WorldWideScience

Sample records for optically state selected

  1. Valley-selective optical Stark effect probed by Kerr rotation

    Science.gov (United States)

    LaMountain, Trevor; Bergeron, Hadallia; Balla, Itamar; Stanev, Teodor K.; Hersam, Mark C.; Stern, Nathaniel P.

    2018-01-01

    The ability to monitor and control distinct states is at the heart of emerging quantum technologies. The valley pseudospin in transition metal dichalcogenide (TMDC) monolayers is a promising degree of freedom for such control, with the optical Stark effect allowing for valley-selective manipulation of energy levels in WS2 and WSe2 using ultrafast optical pulses. Despite these advances, understanding of valley-sensitive optical Stark shifts in TMDCs has been limited by reflectance-based detection methods where the signal is small and prone to background effects. More sensitive polarization-based spectroscopy is required to better probe ultrafast Stark shifts for all-optical manipulation of valley energy levels. Here, we show time-resolved Kerr rotation to be a more sensitive probe of the valley-selective optical Stark effect in monolayer TMDCs. Compared to the established time-resolved reflectance methods, Kerr rotation is less sensitive to background effects. Kerr rotation provides a fivefold improvement in the signal-to-noise ratio of the Stark effect optical signal and a more precise estimate of the energy shift. This increased sensitivity allows for observation of an optical Stark shift in monolayer MoS2 that exhibits both valley and energy selectivity, demonstrating the promise of this method for investigating this effect in other layered materials and heterostructures.

  2. Vortex-Peierls States in Optical Lattices

    International Nuclear Information System (INIS)

    Burkov, A.A.; Demler, Eugene

    2006-01-01

    We show that vortices, induced in cold atom superfluids in optical lattices, may order in a novel vortex-Peierls ground state. In such a state vortices do not form a simple lattice but arrange themselves in clusters, within which the vortices are partially delocalized, tunneling between classically degenerate configurations. We demonstrate that this exotic quantum many-body state is selected by an order-from-disorder mechanism for a special combination of the vortex filling and lattice geometry that has a macroscopic number of classically degenerate ground states

  3. Velocity-selective dark states in rubidium

    International Nuclear Information System (INIS)

    Esslinger, T.

    1995-06-01

    There are two recent developments exerting a strong influence on atomic physics: cooling of atomic gases with laser light, and optics with matter waves. The report addresses both fields. A mechanism for the cooling of atoms is examined, with the wave character of the atom playing an important part in the process. A novel atomic beam experiment has been worked out and is reported which represents application of this cooling method to an alkali atom for the first time. The basic principle of the cooling process is that atoms are optically pumped into quantum states by means of interaction with a standing laser wave, the quantum states having a sharply defined momentum, decoupled from the light field. These states are called dark states, as their dipole moment does not couple to the field of a resonant laser wave. In a one-dimensional standing laser wave with spatially varying polarization, the dark state is delocalised. This state is called velocity-selective dark state (VSDS). So far, such VSDS have only been observed in helium atoms. We succeded for the first time in detecting the population of VSDS with an experiment using alkali atoms. Atoms of a cold rubidium beam are optically pumped into VSDS by way of interaction with a one-dimensional standing laser wave. (orig./MM) [de

  4. Twistacene contained molecule for optical nonlinearity: Excited-state based negative refraction and optical limiting

    Science.gov (United States)

    Wu, Xingzhi; Xiao, Jinchong; Sun, Ru; Jia, Jidong; Yang, Junyi; Ao, Guanghong; Shi, Guang; Wang, Yuxiao; Zhang, Xueru; Song, Yinglin

    2018-06-01

    Spindle-type molecules containing twisted acenes (PyBTA-1 &PyBTA-2) are designed, synthesized characterized. Picosecond Z-scan experiments under 532 nm show reverse saturable absorption and negative nonlinear refraction, indicating large third-order optical nonlinearity in PyBTA-1. The mechanism of the optical nonlinearity is investigated and the results show that the nonlinear absorption and refraction in PyBTA-1 originates from a charge transfer (CT) state. Furthermore, relatively long lifetime and absorptive cross section of the CT state are measured. Based on the excited state absorption in PyBTA-1, strong optical limiting with ∼0.3 J/cm2 thresholds are obtained when excited by picoseconds and nanoseconds pulses. The findings on nonlinear optics suggest PyBTA-1 a promising material of all optical modulation and laser protection, which enrich the potential applications of these spindle-type molecules. Comparing to the previously reported spindle-type molecules with analogous structures, the introduction of ICT in PyBTA-1 &PyBTA-2 dramatically decreases the two-photon absorption while enhances the nonlinear refraction. The results could be used to selectively tailor the optical nonlinearity in such kind of compounds.

  5. PG 1553 + 11 - A bright optically selected BL Lacertae object

    International Nuclear Information System (INIS)

    Falomo, R.; Treves, A.

    1990-01-01

    A detailed study of the bright optically selected BL Lac object PG 1553 + 11 is presented. UV observations, obtained during a high state of the source, together with simultaneous optical spectrophotometry and near-IR photometry, allow the spectral flux distribution to be examined from 8 x 10 to the 13th to 2.5 x 10 to the 15th Hz. This distribution is compared with that derived from quasi-simultaneous observations obtained when the source was a factor of about 3 fainter. It is found that, in the higher state, the spectrum can be described by two power laws connected by a break at about 10 to the 15th Hz, while in the low state the shape is more complex. The overall spectrum of the object is compared with the average energy distribution of X-ray and radio-selected BL Lac objects, showing that it is closer to the former class. 25 refs

  6. Quantum coherence generated by interference-induced state selectiveness

    OpenAIRE

    Garreau, Jean Claude

    2001-01-01

    The relations between quantum coherence and quantum interference are discussed. A general method for generation of quantum coherence through interference-induced state selection is introduced and then applied to `simple' atomic systems under two-photon transitions, with applications in quantum optics and laser cooling.

  7. Low chromatic aberration hexapole for molecular state selection

    International Nuclear Information System (INIS)

    Ke, Yi; Deng, Xiao-Bing; Hu, Zhong-Kun

    2016-01-01

    In molecular beam state-selection experiments, the electrostatic hexapole acts as an optical lens, imaging molecules from the source to the focus. The molecular longitudinal velocity spread induces the phenomenon of chromatic aberration, which will reduce the state-selection purity. We propose a scheme which can effectively reduce the chromatic aberration by changing the hexapole voltage operating manner. The hexapole is already charged before molecules arrive at the entrance of the hexapole. When molecules are completely inside the hexapole, the voltage is switched off rapidly at an appropriate time. In this manner, faster molecules travel a longer hexapole focusing region than slower molecules. Therefore the focusing positions of molecules with different velocities become close. Numerical trajectory simulations of molecular state selection are carried out, and the results show that this low chromatic aberration hexapole can significantly improve the state purity from 46.2% to 87.0%. (paper)

  8. Selective Induction of Optical Magnetism.

    Science.gov (United States)

    Manna, Uttam; Lee, Jung-Hoon; Deng, Tian-Song; Parker, John; Shepherd, Nolan; Weizmann, Yossi; Scherer, Norbert F

    2017-12-13

    An extension of the Maxwell-Faraday law of electromagnetic induction to optical frequencies requires spatially appropriate materials and optical beams to create resonances and excitations with curl. Here we employ cylindrical vector beams with azimuthal polarization to create electric fields that selectively drive magnetic responses in dielectric core-metal nanoparticle "satellite" nanostructures. These optical frequency magnetic resonances are induced in materials that do not possess spin or orbital angular momentum. Multipole expansion analysis of the scattered fields obtained from electrodynamics simulations show that the excitation with azimuthally polarized beams selectively enhances magnetic vs electric dipole resonances by nearly 100-fold in experiments. Multipolar resonances (e.g., quadrupole and octupole) are enhanced 5-fold by focused azimuthally versus linearly polarized beams. We also selectively excite electric multipolar resonances in the same identical nanostructures with radially polarized light. This work opens new opportunities for spectroscopic investigation and control of "dark modes", Fano resonances, and magnetic modes in nanomaterials and engineered metamaterials.

  9. Low-Entropy States of Neutral Atoms in Polarization-Synthesized Optical Lattices.

    Science.gov (United States)

    Robens, Carsten; Zopes, Jonathan; Alt, Wolfgang; Brakhane, Stefan; Meschede, Dieter; Alberti, Andrea

    2017-02-10

    We create low-entropy states of neutral atoms by utilizing a conceptually new optical-lattice technique that relies on a high-precision, high-bandwidth synthesis of light polarization. Polarization-synthesized optical lattices provide two fully controllable optical lattice potentials, each of them confining only atoms in either one of the two long-lived hyperfine states. By employing one lattice as the storage register and the other one as the shift register, we provide a proof of concept using four atoms that selected regions of the periodic potential can be filled with one particle per site. We expect that our results can be scaled up to thousands of atoms by employing an atom-sorting algorithm with logarithmic complexity, which is enabled by polarization-synthesized optical lattices. Vibrational entropy is subsequently removed by sideband cooling methods. Our results pave the way for a bottom-up approach to creating ultralow-entropy states of a many-body system.

  10. Optical Selection Rule of Excitons in Gapped Chiral Fermion Systems

    Science.gov (United States)

    Zhang, Xiaoou; Shan, Wen-Yu; Xiao, Di

    2018-02-01

    We show that the exciton optical selection rule in gapped chiral fermion systems is governed by their winding number w , a topological quantity of the Bloch bands. Specifically, in a CN-invariant chiral fermion system, the angular momentum of bright exciton states is given by w ±1 +n N with n being an integer. We demonstrate our theory by proposing two chiral fermion systems capable of hosting dark s -like excitons: gapped surface states of a topological crystalline insulator with C4 rotational symmetry and biased 3 R -stacked MoS2 bilayers. In the latter case, we show that gating can be used to tune the s -like excitons from bright to dark by changing the winding number. Our theory thus provides a pathway to electrical control of optical transitions in two-dimensional material.

  11. Emerging Correlation Optics

    DEFF Research Database (Denmark)

    Angelsky, Oleg V.; Gbur, Gregory J.; Polyanskii, Peter

    2012-01-01

    This feature issue of Applied Optics contains a series of selected papers reflecting the state-of-the-art of correlation optics and showing synergetics between the theoretical background and experimental techniques.......This feature issue of Applied Optics contains a series of selected papers reflecting the state-of-the-art of correlation optics and showing synergetics between the theoretical background and experimental techniques....

  12. Symmetry and optical selection rules in graphene quantum dots

    Science.gov (United States)

    Pohle, Rico; Kavousanaki, Eleftheria G.; Dani, Keshav M.; Shannon, Nic

    2018-03-01

    Graphene quantum dots (GQD's) have optical properties which are very different from those of an extended graphene sheet. In this paper, we explore how the size, shape, and edge structure of a GQD affect its optical conductivity. Using representation theory, we derive optical selection rules for regular-shaped dots, starting from the symmetry properties of the current operator. We find that, where the x and y components of the current operator transform with the same irreducible representation (irrep) of the point group (for example in triangular or hexagonal GQD's), the optical conductivity is independent of the polarization of the light. On the other hand, where these components transform with different irreps (for example in rectangular GQD's), the optical conductivity depends on the polarization of light. We carry out explicit calculations of the optical conductivity of GQD's described by a simple tight-binding model and, for dots of intermediate size, find an absorption peak in the low-frequency range of the spectrum which allows us to distinguish between dots with zigzag and armchair edges. We also clarify the one-dimensional nature of states at the Van Hove singularity in graphene, providing a possible explanation for very high exciton-binding energies. Finally, we discuss the role of atomic vacancies and shape asymmetry.

  13. Wave packet interferometry and quantum state reconstruction by acousto-optic phase modulation

    International Nuclear Information System (INIS)

    Tekavec, Patrick F.; Dyke, Thomas R.; Marcus, Andrew H.

    2006-01-01

    Studies of wave packet dynamics often involve phase-selective measurements of coherent optical signals generated from sequences of ultrashort laser pulses. In wave packet interferometry (WPI), the separation between the temporal envelopes of the pulses must be precisely monitored or maintained. Here we introduce a new (and easy to implement) experimental scheme for phase-selective measurements that combines acousto-optic phase modulation with ultrashort laser excitation to produce an intensity-modulated fluorescence signal. Synchronous detection, with respect to an appropriately constructed reference, allows the signal to be simultaneously measured at two phases differing by 90 deg. Our method effectively decouples the relative temporal phase from the pulse envelopes of a collinear train of optical pulse pairs. We thus achieve a robust and high signal-to-noise scheme for WPI applications, such as quantum state reconstruction and electronic spectroscopy. The validity of the method is demonstrated, and state reconstruction is performed, on a model quantum system - atomic Rb vapor. Moreover, we show that our measurements recover the correct separation between the absorptive and dispersive contributions to the system susceptibility

  14. Theory of Nonlinear Dispersive Waves and Selection of the Ground State

    International Nuclear Information System (INIS)

    Soffer, A.; Weinstein, M.I.

    2005-01-01

    A theory of time-dependent nonlinear dispersive equations of the Schroedinger or Gross-Pitaevskii and Hartree type is developed. The short, intermediate and large time behavior is found, by deriving nonlinear master equations (NLME), governing the evolution of the mode powers, and by a novel multitime scale analysis of these equations. The scattering theory is developed and coherent resonance phenomena and associated lifetimes are derived. Applications include Bose-Einstein condensate large time dynamics and nonlinear optical systems. The theory reveals a nonlinear transition phenomenon, 'selection of the ground state', and NLME predicts the decay of excited state, with half its energy transferred to the ground state and half to radiation modes. Our results predict the recent experimental observations of Mandelik et al. in nonlinear optical waveguides

  15. Far-infrared properties of optically selected quasars

    International Nuclear Information System (INIS)

    Edelson, R.A.

    1986-01-01

    The far-infrared properties of 10, optically selected quasars were studied on the basis of pointed IRAS observations and ground-based near-infrared and radio measurements. Nine of these quasars were detected in at least three IRAS bands. The flat spectral energy distributions characterizing these optically selected quasars together with large 60-100-micron luminosities suggest that the infrared emission is dominated by nonthermal radiation. Seven of the nine quasars with far-infrared detections were found to have low-frequency turnovers. 12 references

  16. Scheme for generating the singlet state of three atoms trapped in distant cavities coupled by optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dong-Yang [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China); Wen, Jing-Ji [College of Foundation Science, Harbin University of Commerce, Harbin, Heilongjiang 150028 (China); Bai, Cheng-Hua; Hu, Shi; Cui, Wen-Xue [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China); Wang, Hong-Fu, E-mail: hfwang@ybu.edu.cn [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China); Zhu, Ai-Dong [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China); Zhang, Shou, E-mail: szhang@ybu.edu.cn [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China)

    2015-09-15

    An effective scheme is proposed to generate the singlet state with three four-level atoms trapped in three distant cavities connected with each other by three optical fibers, respectively. After a series of appropriate atom–cavity interactions, which can be arbitrarily controlled via the selective pairing of Raman transitions and corresponding optical switches, a three-atom singlet state can be successfully generated. The influence of atomic spontaneous decay, photon leakage of cavities and optical fibers on the fidelity of the state is numerically simulated showing that the three-atom singlet state can be generated with high fidelity by choosing the experimental parameters appropriately.

  17. Optical code-division multiple-access protocol with selective retransmission

    Science.gov (United States)

    Mohamed, Mohamed A. A.; Shalaby, Hossam M. H.; El-Badawy, El-Sayed A.

    2006-05-01

    An optical code-division multiple-access (OCDMA) protocol based on selective retransmission technique is proposed. The protocol is modeled using a detailed state diagram and is analyzed using equilibrium point analysis (EPA). Both traditional throughput and average delay are used to examine its performance for several network parameters. In addition, the performance of the proposed protocol is compared to that of the R3T protocol, which is based on a go-back-n technique. Our results show that a higher performance is achieved by the proposed protocol at the expense of system complexity.

  18. Four-port mode-selective silicon optical router for on-chip optical interconnect.

    Science.gov (United States)

    Jia, Hao; Zhou, Ting; Fu, Xin; Ding, Jianfeng; Zhang, Lei; Yang, Lin

    2018-04-16

    We propose and demonstrate a four-port mode-selective optical router on a silicon-on-insulator platform. The passive routing property ensures that the router consumes no power to establish the optical links. For each port, input signals with different modes are selectively routed to the target ports through the pre-designed architecture. In general, the device intrinsically supports broadcasting of multiplexed signals from one port to the other three ports through mode division multiplexing. In some applications, the input signal from one port would only be sent to another port as in reconfigurable optical routers. The prototype is constructed by mode multiplexers/de-multiplexers and single-mode interconnect waveguides between them. The insertion losses for all optical links are lower than 8.0 dB, and the largest optical crosstalk values are lower than -18.7 dB and -22.0 dB for the broadcasting and port-to-port routing modes, respectively, at the wavelength range of 1525-1565 nm. In order to verify the routing functionality, a 40-Gbps bidirectional data transmission experiment is performed. The device offers a promising building block for passive routing by utilizing the dimension of the modes.

  19. High precision optical spectroscopy and quantum state selected photodissociation of ultracold 88Sr2 molecules in an optical lattice

    Science.gov (United States)

    McDonald, Mickey

    2017-04-01

    Over the past several decades, rapid progress has been made toward the accurate characterization and control of atoms, epitomized by the ever-increasing accuracy and precision of optical atomic lattice clocks. Extending this progress to molecules will have exciting implications for chemistry, condensed matter physics, and precision tests of physics beyond the Standard Model. My thesis describes work performed over the past six years to establish the state of the art in manipulation and quantum control of ultracold molecules. We describe a thorough set of measurements characterizing the rovibrational structure of weakly bound 88Sr2 molecules from several different perspectives, including determinations of binding energies; linear, quadratic, and higher order Zeeman shifts; transition strengths between bound states; and lifetimes of narrow subradiant states. Finally, we discuss measurements of photofragment angular distributions produced by photodissociation of molecules in single quantum states, leading to an exploration of quantum-state-resolved ultracold chemistry. The images of exploding photofragments produced in these studies exhibit dramatic interference effects and strongly violate semiclassical predictions, instead requiring a fully quantum mechanical description.

  20. Whispering gallery mode selection in optical bottle microresonators

    Science.gov (United States)

    Ding, Ming; Senthil Murugan, Ganapathy; Brambilla, Gilberto; Zervas, Michalis N.

    2012-02-01

    We demonstrated a method to excite selected whispering gallery modes in optical bottle microresonators (BMR) by inscribing microgroove scars on their surface by focused ion beam milling. Substantial spectral clean-up is obtained in appropriately scarred BMRs, providing the potential for high performance sensors and other optical devices.

  1. Deep-lying hole states in the optical model

    International Nuclear Information System (INIS)

    Klevansky, S.P.; Lemmer, R.H.

    1982-01-01

    The strength function for deep-lying hole states in an optical potential is studied by the method of Green's functions. The role of isospin is emphasized. It is shown that, while the main trends of the experimental data on hole states in isotopes of Sn and Pd can be described by an energy independent optical potential, intermediate structures in these data indicate the specific nuclear polarization effects have to be included. This is done by introducing doorway states of good isospin into the optical model potential. Such states consist of neutron hole plus proton core vibrations as well as more complicated excitations that are analog states of proton hole plus neutron core vibrations of the parent nuclear system. Specific calculations for 115 Sn and 103 Pd give satisfactory fits to the strength function data using optical model and doorway state parameters that are reasonable on physical grounds

  2. Threshold-Based Multiple Optical Signal Selection Scheme for Free-Space Optical Wavelength Division Multiplexing Systems

    KAUST Repository

    Nam, Sung Sik; Alouini, Mohamed-Slim; Zhang, Lin; Ko, Young-Chai

    2017-01-01

    We propose a threshold-based multiple optical signal selection scheme (TMOS) for free-space optical wavelength division multiplexing systems. With this scheme, we can obtain higher spectral efficiency while reducing the possible complexity

  3. Selective detection of antibodies in microstructured polymer optical fibers

    DEFF Research Database (Denmark)

    Jensen, Jesper Bo Damm; Hoiby, P.E.; Emiliyanov, Grigoriy Andreev

    2005-01-01

    was applied to selectively capture either α-streptavidin or α-CRP antibodies inside these air holes. A sensitive and easy-to-use fluorescence method was used for the optical detection. Our results show that mPOF based biosensors can provide reliable and selective antibody detection in ultra small sample......We demonstrate selective detection of fluorophore labeled antibodies from minute samples probed by a sensor layer of complementary biomolecules immobilized inside the air holes of microstructured Polymer Optical Fiber (mPOF). The fiber core is defined by a ring of 6 air holes and a simple procedure...

  4. Measurement of Electronic States of PbS Nanocrystal Quantum Dots Using Scanning Tunneling Spectroscopy: The Role of Parity Selection Rules in Optical Absorption

    Science.gov (United States)

    Diaconescu, Bogdan; Padilha, Lazaro A.; Nagpal, Prashant; Swartzentruber, Brian S.; Klimov, Victor I.

    2013-03-01

    We study the structure of electronic states in individual PbS nanocrystal quantum dots by scanning tunneling spectroscopy (STS) using one-to-two monolayer nanocrystal films treated with 1, 2-ethanedithiols (EDT). Up to six individual valence and conduction band states are resolved for a range of quantum dot sizes. The measured states’ energies are in good agreement with calculations using the k·p four-band envelope function formalism. A comparison of STS and optical absorption spectra indicates that some of the absorption features can only be explained by asymmetric transitions involving the states of different symmetries (e.g., S and P or P and D), which points towards the relaxation of the parity selection rules in these nanostructures. STS measurements also reveal a midgap feature, which is likely similar to one observed in previous charge transport studies of EDT-treated quantum dot films.

  5. Detection of optic nerve lesions in optic neuritis using frequency-selective fat-saturation sequences

    International Nuclear Information System (INIS)

    Miller, D.H.; MacManus, D.G.; Bartlett, P.A.; Kapoor, R.; Morrissey, S.P.; Moseley, I.F.

    1993-01-01

    MRI was performed on seven patients with acute optic neuritis, using two sequences which suppress the signal from orbital fat: frequency-selective fat-saturation and inversion recovery with a short inversion time. Lesions were seen on both sequences in all the symptomatic optic nerves studied. (orig.)

  6. Multiphoton quantum optics and quantum state engineering

    International Nuclear Information System (INIS)

    Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2006-01-01

    We present a review of theoretical and experimental aspects of multiphoton quantum optics. Multiphoton processes occur and are important for many aspects of matter-radiation interactions that include the efficient ionization of atoms and molecules, and, more generally, atomic transition mechanisms; system-environment couplings and dissipative quantum dynamics; laser physics, optical parametric processes, and interferometry. A single review cannot account for all aspects of such an enormously vast subject. Here we choose to concentrate our attention on parametric processes in nonlinear media, with special emphasis on the engineering of nonclassical states of photons and atoms that are relevant for the conceptual investigations as well as for the practical applications of forefront aspects of modern quantum mechanics. We present a detailed analysis of the methods and techniques for the production of genuinely quantum multiphoton processes in nonlinear media, and the corresponding models of multiphoton effective interactions. We review existing proposals for the classification, engineering, and manipulation of nonclassical states, including Fock states, macroscopic superposition states, and multiphoton generalized coherent states. We introduce and discuss the structure of canonical multiphoton quantum optics and the associated one- and two-mode canonical multiphoton squeezed states. This framework provides a consistent multiphoton generalization of two-photon quantum optics and a consistent Hamiltonian description of multiphoton processes associated to higher-order nonlinearities. Finally, we discuss very recent advances that by combining linear and nonlinear optical devices allow to realize multiphoton entangled states of the electromagnetic field, either in discrete or in continuous variables, that are relevant for applications to efficient quantum computation, quantum teleportation, and related problems in quantum communication and information

  7. Multiphoton quantum optics and quantum state engineering

    Energy Technology Data Exchange (ETDEWEB)

    Dell' Anno, Fabio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (Saudi Arabia) (Italy)]. E-mail: dellanno@sa.infn.it; De Siena, Silvio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (SA) (Italy)]. E-mail: desiena@sa.infn.it; Illuminati, Fabrizio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (SA) (Italy)]. E-mail: illuminati@sa.infn.it

    2006-05-15

    We present a review of theoretical and experimental aspects of multiphoton quantum optics. Multiphoton processes occur and are important for many aspects of matter-radiation interactions that include the efficient ionization of atoms and molecules, and, more generally, atomic transition mechanisms; system-environment couplings and dissipative quantum dynamics; laser physics, optical parametric processes, and interferometry. A single review cannot account for all aspects of such an enormously vast subject. Here we choose to concentrate our attention on parametric processes in nonlinear media, with special emphasis on the engineering of nonclassical states of photons and atoms that are relevant for the conceptual investigations as well as for the practical applications of forefront aspects of modern quantum mechanics. We present a detailed analysis of the methods and techniques for the production of genuinely quantum multiphoton processes in nonlinear media, and the corresponding models of multiphoton effective interactions. We review existing proposals for the classification, engineering, and manipulation of nonclassical states, including Fock states, macroscopic superposition states, and multiphoton generalized coherent states. We introduce and discuss the structure of canonical multiphoton quantum optics and the associated one- and two-mode canonical multiphoton squeezed states. This framework provides a consistent multiphoton generalization of two-photon quantum optics and a consistent Hamiltonian description of multiphoton processes associated to higher-order nonlinearities. Finally, we discuss very recent advances that by combining linear and nonlinear optical devices allow to realize multiphoton entangled states of the electromagnetic field, either in discrete or in continuous variables, that are relevant for applications to efficient quantum computation, quantum teleportation, and related problems in quantum communication and information.

  8. Solid state optical microscope

    Science.gov (United States)

    Young, Ian T.

    1983-01-01

    A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.

  9. All optical quantum control of a spin-quantum state and ultrafast transduction into an electric current.

    Science.gov (United States)

    Müller, K; Kaldewey, T; Ripszam, R; Wildmann, J S; Bechtold, A; Bichler, M; Koblmüller, G; Abstreiter, G; Finley, J J

    2013-01-01

    The ability to control and exploit quantum coherence and entanglement drives research across many fields ranging from ultra-cold quantum gases to spin systems in condensed matter. Transcending different physical systems, optical approaches have proven themselves to be particularly powerful, since they profit from the established toolbox of quantum optical techniques, are state-selective, contact-less and can be extremely fast. Here, we demonstrate how a precisely timed sequence of monochromatic ultrafast (~ 2-5 ps) optical pulses, with a well defined polarisation can be used to prepare arbitrary superpositions of exciton spin states in a semiconductor quantum dot, achieve ultrafast control of the spin-wavefunction without an applied magnetic field and make high fidelity read-out the quantum state in an arbitrary basis simply by detecting a strong (~ 2-10 pA) electric current flowing in an external circuit. The results obtained show that the combined quantum state preparation, control and read-out can be performed with a near-unity (≥97%) fidelity.

  10. Optical studies of multiply excited states

    International Nuclear Information System (INIS)

    Mannervik, S.

    1989-01-01

    Optical studies of multiply-excited states are reviewed with emphasis on emission spectroscopy. From optical measurements, properties such as excitation energies, lifetimes and autoionization widths can be determined with high accuracy, which constitutes a challenge for modern computational methods. This article mainly covers work on two-, three- and four-electron systems, but also sodium-like quartet systems. Furthermore, some comments are given on bound multiply-excited states in negative ions. Fine structure effects on transition wavelengths and lifetimes (autoionization) are discussed. In particular, the most recent experimental and theoretical studies of multiply-excited states are covered. Some remaining problems, which require further attention, are discussed in more detail. (orig.) With 228 refs

  11. State-dependent fluorescence of neutral atoms in optical potentials

    Science.gov (United States)

    Martinez-Dorantes, M.; Alt, W.; Gallego, J.; Ghosh, S.; Ratschbacher, L.; Meschede, D.

    2018-02-01

    Recently we have demonstrated scalable, nondestructive, and high-fidelity detection of the internal state of 87Rb neutral atoms in optical dipole traps using state-dependent fluorescence imaging [M. Martinez-Dorantes, W. Alt, J. Gallego, S. Ghosh, L. Ratschbacher, Y. Völzke, and D. Meschede, Phys. Rev. Lett. 119, 180503 (2017), 10.1103/PhysRevLett.119.180503]. In this paper we provide experimental procedures and interpretations to overcome the detrimental effects of heating-induced trap losses and state leakage. We present models for the dynamics of optically trapped atoms during state-dependent fluorescence imaging and verify our results by comparing Monte Carlo simulations with experimental data. Our systematic study of dipole force fluctuations heating in optical traps during near-resonant illumination shows that off-resonant light is preferable for state detection in tightly confining optical potentials.

  12. Selective optical contacting for solar spectrum management

    Science.gov (United States)

    Yang, Jianfeng; Chen, Weijian; Wang, Bo; Zhang, Zhilong; Huang, Shujuan; Shrestha, Santosh; Wen, Xiaoming; Patterson, Robert; Conibeer, Gavin

    2017-02-01

    Solar spectrum management using up/down conversion is an important method to improve the photovoltaic energy conversion efficiency. It asks for a monochromatic luminescence absorption at the band edge of the photovoltaic device to reduce both the sub-band-gap and over-band-gap energy losses. Here, we demonstrate an energy selective optical contacting concept to improve the luminescence transfer efficiency for spectrum management. By increasing both the luminescence emission and re-absorption ability through photonic resonance, an efficient photon transfer channel could be established between the luminescence emitter and the photovoltaic component in a near-field region. This concept is not only able to compensate the insufficient band edge absorption ability of the photovoltaic device, but also to break the far-field limitation of luminescence radiation. The energy selection on the optical spectrum naturally imposed by the mode resonance is also helpful to improve the monochromaticity of the luminescence yield. In this paper, a photonic crystal cavity is used to realize the optical contacting concept between a thin silicon film and spectrum converter. The optical power and photon flux transferred between different components are calculated analytically using the electromagnetic Green's function. The corresponding radiative dipole moment is estimated by the fluctuation-dissipation theorem. The example shows an over 80 times enhancement in the luminescence absorbance by the silicon layer, illustrating the great potential of this concept to be applied on nano-structured photovoltaic devices.

  13. Collisions in the presence of a laser field and the laser as a tool for state selective preparation of molecular states in collisions

    International Nuclear Information System (INIS)

    Hertel, I.V.

    1985-01-01

    In the study of individual collision events laser light can be used to influence or probe the process prior to, during, or after the binary particle interaction. We discuss some problems and particularly challenging possibilities for modifying the collision process in a high, but not too high, laser field. We discuss the possibilities of state selective preparation of quasimolecular Σ and π states in ion-atom collisions, with asymptotically laser optical pumped atomic p-states

  14. Sequential and selective localized optical heating in water via on-chip dielectric nanopatterning.

    Science.gov (United States)

    Morsy, Ahmed M; Biswas, Roshni; Povinelli, Michelle L

    2017-07-24

    We study the use of nanopatterned silicon membranes to obtain optically-induced heating in water. We show that by varying the detuning between an absorptive optical resonance of the patterned membrane and an illumination laser, both the magnitude and response time of the temperature rise can be controlled. This allows for either sequential or selective heating of different patterned areas on chip. We obtain a steady-state temperature of approximately 100 °C for a 805.5nm CW laser power density of 66 µW/μm 2 and observe microbubble formation. The ability to spatially and temporally control temperature on the microscale should enable the study of heat-induced effects in a variety of chemical and biological lab-on-chip applications.

  15. Harnessing mode-selective nonlinear optics for on-chip multi-channel all-optical signal processing

    Directory of Open Access Journals (Sweden)

    Ming Ma

    2016-11-01

    Full Text Available All-optical signal processing based on nonlinear optical effects allows for the realization of important functions in telecommunications including wavelength conversion, optical multiplexing/demultiplexing, Fourier transformation, and regeneration, amongst others, on ultrafast time scales to support high data rate transmission. In integrated photonic subsystems, the majority of all-optical signal processing systems demonstrated to date typically process only a single channel at a time or perform a single processing function, which imposes a serious limitation on the functionality of integrated solutions. Here, we demonstrate how nonlinear optical effects can be harnessed in a mode-selective manner to perform simultaneous multi-channel (two and multi-functional optical signal processing (i.e., regenerative wavelength conversion in an integrated silicon photonic device. This approach, which can be scaled to a higher number of channels, opens up a new degree of freedom for performing a broad range of multi-channel nonlinear optical signal processing functions using a single integrated photonic device.

  16. Optical cross-connect circuit using hitless wavelength selective switch.

    Science.gov (United States)

    Goebuchi, Yuta; Hisada, Masahiko; Kato, Tomoyuki; Kokubun, Yasuo

    2008-01-21

    We have proposed and demonstrated the basic elements of a full matrix optical switching circuit (cross-connect circuit) using a hitless wavelength selective switch (WSS). The cross-connect circuits are made of a multi-wavelength channel selective switch consisting of cascaded hitless WSSs, and a multi-port switch. These switching elements are realized through the individual Thermo-Optic (TO) tuning of a series-coupled microring resonator, and can switch arbitrary wavelength channels without blocking other wavelength channels during tuning. We demonstrate a four wavelength selective switch using a parallel topology of double series coupled microring resonators and a three wavelength selective switch using a parallel topology of quadruple series coupled microring resonators. Since the spectrum shape of quadruple series coupled microring is much more box-like than the double series, a high extinction ratio of 39.0-46.6 dB and low switching cross talk of 19.3-24.5 dB were achieved.

  17. Threshold-Based Multiple Optical Signal Selection Scheme for Free-Space Optical Wavelength Division Multiplexing Systems

    KAUST Repository

    Nam, Sung Sik

    2017-11-13

    We propose a threshold-based multiple optical signal selection scheme (TMOS) for free-space optical wavelength division multiplexing systems. With this scheme, we can obtain higher spectral efficiency while reducing the possible complexity of implementation caused by the beam-selection scheme and without a considerable performance loss. To characterize the performance of our scheme, we statistically analyze the operation characteristics under conventional detection conditions (i.e., heterodyne detection and intensity modulation/direct detection techniques) with log-normal turbulence while taking into consideration the impact of pointing error. More specifically, we derive exact closed-form expressions for the outage probability, the average bit error rate, and the average spectral efficiency while adopting an adaptive modulation. Some selected results show that TMOS increases the average spectral efficiency while maintaining a minimum average bit error rate requirement.

  18. Selection of unstable patterns and control of optical turbulence by Fourier plane filtering

    DEFF Research Database (Denmark)

    Mamaev, A.V.; Saffman, M.

    1998-01-01

    We report on selection and stabilization of transverse optical patterns in a feedback mirror experiment. Amplitude filtering in the Fourier plane is used to select otherwise unstable spatial patterns. Optical turbulence observed for nonlinearities far above the pattern formation threshold...

  19. Unconditional quantum cloning of coherent states with linear optics

    International Nuclear Information System (INIS)

    Leuchs, G.; Andersen, U.L.; Josse, V.

    2005-01-01

    Intense light pulses with non-classical properties are used to implement protocols for quantum communication. Most of the elements in the tool box needed to assemble the experimental set-ups for these protocols are readily described by Bogoliubov transformations corresponding to Gaussian transformations that map Gaussian states onto Gaussian states. One particularly interesting application is quantum cloning of a coherent state. A scheme for optimal Gaussian cloning of optical coherent states is proposed and experimentally demonstrated. Its optical realization is based entirely on simple linear optical elements and homodyne detection. The optimality of the presented scheme is only limited by detection inefficiencies. Experimentally we achieved a cloning fidelity of about 65%, which almost touches the optimal value of 2/3. (author)

  20. Signal filtering algorithm for depth-selective diffuse optical topography

    International Nuclear Information System (INIS)

    Fujii, M; Nakayama, K

    2009-01-01

    A compact filtered backprojection algorithm that suppresses the undesirable effects of skin circulation for near-infrared diffuse optical topography is proposed. Our approach centers around a depth-selective filtering algorithm that uses an inverse problem technique and extracts target signals from observation data contaminated by noise from a shallow region. The filtering algorithm is reduced to a compact matrix and is therefore easily incorporated into a real-time system. To demonstrate the validity of this method, we developed a demonstration prototype for depth-selective diffuse optical topography and performed both computer simulations and phantom experiments. The results show that the proposed method significantly suppresses the noise from the shallow region with a minimal degradation of the target signal.

  1. Optical encryption with selective computational ghost imaging

    International Nuclear Information System (INIS)

    Zafari, Mohammad; Kheradmand, Reza; Ahmadi-Kandjani, Sohrab

    2014-01-01

    Selective computational ghost imaging (SCGI) is a technique which enables the reconstruction of an N-pixel image from N measurements or less. In this paper we propose an optical encryption method based on SCGI and experimentally demonstrate that this method has much higher security under eavesdropping and unauthorized accesses compared with previous reported methods. (paper)

  2. Size-selective detection in integrated optical interferometric biosensors

    NARCIS (Netherlands)

    Mulder, Harmen K P; Ymeti, Aurel; Subramaniam, Vinod; Kanger, Johannes S

    2012-01-01

    We present a new size-selective detection method for integrated optical interferometric biosensors that can strongly enhance their performance. We demonstrate that by launching multiple wavelengths into a Young interferometer waveguide sensor it is feasible to derive refractive index changes from

  3. Optical generation of matter qubit graph states

    International Nuclear Information System (INIS)

    Benjamin, S C; Eisert, J; Stace, T M

    2005-01-01

    We present a scheme for rapidly entangling matter qubits in order to create graph states for one-way quantum computing. The qubits can be simple three-level systems in separate cavities. Coupling involves only local fields and a static (unswitched) linear optics network. Fusion of graph-state sections occurs with, in principle, zero probability of damaging the nascent graph state. We avoid the finite thresholds of other schemes by operating on two entangled pairs, so that each generates exactly one photon. We do not require the relatively slow single qubit local flips to be applied during the growth phase: growth of the graph state can then become a purely optical process. The scheme naturally generates graph states with vertices of high degree and so is easily able to construct minimal graph states, with consequent resource savings. The most efficient approach will be to create new graph-state edges even as qubits elsewhere are measured, in a 'just in time' approach. An error analysis indicates that the scheme is relatively robust against imperfections in the apparatus

  4. A nonlinear plasmonic resonator for three-state all-optical switching

    KAUST Repository

    Amin, Muhammad

    2014-01-01

    A nonlinear plasmonic resonator design is proposed for three-state all-optical switching at frequencies including near infrared and lower red parts of the spectrum. The tri-stable response required for three-state operation is obtained by enhancing nonlinearities of a Kerr medium through multiple (higher order) plasmons excited on resonator\\'s metallic surfaces. Indeed, simulations demonstrate that exploitation of multiple plasmons equips the proposed resonator with a multi-band tri-stable response, which cannot be obtained using existing nonlinear plasmonic devices that make use of single mode Lorentzian resonances. Multi-band three-state optical switching that can be realized using the proposed resonator has potential applications in optical communications and computing. © 2014 Optical Society of America.

  5. A nonlinear plasmonic resonator for three-state all-optical switching

    KAUST Repository

    Amin, Muhammad; Farhat, Mohamed; Bagci, Hakan

    2014-01-01

    A nonlinear plasmonic resonator design is proposed for three-state all-optical switching at frequencies including near infrared and lower red parts of the spectrum. The tri-stable response required for three-state operation is obtained by enhancing nonlinearities of a Kerr medium through multiple (higher order) plasmons excited on resonator's metallic surfaces. Indeed, simulations demonstrate that exploitation of multiple plasmons equips the proposed resonator with a multi-band tri-stable response, which cannot be obtained using existing nonlinear plasmonic devices that make use of single mode Lorentzian resonances. Multi-band three-state optical switching that can be realized using the proposed resonator has potential applications in optical communications and computing. © 2014 Optical Society of America.

  6. Selective Serial Multi-Antibody Biosensing with TOPAS Microstructured Polymer Optical Fibers

    DEFF Research Database (Denmark)

    Emiliyanov, Grigoriy Andreev; Høiby, Poul E.; Pedersen, Lars H.

    2013-01-01

    We have developed a fluorescence-based fiber-optical biosensor, which can selectively detect different antibodies in serial at preselected positions inside a single piece of fiber. The fiber is a microstructured polymer optical fiber fabricated from TOPAS cyclic olefin copolymer, which allows...

  7. Selective ultrafast probing of transient hot chemisorbed and precursor states of CO on Ru(0001)

    DEFF Research Database (Denmark)

    Beye, M.; Anniyev, T.; Coffee, R.

    2013-01-01

    to hot-electron-driven vibrational excitations. This process is faster than, but occurs in parallel with, the transition into the precursor state. With resonant x-ray emission spectroscopy, we probe each of these states selectively and determine the respective transient populations depending on optical...... (2013)SCIEAS0036-8075] a phonon-mediated transition into a weakly adsorbed precursor state occurring on a time scale of >2 ps prior to desorption. Here we focus on processes within the first picosecond after laser excitation and show that the metal-adsorbate coordination is initially increased due...

  8. Research on Big Data Attribute Selection Method in Submarine Optical Fiber Network Fault Diagnosis Database

    Directory of Open Access Journals (Sweden)

    Chen Ganlang

    2017-11-01

    Full Text Available At present, in the fault diagnosis database of submarine optical fiber network, the attribute selection of large data is completed by detecting the attributes of the data, the accuracy of large data attribute selection cannot be guaranteed. In this paper, a large data attribute selection method based on support vector machines (SVM for fault diagnosis database of submarine optical fiber network is proposed. Mining large data in the database of optical fiber network fault diagnosis, and calculate its attribute weight, attribute classification is completed according to attribute weight, so as to complete attribute selection of large data. Experimental results prove that ,the proposed method can improve the accuracy of large data attribute selection in fault diagnosis database of submarine optical fiber network, and has high use value.

  9. Stability of optically injected two-state quantum-dot lasers

    Energy Technology Data Exchange (ETDEWEB)

    Meinecke, Stefan; Lingnau, Benjamin; Roehm, Andre; Luedge, Kathy [Institut fuer Theoretische Physik, Technische Universitaet Berlin (Germany)

    2017-12-15

    Simultaneous two-state lasing is a unique property of semiconductor quantum-dot (QD) lasers. This not only changes steady-state characteristics of the laser device but also its dynamic response to perturbations. In this paper we investigate the dynamic stability of QD lasers in an external optical injection setup. Compared to conventional single-state laser devices, we find a strong suppression of dynamical instabilities in two-state lasers. Furthermore, depending on the frequency and intensity of the injected light, pronounced areas of bistability between both lasing frequencies appear, which can be employed for fast optical switching in all-optical photonic computing applications. These results emphasize the suitability of QD semiconductor lasers in future integrated optoelectronic systems where a high level of stability is required. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Stability of optically injected two-state quantum-dot lasers

    International Nuclear Information System (INIS)

    Meinecke, Stefan; Lingnau, Benjamin; Roehm, Andre; Luedge, Kathy

    2017-01-01

    Simultaneous two-state lasing is a unique property of semiconductor quantum-dot (QD) lasers. This not only changes steady-state characteristics of the laser device but also its dynamic response to perturbations. In this paper we investigate the dynamic stability of QD lasers in an external optical injection setup. Compared to conventional single-state laser devices, we find a strong suppression of dynamical instabilities in two-state lasers. Furthermore, depending on the frequency and intensity of the injected light, pronounced areas of bistability between both lasing frequencies appear, which can be employed for fast optical switching in all-optical photonic computing applications. These results emphasize the suitability of QD semiconductor lasers in future integrated optoelectronic systems where a high level of stability is required. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. H I-SELECTED GALAXIES IN THE SLOAN DIGITAL SKY SURVEY. I. OPTICAL DATA

    International Nuclear Information System (INIS)

    West, Andrew A.; Garcia-Appadoo, Diego A.; Dalcanton, Julianne J.; Ivezic, Zeljko; Bentz, Misty C.; Disney, Mike J.; Rockosi, Constance M.; Brinkmann, J.

    2010-01-01

    We present the optical data for 195 H I-selected galaxies that fall within both the Sloan Digital Sky Survey (SDSS) and the Parkes Equatorial Survey (ES). The photometric quantities have been independently recomputed for our sample using a new photometric pipeline optimized for large galaxies, thus correcting for SDSS's limited reliability for automatic photometry of angularly large or low surface brightness (LSB) galaxies. We outline the magnitude of the uncertainty in the SDSS catalog-level photometry and derive a quantitative method for correcting the over-sky subtraction in the SDSS photometric pipeline. The main thrust of this paper is to present the ES/SDSS sample and discuss the methods behind the improved photometry, which will be used in future scientific analysis. We present the overall optical properties of the sample and briefly compare to a volume-limited, optically selected sample. Compared to the optically selected SDSS sample (in the similar volume), H I-selected galaxies are bluer and more luminous (fewer dwarf ellipticals and more star formation). However, compared to typical SDSS galaxy studies, which have their own selection effect, our sample is bluer, fainter, and less massive.

  12. A colorimetric turn-on optical chemosensor for Cu2+ ions and its application as solid state sensor

    Science.gov (United States)

    Pannipara, Mehboobali; Al-Sehemi, Abdullah G.; Assiri, Mohammed; Kalam, Abul

    2018-05-01

    We report a novel coumarin based optical chemosensor (Probe 1) for the selective and sensitive detection of Cu2+ ions in aqueous medium. The addition of Cu2+ ions to Probe 1 shows distinct color change from light yellow to pinkish red color under visible light with the sensing limit of 1.54 μM. Moreover, practical utility of Probe 1 as solid state optical sensor (test paper, TLC plates) for sensing Cu2+ has been demonstrated by instantaneous "naked eye" response.

  13. Quantum Optics with Nanomechanical and Solid State Systems

    International Nuclear Information System (INIS)

    Jaehne, K.

    2009-01-01

    This thesis presents theoretical studies in an interfacing field of quantum optics, nanomechanics and mesoscopic solid state physics and proposes new methods for the generation of particular quantum states and quantum state transfer for selected hybrid systems. The first part of this thesis focuses on the quantum limit of a macroscopic object, a nanomechanical resonator. This is studied for two different physical systems. The first one is a nanomechanical beam incorporated in a superconducting circuit, in particular a loop-shaped Cooper pair box (CPB) - circuit. We present a scheme for ground state cooling of the flexural mode of the nanomechanical beam. Via the Lorentz force coupling of the beam motion to circulating CPB-circuit currents, energy is transferred to the CPB qubit which acts as a dissipative two-level system. The cooling process is driven by a detuned gate-voltage drive acting on the CPB. We analyze the cooling force spectrum and present analytical expressions for the cooling rate and final occupation number for a wide parameter regime. In particular, we find that cooling is optimized in a strong drive regime, and we present the necessary conditions for ground-state cooling. In a second system, we investigate the creation of squeezed states of a mechanical oscillator (a vibrating membrane or a movable mirror) in an optomechanical setup. An optical cavity is driven by squeezed light and couples via radiation pressure to the mechanical oscillator, effectively providing a squeezed heat-bath for the mechanical oscillator. Under the conditions of laser cooling to the ground state, we find an efficient transfer of squeezing with roughly 60% of light squeezing conveyed to the mechanical oscillator (on a dB scale). We determine the requirements on the carrier frequency and the bandwidth of squeezed light. Beyond the conditions for ground state cooling, we predict mechanical squashing to be observable in current systems. The second part of the thesis is

  14. General linear-optical quantum state generation scheme: Applications to maximally path-entangled states

    International Nuclear Information System (INIS)

    VanMeter, N. M.; Lougovski, P.; Dowling, Jonathan P.; Uskov, D. B.; Kieling, K.; Eisert, J.

    2007-01-01

    We introduce schemes for linear-optical quantum state generation. A quantum state generator is a device that prepares a desired quantum state using product inputs from photon sources, linear-optical networks, and postselection using photon counters. We show that this device can be concisely described in terms of polynomial equations and unitary constraints. We illustrate the power of this language by applying the Groebner-basis technique along with the notion of vacuum extensions to solve the problem of how to construct a quantum state generator analytically for any desired state, and use methods of convex optimization to identify bounds to success probabilities. In particular, we disprove a conjecture concerning the preparation of the maximally path-entangled |n,0>+|0,n> (NOON) state by providing a counterexample using these methods, and we derive a new upper bound on the resources required for NOON-state generation

  15. Fabrication and comparison of selective, transparent optics for concentrating solar systems

    Science.gov (United States)

    Taylor, Robert A.; Hewakuruppu, Yasitha; DeJarnette, Drew; Otanicar, Todd P.

    2015-09-01

    Concentrating optics enable solar thermal energy to be harvested at high temperature (solar) wavelengths, but highly reflective at long (thermal emission) wavelengths. If a solar system requires an analogous transparent, non-absorbing optic - i.e. a cover material which is highly transparent at short wavelengths, but highly reflective at long wavelengths - the technology is simply not available. Low-e glass technology represents a commercially viable option for this sector, but it has only been optimized for visible light transmission. Optically thin metal hole-arrays are another feasible solution, but are often difficult to fabricate. This study investigates combinations of thin film coatings of transparent conductive oxides and nanoparticles as a potential low cost solution for selective solar covers. This paper experimentally compares readily available materials deposited on various substrates and ranks them via an `efficiency factor for selectivity', which represents the efficiency of radiative exchange in a solar collector. Out of the materials studied, indium tin oxide and thin films of ZnS-Ag-ZnS represent the most feasible solutions for concentrated solar systems. Overall, this study provides an engineering design approach and guide for creating scalable, selective, transparent optics which could potentially be imbedded within conventional low-e glass production techniques.

  16. Identified state-space prediction model for aero-optical wavefronts

    Science.gov (United States)

    Faghihi, Azin; Tesch, Jonathan; Gibson, Steve

    2013-07-01

    A state-space disturbance model and associated prediction filter for aero-optical wavefronts are described. The model is computed by system identification from a sequence of wavefronts measured in an airborne laboratory. Estimates of the statistics and flow velocity of the wavefront data are shown and can be computed from the matrices in the state-space model without returning to the original data. Numerical results compare velocity values and power spectra computed from the identified state-space model with those computed from the aero-optical data.

  17. Squeezing in multi-mode nonlinear optical state truncation

    International Nuclear Information System (INIS)

    Said, R.S.; Wahiddin, M.R.B.; Umarov, B.A.

    2007-01-01

    In this Letter, we show that multi-mode qubit states produced via nonlinear optical state truncation driven by classical external pumpings exhibit squeezing condition. We restrict our discussions to the two- and three-mode cases

  18. Fault tolerance in parity-state linear optical quantum computing

    International Nuclear Information System (INIS)

    Hayes, A. J. F.; Ralph, T. C.; Haselgrove, H. L.; Gilchrist, Alexei

    2010-01-01

    We use a combination of analytical and numerical techniques to calculate the noise threshold and resource requirements for a linear optical quantum computing scheme based on parity-state encoding. Parity-state encoding is used at the lowest level of code concatenation in order to efficiently correct errors arising from the inherent nondeterminism of two-qubit linear-optical gates. When combined with teleported error-correction (using either a Steane or Golay code) at higher levels of concatenation, the parity-state scheme is found to achieve a saving of approximately three orders of magnitude in resources when compared to the cluster state scheme, at a cost of a somewhat reduced noise threshold.

  19. Optical interference with noncoherent states

    International Nuclear Information System (INIS)

    Sagi, Yoav; Firstenberg, Ofer; Fisher, Amnon; Ron, Amiram

    2003-01-01

    We examine a typical two-source optical interference apparatus consisting of two cavities, a beam splitter, and two detectors. We show that field-field interference occurs even when the cavities are not initially in coherent states but rather in other nonclassical states. However, we find that the visibility of the second-order interference, that is, the expectation values of the detectors' readings, changes from 100%, when the cavities are prepared in coherent states, to zero visibility when they are initially in single Fock states. We calculate the fourth-order interference, and for the latter case find that it corresponds to a case where the currents oscillate with 100% visibility, but with a random phase for every experiment. Finally, we suggest an experimental realization of the apparatus with nonclassical sources

  20. Optical field-strength polarization of two-mode single-photon states

    Energy Technology Data Exchange (ETDEWEB)

    Linares, J; Nistal, M C; Barral, D; Moreno, V, E-mail: suso.linares.beiras@usc.e [Optics Area, Department of Applied Physics, Faculty of Physics and School of Optics and Optometry, University of Santiago de Compostela, Campus Universitario Sur s/n, 15782-Santiago de Compostela, Galicia (Spain)

    2010-09-15

    We present a quantum analysis of two-mode single-photon states based on the probability distributions of the optical field strength (or position quadrature) in order to describe their quantum polarization characteristics, where polarization is understood as a significative confinement of the optical field-strength values on determined regions of the two-mode optical field-strength plane. We will show that the mentioned probability distributions along with the values of quantum Stokes parameters allow us to characterize the polarization of a two-mode single-photon state, in an analogous way to the classical case, and to distinguish conceptually between mixture and partially polarized quantum states; in this way, we propose a simple definition of the quantum polarization degree based on the recent concept of distance measure to an unpolarized distribution, which gives rise to a depolarization degree equivalent to an overlapping between the probability distribution of the quantum state and a non-polarized two-mode Gaussian distribution. The work is particularly intended to university physics teachers and graduate students as well as to physicists and specialists concerned with the issue of optical polarization.

  1. Optical field-strength polarization of two-mode single-photon states

    International Nuclear Information System (INIS)

    Linares, J; Nistal, M C; Barral, D; Moreno, V

    2010-01-01

    We present a quantum analysis of two-mode single-photon states based on the probability distributions of the optical field strength (or position quadrature) in order to describe their quantum polarization characteristics, where polarization is understood as a significative confinement of the optical field-strength values on determined regions of the two-mode optical field-strength plane. We will show that the mentioned probability distributions along with the values of quantum Stokes parameters allow us to characterize the polarization of a two-mode single-photon state, in an analogous way to the classical case, and to distinguish conceptually between mixture and partially polarized quantum states; in this way, we propose a simple definition of the quantum polarization degree based on the recent concept of distance measure to an unpolarized distribution, which gives rise to a depolarization degree equivalent to an overlapping between the probability distribution of the quantum state and a non-polarized two-mode Gaussian distribution. The work is particularly intended to university physics teachers and graduate students as well as to physicists and specialists concerned with the issue of optical polarization.

  2. Spectroscopy of molecules in very high rotational states using an optical centrifuge.

    Science.gov (United States)

    Yuan, Liwei; Toro, Carlos; Bell, Mack; Mullin, Amy S

    2011-01-01

    We have developed a high power optical centrifuge for measuring the spectroscopy of molecules in extreme rotational states. The optical centrifuge has a pulse energy that is more than 2 orders of magnitude greater than in earlier instruments. The large pulse energy allows us to drive substantial number densities of molecules to extreme rotational states in order to measure new spectroscopic transitions that are not accessible with traditional methods. Here we demonstrate the use of the optical centrifuge for measuring IR transitions of N2O from states that have been inaccessible until now. In these studies, the optical centrifuge drives N2O molecules into states with J ~ 200 and we use high resolution transient IR probing to measure the appearance of population in states with J = 93-99 that result from collisional cooling of the centrifuged molecules. High resolution Doppler broadened line profile measurements yield information about the rotational and translational energy distributions in the optical centrifuge.

  3. Resonant-state expansion applied to three-dimensional open optical systems

    Science.gov (United States)

    Doost, M. Â. B.; Langbein, W.; Muljarov, E. Â. A.

    2014-07-01

    The resonant-state expansion (RSE), a rigorous perturbative method in electrodynamics, is developed for three-dimensional open optical systems. Results are presented using the analytically solvable homogeneous dielectric sphere as unperturbed system. Since any perturbation which breaks the spherical symmetry mixes transverse electric (TE) and transverse magnetic (TM) modes, the RSE is extended here to include TM modes and a zero-frequency pole of the Green's function. We demonstrate the validity of the RSE for TM modes by verifying its convergence towards the exact result for a homogeneous perturbation of the sphere. We then apply the RSE to calculate the modes for a selection of perturbations sequentially reducing the remaining symmetry, given by a change of the dielectric constant of half-sphere and quarter-sphere shape. Since no exact solutions are known for these perturbations, we verify the RSE results by comparing them with the results of state of the art finite element method (FEM) and finite difference in time domain (FDTD) solvers. We find that for the selected perturbations, the RSE provides a significantly higher accuracy than the FEM and FDTD for a given computational effort, demonstrating its potential to supersede presently used methods. We furthermore show that in contrast to presently used methods, the RSE is able to determine the perturbation of a selected group of modes by using a limited basis local to these modes, which can further reduce the computational effort by orders of magnitude.

  4. Novel selective and non-selective optical detection of microorganisms.

    Science.gov (United States)

    Shelef, L A; Firstenberg-Eden, R

    1997-09-01

    A new instrument, capable of detecting metabolic changes due to microbiological activity, is described. Optical changes in growth media are monitored in a semi-fluid zone that separates the liquid medium containing the sample. Data demonstrate that common media can be utilized in conjunction with this rapid automated technology. Nutrient broth with the pH dye indicator. bromocresol purple was suitable for total counts. Selective media containing dyes were utilized to assess the presence or absence of specific groups of organisms. Biochemical reactions, such as lysine decarboxylase activity, were identified by the unique generated patterns, and specific enzymatic cleavage reactions with chromogenic substrates, such as 5-bromo-4 chloro-3 indolyl-beta-D-glucuronic acid (X-GLUC), were monitored.

  5. A threshold-based multiple optical signal selection scheme for WDM FSO systems

    KAUST Repository

    Nam, Sung Sik

    2017-07-20

    In this paper, we propose a threshold-based-multiple optical signal selection scheme (TMOS) for free-space optical systems based on wavelength division multiplexing. With the proposed TMOS, we can obtain higher spectral efficiency while reducing the potential increase in complexity of implementation caused by applying a selection-based beam selection scheme without a considerable performance loss. Here, to accurately characterize the performance of the proposed TMOS, we statistically analyze the characteristics with heterodyne detection technique over independent and identically distributed Log-normal turbulence conditions taking into considerations the impact of pointing error. Specifically, we derive exact closed-form expressions for the average bit error rate, and the average spectral efficiency by adopting an adaptive modulation. Some selected results shows that the average spectral efficiency can be increased with TMOS while the system requirement is satisfied.

  6. A threshold-based multiple optical signal selection scheme for WDM FSO systems

    KAUST Repository

    Nam, Sung Sik; Alouini, Mohamed-Slim; Ko, Young-Chai; Cho, Sung Ho

    2017-01-01

    In this paper, we propose a threshold-based-multiple optical signal selection scheme (TMOS) for free-space optical systems based on wavelength division multiplexing. With the proposed TMOS, we can obtain higher spectral efficiency while reducing the potential increase in complexity of implementation caused by applying a selection-based beam selection scheme without a considerable performance loss. Here, to accurately characterize the performance of the proposed TMOS, we statistically analyze the characteristics with heterodyne detection technique over independent and identically distributed Log-normal turbulence conditions taking into considerations the impact of pointing error. Specifically, we derive exact closed-form expressions for the average bit error rate, and the average spectral efficiency by adopting an adaptive modulation. Some selected results shows that the average spectral efficiency can be increased with TMOS while the system requirement is satisfied.

  7. Field-induced optically isotropic state in bent core nematic liquid crystals: unambiguous proof of field-induced optical biaxiality

    International Nuclear Information System (INIS)

    Elamain, Omaima; Komitov, Lachezar; Hegde, Gurumurthy; Fodor-Csorba, Katalin

    2013-01-01

    The behaviour of bent core (BC) nematic liquid crystals was investigated under dc applied electric field. The optically isotropic state of a sample containing BC nematic was observed under application of low dc electric fields. The quality of the dark state when the sample was inserted between two crossed polarizers was found to be superb and it did not change when rotating the sample between the polarizers. The coupling between the net molecular dipole moment and the applied dc electric field was considered as the origin of the out-of-plane switching of the BC molecules resulting in switching from the field-off bright state to the field-on dark state. The field-induced optically isotropic state is an unambiguous proof of the field-induced biaxiality in the BC nematic liquid crystal. A simple model explaining the appearance of the isotropic optical state in BC nematics and the switching of the sample slow axis between three mutually orthogonal directions under dc applied electric field is proposed. (paper)

  8. Arbitrarily complete Bell-state measurement using only linear optical elements

    Energy Technology Data Exchange (ETDEWEB)

    Grice, W. P. [Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Tennessee (United States)

    2011-10-15

    A complete Bell-state measurement is not possible using only linear-optic elements, and most schemes achieve a success rate of no more than 50%, distinguishing, for example, two of the four Bell states but returning degenerate results for the other two. It is shown here that the introduction of a pair of ancillary entangled photons improves the success rate to 75%. More generally, the addition of 2{sup N}-2 ancillary photons yields a linear-optic Bell-state measurement with a success rate of 1-1/2{sup N}.

  9. Optical techniques for solid-state materials characterization

    CERN Document Server

    Prasankumar, Rohit P

    2016-01-01

    This book has comprehensively covered the essential optical approaches needed for solid-state materials characterization. Written by experts in the field, this will be a great reference for students, engineers, and scientists.-Professor Yoke Khin Yap, Michigan Technical University.

  10. Spectroscopy of Molecules in Extreme Rotational States Using AN Optical Centrifuge

    Science.gov (United States)

    Mullin, Amy S.; Toro, Carlos; Echibiri, Geraldine; Liu, Qingnan

    2012-06-01

    Our lab has developed a high-power optical centrifuge that is capable of trapping and spinning large number densities of molecules into extreme rotational states. By coupling this device with high resolution transient IR absorption spectroscopy, we measure the time-resolved behavior and energy profiles of individual ro-vibrational states of molecules in very high rotational states. Recent results will be discussed on the spectroscopy of new rotational states, collisional dynamics in the optical centrifuge, spatially-dependent energy profiles and possibilities for new chemistry induced by centrifugal forces.

  11. Analysis of the selected optical parameters of filters protecting against hazardous infrared radiation

    OpenAIRE

    Gralewicz, Grzegorz; Owczarek, Grzegorz

    2016-01-01

    The paper analyses the selected optical parameters of protective optic filters used for protection of the eyes against hazardous radiation within the visible (VIS) and near infrared (NIR) spectrum range. The indexes characterizing transmission and reflection of optic radiation incident on the filter are compared. As it follows from the completed analysis, the newly developed interference filters provide more effective blocking of infrared radiation in comparison with the currently used protec...

  12. Study of ground state optical transfer for ultracold alkali dimers

    Science.gov (United States)

    Bouloufa-Maafa, Nadia; Londono, Beatriz; Borsalino, Dimitri; Vexiau, Romain; Mahecha, Jorge; Dulieu, Olivier; Luc-Koenig, Eliane

    2013-05-01

    Control of molecular states by laser pulses offer promising potential applications. The manipulation of molecules by external fields requires precise knowledge of the molecular structure. Our motivation is to perform a detailed analysis of the spectroscopic properties of alkali dimers, with the aim to determine efficient optical paths to form molecules in the absolute ground state and to determine the optimal parameters of the optical lattices where those molecules are manipulated to avoid losses by collisions. To this end, we use state of the art molecular potentials, R-dependent spin-orbit coupling and transition dipole moment to perform our calculations. R-dependent SO coupling are of crucial importance because the transitions occur at internuclear distances where they are affected by this R-dependence. Efficient schemes to transfer RbCs, KRb and KCs to the absolute ground state as well as the optimal parameters of the optical lattices will be presented. This work was supported in part by ``Triangle de la Physique'' under contract 2008-007T-QCCM (Quantum Control of Cold Molecules).

  13. Channel-Selectable Optical Link Based on a Silicon Microring for on-Chip Interconnection

    International Nuclear Information System (INIS)

    Qiu Chen; Hu Ting; Wang Wan-Jun; Yu Ping; Jiang Xiao-Qing; Yang Jian-Yi

    2012-01-01

    A channel-selectable optical link based on a silicon microring resonator is proposed and demonstrated. This optical link consists of the wavelength-tunable microring modulators and the filters, defined on a silicon-on-insulator (SOI) platform. With a p—i—n junction embedded in the microring modulator, light at the resonant wavelength of the ring resonator is modulated. The 2 nd -order microring add-drop filter routes the modulated light. The channel selectivity is demonstrated by heating the microrings. With a thermal tuning efficiency of 5.9 mW/nm, the filter drop port response was successfully tuned with 0.8 nm channel spacing. We also show that modulation can be achieved in these channels. This device aims to offer flexibility and increase the bandwidth usage efficiency in optical interconnection

  14. Optical Tamm states in one-dimensional magnetophotonic structures.

    Science.gov (United States)

    Goto, T; Dorofeenko, A V; Merzlikin, A M; Baryshev, A V; Vinogradov, A P; Inoue, M; Lisyansky, A A; Granovsky, A B

    2008-09-12

    We demonstrate the existence of a spectrally narrow localized surface state, the so-called optical Tamm state, at the interface between one-dimensional magnetophotonic and nonmagnetic photonic crystals. The state is spectrally located inside the photonic band gaps of each of the photonic crystals comprising this magnetophotonic structure. This state is associated with a sharp transmission peak through the sample and is responsible for the substantial enhancement of the Faraday rotation for the corresponding wavelength. The experimental results are in excellent agreement with the theoretical predictions.

  15. Obscured AGN at z ~ 1 from the zCOSMOS-Bright Survey. I. Selection and optical properties of a [Ne v]-selected sample

    Science.gov (United States)

    Mignoli, M.; Vignali, C.; Gilli, R.; Comastri, A.; Zamorani, G.; Bolzonella, M.; Bongiorno, A.; Lamareille, F.; Nair, P.; Pozzetti, L.; Lilly, S. J.; Carollo, C. M.; Contini, T.; Kneib, J.-P.; Le Fèvre, O.; Mainieri, V.; Renzini, A.; Scodeggio, M.; Bardelli, S.; Caputi, K.; Cucciati, O.; de la Torre, S.; de Ravel, L.; Franzetti, P.; Garilli, B.; Iovino, A.; Kampczyk, P.; Knobel, C.; Kovač, K.; Le Borgne, J.-F.; Le Brun, V.; Maier, C.; Pellò, R.; Peng, Y.; Perez Montero, E.; Presotto, V.; Silverman, J. D.; Tanaka, M.; Tasca, L.; Tresse, L.; Vergani, D.; Zucca, E.; Bordoloi, R.; Cappi, A.; Cimatti, A.; Koekemoer, A. M.; McCracken, H. J.; Moresco, M.; Welikala, N.

    2013-08-01

    Aims: The application of multi-wavelength selection techniques is essential for obtaining a complete and unbiased census of active galactic nuclei (AGN). We present here a method for selecting z ~ 1 obscured AGN from optical spectroscopic surveys. Methods: A sample of 94 narrow-line AGN with 0.65 advantage of the large amount of data available in the COSMOS field, the properties of the [Ne v]-selected type 2 AGN were investigated, focusing on their host galaxies, X-ray emission, and optical line-flux ratios. Finally, a previously developed diagnostic, based on the X-ray-to-[Ne v] luminosity ratio, was exploited to search for the more heavily obscured AGN. Results: We found that [Ne v]-selected narrow-line AGN have Seyfert 2-like optical spectra, although their emission line ratios are diluted by a star-forming component. The ACS morphologies and stellar component in the optical spectra indicate a preference for our type 2 AGN to be hosted in early-type spirals with stellar masses greater than 109.5 - 10 M⊙, on average higher than those of the galaxy parent sample. The fraction of galaxies hosting [Ne v]-selected obscured AGN increases with the stellar mass, reaching a maximum of about 3% at ≈2 × 1011 M⊙. A comparison with other selection techniques at z ~ 1, namely the line-ratio diagnostics and X-ray detections, shows that the detection of the [Ne v] λ3426 line is an effective method for selecting AGN in the optical band, in particular the most heavily obscured ones, but cannot provide a complete census of type 2 AGN by itself. Finally, the high fraction of [Ne v]-selected type 2 AGN not detected in medium-deep (≈100-200 ks) Chandra observations (67%) is suggestive of the inclusion of Compton-thick (i.e., with NH > 1024 cm-2) sources in our sample. The presence of a population of heavily obscured AGN is corroborated by the X-ray-to-[Ne v] ratio; we estimated, by means of an X-ray stacking technique and simulations, that the Compton-thick fraction in our

  16. An optical fusion gate for W-states

    Science.gov (United States)

    Özdemir, Ş. K.; Matsunaga, E.; Tashima, T.; Yamamoto, T.; Koashi, M.; Imoto, N.

    2011-10-01

    We introduce a simple optical gate to fuse arbitrary-size polarization entangled W-states to prepare larger W-states. The gate requires a polarizing beam splitter (PBS), a half-wave plate (HWP) and two photon detectors. We study, numerically and analytically, the necessary resource consumption for preparing larger W-states by fusing smaller ones with the proposed fusion gate. We show analytically that resource requirement scales at most sub-exponentially with the increasing size of the state to be prepared. We numerically determine the resource cost for fusion without recycling where W-states of arbitrary size can be optimally prepared. Moreover, we introduce another strategy that is based on recycling and outperforms the optimal strategy for the non-recycling case.

  17. An optical fusion gate for W-states

    Energy Technology Data Exchange (ETDEWEB)

    Oezdemir, S K [Department of Electrical and Systems Engineering, Washington University, St. Louis, MO 63130 (United States); Matsunaga, E; Tashima, T; Yamamoto, T; Koashi, M; Imoto, N, E-mail: ozdemir@ese.wustl.edu [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan)

    2011-10-15

    We introduce a simple optical gate to fuse arbitrary-size polarization entangled W-states to prepare larger W-states. The gate requires a polarizing beam splitter (PBS), a half-wave plate (HWP) and two photon detectors. We study, numerically and analytically, the necessary resource consumption for preparing larger W-states by fusing smaller ones with the proposed fusion gate. We show analytically that resource requirement scales at most sub-exponentially with the increasing size of the state to be prepared. We numerically determine the resource cost for fusion without recycling where W-states of arbitrary size can be optimally prepared. Moreover, we introduce another strategy that is based on recycling and outperforms the optimal strategy for the non-recycling case. (paper)

  18. An optical fusion gate for W-states

    International Nuclear Information System (INIS)

    Oezdemir, S K; Matsunaga, E; Tashima, T; Yamamoto, T; Koashi, M; Imoto, N

    2011-01-01

    We introduce a simple optical gate to fuse arbitrary-size polarization entangled W-states to prepare larger W-states. The gate requires a polarizing beam splitter (PBS), a half-wave plate (HWP) and two photon detectors. We study, numerically and analytically, the necessary resource consumption for preparing larger W-states by fusing smaller ones with the proposed fusion gate. We show analytically that resource requirement scales at most sub-exponentially with the increasing size of the state to be prepared. We numerically determine the resource cost for fusion without recycling where W-states of arbitrary size can be optimally prepared. Moreover, we introduce another strategy that is based on recycling and outperforms the optimal strategy for the non-recycling case. (paper)

  19. Optical Field-Strength Polarization of Two-Mode Single-Photon States

    Science.gov (United States)

    Linares, J.; Nistal, M. C.; Barral, D.; Moreno, V.

    2010-01-01

    We present a quantum analysis of two-mode single-photon states based on the probability distributions of the optical field strength (or position quadrature) in order to describe their quantum polarization characteristics, where polarization is understood as a significative confinement of the optical field-strength values on determined regions of…

  20. Large optical conductivity of Dirac semimetal Fermi arc surface states

    Science.gov (United States)

    Shi, Li-kun; Song, Justin C. W.

    2017-08-01

    Fermi arc surface states, a hallmark of topological Dirac semimetals, can host carriers that exhibit unusual dynamics distinct from that of their parent bulk. Here we find that Fermi arc carriers in intrinsic Dirac semimetals possess a strong and anisotropic light-matter interaction. This is characterized by a large Fermi arc optical conductivity when light is polarized transverse to the Fermi arc; when light is polarized along the Fermi arc, Fermi arc optical conductivity is significantly muted. The large surface spectral weight is locked to the wide separation between Dirac nodes and persists as a large Drude weight of Fermi arc carriers when the system is doped. As a result, large and anisotropic Fermi arc conductivity provides a novel means of optically interrogating the topological surfaces states of Dirac semimetals.

  1. All fiber optics circular-state swept source polarization-sensitive optical coherence tomography.

    Science.gov (United States)

    Lin, Hermann; Kao, Meng-Chun; Lai, Chih-Ming; Huang, Jyun-Cin; Kuo, Wen-Chuan

    2014-02-01

    A swept source (SS)-based circular-state (CS) polarization-sensitive optical coherence tomography (PS-OCT) constructed entirely with polarization-maintaining fiber optics components is proposed with the experimental verification. By means of the proposed calibration scheme, bulk quarter-wave plates can be replaced by fiber optics polarization controllers to, therefore, realize an all-fiber optics CS SSPS-OCT. We also present a numerical dispersion compensation method, which can not only enhance the axial resolution, but also improve the signal-to-noise ratio of the images. We demonstrate that this compact and portable CS SSPS-OCT system with an accuracy comparable to bulk optics systems requires less stringent lens alignment and can possibly serve as a technology to realize PS-OCT instrument for clinical applications (e.g., endoscopy). The largest deviations in the phase retardation (PR) and fast-axis (FA) angle due to sample probe in the linear scanning and a rotation angle smaller than 65 deg were of the same order as those in stationary probe setups. The influence of fiber bending on the measured PR and FA is also investigated. The largest deviations of the PR were 3.5 deg and the measured FA change by ~12 to 21 deg. Finally, in vivo imaging of the human fingertip and nail was successfully demonstrated with a linear scanning probe.

  2. Radio-over-fiber using an optical antenna based on Rydberg states of atoms

    Science.gov (United States)

    Deb, A. B.; Kjærgaard, N.

    2018-05-01

    We provide an experimental demonstration of a direct fiber-optic link for RF transmission ("radio-over-fiber") using a sensitive optical antenna based on a rubidium vapor cell. The scheme relies on measuring the transmission of laser light at an electromagnetically induced transparency resonance that involves highly excited Rydberg states. By dressing pairs of Rydberg states using microwave fields that act as local oscillators, we encoded RF signals in the optical frequency domain. The light carrying the information is linked via a virtually lossless optical fiber to a photodetector where the signal is retrieved. We demonstrate a signal bandwidth in excess of 1 MHz limited by the available coupling laser power and atomic optical density. Our sensitive, non-metallic and readily scalable optical antenna for microwaves allows extremely low-levels of optical power (˜1 μW) throughput in the fiber-optic link. It offers a promising future platform for emerging wireless network infrastructures.

  3. Generating single-photon catalyzed coherent states with quantum-optical catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xue-xiang, E-mail: xuxuexiang@jxnu.edu.cn [Center for Quantum Science and Technology, Jiangxi Normal University, Nanchang 330022 (China); Yuan, Hong-chun [College of Electrical and Optoelectronic Engineering, Changzhou Institute of Technology, Changzhou 213002 (China)

    2016-07-15

    We theoretically generate single-photon catalyzed coherent states (SPCCSs) by means of quantum-optical catalysis based on the beam splitter (BS) or the parametric amplifier (PA). These states are obtained in one of the BS (or PA) output channels if a coherent state and a single-photon Fock state are present in two input ports and a single photon is registered in the other output port. The success probabilities of the detection (also the normalization factors) are discussed, which is different for BS and PA catalysis. In addition, we prove that the generated states catalyzed by BS and PA devices are actually the same quantum states after analyzing photon number distribution of the SPCCSs. The quantum properties of the SPCCSs, such as sub-Poissonian distribution, anti-bunching effect, quadrature squeezing effect, and the negativity of the Wigner function are investigated in detail. The results show that the SPCCSs are non-Gaussian states with an abundance of nonclassicality. - Highlights: • We generate single-photon catalyzed coherent states with quantum-optical catalysis. • We prove the equivalent effects of the lossless beam splitter and the non-degenerate parametric amplifier. • Some nonclassical properties of the generated states are investigated in detail.

  4. Optical readout method for solid-state dosemeters

    International Nuclear Information System (INIS)

    McDonald, J.C.; Eichner, F.N.; Stahl, K.A.; Miller, S.D.

    1986-07-01

    The readout of solid-state dosemeters is usually accomplished by heating to produce thermoluminescence. This technique has several disadvantages including stressing the dosemeter crystals, melting Teflon enclosures, and destroying the thin dosemeters designed for beta particle measurements. An optical readout method is being developed to avoid these difficulties. Standard dosemeters were irradiated to a dose of approximately 0.02 Sv with 137 Cs gamma rays. The dosemeters were then irradiated with light produced by a high-intensity xenon lamp. Various wavelength bands, from the ultraviolet through the visible and to the near-infrared, were used. The degree of trap emptying was found to be proportional to the total optical power incident. With the intensities used in the preliminary experiments, over 90% trap emptying was achieved. This new technique will prove useful for dosemeters that are encased in plastic for automatic processing. The details of this optical readout method, along with some possible applications in neutron and beta dosimetry are described. 7 refs., 3 figs

  5. All Solid State Optical Pulse Shaper for the OMEGA Laser Fusion Facility

    International Nuclear Information System (INIS)

    Okishev, A.V.; Skeldon, M.D.; Keck, R.L.; Seka, W.

    2000-01-01

    OAK-B135 All Solid State Optical Pulse Shaper for the OMEGA Laser Fusion Facility. The authors have developed an all-solid-state, compact, computer-controlled, flexible optical pulse shaper for the OMEGA laser facility. This pulse shaper produces high bandwidth, temporally shaped laser pulses that meet OMEGA requirements. The design is a significant simplification over existing technology with improved performance capabilities

  6. Quantum communication network utilizing quadripartite entangled states of optical field

    International Nuclear Information System (INIS)

    Shen Heng; Su Xiaolong; Jia Xiaojun; Xie Changde

    2009-01-01

    We propose two types of quantum dense coding communication networks with optical continuous variables, in which a quadripartite entangled state of the optical field with totally three-party correlations of quadrature amplitudes is utilized. In the networks, the exchange of information between any two participants can be manipulated by one or two of the remaining participants. The channel capacities for a variety of communication protocols are numerically calculated. Due to the fact that the quadripartite entangled states applied in the communication systems have been successfully prepared already in the laboratory, the proposed schemes are experimentally accessible at present.

  7. Label-free and selective nonlinear fiber-optical biosensing

    DEFF Research Database (Denmark)

    Ott, Johan Raunkjær; Heuck, Mikkel; Agger, Christian

    2008-01-01

    We demonstrate that the inherent nonlinearity of a microstructured optical fiber (MOF) may be used to achieve label-free selective biosensing, thereby eliminating the need for post-processing of the fiber. This first nonlinear biosensor utilizes a change in the modulational instability (MI) gain...... for optimizing the sensitivity. The nonlinear sensor shows a sensitivity of around 10.4nm/nm, defined as the shift in resonance wavelength per nm biolayer, which is a factor of 7.5 higher than the hitherto only demonstrated label-free MOF biosensor....

  8. Space density of optically-selected type 2 quasars

    OpenAIRE

    Reyes, Reinabelle; Zakamska, Nadia L.; Strauss, Michael A.; Green, Joshua; Krolik, Julian H.; Shen, Yue; Richards, Gordon; Anderson, Scott; Schneider, Donald

    2008-01-01

    Type 2 quasars are luminous active galactic nuclei (AGN) whose central regions are obscured by large amounts of gas and dust. In this paper, we present a catalog of type 2 quasars from the Sloan Digital Sky Survey (SDSS), selected based on their optical emission lines. The catalog contains 887 objects with redshifts z < 0.83; this is six times larger than the previous version and is by far the largest sample of type 2 quasars in the literature. We derive the [OIII]5008 luminosity function for...

  9. Optic Flow Based State Estimation for an Indoor Micro Air Vehicle

    NARCIS (Netherlands)

    Verveld, M.J.; Chu, Q.P.; De Wagter, C.; Mulder, J.A.

    2010-01-01

    This work addresses the problem of indoor state estimation for autonomous flying vehicles with an optic flow approach. The paper discusses a sensor configuration using six optic flow sensors of the computer mouse type augmented by a three-axis accelerometer to estimate velocity, rotation, attitude

  10. Selection of steady states in planar Darcy convection

    International Nuclear Information System (INIS)

    Tsybulin, V.G.; Karasoezen, B.; Ergenc, T.

    2006-01-01

    The planar natural convection of an incompressible fluid in a porous medium is considered. We study the selection of steady states under temperature perturbations on the boundary. A selection map is introduced in order to analyze the selection of a steady state from a continuous family of equilibria which exists under zero boundary conditions. The results of finite-difference modeling for a rectangular enclosure are presented

  11. Noise tolerance in wavelength-selective switching of optical differential quadrature-phase-shift-keying pulse train by collinear acousto-optic devices.

    Science.gov (United States)

    Goto, Nobuo; Miyazaki, Yasumitsu

    2014-06-01

    Optical switching of high-bit-rate quadrature-phase-shift-keying (QPSK) pulse trains using collinear acousto-optic (AO) devices is theoretically discussed. Since the collinear AO devices have wavelength selectivity, the switched optical pulse trains suffer from distortion when the bandwidth of the pulse train is comparable to the pass bandwidth of the AO device. As the AO device, a sidelobe-suppressed device with a tapered surface-acoustic-wave (SAW) waveguide and a Butterworth-type filter device with a lossy SAW directional coupler are considered. Phase distortion of optical pulse trains at 40 to 100  Gsymbols/s in QPSK format is numerically analyzed. Bit-error-rate performance with additive Gaussian noise is also evaluated by the Monte Carlo method.

  12. Block-free optical quantum Banyan network based on quantum state fusion and fission

    International Nuclear Information System (INIS)

    Zhu Chang-Hua; Meng Yan-Hong; Quan Dong-Xiao; Zhao Nan; Pei Chang-Xing

    2014-01-01

    Optical switch fabric plays an important role in building multiple-user optical quantum communication networks. Owing to its self-routing property and low complexity, a banyan network is widely used for building switch fabric. While, there is no efficient way to remove internal blocking in a banyan network in a classical way, quantum state fusion, by which the two-dimensional internal quantum states of two photons could be combined into a four-dimensional internal state of a single photon, makes it possible to solve this problem. In this paper, we convert the output mode of quantum state fusion from spatial-polarization mode into time-polarization mode. By combining modified quantum state fusion and quantum state fission with quantum Fredkin gate, we propose a practical scheme to build an optical quantum switch unit which is block free. The scheme can be extended to building more complex units, four of which are shown in this paper. (general)

  13. Nanoparticle array based optical frequency selective surfaces: theory and design.

    Science.gov (United States)

    Saeidi, Chiya; van der Weide, Daniel

    2013-07-01

    We demonstrate a synthesis procedure for designing a bandstop optical frequency selective surface (FSS) composed of nanoparticle (NP) elements. The proposed FSS uses two-dimensional (2-D) periodic arrays of NPs with subwavelength unit-cell dimensions. We derive equivalent circuit for a nanoparticle array (NPA) using the closed-form solution for a 2-D NPA excited by a plane wave in the limit of the dipole approximation, which includes contribution from both individual and collective plasmon modes. Using the extracted equivalent circuit, we demonstrate synthesis of an optical FSS using cascaded NPA layers as coupled resonators, which we validate with both circuit model and full-wave simulation for a third-order Butterworth bandstop prototype.

  14. Rydberg-Stark states of Positronium for atom optics

    International Nuclear Information System (INIS)

    Alonso, A M; Cooper, B S; Deller, A; Hogan, S D; Wall, T E; Cassidy, D B

    2015-01-01

    Positronium atoms were produced in Rydberg states by means of a two-step optical excitation process (1s→2p→nd/ns). The n = 11 Rydberg-Stark manifold has been studied using different laser polarizations providing greater control over the electric dipole moment. (paper)

  15. Tensor network states in time-bin quantum optics

    Science.gov (United States)

    Lubasch, Michael; Valido, Antonio A.; Renema, Jelmer J.; Kolthammer, W. Steven; Jaksch, Dieter; Kim, M. S.; Walmsley, Ian; García-Patrón, Raúl

    2018-06-01

    The current shift in the quantum optics community towards experiments with many modes and photons necessitates new classical simulation techniques that efficiently encode many-body quantum correlations and go beyond the usual phase-space formulation. To address this pressing demand we formulate linear quantum optics in the language of tensor network states. We extensively analyze the quantum and classical correlations of time-bin interference in a single fiber loop. We then generalize our results to more complex time-bin quantum setups and identify different classes of architectures for high-complexity and low-overhead boson sampling experiments.

  16. Characterizing the Optical Variability of Bright Blazars: Variability-based Selection of Fermi Active Galactic Nuclei

    Science.gov (United States)

    Ruan, John J.; Anderson, Scott F.; MacLeod, Chelsea L.; Becker, Andrew C.; Burnett, T. H.; Davenport, James R. A.; Ivezić, Željko; Kochanek, Christopher S.; Plotkin, Richard M.; Sesar, Branimir; Stuart, J. Scott

    2012-11-01

    We investigate the use of optical photometric variability to select and identify blazars in large-scale time-domain surveys, in part to aid in the identification of blazar counterparts to the ~30% of γ-ray sources in the Fermi 2FGL catalog still lacking reliable associations. Using data from the optical LINEAR asteroid survey, we characterize the optical variability of blazars by fitting a damped random walk model to individual light curves with two main model parameters, the characteristic timescales of variability τ, and driving amplitudes on short timescales \\hat{\\sigma }. Imposing cuts on minimum τ and \\hat{\\sigma } allows for blazar selection with high efficiency E and completeness C. To test the efficacy of this approach, we apply this method to optically variable LINEAR objects that fall within the several-arcminute error ellipses of γ-ray sources in the Fermi 2FGL catalog. Despite the extreme stellar contamination at the shallow depth of the LINEAR survey, we are able to recover previously associated optical counterparts to Fermi active galactic nuclei with E >= 88% and C = 88% in Fermi 95% confidence error ellipses having semimajor axis r beaming. After correcting for beaming, we estimate that the characteristic timescale of blazar variability is ~3 years in the rest frame of the jet, in contrast with the ~320 day disk flux timescale observed in quasars. The variability-based selection method presented will be useful for blazar identification in time-domain optical surveys and is also a probe of jet physics.

  17. The selection criteria elements of X-ray optics system

    Science.gov (United States)

    Plotnikova, I. V.; Chicherina, N. V.; Bays, S. S.; Bildanov, R. G.; Stary, O.

    2018-01-01

    At the design of new modifications of x-ray tomography there are difficulties in the right choice of elements of X-ray optical system. Now this problem is solved by practical consideration, selection of values of the corresponding parameters - tension on an x-ray tube taking into account the thickness and type of the studied material. For reduction of time and labor input of design it is necessary to create the criteria of the choice, to determine key parameters and characteristics of elements. In the article two main elements of X-ray optical system - an x-ray tube and the detector of x-ray radiation - are considered. Criteria of the choice of elements, their key characteristics, the main dependences of parameters, quality indicators and also recommendations according to the choice of elements of x-ray systems are received.

  18. State-selective imaging of cold atoms

    NARCIS (Netherlands)

    Sheludko, D.V.; Bell, S.C.; Anderson, R.; Hofmann, C.S.; Vredenbregt, E.J.D.; Scholten, R.E.

    2008-01-01

    Atomic coherence phenomena are usually investigated using single beam techniques without spatial resolution. Here we demonstrate state-selective imaging of cold 85Rb atoms in a three-level ladder system, where the atomic refractive index is sensitive to the quantum coherence state of the atoms. We

  19. Optical wavelength selection for portable hemoglobin determination by near-infrared spectroscopy method

    Science.gov (United States)

    Tian, Han; Li, Ming; Wang, Yue; Sheng, Dinggao; Liu, Jun; Zhang, Linna

    2017-11-01

    Hemoglobin concentration is commonly used in clinical medicine to diagnose anemia, identify bleeding, and manage red blood cell transfusions. The golden standard method for determining hemoglobin concentration in blood requires reagent. Spectral methods were advantageous at fast and non-reagent measurement. However, model calibration with full spectrum is time-consuming. Moreover, it is necessary to use a few variables considering size and cost of instrumentation, especially for a portable biomedical instrument. This study presents different wavelength selection methods for optical wavelengths for total hemoglobin concentration determination in whole blood. The results showed that modelling using only two wavelengths combination (1143 nm, 1298 nm) can keep on the fine predictability with full spectrum. It appears that the proper selection of optical wavelengths can be more effective than using the whole spectra for determination hemoglobin in whole blood. We also discussed the influence of water absorptivity on the wavelength selection. This research provides valuable references for designing portable NIR instruments determining hemoglobin concentration, and may provide some experience for noninvasive hemoglobin measurement by NIR methods.

  20. Quantum Theory of Conditional Phonon States in a Dual-Pumped Raman Optical Frequency Comb

    Science.gov (United States)

    Mondloch, Erin

    In this work, we theoretically and numerically investigate nonclassical phonon states created in the collective vibration of a Raman medium by the generation of a dual-pumped Raman optical frequency comb in an optical cavity. This frequency comb is generated by cascaded Raman scattering driven by two phase-locked pump lasers that are separated in frequency by three times the Raman phonon frequency. We characterize the variety of conditioned phonon states that are created when the number of photons in all optical frequency modes except the pump modes are measured. Almost all of these conditioned phonon states are extremely well approximated as three-phonon-squeezed states or Schrodinger-cat states, depending on the outcomes of the photon number measurements. We show how the combinations of first-, second-, and third-order Raman scattering that correspond to each set of measured photon numbers determine the fidelity of the conditioned phonon state with model three-phonon-squeezed states and Schrodinger-cat states. All of the conditioned phonon states demonstrate preferential growth of the phonon mode along three directions in phase space. That is, there are three preferred phase values that the phonon state takes on as a result of Raman scattering. We show that the combination of Raman processes that produces a given set of measured photon numbers always produces phonons in multiples of three. In the quantum number-state representation, these multiples of three are responsible for the threefold phase-space symmetry seen in the conditioned phonon states. With a semiclassical model, we show how this three-phase preference can also be understood in light of phase correlations that are known to spontaneously arise in single-pumped Raman frequency combs. Additionally, our semiclassical model predicts that the optical modes also grow preferentially along three phases, suggesting that the dual-pumped Raman optical frequency comb is partially phase-stabilized.

  1. Seismic damage identification for steel structures using distributed fiber optics.

    Science.gov (United States)

    Hou, Shuang; Cai, C S; Ou, Jinping

    2009-08-01

    A distributed fiber optic monitoring methodology based on optic time domain reflectometry technology is developed for seismic damage identification of steel structures. Epoxy with a strength closely associated to a specified structure damage state is used for bonding zigzagged configured optic fibers on the surfaces of the structure. Sensing the local deformation of the structure, the epoxy modulates the signal change within the optic fiber in response to the damage state of the structure. A monotonic loading test is conducted on a steel specimen installed with the proposed sensing system using selected epoxy that will crack at the designated strain level, which indicates the damage of the steel structure. Then, using the selected epoxy, a varying degree of cyclic loading amplitudes, which is associated with different damage states, is applied on a second specimen. The test results show that the specimen's damage can be identified by the optic sensors, and its maximum local deformation can be recorded by the sensing system; moreover, the damage evolution can also be identified.

  2. Raman selection rule of surface optical phonon in ZnS nanobelts

    KAUST Repository

    Ho, Chih-Hsiang

    2016-02-18

    We report Raman scattering results of high-quality wurtzite ZnS nanobelts (NBs) grown by chemical vapor deposition. In Raman spectrum, the ensembles of ZnS NBs exhibit first order phonon modes at 274 cm-1 and 350 cm-1, corresponding to A1/E1 transverse optical and A1/E1 longitudinal optical phonons, in addition with strong surface optical (SO) phonon mode at 329 cm-1. The existence of SO band is confirmed by its shift with different surrounding dielectric media. Polarization dependent Raman spectrum was performed on a single ZnS NB and for the first time SO phonon band has been detected on a single nanobelt. Different selection rules of SO phonon modeshown from their corresponding E1/A1 phonon modeswere attributed to the anisotropic translational symmetry breaking on the NB surface.

  3. Raman selection rule of surface optical phonon in ZnS nanobelts

    KAUST Repository

    Ho, Chih-Hsiang; Varadhan, Purushothaman; Wang, Hsin-Hua; Chen, Cheng-Ying; Fang, Xiaosheng; He, Jr-Hau

    2016-01-01

    We report Raman scattering results of high-quality wurtzite ZnS nanobelts (NBs) grown by chemical vapor deposition. In Raman spectrum, the ensembles of ZnS NBs exhibit first order phonon modes at 274 cm-1 and 350 cm-1, corresponding to A1/E1 transverse optical and A1/E1 longitudinal optical phonons, in addition with strong surface optical (SO) phonon mode at 329 cm-1. The existence of SO band is confirmed by its shift with different surrounding dielectric media. Polarization dependent Raman spectrum was performed on a single ZnS NB and for the first time SO phonon band has been detected on a single nanobelt. Different selection rules of SO phonon modeshown from their corresponding E1/A1 phonon modeswere attributed to the anisotropic translational symmetry breaking on the NB surface.

  4. Unstable decay and state selection

    International Nuclear Information System (INIS)

    McKane, Alan; Tarlie, Martin

    2001-01-01

    The decay of unstable states when several metastable states are available for occupation is investigated using path-integral techniques. Specifically, a method is described that enables the probabilities with which the metastable states are occupied to be calculated by finding optimal paths, and fluctuations about them, in the weak-noise limit. The method is illustrated on a system described by two coupled Langevin equations, which are found in the study of instabilities in fluid dynamics and superconductivity. The problem involves a subtle interplay between nonlinearities and noise, and a naive approximation scheme that does not take this into account is shown to be unsatisfactory. The use of optimal paths is briefly reviewed and then applied to finding the conditional probability of ending up in one of the metastable states, having begun in the unstable state. There are several aspects of the calculation that distinguish it from most others involving optimal paths: (i) the paths do not begin and end on an attractor, and moreover, the final point is to a large extent arbitrary, (ii) the interplay between the fluctuations and the leading-order contribution are at the heart of the method, and (iii) the final result involves quantities that are not exponentially small in the noise strength. This final result, which gives the probability of a particular state being selected in terms of the parameters of the dynamics, is remarkably simple and agrees well with the results of numerical simulations. The method should be applicable to similar problems in a number of other areas, such as state selection in lasers, activationless chemical reactions, and population dynamics in fluctuating environments

  5. Manipulation of single neutral atoms in optical lattices

    International Nuclear Information System (INIS)

    Zhang Chuanwei; Das Sarma, S.; Rolston, S. L.

    2006-01-01

    We analyze a scheme to manipulate quantum states of neutral atoms at individual sites of optical lattices using focused laser beams. Spatial distributions of focused laser intensities induce position-dependent energy shifts of hyperfine states, which, combined with microwave radiation, allow selective manipulation of quantum states of individual target atoms. We show that various errors in the manipulation process are suppressed below 10 -4 with properly chosen microwave pulse sequences and laser parameters. A similar idea is also applied to measure quantum states of single atoms in optical lattices

  6. Optically-Selected Cluster Catalogs As a Precision Cosmology Tool

    Energy Technology Data Exchange (ETDEWEB)

    Rozo, Eduardo; /Ohio State U. /Chicago U. /KICP, Chicago; Wechsler, Risa H.; /KICP, Chicago /KIPAC, Menlo Park; Koester, Benjamin P.; /Michigan U. /Chicago U., Astron.; Evrard, August E.; McKay, Timothy A.; /Michigan U.

    2007-03-26

    We introduce a framework for describing the halo selection function of optical cluster finders. We treat the problem as being separable into a term that describes the intrinsic galaxy content of a halo (the Halo Occupation Distribution, or HOD) and a term that captures the effects of projection and selection by the particular cluster finding algorithm. Using mock galaxy catalogs tuned to reproduce the luminosity dependent correlation function and the empirical color-density relation measured in the SDSS, we characterize the maxBCG algorithm applied by Koester et al. to the SDSS galaxy catalog. We define and calibrate measures of completeness and purity for this algorithm, and demonstrate successful recovery of the underlying cosmology and HOD when applied to the mock catalogs. We identify principal components--combinations of cosmology and HOD parameters--that are recovered by survey counts as a function of richness, and demonstrate that percent-level accuracies are possible in the first two components, if the selection function can be understood to {approx} 15% accuracy.

  7. Quantum state preparation using multi-level-atom optics

    International Nuclear Information System (INIS)

    Busch, Th; Deasy, K; Chormaic, S Nic

    2007-01-01

    One of the most important characteristics for controlling processes on the quantum scale is the fidelity or robustness of the techniques being used. In the case of single atoms localized in micro-traps, it was recently shown that the use of time-dependent tunnelling interactions in a multi-trap setup can be viewed as analogous to the area of multi-level optics. The atom's centre-of-mass can then be controlled with a high fidelity, using a STIRAP-type process. Here, we review previous work that led to the development of multi-level atom optics and present two examples of our most recent work on quantum state preparation

  8. Temporal mode selectivity by frequency conversion in second-order nonlinear optical waveguides

    DEFF Research Database (Denmark)

    Reddy, D. V.; Raymer, M. G.; McKinstrie, C. J.

    2013-01-01

    in a transparent optical network using temporally orthogonal waveforms to encode different channels. We model the process using coupled-mode equations appropriate for wave mixing in a uniform second-order nonlinear optical medium pumped by a strong laser pulse. We find Green functions describing the process...... in this optimal regime. We also find an operating regime in which high-efficiency frequency conversion without temporal-shape selectivity can be achieved while preserving the shapes of a wide class of input pulses. The results are applicable to both classical and quantum frequency conversion....

  9. Fractional quantum Hall states of atoms in optical lattices

    International Nuclear Information System (INIS)

    Soerensen, Anders S.; Demler, Eugene; Lukin, Mikhail D.

    2005-01-01

    We describe a method to create fractional quantum Hall states of atoms confined in optical lattices. We show that the dynamics of the atoms in the lattice is analogous to the motion of a charged particle in a magnetic field if an oscillating quadrupole potential is applied together with a periodic modulation of the tunneling between lattice sites. In a suitable parameter regime the ground state in the lattice is of the fractional quantum Hall type, and we show how these states can be reached by melting a Mott-insulator state in a superlattice potential. Finally, we discuss techniques to observe these strongly correlated states

  10. Quantum computer based on activated dielectric nanoparticles selectively interacting with short optical pulses

    International Nuclear Information System (INIS)

    Gadomskii, Oleg N; Kharitonov, Yu Ya

    2004-01-01

    The operation principle of a quantum computer is proposed based on a system of dielectric nanoparticles activated with two-level atoms - cubits, in which electric dipole transitions are excited by short intense optical pulses. It is proved that the logical operation (logical operator) CNOT (controlled NOT) is performed by means of time-dependent transfer of quantum information over 'long' (of the order of 10 4 nm) distances between spherical nanoparticles owing to the delayed interaction between them in the optical radiation field. It is shown that one-cubit and two-cubit logical operators required for quantum calculations can be realised by selectively exciting dielectric particles with short optical pulses. (quantum calculations)

  11. Conditionally Teleported States Using Optical Squeezers and Photon Counting

    Institute of Scientific and Technical Information of China (English)

    FAN Hong-Yi; FAN Yue; CHENG Hai-Ling

    2002-01-01

    By virtue of the neat expression of the two-mode squeezing operator in the Einstein,Podolsky and Rosen entangled state representation,we provide a new approach for discussing the teleportation scheme using optical squeezers and photon counting devices.We derive the explicit form of the teleported states,so that the conditional property of teleportation and teleportation fidelity of this protocol can be scen more clcarly.The derivation is concise.

  12. Full-duplex optical communication system

    Science.gov (United States)

    Shay, Thomas M. (Inventor); Hazzard, David A. (Inventor); Horan, Stephen (Inventor); Payne, Jason A. (Inventor)

    2004-01-01

    A method of full-duplex electromagnetic communication wherein a pair of data modulation formats are selected for the forward and return data links respectively such that the forward data electro-magnetic beam serves as a carrier for the return data. A method of encoding optical information is used wherein right-hand and left-hand circular polarizations are assigned to optical information to represent binary states. An application for an earth to low earth orbit optical communications system is presented which implements the full-duplex communication and circular polarization keying modulation format.

  13. Nanophotonic Optical Isolator Controlled by the Internal State of Cold Atoms

    Directory of Open Access Journals (Sweden)

    Clément Sayrin

    2015-12-01

    Full Text Available The realization of nanophotonic optical isolators with high optical isolation even at ultralow light levels and low optical losses is an open problem. Here, we employ the link between the local polarization of strongly confined light and its direction of propagation to realize low-loss nonreciprocal transmission through a silica nanofiber at the single-photon level. The direction of the resulting optical isolator is controlled by the spin state of cold atoms. We perform our experiment in two qualitatively different regimes, i.e., with an ensemble of cold atoms where each atom is weakly coupled to the waveguide and with a single atom strongly coupled to the waveguide mode. In both cases, we observe simultaneously high isolation and high forward transmission. The isolator concept constitutes a nanoscale quantum optical analog of microwave ferrite resonance isolators, can be implemented with all kinds of optical waveguides and emitters, and might enable novel integrated optical devices for fiber-based classical and quantum networks.

  14. Resource-efficient generation of linear cluster states by linear optics with postselection

    International Nuclear Information System (INIS)

    Uskov, D B; Alsing, P M; Fanto, M L; Szep, A; Smith, A M; Kaplan, L; Kim, R

    2015-01-01

    We report on theoretical research in photonic cluster-state computing. Finding optimal schemes of generating non-classical photonic states is of critical importance for this field as physically implementable photon–photon entangling operations are currently limited to measurement-assisted stochastic transformations. A critical parameter for assessing the efficiency of such transformations is the success probability of a desired measurement outcome. At present there are several experimental groups that are capable of generating multi-photon cluster states carrying more than eight qubits. Separate photonic qubits or small clusters can be fused into a single cluster state by a probabilistic optical CZ gate conditioned on simultaneous detection of all photons with 1/9 success probability for each gate. This design mechanically follows the original theoretical scheme of cluster state generation proposed more than a decade ago by Raussendorf, Browne and Briegel. The optimality of the destructive CZ gate in application to linear optical cluster state generation has not been analyzed previously. Our results reveal that this method is far from the optimal one. Employing numerical optimization we have identified that the maximal success probability of fusing n unentangled dual-rail optical qubits into a linear cluster state is equal to (1/2) n−1 ; an m-tuple of photonic Bell pair states, commonly generated via spontaneous parametric down-conversion, can be fused into a single cluster with the maximal success probability of (1/4) m−1 . (paper)

  15. Push-pull optical pumping of pure superposition states

    International Nuclear Information System (INIS)

    Jau, Y.-Y.; Miron, E.; Post, A.B.; Kuzma, N.N.; Happer, W.

    2004-01-01

    A new optical pumping method, 'push-pull pumping', can produce very nearly pure, coherent superposition states between the initial and the final sublevels of the important field-independent 0-0 clock resonance of alkali-metal atoms. The key requirement for push-pull pumping is the use of D1 resonant light which alternates between left and right circular polarization at the Bohr frequency of the state. The new pumping method works for a wide range of conditions, including atomic beams with almost no collisions, and atoms in buffer gases with pressures of many atmospheres

  16. CHARACTERIZING THE OPTICAL VARIABILITY OF BRIGHT BLAZARS: VARIABILITY-BASED SELECTION OF FERMI ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Ruan, John J.; Anderson, Scott F.; MacLeod, Chelsea L.; Becker, Andrew C.; Davenport, James R. A.; Ivezić, Željko; Burnett, T. H.; Kochanek, Christopher S.; Plotkin, Richard M.; Sesar, Branimir; Stuart, J. Scott

    2012-01-01

    We investigate the use of optical photometric variability to select and identify blazars in large-scale time-domain surveys, in part to aid in the identification of blazar counterparts to the ∼30% of γ-ray sources in the Fermi 2FGL catalog still lacking reliable associations. Using data from the optical LINEAR asteroid survey, we characterize the optical variability of blazars by fitting a damped random walk model to individual light curves with two main model parameters, the characteristic timescales of variability τ, and driving amplitudes on short timescales σ-circumflex. Imposing cuts on minimum τ and σ-circumflex allows for blazar selection with high efficiency E and completeness C. To test the efficacy of this approach, we apply this method to optically variable LINEAR objects that fall within the several-arcminute error ellipses of γ-ray sources in the Fermi 2FGL catalog. Despite the extreme stellar contamination at the shallow depth of the LINEAR survey, we are able to recover previously associated optical counterparts to Fermi active galactic nuclei with E ≥ 88% and C = 88% in Fermi 95% confidence error ellipses having semimajor axis r < 8'. We find that the suggested radio counterpart to Fermi source 2FGL J1649.6+5238 has optical variability consistent with other γ-ray blazars and is likely to be the γ-ray source. Our results suggest that the variability of the non-thermal jet emission in blazars is stochastic in nature, with unique variability properties due to the effects of relativistic beaming. After correcting for beaming, we estimate that the characteristic timescale of blazar variability is ∼3 years in the rest frame of the jet, in contrast with the ∼320 day disk flux timescale observed in quasars. The variability-based selection method presented will be useful for blazar identification in time-domain optical surveys and is also a probe of jet physics.

  17. Optically selected GRB afterglows, a real time analysis system at the CFHT

    International Nuclear Information System (INIS)

    Malacrino, F.; Atteia, J.-L.; Klotz, A.; Boer, M.; Kavelaars, J.J.; Cuillandre, J.-C.

    2005-01-01

    We attempt to detect optical GRB afterglows on images taken by the Canada France Hawaii Telescope for the Very Wide survey, component of the Legacy Survey. To do so, a Real Time Analysis System called Optically Selected GRB Afterglows has been installed on a dedicated computer in Hawaii. This pipeline automatically and quickly analyzes Mega cam images and extracts from them a list of variable objects which is displayed on a web page far validation by a member of the collaboration. The Very Wide survey covers 1200 square degrees down to i 1 = 23.5. This paper briefly explain the RTAS process

  18. Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity

    Directory of Open Access Journals (Sweden)

    Xie Yiwei

    2017-12-01

    Full Text Available Integrated optical signal processors have been identified as a powerful engine for optical processing of microwave signals. They enable wideband and stable signal processing operations on miniaturized chips with ultimate control precision. As a promising application, such processors enables photonic implementations of reconfigurable radio frequency (RF filters with wide design flexibility, large bandwidth, and high-frequency selectivity. This is a key technology for photonic-assisted RF front ends that opens a path to overcoming the bandwidth limitation of current digital electronics. Here, the recent progress of integrated optical signal processors for implementing such RF filters is reviewed. We highlight the use of a low-loss, high-index-contrast stoichiometric silicon nitride waveguide which promises to serve as a practical material platform for realizing high-performance optical signal processors and points toward photonic RF filters with digital signal processing (DSP-level flexibility, hundreds-GHz bandwidth, MHz-band frequency selectivity, and full system integration on a chip scale.

  19. Selective corneal optical aberration (SCOA) for customized ablation

    Science.gov (United States)

    Jean, Benedikt J.; Bende, Thomas

    2001-06-01

    Wavefront analysis still have some technical problems which may be solved within the next years. There are some limitations to use wavefront as a diagnostic tool for customized ablation alone. An ideal combination would be wavefront and topography. Meanwhile Selective Corneal Aberration is a method to visualize the optical quality of a measured corneal surface. It is based on a true measured 3D elevation information of a video topometer. Thus values can be interpreted either using Zernike polynomials or visualized as a so called color coded surface quality map. This map gives a quality factor (corneal aberration) for each measured point of the cornea.

  20. Nonreciprocal optical tunnelling through evanescently coupled Tamm states in magnetophotonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yun-Tuan [Jiangsu Univ., Zhenjiang (China). School of Computer Science and Telecommunication Engineering; Han, Ling [The Second Military Medical Univ., Shanghai (China). Dept. of Radiation Medicine; Gao, Yong-Feng [Jiangsu Univ., Zhenjiang (China). School of Mechanical Engineering

    2015-07-01

    Evanescently coupled Tamm states are achieved through two magnetophotonic crystals (MPCs) with a pair of coupling prisms. At the wavelengths of coupled Tamm states, a double of nonreciprocal optical tunnelling channels is found through the transmission spectra obtained from a developed transfer matrix method. The nonreciprocal tunnelling wavelength and the interval between two nonreciprocal channels can be adjusted depending on the width of the air gap between two MPCs or the scale invariant of a PC. The nonreciprocal tunnelling is demonstrated through electromagnetic field distribution simulations based on finite element software. Such theoretical results may provide a new method to design tunable optical isolators with a double of channels.

  1. Cross-talk free selective reconstruction of individual objects from multiplexed optical field data

    Science.gov (United States)

    Zea, Alejandro Velez; Barrera, John Fredy; Torroba, Roberto

    2018-01-01

    In this paper we present a data multiplexing method for simultaneous storage in a single package composed by several optical fields of tridimensional (3D) objects, and their individual cross-talk free retrieval. Optical field data are extracted from off axis Fourier holograms, and then sampled by multiplying them with random binary masks. The resulting sampled optical fields can be used to reconstruct the original objects. Sampling causes a loss of quality that can be controlled by the number of white pixels in the binary masks and by applying a padding procedure on the optical field data. This process can be performed using a different binary mask for each optical field, and then added to form a multiplexed package. With the adequate choice of sampling and padding, we can achieve a volume reduction in the multiplexed package over the addition of all individual optical fields. Moreover, the package can be multiplied by a binary mask to select a specific optical field, and after the reconstruction procedure, the corresponding 3D object is recovered without any cross-talk. We demonstrate the effectiveness of our proposal for data compression with a comparison with discrete cosine transform filtering. Experimental results confirm the validity of our proposal.

  2. Effect of wetting-layer density of states on the gain and phase recovery dynamics of quantum-dot semiconductor optical amplifiers

    International Nuclear Information System (INIS)

    Kim, Jungho; Yu, Bong-Ahn

    2015-01-01

    We numerically investigate the effect of the wetting-layer (WL) density of states on the gain and phase recovery dynamics of quantum-dot semiconductor optical amplifiers in both electrical and optical pumping schemes by solving 1088 coupled rate equations. The temporal variations of the ultrafast gain and phase recovery responses at the ground state (GS) are calculated as a function of the WL density of states. The ultrafast gain recovery responses do not significantly depend on the WL density of states in the electrical pumping scheme and the three optical pumping schemes such as the optical pumping to the WL, the optical pumping to the excited state ensemble, and the optical pumping to the GS ensemble. The ultrafast phase recovery responses are also not significantly affected by the WL density of states except the optical pumping to the WL, where the phase recovery component caused by the WL becomes slowed down as the WL density of states increases. (paper)

  3. Fabrication and characterization of a nanometer-sized optical fiber electrode based on selective chemical etching for scanning electrochemical/optical microscopy.

    Science.gov (United States)

    Maruyama, Kenichi; Ohkawa, Hiroyuki; Ogawa, Sho; Ueda, Akio; Niwa, Osamu; Suzuki, Koji

    2006-03-15

    We have already reported a method for fabricating ultramicroelectrodes (Suzuki, K. JP Patent, 2004-45394, 2004). This method is based on the selective chemical etching of optical fibers. In this work, we undertake a detailed investigation involving a combination of etched optical fibers with various types of tapered tip (protruding-shape, double- (or pencil-) shape and triple-tapered electrode) and insulation with electrophoretic paint. Our goal is to establish a method for fabricating nanometer-sized optical fiber electrodes with high reproducibility. As a result, we realized pencil-shaped and triple-tapered electrodes that had radii in the nanometer range with high reproducibility. These nanometer-sized electrodes showed well-defined sigmoidal curves and stable diffusion-limited responses with cyclic voltammetry. The pencil-shaped optical fiber, which has a conical tip with a cone angle of 20 degrees , was effective for controlling the electrode radius. The pencil-shaped electrodes had higher reproducibility and smaller electrode radii (r(app) etched optical fiber electrodes. By using a pencil-shaped electrode with a 105-nm radius as a probe, we obtained simultaneous electrochemical and optical images of an implantable interdigitated array electrode. We achieved nanometer-scale resolution with a combination of scanning electrochemical microscopy SECM and optical microscopy. The resolution of the electrochemical and optical images indicated sizes of 300 and 930 nm, respectively. The neurites of living PC12 cells were also successfully imaged on a 1.6-microm scale by using the negative feedback mode of an SECM.

  4. Acousto-optic resonant coupling of three spatial modes in an optical fiber.

    Science.gov (United States)

    Park, Hee Su; Song, Kwang Yong

    2014-01-27

    A fiber-optic analogue to an externally driven three-level quantum state is demonstrated by acousto-optic coupling of the spatial modes in a few-mode fiber. Under the condition analogous to electromagnetically induced transparency, a narrow-bandwidth transmission within an absorption band for the fundamental mode is demonstrated. The presented structure is an efficient converter between the fundamental mode and the higher-order modes that cannot be easily addressed by previous techniques, therefore can play a significant role in the next-generation space-division multiplexing communications as an arbitrarily mode-selectable router.

  5. Mode-selective mapping and control of vectorial nonlinear-optical processes in multimode photonic-crystal fibers.

    Science.gov (United States)

    Hu, Ming-Lie; Wang, Ching-Yue; Song, You-Jian; Li, Yan-Feng; Chai, Lu; Serebryannikov, Evgenii; Zheltikov, Aleksei

    2006-02-06

    We demonstrate an experimental technique that allows a mapping of vectorial nonlinear-optical processes in multimode photonic-crystal fibers (PCFs). Spatial and polarization modes of PCFs are selectively excited in this technique by varying the tilt angle of the input beam and rotating the polarization of the input field. Intensity spectra of the PCF output plotted as a function of the input field power and polarization then yield mode-resolved maps of nonlinear-optical interactions in multimode PCFs, facilitating the analysis and control of nonlinear-optical transformations of ultrashort laser pulses in such fibers.

  6. Enhanced and selective optical trapping in a slot-graphite photonic crystal.

    Science.gov (United States)

    Krishnan, Aravind; Huang, Ningfeng; Wu, Shao-Hua; Martínez, Luis Javier; Povinelli, Michelle L

    2016-10-03

    Applicability of optical trapping tools for nanomanipulation is limited by the available laser power and trap efficiency. We utilized the strong confinement of light in a slot-graphite photonic crystal to develop high-efficiency parallel trapping over a large area. The stiffness is 35 times higher than our previously demonstrated on-chip, near field traps. We demonstrate the ability to trap both dielectric and metallic particles of sub-micron size. We find that the growth kinetics of nanoparticle arrays on the slot-graphite template depends on particle size. This difference is exploited to selectively trap one type of particle out of a binary colloidal mixture, creating an efficient optical sieve. This technique has rich potential for analysis, diagnostics, and enrichment and sorting of microscopic entities.

  7. Maximally entangled mixed states of two atoms trapped inside an optical cavity

    International Nuclear Information System (INIS)

    Li Shangbin; Xu Jingbo

    2009-01-01

    In some off-resonant cases, the reduced density matrix of two atoms symmetrically coupled with an optical cavity can very approximately approach maximally entangled mixed states or maximal Bell violation mixed states in their evolution. The influence of a phase decoherence on the generation of a maximally entangled mixed state is also discussed

  8. Obscured AGN at z similar to 1 from the zCOSMOS-Bright Survey : I. Selection and optical properties of a [Ne v]-selected sample

    NARCIS (Netherlands)

    Mignoli, M.; Vignali, C.; Gilli, R.; Comastri, A.; Zamorani, G.; Bolzonella, M.; Bongiorno, A.; Lamareille, F.; Nair, P.; Pozzetti, L.; Lilly, S. J.; Carollo, C. M.; Contini, T.; Kneib, J. -P.; Le Fevre, O.; Mainieri, V.; Renzini, A.; Scodeggio, M.; Bardelli, S.; Caputi, K.; Cucciati, O.; de la Torre, S.; de Ravel, L.; Franzetti, P.; Garilli, B.; Iovino, A.; Kampczyk, P.; Knobel, C.; Kovac, K.; Le Borgne, J. -F.; Le Brun, V.; Maier, C.; Pello, R.; Peng, Y.; Montero, E. Perez; Presotto, V.; Silverman, J. D.; Tanaka, M.; Tasca, L.; Tresse, L.; Vergani, D.; Zucca, E.; Bordoloi, R.; Cappi, A.; Cimatti, A.; Koekemoer, A. M.; McCracken, H. J.; Moresco, M.; Welikala, N.

    Aims. The application of multi-wavelength selection techniques is essential for obtaining a complete and unbiased census of active galactic nuclei (AGN). We present here a method for selecting z similar to 1 obscured AGN from optical spectroscopic surveys. Methods. A sample of 94 narrow-line AGN

  9. Implementing nonprojective measurements via linear optics: An approach based on optimal quantum-state discrimination

    International Nuclear Information System (INIS)

    Loock, Peter van; Nemoto, Kae; Munro, William J.; Raynal, Philippe; Luetkenhaus, Norbert

    2006-01-01

    We discuss the problem of implementing generalized measurements [positive operator-valued measures (POVMs)] with linear optics, either based upon a static linear array or including conditional dynamics. In our approach, a given POVM shall be identified as a solution to an optimization problem for a chosen cost function. We formulate a general principle: the implementation is only possible if a linear-optics circuit exists for which the quantum mechanical optimum (minimum) is still attainable after dephasing the corresponding quantum states. The general principle enables us, for instance, to derive a set of necessary conditions for the linear-optics implementation of the POVM that realizes the quantum mechanically optimal unambiguous discrimination of two pure nonorthogonal states. This extends our previous results on projection measurements and the exact discrimination of orthogonal states

  10. Theoretical and experimental studies of optical feedback on solid-state lasers

    International Nuclear Information System (INIS)

    Kervevan, L.

    2006-12-01

    The main objective of this Phd thesis was to implement solid-state lasers based on codoped Yb 3+ :Er 3+ phosphate glasses pumped by laser diode and to study their behavior when submitted to an optical feedback. This kind of lasers presents as main advantages a very high sensibility to the optical feedback due to the optical properties of the Er 3+ ion enhancing the relaxation oscillations. Moreover, the emission wavelength around 1,535 μm belongs to the eye safe spectral domain. First, we have established the rate equations of the population inversion and the electric field for a three-level laser (Yb:Er) submitted to an optical feedback. We have done a comparative study of the influence of the amplifying medium (three-level system Yb:Er or four-level system LNA:Nd) and cavity parameters on the sensitivity due to the optical feedback. The home-made lasers were implemented in optical feedback experiments allowing original measurement of speed, absolute distance or vibration for optical detection of sound restitution. The fourth part of this thesis deals with the behavior a dual frequency laser submitted to a optical feedback. Such a laser oscillates simultaneously on two polarization eigenstates whose optical frequencies are slightly different. The beating mode between these two eigenstates allows self-heterodyne detection. (author)

  11. A STUDY OF SOLID STATE LASER PASSIVE OPTICAL Q-SWITCHING OPERATION REGIME (Part 1

    Directory of Open Access Journals (Sweden)

    Ion LĂNCRĂNJAN

    2009-09-01

    Full Text Available This paper is the first of a four series treating, theoretically with experimental comparison, the issue of solid state laser passive optical Q-switching regime. In this first paper the technique of solid state lasers passive optical Q-switching is numerically investigated considering the case of longitudinally and transversally uniform photon, population inversion and absorption centres densities. The coupled differential equations defining photon, population inversion and absorption centres densities are numerically solved being the basis of passively optical Q-switched laser functional simulation. The numerical simulations are performed using the several software packages, mostly SCILAB programs. The developed SCILAB programs can be used for a large range of saturable absorption centre and active media parameters, mainly the initial (low signal optical transmittance of the passive optical Q-switch. The developed FORTRAN and SCILAB programs can be applied for passively Q-switched solid state lasers of several types emitting at several NIR wavelengths, in domain 1 ÷ 2 μm. For validating the numerical simulation results are compared with The results of the numerical simulation are compared with experimentally obtained ones, in the case of a LiF:F2- passively Q-switched Nd:YAG. A good agreement between the two kinds of results is observed.

  12. The impact of domestication on the chicken optical apparatus.

    Directory of Open Access Journals (Sweden)

    Lina S V Roth

    Full Text Available Domestication processes tend to release animals from natural selection and favour traits desired by humans, such as food-production and co-operative behaviour. A side effect of such selective breeding is the alteration of unintended traits. In this paper, we investigate how active selection for egg production in chickens has affected the visual system, in particular the optical sensitivity that relates to the ability of chickens to see in dim light. We measured eye dimensions as well as the pupil diameter at different light intensities (the steady state pupil dynamics, in adult male and female White Leghorns and the closest relatives to their ancestor, the Red Junglefowls. With this information, we calculated the focal length and optical sensitivity (f-number of the eyes. Males have larger eyes than females in both breeds and White Leghorn eyes are larger than those of Red Junglefowls in both sexes. The steady state pupil dynamics is less variable, however, the combination of pupil dynamics and eye size gives a higher optical sensitivity in Red Junglefowl eyes than in White Leghorns at light intensities below approximately 10 cd/m(2. While eye size and focal length match the larger body size in White Leghorns compared to Red Junglefowls, the steady state pupil dynamics do not. The reason for this is likely to be that eye morphology and the neuro-muscular control of the pupil have been affected differently by the strong selection for egg production and the simultaneous release of the selection pressure for high performing vision. This study is the first description of how optical sensitivity has changed in a domesticated species and our results demonstrate important considerations regarding domestication processes and sensory ability.

  13. Continuous-variable quantum cloning of coherent states with phase-conjugate input modes using linear optics

    International Nuclear Information System (INIS)

    Chen, Haixia; Zhang, Jing

    2007-01-01

    We propose a scheme for continuous-variable quantum cloning of coherent states with phase-conjugate input modes using linear optics. The quantum cloning machine yields M identical optimal clones from N replicas of a coherent state and N replicas of its phase conjugate. This scheme can be straightforwardly implemented with the setups accessible at present since its optical implementation only employs simple linear optical elements and homodyne detection. Compared with the original scheme for continuous-variable quantum cloning with phase-conjugate input modes proposed by Cerf and Iblisdir [Phys. Rev. Lett. 87, 247903 (2001)], which utilized a nondegenerate optical parametric amplifier, our scheme loses the output of phase-conjugate clones and is regarded as irreversible quantum cloning

  14. Intrusion recognition for optic fiber vibration sensor based on the selective attention mechanism

    Science.gov (United States)

    Xu, Haiyan; Xie, Yingjuan; Li, Min; Zhang, Zhuo; Zhang, Xuewu

    2017-11-01

    Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. A fiber optic perimeter detection system based on all-fiber interferometric sensor is proposed, through the back-end analysis, processing and intelligent identification, which can distinguish effects of different intrusion activities. In this paper, an intrusion recognition based on the auditory selective attention mechanism is proposed. Firstly, considering the time-frequency of vibration, the spectrogram is calculated. Secondly, imitating the selective attention mechanism, the color, direction and brightness map of the spectrogram is computed. Based on these maps, the feature matrix is formed after normalization. The system could recognize the intrusion activities occurred along the perimeter sensors. Experiment results show that the proposed method for the perimeter is able to differentiate intrusion signals from ambient noises. What's more, the recognition rate of the system is improved while deduced the false alarm rate, the approach is proved by large practical experiment and project.

  15. Analogies in optics and micro electronics selected contributions on recent developments

    CERN Document Server

    Lenstra, Daan

    1990-01-01

    This book gives an account of a number of recent developments in two different subfields of research, optics and micro--electronics. The leading principle in presenting them together in one book is the striking similarity between a variety of notions in these two research areas. We mention in this respect tunneling, quantum interference and localization, which are important concepts in quantummechanics and more specifically in condensed matter physics. Miniaturization in solid state engineering has led to new phenomena in which these concepts play their significant roles. As it is the wave character of electrons which is strongly emphasized in these phenomena one's attention is quite naturally directed to the field of optics in which the above quantum-mechanical notions all seem to have their direct classical wavemechanical counterparts. Both micro--electronics and optics have been and still are in a mode of intensifying activity. The possibilities to technically "translate" devices developed within one resea...

  16. Ground-state magneto-optical resonances in cesium vapor confined in an extremely thin cell

    International Nuclear Information System (INIS)

    Andreeva, C.; Cartaleva, S.; Petrov, L.; Slavov, D.; Atvars, A.; Auzinsh, M.; Blush, K.

    2007-01-01

    Experimental and theoretical studies are presented related to the ground-state magneto-optical resonance observed in cesium vapor confined in an extremely thin cell (ETC), with thickness equal to the wavelength of the irradiating light. It is shown that utilization of the ETC allows one to examine the formation of a magneto-optical resonance on the individual hyperfine transitions, thus distinguishing processes resulting in dark (reduced absorption) or bright (enhanced absorption) resonance formation. We report experimental evidence of bright magneto-optical resonance sign reversal in Cs atoms confined in an ETC. A theoretical model is proposed based on the optical Bloch equations that involves the elastic interaction processes of atoms in the ETC with its walls, resulting in depolarization of the Cs excited state, which is polarized by the exciting radiation. This depolarization leads to the sign reversal of the bright resonance. Using the proposed model, the magneto-optical resonance amplitude and width as a function of laser power are calculated and compared with the experimental ones. The numerical results are in good agreement with those of experiment

  17. Kinetics studies following state-selective laser excitation

    International Nuclear Information System (INIS)

    Keto, J.W.

    1994-04-01

    The objective of this contract was the study of state-to-state, electronic energy transfer reactions relevant to the excited state chemistry observed in discharges. We studied deactivation reactions and excitation transfer in collisions of excited states of xenon and krypton atoms with Ar, Kr, Xe and chlorine. The reactant states were excited selectively in two-photon transitions using tunable u.v. and v.u.v. lasers. Excited states produced by the collision were observed by their fluorescence. Reaction rates were measured by observing the time dependent decay of signals from reactant and product channels. In addition we measured interaction potentials of the reactants by laser spectroscopy where the laser induced fluorescence or ionization is measured as a function of laser wavelength (excitation spectra) or by measuring fluorescence spectra at fixed laser frequencies with monochromators. The spectra were obtained in the form of either lineshapes or individual lines from rovibrational transitions of bound states. Our research then required several categories of experiments in order to fully understand a reaction process: 1. High resolution laser spectroscopy of bound molecules or lineshapes of colliding pairs is used to determine potential curves for reactants. 2. Direct measurements of state-to-state reaction rates were measured by studying the time dependent loss of excited reactants and the time dependent formation of products. 3. The energy selectivity of a laser can be used to excite reactants on an excited surface with controlled internuclear configurations. For free states of reactants (as exist in a gas cell) this has been termed laser assisted reactions, while for initially bound states (as chemically bound reactants or dimers formed in supersonic beams) the experiments have been termed photo-fragmentation spectroscopy

  18. Tuning of few-electron states and optical absorption anisotropy in GaAs quantum rings.

    Science.gov (United States)

    Wu, Zhenhua; Li, Jian; Li, Jun; Yin, Huaxiang; Liu, Yu

    2017-11-15

    The electronic and optical properties of a GaAs quantum ring (QR) with few electrons in the presence of the Rashba spin-orbit interaction (RSOI) and the Dresselhaus spin-orbit interaction (DSOI) have been investigated theoretically. The configuration interaction (CI) method is employed to calculate the eigenvalues and eigenstates of the multiple-electron QR accurately. Our numerical results demonstrate that the symmetry breaking induced by the RSOI and DSOI leads to an anisotropic distribution of multi-electron states. The Coulomb interaction offers additional modulation of the electron distribution and thus the optical absorption indices in the quantum rings. By tuning the magnetic/electric fields and/or electron numbers in a quantum ring, one can change its optical properties significantly. Our theory provides a new way to control the multi-electron states and optical properties of a QR by hybrid modulations or by electrical means only.

  19. Generation of optical coherent state superpositions for quantum information processing

    DEFF Research Database (Denmark)

    Tipsmark, Anders

    2012-01-01

    I dette projektarbejde med titlen “Generation of optical coherent state superpositions for quantum information processing” har målet været at generere optiske kat-tilstande. Dette er en kvantemekanisk superpositions tilstand af to koherente tilstande med stor amplitude. Sådan en tilstand er...

  20. Space Density of Optically Selected Type 2 Quasars

    Science.gov (United States)

    Reyes, Reinabelle; Zakamska, Nadia L.; Strauss, Michael A.; Green, Joshua; Krolik, Julian H.; Shen, Yue; Richards, Gordon T.; Anderson, Scott F.; Schneider, Donald P.

    2008-12-01

    Type 2 quasars are luminous active galactic nuclei whose central regions are obscured by large amounts of gas and dust. In this paper, we present a catalog of type 2 quasars from the Sloan Digital Sky Survey, selected based on their optical emission lines. The catalog contains 887 objects with redshifts z < 0.83; this is 6 times larger than the previous version and is by far the largest sample of type 2 quasars in the literature. We derive the [O III]5007 luminosity function (LF) for 108.3 L sun < L [O III] < 1010 L sun (corresponding to intrinsic luminosities up to M[2500 Å] ~= -28 mag or bolometric luminosities up to 4 × 1047 erg s-1). This LF provides robust lower limits to the actual space density of obscured quasars due to our selection criteria, the details of the spectroscopic target selection, and other effects. We derive the equivalent LF for the complete sample of type 1 (unobscured) quasars and determine the ratio of type 2 to type 1 quasar number densities. Our data constrain this ratio to be at least ~1.5:1 for 108.3 L sun < L [O III] < 109.5 L sun at z < 0.3, and at least ~1.2:1 for L [O III] ~ 1010 L sun at 0.3 < z < 0.83. Type 2 quasars are at least as abundant as type 1 quasars in the relatively nearby universe (z <~ 0.8) for the highest luminosities.

  1. Generation of Symmetric Dicke States of Remote Qubits with Linear Optics

    International Nuclear Information System (INIS)

    Thiel, C.; Zanthier, J. von; Bastin, T.; Solano, E.; Agarwal, G. S.

    2007-01-01

    We propose a method for generating all symmetric Dicke states, either in the long-lived internal levels of N massive particles or in the polarization degrees of freedom of photonic qubits, using linear optical tools only. By means of a suitable multiphoton detection technique, erasing Welcher-Weg information, our proposed scheme allows the generation and measurement of an important class of entangled multiqubit states

  2. Population of delayed-neutron granddaughter states and the optical potential

    International Nuclear Information System (INIS)

    Schenter, R.E.; Mann, F.M.; Warner, R.A.; Reeder, P.L.

    1982-08-01

    Using a statistical treatment of beta decay and the Hauser-Feshbach model of nuclear reactions, calculations were made and compared to recent experimental measurements of the population of granddaughter states of several delayed neutron precursors ( 144 145 147 Cs and 96 Rb). Emphasis of this paper is on the sensitivity and interpretation of experimental results to various standard low energy neutron optical model potentials and variations in their forms and parameters. Results for these precursors show qualitative agreement with experiment for all the optical potential models used and good quantitative agreement for two (Moldauer and Becchetti-Greenlees). Questions such as (N-Z) terms, deformation and nonlocality dependence are presented

  3. Quantum state engineering, purification, and number-resolved photon detection with high-finesse optical cavities

    DEFF Research Database (Denmark)

    Nielsen, Anne E. B.; Muschik, Christine A.; Giedke, Geza

    2010-01-01

    We propose and analyze a multifunctional setup consisting of high-finesse optical cavities, beam splitters, and phase shifters. The basic scheme projects arbitrary photonic two-mode input states onto the subspace spanned by the product of Fock states |n>|n> with n=0,1,2,.... This protocol does no...... is especially attractive as a generalization to many modes allows for distribution and purification of entanglement in networks. In an alternative working mode, the setup allows for quantum nondemolition number resolved photodetection in the optical domain....

  4. Spectral optical properties of selected photosynthetic microalgae producing biofuels

    International Nuclear Information System (INIS)

    Lee, Euntaek; Heng, Ri-Liang; Pilon, Laurent

    2013-01-01

    This paper presents the spectral complex index of refraction of biofuel producing photosynthetic microalgae between 400 and 750 nm. They were retrieved from their experimentally measured average absorption and scattering cross-sections. The microalgae were treated as homogeneous polydisperse spheres with equivalent diameter such that their surface area was identical to that of their actual spheroidal shape. An inverse method was developed combining Lorentz–Mie theory as the forward method and genetic algorithm. The unicellular green algae Chlamydomonas reinhardtii strain CC125 and its truncated chlorophyll antenna transformants tla1, tlaX, and tla1-CW + as well as Botryococcus braunii, Chlorella sp., and Chlorococcum littorale were investigated. These species were selected for their ability to produce either hydrogen gas or lipids for liquid fuel production. Their retrieved real and imaginary parts of the complex index of refraction were continuous functions of wavelength with absorption peaks corresponding to those of in vivo Chlorophylls a and b. The T-matrix method was also found to accurately predict the experimental measurements by treating the microalgae as axisymmetric spheroids with the experimentally measured major and minor diameter distributions and the retrieved spectral complex index of refraction. Finally, pigment mass fractions were also estimated from the retrieved absorption index. The method and/or the reported optical properties can be used in various applications from ocean remote sensing, carbon cycle study, as well as photobiological carbon dioxide mitigation and biofuel production. -- Highlights: ► Retrieval of optical properties from average absorption and scattering cross-sections. ► Inverse method based on Lorentz–Mie theory and genetic algorithm. ► Refraction and absorption indices of selected microalgae between 400 and 750 nm. ► Determination of pigment concentrations from absorption index. ► Good agreement between T

  5. International Symposium on Optics and its Applications (OPTICS-2011)

    Science.gov (United States)

    Bhattacherjee, Aranya B.; Calvo, Maria L.; Kazaryan, Eduard M.; Papoyan, Aram V.; Sarkisyan, Hayk A.

    2012-03-01

    OPTICS Logo PREFACE The papers selected for this volume were reported at the International Symposium 'Optics and its applications' (OPTICS-2011, Yerevan & Ashtarak, Armenia, September 5-9, 2011), http://www.ipr.sci.am/optics2011/. The Symposium was organized by the SPIE Armenian Student Chapter and major Armenian R&D organizations, universities and industrial companies working in the field of basic and applied optics: Institute for Physical Research of the National Academy of Sciences of Armenia, Yerevan State University, Russian-Armenian (Slavonic) University, and LT-PYRKAL Closed Joint Stock Company. OPTICS-2011 was primarily intended to support and promote the involvement of students and young scientists in various fields of modern optics, giving them the possibility to attend invited talks by prominent scientists and to present and discuss their own results. Furthermore, the Symposium allowed foreign participants from 14 countries to become acquainted with the achievements of optical science and technology in Armenia, which became a full member of the International Commission for Optics (ICO) in 2011. To follow this concept, the Symposium sessions were held in various host institutions. The creative and friendly ambience established at OPTICS-2011 promoted further international collaboration in the field and motivated many students to take up research in optics and photonics as a career. This volume of Journal of Physics: Conference Series covers thematic sections of the Symposium (both oral and poster), which represent the main fields of interest in optics for Armenian scientists: quantum optics & information, laser spectroscopy, optical properties of nanostructures, photonics & fiber optics, and optics of liquid crystals. Such wide coverage is consistent with the general scope of the Symposium, allowing all the students involved in optics to present, discuss and publish their recent results, and for those who are making their first steps in science to choose

  6. The Einstein database of IPC x-ray observations of optically selected and radio-selected quasars, 1.

    Science.gov (United States)

    Wilkes, Belinda J.; Tananbaum, Harvey; Worrall, D. M.; Avni, Yoram; Oey, M. S.; Flanagan, Joan

    1994-01-01

    We present the first volume of the Einstein quasar database. The database includes estimates of the X-ray count rates, fluxes, and luminosities for 514 quasars and Seyfert 1 galaxies observed with the Imaging Proportional Counter (IPC) aboard the Einstein Observatory. All were previously known optically selected or radio-selected objects, and most were the targets of the X-ray observations. The X-ray properties of the Active Galactic Nuclei (AGNs) have been derived by reanalyzing the IPC data in a systematic manner to provide a uniform database for general use by the astronomical community. We use the database to extend earlier quasar luminosity studies which were made using only a subset of the currently available data. The database can be accessed on internet via the SAO Einstein on-line system ('Einline') and is available in ASCII format on magnetic tape and DOS diskette.

  7. Fine structure and optical pumping of spins in individual semiconductor quantum dots

    Science.gov (United States)

    Bracker, Allan S.; Gammon, Daniel; Korenev, Vladimir L.

    2008-11-01

    We review spin properties of semiconductor quantum dots and their effect on optical spectra. Photoluminescence and other types of spectroscopy are used to probe neutral and charged excitons in individual quantum dots with high spectral and spatial resolution. Spectral fine structure and polarization reveal how quantum dot spins interact with each other and with their environment. By taking advantage of the selectivity of optical selection rules and spin relaxation, optical spin pumping of the ground state electron and nuclear spins is achieved. Through such mechanisms, light can be used to process spins for use as a carrier of information.

  8. Fine structure and optical pumping of spins in individual semiconductor quantum dots

    International Nuclear Information System (INIS)

    Bracker, Allan S; Gammon, Daniel; Korenev, Vladimir L

    2008-01-01

    We review spin properties of semiconductor quantum dots and their effect on optical spectra. Photoluminescence and other types of spectroscopy are used to probe neutral and charged excitons in individual quantum dots with high spectral and spatial resolution. Spectral fine structure and polarization reveal how quantum dot spins interact with each other and with their environment. By taking advantage of the selectivity of optical selection rules and spin relaxation, optical spin pumping of the ground state electron and nuclear spins is achieved. Through such mechanisms, light can be used to process spins for use as a carrier of information

  9. Calculation of the local optical density of states in absorbing and gain media

    International Nuclear Information System (INIS)

    Di Stefano, O; Fina, N; Savasta, S; Girlanda, R; Pieruccini, M

    2010-01-01

    The local optical density of states plays a key role in a wide range of phenomena. Near to structures displaying optical absorption or gain, the definition of the photonic local density of states needs to be revised. In this case two operative different definitions can be adopted to characterize photonic structures. The first (ρ A (r, ω)) describes the light intensity at a point r when the material system is illuminated isotropically and corresponds to what can be measured by a near-field microscope. The second (ρ B (r, ω)) gives a measure of vacuum fluctuations and coincides with ρ A (r, ω) in systems with real susceptibility. Scattering calculations in the presence of dielectric and metallic nanostructures show that these two definitions can give rather different results, the difference being proportional to the thermal emission power of the photonic structure. We present a detailed derivation of this result and numerical calculations for nanostructures displaying optical gain. In the presence of amplifying media, ρ B (r, ω) displays regions with negative photon densities, thus failing in describing a power signal. In contrast, ρ A (r, ω), positive definite, properly describes the near-field optical properties of these structures.

  10. Role of photonic angular momentum states in nonreciprocal diffraction from magneto-optical cylinder arrays

    Directory of Open Access Journals (Sweden)

    Tian-Jing Guo

    2014-07-01

    Full Text Available Optical eigenstates in a concentrically symmetric resonator are photonic angular momentum states (PAMSs with quantized optical orbital angular momentums (OAMs. Nonreciprocal optical phenomena can be obtained if we lift the degeneracy of PAMSs. In this article, we provide a comprehensive study of nonreciprocal optical diffraction of various orders from a magneto-optical cylinder array. We show that nonreciprocal diffraction can be obtained only for these nonzero orders. Role of PAMSs, the excitation of which is sensitive to the directions of incidence, applied magnetic field, and arrangement of the cylinders, are studied. Some interesting phenomena such as a dispersionless quasi-omnidirectional nonreciprocal diffraction and spikes associated with high-OAM PAMSs are present and discussed.

  11. Stacked bilayer phosphorene: strain-induced quantum spin Hall state and optical measurement

    Science.gov (United States)

    Zhang, Tian; Lin, Jia-He; Yu, Yan-Mei; Chen, Xiang-Rong; Liu, Wu-Ming

    2015-01-01

    Bilayer phosphorene attracted considerable interest, giving a potential application in nanoelectronics owing to its natural bandgap and high carrier mobility. However, very little is known regarding the possible usefulness in spintronics as a quantum spin Hall (QSH) state of material characterized by a bulk energy gap and gapless spin-filtered edge states. Here, we report a strain-induced topological phase transition from normal to QSH state in bilayer phosphorene, accompanied by band-inversion that changes number from 0 to 1, which is highly dependent on interlayer stacking. When the bottom layer is shifted by 1/2 unit-cell along zigzag/armchair direction with respect to the top layer, the maximum topological bandgap 92.5 meV is sufficiently large to realize QSH effect even at room-temperature. An optical measurement of QSH effect is therefore suggested in view of the wide optical absorption spectrum extending to far infra-red, making bilayer phosphorene a promising candidate for opto-spintronic devices. PMID:26370771

  12. Polymeric optical sensors for selective and sensitive nitrite detection using cobalt(III) corrole and rhodium(III) porphyrin as ionophores

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Si; Wo, Yaqi; Meyerhoff, Mark E., E-mail: mmeyerho@umich.edu

    2014-09-16

    Highlights: • We examine cobalt(III) corroles and rhodium(III) porphyrins as ionophores in polymeric films for optical sensors to detect nitrite. • Different types of proton chromoionophores are evaluated to optimize nitrite response. • Selectivity over lipophilic anions such as perchlorate and thiocyanate is observed. • Both ionophores yield optical sensors that are fully reversible. • The cobalt(III) corrole based sensor is employed to determine nitric oxide emission rates from NO donor doped polymers with good accuracy. - Abstract: Cobalt(III) 5,10,15-tris(4-tert-butylphenyl) corrole with a triphenylphosphine axial ligand and rhodium(III) 5,10,15,20-tetra(p-tert-butylphenyl) porphyrin are incorporated into plasticized poly(vinyl chloride) films to fabricate nitrite-selective bulk optodes via absorbance measurements. The resulting films yield sensitive, fast and fully reversible response toward nitrite with significantly enhanced nitrite selectivity over other anions including lipophilic anions such as thiocyanate and perchlorate. The selectivity patterns differ greatly from the Hofmeister series based on anion lipophilicity and are consistent with selectivity obtained with potentiometric sensors based on the same ionophores. The optical nitrite sensors are shown to be useful for detecting rates of emission of nitric oxide (NO) from NO releasing polymers containing S-nitroso-N-acetyl-DL-penicillamine.

  13. Control of trapped-ion quantum states with optical pulses

    International Nuclear Information System (INIS)

    Rangan, C.; Monroe, C.; Bucksbaum, P.H.; Bloch, A.M.

    2004-01-01

    We present new results on the quantum control of systems with infinitely large Hilbert spaces. A control-theoretic analysis of the control of trapped-ion quantum states via optical pulses is performed. We demonstrate how resonant bichromatic fields can be applied in two contrasting ways--one that makes the system completely uncontrollable and the other that makes the system controllable. In some interesting cases, the Hilbert space of the qubit-harmonic oscillator can be made finite, and the Schroedinger equation controllable via bichromatic resonant pulses. Extending this analysis to the quantum states of two ions, a new scheme for producing entangled qubits is discovered

  14. HOT-DUST-POOR QUASARS IN MID-INFRARED AND OPTICALLY SELECTED SAMPLES

    International Nuclear Information System (INIS)

    Hao Heng; Elvis, Martin; Civano, Francesca; Lawrence, Andy

    2011-01-01

    We show that the hot-dust-poor (HDP) quasars, originally found in the X-ray-selected XMM-COSMOS type 1 active galactic nucleus (AGN) sample, are just as common in two samples selected at optical/infrared wavelengths: the Richards et al. Spitzer/SDSS sample (8.7% ± 2.2%) and the Palomar-Green-quasar-dominated sample of Elvis et al. (9.5% ± 5.0%). The properties of the HDP quasars in these two samples are consistent with the XMM-COSMOS sample, except that, at the 99% (∼ 2.5σ) significance, a larger proportion of the HDP quasars in the Spitzer/SDSS sample have weak host galaxy contributions, probably due to the selection criteria used. Either the host dust is destroyed (dynamically or by radiation) or is offset from the central black hole due to recoiling. Alternatively, the universality of HDP quasars in samples with different selection methods and the continuous distribution of dust covering factor in type 1 AGNs suggest that the range of spectral energy distributions could be related to the range of tilts in warped fueling disks, as in the model of Lawrence and Elvis, with HDP quasars having relatively small warps.

  15. State-selective electron capture

    International Nuclear Information System (INIS)

    Dunford, R.W.; Liu, C.J.; Berry, H.G.; Pardo, R.C.; Raphaelian, M.L.A.

    1988-01-01

    We report results from a new atomic physics program using the Argonne PII ECR ion source which is being built as part of the upgrade of the Argonne Tandem-Linear Accelerator (ATLAS). Our initial experiments have been aimed at studying state-selective electron capture in ion-atom collisions using the technique of Photon Emission Spectroscopy. We are extending existing cross section measurements at low energy ( 6+ and O 7+ on He and H 2 targets in the energy range from 1-105 keV/amu. We also present uv spectra obtained in collisions of O 6+ , O 5+ and N 5+ on a sodium target. 4 refs., 2 figs., 1 tab

  16. All-optical quantum computing with a hybrid solid-state processing unit

    International Nuclear Information System (INIS)

    Pei Pei; Zhang Fengyang; Li Chong; Song Heshan

    2011-01-01

    We develop an architecture of a hybrid quantum solid-state processing unit for universal quantum computing. The architecture allows distant and nonidentical solid-state qubits in distinct physical systems to interact and work collaboratively. All the quantum computing procedures are controlled by optical methods using classical fields and cavity QED. Our methods have a prominent advantage of the insensitivity to dissipation process benefiting from the virtual excitation of subsystems. Moreover, the quantum nondemolition measurements and state transfer for the solid-state qubits are proposed. The architecture opens promising perspectives for implementing scalable quantum computation in a broader sense that different solid-state systems can merge and be integrated into one quantum processor afterward.

  17. Optical Bloch equations with multiply connected states

    International Nuclear Information System (INIS)

    Stacey, D N; Lucas, D M; Allcock, D T C; Szwer, D J; Webster, S C

    2008-01-01

    The optical Bloch equations, which give the time evolution of the elements of the density matrix of an atomic system subject to radiation, are generalized so that they can be applied when transitions between pairs of states can proceed by more than one stimulated route. The case considered is that for which the time scale of interest in the problem is long compared with that set by the differences in detuning of the radiation fields stimulating via the different routes. It is shown that the Bloch equations then reduce to the standard form of linear differential equations with constant coefficients. The theory is applied to a two-state system driven by two lasers with different intensities and frequencies and to a three-state Λ-system with one laser driving one transition and two driving the second. It is also shown that the theory reproduces well the observed response of a cold 40 Ca + ion when subject to a single laser frequency driving the 4S 1/2 -4P 1/2 transition and a laser with two strong sidebands driving 3D 3/2 -4P 1/2

  18. Damage resistant optics for a mega-joule solid-state laser

    International Nuclear Information System (INIS)

    Campbell, J.H.; Rainer, F.; Kozlowski, M.; Wolfe, C.R.; Thomas, I.; Milanovich, F.

    1990-01-01

    Research on Inertial Confinement Fusion (ICF) has progressed rapidly in the past several years. As a consequence, LLNL is developing plans to upgrade the current 120 kJ solid state (Nd +3 -phosphate glass) Nova laser to a 1.5 to 2 megajoule system with the goal of achieving fusion ignition. The design of the planned Nova Upgrade is briefly discussed. Because of recent improvements in the damage resistance of optical materials it is now technically and economically feasible to build a megajoule-class solid state laser. Specifically, the damage threshold of Nd +3 -doped phosphate laser glass, multilayer dielectric coatings, and non-linear optical crystals (e.g., KDP) have been dramatically improved. These materials now meet the fluence requirements for a 1.5--2 MJ Nd 3+ -glass laser operating at 1054 and 351 nm and at a pulse length of 3 ns. The recent improvements in damage thresholds are reviewed; threshold data at both 1064 and 355 nm and the measured pulse length scaling are presented. 20 refs., 9 figs., 2 tabs

  19. Transient and steady-state selection in the striatal microcircuit

    Directory of Open Access Journals (Sweden)

    Adam eTomkins

    2014-01-01

    Full Text Available Although the basal ganglia have been widely studied and implicated in signal processing and action selection, little information is known about the active role the striatal microcircuit plays in action selection in the basal ganglia-thalamo-cortical loops. To address this knowledge gap we use a large scale three dimensional spiking model of the striatum, combined with a rate coded model of the basal ganglia-thalamo-cortical loop, to asses the computational role the striatum plays in action selection. We identify a robust transient phenomena generated by the striatal microcircuit, which temporarily enhances the difference between two competing cortical inputs. We show that this transient is sufficient to modulate decision making in the basal ganglia-thalamo-cortical circuit. We also find that the transient selection originates from a novel adaptation effect in single striatal projection neurons, which is amenable to experimental testing. Finally, we compared transient selection with models implementing classical steady-state selection. We challenged both forms of model to account for recent reports of paradoxically enhanced response selection in Huntington's Disease patients. We found that steady-state selection was uniformly impaired under all simulated Huntington's conditions, but transient selection was enhanced given a sufficient Huntington's-like increase in NMDA receptor sensitivity. Thus our models provide an intriguing hypothesis for the mechanisms underlying the paradoxical cognitive improvements in manifest Huntington's patients.

  20. Factors influencing the, selection of state office furniture

    Science.gov (United States)

    R. Bruce Anderson; R. Bruce Anderson

    1973-01-01

    Evaluation of the factors influencing the selection of office furniture by nine state governments shows that quality and purchase price have the most important influence on the purchase decision. The intended use of the furniture and the purchasing regulations of the states were key f8CbrS in the use of wood furniture.

  1. Contribution to the heavy-ion optical potential from coupling to vibrational states

    Energy Technology Data Exchange (ETDEWEB)

    Donangelo, R; Canto, L F; Hussein, M S

    1978-11-01

    The component of the optical potential in the elastic channel due to the coupling to vibrational states in Coulomb excitation is derived using a previously developed semiclassical method. Several numerical examples are worked out.

  2. Properties of optically selected BL Lacertae candidates from the SDSS

    Science.gov (United States)

    Kügler, S. D.; Nilsson, K.; Heidt, J.; Esser, J.; Schultz, T.

    2014-09-01

    Context. Deep optical surveys open the avenue for finding large numbers of BL Lac objects that are hard to identify because they lack the unique properties classifying them as such. While radio or X-ray surveys typically reveal dozens of sources, recent compilations based on optical criteria alone have increased the number of BL Lac candidates considerably. However, these compilations are subject to biases and may contain a substantial number of contaminating sources. Aims: In this paper we extend our analysis of 182 optically selected BL Lac object candidates from the SDSS with respect to an earlier study. The main goal is to determine the number of bona fide BL Lac objects in this sample. Methods: We examine their variability characteristics, determine their broad-band radio-UV spectral energy distributions (SEDs), and search for the presence of a host galaxy. In addition we present new optical spectra for 27 targets with improved signal-to-noise ratio with respect to the SDSS spectra. Results: At least 59% of our targets have shown variability between SDSS DR2 and our observations by more than 0.1-0.27 mag depending on the telescope used. A host galaxy was detected in 36% of our targets. The host galaxy type and luminosities are consistent with earlier studies of BL Lac host galaxies. Simple fits to broad-band SEDs for 104 targets of our sample derived synchrotron peak frequencies between 13.5 ≤ log 10(νpeak) ≤ 16 with a peak at log 10 ~ 14.5. Our new optical spectra do not reveal any new redshift for any of our objects. Thus the sample contains a large number of bona fide BL Lac objects and seems to contain a substantial fraction of intermediate-frequency peaked BL Lacs. Based on observations collected with the NTT on La Silla (Chile) operated by the European Southern Observatory under proposal 082.B-0133.Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA), operated jointly by the Max-Planck-Institut für Astronomie and the

  3. Semiclassical Wigner distribution for a two-mode entangled state generated by an optical parametric oscillator

    International Nuclear Information System (INIS)

    Dechoum, K.; Hahn, M. D.; Khoury, A. Z.; Vallejos, R. O.

    2010-01-01

    We derive the steady-state solution of the Fokker-Planck equation that describes the dynamics of the nondegenerate optical parametric oscillator in the truncated Wigner representation of the density operator. We assume that the pump mode is strongly damped, which permits its adiabatic elimination. When the elimination is correctly executed, the resulting stochastic equations contain multiplicative noise terms and do not admit a potential solution. However, we develop a heuristic scheme leading to a satisfactory steady-state solution. This provides a clear view of the intracavity two-mode entangled state valid in all operating regimes of the optical parametric oscillator. A non-Gaussian distribution is obtained for the above threshold solution.

  4. Multiplexing 32,000 spectra onto 8 detectors: the HARMONI field splitting, image slicing, and wavelength selecting optics

    Science.gov (United States)

    Tecza, Matthias; Thatte, Niranjan; Clarke, Fraser; Freeman, David; Kosmalski, Johan

    2012-09-01

    HARMONI, the High Angular Resolution Monolithic Optical & Near-infrared Integral field spectrograph is one of two first-light instruments for the European Extremely Large Telescope. Over a 256x128 pixel field-of-view HARMONI will simultaneously measure approximately 32,000 spectra. Each spectrum is about 4000 spectral pixels long, and covers a selectable part of the 0.47-2.45 μm wavelength range at resolving powers of either R≍4000, 10000, or 20000. All 32,000 spectra are imaged onto eight HAWAII4RG detectors using a multiplexing scheme that divides the input field into four sub-fields, each imaged onto one image slicer that in turn re-arranges a single sub-field into two long exit slits feeding one spectrograph each. In total we require eight spectrographs, each with one HAWAII4RG detector. A system of articulated and exchangeable fold-mirrors and VPH gratings allows one to select different spectral resolving powers and wavelength ranges of interest while keeping a fixed geometry between the spectrograph collimator and camera avoiding the need for an articulated grating and camera. In this paper we describe both the field splitting and image slicing optics as well as the optics that will be used to select both spectral resolving power and wavelength range.

  5. Approaches to LLW disposal site selection and current progress of host states

    International Nuclear Information System (INIS)

    Walsh, J.J.; Kerr, T.A.

    1990-11-01

    In accordance with the Low-Level Radioactive Waste Policy Amendments Act of 1985 and under the guidance of 10 CFR 61, States have begun entering into compacts to establish and operate regional disposal facilities for low-level radioactive waste. The progress a state makes in implementing a process to identify a specific location for a disposal site is one indication of the level of a state's commitment to meeting its responsibilities under Federal law and interstate compact agreements. During the past few years, several States have been engaged in site selection processes. The purpose of this report is to summarize the site selection approaches of some of the Host States (California, Michigan, Nebraska, New York, North Carolina, Texas, and Illinois), and their progress to date. An additional purpose of the report is to discern whether the Host States's site selection processes were heavily influenced by any common factors. One factor each state held in common was that political and public processes exerted a powerful influence on the site selection process at virtually every stage. 1 ref

  6. Development of optical tools for the characterization of selective solar absorber at elevated temperature

    Science.gov (United States)

    Giraud, Philemon; Braillon, Julien; Delord, Christine; Raccurt, Olivier

    2016-05-01

    Durability of solar components for CSP (Concentrated Solar Power Plant) technologies is a key point to lower cost and ensure their large deployment. These technologies concentrated the solar radiation by means of mirrors on a receiver tube where it is collected as thermal energy. The absorbers are submitted to strong environmental constraints and the degradation of their optical properties (emittance and solar absorbance) have a direct impact on performance. The objective is to develop new optical equipment for characterization of this solar absorber in condition of use that is to say in air and at elevated temperature. In this paper we present two new optical test benches developed for optical characterization of solar absorbers in condition of use up to 800°C. The first equipment is an integrated sphere with heated sample holder which measures the hemispherical reflectance between 280 and 2500 nm to calculate the solar absorbance at high temperature. The second optical test bench measures the emittance of samples up to 1000°C in the range of 1.25 to 28.57 µm. Results of high temperature measurements on a series of metallic absorbers with selective coating and refractory material for high thermal receiver are presented.

  7. Carrier states and optical response in core-shell-like semiconductor nanostructures

    Science.gov (United States)

    Duque, C. M.; Mora-Ramos, M. E.; Duque, C. A.

    2017-02-01

    The charge carrier states in a GaAs/Al?Ga?As axially symmetric core-shell quantum wire are calculated in the effective mass approximation via a spectral method. The possible presence of externally applied electric and magnetic fields is taken into account, together with the variation in the characteristic in-plane dimensions of the structure. The obtained energy spectrum is used to evaluate the optical response through the coefficients of intersubband optical absorption and relative refractive index change. The particular geometry of the system also allows to use the same theoretical model in order to determine the photoluminescence peak energies associated to correlated electron-hole states in double GaAs/Al?Ga?As quantum rings, showing a good agreement when they are compared with recent experimental reports. This agreement may validate the use of both the calculation process and the approximate model of abrupt, circularly shaped cross section geometry for the system.

  8. All-fiber optical mode switching based on cascaded mode selective couplers for short-reach MDM networks

    Science.gov (United States)

    Ren, Fang; Li, Juhao; Wu, Zhongying; Yu, Jinyi; Mo, Qi; Wang, Jianping; He, Yongqi; Chen, Zhangyuan; Li, Zhengbin

    2017-04-01

    We propose and experimentally demonstrate an all-fiber optical mode switching structure supporting independent switching, exchanging, adding, and dropping functionalities in which each mode can be switched individually. The mode switching structure consists of cascaded mode selective couplers (MSCs) capable of exciting and selecting specific higher order modes in few-mode fibers with high efficiency and one multiport optical switch routing the independent spatial modes to their destinations. The data carried on three different spatial modes can be switched, exchanged, added, and dropped through this all-fiber structure. For this experimental demonstration, optical on-off-keying (OOK) signals at 10-Gb/s carried on three spatial modes are successfully processed with open and clear eye diagrams. The mode switch exhibits power penalties of less than 3.1 dB after through operation, less than 2.7 dB after exchange operation, less than 2.8 dB after switching operation, and less than 1.6 dB after mode adding and dropping operations at the bit-error rate (BER) of 10-3, while all three channels carried on three spatial modes are simultaneously routed. The proposed structure, compatible with current optical switching networks based on single-mode fibers, can potentially be used to expand the switching scalability in advanced and flexible short-reach mode-division multiplexing-based networks.

  9. The optical method of the straw selection for the MPD end-cap tracker

    International Nuclear Information System (INIS)

    Grigalashvili, N.; Kekelidze, G.D.; Myalkovskij, V.V.; Peshekhonov, V.D.

    2015-01-01

    The paper describes the optical method for measurement of the straightness deviation in the straws with a diameter of 4 mm and a length of 60 cm mounted in the ring frames of the detector and for defining the parameters for the straw selection. With this method, the maximal acceptable deviation from straightness in a straw does not exceed 400 microns and the changes of the amplitudes of signals from a 55 Fe source along the straw do not exceed 9%. The results of the optical straightness control are in good agreement with the data obtained with a more accurate method of determining the offset of the anode from the straw axis by measuring amplitude characteristics with the use of the 55 Fe source.

  10. Signatures of spin-orbital states of t2g 2 system in optical conductivity: R VO3 (R =Y and La)

    Science.gov (United States)

    Kim, Minjae

    2018-04-01

    We investigate signatures of the spin and orbital states of R VO3 (R =Y and La) in optical conductivity using density functional theory plus dynamical mean-field theory (DFT+DMFT). From the assignment of multiplet state configurations to optical transitions, the DFT+DMFT reproduces experimental temperature-dependent evolutions of optical conductivity for both YVO3 and LaVO3. We also show that the optical conductivity is a useful quantity to probe the evolution of the orbital state even in the absence of spin order. The result provides a reference to investigate the spin and orbital states of t2g 2 vanadate systems, which is an important issue for both fundamental physics on spin and orbital states and applications of vanadates by means of orbital state control.

  11. Resonant optical transducers for in-situ gas detection

    Science.gov (United States)

    Bond, Tiziana C; Cole, Garrett; Goddard, Lynford

    2016-06-28

    Configurations for in-situ gas detection are provided, and include miniaturized photonic devices, low-optical-loss, guided-wave structures and state-selective adsorption coatings. High quality factor semiconductor resonators have been demonstrated in different configurations, such as micro-disks, micro-rings, micro-toroids, and photonic crystals with the properties of very narrow NIR transmission bands and sensitivity up to 10.sup.-9 (change in complex refractive index). The devices are therefore highly sensitive to changes in optical properties to the device parameters and can be tunable to the absorption of the chemical species of interest. Appropriate coatings applied to the device enhance state-specific molecular detection.

  12. Resonant optical transducers for in-situ gas detection

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Tiziana C.; Cole, Garrett; Goddard, Lynford

    2018-01-30

    Configurations for in-situ gas detection are provided, and include miniaturized photonic devices, low-optical-loss, guided-wave structures and state-selective adsorption coatings. High quality factor semiconductor resonators have been demonstrated in different configurations, such as micro-disks, micro-rings, micro-toroids, and photonic crystals with the properties of very narrow NIR transmission bands and sensitivity up to 10.sup.-9 (change in complex refractive index). The devices are therefore highly sensitive to changes in optical properties to the device parameters and can be tunable to the absorption of the chemical species of interest. Appropriate coatings applied to the device enhance state-specific molecular detection.

  13. Electric-field effects in optically generated spin transport

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2009-01-01

    Transport of spin-polarized electrons in semiconductors is studied experimentally. Spins are generated by optical excitation because of the selection rules governing optical transitions from heavy-hole and light-hole states to conduction-band states. Experiments designed for the control of spins in semiconductors investigate the bias-dependent spin transport process and detect the spin-polarized electrons during transport. A strong bias dependence is observed. The electric-field effects on the spin-polarized electron transport are also found to be depended on the excitation photon energy and temperature. Based on a field-dependent spin relaxation mechanism, the electric-field effects in the transport process are discussed.

  14. Electric-field effects in optically generated spin transport

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish [Nanoscale Science and Technology Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)], E-mail: m.miah@griffith.edu.au

    2009-05-25

    Transport of spin-polarized electrons in semiconductors is studied experimentally. Spins are generated by optical excitation because of the selection rules governing optical transitions from heavy-hole and light-hole states to conduction-band states. Experiments designed for the control of spins in semiconductors investigate the bias-dependent spin transport process and detect the spin-polarized electrons during transport. A strong bias dependence is observed. The electric-field effects on the spin-polarized electron transport are also found to be depended on the excitation photon energy and temperature. Based on a field-dependent spin relaxation mechanism, the electric-field effects in the transport process are discussed.

  15. Selective detection of Escherichia coli by imaging of the light intensity transmitted through an optical disk

    Science.gov (United States)

    Shiramizu, Hideyuki; Kuroda, Chiaki; Ohki, Yoshimichi; Shima, Takayuki; Wang, Xiaomin; Fujimaki, Makoto

    2018-03-01

    We have developed an optical disk system for imaging transmitted light from Escherichia coli dispersed on an optical disk. When E. coli was stained using Bismarck brown, the transmittance was found to decrease in images obtained at λ = 405 nm. The results indicate that transmittance imaging is suitable for finding the difference in light intensity between stained and unstained E. coli, whereas the reflectance images were scarcely changed by staining. Therefore, E. coli can be selectively discriminated from abiotic contaminants using transmittance imaging.

  16. Optical absorption and oxygen passivation of surface states in III-nitride photonic devices

    Science.gov (United States)

    Rousseau, Ian; Callsen, Gordon; Jacopin, Gwénolé; Carlin, Jean-François; Butté, Raphaël; Grandjean, Nicolas

    2018-03-01

    III-nitride surface states are expected to impact high surface-to-volume ratio devices, such as nano- and micro-wire light-emitting diodes, transistors, and photonic integrated circuits. In this work, reversible photoinduced oxygen desorption from III-nitride microdisk resonator surfaces is shown to increase optical attenuation of whispering gallery modes by 100 cm-1 at λ = 450 nm. Comparison of photoinduced oxygen desorption in unintentionally and n+-doped microdisks suggests that the spectral changes originate from the unpinning of the surface Fermi level, likely taking place at etched nonpolar III-nitride sidewalls. An oxygen-rich surface prepared by thermal annealing results in a broadband Q improvement to state-of-the-art values exceeding 1 × 104 at 2.6 eV. Such findings emphasize the importance of optically active surface states and their passivation for future nanoscale III-nitride optoelectronic and photonic devices.

  17. Optically induced rotation of Rayleigh particles by vortex beams with different states of polarization

    International Nuclear Information System (INIS)

    Li, Manman; Yan, Shaohui; Yao, Baoli; Liang, Yansheng; Lei, Ming; Yang, Yanlong

    2016-01-01

    Optical vortex beams carry optical orbital angular momentum (OAM) and can induce an orbital motion of trapped particles in optical trapping. We show that the state of polarization (SOP) of vortex beams will affect the details of this optically induced orbital motion to some extent. Numerical results demonstrate that focusing the vortex beams with circular, radial or azimuthal polarizations can induce a uniform orbital motion on a trapped Rayleigh particle, while in the focal field of the vortex beam with linear polarization the particle experiences a non-uniform orbital motion. Among the formers, the vortex beam with circular polarization induces a maximum optical torque on the particle. Furthermore, by varying the topological charge of the vortex beams, the vortex beam with circular polarization gives rise to an optimum torque superior to those given by the other three vortex beams. These facts suggest that the circularly polarized vortex beam is more suitable for rotating particles. - Highlights: • States of polarization of vortex beams affect the optically induced orbital motion of particles. • The dependences of the force and orbital torque on the topological charge, the size and the absorptivity of particles were calculated. • Focused vortex beams with circular, radial or azimuthal polarizations induce a uniform orbital motion on particles. • Particles experience a non-uniform orbital motion in the focused linearly polarized vortex beam. • The circularly polarized vortex beam is a superior candidate for rotating particles.

  18. Transferring diffractive optics from research to commercial applications: Part II - size estimations for selected markets

    Science.gov (United States)

    Brunner, Robert

    2014-04-01

    In a series of two contributions, decisive business-related aspects of the current process status to transfer research results on diffractive optical elements (DOEs) into commercial solutions are discussed. In part I, the focus was on the patent landscape. Here, in part II, market estimations concerning DOEs for selected applications are presented, comprising classical spectroscopic gratings, security features on banknotes, DOEs for high-end applications, e.g., for the semiconductor manufacturing market and diffractive intra-ocular lenses. The derived market sizes are referred to the optical elements, itself, rather than to the enabled instruments. The estimated market volumes are mainly addressed to scientifically and technologically oriented optical engineers to serve as a rough classification of the commercial dimensions of DOEs in the different market segments and do not claim to be exhaustive.

  19. Lattice of optical islets: a novel treatment modality in photomedicine

    International Nuclear Information System (INIS)

    Altshuler, Gregory; Smirnov, Mikhail; Yaroslavsky, Ilya

    2005-01-01

    A majority of photothermal applications of laser and non-laser light sources in medicine (in particular, in dermatology) are based on the paradigm of (extended) selective photothermolysis. However, realization of this principle in its strict form may not always be possible and/or practical. Spatial (or geometric) selectivity (as opposed to wavelength and temporal selectivity) can provide an alternative approach delivering effective and safe treatment techniques. A method of creating a lattice of localized areas of light-tissue interaction (optical islets) is an example of this 'spatially confined' approach. The lattice of optical islets can be formed using a variety of energy sources and delivery optics, including application of lenslet arrays, phase masks and matrices of exogenous chromophores. Using a state-of-the-art theory of optical and thermal light-tissue interactions and a comprehensive computer model of skin, we have conducted a theoretical and numerical analysis of the process of formation of such a lattice in human tissue. Effects of the wavelength, beam geometry, pulsewidth and physical properties of tissues have been considered. Conditions for obtaining optical, thermal and damage islet lattices in the human skin without inducing adverse side effects (e.g. bulk damage) have been established

  20. Excited state dynamics & optical control of molecular motors

    Science.gov (United States)

    Wiley, Ted; Sension, Roseanne

    2014-03-01

    Chiral overcrowded alkenes are likely candidates for light driven rotary molecular motors. At their core, these molecular motors are based on the chromophore stilbene, undergoing ultrafast cis/trans photoisomerization about their central double bond. Unlike stilbene, the photochemistry of molecular motors proceeds in one direction only. This unidirectional rotation is a result of helicity in the molecule induced by steric hindrance. However, the steric hindrance which ensures unidirectional excited state rotation, has the unfortunate consequence of producing large ground state barriers which dramatically decrease the overall rate of rotation. These molecular scale ultrafast motors have only recently been studied by ultrafast spectroscopy. Our lab has studied the photochemistry and photophysics of a ``first generation'' molecular motor with UV-visible transient absorption spectroscopy. We hope to use optical pulse shaping to enhance the efficiency and turnover rate of these molecular motors.

  1. Nonlinear optics and solid-state lasers advanced concepts, tuning-fundamentals and applications

    CERN Document Server

    Yao, Jianquan

    2012-01-01

    This book covers the complete spectrum of nonlinear optics and all solid state lasers.The book integrates theory, calculations and practical design, technology, experimental schemes and applications. With the expansion and further development of Laser technology, the wavelength spectrum of Lasers had to be enlarged, even to be tunable which requires the use of nonlinear optical and Laser tunable technology. It systematically summarizes and integrates the analysis of international achievements within the last 20 years in this field. It will be helpful for university teachers, graduate students as well as engineers.

  2. Mapping the Local Density of Optical States of a Photonic Crystal with Single Quantum Dots

    DEFF Research Database (Denmark)

    Wang, Qin; Stobbe, Søren; Lodahl, Peter

    2011-01-01

    We use single self-assembled InGaAs quantum dots as internal probes to map the local density of optical states of photonic crystal membranes. The employed technique separates contributions from nonradiative recombination and spin-flip processes by properly accounting for the role of the exciton...... fine structure. We observe inhibition factors as high as 70 and compare our results to local density of optical states calculations available from the literature, thereby establishing a quantitative understanding of photon emission in photonic crystal membranes. © 2011 American Physical Society....

  3. Spectroscopy of optically selected BL Lac objects and their γ-ray emission

    Energy Technology Data Exchange (ETDEWEB)

    Sandrinelli, A.; Treves, A.; Farina, E. P.; Landoni, M. [Università degli Studi dell' Insubria, Via Valleggio 11, I-22100 Como (Italy); Falomo, R. [INAF-Osservatorio Astronomico di Padova, Vicolo dell Osservatorio 5, I-35122 Padova (Italy); Foschini, L.; Sbarufatti, B., E-mail: angela.sandrinelli@brera.inaf.it [INAF-Osservatorio Astronomico di Brera, Via Emilio Bianchi 46, I-23807 Merate (Italy)

    2013-12-01

    We present Very Large Telescope optical spectroscopy of nine BL Lac objects of unknown redshift belonging to the list of optically selected radio-loud BL Lac candidates. We explore their spectroscopic properties and possible link with gamma-ray emission. From the new observations we determine the redshifts of four objects from faint emission lines or from absorption features of their host galaxies. In three cases we find narrow intervening absorptions from which a lower limit to the redshift is inferred. For the remaining two featureless sources, lower limits to the redshift are deduced from the absence of spectral lines. A search for γ counterpart emission shows that six out of the nine candidates are Fermi γ-ray emitters and we find two new detections. Our analysis suggests that most of the BL Lac objects still lacking redshift information are most likely located at high redshifts.

  4. Selective excitation of atoms or molecules to high-lying states

    International Nuclear Information System (INIS)

    Ducas, T.W.

    1978-01-01

    This specification relates to the selective excitation of atoms or molecules to high lying states and a method of separating different isotopes of the same element by selective excitation of the isotopes. (U.K.)

  5. Controlling the volatility of the written optical state in electrochromic DNA liquid crystals

    Science.gov (United States)

    Liu, Kai; Varghese, Justin; Gerasimov, Jennifer Y.; Polyakov, Alexey O.; Shuai, Min; Su, Juanjuan; Chen, Dong; Zajaczkowski, Wojciech; Marcozzi, Alessio; Pisula, Wojciech; Noheda, Beatriz; Palstra, Thomas T. M.; Clark, Noel A.; Herrmann, Andreas

    2016-05-01

    Liquid crystals are widely used in displays for portable electronic information display. To broaden their scope for other applications like smart windows and tags, new material properties such as polarizer-free operation and tunable memory of a written state become important. Here, we describe an anhydrous nanoDNA-surfactant thermotropic liquid crystal system, which exhibits distinctive electrically controlled optical absorption, and temperature-dependent memory. In the liquid crystal isotropic phase, electric field-induced colouration and bleaching have a switching time of seconds. Upon transition to the smectic liquid crystal phase, optical memory of the written state is observed for many hours without applied voltage. The reorientation of the DNA-surfactant lamellar layers plays an important role in preventing colour decay. Thereby, the volatility of optoelectronic state can be controlled simply by changing the phase of the material. This research may pave the way for developing a new generation of DNA-based, phase-modulated, photoelectronic devices.

  6. Latching micro optical switch

    Science.gov (United States)

    Garcia, Ernest J; Polosky, Marc A

    2013-05-21

    An optical switch reliably maintains its on or off state even when subjected to environments where the switch is bumped or otherwise moved. In addition, the optical switch maintains its on or off state indefinitely without requiring external power. External power is used only to transition the switch from one state to the other. The optical switch is configured with a fixed optical fiber and a movable optical fiber. The movable optical fiber is guided by various actuators in conjunction with a latching mechanism that configure the switch in one position that corresponds to the on state and in another position that corresponds to the off state.

  7. Passive Optical Access Networks: State of the Art and Future Evolution

    Directory of Open Access Journals (Sweden)

    Tommaso Muciaccia

    2014-10-01

    Full Text Available In the very last years, optical access networks are growing very rapidly, from both the network operators and the research interests points of view. Fiber To The Home (FTTH is already a reality in plenty of real contexts and there has been a further stimulus to the proposal of new solutions and the investigation of new possibilities, in order to optimize network performance and reduce capital and operational expenditure. A complete and systematic overview of passive optical access networks is presented in this paper, concerning both the hot research topics and the main operative issues about the design guidelines and the deployment of Passive Optical Networks (PON architectures, nowadays the most commonly implemented approach to realize optical fiber links in the access networks. A comparison of advantages and disadvantages of different multiplexing techniques is discussed, with specific reference to WDM-based networks, almost universally considered as the enabling technology for future proof bandwidth requirements. An exhaustive summary is also given about the-state-of-the-art of modulation and encoding techniques recently proposed by the scientific community, as well as the open challenges (such as colorless and coolerless ONUs for telecom companies and international standardization compliance.

  8. Optical Tamm states in one-dimensional superconducting photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    El Abouti, O. [LPMR, Département de Physique, Faculté des Sciences, Université Mohammed 1, 60000 Oujda (Morocco); El Boudouti, E. H. [LPMR, Département de Physique, Faculté des Sciences, Université Mohammed 1, 60000 Oujda (Morocco); IEMN, UMR-CNRS 8520, UFR de Physique, Université de Lille 1, 59655 Villeneuve d' Ascq (France); El Hassouani, Y. [ESIM, Département de Physique, Faculté des Sciences et Techniques, Université Moulay Ismail, Boutalamine BP 509, 52000 Errachidia (Morocco); Noual, A. [LPMR, Département de Physique, Faculté des Sciences, Université Mohammed 1, 60000 Oujda (Morocco); Ecole Normale Supérieur de Tétouan, Université Abdelmalek Essaadi, Tétouan (Morocco); Djafari-Rouhani, B. [IEMN, UMR-CNRS 8520, UFR de Physique, Université de Lille 1, 59655 Villeneuve d' Ascq (France)

    2016-08-15

    In this study, we investigate localized and resonant optical waves associated with a semi-infinite superlattice made out of superconductor-dielectric bilayers and terminated with a cap layer. Both transverse electric and transverse magnetic waves are considered. These surface modes are analogous to the so-called Tamm states associated with electronic states found at the surface of materials. The surface guided modes induced by the cap layer strongly depend on whether the superlattice ends with a superconductor or a dielectric layer, the thickness of the surface layer, the temperature of the superconductor layer as well as on the polarization of the waves. Different kinds of surface modes are found and their properties examined. These structures can be used to realize the highly sensitive photonic crystal sensors.

  9. SPECIAL ASPECTS OF INITIAL OPTICAL SCHEME SELECTION FOR DESIGN OF NON-IMAGING OPTICAL SYSTEMS

    Directory of Open Access Journals (Sweden)

    R. V. Anitropov

    2016-01-01

    Full Text Available Subject of Research. The research results, structural composition analysis and the parametric synthesis of the projected imaging and non-imaging optical systems were presented. We made an attempt to use the gained experience about imaging systems while designing non-imaging systems, by adapting the composition theory for the calculations of non-imaging systems. Several patterns were revealed, which provide a deeper understanding of the design process of non-imaging optical systems; measures of its optimization were proposed. Method. We investigated the applicability of the theory of composition and synthesis of non-imaging optical systems. The main provisions of the theory of composition are based on the division of all available optical elements in four types depending on their functionality, which corresponds to a modular design. Similar items were identified in non-imaging optical systems and adaptation of composition theory to their design became possible. Main Results. General design patterns of imaging and non-imaging optical systems were studied. Classification of systems, components, as well as technical and generic characteristics of imaging and non-imaging optical systems was determined. Search mechanism of the initial optical system by means of structural and parametric synthesis of non-imaging optical system was formalized. The basic elements were determined included in non-imaging systems and their classification by functionality was done. They were subdivided into basic, corrective, wide angle and high aperture ones. The rules for formation of these elements and their composition were determined: surface reflecting, refracting, spherical and nonspherical elements with total internal reflection. The foundations of composition theory for non-imaging optical systems were laid. The approbation of this method was carried out on the example of the illumination system calculation for surgical room. A 3D model of an illumination optical

  10. Fractional Stark state selective electric field ionization of very high-n Rydberg states of molecules

    International Nuclear Information System (INIS)

    Dietrich, H.; Mueller-Dethlefs, K.; Baranov, L.Y.

    1996-01-01

    For the first time fractional Stark state selective electric field ionization of very high-n (n approx-gt 250) molecular Rydberg states is observed. An open-quote open-quote offset close-quote close-quote electric pulse selectively ionizes the more fragile open-quote open-quote red close-quote close-quote (down shifted in energy) Stark states. The more resilient open-quote open-quote bluer close-quote close-quote, or up-shifted, ones survive and are shifted down in energy upon application of a second (open-quote open-quote probe close-quote close-quote) pulse of opposite direction (diabatic Stark states close-quote inversion). Hence, even for smaller probe than offset fields ionization is observed. The offset/probe ratio allows one to control spectral peak shapes in zero-kinetic-energy photoelectron spectroscopy. copyright 1995 The American Physical Society

  11. Helix-sense-selective co-precipitation for preparing optically active helical polymer nanoparticles/graphene oxide hybrid nanocomposites.

    Science.gov (United States)

    Huang, Huajun; Li, Weifei; Shi, Yan; Deng, Jianping

    2017-05-25

    Constructing optically active helical polymer based nanomaterials without using expensive and limited chirally helical polymers has become an extremely attractive research topic in both chemical and materials science. In this study, we prepared a series of optically active helical polymer nanoparticles/graphene oxide (OAHPNs/GO) hybrid nanocomposites through an unprecedented strategy-the co-precipitation of optically inactive helical polymers and chirally modified GO. This approach is named helix-sense-selective co-precipitation (HSSCP), in which the chirally modified GO acted as a chiral source for inducing and further stabilizing the predominantly one-handed helicity in the optically inactive helical polymers. SEM and TEM images show quite similar morphologies of all the obtained OAHPNs/GO nanocomposites; specifically, the chirally modified GO sheets were uniformly decorated with spherical polymer nanoparticles. Circular dichroism (CD) and UV-vis absorption spectra confirmed the preferentially induced helicity in the helical polymers and the optical activity of the nanocomposites. The established HSSCP strategy is thus proven to be widely applicable and is expected to produce numerous functional OAHPNs/GO nanocomposites and even the analogues.

  12. Selective maintenance for multi-state series–parallel systems under economic dependence

    International Nuclear Information System (INIS)

    Dao, Cuong D.; Zuo, Ming J.; Pandey, Mayank

    2014-01-01

    This paper presents a study on selective maintenance for multi-state series–parallel systems with economically dependent components. In the selective maintenance problem, the maintenance manager has to decide which components should receive maintenance activities within a finite break between missions. All the system reliabilities in the next operating mission, the available budget and the maintenance time for each component from its current state to a higher state are taken into account in the optimization models. In addition, the components in series–parallel systems are considered to be economically dependent. Time and cost savings will be achieved when several components are simultaneously repaired in a selective maintenance strategy. As the number of repaired components increases, the saved time and cost will also increase due to the share of setting up between components and another additional reduction amount resulting from the repair of multiple identical components. Different optimization models are derived to find the best maintenance strategy for multi-state series–parallel systems. A genetic algorithm is used to solve the optimization models. The decision makers may select different components to be repaired to different working states based on the maintenance objective, resource availabilities and how dependent the repair time and cost of each component are

  13. Selected examples of intelligent (micro) sensor systems: state-of-the-art and tendencies

    Science.gov (United States)

    Hauptmann, Peter R.

    2006-03-01

    The capability of intelligent sensors to have more intelligence built into them continues to drive their application in areas including automotive, aerospace and defense, industrial, intelligent house and wear, medical and homeland security. In principle it is difficult to overestimate the importance of intelligent (micro) sensors or sensor systems within advanced societies but one characteristic feature is the global market for sensors, which is now about 20 billion annually. Therefore sensors or sensor systems play a dominant role in many fields from the macro sensor in manufacturing industry down to the miniaturized sensor for medical applications. The diversity of sensors precludes a complete description of the state-of-the-art; selected examples will illustrate the current situation. MEMS (microelectromechanical systems) devices are of special interest in the context of micro sensor systems. In past the main requirements of a sensor were in terms of metrological performance. The electrical (or optical) signal produced by the sensor needed to match the measure relatively accurately. Such basic functionality is no longer sufficient. Data processing near the sensor, the extraction of more information than just the direct sensor information by signal analysis, system aspects and multi-sensor information are the new demands. A shifting can be observed away from aiming to design perfect single-function transducers and towards the utilization of system-based sensors as system components. In the ideal case such systems contain sensors, actuators and electronics. They can be realized in monolithic, hybrid or discrete form—which kind is used depends on the application. In this article the state-of-the-art of intelligent sensors or sensor systems is reviewed using selected examples. Future trends are deduced.

  14. Creation, Storage, and On-Demand Release of Optical Quantum States with a Negative Wigner Function

    Directory of Open Access Journals (Sweden)

    Jun-ichi Yoshikawa

    2013-12-01

    Full Text Available Highly nonclassical quantum states of light, characterized by Wigner functions with negative values, have been all-optically created so far only in a heralded fashion. In this case, the desired output emerges rarely and randomly from a quantum-state generator. An important example is the heralded production of high-purity single-photon states, typically based on some nonlinear optical interaction. In contrast, on-demand single-photon sources are also reported, exploiting the quantized level structure of matter systems. These sources, however, lead to highly impure output states, composed mostly of vacuum. While such impure states may still exhibit certain single-photon-like features such as antibunching, they are not nonclassical enough for advanced quantum-information processing. On the other hand, the intrinsic randomness of pure, heralded states can be circumvented by first storing and then releasing them on demand. Here, we propose such a controlled release, and we experimentally demonstrate it for heralded single photons. We employ two optical cavities, where the photons are both created and stored inside one cavity and finally released through a dynamical tuning of the other cavity. We demonstrate storage times of up to 300 ns while keeping the single-photon purity around 50% after storage. Our experiment is the first demonstration of a negative Wigner function at the output of an on-demand photon source or a quantum memory. In principle, our storage system is compatible with all kinds of nonclassical states, including those known to be essential for many advanced quantum-information protocols.

  15. Utilization of a new optical sensor unit to monitor the electrochemical elimination of selected dyes in water

    Science.gov (United States)

    Valica, M.; Černá, T.; Hostin, S.

    2017-10-01

    This paper presents results obtained by developed optical sensor, which consist from multi-wavelength LED light source and two photodetectors capable of measuring the change in optical signal along two different optical paths (absorbance and reflectance measurements). Arduino microcomputer was used for light source management and optical signal data measuring and recording. Analytical validation of developed optical sensor is presented in this paper. The performance of the system has been tested with varying water solution of dyes (malachite green, methyl orange, trypan red). These results show strong correlations between the optical signal response and colour change from the dyes. Sensor was used for continual in-situ monitoring of electrochemical elimination of selected dyes (current density 15.7 mA cm-2, electrolyte volume 4 L and NaCl concentration 2 g L-1). Maximum decolorization level varies with each dye. For malachite green was obtain 92,7 % decolorization (25 min); methyl orange 90,8% (8,5 min) and trypan red 84,7% decolorization after 33 min of electrochemical treatment.

  16. Optical ridge waveguides preserving the thermo-optic features in LiNbO3 crystals fabricated by combination of proton implantation and selective wet etching.

    Science.gov (United States)

    Tan, Yang; Chen, Feng

    2010-05-24

    We report on a new, simple method to fabricate optical ridge waveguides in a z-cut LiNbO3 wafer by using proton implantation and selective wet etching. The measured modal field is well confined in the ridge waveguide region, which is also confirmed by the numerical simulation. With thermal annealing treatment at 400 degrees C, the propagation loss of the ridge waveguides is determined to be as low as approximately 0.9 dB/cm. In addition, the measured thermo-optic coefficients of the waveguides are in good agreement with those of the bulk, suggesting potential applications in integrated photonics.

  17. Circularly polarized near-field optical mapping of spin-resolved quantum Hall chiral edge states.

    Science.gov (United States)

    Mamyouda, Syuhei; Ito, Hironori; Shibata, Yusuke; Kashiwaya, Satoshi; Yamaguchi, Masumi; Akazaki, Tatsushi; Tamura, Hiroyuki; Ootuka, Youiti; Nomura, Shintaro

    2015-04-08

    We have successfully developed a circularly polarized near-field scanning optical microscope (NSOM) that enables us to irradiate circularly polarized light with spatial resolution below the diffraction limit. As a demonstration, we perform real-space mapping of the quantum Hall chiral edge states near the edge of a Hall-bar structure by injecting spin polarized electrons optically at low temperature. The obtained real-space mappings show that spin-polarized electrons are injected optically to the two-dimensional electron layer. Our general method to locally inject spins using a circularly polarized NSOM should be broadly applicable to characterize a variety of nanomaterials and nanostructures.

  18. Generation of concatenated Greenberger-Horne-Zeilinger-type entangled coherent state based on linear optics

    Science.gov (United States)

    Guo, Rui; Zhou, Lan; Gu, Shi-Pu; Wang, Xing-Fu; Sheng, Yu-Bo

    2017-03-01

    The concatenated Greenberger-Horne-Zeilinger (C-GHZ) state is a new type of multipartite entangled state, which has potential application in future quantum information. In this paper, we propose a protocol of constructing arbitrary C-GHZ entangled state approximatively. Different from previous protocols, each logic qubit is encoded in the coherent state. This protocol is based on the linear optics, which is feasible in experimental technology. This protocol may be useful in quantum information based on the C-GHZ state.

  19. Optical storage studies on the trapping states of BaFCl:Eu sup 2 sup +

    CERN Document Server

    Meng Xian Guo; Sun Li; Jin Hui; Zhang Li

    2003-01-01

    The optical absorption spectra of BaF sub 2 sub - sub x Cl sub x :Eu in different states of optical storage were measured to clarify the electron trapping mechanism for its optical storage and photo-stimulated luminescence (PSL). Based on the absorption spectra and difference absorption spectra, the electron transfer processes after ultraviolet (UV) light irradiation were investigated. This demonstrates that (1) Eu sup 3 sup + ions are formed upon UV light irradiation at room temperature; (2) the two absorption bands in the visible region (400-600 nm) should be assigned to two different F centres, both of which contribute to the optical storage and PSL, and (3) a third broad difference absorption band around approx 650 nm, which matches the common laser better, was observed.

  20. Optical--microwave pumping of alkali atoms and population capture

    International Nuclear Information System (INIS)

    Aleksandrov, E.B.; Vershovskii, A.K.

    1985-01-01

    The steady-state distribution of the populations of the hyperfine sublevels of the ground state of alkali atoms is calculated for the case in which the atoms are subjected to a spectrally selective optical pumping on 2 S 1 /sub // 2 -- 2 P/sub 1/2,3/2/ transitions and a simultaneous pumping by microwave fields which are at resonance with transitions in the hyperfine structure of the ground state, F = 2, M/sub F/ = +- 2, +- 1bold-arrow-left-rightF = 1, M/sub F/ = +- 1. The addition of the microwave pumping is shown to substantially increase the population difference for the O--O transition in the hyperfine structure. During selective optical pumping of the F = 1 level, the population inversion which can be achieved for the O--O transition is limited by the effect of population capture. This capture can be eliminated by using incoherent microwave fields. The quality factor of the O--O resonance is calculated as a function of the parameters of the pump. The outlook for the use of composite pumping in frequency-stabilization systems is discussed

  1. Generation and measurement of nonclassical states by quantum Fock filter

    International Nuclear Information System (INIS)

    D'Ariano, G.M.; Maccone, L.; Paris, M.G.A.; Sacchi, M.F.

    1999-01-01

    We study a novel optical setup which selects a specific Fock component from a generic input state. The device allows to synthesize number states and superpositions of few number states, and to measure the photon distribution and the density matrix of a generic signal. (Authors)

  2. Optical properties of ultraviolet-light soaked states in polyfluorene thin films

    Energy Technology Data Exchange (ETDEWEB)

    Asada, Kohei [Department of Physics and Electronics, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Takahashi, Hideaki [Department of Physics and Electronics, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Naito, Hiroyoshi [Department of Physics and Electronics, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan)]. E-mail: naito@pe.osakafu-u.ac.jp

    2006-06-19

    Optical properties of ultraviolet (UV)-light soaked states in poly(9,9-dioctylfluorene) (F8) have been studied. F8 thin films, synthesized by Suzuki and Yamamoto coupling reactions, were irradiated by a He-Cd laser ({lambda} = 325 nm) and the UV-light-soaked states were characterized by photoluminescence (PL), optical absorption, Fourier transform infrared absorption and electron spectroscopy for chemical analysis measurements. A photo-induced decrease in PL intensity and PL color change were found in UV-light-soaked F8 thin films. It is shown that the decrease in PL intensity is due to the increase in oxygen-related PL quenching centers and that the PL color change is due to the appearance of 2.2-eV emission bands whose origin is identified to be an exciplex formed between an oxygen-related defect and its nearest F8 polymer chain. The oxygen-related defect, which forms the exciplex, can result from a keto defect (fluorenone) because of the similarity in PL spectra between UV-light-soaked F8 and fluorene-fluorenone copolymers.

  3. Optical properties of ultraviolet-light soaked states in polyfluorene thin films

    International Nuclear Information System (INIS)

    Asada, Kohei; Takahashi, Hideaki; Naito, Hiroyoshi

    2006-01-01

    Optical properties of ultraviolet (UV)-light soaked states in poly(9,9-dioctylfluorene) (F8) have been studied. F8 thin films, synthesized by Suzuki and Yamamoto coupling reactions, were irradiated by a He-Cd laser (λ = 325 nm) and the UV-light-soaked states were characterized by photoluminescence (PL), optical absorption, Fourier transform infrared absorption and electron spectroscopy for chemical analysis measurements. A photo-induced decrease in PL intensity and PL color change were found in UV-light-soaked F8 thin films. It is shown that the decrease in PL intensity is due to the increase in oxygen-related PL quenching centers and that the PL color change is due to the appearance of 2.2-eV emission bands whose origin is identified to be an exciplex formed between an oxygen-related defect and its nearest F8 polymer chain. The oxygen-related defect, which forms the exciplex, can result from a keto defect (fluorenone) because of the similarity in PL spectra between UV-light-soaked F8 and fluorene-fluorenone copolymers

  4. An optical flow-based state-space model of the vocal folds

    DEFF Research Database (Denmark)

    Granados, Alba; Brunskog, Jonas

    2017-01-01

    High-speed movies of the vocal fold vibration are valuable data to reveal vocal fold features for voice pathology diagnosis. This work presents a suitable Bayesian model and a purely theoretical discussion for further development of a framework for continuum biomechanical features estimation. A l...... to capture different deformation patterns between the computed optical flow and the finite element deformation, controlled by the choice of the model tissue parameters........ A linear and Gaussian nonstationary state-space model is proposed and thoroughly discussed. The evolution model is based on a self-sustained three-dimensional finite element model of the vocal folds, and the observation model involves a dense optical flow algorithm. The results show that the method is able...

  5. An optical flow-based state-space model of the vocal folds.

    Science.gov (United States)

    Granados, Alba; Brunskog, Jonas

    2017-06-01

    High-speed movies of the vocal fold vibration are valuable data to reveal vocal fold features for voice pathology diagnosis. This work presents a suitable Bayesian model and a purely theoretical discussion for further development of a framework for continuum biomechanical features estimation. A linear and Gaussian nonstationary state-space model is proposed and thoroughly discussed. The evolution model is based on a self-sustained three-dimensional finite element model of the vocal folds, and the observation model involves a dense optical flow algorithm. The results show that the method is able to capture different deformation patterns between the computed optical flow and the finite element deformation, controlled by the choice of the model tissue parameters.

  6. Textbook Development and Selection in Japan and the United States.

    Science.gov (United States)

    Tani, Masaru; And Others

    1993-01-01

    Reports on a study trip by 13 U.S. social studies educators and publishers to Japan. Compares development, marketing, and selection of textbooks in the United States and Japan. Concludes that both nations should improve textbooks and textbook selection processes. (CFR)

  7. Resonant state expansion applied to three-dimensional open optical systems

    OpenAIRE

    Doost, M. B.; Langbein, W.; Muljarov, E. A.

    2014-01-01

    The resonant-state expansion (RSE), a rigorous perturbative method in electrodynamics, is developed for three-dimensional open optical systems. Results are presented using the analytically solvable homogeneous dielectric sphere as unperturbed system. Since any perturbation which breaks the spherical symmetry mixes transverse electric (TE) and transverse magnetic (TM) modes, the RSE is extended here to include TM modes and a zero-frequency pole of the Green's function. We demonstrate the valid...

  8. Selected area growth integrated wavelength converter based on PD-EAM optical logic gate

    International Nuclear Information System (INIS)

    Niu Bin; Zhou Daibing; Zhang Can; Liang Song; Lu Dan; Zhao Lingjuan; Wang Wei; Qiu Jifang; Wu Jian

    2014-01-01

    A selected area growth wavelength converter based on a PD-EAM optical logic gate for WDM application is presented, integrating an EML transmitter and a SOA-PD receiver. The design, fabrication, and DC characters were analyzed. A 2 Gb/s NRZ signal based on the C-band wavelength converted to 1555 nm with the highest extinction ratio of 7 dB was achieved and wavelength converted eye diagrams with eyes opened were presented. (semiconductor devices)

  9. Collapse dynamics of a vector vortex optical field with inhomogeneous states of polarization

    International Nuclear Information System (INIS)

    Chen, Rui-Pin; Zhao, Ting-Yu; Zhang, Xiaobo; Zhong, Li-Xin; Chew, Khian-Hooi

    2015-01-01

    Based on a pair of coupled 2D nonlinear Schrödinger equations, the collapse dynamics of a vector field with hybrid states of polarization (SoP) in a Kerr medium is demonstrated. The critical power for an optical field to collapse is present, and the full vectorial numerical simulations provide detailed information about the evolution and partial collapse of the vector field in a Kerr medium. Our results reveal that the optical field prefers to collapse in linearly-polarization, as a result of the self-focusing effect difference in linearly, elliptically and circularly polarized components. The SoP in the field cross-section changes and propagates with a spiral trajectory when the vector beams are imposed with a vortex. The vectorial effect on the collapse of a vector optical field can prevail over the noise even though it reaches 10% amplitude of the optical field. The unique feature of these structured collapses of a vector optical field may lead to new phenomena in the interaction of light with matter. (paper)

  10. Optically induced bistable states in metal/tunnel-oxide/semiconductor /MTOS/ junctions

    Science.gov (United States)

    Lai, S. K.; Dressendorfer, P. V.; Ma, T. P.; Barker, R. C.

    1981-01-01

    A new switching phenomenon in metal-oxide semiconductor tunnel junction has been discovered. With a sufficiently large negative bias applied to the electrode, incident visible light of intensity greater than about 1 microW/sq cm causes the reverse-biased junction to switch from a low-current to a high-current state. It is believed that hot-electron-induced impact ionization provides the positive feedback necessary for switching, and causes the junction to remain in its high-current state after the optical excitation is removed. The junction may be switched back to the low-current state electrically. The basic junction characteristics have been measured, and a simple model for the switching phenomenon has been developed.

  11. Pre-processing, registration and selection of adaptive optics corrected retinal images.

    Science.gov (United States)

    Ramaswamy, Gomathy; Devaney, Nicholas

    2013-07-01

    In this paper, the aim is to demonstrate enhanced processing of sequences of fundus images obtained using a commercial AO flood illumination system. The purpose of the work is to (1) correct for uneven illumination at the retina (2) automatically select the best quality images and (3) precisely register the best images. Adaptive optics corrected retinal images are pre-processed to correct uneven illumination using different methods; subtracting or dividing by the average filtered image, homomorphic filtering and a wavelet based approach. These images are evaluated to measure the image quality using various parameters, including sharpness, variance, power spectrum kurtosis and contrast. We have carried out the registration in two stages; a coarse stage using cross-correlation followed by fine registration using two approaches; parabolic interpolation on the peak of the cross-correlation and maximum-likelihood estimation. The angle of rotation of the images is measured using a combination of peak tracking and Procrustes transformation. We have found that a wavelet approach (Daubechies 4 wavelet at 6th level decomposition) provides good illumination correction with clear improvement in image sharpness and contrast. The assessment of image quality using a 'Designer metric' works well when compared to visual evaluation, although it is highly correlated with other metrics. In image registration, sub-pixel translation measured using parabolic interpolation on the peak of the cross-correlation function and maximum-likelihood estimation are found to give very similar results (RMS difference 0.047 pixels). We have confirmed that correcting rotation of the images provides a significant improvement, especially at the edges of the image. We observed that selecting the better quality frames (e.g. best 75% images) for image registration gives improved resolution, at the expense of poorer signal-to-noise. The sharpness map of the registered and de-rotated images shows increased

  12. WINDING METHOD SELECTION FOR TECHNICAL IMPLEMENTATION OF FIBER OPTIC COMMUNICATION LINE FOR HIGH-SPEED OBJECT

    Directory of Open Access Journals (Sweden)

    Vyacheslav A. Loparev

    2017-07-01

    Full Text Available The paper deals with fiber-optical cable winding methods for realization of fiber-optic communication line with high-speed object. We consider possible options of coils for optical cable winding providing mobility of one of the cable ends on an object. It is shown that the choice of a winding process is caused by the need of ensuring the minimum deformation of fiber-optical micro cable in case of separation from a winding body. It is revealed that the minimum tension value and its unevenness are observed when reeling from coils with a rocket form. Design ratios for determination of winding parameters are given. It is shown that reduction of tension unevenness reduces the jumps of internal tension and probability of break and emergence of optical signal local attenuation. Decrease in internal stresses occurs due to the absence of overlapping of the coils of the underlying layers with the overlying ones. To confirm the operability and the possibility of constructive implementation of the selected winding scheme, experiments were carried out to perform rocket and other types of winding with the use of a specially designed machine model. It is shown that the application of line rocket winding enables to achieve stability when reeling a cable during the movement and excludes breaks. Attenuation of optical signal decreases due to the increase in the bend minimum radius. This phenomenon is explained by reduction of the internal stresses causing optical signal attenuation in the place of cable separation from the coil.

  13. Generating continuous variable optical quantum states and entanglement

    International Nuclear Information System (INIS)

    Lam, P.K.; Bowen, W.P.; Schnabel, R.; Treps, N.; Buchler, B.C.; Bachor, H.-A.; Ralph, T.C.

    2002-01-01

    Full text: Quantum information research has recently been shown to have many applications in the field of communication and information processing. Quantum states and entanglement play a central role to almost all quantum information protocols, and form the basic building blocks for larger quantum information networks. We present an overview of the research activities at the quantum optics group at the ANU relating to this area. In particular, we demonstrate technology to suppress the noise on a coherent laser beam to below that of even vacuum. This quantum state of light is called 'squeezed light'. We show experimentally that by mixing two squeezed beams on a beam splitter, a pair of Einstein-Podolsky-Rosen (EPR) entangled beams can be created. This kind of entanglement exhibits below shot noise correlations between both the phase and amplitude quandratures of two beams. Our experimental results show conclusively that our entangled beams demonstrate the famous EPR paradox

  14. Solid-State Synthesis and Effect of Temperature on Optical Properties of CuO Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    C.C.Vidyasagar; Y.Arthoba Naik; T.G.Venkatesha; R.Viswanatha

    2012-01-01

    Modulation of band energies through size control offers new ways to control photoresponse and photoconversion efficiency of the solar cell. The P-type semiconductor of copper oxide is an important functional material used for photovoltaic cells. Cu O is attractive as a selective solar absorber since it has high solar absorbance and a low thermal emittance. The present work describes the synthesis and characterization of semiconducting Cu O nanoparticles via one-step, solid-state reaction in the presence of Polyethylene glycol400 as size controlling agent for the preparation of Cu O nanoparticles at different temperatures. Solid-state mechanochemical processing, which is not only a physical size reduction process in conventional milling but also a chemical reaction, is mechanically activated at the nanoscale during grinding. The present method is a simple and efficient method of preparing nanoparticles with high yield at low cost. The structural and chemical composition of the nanoparticles were analyzed by X-ray diffraction, field emission scanning electron microscopy and energy-dispersive spectrometer, respectively. Optical properties and band gap of Cu O nanoparticles were studied by UV-Vis spectroscopy. These results showed that the band gap energy decreased with increase of annealing temperature, which can be attributed to the improvement in grain size of the samples.

  15. Creating diversity by site-selective peptide modification: a customizable unit affords amino acids with high optical purity.

    Science.gov (United States)

    Romero-Estudillo, Ivan; Boto, Alicia

    2013-11-15

    The development of peptide libraries by site-selective modification of a few parent peptides would save valuable time and materials in discovery processes, but still is a difficult synthetic challenge. Herein natural hydroxyproline is introduced as a "convertible" unit for the production of a variety of optically pure amino acids, including expensive N-alkyl amino acids, and to achieve the mild, efficient, and site-selective modification of peptides.

  16. Potability Evaluation of Selected River Waters in Ebonyi State, Nigeria

    African Journals Online (AJOL)

    The study focused on the seasonal variation of physiochemical and microbial characteristics of three selected river water in Ebonyi State for human consumption. The three selected rivers studied were Iyioka, Idima and Ubei Rivers. Data were generated using Direct Reading Engineering method (DREM), Gravimetric ...

  17. Proof-of-concept study of a marine ion-selective optical sensing instrument

    Science.gov (United States)

    Sobron, P.; Thompson, C.; Bamsey, M.

    2013-12-01

    We have developed a proof-of-concept instrument for real-time in-situ characterization of the ion chemistry of the ocean. Our instrument uses optical sensors equipped with ion-selective membranes which exhibit a change in an optical property that can be correlated with the concentration of a specific ion. We have implemented a system for multi-ion sensing that includes the use of a single spectrometer in tandem with a fiber optic multiplexer that is capable of reading a suite of attached optrodes, each of them dedicated to a unique ion. In this abstract we report the experimental characterization of calcium and potassium optrodes as a template for ion-selective optrodes and their application to the characterization of the oceans. The tests were performed at the Controlled Environment Systems Research Facility of the University of Guelph. Guelph's optrode housing was tested by immersing it in a 1/2 strength Hoagland's hydroponic solution to test functionality of the K+ and Ca2+ optrodes in this environment. Our results demonstrate the feasibility of recording spectral information in sub-minute times from more than one optrode simultaneously in a given aqueous system. This proof-of-concept study has allowed us to measure parameters of interest and comparison to analytical predictions for critical subsystems of a deployable system, and demonstrates maturity of the multi-ion sensing optrode technology. Critical advantages of our optrode system are that it: (1) enables concurrent measurements of multiple ionic species relevant in ocean sciences; (2) has high time and spatial resolution; (3) has low limits of detection; (4) uses low-cost, low-mass, energy efficient optoelectronics. Our system has the potential for facilitating new observational, experimental, and analytic capabilities in ocean sciences, including: (a) health and environment monitoring; (b) aquaculture; (c) global change, e.g. ocean acidification; and (d) origin of life research. Proof-of-concept setup at

  18. Donor impurity states and related optical response in a lateral coupled dot-ring system under applied electric field

    Energy Technology Data Exchange (ETDEWEB)

    Correa, J.D. [Departamento de Ciencias Básicas, Universidad de Medellín, Medellín (Colombia); Mora-Ramos, M.E. [Centro de Investigación en Ciencias, Instituto de Ciencias Básicas y Aplicadas, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2015-09-01

    A study on the effects of an externally applied electric field on the linear optical absorption and relative refractive index change associated with transitions between off-center donor impurity states in laterally coupled quantum dot-ring system is reported. Electron states are calculated within the effective mass and parabolic band approximations by means of an exact diagonalization procedure. The states and the optical response in each case show significant sensitivity to the geometrical distribution of confining energies as well as to the strength of the applied field.

  19. Donor impurity states and related optical response in a lateral coupled dot-ring system under applied electric field

    International Nuclear Information System (INIS)

    Correa, J.D.; Mora-Ramos, M.E.; Duque, C.A.

    2015-01-01

    A study on the effects of an externally applied electric field on the linear optical absorption and relative refractive index change associated with transitions between off-center donor impurity states in laterally coupled quantum dot-ring system is reported. Electron states are calculated within the effective mass and parabolic band approximations by means of an exact diagonalization procedure. The states and the optical response in each case show significant sensitivity to the geometrical distribution of confining energies as well as to the strength of the applied field

  20. Selective maintenance of multi-state systems with structural dependence

    International Nuclear Information System (INIS)

    Dao, Cuong D.; Zuo, Ming J.

    2017-01-01

    This paper studies the selective maintenance problem for multi-state systems with structural dependence. Each component can be in one of multiple working levels and several maintenance actions are possible to a component in a maintenance break. The components structurally form multiple hierarchical levels and dependence groups. A directed graph is used to represent the precedence relations of components in the system. A selective maintenance optimization model is developed to maximize the system reliability in the next mission under time and cost constraints. A backward search algorithm is used to determine the assembly sequence for a selective maintenance scenario. The maintenance model helps maintenance managers in determining the best combination of maintenance activities to maximize the probability of successfully completing the next mission. Examples showing the use of the proposed method are presented. - Highlights: • A selective maintenance model for multi-state systems is proposed considering both economic and structural dependence. • Structural dependence is modeled as precedence relationship when disassembling components for maintenance. • Resources for disassembly and maintenance are evaluated using a backward search algorithm. • Maintenance strategies with and without structural dependence are analyzed. • Ignoring structural dependence may lead to over-estimation of system reliability.

  1. Polarization-, carrier-, and format-selectable optical flow generation based on a multi-flow transmitter using passive polymers

    DEFF Research Database (Denmark)

    Katopodis, V.; Spyropoulou, M.; Tsokos, C.

    2016-01-01

    and acting as the interface between any software defined switch and the physical layer transport equipment. The transmitter has been evaluated within a flexible network node comprising programmable flexible wavelength selective switches (WSSs). Two single-flow scenarios based on a dual-polarization m...... generation is feasible with appropriate distribution of the client data in the digital domain and encapsulation into OTN containers. Configuration of the electrical and optical transmitter resources is performed via a developed software defined optics (SDO) platform residing on top of the transmitter...

  2. Radiative properties of optical board embedded with optical black holes

    International Nuclear Information System (INIS)

    Qiu, J.; Liu, L.H.; Hsu, P.-F.

    2011-01-01

    Unique radiative properties, such as wavelength-selective transmission or absorption, have been intensively studied. Historically, geometries for wavelength-selective of light absorption were developed based on metallic periodical structures, which were only applied in the case of TM wave incidence due to the excitation of surface plasmons. In this paper, we develop an alternative approach to selective wavelength of light absorption (both TE and TM waves), based on an optical board periodical embedded with optical black holes. Numerical work was carried out to study such structure's radiative properties within the wavelength range of 1-100 μm. The electromagnetic wave transmission through such a structure is predicted by solving Maxwell's equations using the finite-difference time-domain (FDTD) method. Spectral absorptance varies with the period of optical black holes. When the incidence wavelength is much larger than the inner core radius, most of the light energy will be transmitted through the inner core. Otherwise, the energy will be mainly absorbed. Numerical results of the radiative properties of the optical board with different incidence wavelengths are also obtained. The effect of the oblique incidence wave is investigated. This study helps us gain a better understanding of the radiative properties of an optical board embedded with optical black holes and develop an alternative approach to selective light absorption.

  3. THE HIGH A{sub V} Quasar Survey: Reddened Quasi-Stellar Objects selected from optical/near-infrared photometry. II

    Energy Technology Data Exchange (ETDEWEB)

    Krogager, J.-K.; Fynbo, J. P. U.; Vestergaard, M. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark); Geier, S. [Instituto de Astrofísica de Canarias (IAC), E-38205 La Laguna, Tenerife (Spain); Venemans, B. P. [Max-Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Ledoux, C. [European Southern Observatory, Alonso de Córdova 3107, Vitacura, Casilla 19001, Santiago 19 (Chile); Møller, P. [European Southern Observatory, Karl-Schwarzschildstrasse 2, D-85748 Garching bei München (Germany); Noterdaeme, P. [Institut d’Astrophysique de Paris, CNRS-UPMC, UMR7095, 98bis bd Arago, F-75014 Paris (France); Kangas, T.; Pursimo, T.; Smirnova, O. [Nordic Optical Telescope, Apartado 474, E-38700 Santa Cruz de La Palma (Spain); Saturni, F. G. [Tuorla Observatory, Department of Physics and Astronomy, University of Turku, Väisäläntie 20, 21500 Piikkiö (Finland)

    2015-03-15

    Quasi-stellar objects (QSOs) whose spectral energy distributions (SEDs) are reddened by dust either in their host galaxies or in intervening absorber galaxies are to a large degree missed by optical color selection criteria like the ones used by the Sloan Digital Sky Survey (SDSS). To overcome this bias against red QSOs, we employ a combined optical and near-infrared (near-IR) color selection. In this paper, we present a spectroscopic follow-up campaign of a sample of red candidate QSOs which were selected from the SDSS and the UKIRT Infrared Deep Sky Survey (UKIDSS). The spectroscopic data and SDSS/UKIDSS photometry are supplemented by mid-infrared photometry from the Wide-field Infrared Survey Explorer. In our sample of 159 candidates, 154 (97%) are confirmed to be QSOs. We use a statistical algorithm to identify sightlines with plausible intervening absorption systems and identify nine such cases assuming dust in the absorber similar to Large Magellanic Cloud sightlines. We find absorption systems toward 30 QSOs, 2 of which are consistent with the best-fit absorber redshift from the statistical modeling. Furthermore, we observe a broad range in SED properties of the QSOs as probed by the rest-frame 2 μm flux. We find QSOs with a strong excess as well as QSOs with a large deficit at rest-frame 2 μm relative to a QSO template. Potential solutions to these discrepancies are discussed. Overall, our study demonstrates the high efficiency of the optical/near-IR selection of red QSOs.

  4. Toward Rotational State-Selective Photoionization of ThF+ Ions

    Science.gov (United States)

    Zhou, Yan; Ng, Kia Boon; Gresh, Dan; Cairncross, William; Grau, Matt; Ni, Yiqi; Cornell, Eric; Ye, Jun

    2016-06-01

    ThF+ has been chosen to replace HfF+ for a second-generation measurement of the electric dipole moment of the electron (eEDM). Compared to the currently running HfF+ eEDM experiment, ThF+ has several advantages: (i) the eEDM-sensitive state (3Δ1) is the ground state, which facilitates a long coherence time [1]; (ii) its effective electric field (35 GV/cm) is 50% larger than that of HfF+, which promises a direct increase of the eEDM sensitivity [2]; and (iii) the ionization energy of neutral ThF is lower than its dissociation energy, which introduces greater flexibility in rotational state-selective photoionization via core-nonpenetrating Rydberg states [3]. In this talk, we first present our strategy of preparing and utilizing core-nonpenetrating Rydberg states for rotational state-selective ionization. Then, we report spectroscopic data of laser-induced fluorescence of neutral ThF, which provides critical information for multi-photon ionization spectroscopy. [1] D. N. Gresh, K. C. Cossel, Y. Zhou, J. Ye, E. A. Cornell, Journal of Molecular Spectroscopy, 319 (2016), 1-9 [2] M. Denis, M. S. Nørby, H. J. A. Jensen, A. S. P. Gomes, M. K. Nayak, S. Knecht, T. Fleig, New Journal of Physics, 17 (2015) 043005. [3] Z. J. Jakubek, R. W. Field, Journal of Molecular Spectroscopy 205 (2001) 197-220.

  5. Selection of Optical Glasses Using Buchdahl's Chromatic Coordinate

    Science.gov (United States)

    Griffin, DeVon W.

    1999-01-01

    This investigation attempted to extend the method of reducing the size of glass catalogs to a global glass selection technique with the hope of guiding glass catalog offerings. Buchdahl's development of optical aberration coefficients included a transformation of the variable in the dispersion equation from wavelength to a chromatic coordinate omega defined as omega = (lambda - lambda(sub 0))/ 1 + 2.5(lambda - lambda(sub 0)) where lambda is the wavelength at which the wavelength is calculated and lambda(sub 0) is a base wavelength about which the expansion is performed. The advantage of this approach is that the dispersion equation may be written in terms of a simple power series and permits direct calculation of dispersion coefficients. While several promising examples were given, a systematic application of the technique to an entire glass catalog and analysis of the subsequent predictions was not performed. The goal of this work was to apply the technique in a systematic fashion to glasses in the Schoft catalog and assess the quality of the predictions.

  6. Structural, morphological, and optical characterizations of Mo, CrN and Mo:CrN sputtered coatings for potential solar selective applications

    Science.gov (United States)

    Ibrahim, Khalil; Mahbubur Rahman, M.; Taha, Hatem; Mohammadpour, Ehsan; Zhou, Zhifeng; Yin, Chun-Yang; Nikoloski, Aleksandar; Jiang, Zhong-Tao

    2018-05-01

    Mo, CrN, and Mo:CrN sputtered coatings synthesized onto silicon Si(100) substrates were investigated as solar selective surfaces and their potential applications in optical devices. These coatings were characterized using XRD, SEM, UV-vis, and FTIR techniques. XRD investigation, showed a change in CrN thin film crystallite characteristic due to Mo doping. Compared to the CrN coating, the Mo:CrN film has a higher lattice parameter and lower grain size of 4.19 nm and 106.18 nm, respectively. FESEM morphology confirmed the decrement in Mo:CrN crystal size due to Mo doping. Optical analysis showed that in the visible range of the solar spectrum, the CrN coatings exhibit the highest solar absorptance of 66% while the lowest thermal emittance value of 5.67 was recorded for the CrN coating doped with Mo. Consequently, the highest solar selectivity of 9.6, and the energy band-gap of 2.88 eV were achieved with the Mo-doped CrN coatings. Various optical coefficients such as optical absorption coefficient, refractive index, extinction coefficient, real and imaginary parts of dielectric constants, and energy loss functions of these coatings were also estimated from the optical reflectance data recorded in the wavelength range of 190-2300 nm.

  7. Optical characteristic and gap states distribution of amorphous SnO2:(Zn, In) film

    International Nuclear Information System (INIS)

    Zhang Zhi-Guo

    2010-01-01

    In this paper the fabrication technique of amorphous SnO 2 :(Zn, In) film is presented. The transmittance and gap-states distribution of the film are given. The experimental results of gap-states distribution are compared with the calculated results by using the facts of short range order and lattice vacancy defect of the gap states theory. The distribution of gap state has been proved to be discontinuous due to the short-range order of amorphous structure. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  8. The use of balanced homodyne and squeezed states for detecting weak optical signals in a Michelson interferometer

    International Nuclear Information System (INIS)

    Ben-Aryeh, Y.

    2011-01-01

    The possibility of using squeezed states and balanced homodyne detection of optical signals in a Michelson interferometer is discussed. The present analysis describes photon statistics measurements effects related to quadrature balanced homodyne detection showing the advantage of using this scheme for detecting weak optical signals.

  9. Ultra-fast solid state electro-optical modulator based on liquid crystal polymer and liquid crystal composites

    Energy Technology Data Exchange (ETDEWEB)

    Ouskova, Elena; Sio, Luciano De, E-mail: luciano@beamco.com; Vergara, Rafael; Tabiryan, Nelson [Beam Engineering for Advanced Measurements Company, Winter Park, Florida 32789 (United States); White, Timothy J.; Bunning, Timothy J. [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433-7707 (United States)

    2014-12-08

    A different generation of polymer-dispersed liquid crystals (PDLCs) based on a liquid crystalline polymer host is reported wherein the fluid behavior of the reactive mesogenic monomer is an enabler to concentration windows (liquid crystal polymer/liquid crystal) (and subsequent morphologies) not previously explored. These liquid crystal (LC) polymer/LC composites, LCPDLCs, exhibit excellent optical and electro-optical properties with negligible scattering losses in both the ON and OFF states. These systems thus have application in systems where fast phase modulation of optical signal instead of amplitude control is needed. Polarized optical microscopy and high resolution scanning electron microscopy confirm a bicontinuous morphology composed of aligned LC polymer coexisting with a phase separated LC fluid. Operating voltages, switching times, and spectra of LCPDLCs compare favourably to conventional PDLC films. The LCPDLCs exhibit a low switching voltage (4–5 V/μm), symmetric and submillisecond (200 μs) on/off response times, and high transmission in both the as formed and switched state in a phase modulation geometry.

  10. State-dependent linear-optical qubit amplifier

    Czech Academy of Sciences Publication Activity Database

    Bartkiewicz, K.; Černoch, Antonín; Lemr, K.

    2013-01-01

    Roč. 88, č. 6 (2013), "062304-1"-"062304-7" ISSN 1050-2947 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : linear-optical qubit amplifier * quantum cloning * quantum cryptography Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.991, year: 2013

  11. Highly selective single-use fluoride ion optical sensor based on aluminum(III)-salen complex in thin polymeric film

    International Nuclear Information System (INIS)

    Badr, Ibrahim H.A.; Meyerhoff, Mark E.

    2005-01-01

    A highly selective optical sensor for fluoride ion based on the use of an aluminum(III)-salen complex as an ionophore within a thin polymeric film is described. The sensor is prepared by embedding the aluminum(III)-salen ionophore and a suitable lipophilic pH-sensitive indicator (ETH-7075) in a plasticized poly(vinyl chloride) (PVC) film. Optical response to fluoride occurs due to fluoride extraction into the polymer via formation of a strong complex with the aluminum(III)-salen species. Co-extraction of protons occurs simultaneously, with protonation of the indicator dye yielding the optical response at 529 nm. Films prepared using dioctylsebacate (DOS) are shown to exhibit better response (e.g., linear range, detection limit, and optical signal stability) compared to those prepared using ortho-nitrophenyloctyl ether (o-NPOE). Films formulated with aluminum(III)-salen and ETH-7075 indicator in 2 DOS:1 PVC, exhibit a significantly enhanced selectivity for fluoride over a wide range of lipophilic anions including salicylate, perchlorate, nitrate, and thiocyanate. The optimized films exhibit a sub-micromolar detection limit, using glycine-phosphate buffer, pH 3.00, as the test sample. The response times of the fluoride optical sensing films are in the range of 1-10 min depending on the fluoride ion concentration in the sample. The sensor exhibits very poor reversibility owing to a high co-extraction constant (log K = 8.5 ± 0.4), indicating that it can best be employed as a single-use transduction device. The utility of the aluminum(III)-salen based fluoride sensitive films as single-use sensors is demonstrated by casting polymeric films on the bottom of standard polypropylene microtiter plate wells (96 wells/plate). The modified microtiter plate optode format sensors exhibit response characteristics comparable to the classical optode films cast on quartz slides. The modified microtiter is utilized for the analysis of fluoride in diluted anti-cavity fluoride rinse

  12. Peierls instability and optical properties of bilayer polyacene

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Longlong, E-mail: zhanglonglong@tyut.edu.cn [The College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Xie, Shijie [School of Physics, Shandong University, Jinan 250100 (China)

    2017-05-03

    Highlights: • The Peierls instability of bilayer polyacene is discussed. • The external electric field effect on bilayer polyacene is discussed. • The pressure effect on bilayer polyacene is discussed. • The optical properties of bilayer polyacene are discussed. - Abstract: We reveal that bilayer polyacene can be the gapped state due to the intralayer Peierls instability. There are six topologically inequivalent Peierls-distorted structures and they are degenerate in energy. The external electric field can tune the Peierls gap and induce the semiconductor-to-metallic phase transitions. The optical conductivity spectra are calculated in an attempt to categorize the Peierls-distorted structures. The strength of the interlayer coupling essentially affects the electronic properties and the optical selection rules.

  13. Energies of rare-earth ion states relative to host bands in optical materials from electron photoemission spectroscopy

    Science.gov (United States)

    Thiel, Charles Warren

    There are a vast number of applications for rare-earth-activated materials and much of today's cutting-edge optical technology and emerging innovations are enabled by their unique properties. In many of these applications, interactions between the rare-earth ion and the host material's electronic states can enhance or inhibit performance and provide mechanisms for manipulating the optical properties. Continued advances in these technologies require knowledge of the relative energies of rare-earth and crystal band states so that properties of available materials may be fully understood and new materials may be logically developed. Conventional and resonant electron photoemission techniques were used to measure 4f electron and valence band binding energies in important optical materials, including YAG, YAlO3, and LiYF4. The photoemission spectra were theoretically modeled and analyzed to accurately determine relative energies. By combining these energies with ultraviolet spectroscopy, binding energies of excited 4fN-15d and 4fN+1 states were determined. While the 4fN ground-state energies vary considerably between different trivalent ions and lie near or below the top of the valence band in optical materials, the lowest 4f N-15d states have similar energies and are near the bottom of the conduction band. As an example for YAG, the Tb3+ 4f N ground state is in the band gap at 0.7 eV above the valence band while the Lu3+ ground state is 4.7 eV below the valence band maximum; however, the lowest 4fN-15d states are 2.2 eV below the conduction band for both ions. We found that a simple model accurately describes the binding energies of the 4fN, 4fN-1 5d, and 4fN+1 states. The model's success across the entire rare-earth series indicates that measurements on two different ions in a host are sufficient to predict the energies of all rare-earth ions in that host. This information provides new insight into electron transfer transitions, luminescence quenching, and valence

  14. Perspective and potential of smart optical materials

    Science.gov (United States)

    Choi, Sang H.; Duzik, Adam J.; Kim, Hyun-Jung; Park, Yeonjoon; Kim, Jaehwan; Ko, Hyun-U.; Kim, Hyun-Chan; Yun, Sungryul; Kyung, Ki-Uk

    2017-09-01

    The increasing requirements of hyperspectral imaging optics, electro/photo-chromic materials, negative refractive index metamaterial optics, and miniaturized optical components from micro-scale to quantum-scale optics have all contributed to new features and advancements in optics technology. Development of multifunctional capable optics has pushed the boundaries of optics into new fields that require new disciplines and materials to maximize the potential benefits. The purpose of this study is to understand and show the fundamental materials and fabrication technology for field-controlled spectrally active optics (referred to as smart optics) that are essential for future industrial, scientific, military, and space applications, such as membrane optics, filters, windows for sensors and probes, telescopes, spectroscopes, cameras, light valves, light switches, and flat-panel displays. The proposed smart optics are based on the Stark and Zeeman effects in materials tailored with quantum dot arrays and thin films made from readily polarizable materials via ferroelectricity or ferromagnetism. Bound excitonic states of organic crystals are also capable of optical adaptability, tunability, and reconfigurability. To show the benefits of smart optics, this paper reviews spectral characteristics of smart optical materials and device technology. Experiments testing the quantum-confined Stark effect, arising from rare earth element doping effects in semiconductors, and applied electric field effects on spectral and refractive index are discussed. Other bulk and dopant materials were also discovered to have the same aspect of shifts in spectrum and refractive index. Other efforts focus on materials for creating field-controlled spectrally smart active optics on a selected spectral range. Surface plasmon polariton transmission of light through apertures is also discussed, along with potential applications. New breakthroughs in micro scale multiple zone plate optics as a micro

  15. State selective dynamics of molecules, clusters, and nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Keto, John W. [Univ. of Texas, Austin, TX (United States)

    2005-06-01

    Early objectives of this grant were: (1) Measure two-photon excitation of even parity excitons in liquid an solid xenon, (2) Study state-to-state energy transver between two-photon laser excited states or rare-gas atoms to other rare has atoms, (3) study reactive half-collisions between xenon and chlorine leading to the XeCl* B state, (4) measure the spectra of ro-vibrational states of cluster ions and radicals formed in high-pressure discharges and to study their dynamics, (5) measure the surface and bulk electronic states of nanoparticles produced by a unique method of synthesis--laser ablation of microspheres (LAM). Using near-field and microluminescence techniques, we obtained spectra of single nanocrystals to compare with spectra obtained in a supersonic jet apparatus using resonance excitation followed by photoionization (REMPI) with time-of-flight mass analysis. These materials combine the functional advantages obtained from the size-tunable properties of nanocomposite materials with the fabrication and direct-write advantages of NPs manufactured by LAM. We demostrated that CdSe nanoparticles produced by LAM were efficiient fluorescers, even when deposited dry on sapphire substrates. Si nanoparticles were fluorescent when captured in ethylene glycol. We also obtiained efficient fluorescence from Er doped phosphate glass nanopartiicles which have application to gain wafeguides in integrated optics or to nanoslush lasers. We used a femptosecond laser to study the nonlinear spectra of NC composites. We are currently measuring fluorescence and second and third-order susceptibilities of composites of Ag, Si, and GaN nanoparticles encapsulated within thin films of sapphire or SiO 2.

  16. State selective dynamics of molecules, clusters, and nanostructures

    International Nuclear Information System (INIS)

    John W. Keto

    2005-01-01

    Early objectives of this grant were: (1) Measure two-photon excitation of even parity excitons in liquid an solid xenon, (2) Study state-to-state energy transfer between two-photon laser excited states or rare-gas atoms to other rare has atoms, (3) study reactive half-collisions between xenon and chlorine leading to the XeCl* B state, (4) measure the spectra of ro-vibrational states of cluster ions and radicals formed in high-pressure discharges and to study their dynamics, (5) measure the surface and bulk electronic states of nanoparticles produced by a unique method of synthesis--laser ablation of microspheres (LAM). Using near-field and microluminescence techniques, we obtained spectra of single nanocrystals to compare with spectra obtained in a supersonic jet apparatus using resonance excitation followed by photoionization (REMPI) with time-of-flight mass analysis. These materials combine the functional advantages obtained from the size-tunable properties of nanocomposite materials with the fabrication and direct-write advantages of NPs manufactured by LAM. We demonstrated that CdSe nanoparticles produced by LAM were efficient fluorescers, even when deposited dry on sapphire substrates. Si nanoparticles were fluorescent when captured in ethylene glycol. We also obtained efficient fluorescence from Er doped phosphate glass nanoparticles which have application to gain waveguides in integrated optics or to nanoslush lasers. We used a femptosecond laser to study the nonlinear spectra of NC composites. We are currently measuring fluorescence and second and third-order susceptibilities of composites of Ag, Si, and GaN nanoparticles encapsulated within thin films of sapphire or SiO2

  17. Optical adhesive property study

    Energy Technology Data Exchange (ETDEWEB)

    Sundvold, P.D.

    1996-01-01

    Tests were performed to characterize the mechanical and thermal properties of selected optical adhesives to identify the most likely candidate which could survive the operating environment of the Direct Optical Initiation (DOI) program. The DOI system consists of a high power laser and an optical module used to split the beam into a number of channels to initiate the system. The DOI requirements are for a high shock environment which current military optical systems do not operate. Five candidate adhesives were selected and evaluated using standardized test methods to determine the adhesives` physical properties. EC2216, manufactured by 3M, was selected as the baseline candidate adhesive based on the test results of the physical properties.

  18. Image transmission in mid-IR using a solid state laser pumped optical parametric oscillator

    Science.gov (United States)

    Prasad, Narasimha S.; Kratovil, Pat; Magee, James R.

    2002-04-01

    In this paper, image transmission using a mid-wave IR (MWIR) optical transceiver based free-space data link under low visibility conditions is presented. The all-solid-state MWIR transceiver primarily consisted of a passively Q-switched, short-pulsed Nd:YAG laser pumping a periodically poled lithium niobate (PPLN) based optical parametric oscillator and a Dember effect detector. The MILES transceiver generates pulse position waveforms. The optical data link consisting of transmitter drive electronics, pulse conditioning electronics and a computer generating pulses compatible with the 2400-baud rate RS232 receiver was utilized. Data formatting and RS232 transmission and reception were achieved using a computer. Data formatting transformed an arbitrary image file format compatible with the basic operation of pump laser. Images were transmitted at a date rate of 2400 kbits/sec with 16 bits/pixel. Test images consisting of 50X40 pixels and 100X80 pixels were transmitted through free-space filled with light fog up to 120 ft. Besides optical parametric oscillators, the proposed concept can be extended to optical parametric amplifiers, Raman lasers and other nonlinear optical devices to achieve multi-functionality.

  19. Supplier selection problem: A state-of-the-art review

    Directory of Open Access Journals (Sweden)

    Nilesh R. Ware

    2012-08-01

    Full Text Available In the global competitiveness and growing market environment, “Actual competition is not between firms against firm, than supplier against supplier”. Globally in the fastest market development world gets closer and closer. Consumers prefer fast delivery, economical product, excellent service and high quality product with desired service level. For successful management of this supply chain, supplier considered as the base source for all processes. Therefore, an efficient supplier selection and evaluation process needs to be incorporate. The main purpose of this paper is to provide an extensive state-of-the-art literature review and critique of the studies related to various aspects of supplier selection problem over the past two decades. Research papers appearing in the reputed and leading international journals from 1991 to 2011 are gathered and analyzed. Primary focus is given on more than 200 published and unpublished works. It has been referred extensively to carry out state-of-the-art review for supplier selection problem. Finally, paper provides future perspective based on current research trends available in the published literature.

  20. Automatic selection of resting-state networks with functional magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Silvia Francesca eStorti

    2013-05-01

    Full Text Available Functional magnetic resonance imaging (fMRI during a resting-state condition can reveal the co-activation of specific brain regions in distributed networks, called resting-state networks, which are selected by independent component analysis (ICA of the fMRI data. One of the major difficulties with component analysis is the automatic selection of the ICA features related to brain activity. In this study we describe a method designed to automatically select networks of potential functional relevance, specifically, those regions known to be involved in motor function, visual processing, executive functioning, auditory processing, memory, and the default-mode network. To do this, image analysis was based on probabilistic ICA as implemented in FSL software. After decomposition, the optimal number of components was selected by applying a novel algorithm which takes into account, for each component, Pearson's median coefficient of skewness of the spatial maps generated by FSL, followed by clustering, segmentation, and spectral analysis. To evaluate the performance of the approach, we investigated the resting-state networks in 25 subjects. For each subject, three resting-state scans were obtained with a Siemens Allegra 3 T scanner (NYU data set. Comparison of the visually and the automatically identified neuronal networks showed that the algorithm had high accuracy (first scan: 95%, second scan: 95%, third scan: 93% and precision (90%, 90%, 84%. The reproducibility of the networks for visual and automatic selection was very close: it was highly consistent in each subject for the default-mode network (≥ 92% and the occipital network, which includes the medial visual cortical areas (≥ 94%, and consistent for the attention network (≥ 80%, the right and/or left lateralized frontoparietal attention networks, and the temporal-motor network (≥ 80%. The automatic selection method may be used to detect neural networks and reduce subjectivity in ICA

  1. Online technique for detecting state of onboard fiber optic gyroscope

    International Nuclear Information System (INIS)

    Miao, Zhiyong; He, Kunpeng; Pang, Shuwan; Xu, Dingjie; Tian, Chunmiao

    2015-01-01

    Although angle random walk (ARW) of fiber optic gyroscope (FOG) has been well modeled and identified before being integrated into the high-accuracy attitude control system of satellite, aging and unexpected failures can affect the performance of FOG after launch, resulting in the variation of ARW coefficient. Therefore, the ARW coefficient can be regarded as an indicator of “state of health” for FOG diagnosis in some sense. The Allan variance method can be used to estimate ARW coefficient of FOG, however, it requires a large amount of data to be stored. Moreover, the procedure of drawing slope lines for estimation is painful. To overcome the barriers, a weighted state-space model that directly models the ARW to obtain a nonlinear state-space model was established for FOG. Then, a neural extended-Kalman filter algorithm was implemented to estimate and track the variation of ARW in real time. The results of experiment show that the proposed approach is valid to detect the state of FOG. Moreover, the proposed technique effectively avoids the storage of data

  2. Online technique for detecting state of onboard fiber optic gyroscope

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Zhiyong; He, Kunpeng, E-mail: pengkhe@126.com; Pang, Shuwan [Department of Automation, Harbin Engineering University, Harbin, Heilongjiang 150000 (China); Xu, Dingjie [School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin, Heilongjiang 150000 (China); Tian, Chunmiao [Department of Information and Communication Engineering, Harbin Engineering University, Harbin, Heilongjiang 150000 (China)

    2015-02-15

    Although angle random walk (ARW) of fiber optic gyroscope (FOG) has been well modeled and identified before being integrated into the high-accuracy attitude control system of satellite, aging and unexpected failures can affect the performance of FOG after launch, resulting in the variation of ARW coefficient. Therefore, the ARW coefficient can be regarded as an indicator of “state of health” for FOG diagnosis in some sense. The Allan variance method can be used to estimate ARW coefficient of FOG, however, it requires a large amount of data to be stored. Moreover, the procedure of drawing slope lines for estimation is painful. To overcome the barriers, a weighted state-space model that directly models the ARW to obtain a nonlinear state-space model was established for FOG. Then, a neural extended-Kalman filter algorithm was implemented to estimate and track the variation of ARW in real time. The results of experiment show that the proposed approach is valid to detect the state of FOG. Moreover, the proposed technique effectively avoids the storage of data.

  3. Quasiparticle energies, excitons, and optical spectra of few-layer black phosphorus

    International Nuclear Information System (INIS)

    Tran, Vy; Fei, Ruixiang; Yang, Li

    2015-01-01

    We report first-principles GW–Bethe–Salpeter-equation (BSE) studies of excited-state properties of few-layer black phosphorus (BP) (phosphorene). With improved GW computational methods, we obtained converged quasiparticle band gaps and optical absorption spectra by the single-shot (G 0 W 0 ) procedure. Moreover, we reveal fine structures of anisotropic excitons, including the series of one-dimensional like wave functions, spin singlet–triplet splitting, and electron–hole binding energy spectra by solving BSE. An effective-mass model is employed to describe these electron–hole pairs, shedding light on estimating the exciton binding energy of anisotropic two-dimensional semiconductors without expensive ab initio simulations. Finally, the anisotropic optical response of BP is explained by using optical selection rules based on the projected single-particle density of states at band edges. (paper)

  4. Effects of entanglement in an ideal optical amplifier

    Science.gov (United States)

    Franson, J. D.; Brewster, R. A.

    2018-04-01

    In an ideal linear amplifier, the output signal is linearly related to the input signal with an additive noise that is independent of the input. The decoherence of a quantum-mechanical state as a result of optical amplification is usually assumed to be due to the addition of quantum noise. Here we show that entanglement between the input signal and the amplifying medium can produce an exponentially-large amount of decoherence in an ideal optical amplifier even when the gain is arbitrarily close to unity and the added noise is negligible. These effects occur for macroscopic superposition states, where even a small amount of gain can leave a significant amount of which-path information in the environment. Our results show that the usual input/output relation of a linear amplifier does not provide a complete description of the output state when post-selection is used.

  5. An intermediate state of T7 RNA polymerase provides another pathway of nucleotide selection

    International Nuclear Information System (INIS)

    Wang Zhan-Feng; Liu Yu-Ru; Wang Peng-Ye; Xie Ping

    2017-01-01

    Phage T7 RNA polymerase is a single-subunit transcription enzyme, transcribing template DNA to RNA. Nucleoside triphosphate (NTP) selection and translocation are two critical steps of the transcription elongation. Here, using all-atom molecular dynamics simulations, we found that between pre- and post-translocation states of T7 RNA polymerase an intermediate state exists, where the O helix C-terminal residue tyrosine 639, which plays important roles in translocation, locates between its pre- and post-translocation positions and the side chain of the next template DNA nucleotide has moved into the active site. NTP selection in this intermediate state was studied, revealing that the selection in the intermediate state can be achieved relying on the effect of Watson–Crick interaction between NTP and template DNA nucleotide, effect of stability of the components near the active site such as the nascent DNA–RNA hybrid and role of tyrosine 639. This indicates that another NTP-selection pathway can also exist besides the main pathway where NTP selection begins at the post-translocation state upon the entry of NTP. (paper)

  6. Localization of Cold Atoms in State-Dependent Optical Lattices via a Rabi Pulse

    International Nuclear Information System (INIS)

    Horstmann, Birger; Duerr, Stephan; Roscilde, Tommaso

    2010-01-01

    We propose a novel realization of Anderson localization in nonequilibrium states of ultracold atoms in an optical lattice. A Rabi pulse transfers part of the population to a different internal state with infinite effective mass. These frozen atoms create a quantum superposition of different disorder potentials, localizing the mobile atoms. For weakly interacting mobile atoms, Anderson localization is obtained. The localization length increases with increasing disorder and decreasing interaction strength, contrary to the expectation for equilibrium localization.

  7. Quantum teleportation of an arbitrary two-mode coherent state using only linear optics elements

    International Nuclear Information System (INIS)

    Ho Ngoc Phien; Nguyen Ba An

    2008-01-01

    We propose a linear optics scheme to teleport an arbitrary two-mode coherent state. The devices used are beam-splitters, phase-shifters and ideal photo-detectors capable of distinguishing between even and odd photon numbers. The scheme achieves faithful teleportation with a probability of 1/4. However, with additional use of an appropriate displacement operator, the teleported state can always be made near-faithful

  8. Some current views on the origins and prospects of correlation optics.

    Science.gov (United States)

    Angelsky, O V; Felde, Ch V; Polyanskii, P V

    2016-04-20

    The state of the art modern branch of optics and photonics now referred to as correlation optics is discussed in connection with both its origins and promising prospects. We use here the term "correlation" not only as a synonym of the term "coherence," but also for emphasizing the necessity of taking into account fine, sometimes enigmatic, phase relations among the components of complex optical fields, even if such fields are conventionally defined as completely coherent. Selection of topics for this brief review of correlation optics outlooks was not dictated by intention of comprehensive representation of this field of research, but rather by the scientific interests of the authors, ranging from classical theory of diffraction, holography, and light-scattering to modern singular optics.

  9. The Selection and Protection of Optical Astronomical Observing Sites in China

    Science.gov (United States)

    Wenjing, Jin; Bai, Jinming; Yao, Yongqiang

    2015-03-01

    Before 1950 there are two observatories, Shanghai and Purple Mountain Astronomical Observatories (SHAO and PMO), and two observing stations, Qingdao and Kunming stations in China. With the requirements of astronomical research, two observatories, Beijing and Shaanxi Astronomical Observatories (BAO and SXAO) and two artificial satellite stations, Urumqi and Changchun, were established about 1960. Based on the current management, now there are 4 observatories, SHAO, PMO, NAOC(National Astronomical Observatories), which was grouped from BAO, YNAO and 2 others, as well as XAO (Xinjiang Astronomical Observatory). The optical 1-2 m class telescopes are being operated at former four observatories. SXAO is changed as National Time Service Center. Because of city expansion as well as the traveling and economic developments, these observatories are suffered severe light pollution. For example, Zo Ce is located at the suburb of Shanghai city. A 40 cm double astrograph was installed in 1900 and a 1.56 m optical reflector have been operated since November 1987. In 1994 the seeing is better than 1 and the night sky brightness in V is about 19 mag/arcsec 2, stars fainter than 20 mag with CCD are visibles. In 2007 a large playground was built in Zô Cè area. The light pollution is severe gradually. The night sky brightness has been increased to 15.8 mag/arcsec 2. The other observatories have similar situation. New site surveys and found new stations to solve the problem. Except the solar and radio stations of each Astronomical Observatory, now there are 3 optical observing sites at PMO (Hong-He, Xu-Yi and Yaoan), 2 at SHAO (Zô Cè and Tian Huang Ping) and 2 at YNAO (Kunming and Gao-Mei-Gu) as well as 1 optical observing site at BAO (Xing-Long). The best observing site is Gao-Mei-Gu, which is selected as the optical observing site of YNAO and where atmospheric turbulence distribution is 0.11 near ground with heights from 6.5m to 2.7m during night. Sky brightness in B and V band

  10. Bound states and Cooper pairs of molecules in 2D optical lattices bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Camacho-Guardian, A.; Dominguez-Castro, G.A.; Paredes, R. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico (Mexico)

    2016-08-15

    We investigate the formation of Cooper pairs, bound dimers and the dimer-dimer elastic scattering of ultracold dipolar Fermi molecules confined in a 2D optical lattice bilayer configuration. While the energy and their associated bound states are determined in a variational way, the correlated two-molecule pair is addressed as in the original Cooper formulation. We demonstrate that the 2D lattice confinement favors the formation of zero center mass momentum bound states. Regarding the Cooper pairs binding energy, this depends on the molecule populations in each layer. Maximum binding energies occur for non-zero (zero) pair momentum when the Fermi system is polarized (unpolarized). We find an analytic expression for the dimer-dimer effective interaction in the deep BEC regime. The present analysis represents a route for addressing the BCS-BEC crossover in dipolar Fermi gases confined in 2D optical lattices within the current experimental panorama. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Optics

    CERN Document Server

    Mathieu, Jean Paul

    1975-01-01

    Optics, Parts 1 and 2 covers electromagnetic optics and quantum optics. The first part of the book examines the various of the important properties common to all electromagnetic radiation. This part also studies electromagnetic waves; electromagnetic optics of transparent isotropic and anisotropic media; diffraction; and two-wave and multi-wave interference. The polarization states of light, the velocity of light, and the special theory of relativity are also examined in this part. The second part is devoted to quantum optics, specifically discussing the classical molecular theory of optical p

  12. Dynamic temperature measurements with embedded optical sensors.

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, Daniel H.,; Seagle, Christopher T; Ao, Tommy

    2013-10-01

    This report summarizes LDRD project number 151365, \\Dynamic Temperature Measurements with Embedded Optical Sensors". The purpose of this project was to develop an optical sensor capable of detecting modest temperature states (<1000 K) with nanosecond time resolution, a recurring diagnostic need in dynamic compression experiments at the Sandia Z machine. Gold sensors were selected because the visible re ectance spectrum of gold varies strongly with temperature. A variety of static and dynamic measurements were performed to assess re ectance changes at di erent temperatures and pressures. Using a minimal optical model for gold, a plausible connection between static calibrations and dynamic measurements was found. With re nements to the model and diagnostic upgrades, embedded gold sensors seem capable of detecting minor (<50 K) temperature changes under dynamic compression.

  13. Selection rule for Dirac-like points in two-dimensional dielectric photonic crystals

    KAUST Repository

    Li, Yan

    2013-01-01

    We developed a selection rule for Dirac-like points in two-dimensional dielectric photonic crystals. The rule is derived from a perturbation theory and states that a non-zero, mode-coupling integral between the degenerate Bloch states guarantees a Dirac-like point, regardless of the type of the degeneracy. In fact, the selection rule can also be determined from the symmetry of the Bloch states even without computing the integral. Thus, the existence of Dirac-like points can be quickly and conclusively predicted for various photonic crystals independent of wave polarization, lattice structure, and composition. © 2013 Optical Society of America.

  14. Antibiotic usage pattern in selected poultry farms in Ogun state ...

    African Journals Online (AJOL)

    A survey was conducted from March 2011 to July 2011 on antibiotic usage pattern in selected poultry farms in Ogun State. Using a well-structured questionnaire, a total of 58 poultry farms were randomly surveyed from the four geo-political zones of Ogun State. All the 58 (100%) poultry farms used one or more antibiotics.

  15. Real-time validation of receiver state information in optical space-time block code systems.

    Science.gov (United States)

    Alamia, John; Kurzweg, Timothy

    2014-06-15

    Free space optical interconnect (FSOI) systems are a promising solution to interconnect bottlenecks in high-speed systems. To overcome some sources of diminished FSOI performance caused by close proximity of multiple optical channels, multiple-input multiple-output (MIMO) systems implementing encoding schemes such as space-time block coding (STBC) have been developed. These schemes utilize information pertaining to the optical channel to reconstruct transmitted data. The STBC system is dependent on accurate channel state information (CSI) for optimal system performance. As a result of dynamic changes in optical channels, a system in operation will need to have updated CSI. Therefore, validation of the CSI during operation is a necessary tool to ensure FSOI systems operate efficiently. In this Letter, we demonstrate a method of validating CSI, in real time, through the use of moving averages of the maximum likelihood decoder data, and its capacity to predict the bit error rate (BER) of the system.

  16. Experimental demonstration of efficient and selective population transfer and qubit distillation in a rare-earth-metal-ion-doped crystal

    International Nuclear Information System (INIS)

    Rippe, Lars; Nilsson, Mattias; Kroell, Stefan; Klieber, Robert; Suter, Dieter

    2005-01-01

    In optically controlled quantum computers it may be favorable to address different qubits using light with different frequencies, since the optical diffraction does not then limit the distance between qubits. Using qubits that are close to each other enables qubit-qubit interactions and gate operations that are strong and fast in comparison to qubit-environment interactions and decoherence rates. However, as qubits are addressed in frequency space, great care has to be taken when designing the laser pulses, so that they perform the desired operation on one qubit, without affecting other qubits. Complex hyperbolic secant pulses have theoretically been shown to be excellent for such frequency-addressed quantum computing [I. Roos and K. Molmer, Phys. Rev. A 69, 022321 (2004)] - e.g., for use in quantum computers based on optical interactions in rare-earth-metal-ion-doped crystals. The optical transition lines of the rare-earth-metal-ions are inhomogeneously broadened and therefore the frequency of the excitation pulses can be used to selectively address qubit ions that are spatially separated by a distance much less than a wavelength. Here, frequency-selective transfer of qubit ions between qubit states using complex hyperbolic secant pulses is experimentally demonstrated. Transfer efficiencies better than 90% were obtained. Using the complex hyperbolic secant pulses it was also possible to create two groups of ions, absorbing at specific frequencies, where 85% of the ions at one of the frequencies was shifted out of resonance with the field when ions in the other frequency group were excited. This procedure of selecting interacting ions, called qubit distillation, was carried out in preparation for two-qubit gate operations in the rare-earth-metal-ion-doped crystals. The techniques for frequency-selective state-to-state transfer developed here may be also useful also for other quantum optics and quantum information experiments in these long-coherence-time solid-state

  17. Optical losses due to tracking on solar thermal collectors

    DEFF Research Database (Denmark)

    Sallaberry, Fabienne; Pujol-Nadal, Ramn; Peres, Bengt

    2017-01-01

    For a wide range of operational temperatures, the solar thermal collectors can use optical concentration systems to optimize their efficiency. However, as optical concentration relies on direct solar radiation, it is necessary to use a solar tracker following the sun direction to maximize...... the amount of useful solar radiation received. The selection of the appropriate tracking systems matching the optical concentration factor is essential to achieve optimal collector efficiency. Otherwise, the concentrator would experience high optical losses due to the inadequate focusing of the direct solar...... radiation onto its receiver, regardless of its quality. This paper gives the state-of-the-art of the methodologies available to characterize the tracking error of a concentrating collector, a summary of different previous studies done in this subject and of the standardization regarding the tracking...

  18. Selective Iron(III ion uptake using CuO-TiO2 nanostructure by inductively coupled plasma-optical emission spectrometry

    Directory of Open Access Journals (Sweden)

    Rahman Mohammed M

    2012-12-01

    Full Text Available Abstract Background CuO-TiO2 nanosheets (NSs, a kind of nanomaterials is one of the most attracting class of transition doped semiconductor materials due to its interesting and important optical, electrical, and structural properties and has many technical applications, such as in metal ions detection, photocatalysis, Chemi-sensors, bio-sensors, solar cells and so on. In this paper the synthesis of CuO-TiO2 nanosheets by the wet-chemically technique is reported. Methods CuO-TiO2 NSs were prepared by a wet-chemical process using reducing agents in alkaline medium and characterized by UV/vis., FT-IR spectroscopy, X-ray photoelectron spectroscopy (XPS, powder X-ray diffraction (XRD, and field-emission scanning electron microscopy (FE-SEM etc. Results The structural and optical evaluation of synthesized NSs were measured by XRD pattern, Fourier transform infrared (FT-IR and UV–vis spectroscopy, respectively which confirmed that the obtained NSs are well-crystalline CuO-TiO2 and possessing good optical properties. The morphological analysis of CuO-TiO2 NSs was executed by FE-SEM, which confirmed that the doped products were sheet-shaped and growth in large quantity. Here, the analytical efficiency of the NSs was applied for a selective adsorption of iron(III ion prior to detection by inductively coupled plasma-optical emission spectrometry (ICP-OES. The selectivity of NSs towards various metal ions, including Au(III, Cd(II, Co(II, Cr(III, Fe(III, Pd(II, and Zn(II was analyzed. Conclusions Based on the selectivity study, it was confirmed that the selectivity of doped NSs phase was the most towards Fe(III ion. The static adsorption capacity for Fe(III was calculated to be 110.06 mgg−1. Results from adsorption isotherm also verified that the adsorption process was mainly monolayer-adsorption onto a surface containing a finite number of CuO-TiO2 NSs adsorption sites.

  19. Nonlinear Optical Magnetism Revealed by Second-Harmonic Generation in Nanoantennas.

    Science.gov (United States)

    Kruk, Sergey S; Camacho-Morales, Rocio; Xu, Lei; Rahmani, Mohsen; Smirnova, Daria A; Wang, Lei; Tan, Hark Hoe; Jagadish, Chennupati; Neshev, Dragomir N; Kivshar, Yuri S

    2017-06-14

    Nonlinear effects at the nanoscale are usually associated with the enhancement of electric fields in plasmonic structures. Recently emerged new platform for nanophotonics based on high-index dielectric nanoparticles utilizes optically induced magnetic response via multipolar Mie resonances and provides novel opportunities for nanoscale nonlinear optics. Here, we observe strong second-harmonic generation from AlGaAs nanoantennas driven by both electric and magnetic resonances. We distinguish experimentally the contribution of electric and magnetic nonlinear response by analyzing the structure of polarization states of vector beams in the second-harmonic radiation. We control continuously the transition between electric and magnetic nonlinearities by tuning polarization of the optical pump. Our results provide a direct observation of nonlinear optical magnetism through selective excitation of multipolar nonlinear modes in nanoantennas.

  20. Wavelength-selective bleaching of the optical spectra of trapped electrons in organic glasses. II

    International Nuclear Information System (INIS)

    Paraszczak, J.; Willard, J.E.

    1979-01-01

    Further resolution of the inhomogeneous optical spectra of trapped electrons (e - /sub t/) in organic glasses has been obtained from wavelength selective bleaching and thermal decay studies on 3-methylpentane-d 14 (3MP-d 14 ) and 2-methyltetrahydrofuran (MTHF) following γ irradiation in the temperature region of 20 K, and limits on the degree of resolution achievable have been indicated. Exposure of 3MP-d 14 to light of wavelengths >2100 nm (from a tunable laser) reduces the optical densities at the bleaching wavelength and longer to zero, while ''peeling off'' a portion of the O.D. at all shorter wavelengths but leaving the remainder of the spectrum unaffected. The fraction of the integrated optical spectrum, ∫OD d (eV), removed by bleaching at each wavelength tested, and also by thermal decay, is equivalent to the fraction of the total e - /sub t/ spins removed and measured by ESR. 1064 nm light bleaches the spectrum nearly uniformly, confirming that the spectra of all of the e - /sub t/ have blue tails with similar ease of bleaching. Heretofore unobserved low temperature thermal decay of e - /sub t/ occurs at 20 and 40 K (20% of the spin concentration in 30 min, 35% in 3h). The rate of decay of the optical spectrum decreases with decreasing wavelength of observation (2.5, 2.2, 1.8, and 1.5 μ), but at each wavelength is the same at 40 K as at 20 K, consistent

  1. Symmetry Breaking Ground States of Bose-Einstein Condensates in 1D Double Square Well and Optical Lattice Well

    International Nuclear Information System (INIS)

    Yuan Qingxin; Ding Guohui

    2005-01-01

    We investigate the phenomena of symmetry breaking and phase transition in the ground state of Bose-Einstein condensates (BECs) trapped in a double square well and in an optical lattice well, respectively. By using standing-wave expansion method, we present symmetric and asymmetric ground state solutions of nonlinear Schroedinger equation (NLSE) with a symmetric double square well potential for attractive nonlinearity. In particular, we study the ground state wave function's properties by changing the depth of potential and atomic interactions (here we restrict ourselves to the attractive regime). By using the Fourier grid Hamiltonian method, we also reveal a phase transition of BECs trapped in one-dimensional optical lattice potential.

  2. Conditional generation of arbitrary multimode entangled states of light with linear optics

    International Nuclear Information System (INIS)

    Fiurasek, J.; Massar, S.; Cerf, N. J.

    2003-01-01

    We propose a universal scheme for the probabilistic generation of an arbitrary multimode entangled state of light with finite expansion in Fock basis. The suggested setup involves passive linear optics, single-photon sources, strong coherent laser beams, and photodetectors with single-photon resolution. The efficiency of this setup may be greatly enhanced if, in addition, a quantum memory is available

  3. FIBER OPTICS: Fibre optics: Forty years later

    Science.gov (United States)

    Dianov, Evgenii M.

    2010-01-01

    This paper presents a brief overview of the state of the art in fibre optics and its main applications: optical fibre communications, fibre lasers and fibre sensors for various physical property measurements. The future of fibre optics and the status of this important area of the modern technology in Russia are discussed.

  4. All-optical OXC transition strategy from WDM optical network to elastic optical network.

    Science.gov (United States)

    Chen, Xin; Li, Juhao; Guo, Bingli; Zhu, Paikun; Tang, Ruizhi; Chen, Zhangyuan; He, Yongqi

    2016-02-22

    Elastic optical network (EON) has been proposed recently as a spectrum-efficient optical layer to adapt to rapidly-increasing traffic demands instead of current deployed wavelength-division-multiplexing (WDM) optical network. In contrast with conventional WDM optical cross-connect (OXCs) based on wavelength selective switches (WSSs), the EON OXCs are based on spectrum selective switches (SSSs) which are much more expensive than WSSs, especially for large-scale switching architectures. So the transition cost from WDM OXCs to EON OXCs is a major obstacle to realizing EON. In this paper, we propose and experimentally demonstrate a transition OXC (TOXC) structure based on 2-stage cascading switching architectures, which make full use of available WSSs in current deployed WDM OXCs to reduce number and port count of required SSSs. Moreover, we propose a contention-aware spectrum allocation (CASA) scheme for EON built with the proposed TOXCs. We show by simulation that the TOXCs reduce the network capital expenditure transiting from WDM optical network to EON about 50%, with a minor traffic blocking performance degradation and about 10% accommodated traffic number detriment compared with all-SSS EON OXC architectures.

  5. In situ process monitoring in selective laser sintering using optical coherence tomography

    Science.gov (United States)

    Gardner, Michael R.; Lewis, Adam; Park, Jongwan; McElroy, Austin B.; Estrada, Arnold D.; Fish, Scott; Beaman, Joseph J.; Milner, Thomas E.

    2018-04-01

    Selective laser sintering (SLS) is an efficient process in additive manufacturing that enables rapid part production from computer-based designs. However, SLS is limited by its notable lack of in situ process monitoring when compared with other manufacturing processes. We report the incorporation of optical coherence tomography (OCT) into an SLS system in detail and demonstrate access to surface and subsurface features. Video frame rate cross-sectional imaging reveals areas of sintering uniformity and areas of excessive heat error with high temporal resolution. We propose a set of image processing techniques for SLS process monitoring with OCT and report the limitations and obstacles for further OCT integration with SLS systems.

  6. France's State of the Art Distributed Optical Fibre Sensors Qualified for the Monitoring of the French Underground Repository for High Level and Intermediate Level Long Lived Radioactive Wastes.

    Science.gov (United States)

    Delepine-Lesoille, Sylvie; Girard, Sylvain; Landolt, Marcel; Bertrand, Johan; Planes, Isabelle; Boukenter, Aziz; Marin, Emmanuel; Humbert, Georges; Leparmentier, Stéphanie; Auguste, Jean-Louis; Ouerdane, Youcef

    2017-06-13

    This paper presents the state of the art distributed sensing systems, based on optical fibres, developed and qualified for the French Cigéo project, the underground repository for high level and intermediate level long-lived radioactive wastes. Four main parameters, namely strain, temperature, radiation and hydrogen concentration are currently investigated by optical fibre sensors, as well as the tolerances of selected technologies to the unique constraints of the Cigéo's severe environment. Using fluorine-doped silica optical fibre surrounded by a carbon layer and polyimide coating, it is possible to exploit its Raman, Brillouin and Rayleigh scattering signatures to achieve the distributed sensing of the temperature and the strain inside the repository cells of radioactive wastes. Regarding the dose measurement, promising solutions are proposed based on Radiation Induced Attenuation (RIA) responses of sensitive fibres such as the P-doped ones. While for hydrogen measurements, the potential of specialty optical fibres with Pd particles embedded in their silica matrix is currently studied for this gas monitoring through its impact on the fibre Brillouin signature evolution.

  7. Efimov states and bound state properties in selected nuclear and molecular three-body systems

    International Nuclear Information System (INIS)

    Huber, H.S.

    1978-01-01

    The search is made among selected three-body systems for possible Efimov state behavior. In order to carry out this analysis of phenomenological potentials a new mathematical approach, the FCM (Faddeev-coordinate-momentum) technique, is developed. The analysis then proceeds through the framework of the Faddeev equations by employing the UPE (unitary pole expansion) to reduce these equations to numerically feasible form. The systems chosen for analysis are the 4 He trimer and the three-α model of 12 C. Efimov states are not found in 12 C, thus answering speculation among nuclear theorists. The 4 He trimer, on the other hand, manifests Efimov states for each potential considered and the characteristics of these states are extensively analyzed. Since Efimov states are predicted by all of the phenomenological potentials considered, these states would seem to be a realistically fundamental property of the 4 He trimer system

  8. Experimental evidence of state-selective charge transfer in inductively coupled plasma-atomic emission spectrometry

    International Nuclear Information System (INIS)

    Chan, George C.-Y.; Hieftje, Gary M.

    2004-01-01

    State-selective charge-transfer behavior was observed for Fe, Cr, Mn and Cu in inductively coupled plasma (ICP)-atomic emission spectrometry. Charge transfer from Ar + to Fe, Cr and Mn is state-selective because of inefficient collisional mixing of the quasiresonant charge-transfer energy levels with nearby levels. This low efficiency is the consequence of differences in electronic configuration of the core electrons. The reason for state-selective charge-transfer behavior to Cu is not clear, although a tentative explanation based on efficiency of intramultiplet and intermultiplet mixing for this special case is offered

  9. Evolution of optically selected quasars with z<2.2 and B<20

    International Nuclear Information System (INIS)

    Marshall, H.L.

    1985-01-01

    Several complete samples of optically selected quasars are combined to give details of the quasar luminosity function and its evolution for redshifts less than 2.2. Sufficient coverage of the Hubble diagram is obtained that luminosity-dependent density evolution models can be tested and compared against pure luminosity evolution models. Although luminosity-dependent evolution is indicated if the evolution function has an exponential form, the data are consistent with a power-law evolution model that is independent of luminosity. When the sample is split into halves by redshift, a better fit is obtained with a power-law evolution model than with an exponential model. Furthermore, the luminosity function is consistent with a power-law shape whose slope is independent of redshift. Pure luminosity evolution models wherein luminosities evolve as (1+z)/sup 3.5/ and the luminosity functioin is given by dN/dLproportionalL/sup -3.6/ are consistent with these results and fit the data very well. These results suggest that the same mass supply and energy generation mechanisms apply over several decades of optical luminosity and for z<2.2

  10. Effects of optical pumping in the photo-excitation of organic triplet states

    International Nuclear Information System (INIS)

    Lin, Tien-Sung; Yang, Tran-Chin; Sloop, David J.

    2013-01-01

    Highlights: • High electron spin polarization (ESP) was observed in pentacene triplets at room temperature. • The high ESP is transfer to the surrounding nuclear spin by optical pumping in zero-field (ZF). • The ZF transition frequencies and their line width depend on the laser pumping rate. • The spin–lattice relaxation times of the nuclear system are evaluated. - Abstract: Upon the application of laser and microwave pulses, non-zero magnetic moment of a photo-excited triplet state of organic molecules is generated in zero-field (ZF). The time evolution of the transient magnetic moments can be measured by free induction decay (FID) in ZF. The observed ZF spectra become broadened and ZF transition shifted to lower frequencies when the repetition rate of laser excitation is increased, which are attributed to the optical pumping of nuclear polarization (ONP) effect and the associated nuclear spin lattice relaxation processes. The observed ONP effect is discussed in terms of the local field effect and spin diffusion processes in optical pumping

  11. Effects of optical pumping in the photo-excitation of organic triplet states

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tien-Sung, E-mail: lin@wustl.edu; Yang, Tran-Chin; Sloop, David J.

    2013-08-30

    Highlights: • High electron spin polarization (ESP) was observed in pentacene triplets at room temperature. • The high ESP is transfer to the surrounding nuclear spin by optical pumping in zero-field (ZF). • The ZF transition frequencies and their line width depend on the laser pumping rate. • The spin–lattice relaxation times of the nuclear system are evaluated. - Abstract: Upon the application of laser and microwave pulses, non-zero magnetic moment of a photo-excited triplet state of organic molecules is generated in zero-field (ZF). The time evolution of the transient magnetic moments can be measured by free induction decay (FID) in ZF. The observed ZF spectra become broadened and ZF transition shifted to lower frequencies when the repetition rate of laser excitation is increased, which are attributed to the optical pumping of nuclear polarization (ONP) effect and the associated nuclear spin lattice relaxation processes. The observed ONP effect is discussed in terms of the local field effect and spin diffusion processes in optical pumping.

  12. Observation of phase noise reduction in photonically synthesized sub-THz signals using a passively mode-locked laser diode and highly selective optical filtering

    DEFF Research Database (Denmark)

    Criado, A. R.; Acedo, P.; Carpintero, G.

    2012-01-01

    A Continuous Wave (CW) sub-THz photonic synthesis setup based on a single Passively Mode-Locked Laser Diode (PMLLD) acting as a monolithic Optical Frequency Comb Generator (OFCG) and highly selective optical filtering has been implemented to evaluate the phase noise performance of the generated sub...

  13. Investigations and Simulations of All optical Switches in linear state Based on Photonic Crystal Directional Coupler

    Directory of Open Access Journals (Sweden)

    S. Maktoobi

    2014-10-01

    Full Text Available Switching is a principle process in digital computers and signal processing systems. The growth of optical signal processing systems, draws particular attention to design of ultra-fast optical switches. In this paper, All Optical Switches in linear state Based On photonic crystal Directional coupler is analyzed and simulated. Among different methods, the finite difference time domain method (FDTD is a preferable method and is used. We have studied the application of photonic crystal lattices, the physics of optical switching and photonic crystal Directional coupler. In this paper, Electric field intensity and the power output that are two factors to improve the switching performance and the device efficiency are investigated and simulated. All simulations are performed by COMSOL software.

  14. OPTICAL/NEAR-INFRARED SELECTION OF RED QUASI-STELLAR OBJECTS: EVIDENCE FOR STEEP EXTINCTION CURVES TOWARD GALACTIC CENTERS?

    Energy Technology Data Exchange (ETDEWEB)

    Fynbo, J. P. U.; Krogager, J.-K.; Vestergaard, M.; Geier, S. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Venemans, B. [Max-Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Noterdaeme, P. [CNRS-UPMC, UMR7095, Institut d' Astrophysique de Paris, 98bis Bd. Arago, F-75014 Paris (France); Moller, P. [European Southern Observatory, Karl-Schwarzschildstrasse 2, D-85748 Garching bei Muenchen (Germany); Ledoux, C. [European Southern Observatory, Alonso de Cordova 3107, Vitacura, Casilla 19001, Santiago 19 (Chile)

    2013-01-15

    We present the results of a search for red QSOs using a selection based on optical imaging from the Sloan Digital Sky Survey (SDSS) and near-infrared imaging from UKIDSS. Our main goal with the selection is to search for QSOs reddened by foreground dusty absorber galaxies. For a sample of 58 candidates (including 20 objects fulfilling our selection criteria that already have spectra in the SDSS), 46 (79%) are confirmed to be QSOs. The QSOs are predominantly dust-reddened except for a handful at redshifts z {approx}> 3.5. However, the dust is most likely located in the QSO host galaxies (and for two, the reddening is primarily caused by Galactic dust) rather than in the intervening absorbers. More than half of the QSOs show evidence of associated absorption (BAL absorption). Four (7%) of the candidates turned out to be late-type stars, and another four (7%) are compact galaxies. We could not identify the remaining four objects. In terms of their optical spectra, these QSOs are similar to the QSOs selected in the FIRST-2MASS Red Quasar Survey except they are on average fainter, more distant, and only two are detected in the FIRST survey. As per the usual procedure, we estimate the amount of extinction using the SDSS QSO template reddened by Small-Magellanic-Cloud-(SMC) like dust. It is possible to get a good match to the observed (rest-frame ultraviolet) spectra, but it is not possible to match the observed near-IR photometry from UKIDSS for nearly all the reddened QSOs. The most likely reasons are that the SDSS QSO template is too red at optical wavelengths due to contaminating host galaxy light and because the assumed SMC extinction curve is too shallow. Three of the compact galaxies display old stellar populations with ages of several Gyr and masses of about 10{sup 10} M{sub Sun} (based on spectral energy distribution modeling). The inferred stellar densities in these galaxies exceed 10{sup 10} M{sub Sun} kpc{sup -2}, which is among the highest measured for early

  15. Fiber optics spectrochemical emission sensors

    Science.gov (United States)

    Griffin, Jeffrey W.; Olsen, Khris B.

    1992-01-01

    A method of in situ monitoring of a body of a fluid stored in a tank or groundwater or vadose zone gases in a well for the presence of selected chemical species uses a probe insertable into the well or tank via a cable and having electrical apparatus for exciting selected chemical species in the body of fluid. The probe can have a pair of electrodes for initiating a spark or a plasma cell for maintaining a plasma to excite the selected chemical species. The probe also has optical apparatus for receiving optical emissions emitted by the excited species and optically transmitting the emissions via the cable to an analysis location outside the well. The analysis includes detecting a selected wavelength in the emissions indicative of the presence of the selected chemical species. A plurality of probes can be suspended at an end of a respective cable, with the transmitting and analyzing steps for each probe being synchronized sequentially for one set of support equipment and instrumentation to monitor at multiple test points. The optical apparatus is arranged about the light guide axis so that the selected chemical species are excited the fluid in alignment with the light guide axis and optical emissions are received from the excited chemical species along such axis.

  16. Logic operations and data storage using vortex magnetization states in mesoscopic permalloy rings, and optical readout

    Energy Technology Data Exchange (ETDEWEB)

    Bowden, S R; Gibson, U J, E-mail: u.gibson@dartmouth.ed [Thayer School of Engineering, Dartmouth College, Hanover, NH 03755-8000 (United States)

    2010-01-01

    Optical coatings applied to one-half of thin film magnetic rings allow real-time readout of the chirality of the vortex state of micro- and nanomagnetic structures by breaking the symmetry of the optical signal. We use this technique to demonstrate data storage, operation of a NOT gate that uses exchange interactions between slightly overlapping rings, and to investigate the use of chains of rings as connecting wires for linking gates.

  17. Electronic structure and optical properties of twisted bilayer graphene calculated via time evolution of states in real space

    Science.gov (United States)

    Le, H. Anh; Do, V. Nam

    2018-03-01

    We investigate the electronic and optical properties of twisted bilayer graphene with arbitrary twist angles θ . Our results are based on a method of evolving in time quantum states in lattice space. We propose an efficient scheme of sampling lattice nodes that helps to reduce significantly computational cost, particularly for tiny twist angles. We demonstrate the continuous variation of the density of states and the optical conductivity with respect to the twist angle. It indicates that the commensurability between the two graphene layers does not play an essential role in governing the electronic and optical properties. We point out that, for the twist angles roughly in the range 0 .1∘energy exhibits the typical W shape with a small peak locating at the Fermi energy. This peak is formed as the merging of two van Hove peaks and reflects the appearance of states strongly localized in the AA-like region of moiré zones. When decreasing the twist angle to zero, the W shape is gradually transformed to the U shape, which is seen as the behavior of the density of states in the limit of θ →0∘ .

  18. Effect of substrate material selection on polychromatic integral diffraction efficiency for multilayer diffractive optics in oblique incident situation

    Science.gov (United States)

    Zhang, Bo; Cui, Qingfeng; Piao, Mingxu

    2018-05-01

    The effect of substrate material selection for multilayer diffractive optical elements (MLDOEs) on polychromatic integral diffraction efficiency (PIDE) is studied in the oblique incident situation. A mathematical model of substrate material selection is proposed to obtain the high PIDE with large incident angle. The extended expression of the microstructure heights with consideration of incident angle is deduced to calculate the PIDE difference Δ η bar(λ) for different substrate material combinations. The smaller value of Δ η bar(λ) indicates the more optimal substrate material combination in a wide incident angle range. Based on the deduced mathematical model, different MLDOEs are analyzed in visible and infrared wavebands. The results show that the three-layer DOEs can be applied in larger incident angle situation than the double-layer DOEs in visible waveband. When the two substrate materials are the same, polycarbonate (PC) is more reasonable than poly(methyl methacrylate) (PMMA) as the middle filling optical material for the three-layer DOEs. In the infrared waveband, the PIDE decreases in the LWIR are obviously smaller than that in the MWIR for the same substrate material combination, and the PIDE cannot be calculated when the incident angle larger than critical angle. The analysis results can be used to guide the hybrid optical system design with MLDOEs.

  19. The necessity of microscopy to characterize the optical properties of size-selected, nonspherical aerosol particles.

    Science.gov (United States)

    Veghte, Daniel P; Freedman, Miriam A

    2012-11-06

    It is currently unknown whether mineral dust causes a net warming or cooling effect on the climate system. This uncertainty stems from the varied and evolving shape and composition of mineral dust, which leads to diverse interactions of dust with solar and terrestrial radiation. To investigate these interactions, we have used a cavity ring-down spectrometer to study the optical properties of size-selected calcium carbonate particles, a reactive component of mineral dust. The size selection of nonspherical particles like mineral dust can differ from spherical particles in the polydispersity of the population selected. To calculate the expected extinction cross sections, we use Mie scattering theory for monodisperse spherical particles and for spherical particles with the polydispersity observed in transmission electron microscopy images. Our results for calcium carbonate are compared to the well-studied system of ammonium sulfate. While ammonium sulfate extinction cross sections agree with Mie scattering theory for monodisperse spherical particles, the results for calcium carbonate deviate at large and small particle sizes. We find good agreement for both systems, however, between the calculations performed using the particle images and the cavity ring-down data, indicating that both ammonium sulfate and calcium carbonate can be treated as polydisperse spherical particles. Our results indicate that having an independent measure of polydispersity is essential for understanding the optical properties of nonspherical particles measured with cavity ring-down spectroscopy. Our combined spectroscopy and microscopy techniques demonstrate a novel method by which cavity ring-down spectroscopy can be extended for the study of more complex aerosol particles.

  20. State dependent pseudo-resonances and excess noise

    OpenAIRE

    Papoff, F.; D'Alessandro, G.; Oppo, G.Luca

    2008-01-01

    We show that strong response to nonresonant modulations and excess noise are state dependent in generic nonlinear systems; i.e., they affect some output states but are absent from others. This is demonstrated in complex Swift-Hohenberg models relevant to optics, where it is caused by the non-normality of the linearized stability operators around selected output states, even though the cavity modes are orthogonal. In particular, we find the effective parameters that control excess noise and th...

  1. Optical density of states in ultradilute GaAsN alloy: Coexistence of free excitons and impurity band of localized and delocalized states

    Energy Technology Data Exchange (ETDEWEB)

    Bhuyan, Sumi; Pal, Bipul; Bansal, Bhavtosh, E-mail: bhavtosh@iiserkol.ac.in [Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Nadia 741252, West Bengal (India); Das, Sanat K.; Dhar, Sunanda [Department of Electronic Science, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India)

    2014-07-14

    Optically active states in liquid phase epitaxy-grown ultra-dilute GaAsN are studied. The feature-rich low temperature photoluminescence spectrum has contributions from excitonic band states of the GaAsN alloy, and two types of defect states—localized and extended. The degree of delocalization for extended states both within the conduction and defect bands, characterized by the electron temperature, is found to be similar. The degree of localization in the defect band is analyzed by the strength of the phonon replicas. Stronger emission from these localized states is attributed to their giant oscillator strength.

  2. Novel target configurations for selective ionization state studies in molybdenum

    International Nuclear Information System (INIS)

    Ilcisin, K.J.; Feldman, U.; Schwob, J.L.; Wouters, A.; Suckewer, S.; Princeton Univ., NJ

    1990-03-01

    Details of experiments aimed at achieving low ionization state selectivity in molybdenum are presented. Targets are excited with a 10 J CO 2 laser and the resultant VUV spectrum (300--700 Angstrom) has been studied. Combinations of focal spot size, target depth, and target geometries are compared. Simple attenuation of energy is shown not to vary ionization stage composition significantly. Experiments conducted with grazing incidence targets result only in a hot plasma. Modular targets with cooling cylinders of various radii demonstrated good selectivity of the ionization states, but with low absolute signals. Finally, results from combinations of focal spot adjustment and radiative cooling illustrate increased control over desired plasma temperature and density for spectroscopic studies of molybdenum. 7 refs., 14 figs

  3. A Piezoelectroluminescent Fiber-Optical Sensor for Diagnostics of the 3D Stress State in Composite Structures

    Science.gov (United States)

    Pan'kov, A. A.

    2018-05-01

    The mathematical model of a piezoelectroluminescent fiber-optical sensor is developed for diagnostics of the 3D stress state of composite structures. The sensor model is a coaxial sector-compound layered cylinder consisting of a central optical fiber with electroluminescent and piezoelectric layers and an external uniform elastic buffer layer. The electroluminescent and piezoelectric layers are separated by radial-longitudinal boundaries, common for both layers, into geometrically equal six "measuring elements" — cylindrical two-layered sectors. The directions of 3D polarization of the piezoelectric phases and the frequencies of luminous efficacy of the electroluminescent phases are different in each sector. In the sensor, a thin translucent "internal" controlling electrode is located between the optical fiber and the electroluminescent layer, and the piezoelectric layer is coated by a thin "external" controlling electrode. The results of numerical modeling of the nonuniform coupled electroelastic fields of the piezoelectroluminescent fiber-optical sensor in the loaded "representative volume" of a composite, taking into account the action of the controlling voltage on the internal and external electrodes, of a numerical calculation of "informative and controlling coefficients" of the sensor, and of testing of an arbitrary 3D stress of state of a unidirectional glass-fiber plastic by the finite-element method are presented.

  4. Objective Versus Subjective Military Pilot Selection Methods in the United States of America

    Science.gov (United States)

    2015-12-14

    a computerized test designed to assess pilot skills by measuring spatial orientation and psychomotor skills and multitasking . The second is the...AFRL-SA-WP-SR-2015-0028 Objective Versus Subjective Military Pilot Selection Methods in the United States of America Joe...September 2014 4. TITLE AND SUBTITLE Objective Versus Subjective Military Pilot Selection Methods in the United States of America 5a. CONTRACT

  5. Solid-State Synthesis and Effect of Temp erature on Optical Prop erties of CuO Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    C. C. Vidyasagar; Y. Arthoba Naik∗; T. G. Venkatesha; R. Viswanatha

    2012-01-01

    Modulation of band energies through size control offers new ways to control photoresponse and photoconversion efficiency of the solar cell. The P-type semiconductor of copper oxide is an important functional material used for photovoltaic cells. CuO is attractive as a selective solar absorber since it has high solar absorbance and a low thermal emittance. The present work describes the synthesis and characterization of semiconducting CuO nanoparticles via one-step, solid-state reaction in the presence of Polyethylene glycol 400 as size controlling agent for the preparation of CuO nanoparticles at different temperatures. Solid-state mechanochemical processing, which is not only a physical size reduction process in conventional milling but also a chemical reaction, is mechanically activated at the nanoscale during grinding. The present method is a simple and efficient method of preparing nanoparticles with high yield at low cost. The structural and chemical composition of the nanoparticles were analyzed by X-ray diffraction, field emission scanning electron microscopy and energy-dispersive spectrometer, respectively. Optical properties and band gap of CuO nanoparticles were studied by UV-Vis spectroscopy. These results showed that the band gap energy decreased with increase of annealing temperature, which can be attributed to the improvement in grain size of the samples.

  6. Optical limiting properties of optically active phthalocyanine derivatives

    Science.gov (United States)

    Wang, Peng; Zhang, Shuang; Wu, Peiji; Ye, Cheng; Liu, Hongwei; Xi, Fu

    2001-06-01

    The optical limiting properties of four optically active phthalocyanine derivatives in chloroform solutions and epoxy resin thin plates were measured at 532 nm with 10 ns pulses. The excited state absorption cross-section σex and refractive-index cross-section σr were determined with the Z-scan technique. These chromophores possess larger σex than the ground state absorption cross-section σ0, indicating that they are the potential materials for reverse saturable absorption (RSA). The negative σr values of these chromophores add to the thermal contribution, producing a larger defocusing effect, which may be helpful in further enhancing their optical limiting performance. The optical limiting responses of the thin plate samples are stronger than those of the chloroform solutions.

  7. Optically intraconnected computer employing dynamically reconfigurable holographic optical element

    Science.gov (United States)

    Bergman, Larry A. (Inventor)

    1992-01-01

    An optically intraconnected computer and a reconfigurable holographic optical element employed therein. The basic computer comprises a memory for holding a sequence of instructions to be executed; logic for accessing the instructions in sequence; logic for determining for each the instruction the function to be performed and the effective address thereof; a plurality of individual elements on a common support substrate optimized to perform certain logical sequences employed in executing the instructions; and, element selection logic connected to the logic determining the function to be performed for each the instruction for determining the class of each function and for causing the instruction to be executed by those the elements which perform those associated the logical sequences affecting the instruction execution in an optimum manner. In the optically intraconnected version, the element selection logic is adapted for transmitting and switching signals to the elements optically.

  8. Optical fiber biocompatible sensors for monitoring selective treatment of tumors via thermal ablation

    Science.gov (United States)

    Tosi, Daniele; Poeggel, Sven; Dinesh, Duraibabu B.; Macchi, Edoardo G.; Gallati, Mario; Braschi, Giovanni; Leen, Gabriel; Lewis, Elfed

    2015-09-01

    Thermal ablation (TA) is an interventional procedure for selective treatment of tumors, that results in low-invasive outpatient care. The lack of real-time control of TA is one of its main weaknesses. Miniature and biocompatible optical fiber sensors are applied to achieve a dense, multi-parameter monitoring, that can substantially improve the control of TA. Ex vivo measurements are reported performed on porcine liver tissue, to reproduce radiofrequency ablation of hepatocellular carcinoma. Our measurement campaign has a two-fold focus: (1) dual pressure-temperature measurement with a single probe; (2) distributed thermal measurement to estimate point-by-point cells mortality.

  9. France’s State of the Art Distributed Optical Fibre Sensors Qualified for the Monitoring of the French Underground Repository for High Level and Intermediate Level Long Lived Radioactive Wastes

    Directory of Open Access Journals (Sweden)

    Sylvie Delepine-Lesoille

    2017-06-01

    Full Text Available This paper presents the state of the art distributed sensing systems, based on optical fibres, developed and qualified for the French Cigéo project, the underground repository for high level and intermediate level long-lived radioactive wastes. Four main parameters, namely strain, temperature, radiation and hydrogen concentration are currently investigated by optical fibre sensors, as well as the tolerances of selected technologies to the unique constraints of the Cigéo’s severe environment. Using fluorine-doped silica optical fibre surrounded by a carbon layer and polyimide coating, it is possible to exploit its Raman, Brillouin and Rayleigh scattering signatures to achieve the distributed sensing of the temperature and the strain inside the repository cells of radioactive wastes. Regarding the dose measurement, promising solutions are proposed based on Radiation Induced Attenuation (RIA responses of sensitive fibres such as the P-doped ones. While for hydrogen measurements, the potential of specialty optical fibres with Pd particles embedded in their silica matrix is currently studied for this gas monitoring through its impact on the fibre Brillouin signature evolution.

  10. France’s State of the Art Distributed Optical Fibre Sensors Qualified for the Monitoring of the French Underground Repository for High Level and Intermediate Level Long Lived Radioactive Wastes

    Science.gov (United States)

    Delepine-Lesoille, Sylvie; Girard, Sylvain; Landolt, Marcel; Bertrand, Johan; Planes, Isabelle; Boukenter, Aziz; Marin, Emmanuel; Humbert, Georges; Leparmentier, Stéphanie; Auguste, Jean-Louis; Ouerdane, Youcef

    2017-01-01

    This paper presents the state of the art distributed sensing systems, based on optical fibres, developed and qualified for the French Cigéo project, the underground repository for high level and intermediate level long-lived radioactive wastes. Four main parameters, namely strain, temperature, radiation and hydrogen concentration are currently investigated by optical fibre sensors, as well as the tolerances of selected technologies to the unique constraints of the Cigéo’s severe environment. Using fluorine-doped silica optical fibre surrounded by a carbon layer and polyimide coating, it is possible to exploit its Raman, Brillouin and Rayleigh scattering signatures to achieve the distributed sensing of the temperature and the strain inside the repository cells of radioactive wastes. Regarding the dose measurement, promising solutions are proposed based on Radiation Induced Attenuation (RIA) responses of sensitive fibres such as the P-doped ones. While for hydrogen measurements, the potential of specialty optical fibres with Pd particles embedded in their silica matrix is currently studied for this gas monitoring through its impact on the fibre Brillouin signature evolution. PMID:28608831

  11. Correlation optics in progress: introduction to the feature issue

    DEFF Research Database (Denmark)

    Angelsky, Oleg V.; Desyatnikov, Anton S.; Gbur, Gregory J.

    2014-01-01

    This feature issue of Applied Optics contains a series of selected papers reflecting recent progress of correlation optics and showing, in part, the trend from micro-optics to nano-optics.......This feature issue of Applied Optics contains a series of selected papers reflecting recent progress of correlation optics and showing, in part, the trend from micro-optics to nano-optics....

  12. Effect of a spiral phase on a vector optical field with hybrid polarization states

    International Nuclear Information System (INIS)

    Chen, Rui-Pin; Zhao, Tingyu; Zhong, Li-Xin; Chew, Khian-Hooi; Gu, Bing; Zhou, Guoquan

    2015-01-01

    The propagation dynamics of a vector field with inhomogeneous states of polarization (SoP) imposed a vortex is studied using the angular spectrum method. The evolution of SoP in the cross section of the field during propagation is analyzed numerically by the Stokes polarization parameters. The results indicate that SoP in the field cross section rotate along the propagation axis during propagation due to the existence of a vortex. In addition, the interaction between the phase singularity and the polarization singularity leads to the creation or annihilation of the optical field in the central region. In particular, the distributions of the transverse energy flow and both spin and orbital optical angular momentum fluxes in the cross section of the vortex vector optical field depend sensitively on both the vortex and polarization topology charges. (paper)

  13. Constraints on the Richness-Mass Relation and the Optical-SZE Positional Offset Distribution for SZE-Selected Clusters

    CERN Document Server

    Saro, A; Rozo, E; Benson, B A; Mohr, J; Rykoff, E S; Soares-Santos, M; Bleem, L; Dodelson, S; Melchior, P; Sobreira, F; Upadhyay, V; Weller, J; Abbott, T; Abdalla, F B; Allam, S; Armstrong, R; Banerji, M; Bauer, A H; Bayliss, M; Benoit-Lévy, A; Bernstein, G M; Bertin, E; Brodwin, M; Brooks, D; Buckley-Geer, E; Burke, D L; Carlstrom, J E; Capasso, R; Capozzi, D; Carnero Rosell, A; Carrasco Kind, M; Chiu, I; Covarrubias, R; Crawford, T M; Crocce, M; D'Andrea, C B; da Costa, L N; DePoy, D L; Desai, S; de Haan, T; Diehl, H T; Dietrich, J P; Doel, P; Cunha, C E; Eifler, T F; Evrard, A E; Fausti Neto, A; Fernandez, E; Flaugher, B; Fosalba, P; Frieman, J; Gangkofner, C; Gaztanaga, E; Gerdes, D; Gruen, D; Gruendl, R A; Gupta, N; Hennig, C; Holzapfel, W L; Honscheid, K; Jain, B; James, D; Kuehn, K; Kuropatkin, N; Lahav, O; Li, T S; Lin, H; Maia, M A G; March, M; Marshall, J L; Martini, Paul; McDonald, M; Miller, C J; Miquel, R; Nord, B; Ogando, R; Plazas, A A; Reichardt, C L; Romer, A K; Roodman, A; Sako, M; Sanchez, E; Schubnell, M; Sevilla, I; Smith, R C; Stalder, B; Stark, A A; Strazzullo, V; Suchyta, E; Swanson, M E C; Tarle, G; Thaler, J; Thomas, D; Tucker, D; Vikram, V; von der Linden, A; Walker, A R; Wechsler, R H; Wester, W; Zenteno, A; Ziegler, K E

    2015-01-01

    We cross-match galaxy cluster candidates selected via their Sunyaev-Zel'dovich effect (SZE) signatures in 129.1 deg$^2$ of the South Pole Telescope 2500d SPT-SZ survey with optically identified clusters selected from the Dark Energy Survey (DES) science verification data. We identify 25 clusters between $0.1\\lesssim z\\lesssim 0.8$ in the union of the SPT-SZ and redMaPPer (RM) samples. RM is an optical cluster finding algorithm that also returns a richness estimate for each cluster. We model the richness $\\lambda$-mass relation with the following function $\\langle\\ln\\lambda|M_{500}\\rangle\\propto B_\\lambda\\ln M_{500}+C_\\lambda\\ln E(z)$ and use SPT-SZ cluster masses and RM richnesses $\\lambda$ to constrain the parameters. We find $B_\\lambda= 1.14^{+0.21}_{-0.18}$ and $C_\\lambda=0.73^{+0.77}_{-0.75}$. The associated scatter in mass at fixed richness is $\\sigma_{\\ln M|\\lambda} = 0.18^{+0.08}_{-0.05}$ at a characteristic richness $\\lambda=70$. We demonstrate that our model provides an adequate description of the ma...

  14. Determination of basic state parameters and characterization of optical, dielectric and fluorescence properties of calcium boro lactate (CaBL)

    International Nuclear Information System (INIS)

    Vijayalakshmi, A.; Balraj, V.

    2016-01-01

    This paper describes the calculation of basic solid state parameters like penn gap, plasma energy, polarizability and fermi energy for calcium boro lactate single crystal. calcium boro lactate crystals were developed by solution growth method. Single crystal diffraction studies carried out and calculated basic solid state criterion for the CaBL compound. optical nature of these compound explained by using UV-Visible spectrum. Electro-optic behaviour of the crystal explained by dielectric studies. Light emitting properties explained by fluorescence studies. (author)

  15. Threshold-selecting strategy for best possible ground state detection with genetic algorithms

    Science.gov (United States)

    Lässig, Jörg; Hoffmann, Karl Heinz

    2009-04-01

    Genetic algorithms are a standard heuristic to find states of low energy in complex state spaces as given by physical systems such as spin glasses but also in combinatorial optimization. The paper considers the problem of selecting individuals in the current population in genetic algorithms for crossover. Many schemes have been considered in literature as possible crossover selection strategies. We show for a large class of quality measures that the best possible probability distribution for selecting individuals in each generation of the algorithm execution is a rectangular distribution over the individuals sorted by their energy values. This means uniform probabilities have to be assigned to a group of the individuals with lowest energy in the population but probabilities equal to zero to individuals which are corresponding to energy values higher than a fixed cutoff, which is equal to a certain rank in the vector sorted by the energy of the states in the current population. The considered strategy is dubbed threshold selecting. The proof applies basic arguments of Markov chains and linear optimization and makes only a few assumptions on the underlying principles and hence applies to a large class of algorithms.

  16. Spectroscopic properties of a self-assembled zinc porphyrin tetramer I. Steady state optical spectroscopy

    NARCIS (Netherlands)

    Yatskou, M.M.; Koehorst, R.B.M.; Donker, H.; Schaafsma, T.J.

    2001-01-01

    Aggregation of zinc mono-(4-pyridyl)-triphenylporphyrin (ZnPyP) in toluene and polystyrene/toluene mixtures has been investigated by steady-state optical spectroscopy. The Q-band absorption spectra, as well as the fluorescence spectra, show a temperature-dependent red shift as a result of ligation

  17. Measurement of single electron and nuclear spin states based on optically detected magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Gennady P [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Bishop, Alan R [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Chernobrod, Boris M [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hawley, Marilyn E [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Brown, Geoffrey W [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Tsifrinovich, Vladimir I [Polytechnic University, Brooklyn, NY 11201 (United States)

    2006-05-15

    A novel approach for measurement of single electron and nuclear spin states is suggested. Our approach is based on optically detected magnetic resonance in a nano-probe located at the apex of an AFM tip. The method provides single electron spin sensitivity with nano-scale spatial resolution.

  18. Measurement of single electron and nuclear spin states based on optically detected magnetic resonance

    International Nuclear Information System (INIS)

    Berman, Gennady P; Bishop, Alan R; Chernobrod, Boris M; Hawley, Marilyn E; Brown, Geoffrey W; Tsifrinovich, Vladimir I

    2006-01-01

    A novel approach for measurement of single electron and nuclear spin states is suggested. Our approach is based on optically detected magnetic resonance in a nano-probe located at the apex of an AFM tip. The method provides single electron spin sensitivity with nano-scale spatial resolution

  19. Quantum optics

    National Research Council Canada - National Science Library

    Agarwal, G. S

    2013-01-01

    .... Focusing on applications of quantum optics, the textbook covers recent developments such as engineering of quantum states, quantum optics on a chip, nano-mechanical mirrors, quantum entanglement...

  20. Optical wireless links with enhanced linearity and selectivity [Invited

    Science.gov (United States)

    Green, Roger J.; Sweet, C.; Idrus, S.

    2005-10-01

    Optical wireless is an attractive medium as an alternative to optical fiber communications, and also to RF, because of its high bandwidth and relative ease of use, especially when it comes to deployment in new physical situations. We describe an optical wireless link approach that offers a performance that gives analog transmission with significantly reduced distortion levels and enhanced reception sensitivity by combining a novel hybrid detector-amplifier technique. Reduction of distortion by 40 dB and improvement in sensitivity of 20-30 dB is possible, using the techniques described.

  1. Low-frequency fluctuation regime in a multimode semiconductor laser subject to a mode-selective optical feedback

    International Nuclear Information System (INIS)

    Rogister, F.; Sciamanna, M.; Deparis, O.; Megret, P.; Blondel, M.

    2002-01-01

    We study numerically the dynamics of a multimode laser diode subject to a mode-selective optical feedback by using a generalization of the Lang-Kobayashi equations. In this configuration, only one longitudinal mode of the laser is reinjected into the laser cavity; the other modes are free. When the laser operates in the low-frequency fluctuation regime, our model predicts intensity bursts in the free modes simultaneously with dropouts in the selected mode, in good agreement with recent experiments. In the frame of our model, intensity bursts and dropouts are associated with collisions of the system trajectory in phase space with saddle-type antimodes

  2. Fast Ground State Manipulation of Neutral Atoms in Microscopic Optical Traps

    International Nuclear Information System (INIS)

    Yavuz, D.D.; Kulatunga, P.B.; Urban, E.; Johnson, T.A.; Proite, N.; Henage, T.; Walker, T.G.; Saffman, M.

    2006-01-01

    We demonstrate Rabi flopping at MHz rates between ground hyperfine states of neutral 87 Rb atoms that are trapped in two micron sized optical traps. Using tightly focused laser beams we demonstrate high fidelity, site specific Rabi rotations with cross talk on neighboring sites separated by 8 μm at the level of 10 -3 . Ramsey spectroscopy is used to measure a dephasing time of 870 μs, which is ≅5000 times longer than the time for a π/2 pulse

  3. Highly selective population of two excited states in nonresonant two-photon absorption

    International Nuclear Information System (INIS)

    Zhang Hui; Zhang Shi-An; Sun Zhen-Rong

    2011-01-01

    A nonresonant two-photon absorption process can be manipulated by tailoring the ultra-short laser pulse. In this paper, we theoretically demonstrate a highly selective population of two excited states in the nonresonant two-photon absorption process by rationally designing a spectral phase distribution. Our results show that one excited state is maximally populated while the other state population is widely tunable from zero to the maximum value. We believe that the theoretical results may play an important role in the selective population of a more complex nonlinear process comprising nonresonant two-photon absorption, such as resonance-mediated (2+1)-three-photon absorption and (2+1)-resonant multiphoton ionization. (atomic and molecular physics)

  4. Single-resonance optical pumping spectroscopy and application in dressed-state measurement with atomic vapor cell at room temperature.

    Science.gov (United States)

    Liang, Qiangbing; Yang, Baodong; Zhang, Tiancai; Wang, Junmin

    2010-06-21

    By monitoring the transmission of probe laser beam (also served as coupling laser beam) which is locked to a cycling hyperfine transition of cesium D(2) line, while pumping laser is scanned across cesium D(1) or D(2) lines, the single-resonance optical pumping (SROP) spectra are obtained with atomic vapor cell. The SROP spectra indicate the variation of the zero-velocity atoms population of one hyperfine fold of ground state, which is optically pumped into another hyperfine fold of ground state by pumping laser. With the virtue of Doppler-free linewidth, high signal-to-noise ratio (SNR), flat background and elimination of crossover resonance lines (CRLs), the SROP spectra with atomic vapor cell around room temperature can be employed to measure dressed-state splitting of ground state, which is normally detected with laser-cooled atomic sample only, even if the dressed-state splitting is much smaller than the Doppler-broaden linewidth at room temperature.

  5. Optically transparent frequency selective surfaces on flexible thin plastic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Dewani, Aliya A., E-mail: a.ashraf@griffith.edu.au; O’Keefe, Steven G.; Thiel, David V.; Galehdar, Amir [School Of Electrical Engineering, Griffith University, Brisbane, 4111 (Australia)

    2015-02-15

    A novel 2D simple low cost frequency selective surface was screen printed on thin (0.21 mm), flexible transparent plastic substrate (relative permittivity 3.2). It was designed, fabricated and tested in the frequency range 10-20 GHz. The plane wave transmission and reflection coefficients agreed with numerical modelling. The effective permittivity and thickness of the backing sheet has a significant effect on the frequency characteristics. The stop band frequency reduced from 15GHz (no backing) to 12.5GHz with polycarbonate. The plastic substrate thickness beyond 1.8mm has minimal effect on the resonant frequency. While the inner element spacing controls the stop-band frequency, the substrate thickness controls the bandwidth. The screen printing technique provided a simple, low cost FSS fabrication method to produce flexible, conformal, optically transparent and bio-degradable FSS structures which can find their use in electromagnetic shielding and filtering applications in radomes, reflector antennas, beam splitters and polarizers.

  6. Optically transparent frequency selective surfaces on flexible thin plastic substrates

    Directory of Open Access Journals (Sweden)

    Aliya A. Dewani

    2015-02-01

    Full Text Available A novel 2D simple low cost frequency selective surface was screen printed on thin (0.21 mm, flexible transparent plastic substrate (relative permittivity 3.2. It was designed, fabricated and tested in the frequency range 10-20 GHz. The plane wave transmission and reflection coefficients agreed with numerical modelling. The effective permittivity and thickness of the backing sheet has a significant effect on the frequency characteristics. The stop band frequency reduced from 15GHz (no backing to 12.5GHz with polycarbonate. The plastic substrate thickness beyond 1.8mm has minimal effect on the resonant frequency. While the inner element spacing controls the stop-band frequency, the substrate thickness controls the bandwidth. The screen printing technique provided a simple, low cost FSS fabrication method to produce flexible, conformal, optically transparent and bio-degradable FSS structures which can find their use in electromagnetic shielding and filtering applications in radomes, reflector antennas, beam splitters and polarizers.

  7. Optically transparent frequency selective surfaces on flexible thin plastic substrates

    Science.gov (United States)

    Dewani, Aliya A.; O'Keefe, Steven G.; Thiel, David V.; Galehdar, Amir

    2015-02-01

    A novel 2D simple low cost frequency selective surface was screen printed on thin (0.21 mm), flexible transparent plastic substrate (relative permittivity 3.2). It was designed, fabricated and tested in the frequency range 10-20 GHz. The plane wave transmission and reflection coefficients agreed with numerical modelling. The effective permittivity and thickness of the backing sheet has a significant effect on the frequency characteristics. The stop band frequency reduced from 15GHz (no backing) to 12.5GHz with polycarbonate. The plastic substrate thickness beyond 1.8mm has minimal effect on the resonant frequency. While the inner element spacing controls the stop-band frequency, the substrate thickness controls the bandwidth. The screen printing technique provided a simple, low cost FSS fabrication method to produce flexible, conformal, optically transparent and bio-degradable FSS structures which can find their use in electromagnetic shielding and filtering applications in radomes, reflector antennas, beam splitters and polarizers.

  8. Managing Selection for Electronic Resources: Kent State University Develops a New System to Automate Selection

    Science.gov (United States)

    Downey, Kay

    2012-01-01

    Kent State University has developed a centralized system that manages the communication and work related to the review and selection of commercially available electronic resources. It is an automated system that tracks the review process, provides selectors with price and trial information, and compiles reviewers' feedback about the resource. It…

  9. Determination of pigments in colour layers on walls of some selected historical buildings using optical and scanning electron microscopy

    International Nuclear Information System (INIS)

    Skapin, A. Sever; Ropret, P.; Bukovec, P.

    2007-01-01

    For successful restoration of painted walls and painted coloured finishing coats it is necessary to determine the composition of the original colour layers. Identification of the pigments used in The Cistercian Abbey of Sticna and The Manor of Novo Celje was carried out using optical and scanning electron microscopy. Selected samples of wall paintings were inspected by the combined application of an optical microscope and a low-vacuum Scanning Electron Microscope to determine their colour and structural features and to identify the position of individual pigment grains. Energy dispersive spectroscopy was used to determine the elemental distribution on selected surfaces and elemental composition of individual pigments. It was found that the most abundantly used pigments were iron oxide red, cinnabar, green earth, umber, calcium carbonate white, ultramarine, yellow ochre and carbon black. These identifications have allowed us to compare the use of various pigments in buildings from different historical periods

  10. Dynamic conductivity modified by impurity resonant states in doping three-dimensional Dirac semimetals

    Science.gov (United States)

    Li, Shuai; Wang, Chen; Zheng, Shi-Han; Wang, Rui-Qiang; Li, Jun; Yang, Mou

    2018-04-01

    The impurity effect is studied in three-dimensional Dirac semimetals in the framework of a T-matrix method to consider the multiple scattering events of Dirac electrons off impurities. It has been found that a strong impurity potential can significantly restructure the energy dispersion and the density of states of Dirac electrons. An impurity-induced resonant state emerges and significantly modifies the pristine optical response. It is shown that the impurity state disturbs the common longitudinal optical conductivity by creating either an optical conductivity peak or double absorption jumps, depending on the relative position of the impurity band and the Fermi level. More importantly, these conductivity features appear in the forbidden region between the Drude and interband transition, completely or partially filling the Pauli block region of optical response. The underlying physics is that the appearance of resonance states as well as the broadening of the bands leads to a more complicated selection rule for the optical transitions, making it possible to excite new electron-hole pairs in the forbidden region. These features in optical conductivity provide valuable information to understand the impurity behaviors in 3D Dirac materials.

  11. Division of solid state physics

    International Nuclear Information System (INIS)

    Beckman, O.

    1983-09-01

    This report gives a survey of the present research projects at the division of solid state physics, Inst. of Technology, Uppsala University. The projects fall within the fields of magnetism, i.e. spin glasses, ordered magnetic structures and itinerant electron magnetism, and optics, i.e. properties of crystalline and amorphous materials for selective transmission and absorption in connection with energy-related research. (author)

  12. Coherence properties and quantum state transportation in an optical conveyor belt.

    Science.gov (United States)

    Kuhr, S; Alt, W; Schrader, D; Dotsenko, I; Miroshnychenko, Y; Rosenfeld, W; Khudaverdyan, M; Gomer, V; Rauschenbeutel, A; Meschede, D

    2003-11-21

    We have prepared and detected quantum coherences of trapped cesium atoms with long dephasing times. Controlled transport by an "optical conveyor belt" over macroscopic distances preserves the atomic coherence with slight reduction of coherence time. The limiting dephasing effects are experimentally identified, and we present an analytical model of the reversible and irreversible dephasing mechanisms. Our experimental methods are applicable at the single-atom level. Coherent quantum bit operations along with quantum state transport open the route towards a "quantum shift register" of individual neutral atoms.

  13. Adverse Selection Models with Three States of Nature

    Directory of Open Access Journals (Sweden)

    Daniela MARINESCU

    2011-02-01

    Full Text Available In the paper we analyze an adverse selection model with three states of nature, where both the Principal and the Agent are risk neutral. When solving the model, we use the informational rents and the efforts as variables. We derive the optimal contract in the situation of asymmetric information. The paper ends with the characteristics of the optimal contract and the main conclusions of the model.

  14. Optical nonlinearities of excitonic states in atomically thin 2D transition metal dichalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Soh, Daniel Beom Soo [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Proliferation Signatures Discovery and Exploitation Department

    2017-08-01

    We calculated the optical nonlinearities of the atomically thin monolayer transition metal dichalcogenide material (particularly MoS2), particularly for those linear and nonlinear transition processes that utilize the bound exciton states. We adopted the bound and the unbound exciton states as the basis for the Hilbert space, and derived all the dynamical density matrices that provides the induced current density, from which the nonlinear susceptibilities can be drawn order-by-order via perturbative calculations. We provide the nonlinear susceptibilities for the linear, the second-harmonic, the third-harmonic, and the kerr-type two-photon processes.

  15. Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities

    International Nuclear Information System (INIS)

    Wang Chuan; Zhang Yong; Jin Guangsheng

    2011-01-01

    We present an entanglement purification protocol and an entanglement concentration protocol for electron-spin entangled states, resorting to quantum-dot spin and optical-microcavity-coupled systems. The parity-check gates (PCGs) constructed by the cavity-spin-coupling system provide a different method for the entanglement purification of electron-spin entangled states. This protocol can efficiently purify an electron ensemble in a mixed entangled state. The PCGs can also concentrate electron-spin pairs in less-entangled pure states efficiently. The proposed methods are more flexible as only single-photon detection and single-electron detection are needed.

  16. Selective two-photon excitation of a vibronic state by correlated photons.

    Science.gov (United States)

    Oka, Hisaki

    2011-03-28

    We theoretically investigate the two-photon excitation of a molecular vibronic state by correlated photons with energy anticorrelation. A Morse oscillator having three sets of vibronic states is used, as an example, to evaluate the selectivity and efficiency of two-photon excitation. We show that a vibrational mode can be selectively excited with high efficiency by the correlated photons, without phase manipulation or pulse-shaping techniques. This can be achieved by controlling the quantum correlation so that the photon pair concurrently has two pulse widths, namely, a temporally narrow width and a spectrally narrow width. Though this concurrence is seemingly contradictory, we can create such a photon pair by tailoring the quantum correlation between two photons.

  17. Generation of Light Scattering States in Cholesteric Liquid Crystals by Optically Controlled Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Timothy J. Bunning

    2013-03-01

    Full Text Available Circularly polarized light was previously employed to stimulate the reversible and reconfigurable writing of scattering states in cholesteric liquid crystal (CLC cells constructed with a photosensitive layer. Such dynamic photodriven responses have utility in remotely triggering changes in optical constructs responsive to optical stimulus and applications where complex spatial patterning is required. Writing of scattering regions required the handedness of incoming radiation to match the handedness of the CLC and the reflection bandwidth of the CLC to envelop the wavelength of the incoming radiation. In this paper, the mechanism of transforming the CLC into a light scattering state via the influence of light on the photosensitive alignment layer is detailed. Specifically, the effects of: (i the polarization state of light on the photosensitive alignment layer; (ii the exposure time; and (iii the incidence angle of radiation on domain formation are reported. The photogenerated light-scattering domains are shown to be similar in appearance between crossed polarizers to a defect structure that occurs at a CLC/air interface (i.e., a free CLC surface. This observation provides strong indication that exposure of the photosensitive alignment layer to the circularly polarized light of appropriate wavelength and handedness generates an out-of-plane orientation leading to a periodic distortion of the original planar structure.

  18. An Optical Biosensing Strategy Based on Selective Light Absorption and Wavelength Filtering from Chromogenic Reaction

    Directory of Open Access Journals (Sweden)

    Hyeong Jin Chun

    2018-03-01

    Full Text Available To overcome the time and space constraints in disease diagnosis via the biosensing approach, we developed a new signal-transducing strategy that can be applied to colorimetric optical biosensors. Our study is focused on implementation of a signal transduction technology that can directly translate the color intensity signals—that require complicated optical equipment for the analysis—into signals that can be easily counted with the naked eye. Based on the selective light absorption and wavelength-filtering principles, our new optical signaling transducer was built from a common computer monitor and a smartphone. In this signal transducer, the liquid crystal display (LCD panel of the computer monitor served as a light source and a signal guide generator. In addition, the smartphone was used as an optical receiver and signal display. As a biorecognition layer, a transparent and soft material-based biosensing channel was employed generating blue output via a target-specific bienzymatic chromogenic reaction. Using graphics editor software, we displayed the optical signal guide patterns containing multiple polygons (a triangle, circle, pentagon, heptagon, and 3/4 circle, each associated with a specified color ratio on the LCD monitor panel. During observation of signal guide patterns displayed on the LCD monitor panel using a smartphone camera via the target analyte-loaded biosensing channel as a color-filtering layer, the number of observed polygons changed according to the concentration of the target analyte via the spectral correlation between absorbance changes in a solution of the biosensing channel and color emission properties of each type of polygon. By simple counting of the changes in the number of polygons registered by the smartphone camera, we could efficiently measure the concentration of a target analyte in a sample without complicated and expensive optical instruments. In a demonstration test on glucose as a model analyte, we

  19. An Optical Biosensing Strategy Based on Selective Light Absorption and Wavelength Filtering from Chromogenic Reaction.

    Science.gov (United States)

    Chun, Hyeong Jin; Han, Yong Duk; Park, Yoo Min; Kim, Ka Ram; Lee, Seok Jae; Yoon, Hyun C

    2018-03-06

    To overcome the time and space constraints in disease diagnosis via the biosensing approach, we developed a new signal-transducing strategy that can be applied to colorimetric optical biosensors. Our study is focused on implementation of a signal transduction technology that can directly translate the color intensity signals-that require complicated optical equipment for the analysis-into signals that can be easily counted with the naked eye. Based on the selective light absorption and wavelength-filtering principles, our new optical signaling transducer was built from a common computer monitor and a smartphone. In this signal transducer, the liquid crystal display (LCD) panel of the computer monitor served as a light source and a signal guide generator. In addition, the smartphone was used as an optical receiver and signal display. As a biorecognition layer, a transparent and soft material-based biosensing channel was employed generating blue output via a target-specific bienzymatic chromogenic reaction. Using graphics editor software, we displayed the optical signal guide patterns containing multiple polygons (a triangle, circle, pentagon, heptagon, and 3/4 circle, each associated with a specified color ratio) on the LCD monitor panel. During observation of signal guide patterns displayed on the LCD monitor panel using a smartphone camera via the target analyte-loaded biosensing channel as a color-filtering layer, the number of observed polygons changed according to the concentration of the target analyte via the spectral correlation between absorbance changes in a solution of the biosensing channel and color emission properties of each type of polygon. By simple counting of the changes in the number of polygons registered by the smartphone camera, we could efficiently measure the concentration of a target analyte in a sample without complicated and expensive optical instruments. In a demonstration test on glucose as a model analyte, we could easily measure the

  20. Normal mode splitting and ground state cooling in a Fabry—Perot optical cavity and transmission line resonator

    International Nuclear Information System (INIS)

    Chen Hua-Jun; Mi Xian-Wu

    2011-01-01

    Optomechanical dynamics in two systems which are a transmission line resonator and Fabrya—Perot optical cavity via radiation—pressure are investigated by linearized quantum Langevin equation. We work in the resolved sideband regime where the oscillator resonance frequency exceeds the cavity linewidth. Normal mode splittings of the mechanical resonator as a pure result of the coupling interaction in the two optomechanical systems is studied, and we make a comparison of normal mode splitting of mechanical resonator between the two systems. In the optical cavity, the normal mode splitting of the movable mirror approaches the latest experiment very well. In addition, an approximation scheme is introduced to demonstrate the ground state cooling, and we make a comparison of cooling between the two systems dominated by two key factors, which are the initial bath temperature and the mechanical quality factor. Since both the normal mode splitting and cooling require working in the resolved sideband regime, whether the normal mode splitting influences the cooling of the mirror is considered. Considering the size of the mechanical resonator and precooling the system, the mechanical resonator in the transmission line resonator system is easier to achieve the ground state cooling than in optical cavity. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  1. The end-state comfort effect in bimanual grip selection.

    Science.gov (United States)

    Fischman, Mark G; Stodden, David F; Lehman, Davana M

    2003-03-01

    During a unimanual grip selection task in which people pick up a lightweight dowel and place one end against targets at variable heights, the choice of hand grip (overhand vs. underhand) typically depends on the perception of how comfortable the arm will be at the end of the movement: an end-state comfort effect. The two experiments reported here extend this work to bimanual tasks. In each experiment, 26 right-handed participants used their left and right hands to simultaneously pick up two wooden dowels and place either the right or left end against a series of 14 targets ranging from 14 to 210 cm above the floor. These tasks were performed in systematic ascending and descending orders in Experiment 1 and in random order in Expiment 2. Results were generally consistent with predictions of end-state comfort in that, for the extreme highest and lowest targets, participants tended to select opposite grips with each hand. Taken together, our findings are consistent with the concept of constraint hierarchies within a posture-based motion-planning model.

  2. Optically Unraveling the Edge Chirality-Dependent Band Structure and Plasmon Damping in Graphene Edges.

    Science.gov (United States)

    Duan, Jiahua; Chen, Runkun; Cheng, Yuan; Yang, Tianzhong; Zhai, Feng; Dai, Qing; Chen, Jianing

    2018-05-01

    The nontrivial topological origin and pseudospinorial character of electron wavefunctions make edge states possess unusual electronic properties. Twenty years ago, the tight-binding model calculation predicted that zigzag termination of 2D sheets of carbon atoms have peculiar edge states, which show potential application in spintronics and modern information technologies. Although scanning probe microscopy is employed to capture this phenomenon, the experimental demonstration of its optical response remains challenging. Here, the propagating graphene plasmon provides an edge-selective polaritonic probe to directly detect and control the electronic edge state at ambient condition. Compared with armchair, the edge-band structure in the bandgap gives rise to additional optical absorption and strongly absorbed rim at zigzag edge. Furthermore, the optical conductivity is reconstructed and the anisotropic plasmon damping in graphene systems is revealed. The reported approach paves the way for detecting edge-specific phenomena in other van der Waals materials and topological insulators. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Highly selective and sensitive optical sensor for determination of Pb2+and Hg2+ ions based on the covalent immobilization of dithizone on agarose membrane

    Science.gov (United States)

    Zargoosh, Kiomars; Babadi, Fatemeh Farhadian

    2015-02-01

    A highly sensitive and selective optical membrane for determination of Hg2+ and Pb2+ was prepared by covalent immobilization of dithizone on agarose membrane. In addition to its high stability, reproducibility and relatively long lifetime, the proposed optical sensor revealed good selectivity for target ions over a large number of alkali, alkaline earth, transition, and heavy metal ions. The proposed optical membrane displays linear responses from 1.1 × 10-8 to 2.0 × 10-6 mol L-1 and 1.2 × 10-8 to 2.4 × 10-6 mol L-1 for Hg2+ and Pb2+, respectively. The limits of detection (LOD) were 2.0 × 10-9 mol L-1 and 4.0 × 10-9 mol L-1 for Hg2+ and Pb2, respectively. The prepared optical membrane was successfully applied to the determination of Hg2+ and Pb2+ in industrial wastes, spiked tap water and natural waters without any preconcentration step.

  4. Nanophotonic rare-earth quantum memory with optically controlled retrieval

    Science.gov (United States)

    Zhong, Tian; Kindem, Jonathan M.; Bartholomew, John G.; Rochman, Jake; Craiciu, Ioana; Miyazono, Evan; Bettinelli, Marco; Cavalli, Enrico; Verma, Varun; Nam, Sae Woo; Marsili, Francesco; Shaw, Matthew D.; Beyer, Andrew D.; Faraon, Andrei

    2017-09-01

    Optical quantum memories are essential elements in quantum networks for long-distance distribution of quantum entanglement. Scalable development of quantum network nodes requires on-chip qubit storage functionality with control of the readout time. We demonstrate a high-fidelity nanophotonic quantum memory based on a mesoscopic neodymium ensemble coupled to a photonic crystal cavity. The nanocavity enables >95% spin polarization for efficient initialization of the atomic frequency comb memory and time bin-selective readout through an enhanced optical Stark shift of the comb frequencies. Our solid-state memory is integrable with other chip-scale photon source and detector devices for multiplexed quantum and classical information processing at the network nodes.

  5. SPECIAL ASPECTS OF INITIAL OPTICAL SCHEME SELECTION FOR DESIGN OF NON-IMAGING OPTICAL SYSTEMS

    OpenAIRE

    R. V. Anitropov; P. Benitez; I. L. Livshits S. K. Stafeev; S. K. Stafeev; V. N. Vasilev; M. V. Letunovskaya; A. S. Zaitceva

    2016-01-01

    Subject of Research. The research results, structural composition analysis and the parametric synthesis of the projected imaging and non-imaging optical systems were presented. We made an attempt to use the gained experience about imaging systems while designing non-imaging systems, by adapting the composition theory for the calculations of non-imaging systems. Several patterns were revealed, which provide a deeper understanding of the design process of non-imaging optical systems; measures ...

  6. Coupled Optical Tamm States in a Planar Dielectric Mirror Structure Containing a Thin Metal Film

    International Nuclear Information System (INIS)

    Zhou Hai-Chun; Yang Guang; Lu Pei-Xiang; Wang Kai; Long Hua

    2012-01-01

    The coupling between two optical Tamm states (OTSs) with the same eigenenergy is numerically investigated in a planar dielectric mirror structure containing a thin metal film. The reflectivity map in this structure at normal incidence is obtained by applying the transfer matrix method. Two splitting branches appear in the photonic bandgap region when both adjacent dielectric layers of metal film are properly set. The splitting energy of two branches strongly depends on the thickness of the metal film. According to the electric field distribution in this structure, it is found that the high-energy branch corresponds to the antisymmetric coupling between two OTSs, while the low-energy branch is associated with the symmetric coupling between two OTSs. Moreover, the optical difference frequency of two branches is located in a broad terahertz region. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  7. BSL-3 laboratory practices in the United States: comparison of select agent and non-select agent facilities.

    Science.gov (United States)

    Richards, Stephanie L; Pompei, Victoria C; Anderson, Alice

    2014-01-01

    New construction of biosafety level 3 (BSL-3) laboratories in the United States has increased in the past decade to facilitate research on potential bioterrorism agents. The Centers for Disease Control and Prevention inspect BSL-3 facilities and review commissioning documentation, but no single agency has oversight over all BSL-3 facilities. This article explores the extent to which standard operating procedures in US BSL-3 facilities vary between laboratories with select agent or non-select agent status. Comparisons are made for the following variables: personnel training, decontamination, personal protective equipment (PPE), medical surveillance, security access, laboratory structure and maintenance, funding, and pest management. Facilities working with select agents had more complex training programs and decontamination procedures than non-select agent facilities. Personnel working in select agent laboratories were likely to use powered air purifying respirators, while non-select agent laboratories primarily used N95 respirators. More rigorous medical surveillance was carried out in select agent workers (although not required by the select agent program) and a higher level of restrictive access to laboratories was found. Most select agent and non-select agent laboratories reported adequate structural integrity in facilities; however, differences were observed in personnel perception of funding for repairs. Pest management was carried out by select agent personnel more frequently than non-select agent personnel. Our findings support the need to promote high quality biosafety training and standard operating procedures in both select agent and non-select agent laboratories to improve occupational health and safety.

  8. Teleportation of N-qubit W State without Bell-State Measurement via Selective Resonant Interaction in Cavity QED

    International Nuclear Information System (INIS)

    Zhong Wenxue; Geng Jun; Cheng Guangling; Chen Aixi

    2010-01-01

    We present a scheme in which the N-atom W state is teleported by employing the selective interaction of a cavity field with a driven three-level atom in the A configuration and detecting a single atom in one of the ground states. The long-lived W state is teleported from atom A to atom B when the atoms B and A are sent through a cavity successively and atom A is then detected. The advantage is that the present one does not involve the Bell-state measurement and is robust against the atomic spontaneous emission. (general)

  9. A novel optical gating method for laser gated imaging

    Science.gov (United States)

    Ginat, Ran; Schneider, Ron; Zohar, Eyal; Nesher, Ofer

    2013-06-01

    For the past 15 years, Elbit Systems is developing time-resolved active laser-gated imaging (LGI) systems for various applications. Traditional LGI systems are based on high sensitive gated sensors, synchronized to pulsed laser sources. Elbit propriety multi-pulse per frame method, which is being implemented in LGI systems, improves significantly the imaging quality. A significant characteristic of the LGI is its ability to penetrate a disturbing media, such as rain, haze and some fog types. Current LGI systems are based on image intensifier (II) sensors, limiting the system in spectral response, image quality, reliability and cost. A novel propriety optical gating module was developed in Elbit, untying the dependency of LGI system on II. The optical gating module is not bounded to the radiance wavelength and positioned between the system optics and the sensor. This optical gating method supports the use of conventional solid state sensors. By selecting the appropriate solid state sensor, the new LGI systems can operate at any desired wavelength. In this paper we present the new gating method characteristics, performance and its advantages over the II gating method. The use of the gated imaging systems is described in a variety of applications, including results from latest field experiments.

  10. State departments for the selection and control of school textbooks

    Directory of Open Access Journals (Sweden)

    María López García

    2012-02-01

    Full Text Available The article studies the State Commissions for the regulation of Schoolbooks, instituted in Argentine at the beginning of the 20th-century. The analysis exhibits a gradual liberalization of the prescriptions and a reassignment of decisions to the publishers, as well as the institution of schoolbooks as ineludible tool of the pedagogical methodology throughout that century. The growing of the publishing industry resulted in a displacement of the functions of control and selection of the produced teaching materials from the State on teachers and publishing companies. The bonds between State proposals and market technologies entailed a state validation of the companies’ conveniences; one of its more harmful consequences was their increasing meddling in the pedagogical methodology to implement in the school.

  11. Optical efficiency for fission fragment track counting in Muscovite solid state track recorders

    International Nuclear Information System (INIS)

    Roberts, J.H.; Ruddy, F.H.; Gold, R.

    1984-01-01

    In order to determine absolute fission rates from thin actinide deposits placed in direct contact with Muscovite Solid State Track Recorders, it is necessary to know the efficiency with which fission fragment tracks are recorded. In this paper, a redetermination of the 'optical efficiency', i.e. the fraction of fission events recorded and observed in the Muscovite is reported. The value obtained from a well-calibrated thin deposit of 252 Cf and Muscovite etched about 90 min. in 49% HF at room temperature, is 0.9875 +- 0.0085. Manual counting was used. Preliminary results from a deposit of 242 Pu are also reported, along with preliminary comparisons of track counting with an automated system. Reasons for the discrepancy of the optical efficiency reported here with an earlier measurement are also reported. (author)

  12. Ultrafast optical generation of squeezed magnon states and long lifetime coherent LO phonons

    Science.gov (United States)

    Zhao, Jimin

    2005-12-01

    Ultrafast optical pulses have been used to generate, probe, and control low-energy elementary excitations in crystals. In particular, we report the first experimental demonstration of the generation of quantum squeezed states of magnons (collective spin-wave excitations) in a magnetic material, and new progress in experimental investigation of anharmonic interactions in a semiconductor. The mechanism for the magnon squeezing is two-magnon impulsive stimulated Raman scattering (ISRS). Femtosecond laser pulses have been used to coherently correlate degenerate counter-propagating magnons in the antiferromagnetic insulator MnF2. In the squeezed state, fluctuations of the magnetization of a crystallographic unit cell vary periodically in time and are reduced below that of the ground-state quantum noise. Similar experiments were also performed in another antiferromagnetic insulator, FeF2, for which the squeezing effect is one order of magnitude larger. We have also investigated the anharmonic interaction of the low-frequency E2 phonon in ZnO through ISRS. Temperature dependence of the linewidth and frequency indicates that the two-phonon up-conversion process is the dominant decay channel and isotopic disorder may be the main limit on the lifetime at low temperature. We have observed the longest lifetime of an optical phonon mode in a solid (211 ps at 5 K). And we have found that pump-probe experiments, compared with spontaneous Raman spectroscopy, have extremely high accuracy in determining the frequency of a low-lying excitation.

  13. An optical authentication system based on imaging of excitation-selected lanthanide luminescence.

    Science.gov (United States)

    Carro-Temboury, Miguel R; Arppe, Riikka; Vosch, Tom; Sørensen, Thomas Just

    2018-01-01

    Secure data encryption relies heavily on one-way functions, and copy protection relies on features that are difficult to reproduce. We present an optical authentication system based on lanthanide luminescence from physical one-way functions or physical unclonable functions (PUFs). They cannot be reproduced and thus enable unbreakable encryption. Further, PUFs will prevent counterfeiting if tags with unique PUFs are grafted onto products. We have developed an authentication system that comprises a hardware reader, image analysis, and authentication software and physical keys that we demonstrate as an anticounterfeiting system. The physical keys are PUFs made from random patterns of taggants in polymer films on glass that can be imaged following selected excitation of particular lanthanide(III) ions doped into the individual taggants. This form of excitation-selected imaging ensures that by using at least two lanthanide(III) ion dopants, the random patterns cannot be copied, because the excitation selection will fail when using any other emitter. With the developed reader and software, the random patterns are read and digitized, which allows a digital pattern to be stored. This digital pattern or digital key can be used to authenticate the physical key in anticounterfeiting or to encrypt any message. The PUF key was produced with a staggering nominal encoding capacity of 7 3600 . Although the encoding capacity of the realized authentication system reduces to 6 × 10 104 , it is more than sufficient to completely preclude counterfeiting of products.

  14. Far-ultraviolet and optical spectrophotometry of X-ray selected Seyfert galaxies

    International Nuclear Information System (INIS)

    Clarke, J.T.; Bowyer, S.; Grewing, M.; California Univ., Berkeley; Tuebingen Universitaet, West Germany)

    1986-01-01

    Five X-ray selected Seyfert galaxies were examined via near-simultaneous far-ultraviolet and optical spectrophotometry in an effort to test models for excitation of emission lines by X-ray and ultraviolet continuum photoionization. The observed Ly-alpha/H-beta ratio in the present sample averages 22, with an increase found toward the high-velocity wings of the H lines in the spectrum of at least one of the Seyfert I nuclei. It is suggested that Seyfert galaxies with the most high-velocity gas exhibit the highest Ly-alpha/H-beta ratios at all velocities in the line profiles, and that sometimes this ratio may be highest for the highest velocity material in the broad-line clouds. Since broad-lined objects are least affected by Ly-alpha trapping effects, they have Ly-alpha/H-beta ratios much closer to those predicted by early photoionization calculations. 21 references

  15. Optical detection of magnetic resonance of the F-centre in CaO in its phosphorescent state

    International Nuclear Information System (INIS)

    Krap, C.J.

    1980-01-01

    The F-centre in CaO consists of two electrons trapped in an oxygen vacancy. The centre possesses bound excited states, of which the phosphorescent 3 Tsub(1u) state is a Jahn-Teller state. Jahn-Teller systems have been of interest in many investigations. However, detailed experimental studies about the relaxation paths for the Jahn-Teller states are relatively few. The author studies by means of optical detection of magnetic resonance (ODMR) and phosphorescence microwave double resonance (PMDR) techniques the relaxation between the components of the 3 Tsub(1u) state, the magnetic properties of the individual spin-vibronic Jahn-Teller states and the inhomogeneous line broadening in the ODMR and PMDR spectra. (Auth.)

  16. Experiments on state selection and Penning ionisation with fast metastable rare gas atoms

    International Nuclear Information System (INIS)

    Kroon, J.P.C.

    1985-01-01

    This thesis describes experiments with metastable He/Ne atoms. The experiments are performed in a crossed beam machine. Two different sources are used for the production of metastable atoms: a source for the production of metastable atoms in the thermal energy range and a hollow cathode arc for the production of metastable atoms in the superthermal energy range (1-7 eV). The progress made in the use of the hollow cathode arc is described as well as the experimental set-up. The rare gas energy-level diagram is characterized by two metastable levels. By optical pumping it is possible to select a single metastable level, both for He and Ne. For the case of He this is done by a recently built He quenchlamp which selectively quenches the metastable 2 1 S level population. In the thermal energy range the quenching is complete; in the superthermal energy range the 2 1 S level population is only partly quenched. For the optical pumping of Ne* atoms a cw dye laser is used. New experiments have been started on the measurement, in a crossed beam machine, of the fluorescence caused by inelastic collisions where metastable atoms are involved. The He* + Ne system is used as a pilot study for these experiments. The He-Ne laser is based on this collision system. (Auth.)

  17. Erratum: "Space Density of Optically Selected Type 2 Quasars" (2008, AJ, 136, 2373)

    Science.gov (United States)

    Reyes, Reinabelle; Zakamska, Nadia L.; Strauss, Michael A.; Green, Joshua; Krolik, Julian H.; Shen, Yue; Richards, Gordon T.; Anderson, Scott F.; Schneider, Donald P.

    2010-03-01

    Figure 12 of the paper "Space Density of Optically Selected Type 2 Quasars" compares the obscured quasar fractions derived in our work with those of other studies. Unfortunately, some of the points from these other studies were shown incorrectly. Specifically, the results from X-ray data—Hasinger (2004; open circles) and Ueda et al. (2003; open squares)—which we had taken from Figure 16 of Hopkins et al. (2006), were affected by a luminosity conversion error, in the sense that the displayed luminosities for these data were too high by ~1 dex. With this erratum, we correct this problem and update the figure. The new version (Figure 12) shows more recent results from Hasinger (2008), in lieu of the Hasinger (2004) data points. These are based on data in the redshift range z = 0.2-3.2 (open circles) in that work. The best linear fit to these data (black dashed line) is consistent with that derived for the redshift slice z = 0.4-0.8, which overlaps with the highest redshift bin in our study, and is higher than that derived for redshifts smaller than 0.4 (corresponding to a shift of ~0.7 dex in luminosity). Figure 12 also shows estimates of the obscured quasar fraction derived from the ratio of IR to bolometric luminosities of an AGN sample at redshift z ~ 1 (Treister et al. 2008; filled triangles). Because the obscured quasar fractions derived from our analysis (colored arrows) are strict lower limits, there was already a hint in the previous version of Figure 12 that at high quasar luminosities, we find higher obscured quasar fractions than X-ray surveys. The correction and updates of Figure 12 strengthen this conclusion. At face value, our derived obscured quasar fractions are consistent with those from IR data (Treister et al. 2008; filled triangles). However, we find that they are significantly higher than those derived from X-ray surveys at L_[O\\,\\mathsc {iii]}\\gtrsim 10^{9.5}\\;L_{\\odot }, especially those from the recent analysis by Hasinger (2008). This

  18. Optical Sensing of Polarization States Changes in Meat due to the Ageing

    Science.gov (United States)

    Tománek, Pavel; Mikláš, Jan; Abubaker, Hamed Mohamed; Grmela, Lubomír

    2010-11-01

    Food materials or biological materials display large compositional variations, inhomogeneities, and anisotropic structures. The biological tissues consist of cells which dimensions are bigger than a wavelength of visible light, therefore Mie scattering of transmitted and reflected light occurs and different polarization states arise. The meat industry needs reliable meat quality information throughout the production process in order to guarantee high-quality meat products for consumers. The minor importance is still given to the food quality control and inspection during processing operations or storing conditions. The paper presents a quite simple optical method allowing measure the freshness or ageing of products. The principle is to study temporal characteristics of polarization states of forward or backward scattered laser light in the samples in function of meat ageing.

  19. A disposable evanescent wave fiber optic sensor coated with a molecularly imprinted polymer as a selective fluorescence probe.

    Science.gov (United States)

    Ton, Xuan-Anh; Acha, Victor; Bonomi, Paolo; Tse Sum Bui, Bernadette; Haupt, Karsten

    2015-02-15

    We have developed a disposable evanescent wave fiber optic sensor by coating a molecularly imprinted polymer (MIP) containing a fluorescent signaling group on a 4-cm long polystyrene optical waveguide. The MIP is composed of a naphthalimide-based fluorescent monomer, which shows fluorescence enhancement upon binding with carboxyl-containing molecules. The herbicide 2,4-dichlorophenoxyacetic acid and the mycotoxin citrinin were used as model analytes. The coating of the MIP was either performed ex-situ, by dip-coating the fiber with MIP particles synthesized beforehand, or in-situ by evanescent-wave photopolymerization on the fiber. The sensing element was interrogated with a fiber-coupled spectrofluorimeter. The fiber optic sensor detects targets in the low nM range and exhibits specific and selective recognition over structural analogs and non-related carboxyl-containing molecules. This technology can be extended to other carboxyl-containing analytes, and to a broader spectrum of targets using different fluorescent monomers. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Sighting optics including an optical element having a first focal length and a second focal length

    Science.gov (United States)

    Crandall, David Lynn [Idaho Falls, ID

    2011-08-01

    One embodiment of sighting optics according to the teachings provided herein may include a front sight and a rear sight positioned in spaced-apart relation. The rear sight includes an optical element having a first focal length and a second focal length. The first focal length is selected so that it is about equal to a distance separating the optical element and the front sight and the second focal length is selected so that it is about equal to a target distance. The optical element thus brings into simultaneous focus, for a user, images of the front sight and the target.

  1. Understanding the Differential Selectivity of Arrestins toward the Phosphorylation State of the Receptor

    NARCIS (Netherlands)

    Sensoy, Ozge; de Sousa Moreira, Irina; Morra, Giulia

    2016-01-01

    Proteins in the arrestin family exhibit a conserved structural fold that nevertheless allows for significant differences in their selectivity for G-protein coupled receptors (GPCRs) and their phosphorylation states. To reveal the mechanism of activation that prepares arrestin for selective

  2. Characterization of Carbon-Contaminated B4C-Coated Optics after Chemically Selective Cleaning with Low-Pressure RF Plasma.

    Science.gov (United States)

    Moreno Fernández, H; Rogler, D; Sauthier, G; Thomasset, M; Dietsch, R; Carlino, V; Pellegrin, E

    2018-01-22

    Boron carbide (B 4 C) is one of the few materials that is expected to be most resilient with respect to the extremely high brilliance of the photon beam generated by free electron lasers (FELs) and is thus of considerable interest for optical applications in this field. However, as in the case of many other optics operated at light source facilities, B 4 C-coated optics are subject to ubiquitous carbon contaminations. Carbon contaminations represent a serious issue for the operation of FEL beamlines due to severe reduction of photon flux, beam coherence, creation of destructive interference, and scattering losses. A variety of B 4 C cleaning technologies were developed at different laboratories with varying success. We present a study regarding the low-pressure RF plasma cleaning of carbon contaminated B 4 C test samples via inductively coupled O 2 /Ar, H 2 /Ar, and pure O 2 RF plasma produced following previous studies using the same ibss GV10x downstream plasma source. Results regarding the chemistry, morphology as well as other aspects of the B 4 C optical coating before and after the plasma cleaning are reported. We conclude that among the above plasma processes only plasma based on pure O 2 feedstock gas exhibits the required chemical selectivity for maintaining the integrity of the B 4 C optical coatings.

  3. Changing image of correlation optics: introduction.

    Science.gov (United States)

    Angelsky, Oleg V; Desyatnikov, Anton S; Gbur, Gregory J; Hanson, Steen G; Lee, Tim; Miyamoto, Yoko; Schneckenburger, Herbert; Wyant, James C

    2016-04-20

    This feature issue of Applied Optics contains a series of selected papers reflecting recent progress of correlation optics and illustrating current trends in vector singular optics, internal energy flows at light fields, optical science of materials, and new biomedical applications of lasers.

  4. Changing image of correlation optics: introduction

    DEFF Research Database (Denmark)

    Angelsky, Oleg V.; Desyatnikov, Anton S.; Gbur, Gregory J.

    2016-01-01

    This feature issue of Applied Optics contains a series of selected papers reflecting recent progress of correlation optics and illustrating current trends in vector singular optics, internal energy flows at light fields, optical science of materials, and new biomedical applications of lasers. (C...

  5. Production of polarized negative deuterium ion beam with dual optical pumping in KEK

    Energy Technology Data Exchange (ETDEWEB)

    Kinsho, M.; Ikegami, K.; Takagi, A. [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan); Mori, Y.

    1997-02-01

    To obtain highly nuclear-spin vector polarized negative deuterium ion beam, a dual optically pumped polarized negative deuterium ion source has been developed at KEK. It is possible to select a pure nuclear-spin state with this scheme, and negative deuterium ion beam with 100% nuclear-spin vector polarization can be produced in principle. We have obtained about 70% of nuclear-spin vector polarized negative deuterium ion beam so far. This result may open up a new possibilities for the optically pumped polarized ion source. (author)

  6. Perfect pattern formation of neutral atoms in an addressable optical lattice

    International Nuclear Information System (INIS)

    Vala, J.; Whaley, K.B.; Thapliyal, A.V.; Vazirani, U.; Myrgren, S.; Weiss, D.S.

    2005-01-01

    We propose a physical scheme for formation of an arbitrary pattern of neutral atoms in an addressable optical lattice. We focus specifically on the generation of a perfect optical lattice of simple orthorhombic structure with unit occupancy, as required for initialization of a neutral atom quantum computer. The scheme employs a compacting process that is accomplished by sequential application of two types of operations: a flip operator that changes the internal state of the atoms, and a shift operator that selectively moves the atoms in one internal state along the lattice principal axis. Realizations of these elementary operations and their physical limitations are analyzed. The complexity of the compacting scheme is analyzed and we show that this scales linearly with the number of lattice sites per row of the lattice

  7. Entanglement and Wigner Function Negativity of Multimode Non-Gaussian States

    Science.gov (United States)

    Walschaers, Mattia; Fabre, Claude; Parigi, Valentina; Treps, Nicolas

    2017-11-01

    Non-Gaussian operations are essential to exploit the quantum advantages in optical continuous variable quantum information protocols. We focus on mode-selective photon addition and subtraction as experimentally promising processes to create multimode non-Gaussian states. Our approach is based on correlation functions, as is common in quantum statistical mechanics and condensed matter physics, mixed with quantum optics tools. We formulate an analytical expression of the Wigner function after the subtraction or addition of a single photon, for arbitrarily many modes. It is used to demonstrate entanglement properties specific to non-Gaussian states and also leads to a practical and elegant condition for Wigner function negativity. Finally, we analyze the potential of photon addition and subtraction for an experimentally generated multimode Gaussian state.

  8. Near-field characteristics of highly non-paraxial subwavelength optical fields with hybrid states of polarization

    International Nuclear Information System (INIS)

    Chen Rui-Pin; Gao Teng-Yue; Chew Khian-Hooi; Dai Chao-Qing; Zhou Guo-Quan; He Sai-Ling

    2017-01-01

    The vectorial structure of an optical field with hybrid states of polarization (SoP) in the near-field is studied by using the angular spectrum method of an electromagnetic beam. Physical images of the longitudinal components of evanescent waves are illustrated and compared with those of the transverse components from the vectorial structure. Our results indicate that the relative weight integrated over the transverse plane of the evanescent wave depends strongly on the number of the polarization topological charges. The shapes of the intensity profiles of the longitudinal components are different from those of the transverse components, and it can be manipulated by changing the initial SoP of the field cross-section. The longitudinal component of evanescent wave dominates the near-field region. In addition, it also leads to three-dimensional shape variations of the optical field and the optical spin angular momentum flux density distributions. (paper)

  9. Group IV all-semiconductor spintronics. Materials aspects and optical spin selection rules

    Energy Technology Data Exchange (ETDEWEB)

    Sircar, Narayan

    2012-04-03

    particular, by including recent theory on spin-dependent selection rules for radiative transitions in bulk Si, we adapt an expression for the magnetic-field-induced photoluminescence polarization of direct band gap semiconductor materials of GaAs-type to Si. Measurements within an applied magnetic field of the degree of circular polarization of phononassisted photoluminescence of bulk Si for different doping are presented. Similar experiments on the photoluminescence of Ge quantum dot ensembles evidence a peculiarity for the spin-dependent selection rules for phononless radiative recombinations. We propose a connection between this finding and the confined character of electrons that are involved in the transitions. Furthermore, we try to optically inject and detect confined carrier spins in Ge quantum dot ensembles. For nonresonant excitation these efforts are unsuccessful, which we attribute to a hole spin relaxation that happens faster than the combined capture of the hole by the quantum dot and the radiative decay of the hole. Finally, we employ the p-type GeMn thin film layers presented in the first part of this work as spin-polarizing contacts for Si/SiGe-based light-emitting diodes with the aim to inject spin-polarized holes. Preliminary results of a circularly polarized electroluminescence of these devices propose the possibility of a successful hole spin injection near liquid helium temperatures.

  10. State-Resolved Metal Nanoparticle Dynamics Viewed through the Combined Lenses of Ultrafast and Magneto-optical Spectroscopies.

    Science.gov (United States)

    Zhao, Tian; Herbert, Patrick J; Zheng, Hongjun; Knappenberger, Kenneth L

    2018-05-08

    Electronic carrier dynamics play pivotal roles in the functional properties of nanomaterials. For colloidal metals, the mechanisms and influences of these dynamics are structure dependent. The coherent carrier dynamics of collective plasmon modes for nanoparticles (approximately 2 nm and larger) determine optical amplification factors that are important to applied spectroscopy techniques. In the nanocluster domain (sub-2 nm), carrier coupling to vibrational modes affects photoluminescence yields. The performance of photocatalytic materials featuring both nanoparticles and nanoclusters also depends on the relaxation dynamics of nonequilibrium charge carriers. The challenges for developing comprehensive descriptions of carrier dynamics spanning both domains are multifold. Plasmon coherences are short-lived, persisting for only tens of femtoseconds. Nanoclusters exhibit discrete carrier dynamics that can persist for microseconds in some cases. On this time scale, many state-dependent processes, including vibrational relaxation, charge transfer, and spin conversion, affect carrier dynamics in ways that are nonscalable but, rather, structure specific. Hence, state-resolved spectroscopy methods are needed for understanding carrier dynamics in the nanocluster domain. Based on these considerations, a detailed understanding of structure-dependent carrier dynamics across length scales requires an appropriate combination of spectroscopic methods. Plasmon mode-specific dynamics can be obtained through ultrafast correlated light and electron microscopy (UCLEM), which pairs interferometric nonlinear optical (INLO) with electron imaging methods. INLO yields nanostructure spectral resonance responses, which capture the system's homogeneous line width and coherence dynamics. State-resolved nanocluster dynamics can be obtained by pairing ultrafast with magnetic-optical spectroscopy methods. In particular, variable-temperature variable-field (VTVH) spectroscopies allow quantification

  11. Multi-criteria selection of offshore wind farms: Case study for the Baltic States

    International Nuclear Information System (INIS)

    Chaouachi, Aymen; Covrig, Catalin Felix; Ardelean, Mircea

    2017-01-01

    This paper presents a multi-criteria selection approach for offshore wind sites assessment. The proposed site selection framework takes into consideration the electricity network’s operating security aspects, economic investment, operation costs and capacity performances relative to each potential site. The selection decision is made through Analytic Hierarchy Process (AHP), with an inherited flexibility that aims to allow end users to adjust the expected benefits accordingly to their respective and global priorities. The proposed site selection framework is implemented as an interactive case study for three Baltic States in the 2020 time horizon, based on real data and exhaustive power network models, taking into consideration the foreseen upgrades and network reinforcements. For each country the optimal offshore wind sites are assessed under multiple weight contribution scenarios, reflecting the characteristics of market design, regulatory aspects or renewable integration targets. - Highlights: • We use a multi-criteria selection approach for offshore wind sites assessment. • Security aspects, economic investment, operation costs and capacity performances are included. • The selection decision is made through an Analytic Hierarchy Process (AHP). • We implement the methodology as a case study for three Baltic States in the 2020 time horizon.

  12. Optical detection of symmetric and antisymmetric states in double quantum wells at room temperature

    Science.gov (United States)

    Marchewka, M.; Sheregii, E. M.; Tralle, I.; Marcelli, A.; Piccinini, M.; Cebulski, J.

    2009-09-01

    We studied the optical reflectivity of a specially grown double quantum well (DQW) structure characterized by a rectangular shape and a high electron density at room temperature. Assuming that the QWs depth is known, reflectivity spectra in the mid-IR range allow to carry out the precise measurements of the SAS-gap values (the energy gap between the symmetric and anti-symmetric states) and the absolute energies of both symmetric and antisymmetric electron states. The results of our experiments are in favor of the existence of the SAS splitting in the DQWs at room temperature. Here we have shown that the SAS gap increases proportionally to the subband quantum number and the optical electron transitions between symmetric and antisymmetric states belonging to different subbands are allowed. These results were used for interpretation of the beating effect in the Shubnikov-de Haas (SdH) oscillations at low temperatures (0.6 and 4.2 K). The approach to the calculation of the Landau-levels energies for DQW structures developed earlier [D. Ploch , Phys. Rev. B 79, 195434 (2009)] is used for the analysis and interpretation of the experimental data related to the beating effect. We also argue that in order to explain the beating effect in the SdH oscillations, one should introduce two different quasi-Fermi levels characterizing the two electron subsystems regarding symmetry properties of their wave functions, symmetric and antisymmetric ones. These states are not mixed neither by electron-electron interaction nor probably by electron-phonon interaction.

  13. Hydrostatic pressure effects on the state density and optical transitions in quantum dots

    International Nuclear Information System (INIS)

    Galindez-Ramirez, G; Perez-Merchancano, S T; Paredes Gutierrez, H; Gonzalez, J D

    2010-01-01

    Using the effective mass approximation and variational method we have computed the effects of hydrostatic pressure on the absorption and photoluminescence spectra in spherical quantum dot GaAs-(Ga, Al) As, considering a finite confinement potential of this particular work we show the optical transitions in quantum of various sizes in the presence of hydrogenic impurities and hydrostatic pressure effects. Our first result describes the spectrum of optical absorption of 500 A QD for different values of hydrostatic pressure P = 0, 20 and 40 Kbar. The absorption peaks are sensitive to the displacement of the impurity center to the edge of the quantum dot and even more when the hydrostatic pressure changes in both cases showing that to the extent that these two effects are stronger quantum dots respond more efficiently. Also this result can be seen in the study of the photoluminescence spectrum as in the case of acceptor impurities consider them more efficiently capture carriers or electrons that pass from the conduction band to the valence band. Density states with randomly distributed impurity show that the additional peaks in the curves of the density of impurity states appear due to the presence of the additional hydrostatic pressure effects.

  14. Optical efficiency for fission-fragment track counting in Muscovite Solid-State Track Recorders

    International Nuclear Information System (INIS)

    Roberts, J.H.; Ruddy, F.H.; Gold, R.

    1983-07-01

    In order to determine absolute fission rates from thin actinide deposits placed in direct contact with Muscovite Solid-State Track Recorders, it is necessary to know the efficiency with which fission-fragment tracks are recorded. In this paper, a redetermination of the optical efficiency, i.e., the fraction of fission events recorded and observed in the Muscovite, is reported. The value obtained from a well-calibrated thin deposit of 252 Cf and Muscovite etched about 90 min. in 49% HF at room temperature, is 0.9875 +- 0.0085. Manual counting was used. Preliminary results from a deposit of 242 Pu are also reported, along with preliminary comparisons of track counting with an automated system. Reasons for the discrepancy of the optical efficiency reported here with an earlier measurement are also reported. 5 references, 1 figure, 3 tables

  15. Generation of a multi-photon Greenberger-Horne-Zeilinger state with linear optical elements and photon detectors

    International Nuclear Information System (INIS)

    Zou, X B; Pahlke, K; Mathis, W

    2005-01-01

    We present a scheme to generate a multi-photon Greenberger-Horne-Zeilinger (GHZ) state by using single-photon sources, linear optical elements and photon detectors. Such a maximum entanglement has wide applications in the demonstration of quantum nonlocality and quantum information processing

  16. Exponential Improvement in Photon Storage Fidelities Using Subradiance and “Selective Radiance” in Atomic Arrays

    Directory of Open Access Journals (Sweden)

    A. Asenjo-Garcia

    2017-08-01

    Full Text Available A central goal within quantum optics is to realize efficient, controlled interactions between photons and atomic media. A fundamental limit in nearly all applications based on such systems arises from spontaneous emission, in which photons are absorbed by atoms and then rescattered into undesired channels. In typical theoretical treatments of atomic ensembles, it is assumed that this rescattering occurs independently, and at a rate given by a single isolated atom, which in turn gives rise to standard limits of fidelity in applications such as quantum memories for light or photonic quantum gates. However, this assumption can in fact be dramatically violated. In particular, it has long been known that spontaneous emission of a collective atomic excitation can be significantly suppressed through strong interference in emission between atoms. While this concept of “subradiance” is not new, thus far the techniques to exploit the effect have not been well understood. In this work, we provide a comprehensive treatment of this problem. First, we show that in ordered atomic arrays in free space, subradiant states acquire an elegant interpretation in terms of optical modes that are guided by the array, which only emit due to scattering from the ends of the finite system. We also go beyond the typically studied regime of a single atomic excitation and elucidate the properties of subradiant states in the many-excitation limit. Finally, we introduce the new concept of “selective radiance.” Whereas subradiant states experience a reduced coupling to all optical modes, selectively radiant states are tailored to simultaneously radiate efficiently into a desired channel while scattering into undesired channels is suppressed, thus enabling an enhanced atom-light interface. We show that these states naturally appear in chains of atoms coupled to nanophotonic structures, and we analyze the performance of photon storage exploiting such states. We find

  17. Optically erasable and rewritable solid-state holograms.

    Science.gov (United States)

    Gaylord, T. K.; Rabson, T. A.; Tittel, F. K.

    1972-01-01

    Optical holographic storage in single-crystal LiNbO3 is described which can be optically erased at room temperature and then rewritten with no degradation in efficiency or writing rate. The diffraction efficiencies associated with the process are about 0.0001. Some variations from previously obtained results include a lack of threshold power density for writing, very-long-term persistence of the stored hologram, and a lack of a dependence of the diffracted intensity on the polarization of the readout beam.

  18. Overview of solid state lasers with applications as LIDAR transmitters and optical image amplifiers

    International Nuclear Information System (INIS)

    Powell, R.C.; Basiev, T.T.; Zverev, P.G.

    2000-01-01

    Full text: This talk will review the current status of solid state lasers. Then a specific class of solid state lasers, Raman lasers, will be discussed as a specific example of new technology development. The spectroscopic properties of the materials are used in these lasers is presented and the use of these materials in shared-, coupled-, and external-resonator laser systems is described. System design parameters affecting efficiency, beam quality, and temporal pulse width are discussed. Examples will be presented of the use of these lasers for transmitters in atmospheric and marine imaging light detection and ranging (LIDAR) systems and in optical amplifiers

  19. Impact of calcification state on the inherent optical properties of Emiliania huxleyi coccoliths and coccolithophores

    International Nuclear Information System (INIS)

    Bi, Lei; Yang, Ping

    2015-01-01

    Understanding the inherent optical properties (IOPs) of coccoliths and coccolithophores is important in oceanic radiative transfer simulations and remote sensing implementations. In this study, the invariant imbedding T-matrix method (II-TM) is employed to investigate the IOPs of coccoliths and coccolithophores. The Emiliania huxleyi (Ehux) coccolith and coccolithophore models are built based on observed biometric parameters including the eccentricity, the number of slits, and the rim width of detached coccoliths. The calcification state that specifies the amount of calcium of a single coccolith is critical in the determination of the size–volume/mass relationship (note, the volume/mass of coccoltihs at different calcification states are different although the diameters are the same). The present results show that the calcification state, namely, under-calcification, normal-calcification, or over-calcification, significantly influences the backscattering cross section and the phase matrix. Furthermore, the linear depolarization ratio of the light scattered by coccoliths is sensitive to the degree of calcification, and provides a potentially valuable parameter for interpreting oceanic remote sensing data. The phase function of an ensemble of randomly oriented coccolithophores has a similar pattern to that of individual coccoliths, but the forward scattering is dominant in the coccolithophores due to the large geometric cross sections. The linear depolarization ratio associated with coccolithophores is found to be larger than that for coccoliths as polarization is more sensitive to multiple scattering than the phase function. The simulated coccolithophore phase matrix numerical results are compared with laboratory measurements. For scattering angles larger than 100°, an increase of the phase function with respect to the scattering angle is confirmed based on the present coccolithophore model while the spherical approximation fails. - Highlights: • Realistic

  20. Advances in nonlinear optics

    CERN Document Server

    Chen, Xianfeng; Zeng, Heping; Guo, Qi; She, Weilong

    2015-01-01

    This book presents an overview of the state of the art of nonlinear optics from weak light nonlinear optics, ultrafast nonlinear optics to electro-optical theory and applications. Topics range from the fundamental studies of the interaction between matter and radiation to the development of devices, components, and systems of tremendous commercial interest for widespread applications in optical telecommunications, medicine, and biotechnology.

  1. Selective isotope determination of lanthanum by diode-laser-initiated resonance-ionization mass spectrometry

    International Nuclear Information System (INIS)

    Young, J.P.; Shaw, R.W.

    1995-01-01

    A diode-laser step has been incorporated into a resonance-ionization mass spectrometry optical excitation process to enhance the isotopic selectivity of the technique. Lanthanum isotope ratio enhancements as high as 10 3 were achieved by use of a single-frequency cw diode laser tuned to excite the first step of a three-step excitation--ionization optical process; the subsequent steps were excited by use of a pulsed dye laser. Applying the same optical technique, we measured atomic hyperfine constants for the high-lying even-parity 4 D 5/2 state of lanthanum at 30 354 cm --1 . The general utility of this spectral approach is discussed

  2. Optical biosensors.

    Science.gov (United States)

    Damborský, Pavel; Švitel, Juraj; Katrlík, Jaroslav

    2016-06-30

    Optical biosensors represent the most common type of biosensor. Here we provide a brief classification, a description of underlying principles of operation and their bioanalytical applications. The main focus is placed on the most widely used optical biosensors which are surface plasmon resonance (SPR)-based biosensors including SPR imaging and localized SPR. In addition, other optical biosensor systems are described, such as evanescent wave fluorescence and bioluminescent optical fibre biosensors, as well as interferometric, ellipsometric and reflectometric interference spectroscopy and surface-enhanced Raman scattering biosensors. The optical biosensors discussed here allow the sensitive and selective detection of a wide range of analytes including viruses, toxins, drugs, antibodies, tumour biomarkers and tumour cells. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  3. Nonlinear optical spectra having characteristics of Fano interferences in coherently coupled lowest exciton biexciton states in semiconductor quantum dots

    Directory of Open Access Journals (Sweden)

    Hideki Gotoh

    2014-10-01

    Full Text Available Optical nonlinear effects are examined using a two-color micro-photoluminescence (micro-PL method in a coherently coupled exciton-biexciton system in a single quantum dot (QD. PL and photoluminescence excitation spectroscopy (PLE are employed to measure the absorption spectra of the exciton and biexciton states. PLE for Stokes and anti-Stokes PL enables us to clarify the nonlinear optical absorption properties in the lowest exciton and biexciton states. The nonlinear absorption spectra for excitons exhibit asymmetric shapes with peak and dip structures, and provide a distinct contrast to the symmetric dip structures of conventional nonlinear spectra. Theoretical analyses with a density matrix method indicate that the nonlinear spectra are caused not by a simple coherent interaction between the exciton and biexciton states but by coupling effects among exciton, biexciton and continuum states. These results indicate that Fano quantum interference effects appear in exciton-biexciton systems at QDs and offer important insights into their physics.

  4. Reststrahlen Band Optics for the Advancement of Far-Infrared Optical Architecture

    Science.gov (United States)

    Streyer, William Henderson

    The dissertation aims to build a case for the benefits and means of investigating novel optical materials and devices operating in the underdeveloped far-infrared (20 - 60 microns) region of the electromagnetic spectrum. This dissertation and the proposed future investigations described here have the potential to further the advancement of new and enhanced capabilities in fields such as astronomy, medicine, and the petrochemical industry. The first several completed projects demonstrate techniques for developing far-infrared emission sources using selective thermal emitters, which could operate more efficiently than their simple blackbody counterparts commonly used as sources in this wavelength region. The later projects probe the possible means of linking bulk optical phonon populations through interaction with surface modes to free space photons. This is a breakthrough that would enable the development of a new class of light sources operating in the far-infrared. Chapter 1 introduces the far-infrared wavelength range along with many of its current and potential applications. The limited capabilities of the available optical architecture in this range are outlined along with a discussion of the state-of-the-art technology available in this range. Some of the basic physical concepts routinely applied in this dissertation are reviewed; namely, the Drude formalism, semiconductor Reststrahlen bands, and surface polaritons. Lastly, some of the physical challenges that impede the further advancement of far-infrared technology, despite remarkable recent success in adjacent regions of the electromagnetic spectrum, are discussed. Chapter 2 describes the experimental and computational methods employed in this dissertation. Spectroscopic techniques used to investigate both the mid-infrared and far-infrared wavelength ranges are reviewed, including a brief description of the primary instrument of infrared spectroscopy, the Fourier Transform Infrared (FTIR) spectrometer

  5. Fusion of Selected Cells and Vesicles Mediated by Optically Trapped Plasmonic Nanoparticles

    DEFF Research Database (Denmark)

    Bahadori, Azra

    . In this work, we introduce a novel and extremely flexible physical method which can trigger membrane fusion in a highly selective manner not only between synthetic GUVs of different compositions, but also between live cells which remain viable after fusion. Optical tweezers’ laser (1064 nm) is used to position....... The concept of cellular delivery is also known as targeted drug delivery and is quite a hot research topic internationally. Therefore, there have been efforts to develop various chemical molecules, proteins/peptides and physical approaches to trigger membrane fusion between synthetic giant unilamellar...... and merging of the two membranes results in merging the two membranes thereby completes the fusion. Complete fusion is associated with lipid mixing and lumen mixing which are both imaged by a high resolution confocal microscope. The confocal imaging enables quantification of the associated lipid mixing...

  6. Fabrication of MWCNT/NiO nanocomposite thin films for optically selective solar absorbers

    CSIR Research Space (South Africa)

    Roro, Kittessa T

    2011-07-01

    Full Text Available = ?T4, ? = 5.67 ? 10-8 W/m2K4 (1) (Stefan-Boltzmann law) 0.1 1 10 0.0 0.2 0.4 0.6 0.8 1.0 S pe ctral rad iatio n (arb . u nits ) Wave length (?m) 0.0 0.2 0.4 0.6 0.8 1.0 Id ea l s el ec tiv e ab so rb er Blackbody... T = 373 K Solar (AM 1.5) Reflectance Fundamentals: Optical Selectivity The power density ,P, of thermal radiation emitted by a black body of temperature T is P = ?T4, ? = 5.67 ? 10-8 W/m2K4 (1) (Stefan-Boltzmann law) At T = 80 ?C, from eq. (1...

  7. Correlation methods in optical metrology with state-of-the-art x-ray mirrors

    Science.gov (United States)

    Yashchuk, Valeriy V.; Centers, Gary; Gevorkyan, Gevork S.; Lacey, Ian; Smith, Brian V.

    2018-01-01

    The development of fully coherent free electron lasers and diffraction limited storage ring x-ray sources has brought to focus the need for higher performing x-ray optics with unprecedented tolerances for surface slope and height errors and roughness. For example, the proposed beamlines for the future upgraded Advance Light Source, ALS-U, require optical elements characterized by a residual slope error of optics with a length of up to one meter. However, the current performance of x-ray optical fabrication and metrology generally falls short of these requirements. The major limitation comes from the lack of reliable and efficient surface metrology with required accuracy and with reasonably high measurement rate, suitable for integration into the modern deterministic surface figuring processes. The major problems of current surface metrology relate to the inherent instrumental temporal drifts, systematic errors, and/or an unacceptably high cost, as in the case of interferometry with computer-generated holograms as a reference. In this paper, we discuss the experimental methods and approaches based on correlation analysis to the acquisition and processing of metrology data developed at the ALS X-Ray Optical Laboratory (XROL). Using an example of surface topography measurements of a state-of-the-art x-ray mirror performed at the XROL, we demonstrate the efficiency of combining the developed experimental correlation methods to the advanced optimal scanning strategy (AOSS) technique. This allows a significant improvement in the accuracy and capacity of the measurements via suppression of the instrumental low frequency noise, temporal drift, and systematic error in a single measurement run. Practically speaking, implementation of the AOSS technique leads to an increase of the measurement accuracy, as well as the capacity of ex situ metrology by a factor of about four. The developed method is general and applicable to a broad spectrum of high accuracy measurements.

  8. Theory of optical flashes

    International Nuclear Information System (INIS)

    London, R.A.

    1983-01-01

    The theory of optical flashes created by x- and γ-ray burst heating of stars in binaries is reviewed. Calculations of spectra due to steady-state x-ray reprocessing and estimates of the fundamental time scales for the non-steady case are discussed. The results are applied to the extant optical data from x-ray and γ-ray bursters. Finally, I review predictions of flashes from γ-ray bursters detectable by a state of the art all-sky optical monitor

  9. Quantum Optics

    CERN Document Server

    Walls, D F

    2007-01-01

    Quantum Optics gives a comprehensive coverage of developments in quantum optics over the past years. In the early chapters the formalism of quantum optics is elucidated and the main techniques are introduced. These are applied in the later chapters to problems such as squeezed states of light, resonance fluorescence, laser theory, quantum theory of four-wave mixing, quantum non-demolition measurements, Bell's inequalities, and atom optics. Experimental results are used to illustrate the theory throughout. This yields the most comprehensive and up-to-date coverage of experiment and theory in quantum optics in any textbook. More than 40 exercises helps readers test their understanding and provide practice in quantitative problem solving.

  10. EXPLORING THE DIVERSITY OF GROUPS AT 0.1 < z < 0.8 WITH X-RAY AND OPTICALLY SELECTED SAMPLES

    Energy Technology Data Exchange (ETDEWEB)

    Connelly, J. L. [Max-Planck-Institut fuer Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Wilman, David J.; Finoguenov, Alexis; Saglia, Roberto [Max Planck Institute for Extraterrestrial Physics, P.O. Box 1312, Giessenbachstr., D-85741 Garching (Germany); Hou, Annie; Parker, Laura C.; Henderson, Robert D. E. [Department of Physics and Astronomy, McMaster University, Hamilton ON L8S4M1 (Canada); Mulchaey, John S. [Observatories of the Carnegie Institution, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); McGee, Sean L.; Balogh, Michael L. [Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Bower, Richard G. [Department of Physics, University of Durham, Durham DH1 3LE (United Kingdom)

    2012-09-10

    We present the global group properties of two samples of galaxy groups containing 39 high-quality X-ray-selected systems and 38 optically (spectroscopically) selected systems in coincident spatial regions at 0.12 < z < 0.79. The total mass range of the combined sample is {approx}(10{sup 12}-5) Multiplication-Sign 10{sup 14} M{sub Sun }. Only nine optical systems are associable with X-ray systems. We discuss the confusion inherent in the matching of both galaxies to extended X-ray emission and of X-ray emission to already identified optical systems. Extensive spectroscopy has been obtained and the resultant redshift catalog and group membership are provided here. X-ray, dynamical, and total stellar masses of the groups are also derived and presented. We explore the effects of utilizing different centers and applying three different kinds of radial cut to our systems: a constant cut of 1 Mpc and two r{sub 200} cuts, one based on the velocity dispersion of the system and the other on the X-ray emission. We find that an X-ray-based r{sub 200} results in less scatter in scaling relations and less dynamical complexity as evidenced by results of the Anderson-Darling and Dressler-Schectman tests, indicating that this radius tends to isolate the virialized part of the system. The constant and velocity dispersion based cuts can overestimate membership and can work to inflate velocity dispersion and dynamical and stellar mass. We find L{sub X} -{sigma} and M{sub stellar}-L{sub X} scaling relations for X-ray and optically selected systems are not dissimilar. The mean fraction of mass found in stars, excluding intracluster light, for our systems is {approx}0.014 with a logarithmic standard deviation of 0.398 dex. We also define and investigate a sample of groups which are X-ray underluminous given the total group stellar mass. For these systems the fraction of stellar mass contributed by the most massive galaxy is typically lower than that found for the total population of

  11. All-optical reservoir computing.

    Science.gov (United States)

    Duport, François; Schneider, Bendix; Smerieri, Anteo; Haelterman, Marc; Massar, Serge

    2012-09-24

    Reservoir Computing is a novel computing paradigm that uses a nonlinear recurrent dynamical system to carry out information processing. Recent electronic and optoelectronic Reservoir Computers based on an architecture with a single nonlinear node and a delay loop have shown performance on standardized tasks comparable to state-of-the-art digital implementations. Here we report an all-optical implementation of a Reservoir Computer, made of off-the-shelf components for optical telecommunications. It uses the saturation of a semiconductor optical amplifier as nonlinearity. The present work shows that, within the Reservoir Computing paradigm, all-optical computing with state-of-the-art performance is possible.

  12. Wideband optical vector network analyzer based on optical single-sideband modulation and optical frequency comb.

    Science.gov (United States)

    Xue, Min; Pan, Shilong; He, Chao; Guo, Ronghui; Zhao, Yongjiu

    2013-11-15

    A novel approach to increase the measurement range of the optical vector network analyzer (OVNA) based on optical single-sideband (OSSB) modulation is proposed and experimentally demonstrated. In the proposed system, each comb line in an optical frequency comb (OFC) is selected by an optical filter and used as the optical carrier for the OSSB-based OVNA. The frequency responses of an optical device-under-test (ODUT) are thus measured channel by channel. Because the comb lines in the OFC have fixed frequency spacing, by fitting the responses measured in all channels together, the magnitude and phase responses of the ODUT can be accurately achieved in a large range. A proof-of-concept experiment is performed. A measurement range of 105 GHz and a resolution of 1 MHz is achieved when a five-comb-line OFC with a frequency spacing of 20 GHz is applied to measure the magnitude and phase responses of a fiber Bragg grating.

  13. Tungsten and optics

    International Nuclear Information System (INIS)

    Reglero, V.; Velasco, T.; Rodrigo, J.; Gasent, L.J.; Alamo, J.; Chato, R.; Ruiz Urien, I.; Santos, I.; Zarauz, J.

    2001-01-01

    High energy astronomy research requires accurate location to perform multiwavelength studies of the cosmic gamma-ray emitters. New technologies have been developed to achieve this goal, the use of large spatial signal multiplexing systems (Masks). The optical system based on the use of coded Masks together with solid stated pixelated planes provide a point source location capability of 1 arc min, that is 3600 times better than of the last NASA CGRO mission. Different materials were considered to modulate the high energy signals, tungsten was selected for implementing the codes due to both its high density and large atomic number that provide the required stooping power. An overview of the programme carried out to design and manufacture the coded Masks is provided. (nevyjel)

  14. Electronic structure and optical spectra of semiconducting carbon nanotubes functionalized by diazonium salts

    Science.gov (United States)

    Ramirez, Jessica; Mayo, Michael L.; Kilina, Svetlana; Tretiak, Sergei

    2013-02-01

    We report density functional (DFT) calculations on finite-length semiconducting carbon nanotubes covalently and non-covalently functionalized by aryl diazonium moieties and their chlorinated derivatives. For these systems, we investigate (i) an accuracy of different functionals and basis sets, (ii) a solvent effect, and (iii) the impact of the chemical functionalization on optical properties of nanotubes. In contrast to B3LYP, only long-range-corrected functionals, such as CAM-B3LYP and wB97XD, properly describe the ground and excited state properties of physisorbed molecules. We found that physisorbed cation insignificantly perturbs the optical spectra of nanotubes. In contrast, covalently bound complexes demonstrate strong redshifts and brightening of the lowest exciton that is optically dark in pristine nanotubes. However, the energy and oscillator strength of the lowest state are dictated by the position of the molecule on the nanotube. Thus, if controllable and selective chemical functionalization is realized, the PL of nanotubes could be improved.

  15. Radiation impact on the characteristics of optical glasses test results on a selected set of materials

    Science.gov (United States)

    Fruit, Michel; Gussarov, Andrei; Berghmans, Francis; Doyle, Dominic; Ulbrich, Gerd

    2017-11-01

    It is well known within the Space optics community that radiation may significantly affect transmittance of glasses. To overcome this drawback, glass manufacturers have developed Cerium doped counterparts of classical glasses. This doped glasses display much less transmittance sensitivity to radiation. Still, the impact of radiation on refractive index is less known and may affect indifferently classical or Cerium doped glasses. ESTEC has initialised an R&D program with the aim of establishing a comprehensive data base gathering radiation sensitivity data, called Dose coefficients, for all the glass optical parameters (transmittance / refractive index / compaction……). The first part of this study, to define the methodology for such a data base, is run by ASTRIUM SAS in co-operation with SCK CEN. This covers theoretical studies associated to testing of a selected set of classical and "radiation hardened" glasses. It is proposed here to present first the theoretical backgrounds of this study and then to give results which have been obtained so far.

  16. Auxiliary-cavity-assisted ground-state cooling of an optically levitated nanosphere in the unresolved-sideband regime

    Science.gov (United States)

    Feng, Jin-Shan; Tan, Lei; Gu, Huai-Qiang; Liu, Wu-Ming

    2017-12-01

    We theoretically analyze the ground-state cooling of an optically levitated nanosphere in the unresolved-sideband regime by introducing a coupled high-quality-factor cavity. On account of the quantum interference stemming from the presence of the coupled cavity, the spectral density of the optical force exerting on the nanosphere gets changed and then the symmetry between the heating and the cooling processes is broken. Through adjusting the detuning of a strong-dissipative cavity mode, one obtains an enhanced net cooling rate for the nanosphere. It is illustrated that the ground-state cooling can be realized in the unresolved sideband regime even if the effective optomechanical coupling is weaker than the frequency of the nanosphere, which can be understood by the picture that the effective interplay of the nanosphere and the auxiliary cavity mode brings the system back to an effective resolved regime. Besides, the coupled cavity refines the dynamical stability of the system.

  17. Virtual optical network provisioning with unified service logic processing model for software-defined multidomain optical networks

    Science.gov (United States)

    Zhao, Yongli; Li, Shikun; Song, Yinan; Sun, Ji; Zhang, Jie

    2015-12-01

    Hierarchical control architecture is designed for software-defined multidomain optical networks (SD-MDONs), and a unified service logic processing model (USLPM) is first proposed for various applications. USLPM-based virtual optical network (VON) provisioning process is designed, and two VON mapping algorithms are proposed: random node selection and per controller computation (RNS&PCC) and balanced node selection and hierarchical controller computation (BNS&HCC). Then an SD-MDON testbed is built with OpenFlow extension in order to support optical transport equipment. Finally, VON provisioning service is experimentally demonstrated on the testbed along with performance verification.

  18. Amorphization-induced strong localization of electronic states in CsPbBr3 and CsPbCl3 studied by optical absorption measurements

    Science.gov (United States)

    Kondo, S.; Sakai, T.; Tanaka, H.; Saito, T.

    1998-11-01

    Optical absorption spectra of amorphous CsPbX3 films (X=Br,Cl) are characterized by two Gaussian bands near the fundamental edge, with the optical energy gap largely blueshifted and the absorption intensity strongly reduced as compared with the crystalline films. The peak energies of the bands are close to those of the A and C bands of Pb-doped alkali halides. The spectral features are discussed in terms of a molecular orbital theory based on a quasicomplex Pb2+(X-)6 model similar to the complex model for the doped alkali halides. It is shown that not only Pb2+ 6s and 6p extended states near the band edges but also X- p states contributing to upper valence bands are localized by amorphization. The transitions from the localized Pb2+ 6s to 6p states produce the spin-orbit allowed 3P1 and dipole allowed 1P1 states responsible for the two Gaussians. The localized X- p states lie deeper in energy than the localized Pb2+ 6s state and only contribute to higher-energy absorption above the Gaussian bands, giving the reason for the reduced absorption near the fundamental edge. The blueshift of the optical energy gap is attributed to the disappearance of k dispersions for these one-electron states.

  19. Models of optical quantum computing

    Directory of Open Access Journals (Sweden)

    Krovi Hari

    2017-03-01

    Full Text Available I review some work on models of quantum computing, optical implementations of these models, as well as the associated computational power. In particular, we discuss the circuit model and cluster state implementations using quantum optics with various encodings such as dual rail encoding, Gottesman-Kitaev-Preskill encoding, and coherent state encoding. Then we discuss intermediate models of optical computing such as boson sampling and its variants. Finally, we review some recent work in optical implementations of adiabatic quantum computing and analog optical computing. We also provide a brief description of the relevant aspects from complexity theory needed to understand the results surveyed.

  20. Optical metamaterials with quasicrystalline symmetry: symmetry-induced optical isotropy

    International Nuclear Information System (INIS)

    Kruk, S.S.; Decker, M.; Helgert, Ch.; Neshev, D.N.; Kivshar, Y.S.; Staude, I.; Powell, D.A.; Pertsch, Th.; Menzel, Ch.; Helgert, Ch.; Etrich, Ch.; Rockstuhl, C.; Menzel, Ch.

    2013-01-01

    Taking advantage of symmetry considerations, we have analyzed the potential of various metamaterials to affect the polarization state of light upon oblique illumination. We have shown that depending on the angle of illumination, metamaterials are able to support specific polarization states. The presented methodology that using ellipticity and circular dichroism, provides an unambiguous language for discussing the impact of the inherent symmetry of the metamaterial lattices on their far-field response. Our findings allow the quantification analysis of the impact of inter-element coupling and lattice symmetry on the optical properties of metamaterials, and to separate this contribution from the response associated with a single meta-atom. In addition, we have studied the concept of optical quasicrystalline metamaterials, revealing that the absence of translational symmetry (periodicity) of quasicrystalline metamaterials causes an isotropic optical response, while the long-range positional order preserves the resonance properties. Our findings constitute an important step towards the design of optically isotropic metamaterials and metasurfaces. (authors)

  1. Correspondence between quantum-optical transform and classical-optical transform explored by developing Dirac's symbolic method

    Science.gov (United States)

    Fan, Hong-yi; Hu, Li-yun

    2012-06-01

    By virtue of the new technique of performing integration over Dirac's ket-bra operators, we explore quantum optical version of classical optical transformations such as optical Fresnel transform, Hankel transform, fractional Fourier transform, Wigner transform, wavelet transform and Fresnel-Hadmard combinatorial transform etc. In this way one may gain benefit for developing classical optics theory from the research in quantum optics, or vice-versa. We cannot only find some new quantum mechanical unitary operators which correspond to the known optical transformations, deriving a new theorem for calculating quantum tomogram of density operators, but also can reveal some new classical optical transformations. For examples, we find the generalized Fresnel operator (GFO) to correspond to the generalized Fresnel transform (GFT) in classical optics. We derive GFO's normal product form and its canonical coherent state representation and find that GFO is the loyal representation of symplectic group multiplication rule. We show that GFT is just the transformation matrix element of GFO in the coordinate representation such that two successive GFTs is still a GFT. The ABCD rule of the Gaussian beam propagation is directly demonstrated in the context of quantum optics. Especially, the introduction of quantum mechanical entangled state representations opens up a new area in finding new classical optical transformations. The complex wavelet transform and the condition of mother wavelet are studied in the context of quantum optics too. Throughout our discussions, the coherent state, the entangled state representation of the two-mode squeezing operators and the technique of integration within an ordered product (IWOP) of operators are fully used. All these have confirmed Dirac's assertion: "...for a quantum dynamic system that has a classical analogue, unitary transformation in the quantum theory is the analogue of contact transformation in the classical theory".

  2. Selection of fiber-optical components for temperature measurement for satellite applications

    Science.gov (United States)

    Putzer, P.; Kuhenuri Chami, N.; Koch, A. W.; Hurni, A.; Roner, M.; Obermaier, J.; Lemke, N. M. K.

    2017-11-01

    The Hybrid Sensor Bus (HSB) is a modular system for housekeeping measurements for space applications. The focus here is the fiber-optical module and the used fiber-Bragg gratings (FBGs) for temperature measurements at up to 100 measuring points. The fiber-optial module uses a tunable diode laser to scan through the wavelength spectrum and a passive optical network for reading back the reflections from the FBG sensors. The sensors are based on FBGs which show a temperature dependent shift in wavelength, allowing a high accuracy of measurement. The temperature at each sensor is derivated from the sensors Bragg wavelength shift by evaluating the measured spectrum with an FBG peak detection algorithm and by computing the corresponding temperature difference with regard to the calibration value. It is crucial to eliminate unwanted influence on the measurement accuracy through FBG wavelength shifts caused by other reasons than the temperature change. The paper presents gamma radiation test results up to 25 Mrad for standard UV-written FBGs in a bare fiber and in a mechanically housed version. This high total ionizing dose (TID) load comes from a possible location of the fiber outside the satellite's housing, like e.g. on the panels or directly embedded into the satellites structure. Due to the high shift in wavelength of the standard written gratings also the femto-second infrared (fs- IR) writing technique is investigated in more detail. Special focus is given to the deployed fibers for the external sensor network. These fibers have to be mechanically robust and the radiation induced attenuation must be low in order not to influence the system's performance. For this reason different fiber types have been considered and tested to high dose gamma radiation. Dedicated tests proved the absence of enhanced low dose rate sensitivity (ELDRS). Once the fiber has been finally selected, the fs-IR grating will be written to these fibers and the FBGs will be tested in order to

  3. Microwave assisted synthesis of a novel optical chemosensor for selective Fe{sup 3+} detection

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, Muhammad [Department of Chemistry, Kongju National University, Gongju, Chungnam 314-701 (Korea, Republic of); Kang, Sung Kwon [Department of Chemistry Chungnam National University, Daejeon 305-754 (Korea, Republic of); Lee, Ki Hwan, E-mail: khlee@kongju.ac.kr [Department of Chemistry, Kongju National University, Gongju, Chungnam 314-701 (Korea, Republic of)

    2015-06-15

    Recently, there has been significant interest in the design and development of optical chemosensors for recognition of biologically and environmentally important analytes with high selectivity, sensitivity and low detection-limit because of their fundamental role in medical, environmental and biological applications. Herein, a novel fluorogenic signaling probe 6 for the selective detection of ferric ion in mixed aqueous organic media has been developed through microwave assisted Schiff base formation by reacting 4-amino-3-(2-fluorobenzyl)-1H-1,2,4-triazole-5(4H)-thione 5 with thiophene-2-carbaldehyde. The formation of probe 6 was characterized by FT-IR, {sup 1}H NMR, {sup 13}C NMR, mass spectrometric and single crystal X-ray diffraction analysis. The photophysical results of (Z)-3-(2-fluorobenzyl)-4-[(thiophen-2-ylmethylene) amino]-1H-1,2,4-triazole-5(4H)-thione (6) corroborates its applicability as optical sensing platform for selective Fe{sup 3+} detection in pure organic as well as mixed organic-aqueous media. Through fluorescence titration at 478 nm, we were confirmed that the ligand 6 exhibited remarkable decline in the fluorescence intensity by complexation between 6 and Fe{sup 3+} while it appeared negligible fluorescent quenching in case of the competitive ions in MeOH/water (8:2, v/v, pH 7) at ambient temperature. Meanwhile, the emergence of a new characteristic redshifted signal at 357 nm with gradual increment in the absorption intensity on gentle increase in the ferric ion concentration and continuous shifting in the ligand absorption bands after Fe{sup 3+} addition ascribed the conformational changes in the ligand structure upon Fe{sup 3+} binding. Due to simplicity, low cost, fast response time, considerable sensitivity and robustness, the proposed sensing method might be a practical tool for environmental samples analysis and biological studies. - Highlights: • A novel fluorogenic signaling probe for ferric ion has been developed. • The ligand

  4. Dicke superradiance as nondestructive probe for the state of atoms in optical lattices

    Science.gov (United States)

    ten Brinke, Nicolai; Schützhold, Ralf

    2016-04-01

    We present a proposal for a probing scheme utilizing Dicke superradiance to obtain information about ultracold atoms in optical lattices. A probe photon is absorbed collectively by an ensemble of lattice atoms generating a Dicke state. The lattice dynamics (e.g., tunneling) affects the coherence properties of that Dicke state and thus alters the superradiant emission characteristics - which in turn provides insight into the lattice (dynamics). Comparing the Bose-Hubbard and the Fermi-Hubbard model, we find similar superradiance in the strongly interacting Mott insulator regime, but crucial differences in the weakly interacting (superfluid or metallic) phase. Furthermore, we study the possibility to detect whether a quantum phase transition between the two regimes can be considered adiabatic or a quantum quench.

  5. Electronic structure and optical properties of triangular GaAs/AlGaAs quantum dots: Exciton and impurity states

    International Nuclear Information System (INIS)

    Tiutiunnyk, A.; Akimov, V.; Tulupenko, V.; Mora-Ramos, M.E.; Kasapoglu, E.; Ungan, F.; Sökmen, I.

    2016-01-01

    Electronic structure and optical properties in equilateral triangular GaAs/Al_0_._3Ga_0_._7As quantum dots are studied extensively. The effects of donor and acceptor impurity atoms positioned in the orthocenter of the triangle, as well as of the external DC electric field are taken into account. Binding energies of the impurity, exciton energies, interband photoluminescence peak positions as well as linear and non-linear optical properties in THz range caused by transitions between excitonic states are calculated and discussed.

  6. Neutron scattering from elemental indium, the optical model, and the bound-state potential

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, S. (Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)); Guenther, P.T.; Lawson, R.D.; Smith, A.B. (Argonne National Lab., IL (USA))

    1990-06-01

    Neutron differential elastic-scattering cross sections of elemental indium are measured from 4.5 to 10 MeV at incident-energy intervals of {approx}500 keV. Seventy or more differential values are obtained at each incident energy, distributed between {approx}18{degree} and 160{degree}. These experimental results are combined with lower-energy values previously obtained at this laboratory, and with 11 and 14 MeV results in the literature, to form a comprehensive elastic-scattering database extending from {approx}1.5 to 14 MeV. These data are interpreted in terms of a conventional spherical optical model. The resulting potential is extrapolated to the bound-state regime. It is shown that in the middle of the 50--82 neutron shell, the potential derived from the scattering results adequately describes the binding energies of article states, but does not do well for hole states. The latter shortcoming is attributed to the holes states having occupational probabilities sufficiently different from unity, so that the exclusion principle become a factor, and to the rearrangement of the neutron core. 68 refs.

  7. Neutron scattering from elemental indium, the optical model, and the bound-state potential

    International Nuclear Information System (INIS)

    Chiba, S.; Guenther, P.T.; Lawson, R.D.; Smith, A.B.

    1990-01-01

    Neutron differential elastic-scattering cross sections of elemental indium are measured from 4.5 to 10 MeV at incident-energy intervals of ∼500 keV. Seventy or more differential values are obtained at each incident energy, distributed between ∼18 degree and 160 degree. These experimental results are combined with lower-energy values previously obtained at this laboratory, and with 11 and 14 MeV results in the literature, to form a comprehensive elastic-scattering database extending from ∼1.5 to 14 MeV. These data are interpreted in terms of a conventional spherical optical model. The resulting potential is extrapolated to the bound-state regime. It is shown that in the middle of the 50--82 neutron shell, the potential derived from the scattering results adequately describes the binding energies of article states, but does not do well for hole states. The latter shortcoming is attributed to the holes states having occupational probabilities sufficiently different from unity, so that the exclusion principle become a factor, and to the rearrangement of the neutron core. 68 refs

  8. Selective detection of crystalline cellulose in plant cell walls with sum-frequency-generation (SFG) vibration spectroscopy.

    Science.gov (United States)

    Barnette, Anna L; Bradley, Laura C; Veres, Brandon D; Schreiner, Edward P; Park, Yong Bum; Park, Junyeong; Park, Sunkyu; Kim, Seong H

    2011-07-11

    The selective detection of crystalline cellulose in biomass was demonstrated with sum-frequency-generation (SFG) vibration spectroscopy. SFG is a second-order nonlinear optical response from a system where the optical centrosymmetry is broken. In secondary plant cell walls that contain mostly cellulose, hemicellulose, and lignin with varying concentrations, only certain vibration modes in the crystalline cellulose structure can meet the noninversion symmetry requirements. Thus, SFG can be used to detect and analyze crystalline cellulose selectively in lignocellulosic biomass without extraction of noncellulosic species from biomass or deconvolution of amorphous spectra. The selective detection of crystalline cellulose in lignocellulosic biomass is not readily achievable with other techniques such as XRD, solid-state NMR, IR, and Raman analyses. Therefore, the SFG analysis presents a unique opportunity to reveal the cellulose crystalline structure in lignocellulosic biomass.

  9. Quantum theory of optical coherence selected papers and lectures

    CERN Document Server

    Glauber, Roy J

    2007-01-01

    A summary of the pioneering work of Glauber in the field of optical coherence phenomena and photon statistics, this book describes the fundamental ideas of modern quantum optics and photonics in a tutorial style. It is thus not only intended as a reference for researchers in the field, but also to give graduate students an insight into the basic theories of the field. Written by the Nobel Laureate himself, the concepts described in this book have formed the basis for three further Nobel Prizes in Physics within the last decade

  10. Spectrally selective molecular doped solids: spectroscopy, photophysics and their application to ultrafast optical pulse processing

    International Nuclear Information System (INIS)

    Galaup, Jean-Pierre

    2005-01-01

    The persistent spectral hole-burning (PSHB) phenomenon observed in molecular doped polymers cooled down to liquid helium temperatures allows the engraving of spectral structures in the inhomogeneous absorption profile of the material. This phenomenon known since 1974 has became a fruitful field for the study of the intimacy of complex molecular systems in the solid state, revealing high-resolution spectroscopy, photophysics, photochemistry and dynamics of molecular doped amorphous media, organic as well as inorganic. A PSHB molecular doped solid can be programmed in spectral domain and therefore, it can be converted in an optical processor capable to achieve user-defined optical functions. Some aspects of this field are illustrated in the present paper. An application is presented where a naphthalocyanine doped polymer film is used in a demonstrative experiment to prove that temporal aberration free re-compression of ultra-short light pulses is feasible. Perspectives for the coherent control of light fields or photochemical processes are also evoked

  11. Quantum Information Processing using Nonlinear Optical Effects

    DEFF Research Database (Denmark)

    Andersen, Lasse Mejling

    This PhD thesis treats applications of nonlinear optical effects for quantum information processing. The two main applications are four-wave mixing in the form of Bragg scattering (BS) for quantum-state-preserving frequency conversion, and sum-frequency generation (SFG) in second-order nonlinear......-chirping the pumps. In the high-conversion regime without the effects of NPM, exact Green functions for BS are derived. In this limit, separability is possible for conversion efficiencies up to 60 %. However, the system still allows for selective frequency conversion as well as re-shaping of the output. One way...

  12. Optical matrix for nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Romero G, M.; Gonzaga O, A.

    1996-01-01

    In order to detect the presence of fuel rods, it was selected a reflection optical transducer, which provides a measurable electrical signal when the beam at a certain distance is interrupted then there is a reflection causing a excitation to the sensor that provides a change of state at the output of transducer. This step is coupled through an operational amplifier which drives the opto coupler circuit isolating this step of the interface and a personal computer. This work presents the description of components, designs, signal coupler and opto isolater circuit, interface circuit and tutorial assemble program. (Author)

  13. Q selection for an electro-optical earth imaging system: theoretical and experimental results.

    Science.gov (United States)

    Cochrane, Andy; Schulz, Kevin; Kendrick, Rick; Bell, Ray

    2013-09-23

    This paper explores practical design considerations for selecting Q for an electro-optical earth imaging system, where Q is defined as (λ FN) / pixel pitch. Analytical methods are used to show that, under imaging conditions with high SNR, increasing Q with fixed aperture cannot lead to degradation of image quality regardless of the angular smear rate of the system. The potential for degradation of image quality under low SNR is bounded by an increase of the detector noise scaling as Q. An imaging test bed is used to collect representative imagery for various Q configurations. The test bed includes real world errors such as image smear and haze. The value of Q is varied by changing the focal length of the imaging system. Imagery is presented over a broad range of parameters.

  14. Experimental Insights into Ground-State Selection of Quantum XY Pyrochlores

    Science.gov (United States)

    Hallas, Alannah M.; Gaudet, Jonathan; Gaulin, Bruce D.

    2018-03-01

    Extensive experimental investigations of the magnetic structures and excitations in the XY pyrochlores have been carried out over the past decade. Three families of XY pyrochlores have emerged: Yb2B2O7, Er2B2O7, and, most recently, [Formula: see text]Co2F7. In each case, the magnetic cation (either Yb, Er, or Co) exhibits XY anisotropy within the local pyrochlore coordinates, a consequence of crystal field effects. Materials in these families display rich phase behavior and are candidates for exotic ground states, such as quantum spin ice, and exotic ground-state selection via order-by-disorder mechanisms. In this review, we present an experimental summary of the ground-state properties of the XY pyrochlores, including evidence that they are strongly influenced by phase competition. We empirically demonstrate the signatures for phase competition in a frustrated magnet: multiple heat capacity anomalies, suppressed TN or TC, sample- and pressure-dependent ground states, and unconventional spin dynamics.

  15. Influence of the aggregate state on band structure and optical properties of C60 computed with different methods

    Science.gov (United States)

    Pal, Amrita; Arabnejad, Saeid; Yamashita, Koichi; Manzhos, Sergei

    2018-05-01

    C60 and C60 based molecules are efficient acceptors and electron transport layers for planar perovskite solar cells. While properties of these molecules are well studied by ab initio methods, those of solid C60, specifically its optical absorption properties, are not. We present a combined density functional theory-Density Functional Tight Binding (DFTB) study of the effect of solid state packing on the band structure and optical absorption of C60. The valence and conduction band edge energies of solid C60 differ on the order of 0.1 eV from single molecule frontier orbital energies. We show that calculations of optical properties using linear response time dependent-DFT(B) or the imaginary part of the dielectric constant (dipole approximation) can result in unrealistically large redshifts in the presence of intermolecular interactions compared to available experimental data. We show that optical spectra computed from the frequency-dependent real polarizability can better reproduce the effect of C60 aggregation on optical absorption, specifically with a generalized gradient approximation functional, and may be more suited to study effects of molecular aggregation.

  16. Band structure and optical properties of sinusoidal superlattices: ZnSe1-xTex

    International Nuclear Information System (INIS)

    Yang, G.; Lee, S.; Furdyna, J. K.

    2000-01-01

    This paper examines the band structure and optical selection rules in superlattices with a sinusoidal potential profile. The analysis is motivated by the recent successful fabrication of high quality ZnSe 1-x Te x superlattices in which the composition x varies sinusoidally along the growth direction. Although the band alignment in the ZnSe 1-x Te x sinusoidal superlattices is staggered (type II), they exhibit unexpectedly strong photoluminescence, thus suggesting interesting optical behavior. The band structure of such sinusoidal superlattices is formulated in terms of the nearly-free-electron (NFE) approximation, in which the superlattice potential is treated as a perturbation. The resulting band structure is unique, characterized by a single minigap separating two wide, free-electron-like subbands for both electrons and holes. Interband selection rules are derived for optical transitions involving conduction and valence-band states at the superlattice Brillouin-zone center, and at the zone edge. A number of transitions are predicted due to wave-function mixing of different subband states. It should be noted that the zone-center and zone-edge transitions are especially easy to distinguish in these superlattices because of the large width of the respective subbands. The results of the NFE approximation are shown to hold surprisingly well over a wide range of parameters, particularly when the period of the superlattice is short. (c) 2000 The American Physical Society

  17. A microstructured Polymer Optical Fiber Biosensor

    DEFF Research Database (Denmark)

    Emiliyanov, Grigoriy Andreev; Jensen, Jesper Bo; Hoiby, Poul E.

    2006-01-01

    We demonstrate selective detection of fluorophore labeled antibodies from minute samples probed by a sensor layer of the complementary biomolecules immobilized inside the air holes of microstructured Polymer Optical Fibers.......We demonstrate selective detection of fluorophore labeled antibodies from minute samples probed by a sensor layer of the complementary biomolecules immobilized inside the air holes of microstructured Polymer Optical Fibers....

  18. All-Solid-State Sodium-Selective Electrode with a Solid Contact of Chitosan/Prussian Blue Nanocomposite

    Directory of Open Access Journals (Sweden)

    Tanushree Ghosh

    2017-11-01

    Full Text Available Conventional ion-selective electrodes with a liquid junction have the disadvantage of potential drift. All-solid-state ion-selective electrodes with solid contact in between the metal electrode and the ion-selective membrane offer high capacitance or conductance to enhance potential stability. Solution-casted chitosan/Prussian blue nanocomposite (ChPBN was employed as the solid contact layer for an all-solid-state sodium ion-selective electrode in a potentiometric sodium ion sensor. Morphological and chemical analyses confirmed that the ChPBN is a macroporous network of chitosan that contains abundant Prussian blue nanoparticles. Situated between a screen-printed carbon electrode and a sodium-ionophore-filled polyvinylchloride ion-selective membrane, the ChPBN layer exhibited high redox capacitance and fast charge transfer capability, which significantly enhanced the performance of the sodium ion-selective electrode. A good Nernstian response with a slope of 52.4 mV/decade in the linear range from 10−4–1 M of NaCl was observed. The stability of the electrical potential of the new solid contact was tested by chronopotentiometry, and the capacitance of the electrode was 154 ± 4 µF. The response stability in terms of potential drift was excellent (1.3 µV/h for 20 h of continuous measurement. The ChPBN proved to be an efficient solid contact to enhance the potential stability of the all-solid-state ion-selective electrode.

  19. Sighting optics including an optical element having a first focal length and a second focal length and methods for sighting

    Science.gov (United States)

    Crandall, David Lynn

    2011-08-16

    Sighting optics include a front sight and a rear sight positioned in a spaced-apart relation. The rear sight includes an optical element having a first focal length and a second focal length. The first focal length is selected so that it is about equal to a distance separating the optical element and the front sight and the second focal length is selected so that it is about equal to a target distance. The optical element thus brings into simultaneous focus for a user images of the front sight and the target.

  20. A pyrazolyl-based thiolato single-source precursor for the selective synthesis of isotropic copper-deficient copper(I) sulfide nanocrystals: synthesis, optical and photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Gopinath; Santra, Ananyakumari; Bera, Pradip; Acharjya, Moumita [Vidyasagar University, Post Graduate Department of Chemistry, Panskura Banamali College (India); Jana, Sumanta [Indian Institute of Engineering Science and Technology (IIEST), Department of Chemistry (India); Chattopadhyay, Dipankar [University of Calcutta, Department of Polymer Science and Technology (India); Mondal, Anup [Indian Institute of Engineering Science and Technology (IIEST), Department of Chemistry (India); Seok, Sang Il [Korea Research Institute of Chemical Technology, KRICT-EPFL Global Research Laboratory, Division of Advanced Materials (Korea, Republic of); Bera, Pulakesh, E-mail: pbera.pbc.chem@gmail.com [Vidyasagar University, Post Graduate Department of Chemistry, Panskura Banamali College (India)

    2016-10-15

    Hexagonal copper-deficient copper(I) sulfide (Cu{sub 2-x}S, x = 0.03, 0.2) nanocrystals (NCs) are synthesized from a newly prepared single-source precursor (SP), [Cu(bdpa){sub 2}][CuCl{sub 2}], where bdpa is benzyl 3,5-dimethyl-pyrazole-1-carbodithioate. The SP is crystallized with space group Pī and possesses a distorted tetrahedron structure with a CuN{sub 2}S{sub 2} chromophore where the central copper is in +1 oxidation state. Distortion in copper(I) structure and the low decomposition temperature of SP make it favorable for the low-temperature solvent-assisted selective growth of high-copper content sulfides. The nucleation and growth of Cu{sub 2-x}S (x = 0.03, 0.2) are effectively controlled by the SP and the solvent in the solvothermal decomposition process. During decomposition, fragment benzyl thiol (PhCH{sub 2}SH) from SP effectively passivates the nucleus leading to spherical nanocrystals. Further, solvent plays an important role in the selective thermochemical transformation of Cu{sup I}-complex to Cu{sub 2-x}S (x = 0.03, 0.2) NCs. The chelating binders (solvent) like ethylene diamine (EN) and ethylene glycol (EG) prefer to form spherical Cu{sub 1.97}S nanoparticles (djurleite), whereas nonchelating hydrazine hydrate (HH) shows the tendency to furnish hexagonal platelets of copper-deficient Cu{sub 1.8}S. The optical band gap values (2.25–2.50 eV) show quantum confinement effect in the structure. The synthesized NCs display excellent catalytic activity (~87 %) toward photodegradation of organic dyes like Congo Red (CR) and Methylene Blue (MB).Graphical abstractA pyrazolyl-based thiolato single-source precursor for the selective synthesis of isotropic copper-deficient copper(I) sulfide nanocrystals: Synthesis, optical and photocatalytic activity.Gopinath Mondal, Ananyakumari Santra, Pradip Bera, Moumita Acharjya, Sumanta Jana, Dipankar Chattopadhyay, Anup Mondal, Sang Il Seok, Pulakesh Bera.

  1. Ground States of Ultracold Spin-1 Atoms in a Deep Double-Well Optical Superlattice in a Weak Magnetic Field

    International Nuclear Information System (INIS)

    Zheng Gong-Ping; Qin Shuai-Feng; Wang Shou-Yang; Jian Wen-Tian

    2013-01-01

    The ground states of the ultracold spin-1 atoms trapped in a deep one-dimensional double-well optical superlattice in a weak magnetic field are obtained. It is shown that the ground-state diagrams of the reduced double-well model are remarkably different for the antiferromagnetic and ferromagnetic condensates. The transition between the singlet state and nematic state is observed for the antiferromagnetic interaction atoms, which can be realized by modulating the tunneling parameter or the quadratic Zeeman energy. An experiment to distinguish the different spin states is suggested. (general)

  2. One step linear reconstruction method for continuous wave diffuse optical tomography

    Science.gov (United States)

    Ukhrowiyah, N.; Yasin, M.

    2017-09-01

    The method one step linear reconstruction method for continuous wave diffuse optical tomography is proposed and demonstrated for polyvinyl chloride based material and breast phantom. Approximation which used in this method is selecting regulation coefficient and evaluating the difference between two states that corresponding to the data acquired without and with a change in optical properties. This method is used to recovery of optical parameters from measured boundary data of light propagation in the object. The research is demonstrated by simulation and experimental data. Numerical object is used to produce simulation data. Chloride based material and breast phantom sample is used to produce experimental data. Comparisons of results between experiment and simulation data are conducted to validate the proposed method. The results of the reconstruction image which is produced by the one step linear reconstruction method show that the image reconstruction almost same as the original object. This approach provides a means of imaging that is sensitive to changes in optical properties, which may be particularly useful for functional imaging used continuous wave diffuse optical tomography of early diagnosis of breast cancer.

  3. Single Photon Source with a Diamond Nanocrystal on an Optical Nanofiber

    International Nuclear Information System (INIS)

    Lars Liebermeister

    2014-01-01

    The development of high yield single photon sources is crucial for applications in quantum information science as well as for experiments on the foundations of quantum physics. The NV-center in diamond is a promising solid state candidate. By using nanodiamonds the single photon emission can easily be coupled to integrated nano-optical and plasmonic structures. Our approach is to utilize efficient coupling of fluorescence of a single NV-center to the evanescent field of an optical nanofiber. A hybrid microscope (confocal microscope combined with an AFM) allows to optically characterize and preselect diamond nanocrystals and then to apply an AFM nanomanipulation technique to move a selected nanodiamond deterministically onto the tapered optical fiber. We report on first results with single diamond nanocrystals containing several NV-centers positioned on a tapered optical fiber. We observe fluorescence emission in the guided mode of the fiber. The second order correlation recorded between the free-space and the guided fluorescence shows pronounced antibunching. This demonstrated efficient evanescent coupling with low background. (author)

  4. Optical pulse coupling in a photorefractive crystal, propagation of encoded pulses in an optical fiber, and phase conjugate optical interconnections

    Energy Technology Data Exchange (ETDEWEB)

    Yao, X.S.

    1992-01-01

    In Part I, the author presents a theory to describe the interaction between short optical pulses in a photorefractive crystal. This theory provides an analytical framework for pulse coherence length measurements using a photorefractive crystal. The theory also predicts how a pulse changes its temporal shape due to its coupling with another pulse in a photorefractive crystal. The author describes experiments to demonstrate how photorefractive coupling alters the temporal shape and the frequency spectrum of an optical pulse. The author describes a compact optical field correlator. Using this correlator, the author measured the field cross-correlation function of optical pulses using a photorefractive crystal. The author presents a more sophisticated theory to describe the photorefractive coupling of optical pulses that are too short for the previous theory to be valid. In Part II of this dissertation, the author analyzes how the group-velocity dispersion and the optical nonlinearity of an optical fiber ruin an fiberoptic code-division multiple-access (CDMA) communication system. The author treats the optical fiber's nonlinear response with a novel approach and derives the pulse propagation equation. Through analysis and numerically simulations, the author obtains the maximum and the maximum allowed peak pulse power, as well as the minimum and the maximum allowed pulse width for the communication system to function properly. The author simulates how the relative misalignment between the encoding and the decoding masks affects the system's performance. In Part III the author demonstrates a novel optical interconnection device based on a mutually pumped phase conjugator. This device automatically routes light from selected information-sending channels to selected information-receiving channels, and vice versa. The phase conjugator eliminates the need for critical alignment. It is shown that a large number of optical channels can be interconnected using this

  5. Quasi-periodic photonic crystal Fabry–Perot optical filter based on Si/SiO2 for visible-laser spectral selectivity

    Science.gov (United States)

    Qi, Dong; Wang, Xian; Cheng, Yongzhi; Chen, Fu; Liu, Lei; Gong, Rongzhou

    2018-06-01

    We report on a 1D quasi-periodic photonic crystal Fabry–Perot optical filter Cs(Si/SiO2)3(SiO2/Si)3 for spectral selectivity of visible light and 1.55 µm laser. A material transparency interval of 1.03–2.06 µm makes Si a unique choice of high refractive index material. Owing to the CIE 1931 standard and equal inclination interference, the designed structure can be successfully fabricated with a certain color (brown, khaki, or blue) corresponding to the different Cs physical thickness d and response R(λ). In addition, the peak transmittance T max of the proposed structure can reach as high as 92.56% (Cs  =  20 nm), 90.83% (Cs  =  40 nm), and 88.85% (Cs  =  60 nm) with a relatively narrow full width at half maximum of 4.4, 4.6, and 4.8 nm at 1.55 µm. The as-prepared structure indicates that it is feasible for a photonic crystal Fabry–Perot optical filter to achieve visible-laser (1.55 µm) spectral selectivity.

  6. Controlling steady-state and dynamical properties of atomic optical bistability

    CERN Document Server

    Joshi, Amitabh

    2012-01-01

    This book provides a comprehensive introduction to the theoretical and experimental studies of atomic optical bistability and multistability, and their dynamical properties in systems with two- and three-level inhomogeneously-broadened atoms inside an optical cavity. By making use of the modified linear absorption and dispersion, as well as the greatly enhanced nonlinearity in the three-level electromagnetically induced transparency system, the optical bistablity and efficient all-optical switching can be achieved at relatively low laser powers, which can be well controlled and manipulated. Un

  7. The radon service industry in selected Northeastern states

    International Nuclear Information System (INIS)

    Watson, M.R.; Reese, J.P.; Adams, A.R.

    1988-01-01

    In 1986 the EPA initiated an expedited program of technical assistance in response to the discovery of extremely elevated levels of indoor radon in Pennsylvania homes. A vital component of this project was a training program which addressed the variety of techniques used to reduce human exposure to radon gas and its decay products. The New York State Energy Office was selected as the most suitable organization to assist in this project because of its relevant experience in training programs, especially the building for energy efficiency workshop series with its indoor radon gas component. This paper reports on the project

  8. Selective population of high-j states via heavy-ion-induced transfer reactions

    International Nuclear Information System (INIS)

    Bond, P.D.

    1982-01-01

    One of the early hopes of heavy-ion-induced transfer reactions was to populate states not seen easily or at all by other means. To date, however, I believe it is fair to say that spectroscopic studies of previously unknown states have had, at best, limited success. Despite the early demonstration of selectivity with cluster transfer to high-lying states in light nuclei, the study of heavy-ion-induced transfer reactions has emphasized the reaction mechanism. The value of using two of these reactions for spectroscopy of high spin states is demonstrated: 143 Nd( 16 O, 15 O) 144 Nd and 170 Er( 16 O, 15 Oγ) 171 Er

  9. Electronic structure and optical properties of triangular GaAs/AlGaAs quantum dots: Exciton and impurity states

    Energy Technology Data Exchange (ETDEWEB)

    Tiutiunnyk, A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Department of Physics, Donbass State Engineering Academy, Shkadinova 72, 84313 Kramatorsk (Ukraine); Akimov, V. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Department of Physics, Donbass State Engineering Academy, Shkadinova 72, 84313 Kramatorsk (Ukraine); Universidad de Medellín, Carrera 87 No 30-65 Medellín (Colombia); Tulupenko, V. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Department of Physics, Donbass State Engineering Academy, Shkadinova 72, 84313 Kramatorsk (Ukraine); Mora-Ramos, M.E. [Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Kasapoglu, E. [Cumhuriyet University, Physics Department, 58140 Sivas (Turkey); Ungan, F. [Cumhuriyet University, Faculty of Technology, Deparment of Optical Engineering, 58140 Sivas (Turkey); Sökmen, I. [Department of Physics, Dokuz Eylül University, 35160 Buca, İzmir (Turkey); and others

    2016-03-01

    Electronic structure and optical properties in equilateral triangular GaAs/Al{sub 0.3}Ga{sub 0.7}As quantum dots are studied extensively. The effects of donor and acceptor impurity atoms positioned in the orthocenter of the triangle, as well as of the external DC electric field are taken into account. Binding energies of the impurity, exciton energies, interband photoluminescence peak positions as well as linear and non-linear optical properties in THz range caused by transitions between excitonic states are calculated and discussed.

  10. Graph-state preparation and quantum computation with global addressing of optical lattices

    International Nuclear Information System (INIS)

    Kay, Alastair; Pachos, Jiannis K.; Adams, Charles S.

    2006-01-01

    We present a way to manipulate ultracold atoms where four atomic levels are trapped by appropriately tuned optical lattices. When employed to perform quantum computation via global control, this unique structure dramatically reduces the number of steps involved in the control procedures, either for the standard, network, model, or for one-way quantum computation. The use of a far-blue-detuned lattice and a magnetically insensitive computational basis makes the scheme robust against decoherence. The present scheme is a promising candidate for experimental implementation of quantum computation and for graph-state preparation in one, two, or three spatial dimensions

  11. Optical tomography of tissues

    International Nuclear Information System (INIS)

    Zimnyakov, D A; Tuchin, Valerii V

    2002-01-01

    Methods of optical tomography of biological tissues are considered, which include pulse-modulation and frequency-modulation tomography, diffusion tomography with the use of cw radiation sources, optical coherent tomography, speckle-correlation tomography of nonstationary media, and optoacoustic tomography. The method for controlling the optical properties of tissues is studied from the point of view of increasing a probing depth in optical coherent tomography. The modern state and prospects of the development of optical tomography are discussed. (review)

  12. A survey of the state and status of physical education in selected ...

    African Journals Online (AJOL)

    A survey of the state and status of physical education in selected primary schools in ... Physical Development and movement in the Foundation Phase (FP) and the ... Keywords: Education, Physical Education, Life Orientation, Curriculum 2005, ...

  13. Effect of bulky substituents on thiopyrylium polymethine aggregation in the solid state: A theoretical evaluation of the implications for all-optical switching applications

    KAUST Repository

    Gieseking, Rebecca L.

    2014-11-25

    Polymethine dyes in dilute solutions display many of the optical properties required for all-optical switching applications. However, in thin films, aggregation and polymethine-counterion interactions can substantially modify their properties and limit their utility. Here, we examine the impact of a series of bulky substituents on the solid-state molecular packing of thiopyrylium polymethines by using a theoretical approach combining molecular-dynamics simulations and quantum-chemical calculations. Importantly, it is found that the positions of the substituents near the center and/or ends of the dye determine the extent to which aggregation is reduced; in particular, substituents near the polymethine center primarily modify the type of aggregation that is observed, while substituents near the polymethine ends reduce aggregation and aid in maintaining solution-like properties in the solid state. Our theoretical study elucidates relationships between molecular structure and bulk optical properties and provides design guidelines for all-optical switching materials.

  14. Beam experiments with state selected Ne (3P0, 3P2) metastable atoms

    International Nuclear Information System (INIS)

    Verheijen, M.J.

    1984-01-01

    Metastable rare gas atoms play an important role in all types of plasmas and gas discharges, e.g. in fluorescent lamps and in laser discharges (helium-neon laser or excimer lasers). In this thesis, the metastable states of NeI are studied. First, the theory of excited neon atoms and diatomic molecules is introduced, as well as Penning ionisation. Next, some experimental facilities are described (e.g. the dye laser system). With these instruments, natural lifetime measurements of the 2p fine structure states of NeI are carried out. Results are reported. Finally, total Penning ionisation cross sections are calculated using the optical potential model. (Auth.)

  15. Structure of multiphoton quantum optics. I. Canonical formalism and homodyne squeezed states

    Science.gov (United States)

    dell'Anno, Fabio; de Siena, Silvio; Illuminati, Fabrizio

    2004-03-01

    We introduce a formalism of nonlinear canonical transformations for general systems of multiphoton quantum optics. For single-mode systems the transformations depend on a tunable free parameter, the homodyne local-oscillator angle; for n -mode systems they depend on n heterodyne mixing angles. The canonical formalism realizes nontrivial mixing of pairs of conjugate quadratures of the electromagnetic field in terms of homodyne variables for single-mode systems, and in terms of heterodyne variables for multimode systems. In the first instance the transformations yield nonquadratic model Hamiltonians of degenerate multiphoton processes and define a class of non-Gaussian, nonclassical multiphoton states that exhibit properties of coherence and squeezing. We show that such homodyne multiphoton squeezed states are generated by unitary operators with a nonlinear time evolution that realizes the homodyne mixing of a pair of conjugate quadratures. Tuning of the local-oscillator angle allows us to vary at will the statistical properties of such states. We discuss the relevance of the formalism for the study of degenerate (up-)down-conversion processes. In a companion paper [ F. Dell’Anno, S. De Siena, and F. Illuminati, 69, 033813 (2004) ], we provide the extension of the nonlinear canonical formalism to multimode systems, we introduce the associated heterodyne multiphoton squeezed states, and we discuss their possible experimental realization.

  16. Structure of multiphoton quantum optics. I. Canonical formalism and homodyne squeezed states

    International Nuclear Information System (INIS)

    Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2004-01-01

    We introduce a formalism of nonlinear canonical transformations for general systems of multiphoton quantum optics. For single-mode systems the transformations depend on a tunable free parameter, the homodyne local-oscillator angle; for n-mode systems they depend on n heterodyne mixing angles. The canonical formalism realizes nontrivial mixing of pairs of conjugate quadratures of the electromagnetic field in terms of homodyne variables for single-mode systems, and in terms of heterodyne variables for multimode systems. In the first instance the transformations yield nonquadratic model Hamiltonians of degenerate multiphoton processes and define a class of non-Gaussian, nonclassical multiphoton states that exhibit properties of coherence and squeezing. We show that such homodyne multiphoton squeezed states are generated by unitary operators with a nonlinear time evolution that realizes the homodyne mixing of a pair of conjugate quadratures. Tuning of the local-oscillator angle allows us to vary at will the statistical properties of such states. We discuss the relevance of the formalism for the study of degenerate (up-)down-conversion processes. In a companion paper [F. Dell'Anno, S. De Siena, and F. Illuminati, 69, 033813 (2004)], we provide the extension of the nonlinear canonical formalism to multimode systems, we introduce the associated heterodyne multiphoton squeezed states, and we discuss their possible experimental realization

  17. Ten years optically pumped semiconductor lasers: review, state-of-the-art, and future developments

    Science.gov (United States)

    Kannengiesser, Christian; Ostroumov, Vasiliy; Pfeufer, Volker; Seelert, Wolf; Simon, Christoph; von Elm, Rüdiger; Zuck, Andreas

    2010-02-01

    Optically Pumped Semiconductor Lasers - OPSLs - have been introduced in 2001. Their unique features such as power scalability and wavelength flexibility, their excellent beam parameters, power stability and reliability opened this pioneering technology access to a wide range of applications such as flow cytometry, confocal microscopy, sequencing, medical diagnosis and therapy, semiconductor inspection, graphic arts, forensic, metrology. This talk will introduce the OPSL principles and compare them with ion, diode and standard solid state lasers. It will revue the first 10 years of this exciting technology, its current state and trends. In particular currently accessible wavelengths and power ranges, frequency doubling, ultra-narrow linewidth possibilities will be discussed. A survey of key applications will be given.

  18. Transnasal Endoscopic Optic Nerve Decompression in Post Traumatic Optic Neuropathy.

    Science.gov (United States)

    Gupta, Devang; Gadodia, Monica

    2018-03-01

    To quantify the successful outcome in patients following optic nerve decompression in post traumatic unilateral optic neuropathy in form of improvement in visual acuity. A prospective study was carried out over a period of 5 years (January 2011 to June 2016) at civil hospital Ahmedabad. Total 20 patients were selected with optic neuropathy including patients with direct and indirect trauma to unilateral optic nerve, not responding to conservative management, leading to optic neuropathy and subsequent impairment in vision and blindness. Decompression was done via Transnasal-Ethmo-sphenoidal route and outcome was assessed in form of post-operative visual acuity improvement at 1 month, 6 months and 1 year follow up. After surgical decompression complete recovery of visual acuity was achieved in 16 (80%) patients and partial recovery in 4 (20%). Endoscopic transnasal approach is beneficial in traumatic optic neuropathy not responding to steroid therapy and can prevent permanent disability if earlier intervention is done prior to irreversible damage to the nerve. Endoscopic optic nerve surgery can decompress the traumatic and oedematous optic nerve with proper exposure of orbital apex and optic canal without any major intracranial, intraorbital and transnasal complications.

  19. Optical Coherence and Quantum Optics

    CERN Document Server

    Mandel, Leonard

    1995-01-01

    This book presents a systematic account of optical coherence theory within the framework of classical optics, as applied to such topics as radiation from sources of different states of coherence, foundations of radiometry, effects of source coherence on the spectra of radiated fields, coherence theory of laser modes, and scattering of partially coherent light by random media. The book starts with a full mathematical introduction to the subject area and each chapter concludes with a set of exercises. The authors are renowned scientists and have made substantial contributions to many of the topi

  20. Design and analysis of photonic optical switches with improved wavelength selectivity

    Science.gov (United States)

    Wielichowski, Marcin; Patela, Sergiusz

    2005-09-01

    Efficient optical modulators and switches are the key elements of the future all-optical fiber networks. Aside from numerous advantages, the integrated optical devices suffer from excessive longitudinal dimensions. The dimensions may be significantly reduced with help of periodic structures, such as Bragg gratings, arrayed waveguides or multilayer structures. In this paper we describe methods of analysis and example of analytical results of a photonic switch with properties modified by the application of periodic change of effective refractive index. The switch is composed of a strip-waveguide directional coupler and a transversal Bragg grating.

  1. Distinct site- and state-selective dissociation of methyl-trifluoroacetate observed in core-electron excitation at the oxygen K-edge region

    Science.gov (United States)

    Yamanaka, T.; Tabayashi, K.; Maruyama, T.; Harada, C.; Yoshida, H.

    2009-11-01

    Distinct site- and state-selective dissociation following the O1s core-excitation has been found in the gaseous molecules of methyl trifluoroacetate (MTFA). The site- and state-selective dissociation was examined by measuring the branching ratios of dominant CH3+ and CHO+ fragments. The branching ratios from MTFA showed that site-selective dissociation takes place via the excitation from the different atomic sites to the same π*CO resonance state, (O1sCO-1π*CO) and (O1sOMe-1π*CO). A pronounced O1sOMe site-selectivity was identified by a significant increment of CHO+ formation at the (O1sOMe→π*CO) band. The site-selectivity was also justified by an equivalent core approximation using the density functional theory calculation. State-selective dissociation was identified among the (O1sOMe-1π*CO), (O1sOMe-1σ*O-Me) and (O1sOMe-1σ*C-OMe) transitions originated from the same OMe core. State-selective production of CH3+ could be found at the (O1sOMe→σ*O-Me) band, whereas state-selective formation of CHO+ was observed at the (O1sOMe→π*CO) and (O1sOMe→σ*C-OMe) bands.

  2. Coherent Addressing of Individual Neutral Atoms in a 3D Optical Lattice.

    Science.gov (United States)

    Wang, Yang; Zhang, Xianli; Corcovilos, Theodore A; Kumar, Aishwarya; Weiss, David S

    2015-07-24

    We demonstrate arbitrary coherent addressing of individual neutral atoms in a 5×5×5 array formed by an optical lattice. Addressing is accomplished using rapidly reconfigurable crossed laser beams to selectively ac Stark shift target atoms, so that only target atoms are resonant with state-changing microwaves. The effect of these targeted single qubit gates on the quantum information stored in nontargeted atoms is smaller than 3×10^{-3} in state fidelity. This is an important step along the path of converting the scalability promise of neutral atoms into reality.

  3. Potential aluminium(III)- and gallium(III)-selective optical sensors based on porphyrazines.

    Science.gov (United States)

    Goslinski, Tomasz; Tykarska, Ewa; Kryjewski, Michal; Osmalek, Tomasz; Sobiak, Stanislaw; Gdaniec, Maria; Dutkiewicz, Zbigniew; Mielcarek, Jadwiga

    2011-01-01

    Porphyrazines possessing non-coordinating alkyl (propyl) and aralkyl (4-tert-butylphenyl) groups in the periphery were studied as optical sensors for a set of mono-, di- and trivalent cations. Investigated porphyrazines in the UV-Vis monitored titrations revealed significant responses towards aluminium and gallium cations, unlike other metal ions studied. Additionally, porphyrazine possessing 4-tert-butylphenyl peripheral substituents showed sensor property towards ruthenium cation and was chosen for further investigation. The presence of isosbestic points in absorption spectra for its titration with aluminium, gallium and ruthenium cations, accompanied by a linear Benesi-Hildebrand plot, proved complex formation. The continuous variation method was used to determine binding stoichiometry in 1:1 porphyrazine-metal ratio. X-Ray studies and density functional theory calculations were employed to investigate octa(4-tert-butylphenyl)porphyrazine structure. The results helped to explain the observed selectivity towards certain ions. Interaction between ion and porphyrazine meso nitrogen in a Lewis acid-Lewis base manner is proposed.

  4. Ultrafast Optical Excitation of a Persistent Surface-State Population in the Topological Insulator Bi2Se3

    Energy Technology Data Exchange (ETDEWEB)

    Sobota, Jonathan

    2012-03-14

    Using femtosecond time- and angle-resolved photoemission spectroscopy, we investigated the nonequilibrium dynamics of the topological insulator Bi{sub 2}Se{sub 3}. We studied p-type Bi{sub 2}Se{sub 3}, in which the metallic Dirac surface state and bulk conduction bands are unoccupied. Optical excitation leads to a meta-stable population at the bulk conduction band edge, which feeds a nonequilibrium population of the surface state persisting for >10 ps. This unusually long-lived population of a metallic Dirac surface state with spin texture may present a channel in which to drive transient spin-polarized currents.

  5. Vectorial optical fields fundamentals and applications

    CERN Document Server

    2014-01-01

    Polarization is a vector nature of light that plays an important role in optical science and engineering. While existing textbook treatments of light assume beams with spatially homogeneous polarization, there is an increasing interest in vectorial optical fields with spatially engineered states of polarization. New effects and phenomena have been predicted and observed for light beams with these unconventional polarization states. This edited review volume aims to provide a comprehensive overview and summarize the latest developments in this important emerging field of optics. This book will cover the fundamentals including mathematical and physical descriptions, experimental generation, manipulation, focusing, propagation, and the applications of the engineered vectorial optical fields in focal field engineering, plasmonic focusing and optical antenna, single molecular imaging, optical tweezers/trapping, as well as optical measurements and instrumentations. Readership: Students, professionals, post-graduat...

  6. An automatic analyzer of solid state nuclear track detectors using an optic RAM as image sensor

    International Nuclear Information System (INIS)

    Staderini, E.M.; Castellano, A.

    1986-01-01

    An optic RAM is a conventional digital random access read/write dynamic memory device featuring a quartz windowed package and memory cells regularly ordered on the chip. Such a device is used as an image sensor because each cell retains data stored in it for a time depending on the intensity of the light incident on the cell itself. The authors have developed a system which uses an optic RAM to acquire and digitize images from electrochemically etched CR39 solid state nuclear track detectors (SSNTD) in the track count rate up to 5000 cm -2 . On the digital image so obtained, a microprocessor, with appropriate software, performs image analysis, filtering, tracks counting and evaluation. (orig.)

  7. Optical conductivity of topological insulator thin films

    International Nuclear Information System (INIS)

    Li, L. L.; Xu, W.; Peeters, F. M.

    2015-01-01

    We present a detailed theoretical study on the optoelectronic properties of topological insulator thin film (TITFs). The k·p approach is employed to calculate the energy spectra and wave functions for both the bulk and surface states in the TITF. With these obtained results, the optical conductivities induced by different electronic transitions among the bulk and surface states are evaluated using the energy-balance equation derived from the Boltzmann equation. We find that for Bi 2 Se 3 -based TITFs, three characteristic regimes for the optical absorption can be observed. (i) In the low radiation frequency regime (photon energy ℏω<200 meV), the free-carrier absorption takes place due to intraband electronic transitions. An optical absorption window can be observed. (ii) In the intermediate radiation frequency regime (200<ℏω<300 meV), the optical absorption is induced mainly by interband electronic transitions from surface states in the valance band to surface states in the conduction band and an universal value σ 0 =e 2 /(8ℏ) for the optical conductivity can be obtained. (iii) In the high radiation frequency regime (ℏω>300 meV), the optical absorption can be achieved via interband electronic transitions from bulk and surface states in the valance band to bulk and surface states in the conduction band. A strong absorption peak can be observed. These interesting findings indicate that optical measurements can be applied to identify the energy regimes of bulk and surface states in the TITF

  8. Selection of appropriate medial branch of the optic tract by fibres of ventral retinal origin during development and in regeneration: an autoradiographic study in Xenopus

    International Nuclear Information System (INIS)

    Straznicky, C.; Gaze, R.M.; Horder, T.J.

    1979-01-01

    The formation of the branches of the optic tract has been studied with the use of [ 3 H] -proline autoradiography, during development and during regeneration of the optic nerve in Xenopus with one compound ventral (VV) eye made by the embryonic fusion of two ventral eye fragments. The formation of the optic pathway was abnormal in that the lateral branch failed to develop, suggesting that fibres from a VV retina selectively entered the tectum via the medial branch during development. Three months after section of the optic nerve of a VV eye, regenerated fibres were present both in the contralateral and ipsilateral tecta. On the ipsilateral side regenerated fibres entered the tectum via the medial branch only. Retinal fibres entered the contralateral tectum through both branches in some animals and through the medial branch only in others. It is concluded that mechanical factors alone are insufficient to explain the phenomenon of selection of the appropriate medial branch fibres of ventral retinal origin either during development or in regeneration. Some form of fibre-substrate interaction seems to be necessary; and this ability of fibres from a VV eye to take the path appropriate for ventral retina argues strongly that the VV eye is not a regulated system in terms of cell specificities. 8author)

  9. Generation of optical vortices in an integrated optical circuit

    Science.gov (United States)

    Tudor, Rebeca; Kusko, Mihai; Kusko, Cristian

    2017-09-01

    In this work, the generation of optical vortices in an optical integrated circuit is numerically demonstrated. The optical vortices with topological charge m = ±1 are obtained by the coherent superposition of the first order modes present in a waveguide with a rectangular cross section, where the phase delay between these two propagating modes is Δφ = ±π/2. The optical integrated circuit consists of an input waveguide continued with a y-splitter. The left and the right arms of the splitter form two coupling regions K1 and K2 with a multimode output waveguide. In each coupling region, the fundamental modes present in the arms of the splitter are selectively coupled into the output waveguide horizontal and vertical first order modes, respectively. We showed by employing the beam propagation method simulations that the fine tuning of the geometrical parameters of the optical circuit makes possible the generation of optical vortices in both transverse electric (TE) and transverse magnetic (TM) modes. Also, we demonstrated that by placing a thermo-optical element on one of the y-splitter arms, it is possible to switch the topological charge of the generated vortex from m = 1 to m = -1.

  10. Optical Binding of Nanowires

    Czech Academy of Sciences Publication Activity Database

    Simpson, Stephen Hugh; Zemánek, Pavel; Marago, O.M.; Jones, P.H.; Hanna, S.

    2017-01-01

    Roč. 17, č. 6 (2017), s. 3485-3492 ISSN 1530-6984 R&D Projects: GA ČR GB14-36681G Grant - others:AV ČR(CZ) CNR-16-12 Program:Bilaterální spolupráce Institutional support: RVO:68081731 Keywords : optical binding nanowires * Brownian motion * self-organization * non-equilibrium thermodynamics * non-equilibrium steady state * spin-orbit coupling * emergent phenomena Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 12.712, year: 2016

  11. Cold collisions in dissipative optical lattices

    International Nuclear Information System (INIS)

    Piilo, J; Suominen, K-A

    2005-01-01

    The invention of laser cooling methods for neutral atoms allows optical and magnetic trapping of cold atomic clouds in the temperature regime below 1 mK. In the past, light-assisted cold collisions between laser cooled atoms have been widely studied in magneto-optical atom traps (MOTs). We describe here theoretical studies of dynamical interactions, specifically cold collisions, between atoms trapped in near-resonant, dissipative optical lattices. The extension of collision studies to the regime of optical lattices introduces several complicating factors. For the lattice studies, one has to account for the internal substates of atoms, position-dependent matter-light coupling, and position-dependent couplings between the atoms, in addition to the spontaneous decay of electronically excited atomic states. The developed one-dimensional quantum-mechanical model combines atomic cooling and collision dynamics in a single framework. The model is based on Monte Carlo wavefunction simulations and is applied when the lattice-creating lasers have frequencies both below (red-detuned lattice) and above (blue-detuned lattice) the atomic resonance frequency. It turns out that the radiative heating mechanism affects the dynamics of atomic cloud in a red-detuned lattice in a way that is not directly expected from the MOT studies. The optical lattice and position-dependent light-matter coupling introduces selectivity of collision partners. The atoms which are most mobile and energetic are strongly favoured to participate in collisions, and are more often ejected from the lattice, than the slow ones in the laser parameter region selected for study. Consequently, the atoms remaining in the lattice have a smaller average kinetic energy per atom than in the case of non-interacting atoms. For blue-detuned lattices, we study how optical shielding emerges as a natural part of the lattice and look for ways to optimize the effect. We find that the cooling and shielding dynamics do not mix

  12. Beyond the borders of classical optical measurements

    International Nuclear Information System (INIS)

    Eisenberg, H.; Khoury, G.; Fonseca, E.; Bouwmeester, D.

    2006-01-01

    Full Text: The limits of optical measurements are the subject to many recent works. It has been shown how by using non-classical photonic states, spatial resolution can exceed the diffraction limit [1]. The same states also improve interference measurements beyond the shot noise and up to the quantum Heisenberg limit [2]. On the other hand, a few methods have been suggested that improve the optical resolution by exploiting classical optical nonlinearities [3]. First, we will present a scheme that exploits the non-local quantum correlations of a second order entangled state produced by optical parametric down-conversion [4]. The scheme results with a non-classical state that can be used in quantum limited interferometry. It is also simply extendable to states of any photon number. Another method will be presented, where nonlinear measurements are induced by projecting the state of light onto the Fock space [5]. This process simulated optical nonlinearities up to the 7th order. We used those measurements to characterize the output of a standard polarization interferometer. Improved resolution was demonstrated, but a detailed analysis reveals the differences to the previous nonclassical approach

  13. Comparative Time Series Analysis of Aerosol Optical Depth over Sites in United States and China Using ARIMA Modeling

    Science.gov (United States)

    Li, X.; Zhang, C.; Li, W.

    2017-12-01

    Long-term spatiotemporal analysis and modeling of aerosol optical depth (AOD) distribution is of paramount importance to study radiative forcing, climate change, and human health. This study is focused on the trends and variations of AOD over six stations located in United States and China during 2003 to 2015, using satellite-retrieved Moderate Resolution Imaging Spectrometer (MODIS) Collection 6 retrievals and ground measurements derived from Aerosol Robotic NETwork (AERONET). An autoregressive integrated moving average (ARIMA) model is applied to simulate and predict AOD values. The R2, adjusted R2, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Bayesian Information Criterion (BIC) are used as indices to select the best fitted model. Results show that there is a persistent decreasing trend in AOD for both MODIS data and AERONET data over three stations. Monthly and seasonal AOD variations reveal consistent aerosol patterns over stations along mid-latitudes. Regional differences impacted by climatology and land cover types are observed for the selected stations. Statistical validation of time series models indicates that the non-seasonal ARIMA model performs better for AERONET AOD data than for MODIS AOD data over most stations, suggesting the method works better for data with higher quality. By contrast, the seasonal ARIMA model reproduces the seasonal variations of MODIS AOD data much more precisely. Overall, the reasonably predicted results indicate the applicability and feasibility of the stochastic ARIMA modeling technique to forecast future and missing AOD values.

  14. The experimental optical burst switching system

    Science.gov (United States)

    Li, Xinwan; Chen, Jian-Ping; Wu, Guiling; Wang, Hui; Lu, Jialin; Ye, Ailun

    2005-02-01

    The first optical burst switching (OBS) system has been demonstrated in China, which includes three edge routers and one core-node. A kind of fast wavelength selective optical switching was used in the system. The core OBS node consists of a kind of wavelength selective optical switch we developed. It consists of two SOA switches and one wavelength selective thin film filter with centre wavelength at one wavelength. There are one input optical fiber and two output fibers, each fiber carries two wavelengths. The Dell PE2650 servers act as the edge OBS routers. The wavelength of each data channel is located in C-band and the bit rate is at 1.25Gbps. The control channel uses bit rate of 100Mbps at wavelength of 1310 nm. A novel effective scheme for Just-In-Time (JIT) protocol was proposed and implemented. OBS services, such as Video on Demand (VOD) and file transfer protocol (FTP), have been demonstrated. Assembling and scheduling methods that are capable to guarantee the QoS (quality of service) of the transported service are studied.

  15. Broadband angular selectivity of light at the nanoscale: Progress, applications, and outlook

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yichen, E-mail: ycshen@mit.edu; Joannopoulos, John D.; Soljačić, Marin [Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Research Laboratory for Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Hsu, Chia Wei [Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Department of Applied Physics, Yale University, New Haven, Connecticut 06520 (United States); Yeng, Yi Xiang [Research Laboratory for Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2016-03-15

    Humankind has long endeavored to control the propagation direction of light. Since time immemorial, shades, lenses, and mirrors have been used to control the flow of light. In modern society, with the rapid development of nanotechnology, the control of light is moving toward devices at micrometer and even nanometer scales. At such scales, traditional devices based on geometrical optics reach their fundamental diffraction limits and cease to work. Nano-photonics, on the other hand, has attracted wide attention from researchers, especially in the last decade, due to its ability to manipulate light at the nanoscale. This review focuses on the nano-photonics systems that aim to select light based on its propagation direction. In the first half of this review, we survey the literature and the current state of the art focused on enabling optical broadband angular selectivity. The mechanisms we review can be classified into three main categories: (i) microscale geometrical optics, (ii) multilayer birefringent materials, and (iii) Brewster modes in plasmonic systems, photonic crystals, and metamaterials. In the second half, we present two categories of potential applications for broadband angularly selective systems. The first category aims at enhancing the efficiency of solar energy harvesting, through photovoltaic process or solar thermal process. The second category aims at enhancing light extracting efficiency and detection sensitivity. Finally, we discuss the most prominent challenges in broadband angular selectivity and some prospects on how to solve these challenges.

  16. Forecasting house prices in the 50 states using Dynamic Model Averaging and Dynamic Model Selection

    DEFF Research Database (Denmark)

    Bork, Lasse; Møller, Stig Vinther

    2015-01-01

    We examine house price forecastability across the 50 states using Dynamic Model Averaging and Dynamic Model Selection, which allow for model change and parameter shifts. By allowing the entire forecasting model to change over time and across locations, the forecasting accuracy improves substantia......We examine house price forecastability across the 50 states using Dynamic Model Averaging and Dynamic Model Selection, which allow for model change and parameter shifts. By allowing the entire forecasting model to change over time and across locations, the forecasting accuracy improves...

  17. XIX International Youth School on Coherent Optics and Optical Spectroscopy

    International Nuclear Information System (INIS)

    2016-01-01

    The XIX International Youth School on Coherent Optics and Optical Spectroscopy (COOS2015) was held in Kazan, Russia, from October 5 to October 7 at the Nikolai Lobachevsky Scientific Library of Kazan Federal University. The School follows the global tendency toward comprehensive studies of matter properties and its interaction with electromagnetic fields. Since 1997 more than 100 famous scientists from USA, Germany, Ukraine, Belarussia and Russia had plenary lecture presentations. This is the right place, where over 1000 young scientists had an opportunity to participate in hot discussions regarding the latest scientific news. Many young people have submitted interesting reports on photonics, quantum electronics, laser physics, quantum optics, traditional optical and laser spectroscopy, non-linear optics, material science and nanotechnology. Here we are publishing the full-size papers prepared from the most interesting lectures and reports selected by the Program Committee of the School. (paper)

  18. Dynamic translocation of ligand-complexed DNA through solid-state nanopores with optical tweezers

    International Nuclear Information System (INIS)

    Sischka, Andy; Spiering, Andre; Anselmetti, Dario; Khaksar, Maryam; Laxa, Miriam; Koenig, Janine; Dietz, Karl-Josef

    2010-01-01

    We investigated the threading and controlled translocation of individual lambda-DNA (λ-DNA) molecules through solid-state nanopores with piconewton force sensitivity, millisecond time resolution and picoampere ionic current sensitivity with a set-up combining quantitative 3D optical tweezers (OT) with electrophysiology. With our virtually interference-free OT set-up the binding of RecA and single peroxiredoxin protein molecules to λ-DNA was quantitatively investigated during dynamic translocation experiments where effective forces and respective ionic currents of the threaded DNA molecule through the nanopore were measured during inward and outward sliding. Membrane voltage-dependent experiments of reversible single protein/DNA translocation scans yield hysteresis-free, asymmetric single-molecule fingerprints in the measured force and conductance signals that can be attributed to the interplay of optical trap and electrostatic nanopore potentials. These experiments allow an exact localization of the bound protein along the DNA strand and open fascinating applications for label-free detection of DNA-binding ligands, where structural and positional binding phenomena can be investigated at a single-molecule level.

  19. Robust quantum state engineering through coherent localization in biased-coin quantum walks

    Energy Technology Data Exchange (ETDEWEB)

    Majury, Helena [Queen' s University, Centre for Secure Information Technologies (CSIT), Belfast (United Kingdom); Queen' s University, Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Belfast (United Kingdom); Boutari, Joelle [University of Oxford, Clarendon Laboratory, Oxford (United Kingdom); O' Sullivan, Elizabeth [Queen' s University, Centre for Secure Information Technologies (CSIT), Belfast (United Kingdom); Ferraro, Alessandro; Paternostro, Mauro [Queen' s University, Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Belfast (United Kingdom)

    2018-12-15

    We address the performance of a coin-biased quantum walk as a generator for non-classical position states of the walker. We exploit a phenomenon of coherent localization in the position space - resulting from the choice of small values of the coin parameter and assisted by post-selection - to engineer large-size coherent superpositions of position states of the walker. The protocol that we design appears to be remarkably robust against both the actual value taken by the coin parameter and strong dephasing-like noise acting on the spatial degree of freedom. We finally illustrate a possible linear-optics implementation of our proposal, suitable for both bulk and integrated-optics platforms. (orig.)

  20. Meso-optics for science and industry

    International Nuclear Information System (INIS)

    Soroko, L.M.

    1996-01-01

    The paper represents a concise overview of the meso-optical devices which provide very high selectivity and productivity. The source of these advantages is governed by the absence of the traditional 3D scanning operations. The information compression is accomplished on-line via conical wavefronts without any computer data processing. The factor of merits is of the order of 100:1. Meso-optical Fourier transition microscope for nuclear emulsion sees only straight line particle tracks and does not require depth scanning. Confocal meso-optical microscope accomplishes selective observation of the vertical particle tracks. In the meso-optical profilometer we use the phenomenon of the longitudinal interference of the conical waves. Meso-optical undulator as inserted device in the photon factories transforms conical waves into spherical ones and then into a point. Self-focusing undulator focuses side-going synchrotron radiation. Meso-optical conicometer accomplishes precise control of the conical surfaces both internal and external. Meso-optical interferometer with multipass transmission of the conical waves is used for on-line observation of the deviation of the surface of the industrial parts from the conical etalon without any scanning operations. 23 refs., 23 figs

  1. Multistabilities and symmetry-broken one-color and two-color states in closely coupled single-mode lasers.

    Science.gov (United States)

    Clerkin, Eoin; O'Brien, Stephen; Amann, Andreas

    2014-03-01

    We theoretically investigate the dynamics of two mutually coupled, identical single-mode semi-conductor lasers. For small separation and large coupling between the lasers, symmetry-broken one-color states are shown to be stable. In this case the light outputs of the lasers have significantly different intensities while at the same time the lasers are locked to a single common frequency. For intermediate coupling we observe stable symmetry-broken two-color states, where both lasers lase simultaneously at two optical frequencies which are separated by up to 150 GHz. Using a five-dimensional model, we identify the bifurcation structure which is responsible for the appearance of symmetric and symmetry-broken one-color and two-color states. Several of these states give rise to multistabilities and therefore allow for the design of all-optical memory elements on the basis of two coupled single-mode lasers. The switching performance of selected designs of optical memory elements is studied numerically.

  2. Integrated semiconductor twin-microdisk laser under mutually optical injection

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Ling-Xiu; Liu, Bo-Wen; Lv, Xiao-Meng; Yang, Yue-De; Xiao, Jin-Long; Huang, Yong-Zhen, E-mail: yzhuang@semi.ac.cn [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2015-05-11

    We experimentally study the characteristics of an integrated semiconductor twin-microdisk laser under mutually optical injection through a connected optical waveguide. Based on the lasing spectra, four-wave mixing, injection locking, and period-two oscillation states are observed due to the mutually optical injection by adjusting the injected currents applied to the two microdisks. The enhanced 3 dB bandwidth is realized for the microdisk laser at the injection locking state, and photonic microwave is obtained from the electrode of the microdisk laser under the period-two oscillation state. The plentifully dynamical states similar as semiconductor lasers subject to external optical injection are realized due to strong optical interaction between the two microdisks.

  3. Symmetry breaking states of Bose-Einstein condensates in 1D double square well and optical lattice well

    International Nuclear Information System (INIS)

    Yuan Qingxin; Ding Guohui

    2005-01-01

    We investigate the phenomena of symmetry breaking and phase transition in the ground state of Bose-Einstein condensates (BECs). For BECs trapped in a double square well potential, we present symmetric and asymmetric ground states by using standing-wave expansion method. For BECs trapped in an optical lattice well potential (created by a standing laser wave, and not just an extension of the double square well potential), we reveal a phase transition by using plane-wave expansion method. At the same time we also study the ground state properties with changing the depth of potential and atomic interactions (restrict ourselves to the attractive regime)

  4. Vibrational-state-selected ion--molecule reaction cross sections at thermal energies

    NARCIS (Netherlands)

    Pijkeren, D. van; Boltjes, E.; Eck, J. van; Niehaus, A.

    1984-01-01

    A method designed to measure relative ion—molecule reaction rates at thermal collision energies for selected reactant ion vibrational states is described. Relative reaction rates are determined for the three endothermic reactions: H2+ (υ)(He,H)HeH+, H2+ (υ)(Ne,H)NeH+, D2+(υ)(Ne, D)NeD+, and for the

  5. Fibre optic networks for safeguards applications

    International Nuclear Information System (INIS)

    Smith, B.G.R.; Chare, P.; Barrier, A.

    1991-01-01

    The Euratom Safeguards Directorate has recently installed a fibre optic network in a new large scale nuclear facility in the European Communities. The selection, installation and commissioning of the fibre optic network is discussed from the viewpoint of network topology, physical testing, trouble shooting and authentication. The future use of fibre optic networks for safeguards applications is discussed

  6. On the investigation of electronic defect states in ZnO thin films by space charge spectroscopy with optical excitation

    Science.gov (United States)

    Schmidt, Matthias; Wenckstern, Holger von; Pickenhain, Rainer; Grundmann, Marius

    2012-09-01

    Electronic defect states in a n-type conducting zinc oxide thin film sample were investigated by means of space charge spectroscopy focussing on levels in the midgap region as well as on hole traps. To overcome the experimental difficulties arising from the wide bandgap and the lack of p-type conduction, optical excitation was employed to measure the emission of trapped charge carriers from these levels. Therefore - besides deep-level transient spectroscopy measurements - photo-capacitance, optically chopped photo-current, minority carrier transient spectroscopy, and optical capacitance-voltage experiments were conducted. In doing so, a midgap level labelled T4, and hole traps labelled TH1 and TH2 were detected. In the case of T4 and TH1 the photo-ionisation cross-section spectra were determined.

  7. Single and two-mode mechanical squeezing of an optically levitated nanodiamond via dressed-state coherence

    International Nuclear Information System (INIS)

    Ge, Wenchao; Bhattacharya, M

    2016-01-01

    Nonclassical states of macroscopic objects are promising for ultrasensitive metrology as well as testing quantum mechanics. In this work, we investigate dissipative mechanical quantum state engineering in an optically levitated nanodiamond. First, we study single-mode mechanical squeezed states by magnetically coupling the mechanical motion to a dressed three-level system provided by a nitrogen-vacancy center in the nanoparticle. Quantum coherence between the dressed levels is created via microwave fields to induce a two-phonon transition, which results in mechanical squeezing. Remarkably, we find that in ultrahigh vacuum quantum squeezing is achievable at room temperature with feedback cooling. For moderate vacuum, quantum squeezing is possible with cryogenic temperature. Second, we present a setup for two mechanical modes coupled to the dressed three levels, which results in two-mode squeezing analogous to the mechanism of the single-mode case. In contrast to previous works, our study provides a deterministic method for engineering macroscopic squeezed states without the requirement for a cavity. (paper)

  8. Single and two-mode mechanical squeezing of an optically levitated nanodiamond via dressed-state coherence

    Science.gov (United States)

    Ge, Wenchao; Bhattacharya, M.

    2016-10-01

    Nonclassical states of macroscopic objects are promising for ultrasensitive metrology as well as testing quantum mechanics. In this work, we investigate dissipative mechanical quantum state engineering in an optically levitated nanodiamond. First, we study single-mode mechanical squeezed states by magnetically coupling the mechanical motion to a dressed three-level system provided by a nitrogen-vacancy center in the nanoparticle. Quantum coherence between the dressed levels is created via microwave fields to induce a two-phonon transition, which results in mechanical squeezing. Remarkably, we find that in ultrahigh vacuum quantum squeezing is achievable at room temperature with feedback cooling. For moderate vacuum, quantum squeezing is possible with cryogenic temperature. Second, we present a setup for two mechanical modes coupled to the dressed three levels, which results in two-mode squeezing analogous to the mechanism of the single-mode case. In contrast to previous works, our study provides a deterministic method for engineering macroscopic squeezed states without the requirement for a cavity.

  9. Small-scale quantum information processing with linear optics

    International Nuclear Information System (INIS)

    Bergou, J.A.; Steinberg, A.M.; Mohseni, M.

    2005-01-01

    Full text: Photons are the ideal systems for carrying quantum information. Although performing large-scale quantum computation on optical systems is extremely demanding, non scalable linear-optics quantum information processing may prove essential as part of quantum communication networks. In addition efficient (scalable) linear-optical quantum computation proposal relies on the same optical elements. Here, by constructing multirail optical networks, we experimentally study two central problems in quantum information science, namely optimal discrimination between nonorthogonal quantum states, and controlling decoherence in quantum systems. Quantum mechanics forbids deterministic discrimination between nonorthogonal states. This is one of the central features of quantum cryptography, which leads to secure communications. Quantum state discrimination is an important primitive in quantum information processing, since it determines the limitations of a potential eavesdropper, and it has applications in quantum cloning and entanglement concentration. In this work, we experimentally implement generalized measurements in an optical system and demonstrate the first optimal unambiguous discrimination between three non-orthogonal states with a success rate of 55 %, to be compared with the 25 % maximum achievable using projective measurements. Furthermore, we present the first realization of unambiguous discrimination between a pure state and a nonorthogonal mixed state. In a separate experiment, we demonstrate how decoherence-free subspaces (DFSs) may be incorporated into a prototype optical quantum algorithm. Specifically, we present an optical realization of two-qubit Deutsch-Jozsa algorithm in presence of random noise. By introduction of localized turbulent airflow we produce a collective optical dephasing, leading to large error rates and demonstrate that using DFS encoding, the error rate in the presence of decoherence can be reduced from 35 % to essentially its pre

  10. Nano-Optics: Coherent Nonlinear Optical Response and Control of Single Quantum Dots

    National Research Council Canada - National Science Library

    Steel, Duncan

    2002-01-01

    .... These features include optically induced and detected quantum entanglement of two exciton states as well as a demonstration of a classical Bell state, a Rabi oscillations corresponding to full...

  11. An introduction to quantum optics

    International Nuclear Information System (INIS)

    Arecchi, F.T.

    1977-01-01

    Part 1. Quantum optics: A heuristic approach. (Terminology and numerology); 1.1. Definition of quantum optics; 1.2. Physics of the stimulated emission processes; 1.3. Stimulated emission and non-linear optics; 1.4. Coherence and cooperative phenomena. Part 2. Photon statistics; 2.1. Relevance of photon statistics; 2.2. Limits of classical optics; 2.3. Characterization of random processes; 2.4. Gaussian processes and the Hanbury-Brown and Twiss effect; 2.4.1. Gaussian distribution with zero average; 2.4.2. 'Coherent' field without fluctuations; 2.5. Measurement of photon statistics; 2.6. Laser fluctuations; 2.6.1. Review of the theory; 2.6.2. Stationary experiments (ensemble distributions and time correlation); 2.6.3. Transient experiments; 2.7. Distortion of photon statistics owing to attenuation; 2.8. The photomultiplier as a statistical device. Part 3. Quantum optics: Coherent resonant spectroscopy; 3.1. Introduction; 3.2. The interaction model; 3.3. The two-level atom; 3.4. The Bloch equations; 3.5. Irreversible processes in the presence of dampings; 3.6. Saturation and non-linear spectroscopy; 3.7. Two-photon spectroscopy. Comparison with saturation; 3.8. Perturbed fluorescence spectroscopy; 3.9. Dynamic Stark shift. Part 4. Field and atomic coherent states; 4.1. Introduction; 4.2. Description of the free field; 4.2.1. The harmonic oscillator states; 4.2.2. Coherent states of the field; 4.2.3. The coherent states as a basis; 4.2.4. Statistical operator for the field; 4.3. Description of the free atoms; 4.3.1. The angular momentum states; 4.3.2. Coherent atomic states; 4.3.3. The Bloch states as a basis; 4.3.4. Statistical operators for the atoms. (author)

  12. Data Encoding using Periodic Nano-Optical Features

    Science.gov (United States)

    Vosoogh-Grayli, Siamack

    Successful trials have been made through a designed algorithm to quantize, compress and optically encode unsigned 8 bit integer values in the form of images using Nano optical features. The periodicity of the Nano-scale features (Nano-gratings) have been designed and investigated both theoretically and experimentally to create distinct states of variation (three on states and one off state). The use of easy to manufacture and machine readable encoded data in secured authentication media has been employed previously in bar-codes for bi-state (binary) models and in color barcodes for multiple state models. This work has focused on implementing 4 states of variation for unit information through periodic Nano-optical structures that separate an incident wavelength into distinct colors (variation states) in order to create an encoding system. Compared to barcodes and magnetic stripes in secured finite length storage media the proposed system encodes and stores more data. The benefits of multiple states of variation in an encoding unit are 1) increased numerically representable range 2) increased storage density and 3) decreased number of typical set elements for any ergodic or semi-ergodic source that emits these encoding units. A thorough investigation has targeted the effects of the use of multi-varied state Nano-optical features on data storage density and consequent data transmission rates. The results show that use of Nano-optical features for encoding data yields a data storage density of circa 800 Kbits/in2 via the implementation of commercially available high resolution flatbed scanner systems for readout. Such storage density is far greater than commercial finite length secured storage media such as Barcode family with maximum practical density of 1kbits/in2 and highest density magnetic stripe cards with maximum density circa 3 Kbits/in2. The numerically representable range of the proposed encoding unit for 4 states of variation is [0 255]. The number of

  13. Collisional quenching at ultralow energies: controlling efficiency with internal state selection.

    Science.gov (United States)

    Bovino, S; Bodo, E; Gianturco, F A

    2007-12-14

    Calculations have been carried out for the vibrational quenching of excited H(2) molecules which collide with Li(+) ions at ultralow energies. The dynamics has been treated exactly using the well-known quantum coupled-channel expansions over different initial vibrational levels. The overall interaction potential has been obtained from the calculations carried out earlier by our group using highly correlated ab initio methods. The results indicate that specific features of the scattering observables, e.g., the appearance of Ramsauer-Townsend minima in elastic channel cross sections and the marked increase of the cooling rates from specific initial states, can be linked to potential properties at vanishing energies (sign and size of scattering lengths) and to the presence of either virtual states or bound states. The suggestion is made such that by selecting the initial state preparation of the molecular partners, the ionic interactions would be amenable to controlling quenching efficiency at ultralow energies.

  14. Robust and scalable optical one-way quantum computation

    International Nuclear Information System (INIS)

    Wang Hefeng; Yang Chuiping; Nori, Franco

    2010-01-01

    We propose an efficient approach for deterministically generating scalable cluster states with photons. This approach involves unitary transformations performed on atoms coupled to optical cavities. Its operation cost scales linearly with the number of qubits in the cluster state, and photon qubits are encoded such that single-qubit operations can be easily implemented by using linear optics. Robust optical one-way quantum computation can be performed since cluster states can be stored in atoms and then transferred to photons that can be easily operated and measured. Therefore, this proposal could help in performing robust large-scale optical one-way quantum computation.

  15. Optimisation of the parameters of a pump chamber for solid-state lasers with diode pumping by the optical boiler method

    Energy Technology Data Exchange (ETDEWEB)

    Kiyko, V V; Kislov, V I; Ofitserov, E N; Suzdal' tsev, A G [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-06-30

    A pump chamber of the optical boiler type for solid-state lasers with transverse laser diode pumping is studied theoretically and experimentally. The pump chamber parameters are optimised using the geometrical optics approximation for the pump radiation. According to calculations, the integral absorption coefficient of the active element at a wavelength of 808 nm is 0.75 – 0.8 and the relative inhomogeneity of the pump radiation distribution over the active element volume is 17% – 19%. The developed pump chamber was used in a Nd:YAG laser. The maximum cw output power at a wavelength of 1064 nm was ∼480 W at the optical efficiency up to 19.6%, which agrees with theoretical estimates. (lasers)

  16. Correlation between structural, optical and electrical properties anf the suitability of phase change alloys

    Energy Technology Data Exchange (ETDEWEB)

    Woda, Michael; Steimer, Christoph; Wamwangi, Daniel; Wuttig, Matthias [I. Insitute of Physics (IA), RWTH Aachen University, 52056 Aachen (Germany)

    2007-07-01

    Phase change random access memory (PCRAM) is a very promising candidate to replace Flash memories employed in the non-volatile storage sector. In the active region of this emerging memory, a phase change material is found. This class of materials is already used in rewritable optical data storage. In both application areas the reversible switching between the amorphous and the crystalline state by short current or laser pulses, respectively is used to store data. A key question that has not yet been answered regards the optimum choice of materials for phase change recording. We present a material selection strategy which classifies carefully chosen alloys, being representative for a larger selection of phase change materials, regarding their suitability for non-volatile storage applications. XRD and XRR measurements reveal structural properties of the as-deposited, amorphous and the crystalline state, the corresponding local bond arrangements and the change of film density. Ellipsometry measurements determine the optical contrast of the samples while the temperature dependent resistivity is measured by four point probe experiments. Finally the electrical switching behaviour is tested in nanometer size test cells to validate the full functionality of the chosen materials.

  17. EC-directive optical radiation - present state of consultation; EG-Richtlinie optische Strahlung - aktueller Beratungsstand

    Energy Technology Data Exchange (ETDEWEB)

    Pipke, R. [Bundesanstalt fuer Arbeitschutz und Arbeitsmedizin, Dortmund (Germany)

    2004-07-01

    The draft of a directive on the protection of workers from risks related to radiation in the range from 100 nm to 1 mm (Laser, UV-radiation) is discussed on EC-level. The European concept of regulations on occupational safety and health is outlined and put into reference with other directives on the protection against physical agents (vibrations, noise, electromagnetic fields). Building up on this the present state of consultation of a directive on optical radiation is represented, including major points of consideration. (orig.)

  18. The determination of the optical selectivity of W/Al2O3 layers after unloading at 500 C by means of spectral ellipsometry between 0.25 and 25 μm

    International Nuclear Information System (INIS)

    Djahanbakhsh, M.

    1997-01-01

    Optically selective W/Al 2 O 3 cermet layers were fabricated in the CVD and sputtering procedure. The study of the optical property of the W/Al 2 O 3 cermet layers was measured with two ellipsometers spectrally from 250 to 1700 nm and from 2000 to 25000 nm

  19. High-Resolution Two-Dimensional Optical Spectroscopy of Electron Spins

    Directory of Open Access Journals (Sweden)

    M. Salewski

    2017-08-01

    Full Text Available Multidimensional coherent optical spectroscopy is one of the most powerful tools for investigating complex quantum mechanical systems. While it was conceived decades ago in magnetic resonance spectroscopy using microwaves and radio waves, it has recently been extended into the visible and UV spectral range. However, resolving MHz energy splittings with ultrashort laser pulses still remains a challenge. Here, we analyze two-dimensional Fourier spectra for resonant optical excitation of resident electrons to localized trions or donor-bound excitons in semiconductor nanostructures subject to a transverse magnetic field. Particular attention is devoted to Raman coherence spectra, which allow one to accurately evaluate tiny splittings of the electron ground state and to determine the relaxation times in the electron spin ensemble. A stimulated steplike Raman process induced by a sequence of two laser pulses creates a coherent superposition of the ground-state doublet which can be retrieved only optically because of selective excitation of the same subensemble with a third pulse. This provides the unique opportunity to distinguish between different complexes that are closely spaced in energy in an ensemble. The related experimental demonstration is based on photon-echo measurements in an n-type CdTe/(Cd,MgTe quantum-well structure detected by a heterodyne technique. The difference in the sub-μeV range between the Zeeman splittings of donor-bound electrons and electrons localized at potential fluctuations can be resolved even though the homogeneous linewidth of the optical transitions is larger by 2 orders of magnitude.

  20. Optical-Correlator Neural Network Based On Neocognitron

    Science.gov (United States)

    Chao, Tien-Hsin; Stoner, William W.

    1994-01-01

    Multichannel optical correlator implements shift-invariant, high-discrimination pattern-recognizing neural network based on paradigm of neocognitron. Selected as basic building block of this neural network because invariance under shifts is inherent advantage of Fourier optics included in optical correlators in general. Neocognitron is conceptual electronic neural-network model for recognition of visual patterns. Multilayer processing achieved by iteratively feeding back output of feature correlator to input spatial light modulator and updating Fourier filters. Neural network trained by use of characteristic features extracted from target images. Multichannel implementation enables parallel processing of large number of selected features.

  1. 78 FR 39765 - Notice of Proposed Classification of Public Lands/Minerals for State Indemnity Selection, Colorado

    Science.gov (United States)

    2013-07-02

    ... Proposed Classification of Public Lands/Minerals for State Indemnity Selection, Colorado AGENCY: Bureau of Land Management, Interior. ACTION: Notice of Proposed Classification. SUMMARY: The Colorado State Board... public lands and mineral estate in lieu of lands to which the State was entitled but did not receive...

  2. Proposal for electro-optic multiplier based on dual transverse electro-optic Kerr effect.

    Science.gov (United States)

    Li, Changsheng

    2008-10-20

    A novel electro-optic multiplier is proposed, which can perform voltage multiplication operation by use of the Kerr medium exhibiting dual transverse electro-optic Kerr effect. In this kind of Kerr medium, electro-optic phase retardation is proportional to the square of its applied electric field, and orientations of the field-induced birefringent axes are only related to the direction of the field. Based on this effect, we can design an electro-optic multiplier by selecting the crystals of 6/mmm, 432, and m3m classes and isotropic Kerr media such as glass. Simple calculation demonstrates that a kind of glass-ceramic material with a large Kerr constant can be used for the design of the proposed electro-optic multiplier.

  3. Optical selection of trace elements for discriminant analysis

    International Nuclear Information System (INIS)

    Rasmussen, S.E.; Erasmus, C.S.; Watterson, J.I.W.; Sellschop, J.P.F.

    This report describes different methods of element selection; a combination of stepwise multivariate analysis of variance for primary element selection, and principle component analysis regression for the element interrelationship analysis. These offer a satisfactory solution to the problem of element selection

  4. Fractal vector optical fields.

    Science.gov (United States)

    Pan, Yue; Gao, Xu-Zhen; Cai, Meng-Qiang; Zhang, Guan-Lin; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian

    2016-07-15

    We introduce the concept of a fractal, which provides an alternative approach for flexibly engineering the optical fields and their focal fields. We propose, design, and create a new family of optical fields-fractal vector optical fields, which build a bridge between the fractal and vector optical fields. The fractal vector optical fields have polarization states exhibiting fractal geometry, and may also involve the phase and/or amplitude simultaneously. The results reveal that the focal fields exhibit self-similarity, and the hierarchy of the fractal has the "weeding" role. The fractal can be used to engineer the focal field.

  5. Terahertz lasers and amplifiers based on resonant optical phonon scattering to achieve population inversion

    Science.gov (United States)

    Williams, Benjamin S. (Inventor); Hu, Qing (Inventor)

    2009-01-01

    The present invention provides quantum cascade lasers and amplifier that operate in a frequency range of about 1 Terahertz to about 10 Terahertz. In one aspect, a quantum cascade laser of the invention includes a semiconductor heterostructure that provides a plurality of lasing modules connected in series. Each lasing module includes a plurality of quantum well structure that collectively generate at least an upper lasing state, a lower lasing state, and a relaxation state such that the upper and the lower lasing states are separated by an energy corresponding to an optical frequency in a range of about 1 to about 10 Terahertz. The lower lasing state is selectively depopulated via resonant LO-phonon scattering of electrons into the relaxation state.

  6. Mode-Selective Photon Counting Via Quantum Frequency Conversion Using Spectrally-Engineered Pump Pulses

    Science.gov (United States)

    Manurkar, Paritosh

    Most of the existing protocols for quantum communication operate in a two-dimensional Hilbert space where their manipulation and measurement have been routinely investigated. Moving to higher-dimensional Hilbert spaces is desirable because of advantages in terms of longer distance communication capabilities, higher channel capacity and better information security. We can exploit the spatio-temporal degrees of freedom for the quantum optical signals to provide the higher-dimensional signals. But this necessitates the need for measurement and manipulation of multidimensional quantum states. To that end, there have been significant theoretical studies based on quantum frequency conversion (QFC) in recent years even though the experimental progress has been limited. QFC is a process that allows preservation of the quantum information while changing the frequency of the input quantum state. It has deservedly garnered a lot of attention because it serves as the connecting bridge between the communications band (C-band near 1550 nm) where the fiber-optic infrastructure is already established and the visible spectrum where high efficiency single-photon detectors and optical memories have been demonstrated. In this experimental work, we demonstrate mode-selective frequency conversion as a means to measure and manipulate photonic signals occupying d -dimensional Hilbert spaces where d=2 and 4. In the d=2 case, we demonstrate mode contrast between two temporal modes (TMs) which serves as the proof-of-concept demonstration. In the d=4 version, we employ six different TMs for our detailed experimental study. These TMs also include superposition modes which are a crucial component in many quantum key distribution protocols. Our method is based on producing pump pulses which allow us to upconvert the TM of interest while ideally preserving the other modes. We use MATLAB simulations to determine the pump pulse shapes which are subsequently produced by controlling the amplitude and

  7. Entanglement, Einstein Podolsky Rosen correlations and Schrodinger cat state generation by quantum-injected optical parametric amplification

    International Nuclear Information System (INIS)

    De Martini, Francesco; Sciarrino, Fabio

    2007-01-01

    We investigate the multi-photon quantum superposition state generated by the quantum-injected high-gain optical parametric amplification of a single photon. The physical configurations based on the optimal universal and on the phase-covariant quantum cloning have been adopted. The theoretical results are supported by a set of experiments leading to the generation of an average number of clones in excess of 10 3

  8. Photodissociation of quantum state-selected diatomic molecules yields new insight into ultracold chemistry

    Science.gov (United States)

    McDonald, Mickey; McGuyer, Bart H.; Lee, Chih-Hsi; Apfelbeck, Florian; Zelevinsky, Tanya

    2016-05-01

    When a molecule is subjected to a sufficiently energetic photon it can break apart into fragments through a process called ``photodissociation''. For over 70 years this simple chemical reaction has served as a vital experimental tool for acquiring information about molecular structure, since the character of the photodissociative transition can be inferred by measuring the 3D photofragment angular distribution (PAD). While theoretical understanding of this process has gradually evolved from classical considerations to a fully quantum approach, experiments to date have not yet revealed the full quantum nature of this process. In my talk I will describe recent experiments involving the photodissociation of ultracold, optical lattice-trapped, and fully quantum state-resolved 88Sr2 molecules. Optical absorption images of the PADs produced in these experiments reveal features which are inherently quantum mechanical in nature, such as matter-wave interference between output channels, and are sensitive to the quantum statistics of the molecular wavefunctions. The results of these experiments cannot be predicted using quasiclassical methods. Instead, we describe our results with a fully quantum mechanical model yielding new intuition about ultracold chemistry.

  9. High-speed optical feeder-link system using adaptive optics

    Science.gov (United States)

    Arimoto, Yoshinori; Hayano, Yutaka; Klaus, Werner

    1997-05-01

    We propose a satellite laser communication system between a ground station and a geostationary satellite, named high- speed optical feeder link system. It is based on the application of (a) high-speed optical devices, which have been developed for ground-based high-speed fiber-optic communications, and (b) the adaptive optics which compensates wavefront distortions due to atmospheric turbulences using a real time feedback control. A link budget study shows that a system with 10-Gbps bit-rate are available assuming the state-of-the-art device performance of the Er-doped fiber amplifier. We further discuss preliminary measurement results of the atmospheric turbulence at the telescope site in Tokyo, and present current study on the design of the key components for the feeder-link laser transceiver.

  10. The active galactic nucleus population in X-ray-selected galaxy groups at 0.5 < Z < 1.1

    International Nuclear Information System (INIS)

    Oh, Semyeong; Woo, Jong-Hak; Matsuoka, Kenta; Mulchaey, John S.; Finoguenov, Alexis; Tanaka, Masayuki; Cooper, Michael C.; Ziparo, Felicia; Bauer, Franz E.

    2014-01-01

    We use Chandra data to study the incidence and properties of active galactic nuclei (AGNs) in 16 intermediate redshift (0.5 < z < 1.1) X-ray-selected galaxy groups in the Chandra Deep Field-South. We measure an AGN fraction of f(L X,H >10 42 ;M R <−20)=8.0 −2.3 +3.0 % at z-bar ∼0.74, approximately a factor of two higher than the AGN fraction found for rich clusters at comparable redshift. This extends the trend found at low redshift for groups to have higher AGN fractions than clusters. Our estimate of the AGN fraction is also more than a factor of three higher than that of low redshift X-ray-selected groups. Using optical spectra from various surveys, we also constrain the properties of emission-line selected AGNs in these groups. In contrast to the large population of X-ray AGNs (N(L X, H > 10 41 erg s –1 ) = 25), we find only four emission-line AGNs, three of which are also X-ray bright. Furthermore, most of the X-ray AGNs in our groups are optically dull (i.e., lack strong emission-lines), similar to those found in low redshift X-ray groups and clusters of galaxies. This contrasts with the AGN population found in low redshift optically selected groups which are dominated by emission-line AGNs. The differences between the optically and X-ray-selected AGNs populations in groups are consistent with a scenario where most AGNs in the densest environments are currently in a low accretion state.

  11. An Evaluation of Industrial Facilities Defects in Selected Industrial Estates in Lagos State, Nigeria

    Directory of Open Access Journals (Sweden)

    Oseghale, G.E.

    2014-01-01

    Full Text Available The study appraised the state of industrial facilities in selected industrial estates established between 1957 and 1981 in Lagos State by examining the nature and causes of facilities’ defects in the selected industrial estates. The buildings sampled were load bearing sandcrete block wall (1%, concrete framed structure (83% and steel framed structure (16%. Data were sourced using structured questionnaire administered on the staff of maintenance department of 35 building materials and plastic manufacturing industries purposively selected and located in 18 industrial estates. Data obtained were analyzed using descriptive statistic. The study found the structural elements of the buildings, i.e. foundations, beams, walls, and floors satisfactory. Using the mean response analysis, the result showed that the most severe factors responsible for industrial facilities’ defects were combined effects of geo-climatic factors (2.35, combined effects of biological agencies (2.15, corrosion (1.98, and physical aggression on the facilities (1.71.

  12. Guided-Wave Optical Biosensors

    Science.gov (United States)

    Passaro, Vittorio M. N.; Dell'Olio, Francesco; Casamassima, Biagio; De Leonardis, Francesco

    2007-01-01

    Guided-wave optical biosensors are reviewed in this paper. Advantages related to optical technologies are presented and integrated architectures are investigated in detail. Main classes of bio receptors and the most attractive optical transduction mechanisms are discussed. The possibility to use Mach-Zehnder and Young interferometers, microdisk and microring resonators, surface plasmon resonance, hollow and antiresonant waveguides, and Bragg gratings to realize very sensitive and selective, ultra-compact and fast biosensors is discussed. Finally, CMOS-compatible technologies are proved to be the most attractive for fabrication of guided-wave photonic biosensors.

  13. Optical quantum memory

    Science.gov (United States)

    Lvovsky, Alexander I.; Sanders, Barry C.; Tittel, Wolfgang

    2009-12-01

    Quantum memory is essential for the development of many devices in quantum information processing, including a synchronization tool that matches various processes within a quantum computer, an identity quantum gate that leaves any state unchanged, and a mechanism to convert heralded photons to on-demand photons. In addition to quantum computing, quantum memory will be instrumental for implementing long-distance quantum communication using quantum repeaters. The importance of this basic quantum gate is exemplified by the multitude of optical quantum memory mechanisms being studied, such as optical delay lines, cavities and electromagnetically induced transparency, as well as schemes that rely on photon echoes and the off-resonant Faraday interaction. Here, we report on state-of-the-art developments in the field of optical quantum memory, establish criteria for successful quantum memory and detail current performance levels.

  14. Annual report 1983/1984. Division of Solid State Physics

    International Nuclear Information System (INIS)

    1984-10-01

    This report gives a survey of the present research projects at the division of solid state physics, Inst. of Technology, Uppsala University. The projects fall within the fields of magnetism, i.e. spin glasses, ordered magnetic structures and itinerant electron magnetism, as well as optics, i.e. properties of crystalline and amorphous materials for selective transmission and absorption in connection with energy-related research. (author)

  15. Low-temperature solid-state synthesis and optical properties of ZnO/CdS nanocomposites

    International Nuclear Information System (INIS)

    Liu, Jinsong; Zhu, Kongjun; Sheng, Beibei; Li, Ziquan; Tai, Guoan; Qiu, Jinhao; Wang, Jing; Chen, Jiankang; You, Yuncheng; Gu, Qilin; Liu, Pengcheng

    2015-01-01

    Highlights: • Using a low-temperature solid-state method, ZnO/CdS nanocomposites were obtained • Grain growth kinetics of cubic CdS and hexagonal ZnO phase was described. • Sufficient grinding and heating treatment was a key for formation of composites. • Optical properties could be easily manipulated by reaction temperature and time. - Abstract: A simple low-temperature solid-state reaction in the presence of the surfactant PEG400 was developed to obtain ZnO/CdS nanocomposites. The effects of synthesis temperature and reaction time on crystal structure and optical properties of the nanocomposites were investigated by several technologies. X-ray diffraction (XRD) and high resolution transmission electron microscope (HRTEM) characterizations showed that the products consisted of the nanoparticles, and the grain growth kinetics of the cubic CdS and the hexagonal ZnO phase in the nanocomposites was described. The mechanism analysis suggested that sufficient grinding and heating treatment was a key to form the ZnO/CdS nanocomposites, and the surfactant PEG400 was proved not to involve the reaction and prevent the nanoparticles from aggregating to larger in whole grinding and heat-treatment process. Ultraviolet–visible (UV–vis) spectra revealed that the band gaps of the nanocomposites could be tuned by the reaction temperature and reaction time. Photoluminescence (PL) spectra showed that the changing position and the intensity of the emission peaks resulted from the rate of electron transfer and recombination probability under the different conditions

  16. Single-electron states near a current-carrying core

    International Nuclear Information System (INIS)

    Masale, M.

    2004-01-01

    The energy spectrum of an electron confined near a current-carrying core is obtained as a function of the azimuthal applied magnetic field within the effective-mass approximation. The double degeneracy of the non-zero electron's axial wave number (k z ) states is lifted by the current-induced magnetic field while that of the non-zero azimuthal quantum number (m) states is preserved. A further analysis is the evaluations of the oscillator strengths for optical transitions involving the lowest-order pair of the electron's energy subbands within the dipole approximation. The radiation field is taken as that of elliptically polarized light incident along the core axis. In this polarization and within the dipole approximation, the allowed transitions are only those governed by the following specific selection rules. The azimuthal quantum numbers of the initial and final states must differ by unity while the electron's axial wave number is conserved. The azimuthal magnetic field is also found to lift the multiple degeneracies of the k z ≠0 interaction integrals as well as those of the oscillator strengths for optical transitions

  17. Atoms, molecules and optical physics 2. Molecules and photons - Spectroscopy and collisions

    Energy Technology Data Exchange (ETDEWEB)

    Hertel, Ingolf V.; Schulz, Claus-Peter [Max-Born-Institut fuer Nichtlineare Optik und Kurzzeitspektroskopie im Forschungsverbund Berlin e.V. (Germany)

    2015-09-01

    This is the second volume of textbooks on atomic, molecular and optical physics, aiming at a comprehensive presentation of this highly productive branch of modern physics as an indispensable basis for many areas in physics and chemistry as well as in state of the art bio- and material-sciences. It primarily addresses advanced students (including PhD students), but in a number of selected subject areas the reader is lead up to the frontiers of present research. Thus even the active scientist is addressed. This volume 2 introduces lasers and quantum optics, while the main focus is on the structure of molecules and their spectroscopy, as well as on collision physics as the continuum counterpart to bound molecular states. The emphasis is always on the experiment and its interpretation, while the necessary theory is introduced from this perspective in a compact and occasionally somewhat heuristic manner, easy to follow even for beginners.

  18. Selective individual primary cell capture using locally bio-functionalized micropores.

    Directory of Open Access Journals (Sweden)

    Jie Liu

    Full Text Available BACKGROUND: Solid-state micropores have been widely employed for 6 decades to recognize and size flowing unlabeled cells. However, the resistive-pulse technique presents limitations when the cells to be differentiated have overlapping dimension ranges such as B and T lymphocytes. An alternative approach would be to specifically capture cells by solid-state micropores. Here, the inner wall of 15-µm pores made in 10 µm-thick silicon membranes was covered with antibodies specific to cell surface proteins of B or T lymphocytes. The selective trapping of individual unlabeled cells in a bio-functionalized micropore makes them recognizable just using optical microscopy. METHODOLOGY/PRINCIPAL FINDINGS: We locally deposited oligodeoxynucleotide (ODN and ODN-conjugated antibody probes on the inner wall of the micropores by forming thin films of polypyrrole-ODN copolymers using contactless electro-functionalization. The trapping capabilities of the bio-functionalized micropores were validated using optical microscopy and the resistive-pulse technique by selectively capturing polystyrene microbeads coated with complementary ODN. B or T lymphocytes from a mouse splenocyte suspension were specifically immobilized on micropore walls functionalized with complementary ODN-conjugated antibodies targeting cell surface proteins. CONCLUSIONS/SIGNIFICANCE: The results showed that locally bio-functionalized micropores can isolate target cells from a suspension during their translocation throughout the pore, including among cells of similar dimensions in complex mixtures.

  19. Selective Individual Primary Cell Capture Using Locally Bio-Functionalized Micropores

    Science.gov (United States)

    Liu, Jie; Bombera, Radoslaw; Leroy, Loïc; Roupioz, Yoann; Baganizi, Dieudonné R.; Marche, Patrice N.; Haguet, Vincent; Mailley, Pascal; Livache, Thierry

    2013-01-01

    Background Solid-state micropores have been widely employed for 6 decades to recognize and size flowing unlabeled cells. However, the resistive-pulse technique presents limitations when the cells to be differentiated have overlapping dimension ranges such as B and T lymphocytes. An alternative approach would be to specifically capture cells by solid-state micropores. Here, the inner wall of 15-µm pores made in 10 µm-thick silicon membranes was covered with antibodies specific to cell surface proteins of B or T lymphocytes. The selective trapping of individual unlabeled cells in a bio-functionalized micropore makes them recognizable just using optical microscopy. Methodology/Principal Findings We locally deposited oligodeoxynucleotide (ODN) and ODN-conjugated antibody probes on the inner wall of the micropores by forming thin films of polypyrrole-ODN copolymers using contactless electro-functionalization. The trapping capabilities of the bio-functionalized micropores were validated using optical microscopy and the resistive-pulse technique by selectively capturing polystyrene microbeads coated with complementary ODN. B or T lymphocytes from a mouse splenocyte suspension were specifically immobilized on micropore walls functionalized with complementary ODN-conjugated antibodies targeting cell surface proteins. Conclusions/Significance The results showed that locally bio-functionalized micropores can isolate target cells from a suspension during their translocation throughout the pore, including among cells of similar dimensions in complex mixtures. PMID:23469221

  20. Optical flow and driver's kinematics analysis for state of alert sensing.

    Science.gov (United States)

    Jiménez-Pinto, Javier; Torres-Torriti, Miguel

    2013-03-28

    Road accident statistics from different countries show that a significant number of accidents occur due to driver's fatigue and lack of awareness to traffic conditions. In particular, about 60% of the accidents in which long haul truck and bus drivers are involved are attributed to drowsiness and fatigue. It is thus fundamental to improve non-invasive systems for sensing a driver's state of alert. One of the main challenges to correctly resolve the state of alert is measuring the percentage of eyelid closure over time (PERCLOS), despite the driver's head and body movements. In this paper, we propose a technique that involves optical flow and driver's kinematics analysis to improve the robustness of the driver's alert state measurement under pose changes using a single camera with near-infrared illumination. The proposed approach infers and keeps track of the driver's pose in 3D space in order to ensure that eyes can be located correctly, even after periods of partial occlusion, for example, when the driver stares away from the camera. Our experiments show the effectiveness of the approach with a correct eyes detection rate of 99.41%, on average. The results obtained with the proposed approach in an experiment involving fifteen persons under different levels of sleep deprivation also confirm the discriminability of the fatigue levels. In addition to the measurement of fatigue and drowsiness, the pose tracking capability of the proposed approach has potential applications in distraction assessment and alerting of machine operators.

  1. Chaos in Dirac Electron Optics: Emergence of a Relativistic Quantum Chimera.

    Science.gov (United States)

    Xu, Hong-Ya; Wang, Guang-Lei; Huang, Liang; Lai, Ying-Cheng

    2018-03-23

    We uncover a remarkable quantum scattering phenomenon in two-dimensional Dirac material systems where the manifestations of both classically integrable and chaotic dynamics emerge simultaneously and are electrically controllable. The distinct relativistic quantum fingerprints associated with different electron spin states are due to a physical mechanism analogous to a chiroptical effect in the presence of degeneracy breaking. The phenomenon mimics a chimera state in classical complex dynamical systems but here in a relativistic quantum setting-henceforth the term "Dirac quantum chimera," associated with which are physical phenomena with potentially significant applications such as enhancement of spin polarization, unusual coexisting quasibound states for distinct spin configurations, and spin selective caustics. Experimental observations of these phenomena are possible through, e.g., optical realizations of ballistic Dirac fermion systems.

  2. Chaos in Dirac Electron Optics: Emergence of a Relativistic Quantum Chimera

    Science.gov (United States)

    Xu, Hong-Ya; Wang, Guang-Lei; Huang, Liang; Lai, Ying-Cheng

    2018-03-01

    We uncover a remarkable quantum scattering phenomenon in two-dimensional Dirac material systems where the manifestations of both classically integrable and chaotic dynamics emerge simultaneously and are electrically controllable. The distinct relativistic quantum fingerprints associated with different electron spin states are due to a physical mechanism analogous to a chiroptical effect in the presence of degeneracy breaking. The phenomenon mimics a chimera state in classical complex dynamical systems but here in a relativistic quantum setting—henceforth the term "Dirac quantum chimera," associated with which are physical phenomena with potentially significant applications such as enhancement of spin polarization, unusual coexisting quasibound states for distinct spin configurations, and spin selective caustics. Experimental observations of these phenomena are possible through, e.g., optical realizations of ballistic Dirac fermion systems.

  3. Luciferase-Specific Coelenterazine Analogues for Optical Contamination-Free Bioassays.

    Science.gov (United States)

    Nishihara, Ryo; Abe, Masahiro; Nishiyama, Shigeru; Citterio, Daniel; Suzuki, Koji; Kim, Sung Bae

    2017-04-19

    Spectral overlaps among the multiple optical readouts commonly cause optical contamination in fluorescence and bioluminescence. To tackle this issue, we created five-different lineages of coelenterazine (CTZ) analogues designed to selectively illuminate a specific luciferase with unique luciferase selectivity. In the attempt, we found that CTZ analogues with ethynyl or styryl groups display dramatically biased bioluminescence to specific luciferases and pHs by modifying the functional groups at the C-2 and C-6 positions of the imidazopyradinone backbone of CTZ. The optical contamination-free feature was exemplified with the luciferase-specific CTZ analogues, which illuminated anti-estrogenic and rapamycin activities in a mixture of optical probes. This unique bioluminescence platform has great potential for specific and high throughput imaging of multiple optical readouts in bioassays without optical contamination.

  4. Ultrafast all-optical code-division multiple-access networks

    Science.gov (United States)

    Kwong, Wing C.; Prucnal, Paul R.; Liu, Yanming

    1992-12-01

    In optical code-division multiple access (CDMA), the architecture of optical encoders/decoders is another important factor that needs to be considered, besides the correlation properties of those already extensively studied optical codes. The architecture of optical encoders/decoders affects, for example, the amount of power loss and length of optical delays that are associated with code sequence generation and correlation, which, in turn, affect the power budget, size, and cost of an optical CDMA system. Various CDMA coding architectures are studied in the paper. In contrast to the encoders/decoders used in prime networks (i.e., prime encodes/decoders), which generate, select, and correlate code sequences by a parallel combination of fiber-optic delay-lines, and in 2n networks (i.e., 2n encoders/decoders), which generate and correlate code sequences by a serial combination of 2 X 2 passive couplers and fiber delays with sequence selection performed in a parallel fashion, the modified 2n encoders/decoders generate, select, and correlate code sequences by a serial combination of directional couplers and delays. The power and delay- length requirements of the modified 2n encoders/decoders are compared to that of the prime and 2n encoders/decoders. A 100 Mbit/s optical CDMA experiment in free space demonstrating the feasibility of the all-serial coding architecture using a serial combination of 50/50 beam splitters and retroreflectors at 10 Tchip/s (i.e., 100,000 chip/bit) with 100 fs laser pulses is reported.

  5. Overview of Fiber-Optical Sensors

    Science.gov (United States)

    Depaula, Ramon P.; Moore, Emery L.

    1987-01-01

    Design, development, and sensitivity of sensors using fiber optics reviewed. State-of-the-art and probable future developments of sensors using fiber optics described in report including references to work in field. Serves to update previously published surveys. Systems incorporating fiber-optic sensors used in medical diagnosis, navigation, robotics, sonar, power industry, and industrial controls.

  6. Motion state analysis of space target based on optical cross section

    Science.gov (United States)

    Tian, Qichen; Li, Zhi; Xu, Can; Liu, Chenghao

    2017-10-01

    In order to solve the problem that the movement state analysis method of the space target based on OCS is not related to the real motion state. This paper proposes a method based on OCS for analyzing the state of space target motion. This paper first establish a three-dimensional model of real STSS satellite, then change the satellite's surface into element, and assign material to each panel according to the actual conditions of the satellite. This paper set up a motion scene according to the orbit parameters of STSS satellite in STK, and the motion states are set to three axis steady state and slowly rotating unstable state respectively. In these two states, the occlusion condition of the surface element is firstly determined, and the effective face element is selected. Then, the coordinates of the observation station and the solar coordinates in the satellite body coordinate system are input into the OCS calculation program, and the OCS variation curves of the three axis steady state and the slow rotating unstable state STSS satellite are obtained. Combining the satellite surface structure and the load situation, the OCS change curve of the three axis stabilized satellite is analyzed, and the conclude that the OCS curve fluctuates up and down when the sunlight is irradiated to the load area; By using Spectral analysis method, autocorrelation analysis and the cross residual method, the rotation speed of OCS satellite in slow rotating unstable state is analyzed, and the rotation speed of satellite is successfully reversed. By comparing the three methods, it is found that the cross residual method is more accurate.

  7. Does social selection explain the association between state-level racial animus and racial disparities in self-rated health in the United States?

    Science.gov (United States)

    McKetta, Sarah; Hatzenbuehler, Mark L; Pratt, Charissa; Bates, Lisa; Link, Bruce G; Keyes, Katherine M

    2017-08-01

    Racism, whether defined at individual, interpersonal, or structural levels, is associated with poor health among Blacks. This association may arise because exposure to racism causes poor health, but geographic mobility patterns pose an alternative explanation-namely, Black individuals with better health and resources can move away from racist environments. We examine the evidence for selection effects using nationally representative, longitudinal data (1990-2009) from the Panel Study on Income Dynamics (n = 33,852). We conceptualized state-level racial animus as an ecologic measure of racism and operationalized it as the percent of racially-charged Google search terms in each state. Among those who move out of state, Blacks reporting good self-rated health (SRH) are more likely to move to a state with less racial animus than Blacks reporting poor SRH (P = .01), providing evidence for at least some selection into environments with less racial animus. However, among Blacks who moved states, over 80% moved to a state within the same quartile of racial animus, and fewer than 5% resided in states with the lowest level of racial animus. Geographic mobility patterns are therefore likely to explain only a small part of the relationship between racial animus and SRH. These results require replication with alternative measures of racist attitudes and health outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Assessment of Users Information Needs and Satisfaction in Selected Seminary Libraries in Oyo State, Nigeria

    Science.gov (United States)

    Adekunjo, Olalekan Abraham; Adepoju, Samuel Olusegun; Adeola, Anuoluwapo Odebunmi

    2015-01-01

    The study assessed users' information needs and satisfaction in selected seminary libraries in Oyo State, Nigeria. This paper employed the descriptive survey research design, whereby the expost-facto was employed with a sample size of three hundred (300) participants, selected from six seminaries located in Ibadan, Oyo and Ogbomoso, all in Oyo…

  9. Results from Coupled Optical and Electrical Sentaurus TCAD Models of a Gallium Phosphide on Silicon Electron Carrier Selective Contact Solar Cell

    Energy Technology Data Exchange (ETDEWEB)

    Limpert, Steven; Ghosh, Kunal; Wagner, Hannes; Bowden, Stuart; Honsberg, Christiana; Goodnick, Stephen; Bremner, Stephen; Green, Martin

    2014-06-09

    We report results from coupled optical and electrical Sentaurus TCAD models of a gallium phosphide (GaP) on silicon electron carrier selective contact (CSC) solar cell. Detailed analyses of current and voltage performance are presented for devices having substrate thicknesses of 10 μm, 50 μm, 100 μm and 150 μm, and with GaP/Si interfacial quality ranging from very poor to excellent. Ultimate potential performance was investigated using optical absorption profiles consistent with light trapping schemes of random pyramids with attached and detached rear reflector, and planar with an attached rear reflector. Results indicate Auger-limited open-circuit voltages up to 787 mV and efficiencies up to 26.7% may be possible for front-contacted devices.

  10. Applications of quantum electro-optic control and squeezed light

    International Nuclear Information System (INIS)

    Lam, P.K.

    2000-01-01

    Full text: The control theory of electronic feedback or feedforward is a topic well understood by many scientists and engineers. With many of the modern equipment relying on automation and robotics, an understanding of this classical control theory is a common requisite for many technologists. In the field of optics, electronic control theory is also commonly used in many situations. From the temperature controlling of laser systems, the auto-alignment of optical elements, to the locking of optical resonators, all make use of electronic control theory in their operations. In this talk, we present the use the control theory in the context of quantum optics. In much the same as its classical counterpart, the 'quantum electro-optic' control loop consists simply of an optical beam splitter, a detector and an electro-optic modulator. This simple system, however, can offer many interesting applications when used in combination with nonclassical states of light. One well-known example of non-classical light is that of the squeezed state of light. A light beam is referred to as being amplitude 'squeezed' when its amplitude has less noise when compared to that of a coherent light state. In fact, the field fluctuation of such light states in some sense lower that the field fluctuation of the photonic vacuum state. Yet another interesting non-classical light state is the so-called 'Einstein-Podolsky-Rosen' entangled pair. This consists of two beams of light, each of which has properties that are highly dependent on each other. Using both the quantum electro-optic control loops and these light states, we demonstrate schemes which allow us to perform noiseless optical amplification, quantum non-demolition measurement and quantum teleportation. These schemes may be important building blocks to the realisation of future quantum communications and quantum information networks

  11. Excited states

    CERN Document Server

    Lim, Edward C

    1974-01-01

    Excited States, Volume I reviews radiationless transitions, phosphorescence microwave double resonance through optical spectra in molecular solids, dipole moments in excited states, luminescence of polar molecules, and the problem of interstate interaction in aromatic carbonyl compounds. The book discusses the molecular electronic radiationless transitions; the double resonance techniques and the relaxation mechanisms involving the lowest triplet state of aromatic compounds; as well as the optical spectra and relaxation in molecular solids. The text also describes dipole moments and polarizab

  12. Optical computation based on nonlinear total reflectional optical ...

    Indian Academy of Sciences (India)

    2School of Education Science, South China Normal University, Guangzhou, 510631, China. *Corresponding ... Before the computation, all the inputs are prepared in the polarization state. The key .... The all-optical computing system described.

  13. Relaxation processes in optically excites metal clusters; Relaxationsprozesse in optisch angeregten Metallclustern

    Energy Technology Data Exchange (ETDEWEB)

    Stanzel, J.

    2007-08-10

    The present work is concerned with the dynamics of optically excited metal clusters in the gas phase. Small mass-selected gold and tungsten cluster anions (Au{sup -}{sub n}, n=5-8, 14, 20 and W{sup -}{sub n}, n=3-14) are studied using femtosecond time-resolved photoelectron spectroscopy. Depending on the electronic structure in the valence region as well as on the optical excitation energy fundamentally different relaxation processes are observed. In small gold cluster anions excited with 1.56 eV an isolated electronically excited state is populated. The time-dependent measurements are strongly sizedependent and open insights into photoinduced geometry changes of the nuclear framework. Oscillatory vibrational wavepacket motion in Au{sup -}{sub 5}, an extremely longlived ({tau} >90 ns) electronically excited state in Au{sup -}{sub 6} as well as photoinduced melting in Au{sup -}{sub 7} and Au{sup -}{sub 8} is monitored in real time. By increasing the OPTICAL excitation energy to 3.12 eV a completely different scenario is observed. A multitude of electronically excited states can be reached upon optical excitation and as a consequence electronic relaxation processes that take place on a time scale of 1 ps are dominating. This is shown for Au{sup -}{sub 7}, Au{sup -}{sub 14} and Au{sup -}{sub 20}. Compared to gold clusters, tungsten clusters are characterized by a significantly higher electronic density of states in the valence region. Therefore electronic relaxation processes are much more likely and take place on a significantly faster time scale. The fast electronic relaxation processes are distinguished from pure vibrational relaxation. It is shown that already in the four atomic tungsten cluster W{sup -}{sub 4} electronic relaxation processes take place on a time scale of 30 fs. In all investigated tungsten cluster anions (W{sup -}{sub n}, n=3-14) an equilibrium between electronic and vibrational system is reached within around 1 ps after optical excitation which

  14. Separating Bulk and Surface Contributions to Electronic Excited-State Processes in Hybrid Mixed Perovskite Thin Films via Multimodal All-Optical Imaging.

    Science.gov (United States)

    Simpson, Mary Jane; Doughty, Benjamin; Das, Sanjib; Xiao, Kai; Ma, Ying-Zhong

    2017-07-20

    A comprehensive understanding of electronic excited-state phenomena underlying the impressive performance of solution-processed hybrid halide perovskite solar cells requires access to both spatially resolved electronic processes and corresponding sample morphological characteristics. Here, we demonstrate an all-optical multimodal imaging approach that enables us to obtain both electronic excited-state and morphological information on a single optical microscope platform with simultaneous high temporal and spatial resolution. Specifically, images were acquired for the same region of interest in thin films of chloride containing mixed lead halide perovskites (CH 3 NH 3 PbI 3-x Cl x ) using femtosecond transient absorption, time-integrated photoluminescence, confocal reflectance, and transmission microscopies. Comprehensive image analysis revealed the presence of surface- and bulk-dominated contributions to the various images, which describe either spatially dependent electronic excited-state properties or morphological variations across the probed region of the thin films. These results show that PL probes effectively the species near or at the film surface.

  15. Optical bistability of optical fiber ring doped by Erbium and quantum dots

    International Nuclear Information System (INIS)

    Safari, S.; Tofighi, S.; Bahrampour, A.; Sajad, B.; Shahshahani, F.

    2012-01-01

    In this paper, theoretical analysis of the steady state behavior of the optical bistability in an optical fiber ring doped by Erbium and quantum dots is presented. The up and down switching power is calculated and the dependence of the switching power on different fiber ring parameters is investigated. The switching power for this type of optical bistability device is obtained much lower than the fiber ring which its half length is doped by Erbium ion.

  16. Tunable micro-optics

    CERN Document Server

    Duppé, Claudia

    2015-01-01

    Presenting state-of-the-art research into the dynamic field of tunable micro-optics, this is the first book to provide a comprehensive survey covering a varied range of topics including novel materials, actuation concepts and new imaging systems in optics. Internationally renowned researchers present a diverse range of chapters on cutting-edge materials, devices and subsystems, including soft matter, artificial muscles, tunable lenses and apertures, photonic crystals, and complete tunable imagers. Special contributions also provide in-depth treatment of micro-optical characterisation, scanners, and the use of natural eye models as inspiration for new concepts in advanced optics. With applications extending from medical diagnosis to fibre telecommunications, Tunable Micro-optics equips readers with a solid understanding of the broader technical context through its interdisciplinary approach to the realisation of new types of optical systems. This is an essential resource for engineers in industry and academia,...

  17. Development of novel tapered-monocapillary optics

    International Nuclear Information System (INIS)

    Hirsch, Gregory

    2000-01-01

    A new approach for producing tapered-moncapillary optics has been demonstrated. The fabrication process permits the production of metal optics which are accurately shaped, extremely straight, and have very low surface-roughness. Wide latitude in the selection of materials comprising the optics is possible. Preliminary experiments using gold paraboloidal-capillaries have demonstrated flux-density gains approaching 100 in 10-micron focused beams. The fabrication process, testing procedures, and experimental results are described. Potential improvements to the optics for achieving higher gains and smaller spot-sizes are discussed

  18. Multicasting based optical inverse multiplexing in elastic optical network.

    Science.gov (United States)

    Guo, Bingli; Xu, Yingying; Zhu, Paikun; Zhong, Yucheng; Chen, Yuanxiang; Li, Juhao; Chen, Zhangyuan; He, Yongqi

    2014-06-16

    Optical multicasting based inverse multiplexing (IM) is introduced in spectrum allocation of elastic optical network to resolve the spectrum fragmentation problem, where superchannels could be split and fit into several discrete spectrum blocks in the intermediate node. We experimentally demonstrate it with a 1-to-7 optical superchannel multicasting module and selecting/coupling components. Also, simulation results show that, comparing with several emerging spectrum defragmentation solutions (e.g., spectrum conversion, split spectrum), IM could reduce blocking performance significantly but without adding too much system complexity as split spectrum. On the other hand, service fairness for traffic with different granularity of these schemes is investigated for the first time and it shows that IM performs better than spectrum conversion and almost as well as split spectrum, especially for smaller size traffic under light traffic intensity.

  19. Time-Resolved Diffuse Optical Spectroscopy and Imaging Using Solid-State Detectors: Characteristics, Present Status, and Research Challenges.

    Science.gov (United States)

    Alayed, Mrwan; Deen, M Jamal

    2017-09-14

    Diffuse optical spectroscopy (DOS) and diffuse optical imaging (DOI) are emerging non-invasive imaging modalities that have wide spread potential applications in many fields, particularly for structural and functional imaging in medicine. In this article, we review time-resolved diffuse optical imaging (TR-DOI) systems using solid-state detectors with a special focus on Single-Photon Avalanche Diodes (SPADs) and Silicon Photomultipliers (SiPMs). These TR-DOI systems can be categorized into two types based on the operation mode of the detector (free-running or time-gated). For the TR-DOI prototypes, the physical concepts, main components, figures-of-merit of detectors, and evaluation parameters are described. The performance of TR-DOI prototypes is evaluated according to the parameters used in common protocols to test DOI systems particularly basic instrumental performance (BIP). In addition, the potential features of SPADs and SiPMs to improve TR-DOI systems and expand their applications in the foreseeable future are discussed. Lastly, research challenges and future developments for TR-DOI are discussed for each component in the prototype separately and also for the entire system.

  20. Study of the optical properties of aerosols in the Sao Paulo State by LIDAR Raman technique

    International Nuclear Information System (INIS)

    Costa, Renata Facundes da

    2010-01-01

    The investigation reported in this dissertation has been divided in two parts. The first part was made to carry out an independent calibration of a Raman LIDAR system for water vapor in the CLA installed using a methodology that was developed at Howard University, based on a careful analysis of the efficiency of the optical system components aimed at determining the efficiency and displaying the spectral response of the system. After this study, which led to a better understanding of the eld of instrumental system, the second part, presents a preliminary study of the optical properties of aerosols in the troposphere by evaluating parameters such as, for example, the vertical profiles of aerosol extinction, SR and LR, using a mobile Raman LIDAR system developed by Raymetrics LIDAR Systems, during campaigns conducted in some research institutes in the State of Sao Paulo. (author)