world leaders of the respective fields, and will cover: principles and limitations of optical imaging technology, system design and practical implementation for one or two specific applications, including design guidelines, system configuration, optical design, component requirements and selection, system optimization and design examples, recent advances and applications in biomedical researches and clinical imaging. This book serves as a reference for students and researchers in optics and biomedical engineering.

  5. Optics for mobile phone imaging

    Science.gov (United States)

    Vigier-Blanc, Emmanuelle E.

    2004-02-01

    Micro cameras for mobile phones require specific opto electronic designs using high-resolution micro technologies for compromising optical, electronical and mechanical requirements. The purpose of this conference is to present the optical critical parameters for imaging optics embedded into mobile phones. We will overview the optics critical parameters involved into micro optical cameras, as seen from user point of view, and their interdependence and relative influence onto optical performances of the product, as: -Focal length, field of view and array size. -Lens speed and depth of field: what is hidden behind lens speed, how to compromise small aperture, production tolerances, sensitivity, good resolution in corners and great depth of field -Relative illumination, this smooth fall off of intensity toward edge of array -Resolution; how to measure it, the interaction of pixel size, small dimensions -Sensitivity, insuring same sensitivity as human being under both twilight and midday sunny conditions. -Mischievous effects, as flare, glare, ghost effects and how to avoid them -How to match sensor spectrum and photopic eye curve: IR filter, and color balancing. We will compromise above parameters and see how to match with market needs and productivity insurance.

  6. Viscous optical clearing agent for in vivo optical imaging

    Science.gov (United States)

    Deng, Zijian; Jing, Lijia; Wu, Ning; lv, Pengyu; Jiang, Xiaoyun; Ren, Qiushi; Li, Changhui

    2014-07-01

    By allowing more photons to reach deeper tissue, the optical clearing agent (OCA) has gained increasing attention in various optical imaging modalities. However, commonly used OCAs have high fluidity, limiting their applications in in vivo studies with oblique, uneven, or moving surfaces. In this work, we reported an OCA with high viscosity. We measured the properties of this viscous OCA, and tested its successful performances in the imaging of a living animal's skin with two optical imaging modalities: photoacoustic microscopy and optical coherence tomography. Our results demonstrated that the viscous OCA has a great potential in the study of different turbid tissues using various optical imaging modalities.

  7. Fluorescence imaging spectrometer optical design

    Science.gov (United States)

    Taiti, A.; Coppo, P.; Battistelli, E.

    2015-09-01

    The optical design of the FLuORescence Imaging Spectrometer (FLORIS) studied for the Fluorescence Explorer (FLEX) mission is discussed. FLEX is a candidate for the ESA's 8th Earth Explorer opportunity mission. FLORIS is a pushbroom hyperspectral imager foreseen to be embarked on board of a medium size satellite, flying in tandem with Sentinel-3 in a Sun synchronous orbit at a height of about 815 km. FLORIS will observe the vegetation fluorescence and reflectance within a spectral range between 500 and 780 nm. Multi-frames acquisitions on matrix detectors during the satellite movement will allow the production of 2D Earth scene images in two different spectral channels, called HR and LR with spectral resolution of 0.3 and 2 nm respectively. A common fore optics is foreseen to enhance by design the spatial co-registration between the two spectral channels, which have the same ground spatial sampling (300 m) and swath (150 km). An overlapped spectral range between the two channels is also introduced to simplify the spectral coregistration. A compact opto-mechanical solution with all spherical and plane optical elements is proposed, and the most significant design rationales are described. The instrument optical architecture foresees a dual Babinet scrambler, a dioptric telescope and two grating spectrometers (HR and LR), each consisting of a modified Offner configuration. The developed design is robust, stable vs temperature, easy to align, showing very high optical quality along the whole field of view. The system gives also excellent correction for transverse chromatic aberration and distortions (keystone and smile).

  8. Laboratory testing & measurement on optical imaging systems

    CSIR Research Space (South Africa)

    Theron, B

    2013-04-01

    Full Text Available on Optical Imaging Systems Bertus Theron 27 April 2013 presented at SIECPC 2013, Riyadh, Saudi Arabia Overview of Workshop Part 1. Introduction & Context  Some history of Arabic Optics  Context: Global vs Local optical testing... of Arabic Optics 1 See [4]  Arabic records of study of geometrical optics  Traced to Hellenistic (Greek) optics  Translated to Arabic  9th century  Arabic contribution to geometric optics  Not just translation to Arabic  Innovative research...

  9. Imaging of pneumocystic carinii pneumonia in AIDS

    International Nuclear Information System (INIS)

    Zhao Dawei; Zhang Ke; Ma Daqing; Jia Cuiyu

    2002-01-01

    Objective: To study the X-ray and CT findings of pneumocystis carinii pneumonia in AIDS. Methods: Five AIDS patients who had chest abnormalities were analyzed. Results: Pneumocystis carinii pneumonia appeared as diffuse infiltrative and interstitial fine nodules. Conclusion: If the diffuse and infiltrative interstitial fine nodule are the appearances in patients with AIDS, the pneumocystic carinii pneumonia should be considered

  10. Multimedia Image Technology and Computer Aided Manufacturing Engineering Analysis

    Science.gov (United States)

    Nan, Song

    2018-03-01

    Since the reform and opening up, with the continuous development of science and technology in China, more and more advanced science and technology have emerged under the trend of diversification. Multimedia imaging technology, for example, has a significant and positive impact on computer aided manufacturing engineering in China. From the perspective of scientific and technological advancement and development, the multimedia image technology has a very positive influence on the application and development of computer-aided manufacturing engineering, whether in function or function play. Therefore, this paper mainly starts from the concept of multimedia image technology to analyze the application of multimedia image technology in computer aided manufacturing engineering.

  11. Computer vision applications for coronagraphic optical alignment and image processing.

    Science.gov (United States)

    Savransky, Dmitry; Thomas, Sandrine J; Poyneer, Lisa A; Macintosh, Bruce A

    2013-05-10

    Modern coronagraphic systems require very precise alignment between optical components and can benefit greatly from automated image processing. We discuss three techniques commonly employed in the fields of computer vision and image analysis as applied to the Gemini Planet Imager, a new facility instrument for the Gemini South Observatory. We describe how feature extraction and clustering methods can be used to aid in automated system alignment tasks, and also present a search algorithm for finding regular features in science images used for calibration and data processing. Along with discussions of each technique, we present our specific implementation and show results of each one in operation.

  12. Remote laboratory for phase-aided 3D microscopic imaging and metrology

    Science.gov (United States)

    Wang, Meng; Yin, Yongkai; Liu, Zeyi; He, Wenqi; Li, Boqun; Peng, Xiang

    2014-05-01

    In this paper, the establishment of a remote laboratory for phase-aided 3D microscopic imaging and metrology is presented. Proposed remote laboratory consists of three major components, including the network-based infrastructure for remote control and data management, the identity verification scheme for user authentication and management, and the local experimental system for phase-aided 3D microscopic imaging and metrology. The virtual network computer (VNC) is introduced to remotely control the 3D microscopic imaging system. Data storage and management are handled through the open source project eSciDoc. Considering the security of remote laboratory, the fingerprint is used for authentication with an optical joint transform correlation (JTC) system. The phase-aided fringe projection 3D microscope (FP-3DM), which can be remotely controlled, is employed to achieve the 3D imaging and metrology of micro objects.

  13. Magnetic resonance imaging of optic nerve

    International Nuclear Information System (INIS)

    Gala, Foram

    2015-01-01

    Optic nerves are the second pair of cranial nerves and are unique as they represent an extension of the central nervous system. Apart from clinical and ophthalmoscopic evaluation, imaging, especially magnetic resonance imaging (MRI), plays an important role in the complete evaluation of optic nerve and the entire visual pathway. In this pictorial essay, the authors describe segmental anatomy of the optic nerve and review the imaging findings of various conditions affecting the optic nerves. MRI allows excellent depiction of the intricate anatomy of optic nerves due to its excellent soft tissue contrast without exposure to ionizing radiation, better delineation of the entire visual pathway, and accurate evaluation of associated intracranial pathologies

  14. Section on High Resolution Optical Imaging (HROI)

    Data.gov (United States)

    Federal Laboratory Consortium — The Section on High Resolution Optical Imaging (HROI) develops novel technologies for studying biological processes at unprecedented speed and resolution. Research...

  15. Optically sectioned imaging by oblique plane microscopy

    Science.gov (United States)

    Kumar, Sunil; Lin, Ziduo; Lyon, Alex R.; MacLeod, Ken T.; Dunsby, Chris

    2011-03-01

    Oblique Plane Microscopy (OPM) is a light sheet microscopy technique that combines oblique illumination with correction optics that tilt the focal plane of the collection system. OPM can be used to image conventionally mounted specimens on coverslips or tissue culture dishes and has low out-of-plane photobleaching and phototoxicity. No moving parts are required to achieve an optically sectioned image and so high speed optically sectioned imaging is possible. The first OPM results obtained using a high NA water immersion lens on a commercially available inverted microscope frame are presented, together with a measurement of the achievable optical resolution.

  16. Magnetic resonance imaging of radiation optic neuropathy

    International Nuclear Information System (INIS)

    Zimmerman, C.F.; Schatz, N.J.; Glaser, J.S.

    1990-01-01

    Three patients with delayed radiation optic neuropathy after radiation therapy for parasellar neoplasms underwent magnetic resonance imaging. The affected optic nerves and chiasms showed enlargement and focal gadopentetate dimeglumine enhancement. The magnetic resonance imaging technique effectively detected and defined anterior visual pathway changes of radionecrosis and excluded the clinical possibility of visual loss because of tumor recurrence

  17. Imaging granulomatous lesions with optical coherence tomography

    DEFF Research Database (Denmark)

    Banzhaf, Christina; Jemec, Gregor B E

    2012-01-01

    To investigate and compare the presentation of granulomatous lesions in optical coherence tomography (OCT) images and compare this to previous studies of nonmelanoma skin tumors.......To investigate and compare the presentation of granulomatous lesions in optical coherence tomography (OCT) images and compare this to previous studies of nonmelanoma skin tumors....

  18. An Introduction to Document Imaging in the Financial Aid Office.

    Science.gov (United States)

    Levy, Douglas A.

    2001-01-01

    First describes the components of a document imaging system in general and then addresses this technology specifically in relation to financial aid document management: its uses and benefits, considerations in choosing a document imaging system, and additional sources for information. (EV)

  19. Imaging and applied optics: introduction to the feature issue.

    Science.gov (United States)

    Zalevsky, Zeev; Arnison, Matthew R; Javidi, Bahram; Testorf, Markus

    2018-03-01

    This special issue of Applied Optics contains selected papers from OSA's Imaging Congress with particular emphasis on work from mathematics in imaging, computational optical sensing and imaging, imaging systems and applications, and 3D image acquisition and display.

  20. Imaging findings of mediastinal tuberculous lymphadenopathy in AIDS

    International Nuclear Information System (INIS)

    Zhao Dawei; Yuan Chunwang; Zhang Lijie; Jin Erhu; Ma Daqing

    2005-01-01

    Objective: To evaluate X-ray, CT and MRI features of mediastinal tuberculosis in AIDS. Methods: Images (including X-ray; CT and MRI) of 9 patients with AIDS associated hilar and mediastinal lymphonode tuberculosis were analysed retrospectively. All the cases were performed with chest X-ray and CT scan, of which 5 with enhanced CT scan and 1 with MRI. Results: In the hilar and mediastinal lymphonode tuberculosis complicated by AIDS, the enlarged lymph nodes were mostly located in region 7 (100%, 9/9), 77.8% cases (7/9) were in 4R and 55.6% (5/9) were in 2R. Conclusion: The imaging findings of hilar and mediastinal lymphonode tuberculosis in AIDS is characterized by the enlarged lymphnodes that can fuse together and encroach on the tissues outside the lymph nodes. CT and MRI scans are extraordinarily helpful to the diagnosis of such diseases. (authors)

  1. The Study of Image Processing Method for AIDS PA Test

    International Nuclear Information System (INIS)

    Zhang, H J; Wang, Q G

    2006-01-01

    At present, the main test technique of AIDS is PA in China. Because the judgment of PA test image is still depending on operator, the error ration is high. To resolve this problem, we present a new technique of image processing, which first process many samples and get the data including coordinate of center and the rang of kinds images; then we can segment the image with the data; at last, the result is exported after data was judgment. This technique is simple and veracious; and it also turns out to be suitable for the processing and analyzing of other infectious diseases' PA test image

  2. Donor leucocyte imaging in patients with AIDS: A preliminary report

    International Nuclear Information System (INIS)

    O'Doherty, M.J.; Kent and Canterbury Hospital; Revell, P.; Page, C.J.; Nunan, T.O.; Lee, S.; Mountford, P.J.

    1990-01-01

    Four patients with the acquired immunodeficiency syndrome (AIDS) and fever were investigated using donor leucocyte scans. The lung/liver and lung/spleen uptake ratios in these patients were compared with the uptake ratios in donor leucocyte scans in seven neutropenic (non-AIDS) patients and five patients who had autologous leucocyte scans performed over the same time period. All scans used indium oxine In 111 labelled leucocytes except that for one AIDS patient which used technetium hexamethyl-propylene amine oxide Tc99m labelled donor leucocytes. There were no adverse reactions to the donor cell infusions. Two patients had repeat studies 8 weeks apart (from different donors) without ill effect. There were no differences in the 111 In uptake ratios between the three groups. There were three positive studies in the patients with AIDS, and these elucidated the cause of the pyrexia in all three. The negative case is more difficult to confirm, but the clinical course and the absence of focal disease on post-mortem have been taken to support the scan findings. There was no difference in the acceptibility of the technique or the distribution of the labelled leucocytes between the AIDS and non-AIDS patients. Donor leucocyte imaging of patients with AIDS is probably more effective and considerably less hazardous for technical staff than autologous leucocyte methods. This study demonstrates that the technique can be applied successfully to patients with AIDS. (orig.)

  3. Optical image hiding based on interference

    Science.gov (United States)

    Zhang, Yan; Wang, Bo

    2009-11-01

    Optical image processing has been paid a lot of attentions recently due to its large capacitance and fast speed. Many image encryption and hiding technologies have been proposed based on the optical technology. In conventional image encryption methods, the random phase masks are usually used as encryption keys to encode the images into random white noise distribution. However, this kind of methods requires interference technology such as holography to record complex amplitude. Furthermore, it is vulnerable to attack techniques. The image hiding methods employ the phase retrieve algorithm to encode the images into two or more phase masks. The hiding process is carried out within a computer and the images are reconstructed optically. But the iterative algorithms need a lot of time to hide the image into the masks. All methods mentioned above are based on the optical diffraction of the phase masks. In this presentation, we will propose a new optical image hiding method based on interference. The coherence lights pass through two phase masks and are combined by a beam splitter. Two beams interfere with each other and the desired image appears at the pre-designed plane. Two phase distribution masks are designed analytically; therefore, the hiding speed can be obviously improved. Simulation results are carried out to demonstrate the validity of the new proposed methods.

  4. Image correction in magneto-optical microscopy

    DEFF Research Database (Denmark)

    Paturi, P.; Larsen, B.H.; Jacobsen, B.A.

    2003-01-01

    An image-processing procedure that assures correct determination of the magnetic field distribution of magneto-optical images is presented. The method remedies image faults resulting from sources that are proportional to the incident light intensity, such as different types of defects...

  5. Optics for Advanced Neutron Imaging and Scattering

    International Nuclear Information System (INIS)

    Moncton, David E.; Khaykovich, Boris

    2016-01-01

    During the report period, we continued the work as outlined in the original proposal. We have analyzed potential optical designs of Wolter mirrors for the neutron-imaging instrument VENUS, which is under construction at SNS. In parallel, we have conducted the initial polarized imaging experiment at Helmholtz Zentrum, Berlin, one of very few of currently available polarized-imaging facilities worldwide.

  6. Phase aided 3D imaging and modeling: dedicated systems and case studies

    Science.gov (United States)

    Yin, Yongkai; He, Dong; Liu, Zeyi; Liu, Xiaoli; Peng, Xiang

    2014-05-01

    Dedicated prototype systems for 3D imaging and modeling (3DIM) are presented. The 3D imaging systems are based on the principle of phase-aided active stereo, which have been developed in our laboratory over the past few years. The reported 3D imaging prototypes range from single 3D sensor to a kind of optical measurement network composed of multiple node 3D-sensors. To enable these 3D imaging systems, we briefly discuss the corresponding calibration techniques for both single sensor and multi-sensor optical measurement network, allowing good performance of the 3DIM prototype systems in terms of measurement accuracy and repeatability. Furthermore, two case studies including the generation of high quality color model of movable cultural heritage and photo booth from body scanning are presented to demonstrate our approach.

  7. Adaptive optics imaging of the retina

    Directory of Open Access Journals (Sweden)

    Rajani Battu

    2014-01-01

    Full Text Available Adaptive optics is a relatively new tool that is available to ophthalmologists for study of cellular level details. In addition to the axial resolution provided by the spectral-domain optical coherence tomography, adaptive optics provides an excellent lateral resolution, enabling visualization of the photoreceptors, blood vessels and details of the optic nerve head. We attempt a mini review of the current role of adaptive optics in retinal imaging. PubMed search was performed with key words Adaptive optics OR Retina OR Retinal imaging. Conference abstracts were searched from the Association for Research in Vision and Ophthalmology (ARVO and American Academy of Ophthalmology (AAO meetings. In total, 261 relevant publications and 389 conference abstracts were identified.

  8. Optical cell sorting with multiple imaging modalities

    DEFF Research Database (Denmark)

    Banas, Andrew; Carrissemoux, Caro; Palima, Darwin

    2017-01-01

    healthy cells. With the richness of visual information, a lot of microscopy techniques have been developed and have been crucial in biological studies. To utilize their complementary advantages we adopt both fluorescence and brightfield imaging in our optical cell sorter. Brightfield imaging has...... the advantage of being non-invasive, thus maintaining cell viability. Fluorescence imaging, on the other hand, takes advantages of the chemical specificity of fluorescence markers and can validate machine vision results from brightfield images. Visually identified cells are sorted using optical manipulation...

  9. Magnetic resonance imaging of brain involvement in aids

    International Nuclear Information System (INIS)

    Cordoliani, Y.S.; Pharaboz, C.; Jeanbourquin, D.; Le Gall, R.; Derosier, C.; Cosnard, G.

    1991-01-01

    Magnetic resonance imaging is the most sensitive and the most specific technique for the study of the neurological complications of AIDS. The analysis of the images must be aimed at recognizing the specific lesions produced by the human immunodeficiency virus (HIV), in order to identify the opportunistic lesions, which are often multiple. For each major opportunistic disease, a number of arguments likely to guide the treatment can be pointed out [fr

  10. Bone marrow NMR imaging and scintigraphy in AIDS patients

    International Nuclear Information System (INIS)

    Theisen, P.; Waters, W.; Schicha, H.; Rasokat, H.; Steigleder, G.K.

    1988-01-01

    The examinations were carried out in order to ascertain whether bone marrow abnormalities can be detected in AIDS patients by means of magnetic resonance imaging or scintiscanning. In 16 of the 19 patients the NMR image and/or the scintiscan distinctly revealed bone marrow abnormalities, but there was no exact correlation to be found to immunological parameters, the peripheral blood picture, or the clinical stage of the HIV infection. (orig.) [de

  11. Advanced Imaging Optics Utilizing Wavefront Coding.

    Energy Technology Data Exchange (ETDEWEB)

    Scrymgeour, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Boye, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Adelsberger, Kathleen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-01

    Image processing offers a potential to simplify an optical system by shifting some of the imaging burden from lenses to the more cost effective electronics. Wavefront coding using a cubic phase plate combined with image processing can extend the system's depth of focus, reducing many of the focus-related aberrations as well as material related chromatic aberrations. However, the optimal design process and physical limitations of wavefront coding systems with respect to first-order optical parameters and noise are not well documented. We examined image quality of simulated and experimental wavefront coded images before and after reconstruction in the presence of noise. Challenges in the implementation of cubic phase in an optical system are discussed. In particular, we found that limitations must be placed on system noise, aperture, field of view and bandwidth to develop a robust wavefront coded system.

  12. Optical image encryption using multilevel Arnold transform and noninterferometric imaging

    Science.gov (United States)

    Chen, Wen; Chen, Xudong

    2011-11-01

    Information security has attracted much current attention due to the rapid development of modern technologies, such as computer and internet. We propose a novel method for optical image encryption using multilevel Arnold transform and rotatable-phase-mask noninterferometric imaging. An optical image encryption scheme is developed in the gyrator transform domain, and one phase-only mask (i.e., phase grating) is rotated and updated during image encryption. For the decryption, an iterative retrieval algorithm is proposed to extract high-quality plaintexts. Conventional encoding methods (such as digital holography) have been proven vulnerably to the attacks, and the proposed optical encoding scheme can effectively eliminate security deficiency and significantly enhance cryptosystem security. The proposed strategy based on the rotatable phase-only mask can provide a new alternative for data/image encryption in the noninterferometric imaging.

  13. Fiber optic neutron imaging system: calibration

    International Nuclear Information System (INIS)

    Malone, R.M.; Gow, C.E.; Thayer, D.R.

    1981-01-01

    Two neutron imaging experiments using fiber optics have been performed at the Nevada Test Site. In each experiment, an array of scintillator fluor tubes is exposed to neutrons. Light is coupled out through radiation resistant PCS fibers (8-m long) into high-bandwidth, graded index fibers. For image reconstruction to be accurate, common timing differences and transmission variations between fiber optic channels are needed. The calibration system featured a scanning pulsed dye laser, a specially designed fiber optic star coupler, a tektronix 7912AD transient digitizer, and a DEC PDP 11/34 computing system

  14. Imaging spectroscopy using embedded diffractive optical arrays

    Science.gov (United States)

    Hinnrichs, Michele; Hinnrichs, Bradford

    2017-09-01

    Pacific Advanced Technology (PAT) has developed an infrared hyperspectral camera based on diffractive optic arrays. This approach to hyperspectral imaging has been demonstrated in all three infrared bands SWIR, MWIR and LWIR. The hyperspectral optical system has been integrated into the cold-shield of the sensor enabling the small size and weight of this infrared hyperspectral sensor. This new and innovative approach to an infrared hyperspectral imaging spectrometer uses micro-optics that are made up of an area array of diffractive optical elements where each element is tuned to image a different spectral region on a common focal plane array. The lenslet array is embedded in the cold-shield of the sensor and actuated with a miniature piezo-electric motor. This approach enables rapid infrared spectral imaging with multiple spectral images collected and processed simultaneously each frame of the camera. This paper will present our optical mechanical design approach which results in an infrared hyper-spectral imaging system that is small enough for a payload on a small satellite, mini-UAV, commercial quadcopter or man portable. Also, an application of how this spectral imaging technology can easily be used to quantify the mass and volume flow rates of hydrocarbon gases. The diffractive optical elements used in the lenslet array are blazed gratings where each lenslet is tuned for a different spectral bandpass. The lenslets are configured in an area array placed a few millimeters above the focal plane and embedded in the cold-shield to reduce the background signal normally associated with the optics. The detector array is divided into sub-images covered by each lenslet. We have developed various systems using a different number of lenslets in the area array. Depending on the size of the focal plane and the diameter of the lenslet array will determine the number of simultaneous different spectral images collected each frame of the camera. A 2 x 2 lenslet array will image

  15. Optical encryption with selective computational ghost imaging

    International Nuclear Information System (INIS)

    Zafari, Mohammad; Kheradmand, Reza; Ahmadi-Kandjani, Sohrab

    2014-01-01

    Selective computational ghost imaging (SCGI) is a technique which enables the reconstruction of an N-pixel image from N measurements or less. In this paper we propose an optical encryption method based on SCGI and experimentally demonstrate that this method has much higher security under eavesdropping and unauthorized accesses compared with previous reported methods. (paper)

  16. Advanced Secure Optical Image Processing for Communications

    Science.gov (United States)

    Al Falou, Ayman

    2018-04-01

    New image processing tools and data-processing network systems have considerably increased the volume of transmitted information such as 2D and 3D images with high resolution. Thus, more complex networks and long processing times become necessary, and high image quality and transmission speeds are requested for an increasing number of applications. To satisfy these two requests, several either numerical or optical solutions were offered separately. This book explores both alternatives and describes research works that are converging towards optical/numerical hybrid solutions for high volume signal and image processing and transmission. Without being limited to hybrid approaches, the latter are particularly investigated in this book in the purpose of combining the advantages of both techniques. Additionally, pure numerical or optical solutions are also considered since they emphasize the advantages of one of the two approaches separately.

  17. Positron emission tomography and optical tissue imaging

    Science.gov (United States)

    Falen, Steven W [Carmichael, CA; Hoefer, Richard A [Newport News, VA; Majewski, Stanislaw [Yorktown, VA; McKisson, John [Hampton, VA; Kross, Brian [Yorktown, VA; Proffitt, James [Newport News, VA; Stolin, Alexander [Newport News, VA; Weisenberger, Andrew G [Yorktown, VA

    2012-05-22

    A mobile compact imaging system that combines both PET imaging and optical imaging into a single system which can be located in the operating room (OR) and provides faster feedback to determine if a tumor has been fully resected and if there are adequate surgical margins. While final confirmation is obtained from the pathology lab, such a device can reduce the total time necessary for the procedure and the number of iterations required to achieve satisfactory resection of a tumor with good margins.

  18. Geometrical optics in correlated imaging systems

    International Nuclear Information System (INIS)

    Cao Dezhong; Xiong Jun; Wang Kaige

    2005-01-01

    We discuss the geometrical optics of correlated imaging for two kinds of spatial correlations corresponding, respectively, to a classical thermal light source and a quantum two-photon entangled source. Due to the different features in the second-order spatial correlation, the two sources obey different imaging equations. The quantum entangled source behaves as a mirror, whereas the classical thermal source looks like a phase-conjugate mirror in the correlated imaging

  19. High sensitivity optical molecular imaging system

    Science.gov (United States)

    An, Yu; Yuan, Gao; Huang, Chao; Jiang, Shixin; Zhang, Peng; Wang, Kun; Tian, Jie

    2018-02-01

    Optical Molecular Imaging (OMI) has the advantages of high sensitivity, low cost and ease of use. By labeling the regions of interest with fluorescent or bioluminescence probes, OMI can noninvasively obtain the distribution of the probes in vivo, which play the key role in cancer research, pharmacokinetics and other biological studies. In preclinical and clinical application, the image depth, resolution and sensitivity are the key factors for researchers to use OMI. In this paper, we report a high sensitivity optical molecular imaging system developed by our group, which can improve the imaging depth in phantom to nearly 5cm, high resolution at 2cm depth, and high image sensitivity. To validate the performance of the system, special designed phantom experiments and weak light detection experiment were implemented. The results shows that cooperated with high performance electron-multiplying charge coupled device (EMCCD) camera, precision design of light path system and high efficient image techniques, our OMI system can simultaneously collect the light-emitted signals generated by fluorescence molecular imaging, bioluminescence imaging, Cherenkov luminance and other optical imaging modality, and observe the internal distribution of light-emitting agents fast and accurately.

  20. MR imaging of white matter lesions in AIDS

    International Nuclear Information System (INIS)

    Olsen, W.L.; Longo, F.; Norman, D.

    1987-01-01

    Autopsy reports have shown white-matter abnormalities from infection of the brain by the human immunodeficiency virus (HIV), the agent that causes acquired immunodeficiency syndrome (AIDS). The authors observed abnormal signal on T2-weighted images in the white matter of approximately one third of all AIDS patients. Of 50 patients with white-matter lesions, approximately two thirds had no clinical or biopsy evidence of cytomegalovirus, toxoplasmosis, PML, or lymphoma. Several patients were shown at autopsy to have isolated evidence of HIV encephalitis. The authors conclude that white-matter lesions are common in AIDS and are frequently caused by infection with HIV. Some MR findings may be helpful in characterizing these lesions, but the various etiologies are often indistinguishable

  1. Micrometric precision of prosthetic dental crowns obtained by optical scanning and computer-aided designing/computer-aided manufacturing system

    Science.gov (United States)

    das Neves, Flávio Domingues; de Almeida Prado Naves Carneiro, Thiago; do Prado, Célio Jesus; Prudente, Marcel Santana; Zancopé, Karla; Davi, Letícia Resende; Mendonça, Gustavo; Soares, Carlos José

    2014-08-01

    The current study evaluated prosthetic dental crowns obtained by optical scanning and a computer-aided designing/computer-aided manufacturing system using micro-computed tomography to compare the marginal fit. The virtual models were obtained with four different scanning surfaces: typodont (T), regular impressions (RI), master casts (MC), and powdered master casts (PMC). Five virtual models were obtained for each group. For each model, a crown was designed on the software and milled from feldspathic ceramic blocks. Micro-CT images were obtained for marginal gap measurements and the data were statistically analyzed by one-way analysis of variance followed by Tukey's test. The mean vertical misfit was T=62.6±65.2 μm; MC=60.4±38.4 μm; PMC=58.1±38.0 μm, and RI=89.8±62.8 μm. Considering a percentage of vertical marginal gap of up to 75 μm, the results were T=71.5%, RI=49.2%, MC=69.6%, and PMC=71.2%. The percentages of horizontal overextension were T=8.5%, RI=0%, MC=0.8%, and PMC=3.8%. Based on the results, virtual model acquisition by scanning the typodont (simulated mouth) or MC, with or without powder, showed acceptable values for the marginal gap. The higher result of marginal gap of the RI group suggests that it is preferable to scan this directly from the mouth or from MC.

  2. Optical tomographic imaging for breast cancer detection

    Science.gov (United States)

    Cong, Wenxiang; Intes, Xavier; Wang, Ge

    2017-09-01

    Diffuse optical breast imaging utilizes near-infrared (NIR) light propagation through tissues to assess the optical properties of tissues for the identification of abnormal tissue. This optical imaging approach is sensitive, cost-effective, and does not involve any ionizing radiation. However, the image reconstruction of diffuse optical tomography (DOT) is a nonlinear inverse problem and suffers from severe illposedness due to data noise, NIR light scattering, and measurement incompleteness. An image reconstruction method is proposed for the detection of breast cancer. This method splits the image reconstruction problem into the localization of abnormal tissues and quantification of absorption variations. The localization of abnormal tissues is performed based on a well-posed optimization model, which can be solved via a differential evolution optimization method to achieve a stable reconstruction. The quantification of abnormal absorption is then determined in localized regions of relatively small extents, in which a potential tumor might be. Consequently, the number of unknown absorption variables can be greatly reduced to overcome the underdetermined nature of DOT. Numerical simulation experiments are performed to verify merits of the proposed method, and the results show that the image reconstruction method is stable and accurate for the identification of abnormal tissues, and robust against the measurement noise of data.

  3. Design of optically stable image reflector system.

    Science.gov (United States)

    Tsai, Chung-Yu

    2013-08-01

    The design of a partially optically stable (POS) reflector system, in which the exit ray direction and image pose are unchanged as the reflector system rotates about a specific directional vector, was presented in an earlier study by the current group [Appl. Phys. B100, 883-890 (2010)]. The present study further proposes an optically stable image (OSI) reflector system, in which not only is the optical stability property of the POS system retained, but the image position and total ray path length are also fixed. An analytical method is proposed for the design of OSI reflector systems comprising multiple reflectors. The validity of the proposed approach is demonstrated by means of two illustrative examples.

  4. Digital image processing as an aid in forensic medicine

    International Nuclear Information System (INIS)

    Buitrago-Tellez, C.; Wenz, W.; Friedrich, G.

    1992-01-01

    Radiology plays an important role in the identification of unknown corpses. Positive radiographic identification by comparison with antemortem films is an established technique in this setting. Technical defects together with non-well-preserved films make it sometimes difficult or even impossible to establish a confident comparison. Digital image processing after secondary digitalization of ante- and postmortem films represents an important development and aid in forensic medicine. The application of this method is demonstrated on a single case. (orig.) [de

  5. Planetary optical and infrared imaging

    International Nuclear Information System (INIS)

    Terrile, R.J.

    1988-01-01

    The purpose of this investigation is to obtain and analyze high spatial resolution charge coupled device (CCD) coronagraphic images of extra-solar planetary material and solar system objects. These data will provide information on the distribution of planetary and proto-planetary material around nearby stars leading to a better understanding of the origin and evolution of the solar system. Imaging within our solar system will provide information on the current cloud configurations on the outer planets, search for new objects around the outer planets, and provide direct support for Voyager, Galileo, and CRAF by imaging material around asteroids and clouds on Neptune. Over the last year this program acquired multispectral and polarization images of the disk of material around the nearby star Beta Pictoris. This material is believed to be associated with the formation of planets and provides a first look at a planetary system much younger than our own. Preliminary color and polarization data suggest that the material is very low albedo and similar to dark outer solar system carbon rich material. A coronagraphic search for other systems is underway and has already examined over 100 nearby stars. Coronagraphic imaging provided the first clear look at the rings of Uranus and albedo limits for the ring arcs around Neptune

  6. Image formation simulation for computer-aided inspection planning of machine vision systems

    Science.gov (United States)

    Irgenfried, Stephan; Bergmann, Stephan; Mohammadikaji, Mahsa; Beyerer, Jürgen; Dachsbacher, Carsten; Wörn, Heinz

    2017-06-01

    In this work, a simulation toolset for Computer Aided Inspection Planning (CAIP) of systems for automated optical inspection (AOI) is presented along with a versatile two-robot-setup for verification of simulation and system planning results. The toolset helps to narrow down the large design space of optical inspection systems in interaction with a system expert. The image formation taking place in optical inspection systems is simulated using GPU-based real time graphics and high quality off-line-rendering. The simulation pipeline allows a stepwise optimization of the system, from fast evaluation of surface patch visibility based on real time graphics up to evaluation of image processing results based on off-line global illumination calculation. A focus of this work is on the dependency of simulation quality on measuring, modeling and parameterizing the optical surface properties of the object to be inspected. The applicability to real world problems is demonstrated by taking the example of planning a 3D laser scanner application. Qualitative and quantitative comparison results of synthetic and real images are presented.

  7. Diffuse Optical Tomography for Brain Imaging: Theory

    Science.gov (United States)

    Yuan, Zhen; Jiang, Huabei

    Diffuse optical tomography (DOT) is a noninvasive, nonionizing, and inexpensive imaging technique that uses near-infrared light to probe tissue optical properties. Regional variations in oxy- and deoxy-hemoglobin concentrations as well as blood flow and oxygen consumption can be imaged by monitoring spatiotemporal variations in the absorption spectra. For brain imaging, this provides DOT unique abilities to directly measure the hemodynamic, metabolic, and neuronal responses to cells (neurons), and tissue and organ activations with high temporal resolution and good tissue penetration. DOT can be used as a stand-alone modality or can be integrated with other imaging modalities such as fMRI/MRI, PET/CT, and EEG/MEG in studying neurophysiology and pathology. This book chapter serves as an introduction to the basic theory and principles of DOT for neuroimaging. It covers the major aspects of advances in neural optical imaging including mathematics, physics, chemistry, reconstruction algorithm, instrumentation, image-guided spectroscopy, neurovascular and neurometabolic coupling, and clinical applications.

  8. Radionuclide brain imaging in acquired immunodeficiency syndrome (AIDS)

    International Nuclear Information System (INIS)

    Costa, D.C.; Gacinovic, S.; Miller, R.F.

    1995-01-01

    Infection with the Human Immunodeficiency Virus type 1 (HIV-1) may produce a variety of central nervous system (CNS) symptoms and signs. CNS involvement in patients with the Acquired Immunodeficiency Syndrome (AIDS) includes AIDS dementia complex or HIV-1 associated cognitive/motor complex (widely known as HIV encephalopathy), progressive multifocal leucoencephalopathy (PML), opportunistic infections such as Toxoplasma gondii, TB, Cryptococcus and infiltration by non-Hodgkin's B cell lymphoma. High resolution structural imaging investigations, either X-ray Computed Tomography (CT scan) or Magnetic Resonance Imaging (MRI) have contributed to the understanding and definition of cerebral damage caused by HIV encephalopathy. Atrophy and mainly high signal scattered white matter abnormalities are commonly seen with MRI. PML produces focal white matter high signal abnormalities due to multiple foci of demyelination. However, using structural imaging techniques there are no reliable parameters to distinguish focal lesions due to opportunistic infection (Toxoplasma gondii abscess) from neoplasm (lymphoma infiltration). It is studied the use of radionuclide brain imaging techniques in the investigation of HIV infected patients. Brain perfusion Single Photon Emission Tomography (SPET), neuroreceptor and Positron Emission Tomography (PET) studies are reviewed. Greater emphasis is put on the potential of some radiopharmaceuticals, considered to be brain tumour markers, to distinguish intracerebral lymphoma infiltration from Toxoplasma infection. SPET with 201 Tl using quantification (tumour to non-tumour radioactivity ratios) appears a very promising technique to identify intracerebral lymphoma

  9. Parametric uncertainty in optical image modeling

    Science.gov (United States)

    Potzick, James; Marx, Egon; Davidson, Mark

    2006-10-01

    Optical photomask feature metrology and wafer exposure process simulation both rely on optical image modeling for accurate results. While it is fair to question the accuracies of the available models, model results also depend on several input parameters describing the object and imaging system. Errors in these parameter values can lead to significant errors in the modeled image. These parameters include wavelength, illumination and objective NA's, magnification, focus, etc. for the optical system, and topography, complex index of refraction n and k, etc. for the object. In this paper each input parameter is varied over a range about its nominal value and the corresponding images simulated. Second order parameter interactions are not explored. Using the scenario of the optical measurement of photomask features, these parametric sensitivities are quantified by calculating the apparent change of the measured linewidth for a small change in the relevant parameter. Then, using reasonable values for the estimated uncertainties of these parameters, the parametric linewidth uncertainties can be calculated and combined to give a lower limit to the linewidth measurement uncertainty for those parameter uncertainties.

  10. [A computer-aided image diagnosis and study system].

    Science.gov (United States)

    Li, Zhangyong; Xie, Zhengxiang

    2004-08-01

    The revolution in information processing, particularly the digitizing of medicine, has changed the medical study, work and management. This paper reports a method to design a system for computer-aided image diagnosis and study. Combined with some good idea of graph-text system and picture archives communicate system (PACS), the system was realized and used for "prescription through computer", "managing images" and "reading images under computer and helping the diagnosis". Also typical examples were constructed in a database and used to teach the beginners. The system was developed by the visual developing tools based on object oriented programming (OOP) and was carried into operation on the Windows 9X platform. The system possesses friendly man-machine interface.

  11. A New Optical Design for Imaging Spectroscopy

    Science.gov (United States)

    Thompson, K. L.

    2002-05-01

    We present an optical design concept for imaging spectroscopy, with some advantages over current systems. The system projects monochromatic images onto the 2-D array detector(s). Faint object and crowded field spectroscopy can be reduced first using image processing techniques, then building the spectrum, unlike integral field units where one must first extract the spectra, build data cubes from these, then reconstruct the target's integrated spectral flux. Like integral field units, all photons are detected simultaneously, unlike tunable filters which must be scanned through the wavelength range of interest and therefore pay a sensitivity pentalty. Several sample designs are presented, including an instrument optimized for measuring intermediate redshift galaxy cluster velocity dispersions, one designed for near-infrared ground-based adaptive optics, and one intended for space-based rapid follow-up of transient point sources such as supernovae and gamma ray bursts.

  12. Diffusion MR Imaging of Postoperative Bilateral Acute Ischemic Optic Neuropathy

    International Nuclear Information System (INIS)

    Park, Ju Young; Lee, In Ho; Song, Chang June; Hwang, Hee Youn

    2012-01-01

    A 57-year-old woman experienced bilateral acute ischemic optic neuropathy after spine surgery. Routine MR imaging sequence, T2-weighted image, showed subtle high signal intensity on bilateral optic nerves. A contrast-enhanced T1 weighted image showed enhancement along the bilateral optic nerve sheath. Moreover, diffusion-weighted image (DWI) and an apparent diffusion coefficient map showed markedly restricted diffusion on bilateral optic nerves. Although MR findings of T2-weighted and contrast enhanced T1-weighted images may be nonspecific, the DWI finding of cytotoxic edema of bilateral optic nerves will be helpful for the diagnosis of acute ischemic optic neuropathy after spine surgery.

  13. Diffusion MR Imaging of Postoperative Bilateral Acute Ischemic Optic Neuropathy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ju Young; Lee, In Ho; Song, Chang June [Chungnam National University Hospital, Daejeon (Korea, Republic of); Hwang, Hee Youn [Eulji University Hospital, Daejeon(Korea, Republic of)

    2012-03-15

    A 57-year-old woman experienced bilateral acute ischemic optic neuropathy after spine surgery. Routine MR imaging sequence, T2-weighted image, showed subtle high signal intensity on bilateral optic nerves. A contrast-enhanced T1 weighted image showed enhancement along the bilateral optic nerve sheath. Moreover, diffusion-weighted image (DWI) and an apparent diffusion coefficient map showed markedly restricted diffusion on bilateral optic nerves. Although MR findings of T2-weighted and contrast enhanced T1-weighted images may be nonspecific, the DWI finding of cytotoxic edema of bilateral optic nerves will be helpful for the diagnosis of acute ischemic optic neuropathy after spine surgery.

  14. Computer-aided diagnosis and artificial intelligence in clinical imaging.

    Science.gov (United States)

    Shiraishi, Junji; Li, Qiang; Appelbaum, Daniel; Doi, Kunio

    2011-11-01

    Computer-aided diagnosis (CAD) is rapidly entering the radiology mainstream. It has already become a part of the routine clinical work for the detection of breast cancer with mammograms. The computer output is used as a "second opinion" in assisting radiologists' image interpretations. The computer algorithm generally consists of several steps that may include image processing, image feature analysis, and data classification via the use of tools such as artificial neural networks (ANN). In this article, we will explore these and other current processes that have come to be referred to as "artificial intelligence." One element of CAD, temporal subtraction, has been applied for enhancing interval changes and for suppressing unchanged structures (eg, normal structures) between 2 successive radiologic images. To reduce misregistration artifacts on the temporal subtraction images, a nonlinear image warping technique for matching the previous image to the current one has been developed. Development of the temporal subtraction method originated with chest radiographs, with the method subsequently being applied to chest computed tomography (CT) and nuclear medicine bone scans. The usefulness of the temporal subtraction method for bone scans was demonstrated by an observer study in which reading times and diagnostic accuracy improved significantly. An additional prospective clinical study verified that the temporal subtraction image could be used as a "second opinion" by radiologists with negligible detrimental effects. ANN was first used in 1990 for computerized differential diagnosis of interstitial lung diseases in CAD. Since then, ANN has been widely used in CAD schemes for the detection and diagnosis of various diseases in different imaging modalities, including the differential diagnosis of lung nodules and interstitial lung diseases in chest radiography, CT, and position emission tomography/CT. It is likely that CAD will be integrated into picture archiving and

  15. Integrated optical 3D digital imaging based on DSP scheme

    Science.gov (United States)

    Wang, Xiaodong; Peng, Xiang; Gao, Bruce Z.

    2008-03-01

    We present a scheme of integrated optical 3-D digital imaging (IO3DI) based on digital signal processor (DSP), which can acquire range images independently without PC support. This scheme is based on a parallel hardware structure with aid of DSP and field programmable gate array (FPGA) to realize 3-D imaging. In this integrated scheme of 3-D imaging, the phase measurement profilometry is adopted. To realize the pipeline processing of the fringe projection, image acquisition and fringe pattern analysis, we present a multi-threads application program that is developed under the environment of DSP/BIOS RTOS (real-time operating system). Since RTOS provides a preemptive kernel and powerful configuration tool, with which we are able to achieve a real-time scheduling and synchronization. To accelerate automatic fringe analysis and phase unwrapping, we make use of the technique of software optimization. The proposed scheme can reach a performance of 39.5 f/s (frames per second), so it may well fit into real-time fringe-pattern analysis and can implement fast 3-D imaging. Experiment results are also presented to show the validity of proposed scheme.

  16. Optical coherence tomography and computer-aided diagnosis of a murine model of chronic kidney disease

    Science.gov (United States)

    Wang, Bohan; Wang, Hsing-Wen; Guo, Hengchang; Anderson, Erik; Tang, Qinggong; Wu, Tongtong; Falola, Reuben; Smith, Tikina; Andrews, Peter M.; Chen, Yu

    2017-12-01

    Chronic kidney disease (CKD) is characterized by a progressive loss of renal function over time. Histopathological analysis of the condition of glomeruli and the proximal convolutional tubules over time can provide valuable insights into the progression of CKD. Optical coherence tomography (OCT) is a technology that can analyze the microscopic structures of a kidney in a nondestructive manner. Recently, we have shown that OCT can provide real-time imaging of kidney microstructures in vivo without administering exogenous contrast agents. A murine model of CKD induced by intravenous Adriamycin (ADR) injection is evaluated by OCT. OCT images of the rat kidneys have been captured every week up to eight weeks. Tubular diameter and hypertrophic tubule population of the kidneys at multiple time points after ADR injection have been evaluated through a fully automated computer-vision system. Results revealed that mean tubular diameter and hypertrophic tubule population increase with time in post-ADR injection period. The results suggest that OCT images of the kidney contain abundant information about kidney histopathology. Fully automated computer-aided diagnosis based on OCT has the potential for clinical evaluation of CKD conditions.

  17. Computer-aided assessment of diagnostic images for epidemiological research

    Directory of Open Access Journals (Sweden)

    Gange Stephen J

    2009-11-01

    Full Text Available Abstract Background Diagnostic images are often assessed for clinical outcomes using subjective methods, which are limited by the skill of the reviewer. Computer-aided diagnosis (CAD algorithms that assist reviewers in their decisions concerning outcomes have been developed to increase sensitivity and specificity in the clinical setting. However, these systems have not been well utilized in research settings to improve the measurement of clinical endpoints. Reductions in bias through their use could have important implications for etiologic research. Methods Using the example of cortical cataract detection, we developed an algorithm for assisting a reviewer in evaluating digital images for the presence and severity of lesions. Available image processing and statistical methods that were easily implementable were used as the basis for the CAD algorithm. The performance of the system was compared to the subjective assessment of five reviewers using 60 simulated images. Cortical cataract severity scores from 0 to 16 were assigned to the images by the reviewers and the CAD system, with each image assessed twice to obtain a measure of variability. Image characteristics that affected reviewer bias were also assessed by systematically varying the appearance of the simulated images. Results The algorithm yielded severity scores with smaller bias on images where cataract severity was mild to moderate (approximately ≤ 6/16ths. On high severity images, the bias of the CAD system exceeded that of the reviewers. The variability of the CAD system was zero on repeated images but ranged from 0.48 to 1.22 for the reviewers. The direction and magnitude of the bias exhibited by the reviewers was a function of the number of cataract opacities, the shape and the contrast of the lesions in the simulated images. Conclusion CAD systems are feasible to implement with available software and can be valuable when medical images contain exposure or outcome information for

  18. Automatic computer-aided diagnosis of retinal nerve fiber layer defects using fundus photographs in optic neuropathy.

    Science.gov (United States)

    Oh, Ji Eun; Yang, Hee Kyung; Kim, Kwang Gi; Hwang, Jeong-Min

    2015-05-01

    To evaluate the validity of an automatic computer-aided diagnosis (CAD) system for detection of retinal nerve fiber layer (RNFL) defects on fundus photographs of glaucomatous and nonglaucomatous optic neuropathy. We have proposed an automatic detection method for RNFL defects on fundus photographs in various cases of glaucomatous and nonglaucomatous optic neuropathy. In order to detect the vertical dark bands as candidate RNFL defects, the nonuniform illumination of the fundus image was corrected, the blood vessels were removed, and the images were converted to polar coordinates with the center of the optic disc. False positives (FPs) were reduced by using knowledge-based rules. The sensitivity and FP rates for all images were calculated. We tested 98 fundus photographs with 140 RNFL defects and 100 fundus photographs of healthy normal subjects. The proposed method achieved a sensitivity of 90% and a 0.67 FP rate per image and worked well with RNFL defects with variable depths and widths, with uniformly high detection rates regardless of the angular widths of the RNFL defects. The average detection accuracy was approximately 0.94. The overall diagnostic accuracy of the proposed algorithm for detecting RNFL defects among 98 patients and 100 healthy individuals was 86% sensitivity and 75% specificity. The proposed CAD system successfully detected RNFL defects in optic neuropathies. Thus, the proposed algorithm is useful for the detection of RNFL defects.

  19. 7th International Workshop on Advanced Optical Imaging and Metrology

    CERN Document Server

    2014-01-01

    In continuation of the FRINGE Workshop Series this Proceeding contains all contributions presented at the 7. International Workshop on Advanced Optical Imaging and Metrology. The FRINGE Workshop Series is dedicated to the presentation, discussion and dissemination of recent results in Optical Imaging and Metrology. Topics of particular interest for the 7. Workshop are: - New methods and tools for the generation, acquisition, processing, and evaluation of data in Optical Imaging and Metrology (digital wavefront engineering, computational imaging, model-based reconstruction, compressed sensing, inverse problems solution) - Application-driven technologies in Optical Imaging and Metrology (high-resolution, adaptive, active, robust, reliable, flexible, in-line, real-time) - High-dynamic range solutions in Optical Imaging and Metrology (from macro to nano) - Hybrid technologies in Optical Imaging and Metrology (hybrid optics, sensor and data fusion, model-based solutions, multimodality) - New optical sensors, imagi...

  20. Scintillating Optical Fiber Imagers for biology

    International Nuclear Information System (INIS)

    Mastrippolito, R.

    1990-01-01

    S.O.F.I (Scintillating Optical Fiber Imager) is a detector developed to replace the autoradiographic films used in molecular biology for the location of radiolabelled ( 32 P) DNA molecules in blotting experiments. It analyses samples on a 25 x 25 cm 2 square area still 25 times faster than autoradiographic films, with a 1.75 and 3 mm resolution for two orthogonal directions. This device performs numerised images with a dynamic upper than 100 which allows the direct quantitation of the analysed samples. First, this thesis describes the S.O.F.I. development (Scintillating Optical Fibers, coding of these fibers and specific electronic for the treatment of the Multi-Anode Photo-Multiplier signals) and experiments made in collaboration with molecular biology laboratories. In a second place, we prove the feasibility of an automatic DNA sequencer issued from S.O.F.I [fr

  1. Electro-optic imaging Fourier transform spectrometer

    Science.gov (United States)

    Chao, Tien-Hsin (Inventor); Znod, Hanying (Inventor)

    2009-01-01

    An Electro-Optic Imaging Fourier Transform Spectrometer (EOIFTS) for Hyperspectral Imaging is described. The EOIFTS includes an input polarizer, an output polarizer, and a plurality of birefringent phase elements. The relative orientations of the polarizers and birefringent phase elements can be changed mechanically or via a controller, using ferroelectric liquid crystals, to substantially measure the spectral Fourier components of light propagating through the EIOFTS. When achromatic switches are used as an integral part of the birefringent phase elements, the EIOFTS becomes suitable for broadband applications, with over 1 micron infrared bandwidth.

  2. Pulmonary Cryptococcosis: Imaging Findings in 23 Non-AIDS Patients

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kyoung Doo; Lee, Kyung Soo; Kim, Tae Sung; Yi, Chin A; Chung, Myung Jin [Samsung Medical Center, Seoul (Korea, Republic of); Man Pyo Chung; O Jung Kwon [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2010-08-15

    We aimed to review the patterns of lung abnormalities of pulmonary cryptococcosis on CT images, position emission tomography (PET) findings of the disease, and the response of lung abnormalities to the therapies in non-AIDS patients. We evaluated the initial CT (n = 23) and 18F-fluorodeoxyglucose (FDG) PET (n = 10), and follow-up (n = 23) imaging findings of pulmonary cryptococcosis in 23 non-AIDS patients. Lung lesions were classified into five patterns at CT: single nodular, multiple clustered nodular, multiple scattered nodular, mass-like, and bronchopneumonic patterns. The CT pattern analyses, PET findings, and therapeutic responses were recorded. A clustered nodular pattern was the most prevalent and was observed in 10 (43%) patients. This pattern was followed by solitary pulmonary nodular (n = 4, 17%), scattered nodular (n = 3, 13%), bronchopneumonic (n = 2, 9%), and single mass (n = 1, 4%) patterns. On PET scans, six (60%) of 10 patients showed higher FDG uptake and four (40%) demonstrated lower FDG uptake than the mediastinal blood pool. With specific treatment of the disease, a complete clearance of lung abnormalities was noted in 15 patients, whereas a partial response was noted in seven patients. In one patient where treatment was not performed, the disease showed progression. Pulmonary cryptococcosis most commonly appears as clustered nodules and is a slowly progressive and slowly resolving pulmonary infection. In two-thirds of patients, lung lesions show high FDG uptake, thus simulating a possible malignant condition

  3. An Imaging Sensor-Aided Vision Navigation Approach that Uses a Geo-Referenced Image Database.

    Science.gov (United States)

    Li, Yan; Hu, Qingwu; Wu, Meng; Gao, Yang

    2016-01-28

    In determining position and attitude, vision navigation via real-time image processing of data collected from imaging sensors is advanced without a high-performance global positioning system (GPS) and an inertial measurement unit (IMU). Vision navigation is widely used in indoor navigation, far space navigation, and multiple sensor-integrated mobile mapping. This paper proposes a novel vision navigation approach aided by imaging sensors and that uses a high-accuracy geo-referenced image database (GRID) for high-precision navigation of multiple sensor platforms in environments with poor GPS. First, the framework of GRID-aided vision navigation is developed with sequence images from land-based mobile mapping systems that integrate multiple sensors. Second, a highly efficient GRID storage management model is established based on the linear index of a road segment for fast image searches and retrieval. Third, a robust image matching algorithm is presented to search and match a real-time image with the GRID. Subsequently, the image matched with the real-time scene is considered to calculate the 3D navigation parameter of multiple sensor platforms. Experimental results show that the proposed approach retrieves images efficiently and has navigation accuracies of 1.2 m in a plane and 1.8 m in height under GPS loss in 5 min and within 1500 m.

  4. Optical Probes for Neurobiological Sensing and Imaging.

    Science.gov (United States)

    Kim, Eric H; Chin, Gregory; Rong, Guoxin; Poskanzer, Kira E; Clark, Heather A

    2018-04-13

    Fluorescent nanosensors and molecular probes are next-generation tools for imaging chemical signaling inside and between cells. Electrophysiology has long been considered the gold standard in elucidating neural dynamics with high temporal resolution and precision, particularly on the single-cell level. However, electrode-based techniques face challenges in illuminating the specific chemicals involved in neural cell activation with adequate spatial information. Measuring chemical dynamics is of fundamental importance to better understand synergistic interactions between neurons as well as interactions between neurons and non-neuronal cells. Over the past decade, significant technological advances in optical probes and imaging methods have enabled entirely new possibilities for studying neural cells and circuits at the chemical level. These optical imaging modalities have shown promise for combining chemical, temporal, and spatial information. This potential makes them ideal candidates to unravel the complex neural interactions at multiple scales in the brain, which could be complemented by traditional electrophysiological methods to obtain a full spatiotemporal picture of neurochemical dynamics. Despite the potential, only a handful of probe candidates have been utilized to provide detailed chemical information in the brain. To date, most live imaging and chemical mapping studies rely on fluorescent molecular indicators to report intracellular calcium (Ca 2+ ) dynamics, which correlates with neuronal activity. Methodological advances for monitoring a full array of chemicals in the brain with improved spatial, temporal, and chemical resolution will thus enable mapping of neurochemical circuits with finer precision. On the basis of numerous studies in this exciting field, we review the current efforts to develop and apply a palette of optical probes and nanosensors for chemical sensing in the brain. There is a strong impetus to further develop technologies capable of

  5. RADIANCE AND PHOTON NOISE: Imaging in geometrical optics, physical optics, quantum optics and radiology.

    Science.gov (United States)

    Barrett, Harrison H; Myers, Kyle J; Caucci, Luca

    2014-08-17

    A fundamental way of describing a photon-limited imaging system is in terms of a Poisson random process in spatial, angular and wavelength variables. The mean of this random process is the spectral radiance. The principle of conservation of radiance then allows a full characterization of the noise in the image (conditional on viewing a specified object). To elucidate these connections, we first review the definitions and basic properties of radiance as defined in terms of geometrical optics, radiology, physical optics and quantum optics. The propagation and conservation laws for radiance in each of these domains are reviewed. Then we distinguish four categories of imaging detectors that all respond in some way to the incident radiance, including the new category of photon-processing detectors. The relation between the radiance and the statistical properties of the detector output is discussed and related to task-based measures of image quality and the information content of a single detected photon.

  6. High phase noise tolerant pilot-tone-aided DP-QPSK optical communication systems

    DEFF Research Database (Denmark)

    Zhang, Xu; Pang, Xiaodan; Deng, Lei

    2012-01-01

    In this paper we experimentally demonstrate a novel, high phase-noise tolerant, optical dual polarization (DP) quadrature phase-shift keying (QPSK) communication system based on pilot-tone-aided phase noise cancellation (PNC) algorithm. Vertical cavity surface emitting lasers (VCSELs) with approx......In this paper we experimentally demonstrate a novel, high phase-noise tolerant, optical dual polarization (DP) quadrature phase-shift keying (QPSK) communication system based on pilot-tone-aided phase noise cancellation (PNC) algorithm. Vertical cavity surface emitting lasers (VCSELs...

  7. Computer-aided pulmonary image analysis in small animal models

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ziyue; Mansoor, Awais; Mollura, Daniel J. [Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, National Institutes of Health (NIH), Bethesda, Maryland 32892 (United States); Bagci, Ulas, E-mail: ulasbagci@gmail.com [Center for Research in Computer Vision (CRCV), University of Central Florida (UCF), Orlando, Florida 32816 (United States); Kramer-Marek, Gabriela [The Institute of Cancer Research, London SW7 3RP (United Kingdom); Luna, Brian [Microfluidic Laboratory Automation, University of California-Irvine, Irvine, California 92697-2715 (United States); Kubler, Andre [Department of Medicine, Imperial College London, London SW7 2AZ (United Kingdom); Dey, Bappaditya; Jain, Sanjay [Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231 (United States); Foster, Brent [Department of Biomedical Engineering, University of California-Davis, Davis, California 95817 (United States); Papadakis, Georgios Z. [Radiology and Imaging Sciences, National Institutes of Health (NIH), Bethesda, Maryland 32892 (United States); Camp, Jeremy V. [Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky 40202 (United States); Jonsson, Colleen B. [National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, Tennessee 37996 (United States); Bishai, William R. [Howard Hughes Medical Institute, Chevy Chase, Maryland 20815 and Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231 (United States); Udupa, Jayaram K. [Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2015-07-15

    Purpose: To develop an automated pulmonary image analysis framework for infectious lung diseases in small animal models. Methods: The authors describe a novel pathological lung and airway segmentation method for small animals. The proposed framework includes identification of abnormal imaging patterns pertaining to infectious lung diseases. First, the authors’ system estimates an expected lung volume by utilizing a regression function between total lung capacity and approximated rib cage volume. A significant difference between the expected lung volume and the initial lung segmentation indicates the presence of severe pathology, and invokes a machine learning based abnormal imaging pattern detection system next. The final stage of the proposed framework is the automatic extraction of airway tree for which new affinity relationships within the fuzzy connectedness image segmentation framework are proposed by combining Hessian and gray-scale morphological reconstruction filters. Results: 133 CT scans were collected from four different studies encompassing a wide spectrum of pulmonary abnormalities pertaining to two commonly used small animal models (ferret and rabbit). Sensitivity and specificity were greater than 90% for pathological lung segmentation (average dice similarity coefficient > 0.9). While qualitative visual assessments of airway tree extraction were performed by the participating expert radiologists, for quantitative evaluation the authors validated the proposed airway extraction method by using publicly available EXACT’09 data set. Conclusions: The authors developed a comprehensive computer-aided pulmonary image analysis framework for preclinical research applications. The proposed framework consists of automatic pathological lung segmentation and accurate airway tree extraction. The framework has high sensitivity and specificity; therefore, it can contribute advances in preclinical research in pulmonary diseases.

  8. Optical character recognition reading aid for the visually impaired.

    Science.gov (United States)

    Grandin, Juan Carlos; Cremaschi, Fabian; Lombardo, Elva; Vitu, Ed; Dujovny, Manuel

    2008-06-01

    An optical character recognition (OCR) reading machine is a significant help for visually impaired patients. An OCR reading machine is used. This instrument can provide a significant help in order to improve the quality of life of patients with low vision or blindness.

  9. Cloned images and the optical unconscious

    DEFF Research Database (Denmark)

    Romic, Bojana

    unconscious. The camera conveys the virtuality of vision, through which the eye learns about the spatio-temporal arrangements of the photographic object 'with its devices of slow motion and enlargement' (Benjamin, 1931, pp. 510). In reference to this, Rosalind Krauss wrote in her book Optical unconscious...... contribute its special status. When Walter Benjamin coined the term optical unconscious, he was primarily referring to the psychoanalytical perspective: photography opened a new realm of experience that was not accessible to the naked eye – the same way that psychoanalysis provided an access to the physic......, because this young woman had no political/activist record – it was her image that communicated with the world. References: Benjamin, W. (1999) Little History of Photography. in: Jennings, M.W., Eiland, H., Smith, G. (eds) Selected Writings: Volume 2 1927-1934. Cambridge, Massachusetts: The Belknap Press...

  10. AIDS

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/000594.htm HIV/AIDS To use the sharing features on this page, ... immunodeficiency virus (HIV) is the virus that causes AIDS. When a person becomes infected with HIV, the ...

  11. Optical Methods and Instrumentation in Brain Imaging and Therapy

    CERN Document Server

    2013-01-01

    This book provides a comprehensive up-to-date review of optical approaches used in brain imaging and therapy. It covers a variety of imaging techniques including diffuse optical imaging, laser speckle imaging, photoacoustic imaging and optical coherence tomography. A number of laser-based therapeutic approaches are reviewed, including photodynamic therapy, fluorescence guided resection and photothermal therapy. Fundamental principles and instrumentation are discussed for each imaging and therapeutic technique. Represents the first publication dedicated solely to optical diagnostics and therapeutics in the brain Provides a comprehensive review of the principles of each imaging/therapeutic modality Reviews the latest advances in instrumentation for optical diagnostics in the brain Discusses new optical-based therapeutic approaches for brain diseases

  12. Utility of Digital Stereo Images for Optic Disc Evaluation

    Science.gov (United States)

    Ying, Gui-shuang; Pearson, Denise J.; Bansal, Mayank; Puri, Manika; Miller, Eydie; Alexander, Judith; Piltz-Seymour, Jody; Nyberg, William; Maguire, Maureen G.; Eledath, Jayan; Sawhney, Harpreet

    2010-01-01

    Purpose. To assess the suitability of digital stereo images for optic disc evaluations in glaucoma. Methods. Stereo color optic disc images in both digital and 35-mm slide film formats were acquired contemporaneously from 29 subjects with various cup-to-disc ratios (range, 0.26–0.76; median, 0.475). Using a grading scale designed to assess image quality, the ease of visualizing optic disc features important for glaucoma diagnosis, and the comparative diameters of the optic disc cup, experienced observers separately compared the primary digital stereo images to each subject's 35-mm slides, to scanned images of the same 35-mm slides, and to grayscale conversions of the digital images. Statistical analysis accounted for multiple gradings and comparisons and also assessed image formats under monoscopic viewing. Results. Overall, the quality of primary digital color images was judged superior to that of 35-mm slides (P digital color images were mostly equivalent to the scanned digitized images of the same slides. Color seemingly added little to grayscale optic disc images, except that peripapillary atrophy was best seen in color (P digital over film images was maintained under monoscopic viewing conditions. Conclusions. Digital stereo optic disc images are useful for evaluating the optic disc in glaucoma and allow the application of advanced image processing applications. Grayscale images, by providing luminance distinct from color, may be informative for assessing certain features. PMID:20505199

  13. Optical Imaging and Radiometric Modeling and Simulation

    Science.gov (United States)

    Ha, Kong Q.; Fitzmaurice, Michael W.; Moiser, Gary E.; Howard, Joseph M.; Le, Chi M.

    2010-01-01

    OPTOOL software is a general-purpose optical systems analysis tool that was developed to offer a solution to problems associated with computational programs written for the James Webb Space Telescope optical system. It integrates existing routines into coherent processes, and provides a structure with reusable capabilities that allow additional processes to be quickly developed and integrated. It has an extensive graphical user interface, which makes the tool more intuitive and friendly. OPTOOL is implemented using MATLAB with a Fourier optics-based approach for point spread function (PSF) calculations. It features parametric and Monte Carlo simulation capabilities, and uses a direct integration calculation to permit high spatial sampling of the PSF. Exit pupil optical path difference (OPD) maps can be generated using combinations of Zernike polynomials or shaped power spectral densities. The graphical user interface allows rapid creation of arbitrary pupil geometries, and entry of all other modeling parameters to support basic imaging and radiometric analyses. OPTOOL provides the capability to generate wavefront-error (WFE) maps for arbitrary grid sizes. These maps are 2D arrays containing digital sampled versions of functions ranging from Zernike polynomials to combination of sinusoidal wave functions in 2D, to functions generated from a spatial frequency power spectral distribution (PSD). It also can generate optical transfer functions (OTFs), which are incorporated into the PSF calculation. The user can specify radiometrics for the target and sky background, and key performance parameters for the instrument s focal plane array (FPA). This radiometric and detector model setup is fairly extensive, and includes parameters such as zodiacal background, thermal emission noise, read noise, and dark current. The setup also includes target spectral energy distribution as a function of wavelength for polychromatic sources, detector pixel size, and the FPA s charge

  14. Optical motion detection using image partitioning

    International Nuclear Information System (INIS)

    Hessel, K.R.; Stalker, K.T.; McCarthy, A.E.

    1976-08-01

    An optical system for surveillance or intrusion detection, based upon image partitioning, is proposed. The scene of interest is imaged onto a checkerboard pattern of transmissive and reflective areas and the transmitted and reflected light components are measured by detectors. Changes in the scene disturb the light balance and can cause an alarm indication. Several system configurations are proposed. Measurements and computer simulations are used to determine the operating characteristics of the several configurations. Depth of focus problems at the patterned reflector is the primary concern. Noise considerations determine the theoretical limitation of system performance and are analyzed in some detail. Indications are that, under good scene radiance conditions, a change in the scene of approximately one part in 10 3 is detectable with a signal-to-noise ratio sufficient for a false alarm rate of one every few months

  15. Metasurface optics for full-color computational imaging.

    Science.gov (United States)

    Colburn, Shane; Zhan, Alan; Majumdar, Arka

    2018-02-01

    Conventional imaging systems comprise large and expensive optical components that successively mitigate aberrations. Metasurface optics offers a route to miniaturize imaging systems by replacing bulky components with flat and compact implementations. The diffractive nature of these devices, however, induces severe chromatic aberrations, and current multiwavelength and narrowband achromatic metasurfaces cannot support full visible spectrum imaging (400 to 700 nm). We combine principles of both computational imaging and metasurface optics to build a system with a single metalens of numerical aperture ~0.45, which generates in-focus images under white light illumination. Our metalens exhibits a spectrally invariant point spread function that enables computational reconstruction of captured images with a single digital filter. This work connects computational imaging and metasurface optics and demonstrates the capabilities of combining these disciplines by simultaneously reducing aberrations and downsizing imaging systems using simpler optics.

  16. [Computer-aided Prognosis for Breast Cancer Based on Hematoxylin & Eosin Histopathology Image].

    Science.gov (United States)

    Chen, Jiamei; Qu, Aiping; Liu, Wenlou; Wang, Linwei; Yuan, Jingping; Liu, Juan; Li, Yan

    2016-06-01

    Quantitatively analyzing hematoxylin &eosin(H&E)histopathology images is an emerging field attracting increasing attentions in recent years.This paper reviews the application of computer-aided image analysis in breast cancer prognosis.The traditional prognosis based on H&E histopathology image for breast cancer is firstly sketched,followed by a detailed description of the workflow of computer-aided prognosis including image acquisition,image preprocessing,regions of interest detection and object segmentation,feature extraction,and computer-aided prognosis.In the end,major technical challenges and future directions in this field are summarized.

  17. Non-linear optical imaging – Introduction and pharmaceutical applications

    NARCIS (Netherlands)

    Fussell, A.L.; Isomaki, Antti; Strachan, Clare J.

    2013-01-01

    Nonlinear optical imaging is an emerging technology with much potential in pharmaceutical analysis. The technique encompasses a range of optical phenomena, including coherent anti-Stokes Raman scattering (CARS), second harmonic generation (SHG), and twophoton excited fluorescence (TPEF). The

  18. SPECIAL ASPECTS OF INITIAL OPTICAL SCHEME SELECTION FOR DESIGN OF NON-IMAGING OPTICAL SYSTEMS

    OpenAIRE

    R. V. Anitropov; P. Benitez; I. L. Livshits S. K. Stafeev; S. K. Stafeev; V. N. Vasilev; M. V. Letunovskaya; A. S. Zaitceva

    2016-01-01

    Subject of Research. The research results, structural composition analysis and the parametric synthesis of the projected imaging and non-imaging optical systems were presented. We made an attempt to use the gained experience about imaging systems while designing non-imaging systems, by adapting the composition theory for the calculations of non-imaging systems. Several patterns were revealed, which provide a deeper understanding of the design process of non-imaging optical systems; measures ...

  19. The harmful effects of sintering aids in Pr:LuAG optical ceramic scintillator

    Czech Academy of Sciences Publication Activity Database

    Shen, Y.; Shi, Y.; Feng, X.; Pan, Y.; Li, J.; Zeng, J.-Y.; Nikl, Martin; Krasnikov, A.; Vedda, A.; Moretti, F.

    2012-01-01

    Roč. 95, č. 7 (2012), s. 2130-2132 ISSN 0002-7820 R&D Projects: GA MŠk LH12185 Institutional research plan: CEZ:AV0Z10100521 Keywords : scintillator * optical ceramics * sintering aids * luminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.107, year: 2012

  20. Habitable Exoplanet Imager Optical Telescope Concept Design

    Science.gov (United States)

    Stahl, H Philip

    2017-01-01

    The Habitable Exoplanet Imaging Mission (HabEx) is one of four missions under study for the 2020 Astrophysics Decadal Survey. Its goal is to directly image and spectroscopically characterize planetary systems in the habitable zone of Sun-like stars. Additionally, HabEx will perform a broad range of general astrophysics science enabled by 100 to 2500 nm spectral range and 3 x 3 arc-minute FOV. Critical to achieving the HabEx science goals is a large, ultra-stable UV/Optical/Near-IR (UVOIR) telescope. The baseline HabEx telescope is a 4-meter off-axis unobscured three-mirror-anastigmatic, diffraction limited at 400 nm with wavefront stability on the order of a few 10s of picometers. This paper summarizes the opto-mechanical design of the HabEx baseline optical telescope assembly, including a discussion of how science requirements drive the telescope's specifications, and presents analysis that the baseline telescope structure meets its specified tolerances.

  1. Habitable exoplanet imager optical telescope concept design

    Science.gov (United States)

    Stahl, H. Philip

    2017-09-01

    The Habitable Exoplanet Imaging Mission (HabEx) is one of four missions under study for the 2020 Astrophysics Decadal Survey. Its goal is to directly image and spectroscopically characterize planetary systems in the habitable zone of Sunlike stars. Additionally, HabEx will perform a broad range of general astrophysics science enabled by 100 to 2500 nm spectral range and 3 x 3 arc-minute FOV. Critical to achieving the HabEx science goals is a large, ultra-stable UV/Optical/Near-IR (UVOIR) telescope. The baseline HabEx telescope is a 4-meter off-axis unobscured three-mirroranastigmatic, diffraction limited at 400 nm with wavefront stability on the order of a few 10s of picometers. This paper summarizes the opto-mechanical design of the HabEx baseline optical telescope assembly, including a discussion of how science requirements drive the telescope's specifications, and presents analysis that the baseline telescope structure meets its specified tolerances.

  2. Coded-subcarrier-aided chromatic dispersion monitoring scheme for flexible optical OFDM networks.

    Science.gov (United States)

    Tse, Kam-Hon; Chan, Chun-Kit

    2014-08-11

    A simple coded-subcarrier aided scheme is proposed to perform chromatic dispersion monitoring in flexible optical OFDM networks. A pair of coded label subcarriers is added to both edges of the optical OFDM signal spectrum at the edge transmitter node. Upon reception at any intermediate or the receiver node, chromatic dispersion estimation is performed, via simple direct detection, followed by electronic correlation procedures with the designated code sequences. The feasibility and the performance of the proposed scheme have been experimentally characterized. It provides a cost-effective monitoring solution for the optical OFDM signals across intermediate nodes in flexible OFDM networks.

  3. Optical coherence tomography in anterior segment imaging

    Science.gov (United States)

    Kalev-Landoy, Maya; Day, Alexander C.; Cordeiro, M. Francesca; Migdal, Clive

    2008-01-01

    Purpose To evaluate the ability of optical coherence tomography (OCT), designed primarily to image the posterior segment, to visualize the anterior chamber angle (ACA) in patients with different angle configurations. Methods In a prospective observational study, the anterior segments of 26 eyes of 26 patients were imaged using the Zeiss Stratus OCT, model 3000. Imaging of the anterior segment was achieved by adjusting the focusing control on the Stratus OCT. A total of 16 patients had abnormal angle configurations including narrow or closed angles and plateau irides, and 10 had normal angle configurations as determined by prior full ophthalmic examination, including slit-lamp biomicroscopy and gonioscopy. Results In all cases, OCT provided high-resolution information regarding iris configuration. The ACA itself was clearly visualized in patients with narrow or closed angles, but not in patients with open angles. Conclusions Stratus OCT offers a non-contact, convenient and rapid method of assessing the configuration of the anterior chamber. Despite its limitations, it may be of help during the routine clinical assessment and treatment of patients with glaucoma, particularly when gonioscopy is not possible or difficult to interpret. PMID:17355288

  4. Imaging workstations for computer-aided primatology: promises and pitfalls.

    Science.gov (United States)

    Vannier, M W; Conroy, G C

    1989-01-01

    In this paper, the application of biomedical imaging workstations to primatology will be explained and evaluated. The technological basis, computer hardware and software aspects, and the various uses of several types of workstations will all be discussed. The types of workstations include: (1) Simple - these display-only workstations, which function as electronic light boxes, have applications as terminals to picture archiving and communication (PAC) systems. (2) Diagnostic reporting - image-processing workstations that include the ability to perform straightforward manipulations of gray scale and raw data values will be considered for operations such as histogram equalization (whether adaptive or global), gradient edge finders, contour generation, and region of interest, as well as other related functions. (3) Manipulation systems - three-dimensional modeling and computer graphics with application to radiation therapy treatment planning, and surgical planning and evaluation will be considered. A technology of prime importance in the function of these workstations lies in communications and networking. The hierarchical organization of an electronic computer network and workstation environment with the interrelationship of simple, diagnostic reporting, and manipulation workstations to a coaxial or fiber optic network will be analyzed.

  5. An integral design strategy combining optical system and image processing to obtain high resolution images

    Science.gov (United States)

    Wang, Jiaoyang; Wang, Lin; Yang, Ying; Gong, Rui; Shao, Xiaopeng; Liang, Chao; Xu, Jun

    2016-05-01

    In this paper, an integral design that combines optical system with image processing is introduced to obtain high resolution images, and the performance is evaluated and demonstrated. Traditional imaging methods often separate the two technical procedures of optical system design and imaging processing, resulting in the failures in efficient cooperation between the optical and digital elements. Therefore, an innovative approach is presented to combine the merit function during optical design together with the constraint conditions of image processing algorithms. Specifically, an optical imaging system with low resolution is designed to collect the image signals which are indispensable for imaging processing, while the ultimate goal is to obtain high resolution images from the final system. In order to optimize the global performance, the optimization function of ZEMAX software is utilized and the number of optimization cycles is controlled. Then Wiener filter algorithm is adopted to process the image simulation and mean squared error (MSE) is taken as evaluation criterion. The results show that, although the optical figures of merit for the optical imaging systems is not the best, it can provide image signals that are more suitable for image processing. In conclusion. The integral design of optical system and image processing can search out the overall optimal solution which is missed by the traditional design methods. Especially, when designing some complex optical system, this integral design strategy has obvious advantages to simplify structure and reduce cost, as well as to gain high resolution images simultaneously, which has a promising perspective of industrial application.

  6. Can preoperative MR imaging predict optic nerve invasion of retinoblastoma?

    International Nuclear Information System (INIS)

    Song, Kyoung Doo; Eo, Hong; Kim, Ji Hye; Yoo, So-Young; Jeon, Tae Yeon

    2012-01-01

    Purpose: To evaluate the accuracy of pre-operative MRI for the detection of optic nerve invasion in retinoblastoma. Materials and methods: Institutional review board approval and informed consent were waived for this retrospective study. A total of 41 patients were included. Inclusion criteria were histologically proven retinoblastoma, availability of diagnostic-quality preoperative MR images acquired during the 4 weeks before surgery, unilateral retinoblastoma, and normal-sized optic nerve. Two radiologists retrospectively reviewed the MR images independently. Five imaging findings (diffuse mild optic nerve enhancement, focal strong optic nerve enhancement, optic sheath enhancement, tumor location, and tumor size) were evaluated against optic nerve invasion of retinoblastoma. The predictive performance of all MR imaging findings for optic nerve invasion was also evaluated by the receiver operating characteristic curve analysis. Results: Optic nerve invasion was histopathologically confirmed in 24% of study population (10/41). The differences in diffuse mild enhancement, focal strong enhancement, optic sheath enhancement, and tumor location between patients with optic nerve invasion and patients without optic nerve invasion were not significant. Tumor sizes were 16.1 mm (SD: 2.2 mm) and 14.9 mm (SD: 3.6 mm) in patients with and without optic nerve involvement, respectively (P = 0.444). P-Values from binary logistic regression indicated that all five imaging findings were not significant predictors of tumor invasion of optic nerve. The AUC values of all MR imaging findings for the prediction of optic nerve invasion were 0.689 (95% confidence interval: 0.499–0.879) and 0.653 (95% confidence interval: 0.445–0.861) for observer 1 and observer 2, respectively. Conclusion: Findings of MRI in patients with normal-sized optic nerves have limited usefulness in preoperatively predicting the presence of optic nerve invasion in retinoblastoma.

  7. Can preoperative MR imaging predict optic nerve invasion of retinoblastoma?

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kyoung Doo, E-mail: kdsong0308@gmail.com [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50, Ilwon-Dong, Kangnam-Ku, Seoul 135-710 (Korea, Republic of); Eo, Hong, E-mail: rtombow@gmail.com [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50, Ilwon-Dong, Kangnam-Ku, Seoul 135-710 (Korea, Republic of); Kim, Ji Hye, E-mail: jhkate.kim@samsung.com [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50, Ilwon-Dong, Kangnam-Ku, Seoul 135-710 (Korea, Republic of); Yoo, So-Young, E-mail: sy1131.yoo@samsung.com [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50, Ilwon-Dong, Kangnam-Ku, Seoul 135-710 (Korea, Republic of); Jeon, Tae Yeon, E-mail: hathor97.jeon@samsung.com [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50, Ilwon-Dong, Kangnam-Ku, Seoul 135-710 (Korea, Republic of)

    2012-12-15

    Purpose: To evaluate the accuracy of pre-operative MRI for the detection of optic nerve invasion in retinoblastoma. Materials and methods: Institutional review board approval and informed consent were waived for this retrospective study. A total of 41 patients were included. Inclusion criteria were histologically proven retinoblastoma, availability of diagnostic-quality preoperative MR images acquired during the 4 weeks before surgery, unilateral retinoblastoma, and normal-sized optic nerve. Two radiologists retrospectively reviewed the MR images independently. Five imaging findings (diffuse mild optic nerve enhancement, focal strong optic nerve enhancement, optic sheath enhancement, tumor location, and tumor size) were evaluated against optic nerve invasion of retinoblastoma. The predictive performance of all MR imaging findings for optic nerve invasion was also evaluated by the receiver operating characteristic curve analysis. Results: Optic nerve invasion was histopathologically confirmed in 24% of study population (10/41). The differences in diffuse mild enhancement, focal strong enhancement, optic sheath enhancement, and tumor location between patients with optic nerve invasion and patients without optic nerve invasion were not significant. Tumor sizes were 16.1 mm (SD: 2.2 mm) and 14.9 mm (SD: 3.6 mm) in patients with and without optic nerve involvement, respectively (P = 0.444). P-Values from binary logistic regression indicated that all five imaging findings were not significant predictors of tumor invasion of optic nerve. The AUC values of all MR imaging findings for the prediction of optic nerve invasion were 0.689 (95% confidence interval: 0.499–0.879) and 0.653 (95% confidence interval: 0.445–0.861) for observer 1 and observer 2, respectively. Conclusion: Findings of MRI in patients with normal-sized optic nerves have limited usefulness in preoperatively predicting the presence of optic nerve invasion in retinoblastoma.

  8. Adaptive optics imaging of inherited retinal diseases.

    Science.gov (United States)

    Georgiou, Michalis; Kalitzeos, Angelos; Patterson, Emily J; Dubra, Alfredo; Carroll, Joseph; Michaelides, Michel

    2017-11-15

    Adaptive optics (AO) ophthalmoscopy allows for non-invasive retinal phenotyping on a microscopic scale, thereby helping to improve our understanding of retinal diseases. An increasing number of natural history studies and ongoing/planned interventional clinical trials exploit AO ophthalmoscopy both for participant selection, stratification and monitoring treatment safety and efficacy. In this review, we briefly discuss the evolution of AO ophthalmoscopy, recent developments and its application to a broad range of inherited retinal diseases, including Stargardt disease, retinitis pigmentosa and achromatopsia. Finally, we describe the impact of this in vivo microscopic imaging on our understanding of disease pathogenesis, clinical trial design and outcome metrics, while recognising the limitation of the small cohorts reported to date. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  9. Reconstruction of Optical Thickness from Hoffman Modulation Contrast Images

    DEFF Research Database (Denmark)

    Olsen, Niels Holm; Sporring, Jon; Nielsen, Mads

    2003-01-01

    Hoffman microscopy imaging systems are part of numerous fertility clinics world-wide. We discuss the physics of the Hoffman imaging system from optical thickness to image intensity, implement a simple, yet fast, reconstruction algorithm using Fast Fourier Transformation and discuss the usability...... of the method on a number of cells from a human embryo. Novelty is identifying the non-linearity of a typical Hoffman imaging system, and the application of Fourier Transformation to reconstruct the optical thickness....

  10. Novel spirometry based on optical surface imaging

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guang, E-mail: lig2@mskcc.org; Huang, Hailiang; Li, Diana G.; Chen, Qing; Gaebler, Carl P.; Mechalakos, James [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York 10065 (United States); Wei, Jie [Department of Computer Science, City College of New York, New York, New York 10031 (United States); Sullivan, James [Pulmonary Laboratories, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065 (United States); Zatcky, Joan; Rimner, Andreas [Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065 (United States)

    2015-04-15

    Purpose: To evaluate the feasibility of using optical surface imaging (OSI) to measure the dynamic tidal volume (TV) of the human torso during free breathing. Methods: We performed experiments to measure volume or volume change in geometric and deformable phantoms as well as human subjects using OSI. To assess the accuracy of OSI in volume determination, we performed experiments using five geometric phantoms and two deformable body phantoms and compared the values with those derived from geometric calculations and computed tomography (CT) measurements, respectively. To apply this technique to human subjects, an institutional review board protocol was established and three healthy volunteers were studied. In the human experiment, a high-speed image capture mode of OSI was applied to acquire torso images at 4–5 frames per second, which was synchronized with conventional spirometric measurements at 5 Hz. An in-house MATLAB program was developed to interactively define the volume of interest (VOI), separate the thorax and abdomen, and automatically calculate the thoracic and abdominal volumes within the VOIs. The torso volume change (TV C = ΔV{sub torso} = ΔV{sub thorax} + ΔV{sub abdomen}) was automatically calculated using full-exhalation phase as the reference. The volumetric breathing pattern (BP{sub v} = ΔV{sub thorax}/ΔV{sub torso}) quantifying thoracic and abdominal volume variations was also calculated. Under quiet breathing, TVC should equal the tidal volume measured concurrently by a spirometer with a conversion factor (1.08) accounting for internal and external differences of temperature and moisture. Another MATLAB program was implemented to control the conventional spirometer that was used as the standard. Results: The volumes measured from the OSI imaging of geometric phantoms agreed with the calculated volumes with a discrepancy of 0.0% ± 1.6% (range −1.9% to 2.5%). In measurements from the deformable torso/thorax phantoms, the volume

  11. Novel spirometry based on optical surface imaging

    International Nuclear Information System (INIS)

    Li, Guang; Huang, Hailiang; Li, Diana G.; Chen, Qing; Gaebler, Carl P.; Mechalakos, James; Wei, Jie; Sullivan, James; Zatcky, Joan; Rimner, Andreas

    2015-01-01

    Purpose: To evaluate the feasibility of using optical surface imaging (OSI) to measure the dynamic tidal volume (TV) of the human torso during free breathing. Methods: We performed experiments to measure volume or volume change in geometric and deformable phantoms as well as human subjects using OSI. To assess the accuracy of OSI in volume determination, we performed experiments using five geometric phantoms and two deformable body phantoms and compared the values with those derived from geometric calculations and computed tomography (CT) measurements, respectively. To apply this technique to human subjects, an institutional review board protocol was established and three healthy volunteers were studied. In the human experiment, a high-speed image capture mode of OSI was applied to acquire torso images at 4–5 frames per second, which was synchronized with conventional spirometric measurements at 5 Hz. An in-house MATLAB program was developed to interactively define the volume of interest (VOI), separate the thorax and abdomen, and automatically calculate the thoracic and abdominal volumes within the VOIs. The torso volume change (TV C = ΔV torso = ΔV thorax + ΔV abdomen ) was automatically calculated using full-exhalation phase as the reference. The volumetric breathing pattern (BP v = ΔV thorax /ΔV torso ) quantifying thoracic and abdominal volume variations was also calculated. Under quiet breathing, TVC should equal the tidal volume measured concurrently by a spirometer with a conversion factor (1.08) accounting for internal and external differences of temperature and moisture. Another MATLAB program was implemented to control the conventional spirometer that was used as the standard. Results: The volumes measured from the OSI imaging of geometric phantoms agreed with the calculated volumes with a discrepancy of 0.0% ± 1.6% (range −1.9% to 2.5%). In measurements from the deformable torso/thorax phantoms, the volume differences measured using OSI

  12. The optical-mechanical design of DMD modulation imaging device

    Science.gov (United States)

    Li, Tianting; Xu, Xiping; Qiao, Yang; Li, Lei; Pan, Yue

    2014-09-01

    In order to avoid the phenomenon of some image information were lost, which is due to the jamming signals, such as incident laser, make the pixels dot on CCD saturated. In this article a device of optical-mechanical structure was designed, which utilized the DMD (Digital Micro mirror Device) to modulate the image. The DMD reflection imaging optical system adopts the telecentric light path. However, because the design is not only required to guarantee a 66° angle between the optical axis of the relay optics and the DMD, but also to ensure that the optical axis of the projection system keeps parallel with the perpendicular bisector of the micro-mirror which is in the "flat" state, so the TIR prism is introduced,and making the relay optics and the DMD satisfy the optical institution's requirements. In this paper, a mechanical structure of the imaging optical system was designed and at the meanwhile the lens assembly has been well connected and fixed and fine-tuned by detailed structural design, which included the tilt decentered lens, wedge flanges, prisms. By optimizing the design, the issues of mutual restraint between the inverting optical system and the projecting system were well resolved, and prevented the blocking of the two systems. In addition, the structure size of the whole DMD reflection imaging optical system was minimized; it reduced the energy loss and ensured the image quality.

  13. Imaging Freeform Optical Systems Designed with NURBS Surfaces

    Science.gov (United States)

    2015-12-01

    reflective, anastigmat 1 Introduction The imaging freeform optical systems described here are designed using non-uniform rational basis-spline (NURBS...code, but to succeed in designing NURBS freeform optical systems an optimization code is required. The motivation for developing the optical design

  14. Self-imaging in first-order optical systems

    NARCIS (Netherlands)

    Alieva, T.; Bastiaans, M.J.; Nijhawan, O.P.; Guota, A.K.; Musla, A.K.; Singh, Kehar

    1998-01-01

    The structure and main properties of coherent and partially coherent optical fields that are self-reproducible under propagation through a first-order optical system are investigated. A phase space description of self-imaging in first-order optical systems is presented. The Wigner distribution

  15. Novel optical scanning cryptography using Fresnel telescope imaging.

    Science.gov (United States)

    Yan, Aimin; Sun, Jianfeng; Hu, Zhijuan; Zhang, Jingtao; Liu, Liren

    2015-07-13

    We propose a new method called modified optical scanning cryptography using Fresnel telescope imaging technique for encryption and decryption of remote objects. An image or object can be optically encrypted on the fly by Fresnel telescope scanning system together with an encryption key. For image decryption, the encrypted signals are received and processed with an optical coherent heterodyne detection system. The proposed method has strong performance through use of secure Fresnel telescope scanning with orthogonal polarized beams and efficient all-optical information processing. The validity of the proposed method is demonstrated by numerical simulations and experimental results.

  16. Analysis of contour images using optics of spiral beams

    Science.gov (United States)

    Volostnikov, V. G.; Kishkin, S. A.; Kotova, S. P.

    2018-03-01

    An approach is outlined to the recognition of contour images using computer technology based on coherent optics principles. A mathematical description of the recognition process algorithm and the results of numerical modelling are presented. The developed approach to the recognition of contour images using optics of spiral beams is described and justified.

  17. Changing image of correlation optics: introduction.

    Science.gov (United States)

    Angelsky, Oleg V; Desyatnikov, Anton S; Gbur, Gregory J; Hanson, Steen G; Lee, Tim; Miyamoto, Yoko; Schneckenburger, Herbert; Wyant, James C

    2016-04-20

    This feature issue of Applied Optics contains a series of selected papers reflecting recent progress of correlation optics and illustrating current trends in vector singular optics, internal energy flows at light fields, optical science of materials, and new biomedical applications of lasers.

  18. Changing image of correlation optics: introduction

    DEFF Research Database (Denmark)

    Angelsky, Oleg V.; Desyatnikov, Anton S.; Gbur, Gregory J.

    2016-01-01

    This feature issue of Applied Optics contains a series of selected papers reflecting recent progress of correlation optics and illustrating current trends in vector singular optics, internal energy flows at light fields, optical science of materials, and new biomedical applications of lasers. (C...

  19. Ballistic and snake photon imaging for locating optical endomicroscopy fibres

    Science.gov (United States)

    Tanner, M. G.; Choudhary, T. R.; Craven, T. H.; Mills, B.; Bradley, M.; Henderson, R. K.; Dhaliwal, K.; Thomson, R. R.

    2017-01-01

    We demonstrate determination of the location of the distal-end of a fibre-optic device deep in tissue through the imaging of ballistic and snake photons using a time resolved single-photon detector array. The fibre was imaged with centimetre resolution, within clinically relevant settings and models. This technique can overcome the limitations imposed by tissue scattering in optically determining the in vivo location of fibre-optic medical instruments. PMID:28966848

  20. Triangulating laser profilometer as a navigational aid for the blind: optical aspects

    Science.gov (United States)

    Farcy, R.; Denise, B.; Damaschini, R.

    1996-03-01

    We propose a navigational aid approach for the blind that relies on active optical profilometry with real-time electrotactile interfacing on the skin. Here we are concerned with the optical parts of this system. We point out the particular requirements the profilometer must meet to meet the needs of blind people. We show experimentally that an adequate compromise is possible that consists of a compact class I IR laser-diode triangulation profilometer with the following angular resolution, 20-ms acquisition time per measure of distance, 60 degrees angular scanning field.

  1. Handbook of 3D machine vision optical metrology and imaging

    CERN Document Server

    Zhang, Song

    2013-01-01

    With the ongoing release of 3D movies and the emergence of 3D TVs, 3D imaging technologies have penetrated our daily lives. Yet choosing from the numerous 3D vision methods available can be frustrating for scientists and engineers, especially without a comprehensive resource to consult. Filling this gap, Handbook of 3D Machine Vision: Optical Metrology and Imaging gives an extensive, in-depth look at the most popular 3D imaging techniques. It focuses on noninvasive, noncontact optical methods (optical metrology and imaging). The handbook begins with the well-studied method of stereo vision and

  2. Optical Spectroscopy and Imaging of Correlated Spin Orbit Phases

    Science.gov (United States)

    2016-06-14

    Unlimited UU UU UU UU 14-06-2016 15-Mar-2013 14-Mar-2016 Final Report: Optical Spectroscopy and Imaging of Correlated Spin-Orbit Phases The views...Box 12211 Research Triangle Park, NC 27709-2211 Ultrafast optical spectroscopy , nonlinear optical spectroscopy , iridates, cuprates REPORT...California Blvd. Pasadena, CA 91125 -0001 ABSTRACT Number of Papers published in peer-reviewed journals: Final Report: Optical Spectroscopy and

  3. Translational research of optical molecular imaging for personalized medicine.

    Science.gov (United States)

    Qin, C; Ma, X; Tian, J

    2013-12-01

    In the medical imaging field, molecular imaging is a rapidly developing discipline and forms many imaging modalities, providing us effective tools to visualize, characterize, and measure molecular and cellular mechanisms in complex biological processes of living organisms, which can deepen our understanding of biology and accelerate preclinical research including cancer study and medicine discovery. Among many molecular imaging modalities, although the penetration depth of optical imaging and the approved optical probes used for clinics are limited, it has evolved considerably and has seen spectacular advances in basic biomedical research and new drug development. With the completion of human genome sequencing and the emergence of personalized medicine, the specific drug should be matched to not only the right disease but also to the right person, and optical molecular imaging should serve as a strong adjunct to develop personalized medicine by finding the optimal drug based on an individual's proteome and genome. In this process, the computational methodology and imaging system as well as the biomedical application regarding optical molecular imaging will play a crucial role. This review will focus on recent typical translational studies of optical molecular imaging for personalized medicine followed by a concise introduction. Finally, the current challenges and the future development of optical molecular imaging are given according to the understanding of the authors, and the review is then concluded.

  4. Optical Imaging of Ionizing Radiation from Clinical Sources.

    Science.gov (United States)

    Shaffer, Travis M; Drain, Charles Michael; Grimm, Jan

    2016-11-01

    Nuclear medicine uses ionizing radiation for both in vivo diagnosis and therapy. Ionizing radiation comes from a variety of sources, including x-rays, beam therapy, brachytherapy, and various injected radionuclides. Although PET and SPECT remain clinical mainstays, optical readouts of ionizing radiation offer numerous benefits and complement these standard techniques. Furthermore, for ionizing radiation sources that cannot be imaged using these standard techniques, optical imaging offers a unique imaging alternative. This article reviews optical imaging of both radionuclide- and beam-based ionizing radiation from high-energy photons and charged particles through mechanisms including radioluminescence, Cerenkov luminescence, and scintillation. Therapeutically, these visible photons have been combined with photodynamic therapeutic agents preclinically for increasing therapeutic response at depths difficult to reach with external light sources. Last, new microscopy methods that allow single-cell optical imaging of radionuclides are reviewed. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  5. SPECIAL ASPECTS OF INITIAL OPTICAL SCHEME SELECTION FOR DESIGN OF NON-IMAGING OPTICAL SYSTEMS

    Directory of Open Access Journals (Sweden)

    R. V. Anitropov

    2016-01-01

    Full Text Available Subject of Research. The research results, structural composition analysis and the parametric synthesis of the projected imaging and non-imaging optical systems were presented. We made an attempt to use the gained experience about imaging systems while designing non-imaging systems, by adapting the composition theory for the calculations of non-imaging systems. Several patterns were revealed, which provide a deeper understanding of the design process of non-imaging optical systems; measures of its optimization were proposed. Method. We investigated the applicability of the theory of composition and synthesis of non-imaging optical systems. The main provisions of the theory of composition are based on the division of all available optical elements in four types depending on their functionality, which corresponds to a modular design. Similar items were identified in non-imaging optical systems and adaptation of composition theory to their design became possible. Main Results. General design patterns of imaging and non-imaging optical systems were studied. Classification of systems, components, as well as technical and generic characteristics of imaging and non-imaging optical systems was determined. Search mechanism of the initial optical system by means of structural and parametric synthesis of non-imaging optical system was formalized. The basic elements were determined included in non-imaging systems and their classification by functionality was done. They were subdivided into basic, corrective, wide angle and high aperture ones. The rules for formation of these elements and their composition were determined: surface reflecting, refracting, spherical and nonspherical elements with total internal reflection. The foundations of composition theory for non-imaging optical systems were laid. The approbation of this method was carried out on the example of the illumination system calculation for surgical room. A 3D model of an illumination optical

  6. Joint Applied Optics and Chinese Optics Letters feature introduction: digital holography and three-dimensional imaging

    OpenAIRE

    Poon, Ting-Chung

    2011-01-01

    This feature issue serves as a pilot issue promoting the joint issue of Applied Optics and Chinese Optics Letters. It focuses upon topics of current relevance to the community working in the area of digital holography and 3-D imaging. (C) 2011 Optical Society of America

  7. Joint Applied Optics and Chinese Optics Letters feature introduction: digital holography and three-dimensional imaging.

    Science.gov (United States)

    Poon, Ting-Chung

    2011-12-01

    This feature issue serves as a pilot issue promoting the joint issue of Applied Optics and Chinese Optics Letters. It focuses upon topics of current relevance to the community working in the area of digital holography and 3-D imaging. © 2011 Optical Society of America

  8. Encoded diffractive optics for full-spectrum computational imaging

    KAUST Repository

    Heide, Felix

    2016-09-16

    Diffractive optical elements can be realized as ultra-thin plates that offer significantly reduced footprint and weight compared to refractive elements. However, such elements introduce severe chromatic aberrations and are not variable, unless used in combination with other elements in a larger, reconfigurable optical system. We introduce numerically optimized encoded phase masks in which different optical parameters such as focus or zoom can be accessed through changes in the mechanical alignment of a ultra-thin stack of two or more masks. Our encoded diffractive designs are combined with a new computational approach for self-calibrating imaging (blind deconvolution) that can restore high-quality images several orders of magnitude faster than the state of the art without pre-calibration of the optical system. This co-design of optics and computation enables tunable, full-spectrum imaging using thin diffractive optics.

  9. Encoded diffractive optics for full-spectrum computational imaging

    KAUST Repository

    Heide, Felix; Fu, Qiang; Peng, Yifan; Heidrich, Wolfgang

    2016-01-01

    Diffractive optical elements can be realized as ultra-thin plates that offer significantly reduced footprint and weight compared to refractive elements. However, such elements introduce severe chromatic aberrations and are not variable, unless used in combination with other elements in a larger, reconfigurable optical system. We introduce numerically optimized encoded phase masks in which different optical parameters such as focus or zoom can be accessed through changes in the mechanical alignment of a ultra-thin stack of two or more masks. Our encoded diffractive designs are combined with a new computational approach for self-calibrating imaging (blind deconvolution) that can restore high-quality images several orders of magnitude faster than the state of the art without pre-calibration of the optical system. This co-design of optics and computation enables tunable, full-spectrum imaging using thin diffractive optics.

  10. Equipment for Aero-Optical Flow Imaging

    National Research Council Canada - National Science Library

    Catrakis, Haris

    2004-01-01

    The AFOSR/DURIP Grant has provided the funds to develop a new Aero-Optics Laboratory at UC Irvine, in order to do basic research on aero-optical laser beam propagation through high-speed turbulent flows...

  11. Meaning of visualizing retinal cone mosaic on adaptive optics images.

    Science.gov (United States)

    Jacob, Julie; Paques, Michel; Krivosic, Valérie; Dupas, Bénédicte; Couturier, Aude; Kulcsar, Caroline; Tadayoni, Ramin; Massin, Pascale; Gaudric, Alain

    2015-01-01

    To explore the anatomic correlation of the retinal cone mosaic on adaptive optics images. Retrospective nonconsecutive observational case series. A retrospective review of the multimodal imaging charts of 6 patients with focal alteration of the cone mosaic on adaptive optics was performed. Retinal diseases included acute posterior multifocal placoid pigment epitheliopathy (n = 1), hydroxychloroquine retinopathy (n = 1), and macular telangiectasia type 2 (n = 4). High-resolution retinal images were obtained using a flood-illumination adaptive optics camera. Images were recorded using standard imaging modalities: color and red-free fundus camera photography; infrared reflectance scanning laser ophthalmoscopy, fluorescein angiography, indocyanine green angiography, and spectral-domain optical coherence tomography (OCT) images. On OCT, in the marginal zone of the lesions, a disappearance of the interdigitation zone was observed, while the ellipsoid zone was preserved. Image recording demonstrated that such attenuation of the interdigitation zone co-localized with the disappearance of the cone mosaic on adaptive optics images. In 1 case, the restoration of the interdigitation zone paralleled that of the cone mosaic after a 2-month follow-up. Our results suggest that the interdigitation zone could contribute substantially to the reflectance of the cone photoreceptor mosaic. The absence of cones on adaptive optics images does not necessarily mean photoreceptor cell death. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. A simple multipurpose double-beam optical image analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Popowicz, A., E-mail: adam.popowicz@polsl.pl [Institute of Automatic Control, Silesian University of Technology, Akademicka Str. 16, 44-100 Gliwice (Poland); Blachowicz, T. [Institute of Physics - Center for Science and Education, Silesian University of Technology, S. Konarskiego 22B Str., 44-100 Gliwice (Poland)

    2016-07-15

    In the paper we present a low cost optical device which splits the light in the focal plane into two separate optical paths and collimates it back into a single image plane, and where a selective information processing can be carried out. The optical system is straightforward and easily implementable as it consists of only three lenses and two mirrors. The system is dedicated for imaging in low-light-level conditions in which widely used optical devices, based on beam splitters or dichroic mirrors, suffer from light loss. We expose examples of applications of our device, using a prototype model. The proposed optical system may be employed for: monitoring the objects located at different distances from observer (1), creating regions of different magnification within a single image plane (2), high dynamic range photometry (3), or imaging in two wavelength bands simultaneously (4).

  13. Computational imaging using lightweight diffractive-refractive optics

    KAUST Repository

    Peng, Yifan

    2015-11-23

    Diffractive optical elements (DOE) show great promise for imaging optics that are thinner and more lightweight than conventional refractive lenses while preserving their light efficiency. Unfortunately, severe spectral dispersion currently limits the use of DOEs in consumer-level lens design. In this article, we jointly design lightweight diffractive-refractive optics and post-processing algorithms to enable imaging under white light illumination. Using the Fresnel lens as a general platform, we show three phase-plate designs, including a super-thin stacked plate design, a diffractive-refractive-hybrid lens, and a phase coded-aperture lens. Combined with cross-channel deconvolution algorithm, both spherical and chromatic aberrations are corrected. Experimental results indicate that using our computational imaging approach, diffractive-refractive optics is an alternative candidate to build light efficient and thin optics for white light imaging.

  14. Computational imaging using lightweight diffractive-refractive optics

    KAUST Repository

    Peng, Yifan; Fu, Qiang; Amata, Hadi; Su, Shuochen; Heide, Felix; Heidrich, Wolfgang

    2015-01-01

    Diffractive optical elements (DOE) show great promise for imaging optics that are thinner and more lightweight than conventional refractive lenses while preserving their light efficiency. Unfortunately, severe spectral dispersion currently limits the use of DOEs in consumer-level lens design. In this article, we jointly design lightweight diffractive-refractive optics and post-processing algorithms to enable imaging under white light illumination. Using the Fresnel lens as a general platform, we show three phase-plate designs, including a super-thin stacked plate design, a diffractive-refractive-hybrid lens, and a phase coded-aperture lens. Combined with cross-channel deconvolution algorithm, both spherical and chromatic aberrations are corrected. Experimental results indicate that using our computational imaging approach, diffractive-refractive optics is an alternative candidate to build light efficient and thin optics for white light imaging.

  15. The relationship between wave and geometrical optics models of coded aperture type x-ray phase contrast imaging systems.

    Science.gov (United States)

    Munro, Peter R T; Ignatyev, Konstantin; Speller, Robert D; Olivo, Alessandro

    2010-03-01

    X-ray phase contrast imaging is a very promising technique which may lead to significant advancements in medical imaging. One of the impediments to the clinical implementation of the technique is the general requirement to have an x-ray source of high coherence. The radiation physics group at UCL is currently developing an x-ray phase contrast imaging technique which works with laboratory x-ray sources. Validation of the system requires extensive modelling of relatively large samples of tissue. To aid this, we have undertaken a study of when geometrical optics may be employed to model the system in order to avoid the need to perform a computationally expensive wave optics calculation. In this paper, we derive the relationship between the geometrical and wave optics model for our system imaging an infinite cylinder. From this model we are able to draw conclusions regarding the general applicability of the geometrical optics approximation.

  16. UWGSP7: a real-time optical imaging workstation

    Science.gov (United States)

    Bush, John E.; Kim, Yongmin; Pennington, Stan D.; Alleman, Andrew P.

    1995-04-01

    With the development of UWGSP7, the University of Washington Image Computing Systems Laboratory has a real-time workstation for continuous-wave (cw) optical reflectance imaging. Recent discoveries in optical science and imaging research have suggested potential practical use of the technology as a medical imaging modality and identified the need for a machine to support these applications in real time. The UWGSP7 system was developed to provide researchers with a high-performance, versatile tool for use in optical imaging experiments with the eventual goal of bringing the technology into clinical use. One of several major applications of cw optical reflectance imaging is tumor imaging which uses a light-absorbing dye that preferentially sequesters in tumor tissue. This property could be used to locate tumors and to identify tumor margins intraoperatively. Cw optical reflectance imaging consists of illumination of a target with a band-limited light source and monitoring the light transmitted by or reflected from the target. While continuously illuminating the target, a control image is acquired and stored. A dye is injected into a subject and a sequence of data images are acquired and processed. The data images are aligned with the control image and then subtracted to obtain a signal representing the change in optical reflectance over time. This signal can be enhanced by digital image processing and displayed in pseudo-color. This type of emerging imaging technique requires a computer system that is versatile and adaptable. The UWGSP7 utilizes a VESA local bus PC as a host computer running the Windows NT operating system and includes ICSL developed add-on boards for image acquisition and processing. The image acquisition board is used to digitize and format the analog signal from the input device into digital frames and to the average frames into images. To accommodate different input devices, the camera interface circuitry is designed in a small mezzanine board

  17. Theoretical investigation of intensity-dependent optical nonlinearity in graphene-aided D-microfiber

    Science.gov (United States)

    Shah, Manoj Kumar; Lu, Rongguo; Zhang, Yali; Ye, Shengwei; Zhang, Shangjian; Liu, Yong

    2018-01-01

    We theoretically investigate the intensity-dependent optical nonlinearity in graphene-aided D-microfiber, by tuning the chemical potential of graphene and varying radial distance and radii of the D-microfiber. Utilizing an interplay between graphene and the enhanced evanescent field of a guided mode in the waveguide of interest, the net utility of nonlinear coefficient is harnessed up to a very high value of 106 W-1m-1. Importantly, which is ∼ two orders of magnitude larger than in PMMA-graphene-PMMA waveguide. The highly dispersive nature of the waveguide, D ∼ 103 ps/nm-km, and large nonlinear figure-of-merit, FOMNL ∼ 1.29, have raised the possibilities of utilizing slow light structures to operate devices at few watts power level with microscale length. These studies have opened one window towards the next-generation all fiber-optic graphene nonlinear optical devices.

  18. High performance optical encryption based on computational ghost imaging with QR code and compressive sensing technique

    Science.gov (United States)

    Zhao, Shengmei; Wang, Le; Liang, Wenqiang; Cheng, Weiwen; Gong, Longyan

    2015-10-01

    In this paper, we propose a high performance optical encryption (OE) scheme based on computational ghost imaging (GI) with QR code and compressive sensing (CS) technique, named QR-CGI-OE scheme. N random phase screens, generated by Alice, is a secret key and be shared with its authorized user, Bob. The information is first encoded by Alice with QR code, and the QR-coded image is then encrypted with the aid of computational ghost imaging optical system. Here, measurement results from the GI optical system's bucket detector are the encrypted information and be transmitted to Bob. With the key, Bob decrypts the encrypted information to obtain the QR-coded image with GI and CS techniques, and further recovers the information by QR decoding. The experimental and numerical simulated results show that the authorized users can recover completely the original image, whereas the eavesdroppers can not acquire any information about the image even the eavesdropping ratio (ER) is up to 60% at the given measurement times. For the proposed scheme, the number of bits sent from Alice to Bob are reduced considerably and the robustness is enhanced significantly. Meantime, the measurement times in GI system is reduced and the quality of the reconstructed QR-coded image is improved.

  19. Diffusion tensor imaging of occult injury of optic radiation following optic neuritis in multiple sclerosis.

    Science.gov (United States)

    Chen, Jiafeng; Zhu, Lijun; Li, He; Lu, Ziwen; Chen, Xin; Fang, Shaokuan

    2016-10-01

    Multiple sclerosis (MS) is easily detected by routine magnetic resonance imaging (MRI). However, it is not possible to detect early or occult lesions in MS by routine MRI, and this may explain the inconsistency between the severity of the lesions found by MRI and the degree of clinical disability of patients with MS. The present study included 10 patients with relapsing-remitting MS and 10 healthy volunteers. Each patient underwent routine 3.0 T MRI, diffusion tensor imaging (DTI), and diffusion tensor tractography (DTT). Optic nerve and optic radiation were analyzed by DTI and DTT. The fractional anisotropy (FA), mean diffusivity (MD), λ // , and λ ┴ values were measured. In the 10 patients with MS, 7 optic nerves were affected, and 13 optic nerves were not affected. Cranial MRI showed that optic nerve thickening and hyperintensity occurred in 2 patients with MS. In the directionally encoded color maps, a hypointensive green signal in the optic nerve was observed in 3 patients with MS. The FA values were significantly lower and the MD, λ // , and λ ┴ values were significantly higher in the affected and unaffected optic nerves and optic radiations in patients with MS in comparison with controls (P0.05). Diffusion tensor imaging is sensitive in the detection of occult injury of the optic nerve and optic radiation following optic neuritis. Diffusion tensor imaging may be a useful tool for the early diagnosis, treatment and management of MS.

  20. Design of a multimodal fibers optic system for small animal optical imaging.

    Science.gov (United States)

    Spinelli, Antonello E; Pagliazzi, Marco; Boschi, Federico

    2015-02-01

    Small animals optical imaging systems are widely used in pre-clinical research to image in vivo the bio-distribution of light emitting probes using fluorescence or bioluminescence modalities. In this work we presented a set of simulated results of a novel small animal optical imaging module based on a fibers optics matrix, coupled with a position sensitive detector, devoted to acquire bioluminescence and Cerenkov images. Simulations were performed using GEANT 4 code with the GAMOS architecture using the tissue optics plugin. Results showed that it is possible to image a 30 × 30 mm region of interest using a fiber optics array containing 100 optical fibers without compromising the quality of the reconstruction. The number of fibers necessary to cover an adequate portion of a small animal is thus quite modest. This design allows integrating the module with magnetic resonance (MR) in order to acquire optical and MR images at the same time. A detailed model of the mouse anatomy, obtained by segmentation of 3D MRI images, will improve the quality of optical 3D reconstruction. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  1. Characteristic optical coherence tomography findings in patients with primary vitreoretinal lymphoma: a novel aid to early diagnosis.

    Science.gov (United States)

    Barry, Robert J; Tasiopoulou, Anastasia; Murray, Philip I; Patel, Praveen J; Sagoo, Mandeep S; Denniston, Alastair K; Keane, Pearse A

    2018-01-06

    The diagnosis of primary vitreoretinal lymphoma (PVRL) poses significant difficulties; presenting features are non-specific and confirmation usually necessitates invasive vitreoretinal biopsy. Diagnosis is often delayed, resulting in increased morbidity and mortality. Non-invasive imaging modalities such as spectral domain optical coherence tomography (SD-OCT) offer simple and rapid aids to diagnosis. We present characteristic SD-OCT images of patients with biopsy-positive PVRL and propose a number of typical features, which we believe are useful in identifying these lesions at an early stage. Medical records of all patients attending Moorfields Eye Hospital between April 2010 and April 2016 with biopsy-positive PVRL were reviewed. Pretreatment SD-OCT images were collected for all eyes and were reviewed independently by two researchers for features suggestive of PVRL. Pretreatment SD-OCT images of 32 eyes of 22 patients with biopsy-proven PVRL were reviewed. Observed features included hyper-reflective subretinal infiltrates (17/32), hyper-reflective infiltration in inner retinal layers (6/32), retinal pigment epithelium (RPE) undulation (5/32), clumps of vitreous cells (5/32) and sub-RPE deposits (3/32). Of these, the hyper-reflective subretinal infiltrates have an appearance unique to PVRL, with features not seen in other diseases. We have identified a range of SD-OCT features, which we believe to be consistent with a diagnosis of PVRL. We propose that the observation of hyper-reflective subretinal infiltrates as described is highly suggestive of PVRL. This case series further demonstrates the utility of SD-OCT as a non-invasive and rapid aid to diagnosis, which may improve both visual outcomes and survival of patients with intraocular malignancies such as PVRL. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  2. An Evaluation of Grazing-Incidence Optics for Neutron Imaging

    Science.gov (United States)

    Gubarev, M. V.

    2007-01-01

    The refractive index for most materials is slightly less than unity, which opens an opportunity to develop the grazing incidence neutron imaging optics. The ideal material for the optics would be natural nickel and its isotopes. Marshall Space Flight Center (MSFC) has active development program on the nickel replicated optics for use in x-ray astronomy. Brief status report on the program is presented. The results of the neutron focusing optic test carried by the MSFC team at National Institute of Standards and Technology (NIST) are also presented. Possible applications of the optics are briefly discussed.

  3. Frontiers in optical imaging of cerebral blood flow and metabolism.

    Science.gov (United States)

    Devor, Anna; Sakadžić, Sava; Srinivasan, Vivek J; Yaseen, Mohammad A; Nizar, Krystal; Saisan, Payam A; Tian, Peifang; Dale, Anders M; Vinogradov, Sergei A; Franceschini, Maria Angela; Boas, David A

    2012-07-01

    In vivo optical imaging of cerebral blood flow (CBF) and metabolism did not exist 50 years ago. While point optical fluorescence and absorption measurements of cellular metabolism and hemoglobin concentrations had already been introduced by then, point blood flow measurements appeared only 40 years ago. The advent of digital cameras has significantly advanced two-dimensional optical imaging of neuronal, metabolic, vascular, and hemodynamic signals. More recently, advanced laser sources have enabled a variety of novel three-dimensional high-spatial-resolution imaging approaches. Combined, as we discuss here, these methods are permitting a multifaceted investigation of the local regulation of CBF and metabolism with unprecedented spatial and temporal resolution. Through multimodal combination of these optical techniques with genetic methods of encoding optical reporter and actuator proteins, the future is bright for solving the mysteries of neurometabolic and neurovascular coupling and translating them to clinical utility.

  4. An adaptive optics imaging system designed for clinical use

    Science.gov (United States)

    Zhang, Jie; Yang, Qiang; Saito, Kenichi; Nozato, Koji; Williams, David R.; Rossi, Ethan A.

    2015-01-01

    Here we demonstrate a new imaging system that addresses several major problems limiting the clinical utility of conventional adaptive optics scanning light ophthalmoscopy (AOSLO), including its small field of view (FOV), reliance on patient fixation for targeting imaging, and substantial post-processing time. We previously showed an efficient image based eye tracking method for real-time optical stabilization and image registration in AOSLO. However, in patients with poor fixation, eye motion causes the FOV to drift substantially, causing this approach to fail. We solve that problem here by tracking eye motion at multiple spatial scales simultaneously by optically and electronically integrating a wide FOV SLO (WFSLO) with an AOSLO. This multi-scale approach, implemented with fast tip/tilt mirrors, has a large stabilization range of ± 5.6°. Our method consists of three stages implemented in parallel: 1) coarse optical stabilization driven by a WFSLO image, 2) fine optical stabilization driven by an AOSLO image, and 3) sub-pixel digital registration of the AOSLO image. We evaluated system performance in normal eyes and diseased eyes with poor fixation. Residual image motion with incremental compensation after each stage was: 1) ~2–3 arc minutes, (arcmin) 2) ~0.5–0.8 arcmin and, 3) ~0.05–0.07 arcmin, for normal eyes. Performance in eyes with poor fixation was: 1) ~3–5 arcmin, 2) ~0.7–1.1 arcmin and 3) ~0.07–0.14 arcmin. We demonstrate that this system is capable of reducing image motion by a factor of ~400, on average. This new optical design provides additional benefits for clinical imaging, including a steering subsystem for AOSLO that can be guided by the WFSLO to target specific regions of interest such as retinal pathology and real-time averaging of registered images to eliminate image post-processing. PMID:26114033

  5. Optic Nerve Assessment Using 7-Tesla Magnetic Resonance Imaging.

    Science.gov (United States)

    Singh, Arun D; Platt, Sean M; Lystad, Lisa; Lowe, Mark; Oh, Sehong; Jones, Stephen E; Alzahrani, Yahya; Plesec, Thomas

    2016-04-01

    The purpose of this study was to correlate high-resolution magnetic resonance imaging (MRI) and histologic findings in a case of juxtapapillary choroidal melanoma with clinical evidence of optic nerve invasion. With institutional review board approval, an enucleated globe with choroidal melanoma and optic nerve invasion was imaged using a 7-tesla MRI followed by histopathologic evaluation. Optical coherence tomography, B-scan ultrasonography, and 1.5-tesla MRI of the orbit (1-mm sections) could not detect optic disc invasion. Ex vivo, 7-tesla MRI detected optic nerve invasion, which correlated with histopathologic features. Our case demonstrates the potential to document the existence of optic nerve invasion in the presence of an intraocular tumor, a feature that has a major bearing on decision making, particularly for consideration of enucleation.

  6. Adaptive Optics Technology for High-Resolution Retinal Imaging

    Science.gov (United States)

    Lombardo, Marco; Serrao, Sebastiano; Devaney, Nicholas; Parravano, Mariacristina; Lombardo, Giuseppe

    2013-01-01

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effects of optical aberrations. The direct visualization of the photoreceptor cells, capillaries and nerve fiber bundles represents the major benefit of adding AO to retinal imaging. Adaptive optics is opening a new frontier for clinical research in ophthalmology, providing new information on the early pathological changes of the retinal microstructures in various retinal diseases. We have reviewed AO technology for retinal imaging, providing information on the core components of an AO retinal camera. The most commonly used wavefront sensing and correcting elements are discussed. Furthermore, we discuss current applications of AO imaging to a population of healthy adults and to the most frequent causes of blindness, including diabetic retinopathy, age-related macular degeneration and glaucoma. We conclude our work with a discussion on future clinical prospects for AO retinal imaging. PMID:23271600

  7. Optical Coherence Tomographic Imaging and Delivery for Surgical Guidance

    National Research Council Canada - National Science Library

    Fujimoto, James G

    2004-01-01

    .... OCT can thus function as a type of "optical biopsy," enabling imaging of tissue with resolution approaching conventional biopsy and histopathology, but without the need to remove and process specimens...

  8. Optical Imaging of Mammaglobin Expression of Breast Cancer

    National Research Council Canada - National Science Library

    Achilefu, Samuel I

    2003-01-01

    .... TO accomplish this goal, we labeled polyclonal and monoclonal anti-MMG antibodies with a near infrared fluorescent probe for optical imaging and 64Cu-DOTA for positron emission tomography (mPET...

  9. Optical image encryption with redefined fractional Hartley transform

    Science.gov (United States)

    Zhao, Daomu; Li, Xinxin; Chen, Linfei

    2008-11-01

    A new method for optical image encryption is introduced on the basis of two-dimensional (2-D) generalization of 1-D fractional Hartley transform that has been redefined recently in search of its inverse transform. We encrypt the image by two fractional orders and random phase codes. It has an advantage over Hartley transform, for its fractional orders can also be used as additional keys, and that, of course, strengthens image security. Only when all of these keys are correct, can the image be well decrypted. The optical realization is then proposed and computer simulations are also performed to confirm the possibility of the proposed method.

  10. Adaptive optical microscope for brain imaging in vivo

    Science.gov (United States)

    Wang, Kai

    2017-04-01

    The optical heterogeneity of biological tissue imposes a major limitation to acquire detailed structural and functional information deep in the biological specimens using conventional microscopes. To restore optimal imaging performance, we developed an adaptive optical microscope based on direct wavefront sensing technique. This microscope can reliably measure and correct biological samples induced aberration. We demonstrated its performance and application in structural and functional brain imaging in various animal models, including fruit fly, zebrafish and mouse.

  11. A large, switchable optical clearing skull window for cerebrovascular imaging

    Science.gov (United States)

    Zhang, Chao; Feng, Wei; Zhao, Yanjie; Yu, Tingting; Li, Pengcheng; Xu, Tonghui; Luo, Qingming; Zhu, Dan

    2018-01-01

    Rationale: Intravital optical imaging is a significant method for investigating cerebrovascular structure and function. However, its imaging contrast and depth are limited by the turbid skull. Tissue optical clearing has a great potential for solving this problem. Our goal was to develop a transparent skull window, without performing a craniotomy, for use in assessing cerebrovascular structure and function. Methods: Skull optical clearing agents were topically applied to the skulls of mice to create a transparent window within 15 min. The clearing efficacy, repeatability, and safety of the skull window were then investigated. Results: Imaging through the optical clearing skull window enhanced both the contrast and the depth of intravital imaging. The skull window could be used on 2-8-month-old mice and could be expanded from regional to bi-hemispheric. In addition, the window could be repeatedly established without inducing observable inflammation and metabolic toxicity. Conclusion: We successfully developed an easy-to-handle, large, switchable, and safe optical clearing skull window. Combined with various optical imaging techniques, cerebrovascular structure and function can be observed through this optical clearing skull window. Thus, it has the potential for use in basic research on the physiopathologic processes of cortical vessels. PMID:29774069

  12. Optical computed tomography for imaging the breast: first look

    Science.gov (United States)

    Grable, Richard J.; Ponder, Steven L.; Gkanatsios, Nikolaos A.; Dieckmann, William; Olivier, Patrick F.; Wake, Robert H.; Zeng, Yueping

    2000-07-01

    The purpose of the study is to compare computed tomography optical imaging with traditional breast imaging techniques. Images produced by computed tomography laser mammography (CTLMTM) scanner are compared with images obtained from mammography, and in some cases ultrasound and/or magnetic resonance imaging (MRI). During the CTLM procedure, a near infrared laser irradiates the breast and an array of photodiodes detectors records light scattered through the breast tissue. The laser and detectors rotate synchronously around the breast to acquire a series of slice data along the coronal place. The procedure is performed without any breast compression or optical matching fluid. Cross-sectional slices of the breast are produced using a reconstruction algorithm. Reconstruction based on the diffusion theory is used to produce cross-sectional slices of the breast. Multiple slice images are combined to produce a three dimensional volumetric array of the imaged breast. This array is used to derive axial and sagittal images of the breast corresponding to cranio-caudal and medio-lateral images used in mammography. Over 200 women and 3 men have been scanned in clinical trials. The most obvious features seen in images produced by the optical tomography scanner are vascularization and significant lesions. Breast features caused by fibrocystic changes and cysts are less obvious. Breast density does not appear to be a significant factor in the quality of the image. We see correlation of the optical image structure with that seen with traditional breast imaging techniques. Further testing is being conducted to explore the sensitivity and specificity of optical tomography of the breast.

  13. A projection graphic display for the computer aided analysis of bubble chamber images

    International Nuclear Information System (INIS)

    Solomos, E.

    1979-01-01

    A projection graphic display for aiding the analysis of bubble chamber photographs has been developed by the Instrumentation Group of EF Division at CERN. The display image is generated on a very high brightness cathode ray tube and projected on to the table of the scanning-measuring machines as a superposition to the image of the bubble chamber. The display can send messages to the operator and aid the measurement by indicating directly on the chamber image the tracks which are measured correctly or not. (orig.)

  14. Simulation of Optical and Synthetic Imaging using Microwave Reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    G.J. Kramer; R. Nazikian; E. Valeo

    2004-01-16

    Two-dimensional full-wave time-dependent simulations in full plasma geometry are presented which show that conventional reflectometry (without a lens) can be used to synthetically image density fluctuations in fusion plasmas under conditions where the parallel correlation length greatly exceeds the poloidal correlation length of the turbulence. The advantage of synthetic imaging is that the image can be produced without the need for a large lens of high optical quality, and each frequency that is launched can be independently imaged. A particularly simple arrangement, consisting of a single receiver located at the midpoint of a microwave beam propagating along the plasma midplane is shown to suffice for imaging purposes. However, as the ratio of the parallel to poloidal correlation length decreases, a poloidal array of receivers needs to be used to synthesize the image with high accuracy. Simulations using DIII-D relevant parameters show the similarity of synthetic and optical imaging in present-day experiments.

  15. Simulation of Optical and Synthetic Imaging using Microwave Reflectometry

    International Nuclear Information System (INIS)

    Kramer, G.J.; Nazikian, R.; Valeo, E.

    2004-01-01

    Two-dimensional full-wave time-dependent simulations in full plasma geometry are presented which show that conventional reflectometry (without a lens) can be used to synthetically image density fluctuations in fusion plasmas under conditions where the parallel correlation length greatly exceeds the poloidal correlation length of the turbulence. The advantage of synthetic imaging is that the image can be produced without the need for a large lens of high optical quality, and each frequency that is launched can be independently imaged. A particularly simple arrangement, consisting of a single receiver located at the midpoint of a microwave beam propagating along the plasma midplane is shown to suffice for imaging purposes. However, as the ratio of the parallel to poloidal correlation length decreases, a poloidal array of receivers needs to be used to synthesize the image with high accuracy. Simulations using DIII-D relevant parameters show the similarity of synthetic and optical imaging in present-day experiments

  16. Computational imaging through a fiber-optic bundle

    Science.gov (United States)

    Lodhi, Muhammad A.; Dumas, John Paul; Pierce, Mark C.; Bajwa, Waheed U.

    2017-05-01

    Compressive sensing (CS) has proven to be a viable method for reconstructing high-resolution signals using low-resolution measurements. Integrating CS principles into an optical system allows for higher-resolution imaging using lower-resolution sensor arrays. In contrast to prior works on CS-based imaging, our focus in this paper is on imaging through fiber-optic bundles, in which manufacturing constraints limit individual fiber spacing to around 2 μm. This limitation essentially renders fiber-optic bundles as low-resolution sensors with relatively few resolvable points per unit area. These fiber bundles are often used in minimally invasive medical instruments for viewing tissue at macro and microscopic levels. While the compact nature and flexibility of fiber bundles allow for excellent tissue access in-vivo, imaging through fiber bundles does not provide the fine details of tissue features that is demanded in some medical situations. Our hypothesis is that adapting existing CS principles to fiber bundle-based optical systems will overcome the resolution limitation inherent in fiber-bundle imaging. In a previous paper we examined the practical challenges involved in implementing a highly parallel version of the single-pixel camera while focusing on synthetic objects. This paper extends the same architecture for fiber-bundle imaging under incoherent illumination and addresses some practical issues associated with imaging physical objects. Additionally, we model the optical non-idealities in the system to get lower modelling errors.

  17. Dental imaging using laminar optical tomography and micro CT

    Science.gov (United States)

    Long, Feixiao; Ozturk, Mehmet S.; Intes, Xavier; Kotha, Shiva

    2014-02-01

    Dental lesions located in the pulp are quite difficult to identify based on anatomical contrast, and, hence, to diagnose using traditional imaging methods such as dental CT. However, such lesions could lead to functional and/or molecular optical contrast. Herein, we report on the preliminary investigation of using Laminar Optical Tomography (LOT) to image the pulp and root canals in teeth. LOT is a non-contact, high resolution, molecular and functional mesoscopic optical imaging modality. To investigate the potential of LOT for dental imaging, we injected an optical dye into ex vivo teeth samples and imaged them using LOT and micro-CT simultaneously. A rigid image registration between the LOT and micro-CT reconstruction was obtained, validating the potential of LOT to image molecular optical contrast deep in the teeth with accuracy, non-invasively. We demonstrate that LOT can retrieve the 3D bio-distribution of molecular probes at depths up to 2mm with a resolution of several hundred microns in teeth.

  18. Optical double-image cryptography based on diffractive imaging with a laterally-translated phase grating.

    Science.gov (United States)

    Chen, Wen; Chen, Xudong; Sheppard, Colin J R

    2011-10-10

    In this paper, we propose a method using structured-illumination-based diffractive imaging with a laterally-translated phase grating for optical double-image cryptography. An optical cryptosystem is designed, and multiple random phase-only masks are placed in the optical path. When a phase grating is laterally translated just before the plaintexts, several diffraction intensity patterns (i.e., ciphertexts) can be correspondingly obtained. During image decryption, an iterative retrieval algorithm is developed to extract plaintexts from the ciphertexts. In addition, security and advantages of the proposed method are analyzed. Feasibility and effectiveness of the proposed method are demonstrated by numerical simulation results. © 2011 Optical Society of America

  19. Magneto-optical system for high speed real time imaging

    Science.gov (United States)

    Baziljevich, M.; Barness, D.; Sinvani, M.; Perel, E.; Shaulov, A.; Yeshurun, Y.

    2012-08-01

    A new magneto-optical system has been developed to expand the range of high speed real time magneto-optical imaging. A special source for the external magnetic field has also been designed, using a pump solenoid to rapidly excite the field coil. Together with careful modifications of the cryostat, to reduce eddy currents, ramping rates reaching 3000 T/s have been achieved. Using a powerful laser as the light source, a custom designed optical assembly, and a high speed digital camera, real time imaging rates up to 30 000 frames per seconds have been demonstrated.

  20. ELHnet: a convolutional neural network for classifying cochlear endolymphatic hydrops imaged with optical coherence tomography.

    Science.gov (United States)

    Liu, George S; Zhu, Michael H; Kim, Jinkyung; Raphael, Patrick; Applegate, Brian E; Oghalai, John S

    2017-10-01

    Detection of endolymphatic hydrops is important for diagnosing Meniere's disease, and can be performed non-invasively using optical coherence tomography (OCT) in animal models as well as potentially in the clinic. Here, we developed ELHnet, a convolutional neural network to classify endolymphatic hydrops in a mouse model using learned features from OCT images of mice cochleae. We trained ELHnet on 2159 training and validation images from 17 mice, using only the image pixels and observer-determined labels of endolymphatic hydrops as the inputs. We tested ELHnet on 37 images from 37 mice that were previously not used, and found that the neural network correctly classified 34 of the 37 mice. This demonstrates an improvement in performance from previous work on computer-aided classification of endolymphatic hydrops. To the best of our knowledge, this is the first deep CNN designed for endolymphatic hydrops classification.

  1. Identification of clouds and aurorae in optical data images

    CERN Document Server

    Seviour, R; Honary, F

    2003-01-01

    In this paper we present an automatic image recognition technique used to identify clouds and aurorae in digital images, taken with a CCD all-sky imager. The image recognition algorithm uses image segmentation to generate a binary block object image. Object analysis is then performed on the binary block image, the results of which are used to assess whether clouds, aurorae and stars are present in the original image. The need for such an algorithm arises because the optical study of particle precipitation into the Earth's atmosphere by the Ionosphere and Radio Propagation Group at Lancaster generates vast data-sets, over 25 000 images/year, making manual classification of all the images impractical.

  2. AFM Imaging of Natural Optical Structures

    Directory of Open Access Journals (Sweden)

    Dinara Sultanovna Dallaeva

    2014-01-01

    Full Text Available The research in this field is focused to the investigation of biological structures with superior optical features. The study presents atomic force microscopy of biological optical structures on butterfly wings. The bright blue and dark black color scales exhibit the different topography. These scales were compared to the visually the same color scales of other two species of butterflies. The histograms of heights distribution are presented and show similar results for the scales of one color for different species.

  3. OSA Imaging and Applied Optics Congress Support

    Science.gov (United States)

    2017-02-16

    Digest (online) (Optical Society of America, 20 16), paper JT3A .41. V. Katkovnik, "Sparse phase retrieval from noisy data: variational formulation and...A. Wojdyla, G. Gunjala, J. Dong, M. Benk, A. Neureuther, K. Goldberg , and L. Waller, "Off-axis Aberration Estimation in an EUV Microscope Using...2016, (Optical Society of America, 20 16), paper JT3A.41. V. Katkovnik, "Sparse phase retrieval from noisy data: variational formulation and algorithms

  4. Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems

    Science.gov (United States)

    Downie, John D.

    1990-01-01

    A ground-based adaptive optics imaging telescope system attempts to improve image quality by detecting and correcting for atmospherically induced wavefront aberrations. The required control computations during each cycle will take a finite amount of time. Longer time delays result in larger values of residual wavefront error variance since the atmosphere continues to change during that time. Thus an optical processor may be well-suited for this task. This paper presents a study of the accuracy requirements in a general optical processor that will make it competitive with, or superior to, a conventional digital computer for the adaptive optics application. An optimization of the adaptive optics correction algorithm with respect to an optical processor's degree of accuracy is also briefly discussed.

  5. Afocal viewport optics for underwater imaging

    Science.gov (United States)

    Slater, Dan

    2014-09-01

    A conventional camera can be adapted for underwater use by enclosing it in a sealed waterproof pressure housing with a viewport. The viewport, as an optical interface between water and air needs to consider both the camera and water optical characteristics while also providing a high pressure water seal. Limited hydrospace visibility drives a need for wide angle viewports. Practical optical interfaces between seawater and air vary from simple flat plate windows to complex water contact lenses. This paper first provides a brief overview of the physical and optical properties of the ocean environment along with suitable optical materials. This is followed by a discussion of the characteristics of various afocal underwater viewport types including flat windows, domes and the Ivanoff corrector lens, a derivative of a Galilean wide angle camera adapter. Several new and interesting optical designs derived from the Ivanoff corrector lens are presented including a pair of very compact afocal viewport lenses that are compatible with both in water and in air environments and an afocal underwater hyper-hemispherical fisheye lens.

  6. STOCHASTIC OPTICS: A SCATTERING MITIGATION FRAMEWORK FOR RADIO INTERFEROMETRIC IMAGING

    International Nuclear Information System (INIS)

    Johnson, Michael D.

    2016-01-01

    Just as turbulence in the Earth’s atmosphere can severely limit the angular resolution of optical telescopes, turbulence in the ionized interstellar medium fundamentally limits the resolution of radio telescopes. We present a scattering mitigation framework for radio imaging with very long baseline interferometry (VLBI) that partially overcomes this limitation. Our framework, “stochastic optics,” derives from a simplification of strong interstellar scattering to separate small-scale (“diffractive”) effects from large-scale (“refractive”) effects, thereby separating deterministic and random contributions to the scattering. Stochastic optics extends traditional synthesis imaging by simultaneously reconstructing an unscattered image and its refractive perturbations. Its advantages over direct imaging come from utilizing the many deterministic properties of the scattering—such as the time-averaged “blurring,” polarization independence, and the deterministic evolution in frequency and time—while still accounting for the stochastic image distortions on large scales. These distortions are identified in the image reconstructions through regularization by their time-averaged power spectrum. Using synthetic data, we show that this framework effectively removes the blurring from diffractive scattering while reducing the spurious image features from refractive scattering. Stochastic optics can provide significant improvements over existing scattering mitigation strategies and is especially promising for imaging the Galactic Center supermassive black hole, Sagittarius A*, with the Global mm-VLBI Array and with the Event Horizon Telescope.

  7. STOCHASTIC OPTICS: A SCATTERING MITIGATION FRAMEWORK FOR RADIO INTERFEROMETRIC IMAGING

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Michael D., E-mail: mjohnson@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-12-10

    Just as turbulence in the Earth’s atmosphere can severely limit the angular resolution of optical telescopes, turbulence in the ionized interstellar medium fundamentally limits the resolution of radio telescopes. We present a scattering mitigation framework for radio imaging with very long baseline interferometry (VLBI) that partially overcomes this limitation. Our framework, “stochastic optics,” derives from a simplification of strong interstellar scattering to separate small-scale (“diffractive”) effects from large-scale (“refractive”) effects, thereby separating deterministic and random contributions to the scattering. Stochastic optics extends traditional synthesis imaging by simultaneously reconstructing an unscattered image and its refractive perturbations. Its advantages over direct imaging come from utilizing the many deterministic properties of the scattering—such as the time-averaged “blurring,” polarization independence, and the deterministic evolution in frequency and time—while still accounting for the stochastic image distortions on large scales. These distortions are identified in the image reconstructions through regularization by their time-averaged power spectrum. Using synthetic data, we show that this framework effectively removes the blurring from diffractive scattering while reducing the spurious image features from refractive scattering. Stochastic optics can provide significant improvements over existing scattering mitigation strategies and is especially promising for imaging the Galactic Center supermassive black hole, Sagittarius A*, with the Global mm-VLBI Array and with the Event Horizon Telescope.

  8. Photoacoustic projection imaging using an all-optical detector array

    Science.gov (United States)

    Bauer-Marschallinger, J.; Felbermayer, K.; Berer, T.

    2018-02-01

    We present a prototype for all-optical photoacoustic projection imaging. By generating projection images, photoacoustic information of large volumes can be retrieved with less effort compared to common photoacoustic computed tomography where many detectors and/or multiple measurements are required. In our approach, an array of 60 integrating line detectors is used to acquire photoacoustic waves. The line detector array consists of fiber-optic MachZehnder interferometers, distributed on a cylindrical surface. From the measured variation of the optical path lengths of the interferometers, induced by photoacoustic waves, a photoacoustic projection image can be reconstructed. The resulting images represent the projection of the three-dimensional spatial light absorbance within the imaged object onto a two-dimensional plane, perpendicular to the line detector array. The fiber-optic detectors achieve a noise-equivalent pressure of 24 Pascal at a 10 MHz bandwidth. We present the operational principle, the structure of the array, and resulting images. The system can acquire high-resolution projection images of large volumes within a short period of time. Imaging large volumes at high frame rates facilitates monitoring of dynamic processes.

  9. Diffusion MR Imaging of Postoperative Bilateral Acute Ischemic Optic Neuropathy

    International Nuclear Information System (INIS)

    Kannan, Anusha; Srinivasan, Sivasubramanian

    2012-01-01

    We read with great interest, the case report on ischemic optic neuropathy (1). We would like to add a few points concerning the blood supply of the optic nerve and the correlation with the development of post-operative ischemic neuropathy. Actually, the perioperative or post-operative vision loss (postoperative ischemic neuropathy) is most likely due to ischemic optic neuropathy. Ischemic optic neuropathy (2) is classified as an anterior ischemic optic neuropathy (AION) and posterior ischemic optic neuropathy (PION). This classification is based on the fact that blood supply (2) to the anterior segment of the optic nerve (part of the optic nerve in the scleral canal and the optic disc) is supplied by short posterior ciliary vessels or anastamotic ring branches around the optic nerve. The posterior part of the optic canal is relatively less perfused, and is supplied by ophthalmic artery and central fibres are perfused by a central retinal artery. So, in the post-operative period, the posterior part of the optic nerve is more vulnerable for ischemia, especially, after major surgeries (3), one of the theories being hypotension or anaemia (2) and resultant decreased perfusion. The onset of PION is slower than the anterior ischemic optic neuropathy. AION on the other hand, is usually spontaneous (idiopathic) or due to arteritis, and is usually sudden in its onset. The reported case is most likely a case of PION. The role of imaging, especially the diffusion weighted magnetic resonance imaging, is very important because the ophthalmoscopic findings in early stages of PION is normal, and it may delay the diagnosis. On the other hand, edema of the disc is usually seen in the early stages of AION.

  10. Diffusion MR Imaging of Postoperative Bilateral Acute Ischemic Optic Neuropathy

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, Anusha; Srinivasan, Sivasubramanian [Khoo Teck Puat Hospital, Singapore (Singapore)

    2012-09-15

    We read with great interest, the case report on ischemic optic neuropathy (1). We would like to add a few points concerning the blood supply of the optic nerve and the correlation with the development of post-operative ischemic neuropathy. Actually, the perioperative or post-operative vision loss (postoperative ischemic neuropathy) is most likely due to ischemic optic neuropathy. Ischemic optic neuropathy (2) is classified as an anterior ischemic optic neuropathy (AION) and posterior ischemic optic neuropathy (PION). This classification is based on the fact that blood supply (2) to the anterior segment of the optic nerve (part of the optic nerve in the scleral canal and the optic disc) is supplied by short posterior ciliary vessels or anastamotic ring branches around the optic nerve. The posterior part of the optic canal is relatively less perfused, and is supplied by ophthalmic artery and central fibres are perfused by a central retinal artery. So, in the post-operative period, the posterior part of the optic nerve is more vulnerable for ischemia, especially, after major surgeries (3), one of the theories being hypotension or anaemia (2) and resultant decreased perfusion. The onset of PION is slower than the anterior ischemic optic neuropathy. AION on the other hand, is usually spontaneous (idiopathic) or due to arteritis, and is usually sudden in its onset. The reported case is most likely a case of PION. The role of imaging, especially the diffusion weighted magnetic resonance imaging, is very important because the ophthalmoscopic findings in early stages of PION is normal, and it may delay the diagnosis. On the other hand, edema of the disc is usually seen in the early stages of AION.

  11. Integration of optical imaging with a small animal irradiator

    International Nuclear Information System (INIS)

    Weersink, Robert A.; Ansell, Steve; Wang, An; Wilson, Graham; Shah, Duoaud; Lindsay, Patricia E.; Jaffray, David A.

    2014-01-01

    Purpose: The authors describe the integration of optical imaging with a targeted small animal irradiator device, focusing on design, instrumentation, 2D to 3D image registration, 2D targeting, and the accuracy of recovering and mapping the optical signal to a 3D surface generated from the cone-beam computed tomography (CBCT) imaging. The integration of optical imaging will improve targeting of the radiation treatment and offer longitudinal tracking of tumor response of small animal models treated using the system. Methods: The existing image-guided small animal irradiator consists of a variable kilovolt (peak) x-ray tube mounted opposite an aSi flat panel detector, both mounted on a c-arm gantry. The tube is used for both CBCT imaging and targeted irradiation. The optical component employs a CCD camera perpendicular to the x-ray treatment/imaging axis with a computer controlled filter for spectral decomposition. Multiple optical images can be acquired at any angle as the gantry rotates. The optical to CBCT registration, which uses a standard pinhole camera model, was modeled and tested using phantoms with markers visible in both optical and CBCT images. Optically guided 2D targeting in the anterior/posterior direction was tested on an anthropomorphic mouse phantom with embedded light sources. The accuracy of the mapping of optical signal to the CBCT surface was tested using the same mouse phantom. A surface mesh of the phantom was generated based on the CBCT image and optical intensities projected onto the surface. The measured surface intensity was compared to calculated surface for a point source at the actual source position. The point-source position was also optimized to provide the closest match between measured and calculated intensities, and the distance between the optimized and actual source positions was then calculated. This process was repeated for multiple wavelengths and sources. Results: The optical to CBCT registration error was 0.8 mm. Two

  12. Gated frequency-resolved optical imaging with an optical parametric amplifier for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, S.M.; Bliss, D.E.

    1997-02-01

    Implementation of optical imagery in a diffuse inhomogeneous medium such as biological tissue requires an understanding of photon migration and multiple scattering processes which act to randomize pathlength and degrade image quality. The nature of transmitted light from soft tissue ranges from the quasi-coherent properties of the minimally scattered component to the random incoherent light of the diffuse component. Recent experimental approaches have emphasized dynamic path-sensitive imaging measurements with either ultrashort laser pulses (ballistic photons) or amplitude modulated laser light launched into tissue (photon density waves) to increase image resolution and transmissive penetration depth. Ballistic imaging seeks to compensate for these {open_quotes}fog-like{close_quotes} effects by temporally isolating the weak early-arriving image-bearing component from the diffusely scattered background using a subpicosecond optical gate superimposed on the transmitted photon time-of-flight distribution. The authors have developed a broadly wavelength tunable (470 nm -2.4 {mu}m), ultrashort amplifying optical gate for transillumination spectral imaging based on optical parametric amplification in a nonlinear crystal. The time-gated image amplification process exhibits low noise and high sensitivity, with gains greater than 104 achievable for low light levels. We report preliminary benchmark experiments in which this system was used to reconstruct, spectrally upcovert, and enhance near-infrared two-dimensional images with feature sizes of 65 {mu}m/mm{sup 2} in background optical attenuations exceeding 10{sup 12}. Phase images of test objects exhibiting both absorptive contrast and diffuse scatter were acquired using a self-referencing Shack-Hartmann wavefront sensor in combination with short-pulse quasi-ballistic gating. The sensor employed a lenslet array based on binary optics technology and was sensitive to optical path distortions approaching {lambda}/100.

  13. Diffractive optical element for creating visual 3D images.

    Science.gov (United States)

    Goncharsky, Alexander; Goncharsky, Anton; Durlevich, Svyatoslav

    2016-05-02

    A method is proposed to compute and synthesize the microrelief of a diffractive optical element to produce a new visual security feature - the vertical 3D/3D switch effect. The security feature consists in the alternation of two 3D color images when the diffractive element is tilted up/down. Optical security elements that produce the new security feature are synthesized using electron-beam technology. Sample optical security elements are manufactured that produce 3D to 3D visual switch effect when illuminated by white light. Photos and video records of the vertical 3D/3D switch effect of real optical elements are presented. The optical elements developed can be replicated using standard equipment employed for manufacturing security holograms. The new optical security feature is easy to control visually, safely protected against counterfeit, and designed to protect banknotes, documents, ID cards, etc.

  14. Optical coherence tomography for imaging of skin and skin diseases

    DEFF Research Database (Denmark)

    Mogensen, Mette; Thrane, Lars; Jørgensen, Thomas Martini

    2009-01-01

    Optical coherence tomography (OCT) is an emerging imaging technology based on light reflection. It provides real-time images with up to 2-mm penetration into the skin and a resolution of approximately 10 μm. It is routinely used in ophthalmology. The normal skin and its appendages have been studi...... technical solutions are being pursued to further improve the quality of the images and the data provided, and OCT is being integrated in multimodal imaging devices that would potentially be able to provide a quantum leap to the imaging of skin in vivo....

  15. Disease progression in AIDS on PET fluorodeoxyglucose, CT and MR brain images

    International Nuclear Information System (INIS)

    Verma, R.C.; Bennett, L.; Gan, M.; Kloumehr, F.; Mathisen, G.; Jones, F.D.; Wasterlain, C.; Mandelkern, M.; Ropchan, J.; Blahd, W.; Yaghmal, I.

    1990-01-01

    This paper correlates changes in the brain demonstrated on F-18 fluorodeoxyglucose (FDG) positron emission tomographic (PET) scans and CT or MR images with disease severity in patients with acquired immunodeficiency syndrome (AIDS). Data from 30 patients who tested positive for human immunodeficiency virus (HIV) who were at various stages of AIDS, and who had undergone FDG PET, CT, and/or MR imaging were reviewed retrospectively. The average CD4 lymphocyte counts, an indicator of disease severity in AIDS, in 25 symptomatic (group I) and five healthy seropositive (group II) subjects were 300 and 694 cells/mm 3 , respectively. Cortical atrophy was present on CT and/or MR imaging in 92% in group I and only 20% in group II. Of the 17 patients in group I who underwent PET scans 11 demonstrated an elevated basal ganglia to frontal cortex (BG/FC) ratio of FDG uptake; only one of the four in group II had this finding

  16. AFM imaging of natural optical structures

    Science.gov (United States)

    Dallaeva, Dinara; Tománek, Pavel; Prokopyeva, Elena; Kaspar, Pavel; Grmela, Lubomír.; Škarvada, Pavel

    2015-01-01

    The colors of some living organisms assosiated with the surface structure. Irridesence butterfly wings is an example of such coloration. Optical effects such as interference, diffraction, polarization are responsible for physical colors appearance. Alongside with amazing beauty this structure represent interest for design of optical devices. Here we report the results of morphology investigation by atomic force microscopy. The difference in surface structure of black and blue wings areas is clearly observed. It explains the angle dependence of the wing blue color, since these micrometer and sub-micrometer quasiperiodical structures could control the light propagation, absorption and reflection.

  17. Fluorescence optical imaging in anticancer drug delivery.

    Science.gov (United States)

    Etrych, Tomáš; Lucas, Henrike; Janoušková, Olga; Chytil, Petr; Mueller, Thomas; Mäder, Karsten

    2016-03-28

    In the past several decades, nanosized drug delivery systems with various targeting functions and controlled drug release capabilities inside targeted tissues or cells have been intensively studied. Understanding their pharmacokinetic properties is crucial for the successful transition of this research into clinical practice. Among others, fluorescence imaging has become one of the most commonly used imaging tools in pre-clinical research. The development of increasing numbers of suitable fluorescent dyes excitable in the visible to near-infrared wavelengths of the spectrum has significantly expanded the applicability of fluorescence imaging. This paper focuses on the potential applications and limitations of non-invasive imaging techniques in the field of drug delivery, especially in anticancer therapy. Fluorescent imaging at both the cellular and systemic levels is discussed in detail. Additionally, we explore the possibility for simultaneous treatment and imaging using theranostics and combinations of different imaging techniques, e.g., fluorescence imaging with computed tomography. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. High-resolution retinal imaging using adaptive optics and Fourier-domain optical coherence tomography

    Science.gov (United States)

    Olivier, Scot S.; Werner, John S.; Zawadzki, Robert J.; Laut, Sophie P.; Jones, Steven M.

    2010-09-07

    This invention permits retinal images to be acquired at high speed and with unprecedented resolution in three dimensions (4.times.4.times.6 .mu.m). The instrument achieves high lateral resolution by using adaptive optics to correct optical aberrations of the human eye in real time. High axial resolution and high speed are made possible by the use of Fourier-domain optical coherence tomography. Using this system, we have demonstrated the ability to image microscopic blood vessels and the cone photoreceptor mosaic.

  19. Systematic Image Based Optical Alignment and Tensegrity

    Science.gov (United States)

    Zeiders, Glenn W.; Montgomery, Edward E, IV (Technical Monitor)

    2001-01-01

    This presentation will review the objectives and current status of two Small Business Innovative Research being performed by the Sirius Group, under the direction of MSFC. They all relate to the development of advanced optical systems technologies for automated segmented mirror alignment techniques and fundamental design methodologies for ultralight structures. These are important to future astronomical missions in space.

  20. Image-guided urologic surgery: intraoperative optical imaging and tissue interrogation (Conference Presentation)

    Science.gov (United States)

    Liao, Joseph C.

    2017-02-01

    Emerging optical imaging technologies can be integrated in the operating room environment during minimally invasive and open urologic surgery, including oncologic surgery of the bladder, prostate, and kidney. These technologies include macroscopic fluorescence imaging that provides contrast enhancement between normal and diseased tissue and microscopic imaging that provides tissue characterization. Optical imaging technologies that have reached the clinical arena in urologic surgery are reviewed, including photodynamic diagnosis, near infrared fluorescence imaging, optical coherence tomography, and confocal laser endomicroscopy. Molecular imaging represents an exciting future arena in conjugating cancer-specific contrast agents to fluorophores to improve the specificity of disease detection. Ongoing efforts are underway to translate optimal targeting agents and imaging modalities, with the goal to improve cancer-specific and functional outcomes.

  1. Quantitative Image Restoration in Bright Field Optical Microscopy.

    Science.gov (United States)

    Gutiérrez-Medina, Braulio; Sánchez Miranda, Manuel de Jesús

    2017-11-07

    Bright field (BF) optical microscopy is regarded as a poor method to observe unstained biological samples due to intrinsic low image contrast. We introduce quantitative image restoration in bright field (QRBF), a digital image processing method that restores out-of-focus BF images of unstained cells. Our procedure is based on deconvolution, using a point spread function modeled from theory. By comparing with reference images of bacteria observed in fluorescence, we show that QRBF faithfully recovers shape and enables quantify size of individual cells, even from a single input image. We applied QRBF in a high-throughput image cytometer to assess shape changes in Escherichia coli during hyperosmotic shock, finding size heterogeneity. We demonstrate that QRBF is also applicable to eukaryotic cells (yeast). Altogether, digital restoration emerges as a straightforward alternative to methods designed to generate contrast in BF imaging for quantitative analysis. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Camera, handlens, and microscope optical system for imaging and coupled optical spectroscopy

    Science.gov (United States)

    Mungas, Greg S. (Inventor); Boynton, John (Inventor); Sepulveda, Cesar A. (Inventor); Nunes de Sepulveda, legal representative, Alicia (Inventor); Gursel, Yekta (Inventor)

    2012-01-01

    An optical system comprising two lens cells, each lens cell comprising multiple lens elements, to provide imaging over a very wide image distance and within a wide range of magnification by changing the distance between the two lens cells. An embodiment also provides scannable laser spectroscopic measurements within the field-of-view of the instrument.

  3. Contrast-based sensorless adaptive optics for retinal imaging.

    Science.gov (United States)

    Zhou, Xiaolin; Bedggood, Phillip; Bui, Bang; Nguyen, Christine T O; He, Zheng; Metha, Andrew

    2015-09-01

    Conventional adaptive optics ophthalmoscopes use wavefront sensing methods to characterize ocular aberrations for real-time correction. However, there are important situations in which the wavefront sensing step is susceptible to difficulties that affect the accuracy of the correction. To circumvent these, wavefront sensorless adaptive optics (or non-wavefront sensing AO; NS-AO) imaging has recently been developed and has been applied to point-scanning based retinal imaging modalities. In this study we show, for the first time, contrast-based NS-AO ophthalmoscopy for full-frame in vivo imaging of human and animal eyes. We suggest a robust image quality metric that could be used for any imaging modality, and test its performance against other metrics using (physical) model eyes.

  4. Can social tagged images aid concept-based video search?

    NARCIS (Netherlands)

    Setz, A.T.; Snoek, C.G.M.

    2009-01-01

    This paper seeks to unravel whether commonly available social tagged images can be exploited as a training resource for concept-based video search. Since social tags are known to be ambiguous, overly personalized, and often error prone, we place special emphasis on the role of disambiguation. We

  5. Radiation imaging with optically read out GEM-based detectors

    Science.gov (United States)

    Brunbauer, F. M.; Lupberger, M.; Oliveri, E.; Resnati, F.; Ropelewski, L.; Streli, C.; Thuiner, P.; van Stenis, M.

    2018-02-01

    Modern imaging sensors allow for high granularity optical readout of radiation detectors such as MicroPattern Gaseous Detectors (MPGDs). Taking advantage of the high signal amplification factors achievable by MPGD technologies such as Gaseous Electron Multipliers (GEMs), highly sensitive detectors can be realised and employing gas mixtures with strong scintillation yield in the visible wavelength regime, optical readout of such detectors can provide high-resolution event representations. Applications from X-ray imaging to fluoroscopy and tomography profit from the good spatial resolution of optical readout and the possibility to obtain images without the need for extensive reconstruction. Sensitivity to low-energy X-rays and energy resolution permit energy resolved imaging and material distinction in X-ray fluorescence measurements. Additionally, the low material budget of gaseous detectors and the possibility to couple scintillation light to imaging sensors via fibres or mirrors makes optically read out GEMs an ideal candidate for beam monitoring detectors in high energy physics as well as radiotherapy. We present applications and achievements of optically read out GEM-based detectors including high spatial resolution imaging and X-ray fluorescence measurements as an alternative readout approach for MPGDs. A detector concept for low intensity applications such as X-ray crystallography, which maximises detection efficiency with a thick conversion region but mitigates parallax-induced broadening is presented and beam monitoring capabilities of optical readout are explored. Augmenting high resolution 2D projections of particle tracks obtained with optical readout with timing information from fast photon detectors or transparent anodes for charge readout, 3D reconstruction of particle trajectories can be performed and permits the realisation of optically read out time projection chambers. Combining readily available high performance imaging sensors with compatible

  6. 3D surface reconstruction using optical flow for medical imaging

    International Nuclear Information System (INIS)

    Weng, Nan; Yang, Yee-Hong; Pierson, R.

    1996-01-01

    The recovery of a 3D model from a sequence of 2D images is very useful in medical image analysis. Image sequences obtained from the relative motion between the object and the camera or the scanner contain more 3D information than a single image. Methods to visualize the computed tomograms can be divided into two approaches: the surface rendering approach and the volume rendering approach. A new surface rendering method using optical flow is proposed. Optical flow is the apparent motion in the image plane produced by the projection of the real 3D motion onto 2D image. In this paper, the object remains stationary while the scanner undergoes translational motion. The 3D motion of an object can be recovered from the optical flow field using additional constraints. By extracting the surface information from 3D motion, it is possible to get an accurate 3D model of the object. Both synthetic and real image sequences have been used to illustrate the feasibility of the proposed method. The experimental results suggest that the proposed method is suitable for the reconstruction of 3D models from ultrasound medical images as well as other computed tomograms

  7. Optical Imaging Sensors and Systems for Homeland Security Applications

    CERN Document Server

    Javidi, Bahram

    2006-01-01

    Optical and photonic systems and devices have significant potential for homeland security. Optical Imaging Sensors and Systems for Homeland Security Applications presents original and significant technical contributions from leaders of industry, government, and academia in the field of optical and photonic sensors, systems and devices for detection, identification, prevention, sensing, security, verification and anti-counterfeiting. The chapters have recent and technically significant results, ample illustrations, figures, and key references. This book is intended for engineers and scientists in the relevant fields, graduate students, industry managers, university professors, government managers, and policy makers. Advanced Sciences and Technologies for Security Applications focuses on research monographs in the areas of -Recognition and identification (including optical imaging, biometrics, authentication, verification, and smart surveillance systems) -Biological and chemical threat detection (including bios...

  8. Correlation characteristics of optical coherence tomography images of turbid media with statistically inhomogeneous optical parameters

    International Nuclear Information System (INIS)

    Dolin, Lev S.; Sergeeva, Ekaterina A.; Turchin, Ilya V.

    2012-01-01

    Noisy structure of optical coherence tomography (OCT) images of turbid medium contains information about spatial variations of its optical parameters. We propose analytical model of statistical characteristics of OCT signal fluctuations from turbid medium with spatially inhomogeneous coefficients of absorption and backscattering. Analytically predicted correlation characteristics of OCT signal from spatially inhomogeneous medium are in good agreement with the results of correlation analysis of OCT images of different biological tissues. The proposed model can be efficiently applied for quantitative evaluation of statistical properties of absorption and backscattering fluctuations basing on correlation characteristics of OCT images.

  9. Active polarization imaging system based on optical heterodyne balanced receiver

    Science.gov (United States)

    Xu, Qian; Sun, Jianfeng; Lu, Zhiyong; Zhou, Yu; Luan, Zhu; Hou, Peipei; Liu, liren

    2017-08-01

    Active polarization imaging technology has recently become the hot research field all over the world, which has great potential application value in the military and civil area. By introducing active light source, the Mueller matrix of the target can be calculated according to the incident light and the emitted or reflected light. Compared with conventional direct detection technology, optical heterodyne detection technology have higher receiving sensitivities, which can obtain the whole amplitude, frequency and phase information of the signal light. In this paper, an active polarization imaging system will be designed. Based on optical heterodyne balanced receiver, the system can acquire the horizontal and vertical polarization of reflected optical field simultaneously, which contain the polarization characteristic of the target. Besides, signal to noise ratio and imaging distance can be greatly improved.

  10. Inverting Image Data For Optical Testing And Alignment

    Science.gov (United States)

    Shao, Michael; Redding, David; Yu, Jeffrey W.; Dumont, Philip J.

    1993-01-01

    Data from images produced by slightly incorrectly figured concave primary mirror in telescope processed into estimate of spherical aberration of mirror, by use of algorithm finding nonlinear least-squares best fit between actual images and synthetic images produced by multiparameter mathematical model of telescope optical system. Estimated spherical aberration, in turn, converted into estimate of deviation of reflector surface from nominal precise shape. Algorithm devised as part of effort to determine error in surface figure of primary mirror of Hubble space telescope, so corrective lens designed. Modified versions of algorithm also used to find optical errors in other components of telescope or of other optical systems, for purposes of testing, alignment, and/or correction.

  11. Simulated annealing in adaptive optics for imaging the eye retina

    International Nuclear Information System (INIS)

    Zommer, S.; Adler, J.; Lipson, S. G.; Ribak, E.

    2004-01-01

    Full Text:Adaptive optics is a method designed to correct deformed images in real time. Once the distorted wavefront is known, a deformable mirror is used to compensate the aberrations and return the wavefront to a plane wave. This study concentrates on methods that omit wave front sensing from the reconstruction process. Such methods use stochastic algorithms to find the extremum of a certain sharpness function, thereby correcting the image without any information on the wavefront. Theoretical work [l] has shown that the optical problem can be mapped onto a model for crystal roughening. The main algorithm applied is simulated annealing. We present a first hardware realization of this algorithm in an adaptive optics system designed to image the retina of the human eye

  12. Bioassay Phantoms Using Medical Images and Computer Aided Manufacturing

    International Nuclear Information System (INIS)

    Xu, X. Geroge

    2011-01-01

    A radiation bioassay program relies on a set of standard human phantoms to calibrate and assess radioactivity levels inside a human body for radiation protection and nuclear medicine imaging purposes. However, the methodologies in the development and application of anthropomorphic phantoms, both physical and computational, had mostly remained the same for the past 40 years. We herein propose a 3-year research project to develop medical image-based physical and computational phantoms specifically for radiation bioassay applications involving internally deposited radionuclides. The broad, long-term objective of this research was to set the foundation for a systematic paradigm shift away from the anatomically crude phantoms in existence today to realistic and ultimately individual-specific bioassay methodologies. This long-term objective is expected to impact all areas of radiation bioassay involving nuclear power plants, U.S. DOE laboratories, and nuclear medicine clinics.

  13. Imaging optical probe for pressurized steam-water environment

    International Nuclear Information System (INIS)

    Donaldson, M.R.; Pulfrey, R.E.

    1979-01-01

    An air-cooled imaging optical probe, with an outside diameter of 25.4 mm, has been developed to provide high resolution viewing of flow regimes in a steam-water environment at 343 0 C and 15.2 MPa. The design study considered a 3-m length probe. A 0.3-m length probe prototype was fabricated and tested. The optical probe consists of a 3.5-mm diameter optics train surrounded by two coaxial coolant flow channels and two coaxial insulating dead air spaces. With air flowing through the probe at 5.7 g/s, thermal analysis shows that no part of the optics train will exceed 93 0 C when a 3-m length probe is immersed in a 343 0 C environment. Computer stress analysis plus actual tests show that the probe can operate successfully with conservative safety factors. The imaging optical probe was tested five times in the design environment at the semiscale facility at the INEL. Two-phase flow regimes in the high temperature, high pressure, steam-water blowdown and reflood experiments were recorded on video tape for the first time with the imaging optical probe

  14. Mycobacterium genavense infection in AIDS: imaging findings in eight patients

    International Nuclear Information System (INIS)

    Monill, J.M.; Franquet, T.; Martinez-Noguera, A.; Villalba, J.; Sambeat, M.A.

    2001-01-01

    This retrospective study included eight HIV-positive patients with a M. genavense infection. Seven of these patients had a CT scan of the abdomen and a US examination, whereas one patient with pulmonary symptoms had conventional chest radiographs and thin-section CT scan of the thorax. Multiple large retroperitoneal and mesenteric lymph nodes were demonstrated in seven patients; low-attenuation centers within enlarged nodes were identified in two patients. On CT scans two cases showed circumferential wall thickening of the proximal small bowel with a deep ulceration in one of these patients. Additional findings included focal lesions in the liver (n = 1), spleen (n = 2), splenomegaly (n = 6), and hepatomegaly (n = 4). The CT scans from the thoracic examination demonstrated multiple diffuse nodular infiltrates in both lungs. M. genavense infection should be considered in the differential diagnosis of AIDS patients with CD4 counts below 100 cells/mm 3 presenting with abdominal lymphadenopathy, multinodular or homogeneous hepatosplenic enlargement and circumferential thickening of the small bowel wall. (orig.)

  15. Mycobacterium genavense infection in AIDS: imaging findings in eight patients

    Energy Technology Data Exchange (ETDEWEB)

    Monill, J.M.; Franquet, T.; Martinez-Noguera, A.; Villalba, J. [Dept. of Radiology, Univ. Autonoma de Barcelona (Spain); Sambeat, M.A. [Dept. of Infectious Diseases, Univ. Autonoma de Barcelona (Spain)

    2001-02-01

    This retrospective study included eight HIV-positive patients with a M. genavense infection. Seven of these patients had a CT scan of the abdomen and a US examination, whereas one patient with pulmonary symptoms had conventional chest radiographs and thin-section CT scan of the thorax. Multiple large retroperitoneal and mesenteric lymph nodes were demonstrated in seven patients; low-attenuation centers within enlarged nodes were identified in two patients. On CT scans two cases showed circumferential wall thickening of the proximal small bowel with a deep ulceration in one of these patients. Additional findings included focal lesions in the liver (n = 1), spleen (n = 2), splenomegaly (n = 6), and hepatomegaly (n = 4). The CT scans from the thoracic examination demonstrated multiple diffuse nodular infiltrates in both lungs. M. genavense infection should be considered in the differential diagnosis of AIDS patients with CD4 counts below 100 cells/mm{sup 3} presenting with abdominal lymphadenopathy, multinodular or homogeneous hepatosplenic enlargement and circumferential thickening of the small bowel wall. (orig.)

  16. Magnetic resonance imaging findings of the brain in adult HIV and AIDS patients

    International Nuclear Information System (INIS)

    Kloska, S.P.; Schlegel, P.M.; Fischbach, R.; Heindel, W.; Husstedt, I.W.; Anneken, K.; Evers, S.

    2008-01-01

    The spectrum of pathology affecting the central nervous system (CNS) in patients suffering from acquired immunodeficiency syndrome (AIDS) includes not only the human immunodeficiency virus (HIV) infection itself but also opportunistic infections and tumors secondary to AIDS. Despite progress in antiretroviral therapy and the subsequent decrease in the incidence of associated diseases, opportunistic infections and tumors secondary to the HIV infection continue to be the limiting factor in terms of survival with AIDS. Therefore, the therapeutic aim is permanent antiretroviral therapy as well as early diagnosis and treatment of opportunistic infections. Magnetic resonance imaging is often the diagnostic method of choice in suspected CNS pathology of HIV patients. In the following, the typical clinical and radiological features of several AIDS-related pathologies are presented and discussed. (orig.)

  17. Computer-Aided Diagnosis Systems for Brain Diseases in Magnetic Resonance Images

    Directory of Open Access Journals (Sweden)

    Yasuo Yamashita

    2009-07-01

    Full Text Available This paper reviews the basics and recent researches of computer-aided diagnosis (CAD systems for assisting neuroradiologists in detection of brain diseases, e.g., asymptomatic unruptured aneurysms, Alzheimer's disease, vascular dementia, and multiple sclerosis (MS, in magnetic resonance (MR images. The CAD systems consist of image feature extraction based on image processing techniques and machine learning classifiers such as linear discriminant analysis, artificial neural networks, and support vector machines. We introduce useful examples of the CAD systems in the neuroradiology, and conclude with possibilities in the future of the CAD systems for brain diseases in MR images.

  18. Radiation-induced optic neuropathy: A magnetic resonance imaging study

    International Nuclear Information System (INIS)

    Guy, J.; Mancuso, A.; Beck, R.; Moster, M.L.; Sedwick, L.A.; Quisling, R.G.; Rhoton, A.L. Jr.; Protzko, E.E.; Schiffman, J.

    1991-01-01

    Optic neuropathy induced by radiation is an infrequent cause of delayed visual loss that may at times be difficult to differentiate from compression of the visual pathways by recurrent neoplasm. The authors describe six patients with this disorder who experienced loss of vision 6 to 36 months after neurological surgery and radiation therapy. Of the six patients in the series, two had a pituitary adenoma and one each had a metastatic melanoma, multiple myeloma, craniopharyngioma, and lymphoepithelioma. Visual acuity in the affected eyes ranged from 20/25 to no light perception. Magnetic resonance (MR) imaging showed sellar and parasellar recurrence of both pituitary adenomas, but the intrinsic lesions of the optic nerves and optic chiasm induced by radiation were enhanced after gadolinium-diethylenetriaminepenta-acetic acid (DTPA) administration and were clearly distinguishable from the suprasellar compression of tumor. Repeated MR imaging showed spontaneous resolution of gadolinium-DTPA enhancement of the optic nerve in a patient who was initially suspected of harboring recurrence of a metastatic malignant melanoma as the cause of visual loss. The authors found the presumptive diagnosis of radiation-induced optic neuropathy facilitated by MR imaging with gadolinium-DTPA. This neuro-imaging procedure may help avert exploratory surgery in some patients with recurrent neoplasm in whom the etiology of visual loss is uncertain

  19. Optical image reconstruction using DC data: simulations and experiments

    International Nuclear Information System (INIS)

    Huabei Jiang; Paulsen, K.D.; Oesterberg, U.L.

    1996-01-01

    In this paper, we explore optical image formation using a diffusion approximation of light propagation in tissue which is modelled with a finite-element method for optically heterogeneous media. We demonstrate successful image reconstruction based on absolute experimental DC data obtained with a continuous wave 633 nm He-Ne laser system and a 751 nm diode laser system in laboratory phantoms having two optically distinct regions. The experimental systems used exploit a tomographic type of data collection scheme that provides information from which a spatially variable optical property map is deduced. Reconstruction of scattering coefficient only and simultaneous reconstruction of both scattering and absorption profiles in tissue-like phantoms are obtained from measured and simulated data. Images with different contrast levels between the heterogeneity and the background are also reported and the results show that although it is possible to obtain qualitative visual information on the location and size of a heterogeneity, it may not be possible to quantitatively resolve contrast levels or optical properties using reconstructions from DC data only. Sensitivity of image reconstruction to noise in the measurement data is investigated through simulations. The application of boundary constraints has also been addressed. (author)

  20. Optic disc detection and boundary extraction in retinal images.

    Science.gov (United States)

    Basit, A; Fraz, Muhammad Moazam

    2015-04-10

    With the development of digital image processing, analysis and modeling techniques, automatic retinal image analysis is emerging as an important screening tool for early detection of ophthalmologic disorders such as diabetic retinopathy and glaucoma. In this paper, a robust method for optic disc detection and extraction of the optic disc boundary is proposed to help in the development of computer-assisted diagnosis and treatment of such ophthalmic disease. The proposed method is based on morphological operations, smoothing filters, and the marker controlled watershed transform. Internal and external markers are used to first modify the gradient magnitude image and then the watershed transformation is applied on this modified gradient magnitude image for boundary extraction. This method has shown significant improvement over existing methods in terms of detection and boundary extraction of the optic disc. The proposed method has optic disc detection success rate of 100%, 100%, 100% and 98.9% for the DRIVE, Shifa, CHASE_DB1, and DIARETDB1 databases, respectively. The optic disc boundary detection achieved an average spatial overlap of 61.88%, 70.96%, 45.61%, and 54.69% for these databases, respectively, which are higher than currents methods.

  1. In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography.

    Science.gov (United States)

    Wong, Kevin S K; Jian, Yifan; Cua, Michelle; Bonora, Stefano; Zawadzki, Robert J; Sarunic, Marinko V

    2015-02-01

    Wavefront sensorless adaptive optics optical coherence tomography (WSAO-OCT) is a novel imaging technique for in vivo high-resolution depth-resolved imaging that mitigates some of the challenges encountered with the use of sensor-based adaptive optics designs. This technique replaces the Hartmann Shack wavefront sensor used to measure aberrations with a depth-resolved image-driven optimization algorithm, with the metric based on the OCT volumes acquired in real-time. The custom-built ultrahigh-speed GPU processing platform and fast modal optimization algorithm presented in this paper was essential in enabling real-time, in vivo imaging of human retinas with wavefront sensorless AO correction. WSAO-OCT is especially advantageous for developing a clinical high-resolution retinal imaging system as it enables the use of a compact, low-cost and robust lens-based adaptive optics design. In this report, we describe our WSAO-OCT system for imaging the human photoreceptor mosaic in vivo. We validated our system performance by imaging the retina at several eccentricities, and demonstrated the improvement in photoreceptor visibility with WSAO compensation.

  2. MR imaging in the diagnosis of intracranial infections, inflammations and AIDS

    International Nuclear Information System (INIS)

    Henkes, H.; Schoerner, W.; Felix, R.

    1988-01-01

    At present there is limited experience with MR imaging in infectious and inflammatory diseases of the brain. The purpose of this study was to compare the diagnostic sensitivity of MR imaging and CT in presumed or proved cases of cerebral infection, inflammation, or intracranial manifestation of the acquired immunodeficiency syndrome (AIDS). Third-generation CT scanners were used to obtain plain and Gd-DTPA-enhanced scans. A 0.5-T Magnetom MR imager was used to obtain plain and contrast-enhanced T1-weighted, T1/T2-weighted, and T2-weighted images with spin-echo and fast low-angle shot (FLASH) techniques. Group 1 (immunocompetent) included 35 patients (63 examinations), group 2 (AIDS), 78 (115 examinations). Diagnoses in both groups yielded a wide range of etiologies (e.g., group 1: sarcoidosis, herpes encephalitis, meningitis, neurocysticercosis, Jakob-Creutzfeldt disease, tuberculosis, virus encephalitis; group 2: toxoplasmosis, progressive diffuse leukoencephalopathia (PDL), progressive multifocal leukoencephalopathia (PML), meningitis

  3. Transfection and imaging of diamond nanocrystals as scattering optical labels

    International Nuclear Information System (INIS)

    Smith, Bradley R.; Niebert, Marcus; Plakhotnik, Taras; Zvyagin, Andrei V.

    2007-01-01

    We report on the first demonstration of nanodiamond (ND) as a scattering optical label in a biological environment. NDs were efficiently transfected into cells using cationic liposomes, and imaged using differential interference and Hoffman modulation 'space' contrast microscopy techniques. We have shown that 55 nm NDs are biologically inert and produce a bright signal compared to the cell background. ND as a scattering label presents the possibility for extended biological imaging with relatively little thermal or biochemical perturbations due to the optical transparency and biologically inert nature of diamond

  4. Optic Disc and Optic Cup Segmentation Methodologies for Glaucoma Image Detection: A Survey

    Science.gov (United States)

    Almazroa, Ahmed; Burman, Ritambhar; Raahemifar, Kaamran; Lakshminarayanan, Vasudevan

    2015-01-01

    Glaucoma is the second leading cause of loss of vision in the world. Examining the head of optic nerve (cup-to-disc ratio) is very important for diagnosing glaucoma and for patient monitoring after diagnosis. Images of optic disc and optic cup are acquired by fundus camera as well as Optical Coherence Tomography. The optic disc and optic cup segmentation techniques are used to isolate the relevant parts of the retinal image and to calculate the cup-to-disc ratio. The main objective of this paper is to review segmentation methodologies and techniques for the disc and cup boundaries which are utilized to calculate the disc and cup geometrical parameters automatically and accurately to help the professionals in the glaucoma to have a wide view and more details about the optic nerve head structure using retinal fundus images. We provide a brief description of each technique, highlighting its classification and performance metrics. The current and future research directions are summarized and discussed. PMID:26688751

  5. Optic Disc and Optic Cup Segmentation Methodologies for Glaucoma Image Detection: A Survey

    Directory of Open Access Journals (Sweden)

    Ahmed Almazroa

    2015-01-01

    Full Text Available Glaucoma is the second leading cause of loss of vision in the world. Examining the head of optic nerve (cup-to-disc ratio is very important for diagnosing glaucoma and for patient monitoring after diagnosis. Images of optic disc and optic cup are acquired by fundus camera as well as Optical Coherence Tomography. The optic disc and optic cup segmentation techniques are used to isolate the relevant parts of the retinal image and to calculate the cup-to-disc ratio. The main objective of this paper is to review segmentation methodologies and techniques for the disc and cup boundaries which are utilized to calculate the disc and cup geometrical parameters automatically and accurately to help the professionals in the glaucoma to have a wide view and more details about the optic nerve head structure using retinal fundus images. We provide a brief description of each technique, highlighting its classification and performance metrics. The current and future research directions are summarized and discussed.

  6. Functional imaging of small tissue volumes with diffuse optical tomography

    Science.gov (United States)

    Klose, Alexander D.; Hielscher, Andreas H.

    2006-03-01

    Imaging of dynamic changes in blood parameters, functional brain imaging, and tumor imaging are the most advanced application areas of diffuse optical tomography (DOT). When dealing with the image reconstruction problem one is faced with the fact that near-infrared photons, unlike X-rays, are highly scattered when they traverse biological tissue. Image reconstruction schemes are required that model the light propagation inside biological tissue and predict measurements on the tissue surface. By iteratively changing the tissue-parameters until the predictions agree with the real measurements, a spatial distribution of optical properties inside the tissue is found. The optical properties can be related to the tissue oxygenation, inflammation, or to the fluorophore concentration of a biochemical marker. If the model of light propagation is inaccurate, the reconstruction process will lead to an inaccurate result as well. Here, we focus on difficulties that are encountered when DOT is employed for functional imaging of small tissue volumes, for example, in cancer studies involving small animals, or human finger joints for early diagnosis of rheumatoid arthritis. Most of the currently employed image reconstruction methods rely on the diffusion theory that is an approximation to the equation of radiative transfer. But, in the cases of small tissue volumes and tissues that contain low scattering regions diffusion theory has been shown to be of limited applicability Therefore, we employ a light propagation model that is based on the equation of radiative transfer, which promises to overcome the limitations.

  7. FIRST IMAGES FROM THE FOCUSING OPTICS X-RAY SOLAR IMAGER

    Energy Technology Data Exchange (ETDEWEB)

    Krucker, Säm; Glesener, Lindsay; Turin, Paul; McBride, Stephen; Glaser, David; Fermin, Jose; Lin, Robert [Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA (United States); Christe, Steven [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Ishikawa, Shin-nosuke [National Astronomical Observatory, Mitaka (Japan); Ramsey, Brian; Gubarev, Mikhail; Kilaru, Kiranmayee [NASA Marshall Space Flight Center, Huntsville, AL (United States); Takahashi, Tadayuki; Watanabe, Shin; Saito, Shinya [Institute of Space and Astronautical Science (ISAS)/JAXA, Sagamihara (Japan); Tajima, Hiroyasu [Solar-Terrestial Environment Laboratory, Nagoya University, Nagoya (Japan); Tanaka, Takaaki [Department of Physics, Kyoto University, Kyoto (Japan); White, Stephen [Air Force Research Laboratory, Albuquerque, NM (United States)

    2014-10-01

    The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket payload flew for the first time on 2012 November 2, producing the first focused images of the Sun above 5 keV. To enable hard X-ray (HXR) imaging spectroscopy via direct focusing, FOXSI makes use of grazing-incidence replicated optics combined with fine-pitch solid-state detectors. On its first flight, FOXSI observed several targets that included active regions, the quiet Sun, and a GOES-class B2.7 microflare. This Letter provides an introduction to the FOXSI instrument and presents its first solar image. These data demonstrate the superiority in sensitivity and dynamic range that is achievable with a direct HXR imager with respect to previous, indirect imaging methods, and illustrate the technological readiness for a spaceborne mission to observe HXRs from solar flares via direct focusing optics.

  8. Automatic Detection of Optic Disc in Retinal Image by Using Keypoint Detection, Texture Analysis, and Visual Dictionary Techniques

    Directory of Open Access Journals (Sweden)

    Kemal Akyol

    2016-01-01

    Full Text Available With the advances in the computer field, methods and techniques in automatic image processing and analysis provide the opportunity to detect automatically the change and degeneration in retinal images. Localization of the optic disc is extremely important for determining the hard exudate lesions or neovascularization, which is the later phase of diabetic retinopathy, in computer aided eye disease diagnosis systems. Whereas optic disc detection is fairly an easy process in normal retinal images, detecting this region in the retinal image which is diabetic retinopathy disease may be difficult. Sometimes information related to optic disc and hard exudate information may be the same in terms of machine learning. We presented a novel approach for efficient and accurate localization of optic disc in retinal images having noise and other lesions. This approach is comprised of five main steps which are image processing, keypoint extraction, texture analysis, visual dictionary, and classifier techniques. We tested our proposed technique on 3 public datasets and obtained quantitative results. Experimental results show that an average optic disc detection accuracy of 94.38%, 95.00%, and 90.00% is achieved, respectively, on the following public datasets: DIARETDB1, DRIVE, and ROC.

  9. Automatic computer aided analysis algorithms and system for adrenal tumors on CT images.

    Science.gov (United States)

    Chai, Hanchao; Guo, Yi; Wang, Yuanyuan; Zhou, Guohui

    2017-12-04

    The adrenal tumor will disturb the secreting function of adrenocortical cells, leading to many diseases. Different kinds of adrenal tumors require different therapeutic schedules. In the practical diagnosis, it highly relies on the doctor's experience to judge the tumor type by reading the hundreds of CT images. This paper proposed an automatic computer aided analysis method for adrenal tumors detection and classification. It consisted of the automatic segmentation algorithms, the feature extraction and the classification algorithms. These algorithms were then integrated into a system and conducted on the graphic interface by using MATLAB Graphic user interface (GUI). The accuracy of the automatic computer aided segmentation and classification reached 90% on 436 CT images. The experiments proved the stability and reliability of this automatic computer aided analytic system.

  10. Imaging of macrophage dynamics with optical coherence tomography in anterior ischemic optic neuropathy.

    Science.gov (United States)

    Kokona, Despina; Häner, Nathanael U; Ebneter, Andreas; Zinkernagel, Martin S

    2017-01-01

    Anterior ischemic optic neuropathy (AION) is a relatively common cause of visual loss and results from hypoperfusion of the small arteries of the anterior portion of the optic nerve. AION is the leading cause of sudden optic nerve related vision loss with approximately 10 cases per 100'000 in the population over 50 years. To date there is no established treatment for AION and therefore a better understanding of the events occurring at the level of the optic nerve head (ONH) would be important to design future therapeutic strategies. The optical properties of the eye allow imaging of the optic nerve in vivo, which is a part of the CNS, during ischemia. Experimentally laser induced optic neuropathy (eLiON) displays similar anatomical features as anterior ischemic optic neuropathy in humans. After laser induced optic neuropathy we show that hyperreflective dots in optical coherence tomography correspond to mononuclear cells in histology. Using fluorescence-activated flow cytometry (FACS) we found these cells to peak one week after eLiON. These observations were translated to OCT findings in patients with AION, where similar dynamics of hyperreflective dots at the ONH were identified. Our data suggests that activated macrophages can be identified as hyperreflective dots in OCT. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Glaucoma severity affects diffusion tensor imaging (DTI) parameters of the optic nerve and optic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sidek, S. [Department of Biomedical Imaging, University Malaya, Research Imaging Centre, Faculty of Medicine, University Malaya (Malaysia); Medical Imaging Unit, Faculty of Medicine, Universiti Teknologi MARA, Selangor (Malaysia); Ramli, N. [Department of Biomedical Imaging, University Malaya, Research Imaging Centre, Faculty of Medicine, University Malaya (Malaysia); Rahmat, K., E-mail: katt_xr2000@yahoo.com [Department of Biomedical Imaging, University Malaya, Research Imaging Centre, Faculty of Medicine, University Malaya (Malaysia); Ramli, N.M.; Abdulrahman, F. [Department of Ophthalmology, Faculty of Medicine, University Malaya, Kuala Lumpur (Malaysia); Tan, L.K. [Department of Biomedical Imaging, University Malaya, Research Imaging Centre, Faculty of Medicine, University Malaya (Malaysia)

    2014-08-15

    Objectives: To evaluate whether MR diffusion tensor imaging (DTI) of the optic nerve and optic radiation in glaucoma patients provides parameters to discriminate between mild and severe glaucoma and to determine whether DTI derived indices correlate with retinal nerve fibre layer (RNFL) thickness. Methods: 3-Tesla DTI was performed on 90 subjects (30 normal, 30 mild glaucoma and 30 severe glaucoma subjects) and the FA and MD of the optic nerve and optic radiation were measured. The categorisation into mild and severe glaucoma was done using the Hodapp–Parrish–Anderson (HPA) classification. RNFL thickness was also assessed on all subjects using OCT. Receiver operating characteristic (ROC) analysis and Spearman's correlation coefficient was carried out. Results: FA and MD values in the optic nerve and optic radiation decreased and increased respectively as the disease progressed. FA at the optic nerve had the highest sensitivity (87%) and specificity (80%). FA values displayed the strongest correlation with RNFL thickness in the optic nerve (r = 0.684, p ≤ 0.001) while MD at the optic radiation showed the weakest correlation with RNFL thickness (r = −0.360, p ≤ 0.001). Conclusions: The high sensitivity and specificity of DTI-derived FA values in the optic nerve and the strong correlation between DTI-FA and RNFL thickness suggest that these parameters could serve as indicators of disease severity.

  12. Glaucoma severity affects diffusion tensor imaging (DTI) parameters of the optic nerve and optic radiation

    International Nuclear Information System (INIS)

    Sidek, S.; Ramli, N.; Rahmat, K.; Ramli, N.M.; Abdulrahman, F.; Tan, L.K.

    2014-01-01

    Objectives: To evaluate whether MR diffusion tensor imaging (DTI) of the optic nerve and optic radiation in glaucoma patients provides parameters to discriminate between mild and severe glaucoma and to determine whether DTI derived indices correlate with retinal nerve fibre layer (RNFL) thickness. Methods: 3-Tesla DTI was performed on 90 subjects (30 normal, 30 mild glaucoma and 30 severe glaucoma subjects) and the FA and MD of the optic nerve and optic radiation were measured. The categorisation into mild and severe glaucoma was done using the Hodapp–Parrish–Anderson (HPA) classification. RNFL thickness was also assessed on all subjects using OCT. Receiver operating characteristic (ROC) analysis and Spearman's correlation coefficient was carried out. Results: FA and MD values in the optic nerve and optic radiation decreased and increased respectively as the disease progressed. FA at the optic nerve had the highest sensitivity (87%) and specificity (80%). FA values displayed the strongest correlation with RNFL thickness in the optic nerve (r = 0.684, p ≤ 0.001) while MD at the optic radiation showed the weakest correlation with RNFL thickness (r = −0.360, p ≤ 0.001). Conclusions: The high sensitivity and specificity of DTI-derived FA values in the optic nerve and the strong correlation between DTI-FA and RNFL thickness suggest that these parameters could serve as indicators of disease severity

  13. Determination of free acidity in nuclear fuel reprocessing streams by fiber optic aided spectrophotometric technique

    International Nuclear Information System (INIS)

    Ganesh, S.; Velavendan, P.; Pandey, N.K.; Kamachi Mudali, U.; Natarajan, R.

    2014-01-01

    A fiber optic aided spectrophotometric technique has been developed for the determination of free acidity in nuclear fuel reprocessing streams. The developed method is simple, accurate and applicable to all ranges of nitric acid and heavy metal concentrations relevant to the purex process. The method is based on the formation of yellow colour with an acid-sensitive indicator such as chrome azurol s, the intensity of yellow colour is proportional to the acid concentration. The system obeys Lambert-Beer's law at 455 nm in the range of acidity 1-10 M of nitric acid. The results obtained are reproducible with standard deviation 2% and relative error is less than 3%. The results obtained by the developed technique are in good agreement with those obtained by the standard procedure. This method is adaptable for remote operation and on-line monitoring. (author)

  14. A novel optical gating method for laser gated imaging

    Science.gov (United States)

    Ginat, Ran; Schneider, Ron; Zohar, Eyal; Nesher, Ofer

    2013-06-01

    For the past 15 years, Elbit Systems is developing time-resolved active laser-gated imaging (LGI) systems for various applications. Traditional LGI systems are based on high sensitive gated sensors, synchronized to pulsed laser sources. Elbit propriety multi-pulse per frame method, which is being implemented in LGI systems, improves significantly the imaging quality. A significant characteristic of the LGI is its ability to penetrate a disturbing media, such as rain, haze and some fog types. Current LGI systems are based on image intensifier (II) sensors, limiting the system in spectral response, image quality, reliability and cost. A novel propriety optical gating module was developed in Elbit, untying the dependency of LGI system on II. The optical gating module is not bounded to the radiance wavelength and positioned between the system optics and the sensor. This optical gating method supports the use of conventional solid state sensors. By selecting the appropriate solid state sensor, the new LGI systems can operate at any desired wavelength. In this paper we present the new gating method characteristics, performance and its advantages over the II gating method. The use of the gated imaging systems is described in a variety of applications, including results from latest field experiments.

  15. The diffractive achromat full spectrum computational imaging with diffractive optics

    KAUST Repository

    Peng, Yifan

    2016-07-11

    Diffractive optical elements (DOEs) have recently drawn great attention in computational imaging because they can drastically reduce the size and weight of imaging devices compared to their refractive counterparts. However, the inherent strong dispersion is a tremendous obstacle that limits the use of DOEs in full spectrum imaging, causing unacceptable loss of color fidelity in the images. In particular, metamerism introduces a data dependency in the image blur, which has been neglected in computational imaging methods so far. We introduce both a diffractive achromat based on computational optimization, as well as a corresponding algorithm for correction of residual aberrations. Using this approach, we demonstrate high fidelity color diffractive-only imaging over the full visible spectrum. In the optical design, the height profile of a diffractive lens is optimized to balance the focusing contributions of different wavelengths for a specific focal length. The spectral point spread functions (PSFs) become nearly identical to each other, creating approximately spectrally invariant blur kernels. This property guarantees good color preservation in the captured image and facilitates the correction of residual aberrations in our fast two-step deconvolution without additional color priors. We demonstrate our design of diffractive achromat on a 0.5mm ultrathin substrate by photolithography techniques. Experimental results show that our achromatic diffractive lens produces high color fidelity and better image quality in the full visible spectrum. © 2016 ACM.

  16. Endoscopic optical coherence tomography for imaging the tympanic membrane

    Science.gov (United States)

    Burkhardt, Anke; Walther, Julia; Cimalla, Peter; Bornitz, Matthias; Koch, Edmund

    2011-06-01

    Optical coherence tomography (OCT) is an imaging modality that enables micrometer-scale contactless subsurface imaging of biological tissue. Endoscopy, as another imaging method, has the potential of imaging tubular organs and cavities and therefore has opened up several application areas not accessible before. The combination of OCT and endoscopy uses the advantages of both methods and consequently allows additional imaging of structures beneath surfaces inside cavities. Currently, visual investigations on the surface of the human tympanic membrane are possible but only with expert eyes. up to now, visual imaging of the outer ear up to the tympanic membrane can be carried out by an otoscope, an operating microscope or an endoscope. In contrast to these devices, endoscopy has the advantage of imaging the whole tympanic membrane with one view. The intention of this research is the development of an endoscopic optical coherence tomography (EOCT) device for imaging the tympanic membrane depth-resolved and structures behind it. Detection of fluids in the middle ear, which function as an indicator for otitis media, could help to avoid the application of antibiotics. It is possible to detect a congeries of fluids with the otoscope but the ambition is to the early detection by OCT. The developed scanner head allows imaging in working distances in the range from zero up to 5 mm with a field of view of 2 mm. In the next step, the scanner head should be improved to increase the working distance and the field of view.

  17. Optical replication techniques for image slicers

    Czech Academy of Sciences Publication Activity Database

    Schmoll, J.; Robertson, D.J.; Dubbeldam, C.M.; Bortoletto, F.; Pína, L.; Hudec, René; Prieto, E.; Norrie, C.; Ramsay- Howat, S.

    2006-01-01

    Roč. 50, 4-5 (2006), s. 263-266 ISSN 1387-6473 Institutional research plan: CEZ:AV0Z10030501 Keywords : smart focal planes * image slicers * replication Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.914, year: 2006

  18. Table-top diffuse optical imaging

    NARCIS (Netherlands)

    Sturgeon, K.A.; Bakker, L.P.

    2006-01-01

    This report describes the work done during a six months internshipat Philips Research for a Masters in Electronic and Electrical Engineering. An existing table-top tomography system for measuring lightin phantom breasts was restored. Updated software control and image reconstruction software was

  19. Fluorescence optical imaging in anticancer drug delivery

    Czech Academy of Sciences Publication Activity Database

    Etrych, Tomáš; Lucas, H.; Janoušková, Olga; Chytil, Petr; Mueller, T.; Mäder, K.

    2016-01-01

    Roč. 226, 28 March (2016), s. 168-181 ISSN 0168-3659 R&D Projects: GA ČR(CZ) GA15-02986S; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : fluorescence imaging * drug delivery * theranostics Subject RIV: CD - Macromolecular Chemistry Impact factor: 7.786, year: 2016

  20. Heuristic Enhancement of Magneto-Optical Images for NDE

    Science.gov (United States)

    Cacciola, Matteo; Megali, Giuseppe; Pellicanò, Diego; Calcagno, Salvatore; Versaci, Mario; Morabito, FrancescoCarlo

    2010-12-01

    The quality of measurements in nondestructive testing and evaluation plays a key role in assessing the reliability of different inspection techniques. Each different technique, like the magneto-optic imaging here treated, is affected by some special types of noise which are related to the specific device used for their acquisition. Therefore, the design of even more accurate image processing is often required by relevant applications, for instance, in implementing integrated solutions for flaw detection and characterization. The aim of this paper is to propose a preprocessing procedure based on independent component analysis (ICA) to ease the detection of rivets and/or flaws in the specimens under test. A comparison of the proposed approach with some other advanced image processing methodologies used for denoising magneto-optic images (MOIs) is carried out, in order to show advantages and weakness of ICA in improving the accuracy and performance of the rivets/flaw detection.

  1. Demonstration of brain tumors by computer-aided image intensification

    International Nuclear Information System (INIS)

    Froeder, M.; Herbst, M.; Erlangen-Nuernberg Univ., Erlangen

    1987-01-01

    It is possible to distinguish cerebral tumours from brain tissue after the injection of contrast by using an X-ray-video chain. Weak contrast situated behind strongly absorbing bone can be demonstrated by a non-tomographic method by reducing the noise level and by using a special subtraction technique designed for optimal iodine contrast. For this examination, four series of images are prepared and stored (one before the administration of contrast and three subsequently). Dynamic studies of the distribution of contrast in the intra- and extra-vascular spaces of brain and tumour are produced by subtracting the stored images. The demonstration of blood-flow dynamics improves the differentiation of the tumour and, in particular, makes it possible to distinguish the tumour from cerebral oedema. The current input into the X-ray tube is low and the skin dose on the entry side is less than 0.6 R for each series. The usefulness of the method in complementing computer tomography for surgical and radiation treatment is illustrated from various types of tumour. Up to the present 35 patients have been examined by this method. (orig.) [de

  2. The optics of microscope image formation.

    Science.gov (United States)

    Wolf, David E

    2013-01-01

    Although geometric optics gives a good understanding of how the microscope works, it fails in one critical area, which is explaining the origin of microscope resolution. To accomplish this, one must consider the microscope from the viewpoint of physical optics. This chapter describes the theory of the microscope-relating resolution to the highest spatial frequency that a microscope can collect. The chapter illustrates how Huygens' principle or construction can be used to explain the propagation of a plane wave. It is shown that this limit increases with increasing numerical aperture (NA). As a corollary to this, resolution increases with decreasing wavelength because of how NA depends on wavelength. The resolution is higher for blue light than red light. Resolution is dependent on contrast, and the higher the contrast, the higher the resolution. This last point relates to issues of signal-to-noise and dynamic range. The use of video and new digital cameras has necessitated redefining classical limits such as those of Rayleigh's criterion. Copyright © 2007 Elsevier Inc. All rights reserved.

  3. Quantifying Optical Microangiography Images Obtained from a Spectral Domain Optical Coherence Tomography System

    Directory of Open Access Journals (Sweden)

    Roberto Reif

    2012-01-01

    Full Text Available The blood vessel morphology is known to correlate with several diseases, such as cancer, and is important for describing several tissue physiological processes, like angiogenesis. Therefore, a quantitative method for characterizing the angiography obtained from medical images would have several clinical applications. Optical microangiography (OMAG is a method for obtaining three-dimensional images of blood vessels within a volume of tissue. In this study we propose to quantify OMAG images obtained with a spectral domain optical coherence tomography system. A technique for determining three measureable parameters (the fractal dimension, the vessel length fraction, and the vessel area density is proposed and validated. Finally, the repeatability for acquiring OMAG images is determined, and a new method for analyzing small areas from these images is proposed.

  4. Neutron imaging for inertial confinement fusion and molecular optic imaging

    International Nuclear Information System (INIS)

    Delage, O.

    2010-01-01

    Scientific domains that require imaging of micrometric/nano-metric objects are dramatically increasing (Plasma Physics, Astrophysics, Biotechnology, Earth Sciences...). Difficulties encountered in imaging smaller and smaller objects make this research area more and more challenging and in constant evolution. The two scientific domains, through which this study has been led, are the neutron imaging in the context of the inertial confinement fusion and the fluorescence molecular imaging. Work presented in this thesis has two main objectives. The first one is to describe the instrumentation characteristics that require such imagery and, relatively to the scientific domains considered, identify parameters likely to optimize the imaging system accuracy. The second one is to present the developed data analysis and reconstruction methods able to provide spatial resolution adapted to the size of the observed object. Similarities of numerical algorithms used in these two scientific domains, which goals are quiet different, show how micrometric/nano-metric object imaging is a research area at the border of a large number of scientific disciplines. (author)

  5. IMAGE PROCESSING BASED OPTICAL CHARACTER RECOGNITION USING MATLAB

    OpenAIRE

    Jyoti Dalal*1 & Sumiran Daiya2

    2018-01-01

    Character recognition techniques associate a symbolic identity with the image of character. In a typical OCR systems input characters are digitized by an optical scanner. Each character is then located and segmented, and the resulting character image is fed into a pre-processor for noise reduction and normalization. Certain characteristics are the extracted from the character for classification. The feature extraction is critical and many different techniques exist, each having its strengths ...

  6. Non-Contact Optical Ultrasound Concept for Biomedical Imaging

    Science.gov (United States)

    2016-11-03

    reflection images of a phantom limb that contains muscle and bone surrogate materials and use the data for inversion of the Young’s modulus...CT are the dominant modalities used for many medical imaging applications including head injury, cancer, fractures and musculoskeletal disease. MRI...original higher frequency signal, but is oscillating at a lower more easily processed carrier frequency. Electrical field oscillations in the optical

  7. Cytology 3D structure formation based on optical microscopy images

    Science.gov (United States)

    Pronichev, A. N.; Polyakov, E. V.; Shabalova, I. P.; Djangirova, T. V.; Zaitsev, S. M.

    2017-01-01

    The article the article is devoted to optimization of the parameters of imaging of biological preparations in optical microscopy using a multispectral camera in visible range of electromagnetic radiation. A model for the image forming of virtual preparations was proposed. The optimum number of layers was determined for the object scan in depth and holistic perception of its switching according to the results of the experiment.

  8. Nanotechnology-Enabled Optical Molecular Imaging of Breast Cancer

    Science.gov (United States)

    2013-09-01

    percent of invasive carcinoma and grows slowly over the course of years. It is very soft and looks like gray-blue gelatin . Two other invasive...Nitin, N., D. J. Javier, et al. (2007). "Widefield and high-resolution reflectance imaging of gold and silver nanospheres." J Biomed Opt 12(5...2010. “Widefield and High-resolution Reflectance Imaging of Gold and Silver Nanospheres.” Journal of Biomedical Optics 12 (5): 051505. doi:10.1117

  9. Cytology 3D structure formation based on optical microscopy images

    International Nuclear Information System (INIS)

    Pronichev, A N; Polyakov, E V; Zaitsev, S M; Shabalova, I P; Djangirova, T V

    2017-01-01

    The article the article is devoted to optimization of the parameters of imaging of biological preparations in optical microscopy using a multispectral camera in visible range of electromagnetic radiation. A model for the image forming of virtual preparations was proposed. The optimum number of layers was determined for the object scan in depth and holistic perception of its switching according to the results of the experiment. (paper)

  10. Information security system based on virtual-optics imaging methodology and public key infrastructure

    Science.gov (United States)

    Peng, Xiang; Zhang, Peng; Cai, Lilong

    In this paper, we present a virtual-optical based information security system model with the aid of public-key-infrastructure (PKI) techniques. The proposed model employs a hybrid architecture in which our previously published encryption algorithm based on virtual-optics imaging methodology (VOIM) can be used to encipher and decipher data while an asymmetric algorithm, for example RSA, is applied for enciphering and deciphering the session key(s). For an asymmetric system, given an encryption key, it is computationally infeasible to determine the decryption key and vice versa. The whole information security model is run under the framework of PKI, which is on basis of public-key cryptography and digital signatures. This PKI-based VOIM security approach has additional features like confidentiality, authentication, and integrity for the purpose of data encryption under the environment of network.

  11. Optical design considerations when imaging the fundus with an adaptive optics correction

    Science.gov (United States)

    Wang, Weiwei; Campbell, Melanie C. W.; Kisilak, Marsha L.; Boyd, Shelley R.

    2008-06-01

    Adaptive Optics (AO) technology has been used in confocal scanning laser ophthalmoscopes (CSLO) which are analogous to confocal scanning laser microscopes (CSLM) with advantages of real-time imaging, increased image contrast, a resistance to image degradation by scattered light, and improved optical sectioning. With AO, the instrumenteye system can have low enough aberrations for the optical quality to be limited primarily by diffraction. Diffraction-limited, high resolution imaging would be beneficial in the understanding and early detection of eye diseases such as diabetic retinopathy. However, to maintain diffraction-limited imaging, sufficient pixel sampling over the field of view is required, resulting in the need for increased data acquisition rates for larger fields. Imaging over smaller fields may be a disadvantage with clinical subjects because of fixation instability and the need to examine larger areas of the retina. Reduction in field size also reduces the amount of light sampled per pixel, increasing photon noise. For these reasons, we considered an instrument design with a larger field of view. When choosing scanners to be used in an AOCSLO, the ideal frame rate should be above the flicker fusion rate for the human observer and would also allow user control of targets projected onto the retina. In our AOCSLO design, we have studied the tradeoffs between field size, frame rate and factors affecting resolution. We will outline optical approaches to overcome some of these tradeoffs and still allow detection of the earliest changes in the fundus in diabetic retinopathy.

  12. Visual impairment secondary to congenital glaucoma in children: visual responses, optical correction and use of low vision AIDS

    Directory of Open Access Journals (Sweden)

    Maria Aparecida Onuki Haddad

    2009-01-01

    Full Text Available INTRODUCTION: Congenital glaucoma is frequently associated with visual impairment due to optic nerve damage, corneal opacities, cataracts and amblyopia. Poor vision in childhood is related to global developmental problems, and referral to vision habilitation/rehabilitation services should be without delay to promote efficient management of the impaired vision. OBJECTIVE: To analyze data concerning visual response, the use of optical correction and prescribed low vision aids in a population of children with congenital glaucoma. METHOD: The authors analyzed data from 100 children with congenital glaucoma to assess best corrected visual acuity, prescribed optical correction and low vision aids. RESULTS: Fifty-five percent of the sample were male, 43% female. The mean age was 6.3 years. Two percent presented normal visual acuity levels, 29% mild visual impairment, 28% moderate visual impairment, 15% severe visual impairment, 11% profound visual impairment, and 15% near blindness. Sixty-eight percent received optical correction for refractive errors. Optical low vision aids were adopted for distance vision in 34% of the patients and for near vision in 6%. A manual monocular telescopic system with 2.8 × magnification was the most frequently prescribed low vision aid for distance, and for near vision a +38 diopter illuminated stand magnifier was most frequently prescribed. DISCUSSION AND CONCLUSION: Careful low vision assessment and the appropriate prescription of optical corrections and low vision aids are mandatory in children with congenital glaucoma, since this will assist their global development, improving efficiency in daily life activities and promoting social and educational inclusion.

  13. Magnetic resonance imaging in optic nerve lesions with multiple sclerosis

    International Nuclear Information System (INIS)

    Kojima, Shigeyuki; Hirayama, Keizo; Kakisu, Yonetsugu; Adachi, Emiko

    1990-01-01

    Magnetic resonance imaging (MRI) of the optic nerve was performed in 10 patients with multiple sclerosis (MS) using short inversion time inversion recovery (STIR) pulse sequences, and the results were compared with the visual evoked potentials (VEP). The 10 patients had optic neuritis in the chronic or remitting phase together with additional symptoms or signs allowing a diagnosis of clinically definite or probable MS. Sixteen optic nerves were clinically affected and 4 were unaffected. MRI was performed using a 0.5 tesla supeconducting unit, and multiple continuous 5 mm coronal and axial STIR images were obtained. A lesion was judged to be present if a focal or diffuse area of increased signal intensity was detectd in the optic nerve. In VEP, a delay in peak latency or no P 100 component was judged to be abnormal. With regard to the clinically affected optic nerves, MRI revealed a region of increased signal intensity in 14/16 (88%) and the VEP was abnormal in 16/16 (100%). In the clinically unaffected optic nerves, MRI revealed an increased signal intensity in 2/4 (50%). One of these nerves had an abnormal VEP and the other had a VEP latency at the upper limit of normal. The VEP was abnormal in 1/4 (25%). In the clinically affected optic nerves, the degree of loss of visual acuity was not associated with the longitudinal extent of the lesions shown by MRI. The mean length was 17.5 mm in optic nerves with a slight disturbance of visual acuity and 15.0 mm in nerves with severe visual loss. MRI using STIR pulse sequences was found to be almost as sensitive as VEP in detecting both clinically affected and unaffected optic nerve lesions in patients with MS, and was useful in visualizing the location or size of the lesions. (author)

  14. IMAGING AS AN AID TO THE DIAGNOSIS OF ACUTE APPENDICITIS

    Directory of Open Access Journals (Sweden)

    Lionel I Wijesuriya

    2007-01-01

    Full Text Available Acute appendicitis has been known as a disease entity for well over a century but a confident diagnosis before surgeryin all patients suspected of the condition is still not possible. Timely diagnosis is essential to minimise morbidity due topossible perforation of the inflamed organ in the event treatment is delayed; so much so that surgeons often preferredto operate at the slightest suspicion of the diagnosis in the past. This resulted in the removal of many normal appendixes.When the diagnosis of appendicitis is clear from the history and clinical examination, then no further investigation isnecessary and prompt surgical treatment is appropriate. Where there is doubt about the diagnosis however it is advisableto resort to imaging studies such as abdominal ultrasound or computed tomography to clear such suspicions beforesubjecting the patient to an appendicectomy. These studies would also help avoid delays in surgery in deservingpatients.

  15. Photo-magnetic imaging: resolving optical contrast at MRI resolution

    International Nuclear Information System (INIS)

    Lin Yuting; Thayer, David; Luk, Alex L; Gulsen, Gultekin; Gao Hao

    2013-01-01

    In this paper, we establish the mathematical framework of a novel imaging technique, namely photo-magnetic imaging (PMI). PMI uses a laser to illuminate biological tissues and measure the induced temperature variations using magnetic resonance imaging (MRI). PMI overcomes the limitation of conventional optical imaging and allows imaging of the optical contrast at MRI spatial resolution. The image reconstruction for PMI, using a finite-element-based algorithm with an iterative approach, is presented in this paper. The quantitative accuracy of PMI is investigated for various inclusion sizes, depths and absorption values. Then, a comparison between conventional diffuse optical tomography (DOT) and PMI is carried out to illustrate the superior performance of PMI. An example is presented showing that two 2 mm diameter inclusions embedded 4.5 mm deep and located side by side in a 25 mm diameter circular geometry medium are recovered as a single 6 mm diameter object with DOT. However, these two objects are not only effectively resolved with PMI, but their true concentrations are also recovered successfully. (paper)

  16. Optical imaging and magnetophoresis of nanorods

    International Nuclear Information System (INIS)

    Lim, Jit Kang; Tan, David X.; Lanni, Frederick; Tilton, Robert D.; Majetich, Sara A.

    2009-01-01

    Peclet number analysis is performed to probe the convective motion of nanospheres and nanorods under the influence of magnetophoresis and diffusion. Under most circumstances, magnetophoretic behaviour dominates diffusion for nanorods, as the magnetic field lines tend to align the magnetic moment along the rod axis. The synthesis and dispersion of fluorophore-tagged nanorods are described. Fluorescence microscopy is employed to image the nanorod motion in a magnetic field gradient. The preliminary experimental data are consistent with the Peclet number analysis.

  17. Establishing Information Security Systems via Optical Imaging

    Science.gov (United States)

    2015-08-11

    SLM, spatial light modulator; BSC, non - polarizing beam splitter cube; CCD, charge-coupled device. In computational ghost imaging, a series of...Laser Object Computer Fig. 5. A schematic setup for the proposed method using holography: BSC, Beam splitter cube; CCD, Charge-coupled device. The...interference between reference and object beams . (a) (e) (d) (c) (b) Distribution Code A: Approved for public release, distribution is unlimited

  18. Cryogenic optical systems for the rapid infrared imager/spectrometer (RIMAS)

    Science.gov (United States)

    Capone, John I.; Content, David A.; Kutyrev, Alexander S.; Robinson, Frederick D.; Lotkin, Gennadiy N.; Toy, Vicki L.; Veilleux, Sylvain; Moseley, Samuel H.; Gehrels, Neil A.; Vogel, Stuart N.

    2014-07-01

    The Rapid Infrared Imager/Spectrometer (RIMAS) is designed to perform follow-up observations of transient astronomical sources at near infrared (NIR) wavelengths (0.9 - 2.4 microns). In particular, RIMAS will be used to perform photometric and spectroscopic observations of gamma-ray burst (GRB) afterglows to compliment the Swift satellite's science goals. Upon completion, RIMAS will be installed on Lowell Observatory's 4.3 meter Discovery Channel Telescope (DCT) located in Happy Jack, Arizona. The instrument's optical design includes a collimator lens assembly, a dichroic to divide the wavelength coverage into two optical arms (0.9 - 1.4 microns and 1.4 - 2.4 microns respectively), and a camera lens assembly for each optical arm. Because the wavelength coverage extends out to 2.4 microns, all optical elements are cooled to ~70 K. Filters and transmission gratings are located on wheels prior to each camera allowing the instrument to be quickly configured for photometry or spectroscopy. An athermal optomechanical design is being implemented to prevent lenses from loosing their room temperature alignment as the system is cooled. The thermal expansion of materials used in this design have been measured in the lab. Additionally, RIMAS has a guide camera consisting of four lenses to aid observers in passing light from target sources through spectroscopic slits. Efforts to align these optics are ongoing.

  19. Serial Diffusion Tensor Imaging of the Optic Radiations after Acute Optic Neuritis

    Directory of Open Access Journals (Sweden)

    Scott C. Kolbe

    2016-01-01

    Full Text Available Previous studies have reported diffusion tensor imaging (DTI changes within the optic radiations of patients after optic neuritis (ON. We aimed to study optic radiation DTI changes over 12 months following acute ON and to study correlations between DTI parameters and damage to the optic nerve and primary visual cortex (V1. We measured DTI parameters [fractional anisotropy (FA, axial diffusivity (AD, radial diffusivity (RD, and mean diffusivity (MD] from the optic radiations of 38 acute ON patients at presentation and 6 and 12 months after acute ON. In addition, we measured retinal nerve fibre layer thickness, visual evoked potential amplitude, optic radiation lesion load, and V1 thickness. At baseline, FA was reduced and RD and MD were increased compared to control. Over 12 months, FA reduced in patients at an average rate of −2.6% per annum (control = −0.51%; p=0.006. Change in FA, RD, and MD correlated with V1 thinning over 12 months (FA: R=0.450, p=0.006; RD: R=-0.428, p=0.009; MD: R=-0.365, p=0.029. In patients with no optic radiation lesions, AD significantly correlated with RNFL thinning at 12 months (R=0.489, p=0.039. In conclusion, DTI can detect optic radiation changes over 12 months following acute ON that correlate with optic nerve and V1 damage.

  20. Nonlinear Optics Approaches Towards Subdiffraction Resolution in CARS Imaging

    NARCIS (Netherlands)

    Boller, Klaus J.; Beeker, W.P.; Cleff, C.; Kruse, K.; Lee, Christopher James; Gross, P.; Offerhaus, Herman L.; Fallnich, Carsten; Herek, Jennifer Lynn; Fornasiero, E.F.; Rizzoli, S.O.

    2014-01-01

    In theoretical investigations, we review several nonlinear optical approaches towards subdiffraction-limited resolution in label-free imaging via coherent anti-Stokes Raman scattering (CARS). Using a density matrix model and numerical integration, we investigate various level schemes and

  1. Scanning tunneling microscope for magneto-optical imaging

    NARCIS (Netherlands)

    Prins, M.W.J.; Groeneveld, R.H.M.; Abraham, D.L.; Schad, R.; Kempen, van H.; Kesteren, van H.W.

    1996-01-01

    Images of magnetic bits written in a Pt/Co multilayer are presented. Using photosensitive semiconducting tips in a scanning tunneling microscope the surface topography as well as the polarization-dependent optical transmission are measured. Magnetic contrast is achieved by detection of the Faraday

  2. A super-oscillatory lens optical microscope for subwavelength imaging.

    Science.gov (United States)

    Rogers, Edward T F; Lindberg, Jari; Roy, Tapashree; Savo, Salvatore; Chad, John E; Dennis, Mark R; Zheludev, Nikolay I

    2012-03-25

    The past decade has seen an intensive effort to achieve optical imaging resolution beyond the diffraction limit. Apart from the Pendry-Veselago negative index superlens, implementation of which in optics faces challenges of losses and as yet unattainable fabrication finesse, other super-resolution approaches necessitate the lens either to be in the near proximity of the object or manufactured on it, or work only for a narrow class of samples, such as intensely luminescent or sparse objects. Here we report a new super-resolution microscope for optical imaging that beats the diffraction limit of conventional instruments and the recently demonstrated near-field optical superlens and hyperlens. This non-invasive subwavelength imaging paradigm uses a binary amplitude mask for direct focusing of laser light into a subwavelength spot in the post-evanescent field by precisely tailoring the interference of a large number of beams diffracted from a nanostructured mask. The new technology, which--in principle--has no physical limits on resolution, could be universally used for imaging at any wavelength and does not depend on the luminescence of the object, which can be tens of micrometres away from the mask. It has been implemented as a straightforward modification of a conventional microscope showing resolution better than λ/6.

  3. Determination of optical absorption coefficient with focusing photoacoustic imaging.

    Science.gov (United States)

    Li, Zhifang; Li, Hui; Zeng, Zhiping; Xie, Wenming; Chen, Wei R

    2012-06-01

    Absorption coefficient of biological tissue is an important factor for photothermal therapy and photoacoustic imaging. However, its determination remains a challenge. In this paper, we propose a method using focusing photoacoustic imaging technique to quantify the target optical absorption coefficient. It utilizes the ratio of the amplitude of the peak signal from the top boundary of the target to that from the bottom boundary based on wavelet transform. This method is self-calibrating. Factors, such as absolute optical fluence, ultrasound parameters, and Grüneisen parameter, can be canceled by dividing the amplitudes of the two peaks. To demonstrate this method, we quantified the optical absorption coefficient of a target with various concentrations of an absorbing dye. This method is particularly useful to provide accurate absorption coefficient for predicting the outcomes of photothermal interaction for cancer treatment with absorption enhancement.

  4. Computer-aided diagnosis workstation and network system for chest diagnosis based on multislice CT images

    Science.gov (United States)

    Satoh, Hitoshi; Niki, Noboru; Eguchi, Kenji; Moriyama, Noriyuki; Ohmatsu, Hironobu; Masuda, Hideo; Machida, Suguru

    2008-03-01

    Mass screening based on multi-helical CT images requires a considerable number of images to be read. It is this time-consuming step that makes the use of helical CT for mass screening impractical at present. To overcome this problem, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images, a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification and a vertebra body analysis algorithm for quantitative evaluation of osteoporosis likelihood by using helical CT scanner for the lung cancer mass screening. The function to observe suspicious shadow in detail are provided in computer-aided diagnosis workstation with these screening algorithms. We also have developed the telemedicine network by using Web medical image conference system with the security improvement of images transmission, Biometric fingerprint authentication system and Biometric face authentication system. Biometric face authentication used on site of telemedicine makes "Encryption of file" and Success in login" effective. As a result, patients' private information is protected. Based on these diagnostic assistance methods, we have developed a new computer-aided workstation and a new telemedicine network that can display suspected lesions three-dimensionally in a short time. The results of this study indicate that our radiological information system without film by using computer-aided diagnosis workstation and our telemedicine network system can increase diagnostic speed, diagnostic accuracy and security improvement of medical information.

  5. Optical images of quasars and radio galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, J.B.; Johnson, I.; Pyke, R.

    1988-04-01

    Matched contour plots and gray-scale diagrams are presented for 54 radio quasars or radio galaxies of redshift 0.1-0.6, observed with the Canada-France-Hawaii Telescope. All except four were recorded on the RCA1 CCD chip; four were summed from several photographic exposures behind an image tube. All except nine of the objects form the principal data base used by Hutchings (1987). Detailed comments are given on all objects, and some further measures of the objects and their companions. 12 references.

  6. Optical images of quasars and radio galaxies

    International Nuclear Information System (INIS)

    Hutchings, J.B.; Johnson, I.; Pyke, R.

    1988-01-01

    Matched contour plots and gray-scale diagrams are presented for 54 radio quasars or radio galaxies of redshift 0.1-0.6, observed with the Canada-France-Hawaii Telescope. All except four were recorded on the RCA1 CCD chip; four were summed from several photographic exposures behind an image tube. All except nine of the objects form the principal data base used by Hutchings (1987). Detailed comments are given on all objects, and some further measures of the objects and their companions. 12 references

  7. Optical images of quasars and radio galaxies

    Science.gov (United States)

    Hutchings, J. B.; Johnson, I.; Pyke, R.

    1988-04-01

    Matched contour plots and gray-scale diagrams are presented for 54 radio quasars or radio galaxies of redshift 0.1-0.6, observed with the Canada-France-Hawaii Telescope. All except four were recorded on the RCA1 CCD chip; four were summed from several photographic exposures behind an image tube. All except nine of the objects form the principal data base used by Hutchings (1987). Detailed comments are given on all objects, and some further measures of the objects and their companions.

  8. Optical Coherence Tomography in Cancer Imaging

    Science.gov (United States)

    Nam, Ahhyun Stephanie; Vakoc, Benjamin; Blauvelt, David; Chico-Calero, Isabel

    Investigations into the biology of cancer and novel cancer therapies rely on preclinical mouse models and traditional histological endpoints. Drawbacks of this approach include a limit in the number of time points for evaluation and an increased number of animals per study. This has motivated the use of intravital microscopy, which can provide longitudinal imaging of critical tumor parameters. Here, the capabilities of OCT as an intravital microscopy of the tumor microenvironment are summarized, and the state of OCT adoption into cancer research is summarized.

  9. Optical Acquisition, Image and Data Compression

    Science.gov (United States)

    1988-07-30

    It is from problems where the syntactic method is a suitable this pattern vector that one starts the analysis and approach are fingerprint ...reference axes. FiG. 3. (a) Texture of French canvas ; (b) HT of a block of Fig. 3a: (c) HT of a block of Fig. 3a with preprocessing for line thinning...the p-0 (HT) plane as it will appear in the following illustrations. Figure 3a shows the texture image of French canvas (Brodatz’s plate No. 20

  10. Towards optical brain imaging: getting light through a bone

    Science.gov (United States)

    Thompson, J. V.; Hokr, B. H.; Nodurft, D. T.; Yakovlev, V. V.

    2018-06-01

    Optical imaging and detection in biological samples is severely limited by scattering effects. In particular, optical techniques for measuring conditions beneath the skull and within the bone marrow hold significant promise when it comes to speed, sensitivity and specificity. However, the strong optical scattering due to bone hinders the realization of these methods. In this article, we propose a technique to enhance the transmittance of light through bone. This is achieved by injecting light below the top surface of the bone and utilizing multiple scattering to increase transmittance. This technique suggests that enhancements of 2-6 times may be realized by injection of light 1 mm below the surface of the bone. By enhancing the transmittance of light through bone, we will greatly improve our ability to utilize optical methods to better understand and diagnose conditions within biological media.

  11. A specialized plug-in software module for computer-aided quantitative measurement of medical images.

    Science.gov (United States)

    Wang, Q; Zeng, Y J; Huo, P; Hu, J L; Zhang, J H

    2003-12-01

    This paper presents a specialized system for quantitative measurement of medical images. Using Visual C++, we developed a computer-aided software based on Image-Pro Plus (IPP), a software development platform. When transferred to the hard disk of a computer by an MVPCI-V3A frame grabber, medical images can be automatically processed by our own IPP plug-in for immunohistochemical analysis, cytomorphological measurement and blood vessel segmentation. In 34 clinical studies, the system has shown its high stability, reliability and ease of utility.

  12. Dental calculus image based on optical coherence tomography

    Science.gov (United States)

    Hsieh, Yao-Sheng; Ho, Yi-Ching; Lee, Shyh-Yuan; Chuang, Ching-Cheng; Wang, Chun-Yang; Sun, Chia-Wei

    2011-03-01

    In this study, the dental calculus was characterized and imaged by means of swept-source optical coherence tomography (SSOCT). The refractive indices of enamel, dentin, cementum and calculus were measured as 1.625+/-0.024, 1.534+/-0.029, 1.570+/-0.021 and 1.896+/-0.085, respectively. The dental calculus lead strong scattering property and thus the region can be identified under enamel with SSOCT imaging. An extracted human tooth with calculus was covered by gingiva tissue as in vitro sample for SSOCT imaging.

  13. Reflective optical imaging system for extreme ultraviolet wavelengths

    Science.gov (United States)

    Viswanathan, V.K.; Newnam, B.E.

    1993-05-18

    A projection reflection optical system has two mirrors in a coaxial, four reflection configuration to reproduce the image of an object. The mirrors have spherical reflection surfaces to provide a very high resolution of object feature wavelengths less than 200 [mu]m, and preferably less than 100 [mu]m. An image resolution of features less than 0.05-0.1 [mu]m, is obtained over a large area field; i.e., 25.4 mm [times] 25.4 mm, with a distortion less than 0.1 of the resolution over the image field.

  14. Adaptive Optical System for Retina Imaging Approaches Clinic Applications

    Science.gov (United States)

    Ling, N.; Zhang, Y.; Rao, X.; Wang, C.; Hu, Y.; Jiang, W.; Jiang, C.

    We presented "A small adaptive optical system on table for human retinal imaging" at the 3rd Workshop on Adaptive Optics for Industry and Medicine. In this system, a 19 element small deformable mirror was used as wavefront correction element. High resolution images of photo receptors and capillaries of human retina were obtained. In recent two years, at the base of this system a new adaptive optical system for human retina imaging has been developed. The wavefront correction element is a newly developed 37 element deformable mirror. Some modifications have been adopted for easy operation. Experiments for different imaging wavelengths and axial positions were conducted. Mosaic pictures of photoreceptors and capillaries were obtained. 100 normal and abnormal eyes of different ages have been inspected.The first report in the world concerning the most detailed capillary distribution images cover ±3° by ± 3° field around the fovea has been demonstrated. Some preliminary very early diagnosis experiment has been tried in laboratory. This system is being planned to move to the hospital for clinic experiments.

  15. Adaptive optics with pupil tracking for high resolution retinal imaging.

    Science.gov (United States)

    Sahin, Betul; Lamory, Barbara; Levecq, Xavier; Harms, Fabrice; Dainty, Chris

    2012-02-01

    Adaptive optics, when integrated into retinal imaging systems, compensates for rapidly changing ocular aberrations in real time and results in improved high resolution images that reveal the photoreceptor mosaic. Imaging the retina at high resolution has numerous potential medical applications, and yet for the development of commercial products that can be used in the clinic, the complexity and high cost of the present research systems have to be addressed. We present a new method to control the deformable mirror in real time based on pupil tracking measurements which uses the default camera for the alignment of the eye in the retinal imaging system and requires no extra cost or hardware. We also present the first experiments done with a compact adaptive optics flood illumination fundus camera where it was possible to compensate for the higher order aberrations of a moving model eye and in vivo in real time based on pupil tracking measurements, without the real time contribution of a wavefront sensor. As an outcome of this research, we showed that pupil tracking can be effectively used as a low cost and practical adaptive optics tool for high resolution retinal imaging because eye movements constitute an important part of the ocular wavefront dynamics.

  16. Optical Imaging for Stem Cell Differentiation to Neuronal Lineage

    International Nuclear Information System (INIS)

    Hwang, Do Won; Lee, Dong Soo

    2012-01-01

    In regenerative medicine, the prospect of stem cell therapy hold great promise for the recovery of injured tissues and effective treatment of intractable diseases. Tracking stem cell fate provides critical information to understand and evaluate the success of stem cell therapy. The recent emergence of in vivo noninvasive molecular imaging has enabled assessment of the behavior of grafted stem cells in living subjects. In this review, we provide an overview of current optical imaging strategies based on cell or tissue specific reporter gene expression and of in vivo methods to monitor stem cell differentiation into neuronal lineages. These methods use optical reporters either regulated by neuron-specific promoters or containing neuron-specific microRNA binding sites. Both systems revealed dramatic changes in optical reporter imaging signals in cells differentiating a yeast GAL4 amplification system or an engineering-enhanced luciferase reported gene. Furthermore, we propose an advanced imaging system to monitor neuronal differentiation during neurogenesis that uses in vivo multiplexed imaging techniques capable of detecting several targets simultaneously

  17. A minimal optical trapping and imaging microscopy system.

    Directory of Open Access Journals (Sweden)

    Carmen Noemí Hernández Candia

    Full Text Available We report the construction and testing of a simple and versatile optical trapping apparatus, suitable for visualizing individual microtubules (∼25 nm in diameter and performing single-molecule studies, using a minimal set of components. This design is based on a conventional, inverted microscope, operating under plain bright field illumination. A single laser beam enables standard optical trapping and the measurement of molecular displacements and forces, whereas digital image processing affords real-time sample visualization with reduced noise and enhanced contrast. We have tested our trapping and imaging instrument by measuring the persistence length of individual double-stranded DNA molecules, and by following the stepping of single kinesin motor proteins along clearly imaged microtubules. The approach presented here provides a straightforward alternative for studies of biomaterials and individual biomolecules.

  18. Long-distance thermal temporal ghost imaging over optical fibers

    Science.gov (United States)

    Yao, Xin; Zhang, Wei; Li, Hao; You, Lixing; Wang, Zhen; Huang, Yidong

    2018-02-01

    A thermal ghost imaging scheme between two distant parties is proposed and experimentally demonstrated over long-distance optical fibers. In the scheme, the weak thermal light is split into two paths. Photons in one path are spatially diffused according to their frequencies by a spatial dispersion component, then illuminate the object and record its spatial transmission information. Photons in the other path are temporally diffused by a temporal dispersion component. By the coincidence measurement between photons of two paths, the object can be imaged in a way of ghost imaging, based on the frequency correlation between photons in the two paths. In the experiment, the weak thermal light source is prepared by the spontaneous four-wave mixing in a silicon waveguide. The temporal dispersion is introduced by single mode fibers of 50 km, which also could be looked as a fiber link. Experimental results show that this scheme can be realized over long-distance optical fibers.

  19. Peptide-Based Optical uPAR Imaging for Surgery

    DEFF Research Database (Denmark)

    Juhl, Karina; Christensen, Anders; Persson, Morten

    2016-01-01

    Near infrared intra-operative optical imaging is an emerging technique with clear implications for improved cancer surgery by enabling a more distinct delineation of the tumor margins during resection. This modality has the potential to increase the number of patients having a curative radical...... tumor resection. In the present study, a new uPAR-targeted fluorescent probe was developed and the in vivo applicability was evaluated in a human xenograft mouse model. Most human carcinomas express high level of uPAR in the tumor-stromal interface of invasive lesions and uPAR is therefore considered...... an ideal target for intra-operative imaging. Conjugation of the flourophor indocyanine green (ICG) to the uPAR agonist (AE105) provides an optical imaging ligand with sufficiently high receptor affinity to allow for a specific receptor targeting in vivo. For in vivo testing, human glioblastoma xenograft...

  20. Imaging of oral pathological tissue using optical coherence tomography

    Science.gov (United States)

    Canjau, Silvana; Todea, Carmen; Sinescu, Cosmin; Duma, Virgil-Florin; Topala, Florin I.; Podoleanu, Adrian G.

    2014-01-01

    Oral squamous cell carcinoma (OSCC) constitutes 90% of oral cancer. Early detection is a cornerstone to improve survival. Interaction of light with tissues may highlight changes in tissue structure and metabolism. We propose optical coherence tomography (OCT), as a non-invasive diagnosis method, being a new high-resolution optical technique that permits tri-dimensional (3-D), real-time imaging of near surface abnormalities in complex tissues. In this study half of the excisional biopsy was directed to the pathologist and the other half was assigned for OCT investigation. Histopathology validated the results. Areas of OSCC of the buccal mucosa were identified in the OCT images. The elements obserced included extensive epithelial down-growth, the disruption of the basement membrane, with areas of erosion, an epithelial layer that was highly variable in thickness and invasion into the sub-epithelial layers. Therefore, OCT appears to be a highly promising imaging modality.

  1. High-throughput optical system for HDES hyperspectral imager

    Science.gov (United States)

    Václavík, Jan; Melich, Radek; Pintr, Pavel; Pleštil, Jan

    2015-01-01

    Affordable, long-wave infrared hyperspectral imaging calls for use of an uncooled FPA with high-throughput optics. This paper describes the design of the optical part of a stationary hyperspectral imager in a spectral range of 7-14 um with a field of view of 20°×10°. The imager employs a push-broom method made by a scanning mirror. High throughput and a demand for simplicity and rigidity led to a fully refractive design with highly aspheric surfaces and off-axis positioning of the detector array. The design was optimized to exploit the machinability of infrared materials by the SPDT method and a simple assemblage.

  2. Parametric imaging of viscoelasticity using optical coherence elastography

    Science.gov (United States)

    Wijesinghe, Philip; McLaughlin, Robert A.; Sampson, David D.; Kennedy, Brendan F.

    2015-03-01

    We demonstrate imaging of soft tissue viscoelasticity using optical coherence elastography. Viscoelastic creep deformation is induced in tissue using step-like compressive loading and the resulting time-varying deformation is measured using phase-sensitive optical coherence tomography. From a series of co-located B-scans, we estimate the local strain rate as a function of time, and parameterize it using a four-parameter Kelvin-Voigt model of viscoelastic creep. The estimated viscoelastic strain and time constant are used to visualize viscoelastic creep in 2D, dual-parameter viscoelastograms. We demonstrate our technique on six silicone tissue-simulating phantoms spanning a range of viscoelastic parameters. As an example in soft tissue, we report viscoelastic contrast between muscle and connective tissue in fresh, ex vivo rat gastrocnemius muscle and mouse abdominal transection. Imaging viscoelastic creep deformation has the potential to provide complementary contrast to existing imaging modalities, and may provide greater insight into disease pathology.

  3. Optical 3D watermark based digital image watermarking for telemedicine

    Science.gov (United States)

    Li, Xiao Wei; Kim, Seok Tae

    2013-12-01

    Region of interest (ROI) of a medical image is an area including important diagnostic information and must be stored without any distortion. This algorithm for application of watermarking technique for non-ROI of the medical image preserving ROI. The paper presents a 3D watermark based medical image watermarking scheme. In this paper, a 3D watermark object is first decomposed into 2D elemental image array (EIA) by a lenslet array, and then the 2D elemental image array data is embedded into the host image. The watermark extraction process is an inverse process of embedding. The extracted EIA through the computational integral imaging reconstruction (CIIR) technique, the 3D watermark can be reconstructed. Because the EIA is composed of a number of elemental images possesses their own perspectives of a 3D watermark object. Even though the embedded watermark data badly damaged, the 3D virtual watermark can be successfully reconstructed. Furthermore, using CAT with various rule number parameters, it is possible to get many channels for embedding. So our method can recover the weak point having only one transform plane in traditional watermarking methods. The effectiveness of the proposed watermarking scheme is demonstrated with the aid of experimental results.

  4. A new optical encryption system for image transformation

    Science.gov (United States)

    Yao, Shuyu; Chen, Linfei; Chang, Guojun; He, Bingyu

    2017-12-01

    This paper introduces a new optical image encryption system based on Fresnel diffraction and phase iterative algorithm, which can realize the conversion between different images. The method is based on the optical system of free space transmission, and uses the iterative phase retrieval algorithm to encode an image into two phase masks and a ciphertext. Unlike the existed methods, the ciphertext is a visible image, which can be used to achieve the conversion of one image to another image. In order to enhance the security, two phase masks are combined into a wide-scale phase mask by the double image cross pixel scrambling approach. In the decryption process, the wide-scale phase mask is re-decrypted into two random phase masks using a random shift matrix. The ciphertext and the first phase mask are placed on the input plane and the second random phase mask is placed on the transformation plane. The Fresnel diffraction principle can be used to obtain the plaintext information on the output plane. Theoretical analysis and simulation results show that the encryption system is feasible and quite safe.

  5. Magneto-optical nanoparticles for cyclic magnetomotive photoacoustic imaging

    Science.gov (United States)

    Arnal, Bastien; Yoon, Soon Joon; Li, Junwei; Gao, Xiaohu; O'Donnell, Matthew

    2018-05-01

    Photoacoustic imaging is a highly promising tool to visualize molecular events with deep tissue penetration. Like most other modalities, however, image contrast under in vivo conditions is far from optimal due to background signals from tissue. Using iron oxide-gold core-shell nanoparticles, we previously demonstrated that magnetomotive photoacoustic (mmPA) imaging can dramatically reduce the influence of background signals and produce high-contrast molecular images. Here we report two significant advances toward clinical translation of this technology. First, we introduce a new class of compact, uniform, magneto-optically coupled core-shell nanoparticle, prepared through localized copolymerization of polypyrrole (PPy) on an iron oxide nanoparticle surface. The resulting iron oxide-PPy nanoparticles solve the photo-instability and small-scale synthesis problems previously encountered by the gold coating approach, and extend the large optical absorption coefficient of the particles beyond 1000 nm in wavelength. In parallel, we have developed a new generation of mmPA imaging featuring cyclic magnetic motion and ultrasound speckle tracking, with an image capture frame rate several hundred times faster than the photoacoustic speckle tracking method demonstrated previously. These advances enable robust artifact elimination caused by physiologic motion and first application of the mmPA technology in vivo for sensitive tumor imaging.

  6. Intraoperative imaging of pediatric vocal fold lesions using optical coherence tomography

    Science.gov (United States)

    Benboujja, Fouzi; Garcia, Jordan A.; Beaudette, Kathy; Strupler, Mathias; Hartnick, Christopher J.; Boudoux, Caroline

    2016-01-01

    Optical coherence tomography (OCT) has been previously identified as a promising tool for exploring laryngeal pathologies in adults. Here, we present an OCT handheld probe dedicated to imaging the unique geometry involved in pediatric laryngoscopy. A vertical cavity surface emitting laser-based wavelength-swept OCT system operating at 60 frames per second was coupled to the probe to acquire three-dimensional (3-D) volumes in vivo. In order to evaluate the performance of the proposed probe and system, we imaged pediatric vocal fold lesions of patients going under direct laryngoscopy. Through this in vivo study, we extracted OCT features characterizing each pediatric vocal fold lesion, which shows a great potential for noninvasive laryngeal lesion discrimination. We believe OCT vocal fold examination in 3-D will result in improved knowledge of the pediatric anatomy and could aid in managing pediatric laryngeal diseases.

  7. Aid in the detection of myocardial perfusion abnormality utilizing SPECT atlas and images registration: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Padua, Rodrigo Donizete Santana de [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Div. de Cardiologia]. E-mail: rodrigo_dsp@hcrp.fmrp.usp.br; Oliveira, Lucas Ferrari de [Universidade Federal de Pelotas (UFPel), RS (Brazil). Inst. de Fisica e Matematica. Dept. de Tecnologia da Informacao; Marques, Paulo Mazzoncini de Azevedo [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Centro de Ciencias das Imagens e Fisica Medica; Groote, Jean-Jacques Georges Soares de [Instituto de Ensino Superior COC, Ribeirao Preto, SP (Brazil). Lab. of Artifical Intelligence and Applications; Castro, Adelson Antonio de [Universidade de Sao Paulo (USP), Ribeirao Preto, SP, (Brazil). Faculdade de Medicina; Ana, Lauro Wichert [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Centro de Ciencias das Imagens e Fisica Medica; Simoes, Marcus Vinicius [Universidade de Sao Paulo (USP), Ribeirao Preto, SP, (Brazil). Faculdade de Medicina. Divisao de Cardiologia

    2008-11-15

    To develop an atlas of myocardial perfusion scintigraphy and evaluating its applicability in computer-aided detection of myocardial perfusion defects in patients with ischemic heart disease. The atlas was created with rest-stress myocardial perfusion scintigraphic images of 20 patients of both genders with low probability of coronary artery disease and considered as normal by two experienced observers. Techniques of image registration and mathematical operations on images were utilized for obtaining template images depicting mean myocardial uptake and standard deviation for each gender and physiological condition. Myocardial perfusion scintigraphy images of one male and one female patient were aligned with the corresponding atlas template image, and voxels with myocardial uptake rates two standard deviations below the mean voxel value of the respective region in the atlas template image were highlighted on the tomographic sections and confirmed as perfusion defects by both observe. The present study demonstrated the creation of an atlas of myocardial perfusion scintigraphy with promising results of this tool as an aid in the detection of myocardial perfusion defects. However, further prospective validation with a more representative sample is recommended. (author)

  8. Aid in the detection of myocardial perfusion abnormality utilizing SPECT atlas and images registration: preliminary results

    International Nuclear Information System (INIS)

    Padua, Rodrigo Donizete Santana de; Oliveira, Lucas Ferrari de; Marques, Paulo Mazzoncini de Azevedo; Groote, Jean-Jacques Georges Soares de; Castro, Adelson Antonio de; Ana, Lauro Wichert; Simoes, Marcus Vinicius

    2008-01-01

    To develop an atlas of myocardial perfusion scintigraphy and evaluating its applicability in computer-aided detection of myocardial perfusion defects in patients with ischemic heart disease. The atlas was created with rest-stress myocardial perfusion scintigraphic images of 20 patients of both genders with low probability of coronary artery disease and considered as normal by two experienced observers. Techniques of image registration and mathematical operations on images were utilized for obtaining template images depicting mean myocardial uptake and standard deviation for each gender and physiological condition. Myocardial perfusion scintigraphy images of one male and one female patient were aligned with the corresponding atlas template image, and voxels with myocardial uptake rates two standard deviations below the mean voxel value of the respective region in the atlas template image were highlighted on the tomographic sections and confirmed as perfusion defects by both observe. The present study demonstrated the creation of an atlas of myocardial perfusion scintigraphy with promising results of this tool as an aid in the detection of myocardial perfusion defects. However, further prospective validation with a more representative sample is recommended. (author)

  9. Coma-free alignment of high resolution electron microscopes with the aid of optical diffractograms

    International Nuclear Information System (INIS)

    Zemlin, F.; Weiss, K.; Schiske, P.; Kunath, W.; Herrmann, K.-H.

    1978-01-01

    Alignment by means of current commutating and defocusing of the objective does not yield the desired rotational symmetry of the imaging pencils. This was found while aligning a transmission electron microscope with a single field condenser objective. A series of optical diffractograms of micrographs taken under the same tilted illumination yet under various azimuths have been arranged in a tableau, wherein strong asymmetry is exhibited. Quantitative evaluation yields the most important asymmetric aberration to be the axial coma, which becomes critical when a resolution better than 5 A 0 is obtained. The tableau also allows an assessment of the three-fold astigmatism. A procedure has been developed which aligns the microscope onto the coma-free and dispersion-free pencil axis and does not rely on current communication. The procedure demands equal appearance of astigmatic carbon film images produced under the same tilt yet diametrical azimuth. (Auth.)

  10. Gen-2 Hand-Held Optical Imager towards Cancer Imaging: Reflectance and Transillumination Phantom Studies

    Directory of Open Access Journals (Sweden)

    Anuradha Godavarty

    2012-02-01

    Full Text Available Hand-held near-infrared (NIR optical imagers are developed by various researchers towards non-invasive clinical breast imaging. Unlike these existing imagers that can perform only reflectance imaging, a generation-2 (Gen-2 hand-held optical imager has been recently developed to perform both reflectance and transillumination imaging. The unique forked design of the hand-held probe head(s allows for reflectance imaging (as in ultrasound and transillumination or compressed imaging (as in X-ray mammography. Phantom studies were performed to demonstrate two-dimensional (2D target detection via reflectance and transillumination imaging at various target depths (1–5 cm deep and using simultaneous multiple point illumination approach. It was observed that 0.45 cc targets were detected up to 5 cm deep during transillumination, but limited to 2.5 cm deep during reflectance imaging. Additionally, implementing appropriate data post-processing techniques along with a polynomial fitting approach, to plot 2D surface contours of the detected signal, yields distinct target detectability and localization. The ability of the gen-2 imager to perform both reflectance and transillumination imaging allows its direct comparison to ultrasound and X-ray mammography results, respectively, in future clinical breast imaging studies.

  11. Optical imaging modalities: From design to diagnosis of skin cancer

    Science.gov (United States)

    Korde, Vrushali Raj

    This study investigates three high resolution optical imaging modalities to better detect and diagnose skin cancer. The ideal high resolution optical imaging system can visualize pre-malignant tissue growth non-invasively with resolution comparable to histology. I examined 3 modalities which approached this goal. The first method examined was high magnification microscopy of thin stained tissue sections, together with a statistical analysis of nuclear chromatin patterns termed Karyometry. This method has subcellular resolution, but it necessitates taking a biopsy at the desired tissue site and imaging the tissue ex-vivo. My part of this study was to develop an automated nuclear segmentation algorithm to segment cell nuclei in skin histology images for karyometric analysis. The results of this algorithm were compared to hand segmented cell nuclei in the same images, and it was concluded that the automated segmentations can be used for karyometric analysis. The second optical imaging modality I investigated was Optical Coherence Tomography (OCT). OCT is analogous to ultrasound, in which sound waves are delivered into the body and the echo time and reflected signal magnitude are measured. Due to the fast speed of light and detector temporal integration times, low coherence interferometry is needed to gate the backscattered light. OCT acquires cross sectional images, and has an axial resolution of 1-15 mum (depending on the source bandwidth) and a lateral resolution of 10-20 mum (depending on the sample arm optics). While it is not capable of achieving subcellular resolution, it is a non-invasive imaging modality. OCT was used in this study to evaluate skin along a continuum from normal to sun damaged to precancer. I developed algorithms to detect statistically significant differences between images of sun protected and sun damaged skin, as well as between undiseased and precancerous skin. An Optical Coherence Microscopy (OCM) endoscope was developed in the third

  12. Central obscuration effects on optical synthetic aperture imaging

    Science.gov (United States)

    Wang, Xue-wen; Luo, Xiao; Zheng, Li-gong; Zhang, Xue-jun

    2014-02-01

    Due to the central obscuration problem exists in most optical synthetic aperture systems, it is necessary to analyze its effects on their image performance. Based on the incoherent diffraction limited imaging theory, a Golay-3 type synthetic aperture system was used to study the central obscuration effects on the point spread function (PSF) and the modulation transfer function (MTF). It was found that the central obscuration does not affect the width of the central peak of the PSF and the cutoff spatial frequency of the MTF, but attenuate the first sidelobe of the PSF and the midfrequency of the MTF. The imaging simulation of a Golay-3 type synthetic aperture system with central obscuration proved this conclusion. At last, a Wiener Filter restoration algorithm was used to restore the image of this system, the images were obviously better.

  13. Imaging of the Macula Indicates Early Completion of Structural Deficit in Autosomal-Dominant Optic Atrophy

    DEFF Research Database (Denmark)

    Rönnbäck, Cecilia; Milea, Dan; Larsen, Michael

    2013-01-01

    Optical coherence tomography (OCT) enables 3-dimensional imaging of the retina, including the layer of ganglion cells that supplies the optic nerve with its axons. We tested OCT as means of diagnosing and phenotyping autosomal-dominant optic atrophy (ADOA)....

  14. Intracoronary optical coherence tomography

    DEFF Research Database (Denmark)

    Tenekecioglu, Erhan; Albuquerque, Felipe N; Sotomi, Yohei

    2017-01-01

    By providing valuable information about the coronary artery wall and lumen, intravascular imaging may aid in optimizing interventional procedure results and thereby could improve clinical outcomes following percutaneous coronary intervention (PCI). Intravascular optical coherence tomography (OCT...

  15. Computer-Aided Characterization and Diagnosis of Diffuse Liver Diseases Based on Ultrasound Imaging: A Review.

    Science.gov (United States)

    Bharti, Puja; Mittal, Deepti; Ananthasivan, Rupa

    2016-04-19

    Diffuse liver diseases, such as hepatitis, fatty liver, and cirrhosis, are becoming a leading cause of fatality and disability all over the world. Early detection and diagnosis of these diseases is extremely important to save lives and improve effectiveness of treatment. Ultrasound imaging, a noninvasive diagnostic technique, is the most commonly used modality for examining liver abnormalities. However, the accuracy of ultrasound-based diagnosis depends highly on expertise of radiologists. Computer-aided diagnosis systems based on ultrasound imaging assist in fast diagnosis, provide a reliable "second opinion" for experts, and act as an effective tool to measure response of treatment on patients undergoing clinical trials. In this review, we first describe appearance of liver abnormalities in ultrasound images and state the practical issues encountered in characterization of diffuse liver diseases that can be addressed by software algorithms. We then discuss computer-aided diagnosis in general with features and classifiers relevant to diffuse liver diseases. In later sections of this paper, we review the published studies and describe the key findings of those studies. A concise tabular summary comparing image database, features extraction, feature selection, and classification algorithms presented in the published studies is also exhibited. Finally, we conclude with a summary of key findings and directions for further improvements in the areas of accuracy and objectiveness of computer-aided diagnosis. © The Author(s) 2016.

  16. A novel modeling method for manufacturing hearing aid using 3D medical images

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeong Gyun [Dept of Radiological Science, Far East University, Eumseong (Korea, Republic of)

    2016-06-15

    This study aimed to suggest a novel method of modeling a hearing aid ear shell based on Digital Imaging and Communication in Medicine (DICOM) in the hearing aid ear shell manufacturing method using a 3D printer. In the experiment, a 3D external auditory meatus was extracted by using the critical values in the DICOM volume images, a nd t he modeling surface structures were compared in standard type STL (STereoLithography) files which could be recognized by a 3D printer. In this 3D modeling method, a conventional ear model was prepared, and the gaps between adjacent isograms produced by a 3D scanner were filled with 3D surface fragments to express the modeling structure. In this study, the same type of triangular surface structures were prepared by using the DICOM images. The result showed that the modeling surface structure based on the DICOM images provide the same environment that the conventional 3D printers may recognize, eventually enabling to print out the hearing aid ear shell shape.

  17. A novel modeling method for manufacturing hearing aid using 3D medical images

    International Nuclear Information System (INIS)

    Kim, Hyeong Gyun

    2016-01-01

    This study aimed to suggest a novel method of modeling a hearing aid ear shell based on Digital Imaging and Communication in Medicine (DICOM) in the hearing aid ear shell manufacturing method using a 3D printer. In the experiment, a 3D external auditory meatus was extracted by using the critical values in the DICOM volume images, a nd t he modeling surface structures were compared in standard type STL (STereoLithography) files which could be recognized by a 3D printer. In this 3D modeling method, a conventional ear model was prepared, and the gaps between adjacent isograms produced by a 3D scanner were filled with 3D surface fragments to express the modeling structure. In this study, the same type of triangular surface structures were prepared by using the DICOM images. The result showed that the modeling surface structure based on the DICOM images provide the same environment that the conventional 3D printers may recognize, eventually enabling to print out the hearing aid ear shell shape

  18. Optical imaging of tumor hypoxia dynamics

    Science.gov (United States)

    Palmer, Gregory M.; Fontanella, Andrew N.; Zhang, Guoqing; Hanna, Gabi; Fraser, Cassandra L.; Dewhirst, Mark W.

    2010-11-01

    The influence of the tumor microenvironment and hypoxia plays a significant role in determining cancer progression, treatment response, and treatment resistance. That the tumor microenvironment is highly heterogeneous with significant intratumor and intertumor variability presents a significant challenge in developing effective cancer therapies. Critical to understanding the role of the tumor microenvironment is the ability to dynamically quantify oxygen levels in the vasculature and tissue in order to elucidate the roles of oxygen supply and consumption, spatially and temporally. To this end, we describe the use of hyperspectral imaging to characterize hemoglobin absorption to quantify hemoglobin content and oxygen saturation, as well as dual emissive fluorescent/phosphorescent boron nanoparticles, which serve as ratiometric indicators of tissue oxygen tension. Applying these techniques to a window-chamber tumor model illustrates the role of fluctuations in hemoglobin saturation in driving changes in tissue oxygenation, the two being significantly correlated (r = 0.77). Finally, a green-fluorescence-protein reporter for hypoxia inducible factor-1 (HIF-1) provides an endpoint for hypoxic stress in the tumor, which is used to demonstrate a significant association between tumor hypoxia dynamics and HIF-1 activity in an in vivo demonstration of the technique.

  19. High-definition optical coherence tomography - an aid to clinical practice and research in dermatology.

    Science.gov (United States)

    Cao, Taige; Tey, Hong Liang

    2015-09-01

    At present, beyond clinical assessment, the diagnosis of skin diseases is primarily made histologically. However, skin biopsies have many disadvantages, including pain, scarring, risk of infection, and sampling error. With recent advances in skin imaging technology, the clinical use of imaging methods for the practical management of skin diseases has become an option. The in vivo high-definition optical coherence tomography (HD-OCT) has recently been developed and commercialized (Skintell; Agfa, Belgium). Compared with conventional OCT, it has a higher resolution; compared with reflectance confocal microscopy, it has a shorter time for image acquisition as well as a greater penetration depth and a larger field of view. HD-OCT is promising but much work is still required to develop it from a research tool to a valuable adjunct for the noninvasive diagnosis of skin lesions. Substantial work has been done to identify HD-OCT features in various diseases but interpretation can be time-consuming and tedious. Projects aimed at automating these processes and improving image quality are currently under way. © 2015 Deutsche Dermatologische Gesellschaft (DDG). Published by John Wiley & Sons Ltd.

  20. Acute Solar Retinopathy Imaged With Adaptive Optics, Optical Coherence Tomography Angiography, and En Face Optical Coherence Tomography.

    Science.gov (United States)

    Wu, Chris Y; Jansen, Michael E; Andrade, Jorge; Chui, Toco Y P; Do, Anna T; Rosen, Richard B; Deobhakta, Avnish

    2018-01-01

    Solar retinopathy is a rare form of retinal injury that occurs after direct sungazing. To enhance understanding of the structural changes that occur in solar retinopathy by obtaining high-resolution in vivo en face images. Case report of a young adult woman who presented to the New York Eye and Ear Infirmary with symptoms of acute solar retinopathy after viewing the solar eclipse on August 21, 2017. Results of comprehensive ophthalmic examination and images obtained by fundus photography, microperimetry, spectral-domain optical coherence tomography (OCT), adaptive optics scanning light ophthalmoscopy, OCT angiography, and en face OCT. The patient was examined after viewing the solar eclipse. Visual acuity was 20/20 OD and 20/25 OS. The patient was left-eye dominant. Spectral-domain OCT images were consistent with mild and severe acute solar retinopathy in the right and left eye, respectively. Microperimetry was normal in the right eye but showed paracentral decreased retinal sensitivity in the left eye with a central absolute scotoma. Adaptive optics images of the right eye showed a small region of nonwaveguiding photoreceptors, while images of the left eye showed a large area of abnormal and nonwaveguiding photoreceptors. Optical coherence tomography angiography images were normal in both eyes. En face OCT images of the right eye showed a small circular hyperreflective area, with central hyporeflectivity in the outer retina of the right eye. The left eye showed a hyperreflective lesion that intensified in area from inner to middle retina and became mostly hyporeflective in the outer retina. The shape of the lesion on adaptive optics and en face OCT images of the left eye corresponded to the shape of the scotoma drawn by the patient on Amsler grid. Acute solar retinopathy can present with foveal cone photoreceptor mosaic disturbances on adaptive optics scanning light ophthalmoscopy imaging. Corresponding reflectivity changes can be seen on en face OCT, especially

  1. Image enhancement of optical images for binary system of melanocytes and keratinocytes

    Science.gov (United States)

    Takanezawa, S.; Baba, A.; Sako, Y.; Ozaki, Y.; Date, A.; Toyama, K.; Morita, S.

    2013-05-01

    Automatic determination of the cell shapes of large numbers of melanocytes based on optical images of human skin models have been largely unsuccessful (the complexities introduced by dendrites and the melanin pigmentation over the keratinocytes to give unclear outlines). Here, we present an image enhancement procedure for enhancing the contrast of images with removing the non-uniformity of background. The brightness is normalized also for the non-uniform population density of melanocytes.

  2. Adaptive optics scanning laser ophthalmoscopy in fundus imaging, a review and update

    OpenAIRE

    Zhang, Bing; Li, Ni; Kang, Jie; He, Yi; Chen, Xiao-Ming

    2017-01-01

    Adaptive optics scanning laser ophthalmoscopy (AO-SLO) has been a promising technique in funds imaging with growing popularity. This review firstly gives a brief history of adaptive optics (AO) and AO-SLO. Then it compares AO-SLO with conventional imaging methods (fundus fluorescein angiography, fundus autofluorescence, indocyanine green angiography and optical coherence tomography) and other AO techniques (adaptive optics flood-illumination ophthalmoscopy and adaptive optics optical coherenc...

  3. Microfabricated optically pumped magnetometer arrays for biomedical imaging

    Science.gov (United States)

    Perry, A. R.; Sheng, D.; Krzyzewski, S. P.; Geller, S.; Knappe, S.

    2017-02-01

    Optically-pumped magnetometers have demonstrated magnetic field measurements as precise as the best superconducting quantum interference device magnetometers. Our group develops miniature alkali atom-based magnetic sensors using microfabrication technology. Our sensors do not require cryogenic cooling, and can be positioned very close to the sample, making these sensors an attractive option for development in the medical community. We will present our latest chip-scale optically-pumped gradiometer developed for array applications to image magnetic fields from the brain noninvasively. These developments should lead to improved spatial resolution, and potentially sensitive measurements in unshielded environments.

  4. Optimizing Nanoscale Quantitative Optical Imaging of Subfield Scattering Targets

    Science.gov (United States)

    Henn, Mark-Alexander; Barnes, Bryan M.; Zhou, Hui; Sohn, Martin; Silver, Richard M.

    2016-01-01

    The full 3-D scattered field above finite sets of features has been shown to contain a continuum of spatial frequency information, and with novel optical microscopy techniques and electromagnetic modeling, deep-subwavelength geometrical parameters can be determined. Similarly, by using simulations, scattering geometries and experimental conditions can be established to tailor scattered fields that yield lower parametric uncertainties while decreasing the number of measurements and the area of such finite sets of features. Such optimized conditions are reported through quantitative optical imaging in 193 nm scatterfield microscopy using feature sets up to four times smaller in area than state-of-the-art critical dimension targets. PMID:27805660

  5. Detection system using scintillating optical fibers and image tube readout

    International Nuclear Information System (INIS)

    Alspector, J.; Borenstein, S.

    1979-01-01

    The hodoscope subgroup has studied a detection system consisting of bundles of optical fibers with readout via image tubes. The basic building block is an optical fiber with a scintillator inner core. The inner core has refractive index n/sub o/ (1.58 for plastic scintillator), and the outer sheath has a low index (approx. 1.4). Light is created in the core by passage of a particle track; if the light strikes the sheath at an angle greater than the critical angle phi/sub c/, it is trapped in the fiber until it finds its way to the photon detector

  6. TV-L1 optical flow for vector valued images

    DEFF Research Database (Denmark)

    Rakêt, Lars Lau; Roholm, Lars; Nielsen, Mads

    2011-01-01

    The variational TV-L1 framework has become one of the most popular and successful approaches for calculating optical flow. One reason for the popularity is the very appealing properties of the two terms in the energy formulation of the problem, the robust L1-norm of the data fidelity term combined...... with the total variation (TV) regular- ization that smoothes the flow, but preserve strong discontinuities such as edges. Specifically the approach of Zach et al. [1] has provided a very clean and efficient algorithm for calculating TV-L1 optical flows between grayscale images. In this paper we propose...

  7. Three-dimensional multifunctional optical coherence tomography for skin imaging

    Science.gov (United States)

    Li, En; Makita, Shuichi; Hong, Young-Joo; Kasaragod, Deepa; Sasaoka, Tomoko; Yamanari, Masahiro; Sugiyama, Satoshi; Yasuno, Yoshiaki

    2016-02-01

    Optical coherence tomography (OCT) visualizes cross-sectional microstructures of biological tissues. Recent developments of multifunctional OCT (MF-OCT) provides multiple optical contrasts which can reveal currently unknown tissue properties. In this contribution we demonstrate multifunctional OCT specially designed for dermatological investigation. And by utilizing it to measure four different body parts of in vivo human skin, three-dimensional scattering OCT, OCT angiography, polarization uniformity tomography, and local birefringence tomography images were obtained by a single scan. They respectively contrast the structure and morphology, vasculature, melanin content and collagen traits of the tissue.

  8. Monte Carlo modeling of human tooth optical coherence tomography imaging

    International Nuclear Information System (INIS)

    Shi, Boya; Meng, Zhuo; Wang, Longzhi; Liu, Tiegen

    2013-01-01

    We present a Monte Carlo model for optical coherence tomography (OCT) imaging of human tooth. The model is implemented by combining the simulation of a Gaussian beam with simulation for photon propagation in a two-layer human tooth model with non-parallel surfaces through a Monte Carlo method. The geometry and the optical parameters of the human tooth model are chosen on the basis of the experimental OCT images. The results show that the simulated OCT images are qualitatively consistent with the experimental ones. Using the model, we demonstrate the following: firstly, two types of photons contribute to the information of morphological features and noise in the OCT image of a human tooth, respectively. Secondly, the critical imaging depth of the tooth model is obtained, and it is found to decrease significantly with increasing mineral loss, simulated as different enamel scattering coefficients. Finally, the best focus position is located below and close to the dental surface by analysis of the effect of focus positions on the OCT signal and critical imaging depth. We anticipate that this modeling will become a powerful and accurate tool for a preliminary numerical study of the OCT technique on diseases of dental hard tissue in human teeth. (paper)

  9. Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics.

    Science.gov (United States)

    Hayashi, Shinichi; Okada, Yasushi

    2015-05-01

    Most current superresolution (SR) microscope techniques surpass the diffraction limit at the expense of temporal resolution, compromising their applications to live-cell imaging. Here we describe a new SR fluorescence microscope based on confocal microscope optics, which we name the spinning disk superresolution microscope (SDSRM). Theoretically, the SDSRM is equivalent to a structured illumination microscope (SIM) and achieves a spatial resolution of 120 nm, double that of the diffraction limit of wide-field fluorescence microscopy. However, the SDSRM is 10 times faster than a conventional SIM because SR signals are recovered by optical demodulation through the stripe pattern of the disk. Therefore a single SR image requires only a single averaged image through the rotating disk. On the basis of this theory, we modified a commercial spinning disk confocal microscope. The improved resolution around 120 nm was confirmed with biological samples. The rapid dynamics of micro-tubules, mitochondria, lysosomes, and endosomes were observed with temporal resolutions of 30-100 frames/s. Because our method requires only small optical modifications, it will enable an easy upgrade from an existing spinning disk confocal to a SR microscope for live-cell imaging. © 2015 Hayashi and Okada. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  10. Imaging quality evaluation method of pixel coupled electro-optical imaging system

    Science.gov (United States)

    He, Xu; Yuan, Li; Jin, Chunqi; Zhang, Xiaohui

    2017-09-01

    With advancements in high-resolution imaging optical fiber bundle fabrication technology, traditional photoelectric imaging system have become ;flexible; with greatly reduced volume and weight. However, traditional image quality evaluation models are limited by the coupling discrete sampling effect of fiber-optic image bundles and charge-coupled device (CCD) pixels. This limitation substantially complicates the design, optimization, assembly, and evaluation image quality of the coupled discrete sampling imaging system. Based on the transfer process of grayscale cosine distribution optical signal in the fiber-optic image bundle and CCD, a mathematical model of coupled modulation transfer function (coupled-MTF) is established. This model can be used as a basis for following studies on the convergence and periodically oscillating characteristics of the function. We also propose the concept of the average coupled-MTF, which is consistent with the definition of traditional MTF. Based on this concept, the relationships among core distance, core layer radius, and average coupled-MTF are investigated.

  11. Learnable despeckling framework for optical coherence tomography images

    Science.gov (United States)

    Adabi, Saba; Rashedi, Elaheh; Clayton, Anne; Mohebbi-Kalkhoran, Hamed; Chen, Xue-wen; Conforto, Silvia; Nasiriavanaki, Mohammadreza

    2018-01-01

    Optical coherence tomography (OCT) is a prevalent, interferometric, high-resolution imaging method with broad biomedical applications. Nonetheless, OCT images suffer from an artifact called speckle, which degrades the image quality. Digital filters offer an opportunity for image improvement in clinical OCT devices, where hardware modification to enhance images is expensive. To reduce speckle, a wide variety of digital filters have been proposed; selecting the most appropriate filter for an OCT image/image set is a challenging decision, especially in dermatology applications of OCT where a different variety of tissues are imaged. To tackle this challenge, we propose an expandable learnable despeckling framework, we call LDF. LDF decides which speckle reduction algorithm is most effective on a given image by learning a figure of merit (FOM) as a single quantitative image assessment measure. LDF is learnable, which means when implemented on an OCT machine, each given image/image set is retrained and its performance is improved. Also, LDF is expandable, meaning that any despeckling algorithm can easily be added to it. The architecture of LDF includes two main parts: (i) an autoencoder neural network and (ii) filter classifier. The autoencoder learns the FOM based on several quality assessment measures obtained from the OCT image including signal-to-noise ratio, contrast-to-noise ratio, equivalent number of looks, edge preservation index, and mean structural similarity index. Subsequently, the filter classifier identifies the most efficient filter from the following categories: (a) sliding window filters including median, mean, and symmetric nearest neighborhood, (b) adaptive statistical-based filters including Wiener, homomorphic Lee, and Kuwahara, and (c) edge preserved patch or pixel correlation-based filters including nonlocal mean, total variation, and block matching three-dimensional filtering.

  12. Optical or mechanical aids to drawing in the early Renaissance? A geometric analysis of the trellis work in Robert Campin's Mérode Altarpiece

    Science.gov (United States)

    Kulkarni, Ashutosh; Stork, David G.

    2009-02-01

    A recent theory claims that some Renaissance artists, as early as 1425, secretly traced optically projected images during the execution of some passages in some of their works, nearly a quarter millennium before historians of art and of optics have secure evidence anyone recorded an image this way. Key evidence adduced by the theory's proponents includes the trelliswork in the right panel of Robert Campin's Merode altarpiece triptych (c. 1425-28). If their claim were verified for this work, such a discovery would be extremely important to the history of art and of image making more generally: the Altarpiece would be the earliest surviving image believed to record the projected image of an illuminated object, the first step towards photography, over 400 years later. The projection theory proponents point to teeny "kinks" in the depicted slats of one orientation in the Altarpiece as evidence that Campin refocussed a projector twice and traced images of physically straight slats in his studio. However, the proponents rotated the digital images of each slat individually, rather than the full trelliswork as a whole, and thereby disrupted the relative alignment between the images of the kinks and thus confounded their analysis. We found that when properly rotated, the kinks line up nearly perfectly and are consistent with Campin using a subtly kinked straightedge repeatedly, once for each of the slats. Moreover, the proponents did not report any analysis of the other set of slats-the ones nearly perpendicular to the first set. These perpendicular slats are straight across the break line of the first set-an unlikely scenario in the optical explanation. Finally, whereas it would have been difficult for Campin to draw the middle portions of the slats perfectly straight by tracing a projected image, it would have been trivially simple had he used a straightedge. Our results and the lack of any contemporaneous documentary evidence for the projection technique imply that

  13. New variational image decomposition model for simultaneously denoising and segmenting optical coherence tomography images

    International Nuclear Information System (INIS)

    Duan, Jinming; Bai, Li; Tench, Christopher; Gottlob, Irene; Proudlock, Frank

    2015-01-01

    Optical coherence tomography (OCT) imaging plays an important role in clinical diagnosis and monitoring of diseases of the human retina. Automated analysis of optical coherence tomography images is a challenging task as the images are inherently noisy. In this paper, a novel variational image decomposition model is proposed to decompose an OCT image into three components: the first component is the original image but with the noise completely removed; the second contains the set of edges representing the retinal layer boundaries present in the image; and the third is an image of noise, or in image decomposition terms, the texture, or oscillatory patterns of the original image. In addition, a fast Fourier transform based split Bregman algorithm is developed to improve computational efficiency of solving the proposed model. Extensive experiments are conducted on both synthesised and real OCT images to demonstrate that the proposed model outperforms the state-of-the-art speckle noise reduction methods and leads to accurate retinal layer segmentation. (paper)

  14. Direct comparison of soft x-ray images of organelles with optical fluorescence images

    International Nuclear Information System (INIS)

    Ishino, Masahiko; Kado, Masataka; Kishimoto, Maki; Nishikino, Masaharu; Ohba, Toshiyuki; Kaihori, Takeshi; Kawachi, Tetsuya; Tamotsu, Satoshi; Yasuda, Keiko; Mikata, Yuji; Shinohara, Kunio

    2011-01-01

    Soft x-ray microscopes operating in the water window region are capable of imaging living hydrated cells. Up to now, we have been able to take some soft x-ray images of living cells by the use of a contact x-ray microscope system with laser produced plasma soft x-ray source. Since the soft x-ray images are different from the optical images obtained with an ordinary microscope, it is very important to identify what is seen in the x-ray images. Hence, we have demonstrated the direct comparison between the images of organelles obtained with a fluorescence microscope and those with a soft x-ray microscope. Comparing the soft x-ray images to the fluorescence images, the fine structures of the organelles could be identified and observed. (author)

  15. Polymer Optical Fibre Sensors for Endoscopic Opto-Acoustic Imaging

    DEFF Research Database (Denmark)

    Broadway, Christian; Gallego, Daniel; Woyessa, Getinet

    2015-01-01

    in existing publications. A great advantage can be obtained for endoscopy due to a small size and array potential to provide discrete imaging speed improvements. Optical fibre exhibits numerous advantages over conventional piezo-electric transducers, such as immunity from electromagnetic interference...... is the physical size of the device, allowing compatibility with current technology, while governing flexibility of the distal end of the endoscope based on the needs of the sensor. Polymer optical fibre (POF) presents a novel approach for endoscopic applications and has been positively discussed and compared...... and a higher resolution at small sizes. Furthermore, micro structured polymer optical fibres offer over 12 times the sensitivity of silica fibre. We present a polymer fibre Bragg grating ultrasound detector with a core diameter of 125 microns. We discuss the ultrasonic signals received and draw conclusions...

  16. Analysis of rocket flight stability based on optical image measurement

    Science.gov (United States)

    Cui, Shuhua; Liu, Junhu; Shen, Si; Wang, Min; Liu, Jun

    2018-02-01

    Based on the abundant optical image measurement data from the optical measurement information, this paper puts forward the method of evaluating the rocket flight stability performance by using the measurement data of the characteristics of the carrier rocket in imaging. On the basis of the method of measuring the characteristics of the carrier rocket, the attitude parameters of the rocket body in the coordinate system are calculated by using the measurements data of multiple high-speed television sets, and then the parameters are transferred to the rocket body attack angle and it is assessed whether the rocket has a good flight stability flying with a small attack angle. The measurement method and the mathematical algorithm steps through the data processing test, where you can intuitively observe the rocket flight stability state, and also can visually identify the guidance system or failure analysis.

  17. Fourier transform digital holographic adaptive optics imaging system

    Science.gov (United States)

    Liu, Changgeng; Yu, Xiao; Kim, Myung K.

    2013-01-01

    A Fourier transform digital holographic adaptive optics imaging system and its basic principles are proposed. The CCD is put at the exact Fourier transform plane of the pupil of the eye lens. The spherical curvature introduced by the optics except the eye lens itself is eliminated. The CCD is also at image plane of the target. The point-spread function of the system is directly recorded, making it easier to determine the correct guide-star hologram. Also, the light signal will be stronger at the CCD, especially for phase-aberration sensing. Numerical propagation is avoided. The sensor aperture has nothing to do with the resolution and the possibility of using low coherence or incoherent illumination is opened. The system becomes more efficient and flexible. Although it is intended for ophthalmic use, it also shows potential application in microscopy. The robustness and feasibility of this compact system are demonstrated by simulations and experiments using scattering objects. PMID:23262541

  18. Hyperspectral optical imaging of two different species of lepidoptera

    Directory of Open Access Journals (Sweden)

    Vukusic Pete

    2011-01-01

    Full Text Available Abstract In this article, we report a hyperspectral optical imaging application for measurement of the reflectance spectra of photonic structures that produce structural colors with high spatial resolution. The measurement of the spectral reflectance function is exemplified in the butterfly wings of two different species of Lepidoptera: the blue iridescence reflected by the nymphalid Morpho didius and the green iridescence of the papilionid Papilio palinurus. Color coordinates from reflectance spectra were calculated taking into account human spectral sensitivity. For each butterfly wing, the observed color is described by a characteristic color map in the chromaticity diagram and spreads over a limited volume in the color space. The results suggest that variability in the reflectance spectra is correlated with different random arrangements in the spatial distribution of the scales that cover the wing membranes. Hyperspectral optical imaging opens new ways for the non-invasive study and classification of different forms of irregularity in structural colors.

  19. Digital optical tomography system for dynamic breast imaging

    Science.gov (United States)

    Flexman, Molly L.; Khalil, Michael A.; Al Abdi, Rabah; Kim, Hyun K.; Fong, Christopher J.; Desperito, Elise; Hershman, Dawn L.; Barbour, Randall L.; Hielscher, Andreas H.

    2011-07-01

    Diffuse optical tomography has shown promising results as a tool for breast cancer screening and monitoring response to chemotherapy. Dynamic imaging of the transient response of the breast to an external stimulus, such as pressure or a respiratory maneuver, can provide additional information that can be used to detect tumors. We present a new digital continuous-wave optical tomography system designed to simultaneously image both breasts at fast frame rates and with a large number of sources and detectors. The system uses a master-slave digital signal processor-based detection architecture to achieve a dynamic range of 160 dB and a frame rate of 1.7 Hz with 32 sources, 64 detectors, and 4 wavelengths per breast. Included is a preliminary study of one healthy patient and two breast cancer patients showing the ability to identify an invasive carcinoma based on the hemodynamic response to a breath hold.

  20. A radiographic image archive system on digital optical disks

    International Nuclear Information System (INIS)

    Mankovich, N.J.; Taira, R.K.; Cho, P.S.; Wong, W.K.; Stewart, B.K.; Huang, H.K.

    1986-01-01

    The recent introduction of projection computed radiography (CR) systems allows radiology departments to consider digital operation in over 90% of performed procedures. Ideally, current patient procedures from CT, CT, and MR along with laser-digitized historical films should be centrally stored at their full digital resolution. Magnetic disks, because of their limited storage capacity and expense, can only retain these data on a limited basis. The author devised an optical disk archive system which automatically stores images directly onto 2.6-gigabyte optical cartridges without recourse to film. This system is in full clinical operation in the UCLA Pediatric Radiology Section of the authors' department. From this experience they present (a) an analysis of the digital archiving requirements of the Pediatric Radiology Section based on CR, CT, MR, and laser digitized films; (b) the archive and retrieval methods along with performance statistics; and (c) the procedure for assuring digital image integrity

  1. Ratsnake: A Versatile Image Annotation Tool with Application to Computer-Aided Diagnosis

    Directory of Open Access Journals (Sweden)

    D. K. Iakovidis

    2014-01-01

    Full Text Available Image segmentation and annotation are key components of image-based medical computer-aided diagnosis (CAD systems. In this paper we present Ratsnake, a publicly available generic image annotation tool providing annotation efficiency, semantic awareness, versatility, and extensibility, features that can be exploited to transform it into an effective CAD system. In order to demonstrate this unique capability, we present its novel application for the evaluation and quantification of salient objects and structures of interest in kidney biopsy images. Accurate annotation identifying and quantifying such structures in microscopy images can provide an estimation of pathogenesis in obstructive nephropathy, which is a rather common disease with severe implication in children and infants. However a tool for detecting and quantifying the disease is not yet available. A machine learning-based approach, which utilizes prior domain knowledge and textural image features, is considered for the generation of an image force field customizing the presented tool for automatic evaluation of kidney biopsy images. The experimental evaluation of the proposed application of Ratsnake demonstrates its efficiency and effectiveness and promises its wide applicability across a variety of medical imaging domains.

  2. Electro-Optical Imaging Fourier-Transform Spectrometer

    Science.gov (United States)

    Chao, Tien-Hsin; Zhou, Hanying

    2006-01-01

    An electro-optical (E-O) imaging Fourier-transform spectrometer (IFTS), now under development, is a prototype of improved imaging spectrometers to be used for hyperspectral imaging, especially in the infrared spectral region. Unlike both imaging and non-imaging traditional Fourier-transform spectrometers, the E-O IFTS does not contain any moving parts. Elimination of the moving parts and the associated actuator mechanisms and supporting structures would increase reliability while enabling reductions in size and mass, relative to traditional Fourier-transform spectrometers that offer equivalent capabilities. Elimination of moving parts would also eliminate the vibrations caused by the motions of those parts. Figure 1 schematically depicts a traditional Fourier-transform spectrometer, wherein a critical time delay is varied by translating one the mirrors of a Michelson interferometer. The time-dependent optical output is a periodic representation of the input spectrum. Data characterizing the input spectrum are generated through fast-Fourier-transform (FFT) post-processing of the output in conjunction with the varying time delay.

  3. Adaptive optics scanning laser ophthalmoscope imaging: technology update

    Directory of Open Access Journals (Sweden)

    Merino D

    2016-04-01

    Full Text Available David Merino, Pablo Loza-Alvarez The Institute of Photonic Sciences (ICFO, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain Abstract: Adaptive optics (AO retinal imaging has become very popular in the past few years, especially within the ophthalmic research community. Several different retinal techniques, such as fundus imaging cameras or optical coherence tomography systems, have been coupled with AO in order to produce impressive images showing individual cell mosaics over different layers of the in vivo human retina. The combination of AO with scanning laser ophthalmoscopy has been extensively used to generate impressive images of the human retina with unprecedented resolution, showing individual photoreceptor cells, retinal pigment epithelium cells, as well as microscopic capillary vessels, or the nerve fiber layer. Over the past few years, the technique has evolved to develop several different applications not only in the clinic but also in different animal models, thanks to technological developments in the field. These developments have specific applications to different fields of investigation, which are not limited to the study of retinal diseases but also to the understanding of the retinal function and vision science. This review is an attempt to summarize these developments in an understandable and brief manner in order to guide the reader into the possibilities that AO scanning laser ophthalmoscopy offers, as well as its limitations, which should be taken into account when planning on using it. Keywords: high-resolution, in vivo retinal imaging, AOSLO

  4. Space imaging infrared optical guidance for autonomous ground vehicle

    Science.gov (United States)

    Akiyama, Akira; Kobayashi, Nobuaki; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2008-08-01

    We have developed the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle based on the uncooled infrared camera and focusing technique to detect the objects to be evaded and to set the drive path. For this purpose we made servomotor drive system to control the focus function of the infrared camera lens. To determine the best focus position we use the auto focus image processing of Daubechies wavelet transform technique with 4 terms. From the determined best focus position we transformed it to the distance of the object. We made the aluminum frame ground vehicle to mount the auto focus infrared unit. Its size is 900mm long and 800mm wide. This vehicle mounted Ackerman front steering system and the rear motor drive system. To confirm the guidance ability of the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle we had the experiments for the detection ability of the infrared auto focus unit to the actual car on the road and the roadside wall. As a result the auto focus image processing based on the Daubechies wavelet transform technique detects the best focus image clearly and give the depth of the object from the infrared camera unit.

  5. Analyser-based phase contrast image reconstruction using geometrical optics

    International Nuclear Information System (INIS)

    Kitchen, M J; Pavlov, K M; Siu, K K W; Menk, R H; Tromba, G; Lewis, R A

    2007-01-01

    Analyser-based phase contrast imaging can provide radiographs of exceptional contrast at high resolution (<100 μm), whilst quantitative phase and attenuation information can be extracted using just two images when the approximations of geometrical optics are satisfied. Analytical phase retrieval can be performed by fitting the analyser rocking curve with a symmetric Pearson type VII function. The Pearson VII function provided at least a 10% better fit to experimentally measured rocking curves than linear or Gaussian functions. A test phantom, a hollow nylon cylinder, was imaged at 20 keV using a Si(1 1 1) analyser at the ELETTRA synchrotron radiation facility. Our phase retrieval method yielded a more accurate object reconstruction than methods based on a linear fit to the rocking curve. Where reconstructions failed to map expected values, calculations of the Takagi number permitted distinction between the violation of the geometrical optics conditions and the failure of curve fitting procedures. The need for synchronized object/detector translation stages was removed by using a large, divergent beam and imaging the object in segments. Our image acquisition and reconstruction procedure enables quantitative phase retrieval for systems with a divergent source and accounts for imperfections in the analyser

  6. System and carrier for optical images and holographic information recording

    International Nuclear Information System (INIS)

    Andries, A.; Bivol, V.; Iovu, M

    2002-01-01

    The invention relates to the semiconducting silverless photography, in particular to the technique for optical information recording and may be used in microphotography for manifacture of microfiches, microfilms, storage disks, i the multiplication and copying technique, in holography, in micro- and optoelectronics, cinematography etc. The system for optical images and holographic information recording includes an optical exposure system, an information carrier , containing a dielectric substrate with the first electrode, a photosensitive element and the second electrode, arranged in consecutive order, a constant and impulse voltage source, a means for climbing and movement of the information carrier, a control unit for connection of the voltage source to the electroconducting strate, a personal computer, connected to the control unit of the recording modes ,to the exposure system and the information carrier, an electrooptical transparency, connected to the computer by means of the matching unit. The carrier for optical images and holographic information recording contains a dielectric substrate, a photosensitive element formed of a layer of the vitreous chalcogenic semiconductor and a layer of the crystalline or amorphous semiconductor, forming a heterojunction, the photosensitive element is arranged between two electrodes , one of which is made transparent , in such case rge layer of the vitreous chalcogenic semiconductor comes into contact with the superior transparent electrode, subjected to exposure

  7. Optical fiber sensors for image formation in radiodiagnostic - preliminary essays

    International Nuclear Information System (INIS)

    Carvalho, Cesar C. de; Werneck, Marcelo M.

    1998-01-01

    This work describes preliminary experiments that will bring subsidies to analyze the capability to implement a system able to capture radiological images with new sensor system, comprised by FOs scanning process and I-CCD camera. These experiments have the main objective to analyze the optical response from FOs bundle, with several typos of scintillators associated with them, when it is submitted to medical x-rays exposition. (author)

  8. Multimodal ophthalmic imaging using spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography

    Science.gov (United States)

    El-Haddad, Mohamed T.; Malone, Joseph D.; Li, Jianwei D.; Bozic, Ivan; Arquitola, Amber M.; Joos, Karen M.; Patel, Shriji N.; Tao, Yuankai K.

    2017-08-01

    Ophthalmic surgery involves manipulation of delicate, layered tissue structures on milli- to micrometer scales. Traditional surgical microscopes provide an inherently two-dimensional view of the surgical field with limited depth perception which precludes accurate depth-resolved visualization of these tissue layers, and limits the development of novel surgical techniques. We demonstrate multimodal swept-source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography (SS-SESLO-OCT) to address current limitations of image-guided ophthalmic microsurgery. SS-SESLO-OCT provides inherently co-registered en face and cross-sectional field-of-views (FOVs) at a line rate of 400 kHz and >2 GPix/s throughput. We show in vivo imaging of the anterior segment and retinal fundus of a healthy volunteer, and preliminary results of multi-volumetric mosaicking for ultrawide-field retinal imaging with 90° FOV. Additionally, a scan-head was rapid-prototyped with a modular architecture which enabled integration of SS-SESLO-OCT with traditional surgical microscope and slit-lamp imaging optics. Ex vivo surgical maneuvers were simulated in cadaveric porcine eyes. The system throughput enabled volumetric acquisition at 10 volumes-per-second (vps) and allowed visualization of surgical dynamics in corneal sweeps, compressions, and dissections, and retinal sweeps, compressions, and elevations. SESLO en face images enabled simple real-time co-registration with the surgical microscope FOV, and OCT cross-sections provided depth-resolved visualization of instrument-tissue interactions. Finally, we demonstrate novel augmented-reality integration with the surgical view using segmentation overlays to aid surgical guidance. SS-SESLO-OCT may benefit clinical diagnostics by enabling aiming, registration, and mosaicking; and intraoperative imaging by allowing for real-time surgical feedback, instrument tracking, and overlays of computationally extracted biomarkers of disease.

  9. Optical Molecular Imaging of Epidermal Growth Factor Receptor Expression to Improve Detection of Oral Neoplasia

    Directory of Open Access Journals (Sweden)

    Nitin Nitin

    2009-06-01

    Full Text Available Background: The development of noninvasive molecular imaging approaches has the potential to improve management of cancer. Methods: In this study, we demonstrate the potential of noninvasive topical delivery of an epidermal growth factor-Alexa 647 (EGF-Alexa 647 conjugate to image changes in epidermal growth factor receptor expression associated with oral neoplasia. We report a series of preclinical analyses to evaluate the optical contrast achieved after topical delivery of EGF-Alexa 647 in a variety of model systems, including cells, three-dimensional tissue cultures, and intact human tissue specimens using wide-field and high-resolution fluorescence imaging. Data were collected from 17 different oral cancer patients: eight pairs of normal and abnormal biopsies and nine resected tumors were examined. Results: The EGF-dye conjugate can be uniformly delivered throughout the oral epithelium with a penetration depth exceeding 500 µm and incubation time of less than 30 minutes. After EGF-Alexa 647 incubation, the presence of oral neoplasia is associated with a 1.5- to 6.9-fold increase in fluorescence contrast compared with grossly normal mucosa from the same patient with both wide-field and high-resolution fluorescence imaging. Conclusions: Results illustrate the potential of EGF-targeted fluorescent agents for in vivo molecular imaging, a technique that may aid in the diagnosis and characterization of oral neoplasia and allow real-time detection of tumor margins.

  10. Combined optical and single photon emission imaging: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Boschi, Federico; Calderan, Laura; Sbarbati, Andrea [Department of Morphological-Biomedical Sciences, Section of Anatomy and Histology, University of Verona, Verona (Italy); Spinelli, Antonello E [Medical Physics Department, San Raffaele Scientific Institute, Milan (Italy); D' Ambrosio, Daniela; Marengo, Mario [Medical Physics Department, S. Orsola Malpighi Hospital, Bologna (Italy)], E-mail: federico.boschi@univr.it

    2009-12-07

    In vivo optical imaging instruments are generally devoted to the acquisition of light coming from fluorescence or bioluminescence processes. Recently, an instrument was conceived with radioisotopic detection capabilities (Kodak in Vivo Multispectral System F) based on the conversion of x-rays from the phosphorus screen. The goal of this work is to demonstrate that an optical imager (IVIS 200, Xenogen Corp., Alameda, USA), designed for in vivo acquisitions of small animals in bioluminescent and fluorescent modalities, can even be employed to detect signals due to radioactive tracers. Our system is based on scintillator crystals for the conversion of high-energy rays and a collimator. No hardware modifications are required. Crystals alone permit the acquisition of photons coming from an in vivo 20 g nude mouse injected with a solution of methyl diphosphonate technetium 99 metastable (Tc99m-MDP). With scintillator crystals and collimators, a set of measurements aimed to fully characterize the system resolution was carried out. More precisely, system point spread function and modulation transfer function were measured at different source depths. Results show that system resolution is always better than 1.3 mm when the source depth is less than 10 mm. The resolution of the images obtained with radioactive tracers is comparable with the resolution achievable with dedicated techniques. Moreover, it is possible to detect both optical and nuclear tracers or bi-modal tracers with only one instrument. (letter to the editor)

  11. Potential Measurement Errors Due to Image Enlargement in Optical Coherence Tomography Imaging

    Science.gov (United States)

    Uji, Akihito; Murakami, Tomoaki; Muraoka, Yuki; Hosoda, Yoshikatsu; Yoshitake, Shin; Dodo, Yoko; Arichika, Shigeta; Yoshimura, Nagahisa

    2015-01-01

    The effect of interpolation and super-resolution (SR) algorithms on quantitative and qualitative assessments of enlarged optical coherence tomography (OCT) images was investigated in this report. Spectral-domain OCT images from 30 eyes in 30 consecutive patients with diabetic macular edema (DME) and 20 healthy eyes in 20 consecutive volunteers were analyzed. Original image (OR) resolution was reduced by a factor of four. Images were then magnified by a factor of four with and without application of one of the following algorithms: bilinear (BL), bicubic (BC), Lanczos3 (LA), and SR. Differences in peak signal-to-noise ratio (PSNR), retinal nerve fiber layer (RNFL) thickness, photoreceptor layer status, and parallelism (reflects the complexity of photoreceptor layer alterations) were analyzed in each image type. The order of PSNRs from highest to lowest was SR > LA > BC > BL > non-processed enlarged images (NONE). The PSNR was statistically different in all groups. The NONE, BC, and LA images resulted in significantly thicker RNFL measurements than the OR image. In eyes with DME, the photoreceptor layer, which was hardly identifiable in NONE images, became detectable with algorithm application. However, OCT photoreceptor parameters were still assessed as more undetectable than in OR images. Parallelism was not statistically different in OR and NONE images, but other image groups had significantly higher parallelism than OR images. Our results indicated that interpolation and SR algorithms increased OCT image resolution. However, qualitative and quantitative assessments were influenced by algorithm use. Additionally, each algorithm affected the assessments differently. PMID:26024236

  12. Multiscale segmentation-aided digital image correlation for strain concentration characterization of a turbine blade fir-tree root

    Science.gov (United States)

    Sun, Chen; Zhou, Yihao; Li, Yang; Chen, Jubing; Miao, Hong

    2018-04-01

    In this paper, a multiscale segmentation-aided digital image correlation method is proposed to characterize the strain concentration of a turbine blade fir-tree root during its contact with the disk groove. A multiscale approach is implemented to increase the local spatial resolution, as the strain concentration area undergoes highly non-uniform deformation and its size is much smaller than the contact elements. In this approach, a far-field view and several near-field views are selected, aiming to get the full-field deformation and local deformation simultaneously. To avoid the interference of different cameras, only the optical axis of the far-field camera is selected to be perpendicular to the specimen surface while the others are inclined. A homography transformation is optimized by matching the feature points, to rectify the artificial deformation caused by the inclination of the optical axis. The resultant genuine near-field strain is thus obtained after the transformation. A real-world experiment is carried out and the strain concentration is characterized. The strain concentration factor is defined accordingly to provide a quantitative analysis.

  13. Adaptive optics improves multiphoton super-resolution imaging

    Science.gov (United States)

    Zheng, Wei; Wu, Yicong; Winter, Peter; Shroff, Hari

    2018-02-01

    Three dimensional (3D) fluorescence microscopy has been essential for biological studies. It allows interrogation of structure and function at spatial scales spanning the macromolecular, cellular, and tissue levels. Critical factors to consider in 3D microscopy include spatial resolution, signal-to-noise (SNR), signal-to-background (SBR), and temporal resolution. Maintaining high quality imaging becomes progressively more difficult at increasing depth (where optical aberrations, induced by inhomogeneities of refractive index in the sample, degrade resolution and SNR), and in thick or densely labeled samples (where out-of-focus background can swamp the valuable, in-focus-signal from each plane). In this report, we introduce our new instrumentation to address these problems. A multiphoton structured illumination microscope was simply modified to integrate an adpative optics system for optical aberrations correction. Firstly, the optical aberrations are determined using direct wavefront sensing with a nonlinear guide star and subsequently corrected using a deformable mirror, restoring super-resolution information. We demonstrate the flexibility of our adaptive optics approach on a variety of semi-transparent samples, including bead phantoms, cultured cells in collagen gels and biological tissues. The performance of our super-resolution microscope is improved in all of these samples, as peak intensity is increased (up to 40-fold) and resolution recovered (up to 176+/-10 nm laterally and 729+/-39 nm axially) at depths up to 250 μm from the coverslip surface.

  14. Functional imaging in bulk tissue specimens using optical emission tomography: fluorescence preservation during optical clearing

    International Nuclear Information System (INIS)

    Sakhalkar, H S; Dewhirst, M; Oliver, T; Cao, Y; Oldham, M

    2007-01-01

    Optical emission computed tomography (optical-ECT) is a technique for imaging the three-dimensional (3D) distribution of fluorescent probes in biological tissue specimens with high contrast and spatial resolution. In optical-ECT, functional information can be imaged by (i) systemic application of functional labels (e.g. fluorophore labelled proteins) and/or (ii) endogenous expression of fluorescent reporter proteins (e.g. red fluorescent protein (RFP), green fluorescent protein (GFP)) in vivo. An essential prerequisite for optical-ECT is optical clearing, a procedure where tissue specimens are made transparent to light by sequential perfusion with fixing, dehydrating and clearing agents. In this study, we investigate clearing protocols involving a selection of common fixing (4% buffered paraformaldehyde (PFA), methanol and ethanol), dehydrating (methanol and ethanol) and clearing agents (methyl salicylate and benzyl-alcohol-benzyl-benzoate (BABB)) in order to determine a 'fluorescence friendly' clearing procedure. Cell culture experiments were employed to optimize the sequence of chemical treatments that best preserve fluorescence. Texas red (TxRed), fluorescein isothiocyanate (FITC), RFP and GFP were tested as fluorophores and fluorescent reporter proteins of interest. Fluorescent and control cells were imaged on a microscope using a DSred2 and FITC filter set. The most promising clearing protocols of cell culture experiments were applied to whole xenograft tumour specimens, to test their effectiveness in large unsectioned samples. Fluorescence of TxRed/FITC fluorophores was not found to be significantly affected by any of the test clearing protocols. RFP and GFP fluorescence, however, was found to be significantly greater when cell fixation was in ethanol. Fixation in either PFA or methanol resulted in diminished fluorescence. After ethanol fixation, the RFP and GFP fluorescence proved remarkably robust to subsequent exposure to either methyl salicylate or BABB

  15. Functional imaging in bulk tissue specimens using optical emission tomography: fluorescence preservation during optical clearing

    Energy Technology Data Exchange (ETDEWEB)

    Sakhalkar, H S [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States); Dewhirst, M [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States); Oliver, T [Department of Cell Biology, Duke University Medical Center, Durham, NC 27710 (United States); Cao, Y [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States); Oldham, M [Department of Radiation Oncology Physics, and Biomedical Engineering, Duke University Medical Center, Durham, NC 27710 (United States)

    2007-04-21

    Optical emission computed tomography (optical-ECT) is a technique for imaging the three-dimensional (3D) distribution of fluorescent probes in biological tissue specimens with high contrast and spatial resolution. In optical-ECT, functional information can be imaged by (i) systemic application of functional labels (e.g. fluorophore labelled proteins) and/or (ii) endogenous expression of fluorescent reporter proteins (e.g. red fluorescent protein (RFP), green fluorescent protein (GFP)) in vivo. An essential prerequisite for optical-ECT is optical clearing, a procedure where tissue specimens are made transparent to light by sequential perfusion with fixing, dehydrating and clearing agents. In this study, we investigate clearing protocols involving a selection of common fixing (4% buffered paraformaldehyde (PFA), methanol and ethanol), dehydrating (methanol and ethanol) and clearing agents (methyl salicylate and benzyl-alcohol-benzyl-benzoate (BABB)) in order to determine a 'fluorescence friendly' clearing procedure. Cell culture experiments were employed to optimize the sequence of chemical treatments that best preserve fluorescence. Texas red (TxRed), fluorescein isothiocyanate (FITC), RFP and GFP were tested as fluorophores and fluorescent reporter proteins of interest. Fluorescent and control cells were imaged on a microscope using a DSred2 and FITC filter set. The most promising clearing protocols of cell culture experiments were applied to whole xenograft tumour specimens, to test their effectiveness in large unsectioned samples. Fluorescence of TxRed/FITC fluorophores was not found to be significantly affected by any of the test clearing protocols. RFP and GFP fluorescence, however, was found to be significantly greater when cell fixation was in ethanol. Fixation in either PFA or methanol resulted in diminished fluorescence. After ethanol fixation, the RFP and GFP fluorescence proved remarkably robust to subsequent exposure to either methyl salicylate

  16. A Deep Learning Approach to Digitally Stain Optical Coherence Tomography Images of the Optic Nerve Head.

    Science.gov (United States)

    Devalla, Sripad Krishna; Chin, Khai Sing; Mari, Jean-Martial; Tun, Tin A; Strouthidis, Nicholas G; Aung, Tin; Thiéry, Alexandre H; Girard, Michaël J A

    2018-01-01

    To develop a deep learning approach to digitally stain optical coherence tomography (OCT) images of the optic nerve head (ONH). A horizontal B-scan was acquired through the center of the ONH using OCT (Spectralis) for one eye of each of 100 subjects (40 healthy and 60 glaucoma). All images were enhanced using adaptive compensation. A custom deep learning network was then designed and trained with the compensated images to digitally stain (i.e., highlight) six tissue layers of the ONH. The accuracy of our algorithm was assessed (against manual segmentations) using the dice coefficient, sensitivity, specificity, intersection over union (IU), and accuracy. We studied the effect of compensation, number of training images, and performance comparison between glaucoma and healthy subjects. For images it had not yet assessed, our algorithm was able to digitally stain the retinal nerve fiber layer + prelamina, the RPE, all other retinal layers, the choroid, and the peripapillary sclera and lamina cribrosa. For all tissues, the dice coefficient, sensitivity, specificity, IU, and accuracy (mean) were 0.84 ± 0.03, 0.92 ± 0.03, 0.99 ± 0.00, 0.89 ± 0.03, and 0.94 ± 0.02, respectively. Our algorithm performed significantly better when compensated images were used for training (P deep learning algorithm can simultaneously stain the neural and connective tissues of the ONH, offering a framework to automatically measure multiple key structural parameters of the ONH that may be critical to improve glaucoma management.

  17. Active optics: off axis aspherics generation for high contrast imaging

    Science.gov (United States)

    Hugot, E.; Laslandes, M.; Ferrari, M.; Vives, S.; Moindrot, S.; El Hadi, K.; Dohlen, K.

    2017-11-01

    Active Optics methods, based on elasticity theory, allow the aspherisation of optical surfaces by stress polishing but also active aspherisation in situ. Researches in this field will impact the final performance and the final cost of any telescope or instrument. The stress polishing method is well suited for the superpolishing of aspheric components for astronomy. Its principle relies on spherical polishing with a full-sized tool of a warped substrate, which becomes aspherical once unwarped. The main advantage of this technique is the very high optical quality obtained either on form or on high spatial frequency errors. Furthermore, the roughness can be decreased down to a few angstroms, thanks the classical polishing with a large pitch tool, providing a substantial gain on the final scientific performance, for instance on the contrast on coronagraphic images, but also on the polishing time and cost. Stress polishing is based on elasticity theory, and requires an optimised deformation system able to provide the right aspherical form on the optical surface during polishing. The optical quality of the deformation is validated using extensive Finite Element Analysis, allowing an estimation of residuals and an optimisation of the warping harness. We describe here the work realised on stress polishing of toric mirrors for VLT-SPHERE and then our actual work on off axis aspherics (OAA) for the ASPIICS-Proba3 mission for solar coronagraphy. The ASPIICS optical design made by Vives et al is a three mirrors anastigmat including a concave off axis hyperboloid and a convex off axis parabola (OAP). We are developing a prototype in order to demonstrate the feasibility of this type of surface, using a multi-mode warping harness (Lemaitre et al). Furthermore, we present our work on variable OAP, meaning the possibility to adjust the shape of a simple OAP in situ with a minimal number of actuators, typically one actuator per optical mode (Focus, Coma and Astigmatism

  18. Magnetic resonance imaging findings of the brain in adult HIV and AIDS patients; Magnetresonanztomografische Befunde des Gehirns bei adulten Patienten mit HIV und AIDS

    Energy Technology Data Exchange (ETDEWEB)

    Kloska, S.P.; Schlegel, P.M.; Fischbach, R.; Heindel, W. [Inst. fuer Klinische Radiologie, Universitaetsklinikum Muenster (Germany); Husstedt, I.W.; Anneken, K.; Evers, S. [Klinik und Poliklinik fuer Neurologie, Universitaetsklinikum Muenster (Germany)

    2008-01-15

    The spectrum of pathology affecting the central nervous system (CNS) in patients suffering from acquired immunodeficiency syndrome (AIDS) includes not only the human immunodeficiency virus (HIV) infection itself but also opportunistic infections and tumors secondary to AIDS. Despite progress in antiretroviral therapy and the subsequent decrease in the incidence of associated diseases, opportunistic infections and tumors secondary to the HIV infection continue to be the limiting factor in terms of survival with AIDS. Therefore, the therapeutic aim is permanent antiretroviral therapy as well as early diagnosis and treatment of opportunistic infections. Magnetic resonance imaging is often the diagnostic method of choice in suspected CNS pathology of HIV patients. In the following, the typical clinical and radiological features of several AIDS-related pathologies are presented and discussed. (orig.)

  19. Optical imaging of oral pathological tissue using optical coherence tomography and synchrotron radiation computed microtomography

    Science.gov (United States)

    Cânjǎu, Silvana; Todea, Carmen; Sinescu, Cosmin; Negrutiu, Meda L.; Duma, Virgil; Mǎnescu, Adrian; Topalǎ, Florin I.; Podoleanu, Adrian Gh.

    2013-06-01

    The efforts aimed at early diagnosis of oral cancer should be prioritized towards developing a new screening instrument, based on optical coherence tomography (OCT), to be used directly intraorally, able to perform a fast, real time, 3D and non-invasive diagnosis of oral malignancies. The first step in this direction would be to optimize the OCT image interpretation of oral tissues. Therefore we propose plastination as a tissue preparation method that better preserves three-dimensional structure for study by new optical imaging techniques. The OCT and the synchrotron radiation computed microtomography (micro-CT) were employed for tissue sample analyze. For validating the OCT results we used the gold standard diagnostic procedure for any suspicious lesion - histopathology. This is a preliminary study of comparing features provided by OCT and Micro-CT. In the conditions of the present study, OCT proves to be a highly promising imaging modality. The use of x-ray based topographic imaging of small biological samples has been limited by the low intrinsic x-ray absorption of non-mineralized tissue and the lack of established contrast agents. Plastination can be used to enhance optical imagies of oral soft tissue samples.

  20. Imaging Cutaneous T-Cell Lymphoma with Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Hans Christian Ring

    2012-07-01

    Full Text Available Aim: To investigate the presentation of a patch-stage cutaneous T-cell lymphoma (CTCL using optical coherence tomography (OCT. Methods: A patient with a patch caused by CTCL was photographed digitally, OCT-scanned and biopsied. A normal skin area adjacent to the patch was OCT-scanned for comparison, but not biopsied. The OCT image and the histological image were compared. Results: The OCT images illustrated a thickened and hyperreflective stratum corneum. OCT also demonstrated several elongated hyporeflective structures in the dermis. The largest structure was measured to have a width of 0.13 mm. A good immediate correlation was found between histology and OCT imaging of the sample. Conclusion: The aetiology of the elongated structures is thought to be lymphomatous infiltrates. Similar findings have been described in ocular lymphoma and may therefore be an important characteristic of cutaneous lymphoma. It may further be speculated that the differences in OCT images may reflect the biological behaviour of the infiltrate. This observation therefore suggests that OCT imaging may be a relevant tool for the in vivo investigation of mycosis fungoides and other CTCLs, but in order to verify these observed patterns in OCT imaging, further investigations will be required.

  1. Development of integrated semiconductor optical sensors for functional brain imaging

    Science.gov (United States)

    Lee, Thomas T.

    Optical imaging of neural activity is a widely accepted technique for imaging brain function in the field of neuroscience research, and has been used to study the cerebral cortex in vivo for over two decades. Maps of brain activity are obtained by monitoring intensity changes in back-scattered light, called Intrinsic Optical Signals (IOS), that correspond to fluctuations in blood oxygenation and volume associated with neural activity. Current imaging systems typically employ bench-top equipment including lamps and CCD cameras to study animals using visible light. Such systems require the use of anesthetized or immobilized subjects with craniotomies, which imposes limitations on the behavioral range and duration of studies. The ultimate goal of this work is to overcome these limitations by developing a single-chip semiconductor sensor using arrays of sources and detectors operating at near-infrared (NIR) wavelengths. A single-chip implementation, combined with wireless telemetry, will eliminate the need for immobilization or anesthesia of subjects and allow in vivo studies of free behavior. NIR light offers additional advantages because it experiences less absorption in animal tissue than visible light, which allows for imaging through superficial tissues. This, in turn, reduces or eliminates the need for traumatic surgery and enables long-term brain-mapping studies in freely-behaving animals. This dissertation concentrates on key engineering challenges of implementing the sensor. This work shows the feasibility of using a GaAs-based array of vertical-cavity surface emitting lasers (VCSELs) and PIN photodiodes for IOS imaging. I begin with in-vivo studies of IOS imaging through the skull in mice, and use these results along with computer simulations to establish minimum performance requirements for light sources and detectors. I also evaluate the performance of a current commercial VCSEL for IOS imaging, and conclude with a proposed prototype sensor.

  2. Optical image encryption scheme with multiple light paths based on compressive ghost imaging

    Science.gov (United States)

    Zhu, Jinan; Yang, Xiulun; Meng, Xiangfeng; Wang, Yurong; Yin, Yongkai; Sun, Xiaowen; Dong, Guoyan

    2018-02-01

    An optical image encryption method with multiple light paths is proposed based on compressive ghost imaging. In the encryption process, M random phase-only masks (POMs) are generated by means of logistic map algorithm, and these masks are then uploaded to the spatial light modulator (SLM). The collimated laser light is divided into several beams by beam splitters as it passes through the SLM, and the light beams illuminate the secret images, which are converted into sparse images by discrete wavelet transform beforehand. Thus, the secret images are simultaneously encrypted into intensity vectors by ghost imaging. The distances between the SLM and secret images vary and can be used as the main keys with original POM and the logistic map algorithm coefficient in the decryption process. In the proposed method, the storage space can be significantly decreased and the security of the system can be improved. The feasibility, security and robustness of the method are further analysed through computer simulations.

  3. A Stochastic Approach for Blurred Image Restoration and Optical Flow Computation on Field Image Sequence

    Institute of Scientific and Technical Information of China (English)

    高文; 陈熙霖

    1997-01-01

    The blur in target images caused by camera vibration due to robot motion or hand shaking and by object(s) moving in the background scene is different to deal with in the computer vision system.In this paper,the authors study the relation model between motion and blur in the case of object motion existing in video image sequence,and work on a practical computation algorithm for both motion analysis and blut image restoration.Combining the general optical flow and stochastic process,the paper presents and approach by which the motion velocity can be calculated from blurred images.On the other hand,the blurred image can also be restored using the obtained motion information.For solving a problem with small motion limitation on the general optical flow computation,a multiresolution optical flow algoritm based on MAP estimation is proposed. For restoring the blurred image ,an iteration algorithm and the obtained motion velocity are used.The experiment shows that the proposed approach for both motion velocity computation and blurred image restoration works well.

  4. Analyser-based phase contrast image reconstruction using geometrical optics.

    Science.gov (United States)

    Kitchen, M J; Pavlov, K M; Siu, K K W; Menk, R H; Tromba, G; Lewis, R A

    2007-07-21

    Analyser-based phase contrast imaging can provide radiographs of exceptional contrast at high resolution (geometrical optics are satisfied. Analytical phase retrieval can be performed by fitting the analyser rocking curve with a symmetric Pearson type VII function. The Pearson VII function provided at least a 10% better fit to experimentally measured rocking curves than linear or Gaussian functions. A test phantom, a hollow nylon cylinder, was imaged at 20 keV using a Si(1 1 1) analyser at the ELETTRA synchrotron radiation facility. Our phase retrieval method yielded a more accurate object reconstruction than methods based on a linear fit to the rocking curve. Where reconstructions failed to map expected values, calculations of the Takagi number permitted distinction between the violation of the geometrical optics conditions and the failure of curve fitting procedures. The need for synchronized object/detector translation stages was removed by using a large, divergent beam and imaging the object in segments. Our image acquisition and reconstruction procedure enables quantitative phase retrieval for systems with a divergent source and accounts for imperfections in the analyser.

  5. Image processing algorithm of computer-aided diagnosis in lung cancer screening by CT

    International Nuclear Information System (INIS)

    Yamamoto, Shinji

    2004-01-01

    In this paper, an image processing algorithm for computer-aided diagnosis of lung cancer by X-ray CT is described, which has been developed by my research group for these 10 years or so. CT lung images gathered at the mass screening stage are almost all normal, and lung cancer nodules will be found as the rate of less than 10%. To pick up such a very rare nodules with the high accuracy, a very sensitive detection algorithm is requested which is detectable local and very slight variation of the image. On the contrary, such a sensitive detection algorithm introduces a bad effect that a lot of normal shadows will be detected as abnormal shadows. In this paper I describe how to compromise this complicated subject and realize a practical computer-aided diagnosis tool by the image processing algorithm developed by my research group. Especially, I will mainly focus my description to the principle and characteristics of the Quoit filter which is newly developed as a high sensitive filter by my group. (author)

  6. All-optical image processing with nonlinear liquid crystals

    Science.gov (United States)

    Hong, Kuan-Lun

    Liquid crystals are fascinating materials because of several advantages such as large optical birefringence, dielectric anisotropic, and easily compatible to most kinds of materials. Compared to the electro-optical properties of liquid crystals widely applied in displays and switching application, transparency through most parts of wavelengths also makes liquid crystals a better candidate for all-optical processing. The fast response time of liquid crystals resulting from multiple nonlinear effects, such as thermal and density effect can even make real-time processing realized. In addition, blue phase liquid crystals with spontaneously self-assembled three dimensional cubic structures attracted academic attention. In my dissertation, I will divide the whole contents into six parts. In Chapter 1, a brief introduction of liquid crystals is presented, including the current progress and the classification of liquid crystals. Anisotropy and laser induced director axis reorientation is presented in Chapter 2. In Chapter 3, I will solve the electrostrictive coupled equation and analyze the laser induced thermal and density effect in both static and dynamic ways. Furthermore, a dynamic simulation of laser induced density fluctuation is proposed by applying finite element method. In Chapter 4, two image processing setups are presented. One is the intensity inversion experiment in which intensity dependent phase modulation is the mechanism. The other is the wavelength conversion experiment in which I can read the invisible image with a visible probe beam. Both experiments are accompanied with simulations to realize the matching between the theories and practical experiment results. In Chapter 5, optical properties of blue phase liquid crystals will be introduced and discussed. The results of grating diffractions and thermal refractive index gradient are presented in this chapter. In addition, fiber arrays imaging and switching with BPLCs will be included in this chapter

  7. Extended depth of field imaging through multicore optical fibers.

    Science.gov (United States)

    Orth, Antony; Ploschner, Martin; Maksymov, Ivan S; Gibson, Brant C

    2018-03-05

    Compact microendoscopes use multicore optical fibers (MOFs) to visualize hard-to-reach regions of the body. These devices typically have a large numerical aperture (NA) and are fixed-focus, leading to blurry images from a shallow depth of field with little focus control. In this work, we demonstrate a method to digitally adjust the collection aperture and therefore extend the depth of field of lensless MOF imaging probes. We show that the depth of field can be more than doubled for certain spatial frequencies, and observe a resolution enhancement of up to 78% at a distance of 50μm from the MOF facet. Our technique enables imaging of complex 3D objects at a comparable working distance to lensed MOFs, but without the requirement of lenses, scan units or transmission matrix calibration. Our approach is implemented in post processing and may be used to improve contrast in any microendoscopic probe utilizing a MOF and incoherent light.

  8. Biological elements carry out optical tasks in coherent imaging systems

    Science.gov (United States)

    Ferraro, P.; Bianco, V.; Paturzo, M.; Miccio, L.; Memmolo, P.; Merola, F.; Marchesano, V.

    2016-03-01

    We show how biological elements, like live bacteria species and Red Blood Cells (RBCs) can accomplish optical functionalities in DH systems. Turbid media allow coherent microscopy despite the strong light scattering these provoke, acting on light just as moving diffusers. Furthermore, a turbid medium can have positive effects on a coherent imaging system, providing resolution enhancement and mimicking the action of noise decorrelation devices, thus yielding an image quality significantly higher than the quality achievable through a transparent medium in similar recording conditions. Besides, suspended RBCs are demonstrated to behave as controllable liquid micro-lenses, opening new possibilities in biophotonics for endoscopy imaging purposes, as well as telemedicine for point-of-care diagnostics in developing countries and low-resource settings.

  9. Practical optical interferometry imaging at visible and infrared wavelengths

    CERN Document Server

    Buscher, David F

    2015-01-01

    Optical interferometry is a powerful technique to make images on angular scales hundreds of times smaller than is possible with the largest telescopes. This concise guide provides an introduction to the technique for graduate students and researchers who want to make interferometric observations and acts as a reference for technologists building new instruments. Starting from the principles of interference, the author covers the core concepts of interferometry, showing how the effects of the Earth's atmosphere can be overcome using closure phase, and the complete process of making an observation, from planning to image reconstruction. This rigorous approach emphasizes the use of rules-of-thumb for important parameters such as the signal-to-noise ratios, requirements for sampling the Fourier plane and predicting image quality. The handbook is supported by web resources, including the Python source code used to make many of the graphs, as well as an interferometry simulation framework, available at www.cambridg...

  10. Functional connectivity of the rodent brain using optical imaging

    Science.gov (United States)

    Guevara Codina, Edgar

    The aim of this thesis is to apply functional connectivity in a variety of animal models, using several optical imaging modalities. Even at rest, the brain shows high metabolic activity: the correlation in slow spontaneous fluctuations identifies remotely connected areas of the brain; hence the term "functional connectivity". Ongoing changes in spontaneous activity may provide insight into the neural processing that takes most of the brain metabolic activity, and so may provide a vast source of disease related changes. Brain hemodynamics may be modified during disease and affect resting-state activity. The thesis aims to better understand these changes in functional connectivity due to disease, using functional optical imaging. The optical imaging techniques explored in the first two contributions of this thesis are Optical Imaging of Intrinsic Signals and Laser Speckle Contrast Imaging, together they can estimate the metabolic rate of oxygen consumption, that closely parallels neural activity. They both have adequate spatial and temporal resolution and are well adapted to image the convexity of the mouse cortex. In the last article, a depth-sensitive modality called photoacoustic tomography was used in the newborn rat. Optical coherence tomography and laminar optical tomography were also part of the array of imaging techniques developed and applied in other collaborations. The first article of this work shows the changes in functional connectivity in an acute murine model of epileptiform activity. Homologous correlations are both increased and decreased with a small dependence on seizure duration. These changes suggest a potential decoupling between the hemodynamic parameters in resting-state networks, underlining the importance to investigate epileptic networks with several independent hemodynamic measures. The second study examines a novel murine model of arterial stiffness: the unilateral calcification of the right carotid. Seed-based connectivity analysis

  11. Application of optical coherence tomography attenuation imaging for quantification of optical properties in medulloblastoma

    Science.gov (United States)

    Vuong, Barry; Skowron, Patryk; Kiehl, Tim-Rasmus; Kyan, Matthew; Garzia, Livia; Genis, Helen; Sun, Cuiru; Taylor, Michael D.; Yang, Victor X. D.

    2015-03-01

    The hemodynamic environment is known to play a crucial role in the progression, rupture, and treatment of intracranial aneurysms. Currently there is difficulty assessing and measuring blood flow profiles in vivo. An emerging high resolution imaging modality known as split spectrum Doppler optical coherence tomography (ssDOCT) has demonstrated the capability to quantify hemodynamic patterns as well as arterial microstructural changes. In this study, we present a novel in vitro method to acquire precise blood flow patterns within a patient- specific aneurysm silicone flow models using ssDOCT imaging. Computational fluid dynamics (CFD) models were generated to verify ssDOCT results.

  12. Optically neuronavigated ultrasonography in an intraoperative magnetic resonance imaging environment.

    Science.gov (United States)

    Katisko, Jani P A; Koivukangas, John P

    2007-04-01

    To develop a clinically useful method that shows the corresponding planes of intraoperative two-dimensional ultrasonography and intraoperative magnetic resonance imaging (MRI) scans determined with an optical neuronavigator from an intraoperative three-dimensional MRI scan data set, and to determine the qualitative and the quantitative spatial correspondence between the ultrasonography and MRI scans. An ultrasound probe was interlinked with an ergonomic and MRI scan-compatible ultrasonography probe tracker to the optical neuronavigator used in a low-field intraoperative MRI scan environment for brain surgery. Spatial correspondence measurements were performed using a custom-made ultrasonography/MRI scan phantom. In this work, instruments to combine intraoperatively collected ultrasonography and MRI scan data with an optical localization method in a magnetic environment were developed. The ultrasonography transducer tracker played an important role. Furthermore, a phantom for ultrasonography and MRI scanning was produced. This is the first report, to our knowledge, regarding the possibility of combining the two most important intraoperative imaging modalities used in neurosurgery, ultrasonography and MRI scanning, to guide brain tumor surgery. The method was feasible and, as shown in an illustrative surgical case, has direct clinical impact on image-guided brain surgery. The spatial deviation between the ultrasonography and the MRI scans was, on average, 1.90 +/- 1.30 mm at depths of 0 to 120 mm from the ultrasonography probe. The overall result of this work is a unique method to guide the neurosurgical operation with neuronavigated ultrasonography imaging in an intraoperative MRI scanning environment. The relevance of the method is emphasized in minimally invasive neurosurgery.

  13. Noninvasive optical diagnosis of low back pain with the aid of Chinese cupping procedure

    Science.gov (United States)

    Li, Nanxi; Li, Ting

    2018-02-01

    Low back pain (LBP) is a complex disease that can be cause by a variety of reasons. Now LBP has become a very common and severe disease among kinds of occupational groups with showing a younger trend. The traditional diagnosis relies on complicated imaging modalities and other dangerous and invasive methods. Noninvasive near-infrared spectroscopy (NIRS) is noninvasive and convenient, and has been successful used in point-of-care diagnosis. Here, we attempt to explore NIRS's application in in low back pain diagnosis and the effect of aid-use of Chinese cupping procedure. 13 LBP patients and 13 healthy subjects participated in NIRS measurements of concentrations of oxy- and deoxy-hemoglobins (Δ[HbO2] and Δ[Hb]) at the middle of the lumbar spine. It was showed that there was significant differences (p < 0.001) between healthy subjects and LBP patients after cupping procedure, while insignificant before cupping. Moreover, it was found that healthy subjects showed stronger responses to cupping procedure than LBP patients, with prominently higher concentration of Δ[HbO2] and Δ[Hb]. It indicates the potential of NIRS in noninvasive, measurable and straightforward monitoring/therapeutic effect evaluation of LBP with bedside and point-of-care monitoring capability.

  14. Optical Coherence Tomography Technology and Quality Improvement Methods for Optical Coherence Tomography Images of Skin: A Short Review

    Science.gov (United States)

    Adabi, Saba; Turani, Zahra; Fatemizadeh, Emad; Clayton, Anne; Nasiriavanaki, Mohammadreza

    2017-01-01

    Optical coherence tomography (OCT) delivers 3-dimensional images of tissue microstructures. Although OCT imaging offers a promising high-resolution method, OCT images experience some artifacts that lead to misapprehension of tissue structures. Speckle, intensity decay, and blurring are 3 major artifacts in OCT images. Speckle is due to the low coherent light source used in the configuration of OCT. Intensity decay is a deterioration of light with respect to depth, and blurring is the consequence of deficiencies of optical components. In this short review, we summarize some of the image enhancement algorithms for OCT images which address the abovementioned artifacts. PMID:28638245

  15. Optical Coherence Tomography Technology and Quality Improvement Methods for Optical Coherence Tomography Images of Skin: A Short Review

    Directory of Open Access Journals (Sweden)

    Saba Adabi

    2017-06-01

    Full Text Available Optical coherence tomography (OCT delivers 3-dimensional images of tissue microstructures. Although OCT imaging offers a promising high-resolution method, OCT images experience some artifacts that lead to misapprehension of tissue structures. Speckle, intensity decay, and blurring are 3 major artifacts in OCT images. Speckle is due to the low coherent light source used in the configuration of OCT. Intensity decay is a deterioration of light with respect to depth, and blurring is the consequence of deficiencies of optical components. In this short review, we summarize some of the image enhancement algorithms for OCT images which address the abovementioned artifacts.

  16. How nonlinear optics can merge interferometry for high resolution imaging

    Science.gov (United States)

    Ceus, D.; Reynaud, F.; Tonello, A.; Delage, L.; Grossard, L.

    2017-11-01

    High resolution stellar interferometers are very powerful efficient instruments to get a better knowledge of our Universe through the spatial coherence analysis of the light. For this purpose, the optical fields collected by each telescope Ti are mixed together. From the interferometric pattern, two expected information called the contrast Cij and the phase information φij are extracted. These information lead to the Vij, called the complex visibility, with Vij=Cijexp(jφij). For each telescope doublet TiTj, it is possible to get a complex visibility Vij. The Zernike Van Cittert theorem gives a relationship between the intensity distribution of the object observed and the complex visibility. The combination of the acquired complex visibilities and a reconstruction algorithm allows imaging reconstruction. To avoid lots of technical difficulties related to infrared optics (components transmission, thermal noises, thermal cooling…), our team proposes to explore the possibility of using nonlinear optical techniques. This is a promising alternative detection technique for detecting infrared optical signals. This way, we experimentally demonstrate that frequency conversion does not result in additional bias on the interferometric data supplied by a stellar interferometer. In this presentation, we report on wavelength conversion of the light collected by each telescope from the infrared domain to the visible. The interferometric pattern is observed in the visible domain with our, so called, upconversion interferometer. Thereby, one can benefit from mature optical components mainly used in optical telecommunications (waveguide, coupler, multiplexer…) and efficient low-noise detection schemes up to the single-photon counting level.

  17. Special issue on high-resolution optical imaging

    Science.gov (United States)

    Smith, Peter J. S.; Davis, Ilan; Galbraith, Catherine G.; Stemmer, Andreas

    2013-09-01

    The pace of development in the field of advanced microscopy is truly breath-taking, and is leading to major breakthroughs in our understanding of molecular machines and cell function. This special issue of Journal of Optics draws attention to a number of interesting approaches, ranging from fluorescence and imaging of unlabelled cells, to computational methods, all of which are describing the ever increasing detail of the dynamic behaviour of molecules in the living cell. This is a field which traditionally, and currently, demonstrates a marvellous interplay between the disciplines of physics, chemistry and biology, where apparent boundaries to resolution dissolve and living cells are viewed in ever more clarity. It is fertile ground for those interested in optics and non-conventional imaging to contribute high-impact outputs in the fields of cell biology and biomedicine. The series of articles presented here has been selected to demonstrate this interdisciplinarity and to encourage all those with a background in the physical sciences to 'dip their toes' into the exciting and dynamic discoveries surrounding cell function. Although single molecule super-resolution microscopy is commercially available, specimen preparation and interpretation of single molecule data remain a major challenge for scientists wanting to adopt the techniques. The paper by Allen and Davidson [1] provides a much needed detailed introduction to the practical aspects of stochastic optical reconstruction microscopy, including sample preparation, image acquisition and image analysis, as well as a brief description of the different variants of single molecule localization microscopy. Since super-resolution microscopy is no longer restricted to three-dimensional imaging of fixed samples, the review by Fiolka [2] is a timely introduction to techniques that have been successfully applied to four-dimensional live cell super-resolution microscopy. The combination of multiple high-resolution techniques

  18. Did Caravaggio employ optical projections? An image analysis of the parity in the artist's paintings

    Science.gov (United States)

    Stork, David G.

    2011-03-01

    We examine one class of evidence put forth in support of the recent claim that the Italian Baroque master Caravaggio secretly employed optical projectors as a direct drawing aid. Specically, we test the claims that there is an "abnormal number" of left-handed gures in his works and, more specically, that "During the Del Monte period he had too many left-handed models." We also test whether there was a reversal in the handedness of specic models in different paintings. Such evidence would be consistent with the claim that Caravaggio switched between using a convex-lens projector to using a concave-mirror projector and would support, but not prove, the claim that Caravaggio used optical projections. We estimate the parity (+ or -) of each of Caravaggio's 76 appropriate oil paintings based on the handedness of gures, the orientation of asymmetric objects, placement of scabbards, depicted text, and so on, and search for statistically significant changes in handedness in figures. We also track the direction of the illumination over time in the artist's uvre. We discuss some historical evidence as it relates to the question of his possible use of optics. We nd the proportion of left-handed figures lower than that in the general population (not higher), and no significant change in estimated handedness even of individual models. Optical proponents have argued that Bacchus (1597) portrays a left-handed gure, but we give visual and cultural evidence showing that this gure is instead right-handed, thereby rebutting this claim that the painting was executed using optical projections. Moreover, scholars recently re-discovered the image of the artist with easel and canvas reflected in the carafe of wine at the front left in the tableau in Bacchus, showing that this painting was almost surely executed using traditional (non-optical) easel methods. We conclude that there is 1) no statistically signicant abnormally high number of left-handed gures in Caravaggio's uvre, including

  19. Nanodiamond Landmarks for Subcellular Multimodal Optical and Electron Imaging

    Science.gov (United States)

    Zurbuchen, Mark A.; Lake, Michael P.; Kohan, Sirus A.; Leung, Belinda; Bouchard, Louis-S.

    2013-01-01

    There is a growing need for biolabels that can be used in both optical and electron microscopies, are non-cytotoxic, and do not photobleach. Such biolabels could enable targeted nanoscale imaging of sub-cellular structures, and help to establish correlations between conjugation-delivered biomolecules and function. Here we demonstrate a sub-cellular multi-modal imaging methodology that enables localization of inert particulate probes, consisting of nanodiamonds having fluorescent nitrogen-vacancy centers. These are functionalized to target specific structures, and are observable by both optical and electron microscopies. Nanodiamonds targeted to the nuclear pore complex are rapidly localized in electron-microscopy diffraction mode to enable “zooming-in” to regions of interest for detailed structural investigations. Optical microscopies reveal nanodiamonds for in-vitro tracking or uptake-confirmation. The approach is general, works down to the single nanodiamond level, and can leverage the unique capabilities of nanodiamonds, such as biocompatibility, sensitive magnetometry, and gene and drug delivery. PMID:24036840

  20. Multiple speckle illumination for optical-resolution photoacoustic imaging

    Science.gov (United States)

    Poisson, Florian; Stasio, Nicolino; Moser, Christophe; Psaltis, Demetri; Bossy, Emmanuel

    2017-03-01

    Optical-resolution photoacoustic microscopy offers exquisite and specific contrast to optical absorption. Conventional approaches generally involves raster scanning a focused spot over the sample. Here, we demonstrate that a full-field illumination approach with multiple speckle illumination can also provide diffraction-limited optical-resolution photoacoustic images. Two different proof-of-concepts are demonstrated with micro-structured test samples. The first approach follows the principle of correlation/ghost imaging,1, 2 and is based on cross-correlating photoacoustic signals under multiple speckle illumination with known speckle patterns measured during a calibration step. The second approach is a speckle scanning microscopy technique, which adapts the technique proposed in fluorescence microscopy by Bertolotti and al.:3 in our work, spatially unresolved photoacoustic measurements are performed for various translations of unknown speckle patterns. A phase-retrieval algorithm is used to reconstruct the object from the knowledge of the modulus of its Fourier Transform yielded by the measurements. Because speckle patterns naturally appear in many various situations, including propagation through biological tissue or multi-mode fibers (for which focusing light is either very demanding if not impossible), speckle-illumination-based photoacoustic microscopy provides a powerful framework for the development of novel reconstruction approaches, well-suited to compressed sensing approaches.2

  1. Advanced MEMS systems for optical communication and imaging

    International Nuclear Information System (INIS)

    Horenstein, M N; Sumner, R; Freedman, D S; Datta, M; Kani, N; Miller, P; Stewart, J B; Cornelissen, S

    2011-01-01

    Optical communication and adaptive optics have emerged as two important uses of micro-electromechanical (MEMS) devices based on electrostatic actuation. Each application uses a mirror whose surface is altered by applying voltages of up to 300 V. Previous generations of adaptive-optic mirrors were large (∼1 m) and required the use of piezoelectric transducers. Beginning in the mid-1990s, a new class of small MEMS mirrors (∼1 cm) were developed. These mirrors are now a commercially available, mature technology. This paper describes three advanced applications of MEMS mirrors. The first is a mirror used for corona-graphic imaging, whereby an interferometric telescope blocks the direct light from a distant star so that nearby objects such as planets can be seen. We have developed a key component of the system: a 144-channel, fully-scalable, high-voltage multiplexer that reduces power consumption to only a few hundred milliwatts. In a second application, a MEMS mirror comprises part of a two-way optical communication system in which only one node emits a laser beam. The other node is passive, incorporating a retro-reflective, electrostatic MEMS mirror that digitally encodes the reflected beam. In a third application, the short (∼100-ns) pulses of a commercially-available laser rangefinder are returned by the MEMS mirror as a digital data stream. Suitable low-power drive systems comprise part of the system design.

  2. Diffractive optical variable image devices generated by maskless interferometric lithography for optical security

    Science.gov (United States)

    Cabral, Alexandre; Rebordão, José M.

    2011-05-01

    In optical security (protection against forgery and counterfeit of products and documents) the problem is not exact reproduction but the production of something sufficiently similar to the original. Currently, Diffractive Optically Variable Image Devices (DOVID), that create dynamic chromatic effects which may be easily recognized but are difficult to reproduce, are often used to protect important products and documents. Well known examples of DOVID for security are 3D or 2D/3D holograms in identity documents and credit cards. Others are composed of shapes with different types of microstructures yielding by diffraction to chromatic dynamic effects. A maskless interferometric lithography technique to generate DOVIDs for optical security is presented and compared to traditional techniques. The approach can be considered as a self-masking focused holography on planes tilted with respect to the reference optical axes of the system, and is based on the Scheimpflug and Hinge rules. No physical masks are needed to ensure optimum exposure of the photosensitive film. The system built to demonstrate the technique relies on the digital mirrors device MOEMS technology from Texas Instruments' Digital Light Processing. The technique is linear on the number of specified colors and does not depend either on the area of the device or the number of pixels, factors that drive the complexity of dot-matrix based systems. The results confirmed the technique innovation and capabilities in the creation of diffractive optical elements for security against counterfeiting and forgery.

  3. Research on Adaptive Optics Image Restoration Algorithm by Improved Expectation Maximization Method

    OpenAIRE

    Zhang, Lijuan; Li, Dongming; Su, Wei; Yang, Jinhua; Jiang, Yutong

    2014-01-01

    To improve the effect of adaptive optics images’ restoration, we put forward a deconvolution algorithm improved by the EM algorithm which joints multiframe adaptive optics images based on expectation-maximization theory. Firstly, we need to make a mathematical model for the degenerate multiframe adaptive optics images. The function model is deduced for the points that spread with time based on phase error. The AO images are denoised using the image power spectral density and support constrain...

  4. Quantification of tumor fluorescence during intraoperative optical cancer imaging.

    Science.gov (United States)

    Judy, Ryan P; Keating, Jane J; DeJesus, Elizabeth M; Jiang, Jack X; Okusanya, Olugbenga T; Nie, Shuming; Holt, David E; Arlauckas, Sean P; Low, Phillip S; Delikatny, E James; Singhal, Sunil

    2015-11-13

    Intraoperative optical cancer imaging is an emerging technology in which surgeons employ fluorophores to visualize tumors, identify tumor-positive margins and lymph nodes containing metastases. This study compares instrumentation to measure tumor fluorescence. Three imaging systems (Spectropen, Glomax, Flocam) measured and quantified fluorescent signal-to-background ratios (SBR) in vitro, murine xenografts, tissue phantoms and clinically. Evaluation criteria included the detection of small changes in fluorescence, sensitivity of signal detection at increasing depths and practicality of use. In vitro, spectroscopy was superior in detecting incremental differences in fluorescence than luminescence and digital imaging (Ln[SBR] = 6.8 ± 0.6, 2.4 ± 0.3, 2.6 ± 0.1, p = 0.0001). In fluorescent tumor cells, digital imaging measured higher SBRs than luminescence (6.1 ± 0.2 vs. 4.3 ± 0.4, p = 0.001). Spectroscopy was more sensitive than luminometry and digital imaging in identifying murine tumor fluorescence (SBR = 41.7 ± 11.5, 5.1 ± 1.8, 4.1 ± 0.9, p = 0.0001), and more sensitive than digital imaging at detecting fluorescence at increasing depths (SBR = 7.0 ± 3.4 vs. 2.4 ± 0.5, p = 0.03). Lastly, digital imaging was the most practical and least time-consuming. All methods detected incremental differences in fluorescence. Spectroscopy was the most sensitive for small changes in fluorescence. Digital imaging was the most practical considering its wide field of view, background noise filtering capability, and sensitivity to increasing depth.

  5. Simulating Optical Correlation on a Digital Image Processing

    Science.gov (United States)

    Denning, Bryan

    1998-04-01

    Optical Correlation is a useful tool for recognizing objects in video scenes. In this paper, we explore the characteristics of a composite filter known as the equal correlation peak synthetic discriminant function (ECP SDF). Although the ECP SDF is commonly used in coherent optical correlation systems, the authors simulated the operation of a correlator using an EPIX frame grabber/image processor board to complete this work. Issues pertaining to simulating correlation using an EPIX board will be discussed. Additionally, the ability of the ECP SDF to detect objects that have been subjected to inplane rotation and small scale changes will be addressed by correlating filters against true-class objects placed randomly within a scene. To test the robustness of the filters, the results of correlating the filter against false-class objects that closely resemble the true class will also be presented.

  6. Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging

    International Nuclear Information System (INIS)

    Chaudhari, Abhijit J; Darvas, Felix; Bading, James R; Moats, Rex A; Conti, Peter S; Smith, Desmond J; Cherry, Simon R; Leahy, Richard M

    2005-01-01

    For bioluminescence imaging studies in small animals, it is important to be able to accurately localize the three-dimensional (3D) distribution of the underlying bioluminescent source. The spectrum of light produced by the source that escapes the subject varies with the depth of the emission source because of the wavelength-dependence of the optical properties of tissue. Consequently, multispectral or hyperspectral data acquisition should help in the 3D localization of deep sources. In this paper, we describe a framework for fully 3D bioluminescence tomographic image acquisition and reconstruction that exploits spectral information. We describe regularized tomographic reconstruction techniques that use semi-infinite slab or FEM-based diffusion approximations of photon transport through turbid media. Singular value decomposition analysis was used for data dimensionality reduction and to illustrate the advantage of using hyperspectral rather than achromatic data. Simulation studies in an atlas-mouse geometry indicated that sub-millimeter resolution may be attainable given accurate knowledge of the optical properties of the animal. A fixed arrangement of mirrors and a single CCD camera were used for simultaneous acquisition of multispectral imaging data over most of the surface of the animal. Phantom studies conducted using this system demonstrated our ability to accurately localize deep point-like sources and show that a resolution of 1.5 to 2.2 mm for depths up to 6 mm can be achieved. We also include an in vivo study of a mouse with a brain tumour expressing firefly luciferase. Co-registration of the reconstructed 3D bioluminescent image with magnetic resonance images indicated good anatomical localization of the tumour

  7. Imaging of optic nerve head pore structure with motion corrected deeply penetrating OCT using tracking SLO

    NARCIS (Netherlands)

    Vienola, Kari V.; Braaf, Boy; Sheehy, Christy K.; Yang, Qiang; Tiruveedhula, Pavan; de Boer, Johannes F.; Roorda, Austin

    2013-01-01

    Purpose To remove the eye motion and stabilize the optical frequency domain imaging (OFDI) system for obtaining high quality images of the optic nerve head (ONH) and the pore structure of the lamina cribrosa. Methods An optical coherence tomography (OCT) instrument was combined with an active eye

  8. Imaging of propagation dynamics of optically-excited spin waves in a garnet film

    International Nuclear Information System (INIS)

    Hashimoto, Yusuke; Saitoh, Eiji

    2016-01-01

    We demonstrate the direct imaging of the propagation dynamics of the optically-excited spin waves in a garnet film observed with an all-optical pump-and-probe magneto-optical imaging technique having sub-pico second time-resolution, sub-micrometer spatial resolution, and milli-degrees of accuracy in the rotation angle of the light polarization. (author)

  9. Virtual Reality Aided Positioning of Mobile C-Arms for Image-Guided Surgery

    Directory of Open Access Journals (Sweden)

    Zhenzhou Shao

    2014-06-01

    Full Text Available For the image-guided surgery, the positioning of mobile C-arms is a key technique to take X-ray images in a desired pose for the confirmation of current surgical outcome. Unfortunately, surgeons and patient often suffer the radiation exposure due to the repeated imaging when the X-ray image is of poor quality or not captured at a good projection view. In this paper, a virtual reality (VR aided positioning method for the mobile C-arm is proposed by the alignment of 3D surface model of region of interest and preoperative anatomy, so that a reference pose of the mobile C-arm with respect to the inside anatomy can be figured out from outside view. It allows a one-time imaging from the outside view to greatly reduce the additional radiation exposure. To control the mobile C-arm to the desired pose, the mobile C-arm is modeled as a robotic arm with a movable base. Experiments were conducted to evaluate the accuracy of appearance model and precision of mobile C-arm positioning. The appearance model was reconstructed with the average error of 2.16 mm. One-time imaging of mobile C-arm was achieved, and new modeling of mobile C-arm with 8 DoFs enlarges the working space in the operating room.

  10. Ultrasound-mediated Optical Imaging and Focusing in Scattering Media

    Science.gov (United States)

    Suzuki, Yuta

    Because of its non-ionizing and molecular sensing nature, light has been an attractive tool in biomedicine. Scanning an optical focus allows not only high-resolution imaging but also manipulation and therapy. However, due to multiple photon scattering events, conventional optical focusing using an ordinary lens is limited to shallow depths of one transport mean free path (lt'), which corresponds to approximately 1 mm in human tissue. To overcome this limitation, ultrasonic modulation (or encoding ) of diffuse light inside scattering media has enabled us to develop both deep-tissue optical imaging and focusing techniques, namely, ultrasound-modulated optical tomography (UOT) and time-reversed ultrasonically encoded (TRUE) optical focusing. While UOT measures the power of the encoded light to obtain an image, TRUE focusing generates a time-reversed (or phase-conjugated) copy of the encoded light, using a phase-conjugate mirror to focus light inside scattering media beyond 1 lt'. However, despite extensive progress in both UOT and TRUE focusing, the low signal-to-noise ratio in encoded-light detection remains a challenge to meeting both the speed and depth requirements for in vivo applications. This dissertation describes technological advancements of both UOT and TRUE focusing, in terms of their signal detection sensitivities, operational depths, and operational speeds. The first part of this dissertation describes sensitivity improvements of encoded-light detection in UOT, achieved by using a large area (˜5 cm x 5 cm) photorefractive polymer. The photorefractive polymer allowed us to improve the detection etendue by more than 10 times that of previous detection schemes. It has enabled us to resolve absorbing objects embedded inside diffused media thicker than 80 lt', using moderate light power and short ultrasound pulses. The second part of this dissertation describes energy enhancement and fluorescent excitation using TRUE focusing in turbid media, using

  11. Quantitative Analysis of Lens Nuclear Density Using Optical Coherence Tomography (OCT with a Liquid Optics Interface: Correlation between OCT Images and LOCS III Grading

    Directory of Open Access Journals (Sweden)

    You Na Kim

    2016-01-01

    Full Text Available Purpose. To quantify whole lens and nuclear lens densities using anterior-segment optical coherence tomography (OCT with a liquid optics interface and evaluate their correlation with Lens Opacities Classification System III (LOCS III lens grading and corrected distance visual acuity (BCVA. Methods. OCT images of the whole lens and lens nucleus of eyes with age-related nuclear cataract were analyzed using ImageJ software. The lens grade and nuclear density were represented in pixel intensity units (PIU and correlations between PIU, BCVA, and LOCS III were assessed. Results. Forty-seven eyes were analyzed. The mean whole lens and lens nuclear densities were 26.99 ± 5.23 and 19.43 ± 6.15 PIU, respectively. A positive linear correlation was observed between lens opacities (R2 = 0.187, p<0.01 and nuclear density (R2 = 0.316, p<0.01 obtained from OCT images and LOCS III. Preoperative BCVA and LOCS III were also positively correlated (R2 = 0.454, p<0.01. Conclusions. Whole lens and lens nuclear densities obtained from OCT correlated with LOCS III. Nuclear density showed a higher positive correlation with LOCS III than whole lens density. OCT with a liquid optics interface is a potential quantitative method for lens grading and can aid in monitoring and managing age-related cataracts.

  12. Optical flow estimation on image sequences with differently exposed frames

    Science.gov (United States)

    Bengtsson, Tomas; McKelvey, Tomas; Lindström, Konstantin

    2015-09-01

    Optical flow (OF) methods are used to estimate dense motion information between consecutive frames in image sequences. In addition to the specific OF estimation method itself, the quality of the input image sequence is of crucial importance to the quality of the resulting flow estimates. For instance, lack of texture in image frames caused by saturation of the camera sensor during exposure can significantly deteriorate the performance. An approach to avoid this negative effect is to use different camera settings when capturing the individual frames. We provide a framework for OF estimation on such sequences that contain differently exposed frames. Information from multiple frames are combined into a total cost functional such that the lack of an active data term for saturated image areas is avoided. Experimental results demonstrate that using alternate camera settings to capture the full dynamic range of an underlying scene can clearly improve the quality of flow estimates. When saturation of image data is significant, the proposed methods show superior performance in terms of lower endpoint errors of the flow vectors compared to a set of baseline methods. Furthermore, we provide some qualitative examples of how and when our method should be used.

  13. Three dimensional optical coherence tomography imaging: advantages and advances.

    Science.gov (United States)

    Gabriele, Michelle L; Wollstein, Gadi; Ishikawa, Hiroshi; Xu, Juan; Kim, Jongsick; Kagemann, Larry; Folio, Lindsey S; Schuman, Joel S

    2010-11-01

    Three dimensional (3D) ophthalmic imaging using optical coherence tomography (OCT) has revolutionized assessment of the eye, the retina in particular. Recent technological improvements have made the acquisition of 3D-OCT datasets feasible. However, while volumetric data can improve disease diagnosis and follow-up, novel image analysis techniques are now necessary in order to process the dense 3D-OCT dataset. Fundamental software improvements include methods for correcting subject eye motion, segmenting structures or volumes of interest, extracting relevant data post hoc and signal averaging to improve delineation of retinal layers. In addition, innovative methods for image display, such as C-mode sectioning, provide a unique viewing perspective and may improve interpretation of OCT images of pathologic structures. While all of these methods are being developed, most remain in an immature state. This review describes the current status of 3D-OCT scanning and interpretation, and discusses the need for standardization of clinical protocols as well as the potential benefits of 3D-OCT scanning that could come when software methods for fully exploiting these rich datasets are available clinically. The implications of new image analysis approaches include improved reproducibility of measurements garnered from 3D-OCT, which may then help improve disease discrimination and progression detection. In addition, 3D-OCT offers the potential for preoperative surgical planning and intraoperative surgical guidance. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Development of novel imaging probe for optical/acoustic radiation imaging (OARI).

    Science.gov (United States)

    Ejofodomi, O'tega A; Zderic, Vesna; Zara, Jason M

    2013-11-01

    Optical/acoustic radiation imaging (OARI) is a novel imaging modality being developed to interrogate the optical and mechanical properties of soft tissues. OARI uses acoustic radiation force to generate displacement in soft tissue. Optical images before and after the application of the force are used to generate displacement maps that provide information about the mechanical properties of the tissue under interrogation. Since the images are optical images, they also represent the optical properties of the tissue as well. In this paper, the authors present the first imaging probe that uses acoustic radiation force in conjunction with optical coherence tomography (OCT) to provide information about the optical and mechanical properties of tissues to assist in the diagnosis and staging of epithelial cancers, and in particular bladder cancer. The OARI prototype probe consisted of an OCT probe encased in a plastic sheath, a miniaturized transducer glued to a plastic holder, both of which were encased in a 10 cm stainless steel tube with an inner diameter of 10 mm. The transducer delivered an acoustic intensity of 18 W/cm(2) and the OCT probe had a spatial resolution of approximately 10-20 μm. The tube was filled with deionized water for acoustic coupling and covered by a low density polyethylene cap. The OARI probe was characterized and tested on bladder wall phantoms. The phantoms possessed Young's moduli ranging from 10.2 to 12 kPa, mass density of 1.05 g/cm(3), acoustic attenuation coefficient of 0.66 dB/cm MHz, speed of sound of 1591 m/s, and optical scattering coefficient of 1.80 mm(-1). Finite element model (FEM) theoretical simulations were performed to assess the performance of the OARI probe. The authors obtained displacements of 9.4, 8.7, and 3.4 μm for the 3%, 4%, and 5% bladder wall phantoms, respectively. This shows that the probe is capable of generating optical images, and also has the ability to generate and track displacements in tissue. This will

  15. Design of free space optical omnidirectional transceivers for indoor applications using non-imaging optical devices

    Science.gov (United States)

    Agrawal, Navik; Davis, Christopher C.

    2008-08-01

    Omnidirectional free space optical communication receivers can employ multiple non-imaging collectors, such as compound parabolic concentrators (CPCs), in an array-like fashion to increase the amount of possible light collection. CPCs can effectively channel light collected over a large aperture to a small area photodiode. The aperture to length ratio of such devices can increase the overall size of the transceiver unit, which may limit the practicality of such systems, especially when small size is desired. New non-imaging collector designs with smaller sizes, larger field of view (FOV), and comparable transmission curves to CPCs, offer alternative transceiver designs. This paper examines how transceiver performance is affected by the use of different non-imaging collector shapes that are designed for wide FOV with reduced efficiency compared with shapes such as the CPC that are designed for small FOV with optimal efficiency. Theoretical results provide evidence indicating that array-like transceiver designs using various non-imaging collector shapes with less efficient transmission curves, but a larger FOV will be an effective means for the design of omnidirectional optical transceiver units. The results also incorporate the effects of Fresnel loss at the collector exit aperture-photodiode interface, which is an important consideration for indoor omnidirectional FSO systems.

  16. qF-SSOP: real-time optical property corrected fluorescence imaging

    Science.gov (United States)

    Valdes, Pablo A.; Angelo, Joseph P.; Choi, Hak Soo; Gioux, Sylvain

    2017-01-01

    Fluorescence imaging is well suited to provide image guidance during resections in oncologic and vascular surgery. However, the distorting effects of tissue optical properties on the emitted fluorescence are poorly compensated for on even the most advanced fluorescence image guidance systems, leading to subjective and inaccurate estimates of tissue fluorophore concentrations. Here we present a novel fluorescence imaging technique that performs real-time (i.e., video rate) optical property corrected fluorescence imaging. We perform full field of view simultaneous imaging of tissue optical properties using Single Snapshot of Optical Properties (SSOP) and fluorescence detection. The estimated optical properties are used to correct the emitted fluorescence with a quantitative fluorescence model to provide quantitative fluorescence-Single Snapshot of Optical Properties (qF-SSOP) images with less than 5% error. The technique is rigorous, fast, and quantitative, enabling ease of integration into the surgical workflow with the potential to improve molecular guidance intraoperatively. PMID:28856038

  17. Diffuse optical imaging using spatially and temporally modulated light

    Science.gov (United States)

    O'Sullivan, Thomas D.; Cerussi, Albert E.; Cuccia, David J.; Tromberg, Bruce J.

    2012-07-01

    The authors describe the development of diffuse optical imaging (DOI) technologies, specifically the use of spatial and temporal modulation to control near infrared light propagation in thick tissues. We present theory and methods of DOI focusing on model-based techniques for quantitative, in vivo measurements of endogenous tissue absorption and scattering properties. We specifically emphasize the common conceptual framework of the scalar photon density wave for both temporal and spatial frequency-domain approaches. After presenting the history, theoretical foundation, and instrumentation related to these methods, we provide a brief review of clinical and preclinical applications from our research as well as our outlook on the future of DOI technology.

  18. Optical imaging of borehole PR10 at Olkiluoto 2006

    International Nuclear Information System (INIS)

    Tarvainen, A.-M.

    2007-03-01

    Suomen Malmi Oy carried out optical imaging of borehole PR10 at Olkiluoto site in Eurajoki during December 2006. The survey is a part of Posiva Oy's detailed investigation program for the final disposal of spent nuclear fuel. The assignment included the field work and the data processing. This report describes the field operation, the equipment as well as the processing procedures and shows the obtained results and their quality. The raw and processed data are delivered digitally in WellCAD and PDF format. (orig.)

  19. Optically trapped atomic resonant devices for narrow linewidth spectral imaging

    Science.gov (United States)

    Qian, Lipeng

    This thesis focuses on the development of atomic resonant devices for spectroscopic applications. The primary emphasis is on the imaging properties of optically thick atomic resonant fluorescent filters and their applications. In addition, this thesis presents a new concept for producing very narrow linewidth light as from an atomic vapor lamp pumped by a nanosecond pulse system. This research was motivated by application for missile warning system, and presents an innovative approach to a wide angle, ultra narrow linewidth imaging filter using a potassium vapor cell. The approach is to image onto and collect the fluorescent photons emitted from the surface of an optically thick potassium vapor cell, generating a 2 GHz pass-band imaging filter. This linewidth is narrow enough to fall within a Fraunhefer dark zone in the solar spectrum, thus make the detection solar blind. Experiments are conducted to measure the absorption line shape of the potassium resonant filter, the quantum efficiency of the fluorescent behavior, and the resolution of the fluorescent image. Fluorescent images with different spatial frequency components are analyzed by using a discrete Fourier transform, and the imaging capability of the fluorescent filter is described by its Modulation Transfer Function. For the detection of radiation that is spectrally broader than the linewidth of the potassium imaging filter, the fluorescent image is seen to be blurred by diffuse fluorescence from the slightly off resonant photons. To correct this, an ultra-thin potassium imaging filter is developed and characterized. The imaging property of the ultra-thin potassium imaging cell is tested with a potassium seeded flame, yielding a resolution image of ˜ 20 lines per mm. The physics behind the atomic resonant fluorescent filter is radiation trapping. The diffusion process of the resonant photons trapped in the atomic vapor is theoretically described in this thesis. A Monte Carlo method is used to simulate the

  20. Advanced magneto-optical microscopy: Imaging from picoseconds to centimeters - imaging spin waves and temperature distributions (invited

    Directory of Open Access Journals (Sweden)

    Necdet Onur Urs

    2016-05-01

    Full Text Available Recent developments in the observation of magnetic domains and domain walls by wide-field optical microscopy based on the magneto-optical Kerr, Faraday, Voigt, and Gradient effect are reviewed. Emphasis is given to the existence of higher order magneto-optical effects for advanced magnetic imaging. Fundamental concepts and advances in methodology are discussed that allow for imaging of magnetic domains on various length and time scales. Time-resolved imaging of electric field induced domain wall rotation is shown. Visualization of magnetization dynamics down to picosecond temporal resolution for the imaging of spin-waves and magneto-optical multi-effect domain imaging techniques for obtaining vectorial information are demonstrated. Beyond conventional domain imaging, the use of a magneto-optical indicator technique for local temperature sensing is shown.

  1. Automated Photoreceptor Cell Identification on Nonconfocal Adaptive Optics Images Using Multiscale Circular Voting.

    Science.gov (United States)

    Liu, Jianfei; Jung, HaeWon; Dubra, Alfredo; Tam, Johnny

    2017-09-01

    Adaptive optics scanning light ophthalmoscopy (AOSLO) has enabled quantification of the photoreceptor mosaic in the living human eye using metrics such as cell density and average spacing. These rely on the identification of individual cells. Here, we demonstrate a novel approach for computer-aided identification of cone photoreceptors on nonconfocal split detection AOSLO images. Algorithms for identification of cone photoreceptors were developed, based on multiscale circular voting (MSCV) in combination with a priori knowledge that split detection images resemble Nomarski differential interference contrast images, in which dark and bright regions are present on the two sides of each cell. The proposed algorithm locates dark and bright region pairs, iteratively refining the identification across multiple scales. Identification accuracy was assessed in data from 10 subjects by comparing automated identifications with manual labeling, followed by computation of density and spacing metrics for comparison to histology and published data. There was good agreement between manual and automated cone identifications with overall recall, precision, and F1 score of 92.9%, 90.8%, and 91.8%, respectively. On average, computed density and spacing values using automated identification were within 10.7% and 11.2% of the expected histology values across eccentricities ranging from 0.5 to 6.2 mm. There was no statistically significant difference between MSCV-based and histology-based density measurements (P = 0.96, Kolmogorov-Smirnov 2-sample test). MSCV can accurately detect cone photoreceptors on split detection images across a range of eccentricities, enabling quick, objective estimation of photoreceptor mosaic metrics, which will be important for future clinical trials utilizing adaptive optics.

  2. Laparoscopic optical coherence tomographic imaging of human ovarian cancer

    Science.gov (United States)

    Hariri, Lida P.; Bonnema, Garret T.; Schmidt, Kathy; Korde, Vrushali; Winkler, Amy M.; Hatch, Kenneth; Brewer, Molly; Barton, Jennifer K.

    2009-02-01

    Ovarian cancer is the fourth leading cause of cancer-related death among women. If diagnosed at early stages, 5-year survival rate is 94%, but drops to 68% for regional disease and 29% for distant metastasis; only 19% of cases are diagnosed at early, localized stages. Optical coherence tomography is a recently emerging non-destructive imaging technology, achieving high axial resolutions (10-20 µm) at imaging depths up to 2 mm. Previously, we studied OCT in normal and diseased human ovary ex vivo. Changes in collagen were suggested with several images that correlated with changes in collagen seen in malignancy. Areas of necrosis and blood vessels were also visualized using OCT, indicative of an underlying tissue abnormality. We recently developed a custom side-firing laparoscopic OCT (LOCT) probe fabricated for in vivo imaging. The LOCT probe, consisting of a 38 mm diameter handpiece terminated in a 280 mm long, 4.6 mm diameter tip for insertion into the laparoscopic trocar, is capable of obtaining up to 9.5 mm image lengths at 10 µm axial resolution. In this pilot study, we utilize the LOCT probe to image one or both ovaries of 17 patients undergoing laparotomy or transabdominal endoscopy and oophorectomy to determine if OCT is capable of differentiating normal and neoplastic ovary. We have laparoscopically imaged the ovaries of seventeen patients with no known complications. Initial data evaluation reveals qualitative distinguishability between the features of undiseased post-menopausal ovary and the cystic, non-homogenous appearance of neoplastic ovary such as serous cystadenoma and endometroid adenocarcinoma.

  3. CLOUD DETECTION OF OPTICAL SATELLITE IMAGES USING SUPPORT VECTOR MACHINE

    Directory of Open Access Journals (Sweden)

    K.-Y. Lee

    2016-06-01

    Full Text Available Cloud covers are generally present in optical remote-sensing images, which limit the usage of acquired images and increase the difficulty of data analysis, such as image compositing, correction of atmosphere effects, calculations of vegetation induces, land cover classification, and land cover change detection. In previous studies, thresholding is a common and useful method in cloud detection. However, a selected threshold is usually suitable for certain cases or local study areas, and it may be failed in other cases. In other words, thresholding-based methods are data-sensitive. Besides, there are many exceptions to control, and the environment is changed dynamically. Using the same threshold value on various data is not effective. In this study, a threshold-free method based on Support Vector Machine (SVM is proposed, which can avoid the abovementioned problems. A statistical model is adopted to detect clouds instead of a subjective thresholding-based method, which is the main idea of this study. The features used in a classifier is the key to a successful classification. As a result, Automatic Cloud Cover Assessment (ACCA algorithm, which is based on physical characteristics of clouds, is used to distinguish the clouds and other objects. In the same way, the algorithm called Fmask (Zhu et al., 2012 uses a lot of thresholds and criteria to screen clouds, cloud shadows, and snow. Therefore, the algorithm of feature extraction is based on the ACCA algorithm and Fmask. Spatial and temporal information are also important for satellite images. Consequently, co-occurrence matrix and temporal variance with uniformity of the major principal axis are used in proposed method. We aim to classify images into three groups: cloud, non-cloud and the others. In experiments, images acquired by the Landsat 7 Enhanced Thematic Mapper Plus (ETM+ and images containing the landscapes of agriculture, snow area, and island are tested. Experiment results demonstrate

  4. Cloud Detection of Optical Satellite Images Using Support Vector Machine

    Science.gov (United States)

    Lee, Kuan-Yi; Lin, Chao-Hung

    2016-06-01

    Cloud covers are generally present in optical remote-sensing images, which limit the usage of acquired images and increase the difficulty of data analysis, such as image compositing, correction of atmosphere effects, calculations of vegetation induces, land cover classification, and land cover change detection. In previous studies, thresholding is a common and useful method in cloud detection. However, a selected threshold is usually suitable for certain cases or local study areas, and it may be failed in other cases. In other words, thresholding-based methods are data-sensitive. Besides, there are many exceptions to control, and the environment is changed dynamically. Using the same threshold value on various data is not effective. In this study, a threshold-free method based on Support Vector Machine (SVM) is proposed, which can avoid the abovementioned problems. A statistical model is adopted to detect clouds instead of a subjective thresholding-based method, which is the main idea of this study. The features used in a classifier is the key to a successful classification. As a result, Automatic Cloud Cover Assessment (ACCA) algorithm, which is based on physical characteristics of clouds, is used to distinguish the clouds and other objects. In the same way, the algorithm called Fmask (Zhu et al., 2012) uses a lot of thresholds and criteria to screen clouds, cloud shadows, and snow. Therefore, the algorithm of feature extraction is based on the ACCA algorithm and Fmask. Spatial and temporal information are also important for satellite images. Consequently, co-occurrence matrix and temporal variance with uniformity of the major principal axis are used in proposed method. We aim to classify images into three groups: cloud, non-cloud and the others. In experiments, images acquired by the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and images containing the landscapes of agriculture, snow area, and island are tested. Experiment results demonstrate the detection

  5. Imaging of Stellar Surfaces with the Navy Precision Optical Interferometer

    Science.gov (United States)

    Jorgensen, A.; Schmitt, H. R.; van Belle, G. T.; Hutter, Clark; Mozurkewich, D.; Armstrong, J. T.; Baines, E. K.; Restaino, S. R.

    The Navy Precision Optical Interferometer (NPOI) has a unique layout which is particularly well-suited for high-resolution interferometric imaging. By combining the NPOI layout with a new data acquisition and fringe tracking system we are progressing toward a imaging capability which will exceed any other interferometer in operation. The project, funded by the National Science Foundation, combines several existing advances and infrastructure at NPOI with modest enhancements. For optimal imaging there are several requirements that should be fulfilled. The observatory should be capable of measuring visibilities on a wide range of baseline lengths and orientations, providing complete UV coverage in a short period of time. It should measure visibility amplitudes with good SNR on all baselines as critical imaging information is often contained in low-amplitude visibilities. It should measure the visibility phase on all baselines. The technologies which can achieve this are the NPOI Y-shaped array with (nearly) equal spacing between telescopes and an ability for rapid configuration. Placing 6-telescopes in a row makes it possible to measure visibilities into the 4th lobe of the visibility function. By arranging the available telescopes carefully we will be able to switch, every few days, between 3 different 6-station chains which provide symmetric coverage in the UV (Fourier) plane without moving any telescopes, only by moving beam relay mirrors. The 6-station chains are important to achieve the highest imaging resolution, and switching rapidly between station chains provides uniform coverage. Coherent integration techniques can be used to obtain good SNR on very small visibilities. Coherently integrated visibilities can be used for imaging with standard radio imaging packages such as AIPS. The commissioning of one additional station, the use of new data acquisition hardware and fringe tracking algorithms are the enhancements which make this project possible.

  6. Coherent Femtosecond Spectroscopy and Nonlinear Optical Imaging on the Nanoscale

    Science.gov (United States)

    Kravtsov, Vasily

    four-wave mixing response from the tip apex and investigate its microscopic mechanism. Our results reveal a significant contribution to the third order nonlinearity of plasmonic structures due to large near-field gradients associated with nanofocused plasmons. In combination with scanning probe imaging and femtosecond pulse shaping, the nanofocused four-wave mixing response provides a basis for a novel type of ultrafast optical microscopy on the nanoscale. We demonstrate its capabilities by nano-imaging the coherent dynamics of localized plasmonic modes in a rough gold film edge with simultaneous sub-50 nm spatial and sub-5 fs temporal resolution. We capture the coherent decay and extract the dephasing times of individual plasmonic modes. Lastly, we apply our technique to study nanoscale spatial heterogeneity of the nonlinear optical response in novel two-dimensional materials: monolayer and few-layer graphene. An enhanced four-wave mixing signal is revealed on the edges of graphene flakes. We investigate the mechanism of this enhancement by performing nano-imaging on a graphene field-effect transistor with the variable carrier density controlled by electrostatic gating.

  7. Colposcopic imaging using visible-light optical coherence tomography

    Science.gov (United States)

    Duan, Lian; McRaven, Michael D.; Liu, Wenzhong; Shu, Xiao; Hu, Jianmin; Sun, Cheng; Veazey, Ronald S.; Hope, Thomas J.; Zhang, Hao F.

    2017-05-01

    High-resolution colposcopic optical coherence tomography (OCT) provides key anatomical measures, such as thickness and minor traumatic injury of vaginal epithelium, of the female reproductive tract noninvasively. This information can be helpful in both fundamental investigations in animal models and disease screenings in humans. We present a fiber-based visible-light OCT and two probe designs for colposcopic application. One probe conducts circular scanning using a DC motor, and the other probe is capable of three-dimensional imaging over a 4.6×4.6-mm2 area using a pair of galvo scanners. Using this colposcopic vis-OCT with both probes, we acquired high-resolution images from whole isolated macaque vaginal samples and identified biopsy lesions.

  8. Imaging of collagen deposition disorders using optical coherence tomography

    DEFF Research Database (Denmark)

    Ring, H C; Mogensen, M; Hussain, A A

    2015-01-01

    BACKGROUND: Collagen deposition disorders such as hypertrophic scars, keloids and scleroderma can be associated with significant stigma and embarrassment. These disorders often constitute considerable impairment to quality of life, with treatment posing to be a substantial challenge. Optical...... lesion type. Hypertrophic scars displayed an increased vascularity and signal-rich bands correlating to excessive collagen deposition. Keloids depicted a disarray of hyper-reflective areas primarily located in the upper dermis. Additionally, the dermis displayed a heterogeneous morphology without...... indications of any vascular supply or lymphatic network. In contrast to keloids, scleroderma displayed a more cohesive backscattering indicating a difference in density of collagen or other dermal structures. OCT images demonstrated no significant differences between mean density measurements in OCT images...

  9. Optimized optical clearing method for imaging central nervous system

    Science.gov (United States)

    Yu, Tingting; Qi, Yisong; Gong, Hui; Luo, Qingming; Zhu, Dan

    2015-03-01

    The development of various optical clearing methods provides a great potential for imaging entire central nervous system by combining with multiple-labelling and microscopic imaging techniques. These methods had made certain clearing contributions with respective weaknesses, including tissue deformation, fluorescence quenching, execution complexity and antibody penetration limitation that makes immunostaining of tissue blocks difficult. The passive clarity technique (PACT) bypasses those problems and clears the samples with simple implementation, excellent transparency with fine fluorescence retention, but the passive tissue clearing method needs too long time. In this study, we not only accelerate the clearing speed of brain blocks but also preserve GFP fluorescence well by screening an optimal clearing temperature. The selection of proper temperature will make PACT more applicable, which evidently broaden the application range of this method.

  10. Optical Coherence Tomography Imaging in Acute Coronary Syndromes

    Directory of Open Access Journals (Sweden)

    Takashi Kubo

    2011-01-01

    Full Text Available Optical coherence tomography (OCT is a high-resolution imaging technique that offers microscopic visualization of coronary plaques. The clear and detailed images of OCT generate an intense interest in adopting this technique for both clinical and research purposes. Recent studies have shown that OCT is useful for the assessment of coronary atherosclerotic plaques, in particular the assessment of plaque rupture, erosion, and intracoronary thrombus in patients with acute coronary syndrome. In addition, OCT may enable identifying thin-cap fibroatheroma, the proliferation of vasa vasorum, and the distribution of macrophages surrounding vulnerable plaques. With its ability to view atherosclerotic lesions in vivo with such high resolution, OCT provides cardiologists with the tool they need to better understand the thrombosis-prone vulnerable plaques and acute coronary syndromes. This paper reviews the possibility of OCT for identification of vulnerable plaques in vivo.

  11. Chest imaging in aids - radiological findings with pathologic correlation: review article

    International Nuclear Information System (INIS)

    Qazi, A.S.

    1999-01-01

    Majority of life threatening illnesses in AIDS begin as pulmonary infections and a radiologist must always seriously consider the possibility of HIV infection and its manifestation when confronting an abnormal chest study in a young adult. Chest radiography may be normal in up to 15% of patients with proven pulmonary involvement or the radiographic picture may be confusing due to atypical appearances of opportunistic infections in immuno-compromised host, compounded further by concomitant appearance of neoplastic complications like Kaposi AIDS relate lymphoma. Cases with normal chest radiograph but high degree of suspicion of chest disease need to be evaluated by CT scan which has been found to be superior to chest radiography in identifying patient with and without chest disease and in the differential diagnosis of pulmonary complications in patients with AIDS. Radio nuclear scans and MRI have some role only in selected few cases. Combining imaging features with clinical presentation, CD4 lymphocyte count, previous treatment and underlying risk group can narrow down differential diagnosis, expedite treatment and may be helpful in preventing complications. (author)

  12. Detection Efficiency of Microcalcification using Computer Aided Diagnosis in the Breast Ultrasonography Images

    International Nuclear Information System (INIS)

    Lee, Jin Soo; Ko, Seong Jin; Kang, Se Sik; Kim, Jung Hoon; Choi, Seok Yoon; Kim, Chang Soo; Park, Hyung Hu

    2012-01-01

    Digital Mammography makes it possible to reproduce the entire breast image. And it is used to detect microcalcification and mass which are the most important point of view of nonpalpable early breast cancer, so it has been used as the primary screening test of breast disease. It is reported that microcalcification of breast lesion is important in diagnosis of early breast cancer. In this study, six types of texture features algorithms are used to detect microcalcification on breast US images and the study has analyzed recognition rate of lesion between normal US images and other US images which microcalification is seen. As a result of the experiment, Computer aided diagnosis recognition rate that distinguishes mammography and breast US disease was considerably high 70-98%. The average contrast and entropy parameters were low in ROC analysis, but sensitivity and specificity of four types parameters were over 90%. Therefore it is possible to detect microcalcification on US images. If not only six types of texture features algorithms but also the research of additional parameter algorithm is being continually proceeded and basis of practical use on CAD is being prepared, it can be a important meaning as pre-reading. Also, it is considered very useful things for early diagnosis of breast cancer.

  13. Comparison of image features calculated in different dimensions for computer-aided diagnosis of lung nodules

    Science.gov (United States)

    Xu, Ye; Lee, Michael C.; Boroczky, Lilla; Cann, Aaron D.; Borczuk, Alain C.; Kawut, Steven M.; Powell, Charles A.

    2009-02-01

    Features calculated from different dimensions of images capture quantitative information of the lung nodules through one or multiple image slices. Previously published computer-aided diagnosis (CADx) systems have used either twodimensional (2D) or three-dimensional (3D) features, though there has been little systematic analysis of the relevance of the different dimensions and of the impact of combining different dimensions. The aim of this study is to determine the importance of combining features calculated in different dimensions. We have performed CADx experiments on 125 pulmonary nodules imaged using multi-detector row CT (MDCT). The CADx system computed 192 2D, 2.5D, and 3D image features of the lesions. Leave-one-out experiments were performed using five different combinations of features from different dimensions: 2D, 3D, 2.5D, 2D+3D, and 2D+3D+2.5D. The experiments were performed ten times for each group. Accuracy, sensitivity and specificity were used to evaluate the performance. Wilcoxon signed-rank tests were applied to compare the classification results from these five different combinations of features. Our results showed that 3D image features generate the best result compared with other combinations of features. This suggests one approach to potentially reducing the dimensionality of the CADx data space and the computational complexity of the system while maintaining diagnostic accuracy.

  14. Statistical Prior Aided Separate Compressed Image Sensing for Green Internet of Multimedia Things

    Directory of Open Access Journals (Sweden)

    Shaohua Wu

    2017-01-01

    Full Text Available In this paper, we aim to propose an image compression and reconstruction strategy under the compressed sensing (CS framework to enable the green computation and communication for the Internet of Multimedia Things (IoMT. The core idea is to explore the statistics of image representations in the wavelet domain to aid the reconstruction method design. Specifically, the energy distribution of natural images in the wavelet domain is well characterized by an exponential decay model and then used in the two-step separate image reconstruction method, by which the row-wise (or column-wise intermediates and column-wise (or row-wise final results are reconstructed sequentially. Both the intermediates and the final results are constrained to conform with the statistical prior by using a weight matrix. Two recovery strategies with different levels of complexity, namely, the direct recovery with fixed weight matrix (DR-FM and the iterative recovery with refined weight matrix (IR-RM, are designed to obtain different quality of recovery. Extensive simulations show that both DR-FM and IR-RM can achieve much better image reconstruction quality with much faster recovery speed than traditional methods.

  15. Extraction of optical scattering parameters and attenuation compensation in optical coherence tomography images of multi-layered tissue structures

    DEFF Research Database (Denmark)

    Thrane, Lars; Frosz, Michael Henoch; Tycho, Andreas

    2004-01-01

    A recently developed analytical optical coherence tomography (OCT) model [Thrane et al., J. Opt. Soc. Am. A 17, 484 (2000)] allows the extraction of optical scattering parameters from OCT images, thereby permitting attenuation compensation in those images. By expanding this theoretical model, we...... have developed a new method for extracting optical scattering parameters from multilayered tissue structures in vivo. To verify this, we used a Monte Carlo (MC) OCT model as a numerical phantom to simulate the OCT signal for het-erogeneous multilayered tissue. Excellent agreement between the extracted......, and the results hold promise for expanding the functional imaging capabilities of OCT....

  16. New MR imaging observation in HIV-related cognitive impairment (AIDS dementia complex)

    International Nuclear Information System (INIS)

    Ketonen, L.; Kieburtz, K.D.; Zetteimaier, A.; Simon, J.H.; Kido, D.K.

    1989-01-01

    MR findings have been reported on the acquired immunodeficiency syndrome (AIDS) demential complex, but the findings are late relative to clinical signs. This paper reports on a new MR finding observed in patients with human immunodeficiency virus (HIV)-related cognitive impairment studied early in the disease process. Fifty-two patients had a total of 86 MR images. Al images were obtained with a 1.5-T system (protondensity, spin-echo, TR/TE = 2,000/30 [repetition time/echo time, msec]). High-signal lesions were seen in the region of the splenium of the corpus callosum and in the crura of the fornices. The lesions demonstrated no contrast enhancement with Gd-DTPA. Pathologic examination was performed in four patients. The fornix-subcallosal abnormality may have relevance to the memory dysfunction in patients with HIV-related cognitive impairment

  17. Noninvasive spectral imaging of skin chromophores based on multiple regression analysis aided by Monte Carlo simulation

    Science.gov (United States)

    Nishidate, Izumi; Wiswadarma, Aditya; Hase, Yota; Tanaka, Noriyuki; Maeda, Takaaki; Niizeki, Kyuichi; Aizu, Yoshihisa

    2011-08-01

    In order to visualize melanin and blood concentrations and oxygen saturation in human skin tissue, a simple imaging technique based on multispectral diffuse reflectance images acquired at six wavelengths (500, 520, 540, 560, 580 and 600nm) was developed. The technique utilizes multiple regression analysis aided by Monte Carlo simulation for diffuse reflectance spectra. Using the absorbance spectrum as a response variable and the extinction coefficients of melanin, oxygenated hemoglobin, and deoxygenated hemoglobin as predictor variables, multiple regression analysis provides regression coefficients. Concentrations of melanin and total blood are then determined from the regression coefficients using conversion vectors that are deduced numerically in advance, while oxygen saturation is obtained directly from the regression coefficients. Experiments with a tissue-like agar gel phantom validated the method. In vivo experiments with human skin of the human hand during upper limb occlusion and of the inner forearm exposed to UV irradiation demonstrated the ability of the method to evaluate physiological reactions of human skin tissue.

  18. Evaluation of a computer aided X-ray fluorographic system: Part II - image processing

    International Nuclear Information System (INIS)

    Burch, S.F.; Cocking, S.J.

    1981-12-01

    The TV imagery from a computer aided X-ray fluorographic system has been digitally processed with an I 2 S model 70E image processor, controlled by a PDP 11/60 minicomputer. The image processor allowed valuable processing for detection of defects in cast components to be carried out at television frame rates. Summation of TV frames was used to reduce noise, and hence improve the thickness sensitivity of the system. A displaced differencing technique and interactive contrast enhancement were then used to improve the reliability of inspection by removing spurious blemishes and interference lines, while simultaneously enhancing the visibility of real defects. The times required for these operations are given, and the benefits provided for X-ray fluorography are illustrated by the results from inspection of aero engine castings. (author)

  19. Intravital Fluorescence Excitation in Whole-Animal Optical Imaging.

    Science.gov (United States)

    Nooshabadi, Fatemeh; Yang, Hee-Jeong; Bixler, Joel N; Kong, Ying; Cirillo, Jeffrey D; Maitland, Kristen C

    2016-01-01

    Whole-animal fluorescence imaging with recombinant or fluorescently-tagged pathogens or cells enables real-time analysis of disease progression and treatment response in live animals. Tissue absorption limits penetration of fluorescence excitation light, particularly in the visible wavelength range, resulting in reduced sensitivity to deep targets. Here, we demonstrate the use of an optical fiber bundle to deliver light into the mouse lung to excite fluorescent bacteria, circumventing tissue absorption of excitation light in whole-animal imaging. We present the use of this technology to improve detection of recombinant reporter strains of tdTomato-expressing Mycobacterium bovis BCG (Bacillus Calmette Guerin) bacteria in the mouse lung. A microendoscope was integrated into a whole-animal fluorescence imager to enable intravital excitation in the mouse lung with whole-animal detection. Using this technique, the threshold of detection was measured as 103 colony forming units (CFU) during pulmonary infection. In comparison, the threshold of detection for whole-animal fluorescence imaging using standard epi-illumination was greater than 106 CFU.

  20. Selective detection of Escherichia coli by imaging of the light intensity transmitted through an optical disk

    Science.gov (United States)

    Shiramizu, Hideyuki; Kuroda, Chiaki; Ohki, Yoshimichi; Shima, Takayuki; Wang, Xiaomin; Fujimaki, Makoto

    2018-03-01

    We have developed an optical disk system for imaging transmitted light from Escherichia coli dispersed on an optical disk. When E. coli was stained using Bismarck brown, the transmittance was found to decrease in images obtained at λ = 405 nm. The results indicate that transmittance imaging is suitable for finding the difference in light intensity between stained and unstained E. coli, whereas the reflectance images were scarcely changed by staining. Therefore, E. coli can be selectively discriminated from abiotic contaminants using transmittance imaging.

  1. Optical coherence tomography: imaging architect for dermal microdialysis in psoriasis

    Science.gov (United States)

    O'Connell, M.-L.; O'Connor, W.; Ramsay, B.; Guihen, E.; Ho, W. L.; Leahy, M. J.

    2011-03-01

    Optical coherence tomography (OCT) has been used as part of a ground breaking translational study to shed some light on one of the worlds most prevalent autoimmune diseases; psoriasis. The work successfully integrates the fields of optical imaging, biochemistry and dermatology in conducting a dermal microdialysis (DMD) trial for quantitative histamine assessment amongst a group of psoriasis sufferers. The DMD process involves temporary insertion of microscopic hollow tubes into a layer of skin to measure the levels of histamine and other important biological molecules in psoriasis. For comparison purposes, DMD catheters were implanted into healthy, peri-lesional and lesional skin regions. The catheters' entry and exit points and their precise locations in the epidermal layer of the skin were confirmed using OCT thus obtaining high resolution, wide-field images of the affected skin as well as catheter placement whilst local microdialysis enabled a tissue chemistry profile to be obtained from these three skin regions including histamine, a local immune system activator known to contribute towards itch and inflammation. Together these tools offer a synergistic approach in the clinical assessment of the disease. In addition, OCT delivered a non-invasive and rapid method for analyzing the affected skin architecture.

  2. High speed all optical shear wave imaging optical coherence elastography (Conference Presentation)

    Science.gov (United States)

    Song, Shaozhen; Hsieh, Bao-Yu; Wei, Wei; Shen, Tueng; O'Donnell, Matthew; Wang, Ruikang K.

    2016-03-01

    Optical Coherence Elastography (OCE) is a non-invasive testing modality that maps the mechanical property of soft tissues with high sensitivity and spatial resolution using phase-sensitive optical coherence tomography (PhS-OCT). Shear wave OCE (SW-OCE) is a leading technique that relies on the speed of propagating shear waves to provide a quantitative elastography. Previous shear wave imaging OCT techniques are based on repeated M-B scans, which have several drawbacks such as long acquisition time and repeated wave stimulations. Recent developments of Fourier domain mode-locked high-speed swept-source OCT system has enabled enough speed to perform KHz B-scan rate OCT imaging. Here we propose ultra-high speed, single shot shear wave imaging to capture single-shot transient shear wave propagation to perform SW-OCE. The frame rate of shear wave imaging is 16 kHz, at A-line rate of ~1.62 MHz, which allows the detection of high-frequency shear wave of up to 8 kHz. The shear wave is generated photothermal-acoustically, by ultra-violet pulsed laser, which requires no contact to OCE subjects, while launching high frequency shear waves that carries rich localized elasticity information. The image acquisition and processing can be performed at video-rate, which enables real-time 3D elastography. SW-OCE measurements are demonstrated on tissue-mimicking phantoms and porcine ocular tissue. This approach opens up the feasibility to perform real-time 3D SW-OCE in clinical applications, to obtain high-resolution localized quantitative measurement of tissue biomechanical property.

  3. Computer-aided diagnosis in radiological imaging: current status and future challenges

    Science.gov (United States)

    Doi, Kunio

    2009-10-01

    Computer-aided diagnosis (CAD) has become one of the major research subjects in medical imaging and diagnostic radiology. Many different types of CAD schemes are being developed for detection and/or characterization of various lesions in medical imaging, including conventional projection radiography, CT, MRI, and ultrasound imaging. Commercial systems for detection of breast lesions on mammograms have been developed and have received FDA approval for clinical use. CAD may be defined as a diagnosis made by a physician who takes into account the computer output as a "second opinion". The purpose of CAD is to improve the quality and productivity of physicians in their interpretation of radiologic images. The quality of their work can be improved in terms of the accuracy and consistency of their radiologic diagnoses. In addition, the productivity of radiologists is expected to be improved by a reduction in the time required for their image readings. The computer output is derived from quantitative analysis of radiologic images by use of various methods and techniques in computer vision, artificial intelligence, and artificial neural networks (ANNs). The computer output may indicate a number of important parameters, for example, the locations of potential lesions such as lung cancer and breast cancer, the likelihood of malignancy of detected lesions, and the likelihood of various diseases based on differential diagnosis in a given image and clinical parameters. In this review article, the basic concept of CAD is first defined, and the current status of CAD research is then described. In addition, the potential of CAD in the future is discussed and predicted.

  4. Optical design of the lightning imager for MTG

    Science.gov (United States)

    Lorenzini, S.; Bardazzi, R.; Di Giampietro, M.; Feresin, F.; Taccola, M.; Cuevas, L. P.

    2017-11-01

    The Lightning Imager for Meteosat Third Generation is an optical payload with on-board data processing for the detection of lightning. The instrument will provide a global monitoring of lightning events over the full Earth disk from geostationary orbit and will operate in day and night conditions. The requirements of the large field of view together with the high detection efficiency with small and weak optical pulses superimposed to a much brighter and highly spatial and temporal variable background (full operation during day and night conditions, seasonal variations and different albedos between clouds oceans and lands) are driving the design of the optical instrument. The main challenge is to distinguish a true lightning from false events generated by random noise (e.g. background shot noise) or sun glints diffusion or signal variations originated by microvibrations. This can be achieved thanks to a `multi-dimensional' filtering, simultaneously working on the spectral, spatial and temporal domains. The spectral filtering is achieved with a very narrowband filter centred on the bright lightning O2 triplet line (777.4 nm +/- 0.17 nm). The spatial filtering is achieved with a ground sampling distance significantly smaller (between 4 and 5 km at sub satellite pointing) than the dimensions of a typical lightning pulse. The temporal filtering is achieved by sampling continuously the Earth disk within a period close to 1 ms. This paper presents the status of the optical design addressing the trade-off between different configurations and detailing the design and the analyses of the current baseline. Emphasis is given to the discussion of the design drivers and the solutions implemented in particular concerning the spectral filtering and the optimisation of the signal to noise ratio.

  5. Imperceptible watermarking for security of fundus images in tele-ophthalmology applications and computer-aided diagnosis of retina diseases.

    Science.gov (United States)

    Singh, Anushikha; Dutta, Malay Kishore

    2017-12-01

    The authentication and integrity verification of medical images is a critical and growing issue for patients in e-health services. Accurate identification of medical images and patient verification is an essential requirement to prevent error in medical diagnosis. The proposed work presents an imperceptible watermarking system to address the security issue of medical fundus images for tele-ophthalmology applications and computer aided automated diagnosis of retinal diseases. In the proposed work, patient identity is embedded in fundus image in singular value decomposition domain with adaptive quantization parameter to maintain perceptual transparency for variety of fundus images like healthy fundus or disease affected image. In the proposed method insertion of watermark in fundus image does not affect the automatic image processing diagnosis of retinal objects & pathologies which ensure uncompromised computer-based diagnosis associated with fundus image. Patient ID is correctly recovered from watermarked fundus image for integrity verification of fundus image at the diagnosis centre. The proposed watermarking system is tested in a comprehensive database of fundus images and results are convincing. results indicate that proposed watermarking method is imperceptible and it does not affect computer vision based automated diagnosis of retinal diseases. Correct recovery of patient ID from watermarked fundus image makes the proposed watermarking system applicable for authentication of fundus images for computer aided diagnosis and Tele-ophthalmology applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Optical imaging of non-fluorescent nanoparticle probes in live cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gufeng; Stender, Anthony S.; Sun, Wei; and Fang, Ning

    2009-12-17

    Precise imaging of cellular and subcellular structures and dynamic processes in live cells is crucial for fundamental research in life sciences and in medical applications. Non-fluorescent nanoparticles are an important type of optical probe used in live-cell imaging due to their photostability, large optical cross-sections, and low toxicity. Here, we provide an overview of recent developments in the optical imaging of non-fluorescent nanoparticle probes in live cells.

  7. Computer-Aided Panoramic Images Enriched by Shadow Construction on a Prism and Pyramid Polyhedral Surface

    Directory of Open Access Journals (Sweden)

    Jolanta Dzwierzynska

    2017-10-01

    Full Text Available The aim of this study is to develop an efficient and practical method of a direct mapping of a panoramic projection on an unfolded prism and pyramid polyhedral projection surface with the aid of a computer. Due to the fact that straight lines very often appear in any architectural form we formulate algorithms which utilize data about lines and draw panoramas as plots of functions in Mathcad software. The ability to draw panoramic images of lines enables drawing a wireframe image of an architectural object. The application of the multicenter projection, as well as the idea of shadow construction in the panoramic representation, aims at achieving a panoramic image close to human perception. The algorithms are universal as the application of changeable base elements of panoramic projection—horizon height, station point location, number of polyhedral walls—enables drawing panoramic images from various viewing positions. However, for more efficient and easier drawing, the algorithms should be implemented in some graphical package. The representation presented in the paper and the method of its direct mapping on a flat unfolded projection surface can find application in the presentation of architectural spaces in advertising and art when drawings are displayed on polyhedral surfaces and can be observed from multiple viewing positions.

  8. Fiber optic spectroscopic digital imaging sensor and method for flame properties monitoring

    Science.gov (United States)

    Zelepouga, Serguei A [Hoffman Estates, IL; Rue, David M [Chicago, IL; Saveliev, Alexei V [Chicago, IL

    2011-03-15

    A system for real-time monitoring of flame properties in combustors and gasifiers which includes an imaging fiber optic bundle having a light receiving end and a light output end and a spectroscopic imaging system operably connected with the light output end of the imaging fiber optic bundle. Focusing of the light received by the light receiving end of the imaging fiber optic bundle by a wall disposed between the light receiving end of the fiber optic bundle and a light source, which wall forms a pinhole opening aligned with the light receiving end.

  9. Polarization resolved imaging with a reflection near-field optical microscope

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Xiao, Mufei; Hvam, Jørn Märcher

    1999-01-01

    Using a rigorous microscopic point-dipole description of probe-sample interactions, we study imaging with a reflection scanning near-field optical microscope. Optical content, topographical artifacts, sensitivity window-i.e., the scale on which near-field optical images represent mainly optical...... configuration is preferable to the cross-linear one, since it ensures more isotropic (in the surface plane) near-field imaging of surface features. The numerical results are supported with experimental near-field images obtained by using a reflection microscope with an uncoated fiber tip....

  10. Molecular Imaging With Optical, Magnetic Resonance, and Radioisotope Techniques: Potentials and Relative Limitations

    National Research Council Canada - National Science Library

    Budinger, Thomas

    2001-01-01

    The technology advances include photodiode arrays for optical methods high field magnets proposed to 12 Tesla for functional imaging and multinuclear spectroscopy 3D ultrasound and positron tomography...

  11. Development of Optical Molecular Imaging System for the Acquisition of Bioluminescence Signals from Small Animals

    International Nuclear Information System (INIS)

    Lee, Byeong Il; Kim, Hyeon Sik; Jeong, Hye Jin; Lee, Hyung Jae; Moon, Seung Min; Kwon, Seung Young; Jeong, Shin Young; Bom, Hee Seung; Min, Jung Joon; Choi, Eun Seo

    2009-01-01

    Optical imaging is providing great advance and improvement in genetic and molecular imaging of animals and humans. Optical imaging system consists of optical imaging devices, which carry out major function for monitoring, tracing, and imaging in most of molecular in-vivo researches. In bio-luminescent imaging, small animals containing luciferase gene locally irradiate light, and emitted photons transmitted through skin of the small animals are imaged by using a high sensitive charged coupled device (CCD) camera. In this paper, we introduced optical imaging system for the image acquisition of bio-luminescent signals emitted from small animals. In the system, Nikon lens and four LED light sources were mounted at the inside of a dark box. A cooled CCD camera equipped with a control module was used. We tested the performance of the optical imaging system using effendorf tube and light emitting bacteria which injected intravenously into CT26 tumor bearing nude mouse. The performance of implemented optical imaging system for bio-luminescence imaging was demonstrated and the feasibility of the system in small animal imaging application was proved. We anticipate this system could be a useful tool for the molecular imaging of small animals adaptable for various experimental conditions in future

  12. Optical colour image watermarking based on phase-truncated linear canonical transform and image decomposition

    Science.gov (United States)

    Su, Yonggang; Tang, Chen; Li, Biyuan; Lei, Zhenkun

    2018-05-01

    This paper presents a novel optical colour image watermarking scheme based on phase-truncated linear canonical transform (PT-LCT) and image decomposition (ID). In this proposed scheme, a PT-LCT-based asymmetric cryptography is designed to encode the colour watermark into a noise-like pattern, and an ID-based multilevel embedding method is constructed to embed the encoded colour watermark into a colour host image. The PT-LCT-based asymmetric cryptography, which can be optically implemented by double random phase encoding with a quadratic phase system, can provide a higher security to resist various common cryptographic attacks. And the ID-based multilevel embedding method, which can be digitally implemented by a computer, can make the information of the colour watermark disperse better in the colour host image. The proposed colour image watermarking scheme possesses high security and can achieve a higher robustness while preserving the watermark’s invisibility. The good performance of the proposed scheme has been demonstrated by extensive experiments and comparison with other relevant schemes.

  13. Optical Coherence Tomography Technology and Quality Improvement Methods for Optical Coherence Tomography Images of Skin: A Short Review

    OpenAIRE

    Adabi, Saba; Turani, Zahra; Fatemizadeh, Emad; Clayton, Anne; Nasiriavanaki, Mohammadreza

    2017-01-01

    Optical coherence tomography (OCT) delivers 3-dimensional images of tissue microstructures. Although OCT imaging offers a promising high-resolution method, OCT images experience some artifacts that lead to misapprehension of tissue structures. Speckle, intensity decay, and blurring are 3 major artifacts in OCT images. Speckle is due to the low coherent light source used in the configuration of OCT. Intensity decay is a deterioration of light with respect to depth, and blurring is the conseque...

  14. Optical system design

    CERN Document Server

    Fischer, Robert F

    2008-01-01

    Honed for more than 20 years in an SPIE professional course taught by renowned optical systems designer Robert E. Fischer, Optical System Design, Second Edition brings you the latest cutting-edge design techniques and more than 400 detailed diagrams that clearly illustrate every major procedure in optical design. This thoroughly updated resource helps you work better and faster with computer-aided optical design techniques, diffractive optics, and the latest applications, including digital imaging, telecommunications, and machine vision. No need for complex, unnecessary mathematical derivations-instead, you get hundreds of examples that break the techniques down into understandable steps. For twenty-first century optical design without the mystery, the authoritative Optical Systems Design, Second Edition features: Computer-aided design use explained through sample problems Case studies of third-millennium applications in digital imaging, sensors, lasers, machine vision, and more New chapters on optomechanic...

  15. Computer-aided detection of brain metastasis on 3D MR imaging: Observer performance study.

    Directory of Open Access Journals (Sweden)

    Leonard Sunwoo

    Full Text Available To assess the effect of computer-aided detection (CAD of brain metastasis (BM on radiologists' diagnostic performance in interpreting three-dimensional brain magnetic resonance (MR imaging using follow-up imaging and consensus as the reference standard.The institutional review board approved this retrospective study. The study cohort consisted of 110 consecutive patients with BM and 30 patients without BM. The training data set included MR images of 80 patients with 450 BM nodules. The test set included MR images of 30 patients with 134 BM nodules and 30 patients without BM. We developed a CAD system for BM detection using template-matching and K-means clustering algorithms for candidate detection and an artificial neural network for false-positive reduction. Four reviewers (two neuroradiologists and two radiology residents interpreted the test set images before and after the use of CAD in a sequential manner. The sensitivity, false positive (FP per case, and reading time were analyzed. A jackknife free-response receiver operating characteristic (JAFROC method was used to determine the improvement in the diagnostic accuracy.The sensitivity of CAD was 87.3% with an FP per case of 302.4. CAD significantly improved the diagnostic performance of the four reviewers with a figure-of-merit (FOM of 0.874 (without CAD vs. 0.898 (with CAD according to JAFROC analysis (p < 0.01. Statistically significant improvement was noted only for less-experienced reviewers (FOM without vs. with CAD, 0.834 vs. 0.877, p < 0.01. The additional time required to review the CAD results was approximately 72 sec (40% of the total review time.CAD as a second reader helps radiologists improve their diagnostic performance in the detection of BM on MR imaging, particularly for less-experienced reviewers.

  16. Computer-aided breast MR image feature analysis for prediction of tumor response to chemotherapy

    International Nuclear Information System (INIS)

    Aghaei, Faranak; Tan, Maxine; Liu, Hong; Zheng, Bin; Hollingsworth, Alan B.; Qian, Wei

    2015-01-01

    Purpose: To identify a new clinical marker based on quantitative kinetic image features analysis and assess its feasibility to predict tumor response to neoadjuvant chemotherapy. Methods: The authors assembled a dataset involving breast MR images acquired from 68 cancer patients before undergoing neoadjuvant chemotherapy. Among them, 25 patients had complete response (CR) and 43 had partial and nonresponse (NR) to chemotherapy based on the response evaluation criteria in solid tumors. The authors developed a computer-aided detection scheme to segment breast areas and tumors depicted on the breast MR images and computed a total of 39 kinetic image features from both tumor and background parenchymal enhancement regions. The authors then applied and tested two approaches to classify between CR and NR cases. The first one analyzed each individual feature and applied a simple feature fusion method that combines classification results from multiple features. The second approach tested an attribute selected classifier that integrates an artificial neural network (ANN) with a wrapper subset evaluator, which was optimized using a leave-one-case-out validation method. Results: In the pool of 39 features, 10 yielded relatively higher classification performance with the areas under receiver operating characteristic curves (AUCs) ranging from 0.61 to 0.78 to classify between CR and NR cases. Using a feature fusion method, the maximum AUC = 0.85 ± 0.05. Using the ANN-based classifier, AUC value significantly increased to 0.96 ± 0.03 (p < 0.01). Conclusions: This study demonstrated that quantitative analysis of kinetic image features computed from breast MR images acquired prechemotherapy has potential to generate a useful clinical marker in predicting tumor response to chemotherapy

  17. Computer-aided detection of brain metastasis on 3D MR imaging: Observer performance study.

    Science.gov (United States)

    Sunwoo, Leonard; Kim, Young Jae; Choi, Seung Hong; Kim, Kwang-Gi; Kang, Ji Hee; Kang, Yeonah; Bae, Yun Jung; Yoo, Roh-Eul; Kim, Jihang; Lee, Kyong Joon; Lee, Seung Hyun; Choi, Byung Se; Jung, Cheolkyu; Sohn, Chul-Ho; Kim, Jae Hyoung

    2017-01-01

    To assess the effect of computer-aided detection (CAD) of brain metastasis (BM) on radiologists' diagnostic performance in interpreting three-dimensional brain magnetic resonance (MR) imaging using follow-up imaging and consensus as the reference standard. The institutional review board approved this retrospective study. The study cohort consisted of 110 consecutive patients with BM and 30 patients without BM. The training data set included MR images of 80 patients with 450 BM nodules. The test set included MR images of 30 patients with 134 BM nodules and 30 patients without BM. We developed a CAD system for BM detection using template-matching and K-means clustering algorithms for candidate detection and an artificial neural network for false-positive reduction. Four reviewers (two neuroradiologists and two radiology residents) interpreted the test set images before and after the use of CAD in a sequential manner. The sensitivity, false positive (FP) per case, and reading time were analyzed. A jackknife free-response receiver operating characteristic (JAFROC) method was used to determine the improvement in the diagnostic accuracy. The sensitivity of CAD was 87.3% with an FP per case of 302.4. CAD significantly improved the diagnostic performance of the four reviewers with a figure-of-merit (FOM) of 0.874 (without CAD) vs. 0.898 (with CAD) according to JAFROC analysis (p reviewers (FOM without vs. with CAD, 0.834 vs. 0.877, p review the CAD results was approximately 72 sec (40% of the total review time). CAD as a second reader helps radiologists improve their diagnostic performance in the detection of BM on MR imaging, particularly for less-experienced reviewers.

  18. Computer-aided breast MR image feature analysis for prediction of tumor response to chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Aghaei, Faranak; Tan, Maxine; Liu, Hong; Zheng, Bin, E-mail: Bin.Zheng-1@ou.edu [School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019 (United States); Hollingsworth, Alan B. [Mercy Women’s Center, Mercy Health Center, Oklahoma City, Oklahoma 73120 (United States); Qian, Wei [Department of Electrical and Computer Engineering, University of Texas, El Paso, Texas 79968 (United States)

    2015-11-15

    Purpose: To identify a new clinical marker based on quantitative kinetic image features analysis and assess its feasibility to predict tumor response to neoadjuvant chemotherapy. Methods: The authors assembled a dataset involving breast MR images acquired from 68 cancer patients before undergoing neoadjuvant chemotherapy. Among them, 25 patients had complete response (CR) and 43 had partial and nonresponse (NR) to chemotherapy based on the response evaluation criteria in solid tumors. The authors developed a computer-aided detection scheme to segment breast areas and tumors depicted on the breast MR images and computed a total of 39 kinetic image features from both tumor and background parenchymal enhancement regions. The authors then applied and tested two approaches to classify between CR and NR cases. The first one analyzed each individual feature and applied a simple feature fusion method that combines classification results from multiple features. The second approach tested an attribute selected classifier that integrates an artificial neural network (ANN) with a wrapper subset evaluator, which was optimized using a leave-one-case-out validation method. Results: In the pool of 39 features, 10 yielded relatively higher classification performance with the areas under receiver operating characteristic curves (AUCs) ranging from 0.61 to 0.78 to classify between CR and NR cases. Using a feature fusion method, the maximum AUC = 0.85 ± 0.05. Using the ANN-based classifier, AUC value significantly increased to 0.96 ± 0.03 (p < 0.01). Conclusions: This study demonstrated that quantitative analysis of kinetic image features computed from breast MR images acquired prechemotherapy has potential to generate a useful clinical marker in predicting tumor response to chemotherapy.

  19. A computer-aided diagnosis system to detect pathologies in temporal subtraction images of chest radiographs

    Science.gov (United States)

    Looper, Jared; Harrison, Melanie; Armato, Samuel G.

    2016-03-01

    Radiologists often compare sequential radiographs to identify areas of pathologic change; however, this process is prone to error, as human anatomy can obscure the regions of change, causing the radiologists to overlook pathology. Temporal subtraction (TS) images can provide enhanced visualization of regions of change in sequential radiographs and allow radiologists to better detect areas of change in radiographs. Not all areas of change shown in TS images, however, are actual pathology. The purpose of this study was to create a computer-aided diagnostic (CAD) system that identifies which regions of change are caused by pathology and which are caused by misregistration of the radiographs used to create the TS image. The dataset used in this study contained 120 images with 74 pathologic regions on 54 images outlined by an experienced radiologist. High and low ("light" and "dark") gray-level candidate regions were extracted from the images using gray-level thresholding. Then, sampling techniques were used to address the class imbalance problem between "true" and "false" candidate regions. Next, the datasets of light candidate regions, dark candidate regions, and the combined set of light and dark candidate regions were used as training and testing data for classifiers by using five-fold cross validation. Of the classifiers tested (support vector machines, discriminant analyses, logistic regression, and k-nearest neighbors), the support vector machine on the combined candidates using synthetic minority oversampling technique (SMOTE) performed best with an area under the receiver operating characteristic curve value of 0.85, a sensitivity of 85%, and a specificity of 84%.

  20. Optical image encryption based on interference under convergent random illumination

    International Nuclear Information System (INIS)

    Kumar, Pramod; Joseph, Joby; Singh, Kehar

    2010-01-01

    In an optical image encryption system based on the interference principle, two pure phase masks are designed analytically to hide an image. These two masks are illuminated with a plane wavefront to retrieve the original image in the form of an interference pattern at the decryption plane. Replacement of the plane wavefront with convergent random illumination in the proposed scheme leads to an improvement in the security of interference based encryption. The proposed encryption scheme retains the simplicity of an interference based method, as the two pure masks are generated with an analytical method without any iterative algorithm. In addition to the free-space propagation distance and the two pure phase masks, the convergence distance and the randomized lens phase function are two new encryption parameters to enhance the system security. The robustness of this scheme against occlusion of the random phase mask of the randomized lens phase function is investigated. The feasibility of the proposed scheme is demonstrated with numerical simulation results

  1. A survey on object detection in optical remote sensing images

    Science.gov (United States)

    Cheng, Gong; Han, Junwei

    2016-07-01

    Object detection in optical remote sensing images, being a fundamental but challenging problem in the field of aerial and satellite image analysis, plays an important role for a wide range of applications and is receiving significant attention in recent years. While enormous methods exist, a deep review of the literature concerning generic object detection is still lacking. This paper aims to provide a review of the recent progress in this field. Different from several previously published surveys that focus on a specific object class such as building and road, we concentrate on more generic object categories including, but are not limited to, road, building, tree, vehicle, ship, airport, urban-area. Covering about 270 publications we survey (1) template matching-based object detection methods, (2) knowledge-based object detection methods, (3) object-based image analysis (OBIA)-based object detection methods, (4) machine learning-based object detection methods, and (5) five publicly available datasets and three standard evaluation metrics. We also discuss the challenges of current studies and propose two promising research directions, namely deep learning-based feature representation and weakly supervised learning-based geospatial object detection. It is our hope that this survey will be beneficial for the researchers to have better understanding of this research field.

  2. Integrated manufacture of a freeform off-axis multi-reflective imaging system without optical alignment.

    Science.gov (United States)

    Li, Zexiao; Liu, Xianlei; Fang, Fengzhou; Zhang, Xiaodong; Zeng, Zhen; Zhu, Linlin; Yan, Ning

    2018-03-19

    Multi-reflective imaging systems find wide applications in optical imaging and space detection. However, it is faced with difficulties in adjusting the freeform mirrors with high accuracy to guarantee the optical function. Motivated by this, an alignment-free manufacture approach is proposed to machine the optical system. The direct optical performance-guided manufacture route is established without measuring the form error of freeform optics. An analytical model is established to investigate the effects of machine errors to serve the error identification and compensation in machining. Based on the integrated manufactured system, an ingenious self-designed testing configuration is constructed to evaluate the optical performance by directly measuring the wavefront aberration. Experiments are carried out to manufacture a three-mirror anastigmat, surface topographical details and optical performance shows agreement to the designed expectation. The final system works as an off-axis infrared imaging system. Results validate the feasibility of the proposed method to achieve excellent optical application.

  3. Hybrid lightweight X-ray optics for half arcsecond imaging

    Science.gov (United States)

    Reid, Paul

    This proposal is for the development of grazing incidence optics suitable to meet the 0.5 arcsec imaging and 2.3 square meter effective area requirements of the X-ray Surveyor mission concept, currently under study by NASA. Our approach is to combine two promising technologies, as yet individually unproven at the 0.5 arcsec level, into a hybrid mirror approach. The two technologies are thin piezoelectric film adjustable optics under development at SAO and PSU, and differential deposition under development at NASA MSFC. These technologies are complementary: adjustable optics are best suited to fixing low spatial frequency errors due to piezoelectric cell size limitations, and differential deposition is best suited for fixing mid-spatial frequency errors so as to limit the amount of material that must be deposited. Thus, the combination of the two techniques extends the bandwidth of figure errors that can be corrected beyond what it was for either individual technique. Both technologies will be applied to fabricate Wolter-I mirror segment from single thermally formed glass substrates. This work is directed at mirror segments only (not full shells), as we believe segments are the most appropriate for developing the 3 m diameter X-ray Surveyor high resolution mirror. In this program we will extend differential deposition to segment surfaces (from line profiles), investigate the most realistic error bandwidths for each technology, and determine the impacts of one technologys processing steps on the other to find if there is an optimal order to combining the technologies. In addition, we will also conduct a conical/cylindrical mirror metrology "round-robin," to cross-calibrate the different cylindrical metrology to one another as a means of minimizing systematic errors. Finally, we will examine the balancing and compensating of mirror stress due to the various thin films employed (piezoelectric layer, differential deposition, X-ray reflecting layer(s)) with an eye to

  4. Optical Molecular Imaging Frontiers in Oncology: The Pursuit of Accuracy and Sensitivity

    Directory of Open Access Journals (Sweden)

    Kun Wang

    2015-09-01

    Full Text Available Cutting-edge technologies in optical molecular imaging have ushered in new frontiers in cancer research, clinical translation, and medical practice, as evidenced by recent advances in optical multimodality imaging, Cerenkov luminescence imaging (CLI, and optical image-guided surgeries. New abilities allow in vivo cancer imaging with sensitivity and accuracy that are unprecedented in conventional imaging approaches. The visualization of cellular and molecular behaviors and events within tumors in living subjects is improving our deeper understanding of tumors at a systems level. These advances are being rapidly used to acquire tumor-to-tumor molecular heterogeneity, both dynamically and quantitatively, as well as to achieve more effective therapeutic interventions with the assistance of real-time imaging. In the era of molecular imaging, optical technologies hold great promise to facilitate the development of highly sensitive cancer diagnoses as well as personalized patient treatment—one of the ultimate goals of precision medicine.

  5. Streak detection and analysis pipeline for optical images

    Science.gov (United States)

    Virtanen, J.; Granvik, M.; Torppa, J.; Muinonen, K.; Poikonen, J.; Lehti, J.; Säntti, T.; Komulainen, T.; Flohrer, T.

    2014-07-01

    We describe a novel data processing and analysis pipeline for optical observations of moving objects, either of natural (asteroids, meteors) or artificial origin (satellites, space debris). The monitoring of the space object populations requires reliable acquisition of observational data to support the development and validation of population models, and to build and maintain catalogues of orbital elements. The orbital catalogues are, in turn, needed for the assessment of close approaches (for asteroids, with the Earth; for satellites, with each other) and for the support of contingency situations or launches. For both types of populations, there is also increasing interest to detect fainter objects corresponding to the small end of the size distribution. We focus on the low signal-to-noise (SNR) detection of objects with high angular velocities, resulting in long and faint object trails, or streaks, in the optical images. The currently available, mature image processing algorithms for detection and astrometric reduction of optical data cover objects that cross the sensor field-of-view comparably slowly, and, particularly for satellites, within a rather narrow, predefined range of angular velocities. By applying specific tracking techniques, the objects appear point-like or as short trails in the exposures. However, the general survey scenario is always a 'track-before-detect' problem, resulting in streaks of arbitrary lengths. Although some considerations for low-SNR processing of streak-like features are available in the current image processing and computer vision literature, algorithms are not readily available yet. In the ESA-funded StreakDet (Streak detection and astrometric reduction) project, we develop and evaluate an automated processing pipeline applicable to single images (as compared to consecutive frames of the same field) obtained with any observing scenario, including space-based surveys and both low- and high-altitude populations. The algorithmic

  6. Molecular Imaging Probes for Positron Emission Tomography and Optical Imaging of Sentinel Lymph Node and Tumor

    Science.gov (United States)

    Qin, Zhengtao

    Molecular imaging is visualizations and measurements of in vivo biological processes at the molecular or cellular level using specific imaging probes. As an emerging technology, biocompatible macromolecular or nanoparticle based targeted imaging probes have gained increasing popularities. Those complexes consist of a carrier, an imaging reporter, and a targeting ligand. The active targeting ability dramatically increases the specificity. And the multivalency effect may further reduce the dose while providing a decent signal. In this thesis, sentinel lymph node (SLN) mapping and cancer imaging are two research topics. The focus is to develop molecular imaging probes with high specificity and sensitivity, for Positron Emission Tomography (PET) and optical imaging. The objective of this thesis is to explore dextran radiopharmaceuticals and porous silicon nanoparticles based molecular imaging agents. Dextran polymers are excellent carriers to deliver imaging reporters or therapeutic agents due to its well established safety profile and oligosaccharide conjugation chemistry. There is also a wide selection of dextran polymers with different lengths. On the other hand, Silicon nanoparticles represent another class of biodegradable materials for imaging and drug delivery. The success in fluorescence lifetime imaging and enhancements of the immune activation potency was briefly discussed. Chapter 1 begins with an overview on current molecular imaging techniques and imaging probes. Chapter 2 presents a near-IR dye conjugated probe, IRDye 800CW-tilmanocept. Fluorophore density was optimized to generate the maximum brightness. It was labeled with 68Ga and 99mTc and in vivo SLN mapping was successfully performed in different animals, such as mice, rabbits, dogs and pigs. With 99mTc labeled IRDye 800CW-tilmanocept, chapter 3 introduces a two-day imaging protocol with a hand-held imager. Chapter 4 proposed a method to dual radiolabel the IRDye 800CW-tilmanocept with both 68Ga and

  7. Techniques for Effective Optical Noise Rejection in Amplitude-Modulated Laser Optical Radars for Underwater Three-Dimensional Imaging

    Directory of Open Access Journals (Sweden)

    Francucci M

    2010-01-01

    Full Text Available Amplitude-modulated (AM laser imaging is a promising technology for the production of accurate three-dimensional (3D images of submerged scenes. The main challenge is that radiation scattered off water gives rise to a disturbing signal (optical noise that degrades more and more the quality of 3D images for increasing turbidity. In this paper, we summarize a series of theoretical findings, that provide valuable hints for the development of experimental methods enabling a partial rejection of optical noise in underwater imaging systems. In order to assess the effectiveness of these methods, which range from modulation/demodulation to polarimetry, we carried out a series of experiments by using the laboratory prototype of an AM 3D imager ( = 405 nm for marine archaeology surveys, in course of realization at the ENEA Artificial Vision Laboratory (Frascati, Rome. The obtained results confirm the validity of the proposed methods for optical noise rejection.

  8. Techniques for Effective Optical Noise Rejection in Amplitude-Modulated Laser Optical Radars for Underwater Three-Dimensional Imaging

    Directory of Open Access Journals (Sweden)

    R. Ricci

    2010-01-01

    Full Text Available Amplitude-modulated (AM laser imaging is a promising technology for the production of accurate three-dimensional (3D images of submerged scenes. The main challenge is that radiation scattered off water gives rise to a disturbing signal (optical noise that degrades more and more the quality of 3D images for increasing turbidity. In this paper, we summarize a series of theoretical findings, that provide valuable hints for the development of experimental methods enabling a partial rejection of optical noise in underwater imaging systems. In order to assess the effectiveness of these methods, which range from modulation/demodulation to polarimetry, we carried out a series of experiments by using the laboratory prototype of an AM 3D imager (λ = 405 nm for marine archaeology surveys, in course of realization at the ENEA Artificial Vision Laboratory (Frascati, Rome. The obtained results confirm the validity of the proposed methods for optical noise rejection.

  9. Cerebral and meningeal manifestations of AIDS: comparison of plain T2-weighted images and Gd-DTPA enhanced T1-weighted images in 105 patients

    International Nuclear Information System (INIS)

    Jochens, R.; Henkes, H.; Steinkamp, H.J.; Terstegge, K.; Hosten, N.; Ruf, B.; Schoerner, W.

    1994-01-01

    The purpose of the present study was to evaluate the potential of T1-weighted Gd-DTPA enhanced MR imaging in the diagnosis of cerebral manifestations of AIDS. 105 patients with AIDS were imaged with plain T2-weighted images as well as with Gd-DTPA enhanced T1-weighted pulse sequences. Our study revealed comparable sensitivities in the detection of morphological changes as shown on plain T2-weighted images and Gd-DTPA enhanced T1-weighted images in 55% of patients (normal and pathologic findings). Plain T2-weighted images were superior in 28.5% and provided significantly better results in 8.5% of patients. Gd-DTPA enhanced T1-weighted images were superior in only 5% cases and revealed significantly better results in 3%. As a result, T2-weighted plain images were superior in approximately 40% of patients concerning detection of morphologic changes. In almost 10% of patients with parechymal and meningeal lesions, Gd-DTPA enhanced T1-weighted images, however, were superior or even significantly better compared to T2-weighted plain images. The detection of morphologic changes in MR imaging can be further increased with Gd-DTPA. With regard to differential diagnosis and diesease activity, plain T2-weighted images and Gd-DTPA enhanced T1-weighted images revealed comparable results in 42% of patients (normal and pathologic findings). T2-weighted plain images were superior in 2% of cases whereas Gd-DTPA enhanced T1-weighted images were superior in as much as 56% of patient. MR imaging enhanced with Gd-DTPA yielded additional information on disease activity in 73% of patients with pathologic findings in the cerebral parechyma and the meninges. The surplus of information also refers to the etiology of cerebral pathology and differential diagnosis. Because of the frequency of cerebral manifestations in AIDS, early diagnosis for initiation of therapy and follow-up studies to monitor therapy are crucial. (orig./MG) [de

  10. Comparison of 3D computer-aided with manual cerebral aneurysm measurements in different imaging modalities

    International Nuclear Information System (INIS)

    Groth, M.; Buhk, J.H.; Schoenfeld, M.; Goebell, E.; Fiehler, J.; Forkert, N.D.

    2013-01-01

    To compare intra- and inter-observer reliability of aneurysm measurements obtained by a 3D computer-aided technique with standard manual aneurysm measurements in different imaging modalities. A total of 21 patients with 29 cerebral aneurysms were studied. All patients underwent digital subtraction angiography (DSA), contrast-enhanced (CE-MRA) and time-of-flight magnetic resonance angiography (TOF-MRA). Aneurysm neck and depth diameters were manually measured by two observers in each modality. Additionally, semi-automatic computer-aided diameter measurements were performed using 3D vessel surface models derived from CE- (CE-com) and TOF-MRA (TOF-com) datasets. Bland-Altman analysis (BA) and intra-class correlation coefficient (ICC) were used to evaluate intra- and inter-observer agreement. BA revealed the narrowest relative limits of intra- and inter-observer agreement for aneurysm neck and depth diameters obtained by TOF-com (ranging between ±5.3 % and ±28.3 %) and CE-com (ranging between ±23.3 % and ±38.1 %). Direct measurements in DSA, TOF-MRA and CE-MRA showed considerably wider limits of agreement. The highest ICCs were observed for TOF-com and CE-com (ICC values, 0.92 or higher for intra- as well as inter-observer reliability). Computer-aided aneurysm measurement in 3D offers improved intra- and inter-observer reliability and a reproducible parameter extraction, which may be used in clinical routine and as objective surrogate end-points in clinical trials. (orig.)

  11. Confocal imaging of protein distributions in porous silicon optical structures

    International Nuclear Information System (INIS)

    De Stefano, Luca; D'Auria, Sabato

    2007-01-01

    The performances of porous silicon optical biosensors depend strongly on the arrangement of the biological probes into their sponge-like structures: it is well known that in this case the sensing species do not fill the pores but instead cover their internal surface. In this paper, the direct imaging of labelled proteins into different porous silicon structures by using a confocal laser microscope is reported. The distribution of the biological matter in the nanostructured material follows a Gaussian behaviour which is typical of the diffusion process in the porous media but with substantial differences between a porous silicon monolayer and a multilayer such as a Bragg mirror. Even if semi-quantitative, the results can be very useful in the design of the porous silicon based biosensing devices

  12. A review of snapshot multidimensional optical imaging: Measuring photon tags in parallel

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Liang, E-mail: gaol@illinois.edu [Department of Electrical and Computer Engineering, University of Illinois at Urbana–Champaign, 306 N. Wright St., Urbana, IL 61801 (United States); Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, 405 North Mathews Avenue, Urbana, IL 61801 (United States); Wang, Lihong V., E-mail: lhwang@wustl.edu [Optical imaging laboratory, Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Dr., MO, 63130 (United States)

    2016-02-29

    Multidimensional optical imaging has seen remarkable growth in the past decade. Rather than measuring only the two-dimensional spatial distribution of light, as in conventional photography, multidimensional optical imaging captures light in up to nine dimensions, providing unprecedented information about incident photons’ spatial coordinates, emittance angles, wavelength, time, and polarization. Multidimensional optical imaging can be accomplished either by scanning or parallel acquisition. Compared with scanning-based imagers, parallel acquisition–also dubbed snapshot imaging–has a prominent advantage in maximizing optical throughput, particularly when measuring a datacube of high dimensions. Here, we first categorize snapshot multidimensional imagers based on their acquisition and image reconstruction strategies, then highlight the snapshot advantage in the context of optical throughput, and finally we discuss their state-of-the-art implementations and applications.

  13. Phenomenological marine snow model for optical underwater image simulation: Applications to color restoration

    OpenAIRE

    Boffety , Matthieu; Galland , Frédéric

    2012-01-01

    International audience; Optical imaging plays an important role in oceanic science and engineering. However, the design of optical systems and image processing techniques for subsea environment are challenging tasks due to water turbidity. Marine snow is notably a major source of image degradation as it creates white bright spots that may strongly impact the performance of image processing methods. In this context, it is necessary to have a tool to foresee the behavior of these methods in mar...

  14. Choroidal vasculature characteristics based choroid segmentation for enhanced depth imaging optical coherence tomography images

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiang; Niu, Sijie [School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Yuan, Songtao; Fan, Wen, E-mail: fanwen1029@163.com; Liu, Qinghuai [Department of Ophthalmology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029 (China)

    2016-04-15

    Purpose: In clinical research, it is important to measure choroidal thickness when eyes are affected by various diseases. The main purpose is to automatically segment choroid for enhanced depth imaging optical coherence tomography (EDI-OCT) images with five B-scans averaging. Methods: The authors present an automated choroid segmentation method based on choroidal vasculature characteristics for EDI-OCT images with five B-scans averaging. By considering the large vascular of the Haller’s layer neighbor with the choroid-sclera junction (CSJ), the authors measured the intensity ascending distance and a maximum intensity image in the axial direction from a smoothed and normalized EDI-OCT image. Then, based on generated choroidal vessel image, the authors constructed the CSJ cost and constrain the CSJ search neighborhood. Finally, graph search with smooth constraints was utilized to obtain the CSJ boundary. Results: Experimental results with 49 images from 10 eyes in 8 normal persons and 270 images from 57 eyes in 44 patients with several stages of diabetic retinopathy and age-related macular degeneration demonstrate that the proposed method can accurately segment the choroid of EDI-OCT images with five B-scans averaging. The mean choroid thickness difference and overlap ratio between the authors’ proposed method and manual segmentation drawn by experts were −11.43 μm and 86.29%, respectively. Conclusions: Good performance was achieved for normal and pathologic eyes, which proves that the authors’ method is effective for the automated choroid segmentation of the EDI-OCT images with five B-scans averaging.

  15. Choroidal vasculature characteristics based choroid segmentation for enhanced depth imaging optical coherence tomography images

    International Nuclear Information System (INIS)

    Chen, Qiang; Niu, Sijie; Yuan, Songtao; Fan, Wen; Liu, Qinghuai

    2016-01-01

    Purpose: In clinical research, it is important to measure choroidal thickness when eyes are affected by various diseases. The main purpose is to automatically segment choroid for enhanced depth imaging optical coherence tomography (EDI-OCT) images with five B-scans averaging. Methods: The authors present an automated choroid segmentation method based on choroidal vasculature characteristics for EDI-OCT images with five B-scans averaging. By considering the large vascular of the Haller’s layer neighbor with the choroid-sclera junction (CSJ), the authors measured the intensity ascending distance and a maximum intensity image in the axial direction from a smoothed and normalized EDI-OCT image. Then, based on generated choroidal vessel image, the authors constructed the CSJ cost and constrain the CSJ search neighborhood. Finally, graph search with smooth constraints was utilized to obtain the CSJ boundary. Results: Experimental results with 49 images from 10 eyes in 8 normal persons and 270 images from 57 eyes in 44 patients with several stages of diabetic retinopathy and age-related macular degeneration demonstrate that the proposed method can accurately segment the choroid of EDI-OCT images with five B-scans averaging. The mean choroid thickness difference and overlap ratio between the authors’ proposed method and manual segmentation drawn by experts were −11.43 μm and 86.29%, respectively. Conclusions: Good performance was achieved for normal and pathologic eyes, which proves that the authors’ method is effective for the automated choroid segmentation of the EDI-OCT images with five B-scans averaging.

  16. Photometric Calibration of the Gemini South Adaptive Optics Imager

    Science.gov (United States)

    Stevenson, Sarah Anne; Rodrigo Carrasco Damele, Eleazar; Thomas-Osip, Joanna

    2017-01-01

    The Gemini South Adaptive Optics Imager (GSAOI) is an instrument available on the Gemini South telescope at Cerro Pachon, Chile, utilizing the Gemini Multi-Conjugate Adaptive Optics System (GeMS). In order to allow users to easily perform photometry with this instrument and to monitor any changes in the instrument in the future, we seek to set up a process for performing photometric calibration with standard star observations taken across the time of the instrument’s operation. We construct a Python-based pipeline that includes IRAF wrappers for reduction and combines the AstroPy photutils package and original Python scripts with the IRAF apphot and photcal packages to carry out photometry and linear regression fitting. Using the pipeline, we examine standard star observations made with GSAOI on 68 nights between 2013 and 2015 in order to determine the nightly photometric zero points in the J, H, Kshort, and K bands. This work is based on observations obtained at the Gemini Observatory, processed using the Gemini IRAF and gemini_python packages, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).

  17. Control of the neutron detector count rate by optical imaging

    International Nuclear Information System (INIS)

    Roquemore, A.L.; Johnson, L.C.

    1992-01-01

    The signal processing electronics used for the NE451 detectors on the TFTR multichannel neutron collimator are presently showing saturation effects at high counting rates equivalent to neutron yields of ∼10 16 n/s. While nonlinearity due to pulse pileup can be corrected for in most present TFTR experiments, additional steps are required for neutron source strengths above ∼3x10 16 n/s. These pulse pileup effects could be reduced by inserting sleeves in the collimator shielding to reduce the neutron flux in the vicinity of the detectors or by reducing the volume of detector exposed to the flux. We describe a novel method of avoiding saturation by optically controlling the number neutron events processed by the detector electronics. Because of the optical opacity of the ZnS-plastic detectors such as NE451, photons from a proton-recoil scintillation arise from a spatially localized area of the detector. By imaging a selected portion of the detector onto a photomultiplier, we reduce the effective volume of the detector in a controllable, reversible way. A prototype system, consisting of a focusing lens, a field lens, and a variable aperture, has been constructed. Results of laboratory feasibility tests are presented

  18. Imaging optical scattering of butterfly wing scales with a microscope.

    Science.gov (United States)

    Fu, Jinxin; Yoon, Beom-Jin; Park, Jung Ok; Srinivasarao, Mohan

    2017-08-06

    A new optical method is proposed to investigate the reflectance of structurally coloured objects, such as Morpho butterfly wing scales and cholesteric liquid crystals. Using a reflected-light microscope and a digital single-lens reflex (DSLR) camera, we have successfully measured the two-dimensional reflection pattern of individual wing scales of Morpho butterflies. We demonstrate that this method enables us to measure the bidirectional reflectance distribution function (BRDF). The scattering image observed in the back focal plane of the objective is projected onto the camera sensor by inserting a Bertrand lens in the optical path of the microscope. With monochromatic light illumination, we quantify the angle-dependent reflectance spectra from the wing scales of Morpho rhetenor by retrieving the raw signal from the digital camera sensor. We also demonstrate that the polarization-dependent reflection of individual wing scales is readily observed using this method, using the individual wing scales of Morpho cypris . In an effort to show the generality of the method, we used a chiral nematic fluid to illustrate the angle-dependent reflectance as seen by this method.

  19. Dynamics of Stability of Orientation Maps Recorded with Optical Imaging.

    Science.gov (United States)

    Shumikhina, S I; Bondar, I V; Svinov, M M

    2018-03-15

    Orientation selectivity is an important feature of visual cortical neurons. Optical imaging of the visual cortex allows for the generation of maps of orientation selectivity that reflect the activity of large populations of neurons. To estimate the statistical significance of effects of experimental manipulations, evaluation of the stability of cortical maps over time is required. Here, we performed optical imaging recordings of the visual cortex of anesthetized adult cats. Monocular stimulation with moving clockwise square-wave gratings that continuously changed orientation and direction was used as the mapping stimulus. Recordings were repeated at various time intervals, from 15 min to 16 h. Quantification of map stability was performed on a pixel-by-pixel basis using several techniques. Map reproducibility showed clear dynamics over time. The highest degree of stability was seen in maps recorded 15-45 min apart. Averaging across all time intervals and all stimulus orientations revealed a mean shift of 2.2 ± 0.1°. There was a significant tendency for larger shifts to occur at longer time intervals. Shifts between 2.8° (mean ± 2SD) and 5° were observed more frequently at oblique orientations, while shifts greater than 5° appeared more frequently at cardinal orientations. Shifts greater than 5° occurred rarely overall (5.4% of cases) and never exceeded 11°. Shifts of 10-10.6° (0.7%) were seen occasionally at time intervals of more than 4 h. Our findings should be considered when evaluating the potential effect of experimental manipulations on orientation selectivity mapping studies. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Adaptive optics retinal imaging in the living mouse eye

    Science.gov (United States)

    Geng, Ying; Dubra, Alfredo; Yin, Lu; Merigan, William H.; Sharma, Robin; Libby, Richard T.; Williams, David R.

    2012-01-01

    Correction of the eye’s monochromatic aberrations using adaptive optics (AO) can improve the resolution of in vivo mouse retinal images [Biss et al., Opt. Lett. 32(6), 659 (2007) and Alt et al., Proc. SPIE 7550, 755019 (2010)], but previous attempts have been limited by poor spot quality in the Shack-Hartmann wavefront sensor (SHWS). Recent advances in mouse eye wavefront sensing using an adjustable focus beacon with an annular beam profile have improved the wavefront sensor spot quality [Geng et al., Biomed. Opt. Express 2(4), 717 (2011)], and we have incorporated them into a fluorescence adaptive optics scanning laser ophthalmoscope (AOSLO). The performance of the instrument was tested on the living mouse eye, and images of multiple retinal structures, including the photoreceptor mosaic, nerve fiber bundles, fine capillaries and fluorescently labeled ganglion cells were obtained. The in vivo transverse and axial resolutions of the fluorescence channel of the AOSLO were estimated from the full width half maximum (FWHM) of the line and point spread functions (LSF and PSF), and were found to be better than 0.79 μm ± 0.03 μm (STD)(45% wider than the diffraction limit) and 10.8 μm ± 0.7 μm (STD)(two times the diffraction limit), respectively. The axial positional accuracy was estimated to be 0.36 μm. This resolution and positional accuracy has allowed us to classify many ganglion cell types, such as bistratified ganglion cells, in vivo. PMID:22574260

  1. Noninvasive optical imaging of resistance training adaptations in human muscle

    Science.gov (United States)

    Warren, Robert V.; Cotter, Joshua; Ganesan, Goutham; Le, Lisa; Agustin, Janelle P.; Duarte, Bridgette; Cutler, Kyle; O'Sullivan, Thomas; Tromberg, Bruce J.

    2017-12-01

    A quantitative and dynamic analysis of skeletal muscle structure and function can guide training protocols and optimize interventions for rehabilitation and disease. While technologies exist to measure body composition, techniques are still needed for quantitative, long-term functional imaging of muscle at the bedside. We evaluate whether diffuse optical spectroscopic imaging (DOSI) can be used for long-term assessment of resistance training (RT). DOSI measures of tissue composition were obtained from 12 adults before and after 5 weeks of training and compared to lean mass fraction (LMF) from dual-energy X-ray absorptiometry (DXA). Significant correlations were detected between DXA LMF and DOSI-measured oxy-hemo/myoglobin, deoxy-hemo/myoglobin, total-hemo/myoglobin, water, and lipid. RT-induced increases of ˜6% in oxy-hemo/myoglobin (3.4±1.0 μM, p=0.00314) and total-hemo/myoglobin (4.9±1.1 μM, p=0.00024) from the medial gastrocnemius were detected with DOSI and accompanied by ˜2% increases in lean soft tissue mass (36.4±12.4 g, p=0.01641) and ˜60% increases in 1 rep-max strength (41.5±6.2 kg, p = 1.9E-05). DOSI measures of vascular and/or muscle changes combined with correlations between DOSI and DXA suggest that quantitative diffuse optical methods can be used to evaluate body composition, provide feedback on long-term interventions, and generate new insight into training-induced muscle adaptations.

  2. Computer aided diagnosis based on medical image processing and artificial intelligence methods

    Science.gov (United States)

    Stoitsis, John; Valavanis, Ioannis; Mougiakakou, Stavroula G.; Golemati, Spyretta; Nikita, Alexandra; Nikita, Konstantina S.

    2006-12-01

    Advances in imaging technology and computer science have greatly enhanced interpretation of medical images, and contributed to early diagnosis. The typical architecture of a Computer Aided Diagnosis (CAD) system includes image pre-processing, definition of region(s) of interest, features extraction and selection, and classification. In this paper, the principles of CAD systems design and development are demonstrated by means of two examples. The first one focuses on the differentiation between symptomatic and asymptomatic carotid atheromatous plaques. For each plaque, a vector of texture and motion features was estimated, which was then reduced to the most robust ones by means of ANalysis of VAriance (ANOVA). Using fuzzy c-means, the features were then clustered into two classes. Clustering performances of 74%, 79%, and 84% were achieved for texture only, motion only, and combinations of texture and motion features, respectively. The second CAD system presented in this paper supports the diagnosis of focal liver lesions and is able to characterize liver tissue from Computed Tomography (CT) images as normal, hepatic cyst, hemangioma, and hepatocellular carcinoma. Five texture feature sets were extracted for each lesion, while a genetic algorithm based feature selection method was applied to identify the most robust features. The selected feature set was fed into an ensemble of neural network classifiers. The achieved classification performance was 100%, 93.75% and 90.63% in the training, validation and testing set, respectively. It is concluded that computerized analysis of medical images in combination with artificial intelligence can be used in clinical practice and may contribute to more efficient diagnosis.

  3. Computer aided diagnosis based on medical image processing and artificial intelligence methods

    International Nuclear Information System (INIS)

    Stoitsis, John; Valavanis, Ioannis; Mougiakakou, Stavroula G.; Golemati, Spyretta; Nikita, Alexandra; Nikita, Konstantina S.

    2006-01-01

    Advances in imaging technology and computer science have greatly enhanced interpretation of medical images, and contributed to early diagnosis. The typical architecture of a Computer Aided Diagnosis (CAD) system includes image pre-processing, definition of region(s) of interest, features extraction and selection, and classification. In this paper, the principles of CAD systems design and development are demonstrated by means of two examples. The first one focuses on the differentiation between symptomatic and asymptomatic carotid atheromatous plaques. For each plaque, a vector of texture and motion features was estimated, which was then reduced to the most robust ones by means of ANalysis of VAriance (ANOVA). Using fuzzy c-means, the features were then clustered into two classes. Clustering performances of 74%, 79%, and 84% were achieved for texture only, motion only, and combinations of texture and motion features, respectively. The second CAD system presented in this paper supports the diagnosis of focal liver lesions and is able to characterize liver tissue from Computed Tomography (CT) images as normal, hepatic cyst, hemangioma, and hepatocellular carcinoma. Five texture feature sets were extracted for each lesion, while a genetic algorithm based feature selection method was applied to identify the most robust features. The selected feature set was fed into an ensemble of neural network classifiers. The achieved classification performance was 100%, 93.75% and 90.63% in the training, validation and testing set, respectively. It is concluded that computerized analysis of medical images in combination with artificial intelligence can be used in clinical practice and may contribute to more efficient diagnosis

  4. Computer aided diagnosis based on medical image processing and artificial intelligence methods

    Energy Technology Data Exchange (ETDEWEB)

    Stoitsis, John [National Technical University of Athens, School of Electrical and Computer Engineering, Athens 157 71 (Greece)]. E-mail: stoitsis@biosim.ntua.gr; Valavanis, Ioannis [National Technical University of Athens, School of Electrical and Computer Engineering, Athens 157 71 (Greece); Mougiakakou, Stavroula G. [National Technical University of Athens, School of Electrical and Computer Engineering, Athens 157 71 (Greece); Golemati, Spyretta [National Technical University of Athens, School of Electrical and Computer Engineering, Athens 157 71 (Greece); Nikita, Alexandra [University of Athens, Medical School 152 28 Athens (Greece); Nikita, Konstantina S. [National Technical University of Athens, School of Electrical and Computer Engineering, Athens 157 71 (Greece)

    2006-12-20

    Advances in imaging technology and computer science have greatly enhanced interpretation of medical images, and contributed to early diagnosis. The typical architecture of a Computer Aided Diagnosis (CAD) system includes image pre-processing, definition of region(s) of interest, features extraction and selection, and classification. In this paper, the principles of CAD systems design and development are demonstrated by means of two examples. The first one focuses on the differentiation between symptomatic and asymptomatic carotid atheromatous plaques. For each plaque, a vector of texture and motion features was estimated, which was then reduced to the most robust ones by means of ANalysis of VAriance (ANOVA). Using fuzzy c-means, the features were then clustered into two classes. Clustering performances of 74%, 79%, and 84% were achieved for texture only, motion only, and combinations of texture and motion features, respectively. The second CAD system presented in this paper supports the diagnosis of focal liver lesions and is able to characterize liver tissue from Computed Tomography (CT) images as normal, hepatic cyst, hemangioma, and hepatocellular carcinoma. Five texture feature sets were extracted for each lesion, while a genetic algorithm based feature selection method was applied to identify the most robust features. The selected feature set was fed into an ensemble of neural network classifiers. The achieved classification performance was 100%, 93.75% and 90.63% in the training, validation and testing set, respectively. It is concluded that computerized analysis of medical images in combination with artificial intelligence can be used in clinical practice and may contribute to more efficient diagnosis.

  5. Aspect-Aided Dynamic Non-Negative Sparse Representation-Based Microwave Image Classification

    Directory of Open Access Journals (Sweden)

    Xinzheng Zhang

    2016-09-01

    Full Text Available Classification of target microwave images is an important application in much areas such as security, surveillance, etc. With respect to the task of microwave image classification, a recognition algorithm based on aspect-aided dynamic non-negative least square (ADNNLS sparse representation is proposed. Firstly, an aspect sector is determined, the center of which is the estimated aspect angle of the testing sample. The training samples in the aspect sector are divided into active atoms and inactive atoms by smooth self-representative learning. Secondly, for each testing sample, the corresponding active atoms are selected dynamically, thereby establishing dynamic dictionary. Thirdly, the testing sample is represented with ℓ 1 -regularized non-negative sparse representation under the corresponding dynamic dictionary. Finally, the class label of the testing sample is identified by use of the minimum reconstruction error. Verification of the proposed algorithm was conducted using the Moving and Stationary Target Acquisition and Recognition (MSTAR database which was acquired by synthetic aperture radar. Experiment results validated that the proposed approach was able to capture the local aspect characteristics of microwave images effectively, thereby improving the classification performance.

  6. Progress in computer aided diagnosis for medical images by information technology

    International Nuclear Information System (INIS)

    Mekada, Yoshito

    2007-01-01

    This paper describes the history, present state and future view of computer aided diagnosis (CAD) based on processing, recognition and visualization of chest and abdominal images. A primitive feature of CAD is seen as early as in 1960's for lung cancer detection. Contemporarily, advances in medical imaging by CT, MRI, single photon emission computed tomography (SPECT) and positron emission tomography (PET) in multi-dimensions require doctors to read those vast information, where necessity of CAD is evident. At present, simultaneous CAD for multi-organs and multi-diseases is in progress, the interaction between images and medical doctors is leading to developing a newer system like virtual endoscopy, objective evaluation of CAD systems is necessary for its approval to authorities like fluorescein diacetate (FDA) with use of receiver operating characteristics analysis, and thus cooperation of medical and technological fields is more and more important. In future, CAD should be responsible for individual difference and for change in disease state, usable simultaneously for time and space, more recognized of its importance by doctors, and more useful in participation to therapeutic practice. (R.T.)

  7. Computer-aided detection of basal cell carcinoma through blood content analysis in dermoscopy images

    Science.gov (United States)

    Kharazmi, Pegah; Kalia, Sunil; Lui, Harvey; Wang, Z. Jane; Lee, Tim K.

    2018-02-01

    Basal cell carcinoma (BCC) is the most common type of skin cancer, which is highly damaging to the skin at its advanced stages and causes huge costs on the healthcare system. However, most types of BCC are easily curable if detected at early stage. Due to limited access to dermatologists and expert physicians, non-invasive computer-aided diagnosis is a viable option for skin cancer screening. A clinical biomarker of cancerous tumors is increased vascularization and excess blood flow. In this paper, we present a computer-aided technique to differentiate cancerous skin tumors from benign lesions based on vascular characteristics of the lesions. Dermoscopy image of the lesion is first decomposed using independent component analysis of the RGB channels to derive melanin and hemoglobin maps. A novel set of clinically inspired features and ratiometric measurements are then extracted from each map to characterize the vascular properties and blood content of the lesion. The feature set is then fed into a random forest classifier. Over a dataset of 664 skin lesions, the proposed method achieved an area under ROC curve of 0.832 in a 10-fold cross validation for differentiating basal cell carcinomas from benign lesions.

  8. Improved quality of optical coherence tomography imaging of basal cell carcinomas using speckle reduction

    DEFF Research Database (Denmark)

    Mogensen, Mette; Jørgensen, Thomas Martini; Thrane, Lars

    2010-01-01

    suggests a method for improving OCT image quality for skin cancer imaging. EXPERIMENTAL DESIGN: OCT is an optical imaging method analogous to ultrasound. Two basal cell carcinomas (BCC) were imaged using an OCT speckle reduction technique (SR-OCT) based on repeated scanning by altering the distance between...

  9. [Testing method research for key performance indicator of imaging acousto-optic tunable filter (AOTF)].

    Science.gov (United States)

    Hu, Shan-Zhou; Chen, Fen-Fei; Zeng, Li-Bo; Wu, Qiong-Shui

    2013-01-01

    Imaging AOTF is an important optical filter component for new spectral imaging instruments developed in recent years. The principle of imaging AOTF component was demonstrated, and a set of testing methods for some key performances were studied, such as diffraction efficiency, wavelength shift with temperature, homogeneity in space for diffraction efficiency, imaging shift, etc.

  10. IMAGING WITH MULTIMODAL ADAPTIVE-OPTICS OPTICAL COHERENCE TOMOGRAPHY IN MULTIPLE EVANESCENT WHITE DOT SYNDROME: THE STRUCTURE AND FUNCTIONAL RELATIONSHIP.

    Science.gov (United States)

    Labriola, Leanne T; Legarreta, Andrew D; Legarreta, John E; Nadler, Zach; Gallagher, Denise; Hammer, Daniel X; Ferguson, R Daniel; Iftimia, Nicusor; Wollstein, Gadi; Schuman, Joel S

    2016-01-01

    To elucidate the location of pathological changes in multiple evanescent white dot syndrome (MEWDS) with the use of multimodal adaptive optics (AO) imaging. A 5-year observational case study of a 24-year-old female with recurrent MEWDS. Full examination included history, Snellen chart visual acuity, pupil assessment, intraocular pressures, slit lamp evaluation, dilated fundoscopic exam, imaging with Fourier-domain optical coherence tomography (FD-OCT), blue-light fundus autofluorescence (FAF), fundus photography, fluorescein angiography, and adaptive-optics optical coherence tomography. Three distinct acute episodes of MEWDS occurred during the period of follow-up. Fourier-domain optical coherence tomography and adaptive-optics imaging showed disturbance in the photoreceptor outer segments (PR OS) in the posterior pole with each flare. The degree of disturbance at the photoreceptor level corresponded to size and extent of the visual field changes. All findings were transient with delineation of the photoreceptor recovery from the outer edges of the lesion inward. Hyperautofluorescence was seen during acute flares. Increase in choroidal thickness did occur with each active flare but resolved. Although changes in the choroid and RPE can be observed in MEWDS, Fourier-domain optical coherence tomography, and multimodal adaptive optics imaging localized the visually significant changes seen in this disease at the level of the photoreceptors. These transient retinal changes specifically occur at the level of the inner segment ellipsoid and OS/RPE line. En face optical coherence tomography imaging provides a detailed, yet noninvasive method for following the convalescence of MEWDS and provides insight into the structural and functional relationship of this transient inflammatory retinal disease.

  11. Retinal Imaging of Infants on Spectral Domain Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Anand Vinekar

    2015-01-01

    Full Text Available Spectral domain coherence tomography (SD OCT has become an important tool in the management of pediatric retinal diseases. It is a noncontact imaging device that provides detailed assessment of the microanatomy and pathology of the infant retina with a short acquisition time allowing office examination without the requirement of anesthesia. Our understanding of the development and maturation of the infant fovea has been enhanced by SD OCT allowing an in vivo assessment that correlates with histopathology. This has helped us understand the critical correlation of foveal development with visual potential in the first year of life and beyond. In this review, we summarize the recent literature on the clinical applications of SD OCT in studying the pathoanatomy of the infant macula, its ability to detect subclinical features, and its correlation with disease and vision. Retinopathy of prematurity and macular edema have been discussed in detail. The review also summarizes the current status of SD OCT in other infant retinal conditions, imaging the optic nerve, the choroid, and the retinal nerve fibre in infants and children, and suggests future areas of research.

  12. MATLAB-aided teaching and learning in optics and photonics using the methods of computational photonics

    Science.gov (United States)

    Lin, Zhili; Li, Xiaoyan; Zhu, Daqing; Pu, Jixiong

    2017-08-01

    Due to the nature of light fields of laser waves and pulses as vector quantities with complex spatial distribution and temporal dependence, the optics and photonics courses have always been difficult to teach and learn without the support of graphical visualization, numerical simulations and hands-on experiments. One of the state-of-the-art method of computational photonics, the finite-difference time-domain(FDTD) method, is applied with MATLAB simulations to model typical teaching cases in optics and photonics courses. The obtained results with graphical visualization in the form of animated pictures allow students to more deeply understand the dynamic process of light interaction with classical optical structures. The discussed teaching methodology is aimed to enhance the teaching effectiveness of optics and photonics courses and arousing the students' learning interest.

  13. Optics System Design of Microwave Imaging Reflectometry for the EAST Tokamak

    International Nuclear Information System (INIS)

    Zhu Yilun; Zhao Zhenling; Tong Li; Chen Dongxu; Xie Jinlin; Liu Wandong

    2016-01-01

    A front-end optics system has been developed for the EAST microwave imaging reflectometry for 2D density fluctuation measurement. Via the transmitter optics system, a combination of eight transmitter beams with independent frequencies is employed to illuminate wide poloidal regions on eight distinct cutoff layers. The receiver optics collect the reflected wavefront and project them onto the vertical detector array with 12 antennas. Utilizing optimized Field Curvature adjustment lenses in the receiver optics, the front-end optics system provides a flexible and perfect matching between the image plane and a specified cutoff layer in the plasma, which ensures the correct data interpretation of density fluctuation measurement. (paper)

  14. A hybrid optical system for broadband imaging in guidance and control

    Science.gov (United States)

    Wu, Xiaofang; Jiang, Yuesong; Shen, Chunyan; Zhao, Yiming

    2006-11-01

    A binary optics method has been adopted to improve upon a conventional optical system in guidance and control, and a hybrid broadband imaging system that includes a binary surface is analyzed and evaluated by optical design software ZEMAX. The practical design shows that the introduction of binary optics can simplify the structure of the imaging system and reduce the size and weight of the broadband guidance and control system. Moreover, it can help to acquire images of radiation of different wavelengths from targets; hence it will result in improved overall performance of missiles in wars.

  15. Optical multiple-image encryption based on multiplane phase retrieval and interference

    International Nuclear Information System (INIS)

    Chen, Wen; Chen, Xudong

    2011-01-01

    In this paper, we propose a new method for optical multiple-image encryption based on multiplane phase retrieval and interference. An optical encoding system is developed in the Fresnel domain. A phase-only map is iteratively extracted based on a multiplane phase retrieval algorithm, and multiple plaintexts are simultaneously encrypted. Subsequently, the extracted phase-only map is further encrypted into two phase-only masks based on a non-iterative interference algorithm. During image decryption, the advantages and security of the proposed optical cryptosystem are analyzed. Numerical results are presented to demonstrate the validity of the proposed optical multiple-image encryption method

  16. Optical-based molecular imaging: contrast agents and potential medical applications

    International Nuclear Information System (INIS)

    Bremer, Christoph; Ntziachristos, Vasilis; Weissleder, Ralph

    2003-01-01

    Laser- and sensitive charge-coupled device technology together with advanced mathematical modelling of photon propagation in tissue has prompted the development of novel optical imaging technologies. Fast surface-weighted imaging modalities, such as fluorescence reflectance imaging (FRI) and 3D quantitative fluorescence-mediated tomography have now become available [1, 2]. These technical advances are paralleled by a rapid development of a whole range of new optical contrasting strategies, which are designed to generate molecular contrast within a living organism. The combination of both, technical advances of light detection and the refinement of optical contrast media, finally yields a new spectrum of tools for in vivo molecular diagnostics. Whereas the technical aspects of optical imaging are covered in more detail in a previous review article in ''European Radiology'' [3], this article focuses on new developments in optical contrasting strategies and design of optical contrast agents for in vivo diagnostics. (orig.)

  17. Computer-aided diagnosis in medical imaging: historical review, current status and future potential.

    Science.gov (United States)

    Doi, Kunio

    2007-01-01

    Computer-aided diagnosis (CAD) has become one of the major research subjects in medical imaging and diagnostic radiology. In this article, the motivation and philosophy for early development of CAD schemes are presented together with the current status and future potential of CAD in a PACS environment. With CAD, radiologists use the computer output as a "second opinion" and make the final decisions. CAD is a concept established by taking into account equally the roles of physicians and computers, whereas automated computer diagnosis is a concept based on computer algorithms only. With CAD, the performance by computers does not have to be comparable to or better than that by physicians, but needs to be complementary to that by physicians. In fact, a large number of CAD systems have been employed for assisting physicians in the early detection of breast cancers on mammograms. A CAD scheme that makes use of lateral chest images has the potential to improve the overall performance in the detection of lung nodules when combined with another CAD scheme for PA chest images. Because vertebral fractures can be detected reliably by computer on lateral chest radiographs, radiologists' accuracy in the detection of vertebral fractures would be improved by the use of CAD, and thus early diagnosis of osteoporosis would become possible. In MRA, a CAD system has been developed for assisting radiologists in the detection of intracranial aneurysms. On successive bone scan images, a CAD scheme for detection of interval changes has been developed by use of temporal subtraction images. In the future, many CAD schemes could be assembled as packages and implemented as a part of PACS. For example, the package for chest CAD may include the computerized detection of lung nodules, interstitial opacities, cardiomegaly, vertebral fractures, and interval changes in chest radiographs as well as the computerized classification of benign and malignant nodules and the differential diagnosis of

  18. Computer-aided classification of lung nodules on computed tomography images via deep learning technique

    Directory of Open Access Journals (Sweden)

    Hua KL

    2015-08-01

    Full Text Available Kai-Lung Hua,1 Che-Hao Hsu,1 Shintami Chusnul Hidayati,1 Wen-Huang Cheng,2 Yu-Jen Chen3 1Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology, 2Research Center for Information Technology Innovation, Academia Sinica, 3Department of Radiation Oncology, MacKay Memorial Hospital, Taipei, Taiwan Abstract: Lung cancer has a poor prognosis when not diagnosed early and unresectable lesions are present. The management of small lung nodules noted on computed tomography scan is controversial due to uncertain tumor characteristics. A conventional computer-aided diagnosis (CAD scheme requires several image processing and pattern recognition steps to accomplish a quantitative tumor differentiation result. In such an ad hoc image analysis pipeline, every step depends heavily on the performance of the previous step. Accordingly, tuning of classification performance in a conventional CAD scheme is very complicated and arduous. Deep learning techniques, on the other hand, have the intrinsic advantage of an automatic exploitation feature and tuning of performance in a seamless fashion. In this study, we attempted to simplify the image analysis pipeline of conventional CAD with deep learning techniques. Specifically, we introduced models of a deep belief network and a convolutional neural network in the context of nodule classification in computed tomography images. Two baseline methods with feature computing steps were implemented for comparison. The experimental results suggest that deep learning methods could achieve better discriminative results and hold promise in the CAD application domain. Keywords: nodule classification, deep learning, deep belief network, convolutional neural network

  19. Identification and red blood cell automated counting from blood smear images using computer-aided system.

    Science.gov (United States)

    Acharya, Vasundhara; Kumar, Preetham

    2018-03-01

    Red blood cell count plays a vital role in identifying the overall health of the patient. Hospitals use the hemocytometer to count the blood cells. Conventional method of placing the smear under microscope and counting the cells manually lead to erroneous results, and medical laboratory technicians are put under stress. A computer-aided system will help to attain precise results in less amount of time. This research work proposes an image-processing technique for counting the number of red blood cells. It aims to examine and process the blood smear image, in order to support the counting of red blood cells and identify the number of normal and abnormal cells in the image automatically. K-medoids algorithm which is robust to external noise is used to extract the WBCs from the image. Granulometric analysis is used to separate the red blood cells from the white blood cells. The red blood cells obtained are counted using the labeling algorithm and circular Hough transform. The radius range for the circle-drawing algorithm is estimated by computing the distance of the pixels from the boundary which automates the entire algorithm. A comparison is done between the counts obtained using the labeling algorithm and circular Hough transform. Results of the work showed that circular Hough transform was more accurate in counting the red blood cells than the labeling algorithm as it was successful in identifying even the overlapping cells. The work also intends to compare the results of cell count done using the proposed methodology and manual approach. The work is designed to address all the drawbacks of the previous research work. The research work can be extended to extract various texture and shape features of abnormal cells identified so that diseases like anemia of inflammation and chronic disease can be detected at the earliest.

  20. Computer-aided diagnostics of screening mammography using content-based image retrieval

    Science.gov (United States)

    Deserno, Thomas M.; Soiron, Michael; de Oliveira, Júlia E. E.; de A. Araújo, Arnaldo

    2012-03-01

    Breast cancer is one of the main causes of death among women in occidental countries. In the last years, screening mammography has been established worldwide for early detection of breast cancer, and computer-aided diagnostics (CAD) is being developed to assist physicians reading mammograms. A promising method for CAD is content-based image retrieval (CBIR). Recently, we have developed a classification scheme of suspicious tissue pattern based on the support vector machine (SVM). In this paper, we continue moving towards automatic CAD of screening mammography. The experiments are based on in total 10,509 radiographs that have been collected from different sources. From this, 3,375 images are provided with one and 430 radiographs with more than one chain code annotation of cancerous regions. In different experiments, this data is divided into 12 and 20 classes, distinguishing between four categories of tissue density, three categories of pathology and in the 20 class problem two categories of different types of lesions. Balancing the number of images in each class yields 233 and 45 images remaining in each of the 12 and 20 classes, respectively. Using a two-dimensional principal component analysis, features are extracted from small patches of 128 x 128 pixels and classified by means of a SVM. Overall, the accuracy of the raw classification was 61.6 % and 52.1 % for the 12 and the 20 class problem, respectively. The confusion matrices are assessed for detailed analysis. Furthermore, an implementation of a SVM-based CBIR system for CADx in screening mammography is presented. In conclusion, with a smarter patch extraction, the CBIR approach might reach precision rates that are helpful for the physicians. This, however, needs more comprehensive evaluation on clinical data.

  1. Glaucoma anterior chamber morphometry based on optical Scheimpflug images.

    Science.gov (United States)

    Alonso, Ruiz Simonato; Ambrósio Junior, Renato; Paranhos Junior, Augusto; Sakata, Lisandro Massanori; Ventura, Marcelo Palis

    2010-01-01

    To compare the performance of gonioscopy and noncontact morphometry with anterior chamber tomography (High Resolution Pentacam - HR) using optical Scheimpflug images in the evaluation of the anterior chamber angle (ACA). Transversal study. 112 eyes from 74 subjects evaluated at the Glaucoma Department, Fluminense Federal University, underwent gonioscopy and Pentacam HR. Using gonioscopy, the ACA was graded using the Shaffer Classification (SC) by a single experienced examiner masked to the Pentacam HR findings. Narrow angle was determined in eyes in which the posterior trabecular meshwork could not be seen in two or more quadrants on non-indentation gonioscopy (SC Grade 2 or less). Pentacam HR images of the nasal and temporal quadrants were evaluated by custom software to automatically obtain anterior chamber measurements, such as: anterior chamber angle (ACA), anterior chamber volume (ACV) and anterior chamber depth (ACD). Based on gonioscopy results, 74 (60.07%) eyes of patients classified as open-angle (SC 3 and 4) and 38 (33.93%) eyes of patients classified as narrow-angle (SC 1 and 2). Noncontact morphometry with Scheimpflug images revealed a mean ACA of 39.20 ± 5.31 degrees for open-angle and 21.18 ± 7.98 degrees for narrow-angle. The open-angle group showed significant greater ACV and ACD values when compared to narrow-angle group (ACV of 193 ± 36 mm³ vs. 90 ± 25 mm³, respectively, p<0.001; and ACD of 3,09 ± 0,42 mm vs. 1,55 ± 0,64 mm, respectively, p<0.0001.). In screening eyes with open-angle and narrow-angle with the Pentacam ACA of 20º (SC Grade 2) using the ROC curves, the analysis showed 52.6% of sensitivity and 100% of specificity. The Pentacam showed ability in detecting eyes at risk for angle closure analyzing ACV and ACD.

  2. Refinery evaluation of optical imaging to locate fugitive emissions.

    Science.gov (United States)

    Robinson, Donald R; Luke-Boone, Ronke; Aggarwal, Vineet; Harris, Buzz; Anderson, Eric; Ranum, David; Kulp, Thomas J; Armstrong, Karla; Sommers, Ricky; McRae, Thomas G; Ritter, Karin; Siegell, Jeffrey H; Van Pelt, Doug; Smylie, Mike

    2007-07-01

    Fugitive emissions account for approximately 50% of total hydrocarbon emissions from process plants. Federal and state regulations aiming at controlling these emissions require refineries and petrochemical plants in the United States to implement a Leak Detection and Repair Program (LDAR). The current regulatory work practice, U.S. Environment Protection Agency Method 21, requires designated components to be monitored individually at regular intervals. The annual costs of these LDAR programs in a typical refinery can exceed US$1,000,000. Previous studies have shown that a majority of controllable fugitive emissions come from a very small fraction of components. The Smart LDAR program aims to find cost-effective methods to monitor and reduce emissions from these large leakers. Optical gas imaging has been identified as one such technology that can help achieve this objective. This paper discusses a refinery evaluation of an instrument based on backscatter absorption gas imaging technology. This portable camera allows an operator to scan components more quickly and image gas leaks in real time. During the evaluation, the instrument was able to identify leaking components that were the source of 97% of the total mass emissions from leaks detected. More than 27,000 components were monitored. This was achieved in far less time than it would have taken using Method 21. In addition, the instrument was able to find leaks from components that are not required to be monitored by the current LDAR regulations. The technology principles and the parameters that affect instrument performance are also discussed in the paper.

  3. Characterizing Intraorbital Optic Nerve Changes on Diffusion Tensor Imaging in Thyroid Eye Disease Before Dysthyroid Optic Neuropathy.

    Science.gov (United States)

    Lee, Hwa; Lee, Young Hen; Suh, Sang-Il; Jeong, Eun-Kee; Baek, Sehyun; Seo, Hyung Suk

    The aim of this study was to determine whether the optic nerve is affected by thyroid eye disease (TED) before the development of dysthyroid optic neuropathy with diffusion-tensor imaging (DTI). Twenty TED patients and 20 controls were included. The mean, axial, and radial diffusivities and fractional anisotropy (FA) value were measured at the optic nerves in DTI. Extraocular muscle diameters were measured on computed tomography. The diffusivities and FA of the optic nerves were compared between TED and controls and between active and inactive stages of TED. The correlations between these DTI parameters and the clinical features were determined. The mean, axial, and radial diffusivities were lower in TED compared with the controls (P optic nerve before dysthyroid optic neuropathy in TED. The FA, in particular, reflected TED activity and severity.

  4. Imaging performance of annular apertures. VI - Limitations by optical surface deviations

    Science.gov (United States)

    Tschunko, Hubert F. A.

    1987-01-01

    The performance of optical systems is limited by imperfect optical surfaces that degrade the images below the level set by wave theoretical limits. The central irradiance functions are derived for slit and circular apertures with five distributions of wavefront errors and for a range of maximal wavefront deviations. For practical frequency of occurrence distributions of wavefront deviations, the point spread and the image energy integral functions are determined. Practical performances of optical systems are derived and performance limits discussed.

  5. Large-field-of-view imaging by multi-pupil adaptive optics.

    Science.gov (United States)

    Park, Jung-Hoon; Kong, Lingjie; Zhou, Yifeng; Cui, Meng

    2017-06-01

    Adaptive optics can correct for optical aberrations. We developed multi-pupil adaptive optics (MPAO), which enables simultaneous wavefront correction over a field of view of 450 × 450 μm 2 and expands the correction area to nine times that of conventional methods. MPAO's ability to perform spatially independent wavefront control further enables 3D nonplanar imaging. We applied MPAO to in vivo structural and functional imaging in the mouse brain.

  6. Image transport through a disordered optical fibre mediated by transverse Anderson localization

    Science.gov (United States)

    Karbasi, Salman; Frazier, Ryan J.; Koch, Karl W.; Hawkins, Thomas; Ballato, John; Mafi, Arash

    2014-02-01

    Transverse Anderson localization of light allows localized optical-beam-transport through a transversely disordered and longitudinally invariant medium. Its successful implementation in disordered optical fibres recently resulted in the propagation of localized beams of radii comparable to that of conventional optical fibres. Here we demonstrate optical image transport using transverse Anderson localization of light. The image transport quality obtained in the polymer disordered optical fibre is comparable to or better than some of the best commercially available multicore image fibres with less pixelation and higher contrast. It is argued that considerable improvement in image transport quality can be obtained in a disordered fibre made from a glass matrix with near wavelength-size randomly distributed air-holes with an air-hole fill-fraction of 50%. Our results open the way to device-level implementation of the transverse Anderson localization of light with potential applications in biological and medical imaging.

  7. Effect of multiple circular holes Fraunhofer diffraction for the infrared optical imaging

    Science.gov (United States)

    Lu, Chunlian; Lv, He; Cao, Yang; Cai, Zhisong; Tan, Xiaojun

    2014-11-01

    With the development of infrared optics, infrared optical imaging systems play an increasingly important role in modern optical imaging systems. Infrared optical imaging is used in industry, agriculture, medical, military and transportation. But in terms of infrared optical imaging systems which are exposed for a long time, some contaminations will affect the infrared optical imaging. When the contamination contaminate on the lens surface of the optical system, it would affect diffraction. The lens can be seen as complementary multiple circular holes screen happen Fraunhofer diffraction. According to Babinet principle, you can get the diffraction of the imaging system. Therefore, by studying the multiple circular holes Fraunhofer diffraction, conclusions can be drawn about the effect of infrared imaging. This paper mainly studies the effect of multiple circular holes Fraunhofer diffraction for the optical imaging. Firstly, we introduce the theory of Fraunhofer diffraction and Point Spread Function. Point Spread Function is a basic tool to evaluate the image quality of the optical system. Fraunhofer diffraction will affect Point Spread Function. Then, the results of multiple circular holes Fraunhofer diffraction are given for different hole size and hole spacing. We choose the hole size from 0.1mm to 1mm and hole spacing from 0.3mm to 0.8mm. The infrared wavebands of optical imaging are chosen from 1μm to 5μm. We use the MATLAB to simulate light intensity distribution of multiple circular holes Fraunhofer diffraction. Finally, three-dimensional diffraction maps of light intensity are given to contrast.

  8. Depth-resolved imaging of colon tumor using optical coherence tomography and fluorescence laminar optical tomography (Conference Presentation)

    Science.gov (United States)

    Tang, Qinggong; Frank, Aaron; Wang, Jianting; Chen, Chao-wei; Jin, Lily; Lin, Jon; Chan, Joanne M.; Chen, Yu

    2016-03-01

    Early detection of neoplastic changes remains a critical challenge in clinical cancer diagnosis and treatment. Many cancers arise from epithelial layers such as those of the gastrointestinal (GI) tract. Current standard endoscopic technology is unable to detect those subsurface lesions. Since cancer development is associated with both morphological and molecular alterations, imaging technologies that can quantitative image tissue's morphological and molecular biomarkers and assess the depth extent of a lesion in real time, without the need for tissue excision, would be a major advance in GI cancer diagnostics and therapy. In this research, we investigated the feasibility of multi-modal optical imaging including high-resolution optical coherence tomography (OCT) and depth-resolved high-sensitivity fluorescence laminar optical tomography (FLOT) for structural and molecular imaging. APC (adenomatous polyposis coli) mice model were imaged using OCT and FLOT and the correlated histopathological diagnosis was obtained. Quantitative structural (the scattering coefficient) and molecular imaging parameters (fluorescence intensity) from OCT and FLOT images were developed for multi-parametric analysis. This multi-modal imaging method has demonstrated the feasibility for more accurate diagnosis with 87.4% (87.3%) for sensitivity (specificity) which gives the most optimal diagnosis (the largest area under receiver operating characteristic (ROC) curve). This project results in a new non-invasive multi-modal imaging platform for improved GI cancer detection, which is expected to have a major impact on detection, diagnosis, and characterization of GI cancers, as well as a wide range of epithelial cancers.

  9. Resonant Optical Gradient Force Interaction for Nano-Imaging and-Spectroscopy

    Science.gov (United States)

    2016-07-19

    New J. Phys. 18 (2016) 053042 doi:10.1088/1367-2630/18/5/053042 PAPER Resonant optical gradient force interaction for nano-imaging and -spectroscopy...HonghuaUYang andMarkus BRaschke Department of Physics , Department of Chemistry, and JILA,University of Colorado, Boulder, CO80309,USA E-mail...honghua.yang@colorado.edu andmarkus.raschke@colorado.edu Keywords:nano spectroscopy, optical force, near-field optics Abstract The optical gradient force

  10. Molecular imaging needles: dual-modality optical coherence tomography and fluorescence imaging of labeled antibodies deep in tissue

    Science.gov (United States)

    Scolaro, Loretta; Lorenser, Dirk; Madore, Wendy-Julie; Kirk, Rodney W.; Kramer, Anne S.; Yeoh, George C.; Godbout, Nicolas; Sampson, David D.; Boudoux, Caroline; McLaughlin, Robert A.

    2015-01-01

    Molecular imaging using optical techniques provides insight into disease at the cellular level. In this paper, we report on a novel dual-modality probe capable of performing molecular imaging by combining simultaneous three-dimensional optical coherence tomography (OCT) and two-dimensional fluorescence imaging in a hypodermic needle. The probe, referred to as a molecular imaging (MI) needle, may be inserted tens of millimeters into tissue. The MI needle utilizes double-clad fiber to carry both imaging modalities, and is interfaced to a 1310-nm OCT system and a fluorescence imaging subsystem using an asymmetrical double-clad fiber coupler customized to achieve high fluorescence collection efficiency. We present, to the best of our knowledge, the first dual-modality OCT and fluorescence needle probe with sufficient sensitivity to image fluorescently labeled antibodies. Such probes enable high-resolution molecular imaging deep within tissue. PMID:26137379

  11. Direct optical imaging of nanoscale internal organization of polymer films

    Science.gov (United States)

    Suran, Swathi; Varma, Manoj

    2018-02-01

    Owing to its sensitivity and precise control at the nanoscale, polyelectrolytes have been immensely used to modify surfaces. Polyelectrolyte multilayers are generally water made and are easy to fabricate on any surface by the layer-by-layer (LbL) self-assembly process due to electrostatic interactions. Polyelectrolyte multilayers or PEMs can be assembled to form ultrathin membranes which can have potential applications in water filtration and desalination [1-3]. Hydration in PEMs is a consequence of both the bulk and surface phenomenon [4-7]. Bulk behavior of polymer membranes are well understood. Several techniques including reflectivity and contact angle measurements were used to measure the hydration in the bulk of polymer membranes [4, 8]. On the other hand their internal organization at the molecular level which can have a profound contribution in the transport mechanism, are not understood well. Previously, we engineered a technique, which we refer to as Bright-field Nanoscopy, which allows nanoscale optical imaging using local heterogeneities in a water-soluble germanium (Ge) thin film ( 25 nm thick) deposited on gold [8]. We use this technique to study the water transport in PEMs. It is understood that the surface charge and outer layers of the PEMs play a significant role in water transport through polymers [9-11]. This well-known `odd-even' effect arising on having different surface termination of the PEMs was optically observed with a spatial resolution unlike any other reported previously [12]. In this communication, we report that on increasing the etchant's concentration, one can control the lateral etching of the Ge film. This allowed the visualization of the nanoscale internal organization in the PEMs. Knowledge of the internal structure would allow one to engineer polymer membranes specific to applications such as drug delivering capsules, ion transport membranes and barriers etc. We also demonstrate a mathematical model involving a surface

  12. Multi-Sensor Fusion of Infrared and Electro-Optic Signals for High Resolution Night Images

    Directory of Open Access Journals (Sweden)

    Victor Lawrence

    2012-07-01

    Full Text Available Electro-optic (EO image sensors exhibit the properties of high resolution and low noise level at daytime, but they do not work in dark environments. Infrared (IR image sensors exhibit poor resolution and cannot separate objects with similar temperature. Therefore, we propose a novel framework of IR image enhancement based on the information (e.g., edge from EO images, which improves the resolution of IR images and helps us distinguish objects at night. Our framework superimposing/blending the edges of the EO image onto the corresponding transformed IR image improves their resolution. In this framework, we adopt the theoretical point spread function (PSF proposed by Hardie et al. for the IR image, which has the modulation transfer function (MTF of a uniform detector array and the incoherent optical transfer function (OTF of diffraction-limited optics. In addition, we design an inverse filter for the proposed PSF and use it for the IR image transformation. The framework requires four main steps: (1 inverse filter-based IR image transformation; (2 EO image edge detection; (3 registration; and (4 blending/superimposing of the obtained image pair. Simulation results show both blended and superimposed IR images, and demonstrate that blended IR images have better quality over the superimposed images. Additionally, based on the same steps, simulation result shows a blended IR image of better quality when only the original IR image is available.

  13. Use of Computer-Aided Tomography (CT) Imaging for Quantifying Coarse Roots, Rhizomes, Peat, and Particle Densities in Marsh Soils

    Science.gov (United States)

    Computer-aided Tomography (CT) imaging was utilized to quantify wet mass of coarse roots, rhizomes, and peat in cores collected from organic-rich (Jamaica Bay, NY) and mineral (North Inlet, SC) Spartina alterniflora soils. Calibration rods composed of materials with standard dens...

  14. Infrared laser transillumination CT imaging system using parallel fiber arrays and optical switches for finger joint imaging

    Science.gov (United States)

    Sasaki, Yoshiaki; Emori, Ryota; Inage, Hiroki; Goto, Masaki; Takahashi, Ryo; Yuasa, Tetsuya; Taniguchi, Hiroshi; Devaraj, Balasigamani; Akatsuka, Takao

    2004-05-01

    The heterodyne detection technique, on which the coherent detection imaging (CDI) method founds, can discriminate and select very weak, highly directional forward scattered, and coherence retaining photons that emerge from scattering media in spite of their complex and highly scattering nature. That property enables us to reconstruct tomographic images using the same reconstruction technique as that of X-Ray CT, i.e., the filtered backprojection method. Our group had so far developed a transillumination laser CT imaging method based on the CDI method in the visible and near-infrared regions and reconstruction from projections, and reported a variety of tomographic images both in vitro and in vivo of biological objects to demonstrate the effectiveness to biomedical use. Since the previous system was not optimized, it took several hours to obtain a single image. For a practical use, we developed a prototype CDI-based imaging system using parallel fiber array and optical switches to reduce the measurement time significantly. Here, we describe a prototype transillumination laser CT imaging system using fiber-optic based on optical heterodyne detection for early diagnosis of rheumatoid arthritis (RA), by demonstrating the tomographic imaging of acrylic phantom as well as the fundamental imaging properties. We expect that further refinements of the fiber-optic-based laser CT imaging system could lead to a novel and practical diagnostic tool for rheumatoid arthritis and other joint- and bone-related diseases in human finger.

  15. Computer Aided Analysis of TM-Multimode Planar Graded-index Optical Waveguides

    International Nuclear Information System (INIS)

    Ashry, M.; Nasr, A.S.; Abou El-Fadl, A.A.

    2000-01-01

    An algorithm is developed for analysis TM-Multimode Planar graded-index optical waveguides. A Modified Impedance Boundary Method of Moments (MIBMOM) for the analysis of planar graded-index optical waveguide structures is presented. The algorithm is used to calculate the dispersion characteristics and the field distribution of TM-multimode planar graded-index optical waveguides. The technique is based on Galerkin s procedure and the exact boundary condition at the interfaces between the graded index region and the step index cladding. Legendre polynomials are used as basis functions. The efficiency of this algorithm is examined with waveguides having various index profiles such as exponential, Gaussian and complementary error functions. The advantage of the MIBMOM is the complete solution of TM-multimode as presented which is very difficult by the other methods. With this algorithm a minimum number of basis functions to give accurate results is used. The obtained results show good agreement with the experimental results

  16. Monitoring bacteriolytic therapy of salmonella typhimurium with optical imaging system

    International Nuclear Information System (INIS)

    Kim, Sun A; Min, Jung Joon; Moon, Sung Min; Kim, Hyun Ju; Kim, Sung Mi; Song, Ho Cheon; Choy, Hyon E.; Bom, Hee Seung

    2005-01-01

    Systemically administrated Salmonella has been studied for targeting tumor and developed as an anticancer agent. In Salmonella, because msbB gene plays role in the terminal myristoylation of lipid A and induces tumor necrosis factor a (TNF-a) -mediated septic shock, Salmonella msbB mutant strain is safe and useful for tumor-targeting therapy. Here we report that Salmonella msbB mutant strain induce onco lysis after intravenous injection in tumor bearing mice. The CT26 mouse colon cancer cells were stably transfected with firefly luciferase gene and subcutaneously implantated in Balb/C mice. After establishing subcutaneous tumor mass, we intravenously injected 1x108 cfu Salmonella msbB mutant strain or MG1655 E coli strain. Not only tumor size but also total photon flux from the tumor mass were monitored. everyday and compared among experimental groups (No treatment, Salmonella treatment, E. coli MG1655 treatment group). After intraperitoneal injection of D-Iuciferin (3 mg/animal), in vivo optical imaging for firefly luciferase was performed using cooled CCD camera. Imaging signal from Salmonella injected group were significantly lower than that of no treatment or E. coli treatment group on day 2 after injection. On day 4 after injection, imaging signal of salmonella-injected group was 43.8 or 20.7 times lower than that of no treatment or E. coli treatment group, respectively (no treatment: 2.78E+07 p/s/cm 2 /sr, Salmonella treatment: 6.35E+05 p/s/cm 2 /sr, E. coli treatment: 1.29E+07 p/s/cm 2 /sr, P<0.05). However. when we injected E. coli MG1655 into tumor bearing mice, the intensity of imaging signal was not different from no treatment group. These findings suggest that Salmonella msbB mutant strain retains its tumor-targeting properties and have therapeutical effect. Bioluminescent tumor bearing animal model was useful for assessing tumor viability after bacteriolytic therapy using Salmonella

  17. Optical imaging beyond the diffraction limit by SNEM: Effects of AFM tip modifications with thiol monolayers on imaging quality

    NARCIS (Netherlands)

    Cumurcu, Aysegul; Diaz, J.; Lindsay, I.D.; de Beer, Sissi; Duvigneau, Joost; Schön, Peter Manfred; Vancso, Gyula J.

    2015-01-01

    Tip-enhanced nanoscale optical imaging techniques such as apertureless scanning near-field optical microscopy (a-SNOM) and scanning near-field ellipsometric microscopy (SNEM) applications can suffer from a steady degradation in performance due to adhesion of atmospheric contaminants to the metal

  18. Review of near-field optics and superlenses for sub-diffraction-limited nano-imaging

    Directory of Open Access Journals (Sweden)

    Wyatt Adams

    2016-10-01

    Full Text Available Near-field optics and superlenses for imaging beyond Abbe’s diffraction limit are reviewed. A comprehensive and contemporary background is given on scanning near-field microscopy and superlensing. Attention is brought to recent research leveraging scanning near-field optical microscopy with superlenses for new nano-imaging capabilities. Future research directions are explored for realizing the goal of low-cost and high-performance sub-diffraction-limited imaging systems.

  19. Optical design of an optical coherence tomography and multispectral fluorescence imaging endoscope to detect early stage ovarian cancer

    Science.gov (United States)

    Tate, Tyler; Keenan, Molly; Swan, Elizabeth; Black, John; Utzinger, Urs; Barton, Jennifer

    2014-12-01

    The five year survival rate for ovarian cancer is over 90% if early detection occurs, yet no effective early screening method exists. We have designed and are constructing a dual modality Optical Coherence Tomography (OCT) and Multispectral Fluorescence Imaging (MFI) endoscope to optically screen the Fallopian tube and ovary for early stage cancer. The endoscope reaches the ovary via the natural pathway of the vagina, cervix, uterus and Fallopian tube. In order to navigate the Fallopian tube the endoscope must have an outer diameter of 600 μm, be highly flexible, steerable, tracking and nonperforating. The imaging systems consists of six optical subsystems, two from OCT and four from MFI. The optical subsystems have independent and interrelated design criteria. The endoscope will be tested on realistic tissue models and ex vivo tissue to prove feasibility of future human trials. Ultimately the project aims to provide women the first effective ovarian cancer screening technique.

  20. Frequency Domain Training-Aided Channel Estimation and Equalization in Time-Varying Optical Transmission Systems

    DEFF Research Database (Denmark)

    Pittalà, Fabio; Msallem, Majdi; Hauske, Fabian N.

    2012-01-01

    We propose a non-weighted feed-forward equalization method with filter update by averaging channel estimations based on short CAZAC sequences. Three averaging methods are presented and tested by simulations in a time-varying 2×2 MIMO optical system....

  1. Optical Imaging and Microscopy Techniques and Advanced Systems

    CERN Document Server

    Török, Peter

    2007-01-01

    This text on contemporary optical systems is intended for optical researchers and engineers, graduate students and optical microscopists in the biological and biomedical sciences. This second edition contains two completely new chapters. In addition most of the chapters from the first edition have been revised and updated. The book consists of three parts: The first discusses high-aperture optical systems, which form the backbone of optical microscopes. An example is a chapter new in the second edition on the emerging field of high numerical aperture diffractive lenses which seems to have particular promise in improving the correction of lenses. In this part particular attention is paid to optical data storage. The second part is on the use of non-linear optical techniques, including nonlinear optical excitation (total internal reflection fluorescence, second and third harmonic generation and two photon microscopy) and non-linear spectroscopy (CARS). The final part of the book presents miscellaneous technique...

  2. Quantitative functional optical imaging of the human skin using multi-spectral imaging

    International Nuclear Information System (INIS)

    Kainerstorfer, J. M.

    2010-01-01

    Light tissue interactions can be described by the physical principles of absorption and scattering. Based on those parameters, different tissue types and analytes can be distinguished. Extracting blood volume and oxygenation is of particular interest in clinical routines for tumor diagnostics and treatment follow up, since they are parameters of angiogenic processes. The quantification of those analytes in tissue can be done by physical modeling of light tissue interaction. The physical model used here is the random walk theory. However, for quantification and clinical usefulness, one has to account for multiple challenges. First, one must consider the effect of topology of the sample on measured physical parameters. Second, diffusion of light inside the tissue is dependent on the structure of the sample imaged. Thus, the structural conformation has to be taken into account. Third, clinical translation of imaging modalities is often hindered due to the complicated post-processing of data, not providing results in real-time. In this thesis, two imaging modalities are being utilized, where the first one, diffuse multi-spectral imaging, is based on absorption contrast and spectral characteristics and the second one, Optical Coherence Tomography (OCT), is based on scattering changes within the tissue. Multi-spectral imaging can provide spatial distributions of blood volume and blood oxygenation and OCT yields 3D structural images with micrometer resolution. In order to address the challenges mentioned above, a curvature correction algorithm for taking the topology into account was developed. Without taking curvature of the object into account, reconstruction of optical properties is not accurate. The method developed removes this artifact and recovers the underlying data, without the necessity of measuring the object's shape. The next step was to recover blood volume and oxygenation values in real time. Principal Component Analysis (PCA) on multi spectral images is

  3. Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics.

    Science.gov (United States)

    Kocaoglu, Omer P; Cense, Barry; Jonnal, Ravi S; Wang, Qiang; Lee, Sangyeol; Gao, Weihua; Miller, Donald T

    2011-08-15

    Early detection of axonal tissue loss in retinal nerve fiber layer (RNFL) is critical for effective treatment and management of diseases such as glaucoma. This study aims to evaluate the capability of ultrahigh-resolution optical coherence tomography with adaptive optics (UHR-AO-OCT) for imaging the RNFL axonal bundles (RNFBs) with 3×3×3μm(3) resolution in the eye. We used a research-grade UHR-AO-OCT system to acquire 3°×3° volumes in four normal subjects and one subject with an arcuate retinal nerve fiber layer defect (n=5; 29-62years). Cross section (B-scans) and en face (C-scan) slices extracted from the volumes were used to assess visibility and size distribution of individual RNFBs. In one subject, we reimaged the same RNFBs twice over a 7month interval and compared bundle width and thickness between the two imaging sessions. Lastly we compared images of an arcuate RNFL defect acquired with UHR-AO-OCT and commercial OCT (Heidelberg Spectralis). Individual RNFBs were distinguishable in all subjects at 3° retinal eccentricity in both cross-sectional and en face views (width: 30-50μm, thickness: 10-15μm). At 6° retinal eccentricity, RNFBs were distinguishable in three of the five subjects in both views (width: 30-45μm, thickness: 20-40μm). Width and thickness RNFB measurements taken 7months apart were strongly correlated (p<0.0005). Mean difference and standard deviation of the differences between the two measurement sessions were -0.1±4.0μm (width) and 0.3±1.5μm (thickness). UHR-AO-OCT outperformed commercial OCT in terms of clarity of the microscopic retina. To our knowledge, these are the first measurements of RNFB cross section reported in the living human eye. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Use of an optical trap for study of host-pathogen interactions for dynamic live cell imaging.

    Science.gov (United States)

    Tam, Jenny M; Castro, Carlos E; Heath, Robert J W; Mansour, Michael K; Cardenas, Michael L; Xavier, Ramnik J; Lang, Matthew J; Vyas, Jatin M

    2011-07-28

    Dynamic live cell imaging allows direct visualization of real-time interactions between cells of the immune system(1, 2); however, the lack of spatial and temporal control between the phagocytic cell and microbe has rendered focused observations into the initial interactions of host response to pathogens difficult. Historically, intercellular contact events such as phagocytosis(3) have been imaged by mixing two cell types, and then continuously scanning the field-of-view to find serendipitous intercellular contacts at the appropriate stage of interaction. The stochastic nature of these events renders this process tedious, and it is difficult to observe early or fleeting events in cell-cell contact by this approach. This method requires finding cell pairs that are on the verge of contact, and observing them until they consummate their contact, or do not. To address these limitations, we use optical trapping as a non-invasive, non-destructive, but fast and effective method to position cells in culture. Optical traps, or optical tweezers, are increasingly utilized in biological research to capture and physically manipulate cells and other micron-sized particles in three dimensions(4). Radiation pressure was first observed and applied to optical tweezer systems in 1970(5, 6), and was first used to control biological specimens in 1987(7). Since then, optical tweezers have matured into a technology to probe a variety of biological phenomena(8-13). We describe a method(14) that advances live cell imaging by integrating an optical trap with spinning disk confocal microscopy with temperature and humidity control to provide exquisite spatial and temporal control of pathogenic organisms in a physiological environment to facilitate interactions with host cells, as determined by the operator. Live, pathogenic organisms like Candida albicans and Aspergillus fumigatus, which can cause potentially lethal, invasive infections in immunocompromised individuals(15, 16) (e.g. AIDS

  5. Optical cryptography topology based on a three-dimensional particle-like distribution and diffractive imaging.

    Science.gov (United States)

    Chen, Wen; Chen, Xudong

    2011-05-09

    In recent years, coherent diffractive imaging has been considered as a promising alternative for information retrieval instead of conventional interference methods. Coherent diffractive imaging using the X-ray light source has opened up a new research perspective for the measurement of non-crystalline and biological specimens, and can achieve unprecedentedly high resolutions. In this paper, we show how a three-dimensional (3D) particle-like distribution and coherent diffractive imaging can be applied for a study of optical cryptography. An optical multiple-random-phase-mask encoding approach is used, and the plaintext is considered as a series of particles distributed in a 3D space. A topology concept is also introduced into the proposed optical cryptosystem. During image decryption, a retrieval algorithm is developed to extract the plaintext from the ciphertexts. In addition, security and advantages of the proposed optical cryptography topology are also analyzed. © 2011 Optical Society of America

  6. Fast localization of optic disc and fovea in retinal images for eye disease screening

    Science.gov (United States)

    Yu, H.; Barriga, S.; Agurto, C.; Echegaray, S.; Pattichis, M.; Zamora, G.; Bauman, W.; Soliz, P.

    2011-03-01

    Optic disc (OD) and fovea locations are two important anatomical landmarks in automated analysis of retinal disease in color fundus photographs. This paper presents a new, fast, fully automatic optic disc and fovea localization algorithm developed for diabetic retinopathy (DR) screening. The optic disc localization methodology comprises of two steps. First, the OD location is identified using template matching and directional matched filter. To reduce false positives due to bright areas of pathology, we exploit vessel characteristics inside the optic disc. The location of the fovea is estimated as the point of lowest matched filter response within a search area determined by the optic disc location. Second, optic disc segmentation is performed. Based on the detected optic disc location, a fast hybrid level-set algorithm which combines the region information and edge gradient to drive the curve evolution is used to segment the optic disc boundary. Extensive evaluation was performed on 1200 images (Messidor) composed of 540 images of healthy retinas, 431 images with DR but no risk of macular edema (ME), and 229 images with DR and risk of ME. The OD location methodology obtained 98.3% success rate, while fovea location achieved 95% success rate. The average mean absolute distance (MAD) between the OD segmentation algorithm and "gold standard" is 10.5% of estimated OD radius. Qualitatively, 97% of the images achieved Excellent to Fair performance for OD segmentation. The segmentation algorithm performs well even on blurred images.

  7. Estimation of free acidity in some hydrolysable metal ions present in reprocessing streams by fiber optic aided spectrophotometry

    International Nuclear Information System (INIS)

    Ganesh, S.; Velavendan, P.; Pandey, N.K.; Kamachi Mudali, U.; Natarajan, R.

    2014-01-01

    A fiber optic aided spectrophotometric technique has been developed for the determination of free acidity in nuclear fuel reprocessing streams. In this method, nitric acid forms yellow colour complex with chrome azurol s. The system obeys Lambert-Beer's law at 542 nm in the range of acidity 4-14 M. The molar absorption coefficient (ε) and Sandell's sensitivity (S) of complex are 5.23 × 10 3 L.mol -1 .cm -1 and 1.91 × 10 -4 µg/cm 2 respectively. Relative standard deviation is less than 1 % and correlation coefficient is 0.999. Results of the present method are in good agreement with those obtained by the standard procedure. (author)

  8. Benefits of optical coherence tomography for imaging of skin diseases

    Directory of Open Access Journals (Sweden)

    Utz S.R.

    2015-09-01

    Full Text Available Aim: working out the methods of visualization of information obtained during optical coherent tomography in normal skin and in series of inflammatory disorders. Materials and Methods. OCS1300SS (made in Thorlabs, USA was used in which the source of emission of radiation was a super-luminiscent diode with mean wavelength of 1325 nm. 12 patients with different skin conditions and 5 virtually healthy volunteers were examined with ОСТ procedure in OPD and IPD settings. High resolution USG numerical system DUB (TPM GmbH, Germany was used for comparative USG assessment. Results. ОСТ demonstrated considerably more detailed picture of the objects scanned compared to USG investigation. Image obtained with the help of ОСТ contains vital information about sizes of macro-morphological elements, status of vascular elements and their density in different depths of the skin. Conclusion. Additional results obtained from ОСТ of the skin lesions in plane section improves attraction for ОСТ in practical dermatology.

  9. Real time neutron reflectometry using neutron optical imaging

    International Nuclear Information System (INIS)

    Smith, Gregory S.; Majewski, Jaroslaw

    2001-01-01

    We will describe recent improvements to the SPEAR reflectometer at the Manuel Lujan Jr. Neutron Scattering Center at Los Alamos. One of the changes consists of wider convergent, incident-beam, collimation to take advantage of optical imaging for specular scattering. In addition, the instrument now views a partially coupled liquid hydrogen moderator as opposed to the decoupled moderator that was previous in-place. While the wavelength distribution is poorer, it matches the time (wavelength) resolution of the reflectometer more closely with the angular resolution. Since the integrated intensity of the partially coupled moderator is higher than the decoupled moderator, we show a similar gain in incident beam flux on the sample without loss of the ability to separate fringes. The increases in intensity from the moderator gain and the improved collimation combine to allow us to measure reflectivities with good statistics down to 10 -4 in a matter of minutes and reflectivities of 10 -6 in an hour. Examples of measurements showing the gain in data accumulation rates are presented. (author)

  10. Automatic segmentation of the choroid in enhanced depth imaging optical coherence tomography images.

    Science.gov (United States)

    Tian, Jing; Marziliano, Pina; Baskaran, Mani; Tun, Tin Aung; Aung, Tin

    2013-03-01

    Enhanced Depth Imaging (EDI) optical coherence tomography (OCT) provides high-definition cross-sectional images of the choroid in vivo, and hence is used in many clinical studies. However, the quantification of the choroid depends on the manual labelings of two boundaries, Bruch's membrane and the choroidal-scleral interface. This labeling process is tedious and subjective of inter-observer differences, hence, automatic segmentation of the choroid layer is highly desirable. In this paper, we present a fast and accurate algorithm that could segment the choroid automatically. Bruch's membrane is detected by searching the pixel with the biggest gradient value above the retinal pigment epithelium (RPE) and the choroidal-scleral interface is delineated by finding the shortest path of the graph formed by valley pixels using Dijkstra's algorithm. The experiments comparing automatic segmentation results with the manual labelings are conducted on 45 EDI-OCT images and the average of Dice's Coefficient is 90.5%, which shows good consistency of the algorithm with the manual labelings. The processing time for each image is about 1.25 seconds.

  11. Adaptive optics fundus images of cone photoreceptors in the macula of patients with retinitis pigmentosa

    Directory of Open Access Journals (Sweden)

    Tojo N

    2013-01-01

    Full Text Available Naoki Tojo, Tomoko Nakamura, Chiharu Fuchizawa, Toshihiko Oiwake, Atsushi HayashiDepartment of Ophthalmology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, JapanBackground: The purpose of this study was to examine cone photoreceptors in the macula of patients with retinitis pigmentosa using an adaptive optics fundus camera and to investigate any correlations between cone photoreceptor density and findings on optical coherence tomography and fundus autofluorescence.Methods: We examined two patients with typical retinitis pigmentosa who underwent ophthalmological examination, including measurement of visual acuity, and gathering of electroretinographic, optical coherence tomographic, fundus autofluorescent, and adaptive optics fundus images. The cone photoreceptors in the adaptive optics images of the two patients with retinitis pigmentosa and five healthy subjects were analyzed.Results: An abnormal parafoveal ring of high-density fundus autofluorescence was observed in the macula in both patients. The border of the ring corresponded to the border of the external limiting membrane and the inner segment and outer segment line in the optical coherence tomographic images. Cone photoreceptors at the abnormal parafoveal ring were blurred and decreased in the adaptive optics images. The blurred area corresponded to the abnormal parafoveal ring in the fundus autofluorescence images. Cone densities were low at the blurred areas and at the nasal and temporal retina along a line from the fovea compared with those of healthy controls. The results for cone spacing and Voronoi domains in the macula corresponded with those for the cone densities.Conclusion: Cone densities were heavily decreased in the macula, especially at the parafoveal ring on high-density fundus autofluorescence in both patients with retinitis pigmentosa. Adaptive optics images enabled us to observe in vivo changes in the cone photoreceptors of

  12. Needs assessment for next generation computer-aided mammography reference image databases and evaluation studies.

    Science.gov (United States)

    Horsch, Alexander; Hapfelmeier, Alexander; Elter, Matthias

    2011-11-01

    Breast cancer is globally a major threat for women's health. Screening and adequate follow-up can significantly reduce the mortality from breast cancer. Human second reading of screening mammograms can increase breast cancer detection rates, whereas this has not been proven for current computer-aided detection systems as "second reader". Critical factors include the detection accuracy of the systems and the screening experience and training of the radiologist with the system. When assessing the performance of systems and system components, the choice of evaluation methods is particularly critical. Core assets herein are reference image databases and statistical methods. We have analyzed characteristics and usage of the currently largest publicly available mammography database, the Digital Database for Screening Mammography (DDSM) from the University of South Florida, in literature indexed in Medline, IEEE Xplore, SpringerLink, and SPIE, with respect to type of computer-aided diagnosis (CAD) (detection, CADe, or diagnostics, CADx), selection of database subsets, choice of evaluation method, and quality of descriptions. 59 publications presenting 106 evaluation studies met our selection criteria. In 54 studies (50.9%), the selection of test items (cases, images, regions of interest) extracted from the DDSM was not reproducible. Only 2 CADx studies, not any CADe studies, used the entire DDSM. The number of test items varies from 100 to 6000. Different statistical evaluation methods are chosen. Most common are train/test (34.9% of the studies), leave-one-out (23.6%), and N-fold cross-validation (18.9%). Database-related terminology tends to be imprecise or ambiguous, especially regarding the term "case". Overall, both the use of the DDSM as data source for evaluation of mammography CAD systems, and the application of statistical evaluation methods were found highly diverse. Results reported from different studies are therefore hardly comparable. Drawbacks of the DDSM

  13. Computer- Aided diagnosis system for the evaluation of chronic obstructive pulmonary disease on CT Images

    Directory of Open Access Journals (Sweden)

    Parsa Hosseini M

    2011-03-01

    Full Text Available "n Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;} Background: Chronic Obstructive Pulmonary Disease (COPD is one of the most prevalent pulmonary diseases. Use of an automatic system for the detection and diagnosis of the disease will be beneficial to the patients' treatment decision-making process. In this paper, we propose a new approach for the Computer Aided Diagnosis (CAD of the disease and determination of its severity axial CT scan images."n"nMethods: In this study, 24 lung CT scans in full inspiratory and expiratory states were performed. Variations in the normalized pattern of the lungs' external parenchyma were exploited as a feature for COPD diagnosis. Subsequently, a Bayesian classifier was used to classify variations into two normal and abnormal patterns for the discrimination of patients and healthy individuals. Finally, the accuracy of the classification was assessed statistically. "n"nResults: With the proposed method, the lungs parenchymal elasticity and air-trapping were determined quantitatively. The more this feature tended to zero, the more severe air-trapping and obstructive pulmonary disease is. By analyzing CT images in the healthy and patient groups, we calculated the hard threshold for the diagnosis of the disease. Clinical results

  14. Neural network-based feature point descriptors for registration of optical and SAR images

    Science.gov (United States)

    Abulkhanov, Dmitry; Konovalenko, Ivan; Nikolaev, Dmitry; Savchik, Alexey; Shvets, Evgeny; Sidorchuk, Dmitry

    2018-04-01

    Registration of images of different nature is an important technique used in image fusion, change detection, efficient information representation and other problems of computer vision. Solving this task using feature-based approaches is usually more complex than registration of several optical images because traditional feature descriptors (SIFT, SURF, etc.) perform poorly when images have different nature. In this paper we consider the problem of registration of SAR and optical images. We train neural network to build feature point descriptors and use RANSAC algorithm to align found matches. Experimental results are presented that confirm the method's effectiveness.

  15. Role of Fluorine-18-Fluorodeoxyglucose in the Work-up of Febrile AIDS Patients. Experience with Dual Head Coincidence Imaging.

    Science.gov (United States)

    Santiago, Jonas F.; Jana, Suman; Gilbert, Holly M.; Salem, Shahenda; Bellman, Paul Curtis; Hsu, Ricky K.S.; Naddaf, Sleiman; Abdel-Dayem, Hussein M.

    1999-11-01

    OBJECTIVE AND METHODS: This study was undertaken to find the role of fluorine-18-fluorodeoxyglucose (F18-FDG) in the diagnostic work-up of febrile Acquired Immune Deficiency Syndrome (AIDS) patients. Forty-seven (42 male and 5 female; mean age = 40.3 years) febrile patients with AIDS underwent imaging with F18-FDG by Dual Head Coincidence Imaging (DHCI). Findings were correlated with other imaging modalities.RESULTS: Our data show good sensitivity for scanning with F18-FDG by DHCI in determining the extent of Castleman's disease, lymphoma, Kaposi's sarcoma (KS), adenocarcinoma, and germ cell carcinoma. Various opportunistic infections also manifest with increased F18-FDG uptake.CONCLUSION: Total-body imaging can be done with F18-FDG with better resolution and a shorter procedure time compared to imaging with Gallium-67 (Ga-67). Furthermore, F18-FDG is more sensitive than Ga-67 for evaluating extent of involvement in various pathologies affecting AIDS patients. The new technology of DHCI is a good alternative for hospitals with no dedicated positron emission tomography (PET) scanner.

  16. Spectrum of imaging appearances of intracranial cryptococcal infection in HIV/AIDS patients in the anti-retroviral therapy era

    International Nuclear Information System (INIS)

    Offiah, Curtis E.; Naseer, Aisha

    2016-01-01

    Cryptococcus neoformans infection is the most common fungal infection of the central nervous system (CNS) in advanced human immunodeficiency virus (HIV) and acquired immunodeficiency syndrome (AIDS) patients, but remains a relatively uncommon CNS infection in both the immunocompromised and immunocompetent patient population, rendering it a somewhat elusive and frequently overlooked diagnosis. The morbidity and mortality associated with CNS cryptococcal infection can be significantly reduced by early recognition of the imaging appearances by the radiologist in order to focus and expedite clinical management and treatment. The emergence and evolution of anti-retroviral therapy have also impacted significantly on the imaging appearances, morbidity, and mortality of this neuro-infection. The constellation of varied imaging appearances associated with cryptococcal CNS infection in the HIV and AIDS population in the era of highly active anti-retroviral therapy (HAART) will be presented in this review.

  17. Ultrafast gated imaging of laser produced plasmas using the optical Kerr effect

    International Nuclear Information System (INIS)

    Symes, D. R.; Wegner, U.; Ahlswede, H.-C.; Streeter, M. J. V.; Gallegos, P. L.; Divall, E. J.; Rajeev, P. P.; Neely, D.; Smith, R. A.

    2010-01-01

    Optical imaging is a versatile diagnostic for investigations of plasmas generated under intense laser irradiation. Electro-optic gating techniques operating on the >100 ps timescale are commonly used to reduce the amount of light detected from self-emission of hot plasma or improve the temporal resolution of the detector. The use of an optical Kerr gate enables a superior dynamic range and temporal resolution compared to electronically gated devices. The application of this method for enhanced imaging of laser produced plasmas with gate time ∼100 fs is demonstrated, and the possibility to produce a sub-10 fs, high dynamic range 'all optical' streak camera is discussed.

  18. A Backward Pyramid Oriented Optical Flow Field Computing Method for Aerial Image

    Directory of Open Access Journals (Sweden)

    LI Jiatian

    2016-09-01

    Full Text Available Aerial image optical flow field is the foundation for detecting moving objects at low altitude and obtaining change information. In general,the image pyramid structure is embedded in numerical procedure in order to enhance the convergence globally. However,more often than not,the pyramid structure is constructed using a bottom-up approach progressively,ignoring the geometry imaging process.In particular,when the ground objects moving it will lead to miss optical flow or the optical flow too small that could hardly sustain the subsequent modeling and analyzing issues. So a backward pyramid structure is proposed on the foundation of top-level standard image. Firstly,down sampled factors of top-level image are calculated quantitatively through central projection,which making the optical flow in top-level image represent the shifting threshold of the set ground target. Secondly,combining top-level image with its original,the down sampled factors in middle layer are confirmed in a constant proportion way. Finally,the image of middle layer is achieved by Gaussian smoothing and image interpolation,and meanwhile the pyramid is formed. The comparative experiments and analysis illustrate that the backward pyramid can calculate the optic flow field in aerial image accurately,and it has advantages in restraining small ground displacement.

  19. Size of the intracranial optic nerve and optic tract in neonates at term-equivalent age at magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Jun; Mori, Kouichi [Tsuchiura Kyodo General Hospital, Department of Radiology, Tsuchiura, Ibaraki (Japan); Imamura, Masatoshi [Tsuchiura Kyodo General Hospital, Department of Neonatology, Tsuchiura, Ibaraki (Japan); Mizushima, Yukiko [Tsuchiura Kyodo General Hospital, Department of Ophthalmology, Tsuchiura, Ibaraki (Japan); Tateishi, Ukihide [Tokyo Medical and Dental University, Departments of Diagnostic Radiology and Nuclear Medicine, Tokyo (Japan)

    2016-04-15

    The expected MRI-based dimensions of the intracranial optic nerve and optic tract in neonates are unknown. To evaluate the sizes of the intracranial optic nerve and optic tract in neonates at term-equivalent age using MRI. We retrospectively analyzed brain MRI examinations in 62 infants (28 boys) without intracranial abnormalities. The images were obtained in infants at term-equivalent age with a 1.5-tesla MRI scanner. We measured the widths and heights of the intracranial optic nerve and optic tract and calculated the cross-sectional areas using the formula for an ellipse. The means ± standard deviation of the width, height and cross-sectional area of the intracranial optic nerve were 2.7 ± 0.2 mm, 1.7 ± 0.2 mm and 3.5 ± 0.5 mm{sup 2}, respectively. The width, height and cross-sectional area of the optic tract were 1.5 ± 0.1 mm, 1.6 ± 0.1 mm and 2.0 ± 0.2 mm{sup 2}, respectively. Using univariate and multivariate analyses, we found that postmenstrual age showed independent intermediate positive correlations with the width (r = 0.48, P < 0.01) and cross-sectional area (r = 0.40, P < 0.01) of the intracranial optic nerve. The lower bounds of the 95% prediction intervals for the width and cross-sectional area of the intracranial optic nerve were 0.07 x (postmenstrual age in weeks) - 0.46 mm, and 0.17 x (postmenstrual age in weeks) - 4.0 mm{sup 2}, respectively. We identified the sizes of the intracranial optic nerve and optic tract in neonates at term-equivalent age. The postmenstrual age at MRI independently positively correlated with the sizes. (orig.)

  20. Image-processing techniques used in the computer-aided detection of radiographic lesions in anatomic background

    International Nuclear Information System (INIS)

    Giger, M.L.; Doi, K.; MacMahon, H.; Yin, F.F.

    1988-01-01

    The authors developed feature-extraction techniques for use in the computer-aided detection of pulmonary nodules in digital chest images. Use of such a computer-aided detection scheme, which would alert radiologists to the locations of suspected lung nodules, is expected to reduce the number of false-negative diagnoses. False-negative diagnoses (i.e., misses) are a current problem in chest radiology with ''miss-rates'' as high as 30%. This may be due to the camouflaging effect of surrounding anatomic background on the nodule, or to the subjective and varying decision criteria used by radiologists

  1. Method used to test the imaging consistency of binocular camera's left-right optical system

    Science.gov (United States)

    Liu, Meiying; Wang, Hu; Liu, Jie; Xue, Yaoke; Yang, Shaodong; Zhao, Hui

    2016-09-01

    To binocular camera, the consistency of optical parameters of the left and the right optical system is an important factor that will influence the overall imaging consistency. In conventional testing procedure of optical system, there lacks specifications suitable for evaluating imaging consistency. In this paper, considering the special requirements of binocular optical imaging system, a method used to measure the imaging consistency of binocular camera is presented. Based on this method, a measurement system which is composed of an integrating sphere, a rotary table and a CMOS camera has been established. First, let the left and the right optical system capture images in normal exposure time under the same condition. Second, a contour image is obtained based on the multiple threshold segmentation result and the boundary is determined using the slope of contour lines near the pseudo-contour line. Third, the constraint of gray level based on the corresponding coordinates of left-right images is established and the imaging consistency could be evaluated through standard deviation σ of the imaging grayscale difference D (x, y) between the left and right optical system. The experiments demonstrate that the method is suitable for carrying out the imaging consistency testing for binocular camera. When the standard deviation 3σ distribution of imaging gray difference D (x, y) between the left and right optical system of the binocular camera does not exceed 5%, it is believed that the design requirements have been achieved. This method could be used effectively and paves the way for the imaging consistency testing of the binocular camera.

  2. Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina

    Science.gov (United States)

    Zhang, Yan; Rha, Jungtae; Jonnal, Ravi S.; Miller, Donald T.

    2005-06-01

    Although optical coherence tomography (OCT) can axially resolve and detect reflections from individual cells, there are no reports of imaging cells in the living human retina using OCT. To supplement the axial resolution and sensitivity of OCT with the necessary lateral resolution and speed, we developed a novel spectral domain OCT (SD-OCT) camera based on a free-space parallel illumination architecture and equipped with adaptive optics (AO). Conventional flood illumination, also with AO, was integrated into the camera and provided confirmation of the focus position in the retina with an accuracy of ±10.3 μm. Short bursts of narrow B-scans (100x560 μm) of the living retina were subsequently acquired at 500 Hz during dynamic compensation (up to 14 Hz) that successfully corrected the most significant ocular aberrations across a dilated 6 mm pupil. Camera sensitivity (up to 94 dB) was sufficient for observing reflections from essentially all neural layers of the retina. Signal-to-noise of the detected reflection from the photoreceptor layer was highly sensitive to the level of cular aberrations and defocus with changes of 11.4 and 13.1 dB (single pass) observed when the ocular aberrations (astigmatism, 3rd order and higher) were corrected and when the focus was shifted by 200 μm (0.54 diopters) in the retina, respectively. The 3D resolution of the B-scans (3.0x3.0x5.7 μm) is the highest reported to date in the living human eye and was sufficient to observe the interface between the inner and outer segments of individual photoreceptor cells, resolved in both lateral and axial dimensions. However, high contrast speckle, which is intrinsic to OCT, was present throughout the AO parallel SD-OCT B-scans and obstructed correlating retinal reflections to cell-sized retinal structures.

  3. In vivo integrated photoacoustic ophthalmoscopy, optical coherence tomography, and scanning laser ophthalmoscopy for retinal imaging

    Science.gov (United States)

    Song, Wei; Zhang, Rui; Zhang, Hao F.; Wei, Qing; Cao, Wenwu

    2012-12-01

    The physiological and pathological properties of retina are closely associated with various optical contrasts. Hence, integrating different ophthalmic imaging technologies is more beneficial in both fundamental investigation and clinical diagnosis of several blinding diseases. Recently, photoacoustic ophthalmoscopy (PAOM) was developed for in vivo retinal imaging in small animals, which demonstrated the capability of imaging retinal vascular networks and retinal pigment epithelium (RPE) at high sensitivity. We combined PAOM with traditional imaging modalities, such as fluorescein angiography (FA), spectral-domain optical coherence tomography (SD-OCT), and auto-fluorescence scanning laser ophthalmoscopy (AF-SLO), for imaging rats and mice. The multimodal imaging system provided more comprehensive evaluation of the retina based on the complementary imaging contrast mechanisms. The high-quality retinal images show that the integrated ophthalmic imaging system has great potential in the investigation of blinding disorders.

  4. QR code based noise-free optical encryption and decryption of a gray scale image

    Science.gov (United States)

    Jiao, Shuming; Zou, Wenbin; Li, Xia

    2017-03-01

    In optical encryption systems, speckle noise is one major challenge in obtaining high quality decrypted images. This problem can be addressed by employing a QR code based noise-free scheme. Previous works have been conducted for optically encrypting a few characters or a short expression employing QR codes. This paper proposes a practical scheme for optically encrypting and decrypting a gray-scale image based on QR codes for the first time. The proposed scheme is compatible with common QR code generators and readers. Numerical simulation results reveal the proposed method can encrypt and decrypt an input image correctly.

  5. Computer-aided detection of early cancer in the esophagus using HD endoscopy images

    Science.gov (United States)

    van der Sommen, Fons; Zinger, Svitlana; Schoon, Erik J.; de With, Peter H. N.

    2013-02-01

    Esophageal cancer is the fastest rising type of cancer in the Western world. The recent development of High-Definition (HD) endoscopy has enabled the specialist physician to identify cancer at an early stage. Nevertheless, it still requires considerable effort and training to be able to recognize these irregularities associated with early cancer. As a first step towards a Computer-Aided Detection (CAD) system that supports the physician in finding these early stages of cancer, we propose an algorithm that is able to identify irregularities in the esophagus automatically, based on HD endoscopic images. The concept employs tile-based processing, so our system is not only able to identify that an endoscopic image contains early cancer, but it can also locate it. The identification is based on the following steps: (1) preprocessing, (2) feature extraction with dimensionality reduction, (3) classification. We evaluate the detection performance in RGB, HSI and YCbCr color space using the Color Histogram (CH) and Gabor features and we compare with other well-known features to describe texture. For classification, we employ a Support Vector Machine (SVM) and evaluate its performance using different parameters and kernel functions. In experiments, our system achieves a classification accuracy of 95.9% on 50×50 pixel tiles of tumorous and normal tissue and reaches an Area Under the Curve (AUC) of 0.990. In 22 clinical examples our algorithm was able to identify all (pre-)cancerous regions and annotate those regions reasonably well. The experimental and clinical validation are considered promising for a CAD system that supports the physician in finding early stage cancer.

  6. Machine learning techniques for breast cancer computer aided diagnosis using different image modalities: A systematic review.

    Science.gov (United States)

    Yassin, Nisreen I R; Omran, Shaimaa; El Houby, Enas M F; Allam, Hemat

    2018-03-01

    The high incidence of breast cancer in women has increased significantly in the recent years. Physician experience of diagnosing and detecting breast cancer can be assisted by using some computerized features extraction and classification algorithms. This paper presents the conduction and results of a systematic review (SR) that aims to investigate the state of the art regarding the computer aided diagnosis/detection (CAD) systems for breast cancer. The SR was conducted using a comprehensive selection of scientific databases as reference sources, allowing access to diverse publications in the field. The scientific databases used are Springer Link (SL), Science Direct (SD), IEEE Xplore Digital Library, and PubMed. Inclusion and exclusion criteria were defined and applied to each retrieved work to select those of interest. From 320 studies retrieved, 154 studies were included. However, the scope of this research is limited to scientific and academic works and excludes commercial interests. This survey provides a general analysis of the current status of CAD systems according to the used image modalities and the machine learning based classifiers. Potential research studies have been discussed to create a more objective and efficient CAD systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Computer-aided detection of early interstitial lung diseases using low-dose CT images

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Cheol; Kim, Soo Hyung [School of Electronics and Computer Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Tan, Jun; Wang Xingwei; Lederman, Dror; Leader, Joseph K; Zheng Bin, E-mail: zhengb@upmc.edu [Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213 (United States)

    2011-02-21

    This study aims to develop a new computer-aided detection (CAD) scheme to detect early interstitial lung disease (ILD) using low-dose computed tomography (CT) examinations. The CAD scheme classifies each pixel depicted on the segmented lung areas into positive or negative groups for ILD using a mesh-grid-based region growth method and a multi-feature-based artificial neural network (ANN). A genetic algorithm was applied to select optimal image features and the ANN structure. In testing each CT examination, only pixels selected by the mesh-grid region growth method were analyzed and classified by the ANN to improve computational efficiency. All unselected pixels were classified as negative for ILD. After classifying all pixels into the positive and negative groups, CAD computed a detection score based on the ratio of the number of positive pixels to all pixels in the segmented lung areas, which indicates the likelihood of the test case being positive for ILD. When applying to an independent testing dataset of 15 positive and 15 negative cases, the CAD scheme yielded the area under receiver operating characteristic curve (AUC = 0.884 {+-} 0.064) and 80.0% sensitivity at 85.7% specificity. The results demonstrated the feasibility of applying the CAD scheme to automatically detect early ILD using low-dose CT examinations.

  8. Computer-aided diagnosis of mammographic masses using geometric verification-based image retrieval

    Science.gov (United States)

    Li, Qingliang; Shi, Weili; Yang, Huamin; Zhang, Huimao; Li, Guoxin; Chen, Tao; Mori, Kensaku; Jiang, Zhengang

    2017-03-01

    Computer-Aided Diagnosis of masses in mammograms is an important indicator of breast cancer. The use of retrieval systems in breast examination is increasing gradually. In this respect, the method of exploiting the vocabulary tree framework and the inverted file in the mammographic masse retrieval have been proved high accuracy and excellent scalability. However it just considered the features in each image as a visual word and had ignored the spatial configurations of features. It greatly affect the retrieval performance. To overcome this drawback, we introduce the geometric verification method to retrieval in mammographic masses. First of all, we obtain corresponding match features based on the vocabulary tree framework and the inverted file. After that, we grasps the main point of local similarity characteristic of deformations in the local regions by constructing the circle regions of corresponding pairs. Meanwhile we segment the circle to express the geometric relationship of local matches in the area and generate the spatial encoding strictly. Finally we judge whether the matched features are correct or not, based on verifying the all spatial encoding are whether satisfied the geometric consistency. Experiments show the promising results of our approach.

  9. Computer aided analysis of prostate histopathology images to support a refined Gleason grading system

    Science.gov (United States)

    Ren, Jian; Sadimin, Evita; Foran, David J.; Qi, Xin

    2017-02-01

    The Gleason grading system used to render prostate cancer diagnosis has recently been updated to allow more accurate grade stratification and higher prognostic discrimination when compared to the traditional grading system. In spite of progress made in trying to standardize the grading process, there still remains approximately a 30% grading discrepancy between the score rendered by general pathologists and those provided by experts while reviewing needle biopsies for Gleason pattern 3 and 4, which accounts for more than 70% of daily prostate tis- sue slides at most institutions. We propose a new computational imaging method for Gleason pattern 3 and 4 classification, which better matches the newly established prostate cancer grading system. The computer- aided analysis method includes two phases. First, the boundary of each glandular region is automatically segmented using a deep convolutional neural network. Second, color, shape and texture features are extracted from superpixels corresponding to the outer and inner glandular regions and are subsequently forwarded to a random forest classifier to give a gradient score between 3 and 4 for each delineated glandular region. The F1 score for glandular segmentation is 0.8460 and the classification accuracy is 0.83+/-0.03.

  10. The fiber-optic imaging and manipulation of neural activity during animal behavior.

    Science.gov (United States)

    Miyamoto, Daisuke; Murayama, Masanori

    2016-02-01

    Recent progress with optogenetic probes for imaging and manipulating neural activity has further increased the relevance of fiber-optic systems for neural circuitry research. Optical fibers, which bi-directionally transmit light between separate sites (even at a distance of several meters), can be used for either optical imaging or manipulating neural activity relevant to behavioral circuitry mechanisms. The method's flexibility and the specifications of the light structure are well suited for following the behavior of freely moving animals. Furthermore, thin optical fibers allow researchers to monitor neural activity from not only the cortical surface but also deep brain regions, including the hippocampus and amygdala. Such regions are difficult to target with two-photon microscopes. Optogenetic manipulation of neural activity with an optical fiber has the advantage of being selective for both cell-types and projections as compared to conventional electrophysiological brain tissue stimulation. It is difficult to extract any data regarding changes in neural activity solely from a fiber-optic manipulation device; however, the readout of data is made possible by combining manipulation with electrophysiological recording, or the simultaneous application of optical imaging and manipulation using a bundle-fiber. The present review introduces recent progress in fiber-optic imaging and manipulation methods, while also discussing fiber-optic system designs that are suitable for a given experimental protocol. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  11. The diffractive achromat full spectrum computational imaging with diffractive optics

    KAUST Repository

    Peng, Yifan; Fu, Qiang; Heide, Felix; Heidrich, Wolfgang

    2016-01-01

    dispersion is a tremendous obstacle that limits the use of DOEs in full spectrum imaging, causing unacceptable loss of color fidelity in the images. In particular, metamerism introduces a data dependency in the image blur, which has been neglected

  12. OPTICAL correlation identification technology applied in underwater laser imaging target identification

    Science.gov (United States)

    Yao, Guang-tao; Zhang, Xiao-hui; Ge, Wei-long

    2012-01-01

    The underwater laser imaging detection is an effective method of detecting short distance target underwater as an important complement of sonar detection. With the development of underwater laser imaging technology and underwater vehicle technology, the underwater automatic target identification has gotten more and more attention, and is a research difficulty in the area of underwater optical imaging information processing. Today, underwater automatic target identification based on optical imaging is usually realized with the method of digital circuit software programming. The algorithm realization and control of this method is very flexible. However, the optical imaging information is 2D image even 3D image, the amount of imaging processing information is abundant, so the electronic hardware with pure digital algorithm will need long identification time and is hard to meet the demands of real-time identification. If adopt computer parallel processing, the identification speed can be improved, but it will increase complexity, size and power consumption. This paper attempts to apply optical correlation identification technology to realize underwater automatic target identification. The optics correlation identification technology utilizes the Fourier transform characteristic of Fourier lens which can accomplish Fourier transform of image information in the level of nanosecond, and optical space interconnection calculation has the features of parallel, high speed, large capacity and high resolution, combines the flexibility of calculation and control of digital circuit method to realize optoelectronic hybrid identification mode. We reduce theoretical formulation of correlation identification and analyze the principle of optical correlation identification, and write MATLAB simulation program. We adopt single frame image obtained in underwater range gating laser imaging to identify, and through identifying and locating the different positions of target, we can improve

  13. Ultrahigh resolution radiation imaging system using an optical fiber structure scintillator plate.

    Science.gov (United States)

    Yamamoto, Seiichi; Kamada, Kei; Yoshikawa, Akira

    2018-02-16

    High resolution imaging of radiation is required for such radioisotope distribution measurements as alpha particle detection in nuclear facilities or high energy physics experiments. For this purpose, we developed an ultrahigh resolution radiation imaging system using an optical fiber structure scintillator plate. We used a ~1-μm diameter fiber structured GdAlO 3 :Ce (GAP) /α-Al 2 O 3 scintillator plate to reduce the light spread. The fiber structured scintillator plate was optically coupled to a tapered optical fiber plate to magnify the image and combined with a lens-based high sensitivity CCD camera. We observed the images of alpha particles with a spatial resolution of ~25 μm. For the beta particles, the images had various shapes, and the trajectories of the electrons were clearly observed in the images. For the gamma photons, the images also had various shapes, and the trajectories of the secondary electrons were observed in some of the images. These results show that combining an optical fiber structure scintillator plate with a tapered optical fiber plate and a high sensitivity CCD camera achieved ultrahigh resolution and is a promising method to observe the images of the interactions of radiation in a scintillator.

  14. Steganographic optical image encryption system based on reversible data hiding and double random phase encoding

    Science.gov (United States)

    Chuang, Cheng-Hung; Chen, Yen-Lin

    2013-02-01

    This study presents a steganographic optical image encryption system based on reversible data hiding and double random phase encoding (DRPE) techniques. Conventional optical image encryption systems can securely transmit valuable images using an encryption method for possible application in optical transmission systems. The steganographic optical image encryption system based on the DRPE technique has been investigated to hide secret data in encrypted images. However, the DRPE techniques vulnerable to attacks and many of the data hiding methods in the DRPE system can distort the decrypted images. The proposed system, based on reversible data hiding, uses a JBIG2 compression scheme to achieve lossless decrypted image quality and perform a prior encryption process. Thus, the DRPE technique enables a more secured optical encryption process. The proposed method extracts and compresses the bit planes of the original image using the lossless JBIG2 technique. The secret data are embedded in the remaining storage space. The RSA algorithm can cipher the compressed binary bits and secret data for advanced security. Experimental results show that the proposed system achieves a high data embedding capacity and lossless reconstruction of the original images.

  15. The imaging appearances of intracranial CNS infections in adult HIV and AIDS patients

    Energy Technology Data Exchange (ETDEWEB)

    Offiah, C.E. [Department of Neuroradiology, Hope Hospital, Stott Lane, Salford, Manchester (United Kingdom)]. E-mail: chockycj@yahoo.co.uk; Turnbull, I.W. [Department of Neuroradiology, Hope Hospital, Stott Lane, Salford, Manchester (United Kingdom)

    2006-05-15

    The spectrum of pathology affecting the central nervous system (CNS) in patients suffering from acquired immunodeficiency syndrome (AIDS) is broad and comprises predominantly opportunistic infections and neoplasms. It is estimated that approximately one-third of all patients with AIDS develop neurological complications. The organisms responsible for AIDS are human retroviruses: primarily the human immunodeficiency virus type 1 (HIV). In this review we shall focus on the neurological complications of HIV and AIDS which are applicable to the more frequently occurring intracranial infective organisms. Attention will be paid specifically to those CNS manifestations occurring in the adult HIV and AIDS population as infection in the paediatric HIV and AIDS group, although bearing some similarities, demonstrates some important differences.

  16. The imaging appearances of intracranial CNS infections in adult HIV and AIDS patients

    International Nuclear Information System (INIS)

    Offiah, C.E.; Turnbull, I.W.

    2006-01-01

    The spectrum of pathology affecting the central nervous system (CNS) in patients suffering from acquired immunodeficiency syndrome (AIDS) is broad and comprises predominantly opportunistic infections and neoplasms. It is estimated that approximately one-third of all patients with AIDS develop neurological complications. The organisms responsible for AIDS are human retroviruses: primarily the human immunodeficiency virus type 1 (HIV). In this review we shall focus on the neurological complications of HIV and AIDS which are applicable to the more frequently occurring intracranial infective organisms. Attention will be paid specifically to those CNS manifestations occurring in the adult HIV and AIDS population as infection in the paediatric HIV and AIDS group, although bearing some similarities, demonstrates some important differences

  17. Contrast-enhanced photoacoustic imaging with an optical wavelength of 1064 nm

    Science.gov (United States)

    Kim, Jeesu; Park, Sara; Park, Gyeong Bae; Choi, Wonseok; Jeong, Unyong; Kim, Chulhong

    2018-02-01

    Photoacoustic (PA) imaging is a biomedical imaging method that can provide both structural and functional information of living tissues beyond the optical diffusion limit by combining the concepts of conventional optical and ultrasound imaging methods. Although endogenous chromophores can be utilized to acquire PA images of biological tissues, exogenous contrast agents that absorb near-infrared (NIR) lights have been extensively explored to improve the contrast and penetration depth of PA images. Here, we demonstrate Bi2Se3 nanoplates, that strongly absorbs NIR lights, as a contrast agent for PA imaging. In particularly, the Bi2Se3 nanoplates produce relatively strong PA signals with an optical wavelength of 1064 nm, which has several advantages for deep tissue imaging including: (1) relatively low absorption by other intrinsic chromophores, (2) cost-effective light source using Nd:YAG laser, and (3) higher available energy than other NIR lights according to American National Standards Institute (ANSI) safety limit. We have investigated deep tissue imaging capability of the Bi2Se3 nanoplates by acquiring in vitro PA images of microtubes under chicken breast tissues. We have also acquired in vivo PA images of bladders, gastrointestinal tracts, and sentinel lymph nodes in mice after injection of the Bi2Se3 nanoplates to verify their applicability to a variety of biomedical research. The results show the promising potential of the Bi2Se3 nanoplates as a PA contrast agent for deep tissue imaging with an optical wavelength of 1064 nm.

  18. Magnetic resonance imaging features of neuroinfections in patients with AIDS. Pablo Tobon Hospital, Medellin (2008-2009)

    International Nuclear Information System (INIS)

    Pulgarin R, Luis G; Gomez R, Susana; Sanchez Z, Jonathan A; Abreo L, Diego F; Hernandez J, Andres F; Donado G, Jorge H.

    2010-01-01

    Our purpose is to describe the clinical and magnetic resonance imaging (MRI) features of the central nervous system (CNS ) most common infectious diseases in patients with human immunodeficiency virus (HIV) and / or acquired immunodeficiency syndrome (AIDS ) that consulted to the Hospital Pablo Tobon Uribe in the period 2008-2009. We included four adult patients with HIV and / or AIDS from Hospital Pablo Tobon Uribe database, who were diagnosed having central nervous system infections by MRI and diagnostic microbiological tests. The most common MRI patterns of CNS infections in AIDS patients in our institution were irregular multifocal intra-axial space-occupying lesions with heterogeneous and variable signals on T1, T2 and FLAI R, with perilesional edema and rim postcontrast enhancement.

  19. Single exposure optically compressed imaging and visualization using random aperture coding

    Energy Technology Data Exchange (ETDEWEB)

    Stern, A [Electro Optical Unit, Ben Gurion University of the Negev, Beer-Sheva 84105 (Israel); Rivenson, Yair [Department of Electrical and Computer Engineering, Ben Gurion University of the Negev, Beer-Sheva 84105 (Israel); Javidi, Bahrain [Department of Electrical and Computer Engineering, University of Connecticut, Storrs, Connecticut 06269-1157 (United States)], E-mail: stern@bgu.ac.il

    2008-11-01

    The common approach in digital imaging follows the sample-then-compress framework. According to this approach, in the first step as many pixels as possible are captured and in the second step the captured image is compressed by digital means. The recently introduced theory of compressed sensing provides the mathematical foundation necessary to combine these two steps in a single one, that is, to compress the information optically before it is recorded. In this paper we overview and extend an optical implementation of compressed sensing theory that we have recently proposed. With this new imaging approach the compression is accomplished inherently in the optical acquisition step. The primary feature of this imaging approach is a randomly encoded aperture realized by means of a random phase screen. The randomly encoded aperture implements random projection of the object field in the image plane. Using a single exposure, a randomly encoded image is captured which can be decoded by proper decoding algorithm.

  20. A Novel Defect Inspection Method for Semiconductor Wafer Based on Magneto-Optic Imaging

    Science.gov (United States)

    Pan, Z.; Chen, L.; Li, W.; Zhang, G.; Wu, P.

    2013-03-01

    The defects of semiconductor wafer may be generated from the manufacturing processes. A novel defect inspection method of semiconductor wafer is presented in this paper. The method is based on magneto-optic imaging, which involves inducing eddy current into the wafer under test, and detecting the magnetic flux associated with eddy current distribution in the wafer by exploiting the Faraday rotation effect. The magneto-optic image being generated may contain some noises that degrade the overall image quality, therefore, in this paper, in order to remove the unwanted noise present in the magneto-optic image, the image enhancement approach using multi-scale wavelet is presented, and the image segmentation approach based on the integration of watershed algorithm and clustering strategy is given. The experimental results show that many types of defects in wafer such as hole and scratch etc. can be detected by the method proposed in this paper.