WorldWideScience

Sample records for optically thick plasma

  1. Hybrid formulation of radiation transport in optically thick divertor plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rosato, J.; Marandet, Y.; Bufferand, H.; Stamm, R. [PIIM, UMR 7345 Aix-Marseille Universite / CNRS, Centre de St-Jerome, Marseille (France); Reiter, D. [IEK-4 Plasmaphysik, Forschungszentrum Juelich GmbH, Juelich (Germany)

    2016-08-15

    Kinetic Monte Carlo simulations of coupled atom-radiation transport in optically thick divertor plasmas can be computationally very demanding, in particular in ITER relevant conditions or even larger devices, e.g. for power plant divertor studies. At high (∝ 10{sup 15} cm{sup -3}) atomic densities, it can be shown that sufficiently large divertors behave in certain areas like a black body near the first resonance line of hydrogen (Lyman α). This suggests that, at least in part, the use of continuum model (radiation hydrodynamics) can be sufficiently accurate, while being less time consuming. In this work, we report on the development of a hybrid model devoted to switch automatically between a kinetic and a continuum description according to the plasma conditions. Calculations of the photo-excitation rate in a homogeneous slab are performed as an illustration. The outlined hybrid concept might be also applicable to neutral atom transport, due to mathematical analogy of transport equations for neutrals and radiation. (copyright 2016 The Authors. Contributions to Plasma Physics published by Wiley-VCH Verlag GmbH and Co. KGaA Weinheim. This)

  2. Optical-Thickness Corrections to Transient Ece Temperature-Measurements in Tokamak and Stellarator Plasmas

    NARCIS (Netherlands)

    Peters, M.; Gorini, G.; Mantica, P.

    1995-01-01

    The conditions are examined under which optical thickness (tau) corrections to electron cyclotron emission (ECE) measurements of electron temperature (T-e) can be neglected. By means of simple algebra it is demonstrated that for measurements of T-e transients the ECE radiation temperature (T-rad) ca

  3. Diode-Laser Induced Fluorescence Spectroscopy of an Optically Thick Plasma in Combination with Laser Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    S. Nomura

    2013-01-01

    Full Text Available Distortion of laser-induced fluorescence profiles attributable to optical absorption and saturation broadening was corrected in combination with laser absorption spectroscopy in argon plasma flow. At high probe-laser intensity, saturated absorption profiles were measured to correct probe-laser absorption. At low laser intensity, nonsaturated absorption profiles were measured to correct fluorescence reabsorption. Saturation broadening at the measurement point was corrected using a ratio of saturated to non-saturated broadening. Observed LIF broadening and corresponding translational temperature without correction were, respectively, 2.20±0.05 GHz and 2510±100 K and corrected broadening and temperature were, respectively, 1.96±0.07 GHz and 1990±150 K. Although this correction is applicable only at the center of symmetry, the deduced temperature agreed well with that obtained by LAS with Abel inversion.

  4. Structural and optical characterization of thick and thin polycrystalline diamond films deposited by microwave plasma activated CVD

    Indian Academy of Sciences (India)

    S K Pradhan; B Satpati; B P Bag; T Sharda

    2012-02-01

    Preliminary results of growth of thin diamond film in a recently installed 3 kW capacity microwave plasma activated CVD (MW-PACVD) system are being reported. The films were deposited on Si (100) substrate at 850°C using methane and hydrogen mixture at 1.5 kW MW power. The grown polycrystalline films were characterized by micro-Raman, transmission electron microscope (TEM), spectrophotometer and atomic force microscope (AFM). The results were compared with that of a thicker diamond film grown elsewhere in a same make MWPACVD system at relatively higher power densities. The presence of a sharp Raman peak at 1332 cm-1 confirmed the growth of diamond, and transmission spectra showed typical diamond film characteristics in both the samples. Typical twin bands and also a quintuplet twinned crystal were observed in TEM, further it was found that the twinned region in thin sample composed of very fine platelet like structure.

  5. Optical plasma microelectronic devices

    CERN Document Server

    Forati, Ebrahim; Dill, Thyler; Sievenpiper, Dan

    2015-01-01

    The semiconductor channel in conventional microelectronic devices was successfully replaced with an optically triggered gas plasma channel. The combination of DC and laser-induced gas ionizations controls the conductivity of the channel, enabling us to realize different electronic devices such as transistors, switches, modulators, etc. A special micro-scale metasurface was used to enhance the laser-gas interaction, as well as combining it with DC ionization properly. Optical plasma devices benefit form the advantages of plasma/vacuum electronic devices while preserving most of the integrablity of semiconductor based devices.

  6. Optically-thick accretion discs with advection

    Institute of Scientific and Technical Information of China (English)

    陈林红; 吴枚; 尚仁成

    2002-01-01

    The structures of optically-thick accretion discs with radial advection have been investigated by the iteration and integration algorithms. The advective cooling term changes mostly the inner part of disc solution, and even results in an optically-thick advection-dominated accretion flow (ADAF). Three distinct branches-the outer Shakura-Sunyaev disc (SSD), the inner ADAF and the middle transition layer-are found for a super-Eddington disc. The SSD-ADAF transition radius can be estimated as 18(M/ME)RG where RG is the Schwarzschild radius, M is the mass accretion rate and ME is the Eddington accretion rate. SSD solutions calculated with the iteration and integration methods are identical, while ADAF solutions obtained by these two methods differ greatly. Detailed algorithms and their differences have been analysed. The iteration algorithm is not self-consistent, since it implies that the dimensionless advection factor ξ is invariant, but in the inner ADAF region the variation of ξ is not negligible. The integration algorithm is always effective for the whole region of an optically-thick disc if the accretion rate is no smaller than 10-4ME. For optically-thin discs, the validity of these two algorithms is different. We suggest that the integration method be employed to calculate the global solution of a disc model without assuming ξ to be a constant. We also discuss its application to the emergent continuum spectrum in order to explain observational facts.

  7. Pioneer Venus polarimetry and haze optical thickness

    Science.gov (United States)

    Knibbe, W. J. J.; Wauben, W. M. F.; Travis, L. D.; Hovenier, J. W.

    1992-01-01

    The Pioneer Venus mission provided us with high-resolution measurements at four wavelengths of the linear polarization of sunlight reflected by the Venus atmosphere. These measurements span the complete phase angle range and cover a period of more than a decade. A first analysis of these data by Kawabata et al. confirmed earlier suggestions of a haze layer above and partially mixed with the cloud layer. They found that the haze exhibits large spatial and temporal variations. The haze optical thickness at a wavelength of 365 nm was about 0.06 at low latitudes, but approximately 0.8 at latitudes from 55 deg poleward. Differences between morning and evening terminator have also been reported by the same authors. Using an existing cloud/haze model of Venus, we study the relationship between the haze optical thickness and the degree of linear polarization. Variations over the visible disk and phase angle dependence are investigated. For that purpose, exact multiple scattering computations are compared with Pioneer Venus measurements. To get an impression of the variations over the visible disk, we have first studied scans of the polarization parallel to the intensity equator. After investigating a small subset of the available data we have the following results. Adopting the haze particle characteristics given by Kawabata et al., we find a thickening of the haze at increasing latitudes. Further, we see a difference in haze optical thickness between the northern and southern hemispheres that is of the same order of magnitude as the longitudinal variation of haze thickness along a scan line. These effects are most pronounced at a wavelength of 935 nm. We must emphasize the tentative nature of the results, because there is still an enormous amount of data to be analyzed. We intend to combine further polarimetric research of Venus with constraints on the haze parameters imposed by physical and chemical processes in the atmosphere.

  8. Blackbody Radiation in Optically Thick Gases?

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2014-07-01

    Full Text Available In this work, the claim that optically thick gases can emit as blackbodies is refuted. The belief that such behavior exists results from an improper consideration of heat transfer and reflection. When heat is injected into a gas, the energy is primarily redistributed into translational degrees of freedom and is not used to drive emission. The average kinetic energy of the particles in the system simply increases and the temperature rises. In this respect, it is well-know that the emissivity of a gas can drop with increasing temperature. Once reflection and translation are properly considered, it is simple to understand why gases can never emit as blackbodies.

  9. Optical properties of cluster plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kishimoto, Yasuaki; Tajima, Toshiki [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment; Downer, M.C.

    1998-03-01

    It is shown that unlike a gas plasma or an electron plasma in a metal, an ionized clustered material (`cluster plasma`) permits propagation below the plasma cut-off of electromagnetic (EM) waves whose phase velocity is close to but below the speed of light. This results from the excitation of a plasma oscillation mode (and/or polarization mode) through the cluster surface which does not exist in usual gaseous plasma. The existence of this new optical mode, cluster mode, is confirmed via numerical simulation. (author)

  10. Film-thickness Error Analysis of Optical Disk Systems

    Institute of Scientific and Technical Information of China (English)

    WANG Yang; GU Donghong; GAN Fuxi

    2001-01-01

    It is difficult to exactly control the film thickness of optical disk multilayer in the actual coating process. The thickness error becomes a main factor affecting the optical characters of the film system. The thickness error′s sensitivity factor of dielectric optical multilayer is derived from the optical matrix in this paper. The effect of the thickness error on the reflectivity or reflectivity contrast of the optical disk multilayer is analyzed with a numerical calculation. The sensitivities to thickness error for different layers or in different film-thickness ranges are compared and discussed. A sketchy method defining allowable thickness error is given. Some experimental results verify the applicability of our theoretical analysis.

  11. Thickness Dependence of Resistivity and Optical Reflectance of ITO Films

    Institute of Scientific and Technical Information of China (English)

    GAO Mei-Zhen; JOB R; XUE De-Sheng; FAHRNER W R

    2008-01-01

    @@ Indium-tin-oxide (ITO) films deposited on crystalline silicon wafer and Coming glass are prepared by directcurrent magnetron sputtering method at room temperature with various thicknesses. The thickness dependences of structure, resistance and optical reflectance of ITO films are characterized. The results show that when the film thickness is less than 4Ohm, the resistivity and optical reflectance of the ITO tilm changes remarkably with thickness. The optoelectrical properties trend to stabilize when the thickness is over 55 nm. The GXRD result implies that the ITO film begins to crystallize if only the thickness is large enough.

  12. Optically thick outflows in ultraluminous supersoft sources

    CERN Document Server

    Urquhart, Ryan

    2015-01-01

    Ultraluminous supersoft sources (ULSs) are defined by a thermal spectrum with colour temperatures ~0.1 keV, bolometric luminosities ~ a few 10^39 erg/s, and almost no emission above 1 keV. It has never been clear how they fit into the general scheme of accreting compact objects. To address this problem, we studied a sample of seven ULSs with extensive Chandra and XMM-Newton coverage. We find an anticorrelation between fitted temperatures and radii of the thermal emitter, and no correlation between bolometric luminosity and radius or temperature. We compare the physical parameters of ULSs with those of classical supersoft sources, thought to be surface-nuclear-burning white dwarfs, and of ultraluminous X-ray sources (ULXs), thought to be super-Eddington stellar-mass black holes. We argue that ULSs are the sub-class of ULXs seen through the densest wind, perhaps an extension of the soft-ultraluminous regime. We suggest that in ULSs, the massive disk outflow becomes effectively optically thick and forms a large ...

  13. Reconstruction of Optical Thickness from Hoffman Modulation Contrast Images

    DEFF Research Database (Denmark)

    Olsen, Niels Holm; Sporring, Jon; Nielsen, Mads;

    2003-01-01

    Hoffman microscopy imaging systems are part of numerous fertility clinics world-wide. We discuss the physics of the Hoffman imaging system from optical thickness to image intensity, implement a simple, yet fast, reconstruction algorithm using Fast Fourier Transformation and discuss the usability...... of the method on a number of cells from a human embryo. Novelty is identifying the non-linearity of a typical Hoffman imaging system, and the application of Fourier Transformation to reconstruct the optical thickness....

  14. Computing Temperatures in Optically Thick Protoplanetary Disks

    Science.gov (United States)

    Capuder, Lawrence F.. Jr.

    2011-01-01

    We worked with a Monte Carlo radiative transfer code to simulate the transfer of energy through protoplanetary disks, where planet formation occurs. The code tracks photons from the star into the disk, through scattering, absorption and re-emission, until they escape to infinity. High optical depths in the disk interior dominate the computation time because it takes the photon packet many interactions to get out of the region. High optical depths also receive few photons and therefore do not have well-estimated temperatures. We applied a modified random walk (MRW) approximation for treating high optical depths and to speed up the Monte Carlo calculations. The MRW is implemented by calculating the average number of interactions the photon packet will undergo in diffusing within a single cell of the spatial grid and then updating the packet position, packet frequencies, and local radiation absorption rate appropriately. The MRW approximation was then tested for accuracy and speed compared to the original code. We determined that MRW provides accurate answers to Monte Carlo Radiative transfer simulations. The speed gained from using MRW is shown to be proportional to the disk mass.

  15. Foveal thickness after phacoemulsification as measured by optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Gerasimos Th Georgopoulos

    2008-08-01

    Full Text Available Gerasimos Th Georgopoulos, Dimitrios Papaconstantinou, Maria Niskopoulou, Marilita Moschos, Ilias Georgalas, Chrysanthi KoutsandreaGlaucoma Department, Medical School, Athens University, Athens, GreeceBackground: Despite a significant body of research, no consistency on postoperative foveal thickness as measured by optical coherence tomography (OCT, can be recorded. The purpose of our study was to evaluate the effect of uncomplicated cataract surgery in the thickness of the retina in the foveal area during the early postoperative period.Methods: In a prospective study, 79 eyes were assessed by OCT, on day 1, and weeks 2 and 4 after uncomplicated phacoemulsification with intraocular lens implantation in the Athens University Clinic. The outcome measure was the thickness of the retina in the foveal area.Results: The thickness of the retina preoperatively is significantly smaller (150.4 ± 18.8 (p < 0.05 than the thickness of the retina on day 1 (171.8 ± 21 and week 2 (159.7 ± 19 and returned to the initial levels on week 4 (152 ± 17.1. The estimated correlation coefficients between preoperative and postoperative thickness of the retina were significant (p < 0.05. Conversely, no association was found between postoperative visual acuity and thickness of the retina, neither between the phacoemulsification energy and retinal thickness. Operation time, although inversely related with postoperative visual acuity, was not associated with the thickness of the retina.Conclusions: Following phacoemulsification, an increase in the foveal thickness was detected in the early postoperative period, quantified and followed up by OCT. The foveal thickness returned to the preoperative level, 1 month following surgery in our study. No association was shown between intraoperative parameters and increased postoperative retinal thickness.Keywords: optical coherence tomography, phacoemulsification, retinal thickness

  16. Are spiral galaxies optically thin or thick?

    CERN Document Server

    Xilouris, E M; Kylafis, N D; Paleologou, E V; Papamastorakis, J

    1999-01-01

    The opacity of spiral galaxies is examined by modelling the dust and stellar content of individual galaxies. The model is applied to five late-type spiral galaxies (NGC 4013, IC 2531, UGC 1082, NGC 5529 and NGC 5907). Having analyzed a total of seven galaxies thus far, the five galaxies mentioned above plus UGC 2048 and NGC 891 presented in (Xilouris et al. 1997, 1998), we are able to draw some general conclusions, the most significant of which are: 1) The face-on central optical depth is less than one in all optical bands indicating that typical spiral galaxies like the ones that we have modelled would be completely transparent if they were to be seen face-on. 2) The dust scaleheight is about half that of the stars, which means that the dust is more concentrated near the plane of the disk. 3) The dust scalelength is about 1.4 times larger than that of the stars and the dust is more radially extended than the stars. 4) The dust mass is found to be about an order of a magnitude more than previously measured us...

  17. Thickness of Heliospheric Current and Plasma Sheets: Dependence on Distance

    Science.gov (United States)

    Zhou, X.; Smith, E. J.; Winterhalter, D.; McComas, D. J.; Skoug, R. M.; Goldstein, B. E.; Smith, C. W.

    2005-05-01

    Heliospheric current sheets (HCS) are well defined structures that separate the interplanetary magnetic fields with inverse polarities. Surrounded by heliospheric plasma sheets (HPS), the current sheets stretch throughout the heliosphere. Interesting questions that still remain unanswered include how the thickness of these structures will change along the distance? And what determines the thickness of these structures? To answer these fundamental questions, we have carried out a study of the HCS and HPS using recent Ulysses data near 5 AU. When the results were compared with earlier studies at 1 AU using ISEE-3 data, they were surprising and unexplained. Although the plasma sheet grew thicker, the embedded current sheet grew thinner! Using data under the same (or very similar) circumstances, we have extended the analysis in two ways. First, the same current-plasma sheets studied at 5 AU have been identified at 1 AU using ACE data. Second, data obtained while Ulysses was en-route to Jupiter near 3 AU have been analyzed. This three-point investigation reveals the thickness variation along the distance and enables the examination of the controller of this variation.

  18. Optical plasma torch electron bunch generation in plasma wakefield accelerators

    Directory of Open Access Journals (Sweden)

    G. Wittig

    2015-08-01

    Full Text Available A novel, flexible method of witness electron bunch generation in plasma wakefield accelerators is described. A quasistationary plasma region is ignited by a focused laser pulse prior to the arrival of the plasma wave. This localized, shapeable optical plasma torch causes a strong distortion of the plasma blowout during passage of the electron driver bunch, leading to collective alteration of plasma electron trajectories and to controlled injection. This optically steered injection is more flexible and faster when compared to hydrodynamically controlled gas density transition injection methods.

  19. Path radiance technique for retrieving aerosol optical thickness over land

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Guoyong [Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Catonsville (United States); Tsay, Si-Chee [NASA Goddard Space Flight Center, Greenbelt, Maryland (United States); Cahalan, Robert F. [Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Catonsville (United States); NASA Goddard Space Flight Center, Greenbelt, Maryland (United States); Oreopoulos, Lazaros [Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Catonsville (United States)

    1999-12-27

    The key issue in retrieving aerosol optical thickness over land from shortwave satellite radiances is to identify and separate the signal due to scattering by a largely transparent aerosol layer from the noise due to reflection by the background surface, where the signal is relatively uniform compared to the highly inhomogeneous surface contribution. Sensitivity studies in aerosol optical thickness retrievals reveal that the apparent reflectance at the top of the atmosphere is very susceptible to the surface reflectance, especially when aerosol optical thickness is small. Uncertainties associated with surface reflectance estimation can greatly amplify the error of the aerosol optical thickness retrieval. To reduce these uncertainties, we have developed a ''path radiance'' method to retrieve aerosol optical thickness over land by extending the traditional technique that uses the ''dark object'' approach to extract the aerosol signal. This method uses the signature of the correlation of visible and middle-IR reflectance at the surface and couples the correlation with the atmospheric effect. We have applied this method to a Landsat TM (Thematic Mapper) image acquired over the Oklahoma southern Great Plains site of the Department of Energy Atmospheric Radiation Measurement (ARM) program on September 27, 1997, a very clear day (aerosol optical thickness of 0.07 at 0.5 {mu}m) during the first Landsat Intensive Observation Period. The retrieved mean aerosol optical thickness for TM band 1 at 0.49 {mu}m and band 3 at 0.66 {mu}m agree very well with the ground-based Sun photometer measurements at the ARM site. The ability to retrieve small aerosol optical thickness makes this path radiance technique promising. More importantly, the path radiance is relatively insensitive to surface inhomogeneity. The retrieved mean path radiances in reflectance units have very small standard deviations for both TM blue and red bands. This small

  20. Anisotropic resistivity in plasma-sprayed silicon thick films

    Science.gov (United States)

    Kharas, Boris Dave; Sampath, Sanjay; Gambino, Richard J.

    2005-05-01

    Silicon thick films deposited by thermal plasma spray are of interest as inexpensive electronic materials for conformal meso-scale electronics applications. In addition they also serve as a model system for the investigation of electrical properties of coatings with layered anisotropy. In this study impedance spectroscopy was used to measure the complex resistivity of free-standing 64μm-thick polycrystalline silicon films deposited by thermal plasma spraying in an atmospheric ambient. Impedance spectroscopy measurements were taken in the through-thickness (across-splat) and edge-to-edge (in-splat) directions and revealed a resistivity difference of approximately 7.5±0.23 between the two directions. The complex resistivity results are explained on the basis of a brick-layer type model, associated with the layered splat microstructure obtained from cross-sectional transmission electron microscope imaging of the films. In addition a circuit-based model made up of parallel, resistor-capacitor elements in series, and Cole-Cole and Davidson-Cole impedance functions were used to fit the impedance data to extract material parameters and contributions from the grains and splat boundaries. Furthermore, thermal processing and phosphorus doping is shown to lead to higher and lower resistivity, respectively, in the films.

  1. Effect of the thickness on properties of Al{sub 2}O{sub 3} coatings deposited by plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Yin Zhijian [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Tao Shunyan, E-mail: shunyantao@mail.sic.ac.cn [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zhou Xiaming [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2011-01-15

    Al{sub 2}O{sub 3} coatings with different thicknesses (160, 320, 480 and 640 {mu}m) were deposited on stainless steel substrate by plasma spraying. The variation in microstructural characteristics and properties of coatings with various thicknesses was investigated. Powders morphology and the microstructure of as-sprayed coatings were characterized by scanning electron microscopy and optical microscopy. The microhardness was measured using a Vickers' indentor. The corrosion behaviour of plasma-sprayed Al{sub 2}O{sub 3} coatings in 1 N H{sub 2}SO{sub 4} solution at a temperature of 25 deg. C was evaluated by electrochemistry method. Experimental results indicated that surface roughness showed no obvious dependence on the coating thickness. However, the porosity of Al{sub 2}O{sub 3} coating was increased with increased thickness. The enhanced coating thickness also resulted in decreasing microhardness and reduced corrosion resistance. In this study, the Al{sub 2}O{sub 3} coating with thickness of 160 {mu}m possesses the lowest porosity, the highest hardness and superior corrosion resistance. Research Highlights: {yields} Increase of coating thickness shows no obvious effect on phase composition and surface roughness of plasma sprayed Al{sub 2}O{sub 3} coatings. {yields} Variation of porosity and microhardness presents dependence on coating thickness parameter. {yields} Increasing coating thickness leads to reduced corrosion resistance of plasma sprayed Al{sub 2}O{sub 3} coating.

  2. Optical diagnostics of femtosecond laser plasmas

    Institute of Scientific and Technical Information of China (English)

    李玉同; 张杰; 陈黎明; 夏江帆; 腾浩; 赵理曾; 林景全; 李英骏; 魏志义; 王龙; 江文勉

    2001-01-01

    Optical diagnostics of evolution of plasmas produced by ultrashort laser pulses is carried out using a femtosecond probing beam. The time sequence of plasma shadowgrams and interferograms are obtained. The filamentation instability in high_density region induces the local density modification. Large_scale toroidal magnetic fields confine plasma expansion in the transverse direction, resulting in the formation of a plasma jet. The plasma expansion along the target normal direction is found to scale as 1 2.

  3. Choroidal Thickness Measured by Spectral Domain Optical Coherence Tomography: Factors Affecting Thickness in Glaucoma Patients

    Science.gov (United States)

    Maul, Eugenio A.; Friedman, David S.; Chang, Dolly S.; Boland, Michael V.; Ramulu, Pradeep Y.; Jampel, Henry D.; Quigley, Harry A.

    2011-01-01

    Purpose To measure choroidal thickness and to determine parameters associated with it. Design Cross-sectional study. Participants Seventy-four glaucoma patients and glaucoma suspects. Methods Spectral domain optical coherence tomography (SDOCT) scans were obtained to estimate average choroidal thickness in a group of glaucoma suspects and glaucoma patients. Average thickness was calculated from enhanced depth SDOCT images and manually analyzed with Image J software. Open angle glaucoma, open angle glaucoma suspect, primary angle closure glaucoma, primary angle closure, and primary angle closure suspect were defined by published criteria. Glaucoma suspects had normal visual fields bilaterally. Glaucoma was defined by specific criteria for optic disc damage and visual field loss in at least one eye. The most affected eye was analyzed for comparisons across individuals, while right/left and upper half/lower half comparisons were made to compare thickness against degree of visual field damage. Main Outcome Measured Average macular and peripapillary choroidal thickness measured using SDOCT. Results The choroidal-scleral interface (CSI) was visualized in 86% and 96% of the macular and peripapillary scans, respectively. In multivariable linear regression analysis, the macular choroid was significantly thinner in association with 4 features: longer eyes (22 µm per mm longer [95% confidence Interval (CI): −33, −11]), older individuals (31 µm thinner per decade older [95% CI: −44 −17]), lower diastolic ocular perfusion pressure (26 µm thinner per 10 mmHg lower [95% CI: 8, 44]), and thicker central corneas (6 µm per 10 µm thicker cornea [95% CI: −10, 0]). The choroid was not significantly thinner in glaucoma patients than in suspects (14 µm [95% CI: −54, 26], p=0.5). Peripapillary choroidal thickness was not significantly different between glaucomaand suspect patients. Thickness was not associated with damage severity as estimated by visual field mean

  4. Simultaneous measurement of group refractive index and thickness of optical samples using optical coherence tomography.

    Science.gov (United States)

    Cheng, Hsu-Chih; Liu, Yi-Cheng

    2010-02-10

    Optical coherence tomography (OCT), based on a Michelson interferometer and utilizing low coherence light as the optical source, is a novel technique for the noninvasive imaging of optical scattering media. A simple OCT scheme based on a 3 x 3 fiber coupler is presented for the simultaneous measurement of the refractive index and thickness of optical samples. The proposed system enables the refractive index and thickness to be determined without any prior knowledge of the sample parameters and is characterized by a simple and compact configuration, a straightforward measurement procedure, and a low cost. The feasibility of the proposed approach is demonstrated experimentally using BK7 and B270 optical glass samples.

  5. Simultaneous measurement of group refractive index and thickness of optical samples using optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Hsu-Chih; Liu, Yi-Cheng

    2010-02-10

    Optical coherence tomography (OCT), based on a Michelson interferometer and utilizing low coherence light as the optical source, is a novel technique for the noninvasive imaging of optical scattering media. A simple OCT scheme based on a 3x3 fiber coupler is presented for the simultaneous measurement of the refractive index and thickness of optical samples. The proposed system enables the refractive index and thickness to be determined without any prior knowledge of the sample parameters and is characterized by a simple and compact configuration, a straightforward measurement procedure, and a low cost. The feasibility of the proposed approach is demonstrated experimentally using BK7 and B270 optical glass samples.

  6. Modelling and optimization of film thickness variation for plasma enhanced chemical vapour deposition processes

    Science.gov (United States)

    Waddell, Ewan; Gibson, Des; Lin, Li; Fu, Xiuhua

    2011-09-01

    This paper describes a method for modelling film thickness variation across the deposition area within plasma enhanced chemical vapour deposition (PECVD) processes. The model enables identification and optimization of film thickness uniformity sensitivities to electrode configuration, temperature, deposition system design and gas flow distribution. PECVD deposition utilizes a co-planar 300mm diameter electrodes with separate RF power matching to each electrode. The system has capability to adjust electrode separation and electrode temperature as parameters to optimize uniformity. Vacuum is achieved using dry pumping with real time control of butterfly valve position for active pressure control. Comparison between theory and experiment is provided for PECVD of diamond-like-carbon (DLC) deposition onto flat and curved substrate geometries. The process utilizes butane reactive feedstock with an argon carrier gas. Radiofrequency plasma is used. Deposited film thickness sensitivities to electrode geometry, plasma power density, pressure and gas flow distribution are demonstrated. Use of modelling to optimise film thickness uniformity is demonstrated. Results show DLC uniformity of 0.30% over a 200 mm flat zone diameter within overall electrode diameter of 300mm. Thickness uniformity of 0.75% is demonstrated over a 200mm diameter for a non-conformal substrate geometry. Use of the modelling method for PECVD using metal-organic chemical vapour deposition (MOCVD) feedstock is demonstrated, specifically for deposition of silica films using metal-organic tetraethoxy-silane. Excellent agreement between experimental and theory is demonstrated for conformal and non-conformal geometries. The model is used to explore scalability of PECVD processes and trade-off against film thickness uniformity. Application to MEMS, optical coatings and thin film photovoltaics is discussed.

  7. Macular thickness measurements using Copernicus Spectral Domain Optical Coherence Tomography.

    Science.gov (United States)

    Gella, Laxmi; Raman, Rajiv; Sharma, Tarun

    2015-01-01

    To provide normal macular thickness measurements using Spectral Domain Optical Coherence Tomography (SDOCT, Copernicus, Optopol Technologies, Zawierci, Poland). Fifty-eight eyes of 58 healthy subjects were included in this prospective study. All subjects had comprehensive ophthalmic examination including best-corrected visual acuity (BCVA). All the subjects underwent Copernicus SDOCT. Central foveal thickness (CFT) and photoreceptor layer (PRL) thickness were measured and expressed as mean and standard deviation. Mean retinal thickness for each of the 9 regions defined in the Early Treatment Diabetic Retinopathy Study was reported. The data were compared with published literature in Indians using Stratus and Spectralis OCTs to assess variation in instrument measurements. The mean CFT in the study sample was 173.8 ± 18.16 microns (131-215 microns) and the mean PRL thickness was 65.48 ± 4.23 microns (56-74 microns). No significant difference (p = 0.148) was found between CFT measured automated (179.28 ± 22 microns) and manually (173.83 ± 18.1 microns). CFT was significantly lower in women (167.62 ± 16.36 microns) compared to men (180.03 ± 18 microns) (p = 0.008). Mean retinal thickness reported in this study was significantly different from published literature using Stratus OCT and Spectralis OCT. We report the normal mean retinal thickness in central 1 mm area to be between 138 and 242 microns in Indian population using Copernicus SDOCT. We suggest that different OCT instruments cannot be used interchangeably for the measurement of macular thickness as they vary in segmentation algorithms.

  8. Noncontact optical measurement of lens capsule thickness ex vivo

    Science.gov (United States)

    Ziebarth, Noel M.; Manns, Fabrice; Uhlhorn, Stephen; Parel, Jean-Marie

    2004-07-01

    Purpose: To design a non-contact optical system to measure lens capsule thickness in cadaver eyes. Methods: The optical system uses a 670nm laser beam delivered to a single-mode fiber coupler. The output of the fiber coupler is focused onto the tissue using an aspheric lens (NA=0.68) mounted on a motorized translation stage. Light reflected from the sample is collected by the fiber coupler and sent to a silicon photodiode connected to a power meter. Peaks in the power signal are detected when the focal point of the aspheric lens coincides with the capsule boundaries. The capsule thickness is proportional to the distance between successive peaks. Anterior and posterior lens capsule thickness measurements were performed on 13 human, 10 monkey, and 34 New Zealand white rabbit lenses. The cadaver eyes were prepared for optical measurements by bonding a PMMA ring on the sclera. The posterior pole was sectioned, excess vitreous was removed, and the eye was placed on a Teflon slide. The cornea and iris were then sectioned. After the experiments, the lenses were excised, placed in 10% buffered formalin, and prepared for histology. Results: Central anterior lens capsule thickness was 9.4+/-2.9μm (human), 11.2+/-6.6μm (monkey), and 10.3+/-3.6μm (rabbit) optically and 14.9+/-1.6μm (human), 17.7+/-4.9μm (monkey), and 12.6+/-2.3μm (rabbit) histologically. The values for the central posterior capsule were 9.4+/-2.9μm (human), 6.6+/-2.5μm (monkey), and 7.9+/-2.3μm (rabbit) optically and 4.6+/-1.4μm (human), 4.5+/-1.2μm (monkey), and 5.7+/-1.7μm (rabbit) histologically. Conclusions: This study demonstrates that a non-contact optical system can successfully measure lens capsule thickness in cadaver eyes.

  9. Plasma optical modulators for intense lasers

    CERN Document Server

    Yu, Lu-Le; Qian, Lie-Jia; Chen, Min; Weng, Su-Ming; Sheng, Zheng-Ming; Jaroszynski, D A; Mori, W B; Zhang, Jie

    2016-01-01

    Optical modulators can be made nowadays with high modulation speed, broad bandwidth, while being compact, owing to the recent advance in material science and microfabrication technology. However, these optical modulators usually work for low intensity light beams. Here, we present an ultrafast, plasma-based optical modulator, which can directly modulate high power lasers with intensity up to 10^16 W/cm^2 level to produce an extremely broad spectrum with a fractional bandwidth over 100%, extending to the mid-infrared regime in the low-frequency side. This concept relies on two co-propagating laser beams in a sub-mm-scale underdense plasma, where a drive laser pulse first excites an electron plasma wave in its wake while a following carrier laser beam is modulated by the plasma wave. The laser and plasma parameters suitable for the modulator to work are presented. Such optical modulators may enable new applications in the high field physics.

  10. View angle dependence of cloud optical thicknesses retrieved by MODIS

    Science.gov (United States)

    Marshak, Alexander; Varnai, Tamas

    2005-01-01

    This study examines whether cloud inhomogeneity influences the view angle dependence of MODIS cloud optical thickness (tau) retrieval results. The degree of cloud inhomogeneity is characterized through the local gradient in 11 microns brightness temperature. The analysis of liquid phase clouds in a one year long global dataset of Collection 4 MODIS data reveals that while optical thickness retrievals give remarkably consistent results for all view directions if clouds are homogeneous, they give much higher tau-values for oblique views than for overhead views if clouds are inhomogeneous and the sun is fairly oblique. For solar zenith angles larger than 55deg, the mean optical thickness retrieved for the most inhomogeneous third of cloudy pixels is more than 30% higher for oblique views than for overhead views. After considering a variety of possible scenarios, the paper concludes that the most likely reason for the increase lies in three-dimensional radiative interactions that are not considered in current, one-dimensional retrieval algorithms. Namely, the radiative effect of cloud sides viewed at oblique angles seems to contribute most to the enhanced tau-values. The results presented here will help understand cloud retrieval uncertainties related to cloud inhomogeneity. They complement the uncertainty estimates that will start accompanying MODIS cloud products in Collection 5 and may eventually help correct for the observed view angle dependent biases.

  11. Modelling of new generation plasma optical devices

    Directory of Open Access Journals (Sweden)

    Litovko Irina V.

    2016-06-01

    Full Text Available The paper presents new generation plasma optical devices based on the electrostatic plasma lens configuration that opens a novel attractive possibility for effective high-tech practical applications. Original approaches to use of plasma accelerators with closed electron drift and open walls for the creation of a cost-effective low-maintenance plasma lens with positive space charge and possible application for low-cost, low-energy rocket engine are described. The preliminary experimental, theoretical and simulation results are presented. It is noted that the presented plasma devices are attractive for many different applications in the state-of-the-art vacuum-plasma processing.

  12. Thickness-dependent stress in plasma-deposited silicon dioxide films

    Science.gov (United States)

    Au, V.; Charles, C.; Bulla, D. A. P.; Love, J. D.; Boswell, R. W.

    2005-04-01

    Thick silicon dioxide (SiO2) films up to 5 μm have been deposited by helicon activated reactive evaporation (plasma assisted deposition with electron beam evaporation source) as both bilayer and trilayer structures, and the film stress was investigated in the context of optical waveguide fabrication. A model for stress in the SiO2-Si bilayer as a function of film thickness is formulated and interpreted in terms of Volmer-Weber film growth mechanisms. We find that island coalescence begins at a film thickness of less than 165 nm and continues until about 700 nm. Above approximately 1 μm thickness, the film continues growth as a continuous film. The stress in a deposited SiO2 film in an SiO2-Si-SiO2 trilayer structure was investigated by adapting the established Stoney's equation for a trilayer system, and comparing it with a thermally grown SiO2 trilayer. A constant value of stress is obtained for the deposited SiO2 film for film thickness >1μm which was consistently less than both measured and previously reported values of stress in thermally grown SiO2.

  13. Plasma optical modulators for intense lasers

    Science.gov (United States)

    Yu, Lu-Le; Zhao, Yao; Qian, Lie-Jia; Chen, Min; Weng, Su-Ming; Sheng, Zheng-Ming; Jaroszynski, D. A.; Mori, W. B.; Zhang, Jie

    2016-06-01

    Optical modulators can have high modulation speed and broad bandwidth, while being compact. However, these optical modulators usually work for low-intensity light beams. Here we present an ultrafast, plasma-based optical modulator, which can directly modulate high-power lasers with intensity up to 1016 W cm-2 to produce an extremely broad spectrum with a fractional bandwidth over 100%, extending to the mid-infrared regime in the low-frequency side. This concept relies on two co-propagating laser pulses in a sub-millimetre-scale underdense plasma, where a drive laser pulse first excites an electron plasma wave in its wake while a following carrier laser pulse is modulated by the plasma wave. The laser and plasma parameters suitable for the modulator to work are based on numerical simulations.

  14. Optical Properties of Relativistic Plasma Mirrors

    CERN Document Server

    Vincenti, H; Kahaly, S; Martin, Ph; Quéré, F

    2013-01-01

    The advent of ultrahigh-power femtosecond lasers creates a need for optical components suitable to handle ultrahigh light intensities. Due to the unavoidable laser-induced ionization of matter, these components will have to be based on a plasma medium. An archetype of such optical elements is a plasma mirror, created when an intense femtosecond laser pulse impinges on a solid target. It consists of a dense plasma, formed by the laser field itself, which specularly reflects the main part of the pulse. Plasma mirrors have major potential applications as active optical elements to manipulate the temporal and spatial properties of intense laser beams, in particular for the generation of intense attosecond pulses of light. We investigate the basic physics involved in the deformation of a plasma mirror resulting from the light pressure exerted by the ultraintense laser during reflection, by deriving a simple model of this fundamental process, which we validate both numerically and experimentally. The understanding ...

  15. The dynamics of radiation driven, optically thick winds

    CERN Document Server

    Shen, Rong-Feng; Piran, Tsvi

    2016-01-01

    Recent observation of some luminous transient sources with low color temperatures suggests that the emission is dominated by optically thick winds driven by super-Eddington accretion. We present a general analytical theory of the dynamics of radiation pressure-driven, optically thick winds. Unlike the classical adiabatic stellar wind solution whose dynamics are solely determined by the sonic radius, here the loss of the radiation pressure due to photon diffusion also plays an important role. We identify two high mass loss rate regimes ($\\dot{M} > L_{\\rm Edd\\,}/c^2$). In the large total luminosity regime the solution resembles an adiabatic wind solution. Both the radiative luminosity, $L$, and the kinetic luminosity, $L_k$, are super-Eddington with $L < L_k$ and $L \\propto L_k^{1/3}$. In the lower total luminosity regime most of the energy is carried out by the radiation with $L_k < L \\approx L_{\\rm Edd\\,}$. In a third, low mass loss regime ($\\dot{M} < L_{\\rm Edd\\,}/c^2$), the wind becomes optically t...

  16. Rapid optical determination of topological insulator nanoplate thickness and oxidation

    Directory of Open Access Journals (Sweden)

    Fan Yang

    2017-01-01

    Full Text Available The stability of 2D antimony telluride (Sb2Te3 nanoplates in ambient conditions is elucidated. These materials exhibit an anisotropic oxidation mode, and CVD synthesized samples oxidize at a much faster rate than exfoliated samples investigated in previous studies. Optical measurement techniques are introduced to rapidly measure the oxidation modes and thickness of 2D materials. Auger characterization were conducted to confirm that oxygen replaces tellurium as opposed to antimony under ambient conditions. No surface morphology evolution was detected in AFM before and after exposure to air. These techniques were employed to determine the origin of the thickness dependent color change effect in Sb2Te3. It is concluded that this effect is a combination of refractive index change due to oxidation and Fresnel effects.

  17. Variability of aerosol optical thickness and atmospheric turbidity in Tunisia

    Science.gov (United States)

    Masmoudi, M.; Chaabane, M.; Medhioub, K.; Elleuch, F.

    The aerosol optical thickness (AOT) τa computed from the spectral sun photometer in Thala (Tunisia) exhibited variability ranging from approximately 0.03 to greater than 2.0 at 870 nm for March-October 2001. These measurements are compared to the aerosol optical thickness computed in Ouagadougou (Burkina-Faso), Banizoumbou (Niger), IMC Oristano (Sardinia) and Rome Tor Vergata (Italy). Analysis of τa data from this observation network suggests that there is a high temporal and spatial variability of τa in the different sites. The Angström wavelength exponent α was found to vary with the magnitude of the aerosol optical thickness, with values as high as 1.5 for very low τa, and values of -0.1 for high τa situations. The relationship between the two parameters τa and α is investigated. Values of the turbidity coefficient β have been determined in Thala (Tunisia) for 8 months in 2001 based on a direct fitting method of the Angström power law expression using sun photometer data. The monthly averaged values of the turbidity coefficient β vary between 0.15 and 0.33. The months of July and October experienced the highest turbidity, while April experienced the lowest aerosol loading on average. The turbidity shows a maximum and minimum values for the Southwest and the Northwest wind directions, respectively. The single scattering albedo ωo for the 870 nm wavelength obtained from solar aureole data in Thala is analysed according to the particles' origin.

  18. An optical tweezer for complex plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Schablinski, Jan; Wieben, Frank; Block, Dietmar [Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Leibnizstrasse 17-19, 24098 Kiel (Germany)

    2015-04-15

    This paper describes the experimental realization of an optical trap for microparticles levitating in the plasma sheath. Single particles can be trapped in a laser beam comparable to optical tweezers known from colloidal suspensions. The trapping mechanism is discussed and two applications of the system are shown.

  19. Recent development of plasma optical systems (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Goncharov, A. A., E-mail: gonchar@iop.kiev.ua [Institute of Physics, National Academy of Science, Kiev 03028 (Ukraine)

    2016-02-15

    The article devotes a brief description of the recent development and current status of an ongoing research of plasma optical systems based on the fundamental plasma optical idea magnetic electron isolation, equipotentialization magnetic field lines, and the axi-symmetric cylindrical electrostatic plasma lens (PL) configuration. The experimental, theoretical, and simulation investigations have been carried out over recent years collaboratively between IP NASU (Kiev), LBNL (Berkeley, USA), and HCEI RAS (Tomsk). The crossed electric and magnetic fields inherent the PL configuration that provides the attractive method for establishing a stable plasma discharge at low pressure. Using PL configuration, several high reliability plasma devices were developed. These devices are attractive for many high-tech applications.

  20. Optically thick envelopes around ULXs powered by accreating neutron stars

    Science.gov (United States)

    Mushtukov, Alexander A.; Suleimanov, Valery F.; Tsygankov, Sergey S.; Ingram, Adam

    2017-01-01

    Magnetized neutron stars power at least some ultra-luminous X-ray sources. The accretion flow in these cases is interrupted at the magnetospheric radius and then reaches the surface of a neutron star following magnetic field lines. Accreting matter moving along magnetic field lines forms the accretion envelope around the central object. We show that, in case of high mass accretion rates ≳ 1019 g s-1 the envelope becomes closed and optically thick, which influences the dynamics of the accretion flow and the observational manifestation of the neutron star hidden behind the envelope. Particularly, the optically thick accretion envelope results in a multi-color black-body spectrum originating from the magnetospheric surface. The spectrum and photon energy flux vary with the viewing angle, which gives rise to pulsations characterized by high pulsed fraction and typically smooth pulse profiles. The reprocessing of radiation due to interaction with the envelope leads to the disappearance of cyclotron scattering features from the spectrum. We speculate that the super-orbital variability of ultra-luminous X-ray sources powered by accreting neutron stars can be attributed to precession of the neutron star due to interaction of magnetic dipole with the accretion disc.

  1. The Effect of Thickness of Aluminium Films on Optical Reflectance

    Directory of Open Access Journals (Sweden)

    Robert Lugolole

    2015-01-01

    Full Text Available In Uganda and Africa at large, up to 90% of the total energy used for food preparation and water pasteurization is from fossil fuels particularly firewood and kerosene which pollute the environment, yet there is abundant solar energy throughout the year, which could also be used. Uganda is abundantly rich in clay minerals such as ball clay, kaolin, feldspar, and quartz from which ceramic substrates were developed. Aluminium films of different thicknesses were deposited on different substrates in the diffusion pump microprocessor vacuum coater (Edwards AUTO 306. The optical reflectance of the aluminium films was obtained using a spectrophotometer (SolidSpec-3700/DUV-UV-VIS-NIR at various wave lengths. The analysis of the results of the study revealed that the optical reflectance of the aluminium films was above 50% and increased with increasing film thickness and wavelength. Thus, this method can be used to produce reflector systems in the technology of solar cooking and other appliances which use solar energy.

  2. Optical stent inspection of surface texture and coating thickness

    Science.gov (United States)

    Bermudez, Carlos; Laguarta, Ferran; Cadevall, Cristina; Matilla, Aitor; Ibañez, Sergi; Artigas, Roger

    2017-02-01

    Stent quality control is a critical process. Coronary stents have to be inspected 100% so no defective stent is implanted into a human body. We have developed a high numerical aperture optical stent inspection system able to acquire both 2D and 3D images. Combining a rotational stage, an area camera with line-scan capability and a triple illumination arrangement, unrolled sections of the outer, inner, and sidewalls surfaces are obtained with high resolution. During stent inspection, surface roughness and coating thickness uniformity is of high interest. Due to the non-planar shape of the surface of the stents, the thickness values of the coating need to be corrected with the 3D surface local slopes. A theoretical model and a simulation are proposed, and a measurement with white light interferometry is shown. Confocal and spectroscopic reflectometry showed to be limited in this application due to stent surface roughness. Due to the high numerical aperture of the optical system, only certain parts of the stent are in focus, which is a problem for defect detection, specifically on the sidewalls. In order to obtain fully focused 2D images, an extended depth of field algorithm has been implemented. A comparison between pixel variance and Laplacian filtering is shown. To recover the stack image, two different methods are proposed: maximum projection and weighted intensity. Finally, we also discuss the implementation of the processing algorithms in both the CPU and GPU, targeting real-time 2-Million pixel image acquisition at 50 frames per second.

  3. Local Radiative Hydrodynamic and Magnetohydrodynamic Instabilities in Optically Thick Media

    CERN Document Server

    Blaes, Omer M; Blaes, Omer; Socrates, Aristotle

    2003-01-01

    We examine the local conditions for radiative damping and driving of short wavelength, propagating hydrodynamic and magnetohydrodynamic (MHD) waves in static, optically thick, stratified equilibria. We show that so-called strange modes in stellar oscillation theory and magnetic photon bubbles are intimately related and are both fundamentally driven by the background radiation pressure acting on density and opacity fluctuations in compressible waves. We identify the necessary criteria for unstable driving of these waves, and show that this driving can exist in both gas and radiation pressure dominated media, as well as pure Thomson scattering media in the MHD case. We discuss the physical origin of these instabilities, and briefly describe the conditions under which they might be manifested in both stellar envelopes and accretion disks.

  4. Automatic segmentation of choroidal thickness in optical coherence tomography.

    Science.gov (United States)

    Alonso-Caneiro, David; Read, Scott A; Collins, Michael J

    2013-01-01

    The assessment of choroidal thickness from optical coherence tomography (OCT) images of the human choroid is an important clinical and research task, since it provides valuable information regarding the eye's normal anatomy and physiology, and changes associated with various eye diseases and the development of refractive error. Due to the time consuming and subjective nature of manual image analysis, there is a need for the development of reliable objective automated methods of image segmentation to derive choroidal thickness measures. However, the detection of the two boundaries which delineate the choroid is a complicated and challenging task, in particular the detection of the outer choroidal boundary, due to a number of issues including: (i) the vascular ocular tissue is non-uniform and rich in non-homogeneous features, and (ii) the boundary can have a low contrast. In this paper, an automatic segmentation technique based on graph-search theory is presented to segment the inner choroidal boundary (ICB) and the outer choroidal boundary (OCB) to obtain the choroid thickness profile from OCT images. Before the segmentation, the B-scan is pre-processed to enhance the two boundaries of interest and to minimize the artifacts produced by surrounding features. The algorithm to detect the ICB is based on a simple edge filter and a directional weighted map penalty, while the algorithm to detect the OCB is based on OCT image enhancement and a dual brightness probability gradient. The method was tested on a large data set of images from a pediatric (1083 B-scans) and an adult (90 B-scans) population, which were previously manually segmented by an experienced observer. The results demonstrate the proposed method provides robust detection of the boundaries of interest and is a useful tool to extract clinical data.

  5. A code for optically thick and hot photoionized media

    CERN Document Server

    Dumont, A M; Collin, S

    2000-01-01

    We describe a code designed for hot media {(T $\\ge$} a few 10$^4$ K), optically thick to Compton scattering. It computes the structure of a plane-parallel slab of gas in thermal and ionization equilibrium, illuminated on one or on both sides by a given spectrum. Contrary to the other photoionization codes, it solves the transfer of the continuum and of the lines in a two stream approximation, without using the local escape probability formalism to approximate the line transfer. We stress the importance of taking into account the returning flux even for small column densities (10$^{22}$ cm$^{-2}$), and we show that the escape probability approximation can lead to strong errors in the thermal and ionization structure, as well as in the emitted spectrum, for a Thomson thickness larger than a few tenths. The transfer code is coupled with a Monte Carlo code which allows to take into account Compton and inverse Compton diffusions, and to compute the spectrum emitted up to MeV energies, in any geometry. Comparisons ...

  6. [Effects of aerosol optical thickness on the optical remote sensing imaging quality].

    Science.gov (United States)

    Hu, Xin-Li; Gu, Xing-Fa; Yu, Tao; Zhang, Zhou-Wei; Li, Juan; Luan, Hai-Jun

    2014-03-01

    In recent years, due to changes in atmospheric environment, atmospheric aerosol affection on optical sensor imaging quality is increasingly considered by the load developed departments. Space-based remote sensing system imaging process, atmospheric aerosol makes optical sensor imaging quality deterioration. Atmospheric medium causing image degradation is mainly forward light scattering effect caused by the aerosol turbid medium. Based on the turbid medium radiation transfer equation, the point spread function models were derived contained aerosol optical properties of atmosphere in order to analyze and evaluate the atmospheric blurring effect on optical sensor imaging system. It was found that atmospheric aerosol medium have effect on not only energy decay of atmospheric transmittance, but also the degradation of image quality due to the scattering effect. Increase of atmospheric aerosol optical thickness makes aerosol scattering intensity enhanced, variation of aerosol optical thickness is also strongly influences the point spread function of the spatial distribution. it is because the degradation of aerosol in spatial domain, which reduces the quality of remote sensing image, in particularly reduction of the sharpness of image. Meanwhile, it would provide a method to optimize and improve simulation of atmospheric chain.

  7. Optics and Plasma Research Department annual progress report for 2004

    DEFF Research Database (Denmark)

    Bindslev, Henrik; Lynov, Jens-Peter; Pedersen, C.

    2005-01-01

    , optical materials, biophotonics, fusion plasma physics, and industrial plasma technology. The department employs key technologies in micro- and nanotechnology for optical systems, temperaturecalibration, and infrared measurement techniques. The research is supported by several EU programmes, including...

  8. Correction Factor for Gaussian Deconvolution of Optically Thick Linewidths in Homogeneous Sources

    Science.gov (United States)

    Kastner, S. O.; Bhatia, A. K.

    1999-01-01

    Profiles of optically thick, non-Gaussian emission line profiles convoluted with Gaussian instrumental profiles are constructed, and are deconvoluted on the usual Gaussian basis to examine the departure from accuracy thereby caused in "measured" linewidths. It is found that "measured" linewidths underestimate the true linewidths of optically thick lines, by a factor which depends on the resolution factor r congruent to Doppler width/instrumental width and on the optical thickness tau(sub 0). An approximating expression is obtained for this factor, applicable in the range of at least 0 tau(sub 0) estimates of the true linewidth and optical thickness.

  9. Evaluation of choroidal thickness in psoriasis using optical coherence tomography.

    Science.gov (United States)

    Türkcü, Fatih Mehmet; Şahin, Alparslan; Yüksel, Harun; Akkurt, Meltem; Uçmak, Derya; Çınar, Yasin; Yıldırım, Adnan; Çaça, İhsan

    2016-12-01

    The purpose of this study was to evaluate choroidal thickness (CT) in patients with psoriasis using enhanced depth imaging optical coherence tomography (EDI-OCT) and to determine its relationship with psoriasis activity indices. In this prospective study, EDI-OCT images were obtained in consecutive patients with psoriasis and in age-gender-matched healthy individuals. Comprehensive ophthalmic examination and EDI-OCT evaluation were performed. CT was measured in the subfoveal area. Correlation analyses were performed to identify the relationship of the CT with disease duration and clinical disease activity score. In total, 65 individuals were evaluated in this study, 35 with psoriasis and 30 controls. The mean disease duration of the patients with psoriasis was 15.7 ± 8.8 years (0.3-34 years). There was no difference between groups with respect to age and gender (p = 0.695 and p = 0.628, respectively). Five of the 35 patients with psoriasis had anterior uveitis. None of the patients with psoriasis had signs of posterior uveitis. CT was significantly higher in the psoriasis group than that of control subjects (p psoriasis patients. Large serial and comparative studies are necessary to evaluate EDI-OCT, an examination that may be helpful in understanding the effects of psoriasis on the eye and its pathophysiology.

  10. Thickness dependent enhancement of the polar magneto-optic Kerr effect in Co magnetoplasmonic nanostructures

    CERN Document Server

    Melander, Emil; Caballero, Blanca; García-Martín, Antonio; Hjörvarsson, Björgvin; Kapaklis, Vassilios; Papaioannou, Evangelos Th

    2016-01-01

    We reveal the influence of the thickness of the ferromagnetic layer on the surface plasmon polariton assisted enhancement of the polar magneto-optic Kerr effect. The optical and magneto-optical response is strongly altered by the thickness of the magnetic layer as shown in specular reflectivity and polar magneto-optical Kerr effect measurements. That the main spectral feature of the magneto-optical enhancement does not only depend on the in-plane structuring of the sample but also on the out-of-plane geometrical parameters, such as the thickness. For the specific thickness of 100 nm for the Co layer an sixfold enhancement of the polar magneto-optical effect is observed, as compared to a continuous Co film of the same thickness.

  11. Effects of the Planar Optical Waveguide Thickness on the Transmission Attenuation①

    Institute of Scientific and Technical Information of China (English)

    WANGJian; SUHansong

    1997-01-01

    By analyzing and computing,according to the wave theory of planar optical waveguide attenuation,a new opinion is put forward.A series of transmission atteenuation with waveguide film-thickness are given and it illustrates that optical transmission is not carrying out efficiently within some waveguide film-thickness.

  12. Optics and Plasma Research Department. Annual progress report for 2004

    Energy Technology Data Exchange (ETDEWEB)

    Bindslev, H.; Lynov, J.P.; Pedersen, C.; Petersen, P.M.; Skaarup, B. (eds.)

    2005-03-01

    The Optics and Plasma Research Department performs basic and applied research within three scientific programmes: (1) laser systems and optical materials, (2) optical diagnostics and information processing and (3) plasma physics and technology. The department has core competencies in optical sensors, optical materials, biophotonics, fusion plasma physics, and industrial plasma technology. The department employs key technologies in micro- and nanotechnology for optical systems, temperature calibration, and infrared measurement techniques. The research is supported by several EU programmes, including EURATOM, by Danish research councils and by industry. A summary of the activities in 2004 is presented. (au)

  13. Evaluation of W-Si-C thick coating as a plasma facing material

    Energy Technology Data Exchange (ETDEWEB)

    Seok, Hyun Kwang [Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of)], E-mail: drstone@kist.re.kr; Jung, Kyung Ho; Kim, Yu Chan; Shim, Jae-Hyeok; Kim, Dong-Ik; Han, Seung-Hee [Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Baik, Kyeong Ho [ChungNam National University, Deajeon 305-764 (Korea, Republic of); Cha, Pil-Ryung [School of Advanced Materials Engineering, Kooknin University, Seoul 136-702 (Korea, Republic of)

    2009-04-30

    We present tungsten alloy coating of 150-200 {mu}m thickness with improved plasma erosion resistance fabricated by plasma spraying of granular W-SiC composite powders. During increasing the SiC concentration to 8 wt%, we observed the increase in the hardness of the coating from 250 to 440 Hv. The plasma erosion depth of the coating decreased by 10 times compared with pure tungsten in the same erosion environment.

  14. The thickness of the retrobulbar portion of the optic nerve in Graves ophthalmopathy measured by ultrasound

    Directory of Open Access Journals (Sweden)

    Stefanović Ivan

    2009-01-01

    Full Text Available Introduction. The clinical diagnostic of Graves ophthalmopathy is based on the association of ocular signs and the disease of the thyroid gland. The evolution of the disease involves the development of eye globe protrusion, extraocular muscle thickening pressuring the optic nerve, which can result in its thickness. Objective. The aim of the paper is to find whether the retrobulbar optic nerve thickened and if there was a correlation between its possible thickening and the thickness of the muscles in Graves ophthalmopathy. We also wished to test the theory of compressive aetiology of such thickening using a 30-degree test. Methods. We examined 28 patients with Graves ophthalmopathy. The thickness of the retrobulbar optic nerve was measured by ultrasound on a B-scan using the Schraeder's method and by the largest thickness of the internal muscle. Results. The thickness of the retrobulbar portion of the optic nerve in the 52 analyzed eyes with signs of the disease ranged between 3.24 mm to 6.30 mm, with median of 5.13 mm, indicating that the majority of the patients had optic nerve thickening rating at this value. Forty-eight eyes had a marked retrobulbar optic nerve thickening, with the thickening over 4 mm, while in 4 eyes with signs of Graves ophthalmopathy the thickness of the optic nerve was within normal limits. We detected that 92.3% of the patients with muscular thickening also had a directly proportional thickening of the retrobulbar optic nerve. By using the 30-degree test we confirmed the diagnosis of compressive neuropathy. Conclusion. Patients with Graves ophthalmopathy and thickened muscles, also have a thickening of the retrobulbar optic nerve; the rate of the thickness directly depends on the degree of the muscular thickness. The word is of compressive neuropathy, i.e. the thickness of the optic nerve is the result of subarachnoid fluid stasis caused by the compression on the optic nerve.

  15. The rapid and precise determination of the optical thickness of thin coatings in a vacuum.

    Science.gov (United States)

    van Heel, A C; van Vonno, W

    1967-05-01

    The classical interference experiment with a double slit is adapted for measuring the optical thickness (n - 1)d of transparent and slightly absorbing thin films on transparent or reflecting substrates and for measuring the geometrical thickness d of metal films on reflecting substrates. Also, a method is described for measuring in vacuum the optical thickness of transparent or slightly absorbing thin films on transparent substrates. Results are given of measurements on magnesium fluoride, silicon monoxide, and zinc sulfide films. The influence of admitting air into the vacuum chamber has been investigated. With the available arrangements, a precision of lambda/1000 in the determination of the optical or geometrical thickness is easily obtainable for all film thicknesses. A thickness determination can he completed in about 1 min.

  16. Optical properties and structures of silver thin films deposited by magnetron sputtering with different thicknesses

    Institute of Scientific and Technical Information of China (English)

    Xilian Sun; Ruijin Hong; Haihong Hou; Zhengxiu Fan; Jianda Shao

    2006-01-01

    A series of thin Ag films with different thicknesses grown under identical conditions are analyzed by means of spectrophotometer. From these measurements the values of refractive index and extinction coefficient are calculated. The films are deposited onto BK7 glass substrates by direct current (DC) magnetron sputtering. It is found that the optical properties of the Ag films can be affected by films thickness.Below critical thickness of 17 nm, which is the thickness at which Ag films form continuous films, the optical properties and constants vary significantly with thickness increasing and then tend to a stable value up to about 40 nm. At the same time, X-ray diffraction measurement is carried out to examine the microstructure evolution of Ag films as a function of films thickness. The relation between optical properties and microstructure is discussed.

  17. Plasma spectroscopy using optical vortex laser

    Science.gov (United States)

    Yoshimura, Shinji; Aramaki, Mitsutoshi; Terasaka, Kenichiro; Toda, Yasunori; Czarnetzki, Uwe; Shikano, Yutaka

    2014-10-01

    Laser spectroscopy is a useful tool for nonintrusive plasma diagnostics; it can provide many important quantities in a plasma such as temperature, density, and flow velocity of ions and neutrals from the spectrum obtained by scanning the frequency of narrow bandwidth laser. Obtainable information is, however, limited in principle to the direction parallel to the laser path. The aim of this study is to introduce a Laguerre-Gaussian beam, which is called as optical vortex, in place of a widely used Hermite-Gaussian beam. One of the remarkable properties of the Laguerre-Gaussian beam is that it carries an angular momentum in contrast to the Hermite-Gaussian beam. It follows that particles in the laser beam feel the Doppler effect even in the transverse direction of the laser path. Therefore it is expected that the limitation imposed by the laser path can be overcome by using an optical vortex laser. The concept of optical vortex spectroscopy, the development of the laser system, and some preliminary results of a proof-of-principle experiment will be presented. This work is performed with the support and under the auspices of NINS young scientists collaboration program for cross-disciplinary study, NIFS collaboration research program (NIFS13KOAP026), and JSPS KAKENHI Grant Number 25287152.

  18. Measurement of absolute optical thickness of mask glass by wavelength-tuning Fourier analysis.

    Science.gov (United States)

    Kim, Yangjin; Hbino, Kenichi; Sugita, Naohiko; Mitsuishi, Mamoru

    2015-07-01

    Optical thickness is a fundamental characteristic of an optical component. A measurement method combining discrete Fourier-transform (DFT) analysis and a phase-shifting technique gives an appropriate value for the absolute optical thickness of a transparent plate. However, there is a systematic error caused by the nonlinearity of the phase-shifting technique. In this research the absolute optical-thickness distribution of mask blank glass was measured using DFT and wavelength-tuning Fizeau interferometry without using sensitive phase-shifting techniques. The error occurring during the DFT analysis was compensated for by using the unwrapping correlation. The experimental results indicated that the absolute optical thickness of mask glass was measured with an accuracy of 5 nm.

  19. Real-time dielectric-film thickness measurement system for plasma processing chamber wall monitoring.

    Science.gov (United States)

    Kim, Jin-Yong; Chung, Chin-Wook

    2015-12-01

    An in-situ real-time processing chamber wall monitoring system was developed. In order to measure the thickness of the dielectric film, two frequencies of small sinusoidal voltage (∼1 V) signals were applied to an electrically floated planar type probe, which is positioned at chamber wall surface, and the amplitudes of the currents and the phase differences between the voltage and current were measured. By using an equivalent sheath circuit model including a sheath capacitance, the dielectric thickness can be obtained. Experiments were performed in various plasma condition, and reliable dielectric film thickness was obtained regardless of the plasma properties. In addition, availability in commercial chamber for plasma enhanced chemical vapor deposition was verified. This study is expected to contribute to the control of etching and deposition processes and optimization of periodic maintenance in semiconductor manufacturing process.

  20. Plasma synthesis of rare earth doped integrated optical waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Raoux, S.; Anders, S.; Yu, K.M.; Brown, I.G. [Lawrence Berkeley Lab., CA (United States); Ivanov, I.C. [Charles Evans & Associates, Redwood City, CA (United States)

    1995-03-01

    We describe a novel means for the production of optically active planar waveguides. The makes use of a low energy plasma deposition. Cathodic-arc-produced metal plasmas the metallic components of the films and gases are added to form compound films. Here we discuss the synthesis of Al{sub 2{minus}x}ER{sub x}O{sub 3} thin films. The erbium concentration (x) can vary from 0 to 100% and the thickness of the film can be from Angstroms to microns. In such material, at high active center concentration (x=l% to 20%), erbium ions give rise to room temperature 1.53{mu}m emission which has minimum loss in silica-based optical fibers. With this technique, multilayer integrated planar waveguide structures can be grown, such as Al{sub 2}O{sub 3}/Al{sub 2{minus}x}Er{sub x}O{sub 3}/Al{sub 2}O{sub 3}/Si, for example.

  1. Retinal nerve fiber layer thickness is associated with lesion length in acute optic neuritis

    DEFF Research Database (Denmark)

    Kallenbach, K; Simonsen, Helle Juhl; Sander, B;

    2010-01-01

    BACKGROUND: Acute optic neuritis occurs with and without papillitis. The presence of papillitis has previously been thought to imply an anterior location of the neuritis, but imaging studies seeking to test this hypothesis have been inconclusive. METHODS: This prospective observational cohort study...... included 41 patients with unilateral optic neuritis and 19 healthy volunteers. All patients were evaluated and examined within 28 days of onset of symptoms. The peripapillary retinal nerve fiber layer thickness (RNFLT), an objective quantitative measure of optic nerve head edema, was measured by optical...... in the development of optic nerve head edema in optic neuritis....

  2. Choroidal thickness in Chinese patients with non-arteritic anterior ischemic optic neuropathy.

    Science.gov (United States)

    Jiang, Libin; Chen, Lanlan; Qiu, Xiujuan; Jiang, Ran; Wang, Yaxing; Xu, Liang; Lai, Timothy Y Y

    2016-08-31

    Non-arteritic anterior ischemic optic neuropathy (NA-AION) is one of the most common types of ischemic optic neuropathy. Several recent studies suggested that abnormalities of choroidal thickness might be associated with NA-AION. The main objective of this case-control study was to evaluate whether choroidal thickness is an ocular risk factor for the development of NA-AION by evaluating the peripapillary and subfoveal choroidal thicknesses in affected Chinese patients. Forty-four Chinese patients with unilateral NA-AION were recruited and compared with 60 eyes of 60 normal age and refractive-error matched control subjects. Peripapillary and subfoveal choroidal thicknesses were measured by enhanced depth imaging optical coherence tomography. Choroidal thicknesses of eyes with NA-AION and unaffected fellow eyes were compared with normal controls. Choroidal thicknesses of NA-AION eyes with or without optic disc edema were also compared. The correlation between choroidal thickness and retinal nerve fiber layer (RNFL) thickness, logMAR best-corrected visual acuity (BCVA), and the mean deviation (MD) of Humphrey static perimetry in NA-AION eyes were analyzed. The peripapillary choroidal thicknesses at the nasal, nasal inferior and temporal inferior segments in NA-AION eyes with optic disc edema were significantly thicker compared with that of normal subjects (P choroidal thicknesses between the unaffected fellow eyes of NA-AION patients and normal eyes of healthy controls; or between the NA-AION eyes with resolved optic disc edema and normal eyes (all P > 0.05). No significant correlation between choroidal thickness and RNFL thickness, logMAR BCVA and perimetry MD was found in eyes affected by NA-AION (all P > 0.05). Increase in peripapillary choroid thickness in some segments was found in NA-ION eyes with optic disc edema. However, our findings do not support the hypothesis that choroidal thickness is abnormal in Chinese patients with NA-AION compared with

  3. Plasma apolipoprotein M is reduced in metabolic syndrome but does not predict intima media thickness

    DEFF Research Database (Denmark)

    Dullaart, Robin P F; Plomgaard, Peter; de Vries, Rindert

    2009-01-01

    BACKGROUND: Apolipoprotein (apo) M may exert anti-atherogenic properties in experimental studies. Its hepatic gene expression may be linked to glucose and lipid metabolism. Plasma apoM is decreased in obese mouse models. We hypothesized that plasma apoM is lower in metabolic syndrome (Met......S) subjects, and determined whether intima media thickness (IMT) is associated with apoM. METHODS: In 19 non-diabetic subjects with and 60 non-diabetic subjects without MetS (NCEP, ATP III criteria), the relationships of plasma apoM with obesity, glucose, insulin, lipids and adipokines, as well as with IMT...

  4. Analysis of Normal Peripapillary Choroidal Thickness via Spectral Domain Optical Coherence Tomography

    Science.gov (United States)

    Ho, Joseph; Branchini, Lauren; Regatieri, Caio; Krishnan, Chandrasekharan; Fujimoto, James G.; Duker, Jay S.

    2011-01-01

    PURPOSE To analyze the normal peripapillary choroidal thickness utilizing a commercial spectral domain optical coherence tomography (OCT) device and determine the inter-grader reproducibility of this method. DESIGN Retrospective, non-comparative, non-interventional case series. PARTICIPANTS Thirty-six eyes of 36 normal patients seen at the New England Eye Center between April and September 2010. METHODS All patients underwent high-definition scanning with the Cirrus HD-OCT. Two raster scans were obtained per eye, a horizontal and a vertical scan, both of which were centered at the optic nerve. Two independent graders individually measured the choroidal thickness. Choroidal thickness was measured from the posterior edge of the retinal pigment epithelium to the choroid-scleral junction at 500 μm intervals away from the optic nerve in the superior, inferior, nasal and temporal quadrants. Statistical analysis was conducted to compare mean choroidal thicknesses. Inter-grader reproducibility was assessed by intraclass correlation coefficient and Pearson’s correlation coefficient. Average choroidal thickness in each quadrant was compared to retinal nerve fiber layer (RNFL) thickness in their respective quadrants. MAIN OUTCOME MEASURES Peripapillary choroidal thickness, intraclass coefficient, Pearson’s correlation coefficient. RESULTS The peripapillary choroid in the inferior quadrant was significantly thinner compared to all other quadrants (pthickness. The inferior peripapillary choroid was significantly thinner compared to all other quadrants at all distances measured away from the optic nerve (pchoroid increases in thickness the farther it was away from the optic nerve and eventually approaching a plateau. Intraclass correlation coefficient ranged from 0.62 to 0.93 and Pearson’s correlation coefficient ranged from 0.74 to 0.95 (pthickness nor average age was significantly correlated with average choroidal thickness. CONCLUSIONS Manual segmentation of the

  5. Optical coherence tomography enables accurate measurement of equine cartilage thickness for determination of speed of sound.

    Science.gov (United States)

    Puhakka, Pia H; Te Moller, Nikae C R; Tanska, Petri; Saarakkala, Simo; Tiitu, Virpi; Korhonen, Rami K; Brommer, Harold; Virén, Tuomas; Jurvelin, Jukka S; Töyräs, Juha

    2016-08-01

    Background and purpose - Arthroscopic estimation of articular cartilage thickness is important for scoring of lesion severity, and measurement of cartilage speed of sound (SOS)-a sensitive index of changes in cartilage composition. We investigated the accuracy of optical coherence tomography (OCT) in measurements of cartilage thickness and determined SOS by combining OCT thickness and ultrasound (US) time-of-flight (TOF) measurements. Material and methods - Cartilage thickness measurements from OCT and microscopy images of 94 equine osteochondral samples were compared. Then, SOS in cartilage was determined using simultaneous OCT thickness and US TOF measurements. SOS was then compared with the compositional, structural, and mechanical properties of cartilage. Results - Measurements of non-calcified cartilage thickness using OCT and microscopy were significantly correlated (ρ = 0.92; p measurement of articular cartilage thickness. Although SOS measurements lacked accuracy in thin equine cartilage, the concept of SOS measurement using OCT appears promising.

  6. Effects of diabetic keratopathy on corneal optical density, central corneal thickness, and corneal endothelial cell counts.

    Science.gov (United States)

    Gao, Feng; Lin, Tao; Pan, Yingzhe

    2016-09-01

    Diabetic keratopathy is an ocular complication that occurs with diabetes. In the present study, the effect of diabetic keratopathy on corneal optical density, central corneal thickness, and corneal endothelial cell count was investigated. One hundred and eighty diabetic patients (360 eyes) were enrolled in the study during the period from March, 2012 to March, 2013. The patients were divided into three age groups: 10 years, with 60 patients per group (120 eyes). During the same period, 60 healthy cases (120 eyes) were selected and labeled as the normal control group. The Pentacam was used to measure the corneal optical density, and central corneal thickness. Specular microscopy was used to examine the corneal endothelial cell density. The coefficient of partial correlation was used to control age and correlate the analysis between the corneal optical density, corneal endothelial cell density, and central corneal thickness. The stage of the disease, the medial and intimal corneal optical density and central corneal thickness was analyzed in the diabetes group. The corneal optical density in the diabetes group increased compared with that of the normal control group. The medial and intimal corneal optical density and central corneal thickness were positively correlated with the course of the disease. However, the corneal endothelial cell density was not associated with the course of diabetes. There was a positive association between the medial and intimal corneal optical density and central corneal thickness of the diabetic patients. In conclusion, the results of the present study show that medial and intimal corneal optical density and central corneal thickness were sensitive indicators for early diabetic keratopathy.

  7. Retinal thickness measured with optical coherence tomography and risk of disability worsening in multiple sclerosis

    DEFF Research Database (Denmark)

    Martinez-Lapiscina, Elena H; Arnow, Sam; Wilson, James A

    2016-01-01

    BACKGROUND: Most patients with multiple sclerosis without previous optic neuritis have thinner retinal layers than healthy controls. We assessed the role of peripapillary retinal nerve fibre layer (pRNFL) thickness and macular volume in eyes with no history of optic neuritis as a biomarker of dis...

  8. Analyses of the plasma generated by laser irradiation on sputtered target for determination of the thickness used for plasma generation

    Energy Technology Data Exchange (ETDEWEB)

    Kumaki, Masafumi, E-mail: masafumi.kumaki@riken.jp [Cooperative Major in Nuclear Energy, Waseda University, Shinjuku, Tokyo (Japan); RIKEN, Wako, Saitama (Japan); Ikeda, Shunsuke; Sekine, Megumi; Munemoto, Naoya [RIKEN, Wako, Saitama (Japan); Department of Energy Sciences, Tokyo Institute of Technology, Meguro, Tokyo (Japan); Fuwa, Yasuhiro [RIKEN, Wako, Saitama (Japan); Department of Physics and Astronomy, Kyoto University, Uji, Kyoto (Japan); Cinquegrani, David [American Nuclear Society, University of Michigan, Ann Arbor, Michigan 48109 (United States); Kanesue, Takeshi; Okamura, Masahiro [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Washio, Masakazu [Cooperative Major in Nuclear Energy, Waseda University, Shinjuku, Tokyo (Japan)

    2014-02-15

    In Brookhaven National Laboratory, laser ion source has been developed to provide heavy ion beams by using plasma generation with 1064 nm Nd:YAG laser irradiation onto solid targets. The laser energy is transferred to the target material and creates a crater on the surface. However, only the partial material can be turned into plasma state and the other portion is considered to be just vaporized. Since heat propagation in the target material requires more than typical laser irradiation period, which is typically several ns, only the certain depth of the layers may contribute to form the plasma. As a result, the depth is more than 500 nm because the base material Al ions were detected. On the other hand, the result of comparing each carbon thickness case suggests that the surface carbon layer is not contributed to generate plasma.

  9. Prospective Study on Retinal Nerve Fibre Layer Thickness Changes in Isolated Unilateral Retrobulbar Optic Neuritis

    Directory of Open Access Journals (Sweden)

    Gordon S. K. Yau

    2013-01-01

    Full Text Available Purpose. To investigate the retinal nerve fibre layer (RNFL thickness after unilateral acute optic neuritis using optical coherence tomography (OCT. Patients and Methods. This prospective cohort study recruited consecutive patients with a first episode of isolated, unilateral acute optic neuritis. RNFL thickness and visual acuity (VA of the attack and normal fellow eye were measured at presentation and 3 months in both the treatment and nontreatment groups. Results. 11 subjects received systemic steroids and 9 were treated conservatively. The baseline RNFL thickness was similar in the attack and fellow eye (P≥0.4. At 3 months, the attack eye had a thinner temporal (P=0.02 and average (P=0.05 RNFL compared to the fellow eye. At 3 months, the attack eye had significant RNFL thinning in the 4 quadrants and average thickness (P≤0.0002 compared to baseline. The RNFL thickness between the treatment and nontreatment groups was similar at baseline and 3 months (P≥0.1. Treatment offered better VA at 3 months (0.1 ± 0.2 versus 0.3 ± 0.2 LogMAR, P=0.04. Conclusion. Generalized RNFL thinning occurred at 3 months after a first episode of acute optic neuritis most significantly in the temporal quadrant and average thickness. Visual improvement with treatment was independent of RNFL thickness.

  10. Thickness and microstructure effects in the optical and electrical properties of silver thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Guowen, E-mail: gding@intermolecular.com; Clavero, César; Schweigert, Daniel; Le, Minh [Intermolecular, Inc., 3011 North First Street, San Jose, CA 95134 (United States)

    2015-11-15

    The optical and electrical response of metal thin films approaching thicknesses in the range of the electron mean free path is highly affected by electronic scattering with the interfaces and defects. Here, we present a theoretical and experimental study on how thickness and microstructure affect the properties of Ag thin films. We are able to successfully model the electrical resistivity and IR optical response using a thickness dependent electronic scattering time. Remarkably, the product of electronic scattering time and resistivity remains constant regardless of the thickness (τx ρ = C), with a value of 59 ± 2 μΩ cm ⋅ fs for Ag films in the investigated range from 3 to 74 nm. Our findings enable us to develop a theoretically framework that allows calculating the optical response of metal thin films in the IR by using their measured thickness and resistivity. An excellent agreement is found between experimental measurements and predicted values. This study also shows the theoretical lower limit for emissivity in Ag thin films according to their microstructure and thickness. Application of the model presented here will allow rapid characterization of the IR optical response of metal thin films, with important application in a broad spectrum of fundamental and industrial applications, including optical coatings, low-emissivity windows and semiconductor industry.

  11. Thickness and microstructure effects in the optical and electrical properties of silver thin films

    Directory of Open Access Journals (Sweden)

    Guowen Ding

    2015-11-01

    Full Text Available The optical and electrical response of metal thin films approaching thicknesses in the range of the electron mean free path is highly affected by electronic scattering with the interfaces and defects. Here, we present a theoretical and experimental study on how thickness and microstructure affect the properties of Ag thin films. We are able to successfully model the electrical resistivity and IR optical response using a thickness dependent electronic scattering time. Remarkably, the product of electronic scattering time and resistivity remains constant regardless of the thickness (τx ρ = C, with a value of 59 ± 2 μΩ cm ⋅ fs for Ag films in the investigated range from 3 to 74 nm. Our findings enable us to develop a theoretically framework that allows calculating the optical response of metal thin films in the IR by using their measured thickness and resistivity. An excellent agreement is found between experimental measurements and predicted values. This study also shows the theoretical lower limit for emissivity in Ag thin films according to their microstructure and thickness. Application of the model presented here will allow rapid characterization of the IR optical response of metal thin films, with important application in a broad spectrum of fundamental and industrial applications, including optical coatings, low-emissivity windows and semiconductor industry.

  12. Development of Dual-light Path Monitoring System of Optical Thin-film Thickness

    Institute of Scientific and Technical Information of China (English)

    XU Shi-jun

    2005-01-01

    The accurate monitoring of optical thin-film thickness is a key technique for depositing optical thin-film. For existing coating equipments, which are low precision and automation level on monitoring thin-film thickness, a new photoelectric control and analysis system has been developed. In the new system, main techniques include a photoelectric system with dual-light path, a dual-lock-phase circuit system and a comprehensive digital processing-control-analysis system.The test results of new system show that the static and dynamic stabilities and the control precision of thin-film thickness are extremely increased. The standard deviation of thin-film thickness, which indicates the duplication of thin-film thickness monitoring, is equal to or less than 0.72%. The display resolution limit on reflectivity is 0.02 %. In the system, the linearity of drift is very high, and the static drift ratio approaches zero.

  13. Elimination of leakage of optical modes to GaN substrate in nitride laser diodes using a thick InGaN waveguide

    Science.gov (United States)

    Muziol, Grzegorz; Turski, Henryk; Siekacz, Marcin; Grzanka, Szymon; Perlin, Piotr; Skierbiszewski, Czesław

    2016-09-01

    A novel design consisting of a thick InGaN waveguide is proposed to fully eliminate leakage to the GaN substrate in nitride laser diodes. The design is based on the effective refractive index engineering and does not require the commonly used thick AlGaN claddings. The conditions required to fully eliminate the optical leakage are discussed. Experimental results from eight blue laser diodes with different indium contents and thicknesses of the InGaN waveguide grown by plasma-assisted molecular beam epitaxy are presented to validate the theoretical results.

  14. Uncertainty in stratiform cloud optical thickness inferred from pyranometer measurements at the sea surface

    Directory of Open Access Journals (Sweden)

    Anna Rozwadowska

    2004-06-01

    Full Text Available The relative "plane-parallel" error in a mean cloud optical thickness retrieved from ground-based pyranometer measurements is estimated. The plane-parallel error is defined as the bias introduced by the assumption in the radiative transfer model used in cloud optical thickness retrievals that the atmosphere, including clouds, is horizontally homogeneous on the scale of an individual retrieval. The error is estimated for the optical thickness averaged over the whole domain, which simulates the mean cloud optical thickness obtained from a time series of irradiance measurements. The study is based on 3D Monte Carlo radiative transfer simulations for non-absorbing, all-liquid, layer clouds. Liquid water path distributions in the clouds are simulated by a bounded cascade fractal model. The sensitivity of the error is studied with respect to the following factors: averaging time of irradiance used in an individual retrieval, mean cloud optical thickness, cloud variability, cloud base height and solar zenith angle. In the simulations presented in this paper, the relative bias in the domain averaged cloud optical thickness retrieved from pyranometer measurements varies from +1% for optically thin clouds to nearly -20%. The highest absolute value of the relative bias is expected for thick and variable clouds with high bases (e.g. 1 km and retrievals based on long-term mean irradiances (averaging time of the order of several tens of minutes or hours. The bias can be diminished by using short-term irradiance averages, e.g. of one minute, and by limiting retrievals to low-level clouds.

  15. Effect of Topical Platelet-Rich Plasma on Burn Healing After Partial-Thickness Burn Injury.

    Science.gov (United States)

    Ozcelik, Umit; Ekici, Yahya; Bircan, Huseyin Yuce; Aydogan, Cem; Turkoglu, Suna; Ozen, Ozlem; Moray, Gokhan; Haberal, Mehmet

    2016-06-05

    BACKGROUND To investigate the effects of platelet-rich plasma on tissue maturation and burn healing in an experimental partial-thickness burn injury model. MATERIAL AND METHODS Thirty Wistar albino rats were divided into 3 groups of 10 rats each. Group 1 (platelet-rich plasma group) was exposed to burn injury and topical platelet-rich plasma was applied. Group 2 (control group) was exposed to burn injury only. Group 3 (blood donor group) was used as blood donors for platelet-rich plasma. The rats were killed on the seventh day after burn injury. Tissue hydroxyproline levels were measured and histopathologic changes were examined. RESULTS Hydroxyproline levels were significantly higher in the platelet-rich plasma group than in the control group (P=.03). Histopathologically, there was significantly less inflammatory cell infiltration (P=.005) and there were no statistically significant differences between groups in fibroblast development, collagen production, vessel proliferations, or epithelization. CONCLUSIONS Platelet-rich plasma seems to partially improve burn healing in this experimental burn injury model. As an initial conclusion, it appears that platelet-rich plasma can be used in humans, although further studies should be performed with this type of treatment.

  16. Effects of chromophore concentration and film thickness on thermo-optic properties of electro-optic fluorinated polyimide films

    Institute of Scientific and Technical Information of China (English)

    Hongxiang Song; Chengxun Wu

    2007-01-01

    Electro-optic (EO) effect and thermo-optic (TO) effect are jointly considered on the basis of field-induced and temperature-affected perturbations of the operating point in waveguide components. TO coefficients of EO fluorinated polyimide films with side-chain azobenzene chromophore were measured by attenuatedtotal-reflection (ATR) technique at different temperatures with TE- and TM-polarized lights, respectively.It is found that the absolute values of TO coefficients increase with the increments of both chromophore concentration and film thickness, but the polarization dependence of TO coefficients increases with the increment of chromophore concentration and decreases with the increment of film thickness.

  17. Microstructure parameters and optical properties of cadmium ferrite thin films of variable thickness

    Science.gov (United States)

    Shaaban, E. R.

    2014-06-01

    CdFe2O4 thin films of different thicknesses were deposited onto glass substrates by the thermal evaporation technique. Their structural characteristics were studied by X-ray diffraction (XRD). The microstructure parameters, crystallite size, and microstrain were calculated. It is observed that both the crystallite size increases and microstrain increase with increasing with the film thickness. The fundamental optical parameters like absorption coefficient and optical band gap are calculated in the strong absorption region of transmittance and reflectance spectrum. The refractive indices have been evaluated in terms of the envelope method, which has been suggested by Swanepoel in the transparent region. The refractive index can be extrapolated by the Cauchy dispersion relationship over the whole spectra range, which extended from 400 to 2500 nm. The refractive index, n, increases on increasing the film thickness up to 733 nm and the variation of n with higher thickness lies within the experimental errors.

  18. One-Atom-Thick IR Metamaterials and Transformation Optics Using Graphene

    CERN Document Server

    Vakil, Ashkan

    2011-01-01

    Here we theoretically show, by designing and manipulating spatially inhomogeneous, non-uniform conductivity patterns across a single flake of graphene, that this single-atom-layered material can serve as a "one-atom-thick" platform for infrared metamaterials and transformation optical devices. It is known that by varying the chemical potential using gate electric and/or magnetic fields, the graphene conductivity in the THz and IR frequencies can be changed. This versatility provides the possibility that different "patches" on a single flake of graphene possess different conductivities, suggesting a mechanism to construct "single-atom-thick" IR metamaterials and transformation optical structures. Our computer simulation results pave the way for envisioning numerous IR photonic functions and metamaterial concepts-all on a "one-atom-thick" platform-of such we list a few here: edge waveguides, bent ribbon-like paths guiding light, photonic splitters and combiners, "one-atom-thick" IR scattering elements as buildi...

  19. Retinal nerve fiber layer thickness is associated with lesion length in acute optic neuritis

    DEFF Research Database (Denmark)

    Kallenbach, K; Simonsen, Helle Juhl; Sander, B

    2010-01-01

    included 41 patients with unilateral optic neuritis and 19 healthy volunteers. All patients were evaluated and examined within 28 days of onset of symptoms. The peripapillary retinal nerve fiber layer thickness (RNFLT), an objective quantitative measure of optic nerve head edema, was measured by optical...... coherence tomography and the length and location of the inflammatory optic nerve lesion were evaluated using MRI. RESULTS: Ophthalmoscopically, 34% of the patients had papillitis. The retinal nerve fiber layer in affected eyes (mean 123.1 microm) was higher during the acute phase than that of fellow eyes...... (mean 98.1 microm, p eyes (mean 97.1 microm, p

  20. Automatic airway wall segmentation and thickness measurement for long-range optical coherence tomography images.

    Science.gov (United States)

    Qi, Li; Huang, Shenghai; Heidari, Andrew E; Dai, Cuixia; Zhu, Jiang; Zhang, Xuping; Chen, Zhongping

    2015-12-28

    We present an automatic segmentation method for the delineation and quantitative thickness measurement of multiple layers in endoscopic airway optical coherence tomography (OCT) images. The boundaries of the mucosa and the sub-mucosa layers are accurately extracted using a graph-theory-based dynamic programming algorithm. The algorithm was tested with sheep airway OCT images. Quantitative thicknesses of the mucosal layers are obtained automatically for smoke inhalation injury experiments.

  1. Carotid Intima-Media Thickness and Plasma Asymmetric Dimethylarginine in Mexican Children Exposed to Inorganic Arsenic

    OpenAIRE

    Osorio-Yáñez, Citlalli; Ayllon-Vergara, Julio C.; Aguilar-Madrid, Guadalupe; Arreola-Mendoza, Laura; Hernández-Castellanos, Erika; Barrera-Hernández, Angel; De Vizcaya-Ruiz, Andrea; Del Razo, Luz M.

    2013-01-01

    Background: Arsenic exposure is a risk factor for atherosclerosis in adults, but there is little information on arsenic and early risk biomarkers for atherosclerosis in children. Carotid intima-media thickness (cIMT) is an indicator of subclinical atherosclerotic burden that has been associated with plasma asymmetric dimethylarginine (ADMA), a predictor of cardiovascular disease risk. Objectives: The aim of this study was to investigate associations of arsenic exposure with cIMT, ADMA, and en...

  2. Effect of film thickness on microstructure parameters and optical constants of CdTe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Shaaban, E.R., E-mail: esam_ramadan2008@yahoo.co [Physics Department, Faculty of Science, Qassim University, Buridah 51452 (Saudi Arabia); Physics Department, Faculty of Science, Al-Azhar University, Assiut, P.O. 71452 (Egypt); Afify, N. [Physics Department, Assiut University, Assiut (Egypt); El-Taher, A. [Physics Department, Faculty of Science, Qassim University, Buridah 51452 (Saudi Arabia); Physics Department, Faculty of Science, Al-Azhar University, Assiut, P.O. 71452 (Egypt)

    2009-08-12

    Different thickness of cadmium telluride (CdTe) thin films was deposited onto glass substrates by the thermal evaporation technique. Their structural characteristics were studied by X-ray diffraction (XRD). The XRD experiments showed that the films are polycrystalline and have a zinc-blende (cubic) structure. The microstructure parameters, crystallite size and microstrain were calculated. It is observed that the crystallite size increases and microstrain decreases with the increase in the film thickness. The fundamental optical parameters like band gap and extinction coefficient are calculated in the strong absorption region of transmittance and reflectance spectrum. The possible optical transition in these films is found to be allowed direct transition with energy gap increase from 1.481 to 1.533 eV with the increase in the film thickness. It was found that the optical band gap increases with the increase in thickness. The refractive indices have been evaluated in transparent region in terms of envelope method, which has been suggested by Swanepoul in the transparent region. The refractive index can be extrapolated by Cauchy dispersion relationship over the whole spectral range, which extended from 400 to 2500 nm. It is observed that the refractive index, n increases on increasing the film thickness up to 671 nm and then the variation of n with higher thickness lie within the experimental errors.

  3. Changes in Choroidal Thickness follow the RNFL Changes in Leber’s Hereditary Optic Neuropathy

    Science.gov (United States)

    Borrelli, Enrico; Triolo, Giacinto; Cascavilla, Maria Lucia; La Morgia, Chiara; Rizzo, Giovanni; Savini, Giacomo; Balducci, Nicole; Nucci, Paolo; Giglio, Rosa; Darvizeh, Fatemeh; Parisi, Vincenzo; Bandello, Francesco; Sadun, Alfredo A.; Carelli, Valerio; Barboni, Piero

    2016-01-01

    Leber’s hereditary optic neuropathy (LHON) is typically characterized by vascular alterations in the acute phase. The aim of this study was to evaluate choroidal changes occurring in asymptomatic, acute and chronic stages of LHON. We enrolled 49 patients with LHON, 19 with Dominant Optic Atrophy (DOA) and 22 healthy controls. Spectral Domain-Optical Coherence Tomography (SD-OCT) scans of macular and peripapillary regions were performed in all subjects, to evaluate macular and peripapillary choroidal thickness, and retinal nerve fiber layer (RNFL) thicknes. Macular and peripapillary choroidal thicknesses were significantly increased in the acute LHON stage. On the contrary, macular choroidal thickness was significantly reduced in the chronic stage. Furthermore, peripapillary choroidal thickness was decreased in chronic LHON and in DOA. Both RNFL and choroid had the same trend (increased thickness, followed by thinning), but RNFL changes preceded those affecting the choroid. In conclusion, our study quantitatively demonstrated the involvement of the choroid in LHON pathology. The increase in choroidal thickness is a feature of the LHON acute stage, which follows the thickening of RNFL. Conversely, thinning of the choroid is the common outcome in chronic LHON and in DOA. PMID:27853297

  4. Thickness dependence of structural and optical properties of cadmium iodide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yahia, I.S. [Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Centre of Nanotechnology, King AbdulAziz University, Jeddah (Saudi Arabia); Shapaan, M. [Department of Physics, Faculty of Science, Al-Azahar University, Cairo (Egypt); Ismail, Yasser A.M.; Aboraia, A.M. [Department of Physics, Faculty of Science, Al-Azahar University, Assiut 71542 (Egypt); Shaaban, E.R., E-mail: esamramadan2008@yahoo.com [Department of Physics, Faculty of Science, Al-Azahar University, Assiut 71542 (Egypt)

    2015-07-05

    Highlights: • Different thicknesses of CdI{sub 2} films were prepared. • Both crystallite size and microstrain of the films has been determined. • The room temperature reflectance and transmittance data are analyzed. • The refractive index and energy gap are determined. - Abstract: Structural and optical properties as a function of film thickness have been studied for the thermally evaporated cadmium iodide (CdI{sub 2}) films. According to XRD structure, the thickness of investigated films extends from 272 to 696 nm, showing hexagonal structure and good c-axis alignment normal to glass substrate plane. Both of crystallite size and lattice strain have been determined in terms of Voight method of the main peak. The optical constants, refractive index (n), and extinction coefficient (k) have been determined using envelope method. The optical absorption data indicates an allowed direct inter – band transition near the absorption edge with an optical energy gap that decreases continuously from 3.572 to 3.767 eV. Both of optical constants and energy gap show thickness dependence that can be explained in terms of structure parameters, crystallite size, and lattice strain.

  5. Full-field optical thickness profilometry of semitransparent thin films with transmission densitometry

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jay; Harris, Tequila

    2010-05-20

    A novel bidirectional thickness profilometer based on transmission densitometry was designed to measure the localized thickness of semitransparent films on a dynamic manufacturing line. The densitometer model shows that, for materials with extinction coefficients between 0.3 and 2.9 D/mm, 100-500 {mu}m measurements can be recorded with less than {+-}5% error at more than 10,000 locations in real time. As a demonstration application, the thickness profiles of 75 mmx100 mm regions of polymer electrolyte membrane (PEM) were determined by converting the optical density of the sample to thickness with the Beer-Lambert law. The PEM extinction coefficient was determined to be 1.4 D/mm, with an average thickness error of 4.7%.

  6. Thickness dependence of structural, electrical and optical behaviour of undoped ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bouderbala, M.; Hamzaoui, S. [Laboratoire de Microscopie Electronique et des Sciences des Materiaux, Departement de Physique, USTO, B.P. 1505, El-Mnaouer, 31000 Oran (Algeria); Amrani, B. [Department of Physics, Centre Universitaire de Mascara, Mascara 29000 (Algeria)], E-mail: abouhalouane@yahoo.fr; Reshak, Ali H. [Institute of Physical Biology-South Bohemia University, Institute of System Biology and Ecology-Academy of Sciences, Nove Hrady 37333 (Czech Republic); Adnane, M.; Sahraoui, T.; Zerdali, M. [Laboratoire de Microscopie Electronique et des Sciences des Materiaux, Departement de Physique, USTO, B.P. 1505, El-Mnaouer, 31000 Oran (Algeria)

    2008-09-01

    Undoped ZnO thin films of different thicknesses were prepared by r.f. sputtering in order to study the thickness effect upon their structural, morphological, electrical and optical properties. The results suggest that the film thickness seems to have no clear effect upon the orientation of the grains growth. Indeed, the analysis with X-ray diffraction show that the grains were always oriented according to the c(0 0 2)-axis perpendicular to substrate surface whatever the thickness is. However, the grain size was influenced enough by this parameter. An increase in the grain size versus the thickness was noted. For the electrical properties, measurements revealed behaviour very dependent upon thickness. The resistivity decreased from 25 to 1.5x10{sup -3} {omega} cm and the mobility increased from 2 to 37 cm{sup 2} V{sup -1} s{sup -1} when the thickness increased from 70 to 1800 nm while the carrier concentration seems to be less affected by the film thickness and varied slightly remaining around 10{sup 20} cm{sup -3}. Nevertheless, a tendency to a decrease was noticed. This behaviour in electrical properties was explained by the crystallinity and the grain size evolution. The optical measurements showed that all the samples have a strong transmission higher than 80% in the visible range. A slight shift of the absorption edge towards the large wavelengths was observed as the thickness increased. This result shows that the band gap is slightly decreases from 3.37 to 3.32 eV with the film thickness vary from 0.32 to 0.88 {mu}m.

  7. Retinal nerve fiber layer thickness in normal Indian pediatric population measured with optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Neelam Pawar

    2014-01-01

    Full Text Available Purpose: To measure the peripapillary retinal nerve fiber layer (RNFL thickness in normal Indian pediatric population. Subjects and Methods: 120 normal Indian children ages 5-17 years presenting to the Pediatric Clinic were included in this observational cross-sectional study. RNFL thickness was measured with stratus optical coherence tomography (OCT. Children with strabismus or amblyopia, with neurological, metabolic, vascular, or other disorders and those with abnormal optic discs were excluded. One eye of each subject was randomly selected for statistical analysis. The effect of age, refraction and gender on RNFL thickness was investigated statistically. Result: OCT measurements were obtained in 120 of 130 (92.3% subjects. Mean age was 10.8 ± 3.24 years (range 5-17. Average RNFL thickness was (± SD 106.11 ± 9.5 μm (range 82.26-146.25. The RNFL was thickest inferiorly (134.10 ± 16.16 μm and superiorly (133.44 ± 15.50 μm, thinner nasally (84.26 ± 16.43 μm, and thinnest temporally (70.72 ± 14.80 μm. In univariate regression analysis, age had no statistical significant effect on RNFL thickness (P = 0.7249 and refraction had a significant effect on RNFL thickness (P = 0.0008. Conclusion: OCT can be used to measure RNFL thickness in children. Refraction had an effect on RNFL thickness. In normal children, variation in RNFL thickness is large. The normative data provided by this study may assist in identifying changes in RNFL thickness in Indian children.

  8. Thickness and topographic inspection of RPG contact lenses by optical triangulation

    Science.gov (United States)

    Costa, Manuel F. M.

    2001-06-01

    Optical triangulation as a non-destructive test method extensively proved its usefulness on the dimensional and topographic inspection of a large range of objects and surfaces. In this communication the issue of microtopographic and thickness inspection of hard contact lenses (RPG) is addressed. The use of optical triangulation is discussed based on the results of the application of our MICROTOP.03.MFC microtopographer to this kind of tasks will be presented.

  9. Relationship Between Optic Nerve Appearance and Retinal Nerve Fiber Layer Thickness as Explored with Spectral Domain Optical Coherence Tomography

    Science.gov (United States)

    Aleman, Tomas S.; Huang, Jiayan; Garrity, Sean T.; Carter, Stuart B.; Aleman, Wendy D.; Ying, Gui-shuang; Tamhankar, Madhura A.

    2014-01-01

    Purpose To study the relationship between the appearance of the optic nerve and the retinal nerve fiber layer (RNFL) thickness determined by spectral domain optical coherence tomography (OCT). Methods Records from patients with spectral domain-OCT imaging in a neuro-ophthalmology practice were reviewed. Eyes with glaucoma/glaucoma suspicion, macular/optic nerve edema, pseudophakia, and with refractive errors > 6D were excluded. Optic nerve appearance by slit lamp biomicroscopy was related to the RNFL thickness by spectral domain-OCT and to visual field results. Results Ninety-one patients (176 eyes; mean age: 49 ± 15 years) were included. Eighty-three eyes (47%) showed optic nerve pallor; 89 eyes (50.6%) showed RNFL thinning (sectoral or average peripapillary). Average peripapillary RNFL thickness in eyes with pallor (mean ± SD = 76 ± 17 μm) was thinner compared to eyes without pallor (91 ± 14 μm, P < 0.001). Optic nerve pallor predicted RNFL thinning with a sensitivity of 69% and a specificity of 75%. Optic nerve appearance predicted RNFL thinning (with a sensitivity and specificity of 81%) when RNFL had thinned by ∼ 40%. Most patients with pallor had RNFL thinning with (66%) or without (25%) visual field loss; the remainder had normal RNFL and fields (5%) or with visual field abnormalities (4%). Conclusions Optic nerve pallor as a predictor of RNFL thinning showed fair sensitivity and specificity, although it is optimally sensitive/specific only when substantial RNFL loss has occurred. Translational Relevance Finding an acceptable relationship between the optic nerve appearance by ophthalmoscopy and spectral domain-OCT RNFL measures will help the clinician's interpretation of the information provided by this technology, which is gaining momentum in neuro-ophthalmic research. PMID:25374773

  10. Synthesis of thick diamond films by direct current hot-cathode plasma chemical vapour deposition

    CERN Document Server

    Jin Zeng Sun; Bai Yi Zhen; Lu Xian Yi

    2002-01-01

    The method of direct current hot-cathode plasma chemical vapour deposition has been established. A long-time stable glow discharge at large discharge current and high gas pressure has been achieved by using a hot cathode in the temperature range from 1100 degree C to 1500 degree C and non-symmetrical configuration of the poles, in which the diameter of the cathode is larger than that of anode. High-quality thick diamond films, with a diameter of 40-50 mm and thickness of 0.5-4.2 mm, have been synthesized by this method. Transparent thick diamond films were grown over a range of growth rates between 5-10 mu m/h. Most of the thick diamond films have thermal conductivities of 10-12 W/K centre dot cm. The thick diamond films with high thermal conductivity can be used as a heat sink of semiconducting laser diode array and as a heat spreading and isolation substrate of multichip modules. The performance can be obviously improved

  11. Investigation of the screen optics of thick CsI(Tl) detectors

    Science.gov (United States)

    Howansky, Adrian; Peng, Boyu; Suzuki, Katsuhiko; Yamashita, Masanori; Lubinsky, A. R.; Zhao, Wei

    2015-03-01

    Flat panel imagers (FPI) are becoming the dominant detector technology for digital x-ray imaging. In indirect FPI, the scintillator that provides the highest image quality is Thallium (Tl) doped Cesium Iodide (CsI) with columnar structure. The maximum CsI thickness used in existing FPI is ~600 microns, due to concerns of loss in spatial resolution and light output with further increase in thickness. The goal of the present work is to investigate the screen-optics for CsI with thicknesses much larger than that used in existing FPI, so that the knowledge can be used to improve imaging performance in dose sensitive and higher energy applications, such as cone-beam CT (CBCT). Columnar CsI(Tl) scintillators up to 1 mm in thickness with different screen-optical design were investigated experimentally. Pulse height spectra (PHS) were measured to determine the Swank factor at x-ray energies between 25 and 75 keV, and to derive depth-dependent light escape efficiency i.e. gain. Detector presampling MTF, NPS and DQE were measured using a high-resolution CMOS optical sensor. Optical Monte Carlo simulation was performed to estimate optical parameters for each screen design and derive depth-dependent gain and MTF, from which overall MTF and DQE were calculated and compared with measured results. The depth-dependent imaging performance parameters were then used in a cascaded linear system model (CLSM) to investigate detector performance under screen- and sensor-side irradiation conditions. The methodology developed for understanding the optics of thick CsI(Tl) will lead to detector optimization in CBCT.

  12. Effect of Media Opacity on Retinal Nerve Fiber Layer Thickness Measurements by Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Dae Woong Lee

    2010-01-01

    Full Text Available Purpose: To assess the effect of ocular media opacity on retinal nerve fiber layer (RNFL thickness measurements by optical coherence tomography (OCT. Methods: In this prospective, non-randomized clinical study, ocular examinations and OCT measurements were performed on 77 cataract patients, 80 laser refractive surgery patients and 90 patients whose signal strength on OCT was different on two consecutive measurements. None of the eyes had preexisting retinal or optic nerve pathology, including glaucoma. Cataracts were classified according to the Lens Opacity Classification System III (LOCS III. All eyes were scanned with the Stratus OCT using the Fast RNFL program before and three months after surgery. Internal fixation was used during scanning and all eyes underwent circular scans around the optic disc with a diameter of 3.4 mm. Results: Average RNFL thickness, quadrant thickness and signal strength significantly increased after cataract surgery (P<0.05. Cortical and posterior subcapsular cataracts, but not nuclear cataracts, had a significant influence on RNFL thickness measurements (P<0.05. There was no significant difference between OCT parameters before and after laser refractive surgery. In eyes for which different signal strengths were observed, significantly larger RNFL thickness values were obtained on scans with higher signal strengths. Conclusion: OCT parameters are affected by ocular media opacity because of changes in signal strength; cortical cataracts have the most significant effect followed by posterior subcapsular opacities. Laser refractive procedures do not seem to affect OCT parameters significantly.

  13. Evaluation of methods to determine the spectral variations of aerosol optical thickness

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Talaulikar, M.; Rodrigues, A.; Desa, E.; Chauhan, P.

    The methods used to derive spectral variations of aerosol optical thickness, AOT are evaluated. For our analysis we have used the AOT measured using a hand held sunphotometer at the coastal station on the west coast of India, Dona-Paula, Goa...

  14. An optical method for measuring the thickness of a falling condensate in gravity assisted heat pipe

    Directory of Open Access Journals (Sweden)

    Kasanický Martin

    2015-01-01

    Full Text Available A large number of variables is the main problem of designing systems which uses heat pipes, whether it is a traditional - gravity, or advanced - capillary, pulsating, advanced heat pipes. This article is a methodology for measuring the thickness of the falling condensate in gravitational heat pipes, with using the optical triangulation method, and the evaluation of risks associated with this method.

  15. An optical method for measuring the thickness of a falling condensate in gravity assisted heat pipe

    Science.gov (United States)

    Kasanický, Martin; Lenhard, Richard; Kaduchová, Katarína; Malcho, Milan

    2015-05-01

    A large number of variables is the main problem of designing systems which uses heat pipes, whether it is a traditional - gravity, or advanced - capillary, pulsating, advanced heat pipes. This article is a methodology for measuring the thickness of the falling condensate in gravitational heat pipes, with using the optical triangulation method, and the evaluation of risks associated with this method.

  16. Aerosol optical thickness retrieval over land and water using SCIAMACHY/GOME data

    NARCIS (Netherlands)

    Kusmierczyk-Michulec, J.; Leeuw, G. de

    2005-01-01

    An algorithm for the retrieval of the aerosol optical thickness over land and over water from SCIAMACHY (SCanning Imaging Absorption SpectroMeter for Atmospheric ChartographY) is presented. Because calibrated data are not yet available for the SCIAMACHY channels used by the algorithm, the concepts w

  17. Quantitative analysis of the Stratus optical coherence tomography fast macular thickness map reports

    Directory of Open Access Journals (Sweden)

    Domalpally Amitha

    2010-01-01

    Full Text Available The cross sectional optical coherence tomography images have an important role in evaluating retinal diseases. The reports generated by the Stratus fast macular thickness scan protocol are useful for both clinical and research purposes. The centerpoint thickness is an important outcome measure for many therapeutic trials related to macular disease. The data is susceptible to artifacts such as decentration and boundary line errors and could be potentially erroneous. An understanding of how the data is generated is essential before utilizing the data. This article describes the interpretation of the fast macular thickness map report, assessment of the quality of an optical coherence tomography image and identification of the artifacts that could influence the numeric data.

  18. Effect of Chromium Interlayer Thickness on Optical Properties of Au-Ag Nanoparticle Array

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2014-01-01

    Full Text Available The effect of chromium interlayer thickness on optical properties of array of hybrid Au-Ag triangular nanoparticles is systematically investigated. The optical spectrum simulated by discrete dipole approximation (DDA numerical method shows that with increase of the chromium interlayer thickness both refractive index sensitivity (RIS and figure of merit (FOM of localized surface plasmon resonance from the hybrid nanostructures experience remarkable change and the intensity of the extinction efficiency decreases. The nanosphere lithography (NSL is used to fabricate the hybrid nanostructure arrays with different chromium interlayer thicknesses. The experiment demonstrates that the spectrum as measured from the as-fabricated hybrid nanostructure arrays is essentially in agreement with the simulated results.

  19. Performance analysis of optical coherence tomography in the context of a thickness estimation task

    Science.gov (United States)

    Huang, Jinxin; Yao, Jianing; Cirucci, Nick; Ivanov, Trevor; Rolland, Jannick P.

    2015-12-01

    Thickness estimation is a common task in optical coherence tomography (OCT). This study discusses and quantifies the intensity noise of three commonly used broadband sources, such as a supercontinuum source, a superluminescent diode (SLD), and a swept source. The performance of the three optical sources was evaluated for a thickness estimation task using both the fast Fourier transform (FFT) and maximum-likelihood (ML) estimators. We find that the source intensity noise has less impact on a thickness estimation task compared to the width of the axial point-spread function (PSF) and the trigger jittering noise of a swept source. Findings further show that the FFT estimator yields biased estimates, which can be as large as 10% of the thickness under test in the worst case. The ML estimator is by construction asymptotically unbiased and displays a 10× improvement in precision for both the supercontinuum and SLD sources. The ML estimator also shows the ability to estimate thickness that is at least 10× thinner compared to the FFT estimator. Finally, findings show that a supercontinuum source combined with the ML estimator enables unbiased nanometer-class thickness estimation with nanometer-scale precision.

  20. Electron beam manipulation, injection and acceleration in plasma wakefield accelerators by optically generated plasma density spikes

    Energy Technology Data Exchange (ETDEWEB)

    Wittig, Georg; Karger, Oliver S.; Knetsch, Alexander [Institute of Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); Xi, Yunfeng; Deng, Aihua; Rosenzweig, James B. [Particle Beam Physics Laboratory, UCLA, Los Angeles, CA 90095 (United States); Bruhwiler, David L. [RadiaSoft LLC, Boulder, CO 80304 (United States); RadiaBeam Technologies LLC (United States); Smith, Jonathan [Tech-X UK Ltd, Daresbury, Cheshire WA4 4FS (United Kingdom); Sheng, Zheng-Ming; Jaroszynski, Dino A.; Manahan, Grace G. [Physics Department, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Hidding, Bernhard [Institute of Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); Physics Department, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2016-09-01

    We discuss considerations regarding a novel and robust scheme for optically triggered electron bunch generation in plasma wakefield accelerators [1]. In this technique, a transversely propagating focused laser pulse ignites a quasi-stationary plasma column before the arrival of the plasma wake. This localized plasma density enhancement or opticalplasma torch” distorts the blowout during the arrival of the electron drive bunch and modifies the electron trajectories, resulting in controlled injection. By changing the gas density, and the laser pulse parameters such as beam waist and intensity, and by moving the focal point of the laser pulse, the shape of the plasma torch, and therefore the generated trailing beam, can be tuned easily. The proposed method is much more flexible and faster in generating gas density transitions when compared to hydrodynamics-based methods, and it accommodates experimentalists needs as it is a purely optical process and straightforward to implement.

  1. Electron beam manipulation, injection and acceleration in plasma wakefield accelerators by optically generated plasma density spikes

    Science.gov (United States)

    Wittig, Georg; Karger, Oliver S.; Knetsch, Alexander; Xi, Yunfeng; Deng, Aihua; Rosenzweig, James B.; Bruhwiler, David L.; Smith, Jonathan; Sheng, Zheng-Ming; Jaroszynski, Dino A.; Manahan, Grace G.; Hidding, Bernhard

    2016-09-01

    We discuss considerations regarding a novel and robust scheme for optically triggered electron bunch generation in plasma wakefield accelerators [1]. In this technique, a transversely propagating focused laser pulse ignites a quasi-stationary plasma column before the arrival of the plasma wake. This localized plasma density enhancement or optical "plasma torch" distorts the blowout during the arrival of the electron drive bunch and modifies the electron trajectories, resulting in controlled injection. By changing the gas density, and the laser pulse parameters such as beam waist and intensity, and by moving the focal point of the laser pulse, the shape of the plasma torch, and therefore the generated trailing beam, can be tuned easily. The proposed method is much more flexible and faster in generating gas density transitions when compared to hydrodynamics-based methods, and it accommodates experimentalists needs as it is a purely optical process and straightforward to implement.

  2. Characterization of retinal nerve fiber layer thickness changes associated with Leber’s hereditary optic neuropathy by optical coherence tomography

    Science.gov (United States)

    ZHANG, YIXIN; HUANG, HOUBIN; WEI, SHIHUI; QIU, HUAIYU; GONG, YAN; LI, HONGYANG; DAI, YANLI; JIANG, ZHAOCAI; LIU, ZIHAO

    2014-01-01

    In the present study, the changes in the retinal nerve fiber layer (RNFL) thickness associated with Leber’s hereditary optic neuropathy (LHON) were examined by Cirrus high definition-optical coherence tomography (OCT), and the correlation between the RNFL thickness and the best corrected visual acuity (BCVA) was evaluated. A cross-sectional study was performed. Sixty-eight eyes from patients with LHON and 30 eyes from healthy individuals were scanned. Affected eyes were divided into 5 groups according to disease duration: Group 1, ≤3 months; group 2, 4–6 months; group 3, 7–9 months; group 4, 10–12 months; and group 5, >12 months. The RNFL thickness of the temporal, superior, nasal and inferior quadrants and the 360° average were compared between the LHON groups and the control group. The eyes in groups 1 and 2 were observed to have a thicker RNFL in the superior, nasal and inferior quadrants and a higher 360°-average RNFL thickness compared with those of the control group (P<0.05), the RNFL was observed to be thinner in the temporal quadrant in groups 1 and 2. The eyes in groups 3 and 4 showed a thinner RNFL in the temporal (P=0.001), superior and inferior (both P<0.05) quadrants, and a lower 360°-average RNFL thickness as compared with controls (P=0.001). No significant correlation was identified between BCVA and RNFL thickness. RNFL thickness was observed to undergo a unique process from thickening to thinning in the patients with LHON. Changes in different quadrants occurred at different time periods and the BCVA was not found to be correlated with RNFL thickness. PMID:24396430

  3. Characterization of retinal nerve fiber layer thickness changes associated with Leber's hereditary optic neuropathy by optical coherence tomography.

    Science.gov (United States)

    Zhang, Yixin; Huang, Houbin; Wei, Shihui; Qiu, Huaiyu; Gong, Yan; Li, Hongyang; Dai, Yanli; Jiang, Zhaocai; Liu, Zihao

    2014-02-01

    In the present study, the changes in the retinal nerve fiber layer (RNFL) thickness associated with Leber's hereditary optic neuropathy (LHON) were examined by Cirrus high definition-optical coherence tomography (OCT), and the correlation between the RNFL thickness and the best corrected visual acuity (BCVA) was evaluated. A cross-sectional study was performed. Sixty-eight eyes from patients with LHON and 30 eyes from healthy individuals were scanned. Affected eyes were divided into 5 groups according to disease duration: Group 1, ≤3 months; group 2, 4-6 months; group 3, 7-9 months; group 4, 10-12 months; and group 5, >12 months. The RNFL thickness of the temporal, superior, nasal and inferior quadrants and the 360° average were compared between the LHON groups and the control group. The eyes in groups 1 and 2 were observed to have a thicker RNFL in the superior, nasal and inferior quadrants and a higher 360°-average RNFL thickness compared with those of the control group (P<0.05), the RNFL was observed to be thinner in the temporal quadrant in groups 1 and 2. The eyes in groups 3 and 4 showed a thinner RNFL in the temporal (P=0.001), superior and inferior (both P<0.05) quadrants, and a lower 360°-average RNFL thickness as compared with controls (P=0.001). No significant correlation was identified between BCVA and RNFL thickness. RNFL thickness was observed to undergo a unique process from thickening to thinning in the patients with LHON. Changes in different quadrants occurred at different time periods and the BCVA was not found to be correlated with RNFL thickness.

  4. Optical thickness measurement of mask blank glass plate by the excess fraction method using a wavelength-tuning interferometer

    Science.gov (United States)

    Kim, Yangjin; Hibino, Kenichi; Sugita, Naohiko; Mitsuishi, Mamoru

    2013-10-01

    The absolute optical thickness of a 140-mm2 mask blank glass plate 3.1 mm thickness was measured by three-surface interferometry using a wavelength-tuning Fizeau interferometer. The interference order was determined by the excess fraction method. The wavelength of a tunable laser diode was scanned linearly from 632 to 642 nm, and a CCD detector recorded 2000 interference images. Two kinds of optical thicknesses measured by discrete Fourier analysis and phase-shifting were synthesized to obtain the optical thickness with respect to the ordinary refractive index. The optical thickness defined by the group refractive index at the 637 nm central wavelength was measured by wavelength scanning. The optical thickness deviation defined by the ordinary refractive index was measured using tunable phase-shifting. The systematic errors caused by nonlinearity in the wavelength tuning were corrected through correlation analysis between the theoretical and observed interference fringes.

  5. Thickness measurement approach for plasma sprayed coatings using ultrasonic testing technique

    Institute of Scientific and Technical Information of China (English)

    LIN Li; LI Xi-meng; XU Zhi-hui; LEI Ming-kai

    2004-01-01

    The special ultrasonic testing system has been developed for thickness measurement of plasma sprayed coatings. The ultrasonic immersion method was used to obtain stable coupling condition and avoid other disadvantages of contact method. Spherical acoustic lens were designed to focus ultrasonic beam so as to improve beam directivity and concentrate ultrasonic energy. To increase testing precision and avoid mussy wave signals, moderate pulse width and frequency of the transducer has been selected. The displacement of transducer in X-Y-Z directions was precisely manipulated by step-controlled system to insure the accuracy of focus length and repetition of measurement. Optimized testing conditions (with the transducer of center frequency of 10 MHz and crystal diameter of 8 mm, focus length of 9.5 mm, diameter of focal column of 0. 1 mm and length of focal column of 0.27 mm) were selected to determine the thickness between 285 -414 μm of ZrO2 coatings plasma sprayed on the nickel based superalloy. The frequency interval of the periodic extremums in ultrasonic power spectra decreases with increasing coating thickness. The ultrasonic results accord with those of metallographical method.

  6. Laser Plasmas : Optical guiding of laser beam in nonuniform plasma

    Indian Academy of Sciences (India)

    Tarsem Singh Gill

    2000-11-01

    A plasma channel produced by a short ionising laser pulse is axially nonuniform resulting from the self-defocusing. Through such preformed plasma channel, when a delayed pulse propagates, the phenomena of diffraction, refraction and self-phase modulation come into play. We have solved the nonlinear parabolic partial differential equation governing the propagation characteristics for an approximate analytical solution using variational approach. Results are compared with the theoretical model of Liu and Tripathi (Phys. Plasmas 1, 3100 (1994)) based on paraxial ray approximation. Particular emphasis is on both beam width and longitudinal phase delay which are crucial to many applications.

  7. Deranged aortic intima-media thickness, plasma triglycerides and granulopoiesis in Sl/Sld mice

    Directory of Open Access Journals (Sweden)

    Kottarappat N. Dileepan

    2004-01-01

    Full Text Available STUDIES were carried out to evaluate the impact of a high-fat dietary regimen on aortic wall thickness, peripheral blood leukocyte profile, and plasma cholesterol and triglyceride levels in the mast cell-deficient Sl/Sld mouse. The results demonstrated that the mean aortic wall thickness of Sl/Sld mice was significantly higher than their normal littermates, and were increased in both genotypes after a 17-day high-fat regimen. In comparison with normal littermates, Sl/Sld genotypes had elevated levels of plasma triglycerides with normal levels of plasma cholesterol, and the high-fat diet markedly lowered the triglyceride levels. Total peripheral blood leukocytes, the monocyte and granulocyte counts, and hemoglobin levels were significantly lower in Sl/Sld mice, although the number of lymphocytes, eosinophils and basophils were the same in both genotypes. Interestingly, the high-fat diet regimen elevated leukocyte counts and the number of monocytes and granulocytes in Sl/Sld mice.

  8. Sub-natural width resonances in Cs vapor confined in micrometric thickness optical cell

    Science.gov (United States)

    Cartaleva, S.; Krasteva, A.; Sargsyan, A.; Sarkisyan, D.; Slavov, D.; Vartanyan, T.

    2013-03-01

    We present here the behavior of Electromagnetically Induced Transparency (EIT), Velocity Selective Optical Pumping (VSOP) resonances and Velocity Selective Excitation (VSE) resonances observed in Cs vapor confined in а micrometric optical cell (MC) with thickness L = 6λ, λ = 852nm. For comparison of behavior of VSE resonance another conventional optical cell with thickness L=2.5 cm is used. Cells are irradiated in orthogonal to their windows directions by probe beam scanned on the Fg = 4 → Fe= 3, 4, 5 set of transitions and pump beam fixed at the Fg = 3 → Fe = 4 transition, on the D2 line of Cs. The enhanced absorption (fluorescence) narrow VSOP resonance at the closed transition transforms into reduced absorption (fluorescence) one with small increase of atomic concentration or light intensity. A striking difference appears between the VSE resonance broadening in L = 6λ and conventional L = 2.5cm cells.

  9. Atomic processes in optically thin plasmas

    Science.gov (United States)

    Kaastra, Jelle S.; Gu, Liyi; Mao, Junjie; Mehdipour, Missagh; Raassen, Ton; Urdampilleta, Igone

    2016-10-01

    The Universe contains a broad range of plasmas with quite different properties depending on distinct physical processes. In this contribution we give an overview of recent developments in modeling such plasmas with a focus on X-ray emission and absorption. Despite the fact that such plasmas have been investigated already for decades, and that overall there is a good understanding of the basic processes, there are still areas, where improvements have to be made that are important for the analysis of astrophysical plasmas. We present recent work on the update of atomic parameters in the codes that describe the emission from collisional plasmas, where older approximations are being replaced now by more accurate data. Further we discuss the development of models for photo-ionised plasmas in the context of outflows around supermassive black holes and models for charge transfer that are needed for analyzing the data from the upcoming ASTRO-H satellite.

  10. Correlation of optic neuritis and retinal nerve fibre thickness using optical coherence tomography in a cohort of multiple sclerosis patients

    Directory of Open Access Journals (Sweden)

    Izanne Roos

    2016-03-01

    Full Text Available Background: Optical coherence tomography (OCT is a fast, non-invasive imaging technology that produces 3D, high-resolution images of the retina. Direct visualisation of the retina allows a unique opportunity to study the effects of multiple sclerosis (MS-associated neurodegeneration on retinal ganglion cells as well as effects of retrobulbar demyelination on axonal and retinal architecture through measurement of retinal nerve fibre layer (RNFL thickness and total macular volume (TMV. These findings are clinically important as axonal loss is irreversible and correlates with disability.Aim: To determine the role and usefulness of OCT in a local cohort of MS patients.Setting: Neurology Clinic, Inkosi Albert Luthuli Central Hospital, KwaZulu-Natal, South Africa.Methods: Nineteen patients with MS currently being treated with interferon β-1b underwent OCT examination of both eyes. RNFL thickness and macular volume were measured and correlated with clinical disease characteristics, history of optic neuritis and level of disability.Results: Mean RNFL thickness was 77.3 μm with no significant difference in mean RNFL in eyes with a history of optic neuritis (ON and those without (p = 0.4. Eyes with a history of ON did, however, have significantly thinner RNFL compared with the contralateral eye (p = 0.04. Despite a strong correlation between TMV and RNFL (p = 0.001, a subset of patients with normal RNFL had TMV that was less than 1% of what was expected. There was no correlation between RNFL and disability scores.Conclusion: OCT enables a direct axonal ‘optical biopsy’, for monitoring disease progression and treatment response in MS. RNFL thinning occurs independently of a history of optic neuritis and may represent a chronic optic neuropathy in patients with MS.Keywords: Multiple sclerosis; optical coherence tomography

  11. Electro-optic probe measurements of electric fields in plasmas

    Science.gov (United States)

    Nishiura, M.; Yoshida, Z.; Mushiake, T.; Kawazura, Y.; Osawa, R.; Fujinami, K.; Yano, Y.; Saitoh, H.; Yamasaki, M.; Kashyap, A.; Takahashi, N.; Nakatsuka, M.; Fukuyama, A.

    2017-02-01

    The direct measurements of high-frequency electric fields in a plasma bring about significant advances in the physics and engineering of various waves. We have developed an electro-optic sensor system based on the Pockels effect. Since the signal is transmitted through an optical fiber, the system has high tolerance for electromagnetic noises. To demonstrate its applicability to plasma experiments, we report the first result of measurement of the ion-cyclotron wave excited in the RT-1 magnetosphere device. This study compares the results of experimental field measurements with simulation results of electric fields in plasmas.

  12. Thin film production with a new fully automated optical thickness monitoring system (Invited Paper)

    Science.gov (United States)

    Lardon, M.; Selhofer, H.

    1986-10-01

    The increasing demand for complex multilayer optical coatings requires equipment with a completely automated process control system. The new optical thickness monitor GSM 420, which is part of the deposition control system BPU 420 allows the remotely controlled wave-length selection either with a grating monochromator combined with the appropriate order sorting filters or with a set of six narrow bandpass filters. The endpoint detection is based on the digital processing of the signal corresponding to the light intensity after transmission through or reflexion from a testglass located side by side with a quartz crystal microbalance at the center of the coating plant. Turning value monitoring or termination of the process at an arbitrary predetermined point are both possible. Single and multiple layers of silicon dioxide and titanium dioxide and combinations thereof were deposited. Excellent linear correlation between the optical thickness on the test glass and the geometrical layer thickness as measured by the quartz crystal microbalance was observed. The reproducibility for single layers of quarterwave thickness was found to be between +/- 0.7 to +/- 1.7 % of the center wavelength of the spectral extremum measured on the test glass, depending on wavelength (350 - 3200 nm) and coating material (SiO2 or TiO2 on glass).

  13. Application of maximum-likelihood estimation in optical coherence tomography for nanometer-class thickness estimation

    Science.gov (United States)

    Huang, Jinxin; Yuan, Qun; Tankam, Patrice; Clarkson, Eric; Kupinski, Matthew; Hindman, Holly B.; Aquavella, James V.; Rolland, Jannick P.

    2015-03-01

    In biophotonics imaging, one important and quantitative task is layer-thickness estimation. In this study, we investigate the approach of combining optical coherence tomography and a maximum-likelihood (ML) estimator for layer thickness estimation in the context of tear film imaging. The motivation of this study is to extend our understanding of tear film dynamics, which is the prerequisite to advance the management of Dry Eye Disease, through the simultaneous estimation of the thickness of the tear film lipid and aqueous layers. The estimator takes into account the different statistical processes associated with the imaging chain. We theoretically investigated the impact of key system parameters, such as the axial point spread functions (PSF) and various sources of noise on measurement uncertainty. Simulations show that an OCT system with a 1 μm axial PSF (FWHM) allows unbiased estimates down to nanometers with nanometer precision. In implementation, we built a customized Fourier domain OCT system that operates in the 600 to 1000 nm spectral window and achieves 0.93 micron axial PSF in corneal epithelium. We then validated the theoretical framework with physical phantoms made of custom optical coatings, with layer thicknesses from tens of nanometers to microns. Results demonstrate unbiased nanometer-class thickness estimates in three different physical phantoms.

  14. Effect of thickness on optical properties of nickel vertical posts deposited by GLAD technique

    Science.gov (United States)

    Potočnik, J.; Nenadović, M.; Bundaleski, N.; Popović, M.; Rakočević, Z.

    2016-12-01

    Nickel (Ni) thin films of different thicknesses (25 nm to 150 nm) were deposited on glass substrates using Glancing Angle Deposition technique. Characterization of obtained Ni films was performed by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, spectroscopic ellipsometry and by four-point probe method. Variations in optical parameters with thickness correlated with structural, chemical and electrical properties of nanostructured nickel thin films were studied. The results showed that deposit is porous and consists of nano-scaled columns, which grow perpendicular to the substrate. It was found that the size of the columns and the surface roughness change with film thickness. Spectroscopic ellipsometry revealed that the refractive index and extinction coefficient varied with thickness, which can be correlated with changes in microstructure of Ni films. Additionally, the relationship between the film microstructure and its resistivity was also analyzed. It was found that the variations in Ni films resistivity could be attributed to the changes in the width of the columns. The increasing of layer thickness leads to overall decrease of optical resistivity of nickel thin films.

  15. Optical properties of hydroxyethyl cellulose film treated with nitrogen plasma

    Science.gov (United States)

    Mahmoud, K. H.

    2016-03-01

    Hydroxyethyl cellulose (HEC) film has been prepared by casting technique. The prepared sample has been treated with nitrogen plasma at different exposure times. The optical absorption was recorded at room temperature in the wavelength range of 200-800 nm. Absorbance fitting procedure curves revealed a direct allowed transition with optical band gap, Eopt, of 4.9 eV for pristine film, and this value decreases to 4.30 eV for 20 min plasma treatment time. The band tail values (Ee) were found to be increased under plasma time treatment from 1.74 eV in case of the pristine film to 2.20 eV for 20 min. The dispersion of refractive index and complex dielectric constants under plasma treatment was also studied. Variation of color parameters under effect of the plasma treatment is analyzed in the framework of CIE L*U*V* color space.

  16. Evaluation of peripapillary choroidal and retinal nerve fiber layer thickness in eyes with tilted optic disc

    Directory of Open Access Journals (Sweden)

    Muammer Ozcımen

    2014-12-01

    Full Text Available Purpose: This study was performed to evaluate the retinal nerve fiber layer (RNFL and peripapillary choroidal thickness in eyes with tilted optic disc in order to identify characteristic RNFL and peripapillary choroid patterns verified by optical coherence tomography (OCT. Methods: Twenty-nine eyes of 29 patients with tilted optic discs were studied with spectral-domain (SD-OCT and compared with age and sex-matched control subjects in a prospective design. The imaging of RNFL was performed using circular scans of a diameter of 3.4 mm around the optic disc using OCT. For measurements of peripapillary choroidal thickness, the standar d protocol for RNFL assessment was performed. Results: SD-OCT indicated significantly lower superotemporal (p<0.001, superonasal (p=0.001, and global (p=0.005 RNFL thicknesses in the tilted disc group than those of the control group. Peripapillary choroid was significantly thicker at the site of the elevated rim of eyes with tilted disc (p<0.001. Conclusion: This study demonstrated a clinical characterization of the main tilted disc morphologies that may be helpful in differentiating a tilted disc from other altered disc morphologies. Further studies are recommended to study the comparison between glaucoma and tilted disc groups.

  17. Determination of the optical thickness and effective particle radius of clouds from transmitted solar radiation measurements

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A method is presented for determining the optical thickness (τc) and effective particle radius (γe) of stratiform cloud layers from transmitted solar radiation measurements. A detailed study shows that the cloud optical thickness and effective particle radius of water clouds can be determined from transmission function rneasurements at 0.75 and 2.13 μm, provided that the scaled optical thickness τ'0.75 >1 and γe>5 μm. The wavelengths adopted by our study are similar to the channels of the moderate resolution imaging spectrometer (MODIS). The proposed method is invalid for optically thin clouds since transmission at 2.13 μm is less sensitive to γe. The retrieval errors of τ'γ.75 and γe monotonically decrease with increasing τc. For clouds having τ'0.75≥2, the retrieval errors of τ'0.75 and γe are below 10 % and 20 %, respectively. Transmissions at 0.75 and 1.65 μm can also be used to retrieve τc and γe.

  18. Removal of carbon contaminations by RF plasma generated reactive species and subsequent effects on optical surface

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, P. K., E-mail: praveenyadav@rrcat.gov.in; Rai, S. K.; Modi, M. H.; Nayak, M.; Lodha, G. S. [Indus Synchrotron Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore-452013 (India); Kumar, M.; Chakera, J. A.; Naik, P. A. [Laser Plasma Laboratory, Laser Plasma Division, Raja Ramanna Centre for Advanced Technology, Indore-452013 (India)

    2015-06-24

    Carbon contamination on optical elements is a serious issue in synchrotron beam lines for several decades. The basic mechanism of carbon deposition on optics and cleaning strategies are not fully understood. Carbon growth mechanism and optimized cleaning procedures are worldwide under development stage. Optimized RF plasma cleaning is considered an active remedy for the same. In present study carbon contaminated optical test surfaces (carbon capped tungsten thin film) are exposed for 30 minutes to four different gases, rf plasma at constant power and constant dynamic pressure. Structural characterization (thickness, roughness and density) of virgin samples and plasma exposed samples was done by soft x-ray (λ=80 Å) reflectivity measurements at Indus-1 reflectivity beam line. Different gas plasma removes carbon with different rate (0.4 to 0.65 nm /min). A thin layer 2 to 9 nm of different roughness and density is observed at the top surface of tungsten film. Ar gas plasma is found more suitable for cleaning of tungsten surface.

  19. Measurement of choroid thickness in pregnant women using enhanced depth imaging optical coherence tomography.

    Science.gov (United States)

    Goktas, Sertan; Basaran, Ahmet; Sakarya, Yasar; Ozcimen, Muammer; Kucukaydin, Zehra; Sakarya, Rabia; Basaran, Mustafa; Erdogan, Erkan; Alpfidan, Ismail

    2014-01-01

    To investigate choroidal thickness in healthy pregnant women during different trimesters using enhanced depth imaging optical coherence tomography (EDI-OCT). This prospective study included 90 healthy pregnant women in their first, second, or third trimester (groups 1, 2, and 3, respectively) and 30 non-pregnant healthy women (group 4). The age range for all groups was 18-40 years. Spectral domain optical coherence tomography scans were obtained to estimate the average choroidal thickness. Using EDI-OCT, we measured choroidal thickness manually from the outer border of the retinal pigment epithelium to the inner scleral border at the subfovea, 3 mm temporal, and 3 mm nasal to the fovea. Differences among groups were analyzed by one-way ANOVA. We found a statistically significant difference between groups 2 and group 4 for subfoveal, temporal, and nasal mean choroidal thickness (p=0.007, pchoroidal thickness for group 2 was 395 ± 80 μm, 338 ± 74 μm, and 233 ± 61 μm at the regions subfoveal, temporal, and nasal to the fovea, respectively. In comparison, the mean choroidal thickness for group 4 was 335 ± 86 μm, 274 ± 54 μm, and 200 ± 53 μm at the regions subfoveal, temporal, and nasal to the fovea, respectively. No statistically significant differences were found for choroidal thickness among groups 1-4 (p=0.214, p=0.177, p=0.094, respectively) and between groups 3-4 (p=0.105, p=0.261, p=0.695, respectively) for all measured points. Our results suggest that choroidal thickening can occur at the regions subfoveal, temporal, and nasal to the fovea in the second trimester.

  20. Correlation between Retinal Nerve Fiber Layer Thickness by Optical Coherence Tomography and Perimetric Parameters in Optic Atrophy

    Directory of Open Access Journals (Sweden)

    Mostafa Soltan-Sanjari

    2008-12-01

    Full Text Available

    PURPOSE: To investigate the correlation between retinal nerve fiber layer (RNFL thickness determined by optical coherence tomography (OCT and visual field (VF parameters in patients with optic atrophy. METHODS: This study was performed on 35 eyes of 28 patients with optic atrophy. RNFL thickness was measured by OCT (Carl Zeiss, Jena, Germany and automated perimetry was performed using the Humphrey Field Analyzer (Carl Zeiss, Jena, Germany. The correlation between RNFL thickness and VF parameters was evaluated. RESULTS: Mean global RNFL thickness was 44.9±27.5 µm which was significantly correlated with mean deviation score on automated perimetry (r=0.493, P=0.003; however, no significant correlation was observed between visual field pattern standard deviation and the corresponding quadrantic RNFL thickness. In a similar manner, no significant association was found between visual acuity and RNLF thickness. CONCLUSION: Mean global RNFL thickness as determined by OCT seems to be correlated with VF defect depth as represented by the mean deviation score on Humphrey VF testing. OCT may be used as an objective diagnostic tool in the evaluation of patients with optic atrophy.

  1. Optical diagnostics of dusty plasmas during nanoparticle growth

    Science.gov (United States)

    Mikikian, M.; Labidi, S.; von Wahl, E.; Lagrange, J. F.; Lecas, T.; Massereau-Guilbaud, V.; Géraud-Grenier, I.; Kovacevic, E.; Berndt, J.; Kersten, H.; Gibert, T.

    2017-01-01

    Carbon-based thin films deposited on surfaces exposed to a typical capacitively-coupled RF plasma are sources of molecular precursors at the origin of nanoparticle growth. This growth leads to drastic changes of the plasma characteristics. Thus, a precise understanding of the dusty plasma structure and dynamics is required to control the plasma evolution and the nanoparticle growth. Optical diagnostics can reveal some particular features occurring in these kinds of plasmas. High-speed imaging of the plasma glow shows that instabilities induced by nanoparticle growth can be constituted of small brighter plasma regions (plasmoids) that rotate around the electrodes. A single bigger region of enhanced emission is also of particular interest: the void, a main central dust-free region, has very distinct plasma properties than the surrounding dusty region. This particularity is emphasized using optical emission spectroscopy with spatiotemporal resolution. Emission profiles are obtained for the buffer gas and the carbonaceous molecules giving insights on the changes of the electron energy distribution function during dust particle growth. Dense clouds of nanoparticles are shown to be easily formed from two different thin films, one constituted of polymer and the other one created by the plasma decomposition of ethanol.

  2. Choroid thickness in central serous chorioretinopathy using enhanced depth imaging optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Xiao-Long Yu

    2013-04-01

    Full Text Available AIM: To observe the choroidal thickness in the macular area in affected and unaffected fellow eyes with central serous chorio retinopathy(CSCand in healthy controls. METHODS: Twenty-six cases with unilateral CSC and controls were recruited in this study. All eyes were divided into three groups: 26 eyes in Group A(affected eyes with CSC, 26 eyes in group B(unaffected fellow eyesand 26 eyes in group C(right eyes of age and sex matched control. Enhanced depth imaging was obtained by using spectral-domain optical coherence tomography. Subfoveal choroidal thickness and choroidal thickness at 1mm/3mm nasal, temporal, superior and inferior to the fovea were measured. RESULTS: Choroidal thickness was significantly increased in affected eyes with CSC than unaffected fellow eyes(t=5.57, P<0.01.The mean subfoveal choroidal thickness(SFCTwas 528.31±91.24μm in group A, 413.71±79.35μm in group B, and 301.31±52.46 in group C. The subfoveal choroid was significantly thicker in group A than Group C(P<0.01. SFCT in unaffected fellow eyes were thicker than the controls(P<0.01. CONCLUSION:Choroidal thickness is thicker in affected eyes with CSC and also in fellow unaffected eyes, indicating that the choroid blood vessels are high and perfusion state, may be one of the factors of the disease CSC.

  3. Repeatability of Choroidal Thickness Measurements on Enhanced Depth Imaging Optical Coherence Tomography Using Different Posterior Boundaries.

    Science.gov (United States)

    Vuong, Vivian S; Moisseiev, Elad; Cunefare, David; Farsiu, Sina; Moshiri, Ala; Yiu, Glenn

    2016-09-01

    To assess the reliability of manual choroidal thickness measurements by comparing different posterior boundary definitions of the choroidal-scleral junction on enhanced depth imaging optical coherence tomography (EDI-OCT). Reliability analysis. Two graders marked the choroidal-scleral junction with segmentation software using different posterior boundaries: (1) the outer border of the choroidal vessel lumen, (2) the outer border of the choroid stroma, and (3) the inner border of the sclera, to measure the vascular choroidal thickness (VCT), stromal choroidal thickness (SCT), and total choroidal thickness (TCT), respectively. Measurements were taken at 0.5-mm intervals from 1.5 mm nasal to 1.5 mm temporal to the fovea, and averaged continuously across the central 3 mm of the macula. Intraclass correlation coefficient (ICC) and coefficient of reliability (CR) were compared to assess intergrader and intragrader reliability. Choroidal thickness measurements varied significantly with different posterior boundaries (P choroidal-scleral junction visibility was Choroidal thickness measurements are more reproducible when measured to the border of the choroid stroma (SCT) than the vascular lumen (VCT) or sclera (TCT). Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Real-time optical plasma boundary reconstruction for plasma position control at the TCV Tokamak

    NARCIS (Netherlands)

    Hommen, G.; Baar, M. de; Duval, B.P.; Andrebe, Y.; Le, H.B.; Klop, M.A.; Doelman, N.J.; Witvoet, G.; Steinbuch, M.

    2014-01-01

    A dual, high speed, real-time visible light camera setup was installed on the TCV tokamak to reconstruct optically and in real-time the plasma boundary shape. Localized light emission from the plasma boundary in tangential view, broadband visible images results in clearly resolved boundary edge-feat

  5. Thick methacrylate sections devoid of lost caps simplify stereological quantifications based on the optical fractionator design

    DEFF Research Database (Denmark)

    Andersen, Stine Hasselholt; Lykkesfeldt, Jens; Larsen, Jytte Overgaard

    2015-01-01

    Abstract In neuroscience, the optical fractionator technique is frequently used for unbiased cell number estimations. Although unbiased in theory, the practical application of the technique is often biased by the necessity of introducing a guard zone at one side of the disector to counter lost caps...... methacrylate) sections were inspected for lost caps to evaluate the possibility of whole section thickness counting with the optical fractionator technique and hippocampal granular cell nucleoli density differences along the z-axis were assessed with a z-axis analysis. No lost caps were found in the examined...

  6. CdS nanofilms: Effect of film thickness on morphology and optical band gap

    Science.gov (United States)

    Kumar, Suresh; Kumar, Santosh; Sharma, Pankaj; Sharma, Vineet; Katyal, S. C.

    2012-12-01

    CdS nanofilms of varying thickness (t) deposited by chemical bath deposition technique have been studied for structural changes using x-ray diffractometer (XRD) and transmission electron microscope (TEM). XRD analysis shows polycrystalline nature in deposited films with preferred orientation along (002) reflection plane also confirmed by selected area diffraction pattern of TEM. Uniform and smooth surface morphology observed using field emission scanning electron microscope. The surface topography has been studied using atomic force microscope. The optical constants have been calculated from the analysis of %T and %R spectra in the wavelength range 300 nm-900 nm. CdS nanofilms show a direct transition with red shift. The optical band gap decreases while the refractive index increases with increase in thickness of nanofilms.

  7. Simultaneous measurement of surface shape and optical thickness using wavelength tuning and a polynomial window function.

    Science.gov (United States)

    Kim, Yangjin; Hibino, Kenichi; Sugita, Naohiko; Mitsuishi, Mamoru

    2015-12-14

    In this study, a 6N - 5 phase shifting algorithm comprising a polynomial window function and discrete Fourier transform is developed for the simultaneous measurement of the surface shape and optical thickness of a transparent plate with suppression of the coupling errors between the higher harmonics and phase shift error. The characteristics of the 6N - 5 algorithm were estimated by connection with the Fourier representation in the frequency domain. The phase error of the measurements performed using the 6N - 5 algorithm is discussed and compared with those of measurements obtained using other algorithms. Finally, the surface shape and optical thickness of a transparent plate were measured simultaneously using the 6N - 5 algorithm and a wavelength tuning interferometer.

  8. Optical diagnostics of femtosecond laser plasmas

    Institute of Scientific and Technical Information of China (English)

    LI; Yutong

    2001-01-01

    [1]Benattar, R., Popovics, C., Sigel, R., Polarized light interferometer for laser fusion studies, Rev. Sci. Instrum., 979, 50(2): 583.[2]Young, P. E., Hammer, J. H., Wilks, S. C. et al., Laser beam propagation and channel formation in underdense plasmas, Phys. Plasmas, 995, 2(7): 2825.[3]Zhang, P., He, J.T., Chen, D.B. et al., Effects of a prepulse on γ-ray radiation produced by a femtosecond laser with only mJ energy, Phys. Rev. E., 998, 57: R3746.[4]Stamper, J. A., Review on spontaneous magnetic fields in laser-produced plasmas: phenomena and measurements, Laser and Particle Beams, 99, 9(4): 84.[5]Stamper, J. A., McLean, E. A., Ripin, B. H., Studies of spontaneous magnetic fields in laser-produced plasmas by Faraday rotation, Phys. Rev. Lett., 978, 40(8): 77.[6]Raven, A., Willi, O., Rumsby, P. T., Megagauss magnetic field profiles in laser-produced plasmas, Phys. Rev. Lett., 978, 4(8): 554.[7]Burgess, M. D. J., Luther-Davis, B., Nugent, K. A., An experimental study of magnetic fields in plasmas created by high intensity one micron laser radiation, Phys. Fluids, 985, 28(7): 2286.[8]Borghesi, M., Mackinnon, A. J., Bell, A. R. et al., Megagauss magnetic field generation and plasma jet formation on solid targets irradiated by an ultraintense picosecond laser pulse, Phys. Rev. Lett., 998, 8(): 2.

  9. Macular Microcysts in Mitochondrial Optic Neuropathies: Prevalence and Retinal Layer Thickness Measurements.

    Directory of Open Access Journals (Sweden)

    Michele Carbonelli

    Full Text Available To investigate the thickness of the retinal layers and to assess the prevalence of macular microcysts (MM in the inner nuclear layer (INL of patients with mitochondrial optic neuropathies (MON.All patients with molecularly confirmed MON, i.e. Leber's Hereditary Optic Neuropathy (LHON and Dominant Optic Atrophy (DOA, referred between 2010 and 2012 were enrolled. Eight patients with MM were compared with two control groups: MON patients without MM matched by age, peripapillary retinal nerve fiber layer (RNFL thickness, and visual acuity, as well as age-matched controls. Retinal segmentation was performed using specific Optical coherence tomography (OCT software (Carl Zeiss Meditec. Macular segmentation thickness values of the three groups were compared by one-way analysis of variance with Bonferroni post hoc corrections.MM were identified in 5/90 (5.6% patients with LHON and 3/58 (5.2% with DOA. The INL was thicker in patients with MON compared to controls regardless of the presence of MM [133.1±7μm vs 122.3±9μm in MM patients (p<0.01 and 128.5±8μm vs. 122.3±9μm in no-MM patients (p<0.05], however the outer nuclear layer (ONL was thicker in patients with MM (101.4±1mμ compared to patients without MM [77.5±8mμ (p<0.001] and controls [78.4±7mμ (p<0.001]. ONL thickness did not significantly differ between patients without MM and controls.The prevalence of MM in MON is low (5-6%, but associated with ONL thickening. We speculate that in MON patients with MM, vitreo-retinal traction contributes to the thickening of ONL as well as to the production of cystic spaces.

  10. Macular Microcysts in Mitochondrial Optic Neuropathies: Prevalence and Retinal Layer Thickness Measurements

    Science.gov (United States)

    Carbonelli, Michele; La Morgia, Chiara; Savini, Giacomo; Cascavilla, Maria Lucia; Borrelli, Enrico; Chicani, Filipe; do V. F. Ramos, Carolina; Salomao, Solange R.; Parisi, Vincenzo; Sebag, Jerry; Bandello, Francesco; Sadun, Alfredo A.; Carelli, Valerio; Barboni, Piero

    2015-01-01

    Purpose To investigate the thickness of the retinal layers and to assess the prevalence of macular microcysts (MM) in the inner nuclear layer (INL) of patients with mitochondrial optic neuropathies (MON). Methods All patients with molecularly confirmed MON, i.e. Leber’s Hereditary Optic Neuropathy (LHON) and Dominant Optic Atrophy (DOA), referred between 2010 and 2012 were enrolled. Eight patients with MM were compared with two control groups: MON patients without MM matched by age, peripapillary retinal nerve fiber layer (RNFL) thickness, and visual acuity, as well as age-matched controls. Retinal segmentation was performed using specific Optical coherence tomography (OCT) software (Carl Zeiss Meditec). Macular segmentation thickness values of the three groups were compared by one-way analysis of variance with Bonferroni post hoc corrections. Results MM were identified in 5/90 (5.6%) patients with LHON and 3/58 (5.2%) with DOA. The INL was thicker in patients with MON compared to controls regardless of the presence of MM [133.1±7μm vs 122.3±9μm in MM patients (p<0.01) and 128.5±8μm vs. 122.3±9μm in no-MM patients (p<0.05)], however the outer nuclear layer (ONL) was thicker in patients with MM (101.4±1mμ) compared to patients without MM [77.5±8mμ (p<0.001)] and controls [78.4±7mμ (p<0.001)]. ONL thickness did not significantly differ between patients without MM and controls. Conclusion The prevalence of MM in MON is low (5-6%), but associated with ONL thickening. We speculate that in MON patients with MM, vitreo-retinal traction contributes to the thickening of ONL as well as to the production of cystic spaces. PMID:26047507

  11. Optical thickness identification of transition metal dichalcogenide nanosheets on transparent substrates

    Science.gov (United States)

    Zhang, Hao; Ran, Feirong; Shi, Xiaotong; Fang, Xiangru; Wu, Shiyu; Liu, Yue; Zheng, Xianqiang; Yang, Peng; Liu, Yang; Wang, Lin; Huang, Xiao; Li, Hai; Huang, Wei

    2017-04-01

    Transparent and flexible devices based on two-dimensional (2D) materials hold great potential for many electronic/optoelectronic applications. The direct and fast thickness identification of 2D materials on transparent substrates is therefore an essential step in such applications, but remains challenging. Here, we present a simple, rapid and reliable optical method to identify the thickness of 2D nanosheets on transparent substrates, such as polydimethylsiloxane, glass, and coverslip. Under reflection and transmission light, 1-20L MoS2 and 1-14L WSe2 nanosheets can be reliably identified by measuring the optical contrast difference between the 2D nanosheets and substrates in color, red, green or blue channels. Meanwhile, the values of all the measured contrast differences as a function of layer number can be well fitted with the Boltzmann function, indicating the generalizability and reliability of our optical method. Our method will not only facilitate the fundamental study of the thickness-dependent properties of 2D nanosheets, but will also expand their potential applications in the field of flexible/transparent electronics and optoelectronics.

  12. Analysis of Retinal Layer Thicknesses and Their Clinical Correlation in Patients with Traumatic Optic Neuropathy.

    Directory of Open Access Journals (Sweden)

    Ju-Yeun Lee

    Full Text Available The aims of this study were 1 To evaluate retinal nerve fiber layer (fRNFL thickness and ganglion cell layer plus inner plexiform layer (GCIPL thickness at the fovea in eyes affected with traumatic optic neuropathy (TON compared with contralateral normal eyes, 2 to further evaluate these thicknesses within 3 weeks following trauma (defined as "early TON", and 3 to investigate the relationship between these retinal layer thicknesses and visual function in TON eyes. Twenty-nine patients with unilateral TON were included. Horizontal and vertical spectral-domain optical coherence tomography (SD-OCT scans of the fovea were taken in patients with unilateral TON. The main outcome measure was thickness of the entire retina, fRNFL, and GCIPL in eight areas. Thickness of each retinal layer was compared between affected and unaffected eyes. The correlation between the thickness of each retinal layer and visual function parameters, including best corrected visual acuity, color vision, P100 latency, and P100 amplitude in visual evoked potential (VEP, mean deviation (MD and visual field index (VFI in Humphrey visual field analysis in TON eyes was analyzed. Thicknesses of the entire retina, fRNFL, and GCIPL in SD-OCT were significantly thinner (3-36% in all measurement areas of TON eyes compared to those in healthy eyes (all p<0.05. Whereas, only GCIPL in the outer nasal, superior, and inferior areas was significantly thinner (5-10% in the early TON eyes than that in the control eyes (all p<0.01. A significant correlation was detected between retinal layer thicknesses and visual function parameters including color vision, P100 latency and P100 amplitude in VEP, MD, and VFI (particularly P100 latency, MD, and VFI (r = -0.70 to 0.84. Among the retinal layers analyzed in this study, GCIPL (particularly in the superior and inferior areas was most correlated with these five visual function parameters (r = -0.70 to 0.71. Therefore, evaluation of morphological change

  13. Decreased retinal nerve fibre layer thickness detected by optical coherence tomography in patients with ethambutol‐induced optic neuropathy

    Science.gov (United States)

    Chai, Samantha J; Foroozan, Rod

    2007-01-01

    Background It is difficult to assess the degree of optic nerve damage in patients with ethambutol‐induced optic neuropathy, especially just after the onset of visual loss, when the optic disc typically looks normal. Aim To evaluate changes in retinal nerve fibre layer thickness (RNFLT) using optical coherence tomography (OCT) in patients with optic neuropathy within 3 months of cessation of ethambutol treatment. Design A retrospective observational case series from a single neuro‐ophthalmology practice. Methods 8 patients with a history of ethambutol‐induced optic neuropathy were examined within 3 months after stopping ethambutol treatment. All patients underwent a neuro‐ophthalmologic examination, including visual acuity, colour vision, visual fields and funduscopy. OCT was performed on both eyes of each patient using the retinal nerve fibre layer analysis protocol. Results The interval between cessation of ethambutol treatment and the initial visit ranged from 1 week to 3 months. All patients had visual deficits characteristic of ethambutol‐induced optic neuropathy at their initial visit, and the follow‐up examination was performed within 12 months. Compared with the initial RNFLT, there was a statistically significant decrease in the mean RNFLT of the temporal, superior and nasal quadrants (p = 0.009, 0.019 and 0.025, respectively), with the greatest decrease in the temporal quadrant (mean decrease 26.5 μm). Conclusions A decrease in RNFLT is observed in all quadrants in patients with ethambutol‐induced optic neuropathy who have recently discontinued the medication. This decrease is most pronounced in the temporal quadrant of the optic disc. PMID:17215265

  14. Corrective Change of Retinal Thickness Measured by Optical Coherence Tomography and Histologic Studies

    Institute of Scientific and Technical Information of China (English)

    GeJ; LuoRJ

    1999-01-01

    Purpose:To evaluate the correlation of retinal thickness between optical coherence tomography(OCT)images and histologic slides.Methods:Retinal thickness was measured in 16 rabbit retinal histologic slides.The same eyes has been previously measured by OCT fr the comparison of results between two methods.Retinal thickness of each OCT image section was measured using both the manually assisted(requiring localization of reflectivity peaks by observer)and automated modes of the computer software.Results:Retinal thickness measured by OCT demonstrated a high degree of correlation with retinal histologic study.The automated method(Cc=0.66,P<0.01) was less reliable than the manually assisted one (Cc=0.84,P<0.001).The former had an error in 95% confidence interval,ranged between-0.71 and 11.09μm.The latter had a less error,ranged from -2.99 to 5.13μm.Conclusion:OCT can quantitatively measure the retinal thickness.However,automatical identification of the reflective boundaries by computer may result in errors in some cases.To masure the retinal thickess by manually assisted mode can increase the accuracy.

  15. Matrix formalism for light propagation and absorption in thick textured optical sheets.

    Science.gov (United States)

    Eisenlohr, Johannes; Tucher, Nico; Höhn, Oliver; Hauser, Hubert; Peters, Marius; Kiefel, Peter; Goldschmidt, Jan Christoph; Bläsi, Benedikt

    2015-06-01

    In this paper, we introduce a simulation formalism for determining the Optical Properties of Textured Optical Sheets (OPTOS). Our matrix-based method allows for the computationally-efficient calculation of non-coherent light propagation and absorption in thick textured sheets, especially solar cells, featuring different textures on front and rear side that may operate in different optical regimes. Within the simulated system, the angular power distribution is represented by a vector. This light distribution is modified by interaction with the surfaces of the textured sheets, which are described by redistribution matrices. These matrices can be calculated for each individual surface texture with the most appropriate technique. Depending on the feature size of the texture, for example, either ray- or wave-optical methods can be used. The comparison of the simulated absorption in a sheet of silicon for a variety of surface textures, both with the results from other simulation techniques and experimentally measured data, shows very good agreement. To demonstrate the versatility of this newly-developed approach, the absorption in silicon sheets with a large-scale structure (V-grooves) at the front side and a small-scale structure (diffraction grating) at the rear side is calculated. Moreover, with minimal computational effort, a thickness parameter variation is performed.

  16. Oxygen plasma effects on optical properties of ZnSe films

    Science.gov (United States)

    Yan, Li; Woollam, John A.; Franke, Eva

    2002-05-01

    Zinc selenide is an infrared transparent semiconductor material being considered for use in space as an infrared optical coating. In this work, zinc selenide thin films of different thicknesses were exposed to an electron cyclotron resonance generated oxygen plasma, often used to ``simulate'' the low earth orbital environment. The maximum fluence used in our experiments was equivalent to ~16 years in the low earth orbital environment. ZnSe thin film optical constants (both before and after oxygen plasma exposure) were determined using variable angle spectroscopic ellipsometry from the vacuum ultraviolet at 146 nm through the middle infrared to 40 μm. A parametric dispersion model (Herzinger-Johs) was successfully used to fit the optical data over the entire range from ultraviolet to infrared. Comparing the pre- and post-oxygen plasma exposure data, few changes were observed in the middle infrared region, while drastic changes were seen in the vacuum ultraviolet through visible to near infrared (0.73-8.5 eV). This suggests that chemical changes upon plasma exposure, including oxidation, are found mainly in a thin layer near the surface. As the proposed application is for infrared coatings, and few infrared changes were seen under conditions roughly equivalent to 16 years in low earth orbit, ZnSe may indeed be useful for space infrared applications. Performance simulations of ZnSe coated infrared-operating electrochromic thermal-control surfaces confirm this conclusion.

  17. Optic Disc and Retinal Nerve Fiber Layer Thickness Evaluation of the Fellow Eyes in Non-Arteritic Ischemic Optic Neuropathy

    Directory of Open Access Journals (Sweden)

    Medine Yılmaz Dağ

    2015-05-01

    Full Text Available Objectives: To examine the fellow eyes in unilateral non-arteritic ischemic optic neuropathy (NAION and to compare their optic disc parameters and peripapillary retinal nerve fiber layer (RNFL thickness with age-and refraction-matched normal controll subjects, using Heidelberg Retinal Tomograph 2 (HRT II. Materials and Methods: The fellow eyes of 40 patients with typical unilateral NAION (study group and one randomly chosen eye of 42 age-, sex-, and refraction-matched normal control subjects were enrolled in the study. Optic disc morphologic features (average disc area, cup area, rim area, disc volume, rim volume, cup/disc area ratio, cup depth and peripapillary RNFL thickness were evaluated using HRT II, a confoal scanning ophtalmoscopy. Results: In the study group, there were 26 (65% men and 14 (35% women, whereas there were 27 (64% men and 15 (36% women in the control group (Chi square test, p=0.89. Mean age of the patients in the study and control groups was 59.4±10.3 and 57.7±9.1 years, respectively (T test, p=0.72. There was not any statistically significant difference regarding mean spheric equivalent between the two groups (Mann-Whitney U-test, p=0.203. The NAION unaffected fellow eyes had significantly smaller disc areas, cup areas, cup volumes, cup-disc area ratios (vertical and lineer, and cup depths than the control eyes (Mann-Whitney U-test; p<0.05, whereas there was no significant difference in the RNFL thickness between the two. Conclusion: A comparison of the fellow eyes in patients with unilateral NAION and the control eyes showed a significant difference in optic disc parameters and the morphology of RNFL. These differences could be important in the pathogenesis of NAION and needs to have further investigated. (Turk J Ophthalmol 2015; 45: 111-114

  18. Optical properties of plasma deposited amorphous carbon nitride films on polymer substrates

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, S.H., E-mail: abo_95@yahoo.co [Physics Department, Faculty of Science, Sohag University, 82524 Sohag (Egypt); El-Hossary, F.M. [Physics Department, Faculty of Science, Sohag University, 82524 Sohag (Egypt); Gamal, G.A.; Kahlid, M.M. [Physics Department, Faculty of Science, South Valley University, 83523 Qena (Egypt)

    2010-01-01

    Amorphous carbon nitride thin films were deposited on polymer substrates using radio frequency (rf) plasma in a mixture of nitrogen (N{sub 2}) and acetylene (C{sub 2}H{sub 2}) gasses. The samples were prepared at different rf plasma power (350, 400, 450, 500, and 550 W), at constant plasma exposure time of 10 min, and constant N{sub 2}/C{sub 2}H{sub 2} ratio of 50%. The crystal structure and surface morphology of the prepared samples were examined using X-ray diffraction and atomic force microscopy analysis, respectively. The absence of the carbon nitride diffraction peaks confirms the amorphous nature of these films. The root mean square roughness of the films increased from 3.77 to 25.22 nm as the power increased from 350 to 550 W. The thickness and the deposition rate were found to increase with increasing plasma power. Over the whole studied wavelength range, from 200 to 2500 nm, the transmittance decreased with increasing plasma power. A shift in the onset of absorption towards higher wavelengths with increasing plasma power, indicating a decrease in the optical band gap, has been observed. The refractive index values were found to decrease while the extinction coefficient increased with increasing plasma power.

  19. A correlation of thin lens approximation to thick lens design by using context based method in optics education

    Science.gov (United States)

    Farsakoglu, O. F.; Inal Atik, Ipek; Kocabas, Hikmet

    2014-07-01

    The effect of Coddington factors on aberration functions has been analysed using thin lens approximation with optical glass parameters. The dependence of spherical aberration on Coddington shape factor for the various optical glasses in real lens design was discussed using exact ray tracing for the optics education and training purposes. Thin lens approximation and thick lens design are generally taught with only lecturing method. But, thick lens design is closely related to the real life. Hence, it is more appropriate to teach thin lens approximation and thick lens design with real-life context based approach. Context based teaching can be effective in solving problems in which the subject is very difficult and irrelevant. It also provides extensive evidence for optics education that students are generally unable to correctly apply the concepts of lens design to optical instruments currently used. Therefore, the outline of real-life context based thick lens design lessons were proposed and explained in detail considering thin lens approximation.

  20. Compact collimated fiber optic array diagnostic for railgun plasma experiments

    Energy Technology Data Exchange (ETDEWEB)

    Tang, V; Solberg, J; Ferriera, T; Tully, L; Stephan, P

    2008-10-02

    We have developed and tested a compact collimated sixteen channel fiber optic array diagnostic for studying the light emission of railgun armature plasmas with {approx}mm spatial and sub-{micro}s temporal resolution. The design and operational details of the diagnostic are described. Plasma velocities, oscillation, and dimension data from the diagnostic for the Livermore Fixed Hybrid Armature experiment are presented and compared with 1-D simulations. The techniques and principles discussed allow the extension of the diagnostic to other railgun and related dense plasma experiments.

  1. Compact collimated fiber optic array diagnostic for railgun plasmas.

    Science.gov (United States)

    Tang, V; Solberg, J M; Ferriera, T J; Tully, L K; Stephan, P L

    2009-01-01

    We developed and tested a compact collimated 16 channel fiber optic array diagnostic for studying the light emission of railgun armature plasmas with approximately millimeter spatial and submicrosecond temporal resolution. The design and operational details of the diagnostic are described. Plasma velocities, oscillation, and dimension data from the diagnostic for the Livermore fixed hybrid armature experiment are presented and compared with one-dimensional simulations. The techniques and principles discussed allow the extension of the diagnostic to other railgun and related dense plasma experiments.

  2. Optic coherence tomography measurement of choroidal and retinal thicknesses after uncomplicated YAG laser capsulotomy

    Directory of Open Access Journals (Sweden)

    İsa Yuvacı

    2015-12-01

    Full Text Available ABSTRACT Purpose: Optic coherence tomography (OCT evaluation of the choroid, retina, and retinal nerve fiber layer after uncomplicated yttrium-aluminum-garnet (YAG laser capsulotomy. Methods: OCT analysis of retinal and choroidal structures was performed in 28 eyes of 28 patients following routine examinations before and 24 h, 72 h, 2 weeks, 4 weeks, and 12 weeks after YAG laser capsulotomy. Data were analyzed using the SPSS software. Results: Data collected before YAG capsulotomy and at the above mentioned follow-up visits are summarized as follows. Mean central subfoveal choroidal thickness before YAG capsulotomy was 275.85 ± 74.78 µm; it was 278.46 ± 83.46 µm, 283.39 ± 82.84 µm, 280.00 ± 77.16 µm, 278.37 ± 76.95 µm, and 278.67 ± 76.20 µm after YAG capsulotomy, respectively. Central macular thickness was 272.14 ± 25.76 µm before YAG capsulotomy; it was 266.53 ± 26.47 µm, 269.14 ± 27.20 µm, 272.17 ± 26.97 µm, 270.91 ± 26.79 µm, and 273 ± 26.63 µm after YAG capsulotomy, respectively. Mean retinal nerve fiber layer thickness before YAG was 99.89 ± 7.61 µm; it was 98.50 ± 8.62 µm, 98.14 ± 8.69 µm, 99.60 ± 8.39 µm, 99.60 ± 8.39 µm, and 99.60 ± 8.35 µm after YAG capsulotomy, respectively. No observed change was statistically significant. No significant changes were observed with regard to mean intraocular pressure. Conclusions: After YAG laser capsulotomy, no statistically significant changes were found in choroidal, retinal, and optical nerve fiber layer thicknesses, although slight thickness changes in these structures were observed, particularly during the first days.

  3. Titanium carbonitride thick coating prepared by plasma spray synthesis and its tribological properties

    Institute of Scientific and Technical Information of China (English)

    ZHU Lin; HE JiNing; YAN DianRan; XIAO LiSong; DONG YanChun; XUE DingChuan; MENG DeLiang

    2007-01-01

    TiCN coating,owing to its superior wear-resistance,has been frequently applied in many fields. TiCN thick coating was first prepared by reactive plasma spraying. The phase composition,microstructure and tribological properties of the TiCN coating were investigated in this research. Experimental results show that the microstructure of the TiCN coating was quite dense,and there was also a little amount of titanium oxides within the coating. By XPS analysis,Ti-C and Ti-N bonds were detected in the coating. The TiCN coating exhibited superior wear-resistance. The failure mechanism was attributed to the adhesive wear,the grinding of TiCN hard-grain,as well as the coating failure by oxidation. There were more Fe,Cr,O,etc. in the failure zone,suggesting that the corrosion propagated gradually from surface to interior.

  4. Enhanced Depth Imaging Optical Coherence Tomography: A New Way Measuring Choroidal Thickness in Pregnant Women

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2017-01-01

    Full Text Available The body changes markedly during pregnancy; each system behaves differently from a nonpregnant state. As the eyes are the only windows to see directly what is going on in the internal environment, more and more researches have been done to explain the association between ocular changes and the physiological and pathological changes during pregnancy. The choroid is one of the critical parts of the eye, providing nutrition. And abnormal choroid may result in ocular dysfunction and visual problems. As the optical coherence tomography develops, a rapid, direct, noninvasive, and nontoxic way is available to obtain the choroid situation of pregnant women, which may explain the mechanism of pregnancy-related eye diseases. This review would summarize relevant original articles published from January 1, 2008 to December 1, 2016 to assess the changes of choroidal thickness (CT with enhanced depth imaging optical coherence tomography (EDI-OCT during pregnancy. And the relationship between choroidal thickness changes and pregnancy remains uncertain. To our knowledge, this is the first review of EDI-OCT in assessing the choroidal thickness of the pregnant women.

  5. Enhanced Depth Imaging Optical Coherence Tomography: A New Way Measuring Choroidal Thickness in Pregnant Women

    Science.gov (United States)

    2017-01-01

    The body changes markedly during pregnancy; each system behaves differently from a nonpregnant state. As the eyes are the only windows to see directly what is going on in the internal environment, more and more researches have been done to explain the association between ocular changes and the physiological and pathological changes during pregnancy. The choroid is one of the critical parts of the eye, providing nutrition. And abnormal choroid may result in ocular dysfunction and visual problems. As the optical coherence tomography develops, a rapid, direct, noninvasive, and nontoxic way is available to obtain the choroid situation of pregnant women, which may explain the mechanism of pregnancy-related eye diseases. This review would summarize relevant original articles published from January 1, 2008 to December 1, 2016 to assess the changes of choroidal thickness (CT) with enhanced depth imaging optical coherence tomography (EDI-OCT) during pregnancy. And the relationship between choroidal thickness changes and pregnancy remains uncertain. To our knowledge, this is the first review of EDI-OCT in assessing the choroidal thickness of the pregnant women. PMID:28630765

  6. The existence of warm and optically thick dissipative coronae above accretion disks

    CERN Document Server

    Rozanska, A; Belmont, R; Czerny, B; Petrucci, P -O

    2015-01-01

    In the past years, several observations of AGN and X-ray binaries have suggested the existence of a warm T around 0.5-1 keV and optically thick, \\tau ~ 10-20, corona covering the inner parts of the accretion disk. These properties are directly derived from spectral fitting in UV to soft-X-rays using Comptonization models. However, whether such a medium can be both in radiative and hydrostatic equilibrium with an accretion disk is still uncertain. We investigate the properties of such warm, optically thick coronae and put constraints on their existence. We solve the radiative transfer equation for grey atmosphere analytically in a pure scattering medium, including local dissipation as an additional heating term in the warm corona. The temperature profile of the warm corona is calculated assuming it is cooled by Compton scattering, with the underlying dissipative disk providing photons to the corona. Our analytic calculations show that a dissipative thick, (\\tau_{cor} ~ 10-12) corona on the top of a standard ac...

  7. Enhanced Depth Imaging Optical Coherence Tomography: A New Way Measuring Choroidal Thickness in Pregnant Women.

    Science.gov (United States)

    Zhang, Jun; Wang, Huiyun; Yu, Qiubo; Tong, Qihu; Lu, Qinkang

    2017-01-01

    The body changes markedly during pregnancy; each system behaves differently from a nonpregnant state. As the eyes are the only windows to see directly what is going on in the internal environment, more and more researches have been done to explain the association between ocular changes and the physiological and pathological changes during pregnancy. The choroid is one of the critical parts of the eye, providing nutrition. And abnormal choroid may result in ocular dysfunction and visual problems. As the optical coherence tomography develops, a rapid, direct, noninvasive, and nontoxic way is available to obtain the choroid situation of pregnant women, which may explain the mechanism of pregnancy-related eye diseases. This review would summarize relevant original articles published from January 1, 2008 to December 1, 2016 to assess the changes of choroidal thickness (CT) with enhanced depth imaging optical coherence tomography (EDI-OCT) during pregnancy. And the relationship between choroidal thickness changes and pregnancy remains uncertain. To our knowledge, this is the first review of EDI-OCT in assessing the choroidal thickness of the pregnant women.

  8. Evaluation of Macular Thickness by Optical Coherence Tomography After Phacoemulsification Surgery

    Directory of Open Access Journals (Sweden)

    Mehmet Tetikoğlu

    2014-03-01

    Full Text Available Objectives: To evaluate the incidence of cystoid macular edema (CME, its risk factors, and macular changes by optical coherence tomography (OCT after phacoemulsification. Materials and Methods: This study included 99 eyes of 65 patients who underwent phacoemulsification surgery in Okmeydanı Training and Research Hospital, Department of Ophthalmology. Foveal thickness, macular volume, and mean macular thickness were measured by OCT preoperatively and at 1st day, 1st week, 1st, and 3rd months postoperatively. Results: In this study, the incidence of postoperative CME was 3%. The mean central foveal thickness was preoperatively 250.4 (±18.5 μm, and postoperatively was 252.08 (±23.2 μm at 1st day, 261.4 (±27.8 μm at 1st week, 270.6 (±44.4 μm at 1st month, and 265.4 (±41.6 μm at 3rd month. The statistically significant increase in foveal thickness was defined between preoperative and 1st week, 1st month, 3rd month as well as between 1st week, 1st month, and 3rd month (p<0.01. Increase in macular thickness was demonstrated in 44 eyes (44.4% which was most frequently located in the parafoveal region. Intraoperative complications like iris trauma, posterior capsule tear, and vitreous loss were increased risk of CME (p=0.001. Conclusion: Subclinical macular thickness increment begins at 1st week and reaches maximum point at 1st month. Incidence of CME increased in patients who had a complicated cataract surgery, so they should be followed closely by OCT. (Turk J Ophthalmol 2014; 44: 88-91

  9. Consistency of corneal sublayer thickness measurements using Fourier-domain optical coherence tomography after phacoemulsification.

    Science.gov (United States)

    López-Miguel, Alberto; Calabuig-Goena, María; Marqués-Fernández, Victoria; Fernández, Itziar; Alió, Jorge L; Maldonado, Miguel J

    2016-11-04

    To assess the reliability of corneal epithelial thickness (CET), nonepithelial central corneal thickness (NECCT), and central corneal thickness (CCT) measurements using Cirrus high-definition optical coherence tomography (HD-OCT) in patients who did and did not undergo cataract surgery. Forty patients who underwent uneventful phacoemulsification and 40 healthy participants were recruited to evaluate the intraobserver repeatability and interobserver reproducibility of CET, NECCT, and CCT measurements using Cirrus HD-OCT. To analyze repeatability, one examiner obtained 5 consecutive scans in each participant; for interobserver reproducibility, another examiner randomly obtained another scan. Within-subject standard deviation, coefficient of variation (CV), limits of agreement, and intraclass correlation coefficient (ICC) data were obtained. For intraobserver repeatability, the intrasession CV (CVw) and ICC values of the CET in the operated and nonoperated groups were 3.7% and 0.80 and 3.8% and 0.73, respectively; for NECCT, 0.7% and 0.98 and 0.8% and 0.97; and for CCT, 0.6% and 0.99 and 0.7% and 0.98. For interobserver reproducibility, the CVw and ICC values for the CET in the operated and nonoperated groups were 2.6% and 0.82 and 2.3% and 0.62, respectively; for NECCT, 0.7% and 0.98 and 0.5% and 0.98; and for CCT, 0.5% and 0.99 and 0.4% and 0.99. The corneal sublayer thickness can be measured reliably using Cirrus HD-OCT in patients who underwent cataract surgery and elderly participants; however, the CET consistency is poorer than the NECCT. Corneal epithelial thickness modifications exceeding 4% reflect true thickness changes instead of random error variations using HD-OCT.

  10. Plasma arc cutting optimization parameters for aluminum alloy with two thickness by using Taguchi method

    Science.gov (United States)

    Abdulnasser, B.; Bhuvenesh, R.

    2016-07-01

    Manufacturing companies define the qualities of thermal removing process based on the dimension and physical appearance of the cutting material surface. The surface roughness of the cutting area for the material and the material removal rate being removed during the manual plasma arc cutting process were importantly considered. Plasma arc cutter machine model PS-100 was used to cut the specimens made from aluminium alloy 1100 manually based on the selected parameters setting. Two different thicknesses of specimens, 3mm and 6mm were used. The material removal rate (MRR) was measured by determining the difference between the weight of specimens before and after the cutting process. The surface roughness (Ra) was measured by using MITUTOYO CS-3100 machine and analysis was conducted to determine the average roughness (Ra) value, Taguchi method was utilized as an experimental layout to obtain MRR and Ra values. The results indicate that the current and cutting speed is the most significant parameters, followed by the arc gap for both rate of material removal and surface roughness.

  11. Applying UV cameras for SO2 detection to distant or optically thick volcanic plumes

    Science.gov (United States)

    Kern, Christoph; Werner, Cynthia; Elias, Tamar; Sutton, A. Jeff; Lübcke, Peter

    2013-01-01

    Ultraviolet (UV) camera systems represent an exciting new technology for measuring two dimensional sulfur dioxide (SO2) distributions in volcanic plumes. The high frame rate of the cameras allows the retrieval of SO2 emission rates at time scales of 1 Hz or higher, thus allowing the investigation of high-frequency signals and making integrated and comparative studies with other high-data-rate volcano monitoring techniques possible. One drawback of the technique, however, is the limited spectral information recorded by the imaging systems. Here, a framework for simulating the sensitivity of UV cameras to various SO2 distributions is introduced. Both the wavelength-dependent transmittance of the optical imaging system and the radiative transfer in the atmosphere are modeled. The framework is then applied to study the behavior of different optical setups and used to simulate the response of these instruments to volcanic plumes containing varying SO2 and aerosol abundances located at various distances from the sensor. Results show that UV radiative transfer in and around distant and/or optically thick plumes typically leads to a lower sensitivity to SO2 than expected when assuming a standard Beer–Lambert absorption model. Furthermore, camera response is often non-linear in SO2 and dependent on distance to the plume and plume aerosol optical thickness and single scatter albedo. The model results are compared with camera measurements made at Kilauea Volcano (Hawaii) and a method for integrating moderate resolution differential optical absorption spectroscopy data with UV imagery to retrieve improved SO2 column densities is discussed.

  12. On the effects of optically thick gas (disks) around massive stars

    CERN Document Server

    Kuiper, Rolf

    2012-01-01

    Numerical simulations have shown that the often cited radiation pressure barrier to accretion onto massive stars can be circumvented, when the radiation field is highly anisotropic in the presence of a circumstellar accretion disk with high optical depth. Here, these studies of the so-called flashlight effect are expanded by including the opacity of the innermost dust-free but potentially optically thick gas regions around forming massive stars. In addition to frequency-dependent opacities for the dust grains, we use temperature- and density-dependent Planck- and Rosseland mean opacities for the gas. The simulations show that the innermost dust-free parts of the accretion disks are optically thick to the stellar radiation over a substantial fraction of the solid angle above and below the disk's midplane. The temperature in the shielded disk region decreases faster with radius than in a comparison simulation with a lower constant gas opacity, and the dust sublimation front is shifted to smaller radii. The shie...

  13. Retrieval of subvisual cirrus cloud optical thickness from limb-scatter measurements

    Directory of Open Access Journals (Sweden)

    J. T. Wiensz

    2013-01-01

    Full Text Available We present a technique for estimating the optical thickness of subvisual cirrus clouds detected by OSIRIS (Optical Spectrograph and Infrared Imaging System, a limb-viewing satellite instrument that measures scattered radiances from the UV to the near-IR. The measurement set is composed of a ratio of limb radiance profiles at two wavelengths that indicates the presence of cloud-scattering regions. Cross-sections and phase functions from an in situ database are used to simulate scattering by cloud-particles. With appropriate configurations discussed in this paper, the SASKTRAN successive-orders of scatter radiative transfer model is able to simulate accurately the in-cloud radiances from OSIRIS. Configured in this way, the model is used with a multiplicative algebraic reconstruction technique (MART to retrieve the cloud extinction profile for an assumed effective cloud particle size. The sensitivity of these retrievals to key auxiliary model parameters is shown, and it is shown that the retrieved extinction profile, for an assumed effective cloud particle size, models well the measured in-cloud radiances from OSIRIS. The greatest sensitivity of the retrieved optical thickness is to the effective cloud particle size. Since OSIRIS has an 11-yr record of subvisual cirrus cloud detections, the work described in this manuscript provides a very useful method for providing a long-term global record of the properties of these clouds.

  14. Measurement of epithelial thickness within the oral cavity using optical coherence tomography (OCT)

    Science.gov (United States)

    Prestin, S.; Betz, C.; Kraft, M.

    2010-02-01

    Optical coherence tomography (OCT) is a promising method in the early diagnosis of oral cavity cancer. The objective of the present study is to determine normal values of epithelial thickness in the oral cavity, as no such data are to be found in the literature. In healthy test persons, epithelial thickness of the oral mucosa was determined with the help of OCT separately for each side at nine different locations. Special attention was directed to those sites having the highest incidence for the development of dysplasias and carcinomas. Depending on the location within the oral cavity, the epithelium demonstrated a varying thickness. The highest values were found in the region of the tongue and the cheek, whereas the floor of the mouth showed the thinnest epithelium. Our data serve as reference values for detecting oral malignancy and determining the approximate grade of dysplasia. In this circumstance, a differentiated view of the different regions is important due to the variation in thickness of the epithelium within the normal oral cavity.

  15. Dependence of bending losses on cladding thickness in plastic optical fibers.

    Science.gov (United States)

    Durana, Gaizka; Zubia, Joseba; Arrue, Jon; Aldabaldetreku, Gotzon; Mateo, Javier

    2003-02-20

    Our main goal is to provide a comprehensive explanation of the existing differences in bending losses arising from having step-index multimode plastic optical fibers with different cladding thickness and under different types of conditions, namely, the variable bend radius R, the number of fiber turns, or the fiber diameter. For this purpose, both experimental and numerical result of bending losses are presented for different cladding thicknesses and conditions. For the measurements, two cladding thicknesses have been considered: one finite and another infinite. A fiber in air has a finite cladding thickness, and rays are reflected at the cladding-air interface, whereas a fiber covered by oil is equivalent to having an infinite cladding, since the very similar refractive index of oil prevents reflections from occurring at the cladding-oil interface. For the sake of comparison, numerical simulations based on ray tracing have been performed for finite-cladding step-index multimode waveguides. The numerical results reinforce the experimental data, and both the experimental measurements and the computational simulations turn out to be very useful to explain the behavior of refracting and tunneling rays along bent multimode waveguides and along finite-cladding fibers.

  16. High-resolution in-depth imaging of optically cleared thick samples using an adaptive SPIM

    Science.gov (United States)

    Masson, Aurore; Escande, Paul; Frongia, Céline; Clouvel, Grégory; Ducommun, Bernard; Lorenzo, Corinne

    2015-11-01

    Today, Light Sheet Fluorescence Microscopy (LSFM) makes it possible to image fluorescent samples through depths of several hundreds of microns. However, LSFM also suffers from scattering, absorption and optical aberrations. Spatial variations in the refractive index inside the samples cause major changes to the light path resulting in loss of signal and contrast in the deepest regions, thus impairing in-depth imaging capability. These effects are particularly marked when inhomogeneous, complex biological samples are under study. Recently, chemical treatments have been developed to render a sample transparent by homogenizing its refractive index (RI), consequently enabling a reduction of scattering phenomena and a simplification of optical aberration patterns. One drawback of these methods is that the resulting RI of cleared samples does not match the working RI medium generally used for LSFM lenses. This RI mismatch leads to the presence of low-order aberrations and therefore to a significant degradation of image quality. In this paper, we introduce an original optical-chemical combined method based on an adaptive SPIM and a water-based clearing protocol enabling compensation for aberrations arising from RI mismatches induced by optical clearing methods and acquisition of high-resolution in-depth images of optically cleared complex thick samples such as Multi-Cellular Tumour Spheroids.

  17. Association of Optic Radiation Integrity with Cortical Thickness in Children with Anisometropic Amblyopia.

    Science.gov (United States)

    Qi, Shun; Mu, Yun-Feng; Cui, Long-Biao; Li, Rong; Shi, Mei; Liu, Ying; Xu, Jun-Qing; Zhang, Jian; Yang, Jian; Yin, Hong

    2016-02-01

    Previous studies have indicated regional abnormalities of both gray and white matter in amblyopia. However, alterations of cortical thickness associated with changes in white matter integrity have rarely been reported. In this study, structural magnetic resonance imaging and diffusion tensor imaging (DTI) data were obtained from 15 children with anisometropic amblyopia and 15 age- and gender-matched children with normal sight. Combining DTI and surface-based morphometry, we examined a potential linkage between disrupted white matter integrity and altered cortical thickness. The fractional anisotropy (FA) values in the optic radiations (ORs) of children with anisometropic amblyopia were lower than in controls (P amblyopia. These findings indicate that developmental changes occur simultaneously in the OR and visual cortex in amblyopia, and provide key information on complex damage of brain networks in anisometropic amblyopia. Our results also support the hypothesis that the pathogenesis of anisometropic amblyopia is neurodevelopmental.

  18. A comparison of two methods to measure choroidal thickness by enhanced depth imaging optical coherence tomography

    DEFF Research Database (Denmark)

    Lundberg, Lars Kristian; Vestergaard, Anders Højslet; Vergmann, Anna Stage

    coherence tomography (EDI-SD OCT) has made it possible to visualize the choroid, and it is generally accepted that Heidelberg Spectralis OCT provides valid measurements of choroidal thickness (CT), although no fully automated software is commercially available. Two methods for CT-measurement are available...... the CT: 1: Segmentation method; by the use of the thickness profile window we manually edited and moved the inner limiting membrane (ILM) line to the choroid-scleral border (CSB), while we kept the automated defined Bruchs membrane (BM). Hereafter, the software calculated the vertical distance between......Introduction The choroid is believed to be involved in the pathophysiology of several vision threatening diseases such as age-related macular degeneration, central serous chorioretinopathy, inflammatory disorders and myopic macular degeneration. Enhanced depth imaging spectral-domain optical...

  19. Quantification of cell-free layer thickness and cell distribution of blood by optical coherence tomography

    Science.gov (United States)

    Lauri, Janne; Bykov, Alexander; Fabritius, Tapio

    2016-04-01

    A high-speed optical coherence tomography (OCT) with 1-μm axial resolution was applied to assess the thickness of a cell-free layer (CFL) and a spatial distribution of red blood cells (RBC) next to the microchannel wall. The experiments were performed in vitro in a plain glass microchannel with a width of 2 mm and height of 0.2 mm. RBCs were suspended in phosphate buffered saline solution at the hematocrit level of 45%. Flow rates of 0.1 to 0.5 ml/h were used to compensate gravity induced CFL. The results indicate that OCT can be efficiently used for the quantification of CFL thickness and spatial distribution of RBCs in microcirculatory blood flow.

  20. Deep dry-etch of silica in a helicon plasma etcher for optical waveguide fabrication

    Science.gov (United States)

    Li, W. T.; Bulla, D. A. P.; Love, J.; Luther-Davies, B.; Charles, C.; Boswell, R.

    2005-01-01

    Dry-etch of SiO2 layers using a CF4 plasma in a helicon plasma etcher for optical waveguide fabrication has been studied. Al2O3 thin films, instead of the conventional materials, such as Cr or photoresist, were employed as the masking materials. The Al2O3 mask layer was obtained by periodically oxidizing the surface of an Al mask in an oxygen plasma during the breaks of the SiO2 etching process. A relatively high SiO2/Al2O3 etching selectivity of ~100:1, compared with a SiO2/Al selectivity of ~15:1, was achieved under certain plasma condition. Such a high etching selectivity greatly reduced the required Al mask thickness from over 500 nm down to ~100 nm for etching over 5-μm-thick silica, which make it very easy to obtain the mask patterns with near vertical and very smooth sidewalls. Accordingly, silica wavegudies with vertical sidewalls whose roughness was as low as 10 nm were achieved. In addition, the mechanism of the profile transformation from a mask to the etched waveguide was analyzed numerically; and it was found that the slope angle of the sidewalls of the mask patterns only needed to be larger than 50° for achieving vertical sidewalls of the waveguides, if the etching selectivity was increased to 100.

  1. PIC Simulation of RF Plasma Sheath Formation and Initial Validation of Optical Diagnostics using HPC Resources

    Science.gov (United States)

    Icenhour, Casey; Exum, Ashe; Martin, Elijah; Green, David; Smithe, David; Shannon, Steven

    2014-10-01

    The coupling of experiment and simulation to elucidate near field physics above ICRF antennae presents challenges on both the experimental and computational side. In order to analyze this region, a new optical diagnostic utilizing active and passive spectroscopy is used to determine the structure of the electric fields within the sheath region. Parallel and perpendicular magnetic fields with respect to the sheath electric field have been presented. This work focuses on the validation of these measurements utilizing the Particle-in-Cell (PIC) simulation method in conjunction with High Performance Computing (HPC) resources on the Titan supercomputer at Oak Ridge National Laboratory (ORNL). Plasma parameters of interest include electron density, electron temperature, plasma potentials, and RF plasma sheath voltages and thicknesses. The plasma is modeled utilizing the VSim plasma simulation tool, developed by the Tech-X Corporation. The implementation used here is a two-dimensional electromagnetic model of the experimental setup. The overall goal of this study is to develop models for complex RF plasma systems and to help outline the physics of RF sheath formation and subsequent power loss on ICRF antennas in systems such as ITER. This work is carried out with the support of Oak Ridge National Laboratory and the Tech-X Corporation.

  2. Optical Thickness and Effective Radius Retrievals of Liquid Water Clouds over Ice and Snow Surface

    Science.gov (United States)

    Platnick, S.; King, M. D.; Tsay, S.-C.; Arnold, G. T.; Gerber, H.; Hobbs, P. V.; Rangno, A.

    1999-01-01

    Cloud optical thickness and effective radius retrievals from solar reflectance measurements traditionally depend on a combination of spectral channels that are absorbing and non-absorbing for liquid water droplets. Reflectances in non-absorbing channels (e.g., 0.67, 0.86 micrometer bands) are largely dependent on cloud optical thickness, while longer wavelength absorbing channels (1.6, 2.1, and 3.7 micrometer window bands) provide cloud particle size information. Retrievals are complicated by the presence of an underlying ice/snow surface. At the shorter wavelengths, sea ice is both bright and highly variable, significantly increasing cloud retrieval uncertainty. However, reflectances at the longer wavelengths are relatively small and may be comparable to that of dark open water. Sea ice spectral albedos derived from Cloud Absorption Radiometer (CAR) measurements during April 1992 and June 1995 Arctic field deployments are used to illustrate these statements. A modification to the traditional retrieval technique is devised. The new algorithm uses a combination of absorbing spectral channels for which the snow/ice albedo is relatively small. Using this approach, preliminary retrievals have been made with the MODIS Airborne Simulator (MAS) imager flown aboard the NASA ER-2 during FIRE-ACE. Data from coordinated ER-2 and University of Washington CV-580 aircraft observations of liquid water stratus clouds on June 3 and June 6, 1998 have been examined. Size retrievals are compared with in situ cloud profile measurements of effective radius made with the CV-580 PMS FSSP probe, and optical thickness retrievals are compared with extinction profiles derived from the Gerber Scientific "g-meter" probe. MAS retrievals are shown to be in good agreement with the in situ measurements.

  3. Confronting simulations of optically thick gas in massive halos with observations at z = 2-3

    Energy Technology Data Exchange (ETDEWEB)

    Fumagalli, Michele [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Hennawi, Joseph F. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Prochaska, J. Xavier [Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Kasen, Daniel [Department of Physics, University of California, 366 LeConte, Berkeley, CA 94720 (United States); Dekel, Avishai [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Ceverino, Daniel [Departamento de Física Téorica, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Primack, Joel, E-mail: mfumagalli@obs.carnegiescience.edu [Department of Physics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States)

    2014-01-01

    Cosmological hydrodynamic simulations predict the physical state of baryons in the circumgalactic medium (CGM), which can be directly tested via quasar absorption line observations. We use high-resolution 'zoom-in' simulations of 21 galaxies to characterize the distribution of neutral hydrogen around halos in the mass range M {sub vir} ∼ 2 × 10{sup 11} to 4 × 10{sup 12} M {sub ☉} at z ∼ 2. We find that both the mass fraction of cool (T ≤ 3 × 10{sup 4} K) gas and the covering fraction of optically thick Lyman limit systems (LLSs) depend only weakly on halo mass, even around the critical value for the formation of stable virial shocks. The covering fraction of LLSs interior to the virial radius varies between f {sub c} ∼ 0.05-0.2, with significant scatter among halos. Our simulations of massive halos (M {sub vir} ≥ 10{sup 12} M {sub ☉}) underpredict the covering fraction of optically thick gas observed in the quasar CGM by a large factor. The reason for this discrepancy is unclear, but several possibilities are discussed. In the lower mass halos (M {sub vir} ≥ 5 × 10{sup 11} M {sub ☉}) hosting star-forming galaxies, the predicted covering factor agrees with observations; however, current samples of quasar-galaxy pairs are too small for a conclusive comparison. To overcome this limitation, we propose a new observable: the small-scale autocorrelation function of optically thick absorbers detected in the foreground of close quasar pairs. We show that this new observable can constrain the underlying dark halos hosting LLSs at z ∼ 2-3, as well as the characteristic size and covering factor of the CGM.

  4. In vivo sweat film layer thickness measured with Fourier-domain optical coherence tomography

    CSIR Research Space (South Africa)

    Jonathan, E

    2008-01-01

    Full Text Available and pore can be located. In addition, other measure- ments of interest, for example, thickness of the SCL, diameter of an open sweat pore or depth position of DEJ can be performed. References [1] Weller AS. Body temperature and its regulation. Physiol... of tissue microstructure is achieved from operating in the optical low-coherence interferometry domain. 1. Introduction Sweat secretion in humans is accepted as a mechanism by which the body cools off [1,2]. Interest in sweat secretion in humans’ dates...

  5. Spatio-temporal variability of satellite derived aerosol optical thickness and ground measurements over East China

    Science.gov (United States)

    Meng, Fei; Shi, Tongguang

    2016-04-01

    Two-year records of Visible Infrared Imaging Radiometer Suite (VIIRS) Intermediate Product (IP) data on the aerosol optical thickness (AOT) at 550 nm were evaluated by comparing them with sun-sky radiometer measurements from the Chinese sun hazemeter network (CSHNET) and the aerosol robotic network (AERONET). The monthly and seasonal variations in the aerosol optical properties over eastern China were then investigated using collocated VIIRS IP data and CSHNET and AERONET measurements.Results show that the performances of the current VIIRS IP AOT retrievals at the provisional stage were consistent with ground measurements. Similar characteristics of seasonal and monthly variations were found among the measurements, though the observational methodologies were different, showing maxima in the summer and spring and minima in the winter and autumn.

  6. Morphology and epidermal thickness of normal skin imaged by optical coherence tomography

    DEFF Research Database (Denmark)

    Mogensen, Mette; Morsy, Hanan A.; Thrane, Lars;

    2008-01-01

    Background: Optical coherence tomography (OCT) is an optical imaging technology with a potential in the non-invasive diagnosis of skin cancer. To identify skin pathologies using OCT, it is of prime importance to establish baseline morphological features of normal skin. Aims: The aim of this study....... In glabrous skin the stratum corneum is visible. Children had larger ET (p skin-type-related differences in ET were found. Conclusion: This study contributes to understanding OCT and PS-OCT images of normal skin and indicates that OCT...... is to describe normal skin morphology using OCT and polarization-sensitive OCT (PS-OCT), which is a way of representing birefringent tissue such as collagen in OCT images. Anatomical locations in 20 healthy volunteers were imaged, and epidermal thickness (ET) was measured and compared to age, gender and skin...

  7. Investigation of radiative effects of the optically thick dust layer over the Indian tropical region

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.K.; Chen, J.P. [National Taiwan Univ. (China). Dept. of Atmospheric Sciences; Ratnam, M. Venkat; Jayaraman, A. [National Atmospheric Research Laboratory, Tirupati (India)

    2013-06-01

    Optical and physical properties of aerosols derived from multi-satellite observations (MODIS-Aqua, OMI-Aura, MISR-Terra, CALIOP-CALIPSO) have been used to estimate radiative effects of the dust layer over southern India. The vertical distribution of aerosol radiative forcing and heating rates are calculated with 100m resolution in the lower atmosphere, using temperature and relative humidity data from balloon-borne radiosonde observations. The present study investigates the optically thick dust layer of optical thickness 0.18 {+-} 0.06 at an altitude of 2.5 {+-} 0.7 km over Gadanki, transported from the Thar Desert, producing radiative forcing and heating rate of 11.5 {+-} 3.3 W m{sup -2} and 0.6 {+-} 0.26 K day{sup -1}, respectively, with a forcing efficiency of 43 W m{sup -2} and an effective heating rate of 4Kday-1 per unit dust optical depth. Presence of the dust layer increases radiative forcing by 60% and heating rate by 60 times at that altitude compared to nondusty cloud-free days. Calculation shows that the radiative effects of the dust layer strongly depend on the boundary layer aerosol type and mass loading. An increase of 25% of heating by the dust layer is found over relatively cleaner regions than urban regions in southern India and further 15% of heating increases over the marine region. Such heating differences in free troposphere may have significant consequences in the atmospheric circulation and hydrological cycle over the tropical Indian region. (orig.)

  8. Confronting Simulations of Optically Thick Gas in Massive Halos with Observations at z=2-3

    CERN Document Server

    Fumagalli, Michele; Prochaska, J Xavier; Kasen, Daniel; Dekel, Avishai; Ceverino, Daniel; Primack, Joel

    2013-01-01

    We use high resolution hydrodynamic simulations to study the predicted distribution of neutral hydrogen around 21 galaxies in the halo mass range M_vir~3x10^11-4x10^12 M_sun at z~2. The covering fraction of optically-thick gas interior to the virial radius varies between f_c~0.05-0.2, with significant scatter among halos. Contrary to recent claims, both the mass fraction of cold (T= 10^12M_sun underpredict the covering fraction of optically-thick gas observed in the environs of quasar host galaxies by a large factor. The reasons for this discrepancy, possibly related to the treatment of feedback and hydrodynamic instability in simulations or to the fact that quasars may represent a special phase in the life of a galaxy, remain unclear. Conversely, we do not find statistically significant difference between the predicted covering fraction and observations in the lower mass halos M_vir>=5x10^11 M_sun hosting Lyman break galaxies. However, current samples of quasar-galaxy pairs are too small for conclusive compa...

  9. Retrieve Optically Thick Ice Cloud Microphysical Properties by Using Airborne Dual-Wavelength Radar Measurements

    Science.gov (United States)

    Wang, Zhien; Heymsfield, Gerald M.; Li, Lihua; Heymsfield, Andrew J.

    2005-01-01

    An algorithm to retrieve optically thick ice cloud microphysical property profiles is developed by using the GSFC 9.6 GHz ER-2 Doppler Radar (EDOP) and the 94 GHz Cloud Radar System (CRS) measurements aboard the high-altitude ER-2 aircraft. In situ size distribution and total water content data from the CRYSTAL-FACE field campaign are used for the algorithm development. To reduce uncertainty in calculated radar reflectivity factors (Ze) at these wavelengths, coincident radar measurements and size distribution data are used to guide the selection of mass-length relationships and to deal with the density and non-spherical effects of ice crystals on the Ze calculations. The algorithm is able to retrieve microphysical property profiles of optically thick ice clouds, such as, deep convective and anvil clouds, which are very challenging for single frequency radar and lidar. Examples of retrieved microphysical properties for a deep convective clouds are presented, which show that EDOP and CRS measurements provide rich information to study cloud structure and evolution. Good agreement between IWPs derived from an independent submillimeter-wave radiometer, CoSSIR, and dual-wavelength radar measurements indicates accuracy of the IWC retrieved from the two-frequency radar algorithm.

  10. Staging optics considerations for a plasma wakefield acceleration linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Lindstrøm, C.A., E-mail: c.a.lindstrom@fys.uio.no [Department of Physics, University of Oslo, Oslo 0316 (Norway); SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Adli, E. [Department of Physics, University of Oslo, Oslo 0316 (Norway); SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Allen, J.M.; Delahaye, J.P.; Hogan, M.J. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Joshi, C. [Department of Electrical Engineering, UCLA, Los Angeles, CA 90095 (United States); Muggli, P. [Max Planck Institute for Physics, 80805 Munich (Germany); Raubenheimer, T.O.; Yakimenko, V. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States)

    2016-09-01

    Plasma wakefield acceleration offers acceleration gradients of several GeV/m, ideal for a next-generation linear collider. The beam optics requirements between plasma cells include injection and extraction of drive beams, matching the main beam beta functions into the next cell, canceling dispersion as well as constraining bunch lengthening and chromaticity. To maintain a high effective acceleration gradient, this must be accomplished in the shortest distance possible. A working example is presented, using novel methods to correct chromaticity, as well as scaling laws for a high energy regime.

  11. Optical Multi-hysteresises and "Rogue Waves" in Nonlinear Plasma

    CERN Document Server

    Kaplan, A E

    2010-01-01

    An overdense plasma layer irradiated by an intense light can exhibit dramatic nonlinear-optical effects due to a relativistic mass-effect of free electrons: highly-multiple hysteresises of reflection and transition, and emergence of gigantic "rogue waves". Those are trapped quasi-soliton field spikes inside the layer, sustained by an incident radiation with a tiny fraction of their peak intensity once they have been excited by orders of magnitude larger pumping. The phenomenon persists even in the layers with "soft" boundaries, as well as in a semi-infinite plasma with low absorption.

  12. Controlling multiple filaments by relativistic optical vortex beams in plasmas

    Science.gov (United States)

    Ju, L. B.; Huang, T. W.; Xiao, K. D.; Wu, G. Z.; Yang, S. L.; Li, R.; Yang, Y. C.; Long, T. Y.; Zhang, H.; Wu, S. Z.; Qiao, B.; Ruan, S. C.; Zhou, C. T.

    2016-09-01

    Filamentation dynamics of relativistic optical vortex beams (OVBs) propagating in underdense plasma is investigated. It is shown that OVBs with finite orbital angular momentum (OAM) exhibit much more robust propagation behavior than the standard Gaussian beam. In fact, the growth rate of the azimuthal modulational instability decreases rapidly with increase of the OVB topological charge. Thus, relativistic OVBs can maintain their profiles for significantly longer distances in an underdense plasma before filamentation occurs. It is also found that an OVB would then break up into regular filament patterns due to conservation of the OAM, in contrast to a Gaussian laser beam, which in general experiences random filamentation.

  13. Enamel Thickness before and after Orthodontic Treatment Analysed in Optical Coherence Tomography

    Science.gov (United States)

    Koprowski, Robert; Safranow, Krzysztof; Woźniak, Krzysztof

    2017-01-01

    Despite the continuous development of materials and techniques of adhesive bonding, the basic procedure remains relatively constant. The technique is based on three components: etching substance, adhesive system, and composite material. The use of etchants during bonding orthodontic brackets carries the risk of damage to the enamel. Therefore, the article examines the effect of the manner of enamel etching on its thickness before and after orthodontic treatment. The study was carried out in vitro on a group of 80 teeth. It was divided into two subgroups of 40 teeth each. The procedure of enamel etching was performed under laboratory conditions. In the first subgroup, the classic method of enamel etching and the fifth-generation bonding system were used. In the second subgroup, the seventh-generation (self-etching) bonding system was used. In both groups, metal orthodontic brackets were fixed and the enamel was cleaned with a cutter fixed on the micromotor after their removal. Before and after the treatment, two-dimensional optical coherence tomography scans were performed. The enamel thickness was assessed on the two-dimensional scans. The average enamel thickness in both subgroups was not statistically significant. PMID:28243604

  14. Enamel Thickness before and after Orthodontic Treatment Analysed in Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Julia Seeliger

    2017-01-01

    Full Text Available Despite the continuous development of materials and techniques of adhesive bonding, the basic procedure remains relatively constant. The technique is based on three components: etching substance, adhesive system, and composite material. The use of etchants during bonding orthodontic brackets carries the risk of damage to the enamel. Therefore, the article examines the effect of the manner of enamel etching on its thickness before and after orthodontic treatment. The study was carried out in vitro on a group of 80 teeth. It was divided into two subgroups of 40 teeth each. The procedure of enamel etching was performed under laboratory conditions. In the first subgroup, the classic method of enamel etching and the fifth-generation bonding system were used. In the second subgroup, the seventh-generation (self-etching bonding system was used. In both groups, metal orthodontic brackets were fixed and the enamel was cleaned with a cutter fixed on the micromotor after their removal. Before and after the treatment, two-dimensional optical coherence tomography scans were performed. The enamel thickness was assessed on the two-dimensional scans. The average enamel thickness in both subgroups was not statistically significant.

  15. Enamel Thickness before and after Orthodontic Treatment Analysed in Optical Coherence Tomography.

    Science.gov (United States)

    Seeliger, Julia; Machoy, Monika; Koprowski, Robert; Safranow, Krzysztof; Gedrange, Tomasz; Woźniak, Krzysztof

    2017-01-01

    Despite the continuous development of materials and techniques of adhesive bonding, the basic procedure remains relatively constant. The technique is based on three components: etching substance, adhesive system, and composite material. The use of etchants during bonding orthodontic brackets carries the risk of damage to the enamel. Therefore, the article examines the effect of the manner of enamel etching on its thickness before and after orthodontic treatment. The study was carried out in vitro on a group of 80 teeth. It was divided into two subgroups of 40 teeth each. The procedure of enamel etching was performed under laboratory conditions. In the first subgroup, the classic method of enamel etching and the fifth-generation bonding system were used. In the second subgroup, the seventh-generation (self-etching) bonding system was used. In both groups, metal orthodontic brackets were fixed and the enamel was cleaned with a cutter fixed on the micromotor after their removal. Before and after the treatment, two-dimensional optical coherence tomography scans were performed. The enamel thickness was assessed on the two-dimensional scans. The average enamel thickness in both subgroups was not statistically significant.

  16. Dynamics of double-pulse laser produced titanium plasma inferred from thin film morphology and optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krstulović, N., E-mail: niksak@ifs.hr [Institute of Physics, Bijenička 46, HR-10000 Zagreb (Croatia); Salamon, K., E-mail: ksalamon@ifs.hr [Institute of Physics, Bijenička 46, HR-10000 Zagreb (Croatia); Modic, M., E-mail: martina.modic@ijs.si [Jožef Stefan Institute, Jamova 39, 1001 Ljubljana (Slovenia); Bišćan, M., E-mail: mbiscan@ifs.hr [Institute of Physics, Bijenička 46, HR-10000 Zagreb (Croatia); Milat, O., E-mail: milat@ifs.hr [Institute of Physics, Bijenička 46, HR-10000 Zagreb (Croatia); Milošević, S., E-mail: slobodan@ifs.hr [Institute of Physics, Bijenička 46, HR-10000 Zagreb (Croatia)

    2015-05-01

    In this paper, dynamics of double-pulse laser produced titanium plasma was studied both directly using optical emission spectroscopy (OES) and indirectly from morphological properties of deposited thin films. Both approaches yield consistent results. Ablated material was deposited in a form of thin film on the Si substrate. During deposition, plasma dynamics was monitored using optical emission spectroscopy with spatial and temporal resolutions. The influence of ablation mode (single and double) and delay time τ (delay between first and second pulses in double-pulse mode) on plasma dynamics and consequently on morphology of deposited Ti-films was studied using X-ray reflectivity and atomic force microscopy. Delay time τ was varied from 170 ns to 4 μs. The results show strong dependence of both emission signal and Ti-film properties, such as thickness, density and roughness, on τ. In addition, correlation of average density and thickness of film is observed. These results are discussed in terms of dependency of angular distribution and kinetic energy of plasma plume particles on τ. Advantages of using double-pulse laser deposition for possible application in thin film production are shown. - Highlights: • Ti-thin films produced by single and double pulse laser ablation mode. • Ablation mode and delay time influenced plasma plume and film characteristics. • Films are most compact for optimized delay time (thinnest, smoothest and most dense). • Plasma dynamics can be inferred from film characteristics.

  17. Thickness and optical constants calculation for chalcogenide-alkali metal Se80Te8(NaCl)12 thin film

    Science.gov (United States)

    Abd-Elrahman, M. I.; Abu-Sehly, A. A.; Bakier, Y. M.; Hafiz, M. M.

    2017-09-01

    Chalcogenide-alkali metal semiconducting thin films of four different thicknesses of Se80Te8(NaCl)12 are deposited from bulk by thermal evaporation technique. The crystallinity of the film improves with increasing of thickness as indicated by the recorded X-ray diffraction patterns. The transmission and reflection spectra are measured in the wavelength range of the incident photons from 250 to 2500 nm. The thickness and optical constants of the films are calculated based on Swanepeol method using the interference patterns appeared in the transmission spectra. It is found that the films have absorption mechanism which is an indirect allowed transition. The effect of the film thickness on the refractive index and the high-frequency dielectric constant are studied. With increasing the film thickness, both the absorption coefficient and high-frequency dielectric constant increase while the single-oscillator energy, optical band gap and extinction coefficient decrease.

  18. Determination of layer thickness and optical constants of thin films by using a modified pattern search method.

    Science.gov (United States)

    Miloua, R; Kebbab, Z; Chiker, F; Sahraoui, K; Khadraoui, M; Benramdane, N

    2012-02-15

    We propose the use of a pattern search optimization technique in combination with a seed preprocessing procedure to determine the optical constants and thickness of thin films using only the transmittance spectra. The approach is quite flexible, straightforward to implement, and efficient in reaching the best fitting. We demonstrate the effectiveness of the method in extracting optical constants, even when the films are not displaying interference fringes. Comparison to a real-coded genetic algorithm shows that the modified pattern search is fast, almost accurate, and does not need any parameter adjustments. The approach is successfully applied to extract the thickness and optical constants of spray pyrolyzed nanocrystalline CdO thin films.

  19. Using satellite-derived optical thickness to assess the influence of clouds on terrestrial carbon uptake

    Science.gov (United States)

    Cheng, S. J.; Steiner, A. L.; Hollinger, D. Y.; Bohrer, G.; Nadelhoffer, K. J.

    2016-07-01

    Clouds scatter direct solar radiation, generating diffuse radiation and altering the ratio of direct to diffuse light. If diffuse light increases plant canopy CO2 uptake, clouds may indirectly influence climate by altering the terrestrial carbon cycle. However, past research primarily uses proxies or qualitative categories of clouds to connect the effect of diffuse light on CO2 uptake to sky conditions. We mechanistically link and quantify effects of cloud optical thickness (τc) to surface light and plant canopy CO2 uptake by comparing satellite retrievals of τc to ground-based measurements of diffuse and total photosynthetically active radiation (PAR; 400-700 nm) and gross primary production (GPP) in forests and croplands. Overall, total PAR decreased with τc, while diffuse PAR increased until an average τc of 6.8 and decreased with larger τc. When diffuse PAR increased with τc, 7-24% of variation in diffuse PAR was explained by τc. Light-use efficiency (LUE) in this range increased 0.001-0.002 per unit increase in τc. Although τc explained 10-20% of the variation in LUE, there was no significant relationship between τc and GPP (p > 0.05) when diffuse PAR increased. We conclude that diffuse PAR increases under a narrow range of optically thin clouds and the dominant effect of clouds is to reduce total plant-available PAR. This decrease in total PAR offsets the increase in LUE under increasing diffuse PAR, providing evidence that changes within this range of low cloud optical thickness are unlikely to alter the magnitude of terrestrial CO2 fluxes.

  20. Graphene thickness-dependent Er-doped Q-switched optical fiber laser

    Science.gov (United States)

    Wang, Xiaolong; Sang, Mei; Zhu, Pan; Liu, Ke; Yang, Tianxin

    2013-02-01

    A stable Q-switched laser is useful in the area of remote sensing, range finding, optical imaging, material processing, and fiber communications. With its excellent linear and nonlinear optical characteristics, graphene has been proven to be an attractive material to generate nanosecond, picosecond and femtosecond laser pulses. It has a lot of advantages, such as lower saturation intensity, larger saturable-absorption modulation depth, higher damage threshold, sub-picosecond recovery time and an ultrabroad wavelength-independent saturable-absorption range. In this paper, we demonstrate a graphene based Q-switched fiber laser. Graphene was deposited on the fiber interface by the optically driven deposition method. The thickness of the graphene can be controlled by changing depositing time. The compact Q-switched erbium-doped fiber laser based on graphene operated stably, and got Q-switched pulse sequences output with the repetition rate of 19KHz and the average power of 1.4mW when pump power is 40mW. Higher peak power, shorter pulse duration, and higher repetition rate could be achieved by adjusting the thickness of the graphene layer appropriately. Besides, the pulse duration and output power is proved to be a function of the pump power. The repetition rate of this fiber laser had a characteristic of monotonically increasing, near-linear with the changing of pump power. The stable Q-switching pulse output can be observed on the oscilloscope with differently specific repetition rate and pump power. Theory analysis of this fiber laser and further improvement methods is also studied combined with the experimental results.

  1. Effect of substrate preheating temperature and coating thickness on residual stress in plasma sprayed hydroxyapatite coating

    Science.gov (United States)

    Tang, Dapei

    2015-07-01

    A thermal-mechanical coupling model was developed based on thermal-elastic- plastic theory according the special process of plasma spraying Hydroxyapatite (HA) coating upon Ti-6Al-4V substrate. On the one hand, the classical Fourier transient heat conduction equation was modified by introducing the effect item of deformation on temperature, on the other hand, the Johnson-Cook model, suitable for high temperature and high strain rate conditions, was used as constitutive equation after considering temperature softening effect, strain hardening effect and strain rate reinforcement effect. Based on the above coupling model, the residual stress field within the HA coating was simulated by using finite element method (FEM). Meanwhile, the substrate preheating temperature and coating thickness on the influence of residual stress components were calculated, respectively. The failure modes of coating were also preliminary analyzed. In addition, in order to verify the reliability of calculation, the material removal measurement technique was applied to determine the residual stress of HA coating near the interface. Some important conclusions are obtained.

  2. Anomalous thickness-dependent optical energy gap of ALD-grown ultra-thin CuO films

    Science.gov (United States)

    Tripathi, T. S.; Terasaki, I.; Karppinen, M.

    2016-11-01

    Usually an inverse square relation between the optical energy gap and the size of crystallites is observed for semiconducting materials due to the strong quantum localization effect. Coulomb attraction that may lead to a proportional dependence is often ignored or considered less important to the optical energy gap when the crystallite size or the thickness of a thin film changes. Here we report a proportional dependence between the optical energy gap and the thickness of ALD-grown CuO thin films due to a strong Coulomb attraction. The ultrathin films deposited in the thickness range of 9-81 nm show a p-type semiconducting behavior when analyzed by Seebeck coefficient and electrical resistivity measurements. The indirect optical energy gap nature of the films is verified from UV-vis spectrophotometric measurements. A progressive increase in the indirect optical energy gap from 1.06 to 1.24 eV is observed with the increase in the thickness of the films. The data are analyzed in the presence of Coulomb attractions using the Brus model. The optical energy gap when plotted against the cubic root of the thickness of the films shows a linear dependence.

  3. Accurate Least-Squares P$_N$ Scaling based on Problem Optical Thickness for solving Neutron Transport Problems

    CERN Document Server

    Zheng, Weixiong

    2016-01-01

    In this paper, we present an accurate and robust scaling operator based on material optical thickness (OT) for the least-squares spherical harmonics (LSP$_N$) method for solving neutron transport problems. LSP$_N$ without proper scaling is known to be erroneous in highly scattering medium, if the optical thickness of the material is large. A previously presented scaling developed by Manteuffel, et al.\\ does improve the accuracy of LSP$_N$, in problems where the material is optically thick. With the method, however, essentially no scaling is applied in optically thin materials, which can lead to an erroneous solution with presence of highly scattering medium. Another scaling approach, called the reciprocal-removal (RR) scaled LSP$_N$, which is equivalent to the self-adjoint angular flux (SAAF) equation, has numerical issues in highly-scattering materials due to a singular weighting. We propose a scaling based on optical thickness that improves the solution in optically thick media while avoiding the singularit...

  4. Subclinical keratoconus detection by pattern analysis of corneal and epithelial thickness maps with optical coherence tomography.

    Science.gov (United States)

    Li, Yan; Chamberlain, Winston; Tan, Ou; Brass, Robert; Weiss, Jack L; Huang, David

    2016-02-01

    To screen for subclinical keratoconus by analyzing corneal, epithelial, and stromal thickness map patterns with Fourier-domain optical coherence tomography (OCT). Four centers in the United States. Cross-sectional observational study. Eyes of normal subjects, subclinical keratoconus eyes, and the topographically normal eye of a unilateral keratoconus patient were studied. Corneas were scanned using a 26,000 Hz Fourier-domain OCT system (RTVue). Normal subjects were divided into training and evaluation groups. Corneal, epithelial, and stromal thickness maps and derived diagnostic indices, including pattern standard deviation (PSD) variables and pachymetric map-based keratoconus risk scores, were calculated from the OCT data. Area under the receiver operating characteristic curve (AUC) analysis was used to evaluate the diagnostic accuracy of the indices. The study comprised 150 eyes of 83 normal subjects, 50 subclinical keratoconus eyes of 32 patients, and 1 topographically normal eye of a unilateral keratoconus patient. Subclinical keratoconus was characterized by inferotemporal thinning of the cornea, epithelium, and stroma. The PSD values for corneal (P keratoconus risk score (AUC = 0.735). High-resolution Fourier-domain OCT could map corneal, epithelial, and stromal thicknesses. Corneal and sublayer thickness changes in subclinical keratoconus could be detected with high accuracy using PSD variables. These new diagnostic variables might be useful in the detection of early keratoconus. Oregon Health and Science University (OHSU) and Drs. Li, Tan, and Huang have a significant financial interest in Optovue, Inc. These potential conflicts have been reviewed and managed by OHSU. Dr. Brass receives research grants from Optovue, Inc. Drs. Chamberlain and Weiss have no financial or proprietary interest in any material or method mentioned. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  5. Choroidal thickness and retinal abnormalities by optical coherence tomography in endogenous Cushing’s syndrome

    Directory of Open Access Journals (Sweden)

    Maria Fernanda Abalem

    2016-12-01

    Full Text Available Context: Cortisol has been suggested as a risk factor for choroidal thickening, which may lead to retinal changes. Objective: To compare choroidal thickness measurements using optical coherence tomography (OCT in patients with endogenous active Cushing’s syndrome and to evaluate the occurrence of retinal abnormalities in the same group of patients. Design: Cross-sectional study.Setting: Outpatient clinic.Patients: Eleven female patients with Cushing’s syndrome in hypercortisolism state as determined by the presence of at least two abnormal measurements from urinary cortisol 24h, no suppression of cortisol with low dose dexamethasone suppression test and nocturnal salivary cortisol levels and 12 healthy controls.Methods: Choroidal and retinal morphology was assessed using OCT. Main outcome measures: Choroidal thickness measurements and the presence of retinal changes. Results: The mean subfoveal choroidal thickness was 372.96 ± 73.14 μm in the patients with Cushing’s syndrome and 255.63 ± 50.70 μm in the control group, (p<0.001. One patient (9.09% presented with central serous chorioretinopathy and one patient (9.09% with pachychoroid pigment epitheliopathy. Conclusions: Choroidal thickness is increased in the eyes of patients with active Cushing’s syndrome compared to healthy and matched control. Also, 18.18% of patients presented with macular changes, possibly secondary to choroidal thickening. While further studies are necessary to confirm our findings excess corticosteroid levels seems to have a significant effect on the choroid and might be associated with secondary retinal diseases.

  6. A cold plasma jet accelerates wound healing in a murine model of full-thickness skin wounds.

    Science.gov (United States)

    Schmidt, Anke; Bekeschus, Sander; Wende, Kristian; Vollmar, Brigitte; von Woedtke, Thomas

    2017-02-01

    Cold plasma has been successfully applied in several fields of medicine that require, for example, pathogen inactivation, implant functionalization or alteration of cellular activity. Previous studies have provided evidence that plasma supports the healing of wounds owing to its beneficial mixtures of reactive species and modulation of inflammation in cells and tissues. To investigate the wound healing activity of an atmospheric pressure plasma jet in vivo, we examined the cold plasma's efficacy on dermal regeneration in a murine model of dermal full-thickness ear wound. Over 14 days, female mice received daily plasma treatment. Quantitative analysis by transmitted light microscopy demonstrated a significantly accelerated wound re-epithelialization at days 3-9 in comparison with untreated controls. In vitro, cold plasma altered keratinocyte and fibroblast migration, while both cell types showed significant stimulation resulting in accelerated closure of gaps in scratch assays. This plasma effect correlated with the downregulation of the gap junctional protein connexin 43 which is thought to be important in the regulation of wound healing. In addition, plasma induced profound changes in adherence junctions and cytoskeletal dynamics as shown by downregulation of E-cadherin and several integrins as well as actin reorganization. Our results theorize cold plasma to be a beneficial treatment option supplementing existing wound therapies.

  7. Development of plasma bolometers using fiber-optic temperature sensors

    Science.gov (United States)

    Reinke, M. L.; Han, M.; Liu, G.; van Eden, G. G.; Evenblij, R.; Haverdings, M.; Stratton, B. C.

    2016-11-01

    Measurements of radiated power in magnetically confined plasmas are important for exhaust studies in present experiments and expected to be a critical diagnostic for future fusion reactors. Resistive bolometer sensors have long been utilized in tokamaks and helical devices but suffer from electromagnetic interference (EMI). Results are shown from initial testing of a new bolometer concept based on fiber-optic temperature sensor technology. A small, 80 μm diameter, 200 μm long silicon pillar attached to the end of a single mode fiber-optic cable acts as a Fabry-Pérot cavity when broadband light, λo ˜ 1550 nm, is transmitted along the fiber. Changes in temperature alter the optical path length of the cavity primarily through the thermo-optic effect, resulting in a shift of fringes reflected from the pillar detected using an I-MON 512 OEM spectrometer. While initially designed for use in liquids, this sensor has ideal properties for use as a plasma bolometer: a time constant, in air, of ˜150 ms, strong absorption in the spectral range of plasma emission, immunity to local EMI, and the ability to measure changes in temperature remotely. Its compact design offers unique opportunities for integration into the vacuum environment in places unsuitable for a resistive bolometer. Using a variable focus 5 mW, 405 nm, modulating laser, the signal to noise ratio versus power density of various bolometer technologies are directly compared, estimating the noise equivalent power density (NEPD). Present tests show the fiber-optic bolometer to have NEPD of 5-10 W/m2 when compared to those of the resistive bolometer which can achieve coatings, along with improving the spectral resolution of the interrogator.

  8. Super-resolution optical microscopy of lipid plasma membrane dynamics.

    Science.gov (United States)

    Eggeling, Christian

    2015-01-01

    Plasma membrane dynamics are an important ruler of cellular activity, particularly through the interaction and diffusion dynamics of membrane-embedded proteins and lipids. FCS (fluorescence correlation spectroscopy) on an optical (confocal) microscope is a popular tool for investigating such dynamics. Unfortunately, its full applicability is constrained by the limited spatial resolution of a conventional optical microscope. The present chapter depicts the combination of optical super-resolution STED (stimulated emission depletion) microscopy with FCS, and why it is an important tool for investigating molecular membrane dynamics in living cells. Compared with conventional FCS, the STED-FCS approach demonstrates an improved possibility to distinguish free from anomalous molecular diffusion, and thus to give new insights into lipid-protein interactions and the traditional lipid 'raft' theory.

  9. OPTICAL COHERENCE TOMOGRAPHY–BASED CORRELATION BETWEEN CHOROIDAL THICKNESS AND DRUSEN LOAD IN DRY AGE-RELATED MACULAR DEGENERATION

    Science.gov (United States)

    KO, ASHLEY; CAO, SIJIA; PAKZAD-VAEZI, KAIVON; BRASHER, PENELOPE M.; MERKUR, ANDREW B.; ALBIANI, DAVID A.; KIRKER, ANDREW W.; CUI, JING; MATSUBARA, JOANNE; FOROOGHIAN, FARZIN

    2014-01-01

    Purpose Spectral domain optical coherence tomography can be used to measure both choroidal thickness and drusen load. The authors conducted an exploratory study using spectral domain optical coherence tomography to determine if a correlation between choroidal thickness and drusen load exists in patients with dry age-related macular degeneration. Methods Forty-four patients with dry age-related macular degeneration were recruited. The drusen area and volume were determined using the automated software algorithm of the spectral domain optical coherence tomography device, and choroidal thickness was measured using enhanced depth imaging. Correlations were determined using multivariable and univariable analyses. Results The authors found an inverse correlation between choroidal thickness and drusen load (r = −0.35, P = 0.04). Drusen load was also correlated with visual acuity (r = 0.32, P = 0.04). A correlation between choroidal thickness and visual acuity was suggested (r = −0.22, P = 0.21). Conclusion Spectral domain optical coherence tomography can be used to assess the correlation between drusen load and choroidal thickness, both of which show a relationship with visual acuity. The measurement of these outcomes may serve as important outcome parameters in routine clinical care and in clinical trials for patients with dry age-related macular degeneration. PMID:23474546

  10. Resolving ice cloud optical thickness biases between CALIOP and MODIS using infrared retrievals

    Directory of Open Access Journals (Sweden)

    R. E. Holz

    2015-10-01

    Full Text Available Despite its importance as one of the key radiative properties that determines the impact of upper tropospheric clouds on the radiation balance, ice cloud optical thickness (IOT has proven to be one of the more challenging properties to retrieve from space-based remote sensing measurements. In particular, optically thin upper tropospheric ice clouds (cirrus have been especially challenging due to their tenuous nature, extensive spatial scales, and complex particle shapes and light scattering characteristics. The lack of independent validation motivates the investigation presented in this paper, wherein systematic biases between MODIS Collection 5 (C5 and CALIOP Version 3 (V3 unconstrained retrievals of tenuous IOT (g varying as a function of effective radius with mean values that are too large. The MODIS retrievals have been brought into agreement with the IR by adopting a new ice scattering model for Collection 6 (C6 consisting of a modified gamma distribution comprised of a single habit (severely roughened aggregated columns; the C6 ice cloud optical property models have a constant g ~ 0.75 in the mid-visible spectrum, 5–15 % smaller than C5. For CALIOP, the assumed lidar ratio for unconstrained retrievals is fixed at 25 sr for the V3 data products. This value is found to be inconsistent with the constrained (predominantly nighttime CALIOP retrievals. An experimental data set was produced using a modified lidar ratio of 32 sr for the unconstrained retrievals (an increase of 28 %, selected to provide consistency with the constrained V3 results. These modifications greatly improve the agreement with the IR and provide consistency between the MODIS and CALIOP products. Based on these results the recently released MODIS C6 optical products use the single habit distribution given above, while the upcoming CALIOP V4 unconstrained algorithm will use higher lidar ratios for unconstrained retrievals.

  11. Optical Characterization of Plasma Generated in a Commercial Grade Plasma Etching System

    Science.gov (United States)

    Hardy, Ashley; Drake, Dereth

    2015-11-01

    The use of plasma for etching and cleaning of many types of metal surfaces is becoming more prominent in industry. This is primarily due to the fact that plasma etching can reduce the amount of time necessary to clean/etch the surface and does not require large amounts of environmentally hazardous chemicals. Most plasma etching systems are designed and built in academic institutions. These systems provide reasonable etching rates and easy accessibility for monitoring plasma parameters. The downside is that the cost is typically high. Recently a number of commercial grade plasma etchers have been introduced on the market. These etching systems cost near a fraction of the price, making them a more economical choice for researchers in the field. However, very few academics use these devices because their effectiveness has not yet been adequately verified in the current literature. We will present the results from experiments performed in a commercial grade plasma etching system, including analysis of the pulse characteristics observed by a photo diode and the plasma parameters obtained with optical emission spectroscopy.

  12. Cloud optical thickness variations during 1983-1991: Solar cycle or ENSO?

    Science.gov (United States)

    Kuang, Zhiming; Jiang, Yibo; Yung, Yuk L.

    Based on a detailed analysis of the cloud data obtained by the International Satellite Cloud Climatology Project (ISCCP) in the years 1983-1991, we show that besides the reported 3% variation in global cloudiness (Svensmark and Friis-Christensen, 1997), the global mean cloud optical thickness (MCOT) also has significant variation which is out of phase with that of the global cloudiness. The combined effect of the two opposing variations may be a null effect on the cloud reflectivity. These results are consistent with the Total Ozone Mapping Spectrometer (TOMS) reflectivity measurements. The MCOT variation is further shown to be correlated with both the solar cycle and the ENSO cycle. Our present analysis cannot distinguish which of the above two provides better correlation, although independent data from the High resolution Infrared Radiation Sounder (HIRS) from 1990 to 1996 favor the solar cycle. Future data are needed to identify the true cause of these changes.

  13. Significant overestimation of global aerosol optical thickness by MODIS over land

    Institute of Scientific and Technical Information of China (English)

    XIA Xiang'ao

    2006-01-01

    Global aerosol optical thickness (AOT)data over land obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) are evaluated through comparisons with AOT data retrieved by Aerosol Robotic Network (AERONET). In general,MODIS overestimates AOT except at a few AERONET sites in Africa and eastern Asia. MODIS/AOTs are, on average, larger than AERONET/AOTs by 0.041 and 0.090 at 470 nm and 660 nm, respectively. The AOT bias at 660 nm is significantly correlated to the surface reflectance at 2130 nm. Both facts suggest that the underestimation of the surface reflectance is the principal reason for this bias at 660 nm. To use the MODIS/AOT at 470 nm is strongly recommended because it is much more reliable than the AOT at 660 nm.

  14. Heat Transfer Modeling and Validation for Optically Thick Alumina Fibrous Insulation

    Science.gov (United States)

    Daryabeigi, Kamran

    2009-01-01

    Combined radiation/conduction heat transfer through unbonded alumina fibrous insulation was modeled using the diffusion approximation for modeling the radiation component of heat transfer in the optically thick insulation. The validity of the heat transfer model was investigated by comparison to previously reported experimental effective thermal conductivity data over the insulation density range of 24 to 96 kg/cu m, with a pressure range of 0.001 to 750 torr (0.1 to 101.3 x 10(exp 3) Pa), and test sample hot side temperature range of 530 to 1360 K. The model was further validated by comparison to thermal conductivity measurements using the transient step heating technique on an insulation sample at a density of 144 kg/cu m over a pressure range of 0.001 to 760 torr, and temperature range of 290 to 1090 K.

  15. PHOTOPHORESIS IN A DILUTE, OPTICALLY THICK MEDIUM AND DUST MOTION IN PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    McNally, Colin P. [Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK 2100 Copenhagen Ø (Denmark); Hubbard, Alexander, E-mail: cmcnally@nbi.dk, E-mail: ahubbard@amnh.org [American Museum of Natural History, New York, NY (United States)

    2015-11-20

    We derive expressions for the photophoretic force on opaque spherical particles in a dilute gas in the optically thick regime where the radiation field is in local thermal equilibrium. Under those conditions, the radiation field has a simple form, leading to well defined analytical approximations for the photophoretic force that also consider both the internal thermal conduction within the particle, and the effects of heat conduction and radiation to the surrounding gas. We derive these results for homogeneous spherical particles; and for the double layered spheres appropriate for modeling solid grains with porous aggregate mantles. Then, as a specific astrophysical application of these general physical results, we explore the parameter space relevant to the photophoresis driven drift of dust in protoplanetary disks. We show that highly porous silicate grains have sufficiently low thermal conductivities that photophoretic effects, such as significant relative velocities between particles with differing porosity or levitation above the midplane, are expected to occur.

  16. Photophoresis in a Dilute, Optically Thick Medium and Dust Motion in Protoplanetary Disks

    CERN Document Server

    McNally, Colin P

    2015-01-01

    We derive expressions for the photophoretic force on opaque spherical particles in a dilute gas in the optically thick regime where the radiation field is in local thermal equilibrium. Under those conditions, the radiation field has a simple form, leading to well defined analytical approximations for the photophoretic force that also consider both the internal thermal conduction within the particle, and the effects of heat conduction and radiation to the surrounding gas. We derive these results for homogeneous spherical particles; and for the double layered spheres appropriate for modeling solid grains with porous aggregate mantles. Then, as a specific astrophysical application of these general physical results, we explore the parameter space relevant to the photophoresis driven drift of dust in protoplanetary disks. We show that highly porous silicate grains have sufficiently low thermal conductivities that photophoretic effects, such as significant relative velocities between particles with differing porosi...

  17. Retrieval of the aerosol optical thickness from UV global irradiance measurements

    Science.gov (United States)

    Costa, M. J.; Salgueiro, V.; Bortoli, D.; Obregón, M. A.; Antón, M.; Silva, A. M.

    2015-12-01

    The UV irradiance is measured at Évora since several years, where a CIMEL sunphotometer integrated in AERONET is also installed. In the present work, measurements of UVA (315 - 400 nm) irradiances taken with Kipp&Zonen radiometers, as well as satellite data of ozone total column values, are used in combination with radiative transfer calculations, to estimate the aerosol optical thickness (AOT) in the UV. The retrieved UV AOT in Évora is compared with AERONET AOT (at 340 and 380 nm) and a fairly good agreement is found with a root mean square error of 0.05 (normalized root mean square error of 8.3%) and a mean absolute error of 0.04 (mean percentage error of 2.9%). The methodology is then used to estimate the UV AOT in Sines, an industrialized site on the Atlantic western coast, where the UV irradiance is monitored since 2013 but no aerosol information is available.

  18. Label-free imaging of thick tissue at 1550 nm using a femtosecond optical parametric generator.

    Science.gov (United States)

    Trägårdh, Johanna; Robb, Gillian; Gadalla, Kamal K E; Cobb, Stuart; Travis, Christopher; Oppo, Gian-Luca; McConnell, Gail

    2015-08-01

    We have developed a simple wavelength-tunable optical parametric generator (OPG), emitting broadband ultrashort pulses with peak wavelengths at 1530-1790 nm, for nonlinear label-free microscopy. The OPG consists of a periodically poled lithium niobate crystal, pumped at 1064 nm by a ultrafast Yb:fiber laser with high pulse energy. We demonstrate that this OPG can be used for label-free imaging, by third-harmonic generation, of nuclei of brain cells and blood vessels in a >150 μm thick brain tissue section, with very little decay of intensity with imaging depth and no visible damage to the tissue at an incident average power of 15 mW.

  19. High resolution spectroscopy of Cs vapor confined in optical cells of few-micron thicknesses

    Science.gov (United States)

    Cartaleva, S.; Krasteva, A.; Sargsyan, A.; Sarkisyan, D.; Slavov, D.; Vartanyan, T.

    2012-12-01

    We present here the new behavior of Electromagnetically Induced Transparency (EIT), Velocity Selective Optical Pumping (VSOP) and Velocity Selective Excitation (VSE) resonances observed in Cs vapor confined in unique cells with thicknesses L = 1.5λ and L = 6λ. It is shown experimentally that in both cells, the EIT resonance is significantly narrower than would be expected from the ground state dephasing rate due to atomic collisions with the cell windows. The enhanced absorption (fluorescence) narrow VSOP resonance at the closed transition transforms into reduced absorption (fluorescence) one with small increase of atomic concentration or light intensity. A striking difference appears between the VSE resonance broadening due to excited atom thermalization, in L = 6λ and conventional L = 2.5 cm cells.

  20. Implications of Satellite Swath Width on Global Aerosol Optical Thickness Statistics

    Science.gov (United States)

    Colarco, Peter; Kahn, Ralph; Remer, Lorraine; Levy, Robert; Welton, Ellsworth

    2012-01-01

    We assess the impact of swath width on the statistics of aerosol optical thickness (AOT) retrieved by satellite as inferred from observations made by the Moderate Resolution Imaging Spectroradiometer (MODIS). We sub-sample the year 2009 MODIS data from both the Terra and Aqua spacecraft along several candidate swaths of various widths. We find that due to spatial sampling there is an uncertainty of approximately 0.01 in the global, annual mean AOT. The sub-sampled monthly mean gridded AOT are within +/- 0.01 of the full swath AOT about 20% of the time for the narrow swath sub-samples, about 30% of the time for the moderate width sub-samples, and about 45% of the time for the widest swath considered. These results suggest that future aerosol satellite missions with only a narrow swath view may not sample the true AOT distribution sufficiently to reduce significantly the uncertainty in aerosol direct forcing of climate.

  1. Fluorescence measurements for evaluating the application of multivariate analysis techniques to optically thick environments.

    Energy Technology Data Exchange (ETDEWEB)

    Reichardt, Thomas A.; Timlin, Jerilyn Ann; Jones, Howland D. T.; Sickafoose, Shane M.; Schmitt, Randal L.

    2010-09-01

    Laser-induced fluorescence measurements of cuvette-contained laser dye mixtures are made for evaluation of multivariate analysis techniques to optically thick environments. Nine mixtures of Coumarin 500 and Rhodamine 610 are analyzed, as well as the pure dyes. For each sample, the cuvette is positioned on a two-axis translation stage to allow the interrogation at different spatial locations, allowing the examination of both primary (absorption of the laser light) and secondary (absorption of the fluorescence) inner filter effects. In addition to these expected inner filter effects, we find evidence that a portion of the absorbed fluorescence is re-emitted. A total of 688 spectra are acquired for the evaluation of multivariate analysis approaches to account for nonlinear effects.

  2. Comparison of aerosol optical thickness retrieval from spectroradiometer measurements and from two radiative transfer models

    Energy Technology Data Exchange (ETDEWEB)

    Utrillas, M.P.; Martinez-Lozano, J.A.; Tena, F. [Universitat de Valencia, Dept. de Termodinamica, Valencia (Spain); Cachorro, V.E. [Universidad de Valladolid, Dept. de Fisica Aplicada 1, Valladolid (Spain); Hernandez, S. [Universidad de Valladolid, Dept. de Ingenieria Agricola y Forestal, Valladolid (Spain)

    2000-07-01

    The spectral values of the aerosol optical thickness {tau}{sub a{lambda}} in the 400-670 nm band have been determined from 500 solar direct irradiance spectra at normal incidence registered at Valencia (Spain) in the period from July 1993 to March 1997. The {tau}{sub a{lambda}} values obtained from experimental measurements have been compared with the boundary layer aerosol models implemented in the radiative transfer codes ZD-LOA and LOWTRAN 7. For the ZD-LOA code, the continental and maritime models have been considered and for the LOWTRAN 7 code the rural, maritime, urban and tropospheric models have been used. The obtained results show that the aerosol model that best represents the average turbidity of the boundary layer for the urban area of Valencia (Spain) is the continental model when the ZD-LOA code is used and the urban model when the LOWTRAN 7 code is used. (Author)

  3. Optical coherence tomography layer thickness characterization of a mock artery during angioplasty balloon deployment

    Science.gov (United States)

    Azarnoush, Hamed; Vergnole, Sébastien; Boulet, Benoît; Lamouche, Guy

    2011-03-01

    Optical coherence tomography (OCT) is used to study the deformation of a mock artery in an angioplasty simulation setup. An OCT probe integrated in a balloon catheter provides intraluminal real-time images during balloon inflation. Swept-source OCT is used for imaging. A 4 mm semi-compliant polyurethane balloon is used for experiments. The balloon is inflated inside a custom-built multi-layer artery phantom. The phantom has three layers to mock artery layers, namely, intima, media and adventitia. Semi-automatic segmentation of phantom layers is performed to provide a detailed assessment of the phantom deformation at various inflation pressures. Characterization of luminal diameter and thickness of different layers of the mock artery is provided for various inflation pressures.

  4. Nanocell with a pressure-controlled Rb atomic vapor column thickness: Critical influence of the thickness on optical processes

    Science.gov (United States)

    Sargsyan, A.; Amiryan, A.; Cartaleva, S.; Sarkisyan, D.

    2017-07-01

    A new device is designed: it consists of a nanocell (NC) filled with Rb atom vapors and placed in a vacuum chamber. When the pressure in the chamber changes in the range 0-1 atm, the NC thickness is smoothly varied in the range L = 140-1700 nm, which is caused by the pressure-induced deformation of thin garnet windows in the chamber. The pressure dependence has excellent reproducibility even after many hundreds of cycles of letting in of air and its complete pumping out from the chamber. The accuracy of setting required thickness L is much better than in the wedge-gap NCs to be moved mechanically that were used earlier. The processes of Faraday rotation (FR) of a polarization plane, resonance absorption, and fluorescence are studied using the D 1-line narrow-band continuous laser radiation when the thickness changes from L = λ/2 (398 nm) to L = 2λ (1590 nm) at a step λ/2. The FR signal is shown to be maximal at L = λ/2 and 3λ/2 and to have the minimum spectral width (≈60 MHz). At L = λ and 2λ, the FR signal is minimal and has the maximum spectral width (≈200 MHz). The resonance absorption demonstrates the same oscillating behavior; however, the effect in the case of FR is much more pronounced. The oscillating effect is absent for resonance fluorescence: its spectral width and amplitude increase monotonically with L. The detected effects are explained and possible applications are noted.

  5. Comparison of central corneal thickness measurements using optical low-coherence reflectometry, Fourier domain optical coherence tomography, and Scheimpflug camera

    Directory of Open Access Journals (Sweden)

    Saban Gonul

    2014-12-01

    Full Text Available Purpose: To compare the results of central corneal thickness (CCT measurements obtained using optical low-coherence reflectometry (OLCR, Fourier domain optical coherence tomography (FD-OCT, and a Scheimpflug camera (SC, combined with Placido corneal topography. Methods: A total of 25 healthy subjects were enrolled in the present study, and one eye of each subject was included. A detailed ophthalmic examination was performed in all cases following CCT measurements with OLCR, FD-OCT, and SC. The results were compared using an ANOVA test. Bland-Altman analysis was used to demonstrate agreement between methods. Intra-examiner repeatability was assessed by using intraclass correlation coefficients (ICCs. Results: Statistically significant differences were observed between the results of the CCT measurements obtained using the three different devices (p=0.009. Significant correlations were found between OLCR and FD-OCT (r=0.97; p0.98. Conclusion: Although the results of CCT measurements obtained from these three devices were highly correlated with one another and the mean differences between instruments were comparable with the reported diurnal CCT fluctuation, the measurements are not directly interchangeable in clinical practice because of the wide LOA values.

  6. Fast figuring of large optics by reactive atom plasma

    Science.gov (United States)

    Castelli, Marco; Jourdain, Renaud; Morantz, Paul; Shore, Paul

    2012-09-01

    The next generation of ground-based astronomical observatories will require fabrication and maintenance of extremely large segmented mirrors tens of meters in diameter. At present, the large production of segments required by projects like E-ELT and TMT poses time frames and costs feasibility questions. This is principally due to a bottleneck stage in the optical fabrication chain: the final figuring step. State-of-the-art figure correction techniques, so far, have failed to meet the needs of the astronomical community for mass production of large, ultra-precise optical surfaces. In this context, Reactive Atom Plasma (RAP) is proposed as a candidate figuring process that combines nanometer level accuracy with high material removal rates. RAP is a form of plasma enhanced chemical etching at atmospheric pressure based on Inductively Coupled Plasma technology. The rapid figuring capability of the RAP process has already been proven on medium sized optical surfaces made of silicon based materials. In this paper, the figure correction of a 3 meters radius of curvature, 400 mm diameter spherical ULE mirror is presented. This work demonstrates the large scale figuring capability of the Reactive Atom Plasma process. The figuring is carried out by applying an in-house developed procedure that promotes rapid convergence. A 2.3 μm p-v initial figure error is removed within three iterations, for a total processing time of 2.5 hours. The same surface is then re-polished and the residual error corrected again down to λ/20 nm rms. These results highlight the possibility of figuring a metre-class mirror in about ten hours.

  7. Choroidal thickness changes after dynamic exercise as measured by spectral-domain optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Nihat Sayin

    2015-01-01

    Full Text Available Purpose: To measure the choroidal thickness (CT after dynamic exercise by using enhanced depth imaging optical coherence tomography (EDI-OCT. Materials and Methods: A total of 19 healthy participants performed 10 min of low-impact, moderate-intensity exercise (i.e., riding a bicycle ergometer and were examined with EDI-OCT. Each participant was scanned before exercise and afterward at 5 min and 15 min. CT measurement was taken at the fovea and 1000 μ away from the fovea in the nasal, temporal, superior, and inferior regions. Retinal thickness, intraocular pressure, ocular perfusion pressure (OPP, heart rate, and mean blood pressure (mBP were also measured. Results: A significant increase occurred in OPP and mBP at 5 min and 15 min following exercise (P ˂ 0.05. The mean subfoveal CT at baseline was 344.00 ± 64.71 μm compared to 370.63 ± 66.87 μm at 5 min and 345.31 ± 63.58 μm at 15 min after exercise. CT measurements at all locations significantly increased at 5 min following exercise compared to the baseline (P ˂ 0.001, while measurements at 15 min following exercise did not significant differ compared to the baseline (P ˃ 0.05. There was no significant difference in retinal thickness at any location before and at 5 min and 15 min following exercise (P ˃ 0.05. Conclusion: Findings revealed that dynamic exercise causes a significant increase in CT for at least 5 min following exercise.

  8. Optical instrument for measurement of vaginal coating thickness by drug delivery formulations

    Science.gov (United States)

    Henderson, Marcus H.; Peters, Jennifer J.; Walmer, David K.; Couchman, Grace M.; Katz, David F.

    2005-03-01

    An optical device has been developed for imaging the human vaginal epithelial surfaces, and quantitatively measuring distributions of coating thickness of drug delivery formulations—such as gels—applied for prophylaxis, contraception or therapy. The device consists of a rigid endoscope contained within a 27-mm-diam hollow, polished-transparent polycarbonate tube (150mm long) with a hemispherical cap. Illumination is from a xenon arc. The device is inserted into, and remains stationary within the vagina. A custom gearing mechanism moves the endoscope relative to the tube, so that it views epithelial surfaces immediately apposing its outer surface (i.e., 150mm long by 360° azimuthal angle). Thus, with the tube fixed relative to the vagina, the endoscope sites local regions at distinct and measurable locations that span the vaginal epithelium. The returning light path is split between a video camera and photomultiplier. Excitation and emission filters in the light path enable measurement of fluorescence of the sited region. Thus, the instrument captures video images simultaneously with photometric measurement of fluorescence of each video field [˜10mm diameter; formulations are labeled with 0.1%w/w United States Pharmacoepia (USP) injectable sodium fluorescein]. Position, time and fluorescence measurements are continuously displayed (on video) and recorded (to a computer database). The photomultiplier output is digitized to quantify fluorescence of the endoscope field of view. Quantification of the thickness of formulation coating of a surface sited by the device is achieved due to the linear relationship between thickness and fluorescence intensity for biologically relevant thin layers (of the order of 0.5mm). Summary measures of coating have been developed, focusing upon extent, location and uniformity. The device has begun to be applied in human studies of model formulations for prophylaxis against infection with HIV and other sexually transmitted pathogens.

  9. Choroidal thickness measurements with optical coherence tomography in branch retinal vein occlusion

    Directory of Open Access Journals (Sweden)

    Muge Coban-Karatas

    2016-05-01

    Full Text Available AIM: To evaluate central macular thickness (CMT and mean choroidal thickness (MCT in eyes with branch retinal vein occlusion (BRVO, before and after ranibizumab treatment using spectral domain-optical coherence tomography (SD-OCT. METHODS: Forty-two patients with unilateral BRVO and macular edema were included in this study. There were 25 men and 17 women. Using SD-OCT, choroidal thickness was measured at 500 µm intervals up to 1500 µm temporal and nasal to the fovea. MCT was calculated based on the average of the 7 locations. All the eyes with BRVO were treated with intravitreal ranibizumab (0.5 mg/0.05 mL. Comparisons between the BRVO and fellow eyes were analyzed using Mann-Whitney U test. Pre-injection and post-injection measurements were analyzed using Wilcoxon test and repeated measure analysis. RESULTS: At baseline, there was a significant difference between the BRVO and fellow eyes in MCT [BRVO eyes 245 (165-330 µm, fellow eyes 229 (157-327 µm] and CMT [BRVO eyes 463 (266-899 µm, fellow eyes 235 (148-378 µm (P=0.041, 0.0001, respectively]. Following treatment, CMT [295 (141-558 µm] and MCT [229 (157-329 µm] decreased significantly compared to the baseline measurements (P=0.001, 0.006, respectively. Also BCVA (logMAR improved significantly (P=0.0001 in the BRVO eyes following treatment. After treatment CMT [BRVO eyes 295 (141-558 µm, fellow eyes 234 (157-351 µm] and MCT [BRVO eyes 229 (157-329 µm, fellow eyes 233 (162-286 µm] values did not reveal any significant difference in BRVO eyes and fellow eyes (P=0.051, 0.824, respectively. CONCLUSION: In eyes with BRVO, CMT and MCT values are greater than the fellow eyes, and decrease significantly following ranibizumab injection.

  10. Assessment of Choroidal Thickness in Healthy and Glaucomatous Eyes Using Swept Source Optical Coherence Tomography

    Science.gov (United States)

    Zhang, Chunwei; Tatham, Andrew J.; Medeiros, Felipe A.; Zangwill, Linda M.; Yang, Zhiyong; Weinreb, Robert N.

    2014-01-01

    Purpose To evaluate choroidal thickness (CT) in healthy and glaucomatous eyes using Swept Source Optical Coherence Tomography (SS-OCT). Methods A cross-sectional observational study of 216 eyes of 140 subjects with glaucoma and 106 eyes of 67 healthy subjects enrolled in the Diagnostic Innovations in Glaucoma Study. CT was assessed from wide-field (12×9 mm) SS-OCT scans. The association between CT and potential confounding variables including age, gender, axial length, intraocular pressure, central corneal thickness and ocular perfusion pressure was examined using univariable and multivariable regression analyses. Results Overall CT was thinner in glaucomatous eyes with a mean (± standard deviation) of 157.7±48.5 µm in glaucoma compared to 179.9±36.1 µm in healthy eyes (Pchoroid was thinner in both the peripapillary and macular regions in glaucoma compared to controls. Mean peripapillary CT was 154.1±44.1 µm and 134.0±56.9 µm (Pchoroid and when differences in age and axial length between glaucomatous and healthy subjects were accounted for, glaucoma was not significantly associated with CT. There was also no association between glaucoma severity and CT. Conclusions Glaucoma was not associated with CT measured using SS-OCT; however, older age and longer axial length were associated with thinner choroid so should be considered when interpreting CT measurements. PMID:25295876

  11. Collisionless Shocks and TeV Neutrinos before Supernova Shock Breakout from an Optically Thick Wind

    CERN Document Server

    Giacinti, G

    2015-01-01

    During a supernova explosion, a radiation-dominated shock (RDS) travels through its progenitor. A collisionless shock (CS) is usually assumed to replace it during shock breakout (SB). We demonstrate here that for some realistic progenitors enshrouded in optically thick winds, such as possibly SN 2008D, a CS forms deep inside the wind, soon after the RDS leaves the core, and therefore significantly before SB. The RDS does not survive the transition from the core to the thick wind when the wind close to the core is not sufficiently dense to compensate for the $r^{-2}$ dilution of photons due to shock curvature. This typically happens when the shock velocity is $\\lesssim 0.1 {\\rm c} \\, (\\frac{u_{\\rm w}}{10\\,{\\rm km/s}}) (\\frac{\\dot{M}}{5 \\cdot 10^{-4} \\, {\\rm M}_\\odot {\\rm /yr}})^{-1} (\\frac{r_\\ast}{10^{13}\\,{\\rm cm}})$, where $u_{\\rm w}$, $\\dot{M}$ and $r_\\ast$ are respectively the wind velocity, mass-loss rate and radius of the progenitor star. The radiative CS results in a hard spectrum of the photon flash at...

  12. Effects of Autologous Platelets Rich Plasma on Full-thickness Cutaneous Wounds Healing in Goats

    Directory of Open Access Journals (Sweden)

    A.H. AL-Bayati

    2013-12-01

    Full Text Available This investigation was designed to evaluate the role of Platelet-Rich Plasma (PRP on healing of experimentally wounded skin in ten adult bucks, aged 2-3 years and weighing 25-30 kg. The animals divided randomly and equally into (control and treatment groups. Four of 3×3 cm of full-thickness square cutaneous wounds was induced on both sides of the lateral thoracic region of each animal under the effect of local anesthetic proceeding by xylazine hydrochloride as a sedative. A pair of left wounds was treated by injection with 5 mL of autonomous PRP (treatment group, 2 mm lateral to the wound edges and in the wound center. While, the right wound were injected by 5 mL of sterile saline by the same procedure (control group. Each group was divided into five subgroups (four wounds of each, for morph metrical and histopathological evaluations of wound healing process represented by percent of wound contraction, epithelialization and total healing at 3, 7, 14, 21 and 28 days post-wounding. The morphometrical appearance of the wounds which treated with PRP, showed that the contraction, re-epithelialization and healing percent were statically significant (p<0.05 in comparison with control wounds during four weeks study. Based on histopathological results, there was re-epithelialization of epidermis, with highly cellular granulation tissue, well differentiated keratinocytes of epidermis with scar formation in the dermis of the sectioned skin. We conclude that local injection of PRP leads to accelerate and improvement of wound healing in comparison to control wounds.

  13. Choroidal and Retinal Thickness in Children With Different Refractive Status Measured by Swept-Source Optical Coherence Tomography.

    Science.gov (United States)

    Jin, Peiyao; Zou, Haidong; Zhu, Jianfeng; Xu, Xun; Jin, Jiali; Chang, Ta Chen; Lu, Lina; Yuan, Hong; Sun, Sifei; Yan, Bo; He, Jiangnan; Wang, Mingjin; He, Xiangui

    2016-08-01

    To investigate the choroidal and retinal thickness in myopic, emmetropic, and hyperopic Chinese children by swept-source longer-wavelength optical coherence tomography. Cross-sectional study. Two-hundred and seventy-six schoolchildren aged 7-13 years underwent comprehensive ophthalmic examinations, including cycloplegic refraction, and swept-source optical coherence tomography measurements. The thickness of the choroid, retina, ganglion cell layer, and nerve fiber layer were compared among children of different refractive status. The topographic variation and factors related to the thickness of the choroid and retinal layers were analyzed. Compared to emmetropic subjects, those with myopia had a significantly thinner choroid in all regions (P choroid in most regions (P .05). The axial length and refractive diopters were independently related to central foveal choroidal thickness (R(2) = 0.17, P thicknesses (R(2) = 0.10, P choroidal and retinal thickness were unrelated in children of different refractive status (P > .05). Choroidal thickness, but not retinal thickness, correlated closely with axial length and refractive diopters in Chinese children. Choroid thinning occurs before retina thinning early in myopic progression. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Collector optic cleaning by in-situ hydrogen plasma

    Science.gov (United States)

    Elg, Daniel T.; Panici, Gianluca A.; Srivastava, Shailendra N.; Ruzic, D. N.

    2015-03-01

    Extreme ultraviolet (EUV) lithography sources produce EUV photons by means of a hot, dense, highly-ionized Sn plasma. This plasma expels high-energy Sn ions and neutrals, which deposit on the collector optic used to focus the EUV light. This Sn deposition lowers the reflectivity of the collector optic, necessitating downtime for collector cleaning and replacement. A method is being developed to clean the collector with an in-situ hydrogen plasma, which provides hydrogen radicals that etch the Sn by forming gaseous SnH4. This method has the potential to significantly reduce collector-related source downtime. EUV reflectivity restoration and Sn cleaning have been demonstrated on multilayer mirror samples attached to a Sn-coated 300mm-diameter steel dummy collector driven at 300W RF power with 500sccm H2 and a pressure of 260mTorr. Use of the in-situ cleaning method is also being studied at industriallyapplicable high pressure (1.3 Torr). Plasma creation across the dummy collector surface has been demonstrated at 1.3 Torr with 1000sccm H2 flow, and etch rates have been measured. Additionally, etching has been demonstrated at higher flow rates up to 3200sccm. A catalytic probe has been used to measure radical density at various pressures and flows. The results lend further credence to the hypothesis that Sn removal is limited not by radical creation but by the removal of SnH4 from the plasma. Additionally, further progress has been made in an attempt to model the physical processes behind Sn removal.

  15. Directional, horizontal inhomogeneities of cloud optical thickness fields retrieved from ground-based and airbornespectral imaging

    Science.gov (United States)

    Schäfer, Michael; Bierwirth, Eike; Ehrlich, André; Jäkel, Evelyn; Werner, Frank; Wendisch, Manfred

    2017-02-01

    Clouds exhibit distinct horizontal inhomogeneities of their optical and microphysical properties, which complicate their realistic representation in weather and climate models. In order to investigate the horizontal structure of cloud inhomogeneities, 2-D horizontal fields of optical thickness (τ) of subtropical cirrus and Arctic stratus are investigated with a spatial resolution of less than 10 m. The 2-D τ-fields are derived from (a) downward (transmitted) solar spectral radiance measurements from the ground beneath four subtropical cirrus and (b) upward (reflected) radiances measured from aircraft above 10 Arctic stratus. The data were collected during two field campaigns: (a) Clouds, Aerosol, Radiation, and tuRbulence in the trade wind regime over BArbados (CARRIBA) and (b) VERtical Distribution of Ice in Arctic clouds (VERDI). One-dimensional and 2-D autocorrelation functions, as well as power spectral densities, are derived from the retrieved τ-fields. The typical spatial scale of cloud inhomogeneities is quantified for each cloud case. Similarly, the scales at which 3-D radiative effects influence the radiance field are identified. In most of the investigated cloud cases considerable cloud inhomogeneities with a prevailing directional structure are found. In these cases, the cloud inhomogeneities favour a specific horizontal direction, while across this direction the cloud is of homogeneous character. The investigations reveal that it is not sufficient to quantify horizontal cloud inhomogeneities using 1-D inhomogeneity parameters; 2-D parameters are necessary.

  16. Simultaneous retrieval of aerosol optical thickness and chlorophyll concentration from multiwavelength measurement over East China Sea

    Science.gov (United States)

    Shi, Chong; Nakajima, Teruyuki; Hashimoto, Makiko

    2016-12-01

    A flexible inversion algorithm is proposed for simultaneously retrieving aerosol optical thickness (AOT) and surface chlorophyll a (Chl) concentration from multiwavelength observation over the ocean. In this algorithm, forward radiation calculation is performed by an accurate coupled atmosphere-ocean model with a comprehensive bio-optical ocean module. Then, a full-physical nonlinear optimization approximation approach is used to retrieve AOT and Chl. For AOT retrieval, a global three-dimensional spectral radiation-transport aerosol model is used as the a priori constraint to increase the retrieval accuracy of aerosol. To investigate the algorithm's availability, the retrieval experiment is conducted using simulated radiance data to demonstrate that the relative errors in simultaneously determining AOT and Chl can be mostly controlled to within 10% using multiwavelength and angle covering in and out of sunglint. Furthermore, the inversion results are assessed using the actual satellite observation data obtained from Cloud and Aerosol Imager (CAI)/Greenhouse gas Observation SATellite GOSAT and MODerate resolution Imaging Spectroradiometer (MODIS)/Aqua instruments through comparison to Aerosol Robotic Network (AERONET) aerosol and ocean color (OC) products over East China Sea. Both the retrieved AOT and Chl compare favorably to the reported AERONET values, particularly when using the CASE 2 ocean module in turbid water, even when the retrieval is performed in the presence of high aerosol loading and sunglint. Finally, the CAI and MODIS images are used to jointly retrieve the spatial distribution of AOT and Chl in comparison to the MODIS AOT and OC products.

  17. Velocity anisotropy effect in pump-probe spectra of cesium in a micrometric thickness optical cell

    Science.gov (United States)

    Ghosh, P. N.; Mitra, S.; Ray, B.; Krasteva, A.; Slavov, D.; Todorov, P.; Cartaleva, S.

    2015-01-01

    The pump-probe spectra in a cell of micrometric thickness containing cesium vapor are reported. The line shape and nonlinear features observed in the case of fluorescence in the direction parallel to the cell windows and the transmission spectra observed along the propagation direction of the probe beam show considerable differences in the spectral profiles. We observed Electromagnetically Induced Transparency (EIT) and enhanced Velocity Selective Optical Pumping (VSOP) signals. Atoms moving nearly parallel to the windows and perpendicular to the collinear pump and probe beams will see much lower Doppler shift of incident frequencies and hence will lead to considerable narrowing of the Doppler background in the fluorescence spectra. The coherence decay rate is also low for such atoms as they do not meet with the cell walls. A theoretical model based on five level optical Bloch equations is used to simulate the spectra. The Doppler convolution includes all possible orientation of atomic velocities with respect to the laser beam direction. The simulated curves reproduce the observed sharp EIT peaks and enhanced broad VSOP signals for the closed probe transition in the fluorescence and absorption spectra. The observed effect of the light intensity and temperature change on the non-linear features is reproduced by the simulation.

  18. Tunable Diode Laser Atomic Absorption Spectroscopy for Detection of Potassium under Optically Thick Conditions.

    Science.gov (United States)

    Qu, Zhechao; Steinvall, Erik; Ghorbani, Ramin; Schmidt, Florian M

    2016-04-05

    Potassium (K) is an important element related to ash and fine-particle formation in biomass combustion processes. In situ measurements of gaseous atomic potassium, K(g), using robust optical absorption techniques can provide valuable insight into the K chemistry. However, for typical parts per billion K(g) concentrations in biomass flames and reactor gases, the product of atomic line strength and absorption path length can give rise to such high absorbance that the sample becomes opaque around the transition line center. We present a tunable diode laser atomic absorption spectroscopy (TDLAAS) methodology that enables accurate, calibration-free species quantification even under optically thick conditions, given that Beer-Lambert's law is valid. Analyte concentration and collisional line shape broadening are simultaneously determined by a least-squares fit of simulated to measured absorption profiles. Method validation measurements of K(g) concentrations in saturated potassium hydroxide vapor in the temperature range 950-1200 K showed excellent agreement with equilibrium calculations, and a dynamic range from 40 pptv cm to 40 ppmv cm. The applicability of the compact TDLAAS sensor is demonstrated by real-time detection of K(g) concentrations close to biomass pellets during atmospheric combustion in a laboratory reactor.

  19. SDOCT Thickness Measurements of Various Retinal Layers in Patients with Autosomal Dominant Optic Atrophy due to OPA1 Mutations

    Directory of Open Access Journals (Sweden)

    Andrea M. Schild

    2013-01-01

    Full Text Available Purpose. To specify thickness values of various retinal layers on macular spectral domain Optical Coherence Tomography (SDOCT scans in patients with autosomal dominant optic atrophy (ADOA compared to healthy controls. Methods. SDOCT volume scans of 7 patients with ADOA (OPA-1 mutation and 14 healthy controls were quantitatively analyzed using manual grading software. Mean thickness values for the ETDRS grid subfields 5–8 were calculated for the spaces neurosensory retina, retinal nerve fiber layer (RNFL, ganglion cell layer (GCL, a combined space of inner plexiform layer/outer plexiform layer/inner nuclear layer (IPL+INL+OPL, and a combined space of outer nuclear layer/photoreceptor layers (ONL+PL. Results. ADOA patients showed statistically significant lower retinal thickness values than controls (. RNFL ( and GCL thicknesses ( were significantly lower in ADOA patients. There was no difference in IPL+INL+OPL and in ONL+PL thickness. Conclusion. Manual subanalysis of macular SDOCT volume scans allowed detailed subanalysis of various retinal layers. Not only RNFL but also GCL thicknesses are reduced in the macular area of ADOA patients whereas subjacent layers are not involved. Together with clinical findings, macular SDOCT helps to identify patients with suspicion for hereditary optic neuropathy before genetic analysis confirms the diagnosis.

  20. Development of plasma bolometers using fiber-optic temperature sensors

    Energy Technology Data Exchange (ETDEWEB)

    Reinke, M. L., E-mail: reinkeml@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Han, M.; Liu, G. [University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (United States); Eden, G. G. van [Dutch Institute for Fundamental Energy Research, De Zaale 20, 5612 AJ Eindhoven (Netherlands); Evenblij, R.; Haverdings, M. [Technobis, Pyrietstraat 2, 1812 SC Alkmaar (Netherlands); Stratton, B. C. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States)

    2016-11-15

    Measurements of radiated power in magnetically confined plasmas are important for exhaust studies in present experiments and expected to be a critical diagnostic for future fusion reactors. Resistive bolometer sensors have long been utilized in tokamaks and helical devices but suffer from electromagnetic interference (EMI). Results are shown from initial testing of a new bolometer concept based on fiber-optic temperature sensor technology. A small, 80 μm diameter, 200 μm long silicon pillar attached to the end of a single mode fiber-optic cable acts as a Fabry–Pérot cavity when broadband light, λ{sub o} ∼ 1550 nm, is transmitted along the fiber. Changes in temperature alter the optical path length of the cavity primarily through the thermo-optic effect, resulting in a shift of fringes reflected from the pillar detected using an I-MON 512 OEM spectrometer. While initially designed for use in liquids, this sensor has ideal properties for use as a plasma bolometer: a time constant, in air, of ∼150 ms, strong absorption in the spectral range of plasma emission, immunity to local EMI, and the ability to measure changes in temperature remotely. Its compact design offers unique opportunities for integration into the vacuum environment in places unsuitable for a resistive bolometer. Using a variable focus 5 mW, 405 nm, modulating laser, the signal to noise ratio versus power density of various bolometer technologies are directly compared, estimating the noise equivalent power density (NEPD). Present tests show the fiber-optic bolometer to have NEPD of 5-10 W/m{sup 2} when compared to those of the resistive bolometer which can achieve <0.5 W/m{sup 2} in the laboratory, but this can degrade to 1-2 W/m{sup 2} or worse when installed on a tokamak. Concepts are discussed to improve the signal to noise ratio of this new fiber-optic bolometer by reducing the pillar height and adding thin metallic coatings, along with improving the spectral resolution of the interrogator.

  1. Effects of AIN nucleation layer thickness on crystal quality of AIN grown by plasma-assisted molecular beam epitaxy

    Institute of Scientific and Technical Information of China (English)

    Ren Fan; Hao Zhi-Biao; Hu Jian-Nan; Zhang Chen; Luo Yi

    2010-01-01

    In this paper,the effects of thickness of AIN nucleation layer grown at high temperature on AIN epi-layer crystalline quality are investigated.Crack-free AIN samples with various nucleation thicknesses are grown on sapphire substrates by plasma-assisted molecular beam epitaxy.The AIN crystalline quality is analysed by transmission electron microscope and x-ray diffraction(XRD)rocking curves in both(002)and(102)planes.The surface profiles of nucleation layer with different thicknesses after in-situ annealing are also analysed by atomic force microscope.A critical nucleation thickness for realising high quality AIN films is found.When the nucleation thickness is above a certain value,the(102)XRD full width at half maximum(FWHM)of AIN bulk increases with nucleation thickness increasing,whereas the(002)XRD FWHM shows an opposite trend.These phenomena can be attributed to the characteristics of nucleation islands and the evolution of crystal grains during AIN main layer growth.

  2. The Gridless Plasma Ion Source(GIS)for Plasma Ion Assisted Optical Coating

    Institute of Scientific and Technical Information of China (English)

    尤大伟; 李晓谦; 王宇; 林永昌

    2004-01-01

    High-quality optical coating is a key technology for modern optics. Ion-assisted deposition technology was used to improve the vaporized coating in 1980's. The GIS (gridless ion source), which is an advanced plasma source for producing a high-quality optical coating in large area, can produce a large area uniformity>1000 mm(diameter), a high ion current density ~ 0.5mA/cm2, 20 eV ~ 200 eV energetic plasma ions and can activate reactive gas and film atoms. Now we have developed a GIS system. The GIS and the plasma ion-assisted deposition technology are investigated to achieve a high-quality optical coating. The GIS is a high power and high current source with a power of I kW ~ 7.5 kW, a current of 10 A ~ 70 A and an ion density of 200μA/cm2 ~ 500μA/cm2. Because of the special magnetic structure, the plasma-ion extraction efficiency has been improved to obtain a maximum ion density of 500μA/cm2 in the medium power (~ 4 kW) level. The GIS applied is of a special cathode structure, so that the GIS operation can be maintained under a rather low power and the lifetime of cathode will be extended. The GIS has been installed in the LPSX-1200 type box coating system. The coated TiO2, SiO2 films such as antireflective films with the system have the same performance reported by Leybold Co, 1992, along with a controllable refractive index and film structure.

  3. Association of Plasma Adiponectin and Oxidized Low-Density Lipoprotein with Carotid Intima-Media Thickness in Diabetic Nephropathy

    OpenAIRE

    Anna Tavridou; Anastasia Georgoulidou; Athanasios Roumeliotis; Stefanos Roumeliotis; Efstathia Giannakopoulou; Nikolaos Papanas; Ploumis Passadakis; Manolopoulos, Vangelis G; Vassilis Vargemezis

    2015-01-01

    Aims. We sought to determine the association between levels of adiponectin and oxidized low-density lipoprotein (ox-LDL) in patients with diabetic nephropathy as well as their effect on carotid intima-media thickness (cIMT). Methods. Adiponectin and ox-LDL were determined in 25 diabetic patients without nephropathy and 94 patients at different stages of diabetic nephropathy including subjects on hemodialysis. cIMT was measured using real-time B-mode ultrasonography. Results. Plasma adiponecti...

  4. Age, Sex, and Ethnic Variations in Inner and Outer Retinal and Choroidal Thickness on Spectral-Domain Optical Coherence Tomography.

    Science.gov (United States)

    Bafiq, Rinoza; Mathew, Raeba; Pearce, Elizabeth; Abdel-Hey, Ahmed; Richardson, Matthew; Bailey, Thomas; Sivaprasad, Sobha

    2015-11-01

    To evaluate age, sex, and ethnic variations in inner and outer retinal and choroidal thickness and foveal pit, using spectral-domain optical coherence tomography (SD OCT). Single-center observational cross-sectional study. Ninety randomly selected, healthy individuals of white, black, and South Asian origin underwent SD OCT raster and enhanced depth imaging scan. Manual measurements of inner and outer retinal thickness and choroidal thickness up to 3 mm nasal and temporal to the fovea were performed. The age, sex, and ethnic differences in these parameters were analyzed. The mean inner retinal thickness was lower by approximately 12 μm in black subjects across the central retina compared to white subjects (P thickness below the foveal pit was lower in eyes of blacks compared to South Asians (12 μm, P = .035) and white subjects (18 μm, P thickness decreased by 0.5 μm per year of age of subjects and was thinner by 6.1 μm (P choroidal thickness did not vary between ethnic groups but the temporal choroid was significantly thinner in black subjects (P choroid showed an age-related decline in thickness of 2 μm per year of age of the subjects. Interethnic differences include wider fovea, lower central foveal thickness, and thinner inner retina in eyes of black subjects compared to their white and South Asian counterparts. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Lack of Association between Glaucoma and Macular Choroidal Thickness Measured with Enhanced Depth-Imaging Optical Coherence Tomography

    Science.gov (United States)

    Mwanza, Jean-Claude; Hochberg, Jessica T.; Banitt, Michael R.; Feuer, William J.

    2011-01-01

    Purpose. To compare choroidal thickness measurements among normal eyes, eyes with normal tension glaucoma (NTG), and those with primary open-angle glaucoma (POAG), and to correlate choroidal thickness with demographic and clinical ocular parameters. Methods. Choroidal thickness was measured with enhanced depth-imaging (EDI) optical coherence tomography (OCT) in one eye of 38 normal, 20 NTG, and 56 POAG subjects and compared among groups. The mean age was 69.3 ± 13.6 years (60.1 ± 13.4 years for normal subjects and 73.8 ± 11.3 years for glaucoma subjects; P choroid every 0.5 mm up to 3 mm away from the fovea. Univariate and multivariate linear regression analyses were performed to assess the association between choroidal thickness and demographic and ocular parameters. Results. There were no differences in foveal, temporal, or nasal choroidal thickness between normal, NTG, and POAG subjects (all P > 0.05) after adjusting for age, axial length, and intraocular pressure. Similarly, glaucoma severity groups did not differ from each other in all choroidal thickness measurements (all P > 0.05). Age (β = −1.78; P choroidal thickness in the entire group, followed by axial length (β = −11.8; P = 0.002). Conclusions. Choroidal thickness does not differ among normal, NTG, and POAG subjects, suggesting a lack of relationship between choroidal thickness and glaucoma based on EDI OCT measurements. PMID:21357398

  6. Dynamic changes in optic disc morphology, choroidal thickness, anterior chamber parameters, and intraocular pressure during Valsalva maneuver

    Directory of Open Access Journals (Sweden)

    Alper Mete

    Full Text Available ABSTRACT Purpose: To investigate the effects of the Valsalva maneuver (VM on optic disc morphology, choroidal thickness, and anterior chamber parameters. Methods: This prospective observational study included 60 eyes of 60 healthy subjects. The anterior chamber parameters, including central corneal thickness (CCT, anterior chamber depth (ACD, anterior chamber angle (ACA, anterior chamber volume (ACV, pupil diameter (PD, axial length (AL, subfoveal and peripapillary choroidal thickness, optic disc parameters, and intraocular pressure (IOP, were measured at rest and during VM. Results: VM did not have any significant influence on AL, subfoveal and peripapillary choroidal thickness, optic disc area, rim area, cup area, cup-to-disc area ratio, vertical cup-to-disc ratio, rim volume, cup volume, and nerve head volume measurements (for all; p >0.05. IOP and PD significantly increased during VM (for both; p <0.001. VM significantly decreased CCT, ACD, ACA, and ACV values (for all; p <0.001. Moreover, the optic nerve cup volume decreased and the horizontal cup-to-disc ratio significantly increased during VM (for both; p <0.05. Conclusions: VM may cause transient changes in IOP, optic disc morphology, and anterior chamber parameters.

  7. Measurement of thickness distribution, optical constants, and roughness parameters of rough nonuniform ZnSe thin films.

    Science.gov (United States)

    Nečas, David; Ohlídal, Ivan; Franta, Daniel; Ohlídal, Miloslav; Čudek, Vladimír; Vodák, Jiří

    2014-09-01

    Epitaxial ZnSe thin films exhibiting two important defects, i.e., boundary roughness and thickness nonuniformity, prepared on GaAs substrates, are optically characterized using a combination of variable-angle spectroscopic ellipsometry, spectroscopic near-normal reflectometry, and imaging spectroscopic reflectometry (ISR). The influence of boundary roughness is incorporated into optical quantity formulas by the Rayleigh-Rice theory. Thickness nonuniformity is included using averaging of the unnormalized Mueller matrices. The dispersion model of the optical constants of the ZnSe films is based on parametrization of the joint density of electronic states. Very thin overlayers represented by thin films with identically rough boundaries are taken into account on the upper boundaries of the ZnSe films. Standard optical techniques are used to determine the spectral dependencies of the optical constants of the ZnSe films, together with the parameters of roughness and thickness nonuniformity. ISR is then used to find the maps of the local thickness and local rms value of height irregularities. The values of roughness parameters, determined using the standard techniques and ISR, are verified by a comparison with results obtained by atomic force microscopy.

  8. Correlation of choroidal thickness and volume measurements with axial length and age using swept source optical coherence tomography and optical low-coherence reflectometry.

    Science.gov (United States)

    Michalewski, Janusz; Michalewska, Zofia; Nawrocka, Zofia; Bednarski, Maciej; Nawrocki, Jerzy

    2014-01-01

    To report choroidal thickness and volume in healthy eyes using swept source optical coherence tomography (SS-OCT). A prospective observational study of 122 patients examined with swept source OCT (DRI-OCT, Topcon, Japan). In each eye, we performed 256 horizontal scans, 12 mm in length and centered on the fovea. We calculated choroidal thickness manually with a built-in caliper and automatically using DRI-OCT mapping software. Choroidal volume was also automatically calculated. We measured axial length with optical low-coherence reflectometry (Lenstar LS 900, Haag-Streit, Switzerland). The choroid has focally increased thickness under the fovea. Choroid was thinnest in the outer nasal quadrant. In stepwise regression analysis, age was estimated as the most significant factor correlating with decreased choroidal thickness (F=23.146, Pchoroidal thickness and volume maps. Choroidal thickness is increased at the fovea and is thinnest nasally. Age and axial length are critical for the estimation of choroidal thickness and volume. Choroidal measurements derived from SS-OCT images have potential value for objectively documenting disease-related choroidal thickness abnormalities and monitoring progressive changes over time.

  9. Optical endpoint detection for plasma reduction of graphene oxide

    Directory of Open Access Journals (Sweden)

    MaengJun Kim

    2013-03-01

    Full Text Available The plasma reduction process for the production of reduced graphene oxide (rGO requires precise process control in order to avoid the degradation of electrical characteristics. We report that the reduction status of the graphene oxides could be determined by monitoring the optical emission intensity at 844.6 nm. Properties of the rGO samples processed with various plasma exposure times were characterized by X-ray photoelectron spectroscopy, Raman spectroscopy, atomic force microscopy, and 4-point probe measurements. Optimum electrical performance and surface morphology were obtained from the sample for which the reduction process was stopped when the emission intensity at 844.6 nm began to decrease.

  10. Effect of catalyst thickness and plasma pretreatment on the growth of carbon nanotubes and their field emission properties.

    Science.gov (United States)

    Uh, Hyung Soo; Park, Sang Sik; Kim, Byung Whan

    2007-11-01

    We demonstrated that the diameter and the density of carbon nanotubes (CNTs) which had a close relation to electric-field-screening effect could be easily changed by the control of catalytic Ni thickness combined with NH3 plasma pretreatment. Since the diameter and the density of CNTs had a tremendous impact on the field-emission characteristics, optimized thickness of catalyst and application of plasma pretreatment greatly improved the emission efficiency of CNTs. In the field emission test using diode-type configuration, well-dispersed thinner CNTs exhibited lower turn-on voltage and higher field enhancement factor than the densely-packed CNTs. A CNT film grown using a plasma-pretreated 25 angstroms-thick Ni catalyst showed excellent field emission characteristics with a very low turn-on field of 1.1 V/microm @ 10 microA/cm2 and a high emission current density of 1.9 mA/cm2 @ 4.0 V/microm, respectively.

  11. Retinal nerve fiber layer thickness measured by optical coherence tomography in patients with schizophrenia: A short report

    Directory of Open Access Journals (Sweden)

    Francisco J. Ascaso

    2010-12-01

    Full Text Available Background and Objectives: Our study aims to assess retinal nerve fiber layer (RNFL thickness in patients affected by schizophrenia. Methods: Ten schizophrenic patients (mean age 39 +/- 13 years, best corrected visual acuity > 20/20, refractive error between +/-2 diopters, and intraocular pressure <18 mmHg were enrolled. They were compared with 10 age-matched controls. In all subjects, optic nerve head (ONH measurements, peripapillary RNFL thickness, macular thickness and volume were measured by optical coherence tomography (OCT. Results: Schizophrenic patients showed an statistically significant reduction of the overall RNFL thickness (95+/-13 µm, range: 53-110 compared with those values observed in control eyes (103+/-8 µm, range: 88-119 (p = 0.047, Mann-Whitney U test. We also observed reduced peripapillary RNFL thickness in nasal quadrant in schizophrenic patients (75+/-17 µm, range: 41-111 when compared with controls (84+/-10 µm, range: 67-105 (p = 0.048, Mann-Whitney U test. The remaining peripapillary RNFL quadrants, macular thickness and volume did not reveal differences between both groups. No statistically significant differences were observed between the control group and schizophrenia patients with regard to ONH measurements, macular thickness and volume. Conclusions: Schizophrenia patients had a reduction of peripapillary RNFL thickness evaluated by OCT. To our knowledge, neither reduced RNFL thickness nor macular thickness and volume have been previously documented in patients diagnosed with schizophrenia. These findings suggest that neuronal degeneration could be present in the retina of schizophrenic patients as previously observed in neurodegenerative disorders.

  12. Adaptive optical design in surface plasma resonance sensor

    Institute of Scientific and Technical Information of China (English)

    ZHANG Feng; ZHONG Jin-gang

    2006-01-01

    A double-prism adaptive optical design in surface plasma resonance (SPR) sensor is proposed,which consists of two identical isosceles right-triangular prisms. One prism is used as a component of Kretschmann configuration,and the other is for regulation of the optical path. When double-prism structure is angle-scanned by an immovable incident ray,the output ray will be always parallel with the incident ray and just has a small displacement with the shift of output point.The output ray can be focused on a fixed photodetector by a convex lens.Thus it can be avoided that a prism and a photodetector rotate by θ and 2θ respectively in conventional angular scanning SPR sensor.This new design reduces the number of the movable components,makes the structure simple and compact,and makes the manipulation convenient.

  13. Resolving ice cloud optical thickness biases between CALIOP and MODIS using infrared retrievals

    Science.gov (United States)

    Holz, Robert E.; Platnick, Steven; Meyer, Kerry; Vaughan, Mark; Heidinger, Andrew; Yang, Ping; Wind, Gala; Dutcher, Steven; Ackerman, Steven; Amarasinghe, Nandana; Nagle, Fredrick; Wang, Chenxi

    2016-04-01

    Despite its importance as one of the key radiative properties that determines the impact of upper tropospheric clouds on the radiation balance, ice cloud optical thickness (IOT) has proven to be one of the more challenging properties to retrieve from space-based remote sensing measurements. In particular, optically thin upper tropospheric ice clouds (cirrus) have been especially challenging due to their tenuous nature, extensive spatial scales, and complex particle shapes and light-scattering characteristics. The lack of independent validation motivates the investigation presented in this paper, wherein systematic biases between MODIS Collection 5 (C5) and CALIOP Version 3 (V3) unconstrained retrievals of tenuous IOT (IOT retrievals. This bias is investigated using an infrared (IR) radiative closure approach that compares both products with MODIS IR cirrus retrievals developed for this assessment. The analysis finds that both the MODIS C5 and the unconstrained CALIOP V3 retrievals are biased (high and low, respectively) relative to the IR IOT retrievals. Based on this finding, the MODIS and CALIOP algorithms are investigated with the goal of explaining and minimizing the biases relative to the IR. For MODIS we find that the assumed ice single-scattering properties used for the C5 retrievals are not consistent with the mean IR COT distribution. The C5 ice scattering database results in the asymmetry parameter (g) varying as a function of effective radius with mean values that are too large. The MODIS retrievals have been brought into agreement with the IR by adopting a new ice scattering model for Collection 6 (C6) consisting of a modified gamma distribution comprised of a single habit (severely roughened aggregated columns); the C6 ice cloud optical property models have a constant g ≈ 0.75 in the mid-visible spectrum, 5-15 % smaller than C5. For CALIOP, the assumed lidar ratio for unconstrained retrievals is fixed at 25 sr for the V3 data products. This value is

  14. Assessment of choroidal thickness in healthy and glaucomatous eyes using swept source optical coherence tomography.

    Directory of Open Access Journals (Sweden)

    Chunwei Zhang

    Full Text Available PURPOSE: To evaluate choroidal thickness (CT in healthy and glaucomatous eyes using Swept Source Optical Coherence Tomography (SS-OCT. METHODS: A cross-sectional observational study of 216 eyes of 140 subjects with glaucoma and 106 eyes of 67 healthy subjects enrolled in the Diagnostic Innovations in Glaucoma Study. CT was assessed from wide-field (12×9 mm SS-OCT scans. The association between CT and potential confounding variables including age, gender, axial length, intraocular pressure, central corneal thickness and ocular perfusion pressure was examined using univariable and multivariable regression analyses. RESULTS: Overall CT was thinner in glaucomatous eyes with a mean (± standard deviation of 157.7±48.5 µm in glaucoma compared to 179.9±36.1 µm in healthy eyes (P<0.001. The choroid was thinner in both the peripapillary and macular regions in glaucoma compared to controls. Mean peripapillary CT was 154.1±44.1 µm and 134.0±56.9 µm (P<0.001 and macular CT 199.3±46.1 µm and 176.2±57.5 µm (P<0.001 for healthy and glaucomatous eyes respectively. However, older age (P<0.001 and longer axial length (P<0.001 were also associated with thinner choroid and when differences in age and axial length between glaucomatous and healthy subjects were accounted for, glaucoma was not significantly associated with CT. There was also no association between glaucoma severity and CT. CONCLUSIONS: Glaucoma was not associated with CT measured using SS-OCT; however, older age and longer axial length were associated with thinner choroid so should be considered when interpreting CT measurements.

  15. Assessment of choroidal thickness of central serous chorioretinopathy by optical coherence tomography with enhanced depth imaging

    Directory of Open Access Journals (Sweden)

    Hui Hang

    2015-01-01

    Full Text Available AIM: To evaluate the meaning of using optical coherence tomography with enhanced depth imaging(OCT-EDIto measure choroidal thickness of central serous retinopathy(CSC. METHODS: With the retrospective case control study, 65 patients(65 eyeswith CSC and 50 healthy controls(50 eyeswith age, gender and diopter-matched were recruited in this study. OCT-EDI were used to measure the subfoveal choroidal thickness(SFCTin CSC eyes, the fellow eyes and also the control eyes. Of which 40 of the 65 CSC patients self-cured, 14 of them were treated with photodynamic therapy(PDT, the left 11 accepted the laser photocoagulation(LP. SFCT were measured 3mo after that. Compared with the previous data, the statistical analysis was carried out.RESULTS: The SFCT value of 65 CSC eyes, 65 fellow eyes and 50 control eyes were 436.23±89.50, 389.45±101.03 and 329.36±95.87μm, respectively. The SFCT of suffer and fellow eyes increased significantly compared to the control eyes(P=0.008 and 0.013, respectively. There was also significant difference in SFCT between the CSC eyes and the fellow eyes(P=0.021. The SFCT were significantly decreased after PDT(P=0.032, but with no significant changes after LP or self-cured(P=0.057 and 0.076, respectively.CONCLUSION: OCT-EDI is a useful method to assess the choroidal topographic changes of CSC. The SFCT are significantly increased in the CSC eyes compared with that in the fellow eyes and the control eyes.

  16. Correlation of Aging and Segmental Choroidal Thickness Measurement using Swept Source Optical Coherence Tomography in Healthy Eyes.

    Science.gov (United States)

    Wakatsuki, Yu; Shinojima, Ari; Kawamura, Akiyuki; Yuzawa, Mitsuko

    2015-01-01

    To assess and compare choroidal thickness changes related to aging, we determined whether changes are due to thinning of the choriocapillaris plus Sattler's (CS) layer and/or the large vessel layer in healthy eyes using swept-source optical coherence tomography (SS-OCT) at a wavelength of 1,050-nm. We studied 115 normal eyes of 115 healthy volunteers, all with refractive errors of less than -6 diopters. All 115 eyes underwent analysis of choroidal thickness at the fovea, the CS layer and the large choroidal vessel layer. In 68 of the 115 eyes, choroidal thickness was determined at five sites (the fovea, and superior, inferior, nasal, and temporal sites) using SS-OCT with an Early Treatment of Diabetic Retinopathy grid scan. Total choroidal thicknesses at each of the five sites were related to subject age (Pchoroid was thinnest at the nasal site, followed by the temporal, inferior, superior and finally the subfoveal site itself. The total choroidal thickness at the nasal site was significantly less than those at the other four sites (pthickness of the choroidal large vessel layer also decreased with age (p = 0.02). Subfoveal choroidal thickness was calculated as follows: 443.89-2.98×age (μm) (Pchoroidal thickness decreases by 2.98 μm each year. Total choroidal thickness diminishes with age. The CS and large vessel layers of the choroid at the subfovea showed significant decreases, though only the former correlated strongly with age.

  17. Characterization of water molecular state in in-vivo thick tissues using diffuse optical spectroscopic imaging

    Science.gov (United States)

    Chung, So Hyun

    Structural changes in water molecules are related to physiological, anatomical and pathological properties of tissues. Near infrared (NIR) optical absorption methods are sensitive to water; however, detailed characterization of water in thick tissues is difficult to achieve because subtle spectral shifts can be obscured by multiple light scattering. In the NIR, a water absorption peak is observed around 975 nm. The precise NIR peak's shape and position are highly sensitive to water molecular disposition. A bound water index (BWI) was developed that quantifies the spectral shift and shape changes observed in tissue water absorption spectra measured by broadband diffuse optical spectroscopic imaging (DOSI). DOSI quantitatively measures light absorption and scattering spectra in cm-deep tissues and therefore reveals bound water spectral shifts. BWI as a water state index was validated by comparing broadband DOSI to MRI and a conductivity cell using bound water phantoms. Non-invasive BWI measurements of malignant and normal tissues in 18 subjects showed a significantly higher fraction of free water in malignant tissues (pbreast cancer patients. The BWI and ADC correlated (R=0.8, p=<0.01) and both parameters decreased with increasing bulk water content in cancer tissues. Although BWI and ADC are positively correlated in vivo, BWI appears to be more sensitive to free water in the extracellular matrix while ADC reflects increased tumor cellularity. The relationship between ADC, BWI and bulk water concentration suggests that both parameters have potential for assessing tumor histopathological grade. My results confirm the importance of water as a critical tissue component that can potentially provide unique insight into the molecular pathophysiology of cancer.

  18. A 10-year global gridded Aerosol Optical Thickness Reanalysis for climate and applied applications

    Science.gov (United States)

    Lynch, P.; Reid, J. S.; Zhang, J.; Westphal, D. L.; Campbell, J. R.; Curtis, C. A.; Hegg, D.; Hyer, E. J.; Sessions, W.; Shi, Y.; Turk, J.

    2013-12-01

    While standalone satellite and model aerosol products see wide utilization, there is a significant need of a best-available fused product on a regular grid for numerous climate and applied applications. Remote sensing and modeling technologies have now advanced to a point where aerosol data assimilation is an operational reality at numerous centers. It is inevitable that, like meteorological reanalyses, aerosol reanalyses will see heavy use in the near future. A first long term, 2003-2012 global 1x1 degree and 6-hourly aerosol optical thickness (AOT) reanalysis product has been generated. The goal of this effort is not only for climate applications, but to generate a dataset that can be used by the US Navy to understand operationally hindering aerosol events, aerosol impacts on numerical weather prediction, and application of electro-optical technologies. The reanalysis utilizes Navy Aerosol Analysis and Prediction System (NAAPS) at its core and assimilates quality controlled collection 5 Moderate Resolution Imaging Spectroradiometer (MODIS) AOD with minor corrections from Multi-angle Imaging SpectroRaditometer (MISR). A subset of this product includes Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) lidar assimilation since its launch in mid-2006. Surface aerosol sources, including dust and smoke, in the aerosol model have been regionally tuned so that fine and coarse mode AOTs best match those resolve by ground-based Aerosol Robotic Network (AERONET). The AOT difference between the model and satellite AOT is then used to adjust other aerosol processes, eg., sources, dry deposition, etc. Aerosol wet deposition is constrained with satellite-retrieved precipitation. The final AOT reanalysis is shown to exhibit good agreement with AERONET. Here we review the development of the reanalysis and consider issues particular to aerosol reanalyses that make them distinct from standard meteorological reanalyses. Considerations are also made for extending such work

  19. Retinal nerve fiber layer thickness of middle aged or elderly people measured by 3D optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Li Li

    2015-11-01

    Full Text Available AIM: To build the reference values of normal eye retinal nerve fiber layer(RNFLthickness on middle aged people between 40~69 years old, and infer the baseline data for early diagnosis of glaucoma. METHODS:A total of 180 eyes from 90 healthy subjects(age ranged from 40~69 years oldwere recruited for this study. Topcon 3D optical coherence tomography(OCT-2000(Ver 8.0was used to measure RNFL thickness. Each subject was performed circular scans around the optic nerve with a circle size of 3.4mm. Clock-hour, quadrant and total average RNFL thicknesses were recorded. The data was analyzed with SPSS statistical. The relationship between age, gender and laterality was analyzed, and the reference value for normal eye RNFL thickness parameters was obtained, RESULTS:Normal RNFL thickness distribution was bimodal curve type in 40~69 year-old middle aged or elderly people. RNFL thickness was decreased for temporal quadrant, followed by nasal, superior, inferior. RNFL thickness at 10 o'clock, 5 o'clock, 6 o'clock, superior got thinner with age prolong. Except 10 o'clock(PP>0.05. The RNFL thickness at 11 o'clock was associated with different gender. the RNFL thickness at 11 o'clock, 12 o'clock, 1 o'clock, 4 o'clock, superior, nasal was associated with different eyes, the differences was statistically significant between different eyes(PCONCLUSION: Topcon 3D OCT-2000 is effectively used to measure the RNFL thickness of 40~69 years people and provide diagnostic basis for early diagnosis of glaucoma.

  20. Optical-resolution photoacoustic imaging through thick tissue with a thin capillary as a dual optical-in acoustic-out waveguide

    CERN Document Server

    Simandoux, Olivier; Gateau, Jerome; Huignard, Jean-Pierre; Moser, Christophe; Psaltis, Demetri; Bossy, Emmanuel

    2015-01-01

    We demonstrate the ability to guide high-frequency photoacoustic waves through thick tissue with a water-filled silica-capillary (150 \\mu m inner diameter and 30 mm long). An optical-resolution photoacoustic image of a 30 \\mu m diameter absorbing nylon thread was obtained by guiding the acoustic waves in the capillary through a 3 cm thick fat layer. The transmission loss through the capillary was about -20 dB, much lower than the -120 dB acoustic attenuation through the fat layer. The overwhelming acoustic attenuation of high-frequency acoustic waves by biological tissue can therefore be avoided by the use of a small footprint capillary acoustic waveguide for remote detection. We finally demonstrate that the capillary can be used as a dual optical-in acoustic-out waveguide, paving the way for the development of minimally invasive optical-resolution photoacoustic endoscopes free of any acoustic or optical elements at their imaging tip.

  1. NOAA Climate Data Record (CDR) of AVHRR Daily and Monthly Aerosol Optical Thickness over Global Oceans, Version 2.0

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This NOAA Climate Data Record (CDR) of Aerosol Optical Thickness (AOT) is derived from data taken over global oceans from the PATMOS-x AVHRR level-2b channel 1 (0.63...

  2. Ab initio analytical model of light transmission through a cylindrical subwavelength hole in an optically thick film

    DEFF Research Database (Denmark)

    Bordo, Vladimir

    2011-01-01

    The rigorous analytical theory of light transmission through a cylindrical hole of arbitrary diameter in an optically thick film is developed. The approach is based on the introduction of fictitious surface currents at both hole openings and both film surfaces. The solution of Maxwell’s equations...

  3. Retinal nerve fiber layer thickness in subgroups of multiple sclerosis, measured by optical coherence tomography and scanning laser polarimetry

    NARCIS (Netherlands)

    T.A.M. Siepman (Theodora); M. Wefers Bettink-Remeijer (Marijke); R.Q. Hintzen (Rogier)

    2010-01-01

    textabstractOptical coherence tomography (OCT) and scanning laser polarimetry (GDx ECC) are non-invasive methods used to assess retinal nerve fiber layer (RNFL) thickness, which may be a reliable tool used to monitor axonal loss in multiple sclerosis (MS). The objectives of this study are (1) to com

  4. Repeatability of swept-source optical coherence tomography retinal and choroidal thickness measurements in neovascular age-related macular degeneration

    DEFF Research Database (Denmark)

    Hanumunthadu, Daren; Ilginis, Tomas; Restori, Marie

    2017-01-01

    BACKGROUND: The aim was to determine the intrasession repeatability of swept-source optical coherence tomography (SS-OCT)-derived retinal and choroidal thickness measurements in eyes with neovascular age-related macular degeneration (nAMD). METHODS: A prospective study consisting of patients with...

  5. Normative data of outer photoreceptor layer thickness obtained by software image enhancing based on Stratus optical coherence tomography images

    DEFF Research Database (Denmark)

    Christensen, U.C.; Kroyer, K.; Thomadsen, J.

    2008-01-01

    Aim: To present normative data of outer photoreceptor layer thickness obtained by a new semiautomatic image analysis algorithm operating on contrast-enhanced optical coherence tomography (OCT) images. Methods: Eight Stratus OCT3 scans from identical retinal locations from 25 normal eyes were regi...

  6. Optical diagnostics for laser wakefields in plasma channels

    Science.gov (United States)

    Gaul, E. W.; Le Blanc, S. P.; Downer, M. C.

    1998-11-01

    Laser wakefield accelerators can excite large amplitude electrostatic fields (E >= 100 GV/m) which are potentially suitable for compact accelerators and advanced high energy colliders. An accurate diagnostic tool is necessary to test the physical effects in the wakefield predicted by theory and numerical simulations, and to have control over experiments. Frequency domain interferometry (FDI) (C. W. Siders et. al.), Phys. Rev. Lett. 76, 3570 (1995) has been developed in previous work. We experimentally demonstrate single-shot FDI as a sensitive diagnostic technique for probing laser wakefields. To generate wakefields longer than the diffraction limit, optical guiding of the laser pulse is necessary. An optical guide is formed by the hydrodynamic expansion of a cylindrical shock wave driven by a laser heated plasma, which is generated by laser pulse focused with an axicon lens (C. G. Durfee and H. M. Milchberg, Phys. Rev. Lett. 71, 2409 (1993)) to intensities of ~= 10^13 W/cm^2. These are too low to reach multi-photon ionization or significant collisional ionization in <= 1 atm helium. We preionize Helium gas with an electrical discharge for efficient inverse bremsstrahlung absorption of the laser pulse and formation of a plasma channel. Spatially resolved chirped pulse interferometry is used to measure the radial electron density profile of the channel.

  7. Measurement of Choroidal Thickness in Normal Eyes Using 3D OCT-1000 Spectral Domain Optical Coherence Tomography

    Science.gov (United States)

    Shin, Joong Won; Shin, Yong Un; Cho, Hee Yoon

    2012-01-01

    Purpose To study choroidal thickness and its topographic profile in normal eyes using 3D OCT-1000 spectral domain optical coherence tomography and the correlation with age and refractive error. Methods Fifty-seven eyes (45 individuals) with no visual complaints or ocular disease underwent horizontal and vertical line scanning using 3D OCT-1000. The definition of choroidal thickness was the vertical distance between the posterior edge of the hyper-reflective retinal pigment epithelium and the choroid/sclera junction. Choroidal thickness was measured in the subfoveal area at 500 µm intervals from the fovea to 2,500 µm in the nasal, temporal, superior, and inferior regions. The spherical equivalent refractive error was measured by autorefractometry. Statistical analysis was used to confirm the correlations of choroidal thickness with age and refraction error. Results The mean age of the 45 participants (57 eyes) was 45.28 years. Detailed visualization of the choroid for measuring its thickness was possible in 63.3% of eyes. The mean subfoveal choroidal thickness was found to be 270.8 µm (standard deviation [SD], ±51 µm), in horizontal scanning and 275.0 µm (SD, ±49 µm) in vertical scanning. The temporal choroidal thickness was greater than any 500 µm interval in corresponding locations, and there was no significant difference between the superior and inferior choroid as far as 2,000 µm from the fovea. Age and refractive error were associated with subfoveal choroidal thickness in terms of regression (p Choroidal thickness in normal Korean eyes can be measured using 3D OCT-1000 with high resolution line scanning. The topographical profile of choroidal thickness varies depending on its location. Age and refractive error are essential factors for interpretation of choroidal thickness. PMID:22870023

  8. Residual stress measurement in carbon coatings of optical fibers from the fiber bending curvature and coating thickness difference

    Science.gov (United States)

    Shiue, Sham-Tsong; Lin, Hung-Chien; Shen, Ting-Ying; Ouyang, Hao

    2005-06-01

    The residual stress measurement in carbon coatings of optical fibers is theoretically and experimentally investigated. A simple formula used to measure the residual stresses in the thin film deposited on a cylindrical substrate with the bending curvature is proposed. During a temperature drop, the carbon-coated optical fiber is bent due to the nonuniform deposition of coating materials. The axial residual stresses in carbon coatings of optical fibers can be measured from the fiber bending curvature and coating thickness difference. Furthermore, if Young's modulus of carbon coatings is known, the thermal expansion coefficient of carbon coatings can be determined.

  9. Choroidal Thickness Variation According to Refractive Error Measured by Spectral Domain-optical Coherence Tomography in Korean Children.

    Science.gov (United States)

    Lee, Geun Young; Yu, Sung; Kang, Hyun Gu; Kim, Jin Seon; Lee, Kyoo Won; Lee, Jung-Ho

    2017-04-01

    To assess choroidal thickness (CT) variation according to refractive errors using enhanced-depth imaging optical coherence tomography. Eighty-nine eyes (in 89 children) choroidal scans using enhanced-depth imaging-optical coherence tomography. CT was measured at the fovea and at 1 mm and 3 mm nasal (N1 and N3), temporal (T1 and T3), superior (S1 and S3), and inferior (I1 and I3) from the fovea. Mean foveal CTs were 346.86 µm, 301.97 µm, and 267.46 µm in the hyperopia, emmetropia, and myopia groups, respectively (p thickness in the emmetropia and myopia groups was greater than thickness at other areas, particularly the nasal and inferior choroids (p choroid was thicker than the nasal choroid, regardless of the refractive error. The thickest location in the hyperopia group was the fovea; however, the temporal choroid was thickest in the emmetropia and myopia groups.

  10. Effect of elevated intraocular pressure on the thickness changes of cat laminar and prelaminar tissue using optical coherence tomography.

    Science.gov (United States)

    Zhao, Qiuyun; Qian, Xiuqing; Li, Lin; Sun, Weijian; Huang, Shan; Liu, Zhicheng

    2014-01-01

    The aim of this study was to examine shape the changes of the lamina cribrosa (LC) under different intraocular pressures (IOPs) with different periods. Images of the optic nerve head were obtained using enhanced depth imaging spectral domain optical coherence tomography (EDI SD-OCT). After an initial scan of the IOP at native pressure, subsequent scanning was taken when the IOP values reached 40, 60, 80 and 100 mm Hg. Then scans continued with the IOP maintained at 100 mm Hg for 1 hour, 2 hours, 3 hours and 4 hours. The thicknesses of the LC and prelaminar tissue were measured and the curvature of the LC was calculated. Our study found that as IOP increased, the thicknesses of both LC and prelaminar tissue decreased and the thickness variation of the LC correlated significantly with the increases of IOP when IOP was higher than 60 mm Hg. An exponential function was proposed to express the relationship between IOP and the thickness variations of LC and prelaminar tissue. Creep curves of the LC and prelaminar tissue was also obtained using the Prony model. In conclusion, both the thickness of the prelaminar tissue and LC thinned as the IOP elevated. The thickness of the LC also decreased after 4 hours of constant 100 mm Hg pressure.

  11. Plasma apolipoprotein M is reduced in metabolic syndrome but does not predict intima media thickness

    NARCIS (Netherlands)

    Dullaart, Robin P. F.; Plomgaard, Peter; de Vries, Rindert; Dahlback, Bjorn; Nielsen, Lars B.

    2009-01-01

    Background: Apolipoprotein (apo) M may exert anti-atherogenic properties in experimental studies. Its hepatic gene expression may be linked to glucose and lipid metabolism. Plasma apoM is decreased in obese mouse models. We hypothesized that plasma apoM is lower in metabolic syndrome (MetS) subjects

  12. Validation of UV-visible aerosol optical thickness retrieved from spectroradiometer measurements

    Directory of Open Access Journals (Sweden)

    C. Brogniez

    2008-02-01

    Full Text Available Global and diffuse UV-visible solar irradiances are routinely measured since 2003 with a spectroradiometer operated by the Laboratoire d'Optique Atmosphérique (LOA located in Villeneuve d'Ascq, France. The analysis of the direct irradiance derived by cloudless conditions enables retrieving the aerosol optical thickness (AOT spectrum in the 330–450 nm range. The site hosts also sunphotometers from the AERONET/PHOTONS network performing routinely measurements of the AOT at several wavelengths. On one hand, comparisons between the spectroradiometer and the sunphotometer AOT at 440 nm as well as, when available, at 340 and 380 nm, show good agreement. On the other hand, the AOT's spectral variations have been compared using the Angström exponents derived from AOT data at 340 and 440 nm for both instruments. The comparisons show that this parameter is difficult to retrieve accurately due to the small wavelength range and due to the weak AOT values. Thus, AOT derived at wavelengths outside the spectroradiometer range by means of an extrapolation using the Angström parameter would be of poor value, whereas, spectroradiometer's spectral AOT could be used for direct validation of other AOT, such as those provided by satellite instruments.

  13. Evaluation of BAER surface model for aerosol optical thickness retrieval over land surface

    Directory of Open Access Journals (Sweden)

    Y. S. Chiang

    2012-04-01

    Full Text Available Estimation of surface reflectance is essential for an accurate retrieval of aerosol optical thickness (AOT by satellite remote sensing approach. Due to the variability of surface reflectance over land surfaces, a surface model is required to take into account the crucial factor controlling this variability. In the present study, we attempted to simulate surface reflectance in the short-wave channels with two methods, namely the land cover type dependent method and a two-source linear model. In the two-source linear model, we assumed that the spectral property can be described by a mixture of vegetated and non-vegetated area, and both the normalized difference vegetation index (NDVI, and the vegetation continuous field (VCF was applied to summarize this surface characteristic. By comparing our estimation with surface reflectance data derived from Moderate Resolution Imaging Spectroradiometer (MODIS, it indicated that the land cover type approach did not provide a better estimation because of inhomogeneous land cover pattern and the mixing pixel properties. For the two-source linear method, the study suggested that the use of NDVI as parameterization for vegetation fraction can reflect the spectral behavior of shortwave surface reflectance, despite of some deviation due to the averaging characteristics in our linear combination process. A channel-dependent offset and scalar factor could enhance reflectance estimation and further improve AOT retrieval by the current Bremen AErosol Retrieval (BAER approach.

  14. Subfoveal choroidal thickness measured by Cirrus HD optical coherence tomography in myopia

    Directory of Open Access Journals (Sweden)

    Li-Li Chen

    2014-09-01

    Full Text Available ATM: To measure the subfoveal choroidal thickness(SFCTin myopia using Cirrus HD optical coherence tomography(OCT, and to explore the relationship between the SFCT, axial length and myopic refractive spherical equivalent.METHODS: One-hundred thirty-three eyes of 70 healthy volunteers were recruited, and were divided into emmetropia group, low-degree myopia, middle-degree myopia and high-degree myopia group. SFCT were measured by Cirrus HD OCT, and the relationship between the SFCT, axial length and myopic refractive spherical equivalent were evaluated.RESULTS: 1Average SFCT was(275.91±55.74μm in normals, that in emmetropia group, low-degree myopia, middle-degree myopia and high-degree myopia group were(290.03±34.82μm,(287.64±51.51μm,(274.95±56.83μm,(248.37±67.98μm; 2the SFCT of high-degree myopia group was significant thinner than that of emmetropia group(PPPCONCLUSION: the SFCT is inversely correlated with increasing axial length and myopic refractive error.

  15. Accommodation-induced variations in retinal thickness measured by spectral domain optical coherence tomography

    Science.gov (United States)

    Fan, Shanhui; Sun, Yong; Dai, Cuixia; Zheng, Haihua; Ren, Qiushi; Jiao, Shuliang; Zhou, Chuanqing

    2014-09-01

    To research retinal stretching or distortion with accommodation, accommodation-induced changes in retinal thickness (RT) in the macular area were investigated in a population of young adults (n=23) by using a dual-channel spectral domain optical coherence tomography (SD-OCT) system manufactured in-house for this study. This dual-channel SD-OCT is capable of imaging the cornea and retina simultaneously with an imaging speed of 24 kHz A-line scan rate, which can provide the anatomical dimensions of the eye, including the RT and axial length. Thus, the modification of the RT with accommodation can be calculated. A significant decrease in the RT (13.50±1.25 μm) was observed during maximum accommodation. In the 4 mm×4 mm macular area centered at the fovea, we did not find a significant quadrant-dependent difference in retinal volume change, which indicates that neither retinal stretching nor distortion was quadrant-dependent during accommodation. We speculate that the changes in RT with maximum accommodation resulted from accommodation-induced ciliary muscle contractions.

  16. Reconciling satellite aerosol optical thickness and surface fine particle mass through aerosol liquid water

    Science.gov (United States)

    Nguyen, Thien Khoi V.; Ghate, Virendra P.; Carlton, Annmarie G.

    2016-11-01

    Summertime aerosol optical thickness (AOT) over the southeast U.S. is sharply enhanced over wintertime values. This seasonal pattern is unique and of particular interest because temperatures there have not warmed over the past 100 years. Patterns in surface fine particle mass are inconsistent with satellite reported AOT. In this work, we attempt to reconcile the spatial and temporal distribution of AOT over the U.S. with particle mass measurements at the surface by examining trends in aerosol liquid water (ALW), a particle constituent that scatters radiation and affects satellite AOT but is removed in mass measurements at routine surface monitoring sites. We employ the thermodynamic model ISORROPIAv2.1 to estimate ALW mass concentrations at Interagency Monitoring of PROtected Visual Environments sites using measured ion mass concentrations and North American Regional Reanalysis meteorological data. Excellent agreement between Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations AOT and estimated ALW provides a plausible explanation for the discrepancies in the geographical patterns of AOT and aerosol mass measurements.

  17. Sensitivity of aerosol optical thickness and aerosol direct radiative effect to relative humidity

    Directory of Open Access Journals (Sweden)

    H. Bian

    2008-07-01

    Full Text Available We present a sensitivity study on the effects of spatial and temporal resolution of atmospheric relative humidity (RH on calculated aerosol optical thickness (AOT and the aerosol direct radiative effects (DRE in a global model. Using the same aerosol fields simulated in the Global Modeling Initiative (GMI model, we find that, on a global average, the calculated AOT from RH in 1° latitude by 1.25° longitude spatial resolution is 11% higher than that in 2° by 2.5° resolution, and the corresponding DRE at the top of the atmosphere is 8–9% higher for total aerosols and 15% higher for only anthropogenic aerosols in the finer spatial resolution case. The difference is largest over surface escarpment regions (e.g. >200% over the Andes Mountains where RH varies substantially with surface terrain. The largest zonal mean AOT difference occurs at 50–60°N (16–21%, where AOT is also relatively larger. A similar increase is also found when the time resolution of RH is increased. This increase of AOT and DRE with the increase of model resolution is due to the highly non-linear relationship between RH and the aerosol mass extinction efficiency (MEE at high RH (>80%. Our study suggests that caution should be taken in a multi-model comparison (e.g. AeroCom since the comparison usually deals with results coming from different spatial/temporal resolutions.

  18. Spatial Aspects of Multi-Sensor Data Fusion: Aerosol Optical Thickness

    Science.gov (United States)

    Leptoukh, Gregory; Zubko, V.; Gopalan, A.

    2007-01-01

    The Goddard Earth Sciences Data and Information Services Center (GES DISC) investigated the applicability and limitations of combining multi-sensor data through data fusion, to increase the usefulness of the multitude of NASA remote sensing data sets, and as part of a larger effort to integrate this capability in the GES-DISC Interactive Online Visualization and Analysis Infrastructure (Giovanni). This initial study focused on merging daily mean Aerosol Optical Thickness (AOT), as measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites, to increase spatial coverage and produce complete fields to facilitate comparison with models and station data. The fusion algorithm used the maximum likelihood technique to merge the pixel values where available. The algorithm was applied to two regional AOT subsets (with mostly regular and irregular gaps, respectively) and a set of AOT fields that differed only in the size and location of artificially created gaps. The Cumulative Semivariogram (CSV) was found to be sensitive to the spatial distribution of gap areas and, thus, useful for assessing the sensitivity of the fused data to spatial gaps.

  19. Optical emission spectroscopy of argon and hydrogen-containing plasmas

    Science.gov (United States)

    Siepa, Sarah; Danko, Stephan; Tsankov, Tsanko V.; Mussenbrock, Thomas; Czarnetzki, Uwe

    2015-09-01

    Optical emission spectroscopy (OES) on neutral argon is applied to investigate argon, hydrogen and hydrogen-silane plasmas. The spectra are analyzed using an extensive collisional-radiative model (CRM), from which the electron density and the electron temperature (or mean energy) can be calculated. The CRM also yields insight into the importance of different excited species and kinetic processes. The OES measurements are performed on pure argon plasmas at intermediate pressure. Besides, hydrogen and hydrogen-silane plasmas are investigated using argon as a trace gas. Especially for the gas mixture discharges, CRMs for low and high pressure differ substantially. The commonly used line-ratio technique is found to lose its sensitivity for gas mixture discharges at higher pressure. A solution using absolutely calibrated line intensities is proposed. The effect of radiation trapping and the shape of the electron energy distribution function on the results are discussed in detail, as they have been found to significantly influence the results. This work was supported by the Ruhr University Research School PLUS, funded by Germany's Excellence Initiative [DFG GSC 98/3].

  20. In vivo tear film thickness measurement and tear film dynamics visualization using spectral domain optical coherence tomography.

    Science.gov (United States)

    Aranha Dos Santos, Valentin; Schmetterer, Leopold; Gröschl, Martin; Garhofer, Gerhard; Schmidl, Doreen; Kucera, Martin; Unterhuber, Angelika; Hermand, Jean-Pierre; Werkmeister, René M

    2015-08-10

    Dry eye syndrome is a highly prevalent disease of the ocular surface characterized by an instability of the tear film. Traditional methods used for the evaluation of tear film stability are invasive or show limited repeatability. Here we propose a new non-invasive fully automated approach to measure tear film thickness based on spectral domain optical coherence tomography and on an efficient delay estimator. Silicon wafer phantom were used to validate the thickness measurement. The technique was applied in vivo in healthy subjects. Series of tear film thickness maps were generated, allowing for the visualization of tear film dynamics. Our results show that the in vivo central tear film thickness measurements are precise and repeatable with a coefficient of variation of about 0.65% and that repeatable tear film dynamics can be observed. The presented approach could be used in clinical setting to study patients with dry eye disease and monitor their treatments.

  1. Nonlinear Optical Parameters of Magnetoactive Semiconductor-Plasmas

    Science.gov (United States)

    Singh, M.; Joseph, D.; Duhan, S.

    The nonlinear optical parameters (absorption coefficient and refractive index) of semiconductor-plasmas subjected to a transverse magnetic field have been investigated analytically. By employing the coupled-mode scheme, an expression of third-order optical susceptibility and resultant nonlinear absorption and refractive index of the medium are obtained. The analysis has been applied to both cases, viz., centrosymmetric (β = 0) and noncentrosymmetric (β ≠ 0) in the presence of magnetic field. The numerical estimates are made for InSb crystal at liquid nitrogen temperature duly irradiated by a 10-nanosecond pulsed 10.6 μm CO2 laser. The influence of doping concentration and magnetic field on both the nonlinear absorption and refractive index has been explored, and the results are found to be well in agreement with theory and experiment. Analysis further establishes that absorption coefficient and refractive index can be controlled with precision in semiconductors by the proper selection of doping concentration and an external magnetic field, and hence these media may be used for fabrication of fast cubic nonlinear optical devices under off-resonant transition regime.

  2. Retrievals of Thick Cloud Optical Depth from the Geoscience Laser Altimeter System (GLAS) by Calibration of Solar Background Signal

    Science.gov (United States)

    Yang, Yuekui; Marshak, Alexander; Chiu, J. Christine; Wiscombe, Warren J.; Palm, Stephen P.; Davis, Anthony B.; Spangenberg, Douglas A.; Nguyen, Louis; Spinhirne, James D.; Minnis, Patrick

    2008-01-01

    Laser beams emitted from the Geoscience Laser Altimeter System (GLAS), as well as other space-borne laser instruments, can only penetrate clouds to a limit of a few optical depths. As a result, only optical depths of thinner clouds (thick clouds using solar background light and treating GLAS as a solar radiometer. To do so we first calibrate the reflected solar radiation received by the photon-counting detectors of GLAS' 532 nm channel, which is the primary channel for atmospheric products. The solar background radiation is regarded as a noise to be subtracted in the retrieval process of the lidar products. However, once calibrated, it becomes a signal that can be used in studying the properties of optically thick clouds. In this paper, three calibration methods are presented: (I) calibration with coincident airborne and GLAS observations; (2) calibration with coincident Geostationary Operational Environmental Satellite (GOES) and GLAS observations of deep convective clouds; (3) calibration from the first principles using optical depth of thin water clouds over ocean retrieved by GLAS active remote sensing. Results from the three methods agree well with each other. Cloud optical depth (COD) is retrieved from the calibrated solar background signal using a one-channel retrieval. Comparison with COD retrieved from GOES during GLAS overpasses shows that the average difference between the two retrievals is 24%. As an example, the COD values retrieved from GLAS solar background are illustrated for a marine stratocumulus cloud field that is too thick to be penetrated by the GLAS laser. Based on this study, optical depths for thick clouds will be provided as a supplementary product to the existing operational GLAS cloud products in future GLAS data releases.

  3. Effect of Hemodialysis on Retinal Thickness in Patients with Diabetic Retinopathy, with and without Macular Edema, Using Optical Coherence Tomography.

    Science.gov (United States)

    Azem, Nur; Spierer, Oriel; Shaked, Meital; Neudorfer, Meira

    2014-01-01

    Background. Effects of hemodialysis (HD) treatment on retinal thickness and macular edema are unclear. Objective. To evaluate changes in retinal thickness using optical coherence tomography (OCT) in end stage renal disease (ESRD) patients with diabetic retinopathy (DR), with and without diabetic macular edema (DME), undergoing HD. Methods. Nonrandomized prospective study. Forty eyes of DR patients with ESRD treated with HD were divided into two groups: patients with macular edema and patients without macular edema. Both eyes were analyzed. Patients underwent an ophthalmic examination including OCT measurements of retinal thickness, blood albumin and hemoglobin A1C levels, blood pressure, and body weight, 30 minutes before and after HD. Results. We found no significant effects of HD on retinal thickness among patients both with and without DME. The former showed a trend towards reduction in retinal thickness in foveal area following HD, while the latter showed an increase. There was no correlation between retinal thickness and mean blood pressure, weight, kinetic model value-Kt/V, glycemic hemoglobin, or albumin levels before and after HD. Conclusions. HD has no significant effect on retinal thickness among patients with or without DME. Further studies on larger cohorts and repeated OCT examinations are needed to confirm the preliminary findings in this study.

  4. Effect of Hemodialysis on Retinal Thickness in Patients with Diabetic Retinopathy, with and without Macular Edema, Using Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Nur Azem

    2014-01-01

    Full Text Available Background. Effects of hemodialysis (HD treatment on retinal thickness and macular edema are unclear. Objective. To evaluate changes in retinal thickness using optical coherence tomography (OCT in end stage renal disease (ESRD patients with diabetic retinopathy (DR, with and without diabetic macular edema (DME, undergoing HD. Methods. Nonrandomized prospective study. Forty eyes of DR patients with ESRD treated with HD were divided into two groups: patients with macular edema and patients without macular edema. Both eyes were analyzed. Patients underwent an ophthalmic examination including OCT measurements of retinal thickness, blood albumin and hemoglobin A1C levels, blood pressure, and body weight, 30 minutes before and after HD. Results. We found no significant effects of HD on retinal thickness among patients both with and without DME. The former showed a trend towards reduction in retinal thickness in foveal area following HD, while the latter showed an increase. There was no correlation between retinal thickness and mean blood pressure, weight, kinetic model value—Kt/V, glycemic hemoglobin, or albumin levels before and after HD. Conclusions. HD has no significant effect on retinal thickness among patients with or without DME. Further studies on larger cohorts and repeated OCT examinations are needed to confirm the preliminary findings in this study.

  5. Anterior Segment OpticalCoherence Tomography: Assisted Topographic Corneal Epithelial Thickness Distribution Imaging of a Keratoconus Patient

    Directory of Open Access Journals (Sweden)

    A. John Kanellopoulos

    2013-04-01

    Full Text Available Purpose: To evaluate safety, efficacy and ease of measurement of epithelial thickness in a keratoconic patient based on anterior segment optical coherence tomography (AS-OCT. Methods: A 25-year-old male patient, previously diagnosed with keratoconus, with highly asymmetric manifestation among the two eyes, was subjected to AS-OCT corneal epithelial imaging. We investigated epithelial thickness and epithelial topographic thickness distribution. Results: Mean epithelial thickness was 51.97 ± 0.70 for the less affected right eye (OD, and 55.65 ± 1.22 for the more affected left eye (OS. Topographic epithelial thickness variability for the OD was 1.53 ± 0.21 μm, while for the OS it was 9.80 ± 0.41 μm. Conclusions: This case further supports our previous findings with high-frequency ultrasound measurements of the increase in overall epithelial thickness in keratoconic eyes in comparison with normal eyes. AS-OCT further offers ease of use and possibly higher predictability of measurement. This case report, based on AS-OCT imaging, verifies increased overall epithelial thickness in keratoconic eyes, as introduced by a previous study [Kanellopoulos et al.: Clin Ophthalmol 2012;6:789-800], based on high-frequency scanning ultrasound biomicroscopy imaging.

  6. Fibrous Cap Thickness by Optical Coherence Tomography In Vivo.

    Science.gov (United States)

    Kini, Annapoorna S; Vengrenyuk, Yuliya; Yoshimura, Takahiro; Matsumura, Mitsuaki; Pena, Jacobo; Baber, Usman; Moreno, Pedro; Mehran, Roxana; Maehara, Akiko; Sharma, Samin; Narula, Jagat

    2017-02-14

    Optical coherence tomography (OCT) imaging is considered to be the only imaging modality with sufficient resolution to measure fibrous cap thickness (FCT) in vivo. However, reproducibility of the measurements in vivo has been unsatisfactory. The authors aimed to investigate whether satisfactory reproducibility of FCT measurements by OCT in vivo can be achieved between independent observers. One hundred seventy OCT pullbacks were analyzed by 2 independent observers with intravascular imaging expertise in accordance with current guidelines to assess the interobserver variability of FCT measurement by intraclass correlation coefficient (ICC). The main sources of the variability were analyzed and incorporated in lesion assessment criteria. The same 170 OCT pullbacks were reanalyzed by the same observers using the developed criteria, and the interobserver reproducibility of the measurements was reassessed. On the basis of the developed criteria, a third independent observer interpreted all 170 OCT images. Assessment of the maximal lipid arc was also undertaken similarly before and after the development of interpretation criteria. The original ICC of the FC thickness was 0.56 (95% confidence interval [CI]: 0.38 to 0.69). The poor definition of necrotic core facing border of FC and the neointimal presence of macrophages and calcification contributed to the high interobserver variability of FCT measurement. The ICC of FCT measurements by OCT in vivo was 0.88 (95% CI: 0.80 to 0.93) after we developed lesion assessment criteria. The ICC for the maximal lipid arc assessment before and after was 0.76 and 0.82 respectively. The third independent observer was extensively coached and returned the ICC of 0.82 (95% CI: 0.74 to 0.87) with observer 1 and 0.90 (95% CI: 0.86 to 0.94) with observer 2. Careful consideration of OCT features mimicking fibroatheroma lesions and imaging artifacts contributed to significantly higher levels of interobserver agreement. Interobserver

  7. Neotendon infilling of a full thickness rotator cuff foot print tear following ultrasound guided liquid platelet rich plasma injection and percutaneous tenotomy: favourable outcome up to one year

    OpenAIRE

    Arockia Doss

    2013-01-01

    This is a case report on excellent clinical outcome and neotendon infilling at one year follow up in a degenerative rotator cuff full thickness tear following percutaneous tenotomy and platelet rich plasma injection.

  8. Variation in the ADIPOQ gene promoter is associated with carotid intima media thickness independent of plasma adiponectin levels in healthy subjects

    National Research Council Canada - National Science Library

    Patel, Sheila; Flyvbjerg, Allan; Kozàkovà, Michaela; Frystyk, Jan; Ibrahim, Ibrahim M; Petrie, John R; Avery, Peter J; Ferrannini, Ele; Walker, Mark

    2008-01-01

    .... We investigated the role of the ADIPOQ gene single-nucleotide polymorphisms (SNPs) A-11426G, G-11391A, C-11377G, and T45G with plasma adiponectin levels and common carotid artery intima media thickness (IMT...

  9. Finishing of AT-cut quartz crystal wafer with nanometric thickness uniformity by pulse-modulated atmospheric pressure plasma etching.

    Science.gov (United States)

    Yamamura, Kazuya; Ueda, Masaki; Shibahara, Masafumi; Zettsu, Nobuyuki

    2011-04-01

    Quartz resonator is a very important device to generate a clock frequency for information and telecommunication system. Improvement of the productivity of the quartz resonator is always required because a huge amount of the resonator is demanded for installing to various electronic devices. Resonance frequency of the quartz resonator is decided by the thickness of the quartz crystal wafer. Therefore, it is necessary to uniform the thickness distribution of the wafer with nanometric level. We have proposed the improvement technique of the thickness distribution of the quartz crystal wafer by numerically controlled correction using atmospheric pressure plasma which is non-contact and chemical removal technique. Heating effects of the quartz wafer in the removal rate and the correction accuracy were investigated. The heating of the substrate and compensate of the scanning speed of the worktable according to the variation of the surface temperature enabled an increase of 50% in the etching rate and 10-nanometric-level accuracy in the correction of the thickness distribution of the quartz wafer, respectively.

  10. Optical modeling of plasma-deposited ZnO films: Electron scattering at different length scales

    Energy Technology Data Exchange (ETDEWEB)

    Knoops, Harm C. M., E-mail: H.C.M.Knoops@tue.nl; Loo, Bas W. H. van de; Smit, Sjoerd; Ponomarev, Mikhail V.; Weber, Jan-Willem; Sharma, Kashish [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Kessels, Wilhelmus M. M.; Creatore, Mariadriana, E-mail: M.Creatore@tue.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands and Solliance, High Tech Campus 5, 5656 AE Eindhoven (Netherlands)

    2015-03-15

    In this work, an optical modeling study on electron scattering mechanisms in plasma-deposited ZnO layers is presented. Because various applications of ZnO films pose a limit on the electron carrier density due to its effect on the film transmittance, higher electron mobility values are generally preferred instead. Hence, insights into the electron scattering contributions affecting the carrier mobility are required. In optical models, the Drude oscillator is adopted to represent the free-electron contribution and the obtained optical mobility can be then correlated with the macroscopic material properties. However, the influence of scattering phenomena on the optical mobility depends on the considered range of photon energy. For example, the grain-boundary scattering is generally not probed by means of optical measurements and the ionized-impurity scattering contribution decreases toward higher photon energies. To understand this frequency dependence and quantify contributions from different scattering phenomena to the mobility, several case studies were analyzed in this work by means of spectroscopic ellipsometry and Fourier transform infrared (IR) spectroscopy. The obtained electrical parameters were compared to the results inferred by Hall measurements. For intrinsic ZnO (i-ZnO), the in-grain mobility was obtained by fitting reflection data with a normal Drude model in the IR range. For Al-doped ZnO (Al:ZnO), besides a normal Drude fit in the IR range, an Extended Drude fit in the UV-vis range could be used to obtain the in-grain mobility. Scattering mechanisms for a thickness series of Al:ZnO films were discerned using the more intuitive parameter “scattering frequency” instead of the parameter “mobility”. The interaction distance concept was introduced to give a physical interpretation to the frequency dependence of the scattering frequency. This physical interpretation furthermore allows the prediction of which Drude models can be used in a specific

  11. Geographic mapping of choroidal thickness in myopic eyes using 1050-nm spectral domain optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Qinqin Zhang

    2015-07-01

    Full Text Available Purpose: To provide a geographical map of choroidal thickness (CT around the macular region among subjects with low, moderate and high myopia. Methods: 20 myopic subjects (n = 40 eyes without other identified pathologies participated in this study: 20 eyes of ≤ 3 diopters (D (low myopic, 10 eyes between -3 and -6D (moderate myopic, and 10 eyes of ≥ 6D (high myopic. The mean age of subjects was 30.2 years (± 7.6 years; range, 24 to 46 years. A 1050 nm spectral-domain optical coherence tomography (SD-OCT system, operating at 120 kHz imaging rate, was used in this study to simultaneously capture 3D anatomical images of the choroid and measure intraocular length (IOL in the subject. The 3D OCT images of the choroid were segmented into superior, inferior, nasal and temporal quadrants, from which the CT was measured, representing radial distance between the outer retinal pigment epithelium (RPE layer and inner scleral border. Measurements were made within concentric regions centered at fovea centralis, extended to 5 mm away from fovea at 1 mm intervals in the nasal and temporal directions. The measured IOL was the distance from the anterior cornea surface to the RPE in alignment along the optical axis of the eye. Statistical analysis was performed to evaluate CT at each geographic region and observe the relationship between CT and the degree of myopia. Results: For low myopic eyes, the IOL was measured at 24.619 ± 0.016 mm. The CT (273.85 ± 49.01 μm was greatest under fovea as is in the case of healthy eyes. Peripheral to the fovea, the mean CT decreased rapidly along the nasal direction, reaching a minimum of 180.65 ± 58.25μm at 5 mm away from the fovea. There was less of a change in thickness from the fovea in the temporal direction reaching a minimum of 234.25 ± 42.27 μm. In contrast to the low myopic eyes, for moderate and high myopic eyes, CTs were thickest in temporal region (where CT = 194.94 ± 27.28 and 163 ± 34.89

  12. Out-of-focus background subtraction for fast structured illumination super-resolution microscopy of optically thick samples.

    Science.gov (United States)

    Vermeulen, P; Zhan, H; Orieux, F; Olivo-Marin, J-C; Lenkei, Z; Loriette, V; Fragola, A

    2015-09-01

    We propose a structured illumination microscopy method to combine super resolution and optical sectioning in three-dimensional (3D) samples that allows the use of two-dimensional (2D) data processing. Indeed, obtaining super-resolution images of thick samples is a difficult task if low spatial frequencies are present in the in-focus section of the sample, as these frequencies have to be distinguished from the out-of-focus background. A rigorous treatment would require a 3D reconstruction of the whole sample using a 3D point spread function and a 3D stack of structured illumination data. The number of raw images required, 15 per optical section in this case, limits the rate at which high-resolution images can be obtained. We show that by a succession of two different treatments of structured illumination data we can estimate the contrast of the illumination pattern and remove the out-of-focus content from the raw images. After this cleaning step, we can obtain super-resolution images of optical sections in thick samples using a two-beam harmonic illumination pattern and a limited number of raw images. This two-step processing makes it possible to obtain super resolved optical sections in thick samples as fast as if the sample was two-dimensional.

  13. Standardization of choroidal thickness measurements using enhanced depth imaging optical coherence tomography

    Institute of Scientific and Technical Information of China (English)

    Nattapon; Boonarpha; Yalin; Zheng; Alexandros; N.Stangos; Huiqi; Lu; Ankur; Raj; Gabriela; Czanner; Simon; P.Harding; Jayashree; Nair-Sahni

    2015-01-01

    AIM: To describe and evaluate a standardized protocol for measuring the choroidal thickness(Ch T) using enhanced depth imaging optical coherence tomography(EDI OCT).METHODS: Single 9 mm EDI OCT line scans across the fovea were used for this study. The protocol used in this study classified the EDI OCT images into four groups based on the appearance of the choroidal-scleral interface and suprachoroidal space. Two evaluation iterations of experiments were performed: first, the protocol was validated in a pilot study of 12 healthy eyes. Afterwards, the applicability of the protocol was tested in 82 eyes of patients with diabetes. Inter-observer and intra-observer agreements on image classifications were performed using Cohen’s kappa coefficient(κ). Intraclass correlation coefficient(ICC) and Bland-Altman’s methodology were used for the measurement of the Ch T.RESULTS: There was a moderate(κ=0.42) and perfect(κ =1) inter- and intra-observer agreements on image classifications from healthy eyes images and substantial(κ =0.66) and almost perfect(κ =0.86) agreements from diabetic eyes images. The proposed protocol showed excellent inter- and intra-observer agreements for the Ch T measurements on both, healthy eyes and diabetic eyes(ICC >0.90 in all image categories). The Bland-Altman plot showed a relatively large Ch T measurement agreement in the scans that contained less visible choroidal outer boundary. CONCLUSION: A protocol to standardize Ch T measurements in EDI OCT images has been developed;the results obtained using this protocol show that the technique is accurate and reliable for routine clinical practice and research.

  14. Validation of UV-visible aerosol optical thickness retrieved from spectroradiometer measurements

    Directory of Open Access Journals (Sweden)

    C. Brogniez

    2008-08-01

    Full Text Available Global and diffuse UV-visible solar irradiances are routinely measured since 2003 with a spectroradiometer operated by the Laboratoire d'Optique Atmosphérique (LOA located in Villeneuve d'Ascq, France. The analysis of the direct irradiance derived by cloudless conditions enables retrieving the aerosol optical thickness (AOT spectrum in the 330–450 nm range. The site hosts also sunphotometers from the AERONET/PHOTONS network performing routinely measurements of the AOT at several wavelengths. On one hand, comparisons between the spectroradiometer and the sunphotometer AOT at 440 nm as well as, when available, at 340 and 380 nm, show good agreement: in 2003–2005 at 440 nm the correlation coefficient, the slope and the intercept of the regression line are [0.97, 0.95, 0.025], and in 2006 at 440, 380 and 340 nm they are [0.97, 1.00, −0.013], [0.97, 0.98, −0.007], and [0.98, 0.98, −0.002] respectively. On the other hand, the AOT's spectral variations have been compared using the Angström exponents derived from AOT data at 340 and 440 nm for both instruments. The comparisons show that this parameter is difficult to retrieve accurately due to the small wavelength range and due to the weak AOT values. Thus, AOT derived at wavelengths outside the spectroradiometer range by means of an extrapolation using the Angström parameter would have large uncertainties, whereas spectroradiometer's spectral AOT could be used for direct validation of other AOT, such as those provided by satellite instruments.

  15. Precision of high definition spectral-domain optical coherence tomography for measuring central corneal thickness.

    Science.gov (United States)

    Correa-Pérez, María E; López-Miguel, Alberto; Miranda-Anta, Silvia; Iglesias-Cortiñas, Darío; Alió, Jorge L; Maldonado, Miguel J

    2012-04-06

    This study was intended to assess the reliability of central corneal thickness (CCT) measurements using Cirrus high-definition optical coherence tomography (HD-OCT) in healthy subjects and its accuracy compared with ultrasonic pachymetry. Seventy-seven consecutive subjects were recruited for evaluating repeatability, and agreement between two examiners. To analyze repeatability, one examiner measured 77 eyes four times in succession. To study agreement between two observers, a second independently trained examiner obtained another CCT measurement. We also measured eyes in a subgroup of 20 patients using standard ultrasonic pachymetry. Within-subject standard deviation (S(w)), coefficient of variation (CV), limits of agreement (LoA), and intraclass correlation coefficient (ICC) data were obtained. For repeatability, the S(w) and precision (1.96 × S(w)) were 4.86 and 9.52 μm, respectively. Intraobserver CV was 0.89% and the ICC was 0.98 (95% confidence interval [CI], 0.97-0.99). For agreement between two examiners, the S(w) and precision were 7.58 and 14.85 μm, respectively; the CV was 1.40%. The mean difference between observers was -0.13 μm (95% CI, -1.85 to 1.58; P = 0.87). The width of the LoA was 29.64 μm. Median difference between Cirrus HD-OCT and ultrasound CCT measurements was -4.5 μm (interquartile range, -7.0-0.0; P = 0.04). Cirrus HD-OCT provides repeatable CCT measurements, good agreement between two independently trained examiners, and its systematic bias compared to ultrasonic pachymetry is clinically negligible. Therefore, research laboratories and eye clinics using Cirrus HD-OCT as a diagnostic imaging method, can also benefit from a reliable noncontact pachymeter when counseling patients with glaucoma and those undergoing corneal and refractive surgeries.

  16. Standardization of choroidal thickness measurements using enhanced depth imaging optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Nattapon Boonarpha

    2015-06-01

    Full Text Available AIM:To describe and evaluate a standardized protocol for measuring the choroidal thickness (ChT using enhanced depth imaging optical coherence tomography (EDI OCT.METHODS:Single 9 mm EDI OCT line scans across the fovea were used for this study. The protocol used in this study classified the EDI OCT images into four groups based on the appearance of the choroidal-scleral interface and suprachoroidal space. Two evaluation iterations of experiments were performed:first, the protocol was validated in a pilot study of 12 healthy eyes. Afterwards, the applicability of the protocol was tested in 82 eyes of patients with diabetes. Inter-observer and intra-observer agreements on image classifications were performed using Cohen’s kappa coefficient (k. Intraclass correlation coefficient (ICC and Bland-Altman’s methodology were used for the measurement of the ChT.RESULTS:There was a moderate (k=0.42 and perfect (k=1 inter- and intra-observer agreements on image classifications from healthy eyes images and substantial (k=0.66 and almost perfect (k=0.86 agreements from diabetic eyes images. The proposed protocol showed excellent inter- and intra-observer agreements for the ChT measurements on both, healthy eyes and diabetic eyes (ICC>0.90 in all image categories. The Bland-Altman plot showed a relatively large ChT measurement agreement in the scans that contained less visible choroidal outer boundary.CONCLUSIONS:A protocol to standardize ChT measurements in EDI OCT images has been developed; the results obtained using this protocol show that the technique is accurate and reliable for routine clinical practice and research.

  17. Sensitivity of aerosol optical thickness and aerosol direct radiative effect to relative humidity

    Directory of Open Access Journals (Sweden)

    H. Bian

    2009-04-01

    Full Text Available We present a sensitivity study of the effects of spatial and temporal resolution of atmospheric relative humidity (RH on calculated aerosol optical thickness (AOT and the aerosol direct radiative effects (DRE in a global model. We carry out different modeling experiments using the same aerosol fields simulated in the Global Modeling Initiative (GMI model at a resolution of 2° latitude by 2.5° longitude, using time-averaged fields archived every three hours by the Goddard Earth Observation System Version 4 (GEOS-4, but we change the horizontal and temporal resolution of the relative humidity fields. We find that, on a global average, the AOT calculated using RH at a 1°×1.25° horizontal resolution is 11% higher than that using RH at a 2°×2.5° resolution, and the corresponding DRE at the top of the atmosphere is 8–9% and 15% more negative (i.e., more cooling for total aerosols and anthropogenic aerosol alone, respectively, in the finer spatial resolution case. The difference is largest over surface escarpment regions (e.g. >200% over the Andes Mountains where RH varies substantially with surface terrain. The largest zonal mean AOT difference occurs at 50–60° N (16–21%, where AOT is also relatively larger. A similar impact is also found when the time resolution of RH is increased. This increase of AOT and aerosol cooling with the increase of model resolution is due to the highly non-linear relationship between RH and the aerosol mass extinction efficiency (MEE at high RH (>80%. Our study is a specific example of the uncertainty in model results highlighted by multi-model comparisons such as AeroCom, and points out one of the many inter-model differences that can contribute to the overall spread among models.

  18. High resolution aerosol optical thickness retrieval over the Pearl River Delta region with improved aerosol modelling

    Institute of Scientific and Technical Information of China (English)

    WONG; ManSing; NICHOL; Janet; LEE; Kwon; Ho

    2009-01-01

    Aerosol retrieval algorithms for the MODerate Resolution Imaging Spectroradiometer (MODIS) have been developed to estimate aerosol and microphysical properties of the atmosphere, which help to address aerosol climatic issues at global scale. However, higher spatial resolution aerosol products for urban areas have not been well researched mainly due to the difficulty of differentiating aerosols from bright surfaces in urban areas. Here, a new aerosol retrieval algorithm using the MODIS 500 m resolution images is described, to retrieve aerosol properties over Hong Kong and the Pearl River Delta region. The rationale of our technique is to first estimate the aerosol reflectance by decomposing the top-of-atmosphere reflectance from surface reflectance and Rayleigh path reflectance. For the determination of surface reflectance, a modified Minimum Reflectance Technique (MRT) is used, and MRT images are computed for different seasons. A strong correlation is shown between the surface reflectance of MRT images and MODIS land surface reflectance products (MOD09), with a value of 0.9. For conversion of aerosol reflectance to Aerosol Optical Thickness (AOT), comprehensive Look Up Tables (LUT) are constructed, in which aerosol properties and sun-viewing geometry in the radiative transfer calculations are taken into account. Four aerosol types, namely mixed urban, polluted urban, dust, and heavy pollution, were derived using cluster analysis on three years of AERONET measurements in Hong Kong. Their aerosol properties were input for LUT calculation. The resulting 500 m AOT images are highly correlated (r = 0.89) with AERONET sunphotometer observations in Hong Kong. This study demonstrates the applicability of aerosol retrieval at fine resolution scale in urban areas, which can assist the study of aerosol loading distribution and the impact of localized and transient pollution on urban air quality. In addition, the MODIS 500 m AOT images can be used to study cross

  19. High resolution aerosol optical thickness retrieval over the Pearl River Delta region with improved aerosol modelling

    Institute of Scientific and Technical Information of China (English)

    WONG ManSing; NICHOL Janet; LEE Kwon Ho; LI ZhanQing

    2009-01-01

    Aerosol retrieval algorithms for the MODerate Resolution Imaging Spectroradiometer (MODIS) have been developed to estimate aerosol and microphysical properties of the atmosphere, which help to address aerosol climatic issues at global scale. However, higher spatial resolution aerosol products for urban areas have not been well researched mainly due to the difficulty of differentiating aerosols from bright surfaces in urban areas. Here, a new aerosol retrieval algorithm using the MODIS 500 m resolu-tion images is described, to retrieve aerosol properties over Hong Kong and the Pearl River Delta re-gion. The rationale of our technique is to first estimate the aerosol reflectance by decomposing the top-of-atmosphere reflectance from surface reflectance and Rayleigh path reflectance. For the deter-mination of surface reflectance, a modified Minimum Reflectance Technique (MRT) is used, and MRT images are computed for different seasons. A strong correlation is shown between the surface reflec-tance of MRT images and MODIS land surface reflectance products (MOD09), with a value of 0.9. For conversion of aerosol reflectance to Aerosol Optical Thickness (AOT), comprehensive Look Up Tables (LUT) are constructed, in which aerosol properties and sun-viewing geometry in the radiative transfer calculations are taken into account. Four aerosol types, namely mixed urban, polluted urban, dust, and heavy pollution, were derived using cluster analysis on three years of AERONET measurements in Hong Kong. Their aerosol properties were input for LUT calculation. The resulting 500 m AOT images are highly correlated (r=0.89) with AERONET sunphotometer observations in Hong Kong. This study demonstrates the applicability of aerosol retrieval at fine resolution scale in urban areas, which can assist the study of aerosol loading distribution and the impact of localized and transient pollution on urban air quality. In addition, the MODIS 500 m AOT images can be used to study cross

  20. In vivo thickness measurement of basal cell carcinoma and actinic keratosis with optical coherence tomography and 20-MHz ultrasound

    DEFF Research Database (Denmark)

    Mogensen, Mette; Nürnberg, B.M.; Forman, J.L.

    2009-01-01

    was measured with a colorimeter. Results OCT presented narrower limits of agreement than HFUS. Both methods overestimated thickness but OCT was significantly less biased (0Æ392 mm vs. 0Æ713 mm). No relation between OCT penetration depth and skin colour was found. Conclusions OCT appears more precise and less......Background Accurate assessment of tumour size is important when planning treatment of nonmelanoma skin cancer (NMSC). Imaging with optical coherence tomography (OCT) has the potential to diagnose and measure depth of NMSC. Objectives To compare accuracy of mean tumour thickness measurement in NMSC...... tumours penetration depth in OCT images was estimated. Methods In total, 93 patients were scanned...

  1. Correlation of Aging and Segmental Choroidal Thickness Measurement using Swept Source Optical Coherence Tomography in Healthy Eyes.

    Directory of Open Access Journals (Sweden)

    Yu Wakatsuki

    Full Text Available To assess and compare choroidal thickness changes related to aging, we determined whether changes are due to thinning of the choriocapillaris plus Sattler's (CS layer and/or the large vessel layer in healthy eyes using swept-source optical coherence tomography (SS-OCT at a wavelength of 1,050-nm.We studied 115 normal eyes of 115 healthy volunteers, all with refractive errors of less than -6 diopters. All 115 eyes underwent analysis of choroidal thickness at the fovea, the CS layer and the large choroidal vessel layer. In 68 of the 115 eyes, choroidal thickness was determined at five sites (the fovea, and superior, inferior, nasal, and temporal sites using SS-OCT with an Early Treatment of Diabetic Retinopathy grid scan.Total choroidal thicknesses at each of the five sites were related to subject age (P<0.0001. The choroid was thinnest at the nasal site, followed by the temporal, inferior, superior and finally the subfoveal site itself. The total choroidal thickness at the nasal site was significantly less than those at the other four sites (p<0.05. The CS layer showed thinning which correlated with age (P<0.0001. The thickness of the choroidal large vessel layer also decreased with age (p = 0.02. Subfoveal choroidal thickness was calculated as follows: 443.89-2.98×age (μm (P<0.0001.Subfoveal choroidal thickness decreases by 2.98 μm each year. Total choroidal thickness diminishes with age. The CS and large vessel layers of the choroid at the subfovea showed significant decreases, though only the former correlated strongly with age.

  2. Plasma-etched nanostructures for optical applications (Presentation Recording)

    Science.gov (United States)

    Schulz, Ulrike; Rickelt, Friedrich; Munzert, Peter; Kaiser, Norbert

    2015-08-01

    A basic requirement for many optical applications is the reduction of Fresnel-reflections. Besides of interference coatings, nanostructures with sub-wavelength size as known from the eye of the night-flying moth can provide antireflective (AR) properties. The basic principle is to mix a material with air on a sub-wavelength scale to decrease the effective refractive index. To realize AR nanostructures on polymers, the self-organized formation of stochastically arranged antireflective structures using a low-pressure plasma etching process was studied. An advanced procedure involves the use of additional deposition of a thin oxide layer prior etching. A broad range of different structure morphologies exhibiting antireflective properties can be generated on almost all types of polymeric materials. For applications on glass, organic films are used as a transfer medium. Organic layers as thin film materials were evaluated to identify compounds suitable for forming nanostructures by plasma etching. The vapor deposition and etching of organic layers on glass offers a new possibility to achieve antireflective properties in a broad spectral range and for a wide range of light incidence.

  3. Structural and optical properties of chlorinated plasma polymers

    Energy Technology Data Exchange (ETDEWEB)

    Turri, Rafael [Laboratorio de Plasmas Tecnologicos, Campus Experimental de Sorocaba, Universidade Estadual Paulista (UNESP), Avenida Tres de Marco 511, Alto de Boa Vista, 18087-180, Sorocaba, SP (Brazil); Davanzo, Celso U. [Instituto de Quimica, Universidade Estadual de Campinas, Campinas, SP (Brazil); Schreiner, Wido [Departamento de Fisica, Universidade Federal de Parana, PR (Brazil); Dias da Silva, Jose Humberto [Faculdade de Ciencias, Universidade Estadual Paulista (UNESP), Bauru, SP (Brazil); Appolinario, Marcelo Borgatto [Laboratorio de Plasmas Tecnologicos, Campus Experimental de Sorocaba, Universidade Estadual Paulista (UNESP), Avenida Tres de Marco 511, Alto de Boa Vista, 18087-180, Sorocaba, SP (Brazil); Durrant, Steven F., E-mail: steve@sorocaba.unesp.br [Laboratorio de Plasmas Tecnologicos, Campus Experimental de Sorocaba, Universidade Estadual Paulista (UNESP), Avenida Tres de Marco 511, Alto de Boa Vista, 18087-180, Sorocaba, SP (Brazil)

    2011-12-30

    Amorphous hydrogenated chlorinated carbon (a-C:H:Cl) films were produced by the plasma polymerization of chloroform-acetylene-argon mixtures in a radiofrequency plasma enhanced chemical vapor deposition system. The main parameter of interest was the proportion of chloroform in the feed, R{sub C}, which was varied from 0 to 80%. Deposition rates of 80 nm min{sup -1} were typical for the chlorinated films. Infrared reflection-absorption spectroscopy revealed the presence of C-Cl groups in all the films produced with chloroform in the feed. X-ray photoelectron spectroscopy confirmed this finding, and revealed a saturation of the chlorine content at {approx} 47 at.% for R{sub C} {>=} 40%. The refractive index and optical gap, E{sub 04}, of the films were roughly in the 1.6 to 1.7, and the 2.8 to 3.7 eV range. These values were calculated from transmission ultraviolet-visible-near infrared spectra. Chlorination leads to an increase in the water surface contact angle from {approx} 40 Degree-Sign to {approx} 77 Degree-Sign .

  4. Optical Emission Spectroscopic Studies of ICP Ar Plasma

    Institute of Scientific and Technical Information of China (English)

    QI Xuelian; REN Chunsheng; ZHANG Jian; MA Tengcai

    2007-01-01

    The ion line of 434.8 nm and atom line of 419.8 nm of Ar plasma produced by an inductively coupled plasma (ICP) were measured by optical emission spectroscopy and the influences from the working gas pressure, radio-frequency (RF) power and different positions in the discharge chamber on the line intensities were investigated in this study. It was found that the intensity of Ar atom line increased firstly and then saturated with the increase of the pressure. The line intensity of Ar+, on the other hand, reached a maximum value and then decreased along with the pressure. The intensity of the line in an RF discharge also demonstrated a jumping mode and a hysteresis phenomenon with the RF power. When the RF power increased to 400 W, the discharge jumped from the E-mode to the H-mode where the line intensity of Ar atom demonstrated a sudden increase, while the intensity of Ar+ ion only changed slightly. If the RF power decreased from a high value, e.g., 1000 W, the discharge would jump from the H-mode back to the E-mode at a power of 300 W. At this time the intensities of Ar and Ar+ lines would also decrease sharply. It was also noticed in this paper that the intensity of the ion line depended on the detective location in the chamber, namely at the bottom of the chamber the line was more intense than that in the middle of the chamber, but less intense than at the top, which is considered to be related to the capacitance coupling ability of the ICP plasma in different discharge areas.

  5. Structural, optical and ac electrical characterization of CBD synthesized NiO thin films: Influence of thickness

    Science.gov (United States)

    Das, M. R.; Mukherjee, A.; Mitra, P.

    2017-09-01

    We have studied the electrical conductivity, dielectric relaxation mechanism and impedance spectroscopy characteristics of nickel oxide (NiO) thin films synthesized by chemical bath deposition (CBD) method. Thickness dependent structural, optical and ac electrical characterization has been carried out and deposition time was varied to control the thickness. The material has been characterized using X-ray diffraction and UV-VIS spectrophotometer. Impedance spectroscopy analysis confirmed enhancement of ac conductivity and dielectric constant for films deposited with higher deposition time. Decrease of grain size in thicker films were confirmed from XRD analysis and activation energy of the material for electrical charge hopping process was increased with thickness of the film. Decrease in band gap in thicker films were observed which could be associated with creation of additional energy levels in the band gap of the material. Cole-Cole plot shows contribution of both grain and grain boundary towards total resistance and capacitance. The overall resistance was found to decrease from 14.6 × 105 Ω for 30 min deposited film ( 120 nm thick) to 2.42 × 105 Ω for 120 min deposited film ( 307 nm thick). Activation energy value to electrical conduction process evaluated from conductivity data was found to decrease with thickness. Identical result was obtained from relaxation time approach suggesting hopping mechanism of charge carriers.

  6. Wet/dry film thickness measurement of paint by absorption spectroscopy with acousto-optic tunable filter spectrometer

    Science.gov (United States)

    Sinha, Pranay G.; Xiong, Xiangchun; Jin, Feng; Trivedi, Sudhir; Prasad, Narashima S.

    2005-08-01

    Controlling/monitoring the thickness of applied paint in real time is important to many situations including painting ship and submarine hulls in dry docks for maintaining health of ships and submarines against the harshness of the sea, in automobile and aerospace industries, and in a variety of other industries as a control sensor that plays significant role in product quality, process control, and cost control. Insufficient thickness results to inadequate protection while overspray leads to waste and pollution of the environment. A rugged instrumentation for the real time non-contact accurate measurement of wet and dry paint film thickness measurement will be immensely valuable. As paint is applied with several layers of the same or different type, thickness of each newly sprayed wet layer is of most interest, but measurement on dry paint is also useful. In this study, we use acousto-optic tunable filter-based near infrared spectrometer to obtain the absorption spectrum of layers of paint sprayed on sand blasted steel surface and thus measure the thickness of coating under both wet and dry situations. NIR spectra are obtained from 1100 to 2300 nm on four sample of different thickness of paint up to 127 micron. Partial least squares model built with the spectra shows good correlation with standard error of prediction within ~ 0.7 micron. Results indicate that the spectra also respond to the amount of organic solvent in the wet paint and can be used to monitor the degree of dryness of the paint in real time.

  7. Ferrimagnetic Tb-Fe Alloy Thin Films: Composition and Thickness Dependence of Magnetic Properties and All-Optical Switching

    Directory of Open Access Journals (Sweden)

    Birgit eHebler

    2016-02-01

    Full Text Available Ferrimagnetic rare earth - transition metal Tb-Fe alloy thin films exhibit a variety of different magnetic properties, which depends strongly on composition and temperature. In this study, first the influence of the film thickness (5 - 85 nm on the sample magnetic properties was investigated in a wide composition range between 15 at.% and 38 at.% of Tb. From our results, we find that the compensation point, remanent magnetization, and magnetic anisotropy of the Tb-Fe films depend not only on the composition but also on the thickness of the magnetic film up to a critical thickness of about 20-30 nm. Beyond this critical thickness, only slight changes in magnetic properties are observed. This behavior can be attributed to a growth-induced modification of the microstructure of the amorphous films, which affects the short range order. As a result, a more collinear alignment of the distributed magnetic moments of Tb along the out-of-plane direction with film thickness is obtained. This increasing contribution of the Tb sublattice magnetization to the total sample magnetization is equivalent to a sample becoming richer in Tb and can be referred to as an effective composition. Furthermore, the possibility of all-optical switching, where the magnetization orientation of Tb-Fe can be reversed solely by circularly polarized laser pulses, was analyzed for a broad range of compositions and film thicknesses and correlated to the underlying magnetic properties.

  8. Effect of Refractive Correction Error on Retinal Nerve Fiber Layer Thickness: A Spectralis Optical Coherence Tomography Study

    Science.gov (United States)

    Ma, Xiaoli; Chen, Yutong; Liu, Xianjie; Ning, Hong

    2016-01-01

    Background Identifying and assessing retinal nerve fiber layer defects are important for diagnosing and managing glaucoma. We aimed to investigate the effect of refractive correction error on retinal nerve fiber layer (RNFL) thickness measured with Spectralis spectral-domain optical coherence tomography (SD-OCT). Material/Methods We included 68 participants: 32 healthy (normal) and 36 glaucoma patients. RNFL thickness was measured using Spectralis SD-OCT circular scan. Measurements were made with a refractive correction of the spherical equivalent (SE), the SE+2.00D and the SE–2.00D. Results Average RNFL thickness was significantly higher in the normal group (105.88±10.47 μm) than in the glaucoma group (67.67±17.27 μm, Prefractive correction error significantly affected measurements of average (Prefractive correction error significantly increased average (Prefractive correction. However, −2.00D of refractive correction error did not significantly affect RNFL thickness measurements in either group. Conclusions Positive defocus error significantly affects RNFL thickness measurements made by the Spectralis SD-OCT. Negative defocus error did not affect RNFL measurement examined. Careful correction of refractive error is necessary to obtain accurate baseline and follow-up RNFL thickness measurements in healthy and glaucomatous eyes. PMID:28030536

  9. Structural, morphological, electrical, and optical properties of silver thin films of varying thickness deposited on cupric oxide

    Science.gov (United States)

    Hajakbari, Fatemeh; Shafieinejad, Farzaneh

    2016-03-01

    In this investigation, silver (Ag) films of varying thickness (25-100 nm) were grown on cupric oxide (CuO) on silicon and quartz. The CuO preparation was carried out by the thermal oxidation annealing of copper (Cu) thin films deposited by DC magnetron sputtering. The physical properties of the prepared films were studied by different techniques. Rutherford backscattering spectroscopy (RBS) analysis indicated that the Ag film thickness was about 25-100 nm. X-ray diffraction (XRD) results showed that by increasing Ag thickness, the film crystallinity was improved. Also, atomic force microscopy (AFM) and scanning electron microscopy (SEM) results demonstrated that the surface morphology and the grain size were affected by the Ag film thickness. Furthermore, the electrical resistivity of films determined by four-point probe measurements versus the Ag film thickness was discussed. A reduction in the optical band gap energy of CuO is observed from 1.51 to 1.42 eV with an increase in Ag film thickness to 40 nm in Ag/CuO films.

  10. Measurement of peripapillary retinal nerve fiber layer thickness and macular thickness in anisometropia using spectral domain optical coherence tomography: a prospective study

    Science.gov (United States)

    Singh, Neha; Rohatgi, Jolly; Gupta, Ved Prakash; Kumar, Vinod

    2017-01-01

    Purpose To study whether there is a difference in central macular thickness (CMT) and peripapillary retinal nerve fiber layer (RNFL) thickness between the two eyes of individuals having anisometropia >1 diopter (D) using spectral domain optical coherence tomography (OCT). Material and methods One hundred and one subjects, 31 with myopic anisometropia, 28 with astigmatic anisometropia, and 42 with hypermetropic anisometropia, were enrolled in the study. After informed consent, detailed ophthalmological examination was performed for every patient including cycloplegic refraction, best corrected visual acuity, slit lamp, and fundus examination. After routine ophthalmic examination peripapillary RNFL and CMT were measured using spectral domain OCT and the values of the two eyes were compared in the three types of anisometropia. Axial length was measured using an A Scan ultrasound biometer (Appa Scan-2000). Results The average age of subjects was 21.7±9.3 years. The mean anisometropia was 3.11±1.7 D in myopia; 2±0.99 D in astigmatism; and 3.68±1.85 D in hypermetropia. There was a statistically significant difference in axial length of the worse and better eye in both myopic and hypermetropic anisometropia (P=0.00). There was no significant difference between CMT of better and worse eyes in anisomyopia (P=0.79), anisohypermetropia (P=0.09), or anisoastigmatism (P=0.16). In anisohypermetropia only inferior quadrant RNFL was found to be significantly thicker (P=0.011) in eyes with greater refractive error. Conclusion There does not appear to be a significant difference in CMT and peripapillary RNFL thickness in anisomyopia and anisoastigmatism. However, in anisohypermetropia inferior quadrant RNFL was found to be significantly thicker. PMID:28260856

  11. Fast optical 3D form measurement of aspheres including determination of thickness and wedge and decenter errors

    Science.gov (United States)

    Stover, E.; Berger, G.; Wendel, M.; Petter, J.

    2015-10-01

    A method for non-contact 3D form testing of aspheric surfaces including determination of decenter and wedge errors and lens thickness is presented. The principle is based on the absolute measurement capability of multi-wavelength interferometry (MWLI). The approach produces high density 3D shape information and geometric parameters at high accuracy in short measurement times. The system allows inspection of aspheres without restrictions in terms of spherical departures, of segmented and discontinuous optics. The optics can be polished or ground and made of opaque or transparent materials.

  12. Retinal vessel diameters decrease with macular ganglion cell layer thickness in autosomal dominant optic atrophy and in healthy subjects

    DEFF Research Database (Denmark)

    Rönnbäck, Cecilia; Grønskov, Karen; Larsen, Michael

    2014-01-01

    PURPOSE: To investigate retinal trunk vessel diameters in subjects with autosomal dominant optic atrophy (ADOA) and mutation-free healthy relatives. METHODS: This cross-sectional study included 52 ADOA patients with the optic atrophy 1 (OPA1) exon 28 (c.2826_2836delinsGGATGCTCCA) mutation (age 8...... ganglion cell-inner plexiform layer (GC-IPL) thickness (p = 0.0017 and p = 0.0057, respectively). CONCLUSION: Narrow retinal arteries and veins were associated not only with the severity of ADOA but with ganglion cell volume in patients with ADOA and in healthy subjects. This suggests that narrow vessels...

  13. Clinical Factors Associated with Lamina Cribrosa Thickness in Patients with Glaucoma, as Measured with Swept Source Optical Coherence Tomography

    OpenAIRE

    Omodaka, Kazuko; Takahashi, Seri; Matsumoto, Akiko; Maekawa, Shigeto; Kikawa, Tsutomu; Himori, Noriko; Takahashi, Hidetoshi; Maruyama, Kazuichi; Kunikata, Hiroshi; Akiba, Masahiro; Nakazawa, Toru

    2016-01-01

    Purpose To investigate the influence of various risk factors on thinning of the lamina cribrosa (LC), as measured with swept-source optical coherence tomography (SS-OCT; Topcon). Methods This retrospective study comprised 150 eyes of 150 patients: 22 normal subjects, 28 preperimetric glaucoma (PPG) patients, and 100 open-angle glaucoma patients. Average LC thickness was determined in a 3 x 3 mm cube scan of the optic disc, over which a 4 x 4 grid of 16 points was superimposed (interpoint dist...

  14. High efficiency proton beam generation through target thickness control in femtosecond laser-plasma interactions

    Science.gov (United States)

    Green, J. S.; Robinson, A. P. L.; Booth, N.; Carroll, D. C.; Dance, R. J.; Gray, R. J.; MacLellan, D. A.; McKenna, P.; Murphy, C. D.; Rusby, D.; Wilson, L.

    2014-05-01

    Bright proton beams with maximum energies of up to 30 MeV have been observed in an experiment investigating ion sheath acceleration driven by a short pulse (<50 fs) laser. The scaling of maximum proton energy and total beam energy content at ultra-high intensities of ˜1021 W cm-2 was investigated, with the interplay between target thickness and laser pre-pulse found to be a key factor. While the maximum proton energies observed were maximised for μm-thick targets, the total proton energy content was seen to peak for thinner, 500 nm, foils. The total proton beam energy reached up to 440 mJ (a conversion efficiency of 4%), marking a significant step forward for many laser-driven ion applications. The experimental results are supported by hydrodynamic and particle-in-cell simulations.

  15. Plasma cholesteryl ester transfer is a determinant of intima-media thickness in type 2 diabetic and nondiabetic subjects : Role of CETP and triglycerides

    NARCIS (Netherlands)

    de Vries, R; Perton, FG; Dallinga-Thie, GM; van Roon, AM; Wolffenbuttel, BHR; van Tol, A; Dullaart, RPF

    2005-01-01

    We tested whether carotid artery intima-media thickness (IMT) is associated with plasma cholesteryl ester transfer (CET) and/or the plasma cholesteryl ester transfer protein (CETP) concentration in type 2 diabetic and control subjects. In 87 male and female subjects with type 2 diabetes (nonsmokers,

  16. Plasma cholesteryl ester transfer is a determinant of intima-media thickness in type 2 diabetic and nondiabetic subjects : Role of CETP and triglycerides

    NARCIS (Netherlands)

    de Vries, R; Perton, FG; Dallinga-Thie, GM; van Roon, AM; Wolffenbuttel, BHR; van Tol, A; Dullaart, RPF

    2005-01-01

    We tested whether carotid artery intima-media thickness (IMT) is associated with plasma cholesteryl ester transfer (CET) and/or the plasma cholesteryl ester transfer protein (CETP) concentration in type 2 diabetic and control subjects. In 87 male and female subjects with type 2 diabetes (nonsmokers,

  17. Plasma cholesteryl ester transfer is a determinant of intima-media thickness in type 2 diabetic and nondiabetic subjects: Role of CETP and triglycerides

    NARCIS (Netherlands)

    R. de Vries (Rindert); F.G. Perton (Frank G.); G.M. Dallinga-Thie (Geesje); A.M.M. van Roon (Arie); B.H.R. Wolffenbuttel (Bruce); A. van Tol (Arie); R.P.F. Dullaart (Robin)

    2005-01-01

    textabstractWe tested whether carotid artery intima-media thickness (IMT) is associated with plasma cholesteryl ester transfer (CET) and/or the plasma cholesteryl ester transfer protein (CETP) concentration in type 2 diabetic and control subjects. In 87 male and female subjects with type 2 diabetes

  18. Analysis of macular and nerve fiber layer thickness in multiple sclerosis patients according to severity level and optic neuritis episodes.

    Science.gov (United States)

    Soler García, A; Padilla Parrado, F; Figueroa-Ortiz, L C; González Gómez, A; García-Ben, A; García-Ben, E; García-Campos, J M

    2016-01-01

    Quantitative assessment of macular and nerve fibre layer thickness in multiple sclerosis patients with regard to expanded disability status scale (EDSS) and presence or absence of previous optic neuritis episodes. We recruited 62 patients with multiple sclerosis (53 relapsing-remitting and 9 secondary progressive) and 12 disease-free controls. All patients underwent an ophthalmological examination, including quantitative analysis of the nerve fibre layer and macular thickness using optical coherence tomography. Patients were classified according to EDSS as A (lower than 1.5), B (between 1.5 and 3.5), and C (above 3.5). Mean nerve fibre layer thickness in control, A, B, and C groups was 103.35±12.62, 99.04±14.35, 93.59±15.41, and 87.36±18.75μm respectively, with statistically significant differences (P<.05). In patients with no history of optic neuritis, history of episodes in the last 3 to 6 months, or history longer than 6 months, mean nerve fibre layer thickness was 99.25±13.71, 93.92±13.30 and 80.07±15.91μm respectively; differences were significant (P<.05). Mean macular thickness in control, A, B, and C groups was 220.01±12.07, 217.78±20.02, 217.68±20.77, and 219.04±24.26μm respectively. Differences were not statistically significant. The mean retinal nerve fibre layer thickness in multiple sclerosis patients is related to the EDSS level. Patients with previous optic neuritis episodes have a thinner retinal nerve fibre layer than patients with no history of these episodes. Mean macular thickness is not correlated to EDSS level. Copyright © 2014 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Repeatability of swept-source optical coherence tomography retinal and choroidal thickness measurements in neovascular age-related macular degeneration.

    Science.gov (United States)

    Hanumunthadu, Daren; Ilginis, Tomas; Restori, Marie; Sagoo, Mandeep S; Tufail, Adnan; Balaggan, Kamaljit S; Patel, Praveen J

    2017-05-01

    The aim was to determine the intrasession repeatability of swept-source optical coherence tomography (SS-OCT)-derived retinal and choroidal thickness measurements in eyes with neovascular age-related macular degeneration (nAMD). A prospective study consisting of patients with active nAMD enrolled in the Distance of Choroid Study at Moorfields Eye Hospital, London. Patients underwent three 12×9 mm macular raster scans using the deep range imaging (DRI) OCT-1 SS-OCT (Topcon) device in a single imaging session. Retinal and choroidal thicknesses were calculated for the ETDRS macular subfields. Repeatability was calculated according to methods described by Bland and Altman. 39 eyes of 39 patients with nAMD were included with a mean (±SD) age of 73.9 (±7.2) years. The mean (±SD) retinal thickness of the central macular subfield was 225.7 μm (±12.4 μm). The repeatability this subfield, expressed as a percentage of the mean central macular subfield thickness, was 23.2%. The percentage repeatability of the other macular subfields ranged from 13.2% to 28.7%. The intrasession coefficient of repeatability of choroidal thickness of the central macular subfield was 57.2 μm with a mean choroidal thickness (±SD) of 181 μm (±15.8 μm). This study suggests that a change >23.2% of retinal thickness and 57.2 μm choroidal thickness in the central macular subfield is required to distinguish true clinical change from measurement variability when using the DRI OCT-1 device to manage patients with nAMD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  20. Choroidal Imaging with Swept-Source Optical Coherence Tomography in Patients with Birdshot Chorioretinopathy: Choroidal Reflectivity and Thickness.

    Science.gov (United States)

    Dastiridou, Anna I; Bousquet, Elodie; Kuehlewein, Laura; Tepelus, Tudor; Monnet, Dominique; Salah, Sawsen; Brezin, Antoine; Sadda, Srinivas R

    2017-08-01

    To characterize choroidal thickness and choroidal reflectivity in the eyes of patients with birdshot chorioretinopathy (BSCR). Cross-sectional observational study. Two hundred twenty BSCR patients and 59 healthy controls. Patients with BSCR and healthy controls underwent imaging of the macula in both eyes with a swept-source optical coherence tomography device (DRI-OCT1 Atlantis; Topcon). Images were exported from the device, and analysis was performed by 2 graders in the Doheny Image Reading Center using Image J software. The choroidal thickness at the foveal center was measured. In addition, the inner and outer boundaries of the choroid and retinal pigment epithelium (RPE) as well as the inner retinal surface all were segmented to allow the brightness and reflectivity of the pixels in the choroid, RPE band, and overlying vitreous to be quantified. An adjusted or normalized choroidal reflectivity, with the RPE as the bright reference standard and the vitreous as the dark reference standard, was computed using the formula: normalized choroidal reflectivity = (choroidal reflectivity-vitreous reflectivity)/RPE reflectivity. Choroidal reflectivity and choroidal thickness. Three hundred eighty-six eyes in the BSCR group and 59 eyes in the control group were included in this analysis. Higher choroidal reflectivity and lower choroidal thickness were documented in inactive BSCR patients compared with active BSCR and controls (P choroidal thickness compared with controls (P choroidal reflectivity and choroidal thickness (r = -0.793; P choroidal thickness, age, and disease duration (all P choroidal reflectivity. Choroidal reflectivity and choroidal thickness changes are evident in active and inactive BSCR patients. Novel choroidal parameters such as choroidal reflectivity may warrant further study in the setting of BSCR. Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  1. In situ non-destructive measurement of biofilm thickness and topology in an interferometric optical microscope

    Energy Technology Data Exchange (ETDEWEB)

    Larimer, Curtis [Pacific Northwest National Laboratory, Battelle for the USDOE, PO Box 999, MSIN P7-50 Richland WA 99354 USA; Suter, Jonathan D. [Pacific Northwest National Laboratory, Battelle for the USDOE, PO Box 999, MSIN P7-50 Richland WA 99354 USA; Bonheyo, George [Pacific Northwest National Laboratory, Battelle for the USDOE, PO Box 999, MSIN P7-50 Richland WA 99354 USA; Addleman, Raymond Shane [Pacific Northwest National Laboratory, Battelle for the USDOE, PO Box 999, MSIN P7-50 Richland WA 99354 USA

    2016-03-15

    Biofilms are ubiquitous and deleteriously impact a wide range of industrial processes, medical and dental health issues, and environmental problems such as transport of invasive species and the fuel efficiency of ocean going vessels. Biofilms are difficult to characterize when fully hydrated, especially in a non-destructive manner, because of their soft structure and water-like bulk properties. Herein we describe a non-destructive high resolution method of measuring and monitoring the thickness and topology of live biofilms of using white light interferometric optical microscopy. Using this technique, surface morphology, surface roughness, and biofilm thickness can be measured non-destructively and with high resolution as a function of time without disruption of the biofilm activity and processes. The thickness and surface topology of a P. putida biofilm were monitored growing from initial colonization to a mature biofilm. Typical bacterial growth curves were observed. Increase in surface roughness was a leading indicator of biofilm growth.

  2. Normative data of outer photoreceptor layer thickness obtained by software image enhancing based on Stratus optical coherence tomography images

    DEFF Research Database (Denmark)

    Christensen, U.C.; Krøyer, K.; Thomadsen, Jakob

    2008-01-01

    Aim: To present normative data of outer photoreceptor layer thickness obtained by a new semiautomatic image analysis algorithm operating on contrast-enhanced optical coherence tomography (OCT) images. Methods: Eight Stratus OCT3 scans from identical retinal locations from 25 normal eyes were...... registered and combined to form a contrast-enhanced average image. Utilising the vertical intensity gradients of the enhanced OCT images to demarcate retinal layers, thickness measurements of the outer photoreceptor- and retinal pigment epithelium layer (RPE-OScomplex) were obtained. Additionally...... in the superior macula 0.5-3 mm of the centre was significantly increased as compared with the corresponding inferior retina. In healthy subjects, the I-ratio-ONL was 1.06. Conclusions: Contrast-enhanced OCT images enable quantification of outer photoreceptor layer thickness, and normative values may help...

  3. Choroidal Thickness Variation According to Refractive Error Measured by Spectral Domain-optical Coherence Tomography in Korean Children

    Science.gov (United States)

    Lee, Geun Young; Yu, Sung; Kang, Hyun Gu; Kim, Jin Seon; Lee, Kyoo Won

    2017-01-01

    Purpose To assess choroidal thickness (CT) variation according to refractive errors using enhanced-depth imaging optical coherence tomography. Methods Eighty-nine eyes (in 89 children) Korean children, CTs were greater in the hyperopia group than in the emmetropia and myopia groups. The temporal choroid was thicker than the nasal choroid, regardless of the refractive error. The thickest location in the hyperopia group was the fovea; however, the temporal choroid was thickest in the emmetropia and myopia groups.

  4. Direct synthesis and characterization of optically transparent conformal zinc oxide nanocrystalline thin films by rapid thermal plasma CVD.

    Science.gov (United States)

    Pedersen, Joachim D; Esposito, Heather J; Teh, Kwok Siong

    2011-10-31

    We report a rapid, self-catalyzed, solid precursor-based thermal plasma chemical vapor deposition process for depositing a conformal, nonporous, and optically transparent nanocrystalline ZnO thin film at 130 Torr (0.17 atm). Pure solid zinc is inductively heated and melted, followed by ionization by thermal induction argon/oxygen plasma to produce conformal, nonporous nanocrystalline ZnO films at a growth rate of up to 50 nm/min on amorphous and crystalline substrates including Si (100), fused quartz, glass, muscovite, c- and a-plane sapphire (Al2O3), gold, titanium, and polyimide. X-ray diffraction indicates the grains of as-deposited ZnO to be highly textured, with the fastest growth occurring along the c-axis. The individual grains are observed to be faceted by (103) planes which are the slowest growth planes. ZnO nanocrystalline films of nominal thicknesses of 200 nm are deposited at substrate temperatures of 330°C and 160°C on metal/ceramic substrates and polymer substrates, respectively. In addition, 20-nm- and 200-nm-thick films are also deposited on quartz substrates for optical characterization. At optical spectra above 375 nm, the measured optical transmittance of a 200-nm-thick ZnO film is greater than 80%, while that of a 20-nm-thick film is close to 100%. For a 200-nm-thick ZnO film with an average grain size of 100 nm, a four-point probe measurement shows electrical conductivity of up to 910 S/m. Annealing of 200-nm-thick ZnO films in 300 sccm pure argon at temperatures ranging from 750°C to 950°C (at homologous temperatures between 0.46 and 0.54) alters the textures and morphologies of the thin film. Based on scanning electron microscope images, higher annealing temperatures appear to restructure the ZnO nanocrystalline films to form nanorods of ZnO due to a combination of grain boundary diffusion and bulk diffusion.PACS: films and coatings, 81.15.-z; nanocrystalline materials, 81.07.Bc; II-VI semiconductors, 81.05.Dz.

  5. A generalized method for discriminating thermodynamic phase and retrieving cloud optical thickness and effective radius using transmitted shortwave radiance spectra

    Directory of Open Access Journals (Sweden)

    S. E. LeBlanc

    2014-06-01

    Full Text Available A new retrieval scheme for cloud optical thickness, effective radius, and thermodynamic phase was developed for ground-based measurements of cloud shortwave spectral transmittance. 15 parameters were derived to quantify spectral variations in shortwave transmittance due to absorption and scattering of liquid water and ice clouds, manifested by shifts in spectral slopes, curvatures, maxima, and minima. To retrieve cloud optical thickness and effective particle radius a weighted least square fit that matched the modeled parameters was applied. The measurements for this analysis were made with a ground-based Solar Spectral Flux Radiometer (SSFR in Boulder, Colorado, between May 2012 and January 2013. We compared the cloud optical thickness and effective radius from the new retrieval to two other retrieval methods. By using multiple spectral features, we find a closer fit (with a root mean square difference over the entire spectra of 3.1% for a liquid water cloud and 5.9% for an ice cloud between measured and modeled spectra compared to two other retrieval methods, which diverge by a root-mean-square of up to 6.4% for a liquid water cloud and 22.5% for an ice cloud. The new retrieval introduced here has an average uncertainty in effective radius (±1.2 μm smaller by factor of at least 2.5 than two other methods when applied to an ice cloud.

  6. Measurement of Scleral Thickness in Humans Using Anterior Segment Optical Coherent Tomography.

    Directory of Open Access Journals (Sweden)

    Hetal D Buckhurst

    Full Text Available Anterior segment optical coherent tomography (AS-OCT, Visante; Zeiss is used to examine meridional variation in anterior scleral thickness (AST and its association with refractive error, ethnicity and gender. Scleral cross-sections of 74 individuals (28 males; 46 females; aged between 18-40 years (27.7±5.3 were sampled twice in random order in 8 meridians: [superior (S, inferior (I, nasal (N, temporal (T, superior-temporal (ST, superior-nasal (SN, inferior-temporal (IT and inferior-nasal (IN]. AST was measured in 1mm anterior-to-posterior increments (designated the A-P distance from the scleral spur (SS over a 6mm distance. Axial length and refractive error were measured with a Zeiss IOLMaster biometer and an open-view binocular Shin-Nippon autorefractor. Intra- and inter-observer variability of AST was assessed for each of the 8 meridians. Mixed repeated measures ANOVAs tested meridional and A-P distance differences in AST with refractive error, gender and ethnicity. Only right eye data were analysed. AST (mean±SD across all meridians and A-P distances was 725±46 μm. Meridian SN was the thinnest (662±57 μm and I the thickest (806±60 μm. Significant differences were found between all meridians (p<0.001, except S:ST, IT:IN, IT:N and IN:N. Significant differences between A-P distances were found except between SS and 6 mm and between 2 and 4 mm. AST measurements at 1mm (682±48 μm were the thinnest and at 6mm (818±49 μm the thickest (p<0.001; a significant interaction occurred between meridians and A-P distances (p<0.001. AST was significantly greater (p<0.001 in male subjects but no significant differences were found between refractive error or ethnicity. Significant variations in AST occur with regard to meridian and distance from the SS and may have utility in selecting optimum sites for pharmaceutical or surgical intervention.

  7. Four dimensional variational data assimilation of species-resolved satellite-retrieved aerosol optical thickness

    Science.gov (United States)

    Nieradzik, Lars Peter; Elbern, Hendrik

    2010-05-01

    Aerosols play an increasingly important role in atmospheric modelling. They have a strong influence on the radiative transfer balance and a significant impact on human health. Their origin is various and so are its effects. Most of the measurement sites in Europe only account for an integrated aerosol load PMx (Particulate Matter of less than x μm in diameter) which does not give any qualitative information on the composition of the aerosol. Since very different constituents like mineral dust derived from desert storms and sea salt contribute to PMx it is necessary to make aerosol forcasts not only of load, but also type resolved. The source of information chosen for this study is the aerosol retrieval system SYNAER (SYNergetic AErosol Retrieval) from DLR-DFD that retrieves BLAOT (Boundary Layer Aerosol Optical Thickness) making use of both AATSR/SCIAMACHY and AVHRR/GOME-2 data respectively. Its strengths are a large spatial coverage, near real-time availability, and the classification of five intrinsic aerosol species, namely water-solubles, water-insolubles, soot, sea salt, and mineral dust which are furthermore size resolved in terms of modes. A widely known technique to enhance forecast skills of CTMs (Chemistry-Transport-Models) by ingesting in-situ and, especially, remote-sensing measurements is the method of four dimensional variational data assimilation (4Dvar). The EURAD-IM (EURopean Air pollution Dispersion - Inverse Model), containing a full adjoint gas-phase model, has been expanded with an adjoint of the MADE (Modal Aerosol Dynamics model for Europe) to optimise initial and boundary values for aerosols using 4Dvar. A forward and an adjoint radiative transfer model is driven by the EURAD-IM as mapping between BLAOT and internal aerosol species. Furthermore, its condensation scheme has been bypassed by an HDMR (High-Dimensional-Model-Representation) to ensure differentiability, and a time saving online NMC-module for the generation of the background

  8. Satellite-scale Estimates of the "b Parameter" Relating Vegetation Water Content and SMOS Optical Thickness

    Science.gov (United States)

    Patton, J. C.; Hornbuckle, B. K.

    2013-12-01

    Microwave radiation emitted by Earth's land surface is primarily determined by soil moisture and vegetation. One of the effects of vegetation on surface microwave emissions is often termed the "vegetation optical thickness" or "vegetation opacity" and is often abbreviated as tau. Retrievals of soil moisture from microwave radiometer measurements requires knowledge of tau. The Soil Moisture and Ocean Salinity (SMOS) satellite measures microwave radiation at multiple incidence angles, enabling the simultaneous retrieval of soil moisture and tau. Other soil moisture satellites, such as the upcoming Soil Moisture Active Passive (SMAP) satellite, only measure at single incidence angles and may need auxiliary sources of tau data in order to retrieve soil moisture. One proposed method for estimating tau for these satellites is by relating reflectance data, e.g. the normalized difference vegetation index, to vegetation water content (VWC), then relating VWC to tau. VWC and tau can be related through the b parameter, i.e. tau = b x VWC. Values of b for different land cover types have been estimated from tower (~1 m) and airplane (~10-100 m) data, but have not been measured at the satellite scale (~10 km). Estimating b at the satellite scale from measurements at smaller scales is difficult because the effective value of b in a satellite pixel may not be well represented by linear weighted average based on the fraction of each land cover type in the pixel. However, by relating county crop yields, estimated by the USDA National Agricultural Statistics Service, to measurements of SMOS tau, and by using certain allometric relationships, such as the ratio of water to dry matter and the harvest index of crops, we can estimate b at the satellite scale. We have used this method to estimate b for each Iowa county for the years 2010-2012. Initial results suggest that b may change year to year; our current estimates for b in Iowa range from 0.065 in 2010 to 0.100 in 2012. These

  9. Evaluation of retinal nerve fiber layer thickness measurements using optical coherence tomography in patients with tobacco-alcohol-induced toxic optic neuropathy

    Directory of Open Access Journals (Sweden)

    Moura Frederico

    2010-01-01

    Full Text Available Three patients with progressive visual loss, chronic alcoholism and tabagism were submitted to a complete neuro-ophthalmic examination and to retinal nerve fiber layer (RNFL measurements using optical coherence tomography (OCT scanning. Two patients showed marked RNFL loss in the temporal sector of the optic disc. However, a third patient presented RNFL measurements within or above normal limits, based on the Stratus-OCT normative database. Such findings may be due to possible RNFL edema similar to the one that may occur in the acute phase of toxic optic neuropathies. Stratus-OCT was able to detect RNFL loss in the papillomacular bundle of patients with tobacco-alcohol-induced toxic optic neuropathy. However, interpretation must be careful when OCT does not show abnormality in order to prevent diagnostic confusion, since overestimation of RNFL thickness measurements is possible in such cases.

  10. Microstructural parameters and optical constants of ZnTe thin films with various thicknesses

    Science.gov (United States)

    Shaaban, Essam R.; Kansal, Ishu; Mohamed, S. H.; Ferreira, Joés M. F.

    2009-11-01

    Different thickness of polycrystalline ZnTe films have been deposited onto glass substrates at room temperature by vacuum evaporation technique. The structural characteristics studied by X-ray diffraction (XRD) showed that the films are polycrystalline and have a zinc blende (cubic) structure. The calculated microstructure parameters revealed that the crystallite size increases and microstrain decreases with increasing film thickness. The transmittance and reflectance have been measured at normal and near normal incidence, respectively, in the spectral range 400-2500 nm. For ZnTe films of different thicknesses, the dependence of absorption coefficient, α on the photon energy showed the occurrence of a direct transition with band gap energy Egopt=2.21±0.01 eV (For ZnTe films of different thicknesses) confirming the independency of deduced energy gap on film thickness. The refractive indices have been evaluated in terms of envelope method, which has been suggested by Swanepoul in the transparent region. The refractive index could be extrapolated by Cauchy dispersion relationship over the whole spectra range, which extended from 400 to 2500 nm. It was observed that the refractive index, n increased upon increasing the film thickness up to 508 nm, lying within the experimental error for further increases in film thickness.

  11. Digital in-line holography in thick optical systems: application to visualization in pipes

    CERN Document Server

    Verrier, Nicolas; Marc, Brunel; Denis, Lebrun; 10.1364/AO.47.004147

    2012-01-01

    In this paper we apply digital in-line holography to image opaque objects through a thick plano-concave pipe. Opaque fibers and opaque particles are considered}. Analytical expression of the intensity distribution in the CCD sensor plane is derived using generalized Fresnel transform. \\textbf{The proposed model has the ability to deal with various pipe shape and thickness and compensates for the lack of versatility of classical DIH models. Holograms obtained with a 12 mm thick plano-concave pipe are then reconstructed using fractional Fourier transform (FRFT).} This method allows us to get rid of astigmatism. Numerical and experimental results are presented.

  12. Measurement of the refractive index and thickness for infrared optical films deposited on rough substrates.

    Science.gov (United States)

    Saito, M; Nakamura, S; Miyagi, M

    1992-10-01

    A novel method is proposed to evaluate the refractive index and thickness of dielectric thin films in the infrared wavelength range. The method is useful for measurement of thin films that are formed on such rough substrates as metal plates, since it utilizes only the wavelengths of interference peaks, which is slightly affected by surface roughness of the sample. The method was applied to the measurement of germanium, zinc selenide, and lead fluoride films deposited on copper substrates. Measured thicknesses agreed well with the values that were obtained by ellipsometry, and refractive indices exhibited a tendency to increase with the film thickness.

  13. Depletion-mode carrier-plasma optical modulator in zero-change advanced CMOS.

    Science.gov (United States)

    Shainline, Jeffrey M; Orcutt, Jason S; Wade, Mark T; Nammari, Kareem; Moss, Benjamin; Georgas, Michael; Sun, Chen; Ram, Rajeev J; Stojanović, Vladimir; Popović, Miloš A

    2013-08-01

    We demonstrate the first (to the best of our knowledge) depletion-mode carrier-plasma optical modulator fabricated in a standard advanced complementary metal-oxide-semiconductor (CMOS) logic process (45 nm node SOI CMOS) with no process modifications. The zero-change CMOS photonics approach enables this device to be monolithically integrated into state-of-the-art microprocessors and advanced electronics. Because these processes support lateral p-n junctions but not efficient ridge waveguides, we accommodate these constraints with a new type of resonant modulator. It is based on a hybrid microring/disk cavity formed entirely in the sub-90 nm thick monocrystalline silicon transistor body layer. Electrical contact of both polarities is made along the inner radius of the multimode ring cavity via an array of silicon spokes. The spokes connect to p and n regions formed using transistor well implants, which form radially extending lateral junctions that provide index modulation. We show 5 Gbps data modulation at 1265 nm wavelength with 5.2 dB extinction ratio and an estimated 40 fJ/bit energy consumption. Broad thermal tuning is demonstrated across 3.2 THz (18 nm) with an efficiency of 291 GHz/mW. A single postprocessing step to remove the silicon handle wafer was necessary to support low-loss optical confinement in the device layer. This modulator is an important step toward monolithically integrated CMOS photonic interconnects.

  14. Measurement of optical loss variation on thickness of InGaN optical confinement layers of blue-violet-emitting laser diodes

    Science.gov (United States)

    Son, J. K.; Lee, S. N.; Paek, H. S.; Sakong, T.; Kim, H. K.; Park, Y.; Ryu, H. Y.; Nam, O. H.; Hwang, J. S.; Cho, Y. H.

    2008-05-01

    An optical loss of GaN-based blue-violet laser diodes (BV-LDs) was measured by taking the intensity decay of edge emitting luminescence with respect to the distance from cleaved edge of a wafer to the position where an excitation laser was focused. Amplified spontaneous emission (ASE) was also investigated by tuning the power of an excitation laser on BV-LD wafers. Measurements were performed on wafers with different thicknesses of InGaN optical confinement layers (OCLs). The threshold power of ASE intensity was minimized at an optimum thickness of InGaN OCL. We also found that optical loss of wafers was determined by absorption of an InGaN layer in thicker OCL structure. From experimental data and fittings, we obtained 40 cm-1 for InGaN absorption at 405 nm. The optical field confined in OCL region was reasonably high enough to affect the overall modal loss in devices. Therefore, the optical losses still remained even though the Mg-doped GaN regions are far enough from the active layers. The crystal quality of an InGaN layer should be an important aspect to improve the performance of BV-LDs.

  15. Macular Choroidal Thickness and Volume Measured by Swept-source Optical Coherence Tomography in Healthy Korean Children.

    Science.gov (United States)

    Lee, Jung Wook; Song, In Seok; Lee, Ju-hyang; Shin, Yong Un; Lim, Han Woong; Lee, Won June; Lee, Byung Ro

    2016-02-01

    To evaluate the thickness and volume of the choroid in healthy Korean children using swept-source optical coherence tomography. We examined 80 eyes of 40 healthy children and teenagers (choroidal thickness map. We also examined 44 eyes of 35 healthy adult volunteers (≥18 years) and compared adult measurements with the findings in children. The mean age of the children and teenagers was 9.47 ± 3.80 (4 to 17) vs. 55.04 ± 12.63 years (36 to 70 years) in the adult group (p choroid were thinner (p = 0.004, p = 0.002, respectively) than the surrounding areas. The mean choroidal volumes of the inner and outer nasal areas were smaller (p = 0.004, p = 0.003, respectively) than those of all the other areas in each circle. Among the nine subfields, all areas in the children, except the outer nasal subfield, were thicker than those in adults (p choroidal thickness (p choroidal thickness and volume in children and teenagers were significantly greater than in adults. The nasal choroid was significantly thinner than the surrounding areas. The pediatric subfoveal choroid is prone to thinning with increasing age, axial length, and refractive error. These differences should be considered when choroidal thickness is evaluated in children with chorioretinal diseases.

  16. Structural and Optical Properties of ZnO Films with Different Thicknesses Grown on Sapphire by MOCVD

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    ZnO(002) films with different thicknesses, grown on Al2O3 (006) substrates by metal-organic chemical vapor deposition( MOCVD), were etched by Ar ion beams. The samples were examined by D8 X-ray diffraction, scanning electron microscopy(SEM), and photoluminescence (PL) spectrometry. The structural properties vary with the increasing thickness of the films. When the film thickness is thin, the phi(Φ) scanning curves for ZnO(103) and sapphire(116) substrate show the existence of two kinds of orientation relationships between ZnO films and sapphire,which are ZnO(002)//Al2O3 (006), ZnO(100)//Al2O3 (110) and ZnO(002)//Al2O3 (006), ZnO(110)//Al2O3(110). When the thickness increases to 500 nm there is only one orientation relationship, which is ZnO(002)//Al2O3 (006), ZnO [ 100 ]//Al2O3[ 110 ]. Their photoluminescence (PL) spectra at room temperature show that the optical properties of ZnO films have been greatly improved when increasing the thickness of films is increased.

  17. Investigating electro-optical properties of a nematic liquid crystal cell with planar anchoring boundary condition for various thicknesses: A Monte Carlo study

    Science.gov (United States)

    Emül, Yakup; Polat, Ömer; San, Sait Eren; Kayacan, Özhan; Özbek, Haluk

    2014-06-01

    Monte Carlo (MC) simulations and the Mueller matrix formalism were applied to investigate electro optical properties of a LC cell with planar boundary conditions for various thicknesses. Field dependent global order parameter and the optical transmissions were analyzed in common. Three characteristic regions of the periodicity of optical transmissions as a function of polarizer angle and the external field were identified.

  18. Choroidal thickness maps from spectral domain and swept source optical coherence tomography: algorithmic versus ground truth annotation.

    Science.gov (United States)

    Philip, Ana-Maria; Gerendas, Bianca S; Zhang, Li; Faatz, Henrik; Podkowinski, Dominika; Bogunovic, Hrvoje; Abramoff, Michael D; Hagmann, Michael; Leitner, Roland; Simader, Christian; Sonka, Milan; Waldstein, Sebastian M; Schmidt-Erfurth, Ursula

    2016-10-01

    The purpose of the study was to create a standardised protocol for choroidal thickness measurements and to determine whether choroidal thickness measurements made on images obtained by spectral domain optical coherence tomography (SD-OCT) and swept source (SS-) OCT from patients with healthy retina are interchangeable when performed manually or with an automatic algorithm. 36 grid cell measurements for choroidal thickness for each volumetric scan were obtained, which were measured for SD-OCT and SS-OCT with two methods on 18 eyes of healthy volunteers. Manual segmentation by experienced retinal graders from the Vienna Reading Center and automated segmentation on >6300 images of the choroid from both devices were statistically compared. Model-based comparison between SD-OCT/SS-OCT showed a systematic difference in choroidal thickness of 16.26±0.725 μm (pthickness of -0.68±0.513 μm (p=0.1833). The correlation coefficients for SD-OCT and SS-OCT measures within eyes were 0.975 for manual segmentation and 0.955 for automatic segmentation. Choroidal thickness measurements of SD-OCT and SS-OCT indicate that these two devices are interchangeable with a trend of choroidal thickness measurements being slightly thicker on SD-OCT with limited clinical relevance. Use of an automated algorithm to segment choroidal thickness was validated in healthy volunteers. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  19. Thicker carotid intima-media thickness and increased plasma VEGF levels suffered by post-acute thrombotic stroke patients

    Directory of Open Access Journals (Sweden)

    Yueniwati Y

    2016-12-01

    Full Text Available Yuyun Yueniwati,1 Ni Komang Darmiastini,1 Eko Arisetijono2 1Radiology Department, Faculty of Medicine, Brawijaya University, Malang, Indonesia; 2Neurology Department, Faculty of Medicine, Brawijaya University, Malang, Indonesia Background and objectives: Atherosclerosis causes reduction of the oxygen supply to structures in the far arterial wall, provoking the release of factors that drive angiogenesis of vasa vasorum, including VEGF. Other studies have revealed the inflammatory response in atherosclerosis and the role of platelet factor 4 (PF4 as an anti-angiogenic chemokine through the inhibition of VEGF. This cross-sectional study aims at measuring the effect of atherosclerosis assessed through carotid intima-media thickness (CIMT against plasma VEGF levels in patients with post-acute thrombotic stroke. Materials and methods: CIMT was assessed sonographically using GE Logiq S6 with 13 MHz frequency linear probe. VEGF-A plasma levels were measured using enzyme-linked immunosorbent assay (ELISA method. Differences among variables were compared statistically. The data were analyzed using Pearson correlation. Results: A total of 25 patients with post-acute thrombotic stroke were identified in days 7 to 90. CIMT thickening was indicated in 88% of patients (1.202 ± 0.312 mm, while an increase in plasma VEGF was identified in all patients (178.28 ± 93.96 ng/mL. There was no significant correlation between CIMT and plasma VEGF levels in patients with post-acute thrombotic stroke (p=0.741. A significant correlation was recognized between CIMT and total cholesterol (p=0.029 and low-density lipoprotein (p=0.018. Conclusion: There were no significant correlations between CIMT and plasma VEGF levels in patients with post-acute thrombotic stroke. However, plasma VEGF increased in patients with thrombotic stroke. CIMT measurement is a promising noninvasive modality to assess the vascular condition of patients with stroke and diabetes, while plasma VEGF

  20. In situ non-destructive measurement of biofilm thickness and topology in an interferometric optical microscope.

    Science.gov (United States)

    Larimer, Curtis; Suter, Jonathan D; Bonheyo, George; Addleman, Raymond Shane

    2016-06-01

    Biofilms are ubiquitous and impact the environment, human health, dental hygiene, and a wide range of industrial processes. Biofilms are difficult to characterize when fully hydrated, especially in a non-destructive manner, because of their soft structure and water-like bulk properties. Herein a method of measuring and monitoring the thickness and topology of live biofilms of using white light interferometry is described. Using this technique, surface morphology, surface roughness, and biofilm thickness were measured over time without while the biofilm continued to grow. The thickness and surface topology of a P. putida biofilm were monitored growing from initial colonization to a mature biofilm. Measured thickness followed expected trends for bacterial growth. Surface roughness also increased over time and was a leading indicator of biofilm growth.

  1. Multimodal optical measurement in vitro of surface deformations and wall thickness of the pressurized aortic arch.

    Science.gov (United States)

    Genovese, Katia; Humphrey, Jay D

    2015-04-01

    Computational modeling of arterial mechanics continues to progress, even to the point of allowing the study of complex regions such as the aortic arch. Nevertheless, most prior studies assign homogeneous and isotropic material properties and constant wall thickness even when implementing patient-specific luminal geometries obtained from medical imaging. These assumptions are not due to computational limitations, but rather to the lack of spatially dense sets of experimental data that describe regional variations in mechanical properties and wall thickness in such complex arterial regions. In this work, we addressed technical challenges associated with in vitro measurement of overall geometry, full-field surface deformations, and regional wall thickness of the porcine aortic arch in its native anatomical configuration. Specifically, we combined two digital image correlation-based approaches, standard and panoramic, to track surface geometry and finite deformations during pressurization, with a 360-deg fringe projection system to contour the outer and inner geometry. The latter provided, for the first time, information on heterogeneous distributions of wall thickness of the arch and associated branches in the unloaded state. Results showed that mechanical responses vary significantly with orientation and location (e.g., less extensible in the circumferential direction and with increasing distance from the heart) and that the arch exhibits a nearly linear increase in pressure-induced strain up to 40%, consistent with other findings on proximal porcine aortas. Thickness measurements revealed strong regional differences, thus emphasizing the need to include nonuniform thicknesses in theoretical and computational studies of complex arterial geometries.

  2. Reversible tuning of ZnO optical band gap by plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Szetsen, E-mail: slee@cycu.edu.tw [Department of Chemistry and Center for Nano-technology, Chung Yuan Christian University, Jhongli, Taoyuan 32023, Taiwan (China); Peng, Jr-Wei [Department of Chemistry and Center for Nano-technology, Chung Yuan Christian University, Jhongli, Taoyuan 32023, Taiwan (China); Ho, Ching-Yuan [Department of Mechanical Engineering, Chung Yuan Christian University, Jhongli, Taoyuan 32023, Taiwan (China)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer The ZnO optical band gap blue-shifts with hydrogen plasma treatment. Black-Right-Pointing-Pointer The ZnO optical band gap red-shifts with oxygen plasma treatment. Black-Right-Pointing-Pointer The ZnO optical band gap can be reversibly fine-tuned. - Abstract: Zinc oxide (ZnO) films synthesized by reacting zinc nitrate with hexamethylenetetramine were treated with hydrogen and oxygen plasmas. From UV-visible absorption and optical emission inspection, we have found that the optical band gap of ZnO films blue-shifted with hydrogen plasma treatment, but red-shifted with oxygen plasma treatment. By alternating the treatment sequence of hydrogen and oxygen plasmas, the ZnO optical band gap can be reversibly fine-tuned with the tunable range up to 80 meV. Scanning electron microscopy characterization indicates that the variation of the optical band gap is attributed to the competition between amorphous and crystalline forms of ZnO. The mechanism of reversible optical band gap tuning is discussed.

  3. Optical Coherence Tomography Measurement of Macular and Nerve Fiber Layer Thickness in Normal and Glaucomatous Human Eyes

    Science.gov (United States)

    Guedes, Viviane; Schuman, Joel S.; Hertzmark, Ellen; Wollstein, Gadi; Correnti, Anthony; Mancini, Ronald; Lederer, David; Voskanian, Serineh; Velazquez, Leonardo; Pakter, Helena M.; Pedut-Kloizman, Tamar; Fujimoto, James G.; Mattox, Cynthia

    2007-01-01

    Purpose To evaluate the hypothesis that macular thickness correlates with the diagnosis of glaucoma. Design Cross-sectional study. Participants We studied 367 subjects (534 eyes), including 166 eyes of 109 normal subjects, 83 eyes of 58 glaucoma suspects, 196 eyes of 132 early glaucoma patients, and 89 eyes of 68 advanced glaucoma patients. Methods We used optical coherence tomography (OCT) to measure macular and nerve fiber layer (NFL) thickness and to analyze their correlation with each other and with glaucoma status. We used both the commercial and prototype OCT units and evaluated correspondence between measurements performed on the same eyes on the same days. Main Outcome Measure Macular and NFL thickness as measured by OCT. Results All NFL parameters both in prototype and commercial OCT units were statistically significantly different comparing normal subjects and either early or advanced glaucoma (P < 0.001). Inner ring, outer ring, and mean macular thickness both in prototype and commercial OCT devices were found to be significantly different between normal subjects and advanced glaucomatous eyes (P < 0.001). The outer ring was the only macular parameter that could significantly differentiate between normal and early glaucoma with either the prototype or commercial OCT unit (P = 0.003, P = 0.008, respectively). The area under the receiver operator characteristic (AROC) curves comparing mean NFL thickness between normal and advanced glaucomatous eyes was 1.00 for both the prototype and commercial OCT devices for eyes scanned on both machines on the same day. The AROC comparing mean macular thickness in normal and advanced glaucomatous eyes scanned on both machines on the same day was 0.88 for the prototype OCT device and 0.80 for the commercial OCT. Conclusions Both macular and NFL thickness as measured by OCT showed statistically significant correlations with glaucoma, although NFL thickness showed a stronger association than macular thickness. There was

  4. Evaluation of changes in retinal nerve fiber layer thickness and visual functions in cases of optic neuritis and multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Rohit Saxena

    2013-01-01

    Full Text Available Context: Retinal nerve fiber layer (RNFL thinning has been demonstrated in cases of optic neuritis (ON and multiple sclerosis (MS in Caucasian eyes, but no definite RNFL loss pattern or association with visual functions is known in Indian eyes. Aim : To evaluate RNFL thickness in cases of ON and MS, and to correlate it with visual function changes in Indian patients. Settings and Design: Cross-sectional case-control study at a tertiary level institution . Materials and Methods: Cases consisted of patients of (i typical ON without a recent episode (n = 30:39 ON eyes and 21 fellow eyes, (ii MS without ON (n = 15;30 eyes while the controls were age-matched (n = 15; 30 eyes. RNFL thickness was measured using the Stratus 3 °CT. The visual functions tested included the best-corrected visual acuity (BCVA, contrast sensitivity, stereopsis, visual evoked responses, and visual fields. Statistical analysis used: Intergroup analysis was done using ANOVA and Pearson′s correlation coefficient used for associations. Results: RNFL thickness was reduced significantly in the ON and MS patients compared to the controls (P-0.001. Maximum loss is in the temporal quadrant. Lower visual function scores are associated with reduced average overall RNFL thickness. In ON group, RNFL thinning is associated with severe visual field defects while contrast sensitivity has strongest correlation with RNFL in the MS group. Conclusions:RNFL thickness is reduced in ON and MS cases in a pattern similar to Caucasians and is associated with the magnitude of impairment of other visual parameters. Contrast sensitivity and stereoacuity are useful tests to identify subclinical optic nerve involvement in multiple sclerosis.

  5. [Normal macular thickness and volume using spectral domain optical coherence tomography in a reference population].

    Science.gov (United States)

    Solé González, L; Abreu González, R; Alonso Plasencia, M; Abreu Reyes, P

    2013-09-01

    To establish normal values of macular thickness and volume obtained by the Cirrus SD-OCT (Carl ZeissMeditec, Dublin, CA, U.S.A.). Secondly, to assess the association between macular thickness and volume, sex and age. A prospective study was conducted on patients who were seen in a hospital Retina Unit, and who only had retinal disease in one eye. All the Macular Cube 512 × 128 scan protocols were performed by the same operator. Only the healthy eye was scanned in each patient. A total of 100 eyes of 100 patients were analysed. The mean central foveal thickness was 261.31 ± 17.67 microns, and was significantly (P<.05) higher in males (267.74 ± 16.98 microns) than in females (255.60 ± 16.40 microns). The mean obtained for the volume of the cube was 10.09 ± 0.37mm 3, and the mean thickness of 280.33 ± 10.34 cube um, with no statistically significant differences between gender being found (P<.05). The mean macular thickness is less at central level, increases in the inner perifoveal ring, and then decreases in the outer perifoveal ring. Furthermore, of all quadrants the greatest thickness was the nasal (328.27 ± 12.96 microns), followed by the upper (326.27 ± 11.89 microns), lower (322.53 ± 12.37mm) sectors, with the temporal sector being the thinnest (313.35 ± 14.20 microns). The mean age of the patients was 60.86 ± 14 years. The mean central foveal thickness and the thickness of the inner perifoveal ring are significantly higher in men than in women. Both the mean volume and thickness of the cube, as well as nasal and inner superior sectors decrease with age, being significantly only in women. Copyright © 2012 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  6. Thickness-dependence of optical constants for Ta{sub 2}O{sub 5} ultrathin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dong-Xu; Zheng, Yu-Xiang; Cai, Qing-Yuan; Lin, Wei; Wu, Kang-Ning; Mao, Peng-Hui; Zhang, Rong-Jun; Zhao, Hai-bin; Chen, Liang-Yao [Fudan University, Key Laboratory of Micro and Nano Photonic Structures, Ministry of Education, Department of Optical Science and Engineering, Shanghai (China)

    2012-09-15

    An effective method for determining the optical constants of Ta{sub 2}O{sub 5} thin films deposited on crystal silicon (c-Si) using spectroscopic ellipsometry (SE) measurement with a two-film model (ambient-oxide-interlayer-substrate) was presented. Ta{sub 2}O{sub 5} thin films with thickness range of 1-400 nm have been prepared by the electron beam evaporation (EBE) method. We find that the refractive indices of Ta{sub 2}O{sub 5} ultrathin films less than 40 nm drop with the decreasing thickness, while the other ones are close to those of bulk Ta{sub 2}O{sub 5}. This phenomenon was due to the existence of an interfacial oxide region and the surface roughness of the film, which was confirmed by the measurement of atomic force microscopy (AFM). Optical properties of ultrathin film varying with the thickness are useful for the design and manufacture of nano-scaled thin-film devices. (orig.)

  7. Boosting persistence time of laser-induced plasma by electric arc discharge for optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Eschlböck-Fuchs, S., E-mail: simon.eschlboeck-fuchs@jku.at [Christian Doppler Laboratory for Laser-Assisted Diagnostics, Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Kolmhofer, P.J.; Bodea, M.A.; Hechenberger, J.G.; Huber, N. [Christian Doppler Laboratory for Laser-Assisted Diagnostics, Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Rössler, R. [voestalpine Stahl GmbH, A-4031 Linz (Austria); Pedarnig, J.D., E-mail: johannes.pedarnig@jku.at [Christian Doppler Laboratory for Laser-Assisted Diagnostics, Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria)

    2015-07-01

    Plasma induced by nanosecond laser ablation is re-excited by a pulsed electric discharge and the parameters and optical emission of the plasma are measured. The discharge is a low-voltage and high-current electric arc that is triggered by the laser-induced plasma and slowly decaying with time. The optical emission of such combined plasma lasts up to several milliseconds which is much longer than without re-excitation (μs range). The emission spectra of re-excited plasma measured on different sample materials show higher line intensities than spectra measured by conventional laser-induced breakdown spectroscopy (LIBS). Moreover, emission lines of fluorine (spectral range 683–691 nm) and sulfur (range 520–550 nm) not detected by conventional LIBS become easily detectable with the combined plasma. The concentration of major components in metallurgical slags, as determined by calibration-free LIBS, agrees very well to the reference data evaluating the spectra taken from re-excited plasma. - Highlights: • Persistence time of laser-induced plasma in air is increased from ~ 10 μs to ~ 1 ms. • Laser-induced plasma triggers an electric arc discharge that boosts the plasma. • The combined laser-arc plasma is in LTE state over very long time (ms range). • CF-LIBS method delivers accurate results evaluating spectra of combined plasma. • Emission from S and F, not detected by LIBS, is detected with combined plasma.

  8. Choroidal and Ganglion Cell Complex Thicknesses in Subjects with Type A Behavior Pattern: An Optical Coherence Tomography Study

    Directory of Open Access Journals (Sweden)

    Gulizar Demirok

    2014-11-01

    Full Text Available Aim: To evaluate choroidal thickness (CT and ganglion cell complex (GCC thickness with spectral domain optical coherence tomography (SD-OCT in subjects with type A behavior pattern (TABP. Material and Method: Thirty-eight eyes of 38 healthy controls and 38 eyes of 38 patients with TABP were enrolled. Each subject underwent a complete ophthalmic examination before SD-OCT images were obtained. Choroidal thicknesses were measured manually at the central of fovea (subfoveal and 500 µm intervals up to 1500 µm temporal (T1, T2, T3 and nasal (N1, N2, N3 to the fovea with Enhanced Depth Imaging (EDI mode. GCC thickness was evaluated automatically as the minimum and the average thicknesses. Parameters were compared between the groups. Results: The mean ages were 38.7±13.8 years in TABP group, and 40.3±11.5 years in control group. There were no significant differences in mean age, gender distribution, intraocular pressure and spherical equivalent between the groups (p>0.05. The mean (±SD CT for each of the 7 points (subfoveal, N1, N2, N3, T1, T2, T3 in TABP group were 325.4±45.1, 301.3±39.4, 284.6±35.2, 269.5±41.9, 293.2±40.7, 274.5±43.8, 260.5±44.3 µm, respectively. CT values in control group were 322.9±27.9, 301.8±33.2, 288.5±35.0, 278.1±33.4, 297.2±31.5, 285.1±33.0, 271.4±39.5 µm, respectively. There was no significant differences in CT for all 7 points between the groups (p>0,05. The mean and minimum GCC thicknesses in TABP group were 82.2±5.3 µm and 79.0±6.4 µm, respectively. Corresponding values in control group were 86.3±7.2 µm and 83.5±6.0 µm, respectively. There were significant differences in mean and minimum GCC thicknesses between the groups (p>0,05. Discussion: Although no detectable difference between the groups in terms of CT, the mean and minimum GCC thickness values of TABP patients were statistically lower than control group. TABP may be accompanied with a decrease of ganglion cell thickness.\

  9. A spectral method for retrieving cloud optical thickness and effective radius from surface-based transmittance measurements

    Directory of Open Access Journals (Sweden)

    P. J. McBride

    2011-01-01

    Full Text Available We introduce a new multispectral method for the retrieval of optical thickness and effective radius from cloud transmittance, which is less sensitive to effective radius than cloud reflectance. Based on data from the moderate spectral resolution observations of the Solar Spectral Flux Radiometer (SSFR and Shortwave Spectroradiometer (SWS, we use the spectral shape of transmitted radiance as a means of retrieving effective radius from cloud transmittance. The observations were taken during the International Chemistry Experiment in the Arctic Lower Troposphere and at the Southern Great Plains (SGP site of the Atmospheric Radiation Measurement (ARM Climate Research Facility. The spectral shape was quantified by fitting a slope to the normalized transmittance between 1565 nm and 1634 nm. The retrieval was performed by comparing the observed slope at 1565 nm and the transmittance at 515 nm with a pre-calculated library (lookup table. An estimate of the retrieval uncertainty was provided by propagating the uncertainty of the observations through the best-fit algorithm. We compare the new retrieval with an algorithm that uses transmittance at two wavelengths, a method often used with cloud reflectance. The liquid water path (LWP is derived from the retrieved optical thickness and effective radius, assuming a cloud with effective radius varying linearly with altitude above cloud base, and compared to the retrieved liquid water path from a microwave radiometer. Retrievals from two MODIS overpasses of the SGP were also compared. The data taken from the SGP was under thicker cloud than the case used from ICEALOT, with average optical thickness of 44 and 22, respectively. For the time period with the thicker clouds, the dual-wavelength method and the slope method retrieved nearly indistinguishable results. The dual-wavelength method, however, resulted in slightly higher average relative effective radius uncertainty of 12.9 μm±12.8%, as compared to 12.8

  10. Changes in choroidal thickness after prophylactic iridectomy in primary angle closure suspect eyes using enhanced depth imaging optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2015-01-01

    Full Text Available Purpose: The aim of the present study was to evaluate the effect of surgical peripheral iridectomy (SPI on choroidal thickness in primary angle-closure suspect (PACS eyes. Materials and Methods: This was a prospective observational case series of 30 subjects with PACS. Ocular biometry was performed before SPI (baseline and then 1 week later. Choroid was imaged by enhanced depth imaging optical coherence tomography (EDI-OCT. The choroidal thickness of the subfoveal area at 1 and 3 mm diameter around the fovea was determined. Central anterior chamber depth (ACD, lens thickness (LT, vitreous chamber depth (VCD, and axial length (AL were measured by A-scan ultrasound. Parameters were compared before SPI (baseline and 1 week later. Results: Thirty eyes of 30 patients with mean age of 61.53 ± 7.98 years were studied. There was no significant difference in the choroidal thickness at all macular locations before and after SPI (all P > 0.05. Mean subfoveal choroidal thickness was 279.61 μm ± 65.50 μm before and 274.54 μm ± 63.36 μm after SPI (P = 0.308. There was also no significant change in central ACD, LT, VCD, and LT after SPI (all P > 0.05. Conclusions: SPI does not appear to alter choroidal thickness in PACS eyes, as assessed using EDI-OCT. Long-term follow-up of PACS eyes treated with SPI may provide further insight into the effects of this treatment modality on the choroid.

  11. Normal macular thickness measurements using optical coherence tomography in healthy eyes of adult Chinese persons: the Handan Eye Study.

    Science.gov (United States)

    Duan, Xin Rong; Liang, Yuan Bo; Friedman, David S; Sun, Lan Ping; Wong, Tien Yin; Tao, Qiu Shan; Bao, Lingzhi; Wang, Ning Li; Wang, Jie Jin

    2010-08-01

    To describe macular thickness measured by optical coherence tomography (OCT) in healthy eyes of adult Chinese persons. Population-based cross-sectional study. Chinese adults aged 30+ years who were residents of Handan, North China. The Handan Eye Study is a population-based study of eye disease in Chinese persons. Eligible residents underwent a comprehensive ophthalmic examination including OCT (Stratus OCT, Carl Zeiss Meditec Inc., Jena, Germany). Fast macular thickness scans were performed over maculae within 6 mm in diameter, divided into 3 regions (central, inner, and outer, with a diameter of 1, 3, and 6 mm, respectively) and 9 quadrants (1 in the central region and 4 each in the inner and outer regions). Retinal thickness (means and standard deviations) was calculated by OCT mapping software, presented for foveal minimum, central macula (within 1 mm diameter), and inner and outer regions divided by 8 quadrants. Macular thickness measured by OCT. Of the 6830 participants (90.4% response rate) examined, 2230 eyes of healthy subjects with high-quality OCT scans were selected (32.7% of participants; mean age, 46.4+/-9.9 years, 58.4% were women). The mean foveal minimum, central, inner, and outer macular thicknesses were 150.3 (18.1) microm, 176.4 (17.5) microm, 255.3 (14.9) microm, and 237.7 (12.4) microm, respectively (overall differences, Pregion, the nasal quadrant was thinner than the superior and inferior quadrants, and in the outer region, the nasal quadrant was the thickest (Pmeasurements using OCT in a large population-based sample of adult Chinese persons aged 30 to 85 years were generally thinner in the foveal and central macular areas than measurements reported in other populations. Age and axial length were positively correlated with macular thickness. Copyright 2010 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  12. Retinal thickness measured with optical coherence tomography and risk of disability worsening in multiple sclerosis: a cohort study.

    Science.gov (United States)

    Martinez-Lapiscina, Elena H; Arnow, Sam; Wilson, James A; Saidha, Shiv; Preiningerova, Jana Lizrova; Oberwahrenbrock, Timm; Brandt, Alexander U; Pablo, Luis E; Guerrieri, Simone; Gonzalez, Ines; Outteryck, Olivier; Mueller, Ann-Kristin; Albrecht, Phillip; Chan, Wesley; Lukas, Sebastian; Balk, Lisanne J; Fraser, Clare; Frederiksen, Jette L; Resto, Jennifer; Frohman, Teresa; Cordano, Christian; Zubizarreta, Irati; Andorra, Magi; Sanchez-Dalmau, Bernardo; Saiz, Albert; Bermel, Robert; Klistorner, Alexander; Petzold, Axel; Schippling, Sven; Costello, Fiona; Aktas, Orhan; Vermersch, Patrick; Oreja-Guevara, Celia; Comi, Giancarlo; Leocani, Letizia; Garcia-Martin, Elena; Paul, Friedemann; Havrdova, Eva; Frohman, Elliot; Balcer, Laura J; Green, Ari J; Calabresi, Peter A; Villoslada, Pablo

    2016-05-01

    Most patients with multiple sclerosis without previous optic neuritis have thinner retinal layers than healthy controls. We assessed the role of peripapillary retinal nerve fibre layer (pRNFL) thickness and macular volume in eyes with no history of optic neuritis as a biomarker of disability worsening in a cohort of patients with multiple sclerosis who had at least one eye without optic neuritis available. In this multicentre, cohort study, we collected data about patients (age ≥16 years old) with clinically isolated syndrome, relapsing-remitting multiple sclerosis, and progressive multiple sclerosis. Patients were recruited from centres in Spain, Italy, France, Germany, Czech Republic, Netherlands, Canada, and the USA, with the first cohort starting in 2008 and the latest cohort starting in 2013. We assessed disability worsening using the Expanded Disability Status Scale (EDSS). The pRNFL thickness and macular volume were assessed once at study entry (baseline) by optical coherence tomography (OCT) and was calculated as the mean value of both eyes without optic neuritis for patients without a history of optic neuritis or the value of the non-optic neuritis eye for patients with previous unilateral optic neuritis. Researchers who did the OCT at baseline were masked to EDSS results and the researchers assessing disability with EDSS were masked to OCT results. We estimated the association of pRNFL thickness or macular volume at baseline in eyes without optic neuritis with the risk of subsequent disability worsening by use of proportional hazards models that included OCT metrics and age, disease duration, disability, presence of previous unilateral optic neuritis, and use of disease-modifying therapies as covariates. 879 patients with clinically isolated syndrome (n=74), relapsing-remitting multiple sclerosis (n=664), or progressive multiple sclerosis (n=141) were included in the primary analyses. Disability worsening occurred in 252 (29%) of 879 patients with

  13. Optical coefficients of nanometer-thick copper and gold films in microwave frequency range

    Science.gov (United States)

    Khorin, I.; Orlikovsky, N.; Rogozhin, A.; Tatarintsev, A.; Pronin, S.; Andreev, V.; Vdovin, V.

    2016-12-01

    Ultrathin (1-10 nm) Cu and Au films were prepared on the silicon and quartz substrates by magnetron sputtering at room temperature. We measured the transmission coefficient of the films at a wavelength of 3cm and analyzed a surface morphology of these films. It was shown that the films with thicknesses less than 7.5 nm (Au) and 3 nm (Cu) are almost transparent for microwaves. This effect is explained by quick oxidation of Cu and the complex surface morphology of nanometer thick films. The Au film morphology is evolved with increasing average Au thickness d from hemispherical islands initially (1.0 nm

  14. Realistic reflectance spectrum of thin films covering a transparent optically thick substrate

    Energy Technology Data Exchange (ETDEWEB)

    Cesaria, M., E-mail: maura.cesaria@le.infn.it; Caricato, A. P.; Martino, M. [Department of Mathematics and Physics “Ennio De Giorgi,” University of Salento, Via Arnesano, I-73100 Lecce (Italy)

    2014-07-21

    A spectrophotometric strategy is presented and discussed for calculating realistically the reflectance spectrum of an absorbing film deposited over a thick transparent or semi-transparent substrate. The developed route exploits simple mathematics, has wide range of applicability (high-to-weak absorption regions and thick-to-ultrathin films), rules out numerical and curve-fitting procedures as well as model-functions, inherently accounts for the non-measurable contribution of the film-substrate interface as well as substrate backside, and describes the film reflectance spectrum as determined by the experimental situation (deposition approach and parameters). The reliability of the method is tested on films of a well-known material (indium tin oxide) by deliberately changing film thickness and structural quality through doping. Results are found consistent with usual information yielded by reflectance, its inherent relationship with scattering processes and contributions to the measured total reflectance.

  15. Retinal nerve fibre layer thickness measured by Spectralis spectral-domain optical coherence tomography: The Beijing Eye Study.

    Science.gov (United States)

    Zhao, Liang; Wang, Yaxing; Chen, Chang X; Xu, Liang; Jonas, Jost B

    2014-02-01

    The aim of this study was to measure retinal nerve fibre layer thickness (RNFLT) and its associated factors in a population-based setting. The population-based Beijing Eye Study 2011 included 3468 individuals. The study participants underwent spectral-domain optical coherence tomography (Spectralis(®) ; Spectralis OCT)-assisted measurement of the RNFLT. For this study, exclusion criteria were glaucoma, pseudoexfoliation, best-corrected visual acuity of >0.5 logMAR, macular diseases, previous ocular surgery and known neurological diseases. The only inclusion criterion was an age of 50+ years. The inclusion criteria were fulfilled by 2548 participants. Mean RNFLT was 102 ± 11 μm. RNFLT was significantly (p region (p = 0.003), larger optic disc size (p measured by Spectralis(®) OCT; 102 ± 11 μm) was associated with younger age, female gender, urban region of habitation, larger optic disc, larger rim, hyperopic refractive error, larger parapapillary beta zone and thicker subfoveal choroidal thickness. Independent of age and refractive error, the RNFL was thickest temporal inferiorly and thinnest temporally and nasally. © 2013 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  16. γ-radiation Sensor Using Optical and Electrical Properties of Manganese Phthalocyanine (MnPc Thick Film

    Directory of Open Access Journals (Sweden)

    K. Arshak

    2002-05-01

    Full Text Available Manganese phthaloyanine polymer thick films were fabricated using screenprinting techniques. The optical parameters were obtained from the analysis of the absorption spectra over a wavelength range of 385-900nm. The d.c. electrical measurements were carried out in a range of 0-30 volts. The effects of γ-radiation on the optical and the electrical properties were investigated for dosimetry applications. The optical energy band gaps of these films showed a decrease in their values with the increase in the radiation dose. The electronic transition has changed from direct allowed for the as-printed films (unexposed to γ-rays to indirect allowed for the irradiated samples. Both the as-printed and irradiated Ag/MnPc/Ag devices demonstrated a Schottky conduction mechanism. Both the absorbance and the capacitance of the MnPc thick films displayed a highly consistent linear response to γ-ray exposure.

  17. Aerosol optical thickness of Mt. Etna volcanic plume retrieved by means of the Airborne Multispectral Imaging Spectrometer (MIVIS

    Directory of Open Access Journals (Sweden)

    L. Merucci

    2003-06-01

    Full Text Available Within the framework of the European MVRRS project (Mitigation of Volcanic Risk by Remote Sensing Techniques, in June 1997 an airborne campaign was organised on Mt. Etna to study different characteristics of the volcanic plume emitted by the summit craters in quiescent conditions. Digital images were collected with the Airborne Multispectral Imaging Spectrometer (MIVIS, together with ground-based measurements. MIVIS images were used to calculate the aerosol optical thickness of the volcanic plume. For this purpose, an inversion algorithm was developed based on radiative transfer equations and applied to the upwelling radiance data measured by the sensor. This article presents the preliminary results from this inversion method. One image was selected following the criteria of concomitant atmospheric ground-based measurements necessary to model the atmosphere, plume centrality in the scene to analyse the largest plume area and cloudless conditions. The selected image was calibrated in radiance and geometrically corrected. The 6S (Second Simulation of the Satellite Signal in the Solar Spectrum radiative transfer model was used to invert the radiative transfer equation and derive the aerosol optical thickness. The inversion procedure takes into account both the spectral albedo of the surface under the plume and the topographic effects on the refl ected radiance, due to the surface orientation and elevation. The result of the inversion procedure is the spatial distribution of the plume optical depth. An average value of 0.1 in the wavelength range 454-474 nm was found for the selected measurement day.

  18. Properties of silicon nitride thin overlays deposited on optical fibers — Effect of fiber suspension in radio frequency plasma-enhanced chemical vapor deposition reactor

    Energy Technology Data Exchange (ETDEWEB)

    Śmietana, M., E-mail: M.Smietana@elka.pw.edu.pl [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, Warsaw 00-662 (Poland); Dominik, M.; Myśliwiec, M.; Kwietniewski, N. [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, Warsaw 00-662 (Poland); Mikulic, P. [Centre de Recherche en Photonique, Université du Québec en Outaouais, 101 rue Saint-Jean-Bosco, Gatineau, J8X 3X7, Québec (Canada); Witkowski, B.S. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, Warsaw 02-666 (Poland); Bock, W.J. [Centre de Recherche en Photonique, Université du Québec en Outaouais, 101 rue Saint-Jean-Bosco, Gatineau, J8X 3X7, Québec (Canada)

    2016-03-31

    This work discusses the effect of sample suspension in radio frequency plasma-enhanced chemical vapor deposition process on properties of the obtained overlays. Silicon nitride (SiN{sub x}) overlays were deposited on flat silicon wafers and cylindrical fused silica optical fibers. The influence of the suspension height and fiber diameter on SiN{sub x} deposition rate is investigated. It has been found that thickness of the SiN{sub x} overlay significantly increases with suspension height, and the deposition rate depends on fiber dimensions. Moreover, the SiN{sub x} overlays were also deposited on long-period gratings (LPGs) induced in optical fiber. Measurements of the LPG spectral response combined with its numerical simulations allowed for a discussion on properties of the deposited overlay. The measurements have proven higher overlay deposition rate on the suspended fiber than on flat Si wafer placed on the electrode. Results of this work are essential for precise tuning of the functional properties of new generations of optical devices such as optical sensors, filters and resonators, which typically are based on optical fibers and require the overlays with well defined properties. - Highlights: • The effect of optical fiber suspension in plasma process is discussed. • The deposition rate of silicon nitride (SiN{sub x}) overlay depends on fiber dimensions. • Thickness of the SiN{sub x} overlay strongly increases with suspension height. • Measurements and simulations of long-period grating confirms experimental results.

  19. In-situ biofouling assessment in spacer filled channels using optical coherence tomography (OCT): 3D biofilm thickness mapping

    KAUST Repository

    Fortunato, Luca

    2017-01-13

    Membrane systems for water purification can be seriously hampered by biofouling. The use of optical coherence tomography (OCT) to investigate biofilms in membrane systems has recently increased due to the ability to do the characterization in-situ and non-destructively The OCT biofilm thickness map is presented for the first time as a tool to assess biofilm spatial distribution on a surface. The map allows the visualization and evaluation of the biofilm formation and growth in membrane filtration systems through the use of a false color scale. The biofilm development was monitored with OCT to evaluate the suitability of the proposed approach. A 3D time series analysis of biofilm development in a spacer filled channel representative of a spiral-wound membrane element was performed. The biofilm thickness map enables the time-resolved and spatial-resolved evaluation and visualization of the biofilm deposition pattern in-situ non-destructively.

  20. Designing an optical set-up of differential laser triangulation for oil film thickness measurement on water.

    Science.gov (United States)

    Ge, Baozhene; Sun, Jingbin; Liu, Pengcheng; Lü, Qieni; Wu, Di

    2013-01-01

    Based on the differential laser triangulation principle, an optical system configuration for measuring the oil film thickness on water is designed and developed. A semiconductor laser of 650 nm wavelength with the maximum power of 5 mW is used as a light source, the magnification of the imaging system is 1.4; the range of the measurement is 0.1 mm-10 mm; the resolution is 2.3 μm and the measurement accuracy is 10 μm theoretically. Experiments are conducted with block gauges and feeler gauges, and the experimental results, with absolute error less than ±25 μm and the maximal measurable thickness 12 mm, indicate that this system presented in this paper can fulfill high accuracy.

  1. A Solar Reflectance Method for Retrieving Cloud Optical Thickness and Droplet Size Over Snow and Ice Surfaces

    Science.gov (United States)

    Platnick, S.; Li, J. Y.; King, M. D.; Gerber, H.; Hobbs, P. V.

    1999-01-01

    Cloud optical thickness and effective radius retrievals from solar reflectance measurements are traditionally implemented using a combination of spectral channels that are absorbing and non-absorbing for water particles. Reflectances in non-absorbing channels (e.g., 0.67, 0.86, 1.2 micron spectral window bands) are largely dependent on cloud optical thickness, while longer wavelength absorbing channels (1.6, 2. 1, and 3.7 micron window bands) provide cloud particle size information. Cloud retrievals over ice and snow surfaces present serious difficulties. At the shorter wavelengths, ice is bright and highly variable, both characteristics acting to significantly increase cloud retrieval uncertainty. In contrast, reflectances at the longer wavelengths are relatively small and may be comparable to that of dark open water. A modification to the traditional cloud retrieval technique is devised. The new algorithm uses only a combination of absorbing spectral channels for which the snow/ice albedo is relatively small. Using this approach, retrievals have been made with the MODIS Airborne Simulator (MAS) imager flown aboard the NASA ER-2 from May - June 1998 during the Arctic FIRE-ACE field deployment. Data from several coordinated ER-2 and University of Washington CV-580 in situ aircraft observations of liquid water stratus clouds are examined. MAS retrievals of optical thickness, droplet effective radius, and liquid water path are shown to be in good agreement with the in situ measurements. The initial success of the technique has implications for future operational satellite cloud retrieval algorithms in polar and wintertime regions.

  2. Precise Measurement of the Thickness of a Dielectric Layer on a Metal Surface by Use of a Modified Otto Optical Configuration

    Science.gov (United States)

    Kaneoka, Yoshiki; Nishigaki, Kentaro; Mizutani, Yasuhiro; Iwata, Tetsuo

    2015-01-01

    We propose a modified method for thickness measurement of a dielectric coating layer on metal based on Otto optical configuration (O-configuration). This method enables us to estimate the coating thickness that typically ranges from several tens of nanometers to more than one micrometer with precision less than a few nanometers. The common method to measure the thickness of dielectric coating layer is to utilize the frustrated total-internal reflection. In order to measure the thickness of several tens of nanometers, one can apply the surface-plasmon-resonance (SPR) phenomenon generated by the p-polarized light. For thickness larger than one hundred nanometers, a metal-clad leaky-waveguide (MCLW) mode generated by the p- or the s-polarized light can be employed without significant changes to the optical setup. The numerical and experimental verifications of the modified O-configuration reveals its effectiveness for precise measurement of moderately-thick dielectric coating layer on the metal.

  3. Development of a gated optical multichannel analyser for laser-plasma spectroscopy

    OpenAIRE

    Corcoran, Richard

    1990-01-01

    An Optical Multichannel Analyser (OMA) has been developed for the detection of radiation from laser-produced plasmas (LPPs). The system is based on a gated image - intensified photodiode array (PDA) Software for the control of, and data acquisition from, the OMA system has been developed. A high resolution (10ns) delay generator was also designed and constructed to permit timeresolved. optical spectroscopy. The system has been tested and operated with a laser plasma source m...

  4. Plasma sputtering robotic device for in-situ thick coatings of long, small diameter vacuum tubesa)

    Science.gov (United States)

    Hershcovitch, A.; Blaskiewicz, M.; Brennan, J. M.; Custer, A.; Dingus, A.; Erickson, M.; Fischer, W.; Jamshidi, N.; Laping, R.; Liaw, C.-J.; Meng, W.; Poole, H. J.; Todd, R.

    2015-05-01

    A novel robotic plasma magnetron mole with a 50 cm long cathode was designed, fabricated, and operated. The reason for this endeavor is to alleviate the problems of unacceptable resistive heating of stainless steel vacuum tubes in the BNL Relativistic Heavy Ion Collider (RHIC). The magnetron mole was successfully operated to copper coat an assembly containing a full-size, stainless steel, cold bore, RHIC magnet tubing connected to two types of RHIC bellows, to which two additional pipes made of RHIC tubing were connected. To increase the cathode lifetime, a movable magnet package was developed, and the thickest possible cathode was made, with a rather challenging target to substrate (de facto anode) distance of less than 1.5 cm. Achieving reliable steady state magnetron discharges at such a short cathode to anode gap was rather challenging, when compared to commercial coating equipment, where the target to substrate distance is 10's cm; 6.3 cm is the lowest experimental target to substrate distance found in the literature. Additionally, the magnetron developed during this project provides unique omni-directional uniform coating. The magnetron is mounted on a carriage with spring loaded wheels that successfully crossed bellows and adjusted for variations in vacuum tube diameter, while keeping the magnetron centered. Electrical power and cooling water were fed through a cable bundle. The umbilical cabling system is driven by a motorized spool. Excellent coating adhesion was achieved. Measurements indicated that well-scrubbed copper coating reduced secondary electron yield to 1, i.e., the problem of electron clouds can be eliminated. Room temperature RF resistivity measurement indicated that a 10 μm copper coated stainless steel RHIC tube has a conductivity close to that of pure copper tubing. Excellent coating adhesion was achieved. The device details and experimental results are described.

  5. Plasma Sputtering Robotic Device for In-Situ Thick Coatings of Long, Small Diameter Vacuum Tubes

    Science.gov (United States)

    Hershcovitch, Ady

    2014-10-01

    A novel robotic plasma magnetron mole with a 50 cm long cathode was designed fabricated & operated. Reason for this endeavor is to alleviate the problems of unacceptable ohmic heating of stainless steel vacuum tubes and of electron clouds, due to high secondary electron yield (SEY), in the BNL Relativistic Heavy Ion Collider (RHIC). The magnetron mole was successfully operated to copper coat an assembly containing a full-size, stainless steel, cold bore, RHIC magnet tubing connected to two types of RHIC bellows, to which two additional pipes made of RHIC tubing were connected. To increase cathode lifetime, movable magnet package was developed, and thickest possible cathode was made, with a rather challenging target to substrate (de facto anode) distance of less than 1.5 cm. Achieving reliable steady state magnetron discharges at such a short cathode to anode gap was rather challenging, when compared to commercial coating equipment, where the target to substrate distance is 10's cm; 6.3 cm is the lowest experimental target to substrate distance found in the literature. Additionally, the magnetron developed during this project provides unique omni-directional uniform coating. The magnetron is mounted on a carriage with spring loaded wheels that successfully crossed bellows and adjusted for variations in vacuum tube diameter, while keeping the magnetron centered. Electrical power and cooling water were fed through a cable bundle. The umbilical cabling system is driven by a motorized spool. Excellent coating adhesion was achieved. Measurements indicated that well-scrubbed copper coating reduced SEY to 1, i.e., the problem of electron clouds can be eliminated. Room temperature RF resistivity measurement indicated that 10 μm Cu coated stainless steel RHIC tube has conductivity close to that of pure copper tubing. Excellent coating adhesion was achieved. Device detail and experimental results will be presented. Work supported by Brookhaven Science Associates, LLC under

  6. Plasma sputtering robotic device for in-situ thick coatings of long, small diameter vacuum tubes

    Energy Technology Data Exchange (ETDEWEB)

    Hershcovitch, A., E-mail: hershcovitch@bnl.gov; Blaskiewicz, M.; Brennan, J. M.; Fischer, W.; Liaw, C.-J.; Meng, W.; Todd, R. [Brookhaven National Laboratory, Upton, New York 11973 (United States); Custer, A.; Dingus, A.; Erickson, M.; Jamshidi, N.; Laping, R.; Poole, H. J. [PVI, Oxnard, California 93031 (United States)

    2015-05-15

    A novel robotic plasma magnetron mole with a 50 cm long cathode was designed, fabricated, and operated. The reason for this endeavor is to alleviate the problems of unacceptable resistive heating of stainless steel vacuum tubes in the BNL Relativistic Heavy Ion Collider (RHIC). The magnetron mole was successfully operated to copper coat an assembly containing a full-size, stainless steel, cold bore, RHIC magnet tubing connected to two types of RHIC bellows, to which two additional pipes made of RHIC tubing were connected. To increase the cathode lifetime, a movable magnet package was developed, and the thickest possible cathode was made, with a rather challenging target to substrate (de facto anode) distance of less than 1.5 cm. Achieving reliable steady state magnetron discharges at such a short cathode to anode gap was rather challenging, when compared to commercial coating equipment, where the target to substrate distance is 10's cm; 6.3 cm is the lowest experimental target to substrate distance found in the literature. Additionally, the magnetron developed during this project provides unique omni-directional uniform coating. The magnetron is mounted on a carriage with spring loaded wheels that successfully crossed bellows and adjusted for variations in vacuum tube diameter, while keeping the magnetron centered. Electrical power and cooling water were fed through a cable bundle. The umbilical cabling system is driven by a motorized spool. Excellent coating adhesion was achieved. Measurements indicated that well-scrubbed copper coating reduced secondary electron yield to 1, i.e., the problem of electron clouds can be eliminated. Room temperature RF resistivity measurement indicated that a 10 μm copper coated stainless steel RHIC tube has a conductivity close to that of pure copper tubing. Excellent coating adhesion was achieved. The device details and experimental results are described.

  7. Using Observations of Deep Convective Systems to Constrain Atmospheric Column Absorption of Solar Radiation in the Optically Thick Limit

    Science.gov (United States)

    Dong, Xiquan; Wielicki, Bruce A.; Xi, Baike; Hu, Yongxiang; Mace, Gerald G.; Benson, Sally; Rose, Fred; Kato, Seiji; Charlock, Thomas; Minnis, Patrick

    2008-01-01

    Atmospheric column absorption of solar radiation A(sub col) is a fundamental part of the Earth's energy cycle but is an extremely difficult quantity to measure directly. To investigate A(sub col), we have collocated satellite-surface observations for the optically thick Deep Convective Systems (DCS) at the Department of Energy Atmosphere Radiation Measurement (ARM) Tropical Western Pacific (TWP) and Southern Great Plains (SGP) sites during the period of March 2000 December 2004. The surface data were averaged over a 2-h interval centered at the time of the satellite overpass, and the satellite data were averaged within a 1 deg X 1 deg area centered on the ARM sites. In the DCS, cloud particle size is important for top-of-atmosphere (TOA) albedo and A(sub col) although the surface absorption is independent of cloud particle size. In this study, we find that the A(sub col) in the tropics is approximately 0.011 more than that in the middle latitudes. This difference, however, disappears, i.e., the A(sub col) values at both regions converge to the same value (approximately 0.27 of the total incoming solar radiation) in the optically thick limit (tau greater than 80). Comparing the observations with the NASA Langley modified Fu_Liou 2-stream radiative transfer model for optically thick cases, the difference between observed and model-calculated surface absorption, on average, is less than 0.01, but the model-calculated TOA albedo and A(sub col) differ by 0.01 to 0.04, depending primarily on the cloud particle size observation used. The model versus observation discrepancies found are smaller than many previous studies and are just within the estimated error bounds. We did not find evidence for a large cloud absorption anomaly for the optically thick limit of extensive ice cloud layers. A more modest cloud absorption difference of 0.01 to 0.04 cannot yet be ruled out. The remaining uncertainty could be reduced with additional cases, and by reducing the current

  8. Optical Density Analysis of X-Rays Utilizing Calibration Tooling to Estimate Thickness of Parts

    Science.gov (United States)

    Grau, David

    2012-01-01

    This process is designed to estimate the thickness change of a material through data analysis of a digitized version of an x-ray (or a digital x-ray) containing the material (with the thickness in question) and various tooling. Using this process, it is possible to estimate a material's thickness change in a region of the material or part that is thinner than the rest of the reference thickness. However, that same principle process can be used to determine the thickness change of material using a thinner region to determine thickening, or it can be used to develop contour plots of an entire part. Proper tooling must be used. An x-ray film with an S-shaped characteristic curve or a digital x-ray device with a product resulting in like characteristics is necessary. If a film exists with linear characteristics, this type of film would be ideal; however, at the time of this reporting, no such film has been known. Machined components (with known fractional thicknesses) of a like material (similar density) to that of the material to be measured are necessary. The machined components should have machined through-holes. For ease of use and better accuracy, the throughholes should be a size larger than 0.125 in. (.3 mm). Standard components for this use are known as penetrameters or image quality indicators. Also needed is standard x-ray equipment, if film is used in place of digital equipment, or x-ray digitization equipment with proven conversion properties. Typical x-ray digitization equipment is commonly used in the medical industry, and creates digital images of x-rays in DICOM format. It is recommended to scan the image in a 16-bit format. However, 12-bit and 8-bit resolutions are acceptable. Finally, x-ray analysis software that allows accurate digital image density calculations, such as Image-J freeware, is needed. The actual procedure requires the test article to be placed on the raw x-ray, ensuring the region of interest is aligned for perpendicular x-ray exposure

  9. Quantitative assessment of rat corneal thickness and morphology during stem cell therapy by high-speed optical coherence tomography

    Science.gov (United States)

    Lal, Cerine; McGrath, James; Subhash, Hrebesh; Rani, Sweta; Ritter, Thomas; Leahy, Martin

    2016-03-01

    Optical Coherence Tomography (OCT) is a non-invasive 3 dimensional optical imaging modality that enables high resolution cross sectional imaging in biological tissues and materials. Its high axial and lateral resolution combined with high sensitivity, imaging depth and wide field of view makes it suitable for wide variety of high resolution medical imaging applications at clinically relevant speed. With the advent of swept source lasers, the imaging speed of OCT has increased considerably in recent years. OCT has been used in ophthalmology to study dynamic changes occurring in the cornea and iris, thereby providing physiological and pathological changes that occur within the anterior segment structures such as in glaucoma, during refractive surgery, lamellar keratoplasty and corneal diseases. In this study, we assess the changes in corneal thickness in the anterior segment of the eye during wound healing process in a rat corneal burn model following stem cell therapy using high speed swept source OCT.

  10. Electron density measurement in gas discharge plasmas by optical and acoustic methods

    Science.gov (United States)

    Biagioni, A.; Anania, M. P.; Bellaveglia, M.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Filippi, F.; Mostacci, A.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.

    2016-08-01

    Plasma density represents a very important parameter for both laser wakefield and plasma wakefield acceleration, which use a gas-filled capillary plasma source. Several techniques can be used to measure the plasma density within a capillary discharge, which are mainly based on optical diagnostic methods, as for example the well-known spectroscopic method using the Stark broadening effect. In this work, we introduce a preliminary study on an alternative way to detect the plasma density, based on the shock waves produced by gas discharge in a capillary. Firstly, the measurements of the acoustic spectral content relative to the laser-induced plasmas by a solid target allowed us to understand the main properties of the acoustic waves produced during this kind of plasma generation; afterwards, we have extended such acoustic technique to the capillary plasma source in order to calibrate it by comparison with the stark broadening method.

  11. Broadband field-resolved terahertz detection via laser induced air plasma with controlled optical bias.

    Science.gov (United States)

    Li, Chia-Yeh; Seletskiy, Denis V; Yang, Zhou; Sheik-Bahae, Mansoor

    2015-05-04

    We report a robust method of coherent detection of broadband THz pulses using terahertz induced second-harmonic (TISH) generation in a laser induced air plasma together with a controlled second harmonic optical bias. We discuss a role of the bias field and its phase in the process of coherent detection. Phase-matching considerations subject to plasma dispersion are also examined.

  12. Optical Methods For Transient Plasmas Studies By Multichannel TEA Nitrogen Laser

    Science.gov (United States)

    Ursu, Ioan; Popescu, Ion M.; Ivascu, M.; Baltog, I.; Mihut, L.; Zambreanu, V.; Zoita, V.

    1989-05-01

    A multichannel TEA nitrogen laser has been realized for some optical diagnostics. The following methods have been applied on the plasma focus device (PFD): interferometry, schlieren, shadowgraphy and a new combination of the last two. The background of these methods and some qualitative and quantitative results obtained in plasma focus (PF) studies are presented.

  13. Optical boundary reconstruction of tokamak plasmas for feedback control of plasma position and shape

    NARCIS (Netherlands)

    Hommen, G.; de M. Baar,; Nuij, P.; McArdle, G.; Akers, R.; Steinbuch, M.

    2010-01-01

    A new diagnostic is developed to reconstruct the plasma boundary using visible wavelength images. Exploiting the plasma's edge localized and toroidally symmetric emission profile, a new coordinate transform is presented to reconstruct the plasma boundary from a poloidal view image. The plasma b

  14. A Neural Network Approach to Infer Optical Depth of Thick Ice Clouds at Night

    Science.gov (United States)

    Minnis, P.; Hong, G.; Sun-Mack, S.; Chen, Yan; Smith, W. L., Jr.

    2016-01-01

    One of the roadblocks to continuously monitoring cloud properties is the tendency of clouds to become optically black at cloud optical depths (COD) of 6 or less. This constraint dramatically reduces the quantitative information content at night. A recent study found that because of their diffuse nature, ice clouds remain optically gray, to some extent, up to COD of 100 at certain wavelengths. Taking advantage of this weak dependency and the availability of COD retrievals from CloudSat, an artificial neural network algorithm was developed to estimate COD values up to 70 from common satellite imager infrared channels. The method was trained using matched 2007 CloudSat and Aqua MODIS data and is tested using similar data from 2008. The results show a significant improvement over the use of default values at night with high correlation. This paper summarizes the results and suggests paths for future improvement.

  15. Towards multimodal detection of melanoma thickness based on optical coherence tomography and optoacoustics

    Science.gov (United States)

    Rahlves, M.; Varkentin, A.; Stritzel, J.; Blumenröther, E.; Mazurenka, M.; Wollweber, M.; Roth, B.

    2016-03-01

    Melanoma skin cancer has one of the highest mortality rates of all types of cancer if not detected at an early stage. The survival rate is highly dependent on its penetration depth, which is commonly determined by histopathology. In this work, we aim at combining optical coherence tomography and optoacoustic as a non-invasive all-optical method to measure the penetration depth of melanoma. We present our recent achievements to setup a handheld multimodal device and also results from first in vivo measurements on healthy and cancerous skin tissue, which are compared to measurements obtained by ultrasound and histopathology.

  16. Measurement of retinal nerve fiber layer thickness in eyes with optic disc swelling by using scanning laser polarimetry and optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Hata M

    2013-12-01

    Full Text Available Masayuki Hata, Kazuaki Miyamoto, Akio Oishi, Yugo Kimura, Satoko Nakagawa, Takahiro Horii, Nagahisa Yoshimura Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan Background: The retinal nerve fiber layer thickness (RNFLT in patients with optic disc swelling of different etiologies was compared using scanning laser polarimetry (SLP and spectral-domain optical coherence tomography (OCT. Methods: Forty-seven patients with optic disc swelling participated in the cross-sectional study. Both GDx SLP (enhanced corneal compensation and Spectralis spectral-domain OCT measurements of RNFLT were made in 19 eyes with papilledema (PE, ten eyes with optic neuritis (ON, and 18 eyes with nonarteritic anterior ischemic optic neuropathy (NAION at the neuro-ophthalmology clinic at Kyoto University Hospital. Differences in SLP (SLP-RNFLT and OCT (OCT-RNFLT measurements among different etiologies were investigated. Results: No statistical differences in average OCT-RNFLT among PE, ON, and NAION patients were noted. Average SLP-RNFLT in NAION patients was smaller than in PE (P<0.01 or ON (P=0.02 patients. When RNFLT in each retinal quadrant was compared, no difference among etiologies was noted on OCT, but on SLP, the superior quadrant was thinner in NAION than in PE (P<0.001 or ON (P=0.001 patients. Compared with age-adjusted normative data of SLP-RNFLT, average SLP-RNFLT in PE (P<0.01 and ON (P<0.01 patients was greater. Superior SLP-RNFLT in NAION patients was smaller (P=0.026. The ratio of average SLP-RNFLT to average OCT-RNFLT was smaller in NAION than in PE (P=0.001 patients. Conclusion: In the setting of RNFL thickening, despite increased light retardance in PE and ON eyes, SLP revealed that NAION eyes have less retardance, possibly associated with ischemic axonal loss. Keywords: optic disc swelling, scanning laser polarimetry, optical coherence tomography

  17. Optical and biological properties of transparent nanocrystalline hydroxyapatite obtained through spark plasma sintering.

    Science.gov (United States)

    Li, Zhong; Thompson, Brianna C; Dong, Zhili; Khor, Khiam Aik

    2016-12-01

    Transparent bioceramics have attracted a large amount of research interest as they facilitate direct observation of biointerfacial reactions. Thus far, attempts to achieve transparent hydroxyapatite have been focused on augmenting the sintering pressure and/or extending the sintering duration. This study aims at fabricating transparent HA using a direct and fast spark plasma sintering process with appropriate starting powder and moderate sintering pressure. Three types of raw powder, namely micro-spheres, nano-rods and nano-spheres, were sintered to investigate the optical and biological properties of the compacted pellets. It was found that in terms of transparency, the micro-sphere pellet sintered at 1000°C stood out with an in-line transmittance as high as 84% achieved at 1300nm for a 2mm thick sample. In addition, pellets fabricated from micro-spheres demonstrated the highest cell viability in in vitro biological tests with L929 cells. Living cells cultured on a transparent micro-sphere pellet could be directly and clearly observed by light microscopy. It is thus concluded that the micro-sphere powder is the most desirable raw material to manufacture transparent hydroxyapatite because it could enable dense pellets with notably high transparency and outstanding in vitro biocompatibility to be readily obtained.

  18. Boron nitride nanowalls: low-temperature plasma-enhanced chemical vapor deposition synthesis and optical properties

    Science.gov (United States)

    Merenkov, Ivan S.; Kosinova, Marina L.; Maximovskii, Eugene A.

    2017-05-01

    Hexagonal boron nitride (h-BN) nanowalls (BNNWs) were synthesized by plasma-enhanced chemical vapor deposition (PECVD) from a borazine (B3N3H6) and ammonia (NH3) gas mixture at a low temperature range of 400 °C-600 °C on GaAs(100) substrates. The effect of the synthesis temperature on the structure and surface morphology of h-BN films was investigated. The length and thickness of the h-BN nanowalls were in the ranges of 50-200 nm and 15-30 nm, respectively. Transmission electron microscope images showed the obtained BNNWs were composed of layered non-equiaxed h-BN nanocrystallites 5-10 nm in size. The parallel-aligned h-BN layers as an interfacial layer were observed between the film and GaAs(100) substrate. BNNWs demonstrate strong blue light emission, high transparency (>90%) both in visible and infrared spectral regions and are promising for optical applications. The present results enable a convenient growth of BNNWs at low temperatures.

  19. Shape correction of optical surfaces using plasma chemical vaporization machining with a hemispherical tip electrode.

    Science.gov (United States)

    Takino, Hideo; Yamamura, Kazuya; Sano, Yasuhisa; Mori, Yuzo

    2012-01-20

    We propose a plasma chemical vaporization machining device with a hemispherical tip electrode for optical fabrication. Radio-frequency plasma is generated close to the electrode under atmospheric conditions, and a workpiece is scanned relative to the stationary electrode under three-axis motion control to remove target areas on a workpiece surface. Experimental results demonstrate that surface removal progresses although process gas is not forcibly supplied to the plasma. The correction of shape errors on conventionally polished spheres is performed. As a result, highly accurate smooth surfaces with the desired rms shape accuracy of 3 nm are successfully obtained, which confirms that the device is effective for the fabrication of optics.

  20. Optimally enhanced optical emission in laser-induced air plasma by femtosecond double-pulse

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Anmin [Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012 (China); Institute of Theoretical Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130012 (China); Li, Suyu; Li, Shuchang; Jiang, Yuanfei; Ding, Dajun [Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012 (China); Shao, Junfeng; Wang, Tingfeng [State Key Laboratory of Laser Interaction with Matter, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Huang, Xuri [Institute of Theoretical Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130012 (China); Jin, Mingxing [Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012 (China); State Key Laboratory of Laser Interaction with Matter, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China)

    2013-10-15

    In laser-induced breakdown spectroscopy, a femtosecond double-pulse laser was used to induce air plasma. The plasma spectroscopy was observed to lead to significant increase of the intensity and reproducibility of the optical emission signal compared to femtosecond single-pulse laser. In particular, the optical emission intensity can be optimized by adjusting the delay time of femtosecond double-pulse. An appropriate pulse-to-pulse delay was selected, that was typically about 50 ps. This effect can be especially advantageous in the context of femtosecond laser-induced breakdown spectroscopy, plasma channel, and so on.

  1. A COMPARATIVE STUDY OF CENTRAL FOVEAL THICKNESS PRE AND POST CATARACT SURGERY USING SD-OPTICAL COHERENCE TOMOGRAPHY

    Directory of Open Access Journals (Sweden)

    Navneet Saxena

    2017-08-01

    Full Text Available BACKGROUND The purpose of this study is to compare central foveal thickness (CFT of patients preoperatively and postoperatively cataract surgery using SD- optical coherence tomography and to correlate CFT with vision. MATERIALS AND METHODS 200 eyes of 100 patients were examined and two groups were formed. Group-A was considered as the control group in the study and eyes in group-B were operated for cataract using SICS technique. The central foveal thickness (CFT in each group was measured using SD-OCT machine (Cirrus Zeiss preoperatively, postoperatively on day 1, week 1 and after 1 month and the data was compiled and compared. RESULTS OCT detected increased central foveal thickness postoperatively on day 1 and weeks 2 but this returned to preoperative levels in one month. It was also seen that preoperative BCVA was poor (0.53± 0.12 Snellen approx. 6/24. Improvement in BCVA was seen in postoperative day-1, week 2 and 1 month. CONCLUSION This study shows that preoperative CFT values were minimal which increased on postoperatively but returned to preoperative values at one month after surgery BCVA was poorer preoperatively due to cataract but improved as CFT decreased with time.

  2. Reverse engineering of B-pillar with 3D optical scanning for manufacturing of non-uniform thickness part

    Directory of Open Access Journals (Sweden)

    Islam Md. Tasbirul

    2017-01-01

    Full Text Available This paper presents reverse engineering (RE of a complex automobile structural part, B-pillar. As a major part of the automobile body-in white (BiW, B-pillar has substantial opportunity for weight reduction by introducing variable thickness across its sections. To leverage such potential, an existing B-pillar was reverse engineered with a 3D optical scanner and computer aided design (CAD application. First, digital data (i.e. in meshes of exiting B-pillar was obtained by the scanner, and subsequently, this information was utilized in developing a complete 3D CAD model. CATIA V5 was used in the modeling where some of the essential work benches were “Digitized Shape Editor”, “Quick Surface Reconstruction”, “Wireframe and Surface Design”, “Freestyle”, “Generation Shape Design” and “Part design”. In the final CAD design, five different thicknesses were incorporated successfully in order to get a B-pillar with non-uniform sections. This research opened opportunities for thickness optimization and mold tooling design in real time manufacturing.

  3. Assessment of Corneal Epithelial Thickness in Asymmetric Keratoconic Eyes and Normal Eyes Using Fourier Domain Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    S. Catalan

    2016-01-01

    Full Text Available Purpose. To compare the characteristics of asymmetric keratoconic eyes and normal eyes by Fourier domain optical coherence tomography (OCT corneal mapping. Methods. Retrospective corneal and epithelial thickness OCT data for 74 patients were compared in three groups of eyes: keratoconic (n=22 and normal fellow eyes (n=22 in patients with asymmetric keratoconus and normal eyes (n=104 in healthy subjects. Areas under the curve (AUC of receiver operator characteristic (ROC curves for each variable were compared across groups to indicate their discrimination capacity. Results. Three variables were found to differ significantly between fellow eyes and normal eyes (all p<0.05: minimum corneal thickness, thinnest corneal point, and central corneal thickness. These variables combined showed a high discrimination power to differentiate fellow eyes from normal eyes indicated by an AUC of 0.840 (95% CI: 0.762–0.918. Conclusions. Our findings indicate that topographically normal fellow eyes in patients with very asymmetric keratoconus differ from the eyes of healthy individuals in terms of their corneal epithelial and pachymetry maps. This type of information could be useful for an early diagnosis of keratoconus in topographically normal eyes.

  4. Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level: shell thickness dependence in upconverting optical properties.

    Science.gov (United States)

    Zhang, Fan; Che, Renchao; Li, Xiaomin; Yao, Chi; Yang, Jianping; Shen, Dengke; Hu, Pan; Li, Wei; Zhao, Dongyuan

    2012-06-13

    Lanthanide-doped upconversion nanoparticles have shown considerable promise in solid-state lasers, three-dimensional flat-panel displays, and solar cells and especially biological labeling and imaging. It has been demonstrated extensively that the epitaxial coating of upconversion (UC) core crystals with a lattice-matched shell can passivate the core and enhance the overall upconversion emission intensity of the materials. However, there are few papers that report a precise link between the shell thickness of core/shell nanoparticles and their optical properties. This is mainly because rare earth fluoride upconversion core/shell structures have only been inferred from indirect measurements to date. Herein, a reproducible method to grow a hexagonal NaGdF(4) shell on NaYF(4):Yb,Er nanocrystals with monolayer control thickness is demonstrated for the first time. On the basis of the cryo-transmission electron microscopy, rigorous electron energy loss spectroscopy, and high-angle annular dark-field investigations on the core/shell structure under a low operation temperature (96 K), direct imaging the NaYF(4):Yb,Er@NaGdF(4) nanocrystal core/shell structure at the subnanometer level was realized for the first time. Furthermore, a strong linear link between the NaGdF(4) shell thickness and the optical response of the hexagonal NaYF(4):Yb,Er@NaGdF(4) core/shell nanocrystals has been established. During the epitaxial growth of the NaGdF(4) shell layer by layer, surface defects of the nanocrystals can be gradually passivated by the homogeneous shell deposition process, which results in the obvious enhancement in overall UC emission intensity and lifetime and is more resistant to quenching by water molecules.

  5. Optical constants and fitted transmittance spectra of varies thickness of polycrystalline ZnSe thin films in terms of spectroscopic ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Shaaban, E.R., E-mail: esam_ramadan2008@yahoo.com [Physics Department, Faculty of Science, Al-Azhar University, Assiut 71542 (Egypt)

    2013-06-25

    Highlights: ► Different thicknesses of ZnSe films were prepared. ► The microstructure parameters of the films have been determined. ► Spectroscopic ellipsometry parameters were analyzed to determine the optical constants. ► Transmittance spectra has been simulated using Murmann’s exact equation. -- Abstract: Different thickness of Zinc selenide (ZnSe) thin films were deposited onto glass substrates by the thermal evaporation technique. Their structural characteristics were studied by X-ray diffraction (XRD). The microstructure parameters, crystallite size and microstrain were calculated. The optical constants (n, k) and film thicknesses of ZnSe thin films were obtained by fitting the ellipsometric parameters (ψ and Δ) data using three layer model systems in the wavelength range 300–1100 nm. It is found that the refractive index, n increases with the increase of the film thickness. The possible optical transition in these films is found to be allowed direct transitions. The optical energy gap increase with increasing the film thickness in a narrow range. The experimental transmittances spectrum can be fitted in terms Murmann’s exact equation using the modeled thickness and optical constants obtained spectroscopic ellipsometry model.

  6. Modification of optical and electrical properties of chemical bath deposited CdS using plasma treatments

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, G. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); Krishnan, B. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); CIIDIT, Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico); Avellaneda, D.; Castillo, G. Alan; Das Roy, T.K. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); Shaji, S., E-mail: sshajis@yahoo.com [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); CIIDIT, Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico)

    2011-08-31

    Cadmium sulphide (CdS) is a well known n-type semiconductor that is widely used in solar cells. Here we report preparation and characterization of chemical bath deposited CdS thin films and modification of their optical and electrical properties using plasma treatments. CdS thin films were prepared from a chemical bath containing Cadmium chloride, Triethanolamine and Thiourea under various deposition conditions. Good quality thin films were obtained during deposition times of 5, 10 and 15 min. CdS thin films prepared for 10 min. were treated using a glow discharge plasma having nitrogen and argon carrier gases. The changes in morphology, optical and electrical properties of these plasma treated CdS thin films were analyzed in detail. The results obtained show that plasma treatment is an effective technique in modification of the optical and electrical properties of chemical bath deposited CdS thin films.

  7. Plasma renin responses to mental stress and carotid intima-media thickness in black Africans: the SABPA study.

    Science.gov (United States)

    Hamer, M; Malan, L; Schutte, A E; Huisman, H W; van Rooyen, J M; Schutte, R; Fourie, C M T; Malan, N T; Seedat, Y K

    2011-07-01

    The renin-angiotensin-aldosterone system can be activated by sympathetic nervous input and is thought to have an important role in the prevalence of hypertension and cardiovascular risk in black Africans. We examined (1) the association between plasma renin responses to mental stress and a marker of sub-clinical atherosclerosis; and (2) associations between resting renin and 24-h ambulatory blood pressure. Participants were 143 urbanized black African men and women (43.1 ± 7.7 years) drawn from a study of Sympathetic Activity and Ambulatory Blood Pressure in Africans (SABPA). After an overnight fast, participants completed the Stroop mental stress task. Blood samples were drawn during baseline and 10 min after the task to assess the concentration of active renin in plasma. Blood pressure assessments included continuous Finometer measures during the stress testing and 24-h ambulatory monitoring. Carotid intima-media thickness (CIMT) was measured using high-resolution ultrasound. Approximately 50% of the sample responded to the task with an increase in renin concentration. Multiple linear regression analysis revealed an association between the renin stress response and CIMT (β = 0.024, 95% confidence interval, 0.004-0.043), after adjustment for conventional risk factors, blood pressure stress responses and basal levels of renin activity (R(2) for model = 0.37). In addition, resting renin was inversely associated with ambulatory blood pressure. In summary, heightened release of renin during a laboratory mental stressor was associated with a marker of sub-clinical atherosclerosis; thus, it may be a potential mechanism in explaining the increased burden of cardiovascular disease in urbanized black Africans.

  8. Plasma diagnostics in gas metal arc welding by optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Valensi, F; Pellerin, S; Zielinska, S [GREMI, Universite d' Orleans (Site de Bourges)/CNRS, BP 4043, 18028 Bourges cedex (France); Boutaghane, A [Universite des Sciences et de la Technologie Houari Boumediene, Alger (Algeria); Dzierzega, K [Marian Smoluchowski Institute of Physics, Jagellonian University, Krakow (Poland); Pellerin, N [CNRS, UPR3079 CEMHTI, 1D av. de la Recherche Scientifique, 45071 Orleans cedex 2 (France); Briand, F, E-mail: flavien.valensi@laplace.univ-tsle.f, E-mail: stephane.pellerin@univ-orleans.f, E-mail: aboutaghane@yahoo.f, E-mail: krzycho@netmail.if.uj.edu.p, E-mail: sylwia.zielinska@airliquide.co, E-mail: nadia.pellerin@univ-orleans.f, E-mail: francis.briand@airliquide.co [CTAS-Air Liquide Welding, Saint Ouen l' Aumone, 95315 Cergy-Pontoise cedex (France)

    2010-11-03

    The plasma column in a metal inert gas welding process is investigated by optical emission spectroscopy and high-speed imaging. The concentration and repartition of iron vapours are measured and correlated with the plasma and electrode geometric configuration. Plasma temperatures and electron densities are also measured for each studied position in the plasma. The temperatures are calculated using two different methods, allowing validation of the local thermodynamic equilibrium state of the plasma. The results show a maximum temperature of 12 500 K in the upper part of the arc, away from the arc axis. The iron concentration reaches a maximum of 0.3% close to the anode and strongly decreases along both the vertical and radial directions. The plasma thermophysical properties, calculated from this plasma composition, are then discussed regarding the metal transfer mode.

  9. In situ characterization of an optically thick atom-filled cavity

    Science.gov (United States)

    Munns, J. H. D.; Qiu, C.; Ledingham, P. M.; Walmsley, I. A.; Nunn, J.; Saunders, D. J.

    2016-01-01

    A means for precise experimental characterization of the dielectric susceptibility of an atomic gas inside an optical cavity is important for the design and operation of quantum light-matter interfaces, particularly in the context of quantum information processing. Here we present a numerically optimized theoretical model to predict the spectral response of an atom-filled cavity, accounting for both homogeneous and inhomogeneous broadening at high optical densities. We investigate the regime where the two broadening mechanisms are of similar magnitude, which makes the use of common approximations invalid. Our model agrees with an experimental implementation with warm caesium vapor in a ring cavity. From the cavity response, we are able to extract important experimental parameters, for instance the ground-state populations, total number density, and the magnitudes of both homogeneous and inhomogeneous broadening.

  10. In Situ Characterisation of an Optically Thick Atom-Filled Cavity

    CERN Document Server

    Munns, J H D; Ledingham, P M; Walmsley, I A; Nunn, J; Saunders, D J

    2015-01-01

    A means for precise experimental characterization of the dielectric susceptibility of an atomic gas inside and optical cavity is important for design and operation of quantum light matter interfaces, particularly in the context of quantum information processing. Here we present a numerically optimised theoretical model to predict the spectral response of an atom-filled cavity, accounting for both homogeneous and inhomogeneous broadening at high optical densities. We investigate the regime where the two broadening mechanisms are of similar magnitude, which makes the use of common approximations invalid. Our model agrees with an experimental implementation with warm caesium vapour in a ring cavity. From the cavity response, we are able to extract important experimental parameters, for instance the ground state populations, total number density and the magnitudes of both homogeneous and inhomogeneous broadening.

  11. The Influences of Thickness on the Optical and Electrical Properties of Dual-Ion-Beam Sputtering-Deposited Molybdenum-Doped Zinc Oxide Layer

    Directory of Open Access Journals (Sweden)

    Chin-Chiuan Kuo

    2011-01-01

    Full Text Available The thickness of transparent conductive oxide (TCO layer significantly affects not only the optical and electrical properties, but also its mechanical durability. To evaluate these influences on the molybdenum-doped zinc oxide layer deposited on a flexible polyethersulfone (PES substrate by using a dual-ion-beam sputtering system, films with various thicknesses were prepared at a same condition and their optical and electrical performances have been compared. The results show that all the deposited films present a crystalline wurtzite structure, but the preferred orientation changes from (002 to (100 with increasing the film thickness. Thicker layer contains a relative higher carrier concentration, but the consequently accumulated higher internal stress might crack the film and retard the carrier mobility. The competition of these two opposite trends for carrier concentration and carrier mobility results in that the electrical resistivity of molybdenum-doped zinc oxide first decreases with the thickness but suddenly rises when a critical thickness is reached.

  12. Online Coupling of Flow-Field Flow Fractionation and Single Particle Inductively Coupled Plasma-Mass Spectrometry: Characterization of Nanoparticle Surface Coating Thickness and Aggregation State

    Science.gov (United States)

    Surface coating thickness and aggregation state have strong influence on the environmental fate, transport, and toxicity of engineered nanomaterials. In this study, flow-field flow fractionation coupled on-line with single particle inductively coupled plasma-mass spectrometry i...

  13. Correlation in retinal nerve fibre layer thickness in uveitis and healthy eyes using scanning laser polarimetry and optical coherence tomography.

    Science.gov (United States)

    Bellocq, David; Maucort-Boulch, Delphine; Kodjikian, Laurent; Denis, Philippe

    2016-06-17

    To evaluate the correlation of retinal nerve fibre layer (RNFL) thickness measured using spectral domain optical coherence tomography (SD-OCT) and scanning laser polarimetry (SLP) in uveitic eyes compared with healthy eyes. A descriptive, observational, prospective, consecutive, cross-sectional, controlled, monocentre case series was conducted from May to October 2015. Clinical characteristics, best-corrected visual acuity, intraocular pressure, RNFL thickness measurement with SD-OCT and SLP using GDx variable corneal compensation (GDx VCC) were performed for each patient. An evaluation of anterior chamber inflammation with laser flare-cell meter was also carried out. Correlations between SD-OCT and GDx VCC RNFL measurement were evaluated by linear regression analysis. Fifty-four patients were included and divided into two groups: 50 healthy eyes in 29 patients and 42 uveitic eyes in 25 patients. The mean RNFL thickness was 98.08(±8.42) and 113.21(±20.53) μm in the healthy group and the uveitic group, respectively, when measured with SD-OCT (p<0.001); and 56.43(±5.24) and 58.77(±6.67) μm, respectively, when measured with GDx VCC (p=0.078). There was a strong correlation between total average RNFL thickness measured using SD-OCT and GDX (r=0.48, p<0.001) in healthy eyes but there was no correlation in the uveitic eyes (r=0.2, p=0.19). RNFL thickness was significantly greater when measured using SD-OCT in active uveitis as compared with GDx. There was no correlation between the RNFL thickness measurements obtained using the two techniques in uveitic eyes. The discrepancies between the results suggest that for these patients both techniques should be used in conjunction to obtain an accurate measurement of RNFL. IRB 00008855 Société Française d'Ophtalmologie IRB#1. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  14. Focusing light through biological tissue and tissue-mimicking phantoms up to 9.6 cm in thickness with digital optical phase conjugation

    Science.gov (United States)

    Shen, Yuecheng; Liu, Yan; Ma, Cheng; Wang, Lihong V.

    2016-08-01

    Optical phase conjugation (OPC)-based wavefront shaping techniques focus light through or within scattering media, which is critically important for deep-tissue optical imaging, manipulation, and therapy. However, to date, the sample thickness in OPC experiments has been limited to only a few millimeters. Here, by using a laser with a long coherence length and an optimized digital OPC system that can safely deliver more light power, we focused 532-nm light through tissue-mimicking phantoms up to 9.6 cm thick, as well as through ex vivo chicken breast tissue up to 2.5 cm thick. Our results demonstrate that OPC can be achieved even when photons have experienced on average 1000 scattering events. The demonstrated penetration of nearly 10 cm (˜100 transport mean free paths) has never been achieved before by any optical focusing technique, and it shows the promise of OPC for deep-tissue noninvasive optical imaging, manipulation, and therapy.

  15. Association of Plasma Adiponectin and Oxidized Low-Density Lipoprotein with Carotid Intima-Media Thickness in Diabetic Nephropathy

    Science.gov (United States)

    Georgoulidou, Anastasia; Roumeliotis, Athanasios; Roumeliotis, Stefanos; Giannakopoulou, Efstathia; Papanas, Nikolaos; Passadakis, Ploumis; Manolopoulos, Vangelis G.; Vargemezis, Vassilis

    2015-01-01

    Aims. We sought to determine the association between levels of adiponectin and oxidized low-density lipoprotein (ox-LDL) in patients with diabetic nephropathy as well as their effect on carotid intima-media thickness (cIMT). Methods. Adiponectin and ox-LDL were determined in 25 diabetic patients without nephropathy and 94 patients at different stages of diabetic nephropathy including subjects on hemodialysis. cIMT was measured using real-time B-mode ultrasonography. Results. Plasma adiponectin levels increased significantly with severity of diabetic nephropathy (P = 0.002), on the contrary to ox-LDL which decreased with disease severity (P < 0.001). cIMT was significantly higher at late stages of diabetic nephropathy compared with early stages (P = 0.022). Adiponectin was a significant negative predictor of ox-LDL levels (β = −5.45, P = 0.023), independently of confounding factors. There was no significant correlation between cIMT and adiponectin or ox-LDL either in the total sample population or according to disease staging. Cluster analysis showed that patients with the highest cIMT values, highest levels of adiponectin, and lowest levels of ox-LDL were included in one cluster and all assigned to stage 5 of diabetic nephropathy. Conclusions. There was no significant association between adiponectin or ox-LDL and cIMT and, therefore, other factors affecting this surrogate marker of cardiovascular disease in diabetic nephropathy should be sought. PMID:26064982

  16. Association of Plasma Adiponectin and Oxidized Low-Density Lipoprotein with Carotid Intima-Media Thickness in Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Anna Tavridou

    2015-01-01

    Full Text Available Aims. We sought to determine the association between levels of adiponectin and oxidized low-density lipoprotein (ox-LDL in patients with diabetic nephropathy as well as their effect on carotid intima-media thickness (cIMT. Methods. Adiponectin and ox-LDL were determined in 25 diabetic patients without nephropathy and 94 patients at different stages of diabetic nephropathy including subjects on hemodialysis. cIMT was measured using real-time B-mode ultrasonography. Results. Plasma adiponectin levels increased significantly with severity of diabetic nephropathy (P=0.002, on the contrary to ox-LDL which decreased with disease severity (P<0.001. cIMT was significantly higher at late stages of diabetic nephropathy compared with early stages (P=0.022. Adiponectin was a significant negative predictor of ox-LDL levels (β=-5.45, P=0.023, independently of confounding factors. There was no significant correlation between cIMT and adiponectin or ox-LDL either in the total sample population or according to disease staging. Cluster analysis showed that patients with the highest cIMT values, highest levels of adiponectin, and lowest levels of ox-LDL were included in one cluster and all assigned to stage 5 of diabetic nephropathy. Conclusions. There was no significant association between adiponectin or ox-LDL and cIMT and, therefore, other factors affecting this surrogate marker of cardiovascular disease in diabetic nephropathy should be sought.

  17. Comparative study of the retinal nerve fibre layer thickness performed with optical coherence tomography and GDx scanning laser polarimetry in patients with primary open-angle glaucoma.

    Science.gov (United States)

    Wasyluk, Jaromir T; Jankowska-Lech, Irmina; Terelak-Borys, Barbara; Grabska-Liberek, Iwona

    2012-03-01

    We compared the parameters of retinal nerve fibre layer in patients with advanced glaucoma with the use of different OCT (Optical Coherence Tomograph) devices in relation to analogical measurements performed with GDx VCC (Nerve Fiber Analyzer with Variable Corneal Compensation) scanning laser polarimetry. Study subjects had advanced primary open-angle glaucoma, previously treated conservatively, diagnosed and confirmed by additional examinations (visual field, ophthalmoscopy of optic nerve, gonioscopy), A total of 10 patients were enrolled (9 women and 1 man), aged 18-70 years of age. Nineteen eyes with advanced glaucomatous neuropathy were examined. 1) Performing a threshold perimetry Octopus, G2 strategy and ophthalmoscopy of optic nerve to confirm the presence of advanced primary open-angle glaucoma; 2) performing a GDx VCC scanning laser polarimetry of retinal nerve fibre layer; 3) measuring the retinal nerve fibre layer thickness with 3 different optical coherence tomographs. The parameters of the retinal nerve fibre layer thickness are highly correlated between the GDx and OCT Stratus and 3D OCT-1000 devices in mean retinal nerve fibre layer thickness, retinal nerve fibre layer thickness in the upper sector, and correlation of NFI (GDx) with mean retinal nerve fibre layer thickness in OCT examinations. Absolute values of the retinal nerve fibre layer thickness (measured in µm) differ significantly between GDx and all OCT devices. Examination with OCT devices is a sensitive diagnostic method of glaucoma, with good correlation with the results of GDx scanning laser polarimetry of the patients.

  18. Measurement of retinal nerve fiber layer thickness in eyes with optic disc swelling by using scanning laser polarimetry and optical coherence tomography.

    Science.gov (United States)

    Hata, Masayuki; Miyamoto, Kazuaki; Oishi, Akio; Kimura, Yugo; Nakagawa, Satoko; Horii, Takahiro; Yoshimura, Nagahisa

    2014-01-01

    The retinal nerve fiber layer thickness (RNFLT) in patients with optic disc swelling of different etiologies was compared using scanning laser polarimetry (SLP) and spectral-domain optical coherence tomography (OCT). Forty-seven patients with optic disc swelling participated in the cross-sectional study. Both GDx SLP (enhanced corneal compensation) and Spectralis spectral-domain OCT measurements of RNFLT were made in 19 eyes with papilledema (PE), ten eyes with optic neuritis (ON), and 18 eyes with nonarteritic anterior ischemic optic neuropathy (NAION) at the neuro-ophthalmology clinic at Kyoto University Hospital. Differences in SLP (SLP-RNFLT) and OCT (OCT-RNFLT) measurements among different etiologies were investigated. No statistical differences in average OCT-RNFLT among PE, ON, and NAION patients were noted. Average SLP-RNFLT in NAION patients was smaller than in PE (P<0.01) or ON (P=0.02) patients. When RNFLT in each retinal quadrant was compared, no difference among etiologies was noted on OCT, but on SLP, the superior quadrant was thinner in NAION than in PE (P<0.001) or ON (P=0.001) patients. Compared with age-adjusted normative data of SLP-RNFLT, average SLP-RNFLT in PE (P<0.01) and ON (P<0.01) patients was greater. Superior SLP-RNFLT in NAION patients was smaller (P=0.026). The ratio of average SLP-RNFLT to average OCT-RNFLT was smaller in NAION than in PE (P=0.001) patients. In the setting of RNFL thickening, despite increased light retardance in PE and ON eyes, SLP revealed that NAION eyes have less retardance, possibly associated with ischemic axonal loss.

  19. Macular Retinal Ganglion Cell Complex Thickness and Its Relationship to the Optic Nerve Head Topography in Glaucomatous Eyes with Hemifield Defects

    Directory of Open Access Journals (Sweden)

    Seiji T. Takagi

    2011-01-01

    Full Text Available Purpose. To evaluate the relationship between the macular ganglion cell complex (mGCC thickness, which is the sum of the retinal nerve fiber, ganglion cell, and inner plexiform layers, measured with a spectral-domain optical coherence tomograph and the optic nerve head topography measured with a confocal scanning laser ophthalmoscope in glaucomatous eyes with visual field defects localized predominantly to either hemifield. Materials and Methods. The correlation between the mGCC thickness in hemispheres corresponding to hemifields with and without defects (damaged and intact hemispheres, respectively and the optic nerve head topography corresponding to the respective hemispheres was evaluated in 18 glaucomatous eyes. Results. The mGCC thickness was significantly correlated with the rim volume, mean retinal nerve fiber layer thickness, and cross-sectional area of the retinal nerve fiber layer in both the intact and the damaged hemispheres (P<.05. Discussion. For detecting very early glaucomatous damage of the optic nerve, changes in the thicknesses of the inner retina in the macular area and peripapillary RNFL as well as rim volume changes in the optic nerve head are target parameters that should be carefully monitored.

  20. Mullite Plasma Spraying for In Situ Repair of Cracks in Mullite Refractories: Simultaneous Optimization of Porosity and Thickness by Statistical Design of Experiments

    Science.gov (United States)

    Schrijnemakers, A.; Francq, B. G.; Cloots, R.; Vertruyen, B.; Boschini, F.

    2013-10-01

    We report a laboratory-scale study about the suitability of the plasma spraying process for "in situ" repair of cracks in mullite refractories of industrial furnaces. The "design of experiments" approach is used to investigate how the coating porosity and thickness are influenced by six experimental parameters. Arc current, secondary gas (H2) flow rate, and stand-off distance are the most significant parameters for both responses. Several interaction terms also affect significantly the thickness response. The validity of the model equations is discussed both from a statistical point of view and regarding the physical credibility of the main model terms. Additional experiments confirm that the measured properties lie into the prediction intervals provided by the model. Using a set of parameters optimized for minimal porosity and high thickness (relevant for the crack repair application), coatings with 6% porosity and 1070 μm thickness can be prepared reproducibly.

  1. Laser Plasmas : Lie-optic matrix algorithm for computer simulation of paraxial self-focusing in a plasma

    Indian Academy of Sciences (India)

    D Subbarao; R Uma; Kamal Goyal; Sanjeev Goyal; Karuna Batra

    2000-11-01

    Propagation algorithm for computer simulation of stationary paraxial self-focusing laser beam in a medium with saturating nonlinearity is given in Lie-optic form. Accordingly, a very natural piece-wise continuous Lie transformation that reduces to a restricted Lorentz group of the beam results. It gives rise to a matrix method for self-focusing beam propagation that is constructed and implemented. Although the results use plasma nonlinearities of saturable type, and a gaussian initial beam, these results are applicable for other media like linear optical fibers and to more general situations.

  2. The properties of the extraordinary mode and surface plasmon modes in the three-dimensional magnetized plasma photonic crystals based on the magneto-optical Voigt effects

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hai-Feng, E-mail: hanlor@163.com, E-mail: lsb@nuaa.edu.cn [Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing Univ. Aeronaut. Astronaut.), Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Nanjing Artillery Academy, Nanjing 211132 (China); Liu, Shao-Bin, E-mail: hanlor@163.com, E-mail: lsb@nuaa.edu.cn; Tang, Yi-Jun [Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing Univ. Aeronaut. Astronaut.), Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2014-06-15

    In this paper, the properties of the extraordinary mode and surface plasmon modes in the three-dimensional (3D) magnetized plasma photonic crystals (MPPCs) with face-centered-cubic lattices that are composed of the core tellurium (Te) spheres with surrounded by the homogeneous magnetized plasma shells inserted in the air, are theoretically investigated in detail by the plane wave expansion method, as the magneto-optical Voigt effects of magnetized plasma are considered (the incidence electromagnetic wave vector is perpendicular to the external magnetic field at any time). The optical switching or wavelength division multiplexer can be realized by the proposed 3D MPPCs. Our analyses demonstrate that the complete photonic band gaps (PBGs) and two flatbands regions for the extraordinary mode can be observed obviously. PBGs can be tuned by the radius of core Te sphere, the plasma density and the external magnetic field. The flatbands regions are determined by the existence of surface plasmon modes. Numerical simulations also show that if the thickness of magnetized plasma shell is larger than a threshold value, the band structures of the extraordinary mode will be similar to those obtained from the same structure containing the pure magnetized plasma spheres. In this case, the band structures also will not be affected by the inserted core spheres. It is also provided that the upper edges of two flatbands regions will not depend on the topology of lattice. However, the frequencies of lower edges of two flatbands regions will be convergent to the different constants for different lattices, as the thickness of magnetized plasma shell is close to zero.

  3. Label-Free Quantitative Immunoassay of Fibrinogen in Alzheimer Disease Patient Plasma Using Fiber Optical Surface Plasmon Resonance

    Science.gov (United States)

    Kim, Jisoo; Kim, SeJin; Nguyen, Tan Tai; Lee, Renee; Li, Tiehua; Yun, Changhyun; Ham, Youngeun; An, Seong Soo A.; Ju, Heongkyu

    2016-05-01

    We present a real-time quantitative immunoassay to detect fibrinogen in the blood plasma of Alzheimer's disease patients using multimode fiber optical sensors in which surface plasmon resonance (SPR) was employed. Nanometer-thick bimetals including silver and aluminum were coated onto the core surface of the clad-free part (5 cm long) of the fiber for SPR excitation at the He-Ne laser wavelength of 632.8 nm. The histidine-tagged peptide was then coated on the metal surface to immobilize the fibrinogen antibody for the selective capture of fibrinogen among the proteins in the patient blood plasma. The SPR fiber optical sensor enabled quantitative detection of concentrations of fibrinogen from the different human patient blood at a detection limit of ˜20 ng/ml. We also observed a correlation in the fibrinogen concentration measurement between enzyme-linked immunosorbent assay and our SPR fiber-based sensors. This suggests that the presented SPR fiber-based sensors that do not rely on the use of labels such as fluorophores can be used for a real-time quantitative assay of a specific protein such as fibrinogen in a human blood that is known to contain many other kinds of proteins together.

  4. Active narrowband filtering, line narrowing and gain using ladder electromagnetically induced transparency in an optically thick atomic vapour

    CERN Document Server

    Keaveney, James; Sarkisyan, David; Papoyan, Aram; Adams, Charles S

    2013-01-01

    Electromagnetically induced transparency (EIT) resonances using the $5\\rm{S}_{1/2}\\rightarrow5\\rm{P}_{3/2}\\rightarrow5\\rm{D}_{5/2}$ ladder-system in optically thick Rb atomic vapour are studied. We observe a strong line narrowing effect and gain at the $5\\rm{S}_{1/2}\\rightarrow5\\rm{P}_{3/2}$ transition wavelength due to an energy-pooling assisted frequency conversion with characteristics similar to four-wave mixing. As a result it is possible to observe tunable and switchable transparency resonances with amplitude close to $100\\%$ and a linewidth of 15 MHz. In addition, the large line narrowing effect allows resolution of $^{85}$Rb $5\\rm{D}_{5/2}$ hyperfine structure even in the presence of strong power broadening.

  5. The structural, transport and optical properties of screen printed Cu[sub x]S thick films

    Energy Technology Data Exchange (ETDEWEB)

    Sebastian, P.J.; Gomez-Daza, O.; Campos, J.; Banos, Leticia; Nair, P.K. (Photovoltaic Systems Group, Lab. de Energia Solar IIM, UNAM, Morelos (Mexico))

    1994-02-01

    The structural, transport and optical properties of screen printed Cu[sub x]S thick films with possible application in photovoltaic and photothermal devices are reported. The X-ray diffraction studies show that the screen printed films are stable up to about 220[sup o]C in air and belong to the Cu[sub x]S structure. Above this temperature it decomposes mainly to CuSO[sub 4]. The electrical conductivity depends on the sintering temperature and the amount of flux, Cu(NO[sub 3])[sub 2], used in the paste for screen printing. The differential scanning calorimetry studies reveal the phase changes occurring during heating and pertaining to the dependence of electrical conductivity on the sintering temperature. A configuration consisting of screen printed Cu[sub x]S on chemically deposited and annealed (at 200[sup o]C) CdS thin film exhibited rectification

  6. Aerosol Optical Thickness in the Presence and Absence of African Dust using AERONET and Microtops II Sunphotometers

    Science.gov (United States)

    Ruiz, A.; Raizada, S.; Tepley, C. A.; Venero, I.; Zurcher, F.; Mayol-Bracero, O. L.

    2011-12-01

    As part of the Puerto Rico African Dust and Cloud Study (PRADACS) Project, we present a comparison of the aerosol optical thickness (AOT) between the AERONET sunphotometer (CIMEL Electronique 318A) located at Cape San Juan (CSJ, 18° 23' N, 65° 37' E), Puerto Rico, and the radiometers (Microtops II) of the Arecibo Observatory. Data were collected at CSJ during the summer period of 2011, when African dust was present most of the time. Preliminary results showed, for both instruments, AOT values around of 0.4 when there were high concentrations of African dust over the island Puerto Rico. The AOT correlations between the two instruments were very good, with a slope of 0.8 and r2 of 0.9 for all wavelengths. The main differences observed were on the values above 0.6. We will show the temporal behavior of AOT for the two instruments and the spatial differences between them.

  7. Influence of aerosol vertical profile variability on retrievals of aerosol optical thickness from NOAA AVHRR measurements in the Baltic region

    Directory of Open Access Journals (Sweden)

    Anna Rozwadowska

    2007-06-01

    Full Text Available The expected influence of variability in atmospheric aerosolprofiles on retrievals of aerosol optical thickness (AOTfrom NOAA AVHRR measurements is analysed. In particular, thebias in the AOT retrieval due to the assumption of a climatologicalaerosol profile in the retrieval algorithm is studied. The biasis defined as the difference between AOT retrieved with analgorithm using a climatological aerosol profile, and the actual AOTemployed in the calculations of radiances at the top of the atmosphere(TOA. The TOA radiances are simulated by means of the MODTRANcode for different aerosol profiles. Atmospheric conditions andsolar and satellite angles used in the bias simulations are typicalof the Baltic region. In the simulations, the maximum absolutevalue of the bias amounts to nearly 40% in channel 2 and 14%in channel 1 of AVHRR.

  8. A comparison of two methods to measure choroidal thickness by enhanced depth imaging optical coherence tomography -Letter to the Editor

    DEFF Research Database (Denmark)

    Lundberg, Kristian; Vergmann, Anna Stage; Vestergaard, Anders Højslet;

    2016-01-01

    -domain optical coherence tomography (EDI-SD OCT) has made it possible to visualize the choroid, and it is generally accepted that Heidelberg Spectralis OCT provides valid measurements of choroidal thickness (CT) (Li et al. 2014), although no fully automated software is commercially available. In the literature...... different approaches and software programs are described for manual measurement of the CT. Unfortunately many investigators do not report in details which method they use. Two methods for CT-measurement are available in the Heidelberg software, but to our knowledge these methods have not been compared....... Hence, the purpose of this study was to evaluate and validate the Segmentation method and the Ruler method for CT-measurement. We obtained data from 10 healthy subjects, aged 15 to 17 years (mean 16.3) and 10 patients with macular pathology, aged 59 to 79 years (mean 71.8). The diseases included wet age...

  9. Magnetic layer thickness dependence of all-optical magnetization switching in GdFeCo thin films

    Science.gov (United States)

    Yoshikawa, Hiroki; El Moussaoui, Souliman; Terashita, Shinnosuke; Ueda, Ryohei; Tsukamoto, Arata

    2016-07-01

    To clarify the relationship between all-optical magnetization switching (AOS) and nonlocal and nonadiabatic energy dissipation process, we focus on the contribution from energy dissipation in the depth direction. Differently designed structure dependence of created magnetic domain is observed from the reversal phenomenon, AOS, or multidomains by thermomagnetic nucleation (TMN) in GdFeCo multilayer thin films. TMN depends on the shared absorbed energy throughout the continuous metallic volume. On the other hand, AOS critically depends on nonadiabatic energy dissipation process with the electron system in sub-picoseconds. Furthermore, the laser fluence dependence of AOS-created domain sizes indicates that the value of irradiated laser fluence threshold per magnetic domain volume is almost constant. However, a lower laser irradiation fluence below 1-2 mW has a larger value and thickness dependence. From these results, we suggest that AOS depends on energy dissipation from the incident surface in the depth direction for a few picoseconds.

  10. Radiative interaction between the relativistic jet and optically thick envelope in tidal disruption events

    Science.gov (United States)

    Lu, Wenbin; Krolik, Julian; Crumley, Patrick; Kumar, Pawan

    2017-10-01

    Reverberation observations yielding a lag spectrum have uncovered an Fe K α fluorescence line in the tidal disruption event (TDE) Swift J1644+57. The discovery paper used the lag spectrum to argue that the source of the X-ray continuum was located very close to the black hole (∼30 gravitational radii) and moved subrelativistically. We reanalyse the lag spectrum, pointing out that dilution effects cause it to indicate a geometric scale an order of magnitude larger than inferred by Kara et al. If the X-ray continuum is produced by a relativistic jet, as suggested by the rapid variability, high luminosity and hard spectrum, this larger scale predicts an Fe ionization state consistent with efficient K α photon production. Moreover, the momentum of the jet X-rays impinging on the surrounding accretion flow on this large scale accelerates a layer of gas to speeds ∼0.1-0.2c, consistent with the blueshifted line profile. Implications of our results on the global picture of jetted TDEs are discussed. A power-law γ/X-ray spectrum may be produced by external ultraviolet (UV)-optical photons being repetitively inverse-Compton scattered by cold electrons in the jet, although our model for the K α reverberation does not depend on the jet radiation mechanism (magnetic reconnection in a Poynting jet is still a viable mechanism). The non-relativistic wind driven by jet radiation may explain the late-time radio rebrightening in Swift J1644+57. This energy injection may also cause the thermal UV-optical emission from jetted TDEs to be systematically brighter than in non-jetted ones.

  11. Decadal changes in aerosol optical thickness and single scattering albedo estimated from ground-based broadband radiometers: A case study in Japan

    Science.gov (United States)

    Kudo, Rei; Uchiyama, Akihiro; Yamazaki, Akihiro; Sakami, Tomonori; Ijima, Osamu

    2011-02-01

    A method to estimate aerosol optical thickness and single scattering albedo from broadband direct and diffuse irradiances was developed. Using irradiances simulated with and without errors, the accuracies of estimated optical thickness from 0.7 to 0.8 μm and single scattering albedo in the visible wavelength region were determined to be about 0.02 and 0.05, respectively. Resulting time variations in optical thickness and single scattering albedo by broadband radiometers agreed well with sky radiometer retrievals. Long-term variations in optical thickness and single scattering albedo from 1975 to 2008 at Tsukuba, Japan, were estimated by the method described. Optical thickness increased until the mid-1980s, then decreased until the late 1990s, and was almost constant in the 2000s. The single scattering albedo was about 0.8 until the late 1980s, gradually increased, and has remained at approximately 0.9 since the mid-1990s. The surface global irradiance under clear sky conditions calculated from estimated aerosol optical properties showed an apparent transition from dimming to brightening around the mid-1980s. The magnitude of the brightening was about 12.7 W m-2; of this, 8.3 W m-2 was due to a decrease in optical thickness, and the remaining 4.4 W m-2 was due to an increase of single scattering albedo. On the other hand, the surface global irradiance measured under cloudy conditions increased by 2.6 W m-2. The dimming and brightening by aerosols were weakened by the changes in clouds. The method described could be useful in evaluating aerosol influences on long-term changes in the surface solar radiation at many sites around the world.

  12. Supersonic metal plasma impact on a surface: An optical investigation of the pre-surface region

    Energy Technology Data Exchange (ETDEWEB)

    Fusion Science Group, AFRD; Plasma Applications Group, AFRD; Ni, Pavel A.; Anders, Andre

    2009-12-15

    Aluminum plasma, produced in high vacuum by a pulsed, filtered cathodic arc plasma source, was directed onto a wall where if formed a coating. The accompanying ?optical flare? known from the literature was visually observed, photographed, and spectroscopically investigated with appropriately high temporal (1 ?s) and spatial (100 ?m) resolution. Consistent with other observations using different techniques, it was found that the impact of the fully ionized plasma produces metal neutrals as well as desorbed gases, both of which interact with the incoming plasma. Most effectively are charge exchange collisions between doubly charged aluminum and neutral aluminum, which lead to a reduction of the flow of doubly charged before they reach the wall, and a reduction of neutrals as the move away from the surface. Those plasma-wall interactions are relevant for coating processes as well as for interpreting the plasma properties such as ion charge state distributions.

  13. The spectral temperature of optically thick outflows with application to light echo spectra from η Carinae's giant eruption

    Science.gov (United States)

    Owocki, Stanley P.; Shaviv, Nir J.

    2016-10-01

    The detection by Rest et al. of light echoes from η Carinae has provided important new observational constraints on the nature of its 1840s era giant eruption. Spectra of the echoes suggest a relatively cool spectral temperature of about 5500 K, lower than the lower limit of about 7000 K suggested in the optically thick wind-outflow analysis of Davidson. This has led to a debate about the viability of this steady wind model relative to alternative, explosive scenarios. Here we present an updated analysis of the wind-outflow model using newer low-temperature opacity tabulations and accounting for the stronger mass-loss implied by the >10 M⊙ mass now inferred for the Homunculus. A major conclusion is that, because of the sharp drop in opacity due to recombination loss of free electrons for T < 6500 K, a low temperature of about 5000 K is compatible with, and indeed expected from, a wind with the extreme mass-loss inferred for the eruption. Within a spherical grey model in radiative equilibrium, we derive spectral energy distributions for various assumptions for the opacity variation of the wind, providing a basis for comparisons with observed light echo spectra. The scaling results here are also potentially relevant for other highly optically thick outflows, including those from classical novae, giant eruptions of luminous blue variables and supernovae Type IIn precursors. A broader issue therefore remains whether the complex, variable features observed from such eruptions are better understood in terms of a steady or explosive paradigm, or perhaps a balance of these idealizations.

  14. Effect of thickness on surface morphology, optical and humidity sensing properties of RF magnetron sputtered CCTO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadipour, Mohsen [Structural Materials Niche Area, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang (Malaysia); Ain, Mohd Fadzil [School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang (Malaysia); Ahmad, Zainal Arifin, E-mail: srzainal@usm.my [Structural Materials Niche Area, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang (Malaysia)

    2016-11-01

    Highlights: • CCTO thin film was synthesized by RF magnetron sputtering successfully. • Increase in thickness lead to increase in grain size and decrease in band gap. • Short response times and recovery times of lead CCTO humidity sensor. • Sensor could detect humidity range (30–90%). - Abstract: In this study, calcium copper titanate (CCTO) thin films were deposited on ITO substrates successfully by radio frequency (RF) magnetron sputtering method in argon atmosphere. The CCTO thin films present a polycrystalline, uniform and porous structure. The surface morphology, optical and humidity sensing properties of the synthesized CCTO thin films have been studied by X-ray diffraction (XRD), atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), UV–vis spectrophotometer and current-voltage (I–V) analysis. XRD and AFM confirmed that the intensity of peaks and pore size of CCTO thin films were enhanced by increasing the thin films. Tauc plot method was adopted to estimate the optical band gaps. The surface structure and energy band gaps of the deposited films were affected by film thickness. Energy band gap of the layers were 3.76 eV, 3.68 eV and 3.5 eV for 200 nm, 400 nm, and 600 nm CCTO thin films layer, respectively. The humidity sensing properties were measured by using direct current (DC) analysis method. The response times were 12 s, 22 s, and 35 s while the recovery times were 500 s, 600 s, and 650 s for 200 nm, 400 nm, and 600 nm CCTO thin films, respectively at humidity range of 30–90% relative humidity (RH).

  15. The validation and comparison of the GOCI aerosol optical thickness products: a case study of Tianjin 8.12

    Science.gov (United States)

    Yao, Lingling; Zhang, Xiaoyu; Yu, Hui; Jiang, Binbin

    2016-01-01

    COMSGOCI (Geostationary Ocean Color Imager) is the first geostationary ocean color satellite in the world launched by South Korea in June 2010, which includes eight bands from the visible to the infrared band. GOCI aerosol optical thickness (AOT) at 555nm was retrieved by atmospheric radiative transfer model based on two-stream approximation algorithm. Due to GOCI without near infrared band and has a high solar elevation angle, solar zenith angle must be recalibrated to solve the earth system albedo, and the surface reflectance solved by quack atmospheric correction and recalculated backward scatter coefficient. Evaluation of GOCIAOT with AERONET measurements showed that the average error becomes 0.107 from the original 0.393, that means GOCI aerosol optical thickness can be more accurately with the advanced two-stream approximation. Taking the eastern China in 3 and 4 December 2013 for example, comparing the GOCIAOT at 555nm, MODISAOT retrievals at 550nm, NPPAOT at 550nm and AERONET data products indicated that: take the AERONET data as reference, the error of three kinds of satellite data can be ordered as following: MODISAOT< GOCIAOT< NPPAOT and the GOCI-MODIS shows a bias of 0.02917 with the GOCI-NPP. GOCIAOT is 0.05714 generally bigger than that of MODISAOT. NPP-GOCI deviation is 0.10253. The deficiency of MODIS is its low spatial resolution and the high concentration of AOT will be mistaken for a cloud area. However, GOCI can well reflect the concentration and distribution of aerosols. Therefore, GOGI can provide real-time dynamic monitoring on China Eastern atmospheric environment and the accurate time event information of haze for each process can be obtained. Finally, applied GOCI to the "8.12 Tianjin bombings" and to monitor the migration and dispersion of pollutant.

  16. Choroid thickness measurement with RTVue optical coherence tomography in emmetropic eyes, mildly myopic eyes, and highly myopic eyes.

    Science.gov (United States)

    Coscas, Gabriel; Zhou, Qienyuan; Coscas, Florence; Zucchiatti, Ilaria; Rispoli, Marco; Uzzan, Joel; De Benedetto, Umberto; Savastano, Maria C; Soules, Kelly; Goldenberg, Dafna; Loewenstein, Anat; Lumbroso, Bruno

    2012-01-01

    To evaluate choroid thickness (CT) with RTVue spectral domain optical coherence tomography (SD-OCT) and the effect of age and myopia in eyes without posterior complications.
 In this multicenter cross-sectional study, all enrolled patients were over age 18 and divided them in 3 groups based on refraction: emmetropia (+1 D to -1 D), mild myopia (-1 D to -6 D), and high myopia (-6 D to -20 D) groups. Horizontal scans through the fovea were acquired with RTVue OCT (Optovue Inc., Fremont, California, USA). Choroid thickness was measured at 500 µm intervals up to 1,500 µm temporal and nasal to the fovea by 2 graders. Mean CT was calculated based on the average of the 7 locations. Statistical analysis was performed to evaluate CT at each location, the effects of age and myopia, and grader agreement. 
 A total 85 eyes of 85 subjects (30 emmetropic, 24 myopic, and 31 high myopic) were enrolled. Excellent grader agreement was observed with an intraclass correlation coefficient (ICC) >0.97. The mean CT was 248.2±78.5 (µm) for emmetropia (age = 58±18), 247.0±85.4 (µm) for myopia (age = 45±20), and 131.5±70.9 (µm) for high myopia (age = 54±13). The mean CT was not significantly different between emmetropia and myopia groups, which were significantly thicker than high myopia group. The overall slope of age-related change for the mean CT was -1.95 µm/y and the effect of age differed among the groups. Choroid thickness can be measured from RTVue OCT images with good reproducibility. Age and high myopia appear to negatively affect CT. The age effect may vary with refraction groups.

  17. Influence of InAs deposition thickness on the structural and optical properties of InAs quantum wires

    Institute of Scientific and Technical Information of China (English)

    Yuanli Wang; Hua Cui; Wen Lei; Yahong Su; Yonghai Chen; Ju Wu; Zhanguo Wang

    2007-01-01

    The influence of InAs deposition thickness on the structural and optical properties of InAs/InAlAs quantum wires (QWR) superlattices (SLS) was studied. The transmission electron microscopy (TEM) results show that with increasing the InAs deposited thickness, the size uniformity and spatial ordering of InAs QWR SLS was greatly improved, but threading dislocations initiated from InAs nanowires for the sample with 6 monolayers (MLs) InAs deposition. In addition, the zig-zag features along the extending direction and lateral interlink of InAs nanowires were also observed. The InAs nanowires, especially for the first period, were laterally compact. These structural features may result in easy tunneling and coupling of charge carriers between InAs nanowires and will hamper their device applications to some extent. Some suggestions are put forward for further improving the uniformity of the stacked InAs QWRs, and for suppressing the formation of the threading dislocations in InAs QWR SLS.

  18. Choroidal thickness in primary angle-closure glaucoma: the results of Measurement by Means of Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    N. I. Kurysheva

    2013-01-01

    Full Text Available Purpose: to compare сhoroidal thickness (CT in primary angle-closure glaucoma (PACG and primary open angle glaucoma (POAG.Methods: сhoroidal thickness was evaluated in 30 patients (30 eyes with PACG, 30 patients (30 eyes with POAG and 30 control subjects by means of optical coherence tomography (RTVue-100 OCT, Optovue, Inc., Fremont, CA in fovea (CTf and in peripapillary region (CTp. Patients in both groups were well matched for glaucoma stage (MD 1,46±1,73 dB in POAG and –1,89±2,34 dB in PACG, p = 0,44 and age: 70,0±6,64 in POAG and 68,0 ±4,68 in PACG (p = 0,29.Results revealed a statistically significant increase of CT in PACG patients in comparison to POAG: 372,81±126,83 μm and 251,25±79,56 μm (p = 0,002, respectively for CTf, and 204,56±115,9 μm and 29,0±61,48 μm (p = 0,03, respectively for CTp.Conclusion: Increased CT might be another anatomic characteristic of AC eyes. These findings may support the hypotheses that choroidal expansion is a contributing factor to the development of AC disease.

  19. Choroidal thickness in primary angle-closure glaucoma: the results of Measurement by Means of Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    N. I. Kurysheva

    2014-07-01

    Full Text Available Purpose: to compare сhoroidal thickness (CT in primary angle-closure glaucoma (PACG and primary open angle glaucoma (POAG.Methods: сhoroidal thickness was evaluated in 30 patients (30 eyes with PACG, 30 patients (30 eyes with POAG and 30 control subjects by means of optical coherence tomography (RTVue-100 OCT, Optovue, Inc., Fremont, CA in fovea (CTf and in peripapillary region (CTp. Patients in both groups were well matched for glaucoma stage (MD 1,46±1,73 dB in POAG and –1,89±2,34 dB in PACG, p = 0,44 and age: 70,0±6,64 in POAG and 68,0 ±4,68 in PACG (p = 0,29.Results revealed a statistically significant increase of CT in PACG patients in comparison to POAG: 372,81±126,83 μm and 251,25±79,56 μm (p = 0,002, respectively for CTf, and 204,56±115,9 μm and 29,0±61,48 μm (p = 0,03, respectively for CTp.Conclusion: Increased CT might be another anatomic characteristic of AC eyes. These findings may support the hypotheses that choroidal expansion is a contributing factor to the development of AC disease.

  20. Effect of the Pd-Au thin film thickness uniformity on the performance of an optical fiber hydrogen sensor

    Energy Technology Data Exchange (ETDEWEB)

    Luna-Moreno, Donato [Centro de Investigaciones en Optica A. C., Loma del Bosque 115, Leon GTO, 37150 (Mexico)]. E-mail: dluna@cio.mx; Monzon-Hernandez, David [Centro de Investigaciones en Optica A. C., Loma del Bosque 115, Leon GTO, 37150 (Mexico)

    2007-08-31

    Thin alloy film of Pd and Au, formed by simultaneous electron-beam and thermal evaporation techniques, respectively, is used in the design of an optical fiber hydrogen sensor. The sensor consists of a multimode fiber (MMF) in which a short section of single mode fiber (SMF), coated with the Pd-Au thin film, is inserted. Due to core diameter mismatch, the SMF cladding guides light, allowing the interaction between the sensing layer and the guided light. When the sensor is exposed to hydrogen, the Pd-Au layer refractive index diminishes and causes attenuation changes on the transmitted light. Several samples with different layer thickness uniformity were fabricated and tested in a very simple experimental set-up. We have observed that the sensor signal change is dependant on layer thickness uniformity, since the effective interaction length between the evanescent field and the sensing layer is increased. By contrast, such uniformity practically has no influence on the time response of the sensor. The resulting Pd-Au film can detect 4% hydrogen with a response time of 15 s.

  1. Utilizing the MODIS 1.38 micrometer Channel for Cirrus Cloud Optical Thickness Retrievals: Algorithm and Retrieval Uncertainties

    Science.gov (United States)

    Meyer, Kerry; Platnick, Steven

    2010-01-01

    The cloud products from the Moderate Resolution Imaging Spectroradiometers (MODIS) on Terra and Aqua have been widely used within the atmospheric research community. The retrieval algorithms, however, oftentimes have difficulty detecting and retrieving thin cirrus, due to sensitivities to surface reflectance. Conversely, the 1.38 micron channel, located within a strong water vapor absorption band, is quite useful for detecting thin cirrus clouds since the signal from the surface can be blocked or substantially attenuated by the absorption of atmospheric water vapor below cirrus. This channel, however, suffers from nonnegligible attenuation due to the water vapor located above and within the cloud layer. Here we provide details of a new technique pairing the 1.38 micron and 1.24 micron channels to estimate the above/in-cloud water vapor attenuation and to subsequently retrieve thin cirrus optical thickness (tau) from attenuation-corrected 1.38 p.m reflectance measurements. In selected oceanic cases, this approach is found to increase cirrus retrievals by up to 38% over MOD06. For these cases, baseline 1.38 micron retrieval uncertainties are estimated to be between 15 and 20% for moderately thick cirrus (tau > 1), with the largest error source being the unknown cloud effective particle radius, which is not retrieved with the described technique. Uncertainties increase to around 90% for the thinnest clouds (tau < 0.5) where instrument and surface uncertainties dominate.

  2. Evaluation of agreement in corneal thickness measurements obtained using optical coherence tomography and ultrasound technique and determination of its specificity in keratoconus screening

    Science.gov (United States)

    Gunvant, P.; Darner, R.

    2011-03-01

    The aims of the present study are 1) to evaluate inter and intra observer repeatability of optical coherence tomography corneal thickness measurements 2) to investigate the agreement in corneal thickness obtained using an ultrasound pachymeter and the non-contact high resolution optical coherence tomography 3) to evaluate the false positive rate of identifying keratoconic suspects on the basis of standard machine protocol. Measurements were performed on 51 eyes of 51 individuals without any known corneal pathology. Altman and Bland plots were analyzed to determine agreement of corneal thickness measurements obtained using optical coherence tomography and ultrasound pachymeter; linear regression analysis was performed to evaluate its interchangeability. The agreement between the optical coherence tomography and ultrasonic pachymeter measurements was best for the central corneal thickness with a mean bias of 13.4 microns, with optical coherence tomography values being lower than the ultrasound pachymeter. The agreement of measurements in the mid-peripheral cornea was poor, with bias in measurements ranging from 33 to 55 microns. The optical coherence tomography measurements were repeatable with no differences in values between intra and inter observer repeat measurements. Using standard machine protocol for keratoconus screening, utilizing 1 out of 4 criteria gave a specificity of 86% and using 2 of the 4 criteria gave a specificity of 98%.

  3. Comparative study of structural and optical properties of pulsed and RF plasma polymerized aniline films

    Energy Technology Data Exchange (ETDEWEB)

    Barman, Tapan; Pal, Arup R., E-mail: arpal@iasst.gov.in; Chutia, Joyanti

    2014-09-15

    Graphical abstract: - Highlights: • Pulse DC and RF plasma is used for synthesis of conducting polymer films. • Conjugated structure retention is better at optimum powers in both the processes. • Conjugated structure retention is better in case of RF plasma prepared films. • Band gap is lower in case of RF plasma prepared films at higher power. • Defect in pulse plasma prepared film is less than RF plasma prepared thin films. - Abstract: Plasma polymerization of aniline is carried out by means of continuous RF and pulsed DC glow discharge plasma in a common reactor at different applied powers. The discharge control variables are optimized for good quality film growth and the role of fragmentation of the molecular structure on the structural, optical, morphological and optophysical properties of the deposited plasma polymerized aniline (PPAni) layers is investigated. Retention of the conjugated structure is found to be prominent at optimum applied power to the plasma in both the continuous RF and pulsed DC polymerization techniques. Improvement in conjugated structure and chain length have been observed in both the continuous RF and pulse DC PPAni thin films with the increase in applied power to the plasma up to a certain limit of applied power when working pressure is fixed at 0.15 mbar. A decrease in optical bandgap with the increase in applied power to the plasma is observed in both the pulsed DC and RF PPAni thin films, but it is more significant in case of RF PPAni films. The plasma polymerized aniline thin films are found to emit photoluminescence due to band to band transition and defects generated in the structure.

  4. Revisiting the ultraluminous supersoft source in M101: an optically thick outflow model

    CERN Document Server

    Soria, Roberto

    2015-01-01

    The M101 galaxy contains the best-known example of an ultraluminous supersoft source (ULS), dominated by a thermal component at kT ~ 0.1 keV. The origin of the thermal component and the relation between ULSs and standard (broad-band spectrum) ultraluminous X-ray sources (ULXs) are still controversial. We re-examined the X-ray spectral and timing properties of the M101 ULS using archival Chandra and XMM-Newton observations. We show that the X-ray time-variability and spectral properties are inconsistent with standard disk emission. The characteristic radius R_{bb} of the thermal emitter varies from epoch to epoch between ~10,000 km and ~100,000 km; the colour temperature kT_{bb} varies between ~50 eV and ~140 eV; and the two quantities scale approximately as R_{bb} ~ T_{bb}^{-2}. In addition to the smooth continuum, we also find (at some epochs) spectral residuals well fitted with thermal plasma models and absorption edges: we interpret this as evidence that we are looking at a clumpy, multi-temperature outflo...

  5. Investigations of GMAW plasma by optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zielinska, S [Instytut Fizyki im. Mariana Smoluchowskiego, Uniwersytet Jagiellonski, ulica Reymonta 4, 30-059 Krakow (Poland); Musiol, K [Instytut Fizyki im. Mariana Smoluchowskiego, Uniwersytet Jagiellonski, ulica Reymonta 4, 30-059 Krakow (Poland); Dzierzega, K [Instytut Fizyki im. Mariana Smoluchowskiego, Uniwersytet Jagiellonski, ulica Reymonta 4, 30-059 Krakow (Poland); Pellerin, S [LASEP, Faculte des Sciences-Bourges, Universite d' Orleans, BP 4043, 18028 Bourges Cedex (France); Valensi, F [LASEP, Faculte des Sciences-Bourges, Universite d' Orleans, BP 4043, 18028 Bourges Cedex (France); Izarra, Ch de [LASEP, Faculte des Sciences-Bourges, Universite d' Orleans, BP 4043, 18028 Bourges Cedex (France); Briand, F [CTAS - Air Liquide Welding, Rue des Epluches, Saint Ouen l' Aumone (France)

    2007-11-15

    We report on investigations of gas metal arc welding plasma operated in pure argon and in a mixture of argon and CO{sub 2} at a dc current of 326 A. The spatially resolved electron densities and temperatures were directly obtained by measuring the Stark widths of the Ar I 695.5 nm and Fe I 538.3 nm spectral lines. Our experimental results show a reduction of the plasma conductivity and transfer from spray arc to globular arc operation with increasing CO{sub 2} concentration. Although the electron density n{sub e} increases while approaching the core of the plasma in the spray-arc mode, a drop in the electron temperature T{sub e} is observed. Moreover, the maximum T{sub e} that we measure is about 13 000 K. Our experimental results differ from the Haidar model where T{sub e} is always maximum on the arc axis and its values exceed 20 000 K. These discrepancies can be explained as a result of underestimation of the amount of metal vapours in the plasma core and of the assumption of local thermal equilibrium plasma in the model.

  6. Electrical and optical properties of Ar/NH3 atmospheric pressure plasma jet

    Science.gov (United States)

    Chang, Zheng-Shi; Yao, Cong-Wei; Chen, Si-Le; Zhang, Guan-Jun

    2016-09-01

    Inspired by the Penning effect, we obtain a glow-like plasma jet by mixing ammonia (NH3) into argon (Ar) gas under atmospheric pressure. The basic electrical and optical properties of an atmospheric pressure plasma jet (APPJ) are investigated. It can be seen that the discharge mode transforms from filamentary to glow-like when a little ammonia is added into the pure argon. The electrical and optical analyses contribute to the explanation of this phenomenon. The discharge mode, power, and current density are analyzed to understand the electrical behavior of the APPJ. Meanwhile, the discharge images, APPJ's length, and the components of plasma are also obtained to express its optical characteristics. Finally, we diagnose several parameters, such as gas temperature, electron temperature, and density, as well as the density number of metastable argon atoms of Ar/NH3 APPJ to help judge the usability in its applications.

  7. Optical diagnostics of reactive species in atmospheric-pressure nonthermal plasma

    Science.gov (United States)

    Ono, Ryo

    2016-03-01

    This paper reviews optical measurements of reactive species in atmospheric-pressure nonthermal plasmas: streamer discharge, dielectric barrier discharge (DBD), plasma jet, and plasma-assisted ignition and combustion. Measurements of OH, O, N, {{\\text{O}}3} , NO, {{\\text{N}}2} (A, B, C), {{\\text{O}}2} (a, b), {{\\text{N}}2}(v) , {{\\text{O}}2}(v) , He*, Ar*, \\text{N}2+ , CH, and CH2O by laser-induced fluorescence, absorption, optical emission spectroscopy, and coherent anti-Stokes Raman scattering methods are included. Reactive species measurement in low-frequency (\\cong 1 Hz) pulsed streamer discharge is introduced, and reactive species production and reaction processes indicated by these measurements are described in detail. Measurements in high-frequency DBD, atmospheric-pressure diffuse discharge, and dc corona discharge are described. Measurements in plasma jets are also reviewed: rf plasma jets, kHz plasma jets, and additional plasma jets. Finally, measurements in plasma-assisted ignition and combustion are described and reviewed in addition to measurements in conventional spark ignition. A comprehensive list of the reviewed measurements is provided.

  8. Relativistic plasma optics enabled by near-critical density nanostructured material

    CERN Document Server

    Bin, J H; Wang, H Y; Streeter, M J V; Kreuzer, C; Kiefer, D; Yeung, M; Cousens, S; Foster, P S; Dromey, B; Yan, X Q; Meyer-ter-Vehn, J; Zepf, M; Schreiber, J

    2014-01-01

    The nonlinear optical properties of a plasma due to the relativistic electron motion in an intense laser field are of fundamental importance for current research and the generation of brilliant laser-driven sources of particles and photons1-15. Yet, one of the most interesting regimes, where the frequency of the laser becomes resonant with the plasma, has remained experimentally hard to access. We overcome this limitation by utilizing ultrathin carbon nanotube foam16 (CNF) targets allowing the strong relativistic nonlinearities at near- critical density (NCD) to be exploited for the first time. We report on the experimental realization of relativistic plasma optics to spatio-temporally compress the laser pulse within a few micrometers of propagation, while maintaining about half its energy. We also apply the enhanced laser pulses to substantially improve the properties of an ion bunch accelerated from a secondary target. Our results provide first insights into the rich physics of NCD plasmas and the opportuni...

  9. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Ninth Edition Optics: Ninth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommen

  10. Removal of Optically Thick Clouds from Multi-Spectral Satellite Images Using Multi-Frequency SAR Data

    Directory of Open Access Journals (Sweden)

    Robert Eckardt

    2013-06-01

    Full Text Available This study presents a method for the reconstruction of pixels contaminated by optical thick clouds in multi-spectral Landsat images using multi-frequency SAR data. A number of reconstruction techniques have already been proposed in the scientific literature. However, all of the existing techniques have certain limitations. In order to overcome these limitations, we expose the Closest Spectral Fit (CSF method proposed by Meng et al. to a new, synergistic approach using optical and SAR data. Therefore, the term Closest Feature Vector (CFV is introduced. The technique facilitates an elegant way to avoid radiometric distortions in the course of image reconstruction. Furthermore the cloud cover removal is independent from underlying land cover types and assumptions on seasonality, etc. The methodology is applied to mono-temporal, multi-frequency SAR data from TerraSAR-X (X-Band, ERS (C-Band and ALOS Palsar (L-Band. This represents a way of thinking about Radar data not as foreign, but as additional data source in multi-spectral remote sensing. For the assessment of the image restoration performance, an experimental framework is established and a statistical evaluation protocol is designed. The results show the potential of a synergistic usage of multi-spectral and SAR data to overcome the loss of data due to cloud cover.

  11. 4D super-resolution microscopy with conventional fluorophores and single wavelength excitation in optically thick cells and tissues.

    Directory of Open Access Journals (Sweden)

    David Baddeley

    Full Text Available BACKGROUND: Optical super-resolution imaging of fluorescently stained biological samples is rapidly becoming an important tool to investigate protein distribution at the molecular scale. It is therefore important to develop practical super-resolution methods that allow capturing the full three-dimensional nature of biological systems and also can visualize multiple protein species in the same sample. METHODOLOGY/PRINCIPAL FINDINGS: We show that the use of a combination of conventional near-infrared dyes, such as Alexa 647, Alexa 680 and Alexa 750, all excited with a 671 nm diode laser, enables 3D multi-colour super-resolution imaging of complex biological samples. Optically thick samples, including human tissue sections, cardiac rat myocytes and densely grown neuronal cultures were imaged with lateral resolutions of ∼15 nm (std. dev. while reducing marker cross-talk to <1%. Using astigmatism an axial resolution of ∼65 nm (std. dev. was routinely achieved. The number of marker species that can be distinguished depends on the mean photon number of single molecule events. With the typical photon yields from Alexa 680 of ∼2000 up to 5 markers may in principle be resolved with <2% crosstalk. CONCLUSIONS/SIGNIFICANCE: Our approach is based entirely on the use of conventional, commercially available markers and requires only a single laser. It provides a very straightforward way to investigate biological samples at the nanometre scale and should help establish practical 4D super-resolution microscopy as a routine research tool in many laboratories.

  12. Burying a Binary: Dynamical Mass Loss and an Optically-Thick Wind Explain the Candidate Stellar Merger V1309 Scorpii

    CERN Document Server

    Pejcha, Ondrej

    2013-01-01

    V1309 Sco is proposed to be a stellar merger and a common envelope transient based on the pre-outburst light curve of a contact eclipsing binary with a rapidly decaying orbital period. Using published data, I show that the period decay timescale P/Pdot of V1309 Sco decreased from ~1000 to ~170 years in less than about 6 years, which implies a very high value of second period derivative. I argue that this is incompatible with period-braking processes mediated by tides such as the Darwin instability and magnetic breaking, or with dynamical friction in a common envelope. Instead, I propose that V1309 Sco was observed during the onset of dynamical mass loss, which launches a wind that eventually obscures the system. The photosphere in the optically-thick wind expands as the mass-loss rate increases, explaining the ~200 day rise to optical maximum. The model yields the mass-loss rate of the primary star as a function of time and fits the observed lightcurve remarkably well. V1309 Sco is thus a prototype of a new c...

  13. Effect of thickness on surface morphology, optical and humidity sensing properties of RF magnetron sputtered CCTO thin films

    Science.gov (United States)

    Ahmadipour, Mohsen; Ain, Mohd Fadzil; Ahmad, Zainal Arifin

    2016-11-01

    In this study, calcium copper titanate (CCTO) thin films were deposited on ITO substrates successfully by radio frequency (RF) magnetron sputtering method in argon atmosphere. The CCTO thin films present a polycrystalline, uniform and porous structure. The surface morphology, optical and humidity sensing properties of the synthesized CCTO thin films have been studied by X-ray diffraction (XRD), atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), UV-vis spectrophotometer and current-voltage (I-V) analysis. XRD and AFM confirmed that the intensity of peaks and pore size of CCTO thin films were enhanced by increasing the thin films. Tauc plot method was adopted to estimate the optical band gaps. The surface structure and energy band gaps of the deposited films were affected by film thickness. Energy band gap of the layers were 3.76 eV, 3.68 eV and 3.5 eV for 200 nm, 400 nm, and 600 nm CCTO thin films layer, respectively. The humidity sensing properties were measured by using direct current (DC) analysis method. The response times were 12 s, 22 s, and 35 s while the recovery times were 500 s, 600 s, and 650 s for 200 nm, 400 nm, and 600 nm CCTO thin films, respectively at humidity range of 30-90% relative humidity (RH).

  14. Optical emission spectroscopy of deuterium and helium plasma jets emitted from plasma focus discharges at the PF-1000U facility

    Science.gov (United States)

    Skladnik-Sadowska, E.; Dan'ko, S. A.; Kwiatkowski, R.; Sadowski, M. J.; Zaloga, D. R.; Paduch, M.; Zielinska, E.; Kharrasov, A. M.; Krauz, V. I.

    2016-12-01

    Optical emission spectroscopy techniques were used to investigate the spectra of dense deuterium-plasma jets generated by high-current pulse discharges within the large PF-1000U facility and to estimate parameters of plasma inside the jets and their surroundings. Time-resolved optical spectra were recorded by means of a Mechelle®900 spectrometer. From an analysis of the deuterium line broadening, it was estimated that the electron concentration at a distance 57 cm from the electrode outlets amounted to (0.4-3.7) × 1017 cm-3 depending on the initial gas distribution and the time interval of the spectrum registration after the instant of the plasma jet generation. From the re-absorption dip in the Dβ profile, it was assessed that the electron concentration in the surrounding gas was equal to about 1.5 × 1015 cm-3. On the basis of the measured ratio of He II 468.6 nm and He I 587.6 nm line intensities, it was estimated that the electron temperature amounted to about 5.3 eV. Also estimated were some dimensionless parameters of the investigated plasma jets.

  15. Thickness-dependent optical band gap in one-dimensional Ca{sub 3}Co{sub 2}O{sub 6} nanometric films

    Energy Technology Data Exchange (ETDEWEB)

    Moubah, Reda [Institut de Physique et Chimie des Materiaux de Strasbourg (IPCMS), UMR 7504 CNRS-UDS (UDS-ECPM), 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2 (France); Colis, Silviu, E-mail: colis@ipcms.u-strasbg.fr [Institut de Physique et Chimie des Materiaux de Strasbourg (IPCMS), UMR 7504 CNRS-UDS (UDS-ECPM), 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2 (France); Gallart, Mathieu; Schmerber, Guy; Gilliot, Pierre; Dinia, Aziz [Institut de Physique et Chimie des Materiaux de Strasbourg (IPCMS), UMR 7504 CNRS-UDS (UDS-ECPM), 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2 (France)

    2012-02-15

    Recent studies on the physical properties of Ca{sub 3}Co{sub 2}O{sub 6} nanometric samples have shown that their properties are significantly different from those of the bulk samples. The origin of this change is not trivial. We have carried out optical measurements on Ca{sub 3}Co{sub 2}O{sub 6} thin films with different thicknesses in order to characterize their electronic structure using optical spectroscopy measurements. The absorption spectra show a dependence on the film thickness that is correlated to the grain size in the polycrystalline layers. We found that the optical band gap increases from 1.3 to 1.55 eV when the thickness changes from 35 to 100 nm. The change in the band gap evolution with the film thickness is discussed in terms of both the amorphous effect and the grain size in the Ca{sub 3}Co{sub 2}O{sub 6} thin films. Finally, we show that these results are consistent with recent measurements concerning magnetic and electrical properties of Ca{sub 3}Co{sub 2}O{sub 6} nanometric samples. - Highlights: Black-Right-Pointing-Pointer The optical properties of Ca{sub 3}Co{sub 2}O{sub 6} thin films were found dependent on the film thickness. Black-Right-Pointing-Pointer The band gap varies from 1.3 to 1.5 eV when the thickness increases from 35 to 100 nm. Black-Right-Pointing-Pointer The gap evolution is described in terms of grain size and amorphous effect. Black-Right-Pointing-Pointer This is similar to the variation of the magnetic properties with the film thickness. Black-Right-Pointing-Pointer Magnetic and optical properties have similar origins related to the particular structure.

  16. Instability Parameters of Optical Oscillation Frequency in Plasma Central Discharge and Periphery Region

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhu-Wen; M.A.LIEBERMAN; Sungjin KIM

    2006-01-01

    @@ We have observed relaxation oscillations in a capacitive discharge in Ar gas, connected to a peripheral ground chamber. The plasma oscillations observed from time-varying optical emission from the main discharge chamber show, for example, a high frequency (75.37kHz) relaxation oscillation, at 100mTorr and 8 W absorbed power,and a low frequency (2.72 Hz) relaxation oscillation, 100mTorr and 325 W absorbed power. Time-varying optical emission intensity and plasma density are also detected with a Langmuir probe. The theoretical result agrees well with experiments.

  17. Thickness-dependent carrier transport and optically enhanced transconductance gain in III-VI multilayer InSe

    Science.gov (United States)

    Ho, Ching-Hwa

    2016-06-01

    Multilayer InSe with a thickness above ˜20 nm, is a direct semiconductor with a peak absorption wavelength approaching λ = 1000 nm, which is a promising candidate for solar-energy conversion and 2D optoelectronics devices. We present herein the experimental observations of thickness-dependent conductivity and photoconductive-responsivity spectrum in multilayer InSe as well as optically enhanced transconductance gain in the multilayer InSe metal-semiconductor-field-effect transistor (MESFET) illuminated by a halogen lamp. The voltage-current (V-I) measurement result shows multilayer InSe belongs to a p-type semiconductor, which can form a p-channel FET device. Thickness (t) dependent conductivity (σ) of multilayer InSe reveals about six-order variation from 5076 (Ω-cm)-1 (t = 5 nm) to 2.56 × 10-3 (Ω-cm)-1 (t = 184 μm, bulk) following a relationship of σ ∝ t -1.38. The highest conductivity in a thin InSe (e.g. t = 5 nm) is due to the increase of carrier density when the thickness is decreased. The photoresponsivity spectrum of a Ag-InSe-Ag multilayer photoconductor demonstrates a prominent peak absorption at 1.1 ˜ 1.3 eV, matches well with the direct-free-exciton energy of the InSe. A multilayer p-InSe MESFET was tested by V-I measurement. The transconductance was measured and determined to be {g}m={≤ft|\\tfrac{\\partial {{{I}}}{{D}}}{\\partial {{{V}}}{{G}}}\\right|}{{{V}}{{SD}}={{2V}}} = ({1.25 +/- 0.008})× {10}-4≤ft(\\tfrac{{{A}}}{{{V}}}\\right). The gm value will enhance about three times when the MESFET was placed under the illumination of a tungsten halogen lamp of a lower power density ˜0.5 mW · cm-2. All the experimental results demonstrate multilayer InSe a promising 2D material available for microelectronics and optoelectronics applications.

  18. Amplification of 126 nm femtosecond seed pulses in optical-field-induced Ar plasma filamentation

    Science.gov (United States)

    Kubodera, Shoichi; Deshimaru, Naoyuki; Kaku, Masanori; Katto, Masahito

    2014-10-01

    We have observed amplification of femtosecond (fs) VUV coherent seed beam at 126 nm by utilizing an optical-field-induced ionization (OFI) high-pressure Ar plasma filamentation. We have produced a low-temperature and high-density Ar plasma filamentation inside a high-pressure Ar cell by irradiating a high-intensity laser with an intensity of approximately 1014 W cm-2. Argon excimer molecules (Ar2*) as an amplifier medium were produced inside the high-pressure cell and were used to amplify a weak VUV ultrashort seed pulse at 126 nm, which was generated by harmonic generation of another short pulse infrared laser at 882 nm. We have measured the amplification characteristics and the OFI plasma diagnosis by utilizing the fs VUV pulses at 126 and 882 nm, respectively. The maximum optical gain value of 1.1 cm-1 was observed. Temporal behaviors of the plasma temperature and density in the nano-second time scale indicated a high-density and low-temperature plasma produced by using the OFI. These plasma behaviors were utilized to reproduce the optical amplification characteristics with our OFI excimer simulation code.

  19. Optical emission spectroscopy of the Linac4 and superconducting proton Linac plasma generators

    Energy Technology Data Exchange (ETDEWEB)

    Lettry, J.; Kronberger, M.; Mahner, E.; Schmitzer, C.; Sanchez, J.; Scrivens, R.; Midttun, O.; O' Neil, M.; Pereira, H.; Paoluzzi, M. [European Organization for Nuclear Research, CERN, 1211 Geneva 23 (Switzerland); Fantz, U.; Wuenderlich, D. [Max-Planck-Institut fuer Plasmaphysik, IPP, 85748 Garching (Germany); Kalvas, T.; Koivisto, H.; Komppula, J.; Myllyperkioe, P.; Tarvainen, O. [Department of Physics, University of Jyvaeskylae, 40500 Jyvaeskylae (Finland)

    2012-02-15

    CERN's superconducting proton Linac (SPL) study investigates a 50 Hz high-energy, high-power Linac for H{sup -} ions. The SPL plasma generator is an evolution of the DESY ion source plasma generator currently operated at CERN's Linac4 test stand. The plasma generator is a step towards a particle source for the SPL, it is designed to handle 100 kW peak RF-power at a 6% duty factor. While the acquisition of an integrated hydrogen plasma optical spectrum is straightforward, the measurement of a time-resolved spectrum requires dedicated amplification schemes. The experimental setup for visible light based on photomultipliers and narrow bandwidth filters and the UV spectrometer setup are described. The H{sub {alpha}}, H{sub {beta}}, and H{sub {gamma}} Balmer line intensities, the Lyman band and alpha transition were measured. A parametric study of the optical emission from the Linac4 ion source and the SPL plasma generator as a function of RF-power and gas pressure is presented. The potential of optical emission spectrometry coupled to RF-power coupling measurements for on-line monitoring of short RF heated hydrogen plasma pulses is discussed.

  20. Effect of Nanoscale Ag Film Thickness on the Electrical and Optical Properties of Transparent IZTO/Ag/IZTO Multilayer Films Deposited on Glass Substrates.

    Science.gov (United States)

    Oh, Dohyun; Lee, Nam Hyun; Cho, Woon-Jo; Kim, Tae Whan

    2015-07-01

    The effect of nanoscale Ag film thickness on the electrical and optical properties in transparent conducting oxide films consisting of an IZTO/Ag/IZTO multilayer were investigated. The homoge- neous morphologies of the Ag films sandwiched between the IZTO films affected the optical and electrical properties of the IZTO/Ag/IZTO multilayer films. The transmittance and resistivity of the IZTO/Ag/IZTO multilayer films decreased with increasing Ag film thickness. The resistivities of the IZTO/Ag/IZTO multilayer films grown on glass substrates were decreased by using an Ag thin inter- layer in comparison with that of the IZTO single layer.

  1. Evaluation of the macula, retinal nerve fiber layer and choroid thickness in postmenopausal women and reproductive-age women using spectral-domain optical coherence tomography.

    Science.gov (United States)

    Ataş, Mustafa; Açmaz, Gökhan; Aksoy, Hüseyin; Demircan, Süleyman; Göktaş, Altan; Arifoğlu, Hasan Basri; Zararsız, Gökmen

    2014-03-01

    Menopause is a physiological life period that potentially affects various organs and systems. Therefore, a wide spectrum of signs and symptoms of eyes may be clinically observed in the postmenopausal period. To evaluate the macular, retinal nerve fiber layer (RNFL) and choroidal thickness alterations by using spectral-domain optical coherence tomography (SD-OCT) in postmenopausal women and compare with healthy reproductive-age women controls. The study population included a healthy reproductive-age control group (n = 72) and postmenopausal study group (n = 72). Retinal thickness parameters were measured by SD-OCT. Peripapillary RNFL thickness parameters, macular thickness and choroidal thickness were evaluated. Superior inner macula, temporal inner macula, inferior inner macula, nasal inner macula, inferior outer macula and choroid thickness were significantly thinner in the postmenopausal study group than the healthy reproductive-age control group (p = 0.007, p = 0.037, p = 0.027, p = 0.006, p = 0.016, p choroid thickness was significantly thinner in the postmenopausal study group than controls (p (†) = 0.005). This study revealed that choroidal thickness measured by SD-OCT was significantly thinner in postmenopausal women than healthy reproductive-age women. We can speculate that the decrease in choroidal thickness in postmenopausal women may indicate a reduced estrogen-dependent vasodilatory effect in ophthalmic artery secondary to menopausal estrogen deficiency.

  2. Optical Emission Spectroscopy of an Atmospheric Pressure Plasma Jet During Tooth Bleaching Gel Treatment.

    Science.gov (United States)

    Šantak, Vedran; Zaplotnik, Rok; Tarle, Zrinka; Milošević, Slobodan

    2015-11-01

    Optical emission spectroscopy was performed during atmospheric pressure plasma needle helium jet treatment of various tooth-bleaching gels. When the gel sample was inserted under the plasma plume, the intensity of all the spectral features increased approximately two times near the plasma needle tip and up to two orders of magnitude near the sample surface. The color change of the hydroxylapatite pastille treated with bleaching gels in conjunction with the atmospheric pressure plasma jet was found to be in correlation with the intensity of OH emission band (309 nm). Using argon as an additive to helium flow (2 L/min), a linear increase (up to four times) of OH intensity and, consequently, whitening (up to 10%) of the pastilles was achieved. An atmospheric pressure plasma jet activates bleaching gel, accelerates OH production, and accelerates tooth bleaching (up to six times faster).

  3. EXERCISE-INDUCED ACUTE CHANGES IN SYSTOLIC BLOOD PRESSURE DO NOT ALTER CHOROIDAL THICKNESS AS MEASURED BY A PORTABLE SPECTRAL-DOMAIN OPTICAL COHERENCE TOMOGRAPHY DEVICE

    Science.gov (United States)

    ALWASSIA, AHMAD A.; ADHI, MEHREEN; ZHANG, JASON Y.; REGATIERI, CAIO V.; AL-QUTHAMI, ADEEB; SALEM, DEEB; FUJIMOTO, JAMES G.; DUKER, JAY S.

    2013-01-01

    Purpose To measure choroidal thickness in patients manifesting an acute change in systemic arterial blood pressure using a portable spectral-domain optical coherence tomography device (iVue). Methods Fifteen patients (15 eyes) undergoing cardiac exercise stress testing were scanned using a portable spectral-domain optical coherence tomography system (iVue). Two scan protocols were used: cross line scan for measuring choroidal thickness and the retina map scan to measure retinal thickness. Each patient was scanned before and within 3 minutes after the stress test. Blood pressure was measured at the same time as the acquisition of the scans. Choroidal thickness was measured from the posterior edge of the retinal pigment epithelium to the choroid–sclera junction at 500-μm intervals up to 1,000 μm temporal and nasal to the fovea. Retinal thickness was measured by an automated software. All choroidal thickness measurements were performed by two independent observers. Results Fifteen patients (15 eyes) with a mean age of 60.6 (±10.4 years) were scanned. There was a significant increase in systolic but not diastolic pressure after stress testing (P choroidal thickness measurements showed no significant difference before and after exercise stress testing (P > 0.05). In addition, there was no significant difference in retinal thickness before and after stress testing measurements (P > 0.05). Conclusion There was no change in choroidal thickness or retinal thickness, despite an acute change in the systemic systolic blood pressure induced by exercise. PMID:22869027

  4. Residual stress distribution in thin diamond films and its effects on preparation of thick freestanding diamond films using DC arc plasma jet operated at gas recycling mode

    Institute of Scientific and Technical Information of China (English)

    LI Cheng-ming; LI Hui-qing; CHEN Guan-chao; L(U) Fan-xiu; TONG Yu-mei; TANG Wei-zhong

    2004-01-01

    Diamond films produced by chemical vapor deposition show excellent properties. The residual stress distribution of diamond thin films deposited by DC arc plasma jet at recycling mode was analyzed by line shifts of micro Raman spectroscopy. The results show that the compressive residual stress concentrates at the film's edge. The experimental observations show that cracks initiate at the edge of the diamond thick wafer and then propagate towards the center. The residual stress of diamond films increases with the increase of methane concentration and deposition temperature. The difference of adhesion in close area causes more shear stress and brings about the two sides of crack being not at same level. To suppress crack probability, it is favourable for increasing the film thickness and selecting a substrate with lower coefficient of thermal expansion and lower adhesion. The effects of the residual stress distribution on thick diamond films detachment were discussed.

  5. Tensile test of a silicon microstructure fully coated with submicrometer-thick diamond like carbon film using plasma enhanced chemical vapor deposition method

    Science.gov (United States)

    Zhang, Wenlei; Uesugi, Akio; Hirai, Yoshikazu; Tsuchiya, Toshiyuki; Tabata, Osamu

    2017-06-01

    This paper reports the tensile properties of single-crystal silicon (SCS) microstructures fully coated with sub-micrometer thick diamond like carbon (DLC) film using plasma enhanced chemical vapor deposition (PECVD). To minimize the deformations or damages caused by non-uniform coating of DLC, which has high compression residual stress, released SCS specimens with the dimensions of 120 µm long, 4 µm wide, and 5 µm thick were coated from the top and bottom side simultaneously. The thickness of DLC coating is around 150 nm and three different bias voltages were used for deposition. The tensile strength improved from 13.4 to 53.5% with the increasing of negative bias voltage. In addition, the deviation in strength also reduced significantly compared to bare SCS sample.

  6. Structure and magnetotransport properties in plasma-sprayed La 0.78Sr 0.22MnO 3 thick film

    Science.gov (United States)

    Orlando, M. T. D.; Cunha, A. G.; Freitas, J. C. C.; Orlando, C. G. P.; Bud'ko, S.; Giordanengo, B.; Sato, I. M.; Martinez, L. G.; Baggio-Saitovitch, E. M.

    2002-04-01

    Thick films of La 0.78Sr 0.22MnO 3 were produced by the plasma-spray technique onto stainless-steel substrate at 930°C. These films were obtained without the use of bond-layer, buffer-layer and annealing after deposition. The compound was deposited by a plasma-spray torch using nitrogen as the working gas. The films with thickness varying from 20 to 60 μm have good adherence and are composed of large splats with high degree of interconnection and small number of defects, as revealed by scanning electron microscopy. X-ray diffractometry analysis of the as-deposited film revealed that it had the same crystal structure as the original bulk. Measurements of electrical resistivity versus temperature for the film revealed a magnetic transition temperature near 340 K, with a ferromagnetic/metallic behavior below this temperature. The magnetoresistance of La 0.78Sr 0.22MnO 3 films exhibited similar magnetic field dependence as compared to the bulk sample, which indicates that the plasma-spray technique can be successfully employed for the deposition of thick films of manganites on large-area substrates while maintaining the main bulk properties.

  7. Evaluation of choroidal thickness via enhanced depth-imaging optical coherence tomography in patients with systemic hypertension

    Directory of Open Access Journals (Sweden)

    Mustafa Gök

    2015-01-01

    Full Text Available Purpose: The purpose was to evaluate choroidal thickness via spectral domain optical coherence tomography (SD-OCT and to compare the data with those of 24-h blood pressure monitoring, elastic features of the aorta, and left ventricle systolic functions, in patients with systemic hypertension. Materials and Methods: This was a case-control, cross-sectional prospective study. A total of 116 patients with systemic hypertension, and 116 healthy controls over 45 years of age, were included. Subfoveal choroidal thickness (SFCT was measured using a Heidelberg SD-OCT platform operating in the enhanced depth imaging mode. Patients were also subjected to 24-h ambulatory blood pressure monitoring (ABPM and standard transthoracic echocardiography (STTE. Patients were divided into dippers and nondippers using ABPM data and those with or without left ventricular hypertrophy (LVH+ and LVH- based on STTE data. The elastic parameters of the aorta, thus aortic strain (AoS, the beta index (BI, aortic distensibility (AoD, and the left ventricular mass index (LVMI, were calculated from STTE data. Results: No significant difference in SFCT was evident between patients and controls (P ≤ 0.611. However, a significant negative correlation was evident between age and SFCT in both groups (r = −0.66/−0.56, P ≤ 0.00. No significant SFCT difference was evident between the dipper and nondipper groups (P ≤ 0.67, or the LVH (+ and LVH (- groups (P ≤ 0.84. No significant correlation was evident between SFCT and any of AoS, BI, AoD, or LVMI. Discussion : The choroid is affected by atrophic changes associated with aging. Even in the presence of comorbid risk factors including LVH and arterial stiffness, systemic hypertension did not affect SFCT.

  8. Evaluation of the retinal nerve fibre layer and ganglion cell complex thickness in pituitary macroadenomas without optic chiasmal compression

    Science.gov (United States)

    Cennamo, G; Auriemma, R S; Cardone, D; Grasso, L F S; Velotti, N; Simeoli, C; Di Somma, C; Pivonello, R; Colao, A; de Crecchio, G

    2015-01-01

    Purpose The aim of this prospective study was to measure the thickness of the circumpapillary retinal nerve fibre layer (cpRNFL) and the ganglion cell complex (GCC) using spectral domain optical coherence tomography (SD-OCT) in a cohort of consecutive de novo patients with pituitary macroadenomas without chiasmal compression. Patients and methods Twenty-two consecutive patients with pituitary macroadenoma without chiasmal compression (16 men, 6 women, aged 45.2±14.6 years, 43 eyes) entered the study between September 2011 and June 2013. Among them, 31.8% harboured a growth hormone-secreting pituitary adenoma, 27.3% a prolactin-secreting pituitary adenoma, 27.3% a corticotrophin-secreting pituitary adenoma, and 13.6% a non-secreting pituitary tumour. Eighteen subjects (nine females, nine males, mean age 36.47±6.37 years; 33 eyes) without pituitary adenoma, with normal ophthalmic examination, served as controls. In both patients and controls, cpRNFL and GCC thicknesses were measured by SD-OCT. Results Patients were significantly older (P=0.02) than controls. Best corrected visual acuity, intraocular pressure, colour fundus photography, and automatic perimetry test were within the normal range in patients and controls. Conversely, cpRNFL (P=0.009) and GCC (P<0.0001) were significantly thinner in patients than in controls. The average GCC (r=0.306, P=0.046) significantly correlated with the presence of arterial hypertension. OCT parameters did not differ significantly between patients with a tumour volume above the median and those with a tumour volume below the median. Conclusion Pituitary macroadenomas, even in the absence of chiasmal compression, may induce GCC and retinal nerve fibre layer thinning. SD-OCT may have a role in the early diagnosis and management of patients with pituitary tumours. PMID:25853400

  9. Comparison of central corneal thickness: ultrasound pachymetry versus slit-lamp optical coherence tomography, specular microscopy, and Orbscan

    Directory of Open Access Journals (Sweden)

    Khaja WA

    2015-06-01

    Full Text Available Wassia A Khaja, Sandeep Grover, Amy T Kelmenson, Lee R Ferguson, Kumar Sambhav, Kakarla V Chalam Department of Ophthalmology, University of Florida, College of Medicine, Jacksonville, FL, USA Background: Central corneal thickness (CCT can be measured by using contact and non-contact methods. Ultrasound pachymetry (US pachymetry is a contact method for measuring CCT and is perhaps the most commonly used method. However, non-contact methods like scanning slit topography (Orbscan II, slit-lamp optical coherence tomography (SL-OCT, and specular microscopy are also used. Not many studies have correlated the measurement of CCT with all four modalities. The purpose of this study was to compare and correlate the CCT measurements obtained by US pachymetry with SL-OCT, specular microscopy, and Orbscan. Method: This is a prospective, comparative study done in an institutional setting. Thirty-two eyes of 32 subjects with no known ocular disease and best-corrected visual acuity of 20/20 were enrolled. CCT measurements were obtained using SL-OCT, specular microscopy, scanning slit topography (Orbscan, and US pachymetry. Three measurements were made with each instrument by the same operator. Mean, standard deviation, and coefficient of variation were calculated for CCT measurements acquired by the four measurement devices. Bland–Altman plot was constructed to determine the agreements between the CCT measurements obtained by different equipment. Results: The mean CCT was 548.16±48.68 µm by US pachymetry. In comparison, CCT averaged 546.36±44.17 µm by SL-OCT, 557.61±49.92 µm by specular microscopy, and 551.03±48.96 µm by Orbscan for all subjects. Measurements by the various modalities were strongly correlated. Correlations (r2 of CCT, as measured by US pachymetry compared with other modalities, were: SL-OCT (r2=0.98, P<0.0001, specular microscopy (r2=0.98, P<0.0001, and Orbscan (r2=0.96, P<0.0001. All modalities had a linear correlation with US

  10. Characterisation of laser-produced tungsten plasma using optical spectroscopy method

    Science.gov (United States)

    Kubkowska, M.; Gasior, P.; Rosinski, M.; Wolowski, J.; Sadowski, M. J.; Malinowski, K.; Skladnik-Sadowska, E.

    2009-08-01

    This paper describes results of spectroscopic investigation of laser-produced tungsten plasma. The laser intensity on the target surface reached up to 30 GW/cm2 depending on the focusing conditions. Optical spectra emitted from plasma plumes which were formed under vacuum conditions in front of the tungsten target due to the interaction of Nd-YAG laser pulses (1.06 μm, 0.5 J), were characterised by means of an optical spectrometer (λ/Δλ= 900) in the wavelength range from 300 to 1100 nm. The spectra were recorded automatically with the use of a CCD detector with exposition time varied from 100 ns to 50 ms. On the basis of WI and WII lines it was possible to estimate electron temperature and electron density which corresponded to the expansion phase of the plasma. Te and Ne were measured as 1.1 eV and 8×1016 cm-3, respectively. The spectra collected by the ion energy analyser showed that the plasma included tungsten ions up to 6+ ion charge. Signals from the ion collector allowed to estimate the average value of ion energy of tungsten as 4.6 keV. Basing on this value the electron temperature corresponding to the initial stage of the plasma formation was estimated to be about 320 eV. Optical microscope investigation showed that laser irradiation caused structural changes on the surface of the target.

  11. High-efficiency fast scintillators for "optical" soft x-ray arrays for laboratory plasma diagnostics.

    Science.gov (United States)

    Delgado-Aparicio, L F; Stutman, D; Tritz, K; Vero, R; Finkenthal, M; Suliman, G; Kaita, R; Majeski, R; Stratton, B; Roquemore, L; Tarrio, C

    2007-08-20

    Scintillator-based "optical" soft x-ray (OSXR) arrays have been investigated as a replacement for the conventional silicon (Si)-based diode arrays used for imaging, tomographic reconstruction, magnetohydrodynamics, transport, and turbulence studies in magnetically confined fusion plasma research. An experimental survey among several scintillator candidates was performed, measuring the relative and absolute conversion efficiencies of soft x rays to visible light. Further investigations took into account glass and fiber-optic face-plates (FOPs) as substrates, and a thin aluminum foil (150 nm) to reflect the visible light emitted by the scintillator back to the optical detector. Columnar (crystal growth) thallium-doped cesium iodide (CsI:Tl) deposited on an FOP, was found to be the best candidate for the previously mentioned plasma diagnostics. Its luminescence decay time of the order of approximately 1-10 micros is thus suitable for the 10 micros time resolution required for the development of scintillator-based SXR plasma diagnostics. A prototype eight channel OSXR array using CsI:Tl was designed, built, and compared to an absolute extreme ultraviolet diode counterpart: its operation on the National Spherical Torus Experiment showed a lower level of induced noise relative to the Si-based diode arrays, especially during neutral beam injection heated plasma discharges. The OSXR concept can also be implemented in less harsh environments for basic spectroscopic laboratory plasma diagnostics.

  12. Wettability, optical properties and molecular structure of plasma polymerized diethylene glycol dimethyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, T C A M; Algatti, M A; Mota, R P; Honda, R Y; Kayama, M E; Kostov, K G; Fernandes, R S [FEG-DFQ-UNESP, Av. Ariberto Pereira da Cunha 333, 12516-410 - Guaratingueta, SP (Brazil); Cruz, N C; Rangel, E C, E-mail: algatti@feg.unesp.b [UNESP, Avenida Tres de Marco, 511, 18087-180 Sorocaba, SP (Brazil)

    2009-05-01

    Modern industry has frequently employed ethylene glycol ethers as monomers in plasma polymerization process to produce different types of coatings. In this work we used a stainless steel plasma reactor to grow thin polymeric films from low pressure RF excited plasma of diethylene glycol dimethyl ether. Plasmas were generated at 5W RF power in the range of 16 Pa to 60 Pa. The molecular structure of plasma polymerized films and their optical properties were analyzed by Fourier Transform Infrared Spectroscopy (FTIR) and Ultraviolet-Visible Spectroscopy, respectively. The IR spectra show C-H stretching at 3000-2900 cm{sup -1}, C=O stretching at 1730-1650 cm{sup -1}, C-H bending at 1440-1380 cm{sup -1}, C-O and C-O-C stretching at 1200-1000 cm{sup -1}. The refraction index was around 1.5 and the optical gap calculated from absorption coefficient presented value near 3.8 eV. Water contact angle of the films ranged from 40 deg. to 35 deg. with corresponding surface energy from 66 to 73x10{sup -7} J. Because of its favorable optical and hydrophilic characteristics these films can be used in ophthalmic industries as glass lenses coatings.

  13. Simultaneous retrieval of aerosol optical thickness and chlorophyll concentration from multi-wavelength measurement over East China Sea

    Science.gov (United States)

    Shi, C.; Nakajima, T.; Hashimoto, M.

    2016-12-01

    A flexible inversion algorithm is proposed for simultaneously retrieving aerosol optical thickness (AOT) and surface chlorophyll a (Chl) concentration from multi-wavelength observation over the ocean. In this algorithm, forward radiation calculation is performed by an accurate coupled atmosphere-ocean model with a sophisticated bio-optical ocean module, which is different from those in the classic ocean color algorithms that decouple the atmosphere and ocean systems using atmospheric correction procedures. Then, a full-physical nonlinear optimization approximation approach is used to retrieve AOT and Chl. For AOT retrieval, a global three-dimensional spectral radiation-transport aerosol model is used as the priori constraint to increase the retrieval accuracy of aerosol. To investigate the algorithm's availability, the retrieval experiment is conducted using simulated radiance data to demonstrate that the relative errors in simultaneously determining AOT and Chl can be mostly controlled to within 10% using multi-wavelength and angle coving in and out of sunglint. Furthermore, the inversion results are assessed using the actual satellite observation data obtained from Greenhouse gas Observation SATellite (GOSAT) and MODerate resolution Imaging Spectroradiometer (MODIS)/Aqua instruments through comparison to Aerosol Robotic Network (AERONET) aerosol and ocean color (OC) products over East China Sea. Both the retrieved AOT and Chl compare favorably to the reported AERONET values, particularly when using the CASE 2 ocean module in turbid water, even when the retrieval is performed in the presence of high aerosol loading and sun glint. Finally, the MODIS images are used to jointly retrieve the spatial distribution of AOT and Chl in comparison to the MODIS AOT and OC products.

  14. Improved Aerosol Optical Thickness, Columnar Water Vapor, and Surface Reflectance Retrieval from Combined CASI and SASI Airborne Hyperspectral Sensors

    Directory of Open Access Journals (Sweden)

    Hang Yang

    2017-02-01

    Full Text Available An increasingly common requirement in remote sensing is the integration of hyperspectral data collected simultaneously from different sensors (and fore-optics operating across different wavelength ranges. Data from one module are often relied on to correct information in the other, such as aerosol optical thickness (AOT and columnar water vapor (CWV. This paper describes problems associated with this process and recommends an improved strategy for processing remote sensing data, collected from both visible to near-infrared and shortwave infrared modules, to retrieve accurate AOT, CWV, and surface reflectance values. This strategy includes a workflow for radiometric and spatial cross-calibration and a method to retrieve atmospheric parameters and surface reflectance based on a radiative transfer function. This method was tested using data collected with the Compact Airborne Spectrographic Imager (CASI and SWIR Airborne Spectrographic Imager (SASI from a site in Huailai County, Hebei Province, China. Various methods for retrieving AOT and CWV specific to this region were assessed. The results showed that retrieving AOT from the remote sensing data required establishing empirical relationships between 465.6 nm/659 nm and 2105 nm, augmented by ground-based reflectance validation data, and minimizing the merit function based on AOT@550 nm optimization. The paper also extends the second-order difference algorithm (SODA method using Powell’s methods to optimize CWV retrieval. The resulting CWV image has fewer residual surface features compared with the standard methods. The derived remote sensing surface reflectance correlated significantly with the ground spectra of comparable vegetation, cement road and soil targets. Therefore, the method proposed in this paper is reliable enough for integrated atmospheric correction and surface reflectance retrieval from hyperspectral remote sensing data. This study provides a good reference for surface

  15. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Eighth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommended for engineering st

  16. Polycystic Ovary Syndrome: Aggressive or Protective Factor for the Retina? Evaluation of Macular Thickness and Retinal Nerve Fiber Layers Using High-Definition Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    José Edvan de Souza-Júnior

    2015-01-01

    Full Text Available Objective. To compare macular thickness (MT and retinal nerve fiber layers (RNFL between women with polycystic ovary syndrome (PCOS and healthy women. Materials and Methods. The study included 45 women with PCOS and 47 ovulatory women undergoing clinical-gynecological and ophthalmic evaluations, including measurement of MT, RNFL, and optic disc parameters using optical coherence tomography. Results. The superior RNFL around the optic nerve was significantly thicker in PCOS than in healthy volunteers (P=0.036. After stratification according to insulin resistance, the temporal inner macula (TIM, the inferior inner macula (IIM, the nasal inner macula (NIM, and the nasal outer macula (NOM were significantly thicker in PCOS group than in control group (P<0.05. Both the presence of obesity associated with insulin resistance (P=0.037 and glucose intolerance (P=0.001 were associated with significant increase in the PC1 mean score, relative to MT. A significant increase in the PC2 mean score occurred when considering the presence of metabolic syndrome (P<0.0001. There was a significant interaction between obesity and inflammation in a decreasing mean PC2 score relative to macular RNFL thickness (P=0.034. Conclusion. Decreased macular RNFL thickness and increased total MT are associated with metabolic abnormalities, while increased RNFL thickness around the optic nerve is associated with hormonal changes inherent in PCOS.

  17. Evolution of aerosol optical thickness over Europe during the August 2003 heat wave as seen from CHIMERE model simulations and POLDER data

    NARCIS (Netherlands)

    Hodzic, A; Vautard, R; Chepfer, H; Goloub, P; Menut, L; Chazette, P; Deuzé, J L; Apituley, A; Couvert, P

    2006-01-01

    This study describes the atmospheric aerosol load encountered during the large-scale pollution episode that occurred in August 2003, by means of the aerosol optical thicknesses (AOTs) measured at 865 nm by the Polarization and Directionality of the Earth's Reflectances (POLDER) sensor and the simula

  18. Shaped Plasma Lenses for Optical Beam Control at High Laser Intensities

    Science.gov (United States)

    Hubbard, R. F.; Palastro, J. P.; Johnson, L. A.; Hafizi, B.; Gordon, D. F.; Penano, J. R.; Helle, M. H.; Kaganovich, D.

    2016-10-01

    A plasma channel is a cylindrical plasma column with an on-axis density minimum. A short plasma channel can focus a laser pulse in much the same manner as a conventional lens or off-axis parabola. If the plasma has an off-axis density maximum (``inverse channel''), it behaves like a negative lens and acts to defocus the pulse. In either case, a shaped plasma lens (SPL) may be placed in the beamline at locations where the laser intensity or fluence is orders of magnitude above the damage threshold for conventional solid optics. When placed after an off-axis parabola, SPLs may provide additional flexibility and spot size control and may also be useful in suppressing laser prepulse. For high power, ultrashort laser pulses, the broad laser bandwidth and extreme intensities produce chromatic and phase aberrations and amplitude distortions that degrade the lens focusing or defocusing performance. Although there have been a few experiments that demonstrate laser pulse focusing by a shaped plasma lens, generation and control of the plasma present significant challenges. Potential applications of SPLs to laser-plasma accelerators will be discussed. Supported by the Naval Research Laboratory Base Program.

  19. Lifetime Calculations on Collector Optics from Laser Plasma Extreme Ultraviolet Sources with Minimum Mass

    Institute of Scientific and Technical Information of China (English)

    WU Tao; WANG Xin-Bing

    2011-01-01

    An ion flux and its kinetic energy spectrum are obtained using a self similar spherically symmetric fluid model of expansion of a collisionless plasma into vacuum. According to the ion flux and energy distribution, the collector optical lifetime is estimated by knowledge of the sputtering yield of conventional Mo/Si multilayer coatings for the CO2 and Nd:YAG pulsed-laser produced plasmas based on the minimum mass tin droplet target without debris mitigation. The results show that the longer wavelength of the CO2 laser produced plasma light source is more suitable for extreme ultraviolet lithography than Nd:YAG laser in respect of fast ion debris induced sputtering damage to the collector mirror.%@@ An ion flux and its kinetic energy spectrum are obtained using a self similar spherically symmetric fluid model of expansion of a collisionless plasma into vacuum.According to the ion flux and energy distribution,the collector optical lifetime is estimated by knowledge of the sputtering yield of conventional Mo/Si multilayer coatings for the CO2 and Nd:YAG pulsed-laser produced plasmas based on the minimum mass tin droplet target without debris mitigation.The results show that the longer wavelength of the CO2 laser produced plasma light source is more suitable for extreme ultraviolet lithography than Nd:YAG laser in respect of fast ion debris induced sputtering damage to the collector mirror.

  20. The exciton-longitudinal-optical-phonon coupling in InGaN/GaN single quantum wells with various cap layer thicknesses

    Institute of Scientific and Technical Information of China (English)

    Hu Xiao-Long; Zhang Jiang-Yong; Shang Jing-Zhi; Liu Wen-Jie; Zhang Bao-Ping

    2010-01-01

    This paper studies the exciton-longitudinal-optical-phonon coupling in InGaN/GaN single quantum wells with various cap layer thicknesses by low temperature photoluminescence (PL) measurements. With increasing cap layer thickness, the PL peak energy shifts to lower energy and the coupling strength between the exciton and longitudinal-optical (LO) phonon, described by Huang-Rhys factor, increases remarkably due to an enhancement of the internal electric field. With increasing excitation intensity, the zero-phonon peak shows a blueshift and the Huang-Rhys factor decreases. These results reveal that there is a large built-in electric field in the well layer and the exciton-LO-phonon coupling is strongly affected by the thickness of the cap layer.

  1. Reproducibility of peripapillary retinal nerve fiber layer thickness with spectral domain cirrus high-definition optical coherence tomography in normal eyes.

    Science.gov (United States)

    Hong, Samin; Kim, Chan Yun; Lee, Won Seok; Seong, Gong Je

    2010-01-01

    To assess the reproducibility of the new spectral domain Cirrus high-definition optical coherence tomography (HD-OCT; Carl Zeiss Meditec, Dublin, CA, USA) for analysis of peripapillary retinal nerve fiber layer (RNFL) thickness in healthy eyes. Thirty healthy Korean volunteers were enrolled. Three optic disc cube 200 x 200 Cirrus HD-OCT scans were taken on the same day in discontinuous sessions by the same operator without using the repeat scan function. The reproducibility of the calculated RNFL thickness and probability code were determined by the intraclass correlation coefficient (ICC), coefficient of variation (CV), test-retest variability, and Fleiss' generalized kappa (kappa). Thirty-six eyes were analyzed. For average RNFL thickness, the ICC was 0.970, CV was 2.38%, and test-retest variability was 4.5 microm. For all quadrants except the nasal, ICCs were 0.972 or higher and CVs were 4.26% or less. Overall test-retest variability ranged from 5.8 to 8.1 microm. The kappa value of probability codes for average RNFL thickness was 0.690. The kappa values of quadrants and clock-hour sectors were lower in the nasal areas than in other areas. The reproducibility of Cirrus HD-OCT to analyze peripapillary RNFL thickness in healthy eyes was excellent compared with the previous reports for time domain Stratus OCT. For the calculated RNFL thickness and probability code, variability was relatively higher in the nasal area, and more careful analyses are needed.

  2. Surface plasmon resonance investigation of optical detection in plasma-modified phospholipid layers

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byoungchoo; Cho, Chanyoun; Choi, Kyoungho; Jeon, Honggoo [Kwangwoon University, Seoul (Korea, Republic of)

    2012-03-15

    We herein report on a study of surface plasmon resonance (SPR) in thin gold (Au) films coated with thin layers of phospholipid material, which had been exposed to an atmospheric pressure (AP) plasma containing both pure Ar and Ar mixed with O{sub 2} (Ar/O{sub 2}, 0.8%). The phospholipid material that we used for the SPR experiments was lecithin, and the AP plasma system was applied in air by means of a radio-frequency (RF) plasma generator. A thin (∼60 nm) film of Au and a thin (∼15 nm) layer of lecithin were deposited and attached to the face of a prism, and surface plasmon modes were excited along the interfaces of the prism-Au-lecithin-air system by means of prism coupling using a He-Ne Laser (632.8 nm). The experimental SPR reflectance curves of the Au-lecithin-air modes were found to be shifted towards those of the Au-air mode with increasing applications of AP RF plasma treatment. From the shifts in the SPR curves, we found that the estimated thickness of the lecithin layer treated with a pure Ar plasma showed a linear decrease with etching rate of about 3 nm per treatment while the thickness of the lecithin layer treated with a mixed Ar/O{sub 2} plasma showed a tendency to saturate following a large initial decrease (ca. 14 nm). All these results demonstrate that the use of SPR sensing could facilitate the detection of extremely small variations in plasma-treated films of biomaterials.

  3. Nighttime Aerosol Optical Thickness Retrievals Via the VIIRS Day/Night Band and the Effects of Lunar Contamination

    Science.gov (United States)

    McHardy, T. M.; Zhang, J.; Reid, J. S.; Miller, S. D.; Hyer, E. J.; Kuehn, R.

    2015-12-01

    Using Visible/Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) data, a method for retrieving aerosol optical thickness (AOT) values at night via the examination of the dispersion of radiance values above an artificial light source ,dubbed the "variance method", is presented. Based on the improvement of a previous algorithm, this updated method derives a semi-quantitative indicator of nighttime AOT using artificial light sources. Nighttime DNB AOT retrievals from the variance method are compared with an AOT value from late afternoon and early morning ground observations from four AErosol RObotic NETwork (AERONET) sites as well as column integrated from one High Spectral Resolution Lidar (HSRL) site at Huntsville, AL during the NASA Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) campaign, providing full diel coverage. An emphasis is placed on sensitivity studies performed to examine the effects of lunar illumination on VIIRS DNB AOT retrievals made via the variance method. Although the small sample size of this study limits the conclusiveness thus far, investigation reveals that lunar contamination may have a smaller impact on VIIRS DNB AOT retrievals made using this method than previously thought. Preliminary results suggest that artificial light sources can be used for estimating regional and global nighttime aerosol distributions in the future.

  4. The Spectral Temperature of Optically Thick Outflows with Application to Light Echo Spectra from $\\eta$~Carinae's Giant Eruption

    CERN Document Server

    Owocki, Stanley P

    2016-01-01

    The detection by Rest et al. (2012) of light echoes from $\\eta$ Carinae has provided important new observational constraints on the nature of its 1840's era giant eruption. Spectra of the echoes suggest a relatively cool spectral temperature of about 5500K, lower than the lower limit of about 7000K suggested in the optically thick wind outflow analysis of Davidson (1987). This has lead to a debate about the viability of this steady wind model relative to alternative, explosive scenarios. Here we present an updated analysis of the wind outflow model using newer low-temperature opacity tabulations and accounting for the stronger mass loss implied by the $>$10 Msun mass now inferred for the Homunculus. A major conclusion is that, because of the sharp drop in opacity due to free electron recombination for $T<$6500K, a low temperature of about 5000K is compatible with, and indeed expected from, a wind with the extreme mass loss inferred for the eruption. Within a spherical gray model in radiative equilibrium, w...

  5. Ability of spectral domain optical coherence tomography peripapillary retinal nerve fiber layer thickness measurements to identify early glaucoma

    Directory of Open Access Journals (Sweden)

    Tarannum Mansoori

    2011-01-01

    Full Text Available Purpose : To evaluate the ability of spectral domain optical coherence tomography (OCT peripapillary retinal nerve fiber layer thickness (RNFLT parameters to distinguish normal eyes from those with early glaucoma in Asian Indian eyes. Design : Observational cross-sectional study. Materials and Methods : One hundred and seventy eight eyes (83 glaucoma patients and 95 age matched healthy subjects of subjects more than 40 years of age were included in the study. All subjects underwent RNFLT measurement with spectral OCT/ scanning laser ophthalmoscope (SLO after dilatation. Sensitivity, specificity and area under the receiving operating characteristic curve (AROC were calculated for various OCT peripapillary RNFL parameters. Results: The mean RNFLT in healthy subjects and patients with early glaucoma were 105.7 ± 5.1 μm and 90.7 ± 7.5 μm, respectively. The largest AROC was found for 12 o′clock- hour (0.98, average (0.96 and superior quadrant RNFLT (0.9. When target specificity was set at ≥ 90% and ≥ 80%, the parameters with highest sensitivity were 12 o′clock -hour (91.6%, average RNFLT (85.3% and 12 o′ clock- hour (96.8 %, average RNFLT (94.7% respectively. Conclusion : Our study showed good ability of spectral OCT/ SLO to differentiate normal eyes from patients with early glaucoma and hence it may serve as an useful adjunct for early diagnosis of glaucoma.

  6. Hybrid glass coatings for optical fibers: effect of coating thickness on strength and dynamic fatigue characteristics of silica fibers

    Science.gov (United States)

    Wojcik, A. B.; Matthewson, M. J.; Castelino, K. T.; Wojcik, J.; Walewski, A.

    2006-04-01

    Specialty optical fibers operating in harsh aerospace environments are typically exposed to high temperatures and elevated humidity. This calls for better performing protective coatings. Recently developed sol-gel derived inorganicorganic hybrid materials called hybrid glass offered improved protective performance as compared to standard dual polymer coated fibers [1]. In this paper we examine the effectiveness of online UV curing for the protective ability of hybrid glass coatings. For this purpose two types of UV-curable hybrid glass candidates representing two different concentrations of acrylate groups were applied online to silica fibers as single and dual coats. Samples of fibers were collected and subjected to dynamic fatigue testing by two-point bending. The stress corrosion parameter, n, as well as the strength of the fibers were determined. Both the strength and n were higher for fibers with two layers of coating as compared to single coatings even when the thickness of both one and two layer coatings was the same. This may be caused by the greater degree of cross linking of the inorganic component when the coating is exposed twice to the heat generated in the UV chamber. Coating materials with reduced acrylate group content had higher values of the fatigue parameter n but at the same time reduced strength.

  7. A new approach to determine optically thick H2 cooling and its effect on primordial star formation

    CERN Document Server

    Hartwig, Tilman; Glover, Simon C O; Klessen, Ralf S; Sasaki, Mei

    2014-01-01

    We present a new method for estimating the H2 cooling rate in the optically thick regime in simulations of primordial star formation. Our new approach is based on the TreeCol algorithm, which projects matter distributions onto a spherical grid to create maps of column densities for each fluid element in the computational domain. We have improved this algorithm by using the relative gas velocities, to weight the individual matter contributions with the relative spectral line overlaps, in order to properly account for the Doppler effect. We compare our new method to the widely used Sobolev approximation, which yields an estimate for the column density based on the local velocity gradient and the thermal velocity. This approach generally underestimates the photon escape probability, because it neglects the density gradient and the actual shape of the cloud. We present a correction factor for the true line overlap in the Sobolev approximation and a new method based on local quantities, which fits the exact result...

  8. ALMA 690 GHz OBSERVATIONS OF IRAS 16293-2422B: INFALL IN A HIGHLY OPTICALLY THICK DISK

    Energy Technology Data Exchange (ETDEWEB)

    Zapata, Luis A.; Loinard, Laurent; Rodriguez, Luis F.; Hernandez-Hernandez, Vicente [Centro de Radioastronomia y Astrofisica, UNAM, Apdo. Postal 3-72 (Xangari), 58089 Morelia, Michoacan (Mexico); Takahashi, Satoko; Trejo, Alfonso [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Parise, Berengere [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany)

    2013-02-10

    We present sensitive, high angular resolution ({approx}0.''2) submillimeter continuum and line observations of IRAS 16293-2422B made with the Atacama Large Millimeter/Submillimeter Array. The 0.45 mm continuum observations reveal a single and very compact source associated with IRAS 16293-2422B. This submillimeter source has a deconvolved angular size of about 400 mas (50 AU) and does not show any inner structure inside of this diameter. The H{sup 13}CN, HC{sup 15}N, and CH{sub 3}OH line emission regions are about twice as large as the continuum emission and reveal a pronounced inner depression or ''hole'' with a size comparable to that estimated for the submillimeter continuum. We suggest that the presence of this inner depression and the fact that we do not see an inner structure (or a flat structure) in the continuum are produced by very optically thick dust located in the innermost parts of IRAS 16293-2422B. All three lines also show pronounced inverse P-Cygni profiles with infall and dispersion velocities larger than those recently reported from observations at lower frequencies, suggesting that we are detecting faster and more turbulent gas located closer to the central object. Finally, we report a small east-west velocity gradient in IRAS 16293-2422B that suggests that its disk plane is likely located very close to the plane of the sky.

  9. The Nature of ULX Source M101 X-1: Optically Thick Outflow from A Stellar Mass Black Hole

    CERN Document Server

    Shen, Rong-Feng; Nakar, Ehud; Piran, Tsvi

    2014-01-01

    The nature of ultra-luminous X-ray sources (ULXs) has long been plagued by an ambiguity about whether the central compact objects are intermediate-mass (IMBH, >~ 10^3 M_sun) or stellar-mass (a few tens M_sun) black holes (BHs). The high luminosity (~ 10^39 erg/s) and super-soft spectrum (T ~ 0.1 keV) during the high state of the ULX source X-1 in the galaxy M101 suggest a large emission radius (>~ 10^9 cm), consistent with being an IMBH accreting at a sub-Eddington rate. However, recent kinematic measurement of the binary orbit of this source and identification of the secondary as a Wolf-Rayet star suggest a stellar-mass BH primary with a super-Eddington accretion. If that is the case, a hot, optically thick outflow from the BH can account for the large emission radius and the soft spectrum. By considering the interplay of photons' absorption and scattering opacities, we determine the radius and mass density of the emission region of the outflow and constrain the outflow mass loss rate. The analysis presented...

  10. ALMA 690 GHz observations of IRAS 16293-2422B: Infall in a highly optically-thick disk

    CERN Document Server

    Zapata, Luis A; Rodriguez, Luis F; Hernandez-Hernandez, Vicente; Takahashi, Satoko; Trejo, Alfonso; Parise, Berengere

    2013-01-01

    We present sensitive, high angular resolution ($\\sim$ 0.2 arcsec) submillimeter continuum and line observations of IRAS 16293-2422B made with the Atacama Large Millimeter/Submillimeter Array (ALMA). The 0.45 mm continuum observations reveal a single and very compact source associated with IRAS 16293-2422B. This submillimeter source has a deconvolved angular size of about 400 {\\it milli-arcseconds} (50 AU), and does not show any inner structure inside of this diameter. The H$^{13}$CN, HC$^{15}$N, and CH$_{3}$OH line emission regions are about twice as large as the continuum emission and reveal a pronounced inner depression or "hole" with a size comparable to that estimated for the submillimeter continuum. We suggest that the presence of this inner depression and the fact that we do not see inner structure (or a flat structure) in the continuum is produced by very optically thick dust located in the innermost parts of IRAS 16293-2422B. All three lines also show pronounced inverse P-Cygni profiles with infall an...

  11. Separating Real and Apparent Effects of Cloud, Humidity, and Dynamics on Aerosol Optical Thickness near Cloud Edges

    Science.gov (United States)

    Jeong, Myeong-Jae; Li, Zhanqing

    2010-01-01

    Aerosol optical thickness (AOT) is one of aerosol parameters that can be measured on a routine basis with reasonable accuracy from Sun-photometric observations at the surface. However, AOT-derived near clouds is fraught with various real effects and artifacts, posing a big challenge for studying aerosol and cloud interactions. Recently, several studies have reported correlations between AOT and cloud cover, pointing to potential cloud contamination and the aerosol humidification effect; however, not many quantitative assessments have been made. In this study, various potential causes of apparent correlations are investigated in order to separate the real effects from the artifacts, using well-maintained observations from the Aerosol Robotic Network, Total Sky Imager, airborne nephelometer, etc., over the Southern Great Plains site operated by the U.S. Department of Energy's Atmospheric Radiation Measurement Program. It was found that aerosol humidification effects can explain about one fourth of the correlation between the cloud cover and AOT. New particle genesis, cloud-processed particles, atmospheric dynamics, and aerosol indirect effects are likely to be contributing to as much as the remaining three fourth of the relationship between cloud cover and AOT.

  12. Weekly periodicities of aerosol optical thickness over Central Europe – evidence of an anthropogenic direct aerosol effect

    Directory of Open Access Journals (Sweden)

    B. Vogel

    2007-08-01

    Full Text Available Statistical analyses of data from 14 ground-based sun photometer stations all over Central Europe are presented. All stations are part of the Aerosol Robotic Network (AERONET, and only data of the highest data quality level 2.0 had been applied. The averages by weekday of aerosol optical thickness (AOT at a wavelength of 440 nm of 12 of the 14 stations show a weekly periodicity with lowest values on Sunday and Monday, but greatest values from Wednesday until Saturday, that is significant at least on a 90% level. The stations in Germany and in Greater Paris show weekly cycles with ranges of about 20% on average. In Northern Italy and Switzerland this range is about 10% on average. The corresponding weekly cycle of anthropogenic gaseous and particulate emissions leads us to the conclusion of the anthropogenic origin of the weekly AOT cycle. Since these AOT patterns are derived from the reduction of the direct sun radiation by the columnar atmospheric aerosol, this result represents strong evidence for an anthropogenic direct aerosol effect on shortwave radiation. Furthermore, this study makes a first contribution to the understanding and explanation of recently observed weekly periodicities in meteorological variables as temperature in Germany.

  13. Nocturnal aerosol optical thickness measured with a sun/moon photometer developed by improving the Prede Sky-radiometer

    Science.gov (United States)

    Shiobara, Masataka; Kobayashi, Hiroshi; Hishida, Kosuke; Uchiyama, Akihiro

    2017-04-01

    Sun photometry to obtain the aerosol optical thickness (AOT) needs the sun. Since the moon must be another source of light instead of the sun during night-time, a moon photometer was developed by improving the Prede POM-02 Sky-radiometer to measure the spectral lunar irradiance. The original POM-02 model has an electric dynamic range of 109 to measure both of direct- and circum-solar radiation. The electronics of POM-02 was upgraded to include a 1011 dynamic range for better performance to measure the direct lunar irradiance at the visible range as well as the sun and sky measurements with a single instrument. A CCD-based position sensor was newly developed to track the moon as well as the sun continuously. The position of the moon/sun is determined with accuracy of better than 0.01° by a real-time processing system using the CCD imager. Test measurements with the improved POM-02 instrument were performed for the half to full moon conditions, and showed a good performance for lunar photometry to obtain the nocturnal AOTs.

  14. Multisite Optical Imaging of Artificial Ionospheric Plasmas (Postprint)

    Science.gov (United States)

    2011-11-09

    Frequency Active Auroral Research Program ( HAARP ) facility in Gakona, Alaska (62.4◦ N 145◦ W) after the trans- mitter reached full 3.6-MW power, these...The experiment was carried out on November 19, 2009, between 02:26 UT and 02:43:50 UT. Optical images were acquired at the HAARP site at 557.7 nm (O 1S...noise and integrated for 5 s at a temperature of −40 ◦C. A second system located 160 km north of the HAARP near Delta Junction used an Apogee Alta

  15. Effect of Film Thickness on the Optical Parameters and Electrical Conductivity of Te10Ge10Se77Sb3 Chalcogenide Glass

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Several thin films of Te10Ge10Se77Sb3 chalcogenide glass of different thicknesses (250 nm to 400 nm) were prepared by thermalevaporation under vacuum of 133×10-6 Pa (10-6torr). X- ray diffraction analysis showed the amorphicity of the preparedfilms which become partially crystalline by annealing. Transmittance and reflectance measurements in the spectral range of200 nm to 2500 nm have been carried out at normal incidence. The analysis of the absorption coefficient data showed theexistence of indirect transition for the photon energy E in the range 1~3 eV and direct transition for E>3 eV. From thedetermination of the optical constants (n, k), the dispersion of the refractive index has anomalous behaviour in the region ofthe fundamental absorption edge, and followed by the single- effective oscillator approach. The investigated optical parameterssuch as the optical energy gap Eopt, the high frequency dielectric constant εoo, the oscillator position λo, and the oscillatorstrength So, were significantly affected by the film thickness. The characteristic energy gap obtained from the conductivitymeasurements is nearly half the value of that obtained from the optical data as in the case of thickness 400 nm. The activationenergy is 0.65 eV and the indirect optical gap is 1.32 eV.

  16. A novel method to retrieve Aerosol Optical Thickness from high-resolution optical satellite images using an extended version of the Haze Optimized Transform (HOTBAR)

    Science.gov (United States)

    Wilson, Robin; Milton, Edward; Nield, Joanna

    2016-04-01

    Aerosol Optical Thickness (AOT) data has many important applications including atmospheric correction of satellite imagery and monitoring of particulate matter air pollution. Current data products are generally available at a kilometre-scale resolution, but many applications require far higher resolutions. For example, particulate matter concentrations vary on a metre-scale, and thus data products at a similar scale are required to provide accurate assessments of particle densities and allow effective monitoring of air quality and analysis of local air quality effects on health. A novel method has been developed which retrieves per-pixel AOT values from high-resolution (~30m) satellite data. This method is designed to work over a wide range of land covers - including both bright and dark surfaces - and requires only standard visible and near-infrared data, making it applicable to a range of data from sensors such as Landsat, SPOT and Sentinel-2. The method is based upon an extension of the Haze Optimized Transform (HOT). The HOT was originally designed for assessing areas of thick haze in satellite imagery by calculating a 'haziness' value for each pixel in an image as the distance from a 'Clear Line' in feature space, defined by the high correlation between visible bands. Here, we adapt the HOT method and use it to provide AOT data instead. Significant extensions include Monte Carlo estimation of the 'Clear Line', object-based correction for land cover, and estimation of AOT from the haziness values through radiative transfer modelling. This novel method will enable many new applications of AOT data that were impossible with previously available low-resolution data, and has the potential to contribute significantly to our understanding of the air quality on health, the accuracy of satellite image atmospheric correction and the role of aerosols in the climate system.

  17. Comparison endpoint study of process plasma and secondary electron beam exciter optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stephan Thamban, P. L.; Yun, Stuart; Padron-Wells, Gabriel; Hosch, Jimmy W.; Goeckner, Matthew J. [Department of Mechanical Engineering, University of Texas at Dallas, 800W Campbell Road, Richardson, Texas 75080 (United States); Department of Electrical Engineering, University of Texas at Dallas, 800W Campbell Road, Richardson, Texas 75080 (United States); Verity Instruments, Inc., 2901 Eisenhower Street, Carrollton, Texas 75007 (United States); Department of Mathematical Sciences, University of Texas at Dallas, 800 W Campbell Road, Richardson, Texas 75080 (United States)

    2012-11-15

    Traditionally process plasmas are often studied and monitored by optical emission spectroscopy. Here, the authors compare experimental measurements from a secondary electron beam excitation and direct process plasma excitation to discuss and illustrate its distinctiveness in the study of process plasmas. They present results that show excitations of etch process effluents in a SF{sub 6} discharge and endpoint detection capabilities in dark plasma process conditions. In SF{sub 6} discharges, a band around 300 nm, not visible in process emission, is observed and it can serve as a good indicator of etch product emission during polysilicon etches. Based on prior work reported in literature the authors believe this band is due to SiF{sub 4} gas phase species.

  18. Effect of thickness on the electrical and optical properties of epitaxial (La0.07Ba0.93)SnO3 thin films

    Science.gov (United States)

    Liu, Qinzhuang; Jin, Feng; Dai, Jianming; Li, Bing; Geng, Lei; Liu, Jianjun

    2016-08-01

    Transparent conductive oxide (La0.07Ba0.93)SnO3 (LBSO) thin films with thickness ranged from 220 nm to 11 nm were epitaxially grown on MgO substrate by pulsed laser deposition. The effect of thickness on the structural, transport, and optical properties of LBSO thin films was investigated in detail. With the film thickness decreasing, x-ray diffraction characterizations show that the LBSO (002) diffraction peak has no obvious shift, but the values of the full width at half maximum increase gradually from 0.608° to 1.136° due to the deterioration of crystalline quality of LBSO films. Atomic force microcopy reveals that the root-mean-square surface roughness of LBSO films decreases from 3.93 to 0.268 nm with film thickness decreasing. The lowest resistivity value of 1.181 × 10-4 Ωcm at room temperature was observed in 220 nm thick films, with the highest carrier mobility of 41.06 cm2 V-1 s-1 and carrier concentration of 8.377 × 1020 cm-3. Furthermore, the resistivity increases gradually with the decrease of LBSO film thickness. Temperature dependent resistivity measurements indicate that the metal-semiconductor transition temperature of LBSO thin film changes regularly with the film thickness. The optical band gap of LBSO thin film decreases from 4.58 to 3.55 eV with decreasing the thickness, which was explained by the Burstein-Moss effect.

  19. Comparison between a New Optical Biometry Device and an Anterior Segment Optical Coherence Tomographer for Measuring Central Corneal Thickness and Anterior Chamber Depth

    Directory of Open Access Journals (Sweden)

    Jinhai Huang

    2016-01-01

    Full Text Available Purpose. To compare between a new optical biometer (AL-Scan, Nidek Co., Aichi, Japan and an anterior segment optical coherence tomographer (Visante AS-OCT, Carl Zeiss Meditec, Dublin, USA for measuring central corneal thickness (CCT, anterior chamber depth (ACD, and aqueous depth (AD. Methods. Sixty-three eyes of 63 normal subjects were examined with AL-Scan and Visante AS-OCT in this prospective study. One eye per subject was measured three times with both devices to record their CCT, ACD, and AD. All procedures were performed by the same operator. Agreement between the two devices was assessed using paired t-tests, Bland-Altman plots, and 95% limits of agreement (LoA. Results. The mean CCT, ACD, and AD measured by AL-Scan were 538.59±27.37 μm, 3.70±0.30 mm, and 3.16±0.30 mm, respectively. The mean values obtained by the Visante OCT were 536.14±26.61 μm for CCT, 3.71±0.29 mm for ACD, and 3.17±0.29 mm for AD. The mean CCT by the AL-Scan was higher than that obtained by the Visante AS-OCT (difference = 2.45±6.07 μm, P<0.05. The differences in ACD and AD measurements were not statistically significant. The 95% LoA of CCT, ACD, and AD were between −9.44 and 14.35 μm, −0.15 and 0.12 mm, and −0.15 and 0.12 mm, respectively. Conclusions. Since these two devices were comparable for measuring CCT, ACD, and AD, their results can be interchangeably used in the clinic.

  20. Comparison between a New Optical Biometry Device and an Anterior Segment Optical Coherence Tomographer for Measuring Central Corneal Thickness and Anterior Chamber Depth

    Science.gov (United States)

    Huang, Jinhai; Lu, Weicong; Savini, Giacomo; Chen, Hao; Wang, Chengfang; Yu, Xinxin; Bao, Fangjun; Wang, Qinmei

    2016-01-01

    Purpose. To compare between a new optical biometer (AL-Scan, Nidek Co., Aichi, Japan) and an anterior segment optical coherence tomographer (Visante AS-OCT, Carl Zeiss Meditec, Dublin, USA) for measuring central corneal thickness (CCT), anterior chamber depth (ACD), and aqueous depth (AD). Methods. Sixty-three eyes of 63 normal subjects were examined with AL-Scan and Visante AS-OCT in this prospective study. One eye per subject was measured three times with both devices to record their CCT, ACD, and AD. All procedures were performed by the same operator. Agreement between the two devices was assessed using paired t-tests, Bland-Altman plots, and 95% limits of agreement (LoA). Results. The mean CCT, ACD, and AD measured by AL-Scan were 538.59 ± 27.37 μm, 3.70 ± 0.30 mm, and 3.16 ± 0.30 mm, respectively. The mean values obtained by the Visante OCT were 536.14 ± 26.61 μm for CCT, 3.71 ± 0.29 mm for ACD, and 3.17 ± 0.29 mm for AD. The mean CCT by the AL-Scan was higher than that obtained by the Visante AS-OCT (difference = 2.45 ± 6.07 μm, P < 0.05). The differences in ACD and AD measurements were not statistically significant. The 95% LoA of CCT, ACD, and AD were between −9.44 and 14.35 μm, −0.15 and 0.12 mm, and −0.15 and 0.12 mm, respectively. Conclusions. Since these two devices were comparable for measuring CCT, ACD, and AD, their results can be interchangeably used in the clinic. PMID:27403339

  1. Plasma-enhanced chemical vapor deposition of low-loss SiON optical waveguides at 15-microm wavelength.

    Science.gov (United States)

    Bruno, F; Guidice, M D; Recca, R; Testa, F

    1991-11-01

    Good optical-quality SiON layers deposited upon a SiO(2) buffer layer placed upon silicon wafers have been obtained by using plasma-enhanced chemical vapor deposition from SiH(4), NH(3), and N(2)O. Optical planar waveguides with a thickness of 5 microm and a refractive index of 1.470 have been deposited and investigated in the wavelength region of 1.3-1.6 microm. Three absorption bands at 1.40, 1.48, and 1.54 microm have been detected and interpreted as Si-OH, N-H, and Si-H vibrational modes, respectively. Absorption losses of 3.8 dB/cm at 1.4 microm and 3.2 dB/cm at 1.51 microm have been measured. A mild annealing at approximately 800 degrees C completely removes the band at 1.40 microm, whereas strong reduction of absorption at 1.51 microm requires 3 h of annealing at 1100 degrees C. As a result, propagation losses of 0.36 to 0.54 dB/cm have been measured at 1.54-microm wavelength.

  2. Optical transverse injection in laser-plasma acceleration.

    Science.gov (United States)

    Lehe, R; Lifschitz, A F; Davoine, X; Thaury, C; Malka, V

    2013-08-23

    Laser-wakefield acceleration constitutes a promising technology for future electron accelerators. A crucial step in such an accelerator is the injection of electrons into the wakefield, which will largely determine the properties of the extracted beam. We present here a new paradigm of colliding-pulse injection, which allows us to generate high-quality electron bunches having both a very low emittance (0.17 mm·mrad) and a low energy spread (2%), while retaining a high charge (~100 pC) and a short duration (3 fs). In this paradigm, the pulse collision provokes a transient expansion of the accelerating bubble, which then leads to transverse electron injection. This mechanism contrasts with previously observed optical injection mechanisms, which were essentially longitudinal. We also specify the range of parameters in which this new type of injection occurs and show that it is within reach of existing high-intensity laser facilities.

  3. Analysis of the thickness and vascular layers of the choroid in eyes with geographic atrophy using spectral-domain optical coherence tomography.

    Science.gov (United States)

    Adhi, Mehreen; Lau, Marisa; Liang, Michelle C; Waheed, Nadia K; Duker, Jay S

    2014-02-01

    To analyze the total choroidal thickness and thickness of the individual vascular layers of the choroid in eyes with geographic atrophy (GA), using spectral-domain optical coherence tomography. A cross-sectional retrospective review identified 17 patients with GA (17 eyes) and 14 age-matched healthy subjects (14 eyes), who underwent high-definition raster scanning at New England Eye Center, Boston, MA. Patients were diagnosed with GA based on clinical examination and investigations. Two independent raters evaluated the thickness and vascular layers of the choroid. Mean choroidal thickness was significantly lower in eyes with GA when compared with age-matched healthy eyes (P choroidal thickness in eyes with GA was significantly less when compared with healthy eyes (158.1 ± 23.65 μm versus 267.5 ± 19.27 μm, P = 0.001). Subfoveal large choroidal vessel layer thickness and medium choroidal vessel layer/choriocapillaris layer thickness were significantly reduced in eyes with GA when compared with healthy eyes (P = 0.001 and P choroid is significantly thinner in eyes with GA involving the fovea when compared with healthy eyes. Choroidal thinning in GA involves all its vascular layers. Further studies involving prospective correlation of choroidal vascular changes to the quantitative progression of GA is expected to provide further insight on the choroidal angiopathy associated with GA.

  4. Association between Optic Nerve Head Microcirculation and Macular Ganglion Cell Complex Thickness in Eyes with Untreated Normal Tension Glaucoma and a Hemifield Defect

    Directory of Open Access Journals (Sweden)

    Ayako Anraku

    2017-01-01

    Full Text Available Purpose. We evaluated the association between optic nerve head (ONH microcirculation and macular ganglion cell complex (mGCC thickness in patients with untreated normal tension glaucoma (NTG and a hemifield defect. Methods. The medical records of 47 patients with untreated NTG were retrospectively reviewed. Laser speckle flowgraphy was used to obtain mean blur rate (MBR, a relative measure of blood flow. Average total deviation (TD, mGCC, and the circumpapillary retinal nerve fiber layer (cpRNFL thickness were also analyzed. Results. All parameters corresponding to the defective hemifield were significantly lower than those corresponding to the normal hemifield. In the defective hemifield, MBR was correlated with TD, mGCC, and cpRNFL thickness. In the normal hemifield, MBR was only correlated with mGCC thickness, and multiple regression analysis showed that mGCC thickness was a significant contributing factor of the MBR. Conclusion. MBR was well correlated with mGCC thickness in eyes with untreated NTG and a hemifield defect. In the normal hemifield, mGCC thickness was a contributing factor of the MBR indicating that ONH circulatory dysfunction may be associated with retinal structural changes in the early stages of glaucoma. A reduction in ONH microcirculation may be an early indicator of the presence and progression of glaucoma.

  5. Impact of Shell Thickness on Photoluminescence and Optical Activity in Chiral CdSe/CdS Core/Shell Quantum Dots.

    Science.gov (United States)

    Purcell-Milton, Finn; Visheratina, Anastasia K; Kuznetsova, Vera A; Ryan, Aisling; Orlova, Anna O; Gun'ko, Yurii K

    2017-09-26

    Core/shell quantum dots (QDs) are of high scientific and technological importance as these nanomaterials have found a number of valuable applications. In this paper, we have investigated the dependence of optical activity and photoluminescence upon CdS shell thickness in a range of core-shell structured CdSe/CdS QDs capped with chiral ligands. For our study, five samples of CdSe/CdS were synthesized utilizing successive ion layer adsorption and reaction to vary the thickness of the CdS shell from 0.5 to 2 nm, upon a 2.8 nm diameter CdSe core. Following this, a ligand exchange of the original aliphatic ligands with l- and d-cysteine was carried out, inducing a chiroptical response in these nanostructures. The samples were then characterized using circular dichroism, photoluminescent spectroscopy, and fluorescence lifetime spectroscopy. It has been found that the induced chiroptical response was inversely proportional to the CdS shell thickness and showed a distinct evolution in signal, whereas the photoluminescence of our samples showed a direct relationship to shell thickness. In addition, a detailed study of the influence of annealing time on the optical activity and photoluminescence quantum yield was performed. From our work, we have been able to clearly illustrate the approach and strategies that must be used when designing optimal photoluminescent optically active CdSe/CdS core-shell QDs.

  6. Trend analysis of aerosol optical thickness and Ångström exponent derived from the global AERONET spectral observations

    Science.gov (United States)

    Yoon, J.; von Hoyningen-Huene, W.; Kokhanovsky, A. A.; Vountas, M.; Burrows, J. P.

    2012-06-01

    Regular aerosol observations based on well-calibrated instruments have led to a better understanding of the aerosol radiative budget on Earth. In recent years, these instruments have played an important role in the determination of the increase of anthropogenic aerosols by means of long-term studies. Only few investigations regarding long-term trends of aerosol optical characteristics (e.g. aerosol optical thickness (AOT) and Ångström exponent (ÅE)) have been derived from ground-based observations. This paper aims to derive and discuss linear trends of AOT (440, 675, 870, and 1020 nm) and ÅE (440-870 nm) using AErosol RObotic NETwork (AERONET) level 2.0 spectral observations. Additionally, temporal trends of coarse- and fine-mode dominant AOTs (CdAOT and FdAOT) have been estimated by applying an aerosol classification based on accurate ÅE and Ångström exponent difference (ÅED). In order to take into account the fact that cloud disturbance is having a significant influence on the trend analysis of aerosols, we introduce a weighted least squares regression depending on two weights: (1) monthly standard deviation (σt) and (2) number of observations per month (nt). Temporal increase of FdAOTs (440 nm) prevails over newly industrializing countries in East Asia (weighted trends; +6.23% yr-1 at Beijing) and active agricultural burning regions in South Africa (+1.89% yr-1 at Mongu). On the other hand, insignificant or negative trends for FdAOTs are detected over Western Europe (+0.25% yr-1 at Avignon and -2.29% yr-1 at Ispra) and North America (-0.52% yr-1 for GSFC and -0.01% yr-1 at MD_Science_Center). Over desert regions, both increase and decrease of CdAOTs (+3.37% yr-1 at Solar_Village and -1.18% yr-1 at Ouagadougou) are observed depending on meteorological conditions.

  7. An 11-year global gridded aerosol optical thickness reanalysis (v1.0) for atmospheric and climate sciences

    Science.gov (United States)

    Lynch, Peng; Reid, Jeffrey S.; Westphal, Douglas L.; Zhang, Jianglong; Hogan, Timothy F.; Hyer, Edward J.; Curtis, Cynthia A.; Hegg, Dean A.; Shi, Yingxi; Campbell, James R.; Rubin, Juli I.; Sessions, Walter R.; Turk, F. Joseph; Walker, Annette L.

    2016-04-01

    While stand alone satellite and model aerosol products see wide utilization, there is a significant need in numerous atmospheric and climate applications for a fused product on a regular grid. Aerosol data assimilation is an operational reality at numerous centers, and like meteorological reanalyses, aerosol reanalyses will see significant use in the near future. Here we present a standardized 2003-2013 global 1 × 1° and 6-hourly modal aerosol optical thickness (AOT) reanalysis product. This data set can be applied to basic and applied Earth system science studies of significant aerosol events, aerosol impacts on numerical weather prediction, and electro-optical propagation and sensor performance, among other uses. This paper describes the science of how to develop and score an aerosol reanalysis product. This reanalysis utilizes a modified Navy Aerosol Analysis and Prediction System (NAAPS) at its core and assimilates quality controlled retrievals of AOT from the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua and the Multi-angle Imaging SpectroRadiometer (MISR) on Terra. The aerosol source functions, including dust and smoke, were regionally tuned to obtain the best match between the model fine- and coarse-mode AOTs and the Aerosol Robotic Network (AERONET) AOTs. Other model processes, including deposition, were tuned to minimize the AOT difference between the model and satellite AOT. Aerosol wet deposition in the tropics is driven with satellite-retrieved precipitation, rather than the model field. The final reanalyzed fine- and coarse-mode AOT at 550 nm is shown to have good agreement with AERONET observations, with global mean root mean square error around 0.1 for both fine- and coarse-mode AOTs. This paper includes a discussion of issues particular to aerosol reanalyses that make them distinct from standard meteorological reanalyses, considerations for extending such a reanalysis outside of the NASA A-Train era, and examples of how

  8. Development studies towards an 11-year global gridded aerosol optical thickness reanalysis for climate and applied applications

    Science.gov (United States)

    Lynch, P.; Reid, J. S.; Westphal, D. L.; Zhang, J.; Hogan, T. F.; Hyer, E. J.; Curtis, C. A.; Hegg, D. A.; Shi, Y.; Campbell, J. R.; Rubin, J. I.; Sessions, W. R.; Turk, F. J.; Walker, A. L.

    2015-12-01

    While standalone satellite and model aerosol products see wide utilization, there is a significant need in numerous climate and applied applications for a fused product on a regular grid. Aerosol data assimilation is an operational reality at numerous centers, and like meteorological reanalyses, aerosol reanalyses will see significant use in the near future. Here we present a standardized 2003-2013 global 1° × 1° and 6 hourly modal aerosol optical thickness (AOT) reanalysis product. This dataset can be applied to basic and applied earth system science studies of significant aerosol events, aerosol impacts on numerical weather prediction, and electro-optical propagation and sensor performance, among other uses. This paper describes the science of how to develop and score an aerosol reanalysis product. This reanalysis utilizes a modified Navy Aerosol Analysis and Prediction System (NAAPS) at its core and assimilates quality controlled retrievals of AOT from the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua and the Multi-angle Imaging SpectroRadiometer (MISR) on Terra. The aerosol source functions, including dust and smoke, were regionally tuned to obtain the best match between the model fine and coarse mode AOTs and the Aerosol Robotic Network (AERONET) AOTs. Other model processes, including deposition, were tuned to minimize the AOT difference between the model and satellite AOT. Aerosol wet deposition in the tropics is driven with satellite retrieved precipitation, rather than the model field. The final reanalyzed fine and coarse mode AOT at 550 nm is shown to have good agreement with AERONET observations, with global mean root mean square error around 0.1 for both fine and coarse mode AOTs. This paper includes a discussion of issues particular to aerosol reanalyses that make them distinct from standard meteorological reanalyses, considerations for extending such a reanalysis outside of the NASA A-Train era, and examples of how the

  9. A NEW APPROACH TO DETERMINE OPTICALLY THICK H{sub 2} COOLING AND ITS EFFECT ON PRIMORDIAL STAR FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Hartwig, Tilman; Clark, Paul C.; Glover, Simon C. O.; Klessen, Ralf S.; Sasaki, Mei, E-mail: hartwig@iap.fr, E-mail: p.clark@uni-heidelberg.de, E-mail: glover@uni-heidelberg.de, E-mail: klessen@uni-heidelberg.de, E-mail: sasaki@stud.uni-heidelberg.de [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany)

    2015-02-01

    We present a new method for estimating the H{sub 2} cooling rate in the optically thick regime in simulations of primordial star formation. Our new approach is based on the TreeCol algorithm, which projects matter distributions onto a spherical grid to create maps of column densities for each fluid element in the computational domain. We have improved this algorithm by using the relative gas velocities to weight the individual matter contributions with the relative spectral line overlaps, in order to properly account for the Doppler effect. We compare our new method to the widely used Sobolev approximation, which yields an estimate for the column density based on the local velocity gradient and the thermal velocity. This approach generally underestimates the photon escape probability because it neglects the density gradient and the actual shape of the cloud. We present a correction factor for the true line overlap in the Sobolev approximation and a new method based on local quantities, which fits the exact results reasonably well during the collapse of the cloud, with the error in the cooling rates always being less than 10%. Analytical fitting formulae fail at determining the photon escape probability after formation of the first protostar (error of ∼40%) because they are based on the assumption of spherical symmetry and therefore break down once a protostellar accretion disk has formed. Our method yields lower temperatures and hence promotes fragmentation for densities above ∼10{sup 10} cm{sup –3} at a distance of ∼200 AU from the first protostar. Since the overall accretion rates are hardly affected by the cooling implementation, we expect Pop III stars to have lower masses in our simulations, compared to the results of previous simulations that used the Sobolev approximation.

  10. Validation of high-resolution aerosol optical thickness simulated by a global non-hydrostatic model against remote sensing measurements

    Science.gov (United States)

    Goto, Daisuke; Sato, Yousuke; Yashiro, Hisashi; Suzuki, Kentaroh; Nakajima, Teruyuki

    2017-02-01

    A high-performance computing resource allows us to conduct numerical simulations with a horizontal grid spacing that is sufficiently high to resolve cloud systems. The cutting-edge computational capability, which was provided by the K computer at RIKEN in Japan, enabled the authors to perform long-term, global simulations of air pollutions and clouds with unprecedentedly high horizontal resolutions. In this study, a next generation model capable of simulating global air pollutions with O(10 km) grid spacing by coupling an atmospheric chemistry model to the Non-hydrostatic Icosahedral Atmospheric Model (NICAM) was performed. Using the newly developed model, month-long simulations for July were conducted with 14 km grid spacing on the K computer. Regarding the global distributions of aerosol optical thickness (AOT), it was found that the correlation coefficient (CC) between the simulation and AERONET measurements was approximately 0.7, and the normalized mean bias was -10%. The simulated AOT was also compared with satellite-retrieved values; the CC was approximately 0.6. The radiative effects due to each chemical species (dust, sea salt, organics, and sulfate) were also calculated and compared with multiple measurements. As a result, the simulated fluxes of upward shortwave radiation at the top of atmosphere and the surface compared well with the observed values, whereas those of downward shortwave radiation at the surface were underestimated, even if all aerosol components were considered. However, the aerosol radiative effects on the downward shortwave flux at the surface were found to be as high as 10 W/m2 in a global scale; thus, simulated aerosol distributions can strongly affect the simulated air temperature and dynamic circulation.

  11. An enhanced VIIRS aerosol optical thickness (AOT) retrieval algorithm over land using a global surface reflectance ratio database

    Science.gov (United States)

    Zhang, Hai; Kondragunta, Shobha; Laszlo, Istvan; Liu, Hongqing; Remer, Lorraine A.; Huang, Jingfeng; Superczynski, Stephen; Ciren, Pubu

    2016-09-01

    The Visible/Infrared Imager Radiometer Suite (VIIRS) on board the Suomi National Polar-orbiting Partnership (S-NPP) satellite has been retrieving aerosol optical thickness (AOT), operationally and globally, over ocean and land since shortly after S-NPP launch in 2011. However, the current operational VIIRS AOT retrieval algorithm over land has two limitations in its assumptions for land surfaces: (1) it only retrieves AOT over the dark surfaces and (2) it assumes that the global surface reflectance ratios between VIIRS bands are constants. In this work, we develop a surface reflectance ratio database over land with a spatial resolution 0.1° × 0.1° using 2 years of VIIRS top of atmosphere reflectances. We enhance the current operational VIIRS AOT retrieval algorithm by applying the surface reflectance ratio database in the algorithm. The enhanced algorithm is able to retrieve AOT over both dark and bright surfaces. Over bright surfaces, the VIIRS AOT retrievals from the enhanced algorithm have a correlation of 0.79, mean bias of -0.008, and standard deviation (STD) of error of 0.139 when compared against the ground-based observations at the global AERONET (Aerosol Robotic Network) sites. Over dark surfaces, the VIIRS AOT retrievals using the surface reflectance ratio database improve the root-mean-square error from 0.150 to 0.123. The use of the surface reflectance ratio database also increases the data coverage of more than 20% over dark surfaces. The AOT retrievals over bright surfaces are comparable to MODIS Deep Blue AOT retrievals.

  12. Retrieval of spectral aerosol optical thickness over land using ocean color sensors MERIS and SeaWiFS

    Directory of Open Access Journals (Sweden)

    W. von Hoyningen-Huene

    2010-05-01

    Full Text Available For the determination of aerosol optical thickness (AOT Bremen AErosol Retrieval (BAER has been developed. Method and main influences on the aerosol retrieval are described together with validation and results. The retrieval separates the spectral aerosol reflectance from surface and Rayleigh path reflectance for the shortwave range of the measured spectrum of top-of-atmosphere reflectance less than 0.670 μm. The advantage of MERIS (Medium Resolution Imaging Spectrometer on ENVISAT and SeaWiFS (Sea viewing Wide Fiels Sensor on OrbView-2 observations are the existence of several spectral channels in the blue and visible range enabling the spectral determination of AOT in 7 (or 6 channels (0.412–0.670 μm and additionally channels in the NIR, which can be used to characterize the surface properties. A dynamical spectral surface reflectance model for different surface types is used to obtain the spectral surface reflectance for this separation. Normalized differential vegetation index (NDVI, taken from the satellite observations, is the model input. Further surface BRDF is considered by the Raman-Pinty-Verstraete (RPV model. Spectral AOT is obtained from aerosol reflectance using look-up-tables, obtained from radiative transfer calculations with given aerosol phase functions and single scattering albedos either from aerosol models, given by OPAC or from experimental campaigns. Validations of the obtained AOT retrieval results with AERONET data over Europe gave a preference for experimental phase functions derived from almucantar measurements. Finally long-term observations of SeaWiFS have been investigated for trends in AOT.