WorldWideScience

Sample records for optically pumped cesium

  1. Detection of quadrupole relaxation in an optically pumped cesium vapour

    Energy Technology Data Exchange (ETDEWEB)

    Bernabeu, E; Tornos, J

    1985-10-01

    The relaxation of quadrupole orientation induced by means of optical pumping in a cesium vapour is experimentally studied, and the results are compared to the theoretical predictions. The optical detection process of this type of orientation is also discussed as a function of the polarization and spectral profile of the detection light.

  2. Hyperfine relaxation of an optically pumped cesium vapor

    International Nuclear Information System (INIS)

    Tornos, J.; Amare, J.C.

    1986-01-01

    The relaxation of hyperfine orientation indirectly induced by optical pumping with a σ-polarized D 1 -light in a cesium vapor in the presence of Ar is experimentally studied. The detection technique ensures the absence of quadrupole relaxation contributions in the relaxation signals. The results from the dependences of the hyperfine relaxation rate on the temperature and argon pressure are: diffusion coefficient of Cs in Ar, D 0 = 0.101 +- 0.010 cm 2 s -1 at 0 0 C and 760 Torr; relaxation cross section by Cs-Ar collisions, σ/sub c/ = (104 +- 5) x 10 -23 cm 2 ; relaxation cross section by Cs-Cs (spin exchange) collisions, σ/sub e//sub x/ = (1.63 +- 0.13) x 10 -14 cm 2

  3. Performance demonstration of a single-frequency optically-pumped cesium beam frequency standard for space applications

    Science.gov (United States)

    Lecomte, S.; Haldimann, M.; Ruffieux, R.; Thomann, P.; Berthoud, P.

    2017-11-01

    Observatoire de Neuchâtel (ON) is developing a compact optically-pumped cesium beam frequency standard in the frame of an ESA-ARTES 5 project. The simplest optical scheme, which is based on a single optical frequency for both preparation and detection processes of atoms, has been chosen to fulfill reliability constraints of space applications. With our laboratory demonstrator operated at 852 nm (D2 line), we have measured a frequency stability of σy=2.74x10-12 τ -1/2, which is compliant with the Galileo requirement. The atomic resonator is fully compliant to be operated with a single diode laser at 894 nm (D1 line). Sensitivity measurements of the clock signal to the microwave power and to the optical pumping power are also presented. Present performance limitations are discussed and further improvements are proposed in order to reach our ultimate frequency stability goal of σy=1x10-12 τ -1/2. The clock driving software is also briefly described.

  4. Double-resonance optical-pumping effect and ladder-type electromagnetically induced transparency signal without Doppler background in cesium atomic vapour cell

    International Nuclear Information System (INIS)

    Yang Bao-Dong; Gao Jing; Liang Qiang-Bing; Wang Jie; Zhang Tian-Cai; Wang Jun-Min

    2011-01-01

    In a Doppler-broadened ladder-type cesium atomic system (6S 1/2 -6P 3/2 -8S 1/2 ), this paper characterizes electromagnetically induced transparency (EIT) in two different experimental arrangements, and investigates the influence of the double-resonance optical-pumping (DROP) effect on EIT in both arrangements. When the probe laser is weak, DROP is explicitly suppressed. When the probe laser is moderate, population of the intermediate level (6P 3/2 F' = 5) is remarkable, therefore DROP is mixed with EIT. An interesting bimodal spectrum with the broad component due to DROP and the narrow part due to EIT has been clearly observed in cesium 6S 1/2 F = 4−6P 3/2 F' = 5−8S 1/2 F″ = 4 transitions. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  5. Experimental investigation on a diode-pumped cesium-vapor laser stably operated at continuous-wave and pulse regime.

    Science.gov (United States)

    Chen, Fei; Xu, Dongdong; Gao, Fei; Zheng, Changbin; Zhang, Kuo; He, Yang; Wang, Chunrui; Guo, Jin

    2015-05-04

    Employing a fiber-coupled diode-laser with a center wavelength of 852.25 nm and a line width of 0.17 nm, experimental investigation on diode-end-pumped cesium (Cs) vapor laser stably operated at continuous-wave (CW) and pulse regime is carried out. A 5 mm long cesium vapor cell filled with 60 kPa helium and 20 kPa ethane is used as laser medium. Using an output coupler with reflectivity of 48.79%, 1.26 W 894.57 nm CW laser is obtained at an incident pump power of 4.76 W, corresponding an optical-optical efficiency of 26.8% and a slope-efficiency of 28.8%, respectively. The threshold temperature is 67.5 °C. Stable pulsed cesium laser with a maximum average output power of 2.6 W is obtained at a repetition rate of 76 Hz, and the pulse repetition rate can be extend to 1 kHz with a pulse width of 18 μs.

  6. Optically pumped semiconductor lasers: Conception and characterization of a single mode source for Cesium atoms manipulation

    International Nuclear Information System (INIS)

    Cocquelin, B.

    2009-02-01

    Lasers currently used in atomic clocks or inertial sensors are suffering from a lack of power, narrow linewidth or compactness for future spatial missions. Optically pumped semiconductor lasers, which combine the approach of classical solid state lasers and the engineering of semiconductor laser, are considered here as a candidate to a metrological laser source dedicated to the manipulation of Cesium atoms in these instruments. These lasers have demonstrated high power laser emission in a circular single transverse mode, as well as single longitudinal mode emission, favoured by the semiconductor structure and the external cavity design. We study the definition and the characterization of a proper semiconductor structure for the cooling and the detection of Cesium atoms at 852 nm. A compact and robust prototype tunable on the Cesium D2 hyperfine structure is built. The laser frequency is locked to an atomic transition thanks to a saturated absorption setup. The emission spectral properties are investigated, with a particular attention to the laser frequency noise and the laser linewidth. Finally, we describe and model the thermal properties of the semiconductor structure, which enables the simulation of the laser power characteristic. The experimental parameters are optimised to obtain the maximum output power with our structure. Thanks to our analysis, we propose several ways to overcome these limitations, by reducing the structure heating. (authors)

  7. Determining hyperfine transitions with electromagnetically induced transparency and optical pumping

    International Nuclear Information System (INIS)

    Lee Yi-Chi; Tsai Chin-Chun; Huang Chen-Han; Chui Hsiang-Chen; Chang Yung-Yung

    2011-01-01

    A system is designed to observe the phenomena of electromagnetically induced transparency and optical pumping in cesium D 1 and D 2 lines at room temperature. When a pump laser is frequency-locked on the top of a hyperfine transition and the frequency of the probe laser scans over another hyperfine transition, a spectrum of V-type electromagnetically induced transparency or an optical pumping can be observed depending on whether the two lasers share a common ground state. Therefore, these results can be used to identify the unknown hyperfine transitions of the D 1 line transitions. For educational purposes, this system is helpful for understanding the electromagnetically induced transparency and the optical pumping

  8. Modeling of a diode-pumped thin-disk cesium vapor laser

    Science.gov (United States)

    An, Guofei; Cai, He; Liu, Xiaoxu; Han, Juhong; Zhang, Wei; Wang, Hongyuan; Wang, You

    2018-03-01

    A diode pumped alkali laser (DPAL) provides a significant potential for construction of high-powered lasers. Until now, a series of models have been established to analyze the kinetic process and most of them are based on the end-pumped alkali laser system in which the vapor cell are usually cylindrical and cuboid. In this paper, a mathematic model is constructed to investigate the kinetic processes of a diode pumped thin-disk cesium vapor laser, in which the cesium vapor and the buffer gases are beforehand filled in a sealed glass cell with a thin-disk structure. We systemically study the influences of the cell temperature and cell thickness on the output features of a thin-disk DPAL. Further, we study the thin-disk DPAL with the W-shaped resonator and multiple-disk configuration. To the best of our knowledge, there have not been any similar reports so far.

  9. Single-resonance optical pumping spectroscopy and application in dressed-state measurement with atomic vapor cell at room temperature.

    Science.gov (United States)

    Liang, Qiangbing; Yang, Baodong; Zhang, Tiancai; Wang, Junmin

    2010-06-21

    By monitoring the transmission of probe laser beam (also served as coupling laser beam) which is locked to a cycling hyperfine transition of cesium D(2) line, while pumping laser is scanned across cesium D(1) or D(2) lines, the single-resonance optical pumping (SROP) spectra are obtained with atomic vapor cell. The SROP spectra indicate the variation of the zero-velocity atoms population of one hyperfine fold of ground state, which is optically pumped into another hyperfine fold of ground state by pumping laser. With the virtue of Doppler-free linewidth, high signal-to-noise ratio (SNR), flat background and elimination of crossover resonance lines (CRLs), the SROP spectra with atomic vapor cell around room temperature can be employed to measure dressed-state splitting of ground state, which is normally detected with laser-cooled atomic sample only, even if the dressed-state splitting is much smaller than the Doppler-broaden linewidth at room temperature.

  10. An atom trap relying on optical pumping

    International Nuclear Information System (INIS)

    Bouyer, P.; Lemonde, P.; Ben Dahan, M.; Michaud, A.; Salomon, C.; Dalibard, J.

    1994-01-01

    We have investigated a new radiation pressure trap which relies on optical pumping and does not require any magnetic field. It employs six circularly polarized divergent beams and works on the red of a J g →J e = J g + 1 atomic transition with J g ≥1/2. We have demonstrated this trap with cesium atoms from a vapour cell using the 852 nm J g = 4→J e = 5 resonance transition. The trap contained up to 3.10 7 atoms in a cloud of 1/√e radius of 330 μm. (orig.)

  11. CW 3μm lasing via two-photon pumping in cesium vapor with a 1W source

    Science.gov (United States)

    Haluska, Nathan D.; Rice, Christopher A.; Perram, Glen P.

    2018-02-01

    We report the first CW lasing from two-photon pumping via a virtual state. Pulsed and the CW lasing of the 3096 nm 72 P1/2 to 72 S1/2 line are observed from degenerate two-photon pumping of the cesium 72 S1/2 to 62 D3/2 transition. High intensity pulses excite over 17 lasing wavelengths. Under lower intensity CW excitation, 3 μm lasing is still observed with efficiencies of 0.7%. CW experiments utilized a Cs heat pipe at 150 °C to 270 °C, and a highly-focused, single pass, Ti-Sapphire pump with no aid of a cavity. Unlike normal DPALS, this architecture does not require buffer gas, and heat is released optically so a flowing system is not required. Both suggest a very simple device with excellent beam quality is possible. This proof of concept can be greatly enhanced with more optimal conditions such as non-degenerate pumping to further increase the two-photon pump cross section and the addition of a cavity to improve mode volume overlap. These improvements may lead to an increase in efficiencies to a theoretical maximum of 14%. Results suggest two-photon pumping with diodes is feasible.

  12. Optically pumped atoms

    CERN Document Server

    Happer, William; Walker, Thad

    2010-01-01

    Covering the most important knowledge on optical pumping of atoms, this ready reference is backed by numerous examples of modelling computation for optical pumped systems. The authors show for the first time that modern scientific computing software makes it practical to analyze the full, multilevel system of optically pumped atoms. To make the discussion less abstract, the authors have illustrated key points with sections of MATLAB codes. To make most effective use of contemporary mathematical software, it is especially useful to analyze optical pumping situations in the Liouville spa

  13. Active Faraday optical frequency standard.

    Science.gov (United States)

    Zhuang, Wei; Chen, Jingbiao

    2014-11-01

    We propose the mechanism of an active Faraday optical clock, and experimentally demonstrate an active Faraday optical frequency standard based on narrow bandwidth Faraday atomic filter by the method of velocity-selective optical pumping of cesium vapor. The center frequency of the active Faraday optical frequency standard is determined by the cesium 6 (2)S(1/2) F=4 to 6 (2)P(3/2) F'=4 and 5 crossover transition line. The optical heterodyne beat between two similar independent setups shows that the frequency linewidth reaches 281(23) Hz, which is 1.9×10(4) times smaller than the natural linewidth of the cesium 852-nm transition line. The maximum emitted light power reaches 75 μW. The active Faraday optical frequency standard reported here has advantages of narrow linewidth and reduced cavity pulling, which can readily be extended to other atomic transition lines of alkali and alkaline-earth metal atoms trapped in optical lattices at magic wavelengths, making it useful for new generation of optical atomic clocks.

  14. Efficient non-linear two-photon effects from the Cesium 6D manifold

    Science.gov (United States)

    Haluska, Nathan D.; Perram, Glen P.; Rice, Christopher A.

    2018-02-01

    We report several non-linear process that occur when two-photon pumping the cesium 6D states. Cesium vapor possess some of the largest two-photon pump cross sections in nature. Pumping these cross sections leads to strong amplified spontaneous emission that we observe on over 17 lasing lines. These new fields are strong enough to couple with the pump to create additional tunable lines. We use a heat pipe with cesium densities of 1014 to 1016 cm-3 and 0 to 5 Torr of helium buffer gas. The cesium 6D States are interrogated by both high energy pulses and low power CW sources. We observe four-wave mixing, six-wave mixing, potential two-photon lasing, other unknown nonlinear processes, and the persistence of some processes at low thresholds. This system is also uniquely qualified to support two-photon lasing under the proper conditions.

  15. Optical pumping and xenon NMR

    International Nuclear Information System (INIS)

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping 129 Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the 131 Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen

  16. Optically pumped polarized H- ion source

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1986-01-01

    The current status and future prospects for the optically pumped polarized H - ion source are discussed. At the present time H - ion currents of 60 μA and with a polarization of 65% have been produced. The ion current and polarization can be increased significantly if the optically pumped Na charge exchange target density and polarization can be increased. Studies of wall surfaces that permit many bounces before depolarizing the Na electron spin and studies of radiation trapping in optically pumped Na indicate that the Na target density and polarization can be increased substantially. 27 refs., 6 figs., 2 tabs

  17. Optically pumped terahertz sources

    Institute of Scientific and Technical Information of China (English)

    ZHONG Kai; SHI Wei; XU DeGang; LIU PengXiang; WANG YuYe; MEI JiaLin; YAN Chao; FU ShiJie; YAO JianQuan

    2017-01-01

    High-power terahertz (THz) generation in the frequency range of0.1-10 THz has been a fast-developing research area ever since the beginning of the THz boom two decades ago,enabling new technological breakthroughs in spectroscopy,communication,imaging,etc.By using optical (laser) pumping methods with near-or mid-infrared (IR) lasers,flexible and practical THz sources covering the whole THz range can be realized to overcome the shortage of electronic THz sources and now they are playing important roles in THz science and technology.This paper overviews various optically pumped THz sources,including femtosecond laser based ultrafast broadband THz generation,monochromatic widely tunable THz generation,single-mode on-chip THz source from photomixing,and the traditional powerful THz gas lasers.Full descriptions from basic principles to the latest progress are presented and their advantages and disadvantages are discussed as well.It is expected that this review gives a comprehensive reference to researchers in this area and additionally helps newcomers to quickly gain understanding of optically pumped THz sources.

  18. Electronic band structure, optical, dynamical and thermodynamic properties of cesium chloride (CsCl from first-principles

    Directory of Open Access Journals (Sweden)

    Bingol Suat

    2015-01-01

    Full Text Available The geometric structural optimization, electronic band structure, total density of states for valence electrons, density of states for phonons, optical, dynamical, and thermodynamical features of cesium chloride have been investigated by linearized augmented plane wave method using the density functional theory under the generalized gradient approximation. Ground state properties of cesium chloride are studied. The calculated ground state properties are consistent with experimental results. Calculated band structure indicates that the cesium chloride structure has an indirect band gap value of 5.46 eV and is an insulator. From the obtained phonon spectra, the cesium chloride structure is dynamically stable along the various directions in the Brillouin zone. Temperature dependent thermodynamic properties are studied using the harmonic approximation model.

  19. Laser optical pumping of sodium and lithium atom beams

    International Nuclear Information System (INIS)

    Cusma, J.T.

    1983-01-01

    The method of optical pumping with a continuous wave dye laser has been used to produce beams of polarized 23 Na atoms and polarized 6 Li atoms. Optical pumping of a 23 Na atom beam using either a multimode dye laser or a single frequency dye laser with a double passed acousto-optic modulator results in electron spin polarizations of 0.70-0.90 and nuclear spin polarizations of 0.75-0.90. Optical pumping of a 6 Li atom beam using a single frequency dye laser either with an acousto-optic modulator or with Doppler shift pumping results in electron spin polarizations of 0.77-0.95 and nuclear spin polarizations greater than 0.90. The polarization of the atom beam is measured using either the laser induced fluorescence in an intermediate magnetic field or a 6-pole magnet to determine the occupation probabilities of the ground hyperfine sublevels following optical pumping. The results of the laser optical pumping experiments agree with the results of a rate equation analysis of the optical pumping process which predicts that nearly all atoms are transferred into a single sublevel for our values of laser intensity and interaction time. The use of laser optical pumping in a polarized ion source for nuclear scattering experiments is discussed. The laser optical pumping method provides a means of constructing an intense source of polarized Li and Na ions

  20. Performance Analysis Of Single-Pumped And Dual-Pumped Parametric Optical Amplifier

    Directory of Open Access Journals (Sweden)

    Sandar Myint

    2015-06-01

    Full Text Available Abstract In this study we present a performance analysis of single-pumped and dual- pumped parametric optical amplifier and present the analysis of gain flatness in dual- pumped Fiber Optical Parametric Amplifier FOPA based on four-wave mixing FWM. Result shows that changing the signal power and pump power give the various gains in FOPA. It is also found out that the parametric gain increase with increase in pump power and decrease in signal power. .Moreover in this paper the phase matching condition in FWM plays a vital role in predicting the gain profile of the FOPAbecause the parametric gain is maximum when the total phase mismatch is zero.In this paper single-pumped parametric amplification over a 50nm gain bandwidth is demonstrated using 500 nm highly nonlinear fiber HNLF and signal achieves about 31dB gain. For dual-pumped parametric amplification signal achieves 26.5dB gains over a 50nm gain bandwidth. Therefore dual-pumped parametric amplifier can provide relatively flat gain over a much wider bandwidth than the single-pumped FOPA.

  1. Cost Effective, Scalable Optically Pumped Molecular Laser

    National Research Council Canada - National Science Library

    Nicholson, Jeff

    2001-01-01

    An optically pumped, For laser was demonstrated operating at 4.0 micrometers. This is the first demonstration of an HBr laser by direct optical pumping of the 0 right arrow 3 vibrational overtone band at 1.34 micrometers...

  2. Optically pumped polarized alkali atomic beams and targets

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1984-01-01

    The optical pumping of 23 Na and 6 Li atomic beams is discussed. Experiments on the optical pumping of 23 Na atomic beams using either a single mode dye laser followed by a double passed acousto-optic modulator or a multimode dye laser are reported. The optical pumping of a 23 Na vapor target for use in a polarized H - ion source is discussed. Results on the use of viton as a wall coating with a long relaxation time are reported. 31 references, 6 figures, 3 tables

  3. Electrical versus optical pumping of quantum dot amplifiers

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Bischoff, Svend; Mørk, Jesper

    2001-01-01

    The influence of the pumping mechanism for the dynamical properties of quantum dot amplifiers is investigated for 10, 40 and 160 GHz signals. A fast response is predicted in the case of optical pumping in the wetting layer (WL). The combination of fast relaxation and capture times and the presence...... of a reservoir of carriers in the WL opens up for the possibility of ultrafast gain recovery in QD devices. The strength of optical contra electrical pumping is that it reduces the bottleneck effect of a slow WL. Optical pumping thus allows significant improvement of the dynamical properties of QD devices....

  4. Optically pumped laser systems

    International Nuclear Information System (INIS)

    DeMaria, A.J.; Mack, M.E.

    1975-01-01

    Laser systems which are pumped by an electric discharge formed in a gas are disclosed. The discharge is in the form of a vortex stabilized electric arc which is triggered with an auxiliary energy source. At high enough repetition rates residual ionization between successive pulses contributes to the pulse stabilization. The arc and the gain medium are positioned inside an optical pumping cavity where light from the arc is coupled directly into the gain medium

  5. Alternative laser system for cesium magneto-optical trap via optical injection locking to sideband of a 9-GHz current-modulated diode laser.

    Science.gov (United States)

    Diao, Wenting; He, Jun; Liu, Zhi; Yang, Baodong; Wang, Junmin

    2012-03-26

    By optical injection of an 852-nm extended-cavity diode laser (master laser) to lock the + 1-order sideband of a ~9-GHz-current-modulated diode laser (slave laser), we generate a pair of phase-locked lasers with a frequency difference up to ~9-GHz for a cesium (Cs) magneto-optical trap (MOT) with convenient tuning capability. For a cesium MOT, the master laser acts as repumping laser, locked to the Cs 6S₁/₂ (F = 3) - 6P₃/₂ (F' = 4) transition. When the + 1-order sideband of the 8.9536-GHz-current-modulated slave laser is optically injection-locked, the carrier operates on the Cs 6S₁/₂ (F = 4) - 6P₃/₂ (F' = 5) cooling cycle transition with -12 MHz detuning and acts as cooling/trapping laser. When carrying a 9.1926-GHz modulation signal, this phase-locked laser system can be applied in the fields of coherent population trapping and coherent manipulation of Cs atomic ground states.

  6. Sympathetic cooling in a rubidium cesium mixture: Production of ultracold cesium atoms

    International Nuclear Information System (INIS)

    Haas, M.

    2007-01-01

    This thesis presents experiments for the production of ultracold rubidium cesium mixture in a magnetic trap. The long-termed aim of the experiment is the study of the interaction of few cesium atoms with a Bose-Einstein condensate of rubidium atoms. Especially by controlled variation of the cesium atom number the transition in the description of the interaction by concepts of the one-particle physics to the description by concepts of the many-particle physics shall be studied. The rubidium atoms are trapped in a magneto-optical trap (MOT) and from there reloaded into a magnetic trap. In this the rubidium atoms are stored in the state vertical stroke f=2,m f =2 right angle of the electronic ground state and evaporatively cooled by means of microwave-induced transitions into the state vertical stroke f=1,m f =1] (microwave cooling). The cesium atoms are also trppaed in a MOT and into the same magnetic trap reloaded, in which they are stored in the state vertical stroke f=4,m f =4 right angle of the electronic ground state together with rubidium. Because of the different hyperfine splitting only rubidium is evaporatively cooled, while cesium is cooled jointly sympathetically - i.e. by theramal contact via elastic collisions with rubidium atoms. The first two chapters contain a description of interatomic interactions in ultracold gases as well as a short summary of theoretical concepts in the description of Bose-Einstein condensates. The chapters 3 and 4 contain a short presentation of the methods applied in the experiment for the production of ultracold gases as well as the experimental arrangement; especially in the framework of this thesis a new coil system has been designed, which offers in view of future experiments additionally optical access for an optical trap. Additionally the fourth chapter contains an extensive description of the experimental cycle, which is applied in order to store rubidium and cesium atoms together into the magnetic trap. The last chapter

  7. Optical pumping production of spin polarized hydrogen

    International Nuclear Information System (INIS)

    Knize, R.J.; Happer, W.; Cecchi, J.L.

    1984-01-01

    There has been much interest recently in the production of large quantities of spin polarized hydrogen in various fields including controlled fusion, quantum fluids, high energy, and nuclear physics. One promising method for the development of large quantities of spin polarized hydrogen is the utilization of optical pumping with a laser. Optical pumping is a process where photon angular momentum is converted into electron and nuclear spin. The advent of tunable CW dye lasers (approx. 1 watt) allow the production of greater than 10 18 polarized atoms/sec. We have begun a program at Princeton to investigate the physics and technology of using optical pumping to produce large quantities of spin polarized hydrogen. Initial experiments have been done in small closed glass cells. Eventually, a flowing system, open target, or polarized ion source could be constructed

  8. Mathematical model of an optically pumped molecular laser

    CSIR Research Space (South Africa)

    Botha, LR

    2009-07-01

    Full Text Available A mathematical model was developed that accurately predicts the performance of an optically pumped HBr laser. Relatively high conversion efficiency was achieved. Tm pumped Ho:YLF is a viable source for pumping HBr laser, while HBr can be scaled...

  9. Optical bistability via quantum interference from incoherent pumping and spontaneous emission

    International Nuclear Information System (INIS)

    Sahrai, M.; Asadpour, S.H.; Sadighi-Bonabi, R.

    2011-01-01

    We theoretically investigate the optical bistability (OB) in a V-type three-level atomic system confined in a unidirectional ring cavity via incoherent pumping field. It is shown that the threshold of optical bistability can be controlled by the rate of an incoherent pumping field and by interference mechanism arising from the spontaneous emission and incoherent pumping field. We demonstrate that the optical bistability converts to optical multi-stability (OM) by the quantum interference mechanism. - Highlights: → We modulate the optical bistability (OB) in a four-level N-type atomic system. → The threshold of optical bistability can be controlled by the quantum interferences. → OB converts to optical multi-stability (OM) by the quantum interferences. → We discuss the effect of an incoherent pumping field on reduction of OB threshold.

  10. Atomic spectroscopy study of nuclear properties of francium and cesium isotopes; Etude par spectroscopie atomique de proprietes nucleaires d'isotopes de francium et de cesium

    Energy Technology Data Exchange (ETDEWEB)

    Coc, A

    1986-04-15

    This work is based on the study of cesium ({sup 118,146}Cs) and francium ({sup 207-213}Fr,{sup 220-228}Fr) isotopes by hyperfine atomic spectroscopy and on the interpretation of these results from the nuclear physics point of view. The measured nuclear quantities are: the spin, the magnetic moment, the electric quadrupole moment and the mean square charge radius. The experimental method which is based on hyperfine optical pumping with a tunable laser, followed by magnetic analysis of the atoms is described in the first part. Results related to atomic physics are also presented. In the second part, these data are interpreted in the framework of nuclear models. The deformation of light cesium isomers are compared to values obtained from a theoretical self-consistent calculation. Heavy francium isotopes are situated in an area where the existence of static octupole deformations have been predicted. The odd-even staggering measured on the mean square radius is abnormal in this region. However, on the basis of experimental data, no definitive conclusion can be drawn regarding the nature of these deformations. (author)

  11. Atomic spectroscopy study of nuclear properties of francium and cesium isotopes; Etude par spectroscopie atomique de proprietes nucleaires d'isotopes de francium et de cesium

    Energy Technology Data Exchange (ETDEWEB)

    Coc, A

    1986-04-15

    This work is based on the study of cesium ({sup 118,146}Cs) and francium ({sup 207-213}Fr,{sup 220-228}Fr) isotopes by hyperfine atomic spectroscopy and on the interpretation of these results from the nuclear physics point of view. The measured nuclear quantities are: the spin, the magnetic moment, the electric quadrupole moment and the mean square charge radius. The experimental method which is based on hyperfine optical pumping with a tunable laser, followed by magnetic analysis of the atoms is described in the first part. Results related to atomic physics are also presented. In the second part, these data are interpreted in the framework of nuclear models. The deformation of light cesium isomers are compared to values obtained from a theoretical self-consistent calculation. Heavy francium isotopes are situated in an area where the existence of static octupole deformations have been predicted. The odd-even staggering measured on the mean square radius is abnormal in this region. However, on the basis of experimental data, no definitive conclusion can be drawn regarding the nature of these deformations. (author)

  12. Atomic spectroscopy study of nuclear properties of francium and cesium isotopes

    International Nuclear Information System (INIS)

    Coc, A.

    1986-04-01

    This work is based on the study of cesium ( 118,146 Cs) and francium ( 207-213 Fr, 220-228 Fr) isotopes by hyperfine atomic spectroscopy and on the interpretation of these results from the nuclear physics point of view. The measured nuclear quantities are: the spin, the magnetic moment, the electric quadrupole moment and the mean square charge radius. The experimental method which is based on hyperfine optical pumping with a tunable laser, followed by magnetic analysis of the atoms is described in the first part. Results related to atomic physics are also presented. In the second part, these data are interpreted in the framework of nuclear models. The deformation of light cesium isomers are compared to values obtained from a theoretical self-consistent calculation. Heavy francium isotopes are situated in an area where the existence of static octupole deformations have been predicted. The odd-even staggering measured on the mean square radius is abnormal in this region. However, on the basis of experimental data, no definitive conclusion can be drawn regarding the nature of these deformations. (author)

  13. Optimisation of the parameters of a pump chamber for solid-state lasers with diode pumping by the optical boiler method

    Energy Technology Data Exchange (ETDEWEB)

    Kiyko, V V; Kislov, V I; Ofitserov, E N; Suzdal' tsev, A G [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-06-30

    A pump chamber of the optical boiler type for solid-state lasers with transverse laser diode pumping is studied theoretically and experimentally. The pump chamber parameters are optimised using the geometrical optics approximation for the pump radiation. According to calculations, the integral absorption coefficient of the active element at a wavelength of 808 nm is 0.75 – 0.8 and the relative inhomogeneity of the pump radiation distribution over the active element volume is 17% – 19%. The developed pump chamber was used in a Nd:YAG laser. The maximum cw output power at a wavelength of 1064 nm was ∼480 W at the optical efficiency up to 19.6%, which agrees with theoretical estimates. (lasers)

  14. BRIEF COMMUNICATIONS: Optically pumped ultraviolet BR2 laser

    Science.gov (United States)

    Kamrukov, A. S.; Kozlov, N. P.; Protasov, Yu S.; Ushmarov, E. Yu

    1989-12-01

    A report is given of lasing achieved for the first time in optically pumped molecular bromine (D' 3Π2g→A' 3π2u, λL approx 292 nm). It was pumped by thermal vacuum ultraviolet radiation emitted by plasmadynamic discharges of magnetoplasma compressors, formed directly in the laser active medium. An output energy of ~ 1.1 J was obtained per laser pulse of ~ 5-μs duration from a Br2:Ar approx 1:450 active mixture at a pressure of ~ 4 atm. A comparison was made of the experimental output parameters of optically pumped Br2, I2, and XeF (B-X) lasers when their geometries and excitation energies were identical.

  15. Solid state cesium ion guns for surface studies

    International Nuclear Information System (INIS)

    Souzis, A.E.; Carr, W.E.; Kim, S.I.; Seidl, M.

    1990-01-01

    Three cesium ion guns covering the energy range of 5--5000 V are described. These guns use a novel source of cesium ions that combine the advantages of porous metal ionizers with those of aluminosilicate emitters. Cesium ions are chemically stored in a solid electrolyte pellet and are thermionically emitted from a porous thin film of tungsten at the surface. Cesium supply to the emitting surface is controlled by applying a bias across the pellet. A total charge of 10.0 C can be extracted, corresponding to greater than 2000 h of lifetime with an extraction current of 1.0 μA. This source is compact, stable, and easy to use, and produces a beam with >99.5% purity. It requires none of the differential pumping or associated hardware necessary in designs using cesium vapor and porous tungsten ionizers. It has been used in ultrahigh-vacuum (UHV) experiments at pressures of -10 Torr with no significant gas load. Three different types of extraction optics are used depending on the energy range desired. For low-energy deposition, a simple space-charge-limited planar diode with a perveance of 1x10 -7 A/V 3/2 is used. Current densities of 10.0 μA/cm 2 at the exit aperture for energies ≤20 V are typical. This type of source provides an alternative to vapor deposition with the advantage of precise flux calibration by integration of the ion current. For energies from 50 to 500 V and typical beam radii of 0.5 to 0.2 mm, a high perveance Pierce-type ion gun is used. This gun was designed with a perveance of 1x10 -9 A/V 3/2 and produces a beam with an effective temperature of 0.35 eV. For the energy range of 0.5 to 5 keV, the Pierce gun is used in conjunction with two Einzel lenses, enabling a large range of imaging ratios to be obtained. Beam radii of 60 to 300 μm are typical for beam currents of 50 nA to 1.0 μA

  16. Microfabricated optically pumped magnetometer arrays for biomedical imaging

    Science.gov (United States)

    Perry, A. R.; Sheng, D.; Krzyzewski, S. P.; Geller, S.; Knappe, S.

    2017-02-01

    Optically-pumped magnetometers have demonstrated magnetic field measurements as precise as the best superconducting quantum interference device magnetometers. Our group develops miniature alkali atom-based magnetic sensors using microfabrication technology. Our sensors do not require cryogenic cooling, and can be positioned very close to the sample, making these sensors an attractive option for development in the medical community. We will present our latest chip-scale optically-pumped gradiometer developed for array applications to image magnetic fields from the brain noninvasively. These developments should lead to improved spatial resolution, and potentially sensitive measurements in unshielded environments.

  17. Push-pull optical pumping of pure superposition states

    International Nuclear Information System (INIS)

    Jau, Y.-Y.; Miron, E.; Post, A.B.; Kuzma, N.N.; Happer, W.

    2004-01-01

    A new optical pumping method, 'push-pull pumping', can produce very nearly pure, coherent superposition states between the initial and the final sublevels of the important field-independent 0-0 clock resonance of alkali-metal atoms. The key requirement for push-pull pumping is the use of D1 resonant light which alternates between left and right circular polarization at the Bohr frequency of the state. The new pumping method works for a wide range of conditions, including atomic beams with almost no collisions, and atoms in buffer gases with pressures of many atmospheres

  18. Optical--microwave pumping of alkali atoms and population capture

    International Nuclear Information System (INIS)

    Aleksandrov, E.B.; Vershovskii, A.K.

    1985-01-01

    The steady-state distribution of the populations of the hyperfine sublevels of the ground state of alkali atoms is calculated for the case in which the atoms are subjected to a spectrally selective optical pumping on 2 S 1 /sub // 2 -- 2 P/sub 1/2,3/2/ transitions and a simultaneous pumping by microwave fields which are at resonance with transitions in the hyperfine structure of the ground state, F = 2, M/sub F/ = +- 2, +- 1bold-arrow-left-rightF = 1, M/sub F/ = +- 1. The addition of the microwave pumping is shown to substantially increase the population difference for the O--O transition in the hyperfine structure. During selective optical pumping of the F = 1 level, the population inversion which can be achieved for the O--O transition is limited by the effect of population capture. This capture can be eliminated by using incoherent microwave fields. The quality factor of the O--O resonance is calculated as a function of the parameters of the pump. The outlook for the use of composite pumping in frequency-stabilization systems is discussed

  19. Process for recovering cesium from cesium alum

    International Nuclear Information System (INIS)

    Mein, P.G.

    1984-01-01

    Cesium is recovered from cesium alum, CsAl(SO 4 ) 2 , by a two-reaction sequence in which the cesium alum is first dissolved in an aqueous hydroxide solution to form cesium alum hydroxide, CsAl(OH) 3 , and potassium sulfate, K 2 SO 4 . Part of the K 2 SO 4 precipitates and is separated from the supernatant solution. In the second reaction, a water-soluble permanganate, such as potassium permanganate, KMnO 4 , is added to the supernatant. This reaction forms a precipitate of cesium permanganate, CsMnO 4 . This precipitate may be separated from the residual solution to obtain cesium permanganate of high purity, which can be sold as a product or converted into other cesium compounds

  20. Controlling the optical bistability and multistability in a two-level pumped-probe system

    International Nuclear Information System (INIS)

    Mahmoudi, Mohammad; Sahrai, Mostafa; Masoumeh Mousavi, Seyede

    2010-01-01

    We study the behavior of the optical bistability (OB) and multistability (OM) in a two-level pumped-probe atomic system by means of a unidirectional ring cavity. We show that the optical bistability in a two-level atomic system can be controlled by adjusting the intensity of the pump field and the detuning between two fields. We find that applying the pumping field decreases the threshold of the optical bistability.

  1. Optically pumped polarized 23Na vapor target for use in polarized ion source. Technical progress report

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1984-01-01

    We are currently measuring relaxation times in an optically pumped 23 Na vapor target. Our research is directed toward improvements in the optically pumped Na vapor targets used for the production of polarized H - ions. In this progress report we review the properties of the optically pumped polarized H - ion source and especially the optically pumped Na vapor target employed in this source as well as discussing the progress of our research on relaxation times in an optically pumped Na vapor target. 30 references, 6 figures, 3 tables

  2. Optimizations of spin-exchange relaxation-free magnetometer based on potassium and rubidium hybrid optical pumping

    International Nuclear Information System (INIS)

    Fang, Jiancheng; Wang, Tao; Li, Yang; Zhang, Hong; Zou, Sheng

    2014-01-01

    The hybrid optical pumping atomic magnetometers have not realized its theoretical sensitivity, the optimization is critical for optimal performance. The optimizations proposed in this paper are suitable for hybrid optical pumping atomic magnetometer, which contains two alkali species. To optimize the parameters, the dynamic equations of spin evolution with two alkali species were solved, whose steady-state solution is used to optimize the parameters. The demand of the power of the pump beam is large for hybrid optical pumping. Moreover, the sensitivity of the hybrid optical pumping magnetometer increases with the increase of the power density of the pump beam. The density ratio between the two alkali species is especially important for hybrid optical pumping magnetometer. A simple expression for optimizing the density ratio is proposed in this paper, which can help to determine the mole faction of the alkali atoms in fabricating the hybrid cell before the cell is sealed. The spin-exchange rate between the two alkali species is proportional to the saturated density of the alkali vapor, which is highly dependent on the temperature of the cell. Consequently, the sensitivity of the hybrid optical pumping magnetometer is dependent on the temperature of the cell. We proposed the thermal optimization of the hybrid cell for a hybrid optical pumping magnetometer, which can improve the sensitivity especially when the power of the pump beam is low. With these optimizations, a sensitivity of approximately 5 fT/Hz 1/2 is achieved with gradiometer arrangement

  3. Optical Pumping of Molecular Gases

    Science.gov (United States)

    1976-04-01

    ser emission ott a The typical experimental apparatus is shown i.- Fig. *series of green and yellow molecular B-X’-basnd transi- 2. For B-bantd optical...with A, at 0. 473 pim and that Na2 may operate as a flash -lamp -pumped laser X,... at 0. 54 umn the Doppler widths are AwD - 12.42 source with buffer

  4. Ground-state magneto-optical resonances in cesium vapor confined in an extremely thin cell

    International Nuclear Information System (INIS)

    Andreeva, C.; Cartaleva, S.; Petrov, L.; Slavov, D.; Atvars, A.; Auzinsh, M.; Blush, K.

    2007-01-01

    Experimental and theoretical studies are presented related to the ground-state magneto-optical resonance observed in cesium vapor confined in an extremely thin cell (ETC), with thickness equal to the wavelength of the irradiating light. It is shown that utilization of the ETC allows one to examine the formation of a magneto-optical resonance on the individual hyperfine transitions, thus distinguishing processes resulting in dark (reduced absorption) or bright (enhanced absorption) resonance formation. We report experimental evidence of bright magneto-optical resonance sign reversal in Cs atoms confined in an ETC. A theoretical model is proposed based on the optical Bloch equations that involves the elastic interaction processes of atoms in the ETC with its walls, resulting in depolarization of the Cs excited state, which is polarized by the exciting radiation. This depolarization leads to the sign reversal of the bright resonance. Using the proposed model, the magneto-optical resonance amplitude and width as a function of laser power are calculated and compared with the experimental ones. The numerical results are in good agreement with those of experiment

  5. Optical pumping-assisted electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Jiang Wei; Chen Qunfeng; Zhang Yongsheng; Guo, G.-C.

    2006-01-01

    In this paper we report an observation of the two-photon absorption in a four-level system in hot 87 Rb vapor based on the proposal of Harris and Yamamoto [Phys. Rev. Lett. 81, 3611 (1998)]. We show that this effect is reduced in hot atoms due to the non-Doppler-free nature of this scheme. Then we report a phenomenon that could be used in the same application of Harris and Yamamoto. The main result is a great enhancement of electromagnetically induced transparency (EIT) effect in hot 87 Rb vapor caused by optical pumping. We find that when the single photon detuning is near zero the EIT signal is dramatically enhanced by an optical pumping field. More interestingly when the single photon detuning is larger the signal can be changed from a sharp Raman peak to a sharp EIT dip. The full width at half maximum of the peak and dip are narrow and subnatural

  6. Development of high-power optically-pumped far-infrared lasers for plasma diagnostics

    International Nuclear Information System (INIS)

    Yamanaka, Masanobu; Yamanaka, Tatsuhiko; Mitsuishi, Akiyoshi; Fujita, Shigeru; Tsunawaki, Yoshiaki.

    1982-01-01

    The activities for developing an over 0.1-MW optically-pumped 385-μm D 2 O laser and a CW optically-pumped 382.9-μm CH 2 F 2 laser as local oscillator for measurement of ion temperature in Tokamaks are described. (author)

  7. Phosphate-core silica-clad Er/Yb-doped optical fiber and cladding pumped laser.

    Science.gov (United States)

    Egorova, O N; Semjonov, S L; Velmiskin, V V; Yatsenko, Yu P; Sverchkov, S E; Galagan, B I; Denker, B I; Dianov, E M

    2014-04-07

    We present a composite optical fiber with a Er/Yb co-doped phosphate-glass core in a silica glass cladding as well as cladding pumped laser. The fabrication process, optical properties, and lasing parameters are described. The slope efficiency under 980 nm cladding pumping reached 39% with respect to the absorbed pump power and 28% with respect to the coupled pump power. Due to high doping level of the phosphate core optimal length was several times shorter than that of silica core fibers.

  8. A dual-optically-pumped polarized negative deuterium ion source

    International Nuclear Information System (INIS)

    Kinsho, M.; Mori, Y.; Ikegami, K.; Takagi, A.

    1994-01-01

    An optically pumped polarized H - source (OPPIS), which is based on the charge exchange between H + ions and electron-spin-polarized alkali atoms has been developed at KEK. Just by applying this scheme to a deuteron beam, it is difficult to obtain a highly vector polarized deuteron beam. To obtain highly vector polarized D - ions, we have developed a 'dual optical pumping type' of polarized D - source. With this scheme, a 100% vector nuclear-spin polarization for D - ions is possible in principle. In a preliminary experiment, a 60% of vector nuclear-spin polarized D - ions was obtained. (author)

  9. Metastability-exchange optical pumping of 3He for neutron polarizers

    International Nuclear Information System (INIS)

    Gentile, T.R.; Thompson, A.K.; Snow, W.M.

    1995-01-01

    Research is underway at NIST and IU to develop neutron polarizers that are based on polarized 3 He. Such polarizers rely on the strong spin dependence of the cross section for neutron capture by polarized 3 He. Two methods can produce the high density of polarized 3 He gas (10 19 -10 20 cm -3 ) required for an effective neutron polarizer: spin-exchange optical pumping, which is performed directly at high pressure (1-10 bar), and metastability-exchange optical pumping, in which the gas is polarized at low pressure (1 mbar) and then compressed. While we are pursuing both methods, progress in the metastable method will be discussed. The features of the metastable method are the high rate at which the gas can be polarized and the inherent separation of the optical pumping and target cells. In a landmark achievement, researchers at the Univ. of Mainz have developed a piston compressor that can fill a 130 cm 3 cell to a pressure of 7 bar of 45% polarized 3 He gas in 2 hours. We plan to develop a compressor and test it at the NIST Cold Neutron Research Facility. We have constructed a metastable-pumping apparatus at NIST and have obtained 76% polarization with a pumping rate of 1.2 x 10 18 atoms/sec in a 0.4 mbar, 270 cm 3 cell

  10. Process for recovering cesium from cesium alum

    International Nuclear Information System (INIS)

    Mein, P.G.

    1984-01-01

    Cesium is recovered from cesium alum, CsAl(SO 4 ) 2 , by an aqueous conversion and precipitation reaction using a critical stoichiometric excess of a water-soluble permanganate to form solid cesium permanganate (CsMnO 4 ) free from cesium alum. The other metal salts remain in solution, providing the final pH does not cause hydroxides of aluminium or iron to form. The precipitate is separated from the residual solution to obtain CsMnO 4 of high purity

  11. Relaxation of quadrupole orientation in an optically pumped alkali vapour

    Energy Technology Data Exchange (ETDEWEB)

    Bernabeu, E; Tornos, J

    1985-04-01

    The relaxation of quadrupole orientation (alignment) in an optically pumped alkali vapour is theoretically studied by taking into account the relaxation processes by alkali-buffer gas, alkali-alkali with spin exchange and alkali-cell wall (diffusion process) collisions. The relaxation transients of the quadrupole orientation are obtained by introducing a first-order weak-pumping approximation (intermediate pumping) less restrictive than the usually considered (zeroth order) one.

  12. Kinetic analysis of rare gas metastable production and optically pumped Xe lasers

    Science.gov (United States)

    Demyanov, A. V.; Kochetov, I. V.; Mikheyev, P. A.; Azyazov, V. N.; Heaven, M. C.

    2018-01-01

    Optically pumped all-rare-gas lasers use metastable rare gas atoms as the lasing species in mixtures with He or Ar buffer gas. The metastables are generated in a glow discharge, and we report model calculations for the optimal production of Ne*, Ar*, Kr* and Xe*. Discharge efficiency was estimated by solving the Boltzmann equation. Laser efficiency, gain and output power of the CW optically pumped Xe laser were assessed as functions of heavier rare gas content, pressure, optical pump intensity and the optical path length. It was found that, for efficient operation the heavier rare gas content has to be of the order of one percent or less, and the total pressure—in the range 0.3-1.5 atm. Output power and specific discharge power increase approximately linearly with pump intensity over the output range from 300-500 W cm-2. Ternary mixtures Xe:Ar:He were found to be the most promising. Total laser efficiency was found to be nearly the same for pumping the 2p8 or 2p9 state, reaching 61%-70% for a pump intensity of ~720 W cm-2 when the Xe fraction was in the range 0.001 ÷ 0.01 and Ar fraction—0.1 ÷ 0.5. However, when the 2p8 state was pumped, the maximum total efficiency occurred at larger pressures than for pumping of the 2p9 state. The discharge power density required to sustain a sufficient Xe* number density was in the range of tens of watts per cubic centimeter for 50% Ar in the mixture.

  13. Nuclear radiation detected optical pumping of neutron deficient Hg isotopes

    International Nuclear Information System (INIS)

    Bonn, J.

    1975-01-01

    The extension of the Nuclear Radiation Detected Optical Pumping method to mass-separated samples of isotopes far off stability is presented for a series of light Hg isotopes produced at the ISOLDE facility at CERN. The isotope under investigation is transferred by an automatic transfer system into the optical pumping apparatus. Zeeman scanning of an isotopically pure Hg spectral lamp is used to reach energetic coincidence with the hyperfine structure components of the 6s 2 1 S 0 -6s6p 3 P 1 (lambda = 2537 A) resonance line of the investigated isotope and the Hg lamp. The orientation build up by optical pumping is monitored via the asymmetry or anisotropy of the nuclear radiation. Nuclear spins, magnetic moments, electric quadrupole moments and isotopic shift are obtained for 181 Hg- 191 Hg using the β-asymmetry as detector. The extension of the method using the γ-anisotropy is discussed and measurements on 193 Hg are presented. (orig./HK)

  14. Quantum mechanical features of optically pumped CW FIR lasers

    Science.gov (United States)

    Seligson, D.; Leite, J. R. R.; Sanchez, A.; Feld, M. S.; Ducloy, M.

    1977-01-01

    Quantum mechanical predictions for the gain of an optically pumped CW FIR laser are presented for cases in which one or both of the pump and FIR transitions are pressure or Doppler broadened. The results are compared to those based on the rate equation model. Some of the quantum mechanical predictions are verified in CH3OH.

  15. Optical pumping and negative luminescence polarization in charged GaAs quantum dots

    Science.gov (United States)

    Shabaev, Andrew; Stinaff, Eric A.; Bracker, Allan S.; Gammon, Daniel; Efros, Alexander L.; Korenev, Vladimir L.; Merkulov, Igor

    2009-01-01

    Optical pumping of electron spins and negative photoluminescence polarization are observed when interface quantum dots in a GaAs quantum well are excited nonresonantly by circularly polarized light. Both observations can be explained by the formation of long-lived dark excitons through hole spin relaxation in the GaAs quantum well prior to exciton capture. In this model, optical pumping of resident electron spins is caused by capture of dark excitons and recombination in charged quantum dots. Negative polarization results from accumulation of dark excitons in the quantum well and is enhanced by optical pumping. The dark exciton model describes the experimental results very well, including intensity and bias dependence of the photoluminescence polarization and the Hanle effect.

  16. Rovibrational optical pumping of a molecular beam

    Science.gov (United States)

    Cournol, A.; Pillet, P.; Lignier, H.; Comparat, D.

    2018-03-01

    The preparation of molecules in well-defined internal states is essential for various studies in fundamental physics and physical chemistry. It is thus of particular interest to find methods that increase the brightness of molecular beams. Here, we report on rotational and vibrational pumpings of a supersonic beam of barium monofluoride molecules. With respect to previous works, the time scale of optical vibrational pumping has been greatly reduced by enhancing the spectral power density in the vicinity of the appropriate molecular transitions. We demonstrate a complete transfer of the rovibrational populations lying in v″=1 -3 into the vibrational ground-state v″=0 . Rotational pumping, which requires efficient vibrational pumping, has been also demonstrated. According to a Maxwell-Boltzmann description, the rotational temperature of our sample has been reduced by a factor of ˜8 . In this fashion, the population of the lowest rotational levels increased by more than one order of magnitude.

  17. High voltage holding in the negative ion sources with cesium deposition

    Energy Technology Data Exchange (ETDEWEB)

    Belchenko, Yu.; Abdrashitov, G.; Ivanov, A.; Sanin, A.; Sotnikov, O., E-mail: O.Z.Sotnikov@inp.nsk.su [Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2016-02-15

    High voltage holding of the large surface-plasma negative ion source with cesium deposition was studied. It was found that heating of ion-optical system electrodes to temperature >100 °C facilitates the source conditioning by high voltage pulses in vacuum and by beam shots. The procedure of electrode conditioning and the data on high-voltage holding in the negative ion source with small cesium seed are described. The mechanism of high voltage holding improvement by depletion of cesium coverage is discussed.

  18. Pump-induced optical distortions in disk amplifier modules: holographic and interferometric measurements

    International Nuclear Information System (INIS)

    Linford, G.J.; Chau, H.H.; Glaze, J.A.; Layne, C.B.; Rainer, F.

    1975-01-01

    Interferometric measurements have been made of the optical distortions induced in laser disk amplifiers during the flashlamp pumping pulse. Both conventional interferometric methods and the techniques of double exposure holographic interferometry were used to identify four major sources of pump-induced optical distortions: subsonic intrusion of hot gas (traced to leakage of atmospheric oxygen into the amplifier), microexplosions of dust particles, thermally induced optical distortions in the glass disks, and gaseous optical distortion effects caused by turbulent flow of the purging nitrogen gas supply used within the laser amplifier head. Methods for reducing or eliminating the effects of each of these optical distortions are described

  19. Rate equation modelling of the optically pumped spin-exchange source

    International Nuclear Information System (INIS)

    Stenger, J.; Rith, K.

    1995-01-01

    Sources for spin polarized hydrogen or deuterium, polarized via spin-exchange of a laser optically pumped alkali metal, can be modelled by rate equations. The rate equations for this type of source, operated either with hydrogen or deuterium, are given explicitly with the intention of providing a useful tool for further source optimization and understanding. Laser optical pumping of alkali metal, spin-exchange collisions of hydrogen or deuterium atoms with each other and with alkali metal atoms are included, as well as depolarization due to flow and wall collisions. (orig.)

  20. Microstructure and electrical-optical properties of cesium tungsten oxides synthesized by solvothermal reaction followed by ammonia annealing

    International Nuclear Information System (INIS)

    Liu Jingxiao; Ando, Yoshihiko; Dong Xiaoli; Shi Fei; Yin Shu; Adachi, Kenji; Chonan, Takeshi; Tanaka, Akikazu; Sato, Tsugio

    2010-01-01

    Cesium tungsten oxides (Cs x WO 3 ) were synthesized by solvothermal reactions using ethanol and 57.1 vol% ethanol aqueous solution at 200 o C for 12 h, and the effects of post annealing in ammonia atmosphere on the microstructure and electrical-optical properties were investigated. Agglomerated particles consisting of disk-like nanoparticles and nanorods of Cs x WO 3 were formed in the pure ethanol and ethanol aqueous solutions, respectively. The samples retained the original morphology and crystallinity after annealing in ammonia atmosphere up to 500 o C, while a small amount of nitrogen ion were incorporated in the lattice. The as-prepared Cs x WO 3 sample showed excellent near infrared (NIR) light shielding ability as well as high transparency in the visible light region. The electrical resistivity of the pressed pellets of the powders prepared in pure ethanol and 57.1 vol% ethanol aqueous solution greatly decreased after ammonia annealing at 500 o C, i.e., from 734 to 31.5 and 231 to 3.58 Ω cm, respectively. - Graphical abstract: Cesium tungsten oxides (Cs x WO 3 ) with different morphology were synthesized by solvothermal reaction, and the effects of post-ammonia annealing on the microstructure and electrical-optical properties were investigated.

  1. Optical Pumping of the Electronic and Nuclear Spin of Single Charge-Tunable Quantum Dots

    Science.gov (United States)

    Bracker, A. S.; Stinaff, E. A.; Gammon, D.; Ware, M. E.; Tischler, J. G.; Shabaev, A.; Efros, Al. L.; Park, D.; Gershoni, D.; Korenev, V. L.; Merkulov, I. A.

    2005-02-01

    We present a comprehensive examination of optical pumping of spins in individual GaAs quantum dots as we change the net charge from positive to neutral to negative with a charge-tunable heterostructure. Negative photoluminescence polarization memory is enhanced by optical pumping of ground state electron spins, which we prove with the first measurements of the Hanle effect on an individual quantum dot. We use the Overhauser effect in a high longitudinal magnetic field to demonstrate efficient optical pumping of nuclear spins for all three charge states of the quantum dot.

  2. Holography and thermalization in optical pump-probe spectroscopy

    Science.gov (United States)

    Bagrov, A.; Craps, B.; Galli, F.; Keränen, V.; Keski-Vakkuri, E.; Zaanen, J.

    2018-04-01

    Using holography, we model experiments in which a 2 +1 D strange metal is pumped by a laser pulse into a highly excited state, after which the time evolution of the optical conductivity is probed. We consider a finite-density state with mildly broken translation invariance and excite it by oscillating electric field pulses. At zero density, the optical conductivity would assume its thermalized value immediately after the pumping has ended. At finite density, pulses with significant dc components give rise to slow exponential relaxation, governed by a vector quasinormal mode. In contrast, for high-frequency pulses the amplitude of the quasinormal mode is strongly suppressed, so that the optical conductivity assumes its thermalized value effectively instantaneously. This surprising prediction may provide a stimulus for taking up the challenge to realize these experiments in the laboratory. Such experiments would test a crucial open question faced by applied holography: are its predictions artifacts of the large N limit or do they enjoy sufficient UV independence to hold at least qualitatively in real-world systems?

  3. Spiral intensity patterns in the internally pumped optical parametric oscillator

    DEFF Research Database (Denmark)

    Lodahl, Peter; Bache, Morten; Saffman, Mark

    2001-01-01

    We describe a nonlinear optical system that supports spiral pattern solutions in the field intensity. This new spatial structure is found to bifurcate above a secondary instability in the internally pumped optical parametric oscillator. The analytical predictions of threshold and spatial scale...

  4. Frequency comb generation in a continuously pumped optical parametric oscillator

    Science.gov (United States)

    Mosca, S.; Parisi, M.; Ricciardi, I.; Leo, F.; Hansson, T.; Erkintalo, M.; Maddaloni, P.; De Natale, P.; Wabnitz, S.; De Rosa, M.

    2018-02-01

    We demonstrate optical frequency comb generation in a continuously pumped optical parametric oscillator, in the parametric region around half of the pump frequency. We also model the dynamics of such quadratic combs using a single time-domain mean-field equation, and obtain simulation results that are in good agreement with experimentally observed spectra. Moreover, we numerically investigate the coherence properties of simulated combs, showing the existence of correlated and phase-locked combs. Our work could pave the way for a new class of frequency comb sources, which may enable straightforward access to new spectral regions and stimulate novel applications of frequency combs.

  5. Dynamic characterization of silicon nanowires using a terahertz optical asymmetric demultiplexer-based pump-probe scheme

    DEFF Research Database (Denmark)

    Ji, Hua; Cleary, C. S.; Dailey, J. M.

    2012-01-01

    Dynamic phase and amplitude all-optical responses of silicon nanowires are characterized using a terahertz optical asymmetric demultiplexer (TOAD) based pump-probe scheme. Ultra-fast recovery is observed for moderate pump powers....

  6. Sympathetic cooling in a rubidium cesium mixture: Production of ultracold cesium atoms; Sympathetisches Kuehlen in einer Rubidium-Caesium-Mischung: Erzeugung ultrakalter Caesiumatome

    Energy Technology Data Exchange (ETDEWEB)

    Haas, M.

    2007-07-01

    This thesis presents experiments for the production of ultracold rubidium cesium mixture in a magnetic trap. The long-termed aim of the experiment is the study of the interaction of few cesium atoms with a Bose-Einstein condensate of rubidium atoms. Especially by controlled variation of the cesium atom number the transition in the description of the interaction by concepts of the one-particle physics to the description by concepts of the many-particle physics shall be studied. The rubidium atoms are trapped in a magneto-optical trap (MOT) and from there reloaded into a magnetic trap. In this the rubidium atoms are stored in the state vertical stroke f=2,m{sub f}=2 right angle of the electronic ground state and evaporatively cooled by means of microwave-induced transitions into the state vertical stroke f=1,m{sub f}=1] (microwave cooling). The cesium atoms are also trppaed in a MOT and into the same magnetic trap reloaded, in which they are stored in the state vertical stroke f=4,m{sub f}=4 right angle of the electronic ground state together with rubidium. Because of the different hyperfine splitting only rubidium is evaporatively cooled, while cesium is cooled jointly sympathetically - i.e. by theramal contact via elastic collisions with rubidium atoms. The first two chapters contain a description of interatomic interactions in ultracold gases as well as a short summary of theoretical concepts in the description of Bose-Einstein condensates. The chapters 3 and 4 contain a short presentation of the methods applied in the experiment for the production of ultracold gases as well as the experimental arrangement; especially in the framework of this thesis a new coil system has been designed, which offers in view of future experiments additionally optical access for an optical trap. Additionally the fourth chapter contains an extensive description of the experimental cycle, which is applied in order to store rubidium and cesium atoms together into the magnetic trap. The

  7. Effects of optical pumping in the photo-excitation of organic triplet states

    International Nuclear Information System (INIS)

    Lin, Tien-Sung; Yang, Tran-Chin; Sloop, David J.

    2013-01-01

    Highlights: • High electron spin polarization (ESP) was observed in pentacene triplets at room temperature. • The high ESP is transfer to the surrounding nuclear spin by optical pumping in zero-field (ZF). • The ZF transition frequencies and their line width depend on the laser pumping rate. • The spin–lattice relaxation times of the nuclear system are evaluated. - Abstract: Upon the application of laser and microwave pulses, non-zero magnetic moment of a photo-excited triplet state of organic molecules is generated in zero-field (ZF). The time evolution of the transient magnetic moments can be measured by free induction decay (FID) in ZF. The observed ZF spectra become broadened and ZF transition shifted to lower frequencies when the repetition rate of laser excitation is increased, which are attributed to the optical pumping of nuclear polarization (ONP) effect and the associated nuclear spin lattice relaxation processes. The observed ONP effect is discussed in terms of the local field effect and spin diffusion processes in optical pumping

  8. Effects of optical pumping in the photo-excitation of organic triplet states

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tien-Sung, E-mail: lin@wustl.edu; Yang, Tran-Chin; Sloop, David J.

    2013-08-30

    Highlights: • High electron spin polarization (ESP) was observed in pentacene triplets at room temperature. • The high ESP is transfer to the surrounding nuclear spin by optical pumping in zero-field (ZF). • The ZF transition frequencies and their line width depend on the laser pumping rate. • The spin–lattice relaxation times of the nuclear system are evaluated. - Abstract: Upon the application of laser and microwave pulses, non-zero magnetic moment of a photo-excited triplet state of organic molecules is generated in zero-field (ZF). The time evolution of the transient magnetic moments can be measured by free induction decay (FID) in ZF. The observed ZF spectra become broadened and ZF transition shifted to lower frequencies when the repetition rate of laser excitation is increased, which are attributed to the optical pumping of nuclear polarization (ONP) effect and the associated nuclear spin lattice relaxation processes. The observed ONP effect is discussed in terms of the local field effect and spin diffusion processes in optical pumping.

  9. Optical pumping of electron and nuclear spin in a negatively-charged quantum dot

    Science.gov (United States)

    Bracker, Allan; Gershoni, David; Korenev, Vladimir

    2005-03-01

    We report optical pumping of electron and nuclear spins in an individual negatively-charged quantum dot. With a bias-controlled heterostructure, we inject one electron into the quantum dot. Intense laser excitation produces negative photoluminescence polarization, which is easily erased by the Hanle effect, demonstrating optical pumping of a long-lived resident electron. The electron spin lifetime is consistent with the influence of nuclear spin fluctuations. Measuring the Overhauser effect in high magnetic fields, we observe a high degree of nuclear spin polarization, which is closely correlated to electron spin pumping.

  10. Measuring gas temperature during spin-exchange optical pumping process

    Science.gov (United States)

    Normand, E.; Jiang, C. Y.; Brown, D. R.; Robertson, L.; Crow, L.; Tong, X.

    2016-04-01

    The gas temperature inside a Spin-Exchange Optical Pumping (SEOP) laser-pumping polarized 3He cell has long been a mystery. Different experimental methods were employed to measure this temperature but all were based on either modelling or indirect measurement. To date there has not been any direct experimental measurement of this quantity. Here we present the first direct measurement using neutron transmission to accurately determine the number density of 3He, the temperature is obtained using the ideal gas law. Our result showed a surprisingly high gas temperature of 380°C, compared to the 245°C of the 3He cell wall temperature and 178°C of the optical pumping oven temperature. This experiment result may be used to further investigate the unsolved puzzle of the "X-factor" in the SEOP process which places an upper bound to the 3He polarization that can be achieved. Additional spin relaxation mechanisms might exist due to the high gas temperature, which could explain the origin of the X-factor.

  11. A Phase-Controlled Optical Parametric Amplifier Pumped by Two Phase-Distorted Laser Beams

    International Nuclear Information System (INIS)

    Hong-Yan, Ren; Lie-Jia, Qian; Peng, Yuan; He-Yuan, Zhu; Dian-Yuan, Fan

    2010-01-01

    We theoretically study the phase characteristic of optical parametric amplification (OPA) or chirped pulse OPA (OPCPA) pumped by two phase-distorted laser beams. In the two-beam-pumped optical parametric amplification (TBOPA), due to spatial walk-off, both of the pump phase distortions will be partly transferred to signal in a single crystal so as to degrade the signal beam-quality, which will be more serious in high-energy OPCPA. An OPA configuration with a walkoff-compensated crystal pair is demonstrated for reducing the signal phase distortion experienced in the first stage and ensuring the signal phase independent of two pump phase distortions through the second crystal, hence maintaining the signal beam-quality. Such a TBOPA is similar to the conventional quantum laser amplifier by means of eliminating its sensitivity to the phase and number of the pump beams

  12. Optical silencing of C. elegans cells with light-driven proton pumps.

    Science.gov (United States)

    Okazaki, Ayako; Takahashi, Megumi; Toyoda, Naoya; Takagi, Shin

    2014-08-01

    Recent development of optogenetic techniques, which utilize light-driven ion channels or ion pumps for controlling the activity of excitable cells, has greatly facilitated the investigation of nervous systems in vivo. A new generation of optical silencers includes outward-directed proton pumps, such as Arch, which have several advantages over currently widely used halorhodopsin (NpHR). These advantages include the resistance to inactivation during prolonged illumination and the ability to generate a larger optical current from low intensity light. C. elegans, with its small transparent body and well-characterized neural circuits, is especially suitable for optogenetic analyses. In this article, we will outline the practical aspects of using of Arch and other proton pumps as optogenetic tools in C. elegans. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Room temperature deposition of crystalline indium tin oxide films by cesium-assisted magnetron sputtering

    International Nuclear Information System (INIS)

    Lee, Deuk Yeon; Baik, Hong-Koo

    2008-01-01

    Indium tin oxide (ITO) films were deposited on a Si (1 0 0) substrate at room temperature by cesium-assisted magnetron sputtering. Including plasma characteristics, the structural, electrical, and optical properties of deposited films were investigated as a function of cesium partial vapor pressure controlled by cesium reservoir temperature. We calculated the cesium coverage on the target surface showing maximum formation efficiency of negative ions by means of the theoretical model. Cesium addition promotes the formation efficiency of negative ions, which plays important role in enhancing the crystallinity of ITO films. In particular, the plasma density was linearly increased with cesium concentrations. The resultant decrease in specific resistivity and increase in transmittance (82% in the visible region) at optimum cesium concentration (4.24 x 10 -4 Ω cm at 80 deg. C of reservoir temperature) may be due to enhanced crystallinity of ITO films. Excess cesium incorporation into ITO films resulted in amorphization of its microstructure leading to degradation of ITO crystallinity. We discuss the cesium effects based on the growth mechanism of ITO films and the plasma density

  14. Multi-quantum excitation in optically pumped alkali atom: rare gas mixtures

    Science.gov (United States)

    Galbally-Kinney, K. L.; Rawlins, W. T.; Davis, S. J.

    2014-03-01

    Diode-pumped alkali laser (DPAL) technology offers a means of achieving high-energy gas laser output through optical pumping of the D-lines of Cs, Rb, and K. The exciplex effect, based on weak attractive forces between alkali atoms and polarizable rare gas atoms (Ar, Kr, Xe), provides an alternative approach via broadband excitation of exciplex precursors (XPAL). In XPAL configurations, we have observed multi-quantum excitation within the alkali manifolds which result in infrared emission lines between 1 and 4 μm. The observed excited states include the 42FJ states of both Cs and Rb, which are well above the two-photon energy of the excitation laser in each case. We have observed fluorescence from multi-quantum states for excitation wavelengths throughout the exciplex absorption bands of Cs-Ar, Cs-Kr, and Cs-Xe. The intensity scaling is roughly first-order or less in both pump power and alkali concentration, suggesting a collisional energy pooling excitation mechanism. Collisional up-pumping appears to present a parasitic loss term for optically pumped atomic systems at high intensities, however there may also be excitation of other lasing transitions at infrared wavelengths.

  15. Optical silencing of body wall muscles induces pumping inhibition in Caenorhabditis elegans

    OpenAIRE

    Takahashi, Megumi; Takagi, Shin

    2017-01-01

    Feeding, a vital behavior in animals, is modulated depending on internal and external factors. In the nematode Caenorhabditis elegans, the feeding organ called the pharynx ingests food by pumping driven by the pharyngeal muscles. Here we report that optical silencing of the body wall muscles, which drive the locomotory movement of worms, affects pumping. In worms expressing the Arch proton pump or the ACR2 anion channel in the body wall muscle cells, the pumping rate decreases after activatio...

  16. Measurement of parity violation in the 6S-7S transition of cesium using stimulated emission

    International Nuclear Information System (INIS)

    Lintz, M.

    2005-11-01

    This document describes the design and implementation of a pump-probe polarimetry experiment in a cesium vapor, aiming at a 1% precision measurement of atomic parity violation (APV) induced by Z 0 boson exchange. The experimental scheme, relying on induced emission by a probe laser, allows a detection efficiency close to unity, and the left-right asymmetry to be measured is amplified during the propagation of the probe beam in the excited vapour. The interest of the result presented here is to cross-check the unique previous result by an experiment with a completely different design, and hence with completely different systematics, that also allows measurements on long-lived isotopes especially 135 Cs (nuclear spin 7/2 like 133 Cs, half-life 3 million years). We have demonstrated improvements in polarimetry techniques (rejection of instrumental errors, implementation of a polarization magnifier), especially in pulsed polarimetry (doubly-differential, balanced-mode polarization analysis). But most importantly, the expected pump-probe chiral optical gain has been observed in a Cs vapor. The precision on the θ pv measurement has been improved to 2.6%, and the achieved signal/noise ratio allows measurements at the 1% precision level. The achieved precision on lm E 1 pv is 2 x 10 -13 ea 0 , 15 times better than the measurements obtained with the lead and thallium atoms. Our result is in agreement with the more precise Boulder result. The required amount of cesium is small enough to allow a measurement with 135 Cs provided one takes reasonable radioprotection measures. (author)

  17. Hydrological methods preferentially recover cesium from nuclear waste salt cake

    International Nuclear Information System (INIS)

    Brooke, J.N.; Hamm, L.L.

    1997-01-01

    The Savannah River Site is treating high level radioactive waste in the form of insoluble solids (sludge), crystallized salt (salt cake), and salt solutions. High costs and operational concerns have prompted DOE to look for ways to improve the salt cake treatment process. A numerical model was developed to evaluate the feasibility of pump and treat technology for extracting cesium from salt cake. A modified version of the VAM3DCG code was used to first establish a steady-state flow field, then to simulate 30 days of operation. Simulation results suggest that efficient cesium extraction can be obtained with low displacement volumes. The actual extraction process will probably be less impressive because of nonuniform properties. 2 refs., 2 figs

  18. Microwave-to-optical frequency conversion using a cesium atom coupled to a superconducting resonator

    Science.gov (United States)

    Gard, Bryan T.; Jacobs, Kurt; McDermott, R.; Saffman, M.

    2017-07-01

    A candidate for converting quantum information from microwave to optical frequencies is the use of a single atom that interacts with a superconducting microwave resonator on one hand and an optical cavity on the other. The large electric dipole moments and microwave transition frequencies possessed by Rydberg states allow them to couple strongly to superconducting devices. Lasers can then be used to connect a Rydberg transition to an optical transition to realize the conversion. Since the fundamental source of noise in this process is spontaneous emission from the atomic levels, the resulting control problem involves choosing the pulse shapes of the driving lasers so as to maximize the transfer rate while minimizing this loss. Here we consider the concrete example of a cesium atom, along with two specific choices for the levels to be used in the conversion cycle. Under the assumption that spontaneous emission is the only significant source of errors, we use numerical optimization to determine the likely rates for reliable quantum communication that could be achieved with this device. These rates are on the order of a few megaqubits per second.

  19. Preparation of Modified Kaolin Filler with Cesium and Its Application in Security Paper

    Directory of Open Access Journals (Sweden)

    Houssni El-Saied

    2013-01-01

    Full Text Available In this study, cesium was added intentionally during paper manufacture for protecting the papers against forgery and counterfeiting by sorbing cesium ions (Cs+ on kaolin, used as special filler in papermaking. The sorption of cesium from aqueous solution by kaolin was studied as a function of pH, shaking time, cesium initial concentration, and mass of kaolin using batch technique. The results showed that a solution containing 10 mg/L Cs+ and 250 mg of kaolin at pH 6 can be used to modify the kaolin. Paper handsheets were prepared containing various percentages of the modified kaolin. The mechanical and optical properties of paper handsheets were studied. The prepared paper handsheets were irradiated by gamma irradiation using different doses. Fourier transform infrared (FTIR spectroscopy was used to study the effect of kaolin modification by cesium and gamma irradiation on paper handsheets properties. The results indicated that modified kaolin enhanced the mechanical and optical properties of paper handsheets. Electron spin resonance (ESR spectroscopy and laser-induced breakdown spectroscopy (LIBS were also used. They provided rapid, sensitive and nondestructive techniques in differentiating between different questioned documents. This study presents a new concept in manufacturing security papers and anticounterfeiting applications.

  20. Studies on optical pumping cells (OPC) to polarize 3He

    International Nuclear Information System (INIS)

    Hutanu, V.; Rupp, A.

    2004-01-01

    The technique applied at HMI to obtain nuclear-spin-polarized 3 He, used in neutron spin filters (NSFs), is metastability-exchange optical pumping. To prepare efficient NSF, one must highly polarize 3 He nuclei in the optical pumping volume (OPV) and reduce the polarization losses during the compression phase. Great progress has been achieved in reducing of depolarization due to the recent development of both, large polarization preserving piston compressors and long relaxation time filter cells. It is even more important to significantly enhance the 3 He polarization rate during optical pumping in order to increase NSF efficiency. Different cells materials were tested, such as Duran and quartz glass. In order to use the laser light more efficiently and to decrease the risk of 3 He depolarization due to unfavorable reflections, antireflection (AR) coatings were used on cell windows made of quartz glass. They were compared with the ones without coating, made of quartz, Duran and BK7 glass. The comparison of various techniques to mount the windows such as blowing, gluing or molecular diffusion was also conducted. It indicated that the molecular diffusion is the most suitable technique because of a better purity of the gas in the cell and the preservation of the optical flatness of the windows. Cells, for practical reasons each entirely made from the same material (Duran, Quartz glass) with windows mounted using this method, showed the best polarization performance

  1. Two-tint pump-probe measurements using a femtosecond laser oscillator and sharp-edged optical filters.

    Science.gov (United States)

    Kang, Kwangu; Koh, Yee Kan; Chiritescu, Catalin; Zheng, Xuan; Cahill, David G

    2008-11-01

    We describe a simple approach for rejecting unwanted scattered light in two types of time-resolved pump-probe measurements, time-domain thermoreflectance (TDTR) and time-resolved incoherent anti-Stokes Raman scattering (TRIARS). Sharp edged optical filters are used to create spectrally distinct pump and probe beams from the broad spectral output of a femtosecond Ti:sapphire laser oscillator. For TDTR, the diffusely scattered pump light is then blocked by a third optical filter. For TRIARS, depolarized scattering created by the pump is shifted in frequency by approximately 250 cm(-1) relative to the polarized scattering created by the probe; therefore, spectral features created by the pump and probe scattering can be easily distinguished.

  2. Optical pumping in a microfabricated Rb vapor cell using a microfabricated Rb discharge light source

    International Nuclear Information System (INIS)

    Venkatraman, V.; Kang, S.; Affolderbach, C.; Mileti, G.; Shea, H.

    2014-01-01

    Miniature ( 3 ) vapor-cell based devices using optical pumping of alkali atoms, such as atomic clocks and magnetometers, today mostly employ vertical-cavity surface-emitting lasers as pump light sources. Here, we report on the demonstration of optical pumping in a microfabricated alkali vapor resonance cell using (1) a microfabricated Rb discharge lamp light source, as well as (2) a conventional glass-blown Rb discharge lamp. The microfabricated Rb lamp cell is a dielectric barrier discharge (DBD) light source, having the same inner cell volume of around 40 mm 3 as that of the resonance cell, both filled with suitable buffer gases. A miniature (∼2 cm 3 volume) test setup based on the M z magnetometer interrogation technique was used for observation of optical-radiofrequency double-resonance signals, proving the suitability of the microfabricated discharge lamp to introduce efficient optical pumping. The pumping ability of this light source was found to be comparable to or even better than that of a conventional glass-blown lamp. The reported results indicate that the micro-fabricated DBD discharge lamp has a high potential for the development of a new class of miniature atomic clocks, magnetometers, and quantum sensors

  3. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    Science.gov (United States)

    Weiss, Shimon [Pinole, CA; Schlamp, Michael C [Plainsboro, NJ; Alivisatos, A Paul [Oakland, CA

    2011-09-27

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  4. Research and development on optically pumped polarized ion sources. Technical progress report, February 1, 1985-January 31, 1986

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1985-07-01

    During the past year we have studied the relaxation times in an optically pumped 23 Na vapor target, studied the effects of radiation trapping on the polarization in a Na vapor target, and have studied the effects of spin exchange collisions on a beam of fast H 0 atoms as they pass through a polarized alkali target. This research is directed toward improvements in the optically pumped Na or other alkali vapor targets used for the production of polarized H - ions. In this progress report we review the properties of the optically pumped polarized H - ion source as well as discussing the progress of our research on optically pumped Na or other alkali vapor targets. 81 refs., 9 figs

  5. Optical pumping in a microfabricated Rb vapor cell using a microfabricated Rb discharge light source

    Energy Technology Data Exchange (ETDEWEB)

    Venkatraman, V.; Kang, S.; Affolderbach, C.; Mileti, G., E-mail: gaetano.mileti@unine.ch [Laboratoire Temps-Fréquence, University of Neuchâtel, Neuchâtel 2000 (Switzerland); Shea, H. [Microsystems for Space Technologies Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel 2002 (Switzerland)

    2014-02-03

    Miniature (optical pumping of alkali atoms, such as atomic clocks and magnetometers, today mostly employ vertical-cavity surface-emitting lasers as pump light sources. Here, we report on the demonstration of optical pumping in a microfabricated alkali vapor resonance cell using (1) a microfabricated Rb discharge lamp light source, as well as (2) a conventional glass-blown Rb discharge lamp. The microfabricated Rb lamp cell is a dielectric barrier discharge (DBD) light source, having the same inner cell volume of around 40 mm{sup 3} as that of the resonance cell, both filled with suitable buffer gases. A miniature (∼2 cm{sup 3} volume) test setup based on the M{sub z} magnetometer interrogation technique was used for observation of optical-radiofrequency double-resonance signals, proving the suitability of the microfabricated discharge lamp to introduce efficient optical pumping. The pumping ability of this light source was found to be comparable to or even better than that of a conventional glass-blown lamp. The reported results indicate that the micro-fabricated DBD discharge lamp has a high potential for the development of a new class of miniature atomic clocks, magnetometers, and quantum sensors.

  6. Optical pumping of hot phonons in GaAs

    International Nuclear Information System (INIS)

    Collins, C.L.; Yu, P.Y.

    1982-01-01

    Optical pumping of hot LO phonons in GaAs has been studied as a function of the excitation photon frequency. The experimental results are in good agreement with a model calculation which includes both inter- and intra-valley electron-phonon scatterings. The GAMMA-L and GAMMA-X intervalley electron-phonon interactions in GaAs have been estimated

  7. Hybrid optical pumping of K and Rb atoms in a paraffin coated vapor cell

    Science.gov (United States)

    Li, Wenhao; Peng, Xiang; Budker, Dmitry; Wickenbrock, Arne; Pang, Bo; Zhang, Rui; Guo, Hong

    2017-10-01

    Dynamic hybrid optical pumping effects with a radio-frequency-field-driven nonlinear magneto-optical rotation (RF NMOR) scheme are studied in a dual-species paraffin coated vapor cell. By pumping K atoms and probing $^{87}$Rb atoms, we achieve an intrinsic magnetic resonance linewidth of 3 Hz and the observed resonance is immune to power broadening and light-shift effects. Such operation scheme shows favorable prospects for atomic magnetometry applications.

  8. Microsecond pulsed optical parametric oscillator pumped by a Q-switched fiber laser

    NARCIS (Netherlands)

    Klein, M.E.; Adel, P.; Auerbach, M.; Fallnich, C.; Gross, P.; Boller, Klaus J.

    2003-01-01

    We report on what is to our knowledge the first optical parametric oscillator (OPO) pumped by microsecond pulses from a wavelength-tunable solid-state laser. The singly resonant OPO (SRO) is based on a periodically poled LiNbO3 crystal and pumped with 2.1-ms-long pulses from an actively Q-switched

  9. Mid-infrared optical parametric oscillator pumped by an amplified random fiber laser

    Science.gov (United States)

    Shang, Yaping; Shen, Meili; Wang, Peng; Li, Xiao; Xu, Xiaojun

    2017-01-01

    Recently, the concept of random fiber lasers has attracted a great deal of attention for its feature to generate incoherent light without a traditional laser resonator, which is free of mode competition and insure the stationary narrow-band continuous modeless spectrum. In this Letter, we reported the first, to the best of our knowledge, optical parametric oscillator (OPO) pumped by an amplified 1070 nm random fiber laser (RFL), in order to generate stationary mid-infrared (mid-IR) laser. The experiment realized a watt-level laser output in the mid-IR range and operated relatively stable. The use of the RFL seed source allowed us to take advantage of its respective stable time-domain characteristics. The beam profile, spectrum and time-domain properties of the signal light were measured to analyze the process of frequency down-conversion process under this new pumping condition. The results suggested that the near-infrared (near-IR) signal light `inherited' good beam performances from the pump light. Those would be benefit for further develop about optical parametric process based on different pumping circumstances.

  10. Production of polarized negative deuterium ion beam with dual optical pumping in KEK

    Energy Technology Data Exchange (ETDEWEB)

    Kinsho, M.; Ikegami, K.; Takagi, A. [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan); Mori, Y.

    1997-02-01

    To obtain highly nuclear-spin vector polarized negative deuterium ion beam, a dual optically pumped polarized negative deuterium ion source has been developed at KEK. It is possible to select a pure nuclear-spin state with this scheme, and negative deuterium ion beam with 100% nuclear-spin vector polarization can be produced in principle. We have obtained about 70% of nuclear-spin vector polarized negative deuterium ion beam so far. This result may open up a new possibilities for the optically pumped polarized ion source. (author)

  11. Self-pumped optical phase conjugation and light oscillation in Fe doped KNbO 3

    Science.gov (United States)

    Medrano, C.; Ingold, M.; Günter, P.

    1990-07-01

    We report different experiments on self-pumped phase conjugation in iron doped KNbO 3 crystals at room temperature. Self-pumped phase conjugate reflectivities of a linear cavity, an external ring mirror and a configuration where no external optical elements are required have been measured. Using the passive ring resonator a reflectivity of 30% of a self-pumped phase conjugate mirror has been measured at room temperature. In the configuration requiring no external optical elements besides the KNbO 3 crystal a reflectivity of 12% has been measured. In degenerate four-wave mixing phase conjugate reflectivities of up to 270% have been observed in the diffusion recording mode.

  12. Tunable Optical Delay in Doppler-Broadened Cesium Vapor

    Science.gov (United States)

    2010-12-01

    REFERENCE: 36 % [1] J. M. Amini and H. Gould 37 % High Precision Measurement of the Static Dipole Polarizability of Cs 38 % Phys. Rev. Lett., American... polarizability of cesium. Phys. Rev. Lett. 91 (15), 153001. Andalkar, A. and R. B. Warrington (2002, Feb). High-resolution measurement of the pressure...Physics Publishing. Morgus, L., T. Morgus, T. Drake, and J. Huennekens (2008). Hyperfine state- changing collisions of Cs (6p1/2) atoms with argon

  13. Optically controlled tunable dispersion compensators based on pumped fiber gratings.

    Science.gov (United States)

    Shu, Xuewen; Sugden, Kate; Bennion, Ian

    2011-08-01

    We demonstrate optically tunable dispersion compensators based on pumping fiber Bragg gratings made in Er/Yb codoped fiber. The tunable dispersion for a chirped grating and also a uniform-period grating was successfully demonstrated in the experiment. The dispersion of the chirped grating was tuned from 900 to 1990 ps/nm and also from -600 to -950 ps/nm in the experiment. © 2011 Optical Society of America

  14. Quantum Theory of Conditional Phonon States in a Dual-Pumped Raman Optical Frequency Comb

    Science.gov (United States)

    Mondloch, Erin

    In this work, we theoretically and numerically investigate nonclassical phonon states created in the collective vibration of a Raman medium by the generation of a dual-pumped Raman optical frequency comb in an optical cavity. This frequency comb is generated by cascaded Raman scattering driven by two phase-locked pump lasers that are separated in frequency by three times the Raman phonon frequency. We characterize the variety of conditioned phonon states that are created when the number of photons in all optical frequency modes except the pump modes are measured. Almost all of these conditioned phonon states are extremely well approximated as three-phonon-squeezed states or Schrodinger-cat states, depending on the outcomes of the photon number measurements. We show how the combinations of first-, second-, and third-order Raman scattering that correspond to each set of measured photon numbers determine the fidelity of the conditioned phonon state with model three-phonon-squeezed states and Schrodinger-cat states. All of the conditioned phonon states demonstrate preferential growth of the phonon mode along three directions in phase space. That is, there are three preferred phase values that the phonon state takes on as a result of Raman scattering. We show that the combination of Raman processes that produces a given set of measured photon numbers always produces phonons in multiples of three. In the quantum number-state representation, these multiples of three are responsible for the threefold phase-space symmetry seen in the conditioned phonon states. With a semiclassical model, we show how this three-phase preference can also be understood in light of phase correlations that are known to spontaneously arise in single-pumped Raman frequency combs. Additionally, our semiclassical model predicts that the optical modes also grow preferentially along three phases, suggesting that the dual-pumped Raman optical frequency comb is partially phase-stabilized.

  15. A high field optical-pumping spin-exchange polarized deuterium source

    International Nuclear Information System (INIS)

    Coulter, K.P.; Holt, R.J.; Kinney, E.R.; Kowalczyk, R.S.; Poelker, M.; Potterveld, D.H.; Young, L.; Zeidman, B.; Toporkov, D.

    1992-01-01

    Recent results from a prototype high field optical-pumping spin-exchange polarized deuterium source are presented. Atomic polarization as high as 62% have been observed with an intensity of 6.3 x 10 17 atoms-sec -1 and 65% dissociation fraction

  16. Polarised two-photon excitation of quantum well excitons for manipulation of optically pumped terahertz lasers

    Energy Technology Data Exchange (ETDEWEB)

    Slavcheva, G., E-mail: gsk23@bath.ac.uk [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Kavokin, A.V., E-mail: A.Kavokin@soton.ac.uk [School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Spin Optics Laboratory, St. Petersburg State University, 1, Ulyanovskaya 198504 (Russian Federation)

    2014-11-15

    Optical pumping of excited exciton states in a semiconductor quantum well embedded in a microcavity is a tool for realisation of ultra-compact terahertz (THz) lasers based on stimulated optical transition between excited (2p) and ground (1s) exciton state. We show that the probability of two-photon absorption by a 2p-exciton is strongly dependent on the polarisation of both pumping photons. Five-fold variation of the threshold power for terahertz lasing by switching from circular to co-linear pumping is predicted. We identify photon polarisation configurations for achieving maximum THz photon generation quantum efficiency.

  17. Measurement of parity violation in the 6S-7S transition of cesium using stimulated emission; Mesure de la violation de la parite sur la transition 6S-7S du cesium par emission stimulee dans une vapeur atomique

    Energy Technology Data Exchange (ETDEWEB)

    Lintz, M

    2005-11-15

    This document describes the design and implementation of a pump-probe polarimetry experiment in a cesium vapor, aiming at a 1% precision measurement of atomic parity violation (APV) induced by Z{sup 0} boson exchange. The experimental scheme, relying on induced emission by a probe laser, allows a detection efficiency close to unity, and the left-right asymmetry to be measured is amplified during the propagation of the probe beam in the excited vapour. The interest of the result presented here is to cross-check the unique previous result by an experiment with a completely different design, and hence with completely different systematics, that also allows measurements on long-lived isotopes especially {sup 135}Cs (nuclear spin 7/2 like {sup 133}Cs, half-life 3 million years). We have demonstrated improvements in polarimetry techniques (rejection of instrumental errors, implementation of a polarization magnifier), especially in pulsed polarimetry (doubly-differential, balanced-mode polarization analysis). But most importantly, the expected pump-probe chiral optical gain has been observed in a Cs vapor. The precision on the {theta}{sup pv} measurement has been improved to 2.6%, and the achieved signal/noise ratio allows measurements at the 1% precision level. The achieved precision on lm E{sub 1}{sup pv} is 2 x 10{sup -13} ea{sub 0}, 15 times better than the measurements obtained with the lead and thallium atoms. Our result is in agreement with the more precise Boulder result. The required amount of cesium is small enough to allow a measurement with {sup 135}Cs provided one takes reasonable radioprotection measures. (author)

  18. Process for recovering cesium from pollucite

    International Nuclear Information System (INIS)

    Mein, P.G.

    1985-01-01

    Cesium is recovered from a cesium-bearing mineral such as pollucite by extraction with hydrochloric acid to obtain an extract of cesium chloride and other alkali metal and polyvalent metal chlorides. The iron and aluminum chlorides can be precipitated as the hydroxides and separated from the solution of the alkali metal chlorides to which is added potassium permanganate or other water-soluble permanganate to selectively precipitate cesium permanganate. The cesium precipitate is then separated from the residual solution containing the metal chlorides. The cesium permanganate, which is in a very pure form, can be converted to other cesium compounds by reaction with a reducing agent to obtain cesium carbonate and cesium delta manganese dioxide

  19. Optical Pumping Spin Exchange 3He Gas Cells for Magnetic Resonance Imaging

    Science.gov (United States)

    Kim, W.; Stepanyan, S. S.; Kim, A.; Jung, Y.; Woo, S.; Yurov, M.; Jang, J.

    2009-08-01

    We present a device for spin-exchange optical pumping system to produce large quantities of polarized noble gases for Magnetic Resonance Imaging (MRI). A method and design of apparatus for pumping the polarization of noble gases is described. The method and apparatus enable production, storage and usage of hyperpolarized noble gases for different purposes, including Magnetic Resonance Imaging of human and animal subjects. Magnetic imaging agents breathed into lungs can be observed by the radio waves of the MRI scanner and report back physical and functional information about lung's health and desease. The technique known as spin exchange optical pumping is used. Nuclear magnetic resonance is implemented to measure the polarization of hyperpolarized gas. The cells prepared and sealed under high vacuum after handling Alkali metals into the cell and filling with the 3He-N2 mixture. The cells could be refilled. The 3He reaches around 50% polarization in 5-15 hours.

  20. Intracavity Cr3+:LiCAF + PPSLT optical parametric oscillator with self-injection-locked pump wave

    International Nuclear Information System (INIS)

    Maestre, H; Torregrosa, A J; Capmany, J

    2013-01-01

    In this letter we present an intracavity pumped continuous wave (CW) doubly resonant optical parametric oscillator (OPO) based on Cr 3+ :LiCaAlF 6 (Cr:LiCAF) as the material generating the OPO pump wave and periodically poled stoichiometric lithium tantalate (PPSLT) as the nonlinear material. The OPO pump wave is spectrally narrowed and tuned by means of an external cavity, thus allowing self-injection locking of the OPO pump wavelength. When operated near degeneracy, the constructed OPO enables a fast tuning of the parametrically generated wavelengths in response to small perturbations of the phase-matching condition. The Cr:LiCAF emission band is especially well suited to provide dual-wavelength oscillation in the optical communications 1550 nm band as a result of the parametric oscillation in PPSLT. (letter)

  1. Packaging of high-power bars for optical pumping and direct applications

    Science.gov (United States)

    Heinemann, Stefan; An, Haiyan; Barnowski, Tobias; Jiang, John; Negoita, Viorel; Roff, Robert; Vethake, Thilo; Boucke, Konstantin; Treusch, Georg

    2015-03-01

    Continuous cost reduction, improved reliability and modular platform guide the design of our next generation heatsink and packaging process. Power scaling from a single device effectively lowers the cost, while electrical insulation of the heatsink, low junction temperature and hard solder enable high reliability. We report on the latest results for scaling the output power of bars for optical pumping and materials processing. The epitaxial design and geometric structures are specific for the application, while packaging with minimum thermal impedance, low stress and low smile are generic features. The isolated heatsink shows a thermal impedance of 0.2 K/W and the maximum output power is limited by the requirement of a junction temperature of less than 68oC for high reliability. Low contact impedance are addressed for drive currents of 300 A. For pumping applications, bars with a fill factor of 60% are deployed emitting more than 300 W of output power with an efficiency of about 55% and 8 bars are arranged in a compact pump module emitting 2 kW of collimated power suitable for pumping disk lasers. For direct applications we target coupling kilowatts of output powers into fibers of 100 μm diameter with 0.1 NA based on dense wavelength multiplexing. Low fill factor bars with large optical waveguide and specialized coating also emit 300 W.

  2. Performance of continuous wave and acousto-optically Q-switched Tm, Ho: YAP laser pumped by diode laser

    Science.gov (United States)

    Li, Guoxing; Xie, Wenqiang; Yang, Xining; Zhang, Ziqiu; Zhang, Hongda; Zhang, Liang

    2018-02-01

    A two-end-pumped a-cut Tm(0.5%), Ho(0.5%):YAP laser output at 2119nm is reported under cryogenic temperature. The maximum output power reached to 7.76W with the incident pump power of 24.2W in CW mode. With the acousto-optically Q-switch, an average power of 7.3W can be obtained, when the pulse repetition frequency was 7.5 kHz. The corresponding optical-to-optical conversion efficiency was 30.2% and the slope efficiency was 31.4%. Then, the laser output characteristics in the repetition frequency of 7.5 kHz and 10kHz were researched. The output power, the optical-to-optical conversion efficiency and slope efficiency were increased with the increase of the repetition frequency. In the same repetition frequency, the pulse duration was decreasing with the growth of the incident pump power.

  3. Continuous-wave optically pumped green perovskite vertical-cavity surface-emitter

    KAUST Repository

    Alias, Mohd Sharizal; Liu, Zhixiong; Alatawi, Abdullah; Ng, Tien Khee; Wu, Tao; Ooi, Boon S.

    2017-01-01

    We report an optically pumped green perovskite vertical-cavity surface-emitter operating in continuous-wave (CW) with a power density threshold of ~89 kW/cm2. The device has an active region of CH3NH3PbBr3 embedded in a dielectric microcavity

  4. Experimental investigation of saturation effect on pump-to-signal intensity modulation transfer in single-pump phase-insensitive fiber optic parametric amplifiers

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Lund-Hansen, Toke

    2013-01-01

    We present an experimental characterization of how signal gain saturation affects the transfer of intensity modulation from the pump to the signal in single-pump, phase-insensitive fiber optic parametric amplifiers (FOPAs). In this work, we demonstrate experimentally for the first time, to our...... knowledge, how gain saturation of a FOPA reduces the noise contribution due to the transfer of pump power fluctuations to the signal. In a particular example, it is shown that the transferred noise is significantly reduced by a factor of 3, while the FOPA gain remains above 10 dB....

  5. Analytical studies on pump-induced optical resonances in an M-type six-level system

    International Nuclear Information System (INIS)

    Ghosh, Saswata; Mandal, Swapan

    2010-01-01

    In the domain of semiclassical formulation and for the Doppler-free atom-field interaction, we construct the optical Bloch equations involving an M-type six-level system coupled to two pump fields and a probe field. The response of the system is probed for different pump-induced transitions in double and triple-resonance situations. In order to obtain the coherent lineshapes (absorptive and dispersive), we use the usual perturbation method for obtaining the approximate analytical solutions to these coupled optical Bloch equations for the density matrix elements. The interferences between the probability amplitudes for different energy levels (dipole allowed and dipole forbidden) are taken care of. For off-resonance pump positions, the linewidths of the three probe transitions are insensitive to the pump Rabi frequencies. On the other hand, the shifts of the three resonance peaks are extremely sensitive to the pump Rabi frequencies. However, for on-resonance pump conditions, the sensitivities of pump Rabi frequencies on the linewidths of the resonance peaks and on the shifts of the resonance peak positions are opposite to those of their off-resonance counterparts. In particular, we have shown the asymmetric and symmetric Rabi splittings under different physical conditions, for non-zero and near-zero probe detuning, respectively. The Rabi splitting under triple-resonance conditions, significantly, modifies the dispersive lineshape at the centre of the absorption line. The two- and three-photon absorptions are also reported for different off-resonant pump positions.

  6. Characterization of atomic spin polarization lifetime of cesium vapor cells with neon buffer gas

    Science.gov (United States)

    Lou, Janet W.; Cranch, Geoffrey A.

    2018-02-01

    The dephasing time of spin-polarized atoms in an atomic vapor cell plays an important role in determining the stability of vapor-cell clocks as well as the sensitivity of optically-pumped magnetometers. The presence of a buffer gas can extend the lifetime of these atoms. Many vapor cell systems operate at a fixed (often elevated) temperature. For ambient temperature operation with no temperature control, it is necessary to characterize the temperature dependence as well. We present a spin-polarization lifetime study of Cesium vapor cells with different buffer gas pressures, and find good agreement with expectations based on the combined effects of wall collisions, spin exchange, and spin destruction. For our (7.5 mm diameter) vapor cells, the lifetime can be increased by two orders of magnitude by introducing Ne buffer gas up to 100 Torr. Additionally, the dependence of the lifetime on temperature is measured (25 - 47 oC) and simulated for the first time to our knowledge with reasonable agreement.

  7. Mechanical torques generated by optically pumped atomic spin relaxation at surfaces

    International Nuclear Information System (INIS)

    Herman, R.M.

    1982-01-01

    It is argued that a valuable method of observing certain types of surface-atom interactions may lie in mechanical torques generated through the spin-orbit relaxation of valence electronic spins of optically pumped atoms at surfaces. The unusual feature of this phenomenon is that the less probable spin-orbit relaxation becomes highly visible as compared with the much more rapid paramagnetic relaxation, because of an enhancement, typically by as much as a factor 10 9 , in the torques delivered to mechanical structures, by virtue of a very large effective moment arm. Spin-orbit relaxation operates through an exchange of translational momentum which, in turn, can be identified with the delivery of a gigantic angular momentum (in units of h) relative to a distant axis about which mechanical motion is referred. The spin-orbit relaxation strongly depends upon the atomic number of the surface atoms and the strength of interaction with the optically pumped atoms. Being dominated by high-atomic-number surface atoms, spin-orbit relaxation rates may not be too strongly influenced by minor surface contamination of lighter-weight optically active atoms

  8. Mechanical torques generated by optically pumped atomic spin relaxation at surfaces

    Science.gov (United States)

    Herman, R. M.

    1982-03-01

    It is argued that a valuable method of observing certain types of surface-atom interactions may lie in mechanical torques generated through the spin-orbit relaxation of valence electronic spins of optically pumped atoms at surfaces. The unusual feature of this phenomenon is that the less probable spin-orbit relaxation becomes highly visible as compared with the much more rapid paramagnetic relaxation, because of an enhancement, typically by as much as a factor 109, in the torques delivered to mechanical structures, by virtue of a very large effective moment arm. Spin-orbit relaxation operates through an exchange of translational momentum which, in turn, can be identified with the delivery of a gigantic angular momentum (in units of ℏ) relative to a distant axis about which mechanical motion is referred. The spin-orbit relaxation strongly depends upon the atomic number of the surface atoms and the strength of interaction with the optically pumped atoms. Being dominated by high-atomic-number surface atoms, spin-orbit-relaxation rates may not be too strongly influenced by minor surface contamination of lighter-weight optically active atoms.

  9. Shaping of picosecond pulses for pumping optical parametric amplification

    International Nuclear Information System (INIS)

    Fueloep, J.A.; Krausz, F.; Major, Zs.; Horvath, B.

    2006-01-01

    Complete test of publication follows. The use of temporally shaped pump pulses for optical parametric amplification (OPA) is expected to facilitate an increase of efficiency and suppression of possible spectral distortions in this process, since the gain sensitively depends on the pump intensity. Our simulations confirmed such beneficial effect of temporally shaped pump pulses on the OPA process. With the aim to realize an optimized OPA stage pumped by shaped pulses, a novel method for passively shaping narrow band picosecond pulses has been developed. The method is based on the pulse-stacking principle, where replicas of the incoming pulse are created in a specially designed four-beam interferometer. The replicas are recombined with appropriate delays. The interferometer design allows for a unique flexibility in varying the pulse shape, since all relevant degrees of freedom, such as relative intensities and delays between the pulse replicas are independently adjustable. According to our calculations a pulse with a flat-top time profile would provide optimal conditions in the OPA process. Usually the pump pulse needs to be amplified in a conventional laser amplifier prior to the OPA. Our cross-correlation measurements showed that we are able to obtain shaped amplified pulses by shaping the amplifier input. Furthermore, by precompensating the distortions introduced by the amplifier we demonstrated our capability to produce amplified pulses with a flat-top time profile.

  10. Superluminescence from an optically pumped molecular tunneling junction by injection of plasmon induced hot electrons

    Directory of Open Access Journals (Sweden)

    Kai Braun

    2015-05-01

    Full Text Available Here, we demonstrate a bias-driven superluminescent point light-source based on an optically pumped molecular junction (gold substrate/self-assembled molecular monolayer/gold tip of a scanning tunneling microscope, operating at ambient conditions and providing almost three orders of magnitude higher electron-to-photon conversion efficiency than electroluminescence induced by inelastic tunneling without optical pumping. A positive, steadily increasing bias voltage induces a step-like rise of the Stokes shifted optical signal emitted from the junction. This emission is strongly attenuated by reversing the applied bias voltage. At high bias voltage, the emission intensity depends non-linearly on the optical pump power. The enhanced emission can be modelled by rate equations taking into account hole injection from the tip (anode into the highest occupied orbital of the closest substrate-bound molecule (lower level and radiative recombination with an electron from above the Fermi level (upper level, hence feeding photons back by stimulated emission resonant with the gap mode. The system reflects many essential features of a superluminescent light emitting diode.

  11. Optically pumped semiconductor lasers for atomic and molecular physics

    Science.gov (United States)

    Burd, S.; Leibfried, D.; Wilson, A. C.; Wineland, D. J.

    2015-03-01

    Experiments in atomic, molecular and optical (AMO) physics rely on lasers at many different wavelengths and with varying requirements on spectral linewidth, power and intensity stability. Optically pumped semiconductor lasers (OPSLs), when combined with nonlinear frequency conversion, can potentially replace many of the laser systems currently in use. We are developing a source for laser cooling and spectroscopy of Mg+ ions at 280 nm, based on a frequency quadrupled OPSL with the gain chip fabricated at the ORC at Tampere Univ. of Technology, Finland. This OPSL system could serve as a prototype for many other sources used in atomic and molecular physics.

  12. Methods of producing cesium-131

    Science.gov (United States)

    Meikrantz, David H; Snyder, John R

    2012-09-18

    Methods of producing cesium-131. The method comprises dissolving at least one non-irradiated barium source in water or a nitric acid solution to produce a barium target solution. The barium target solution is irradiated with neutron radiation to produce cesium-131, which is removed from the barium target solution. The cesium-131 is complexed with a calixarene compound to separate the cesium-131 from the barium target solution. A liquid:liquid extraction device or extraction column is used to separate the cesium-131 from the barium target solution.

  13. Prospects for a deuterium internal target, tensor polarized by optical pumping: spin exchange

    International Nuclear Information System (INIS)

    Green, M.C.

    1984-01-01

    The prospects for a tensor polarized deuterium target (approx. 10 15 atoms/cm 2 ) appropriate for nuclear physics studies in medium and high energy particle storage rings are discussed. Using the technique of electron spin exchange with an optically pumped sodium (or potassium) vapor, we hope to polarize deuterium at a rate approx. 10 17 atoms/sec. Predictions for the deuterium polarization for a particular target cell design will be presented leading to the identification of the required optical pumping power and cell wall depolarization probability to attain optimum performance. The technical obstacles to be surmounted in such a target design will also be discussed

  14. Wall relaxation rates for an optically pumped NA vapor

    International Nuclear Information System (INIS)

    Swenson, D.R.; Anderson, L.W.

    1986-01-01

    The wall relaxation rates for an optically pumped Na vapor have been measured for a variety of wall surfaces. We find that fluorocarbon rubber (Fluorel, Viton) and organosilicones (silicone rubber, dry film) at a temperature of 250 C have respectively relaxation rates that correspond on the average to 10 to 15 and 200 to 500 bounces before depolarization occurs. 7 refs., 3 figs

  15. Nonlinear effects in optical pumping of a cold and slow atomic beam

    KAUST Repository

    Porfido, N.

    2015-10-12

    By photoionizing hyperfine (HF) levels of the Cs state 62P3/2 in a slow and cold atom beam, we find how their population depends on the excitation laser power. The long time (around 180μs) spent by the slow atoms inside the resonant laser beam is large enough to enable exploration of a unique atom-light interaction regime heavily affected by time-dependent optical pumping. We demonstrate that, under such conditions, the onset of nonlinear effects in the population dynamics and optical pumping occurs at excitation laser intensities much smaller than the conventional respective saturation values. The evolution of population within the HF structure is calculated by numerical integration of the multilevel optical Bloch equations. The agreement between numerical results and experiment outcomes is excellent. All main features in the experimental findings are explained by the occurrence of “dark” and “bright” resonances leading to power-dependent branching coefficients.

  16. Fiber Laser Pumped Continuous-wave Singly-resonant Optical Parametric Oscillator

    NARCIS (Netherlands)

    Klein, M.E.; Gross, P.; Walde, T.; Boller, Klaus J.; Auerbach, M.; Wessels, P.; Fallnich, C.; Fejer, Martin M.

    2002-01-01

    We report on the first fiber-pumped CW LiNbO/sub 3/ optical parametric oscillator (OPO). The OPO is singly resonant (SRO) and generates idler wavelengths in the range of 3.0 /spl mu/m to 3.7 /spl mu/m with a maximum output power of 1.9 watt.

  17. Study of the removal of cesium from aqueous solutions by graphene oxide

    International Nuclear Information System (INIS)

    Bueno, Vanessa N.; Rodrigues, Debora F.; Vitta, Patricia B. Di

    2013-01-01

    Graphene oxide, used in this work, was synthesized from the oxidation of graphite by Hummer method. The experiments were performed in batch and analyzed for the following parameters: contact time, pH, cesium ion concentration in aqueous solution and removing capacity of the graphene oxide. After the experiments the samples were vacuum filtered and the remaining cesium in solution was quantified by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The equilibrium was reached after 60 minutes of contact in neutral solution. The percentage of removal was around 80%

  18. High-power extended cavity laser optimized for optical pumping ot Rb

    Czech Academy of Sciences Publication Activity Database

    Buchta, Zdeněk; Číp, Ondřej; Lazar, Josef

    2007-01-01

    Roč. 18, č. 9 (2007), N77-N80 ISSN 0957-0233 R&D Pro jects: GA ČR GA102/04/2109; GA MŠk(CZ) LC06007; GA AV ČR IAA200650504; GA AV ČR IAA1065303 Institutional research plan: CEZ:AV0Z20650511 Keywords : laser diode * emission linewidth * diffraction grating * optical pumping * spectroscopy Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.297, year: 2007

  19. Progress toward Brazilian cesium fountain second generation

    Science.gov (United States)

    Bueno, Caio; Rodriguez Salas, Andrés; Torres Müller, Stella; Bagnato, Vanderlei Salvador; Varela Magalhães, Daniel

    2018-03-01

    The operation of a Cesium fountain primary frequency standard is strongly influenced by the characteristics of two important subsystems. The first is a stable frequency reference and the second is the frequency-transfer system. A stable standard frequency reference is key factor for experiments that require high accuracy and precision. The frequency stability of this reference has a significant impact on the procedures for evaluating certain systematic biases in frequency standards. This paper presents the second generation of the Brazilian Cesium Fountain (Br-CsF) through the opto-mechanical assembly and vacuum chamber to trap atoms. We used a squared section glass profile to build the region where the atoms are trapped and colled by magneto-optical technique. The opto-mechanical system was reduced to increase stability and robustness. This newest Atomic Fountain is essential to contribute with time and frequency development in metrology systems.

  20. Cesium reservoir and interconnective components

    International Nuclear Information System (INIS)

    1994-03-01

    The program objective is to demonstrate the technology readiness of a TFE (thermionic fuel element) suitable for use as the basic element in a thermionic reactor with electric power output in the 0.5 to 5.0 MW range. A thermionic converter must be supplied with cesium vapor for two reasons. Cesium atoms adsorbed on the surface of the emitter cause a reduction of the emitter work function to permit high current densities without excessive heating of the emitter. The second purpose of the cesium vapor is to provide space-charge neutralization in the emitter-collector gap so that the high current densities may flow across the gap unattenuated. The function of the cesium reservoir is to provide a source of cesium atoms, and to provide a reserve in the event that cesium is lost from the plasma by any mechanism. This can be done with a liquid cesium metal reservoir in which case it is heated to the desired temperature with auxiliary heaters. In a TFE, however, it is desirable to have the reservoir passively heated by the nuclear fuel. In this case, the reservoir must operate at a temperature intermediate between the emitter and the collector, ruling out the use of liquid reservoirs. Integral reservoirs contained within the TFE will produce cesium vapor pressures in the desired range at typical electrode temperatures. The reservoir material that appears to be the best able to meet requirements is graphite. Cesium intercalates easily into graphite, and the cesium pressure is insensitive to loading for a given intercalation stage. The goals of the cesium reservoir test program were to verify the performance of Cs-graphite reservoirs in the temperature-pressure range of interest to TFE operation, and to test the operation of these reservoirs after exposure to a fast neutron fluence corresponding to seven year mission lifetime. In addition, other materials were evaluated for possible use in the integral reservoir

  1. Mineral resource of the month: cesium

    Science.gov (United States)

    Angulo, Marc A.

    2010-01-01

    The article offers information on cesium, a golden alkali metal derived from the Latin word caesium which means bluish gray. It mentions that cesium is the first element discovered with the use of spectroscopy. It adds that the leading producer and supplier of cesium is Canada and there are 50,000 kilograms of cesium consumed of the world in a year. Moreover, it states that only 85% of the cesium formate can be retrieved and recycled.

  2. Continuous-wave Optically Pumped Lasing of Hybrid Perovskite VCSEL at Green Wavelength

    KAUST Repository

    Alias, Mohd Sharizal

    2017-05-08

    We demonstrate the lasing of a perovskite vertical-cavity surface-emitting laser at green wavelengths, which operates under continuous-wave optical pumping at room-temperature by embedding hybrid perovskite between dielectric mirrors deposited at low-temperature.

  3. Continuous-wave Optically Pumped Lasing of Hybrid Perovskite VCSEL at Green Wavelength

    KAUST Repository

    Alias, Mohd Sharizal; Liu, Zhixiong; Alatawi, Abdullah; Ng, Tien Khee; Wu, Tao; Ooi, Boon S.

    2017-01-01

    We demonstrate the lasing of a perovskite vertical-cavity surface-emitting laser at green wavelengths, which operates under continuous-wave optical pumping at room-temperature by embedding hybrid perovskite between dielectric mirrors deposited at low-temperature.

  4. Orientation of Ar(3P2) atoms by laser optical pumping

    International Nuclear Information System (INIS)

    Giberson, K.W.; Hart, M.W.; Hammond, M.S.; Dunning, F.B.; Walters, G.K.

    1984-01-01

    A beam of argon metastable atoms with a high degree of electron-spin polarization has been produced by optical pumping using an Oxazine 750 dye laser. The beam is suitable for the study of electron spin and orbital orientation dependences in a variety of collision processes

  5. RESEARCH OF THERMO-OPTICAL INHOMOGENEITIES IN Yb-Er GLASS AT DIODE PUMPING

    Directory of Open Access Journals (Sweden)

    V. Khramov

    2016-03-01

    Full Text Available Subject of Research. Investigation method of thermo-optical distortions in solid-state lasers was developed and presented. The method can be easily used for research of small diameter (approximately 2 mm active elements. Method. The experimental method described in this paper is based on the registration of deviation of the energy center of the probe beam passing through the thermally stressed active element. Main Results. We have presented experimental results of the thermal lens optical power research in the active element made of Yb-Er glass pumped transversely by a laser diode in the following modes: without generating, free-running and Q-switching. We have submitted obtained dependences of the optical power on the pumping energy. The measurements have been performed for the two polarization components at two wavelengths (632.8 nm and 1550 nm showing the absence of explicit astigmatism of the thermal lens. Practical Relevance. Knowledge of the thermal regime of such lasers gives the possibility for more precise calculation of the resonator parameters in terms of the thermal lens occurrence.

  6. Image transmission in mid-IR using a solid state laser pumped optical parametric oscillator

    Science.gov (United States)

    Prasad, Narasimha S.; Kratovil, Pat; Magee, James R.

    2002-04-01

    In this paper, image transmission using a mid-wave IR (MWIR) optical transceiver based free-space data link under low visibility conditions is presented. The all-solid-state MWIR transceiver primarily consisted of a passively Q-switched, short-pulsed Nd:YAG laser pumping a periodically poled lithium niobate (PPLN) based optical parametric oscillator and a Dember effect detector. The MILES transceiver generates pulse position waveforms. The optical data link consisting of transmitter drive electronics, pulse conditioning electronics and a computer generating pulses compatible with the 2400-baud rate RS232 receiver was utilized. Data formatting and RS232 transmission and reception were achieved using a computer. Data formatting transformed an arbitrary image file format compatible with the basic operation of pump laser. Images were transmitted at a date rate of 2400 kbits/sec with 16 bits/pixel. Test images consisting of 50X40 pixels and 100X80 pixels were transmitted through free-space filled with light fog up to 120 ft. Besides optical parametric oscillators, the proposed concept can be extended to optical parametric amplifiers, Raman lasers and other nonlinear optical devices to achieve multi-functionality.

  7. Cesium in the nutrient cycle. Cesium metsaen ravinnekierrossa marjojen ja sienten cesium ei vaehene

    Energy Technology Data Exchange (ETDEWEB)

    Rantavaara, A

    1992-01-01

    Most radioactive cesium in forests is deposited in soil, from which it passes into berries and mushrooms, and further to game. The cesium contents of Finnish berries and mushrooms vary depending on the intensity of Chernobyl fallout. Northern Haeme, Pirkanmaa and parts of central Finland received the most fallout. Weather conditions and the environmental factors, and other circumstances during the growth period, also affect the contents. However, consumption of wild berries, mushrooms and game need not be restricted because of radioactivity anywhere in Finland.

  8. Continuous-wave optically pumped green perovskite vertical-cavity surface-emitter

    KAUST Repository

    Alias, Mohd Sharizal

    2017-09-11

    We report an optically pumped green perovskite vertical-cavity surface-emitter operating in continuous-wave (CW) with a power density threshold of ~89 kW/cm2. The device has an active region of CH3NH3PbBr3 embedded in a dielectric microcavity; this feat was achieved with a combination of optimal spectral alignment of the optical cavity modes with the perovskite optical gain, an adequate Q-factor of the microcavity, adequate thermal stability, and improved material quality with a smooth, passivated, and annealed thin active layer. Our results signify a way towards efficient CW perovskite emitter operation and electrical injection using low-cost fabrication methods for addressing monolithic optoelectronic integration and lasing in the green gap.

  9. Optical vortex generation from a diode-pumped alexandrite laser

    Science.gov (United States)

    Thomas, G. M.; Minassian, A.; Damzen, M. J.

    2018-04-01

    We present the demonstration of an optical vortex mode directly generated from a diode-pumped alexandrite slab laser, operating in the bounce geometry. This is the first demonstration of an optical vortex mode generated from an alexandrite laser or from any other vibronic laser. An output power of 2 W for a vortex mode with a ‘topological charge’ of 1 was achieved and the laser was made to oscillate with both left- and right-handed vorticity. The laser operated at two distinct wavelengths simultaneously, 755 and 759 nm, due to birefringent filtering in the alexandrite gain medium. The result offers the prospect of broadly wavelength tunable vortex generation directly from a laser.

  10. Intense source of cold cesium atoms based on a two-dimensional magneto–optical trap with independent axial cooling and pushing

    International Nuclear Information System (INIS)

    Huang Jia-Qiang; Wu Chen-Fei; Wang Li-Jun; Yan Xue-Shu; Zhang Jian-Wei

    2016-01-01

    We report our studies on an intense source of cold cesium atoms based on a two-dimensional (2D) magneto–optical trap (MOT) with independent axial cooling and pushing. The new-designed source, proposed as 2D-HP MOT, uses hollow laser beams for axial cooling and a thin pushing laser beam to extract a cold atomic beam. With the independent pushing beam, the atomic flux can be substantially optimized. The total atomic flux maximum obtained in the 2D-HP MOT is 4.02 × 10 10 atoms/s, increased by 60 percent compared to the traditional 2D + MOT in our experiment. Moreover, with the pushing power 10 μW and detuning 0 Γ , the 2D-HP MOT can generate a rather intense atomic beam with the concomitant light shift suppressed by a factor of 20. The axial velocity distribution of the cold cesium beams centers at 6.8 m/s with an FMHW of about 2.8 m/s. The dependences of the atomic flux on the pushing power and detuning are studied in detail. The experimental results are in good agreement with the theoretical model. (paper)

  11. Modeling of the gain distribution for diode pumping of a solid-state laser rod with nonimaging optics.

    Science.gov (United States)

    Koshel, R J; Walmsley, I A

    1993-03-20

    We investigate the absorption distribution in a cylindrical gain medium that is pumped by a source of distributed laser diodes by means of a pump cavity developed from the edge-ray principle of nonimaging optics. The performance of this pumping arrangement is studied by using a nonsequential, numerical, three-dimensional ray-tracing scheme. A figure of merit is defined for the pump cavities that takes into account the coupling efficiency and uniformity of the absorption distribution. It is found that the nonimaging pump cavity maintains a high coupling efficiency with extended two-dimensional diode arrays and obtains a fairly uniform absorption distribution. The nonimaging cavity is compared with two other designs: a close-coupled side-pumped cavity and an imaging design in the form of a elliptical cavity. The nonimaging cavity has a better figure of merit per diode than these two designs. It also permits the use of an extended, sparse, two-dimensional diode array, which reduces thermal loading of the source and eliminates all cavity optics other than the main reflector.

  12. Future directions in 980-nm pump lasers: submarine deployment to low-cost watt-class terrestrial pumps

    Science.gov (United States)

    Gulgazov, Vadim N.; Jackson, Gordon S.; Lascola, Kevin M.; Major, Jo S.; Parke, Ross; Richard, Tim; Rossin, Victor V.; Zhang, Kai

    1999-09-01

    The demands of global bandwidth and distribution are rising rapidly as Internet usage grows. This fundamentally means that more photons are flowing within optical cables. While transmitting sources launches some optical power, the majority of the optical power that is present within modern telecommunication systems originates from optical amplifiers. In addition, modern optical amplifiers offer flat optical gain over broad wavelength bands, thus making possible dense wavelength de-multiplexing (DWDM) systems. Optical amplifier performance, and by extension the performance of the laser pumps that drive them, is central to the future growth of both optical transmission and distribution systems. Erbium-doped amplifiers currently dominate optical amplifier usage. These amplifiers absorb pump light at 980 nm and/or 1480 nm, and achieve gain at wavelengths around 1550 nm. 980 nm pumps achieve better noise figures and are therefore used for the amplification of small signals. Due to the quantum defect, 1480 nm lasers deliver more signal photon per incident photon. In addition, 1480 nm lasers are less expensive than 980 nm lasers. Thus, 1480 nm pump lasers are used for amplification in situations where noise is not critical. The combination of these traits leads to the situation where many amplifiers contain 980 nm lasers to pump the input section of the Er- doped fiber with 1480 nm lasers being used to pump the latter section of Er fiber. This can be thought of as using 980 nm lasers to power an optical pre-amplifier with the power amplification function being pump with 1480 nm radiation. This paper will focus on 980 nm pump lasers and the impact that advances in 980 nm pump technology will have on optical amplification systems. Currently, 980 nm technology is rapidly advancing in two areas, power and reliability. Improving reliability is becoming increasingly important as amplifiers move towards employing more pump lasers and using these pump lasers without redundancy

  13. The laser control system for the TRIUMF optically pumped polarized H- ion source

    International Nuclear Information System (INIS)

    Kadantsev, S.G.; Levy, C.D.P.; Mouat, M.M.

    1994-08-01

    The optically pumped polarized H - ion source at TRIUMF produces up to 100 μΑ dc of 78% polarized beam within an emittance of 1.0 π mm mrad and is now being prepared for an upcoming experiment at TRIUMF that will measure parity violation in pp scattering at 230 MeV. The optical pumping is accomplished by argon laser pumped Ti-sapphire lasers. The laser control system provides monitoring and precision control of the lasers for fast spin reversal up to 200 s -1 . To solve the problems of laser power and frequency stabilization during fast spin flipping, techniques and algorithms have been developed that significantly reduce the variation of laser frequency and power between spin states. The upgraded Faraday rotation system allows synchronous measurement of Rb thickness and polarization while spin flipping. The X Window environment provides both local and remote control to laser operators via a local area network and X window terminals. In this new environment issues such as access authorization, response time, operator interface consistency and ease of use are of particular importance. (author)

  14. Optical pumping of Rb by Ti:Sa laser and high-power laser diode

    Czech Academy of Sciences Publication Activity Database

    Buchta, Zdeněk; Rychnovský, Jan; Lazar, Josef

    2006-01-01

    Roč. 8, č. 1 (2006), s. 350-354 ISSN 1454-4164 R&D Projects: GA AV ČR IAA1065303; GA ČR GA102/04/2109 Institutional research plan: CEZ:AV0Z20650511 Keywords : optical pumping * Ti:Sa laser * laser diode * emission linewidth * spectroscopy * laser frequency stabilization Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.106, year: 2006

  15. Increasing the pump-up rate to polarize 3He gas using spin-exchange optical pumping method

    International Nuclear Information System (INIS)

    Lee, W.T.; Tong Xin; Rich, Dennis; Liu Yun; Fleenor, Michael; Ismaili, Akbar; Pierce, Joshua; Hagen, Mark; Dadras, Jonny; Robertson, J. Lee

    2009-01-01

    In recent years, polarized 3 He gas has increasingly been used as neutron polarizers and polarization analyzers. Two of the leading methods to polarize the 3 He gas are the spin-exchange optical pumping (SEOP) method and the meta-stable exchange optical pumping (MEOP) method. At present, the SEOP setup is comparatively compact due to the fact that it does not require the sophisticated compressor system used in the MEOP method. The temperature and the laser power available determine the speed, at which the SEOP method polarizes the 3 He gas. For the quantity of gas typically used in neutron scattering work, this speed is independent of the quantity of the gas required, whereas the polarizing time using the MEOP method is proportional to the quantity of gas required. Currently, using the SEOP method to polarize several bar-liters of 3 He to 70% polarization would require 20-40 h. This is an order of magnitude longer than the MEOP method for the same quantity of gas and polarization. It would therefore be advantageous to speed up the SEOP process. In this article, we analyze the requirements for temperature, laser power, and the type of alkali used in order to shorten the time required to polarize 3 He gas using the SEOP method.

  16. 110 GHz rapid, continous tuning from an optical parametric oscillator pumped by a fiber-amplified DBR diode laser

    NARCIS (Netherlands)

    Lindsay, I.D.; Adhimoolam, B.; Gross, P.; Klein, M.E.; Boller, Klaus J.

    2005-01-01

    A singly-resonant continuous-wave optical parametric oscillator (cw-OPO) pumped by a fiber-amplified diode laser is described. Tuning of the pump source allowed the OPO output to be tuned continuously, without mode-hops, over 110 GHz in 29 ms. Discontinuous pump tuning over 20 nm in the region of

  17. Design of three-well indirect pumping terahertz quantum cascade lasers for high optical gain based on nonequilibrium Green's function analysis

    Science.gov (United States)

    Liu, Tao; Kubis, Tillmann; Jie Wang, Qi; Klimeck, Gerhard

    2012-03-01

    The nonequilibrium Green's function approach is applied to the design of three-well indirect pumping terahertz (THz) quantum cascade lasers (QCLs) based on a resonant phonon depopulation scheme. The effects of the anticrossing of the injector states and the dipole matrix element of the laser levels on the optical gain of THz QCLs are studied. The results show that a design that results in a more pronounced anticrossing of the injector states will achieve a higher optical gain in the indirect pumping scheme compared to the traditional resonant-tunneling injection scheme. This offers in general a more efficient coherent resonant-tunneling transport of electrons in the indirect pumping scheme. It is also shown that, for operating temperatures below 200 K and low lasing frequencies, larger dipole matrix elements, i.e., vertical optical transitions, offer a higher optical gain. In contrast, in the case of high lasing frequencies, smaller dipole matrix elements, i.e., diagonal optical transitions are better for achieving a higher optical gain.

  18. Fine structure and optical pumping of spins in individual semiconductor quantum dots

    Science.gov (United States)

    Bracker, Allan S.; Gammon, Daniel; Korenev, Vladimir L.

    2008-11-01

    We review spin properties of semiconductor quantum dots and their effect on optical spectra. Photoluminescence and other types of spectroscopy are used to probe neutral and charged excitons in individual quantum dots with high spectral and spatial resolution. Spectral fine structure and polarization reveal how quantum dot spins interact with each other and with their environment. By taking advantage of the selectivity of optical selection rules and spin relaxation, optical spin pumping of the ground state electron and nuclear spins is achieved. Through such mechanisms, light can be used to process spins for use as a carrier of information.

  19. Fine structure and optical pumping of spins in individual semiconductor quantum dots

    International Nuclear Information System (INIS)

    Bracker, Allan S; Gammon, Daniel; Korenev, Vladimir L

    2008-01-01

    We review spin properties of semiconductor quantum dots and their effect on optical spectra. Photoluminescence and other types of spectroscopy are used to probe neutral and charged excitons in individual quantum dots with high spectral and spatial resolution. Spectral fine structure and polarization reveal how quantum dot spins interact with each other and with their environment. By taking advantage of the selectivity of optical selection rules and spin relaxation, optical spin pumping of the ground state electron and nuclear spins is achieved. Through such mechanisms, light can be used to process spins for use as a carrier of information

  20. Sun-pumped lasers: revisiting an old problem with nonimaging optics.

    Science.gov (United States)

    Cooke, D

    1992-12-20

    The techniques of nonimaging optics have permitted the production of a world-record intensity of sunlight, 72 W/mm(2), by using a sapphire concentrator. Such an intensity exceeds the intensity of light at the surface of the Sun itself (63 W/mm(2)) by 15% and may have useful applications in pumping lasers, which require high intensities of light to function. The author describes the production of high-intensity sunlight and reports its application in generating over 3 W of laser power from a 72.5-cm-diameter telescope mirror at an efficiency exceeding that typically attained in approaches not involving nonimaging optics.

  1. Cesium transport data for HTGR systems

    International Nuclear Information System (INIS)

    Myers, B.F.; Bell, W.E.

    1979-09-01

    Cesium transport data on the release of cesium from HTGR fuel elements are reviewed and discussed. The data available through 1976 are treated. Equations, parameters, and associated variances describing the data are presented. The equations and parameters are in forms suitable for use in computer codes used to calculate the release of metallic fission products from HTGR fuel elements into the primary circuit. The data cover the following processes: (1) diffusion of cesium in fuel kernels and pyrocarbon, (2) sorption of cesium on fuel rod matrix material and on graphite, and (3) migration of cesium in graphite. The data are being confirmed and extended through work in progress

  2. Amplified spontaneous emission of an end-pumped cesium vapor laser

    International Nuclear Information System (INIS)

    An, Guofei; Wang, You; Cai, He; Han, Juhong; Wang, Shunyan; Rong, Kepeng; Yu, Hang; Xue, Liangping; Zhang, Wei; Wang, Hongyuan; Zhou, Jie

    2017-01-01

    Diode pumped alkali lasers (DPALs) provide a significant potential for construction of high-powered lasers. A series of models have been established to analyze the DPAL’s kinetic process and most of them are based on the algorithms in which the amplified spontaneous emission (ASE) effect has not been considered. However, ASE is harmful in realization of a high-powered DPAL since the gain is very high. Usually, ASE becomes serious when the volume of the gain medium is large and the pump power is high. Basically, the conclusions we obtained in this study can be extended to other kinds of laser configurations. (paper)

  3. Highly Efficient Optical Pumping of Spin Defects in Silicon Carbide for Stimulated Microwave Emission

    Science.gov (United States)

    Fischer, M.; Sperlich, A.; Kraus, H.; Ohshima, T.; Astakhov, G. V.; Dyakonov, V.

    2018-05-01

    We investigate the pump efficiency of silicon-vacancy-related spins in silicon carbide. For a crystal inserted into a microwave cavity with a resonance frequency of 9.4 GHz, the spin population inversion factor of 75 with the saturation optical pump power of about 350 mW is achieved at room temperature. At cryogenic temperature, the pump efficiency drastically increases, owing to an exceptionally long spin-lattice relaxation time exceeding one minute. Based on the experimental results, we find realistic conditions under which a silicon carbide maser can operate in continuous-wave mode and serve as a quantum microwave amplifier.

  4. Development program for magnetically assisted chemical separation: Evaluation of cesium removal from Hanford tank supernatant

    International Nuclear Information System (INIS)

    Nunez, L.; Buchholz, B.A.; Ziemer, M.; Dyrkacz, G.; Kaminski, M.; Vandegrift, G.F.; Atkins, K.J.; Bos, F.M.; Elder, G.R.; Swift, C.A.

    1994-12-01

    Magnetic particles (MAG*SEP SM ) coated with various absorbents were evaluated for the separation and recovery of low concentrations of cesium from nuclear waste solutions. The MAG*SEP SM particles were coated with (1) clinoptilolite, (2) transylvanian volcanic tuff, (3) resorcinol formaldehyde, and (4) crystalline silico-titanate, and then were contacted with a Hanford supernatant simulant. Particles coated with the crystalline silico-titanate were identified by Bradtec as having the highest capacity for cesium removal under the conditions tested (variation of pH, ionic strength, cesium concentration, and absorbent/solution ratio). The MAG*SEP SM particles coated with resorcinol formaldehyde had high distribution ratios values and could also be used to remove cesium from Hanford supernant simulant. Gamma irradiation studies were performed on the MAG*SEP SM particles with a gamma dose equivalent to 100 cycles of use. This irradiation decreased the loading capacity and distribution ratios for the particles by greater than 75%. The particles demonstrated high sensitivity to radiolytic damage due to the degradation of the polymeric regions. These results were supported by optical microscopy measurements. Overall, use of magnetic particles for cesium separation under nuclear waste conditions was found to be marginally effective

  5. Extraction of radioactive cesium from tea leaves

    International Nuclear Information System (INIS)

    Yano, Yukiko; Kubo, M. Kenya; Higaki, Shogo; Hirota, Masahiro; Nomura, Kiyoshi

    2011-01-01

    Radioactive contamination of foodstuffs attributed to the Fukushima Daiichi nuclear disaster has become a social problem. This study investigated the extraction of radioactive cesium from the contaminated leaves to the tea. The green tea was brewed twice reusing the same leaves to study the difference in extraction of cesium between the first and second brew. Moreover, the extraction of cesium was studied in correlation to brewing time. The concentration of radioactive cesium was determined with gamma spectrometry, and the concentration of caffeine was determined with absorption spectrometry. About 40% of cesium was extracted from leaves in the first brew, and about 80% was extracted in the second brew. The extraction of cesium increased over time, and it reached about 80% after 10 minutes brew. The ratio of radioactive cesium to caffeine decreased linearly over time. This study revealed that the extraction of cesium was higher for the second brew, and a rapid increase in extraction was seen as the tea was brewed for 6 minutes and more. Therefore, the first brew of green tea, which was brewed within 5 minutes, contained the least extraction of radioactive cesium from the contaminated leaves. (author)

  6. Solid and liquid 129Xe NMR signals enhanced by spin-exchange optical pumping under flow

    International Nuclear Information System (INIS)

    Zhou Xin; Luo Jun; Sun Xianping; Zeng Xizhi; Liu Maili; Liu Wuyang

    2002-01-01

    Laser-polarized 129 Xe gas was produced by spin-exchange with Cs atom optically pumped with diode laser array in a low field under flow. The nuclear spin polarizations of the solid and liquid 129 Xe frozen from the laser-polarized 129 Xe gas were 2.16% and 1.45% respectively in the SY-80M NMR spectrometer, which corresponded to the enhancements of 6000 and 5000 compared to those without optical pumping under the same conditions. It could provide the base and possibility for quantum computers using laser-enhanced solid and liquid 129 Xe. Polarization loss of transport and state change was also discussed

  7. Rapidly tunable continuous-wave optical parametric oscillator pumped by a fiber laser

    NARCIS (Netherlands)

    Klein, M.E.; Gross, P.; Boller, Klaus J.; Auerbach, M.; Wessels, P.; Fallnich, C.

    2003-01-01

    We report on rapid, all-electronically controlled wavelength tuning of a continuous-wave (cw) optical parametric oscillator (OPO) pumped by an ytterbium fiber laser. The OPO is singly resonant for the signal wave and consists of a 40-mm-long periodically poled lithium niobate crystal in a

  8. High efficiency and good beam quality of electro-optic, cavity-dumped and double-end pumped Nd:YLF laser

    Science.gov (United States)

    Tang, X. X.; Fan, Z. W.; Qiu, J. S.; Lian, F. Q.; Zhang, X. L.

    2012-06-01

    In this paper, we describe a Nd:YLF laser based on high-speed RTP electro-optical cavity dumping technique. Two home-made 150 W fiber pump modules are used from both sides to pump Nd:YLF crystal. Coupling systems are the key elements in end-pumped solid-state lasers, the aberrations of which greatly affect the efficiency of the lasers. In order to get high efficient and good quality laser output, the optical software ZEMAX is used to design a four-piece coupling system. When the pumped energy is 32 mJ at the repetition rate of 1 Hz, the output energy is 6.5 mJ with 2.5 ns pulse width. When the pumped energy is 13.1 W at the repetition rate of 200 Hz, the output energy is 2.2 W with small M 2 factor where M {/x 2} is 1.04, and M {/y 2} is 1.05, and the light-light conversion efficiency is up to 16.8%.

  9. Note: Spin-exchange optical pumping in a van

    Energy Technology Data Exchange (ETDEWEB)

    Chauvin, C.; Liagre, L. [SB2SM, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif sur Yvette (France); Boutin, C.; Mari, E.; Léonce, E.; Carret, G.; Coltrinari, B.; Berthault, P., E-mail: patrick.berthault@cea.fr [NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette (France)

    2016-01-15

    The advent of spin-hyperpolarization techniques designed to overcome the sensitivity issue of nuclear magnetic resonance owing to polarization transfer from more ordered systems has recently raised great enthusiasm. However, the out-of-equilibrium character of the polarization requires a close proximity between the area of production and the site of use. We present here a mobile spin-exchange optical pumping setup that enables production of laser-polarized noble gases in a standalone mode, in close proximity to hospitals or research laboratories. Only compressed air and mains power need to be supplied by the host laboratory.

  10. Simplified approach for quantitative calculations of optical pumping

    International Nuclear Information System (INIS)

    Atoneche, Fred; Kastberg, Anders

    2017-01-01

    We present a simple and pedagogical method for quickly calculating optical pumping processes based on linearised population rate equations. The method can easily be implemented on mathematical software run on modest personal computers, and can be generalised to any number of concrete situations. We also show that the method is still simple with realistic experimental complications taken into account, such as high level degeneracy, impure light polarisation, and an added external magnetic field. The method and the associated mathematical toolbox should be of value in advanced physics teaching, and can also facilitate the preparation of research tasks. (paper)

  11. The TRIUMF optically-pumped polarized H- ion source

    International Nuclear Information System (INIS)

    Levy, C.D.P.; Jayamanna, K.; McDonald, M.; Schmor, P.W.; Van Oers, W.T.H.; Welz, J.; Wight, G.W.; Dutto, G.; Zelenski, A.N.; Sakae, T.

    1995-09-01

    The TRIUMF dc optically-pumped polarized H - ion source (OPPIS) produces 200 μA dc H - current at 85% polarization within a normalized emittance (90%) of 0.8 π mm mrad, for operations at the TRIUMF cyclotron. As a result of development of the ECR primary proton source, 1.6 mA dc polarized H - current is produced within a normalized emittance of 2 π mm mrad, suitable for high energy accelerators. The OPPIS has also been developed for use in a parity non-conservation experiment which has very severe limits on permissible helicity-correlated changes in beam current and energy. (author)

  12. The TRIUMF optically-pumped polarized H- ion source

    International Nuclear Information System (INIS)

    Levy, C.D.P.; Jayamanna, K.; McDonald, M.

    1995-09-01

    The TRIUMF dc optically-pumped polarized H - ion source (OPPIS) produces 200 microA dc H - current at 85% polarization within a normalized emittance (90%) of 0.8 π mm mrad, for operations at the TRIUMF cyclotron. As a result of development of the ECR primary proton source, 1.6 mA dc polarized H - current is produced within a normalized emittance of 2 π mm mrad, suitable for high energy accelerators. The OPPIS has also been developed for use in a parity non-conservation experiment which has very severe limits on permissible helicity-correlated changes in beam current and energy

  13. Simplified approach for quantitative calculations of optical pumping

    Science.gov (United States)

    Atoneche, Fred; Kastberg, Anders

    2017-07-01

    We present a simple and pedagogical method for quickly calculating optical pumping processes based on linearised population rate equations. The method can easily be implemented on mathematical software run on modest personal computers, and can be generalised to any number of concrete situations. We also show that the method is still simple with realistic experimental complications taken into account, such as high level degeneracy, impure light polarisation, and an added external magnetic field. The method and the associated mathematical toolbox should be of value in advanced physics teaching, and can also facilitate the preparation of research tasks.

  14. Pulsed-diode-pumped, all-solid-state, electro-optically controlled picosecond Nd:YAG lasers

    International Nuclear Information System (INIS)

    Gorbunkov, Mikhail V; Shabalin, Yu V; Konyashkin, A V; Kostryukov, P V; Olenin, A N; Tunkin, V G; Morozov, V B; Rusov, V A; Telegin, L S; Yakovlev, D V

    2005-01-01

    The results of the development of repetitively pulsed, diode-pumped, electro-optically controlled picosecond Nd:YAG lasers of two designs are presented. The first design uses the active-passive mode locking with electro-optical lasing control and semiconductor saturable absorber mirrors (SESAM). This design allows the generation of 15-50-ps pulses with an energy up to 0.5 mJ and a maximum pulse repetition rate of 100 Hz. The laser of the second design generates 30-ps pulses due to combination of positive and negative electro-optical feedback and the control of the electro-optical modulator by the photocurrent of high-speed semiconductor structures. (active media. lasers)

  15. Synchronously pumped optical parametric oscillation in periodically poled lithium niobate with 1-W average output power

    NARCIS (Netherlands)

    Graf, T.; McConnell, G.; Ferguson, A.I.; Bente, E.A.J.M.; Burns, D.; Dawson, M.D.

    1999-01-01

    We report on a rugged all-solid-state laser source of near-IR radiation in the range of 1461–1601 nm based on a high-power Nd:YVO4 laser that is mode locked by a semiconductor saturable Bragg reflector as the pump source of a synchronously pumped optical parametric oscillator with a periodically

  16. Comparing laser induced plasmas formed in diode and excimer pumped alkali lasers.

    Science.gov (United States)

    Markosyan, Aram H

    2018-01-08

    Lasing on the D 1 transition (6 2 P 1/2 → 6 2 S 1/2 ) of cesium can be reached in both diode and excimer pumped alkali lasers. The first uses D 2 transition (6 2 S 1/2 → 6 2 P 3/2 ) for pumping, whereas the second is pumped by photoexcitation of ground state Cs-Ar collisional pairs and subsequent dissociation of diatomic, electronically-excited CsAr molecules (excimers). Despite lasing on the same D 1 transition, differences in pumping schemes enables chemical pathways and characteristic timescales unique for each system. We investigate unavoidable plasma formation during operation of both systems side by side in Ar/C 2 H 6 /Cs.

  17. Relaxed damage threshold intensity conditions and nonlinear increase in the conversion efficiency of an optical parametric oscillator using a bi-directional pump geometry.

    Science.gov (United States)

    Norris, G; McConnell, G

    2010-03-01

    A novel bi-directional pump geometry that nonlinearly increases the nonlinear optical conversion efficiency of a synchronously pumped optical parametric oscillator (OPO) is reported. This bi-directional pumping method synchronizes the circulating signal pulse with two counter-propagating pump pulses within a linear OPO resonator. Through this pump scheme, an increase in nonlinear optical conversion efficiency of 22% was achieved at the signal wavelength, corresponding to a 95% overall increase in average power. Given an almost unchanged measured pulse duration of 260 fs under optimal performance conditions, this related to a signal wavelength peak power output of 18.8 kW, compared with 10 kW using the traditional single-pass geometry. In this study, a total effective peak intensity pump-field of 7.11 GW/cm(2) (corresponding to 3.55 GW/cm(2) from each pump beam) was applied to a 3 mm long periodically poled lithium niobate crystal, which had a damage threshold intensity of 4 GW/cm(2), without impairing crystal integrity. We therefore prove the application of this novel pump geometry provides opportunities for power-scaling of synchronously pumped OPO systems together with enhanced nonlinear conversion efficiency through relaxed damage threshold intensity conditions.

  18. Process for cesium decontamination and immobilization

    Science.gov (United States)

    Komarneni, Sridhar; Roy, Rustum

    1989-01-01

    Cesium can be selectively recovered from a nuclear waste solution containing cesium together with other metal ions by contact with a modified phlogopite which is a hydrated, sodium phlogopite mica. Once the cesium has entered the modified phlogopite it is fixed and can be safely stored for long periods of time.

  19. Decorporation of cesium-137; Decorporation du cesium-137

    Energy Technology Data Exchange (ETDEWEB)

    Le Fleche, Ph; Destombe, C; Grasseau, A; Mathieu, J; Chancerelle, Y; Mestries, J C [GMR, Direction des Recherches, Etudes et Techniques, 94 - Arcueil (France)

    1998-12-31

    Cesium radio-isotopes, especially cesium-137 ({sup 137}Cs) are among the radionuclides of main importance produced by a fission reaction in reactor or a nuclear weapon explosion. In the environment, {sup 137}Cs is a major contaminant which can cause severe {beta}, {gamma}irradiations and contaminations. {sup 137}Cs is distributed widely and relatively uniformly throughout the body with the highest concentration in skeletal muscles. A treatment becomes difficult afterwards. The purposes of this report are Firstly to compare the Prussian blue verses cobalt and potassium ferrocyanide (D.I. blue) efficiency for the {sup 137}Cs decorporation and secondly to assess a chronological treatment with D.I. blue. (author)

  20. Decorporation of cesium-137; Decorporation du cesium-137

    Energy Technology Data Exchange (ETDEWEB)

    Le Fleche, Ph.; Destombe, C.; Grasseau, A.; Mathieu, J.; Chancerelle, Y.; Mestries, J.C. [GMR, Direction des Recherches, Etudes et Techniques, 94 - Arcueil (France)

    1997-12-31

    Cesium radio-isotopes, especially cesium-137 ({sup 137}Cs) are among the radionuclides of main importance produced by a fission reaction in reactor or a nuclear weapon explosion. In the environment, {sup 137}Cs is a major contaminant which can cause severe {beta}, {gamma}irradiations and contaminations. {sup 137}Cs is distributed widely and relatively uniformly throughout the body with the highest concentration in skeletal muscles. A treatment becomes difficult afterwards. The purposes of this report are Firstly to compare the Prussian blue verses cobalt and potassium ferrocyanide (D.I. blue) efficiency for the {sup 137}Cs decorporation and secondly to assess a chronological treatment with D.I. blue. (author)

  1. Removal of cesium using coconut fiber in raw and modified forms for the treatment of radioactive liquid wastes

    International Nuclear Information System (INIS)

    Jesus, Nella N.M. de; Nobre, Vanessa B.; Potiens Junior, Ademar J.; Sakata, Solange K.; Di Vitta, Patricia B.

    2013-01-01

    Sorption is one of the most studied methods to reduce the volume of radioactive waste streams. Cesium-137 is a radioisotope formed by the fission of uranium and it can cause health problems due to its easy assimilation by cells. The aim of this study is to evaluate the potential of coconut fiber in removing cesium from radioactive liquid wastes; this process can help in disposing radioactive waste. The experiments were performed in batch and the particle size of the fiber ranged between 0.30 mm and 0.50 mm. The fiber was treated with hydrogen peroxide in alkaline medium. The following parameters were analyzed: contact time, pH and concentration of cesium ions in aqueous solution. After the experiments the samples were filtered and cesium remaining in solution was quantified by inductively coupled plasma optical emission spectrometry. (author)

  2. Removal of cesium using coconut fiber in raw and modified forms for the treatment of radioactive liquid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Jesus, Nella N.M. de; Nobre, Vanessa B.; Potiens Junior, Ademar J.; Sakata, Solange K., E-mail: sksakata@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Di Vitta, Patricia B. [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Quimica

    2013-07-01

    Sorption is one of the most studied methods to reduce the volume of radioactive waste streams. Cesium-137 is a radioisotope formed by the fission of uranium and it can cause health problems due to its easy assimilation by cells. The aim of this study is to evaluate the potential of coconut fiber in removing cesium from radioactive liquid wastes; this process can help in disposing radioactive waste. The experiments were performed in batch and the particle size of the fiber ranged between 0.30 mm and 0.50 mm. The fiber was treated with hydrogen peroxide in alkaline medium. The following parameters were analyzed: contact time, pH and concentration of cesium ions in aqueous solution. After the experiments the samples were filtered and cesium remaining in solution was quantified by inductively coupled plasma optical emission spectrometry. (author)

  3. Toward power scaling in an acetylene mid-infrared hollow-core optical fiber gas laser: effects of pressure, fiber length, and pump power

    Science.gov (United States)

    Weerasinghe, H. W. Kushan; Dadashzadeh, Neda; Thirugnanasambandam, Manasadevi P.; Debord, Benoît.; Chafer, Matthieu; Gérôme, Frédéric; Benabid, Fetah; Corwin, Kristan L.; Washburn, Brian R.

    2018-02-01

    The effect of gas pressure, fiber length, and optical pump power on an acetylene mid-infrared hollow-core optical fiber gas laser (HOFGLAS) is experimentally determined in order to scale the laser to higher powers. The absorbed optical power and threshold power are measured for different pressures providing an optimum pressure for a given fiber length. We observe a linear dependence of both absorbed pump energy and lasing threshold for the acetylene HOFGLAS, while maintaining a good mode quality with an M-squared of 1.15. The threshold and mode behavior are encouraging for scaling to higher pressures and pump powers.

  4. Thermally induced optical deformation of a Nd:YVO4 active disk under the action of multi-beam spatially periodic diode pumping

    Science.gov (United States)

    Guryev, D. A.; Nikolaev, D. A.; Tsvetkov, V. B.; Shcherbakov, I. A.

    2018-05-01

    A study of how the transverse distribution of an optical path changes in a Nd:YVO4 active disk was carried out in a ten-beam spatially periodic diode pumping in the one-dimensional case. The pumping beams’ transverse dimensions were comparable with the distances between them. The investigations were carried out using laser interferometry methods. It was found that the optical thickness changing in the active disk along the line of pumping spots was well described by a Gaussian function.

  5. Process for cesium decontamination and immobilization

    Science.gov (United States)

    Komarneni, S.; Roy, R.

    1988-04-25

    Cesium can be selectively recovered from a nuclear waste solution containing cesium together with other metal ions by contact with a modified phlogopite which is a hydrated, sodium phlogopite mica. Once the cesium has entered the modified phlogopite it is fixed and can be safely stored for long periods of time. 6 figs., 2 tabs.

  6. Method for primary containment of cesium wastes

    International Nuclear Information System (INIS)

    Angelini, P.; Arnold, W.D.; Blanco, R.E.; Bond, W.D.; Lackey, W.J.; Stinton, D.P.

    1983-01-01

    A method for producing a cesium-retentive waste form, characterized by a high degree of compositional stability and mechanical integrity, is provided by subjecting a cesium-loaded zeolite to heat under conditions suitable for stabilizing the zeolite and immobilizing the cesium, and coating said zeolite for sufficient duration within a suitable environment with at least one dense layer of pyrolytic carbon to seal therein said cesium to produce a final, cesium-bearing waste form. Typically, the zeolite is stabilized and the cesium immobilized in less than four hours by confinement within an air environment maintained at about 600 0 C. Coatings are thereafter applied by confining the calcined zeolite within a coating environment comprising inert fluidizing and carbon donor gases maintained at 1,000* C. For a suitable duration

  7. Optical-response properties in an atom-assisted optomechanical system with a mechanical pump

    Science.gov (United States)

    Sun, Xue-Jian; Chen, Hao; Liu, Wen-Xiao; Li, Hong-Rong

    2017-05-01

    We investigate the optical-response properties of a coherent-mechanical pumped optomechanical system (OMS) coupled to a Λ-type three-level atomic ensemble. Due to the optomechanical and the cavity-atom couplings, the optomechanically induced transparency (OMIT) and electromagnetically induced transparency (EIT) phenomena could both be observed from our proposal. In the presence of a coherent mechanical pump, we show that the OMIT behavior of the probe field exhibits a phase-dependent effect, leading to the switch from OMIT to optomechanically induced absorption or amplification, while the feature of EIT remains unchanged. The distinctly different effects of the mechanical pump on OMIT and EIT behavior assure us that the absorption (amplification) and transparency of the output probe field can be simultaneously observed. Moreover, a tunable switch from slow to fast light can also be realized by tuning the phase and amplitude of the mechanical pump. In particular, the presence of the atomic ensemble can further adjust the group delay, providing additional flexibility for achieving the tunable switch.

  8. Recent results of the pulsed optically pumped rubidium clock

    Science.gov (United States)

    Levi, F.; Micalizio, S.; Godone, A.; Calosso, C.; Bertacco, E.

    2017-11-01

    A laboratory prototype of a pulsed optically pumped (POP) clock based on a rubidium cell with buffer gas is described. This clock has shown very interesting physical and metrological features, such as negligible light-shift, strongly reduced cavity-pulling and very good frequency stability. In this regard, an Allan deviation of σy(τ) = 1.2 τ-1/2 for measurement times up to τ = 105 s has been measured. These results confirm the interesting perspectives of such a frequency standard and make it very attractive for several technological applications, such as radionavigation.

  9. Research and development on optically pumped polarized ion sources. Technical progress report, July 1, 1985-June 30, 1986

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1986-07-01

    The development of an optically pumped polarized 23 Na target is discussed. The three categories of research are: (1) electron spin relaxation of the 23 Na due to wall collisions; (2) effects of radiation trapping on the polarization that can be produced in an alkali target by optical pumping; and (3) the effects of spin exchange collisions in the polarization of a fast H 0 beam formed by charge transfer as an H + beam passes through a polarized alkali target. 90 refs., 7 figs

  10. Initial operating experience and recent development on the TRIUMF optically pumped polarized H- ion source

    International Nuclear Information System (INIS)

    Schmor, P.W.; Law, W.M.; Levy, C.D.P.; McDonald, M.

    1988-01-01

    A polarized H - ion source using optical pumping techniques has been developed at TRIUMF. This source was used to demonstrate (on an ion source test stand) the feasibility of producing 10- μA of ∼ 60% polarized H - ion beam in a dc mode suitable for injection into the TRIUMF cyclotron. The source has been installed in a 300 kV high voltage terminal connected to the cyclotron via a recently constructed beam transport line. A polarization of 80% is anticipated near the end of 1988 after the installation of a superconducting solenoid to the source. In this paper the authors describe the initial operating experience, recent developments, and the future plans for the TRIUMF optically pumped polarized ion source

  11. Management of cesium loaded AMP- Part I preparation of 137Cesium concentrate and cementation of secondary wastes

    International Nuclear Information System (INIS)

    Singh, I.J.; Sathi Sasidharan, N.; Yalmali, Vrunda S.; Deshingkar, D.S.; Wattal, P.K.

    2005-11-01

    Separation of 137 cesium from High Level Waste can be achieved by use of composite-AMP, an engineered form of Ammonium Molybdo-Phosphate(AMP). Direct vitrification of cesium loaded composite AMP in borosilicate glass matrix leads to separation of water soluble molybdate phase. A proposed process describes two different routes of selective separation of molybdates and phosphate to obtain solutions of cesium concentrates. Elution of 137 Cesium from composite-AMP by decomposing it under flow conditions using saturated barium hydroxide was investigated. This method leaves molybdate and phosphate embedded in the column but only 70% of total cesium loaded on column could be eluted. Alternatively composite-AMP was dissolved in sodium hydroxide and precipitation of barium molybdate-phosphate from the resultant solution, using barium nitrate was investigated by batch methods. The precipitation technique gave over 99.9% of 137 Cesium activity in solutions, free of molybdates and phosphates, which is ideally suited for immobilization in borosilicate glass matrix. Detailed studies were carried out to immobilize secondary waste of 137 Cesium contaminated barium molybdate-phosphate precipitates in the slag cement matrix using vermiculite and bentonite as admixtures. The cumulative fraction of 137 Cs leached from the cement matrix blocks was 0.05 in 140 days while the 137 Cs leach rate was 0.001 gm/cm 2 /d. (author)

  12. Cesium Concentration in MCU Solvent

    International Nuclear Information System (INIS)

    Walker, D

    2006-01-01

    During Modular Caustic-Side Solvent Extraction (CSSX) Unit (MCU) operations, Cs-137 concentrations in product streams will vary depending on the location in the process and on the recent process conditions. Calculations of cesium concentrations under a variety of operating conditions reveal the following: (1) Under nominal operations with salt solution feed containing 1.1 Ci Cs-137 per gallon, the maximum Cs-137 concentration in the process will occur in the strip effluent (SE) and equal 15-16.5 Ci/gal. (2) Under these conditions, the majority of the solvent will contain 0.005 to 0.01 Ci/gal, with a limited portion of the solvent in the contactor stages containing ∼4 Ci/gal. (3) When operating conditions yield product near 0.1 Ci Cs-137/gal in the decontaminated salt solution (DSS), the SE cesium concentration will be the same or lower than in nominal operations, but majority of the stripped solvent will increase to ∼2-3 Ci/gal. (4) Deviations in strip and waste stream flow rates cause the largest variations in cesium content: (a) If strip flow rates deviate by -30% of nominal, the SE will contain ∼23 Ci/gal, although the cesium content of the solvent will increase to only 0.03 Ci/gal; (b) If strip flow rate deviates by -77% (i.e., 23% of nominal), the SE will contain 54 Ci/gal and solvent will contain 1.65 Ci/gal. At this point, the product DSS will just reach the limit of 0.1 Ci/gal, causing the DSS gamma monitors to alarm; and (c) Moderate (+10 to +30%) deviations in waste flow rate cause approximately proportional increases in the SE and solvent cesium concentrations. Recovery from a process failure due to poor cesium stripping can achieve any low cesium concentration required. Passing the solvent back through the contactors while recycling DSS product will produce a ∼70% reduction during one pass through the contactors (assuming the stripping D value is no worse than 0.36). If the solvent is returned to the solvent hold tank (containing additional

  13. Spin-spin cross relaxation and spin-Hamiltonian spectroscopy by optical pumping of Pr/sup 3+/:LaF3

    International Nuclear Information System (INIS)

    Lukac, M.; Otto, F.W.; Hahn, E.L.

    1989-01-01

    We report the observation of an anticrossing in solid-state laser spectroscopy produced by cross relaxation. Spin-spin cross relaxation between the /sup 141/Pr- and /sup 19/F-spin reservoirs in Pr/sup 3+/:LaF 3 and its influence on the /sup 141/Pr NMR spectrum is detected by means of optical pumping. The technique employed combines optical pumping and hole burning with either external magnetic field sweep or rf resonance saturation in order to produce slow transient changes in resonant laser transmission. At a certain value of the external Zeeman field, where the energy-level splittings of Pr and F spins match, a level repulsion and discontinuity of the Pr/sup 3+/ NMR lines is observed. This effect is interpreted as the ''anticrossing'' of the combined Pr-F spin-spin reservoir energy states. The Zeeman-quadrupole-Hamiltonian spectrum of the hyperfine optical ground states of Pr/sup 3+/:LaF 3 is mapped out over a wide range of Zeeman magnetic fields. A new scheme is proposed for dynamic polarization of nuclei by means of optical pumping, based on resonant cross relaxation between rare spins and spin reservoirs

  14. Cesium removal and kinetics equilibrium: Precipitation kinetics

    International Nuclear Information System (INIS)

    Barnes, M.J.

    1999-01-01

    This task consisted of both non-radioactive and radioactive (tracer) tests examining the influence of potentially significant variables on cesium tetraphenylborate precipitation kinetics. The work investigated the time required to reach cesium decontamination and the conditions that affect the cesium precipitation kinetics

  15. Radiochemical determination of cesium-137 in seawater

    International Nuclear Information System (INIS)

    Cunha, I.I.L.; Munita, C.S.; Paiva, R.P.

    1990-01-01

    Seawater samples were collected from the Atlantic Ocean, in the vicinity of Ubatuba (Sao Paulo State - Brazil), acidified to pH 1 and stored in polyethylene containers. Cesium was precipitated with ammonium phospho molybdate (AMP), synthesized in our laboratory. The elements potassium and rubidium present in the seawater are also coprecipitated by AMP and adequate decontamination of the cesium is made by preparing a column by mixing Cs-137 AMP precipitate and asbestos. The interfering elements were eluted with 1.0 M ammonium nitrate solution whereas cesium was eluted with 1.0 M sodium hydroxide solution. Cesium was reprecipitated by acidifying the solution with concentrated hydrochloric acid. The overall chemical yield of cesium was of 75%. (author)

  16. Compensation of nonlinearity in a fiber-optic transmission system using frequency-degenerate phase conjugation through counter-propagating dual pump FWM in a semiconductor optical amplifier

    Science.gov (United States)

    Anchal, Abhishek; K, Pradeep Kumar; O'Duill, Sean; Anandarajah, Prince M.; Landais, Pascal

    2018-04-01

    We present a scheme of frequency-degenerate mid-span spectral inversion (MSSI) for nonlinearity compensation in fiber-optic transmission systems. The spectral inversion is obtained by using counter-propagating dual pump four-wave mixing in a semiconductor optical amplifier (SOA). Frequency-degeneracy between signal and conjugate is achieved by keeping two pump frequencies symmetrical about the signal frequency. We simulate the performance of MSSI for nonlinearity compensation by scrutinizing the improvement of the Q-factor of a 200 Gbps QPSK signal transmitted over a standard single mode fiber, as a function of launch power for different span lengths and number of spans. We demonstrate a 7.5 dB improvement in the input power dynamic range and an almost 83% increase in the transmission length for optimum MSSI parameters of -2 dBm pump power and 400 mA SOA current.

  17. Twin optically-pumped far-infrared CH3OH laser for plasma diagnostics

    International Nuclear Information System (INIS)

    Yamanaka, M.; Takeda, Y.; Tanigawa, S.; Nishizawa, A.

    1980-01-01

    A twin optically-pumped far-infrared CH 3 OH laser has been constructed for use in plasma diagnostics. The antisymmetric doublet due to the Raman-type resonant two-photon transition is reproducibly observed at 118.8 microns. With the 118.8-micron line, it is found that CH 3 OH absorption line center is 16 + or - 1 MHz higher than the pump 9.7-micron P(36) CO 2 laser line center. It is shown that the Raman-type resonant two-photon transition is useful in order to get several MHz phase modulation for the far-infrared laser interferometer. Some preliminary performances of this twin laser for the modulated interferometer are described

  18. Intense source of spin-polarized electrons using laser-induced optical pumping

    International Nuclear Information System (INIS)

    Gray, L.G.; Giberson, K.W.; Cheng, C.; Keiffer, R.S.; Dunning, F.B.; Walters, G.K.

    1983-01-01

    A source of spin-polarized electrons based on a laser-pumped flowing helium afterglow is described. He(2 3 S) atoms contained in the afterglow are optically pumped using circularly polarized 1.08-μm (2 3 S→2 3 P) radiation provided by a NaF (F 2+ )( color-center laser. Spin angular momentum conservation in subsequent chemi-ionization reactions with CO 2 produces polarized electrons that are extracted from the afterglow. At low currents, < or approx. =1 μA, polarizations of approx.70%--80% are achieved. At higher currents the polarization decreases, falling to approx.40% at 50 μA. The spin polarization can be simply reversed (P→-P) and the source is suitable for use in the majority of low-energy spin-dependent scattering experiments proposed to date

  19. Uses of laser optical pumping to produce polarized ion beams

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1983-01-01

    Laser optical pumping can be used to produce polarized alkali atom beams or polarized alkali vapor targets. Polarized alkali atom beams can be converted into polarized alkali ion beams, and polarized alkali vapor targets can be used to produce polarized H - or 3 He - ion beams. In this paper the authors discuss how the polarized alkali atom beams and polarized alkali vapor targets are used to produce polarized ion beams with emphasis on the production of polarized negative ion beams

  20. Cesium migration in LMFBR fuel pins

    International Nuclear Information System (INIS)

    Karnesky, R.A.; Jost, J.W.; Stone, I.Z.

    1978-10-01

    The factors affecting the axial migration of cesium in mixed oxide fuel pins and the effects of cesium migration on fuel pin performance are examined. The development and application of a correlated model which will predict the occurrence of cesium migration in a mixed oxide (75 w/o UO 2 + 25 w/o PuO 2 ) fuel pins over a wide range of fabrication and irradiation conditions are described

  1. Cesium ion bombardment of metal surfaces

    International Nuclear Information System (INIS)

    Tompa, G.S.

    1986-01-01

    The steady state cesium coverage due to cesium ion bombardment of molybdenum and tungsten was studied for the incident energy range below 500 eV. When a sample is exposed to a positive ion beam, the work function decreases until steady state is reached with a total dose of less than ≅10 16 ions/cm 2 , for both tungsten and molybdenum. A steady state minimum work function surface is produced at an incident energy of ≅100 eV for molybdenum and at an incident energy of ≅45 eV for tungsten. Increasing the incident energy results in an increase in the work function corresponding to a decrease in the surface coverage of cesium. At incident energies less than that giving the minimum work function, the work function approaches that of cesium metal. At a given bombarding energy the cesium coverage of tungsten is uniformly less than that of molybdenum. Effects of hydrogen gas coadsorption were also examined. Hydrogen coadsorption does not have a large effect on the steady state work functions. The largest shifts in the work function due to the coadsorption of hydrogen occur on the samples when there is no cesium present. A theory describing the steady-state coverage was developed is used to make predictions for other materials. A simple sticking and sputtering relationship, not including implantation, cannot account for the steady state coverage. At low concentrations, cesium coverage of a target is proportional to the ratio of (1 - β)/γ where β is the reflection coefficient and γ is the sputter yield. High coverages are produced on molybdenum due to implantation and low backscattering, because molybdenum is lighter than cesium. For tungsten the high backscattering and low implantation result in low coverages

  2. Artificial optical emissions at HAARP for pump frequencies near the third and second electron gyro-harmonic

    Directory of Open Access Journals (Sweden)

    M. J. Kosch

    2005-07-01

    Full Text Available High-power high-frequency radio waves beamed into the ionosphere cause plasma turbulence, which can accelerate electrons. These electrons collide with the F-layer neutral oxygen causing artificial optical emissions identical to natural aurora. Pumping at electron gyro-harmonic frequencies has special significance as many phenomena change their character. In particular, artificial optical emissions become strongly reduced for the third and higher gyro-harmonics. The High frequency Active Auroral Research Program (HAARP facility is unique in that it can select a frequency near the second gyro-harmonic. On 25 February 2004, HAARP was operated near the third and passed through the second gyro-harmonic for the first time in a weakening ionosphere. Two novel observations are: firstly, a strong enhancement of the artificial optical emission intensity near the second gyro-harmonic, which is opposite to higher gyro-harmonics; secondly, the optical enhancement maximum occurs for frequencies just above the second gyro-harmonic. We provide the first experimental evidence for these effects, which have been predicted theoretically. In addition, irregular optical structures were created when the pump frequency was above the ionospheric critical frequency.

    Keywords. Active experiments – Auroral ionosphere – Wave-particle interactions

  3. Artificial optical emissions at HAARP for pump frequencies near the third and second electron gyro-harmonic

    Directory of Open Access Journals (Sweden)

    M. J. Kosch

    2005-07-01

    Full Text Available High-power high-frequency radio waves beamed into the ionosphere cause plasma turbulence, which can accelerate electrons. These electrons collide with the F-layer neutral oxygen causing artificial optical emissions identical to natural aurora. Pumping at electron gyro-harmonic frequencies has special significance as many phenomena change their character. In particular, artificial optical emissions become strongly reduced for the third and higher gyro-harmonics. The High frequency Active Auroral Research Program (HAARP facility is unique in that it can select a frequency near the second gyro-harmonic. On 25 February 2004, HAARP was operated near the third and passed through the second gyro-harmonic for the first time in a weakening ionosphere. Two novel observations are: firstly, a strong enhancement of the artificial optical emission intensity near the second gyro-harmonic, which is opposite to higher gyro-harmonics; secondly, the optical enhancement maximum occurs for frequencies just above the second gyro-harmonic. We provide the first experimental evidence for these effects, which have been predicted theoretically. In addition, irregular optical structures were created when the pump frequency was above the ionospheric critical frequency.Keywords. Active experiments – Auroral ionosphere – Wave-particle interactions

  4. Cesium levels in foodstuffs fall slowly

    International Nuclear Information System (INIS)

    Rantavaara, A.

    1994-01-01

    Since spring 1986, radioactive decay has reduced the total amount of radioactive cesium 137 in the Finnish environment, originating in Chernobyl, by 17 per cent. The cesium content in fish keeps falling at a diminishing rate, depending on the species of fish and environmental factors. The use of fish from lakes need not be restricted anymore. The cesium contents of game, mushrooms and wild berries have remained steady for some years now. The same is true for agricultural produce. The contents in milk and meat still keep falling slowly. Most of the cesium ingested by finns comes from fish, then from game, reindeer and gathered foods; the lowest amounts are received from agricultural products. (orig.)

  5. Studies on release and deposition behaviour of cesium from contaminated sodium pools and cesium trap development for FBTR

    International Nuclear Information System (INIS)

    Sahoo, P.; Kannan, S.E.; Muralidharan, P.; Chandran, K.

    1996-01-01

    Investigations were carried out on the release and deposition behaviour of cesium from sodium pools in air-filled chamber in the temperature range of 673 to 873 K, using Cs-134 to simulate Cs-137. About 0.12 kg of sodium was loaded in a burn-pot together with 92.5 kBq of cesium. Experiments were carried out with 21% oxygen. Natural burning period of sodium and specific activity ratio between cesium and sodium showed a tendency to decrease and release fractions of both the species tended to increase with temperature. From the surface deposited aerosols it was observed that cesium has propensity to settle down closer to the point of release. A cesium trap has been developed for FBTR with RVC as getter material. Absorption kinetics and particle release behaviour studies pointed to its intended satisfactory performance in the plant. (author)

  6. User oriented end-station on VUV pump-probe magneto-optical ellipsometry at ELI beamlines

    Science.gov (United States)

    Espinoza, Shirly; Neuber, Gerd; Brooks, Christopher D.; Besner, Bastian; Hashemi, Maryam; Rübhausen, Michael; Andreasson, Jakob

    2017-11-01

    A state of the art ellipsometer for user operations is being implemented at ELI Beamlines in Prague, Czech Republic. It combines three of the most promising and exotic forms of ellipsometry: VUV, pump-probe and magneto-optical ellipsometry. This new ellipsometer covers a spectral operational range from the NIR up to the VUV, with high through-put between 1 and 40 eV. The ellipsometer also allows measurements of magneto-optical spectra with a 1 kHz switchable magnetic field of up to 1.5 T across the sample combining ellipsometry and Kerr spectroscopy measurements in an unprecedented spectral range. This form of generalized ellipsometry enables users to address diagonal and off-diagonal components of the dielectric tensor within one measurement. Pump-probe measurements enable users to study the dynamic behaviour of the dielectric tensor in order to resolve the time-domain phenomena in the femto to 100 ns range.

  7. Behavior of ion-implanted cesium in silicon dioxide films

    International Nuclear Information System (INIS)

    Fishbein, B.J.

    1988-01-01

    Charged impurities in silicon dioxide can be used to controllably shift the flatband voltage of metal-oxide-semiconductor devices independently of the substrate doping, the gate oxide thickness and the gate-electrode work function. Cesium is particularly well suited for this purpose because it is immobile in SiO 2 at normal device operating temperatures, and because it can be controllably introduced into oxide films by ion implantation. Cesium is positively charged in silicon dioxide, resulting in a negative flatband voltage shift. Possible applications for cesium technology include solar cells, devices operated at liquid nitrogen temperature, and power devices. The goal of this work has been to characterize as many aspects of cesium behavior in silicon dioxide as are required for practical applications. Accordingly, cesium-ion implantation, cesium diffusion, and cesium electrical activation in SiO 2 were studied over a broad range of processing conditions. The electrical properties of cesium-containing oxides, including current-voltage characteristics, interface trap density, and inversion-layer carrier mobility were examined, and several potential applications for cesium technology have been experimentally demonstrated

  8. Cesium diffusion in Bure mud-rock: effect of cesium sorption and of the surface structure of the clay

    International Nuclear Information System (INIS)

    Melkior, T.; Motellier, S.; Yahiaoui, S.

    2005-01-01

    Full text of publication follows: This work is devoted to cesium diffusion through mud-rock samples from Bure (Meuse/Haute- Marne, France). This rock is mainly composed of interstratified illite/smectite, quartz and calcite. According to published data, positively charged solutes exhibit high diffusion coefficients in argillaceous media compared to neutral species. This effect was actually observed for cesium in Bure mud-rock samples: the effective diffusion coefficients (De) of tritiated water and cesium were found to be ca. 2 x 10 -11 m 2 s -1 and 2.5 x 10 -10 m 2 s -1 , respectively. Some authors assign this 'enhanced diffusion' of cations to the particular migration of ions within the electrical double layer, next to mineral surfaces (surface diffusion mechanism). To assess the role of sorbed ions in the diffusive transfer, cesium diffusion coefficients in Bure mud-rock were measured at different cesium concentrations. The distribution coefficient of cesium onto Bure mud-rock was measured in batch: it significantly varies over the concentration range investigated in the diffusion tests (between 2 x 10 -6 M and 2 x 10 -2 M). If sorbed ions contribute to the transfer, the effective diffusion coefficients deduced from these different tests should depend on cesium concentration. Nevertheless, the measured effective diffusion coefficients are found to be relatively unaffected by cesium concentration. It is thus concluded that ions at the sorbed state play a minor role in the diffusion. Following the assumption of an 'accelerated' transfer due to ions located in the diffuse double layer, the charge of the clay particles should affect the 'enhanced diffusion' of cesium. Therefore, a mud-rock sample was first crushed and contacted with a cationic surfactant at different solid/liquid ratios. The conditions were adjusted to obtain suspensions having positive, neutral and negative zeta potentials respectively. Three compact samples were then made with these different

  9. ''Crown molecules'' for separating cesium

    International Nuclear Information System (INIS)

    Dozol, J.F.; Lamare, V.

    2002-01-01

    After the minor actinides, the second category of radionuclides that must be isolated to optimize nuclear waste management concerns fission products, especially two cesium isotopes. If the cesium-135 isotope could be extracted, it could subsequently be transmuted or conditioned using a tailor-made process. Eliminating the 137 isotope from reprocessing and nuclear facility-dismantling waste would allow to dispose of most of this waste in near-surface facilities, and simply process the small remaining quantity containing long-lived elements. CEA research teams and their international partners have thought up crown molecules that could be used to pick out the cesium and meet these objectives. (authors)

  10. A combined cesium-strontium extraction/recovery process

    International Nuclear Information System (INIS)

    Horwitz, E.P.; Dietz, M.L.; Jensen, M.P.

    1996-01-01

    A new solvent extraction process for the simultaneous extraction of cesium and strontium from acidic nitrate media is described. This process uses a solvent formulation comprised of 0.05 M di-t-butylcyclohexano-18-crown-6 (DtBuCH18C6), 0.1 M Crown 100' (a proprietary, cesium-selective derivative of dibenzo-18-crown-6), 1.2 M tributyl phosphate (TBP), and 5% (v/v) lauryl nitrile in an isoparaffinic hydrocarbon diluent. Distribution ratios for cesium and strontium from 4 M nitric acid are 4.13 and 3.46, respectively. A benchtop batch countercurrent extraction experiment indicates that >98% of the cesium and strontium initially present in the feed solution can be removed in only four extraction stages. Through proper choice of extraction and strip conditions, extracted cesium and strontium can be recovered either together or individually

  11. The polarization and the fundamental sensitivity of 39K (133Cs)-85Rb-4He hybrid optical pumping spin exchange relaxation free atomic magnetometers.

    Science.gov (United States)

    Liu, Jian-Hua; Jing, Dong-Yang; Wang, Liang-Liang; Li, Yang; Quan, Wei; Fang, Jian-Cheng; Liu, Wu-Ming

    2017-07-28

    The hybrid optical pumping spin exchange relaxation free (SERF) atomic magnetometers can realize ultrahigh sensitivity measurement of magnetic field and inertia. We have studied the 85 Rb polarization of two types of hybrid optical pumping SERF magnetometers based on 39 K- 85 Rb- 4 He and 133 Cs- 85 Rb- 4 He respectively. Then we found that 85 Rb polarization varies with the number density of buffer gas 4 He and quench gas N 2 , pumping rate of pump beam and cell temperature respectively, which will provide an experimental guide for the design of the magnetometer. We obtain a general formula on the fundamental sensitivity of the hybrid optical pumping SERF magnetometer due to shot-noise. The formula describes that the fundamental sensitivity of the magnetometer varies with the number density of buffer gas and quench gas, the pumping rate of pump beam, external magnetic field, cell effective radius, measurement volume, cell temperature and measurement time. We obtain a highest fundamental sensitivity of 1.5073 aT/Hz 1/2 (1 aT = 10 -18 T) with 39 K- 85 Rb- 4 He magnetometer between above two types of magnetometers when 85 Rb polarization is 0.1116. We estimate the fundamental sensitivity limit of the hybrid optical pumping SERF magnetometer to be superior to 1.8359 × 10 -2 aT/Hz 1/2 , which is higher than the shot-noise-limited sensitivity of 1 aT/Hz 1/2 of K SERF atomic magnetometer.

  12. Slowdown of group velocity of light in dual-frequency laser-pumped cascade structure of Er3+-doped optical fiber at room temperature

    Science.gov (United States)

    Qiu, Wei; Yang, Yujing; Gao, Yuan; Liu, Jianjun; Lv, Pin; Jiang, Qiuli

    2018-04-01

    Slow light is demonstrated in the cascade structure of an erbium-doped fiber with two forward propagation pumps. The results of the numerical simulation of the time delay and the optimum modulation frequency complement each other. The time delay and the optimum modulation frequency depend on the pump ratio G (G  =  {{P}1480}:{{P}980} ). The discussion results of this paper show that a larger time delay of slow light propagation can be obtained in the cascade structure of Er3+-doped optical fibers with dual-frequency laser pumping. Compared to previous research methods, the dual-frequency laser-pumped cascade structure of an Er3+-doped optical fiber is more controllable. Based on our discussion the pump ratio G should be selected in order to obtain a more appropriate time delay and the slowdown of group velocity.

  13. Fundamentals of metastability exchange optical pumping in helium

    International Nuclear Information System (INIS)

    Batz, M; Nacher, P-J; Tastevin, G

    2011-01-01

    Advances in metastability exchange optical pumping (MEOP) at high laser powers, but also at high gas pressures and high magnetic field strengths, has provided strong motivation for revisiting the understanding of the limitations of this powerful technique. A comprehensive model has been developed for improved description of the combined effects of OP, ME, and relaxation, and of detailed MEOP features observed over the broad range of operating conditions. A brief description is provided, with illustrative comparisons of computed and experimental results. This improved tool is used to explain the excellent photon efficiency of OP obtained at all field strengths. It is combined with an angular momentum budget approach to quantitatively investigate the newly discovered strong OP-enhanced polarisation losses that currently limits MEOP performance.

  14. Fundamentals of metastability exchange optical pumping in helium

    Science.gov (United States)

    Batz, M.; Nacher, P.-J.; Tastevin, G.

    2011-06-01

    Advances in metastability exchange optical pumping (MEOP) at high laser powers, but also at high gas pressures and high magnetic field strengths, has provided strong motivation for revisiting the understanding of the limitations of this powerful technique. A comprehensive model has been developed for improved description of the combined effects of OP, ME, and relaxation, and of detailed MEOP features observed over the broad range of operating conditions. A brief description is provided, with illustrative comparisons of computed and experimental results. This improved tool is used to explain the excellent photon efficiency of OP obtained at all field strengths. It is combined with an angular momentum budget approach to quantitatively investigate the newly discovered strong OP-enhanced polarisation losses that currently limits MEOP performance.

  15. Uptake behavior of titanium molybdophosphate for cesium and strontium

    International Nuclear Information System (INIS)

    Yavari, R.; Ahmadi, S.J.; Huang, Y.D.

    2010-01-01

    This study investigates uptake of cesium and strontium from aqueous solution similar to nuclear waste on three samples of titanium molybdophosphate (TMP) synthesized under various conditions. Effects of concentration of sodium nitrate, pH and contact time on the uptake of cesium and strontium have been studied by bath method. The results showed that TMP has high affinity toward cesium and strontium at pH > 2 and relatively low concentration of sodium nitrate. Kinetic data indicated that cesium uptake process to achieve equilibrium was faster than strontium. Cesium and strontium breakthrough curves were examined at 25 deg C using column packed with H 3 O + form of TMP and breakthrough curves showed symmetrical S-shaped profiles. At the same time, the calculated breakthrough capacity for cesium was higher than strontium. The results of desorption studies showed that over 99% of cesium and strontium was washed out of column by using 4 M NH 4 Cl solution. This study suggests that TMP can have great potential applications for the removal of strontium and specially cesium from nuclear waste solution. (author)

  16. Emission characteristics of electrically- and optically-pumped single ZnO micro-spherical crystal

    Science.gov (United States)

    Nakamura, D.; Shimogaki, T.; Tetsuyama, N.; Fusazaki, K.; Mizokami, Y.; Higashihata, M.; Ikenoue, H.; Okada, T.

    2014-03-01

    Zinc oxide (ZnO) nano/microstructures have been attractive as the building blocks for the efficient opto-electronic devices in the ultraviolet (UV) region. We have succeeded in growing the ZnO micro/nanosphere by a simple laser ablation in the air, and therefore we have obtained UV lasing from the sphere under optical pumping. Recently, large size of several 10 micrometer ZnO microspheres were grown using Nd:YAG laser without Q-switching, and ZnO microsphere/p-GaN heterojunction were fabricated to obtain the electroluminescence (EL) from the microsphere by electrical pumping. Room-temperature EL in near-UV region with peak wavelength of 400 nm is observed under forward bias.

  17. Dual-channel operation in a synchronously pumped optical parametric oscillator for the generation of broadband mid-infrared coherent light sources.

    Science.gov (United States)

    Liu, Pei; Wang, Sicong; He, Puyuan; Zhang, Zhaowei

    2018-05-01

    We report, to the best of our knowledge, a novel approach for generating broadband mid-infrared (mid-IR) light by implementing a dual-channel scheme in a synchronously pumped optical parametric oscillator (SPOPO). Two-channel operation was achieved by inserting a prism pair and two reflection mirrors inside an optical parametric oscillator (OPO) cavity. Pumped by a Yb-fiber laser, the OPO generated an idler wave at ∼3150  nm with a -10  dB bandwidth of ∼13.2  THz, which was twice as much as that of the pump source. This scheme represents a promising technical route to transform conventional SPOPOs into a device capable of generating mid-IR light with very broad instantaneous bandwidth.

  18. On mobility of cesium-137, sodium, potassium in various types of soils and prediction of cesium-137 cumulation in agricultural plants

    International Nuclear Information System (INIS)

    Ashkinazi, Eh.I.

    1990-01-01

    Mobility of cesium-137, sodium and potassium in the natural environment in podzolic gray and chernozem medium-loamy, sward podzolic sandy soils and chernozem has been studied. Durability of fixation of cesium-137 increases in a number of soils and increase of the level of metabolic potassium. Coefficient of transition of level of metabolic cesium-137 by potassium and sodium, and of sodium by potassium. The mentioned above coefficients can be used for the prediction of cesium-137 cumulation in plants

  19. Separation of cesium and strontium with zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, T; Hashimoto, H [Tohoku Univ., Sendai (Japan). Research Inst. of Mineral Dressing and Metallurgy

    1976-06-01

    The basic studies of separation of cesium and strontium were made with specimens of zeolite, which are synthetic zeolites A, X and Y; synthetic mordenite; natural mordenite; and clinoptilolite. Ammonium chloride was used as eluent, because it was considered to be a most appropriate eluent in alkaline chlorides. Cesium was easily eluted from the zeolites A and X by ammonium chloride solution, but it was difficult to elute from the synthetic mordenite, natural mordenite and clinoptilolite by ammonium chloride solution, but it was difficult to elute from the zeolites A and X. The zeolite Y is the only one zeolite among these zeolites from which both of cesium and strontium were easily eluted by ammonium chloride solution. Strontium could be separated from cesium with zeolites by formation of Sr-EDTA chelate at pH above 11. In this process, cesium was only exchanged in zeolite column, but strontium flow out from it.

  20. Separation of cesium and strontium with zeolites

    International Nuclear Information System (INIS)

    Kanno, Takuji; Hashimoto, Hiroyuki

    1976-01-01

    The basic studies of separation of cesium and strontium were made with specimens of zeolite, which are synthetic zeolites A, X and Y; synthetic mordenite; natural mordenite; and clinoptilolite. Ammonium chloride was used as eluent, because it was considered to be a most appropriate eluent in alkaline chlorides. Cesium was easily eluted from the zeolites A and X by ammonium chloride solution, but it was difficult to elute from the synthetic mordenite, natural mordenite and clinoptilolite by ammonium chloride solution, but it was difficult to elute from the zeolites A and X. The zeolite Y is the only one zeolite among these zeolites from which both of cesium and strontium were easily eluted by ammonium chloride solution. Strontium could be separated from cesium with zeolites by formation of Sr-EDTA chelate at pH above 11. In this process, cesium was only exchanged in zeolite column, but strontium flow out from it. (auth.)

  1. Magnetic circular Dichroism and Faraday rotation of cesium-argon excimers and cesium dimers

    International Nuclear Information System (INIS)

    Islam, M.A.

    1981-01-01

    Magnetic Circular Dichroism (MCD) and Faraday Rotation (FR) of excimer absorption bands in gases are measured to obtain the first direct information about the angular momentum quantum numbers and the angular momentum coupling schemes of excimer molecules. So far, there has been no experimental method to obtain information about the axial angular momentum and the angular momentum coupling schemes of excimer molecules. In this experiment, the MCD and the FR of cesium-argon excimer and cesium dimer absorption bands between 5000 A and 10,000 A are measured for the range of temperature from 116 0 to 355 0 C. Of particular interest is the blue wing of D 2 line in cesium which has been the subject of vigorous investigation. The measured MCD data at the blue wing of D 2 line clearly shows that the assignment of 2 μ/sub 1/2/ to this excited state assuming Hund's case (b) is a poor approximation. By a simple inspection of the MCD data, it is found that the coupling scheme is more nearly Hund's case (c) than Hynd's case (b). Several other new and interesting results are obtained. The blue wing associated with 5D transition in atomic cesium is devoid of MCD and exhibits strong MCD in the red wings. Thus, the assignment of 2 μ/sub 1/2/ and 2 π to the blue and red wings, respectively, assuming Hund's case (a) and (b), is a very good approximation. Again the yellow-green band associated with 7s-6s transition in atomic cesium shows no MCD. It is therefore also a good approximation to assign 2 μ/sub 1/2/ to the upper state assuming Hund's case (b). Much more information can be obtained by a detailed analysis of the MCD data

  2. Demonstration of Cascaded In-Line Single-Pump Fiber Optical Parametric Amplifiers in Recirculating Loop Transmission

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Ozolins, Oskars; An, Yi

    2012-01-01

    The performance of cascaded single-pump fiber optical parametric amplifiers (FOPAs) is experimentally studied for the first time using recirculating loop transmission with 80-km dispersion managed spans. Error-free performance has been achieved over 320 km for 40-Gbit/s CSRZ-OOK and CSRZ...

  3. Cesium heat-pipe thermostat

    Energy Technology Data Exchange (ETDEWEB)

    Wu, F.; Song, D.; Sheng, K.; Wu, J. [Changcheng Institute of Metrology and Measurement, 100095, Beijing (China); Yi, X. [China National South Aviation industry CO., LTD., 412002, Hunan (China); Yu, Z. [Dalian Jinzhou Institute of Measurement and Testing, 116100, Liaoning (China)

    2013-09-11

    In this paper the authors report a newly developed Cesium Heat-Pipe Thermostat (Cs HPT) with the operation range of 400 °C to 800 °C. The working medium is cesium (Cs) of 99.98% purity and contains no radioisotope. A Cs filing device is developed which can prevent Cs being in contact with air. The structural material is stainless steel. A 5000 h test has been made to confirm the compatibility between cesium and stainless steel. The Cs HPT has several thermometer wells of 220mm depth with different diameters for different sizes of thermometers. The temperature uniformity of the Cs HPT is 0.06 °C to 0.20 °C. A precise temperature controller is used to ensure the temperature fluctuation within ±0.03 °C. The size of Cs HPT is 380mm×320mm×280mm with foot wheels for easy moving. The thermostat has been successfully used for the calibration of industrial platinum resistance thermometers and thermocouples.

  4. Cesium Salts of Phosphotungstic Acid: Comparison of Surface ...

    African Journals Online (AJOL)

    NICO

    acidity and lowest solubility in reaction media in comparison with the other cesium content salts. KEYWORDS. Polyoxometalates, cesium ... insoluble salt of HPA is cesium salt of tungstophosphoric acid,. CsxH3-xPW12O40 (CsxPW), a ... of Cs2CO3, very fine particles (precipitates) were formed to make the solution milky.

  5. Method of processing radioactive cesium liquid wastes

    International Nuclear Information System (INIS)

    Nishijima, Hiroaki; Asaoka, Sachio; Kondo, Tadami; Suzuki, Isao.

    1985-01-01

    Purpose: To convert and settle cesium, mainly, Cs-137 in liquid wastes in the form of pollucites, that is, cesium-containing ores. Constitution: Water, silica, alumina and alkali metal source are mixed with radioactive liquid wastes containing cesium as the main metal element ingredient, to which an onium compound is further added and they are brought into reaction till pollucite ores (Cs 16 (Al 16 Si 32 O 96 )) are formed. Since most portion of cesium is thus settled in the form of pollucites, storage safety can be attained. Further, the addition of the onium compound can moderate the condition and shorten the time till the pollucite ores are formed. The onium compound usable herein includes tetramethyl ammonium. (Kamimura, M.)

  6. A twin optically-pumped far-infrared CH3OH laser for plasma diagnostics

    International Nuclear Information System (INIS)

    Yamanaka, M.; Takeda, Y.; Tanigawa, S.; Nishizawa, A.; Noda, N.

    1979-11-01

    A twin optically-pumped far-infrared CH 3 OH laser has been constructed for use in plasma diagnostics. The anti-symmetric doublet due to the Raman-type resonant two-photon transition is reproducibly observed at 118.8 μm. With the 118.8-μm line, it is obtained from the frequency separation of the anti-symmetric doublet that the CH 3 OH absorption line center is 16 +- 1 MHz higher than the pump 9.7-μm P(36) CO 2 laser line center. It is shown that the Raman-type resonant two-photon transition is useful in order to get several-MHz phase modulation for the far-infrared laser interferometer. Some preliminary performances of this twin laser for the modulated interferometer are described. (author)

  7. Narrow optical linewidths and spin pumping on charge-tunable close-to-surface self-assembled quantum dots in an ultrathin diode

    Science.gov (United States)

    Löbl, Matthias C.; Söllner, Immo; Javadi, Alisa; Pregnolato, Tommaso; Schott, Rüdiger; Midolo, Leonardo; Kuhlmann, Andreas V.; Stobbe, Søren; Wieck, Andreas D.; Lodahl, Peter; Ludwig, Arne; Warburton, Richard J.

    2017-10-01

    We demonstrate full charge control, narrow optical linewidths, and optical spin pumping on single self-assembled InGaAs quantum dots embedded in a 162.5 -nm -thin diode structure. The quantum dots are just 88 nm from the top GaAs surface. We design and realize a p -i -n -i -n diode that allows single-electron charging of the quantum dots at close-to-zero applied bias. In operation, the current flow through the device is extremely small resulting in low noise. In resonance fluorescence, we measure optical linewidths below 2 μ eV , just a factor of 2 above the transform limit. Clear optical spin pumping is observed in a magnetic field of 0.5 T in the Faraday geometry. We present this design as ideal for securing the advantages of self-assembled quantum dots—highly coherent single-photon generation, ultrafast optical spin manipulation—in the thin diodes required in quantum nanophotonics and nanophononics applications.

  8. Evaluation of electrochemical ion exchange for cesium elution

    International Nuclear Information System (INIS)

    Bontha, J.D.; Kurath, D.E.; Surma, J.E.; Buehler, M.F.

    1996-04-01

    Electrochemical elution was investigated as an alternative method to acid elution for the desorption of cesium from loaded ion exchange resins. The approach was found to have several potential advantages over existing technologies, in particular, electrochemical elution eliminates the need for addition of chemicals to elute cesium from the ion exchange resin. Also, since, in the electrochemical elution process the eluting solution is not in direct contact with the ion exchange material, very small volumes of the eluting solution can be used in a complete recycle mode in order to minimize the total volume of the cesium elute. In addition, the cesium is eluted as an alkaline solution that does not require neutralization with caustic to meet the tank farm specifications. Other advantages include easy incorporation of the electrochemical elution process into the present cesium recovery schemes

  9. Seasonal variation of cesium 134 and cesium 137 in semidomestic reindeer in Norway after the Chernobyl accident

    International Nuclear Information System (INIS)

    Eikelmann, I.M.H.; Bye, K.; Sletten, H.D.

    1990-01-01

    The Chernobyl accident had a great impact on the semidomestic reindeer husbandry in central Norway. Seasonal differences in habitat and diet resulted in large variations in observed radiocesium concentrations in reindeer after the Chernobyl accident. In three areas with high values of cesium-134 and cesium-137 in lichens, the main feed for reindeer in winter, reindeer were sampled every second month to monitor the seasonal variation and the decrease rate of the radioactivity. The results are based on measurements of cesium-134 and cesium-137 content in meat and blood and by whole-body monitoring of live animals. In 1987 the increase of radiocesium content in reindeer in Vågå were 4x from August to January. The mean reductions in radiocesium content from the winter 1986/87 to the winter 1987/88 were 32%, 50% and 43% in the areas of Vågå, Østre-Namdal and Lom respectively

  10. Theoretical model and simulations for a cw exciplex pumped alkali laser.

    Science.gov (United States)

    Huang, Wei; Tan, Rongqing; Li, Zhiyong; Lu, Xiaochuan

    2015-12-14

    The Exciplex Pumped Alkali Laser (XPAL) system, which is similar to DPAL (Diode Pumped Alkali vapor Laser), has been demonstrated in mixtures of Cs vapor, Ar, with and without ethane. Unlike DPAL, it uses the broadband absorption blue satellite of the alkali D2 line, created by naturally occuring collision pairs. For example, Cs-Ar collision pairs have an absorption width which is as wide as the one of commercial semiconductor diode lasers. A continuous wave XPAL four-level theoretical model is presented in this paper. More factors are considered, such as the spectral dependence of pumped laser absorption for broadband pumping and the longitudinal population variation. Some intra-cavity details, such as longitudinal distributions of pumped laser and alkali laser, can also be solved well. The predictions of optical-to-optical efficiency as a function of temperature and pumped laser intensity are presented. The model predicts that there is an optimum value of temperature or pumped laser intensity. The analysis of the influence of cell length on optical-to-optical efficiency shows that a better performance can be achieved when using longer cell. The prediction of influence of Ar concentration and reflectivity of output coupler shows that higher optical-to-optical efficiency could be achieved if lower reflectivity of output coupler and higher Ar concentration are used. The optical-to-optical efficiency as high as 84% achieved by optimizing configuration with the pumped intensity of 5 × 10⁷ W/cm² presented shows that broadband pumped four-level XPAL system has a potential of high optical-to-optical efficiency.

  11. Adsorption of cesium on cement mortar from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Volchek, Konstantin, E-mail: konstantin.volchek@ec.gc.ca [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Miah, Muhammed Yusuf [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Department of Applied Chemistry and Chemical Technology, Noakhali Science and Technology University (Bangladesh); Kuang, Wenxing; DeMaleki, Zack [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Tezel, F. Handan [Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis-Pasteur, Ottawa, Ontario, Canada K1N 6N5 (Canada)

    2011-10-30

    Highlights: {yields} The adsorption of cesium on cement mortar was investigated in a range of temperatures and cesium concentrations. {yields} The pseudo-second order kinetic model produced a good fit with the experimental kinetic data. {yields} Equilibrium test results correlated well with the Freundlich isotherm adsorption model. {yields} The interaction between cesium ions and cement mortar was dominated by chemical adsorption. - Abstract: The adsorption of cesium on cement mortar from aqueous solutions was studied in series of bench-scale tests. The effects of cesium concentration, temperature and contact time on process kinetics and equilibrium were evaluated. Experiments were carried out in a range of initial cesium concentrations from 0.0103 to 10.88 mg L{sup -1} and temperatures from 278 to 313 K using coupons of cement mortar immersed in the solutions. Non-radioactive cesium chloride was used as a surrogate of the radioactive {sup 137}Cs. Solution samples were taken after set periods of time and analyzed by inductively coupled plasma mass spectroscopy. Depending on the initial cesium concentration, its equilibrium concentration in solution ranged from 0.0069 to 8.837 mg L{sup -1} while the respective surface concentration on coupons varied from 0.0395 to 22.34 {mu}g cm{sup -2}. Equilibrium test results correlated well with the Freundlich isotherm model for the entire test duration. Test results revealed that an increase in temperature resulted in an increase in adsorption rate and a decrease in equilibrium cesium surface concentration. Among several kinetic models considered, the pseudo-second order reaction model was found to be the best to describe the kinetic test results in the studied range of concentrations. The adsorption activation energy determined from Arrhenius equation was found to be approximately 55.9 kJ mol{sup -1} suggesting that chemisorption was the prevalent mechanism of interaction between cesium ions and cement mortar.

  12. Hyperfine spectrum measurement of an optically pumped far-infrared laser with a Michelson interferometer

    International Nuclear Information System (INIS)

    Zuo, Z G; Ling, F R; Wang, P; Liu, J S; Yao, J Q; Weng, C X

    2013-01-01

    In this letter, we present a Michelson interferometer for the hyperfine spectrum measurement of an optically pumped far-infrared laser with a highest frequency resolution of 3–5 GHz. CH 3 OH gas with a purity of 99.9%, is pumped by the CO 2 9P36 and 9R10 laser lines to generate terahertz lasers with frequencies of 2.52 and 3.11 THz, respectively. Moreover, except for the center frequency, which is in good agreement with theoretical work, some additional frequencies on both sides of the center frequency are obtained at a frequency interval of 0.15 THz. Meanwhile, the mechanism behind the observed experimental results is also investigated. (letter)

  13. Application of Cesium isotopes in daily life

    International Nuclear Information System (INIS)

    Jordao, B.O.; Quaresma, D.S.; Carvalho, R.J.; Peixoto, J.G.P.

    2014-01-01

    In the world of science, the desire of the scientific community to discover new chemical elements is crucial for the development of new technologies in various fields of knowledge. And the main chemical element addressed by this article is Cesium, but specifically 133 Cesium isotope and radioisotope 137 Cesium, exemplifying their physical and chemical characteristics, and their applications. This article will also show how these isotopes have provided researchers a breakthrough in the field of radiological medicine and in time and frequency metrology. (author)

  14. Resonant intersubband polariton-LO phonon scattering in an optically pumped polaritonic device

    Science.gov (United States)

    Manceau, J.-M.; Tran, N.-L.; Biasiol, G.; Laurent, T.; Sagnes, I.; Beaudoin, G.; De Liberato, S.; Carusotto, I.; Colombelli, R.

    2018-05-01

    We report experimental evidence of longitudinal optical (LO) phonon-intersubband polariton scattering processes under resonant injection of light. The scattering process is resonant with both the initial (upper polariton) and final (lower polariton) states and is induced by the interaction of confined electrons with longitudinal optical phonons. The system is optically pumped with a mid-IR laser tuned between 1094 cm-1 and 1134 cm-1 (λ = 9.14 μm and λ = 8.82 μm). The demonstration is provided for both GaAs/AlGaAs and InGaAs/AlInAs doped quantum well systems whose intersubband plasmon lies at a wavelength of ≈10 μm. In addition to elucidating the microscopic mechanism of the polariton-phonon scattering, it is found to differ substantially from the standard single particle electron-LO phonon scattering mechanism, and this work constitutes an important step towards the hopefully forthcoming demonstration of an intersubband polariton laser.

  15. The burden of cesium 137 in forest clerks

    International Nuclear Information System (INIS)

    Piechotowski, I.; Jaroni, J.; Link, B.; Groezinger, O.

    2000-01-01

    In 47 forest clerks from the regions Ortenau and Oberschwaben in south-west Germany the incorporation of cesium 137 and potassium 40 was measured in autumn 1994. Soil burden as well as burden of nutrition with cesium 137 are different in these regions for geological reasons and as a result of the nuclear accident of Chernobyl. Caused by low content of clay in Oberschwaben, the transfer of cesium to plants is assisted. Heavy rainfall after the nuclear accident led to an additional increase of burden. The median of the concentration of cesium 137 was 1.4 Bq/kg body weight. The median for potassium 40 was 58 Bq/kg body weight. For cesium 137 regional differences were observed. For persons from Oberschwaben the median for cesium 137 was with 2.8 Bq/kg body weight clearly higher than for persons from Ortenau with 0,6 Bq/kg body weight. Concerning nutrition habits, the clearest difference was found comparing persons who had ate a minimum of four portions of deer from the surroundings within the last four weeks with persons who had ate less than four portions of deer from the surroundings within the last four weeks. The difference was greater in Oberschwaben than in Ortenau. The effective dose of cesium 137 calculated on the basis of the incorporation is very low compared to natural radiation. This is also valid for persons from Oberschwaben. (orig.) [de

  16. Micro-PIXE evaluation of radioactive cesium transfer in contaminated soil samples

    International Nuclear Information System (INIS)

    Fujishiro, F.; Ishii, K.; Matsuyama, S.; Arai, H.; Ishizaki, A.; Osada, N.; Sugai, H.; Kusano, K.; Nozawa, Y.; Yamauchi, S.; Karahashi, M.; Oshikawa, S.; Kikuchi, K.; Koshio, S.; Watanabe, K.; Suzuki, Y.

    2014-01-01

    Highlights: • There are radioactively contaminated soils having a radioactive cesium transfer of 0.01. • Micro-PIXE analysis has revealed an existence of phosphorus in a contaminated soil. • Radioactive cesium captured by phosphorus compound would be due to radioactive transfer. -- Abstract: Micro-PIXE analysis has been performed on two soil samples with high cesium activity concentrations. These soil samples were contaminated by fallout from the accident at Fukushima Daiichi Nuclear Power Plant. One exhibits a radioactive cesium transfer of ∼0.01, and the other shows a radioactive cesium transfer of less than 0.001, even though both samples have high cesium activity concentrations exceeding 10,000 Bq/kg. X-ray spectra and elemental images of the soil samples revealed the presence of chlorine, which can react with cesium to produce an inorganic soluble compound, and phosphorus-containing cesium-capturable organic compounds

  17. Method for synthesizing pollucite from chabazite and cesium chloride

    International Nuclear Information System (INIS)

    Pereira, C.

    1999-01-01

    A method is described for immobilizing waste chlorides salts containing radionuclides and hazardous nuclear material for permanent disposal, and in particular, a method is described for immobilizing waste chloride salts containing cesium, in a synthetic form of pollucite. The method for synthesizing pollucite from chabazite and cesium chloride includes mixing dry, non-aqueous cesium chloride with chabazite and heating the mixture to a temperature greater than the melting temperature of the cesium chloride, or above about 700 C. The method further comprises significantly improving the rate of retention of cesium in ceramic products comprised of a salt-loaded zeolite by adding about 10% chabazite by weight to the salt-loaded zeolite prior to conversion at elevated temperatures and pressures to the ceramic composite. 3 figs

  18. Micro-PIXE evaluation of radioactive cesium transfer in contaminated soil samples

    Science.gov (United States)

    Fujishiro, F.; Ishii, K.; Matsuyama, S.; Arai, H.; Ishizaki, A.; Osada, N.; Sugai, H.; Kusano, K.; Nozawa, Y.; Yamauchi, S.; Karahashi, M.; Oshikawa, S.; Kikuchi, K.; Koshio, S.; Watanabe, K.; Suzuki, Y.

    2014-01-01

    Micro-PIXE analysis has been performed on two soil samples with high cesium activity concentrations. These soil samples were contaminated by fallout from the accident at Fukushima Daiichi Nuclear Power Plant. One exhibits a radioactive cesium transfer of ˜0.01, and the other shows a radioactive cesium transfer of less than 0.001, even though both samples have high cesium activity concentrations exceeding 10,000 Bq/kg. X-ray spectra and elemental images of the soil samples revealed the presence of chlorine, which can react with cesium to produce an inorganic soluble compound, and phosphorus-containing cesium-capturable organic compounds.

  19. Sorption of cesium on titanium and zirconium phosphates

    International Nuclear Information System (INIS)

    Lebedev, V.N.; Mel'nik, N.A.; Rudenko, A.V.

    2003-01-01

    Titanium and zirconium phosphates were prepared from mineral raw materials of the Kola Peninsula. Their capability to recover cesium cations from the model solutions and liquid radioactive waste (LRW) was studied. Titanium phosphate prepared from solutions formed by titanite breakdown demonstrates greater distribution coefficients of cesium as compared to zirconium phosphate. Titanium phosphate as a cheaper agent featuring greater sorption capacity was recommended for treatment of LRW to remove cesium [ru

  20. Lasing in robust cesium lead halide perovskite nanowires

    Science.gov (United States)

    Eaton, Samuel W.; Lai, Minliang; Gibson, Natalie A.; Wong, Andrew B.; Dou, Letian; Ma, Jie; Wang, Lin-Wang; Leone, Stephen R.; Yang, Peidong

    2016-01-01

    The rapidly growing field of nanoscale lasers can be advanced through the discovery of new, tunable light sources. The emission wavelength tunability demonstrated in perovskite materials is an attractive property for nanoscale lasers. Whereas organic–inorganic lead halide perovskite materials are known for their instability, cesium lead halides offer a robust alternative without sacrificing emission tunability or ease of synthesis. Here, we report the low-temperature, solution-phase growth of cesium lead halide nanowires exhibiting low-threshold lasing and high stability. The as-grown nanowires are single crystalline with well-formed facets, and act as high-quality laser cavities. The nanowires display excellent stability while stored and handled under ambient conditions over the course of weeks. Upon optical excitation, Fabry–Pérot lasing occurs in CsPbBr3 nanowires with an onset of 5 μJ cm−2 with the nanowire cavity displaying a maximum quality factor of 1,009 ± 5. Lasing under constant, pulsed excitation can be maintained for over 1 h, the equivalent of 109 excitation cycles, and lasing persists upon exposure to ambient atmosphere. Wavelength tunability in the green and blue regions of the spectrum in conjunction with excellent stability makes these nanowire lasers attractive for device fabrication. PMID:26862172

  1. Realizing A Mid-Infrared Optically Pumped Molecular Gas Laser Inside Hollow-Core Photonic Crystal Fiber

    Science.gov (United States)

    2012-01-01

    structure resembling a star- of- David pattern can clearly be seen surrounding the hollow core region. The fiber’s hollow core is created by leaving out...O.R. Wood, An optically pumped CO2 laser. IEEE Journal of Quantum Electronics, 1972. 8(6): p. 598. 19. Schlossberg, H.R. and H.R. Fetterman

  2. Cesium-137 inventories in undisturbed areas in different regions of Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Andrello, Avacir C.; Appoloni, Carlos R., E-mail: acandrello@uel.b [Universidade Estadual de Londrina, PR (Brazil). Dept. de Fisica; Araujo, Ednaldo S. [EMBRAPA Agrobiologia, Seropedica, RJ (Brazil); Thomaz, Edivaldo L. [Universidade Estadual do Centro-Oeste - UNICENTRO, Guarapuava, PR (Brazil). Dept. de Geografia; Medeiros, Pedro Henrique Augusto [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Engenharia Agricola; Macedo, Iris L. [Universidade de Brasilia (UnB), DF (Brazil). Faculdade de Tecnologia. Dept. de Engenharia Civil e Ambiental

    2009-07-01

    Cesium-137 is an anthropogenic radionuclide introduced in the environment in the early of 1960s to the end of 1970s. The Cesium-137 has very used to assess soil redistribution in the landscape because this is very tight in the fine soil particles and its movement in the landscape is due to soil redistribution. To use Cesium-137 to assess soil redistribution is need to known the Cesium-137 inventory in an area that not has experimented soil erosion neither soil deposition. So, this work present Cesium-137 inventories in undisturbed areas in different regions of Brazil, from South to Northeast of Brazil. The inventories in these areas represent the variational deposition of Cesium-137 in the whole national territory of Brazil. The inventories of Cesium-137 varied from 200 +- 15 Bq.m{sup -2} for South region to 15 +- 2 Bq.m{sup -2} for Northeast region. Moreover, was verified that the Cesium- 137 inventories depend on latitude and altitude of the area. (author)

  3. Cesium-137 inventories in undisturbed areas in different regions of Brazil

    International Nuclear Information System (INIS)

    Andrello, Avacir C.; Appoloni, Carlos R.; Thomaz, Edivaldo L.; Medeiros, Pedro Henrique Augusto; Macedo, Iris L.

    2009-01-01

    Cesium-137 is an anthropogenic radionuclide introduced in the environment in the early of 1960s to the end of 1970s. The Cesium-137 has very used to assess soil redistribution in the landscape because this is very tight in the fine soil particles and its movement in the landscape is due to soil redistribution. To use Cesium-137 to assess soil redistribution is need to known the Cesium-137 inventory in an area that not has experimented soil erosion neither soil deposition. So, this work present Cesium-137 inventories in undisturbed areas in different regions of Brazil, from South to Northeast of Brazil. The inventories in these areas represent the variational deposition of Cesium-137 in the whole national territory of Brazil. The inventories of Cesium-137 varied from 200 ± 15 Bq.m -2 for South region to 15 ± 2 Bq.m -2 for Northeast region. Moreover, was verified that the Cesium- 137 inventories depend on latitude and altitude of the area. (author)

  4. Laser optically pumped by laser-produced plasma

    International Nuclear Information System (INIS)

    Silfvast, W.T.; Wood, O.R. II.

    1975-01-01

    Laser solids, liquids and gases are pumped by a new technique in which the output from an efficient molecular laser, such as a CO 2 laser, ionizes a medium, such as xenon, into a generally cylindrical plasma volume, in proximity to the pumped laser body. Breakdown yields a visible and ultraviolet-radiation-emitting plasma in that volume to pump the laser body. The spectral radiance of the plasma is significantly higher than that produced by a dc-discharge-heated plasma at nearly all wavelengths in the plasma spectrum. The risetime of radiation from the laser-produced plasma can also be significantly shorter than that of a dc heated plasma. A further advantage resides in the fact that in some applications the attenuating walls needed by flashlamps may be eliminated with the result that laser threshold is more readily reached. Traveling wave excitation may be provided by oblique incidence of the pumping laser beam through the ionizable medium to create sequential ionization of portions of that medium along the length of the pumped laser body. (auth)

  5. An electro-optical timing diagnostic for pump-probe experiments at the free-electron laser in Hamburg FLASH

    International Nuclear Information System (INIS)

    Azima, Armin

    2009-07-01

    Femtosecond pump-probe experiments have extensively been used to follow atomic and molecular motion in time. The very intense extreme ultraviolet XUV light of the Free electron LASer in Hamburg FLASH facility allows to investigate fundamental processes such as direct one or few photon inner shell ionizations. A supplementary Ti:Sapphire near infrared femtosecond laser system allows to perform two-color pump-probe experiments with FLASH involving intense laser fields of hugely different photon energies. Within this work a bunch arrival measurement system has been built, which assists these two-color pump-probe experiments to reduce the temporal jitter of FLASH and to increase the temporal resolution. The diagnostic is based upon an electro-optical detection scheme and measures the relative arrival time between the Ti:Sapphire femtosecond pulse and the electron bunch, which generates the self-amplified by stimulated emission SASE XUV pulse in the undulator section of FLASH. Key feature of the diagnostic is a 150 m long glass fiber pulse transport line, which inflicts non-linear dispersion. A dispersion control system to compensate for this higher order dispersion has been developed including the control and programming of a spatial light phase modulator. It was possible to transport a 90 fs FWHM short near infrared femtosecond laser pulse Fourier limited by the dispersion compensated glass fiber. The electro-optical signal induced by the FLASH electron bunch was generated, characterized and optimized. The signal features beside the designated bunch arrival timing capability the additional possibility to measure the longitudinal electron bunch density distribution of an arbitrary bunch of FLASH in a single shot with a temporal resolution of below 100 fs RMS. Timing and bunch analysis capabilities of the developed diagnostic have been cross-checked with other comparable diagnostics at FLASH like the transversal deflecting cavity structure named LOLA. Finally, the

  6. An electro-optical timing diagnostic for pump-probe experiments at the free-electron laser in Hamburg FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Azima, Armin

    2009-07-15

    Femtosecond pump-probe experiments have extensively been used to follow atomic and molecular motion in time. The very intense extreme ultraviolet XUV light of the Free electron LASer in Hamburg FLASH facility allows to investigate fundamental processes such as direct one or few photon inner shell ionizations. A supplementary Ti:Sapphire near infrared femtosecond laser system allows to perform two-color pump-probe experiments with FLASH involving intense laser fields of hugely different photon energies. Within this work a bunch arrival measurement system has been built, which assists these two-color pump-probe experiments to reduce the temporal jitter of FLASH and to increase the temporal resolution. The diagnostic is based upon an electro-optical detection scheme and measures the relative arrival time between the Ti:Sapphire femtosecond pulse and the electron bunch, which generates the self-amplified by stimulated emission SASE XUV pulse in the undulator section of FLASH. Key feature of the diagnostic is a 150 m long glass fiber pulse transport line, which inflicts non-linear dispersion. A dispersion control system to compensate for this higher order dispersion has been developed including the control and programming of a spatial light phase modulator. It was possible to transport a 90 fs FWHM short near infrared femtosecond laser pulse Fourier limited by the dispersion compensated glass fiber. The electro-optical signal induced by the FLASH electron bunch was generated, characterized and optimized. The signal features beside the designated bunch arrival timing capability the additional possibility to measure the longitudinal electron bunch density distribution of an arbitrary bunch of FLASH in a single shot with a temporal resolution of below 100 fs RMS. Timing and bunch analysis capabilities of the developed diagnostic have been cross-checked with other comparable diagnostics at FLASH like the transversal deflecting cavity structure named LOLA. Finally, the

  7. Surface interactions of cesium and boric acid with stainless steel

    International Nuclear Information System (INIS)

    Grossman-Canfield, N.

    1995-08-01

    In this report, the effects of cesium hydroxide and boric acid on oxidized stainless steel surfaces at high temperatures and near one atmosphere of pressure are investigated. This is the first experimental investigation of this chemical system. The experimental investigations were performed using a mass spectrometer and a mass electrobalance. Surfaces from the different experiments were examined using a scanning electron microscope to identify the presence of deposited species, and electron spectroscopy for chemical analysis to identify the species deposited on the surface. A better understanding of the equilibrium thermodynamics, the kinetics of the steam-accelerated volatilizations, and the release kinetics are gained by these experiments. The release rate is characterized by bulk vaporization/gas-phase mass transfer data. The analysis couples vaporization, deposition, and desorption of the compounds formed by cesium hydroxide and boric acid under conditions similar to what is expected during certain nuclear reactor accidents. This study shows that cesium deposits on an oxidized stainless steel surface at temperatures between 1000 and 1200 Kelvin. Cesium also deposits on stainless steel surfaces coated with boric oxide in the same temperature ranges. The mechanism for cesium deposition onto the oxide layer was found to involve the chemical reaction between cesium and chromate. Some revaporization in the cesium hydroxide-boric acid system was observed. It has been found that under the conditions given, boric acid will react with cesium hydroxide to form cesium metaborate. A model is proposed for this chemical reaction

  8. Hanford waste encapsulation: strontium and cesium

    International Nuclear Information System (INIS)

    Jackson, R.R.

    1976-06-01

    The strontium and cesium fractions separated from high radiation level wastes at Hanford are converted to the solid strontium fluoride and cesium chloride salts, doubly encapsulated, and stored underwater in the Waste Encapsulation and Storage Facility (WESF). A capsule contains approximately 70,000 Ci of 137 Cs or 70,000 to 140,000 Ci of 90 Sr. Materials for fabrication of process equipment and capsules must withstand a combination of corrosive chemicals, high radiation dosages and frequently, elevated temperatures. The two metals selected for capsules, Hastelloy C-276 for strontium fluoride and 316-L stainless steel for cesium chloride, are adequate for prolonged containment. Additional materials studies are being done both for licensing strontium fluoride as source material and for second generation process equipment

  9. Demonstration of slow light propagation in an optical fiber under dual pump light with co-propagation and counter-propagation

    Science.gov (United States)

    Qiu, Wei; Liu, Jianjun; Wang, Yuda; Yang, Yujing; Gao, Yuan; Lv, Pin; Jiang, Qiuli

    2018-04-01

    In this paper, a general theory of coherent population oscillation effect in an Er3+ -doped fiber under the dual-frequency pumping laser with counter-propagation and co-propagation at room temperature is presented. Using the numerical simulation, in case of dual frequency light waves (1480 nm and 980 nm) with co-propagation and counter-propagation, we analyze the effect of the pump optical power ratio (M) on the group speed of light. The group velocity of light can be varied with the change of M. We research the time delay and fractional delay in an Er3+-doped fiber under the dual-frequency pumping laser with counter-propagation and co-propagation. Compared to the methods of the single pumping, the larger time delay can be got by using the technique of dual-frequency laser pumped fiber with co-propagation and counter-propagation.

  10. Axial migratin of cesium in LMFBR fuel pins

    International Nuclear Information System (INIS)

    Karnesky, R.A.; Bridges, A.E.; Jost, J.W.

    1981-11-01

    A correlated model for quantitatively predicting the behavior of cesium in LMFBR fuel pins has been developed. This correlation was shown to be in good agreement with experimental data. It has been used to predict the behavior of cesium in the FFTF driver fuel and as the result of this analysis it has been shown that the accumulation of cesium in the insulator pellets at the ends of the fuel column will not be life limiting

  11. Cesium glass irradiation sources

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1982-01-01

    The precipitation process for the decontamination of soluble SRP wastes produces a material whose radioactivity is dominated by 137 Cs. Potentially, this material could be vitrified to produce irradiation sources similar to the Hanford CsCl sources. In this report, process steps necessary for the production of cesium glass irradiation sources (CGS), and the nature of the sources produced, are examined. Three options are considered in detail: direct vitrification of precipitation process waste; direct vitrification of this waste after organic destruction; and vitrification of cesium separated from the precipitation process waste. Direct vitrification is compatible with DWPF equipment, but process rates may be limited by high levels of combustible materials in the off-gas. Organic destruction would allow more rapid processing. In both cases, the source produced has a dose rate of 2 x 10 4 rads/hr at the surface. Cesium separation produces a source with a dose rate of 4 x 10 5 at the surface, which is nearer that of the Hanford sources (2 x 10 6 rads/hr). Additional processing steps would be required, as well as R and D to demonstrate that DWPF equipment is compatible with this intensely radioactive material

  12. Spatial variability and Cesium-137 inventories in native forest

    International Nuclear Information System (INIS)

    Andrello, A.C.; Appoloni, C.R.

    2004-01-01

    With the nuclear fission discovery and development of nuclear weapons in 1940s, artificial radioisotopes were introduced in the environment. This contamination is due to worldwide fallout by superficial nuclear tests realized from early 1950s to late 1970s by USA, former URSS, UK, France and China. One of theses radioisotopes that have been very studied is cesium-137. Cesium-137 has a half-life of 30.2 years and its biological behavior is similar to the potassium. The behavior in soil matrix, depth distribution, spatial variability and inventories values of cesium-137 has been determinate for several regions of the world. In Brazil, some research groups have worked on this subject, but there are few works published about theses properties of cesium-137. The aim of this paper was study the depth distribution, spatial variability, and inventory of cesium-137 in native forest. Two native forests (Mata 1 and Mata UEL) were sampling in region of Londrina, PR. The results shows that there is a spatial variability of 40% for Mata 1 and 42% for Mata UEL. The depth distribution of cesium-137 for two forests presented a exponential form, characteristic to undisturbed soil. Cesium-137 inventory determinate for Mata 1 was 358 Bq m -2 and for Mata UEL was 320 Bq m -2 . (author)

  13. Decorporation of cesium-137

    International Nuclear Information System (INIS)

    Le Fleche, Ph.; Destombe, C.; Grasseau, A.; Mathieu, J.; Chancerelle, Y.; Mestries, J.C.

    1997-01-01

    Cesium radio-isotopes, especially cesium-137 ( 137 Cs) are among the radionuclides of main importance produced by a fission reaction in reactor or a nuclear weapon explosion. In the environment, 137 Cs is a major contaminant which can cause severe β, γirradiations and contaminations. 137 Cs is distributed widely and relatively uniformly throughout the body with the highest concentration in skeletal muscles. A treatment becomes difficult afterwards. The purposes of this report are Firstly to compare the Prussian blue verses cobalt and potassium ferrocyanide (D.I. blue) efficiency for the 137 Cs decorporation and secondly to assess a chronological treatment with D.I. blue. (author)

  14. Conceptual design of cesium removal device for ITER NBI maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Kiyoshi; Shibanuma, Kiyoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    Cesium is required in order to generate a stable negative ion of hydrogen in an ion source of the neutral beam injector (NBI), which is one of the plasma-heating devices for International Thermonuclear Experimental Reactor (ITER). After long time operation of the NBI, the cesium deposits to the insulators supporting the electrode. Due to the deterioration of the insulation resistance, the continuous operation of the NBI will be difficult. In addition, the NBI device is activated by neutrons from D-T plasma, so that periodic removal and cleaning of the cesium on the insulators by remove handling is required. A study of the cesium removal scenario and the device is therefore required considering remote handling. In this report, a cesium removal procedure and conceptual design of the cesium removal device using laser ablation technique are studied, and the feasibility of the laser ablation method is shown. (author)

  15. Operation of the optically pumped polarized H- source at LAMPF

    International Nuclear Information System (INIS)

    York, R.L.; Tupa, D.; Swenson, D.R.; van Dyck, O.B.

    1991-01-01

    We report on the first five months of operation of the Optically Pumped Polarized Ion Source (OPPIS) for the nuclear physics research program at LAMPF. The LAMPF OPPIS is unique in using Ti: Sapphire lasers to polarize the potassium charge-exchange medium, and until recently was unique in using a superconducting magnet in the ECR source and polarizer regions. The ECR extraction electrode biasing arrangement is also unique. Typical performance was 25 microamps of peak current (measured at 750 keV) with 55% beam polarization or 15 microamps at 62%. Ion source availability was greater than 90%. We also report our planned improvements in preparation for research operation in May of 1991. 3 refs., 4 figs

  16. Ionization mechanism of cesium plasma produced by irradiation of dye laser

    International Nuclear Information System (INIS)

    Yamada, Jun; Shibata, Kohji; Uchida, Yoshiyuki; Hioki, Yoshiaki; Sahashi, Toshio.

    1992-01-01

    When a cesium vapor was irradiated by a dye laser which was tuned to the cesium atomic transition line, the number of charged particles produced by the laser radiation was observed. Several sharp peaks in the number of charged particles were observed, which corresponded to the atomic transition where the lower level was the 6P excited atom. The ionization mechanism of the laser-produced cesium plasma has been discussed. An initial electron is produced by laser absorptions of the cesium dimer. When the cesium density is high, many 6P excited atoms are excited by electron collisions. The 6P excited atom further absorbs the laser photon and is ionized through the higher-energy state. As the cesium vapor pressure increases, the resonance effect becomes observable. The 6P excited atom plays dominant role in the ionization mechanism of the laser-produced cesium plasma. (author)

  17. Extraction of cesium from acid solutions

    International Nuclear Information System (INIS)

    Katykhin, G.S.; Simonov, A.S.

    1983-01-01

    The extraction of cesium from acidic solutions is studied. Halogen-substituted carboxylic acids were chosen for the aqueous phase and nitrobenzene the diluent. The distribution coefficients are determined by the use of radioactive tracers 134 Cs and 137 Cs. It is believed that large singly charged anions of strong acids are necessary for the extraction of cesium. Metal halide acids are selected for supplying the anions

  18. Heterodyne pump-probe and four-wave mixing in semiconductor optical amplifiers using balanced lock-in detection

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang; Mørk, Jesper

    1999-01-01

    We demonstrate a new detection scheme for pump-probe and four-wave mixing heterodyne experiments, using balanced detection and a dual-phase lock-in for spectral filtering. The technique allows the use of low repetition-rate laser systems, as is demonstrated on an InGaAsP/InP bulk optical amplifier...... at 1.53 mym. Ultrafast pump-induced changes in the amplitude and phase of the transmitted probe signal are simultaneously measured, going from small to large signal changes and with no need of an absolute phase calibration, showing the versatility and the sensitivity of this detection scheme....... The results for small perturbations are consistent with previous pump-probe experiments reported in literature. Time-resolved four-wave mixing in the absorption regime of the device is measured, and compared with numerical simulations, indicating a 100 fs dephasing time....

  19. Cesium in the nutrient cycle

    International Nuclear Information System (INIS)

    Rantavaara, A.

    1992-01-01

    Most radioactive cesium in forests is deposited in soil, from which it passes into berries and mushrooms, and further to game. The cesium contents of Finnish berries and mushrooms vary depending on the intensity of Chernobyl fallout. Northern Haeme, Pirkanmaa and parts of central Finland received the most fallout. Weather conditions and the environmental factors, and other circumstances during the growth period, also affect the contents. However, consumption of wild berries, mushrooms and game need not be restricted because of radioactivity anywhere in Finland

  20. Simple and efficient method of spin-polarizing a metastable helium beam by diode laser optical pumping

    International Nuclear Information System (INIS)

    Granitza, B.; Salvietti, M.; Torello, E.; Mattera, L.; Sasso, A.

    1995-01-01

    Diode laser optical pumping to produce a highly spin-polarized metastable He beam to be used in a spin-polarized metastable atom deexcitation spectroscopy experiment on magnetized surfaces is described. Efficient pumping of the beam is performed by means of an SDL-6702 distributed Bragg reflector diode laser which yields 50 mW of output power in a single longitudinal mode at 1083 nm, the resonance wavelength for the 2 3 S→2 3 P 0,1,2 (D 0 , D 1 , and D 2 ) transitions of He*. The light is circularly polarized by a quarter-wave plate, allowing easy change of the sense of atomic polarization. The laser frequency can be locked to the atomic transition for several hours by phase-sensitive detection of the saturated absorption signal in a He discharge cell. Any of the three transitions of the triplet system can be pumped with the laser but the maximum level of atomic polarization of 98.5% is found pumping the D 2 line. copyright 1995 American Institute of Physics

  1. Combined wide pump tuning and high power of a continuous-wave, singly resonant optical parametric oscillator

    NARCIS (Netherlands)

    Herpen, M.M.J.W. van; Bisson, S.E.; Ngai, A.K.Y.; Harren, F.J.M.

    2004-01-01

    A new singly resonant, single-frequency optical parametric oscillator (OPO) has been developed for the 2.6-4.7 mum infrared wavelength region, using a high power (>20 W), widely tunable (1024-1034 nm) Yb:YAG pump source. With the OPO frequency stabilized with an intracavity etalon, the OPO achieved

  2. Removal of cesium radioisotopes from solutions using granulated zeolites

    International Nuclear Information System (INIS)

    Bronic, J.; Subotic, B.

    1991-01-01

    The influence of type of zeolite and the flow rate of solution through the column on the removal efficiency of radioactive cesium ions from solution has been investigated. The analysis of the change in the concentration of cesium ions in the solutions and distribution of cesium ions in the column fillings (granulated zeolites), after passing the solutions through the columns filled with various granulated zeolites (zeolite 4A, zeolite 13X, synthetic mordenite) was performed. On the basis of the results of this study, the conditions for the most efficient removal of cesium ions from solutions have been discussed. (author) 35 refs.; 9 figs.; 1 tab

  3. Study of strontium and cesium migration in fractured crystalline rock

    International Nuclear Information System (INIS)

    Gustafsson, E.; Klockars, C.E.

    1984-01-01

    The purpose of this investigation has been to study the retardation and dilution of non-active strontium and cesium relative to a non-absorbing substance (iodide) in a well-defined fracture zone in the Finnsjoen field research area. The investigation was carried out in a previously tracer-tested fracture zone. The study has encompassed two separate test runs with prolonged injection of strontium and iodide and of cesium and iodide. The test have shown that: - Strontium is not retarded, but rather absorbed to about 40% at equilibrium. - At injection stop, 36.3% of the injected mass of strontium has been absorbed and there is no deabsorption. -Cesium is retarded a factor of 2-3 and absorbed to about 30% at equilibrium. - At injection stop, 39.4% of the injected mass of cesium has been absorbed. Cesium is deabsorbed after injection stop (400h) and after 1300 hours, only 22% of the injected mass of cesium is absorbed. (author)

  4. Cesium vapor cycle for an advanced LMFBR

    International Nuclear Information System (INIS)

    Fraas, A.P.

    1975-01-01

    A review indicates that a cesium vapor topping cycle appears attractive for use in the intermediate fluid circuit of an advanced LMFBR designed for a reactor outlet temperature of 1250 0 F or more and would have the following advantages: (1) it would increase the thermal efficiency by about 5 to 10 points (from approximately 40 percent to approximately 45 to 50 percent) thus reducing the amount of waste heat rejected to the environment by 15 to 30 percent. (2) the higher thermal efficiency should reduce the overall capital cost of the reactor plant in dollars per kilowatt. (3) the cesium can be distilled out of the intermediate fluid circuit to leave it bone-dry, thus greatly reducing the time and cost of maintenance work (particularly for the steam generator). (4) the large volume and low pressure of the cesium vapor region in the cesium condenser-steam generator greatly reduces the magnitude of pressure fluctuations that might occur in the event of a leak in a steam generator tube, and the characteristics inherent in a condenser make it easy to design for rapid concentration of any noncondensibles that may form as a consequence of a steam leak into the cesium region so that a steam leak can be detected easily in the very early stages of its development

  5. Transverse pumped laser amplifier architecture

    Science.gov (United States)

    Bayramian, Andrew James; Manes, Kenneth; Deri, Robert; Erlandson, Al; Caird, John; Spaeth, Mary

    2013-07-09

    An optical gain architecture includes a pump source and a pump aperture. The architecture also includes a gain region including a gain element operable to amplify light at a laser wavelength. The gain region is characterized by a first side intersecting an optical path, a second side opposing the first side, a third side adjacent the first and second sides, and a fourth side opposing the third side. The architecture further includes a dichroic section disposed between the pump aperture and the first side of the gain region. The dichroic section is characterized by low reflectance at a pump wavelength and high reflectance at the laser wavelength. The architecture additionally includes a first cladding section proximate to the third side of the gain region and a second cladding section proximate to the fourth side of the gain region.

  6. Helium nanodroplets. Pump-probe ionization of alkali dopings and spin-echo scattering on undoped drops; Helium-Nanotroepfchen. Pump-Probe-Ionisation von Alkalidotierungen und Spinechostreuung an undotierten Tropfen

    Energy Technology Data Exchange (ETDEWEB)

    Droppelmann, G.

    2005-09-15

    In the framework of this thesis several aspects of the properties of helium nanodroplets and their dopings. The formation of the exciplexes RbHe and KHe on helium droplets was studied by means of pump-probe ionization in real time, whereby the main interest lied on the influence of the applied helium isotopes. The experiments with cesium atoms on the droplet surface aimed on the elucidation of the relaxation dynamics of the surface under regardment both of isotope and size effects. From the pump-probe measurements on the formation of the exciplex RbHe on helium nanodroplets performed in the framework of this thesis formation times of 8.5 ps for Rb{sup 4}He and 11.6 ps for Rb{sup 3}He resulted.

  7. A ZnGeP{sub 2} Optical Parametric Oscillator with Mid-IR Output Power 3 W Pumped by a Tm, Ho:GdVO{sub 4} Laser

    Energy Technology Data Exchange (ETDEWEB)

    Bao-Quan, Yao; Guo-Li, Zhu; You-Lun, Ju; Yue-Zhu, Wang [National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150080 (China)

    2009-02-15

    We report an efficient mid-infrared optical parametric oscillator (OPO) pumped by a pulsed Tm,Ho-codoped GdVO4 laser. The 10-W Tm,Ho:GdVO4 laser pumped by a 801 nm diode produces 20ns pulses with a repetition rate of 10kHz at wavelength of 2.048 {mu}m. The ZnGeP{sub 2} (ZGP) OPO produces 15-ns pulses in the spectral regions 3.65-3.8 {mu}m and 4.45-4.65 {mu}m simultaneously. More than 3 W of mid-IR output power can be generated with a total OPO slope efficiency greater than 58% corresponding to incident 2 {mu}m pump power. The diode laser pump to mid-IR optical conversion efficiency is about 12%.

  8. Studies of equilibrium and kinetics of adsorption of cesium ions by graphene oxide

    International Nuclear Information System (INIS)

    Oliveira, Fernando M.; Bueno, Vanessa N.; Oshiro, Maurício T.; Potiens Junior, Ademar J.; Hiromoto, Goro; Sakata, Solange K.; Rodrigues, Debora F.

    2017-01-01

    Cesium is one of the fission products of major radiological concern, it is often found in nuclear radioactive waste generated at nuclear power plants. Graphene Oxide (GO) has attracted great attention due to its functionalized surface, which includes hydroxyl, epoxy, carbonyl and carboxyl groups, with great capacity of complexation with metal ions and can be used as adsorbent to remove cations from aqueous solutions. In this work, a treatment of radioactive waste containing 137 Cs was studied. For the batch experiments of Cs + removal, 133 Cs concentrations remained after the adsorption were determined by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) and the results obtained were analyzed according to the Langmuir and Freundlich isotherms models. The kinetics of adsorption and Gibbs free energy were also determined. The Langmuir model was the best fit and defined a favorable adsorption. The cesium adsorption process is the pseudo-second model and the Gibbs free energy calculation indicated that the adsorption process is spontaneous. (author)

  9. Studies of equilibrium and kinetics of adsorption of cesium ions by graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Fernando M.; Bueno, Vanessa N.; Oshiro, Maurício T.; Potiens Junior, Ademar J.; Hiromoto, Goro; Sakata, Solange K., E-mail: fmoliveira@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Rodrigues, Debora F., E-mail: dfrigiro@central.uh.edu [Department of Civil and Environmental Engineering, University of Houston, TX (United States)

    2017-07-01

    Cesium is one of the fission products of major radiological concern, it is often found in nuclear radioactive waste generated at nuclear power plants. Graphene Oxide (GO) has attracted great attention due to its functionalized surface, which includes hydroxyl, epoxy, carbonyl and carboxyl groups, with great capacity of complexation with metal ions and can be used as adsorbent to remove cations from aqueous solutions. In this work, a treatment of radioactive waste containing {sup 137}Cs was studied. For the batch experiments of Cs{sup +} removal, {sup 133}Cs concentrations remained after the adsorption were determined by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) and the results obtained were analyzed according to the Langmuir and Freundlich isotherms models. The kinetics of adsorption and Gibbs free energy were also determined. The Langmuir model was the best fit and defined a favorable adsorption. The cesium adsorption process is the pseudo-second model and the Gibbs free energy calculation indicated that the adsorption process is spontaneous. (author)

  10. Efficient Long Wave IR Laser from Ho:YAG 2 {mu}m Pumped ZnGeP{sub 2} Optical Parametric Oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Li-Gang,; Bao-Quan, Yao; Xiao-Ming, Duan; Guo-Li, Zhu; Yue-Zhu, Wang; You-Lun, Ju [National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2010-01-15

    An efficient high power long wave infrared laser based on ZnGeP{sub 2} optical parametric oscillator pumped by a 2.09 {mu}m Tm:YLF/Ho:YAG laser at 10KHz pulse repetition rate is reported. The pump to idler conversion efficiency is 8% at 15.6 W Ho pump power level and a quantum efficiency of 31 % when the 1'idler wavelength is tuned at 8.08 {mu}m. The wavelength tuning range from 8-9.1 {mu}m is also achieved by rotating the ZGP crystal. (fundamental areas of phenomenology(including applications))

  11. Cesium and Strontium Separation Technologies Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    T. A. Todd; T. A. Todd; J. D. Law; R. S. Herbst

    2004-03-01

    Integral to the Advanced Fuel Cycle Initiative (AFCI) Program’s proposed closed nuclear fuel cycle, the fission products cesium and strontium in the dissolved spent nuclear fuel stream are to be separated and managed separately. A comprehensive literature survey is presented to identify cesium and strontium separation technologies that have the highest potential and to focus research and development efforts on these technologies. Removal of these high-heat-emitting fission products reduces the radiation fields in subsequent fuel cycle reprocessing streams and provides a significant short-term (100 yr) heat source reduction in the repository. This, along with separation of actinides, may provide a substantial future improvement in the amount of fuel that could be stored in a geologic repository. The survey and review of the candidate cesium and strontium separation technologies are presented herein. Because the AFCI program intends to manage cesium and strontium together, technologies that simultaneously separate both elements are of the greatest interest, relative to technologies that separate only one of the two elements.

  12. Mode structure in an optically pumped D2O far infrared ring laser

    International Nuclear Information System (INIS)

    Yuan, D.C.; Soumagne, G.; Siegrist, M.R.

    1989-07-01

    The mode structures in an optically pumped D 2 O far infrared ring laser and a corresponding linear resonator have been compared. While single mode operation can be obtained over the whole useful pressure range in the ring structure, this is only possible at pressures greater than 8 Torr in the linear resonator case. A numerical model predicts quite well the pulse shape, pressure dependence and influence of the resonator quality in the ring cavity. (author) 12 figs., 8 refs

  13. Use of ultrafast dispersed pump-dump-probe and pump-repump-probe spectroscopies to explore the light-induced dynamics of peridinin in solution

    NARCIS (Netherlands)

    Papagiannakis, E.; Vengris, M.; Larsen, D.S.; van Stokkum, I.H.M.; Hiller, R.G.; van Grondelle, R.

    2006-01-01

    Optical pump-induced dynamics of the highly asymmetric carotenoid peridinin in methanol was studied by dispersed pump-probe, pump-dump-probe, and pump-repump-probe transient absorption spectroscopy in the visible region. Dispersed pump-probe measurements show that the decay of the initially excited

  14. METHOD FOR THE RECOVERY OF CESIUM VALUES

    Science.gov (United States)

    Rimshaw, S.J.

    1960-02-16

    A method is given for recovering Cs/sup 137/ from radioactive waste solutions together with extraneous impurities. Ammonium alum is precipitated in the waste solution. The alum, which carries the cesium, is separated from the supernatant liquid and then dissolved in water. The resulting aqueous solution is then provided with a source of hydroxyl ions, which precipitates aluminum as the hydroxide, and the aluminum hydroxide is separated from the resulting liquid. This liquid, which contains anionic impurities together with ammonium and cesium, is passed through an anion exchange resin bed which removes the anionic impurities. The ammonium in the effluent is removed by destructive distiilation, leaving a substantiaily pure cesium salt in the effluent.

  15. Biochemical changes in rats under the influence of cesium chloride

    Directory of Open Access Journals (Sweden)

    N. M. Melnikova

    2013-04-01

    Full Text Available Cesium is lately accumulated actively in the environment, but its influence on human and ani­mal organism is the least studied among heavy metals. It is shown that the action of cesium chloride in rats caused significant changes in blood chemistry, which are characterized by a decrease of total protein content, pH, an increase in the level of urea, creatinine, glucose and total hemoglobin. The results showed that potassium content in all the studied organs and tissues of poisoned rats decreases under the action of cesium chloride. Histological examination of the heart tissue in rats poisoned with cesium chloride indicates the onset of pathology of cardiovascular system. It was found out that use of the drug “Asparkam” reduces the negative effect of cesium chloride on the body of rats.

  16. Pump-probe nonlinear magneto-optical rotation with frequency-modulated light

    International Nuclear Information System (INIS)

    Pustelny, S.; Gawlik, W.; Jackson Kimball, D. F.; Rochester, S. M.; Yashchuk, V. V.; Budker, D.

    2006-01-01

    Specific types of atomic coherences between Zeeman sublevels can be generated and detected using a method based on nonlinear magneto-optical rotation with frequency-modulated light. Linearly polarized, frequency-modulated light is employed to selectively generate ground-state coherences between Zeeman sublevels for which Δm=2 and Δm=4 in 85 Rb and 87 Rb atoms, and additionally Δm=6 in 85 Rb. The atomic coherences are detected with a separate, unmodulated probe light beam. Separation of the pump and probe beams enables independent investigation of the processes of creation and detection of the atomic coherences. With the present technique the transfer of the Zeeman coherences, including high-order coherences, from excited to ground state by spontaneous emission has been observed

  17. Pump to signal noise transfer in parametric fiber amplifiers

    DEFF Research Database (Denmark)

    Lund-Hansen, Toke; Rottwitt, Karsten; Peucheret, Christophe

    2010-01-01

    Fiber optic parametric amplifiers have been suggested due to their potential low spontaneous emission. However, by nature the parametric amplifier only work in a forward pumped configuration, which result in transfer of relative intensity noise in the pump to the signal.......Fiber optic parametric amplifiers have been suggested due to their potential low spontaneous emission. However, by nature the parametric amplifier only work in a forward pumped configuration, which result in transfer of relative intensity noise in the pump to the signal....

  18. Cesium-134 and cesium-137 in honey bees and cheese samples collected in the U. S. after the Chernobyl accident

    Energy Technology Data Exchange (ETDEWEB)

    Ford, B C; Jester, W A; Griffith, S M; Morse, R A; Zall, R R; Lisk, D J; Burgett, D M; Bodyfelt, F W

    1988-01-01

    As a result of the Chernobyl accident on April 25, 1986, possible radioactive contamination of honey bees and cheese sampled in several areas of the United States were measured. Of bees collected in May and June of 1986 in both Oregon and New York, only those from Oregon showed detectable levels of cesium-134 (T1/2 = 2.05 years), a radionuclide which would have originated from the Chernobyl incident. Cheese produced in Oregon and New York before the accident showed only cesium-137 (T1/2 = 30.23 years) but cheese produced afterwards (May and September, 1986) in Oregon contained cesium-134. Cheese produced in Ohio and California at the time of the accident and thereafter contained only cesium-137. In general, the levels of radioactivity were higher in the West coast samples as compared to those taken in the East. The levels of radioactivity detected were considered to be toxicologically of no consequence.

  19. Two-stage optical parametric chirped-pulse amplifier using sub-nanosecond pump pulse generated by stimulated Brillouin scattering compression

    Science.gov (United States)

    Ogino, Jumpei; Miyamoto, Sho; Matsuyama, Takahiro; Sueda, Keiichi; Yoshida, Hidetsugu; Tsubakimoto, Koji; Miyanaga, Noriaki

    2014-12-01

    We demonstrate optical parametric chirped-pulse amplification (OPCPA) based on two-beam pumping, using sub-nanosecond pulses generated by stimulated Brillouin scattering compression. Seed pulse energy, duration, and center wavelength were 5 nJ, 220 ps, and ˜1065 nm, respectively. The 532 nm pulse from a Q-switched Nd:YAG laser was compressed to ˜400 ps in heavy fluorocarbon FC-40 liquid. Stacking of two time-delayed pump pulses reduced the amplifier gain fluctuation. Using a walk-off-compensated two-stage OPCPA at a pump energy of 34 mJ, a total gain of 1.6 × 105 was obtained, yielding an output energy of 0.8 mJ. The amplified chirped pulse was compressed to 97 fs.

  20. Ultrafast optical pump terahertz-probe spectroscopy of strongly correlated electron materials

    International Nuclear Information System (INIS)

    Averitt, R.D.; Taylor, Antoinette J.; Thorsmolle, V.K.; Jia, Quanxi; Lobad, A.I.; Trugman, S.A.

    2001-01-01

    We have used optical-pump far-infrared probe spectroscopy to probe the low energy electron dynamics of high temperature superconductors and colossal magnetoresistance manganites. For the superconductor YBa2Cu3O7, picosecond conductivity measurements probe the interplay between Cooper-pairs and quasiparticles. In optimally doped films, the recovery time for long-range phase-coherent pairing increases from ∼1.5 ps at 4K to ∼3.5 ps near Tc, consistent with the closing of the superconducting gap. For underdoped films, the measured recovery time is temperature independent (3.5 ps) in accordance with the presence of a pseudogap. Ultrafast picosecond measurements of optically induced changes in the absolute conductivity of La0:7M0:3MnO3 thin films (M = Ca, Sr) from 10K to ∼0.9Tc reveal a two-component relaxation. A fast, ∼2 ps, conductivity decrease arises from optically induced modification of the effective phonon temperature. The slower component, related to spin-lattice relaxation, has a lifetime that increases upon approaching Tc from below in accordance with an increasing spin specific heat. Our results indicate that for T<< Tc, the conductivity is determined by incoherent phonons while spin fluctuations dominate near Tc.

  1. Electron-stimulated desorption of cesium atoms from cesium layers adsorbed on gold-covered tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Ageev, V N; Kuznetsov, Yu A; Potekhina, N D, E-mail: kuznets@ms.ioffe.r [A F Ioffe Physico-Technical Institute, Russian Academy of Sciences, 194021, St Petersburg (Russian Federation)

    2010-03-03

    The electron-stimulated desorption (ESD) yields and energy distributions (ED) for neutral cesium atoms have been measured from cesium layers adsorbed on a gold-covered tungsten surface as a function of electron energy, gold film thickness, cesium coverage and substrate temperature. The measurements have been carried out using a time-of-flight method and surface ionization detector in the temperature range 160-300 K. A measurable ESD yield for Cs atoms is observed only after deposition of more than one monolayer of gold and cesium on a tungsten surface at a temperature T = 300 K, which is accompanied by the formation of a CsAu semiconductor film covered with a cesium atom monolayer. The Cs atom ESD yield as a function of incident electron energy has a resonant character and consists of two peaks, the appearance of which depends on both electron energy and substrate temperature. The first peak has an appearance threshold at an electron energy of 57 eV and a substrate temperature of 300 K that is due to Au 5p{sub 3/2} core level excitation in the substrate. The second peak appears at an electron energy of 24 eV and a substrate temperature of 160 K. It is associated with a Cs 5s core level excitation in the Cs adsorbed layer. The Au 5p{sub 3/2} level excitation corresponds to a single broad peak in the ED with a maximum at a kinetic energy of 0.45 eV at a substrate temperature T = 300 K, which is split into two peaks with maxima at kinetic energies of 0.36 and 0.45 eV at a substrate temperature of 160 K, associated with different Cs atom ESD channels. The Cs 5s level excitation leads to an ED for Cs atoms with a maximum at a kinetic energy of approx 0.57 eV which exists only at T < 240 K and low Cs concentrations. The mechanisms for all the Cs atom ESD channels are proposed and compared with the Na atom ESD channels in the Na-Au-W system.

  2. Recovery of cesium

    Science.gov (United States)

    Izatt, Reed M.; Christensen, James J.; Hawkins, Richard T.

    1984-01-01

    A process of recovering cesium ions from mixtures of ions containing them and other ions, e.g., a solution of nuclear waste materials, which comprises establishing a separate source phase containing such a mixture of ions, establishing a separate recipient phase, establishing a liquid membrane phase in interfacial contact with said source and recipient phases, said membrane phase containing a ligand, preferably a selected calixarene as depicted in the drawing, maintaining said interfacial contact for a period of time long enough to transport by said ligand a substantial portion of the cesium ion from the source phase to the recipient phase, and recovering the cesium ion from the recipient phase. The separation of the source and recipient phases may be by the membrane phase only, e.g., where these aqueous phases are emulsified as dispersed phases in a continuous membrane phase, or may include a physical barrier as well, e.g., an open-top outer container with an inner open-ended container of smaller cross-section mounted in the outer container with its open bottom end spaced from and above the closed bottom of the outer container so that the membrane phase may fill the outer container to a level above the bottom of the inner container and have floating on its upper surface a source phase and a recipient phase separated by the wall of the inner container as a physical barrier. A preferred solvent for the ligand is a mixture of methylene chloride and carbon tetrachloride.

  3. Cesium-137 retention in irops obtained from various soils

    International Nuclear Information System (INIS)

    Gulyakin, I.V.; Yudintseva, E.V.; Gorina, L.I.

    1974-01-01

    A non-station experiment has shown that the accumulation of cesium-137 in a plant yield depends on the type of soil. The highest contents of cesium-137 were found in the yield of plants from soddy-podzolic sandy loam soils, and the lowest- in those from leached chernozem. The accumulation of radiocesium in the yield of the basic produce strongly depended on the plant species. The amount of cesium-137 differed 5- to 7-fold in different crops

  4. Low Noise Frequency Comb Sources Based on Synchronously Pumped Doubly Resonant Optical Parametric Oscillators

    Science.gov (United States)

    Wan, Chenchen

    Optical frequency combs are coherent light sources consist of thousands of equally spaced frequency lines. Frequency combs have achieved success in applications of metrology, spectroscopy and precise pulse manipulation and control. The most common way to generate frequency combs is based on mode-locked lasers which has the output spectrum of comb structures. To generate stable frequency combs, the output from mode-locked lasers need to be phase stabilized. The whole comb lines will be stabilized if the pulse train repetition rate corresponding to comb spacing and the pulse carrier envelope offset (CEO) frequency are both stabilized. The output from a laser always has fluctuations in parameters known as noise. In laser applications, noise is an important factor to limit the performance and often need to be well controlled. For example in precision measurement such as frequency metrology and precise spectroscopy, low laser intensity and phase noise is required. In mode-locked lasers there are different types of noise like intensity noise, pulse temporal position noise also known as timing jitter, optical phase noise. In term for frequency combs, these noise dynamics is more complex and often related. Understanding the noise behavior is not only of great interest in practical applications but also help understand fundamental laser physics. In this dissertation, the noise of frequency combs and mode-locked lasers will be studied in two projects. First, the CEO frequency phase noise of a synchronously pumped doubly resonant optical parametric oscillators (OPO) will be explored. This is very important for applications of the OPO as a coherent frequency comb source. Another project will focus on the intensity noise coupling in a soliton fiber oscillator, the finding of different noise coupling in soliton pulses and the dispersive waves generated from soliton perturbation can provide very practical guidance for low noise soliton laser design. OPOs are used to generate

  5. Measurement of asymmetric optical pumping of ions accelerating in a magnetic-field gradient

    International Nuclear Information System (INIS)

    Sun Xuan; Scime, Earl; Miah, Mahmood; Cohen, Samuel; Skiff, Frederick

    2004-01-01

    We report observations of asymmetric optical pumping of argon ions accelerating in a magnetic-field gradient. The signature is a difference in the laser-induced-fluorescence emission amplitude from a pair of Zeeman-split states. A model that reproduces the dependence of the asymmetry on magnetic-field and ion-velocity gradients is described. With the model, the fluorescence intensity ratio provides a new method of measuring ion collisionality. This phenomenon has implications for interpreting stellar plasma spectroscopy data which often exhibit unequal Zeeman state intensities

  6. Measurement of Asymmetric Optical Pumping of Ions Accelerating in a Magnetic-field Gradient

    Energy Technology Data Exchange (ETDEWEB)

    Xuan Sun; Earl Scime; Mahmood Miah; Samuel Cohen; Frederick Skiff

    2004-10-28

    We report observations of asymmetric optical pumping of argon ions accelerating in a magnetic field gradient. The signature is a difference in the laser-induced-fluorescence (LIF) emission amplitude from a pair of Zeeman-split states. A model that reproduces the dependence of the asymmetry on magnetic-field and ion-velocity gradients is described. With the model, the fluorescence intensity ratio provides a new method of measuring ion collisionality. This phenomenon has implications for interpreting stellar plasma spectroscopy data which often exhibit unequal Zeeman state intensities.

  7. Measurement of Asymmetric Optical Pumping of Ions Accelerating in a Magnetic-field Gradient

    International Nuclear Information System (INIS)

    Xuan Sun; Earl Scime; Mahmood Miah; Samuel Cohen; Frederick Skiff

    2004-01-01

    We report observations of asymmetric optical pumping of argon ions accelerating in a magnetic field gradient. The signature is a difference in the laser-induced-fluorescence (LIF) emission amplitude from a pair of Zeeman-split states. A model that reproduces the dependence of the asymmetry on magnetic-field and ion-velocity gradients is described. With the model, the fluorescence intensity ratio provides a new method of measuring ion collisionality. This phenomenon has implications for interpreting stellar plasma spectroscopy data which often exhibit unequal Zeeman state intensities

  8. PTFE-based microreactor system for the continuous synthesis of full-visible-spectrum emitting cesium lead halide perovskite nanocrystals

    Directory of Open Access Journals (Sweden)

    Chengxi Zhang

    2017-11-01

    Full Text Available Colloidal perovskite nanocrystals comprised of all inorganic cesium lead halide (CsPbX3, X = Cl, Br, I or a mixture thereof have potential as optical gain materials due to their high luminescence efficiency. In this work, cesium lead halide nanocrystals are continuously synthesized via a microreactor system consisting of poly(tetrafluoroethylene (PTFE capillaries. The synthesized nanocrystals possess excellent optical properties, including a full width at half maximum of 19–35 nm, high fluorescence quantum yield of 47.8–90.55%, and photoluminescence emission in the range of 450–700 nm. For the same precursor concentrations, the photoluminescence emission peak generally increases with increasing reaction temperature, revealing a controllable temperature effect on the photoluminescence characteristics of the synthesized nanocrystals. For quantum dots synthesized with a Br/I ratio of 1:3, a slight blue shift was observed for reaction temperatures greater than 100 °C. This PTFE-based microreactor system provides the unique capability of continuously synthesizing high-quality perovskite nanocrystals that emit over the full visible spectrum with applications ranging from displays and optoelectronic devices.

  9. Study of the removal of cesium from aqueous solutions by graphene oxide; Estudo da remocao de cesio em solucoes aquosas por oxido de grafeno

    Energy Technology Data Exchange (ETDEWEB)

    Bueno, Vanessa N.; Rodrigues, Debora F. [University of Houston (UH), Houston, TX (United States); Vitta, Patricia B. Di [Universidade de Sao Paulo (STRES/USP), Sao Paulo, SP (Brazil). Inst. de Quimica. Setor Tecnico de Residuos Quimicos e Solventes; Oshiro, Mauricio T.; Vicente, Roberto; Hiromoto, Goro; Potiens Junior, Ademar; Sakata, Solange K., E-mail: sksakata@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Graphene oxide, used in this work, was synthesized from the oxidation of graphite by Hummer method. The experiments were performed in batch and analyzed for the following parameters: contact time, pH, cesium ion concentration in aqueous solution and removing capacity of the graphene oxide. After the experiments the samples were vacuum filtered and the remaining cesium in solution was quantified by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The equilibrium was reached after 60 minutes of contact in neutral solution. The percentage of removal was around 80%.

  10. Measurements of the cesium flow from a surface-plasma H- ion source

    International Nuclear Information System (INIS)

    Smith, H.V.; Allison, P.W.

    1979-01-01

    A surface ionization gauge (SIG) was constructed and used to measure the Cs 0 flow rate through the emission slit of a surface-plasma source (SPS) of H - ions with Penning geometry. The equivalent cesium density in the SPS discharge is deduced from these flow measurements. For dc operation the optimum H - current occurs at an equivalent cesium density of approx. 7 x 10 12 cm -3 (corresponding to an average cesium consumption rate of 0.5 mg/h). For pulsed operation the optimum H - current occurs at an equivalent cesium density of approx. 2 x 10 13 cm -3 (1-mg/h average cesium consumption rate). Cesium trapping by the SPS discharge was observed for both dc and pulsed operation. A cesium energy of approx. 0.1 eV is deduced from the observed time of flight to the SIG. In addition to providing information on the physics of the source, the SIG is a useful diagnostic tool for source startup and operation

  11. Exploding conducting film laser pumping apparatus

    Science.gov (United States)

    Ware, K.D.; Jones, C.R.

    1984-04-27

    The 342-nm molecular iodine and the 1.315-..mu..m atomic iodine lasers have been optically pumped by intense light from exploding-metal-film discharges. Brightness temperatures for the exploding-film discharges were approximately 25,000 K. Although lower output energies were achieved for such discharges when compared to exploding-wire techniques, the larger surface area and smaller inductance inherent in the exploding-film should lead to improved efficiency for optically-pumped gas lasers.

  12. Selective extraction of cesium: from compound to process

    International Nuclear Information System (INIS)

    Simon, N.; Eymard, S.; Tournois, B.; Dozol, J.F.

    2000-01-01

    Under the French law of 30 December 1991 on nuclear waste management, research is conducted to recover long-lived fission products from high-level radioactive effluents generated by spent fuel reprocessing, in order to destroy them by transmutation or encapsulate them in specific matrices. Cesium extraction with mono and bis-crown calix(4)arenes (Frame 1) is a candidate for process development. These extractants remove cesium from highly acidic or basic pH media even with high salinity. A real raffinate was treated in 1994 in a hot cell to extract cesium with a calix-crown extractant. The success of this one batch experiment confirmed the feasibility of cesium decontamination from high-level liquid waste. It was then decided to develop a process flowchart to extract cesium selectively from high-level raffinate, to be included in the general scheme of long-lived radionuclide partitioning. It was accordingly decided to develop a process based on liquid-liquid extraction and hence optimize a calixarene/diluent solvent according to: - hydraulic properties: density, viscosity, interfacial tension, - chemical criteria: sufficient cesium extraction (depending on the diluent), kinetics, third phase elimination... New mono-crown-calixarenes branched with long aliphatic groups (Frame 2) were designed to be soluble in aliphatic diluents. To prevent third phase formation associated with nitric acid extraction, the addition of modifiers (alcohol, phosphate and amide) in the organic phase was tested (Frame 3). Table 1 shows examples of calixarene/diluent systems suitable for a process flowchart, and Figure 2 provides data on cesium extraction with these new systems. Alongside these improvements, a system based on a modified 1,3-di(n-octyl-oxy)2,4-calix[4]arene crown and a modified diluent was also developed, considering a mixed TPH/NPHE system as the diluent, where TPH (hydrogenated tetra propylene) is a common aliphatic industrial solvent and NPHE is nitrophenyl

  13. Theoretical simulations of protective thin film Fabry-Pérot filters for integrated optical elements of diode pumped alkali lasers (DPAL

    Directory of Open Access Journals (Sweden)

    L. Quarrie

    2014-09-01

    Full Text Available The lifetime of Diode-Pumped Alkali Lasers (DPALs is limited by damage initiated by reaction of the glass envelope of its gain medium with rubidium vapor. Rubidium is absorbed into the glass and the rubidium cations diffuse through the glass structure, breaking bridging Si-O bonds. A damage-resistant thin film was developed enhancing high-optical transmission at natural rubidium resonance input and output laser beam wavelengths of 780 nm and 795 nm, while protecting the optical windows of the gain cell in a DPAL. The methodology developed here can be readily modified for simulation of expected transmission performance at input pump and output laser wavelengths using different combination of thin film materials in a DPAL. High coupling efficiency of the light through the gas cell was accomplished by matching the air-glass and glass-gas interfaces at the appropriate wavelengths using a dielectric stack of high and low index of refraction materials selected to work at the laser energies and protected from the alkali metal vapor in the gain cell. Thin films as oxides of aluminum, zirconium, tantalum, and silicon were selected allowing the creation of Fabry-Perot optical filters on the optical windows achieving close to 100% laser transmission in a solid optic combination of window and highly reflective mirror. This approach allows for the development of a new whole solid optic laser.

  14. Double-Arched LD Array Stagger Pumped Electro-Optic Q-Switched Nd:YAG Laser without Water Cooling

    International Nuclear Information System (INIS)

    Xin-Yu, Chen; Guang-Yong, Jin; Yong-Ji, Yu; Chao, Wang; Da-Wei, Hao; Yi-Bo, Wang

    2010-01-01

    We report an experimental study on a double-arched LD array stagger pumped electro-optic Q-switched Nd:YAG laser without water cooling by using a convex-concave compensate resonator. Perfect matching of the gain field inside the rod and the fundamental mode of the cavity is made by this structure. When the repetition rate is 20 Hz, A maximum output energy at 1064 nm wavelength of 176 mJ (M 2 = 1.55) and 9.6 ns FWHM pulse width in fundamental mode Q-switch operation is obtained with LD injection current 120 A. The optical-optical conversion efficiency is 14.7%, the divergence angle of the output beam is about 1.8 mrad. (fundamental areas of phenomenology(including applications))

  15. Sub-nanosecond periodically poled lithium niobate optical parametric generator and amplifier pumped by an actively Q-switched diode-pumped Nd:YAG microlaser

    Science.gov (United States)

    Liu, L.; Wang, H. Y.; Ning, Y.; Shen, C.; Si, L.; Yang, Y.; Bao, Q. L.; Ren, G.

    2017-05-01

    A sub-nanosecond seeded optical parametric generator (OPG) based on magnesium oxide-doped periodically poled lithium niobate (MgO:PPLN) crystal is presented. Pumped by an actively Q-switched diode-pumped 1 kHz, 1064 nm, Nd:YAG microlaser and seeded with a low power distributed feedback (DFB) diode continuous-wave (CW) laser, the OPG generated an output energy of 41.4 µJ and 681 ps pulse duration for the signal at 1652.4 nm, achieving a quantum conversion efficiency of 61.2% and a slope efficiency of 41.8%. Signal tuning was achieved from 1651.0 to 1652.4 nm by tuning the seed-laser current. The FWHM of the signal spectrum was approximately from 35 nm to 0.5 nm by injection seed laser. The SHG doubled the frequency of OPG signal to produce a output energy of 12 µJ with the energy conversion efficiency of 29.0% and tunanble wavelength near 826 nm.

  16. Sensitivity of proposed search for axion-induced magnetic field using optically pumped magnetometers

    Science.gov (United States)

    Chu, P.-H.; Duffy, L. D.; Kim, Y. J.; Savukov, I. M.

    2018-04-01

    We investigate the sensitivity of a search for the oscillating current induced by axion dark matter in an external magnetic field using optically pumped magnetometers. This experiment is based upon the LC circuit (circuit with inductor and capacitor) axion detection concept of Sikivie et al. [Phys. Rev. Lett. 112, 131301 (2014), 10.1103/PhysRevLett.112.131301]. The modification of Maxwell's equations caused by the axion-photon coupling results in a minute magnetic field oscillating at a frequency equal to the axion mass, in the presence of an external magnetic field. The axion-induced magnetic field could be searched for using a LC circuit amplifier with an optically pumped magnetometer, the most sensitive cryogen-free magnetic-field sensor, in a room-temperature experiment, avoiding the need for a complicated and expensive cryogenic system. We discuss how an existing magnetic resonance imaging experiment can be modified to search for axions in a previously unexplored part of the parameter space. Our existing detection setup, optimized for magnetic resonance imagining, is already sensitive to an axion-photon coupling of 10-7 GeV-1 for an axion mass near 3 ×10-10 eV , which is already limited by astrophysical processes and solar axion searches. We show that realistic modifications, and optimization of the experiment for axion detection, can probe the axion-photon coupling up to 4 orders of magnitude beyond the current best limit, for axion masses between 10-11 and 10-7 eV .

  17. THERMIONIC EMISSION ENHANCEMENT FROM CESIUM COATED RHENIUM IN ELECTRIC FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    de Steese, J. G.; Zollweg, R. J.

    1963-04-15

    The plasma-anode technique was used to observe anomalously high thermionic emission from a rhenium surface with small cesium coverage, where the work function of the composite surface is greater than the ionization potential of cesium. Data suggest that emission enhancement is caused by increased cesium coverage because of cesiumion trapping near the emitter surface under the influence of an ion-rich sheath. (auth)

  18. Self-cavity lasing in optically pumped single crystals of p-sexiphenyl

    International Nuclear Information System (INIS)

    Yanagi, Hisao; Tamura, Kenji; Sasaki, Fumio

    2016-01-01

    Organic single-crystal self-cavities are prepared by solution growth of p-sexiphenyl (p-6P). Based on Fabry-Pérot feedback inside a quasi-lozenge-shaped platelet crystal, edge-emitting laser is obtained under optical pumping. The multimode lasing band appears at the 0-1 or 0-2 vibronic progressions depending on the excitation conditions which affect the self-absorption effect. Cavity-size dependence of amplified spontaneous emission (ASE) is investigated with laser-etched single crystals of p-6P. As the cavity length of square-shaped crystal is reduced from 100 to 10 μm, ASE threshold fluence is decreased probably due to size-dependent light confinement in the crystal cavity.

  19. Method and article for primary containment of cesium wastes. [DOE patent application

    Science.gov (United States)

    Angelini, P.; Lackey, W.J.; Stinton, D.P.; Blanco, R.E.; Bond, W.D.; Arnold, W.D. Jr.

    1981-09-03

    A method for producing a cesium-retentive waste form, characterized by a high degree of compositional stability and mechanical integrity, is provided by subjecting a cesium-loaded zeolite to heat under conditions suitable for stabilizing the zeolite and immobilizing the cesium, and coating said zeolite for sufficient duration within a suitable environment with at least one dense layer of pyrolytic carbon to seal therein said cesium to produce a final, cesium-bearing waste form. Typically, the zolite is stabilized and the cesium immobilized in less than four hours by confinement within an air environment maintained at about 600/sup 0/C. Coatings are thereafter applied by confining the calcined zeolite within a coating environment comprising inert fluidizing and carbon donor gases maintained at 1000/sup 0/C for a suitable duration.

  20. Method and system for homogenizing diode laser pump arrays

    Science.gov (United States)

    Bayramian, Andy J

    2013-10-01

    An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.

  1. Cesium Toxicity Alters MicroRNA Processing and AGO1 Expressions in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Il Lae Jung

    Full Text Available MicroRNAs (miRNAs are short RNA fragments that play important roles in controlled gene silencing, thus regulating many biological processes in plants. Recent studies have indicated that plants modulate miRNAs to sustain their survival in response to a variety of environmental stimuli, such as biotic stresses, cold, drought, nutritional starvation, and toxic heavy metals. Cesium and radio-cesium contaminations have arisen as serious problems that both impede plant growth and enter the food chain through contaminated plants. Many studies have been performed to define plant responses against cesium intoxication. However, the complete profile of miRNAs in plants during cesium intoxication has not been established. Here we show the differential expression of the miRNAs that are mostly down-regulated during cesium intoxication. Furthermore, we found that cesium toxicity disrupts both the processing of pri-miRNAs and AGONOUTE 1 (AGO1-mediated gene silencing. AGO 1 seems to be especially destabilized by cesium toxicity, possibly through a proteolytic regulatory pathway. Our study presents a comprehensive profile of cesium-responsive miRNAs, which is distinct from that of potassium, and suggests two possible mechanisms underlying the cesium toxicity on miRNA metabolism.

  2. Effect of cesium seeding on hydrogen negative ion volume production

    International Nuclear Information System (INIS)

    Bacal, M.; Balghiti-Sube, F. El; Elizarov, L. I.; Tontegode, A. J.

    1998-01-01

    The effect of cesium vapor partial pressure on the plasma parameters has been studied in the dc hybrid negative ion source ''CAMEMBERT III.'' The cesium vapor pressure was varied up to 10 -5 Torr and was determined by a surface ionization gauge in the absence of the discharge. The negative ion relative density measured by laser photodetachment in the center of the plasma extraction region increases by a factor of four when the plasma is seeded with cesium. However the plasma density and the electron temperature (determined using a cylindrical electrostatic probe) are reduced by the cesium seeding. As a result, the negative ion density goes up by a factor of two at the lowest hydrogen pressure studied. The velocity of the directed negative ion flow to the plasma electrode, determined from two-laser beam photodetachment experiments, appears to be affected by the cesium seeding. The variation of the extracted negative ion and electron currents versus the plasma electrode bias will also be reported for pure hydrogen and cesium seeded plasmas. The cesium seeding leads to a dramatic reduction of the electron component, which is consistent with the reduced electron density and temperature. The negative ion current is enhanced and a goes through a maximum at plasma electrode bias lower than 1 V. These observations lead to the conclusion that the enhancement of pure volume production occurs in this type of plasma. Possible mechanisms for this type of volume process will be discussed

  3. Investigation of a diode-pumped intracavity optical parametric oscillator in pulsed and continuous wave operation

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Skettrup, Torben; Balle-Petersen, O.

    2001-01-01

    Summary form only given. CW and pulsed compact tunable laser sources in the infrared have widespread scientific, medical and industrial applications. Such a laser source can be obtained by use of a diode-pumped intracavity optical parametric oscillator (IOPO). We report on a IOPO based on a Yb......:YAG laser incorporating a periodically poled LiNbO3 (PPLN) crystal inside the laser cavity to take advantage of the high circulating intracavity field. The Yb:YAG crystal is pumped by a reliable 940 nm fibre-coupled diode laser. The IOPO consists of a Yb:YAG crystal coated for HR at 1030 nm, an intracavity...... lens to generate a beam waist in the PPLN crystal, a dichroic mirror to separate the laser and signal fields and two end mirrors...

  4. Redistribution of strontium and cesium during alteration of smectite to illite

    International Nuclear Information System (INIS)

    Ohnuki, Toshihiko; Murakami, Takashi; Sato, Tsutomu; Isobe, Hiroshi

    1994-01-01

    The redistribution of strontium and cesium during the alteration of smectite to illite has been studied under hydrothermal conditions at 200 C using solutions of 1x10 -4 M Sr and Cs. Two different sorption conditions were applied for the hydrothermal experiments. One was the condition in which strontium and cesium were sorbed by smectite before the hydrothermal experiments (dynamic condition). The other was the condition in which strontium and cesium were sorbed by the alteration products, illite/smectite (I/S) interstratified minerals after the hydrothermal experiments (static condition). The sorption characteristics of strontium and cesium by smectite, I/S interstratified minerals were examined by a sequential extraction method. Most of the strontium was desorbed from smectite and the I/S interstratified minerals with a 1 M KCl solution under both the dynamic and static conditions. Less than 1% of cesium was desorbed from the I/S interstratified minerals with any solution of a 1 M KCl, a 1 M HCl and a 6 M HCl under the dynamic condition, while most of cesium was desorbed with either solution of a 1 M KCl and 1 M HCl from smectite and from the I/S interstratified minerals under the static condition. These suggest that cesium sorbed by smectite changes its sorption characteristic during the alteration process, but strontium does not. Possible sites for more strongly bounded cesium to the I/S interstratified minerals may be at the 'ditrigonal cavity' of adjacent tetrahedral layers. (orig.)

  5. Historical Review of Atomic Frequency Standards Used in Space Systems - 10 Year Update

    Science.gov (United States)

    2007-01-01

    section on 2006 predictions. The authors would like to thank Peter Cash, Bernardo Jaduszliwer, Bob Kern, Robert Lutwak , John Prestage, Bill Riley, and...258- 262. [17] R. Lutwak , D. Emmons, R. M. Garvey, and P. Vlitas, 2003, “Optically pumped cesium-beam frequency standard for GPS-III,” in

  6. Radiation safety for incineration of radioactive waste contaminated by cesium

    International Nuclear Information System (INIS)

    Veryuzhs'kij, Yu.V.; Gryin'ko, O.M.; Tokarevs'kij, V.V.

    2016-01-01

    Problems in the treatment of radioactive waste contaminated by cesium nuclides are considered in the paper. Chornobyl experience in the management of contaminated soil and contaminated forests is analyzed in relation to the accident at Fukushima-1. The minimization of release of cesium aerosols into atmosphere is very important. Radiation influence of inhaling atmosphere aerosols polluted by cesium has damage effect for humans. The research focuses on the treatment of forests contaminated by big volumes of cesium. One of the most important technologies is a pyro-gasification incineration with chemical reactions of cesium paying attention to gas purification problems. Requirements for process, physical and chemical properties of treatment of radioactive waste based on the dry pyro-gasification incineration facilities are considered in the paper together with the discussion of details related to incineration facilities. General similarities and discrepancies in the environmental pollution caused by the accidents at Chornobyl NPP and Fukushima-1 NPP in Japan are analyzed

  7. System of laser pump and synchrotron radiation probe microdiffraction to investigate optical recording process

    International Nuclear Information System (INIS)

    Yasuda, Nobuhiro; Fukuyama, Yoshimitsu; Osawa, Hitoshi; Kimura, Shigeru; Ito, Kiminori; Tanaka, Yoshihito; Matsunaga, Toshiyuki; Kojima, Rie; Hisada, Kazuya; Tsuchino, Akio; Birukawa, Masahiro; Yamada, Noboru; Sekiguchi, Koji; Fujiie, Kazuhiko; Kawakubo, Osamu; Takata, Masaki

    2013-01-01

    We have developed a system of laser-pump and synchrotron radiation probe microdiffraction to investigate the phase-change process on a nanosecond time scale of Ge 2 Sb 2 Te 5 film embedded in multi-layer structures, which corresponds to real optical recording media. The measurements were achieved by combining (i) the pump-laser system with a pulse width of 300 ps, (ii) a highly brilliant focused microbeam with wide peak-energy width (ΔE/E ∼ 2%) made by focusing helical undulator radiation without monochromatization, and (iii) a precise sample rotation stage to make repetitive measurements. We successfully detected a very weak time-resolved diffraction signal by using this system from 100-nm-thick Ge 2 Sb 2 Te 5 phase-change layers. This enabled us to find the dependence of the crystal-amorphous phase change process of the Ge 2 Sb 2 Te 5 layers on laser power.

  8. Feasibility of the optical imaging of thrombus formation in a rotary blood pump by near-infrared light.

    Science.gov (United States)

    Sakota, Daisuke; Murashige, Tomotaka; Kosaka, Ryo; Nishida, Masahiro; Maruyama, Osamu

    2014-09-01

    Blood coagulation is one of the primary concerns when using mechanical circulatory support devices such as blood pumps. Noninvasive detection and imaging of thrombus formation is useful not only for the development of more hemocompatible devices but also for the management of blood coagulation to avoid risk of infarction. The objective of this study is to investigate the use of near-infrared light for imaging of thrombus formation in a rotary blood pump. The optical properties of a thrombus at wavelengths ranging from 600 to 750 nm were analyzed using a hyperspectral imaging (HSI) system. A specially designed hydrodynamically levitated centrifugal blood pump with a visible bottom area was used. In vitro antithrombogenic testing was conducted five times with the pump using bovine whole blood in which the activated blood clotting time was adjusted to 200 s prior to the experiment. Two halogen lights were used for the light sources. The forward scattering through the pump and backward scattering on the pump bottom area were imaged using the HSI system. HSI showed an increase in forward scattering at wavelengths ranging from 670 to 750 nm in the location of thrombus formation. The time at which the thrombus began to form in the impeller rotating at 2780 rpm could be detected. The spectral difference between the whole blood and the thrombus was utilized to image thrombus formation. The results indicate the feasibility of dynamically detecting and imaging thrombus formation in a rotary blood pump. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  9. Strontium-90 and cesium-137 in powdered milk

    International Nuclear Information System (INIS)

    1977-01-01

    Japan Chemical Analysis Center has analysed the strontium-90 and cesium-137 content in powdered milk. The samples were purchased on the open market in Tokyo from the powdered milk producers. The analysis of Strontium-90 and Cesium-137 content was carried out using the method recommended by Science and Technology Agency. (author)

  10. Using copper hexacyanoferrate (II) impregnated zeolite for cesium removal from radioactive liquid waste

    International Nuclear Information System (INIS)

    Fumio, K.; Kenji, M.

    1982-01-01

    Experiments were performed to obtain fundamental data on cesium ion removal characteristics of metal hexacyanoferrate (II) impregnated zeolite in radioactive liquid waste containing a large amount of sodium sulfate. Copper hexacyanoferrate (II) impregnated zeolite (CuFZ) was prepared and showed a high selectivity for cesium ion. The material was suitable for use in an ion exchange column. This exchanger could selectively and efficiently remove the cesium even if there is 15 wt% Na 2 SO 4 in the solution. Cesium removal ability and stability of CuFZ were excellent over a wide pH range between 1.5 and 10. The cesium ion exchange ability was not influenced by the presence of the alkali metal ions, calcium and magnesium, and carbonate ions even at concentrations 25 times greater than the cesium ion. However, since ammonium ion behaves similarly to cesium ion and interrupts latter ion adsorption, the presence of ammonium ion is not desirable. The CuFZ offers the possibility of separating and removing cesium from liquid wastes produced in facilities handling radioactive materials

  11. Sericitization of illite decreases sorption capabilities for cesium

    Science.gov (United States)

    Choung, S.; Hwang, J.; Han, W.; Shin, W.

    2017-12-01

    Release of radioactive cesium (137Cs) to environment occurs through nuclear accidents such as Chernobyl and Fukushima. The concern is that 137Cs has long half-life (t1/2 = 30.2 years) with chemical toxicity and γ-radiation. Sorption techniques are mainly applied to remove 137Cs from aquatic environment. In particular, it has been known well that clay minerals (e.g, illite) are effective and economical sorbents for 137Cs. Illite that was formed by hydrothermal alteration exist with sericite through "sericitization" processes. Although sericite has analogous composition and lattice structure with illite, the sorptive characteristics of illite and sericite for radiocesium could be different. This study evaluated the effects of hydrothermal alteration and weathering process on illite cesium sorption properties. Natural illite samples were collected at Yeongdong area in Korea as the world-largest hydrothermal deposits for illite. The samples were analyzed by XRF, XRD and SEM-EDX to determine mineralogy, chemical compositions and morphological characteristics, and used for batch sorption experiments. The Yeongdong illites predominantly consist of illite, sericite, quartz, and albite. The measured cesium sorption distribution coefficients (Kd,Cs) of reference illite and sericite were approximately 6000 and 400 L kg-1 at low aqueous concentration (Cw 10-7 M), respectively. In contrast, Kd,Cs values for the Yeongdong illite samples ranged from 500 to 4000 L kg-1 at identical concentration. The observed narrow and sharp XRD peak of sericite indicated that the sericite has better crystallinity compared to illite. These experimental results suggested that sericitization processes of illite can decline the sorption capabilities of illite for cesium under various hydrothermal conditions. In particular, weathering experiments raised the cesium sorption to illite, which seems to be related to the increase of preferential sorption sites for cesium through crystallinity destruction

  12. Desorption of radioactive cesium by seawater from the suspended particles in river water.

    Science.gov (United States)

    Onodera, Masaki; Kirishima, Akira; Nagao, Seiya; Takamiya, Kouichi; Ohtsuki, Tsutomu; Akiyama, Daisuke; Sato, Nobuaki

    2017-10-01

    In 2011, the accident at the Fukushima-Daiichi nuclear power plant dispersed radioactive cesium throughout the environment, contaminating the land, rivers, and sea. Suspended particles containing clay minerals are the transportation medium for radioactive cesium from rivers to the ocean because cesium is strongly adsorbed between the layers of clay minerals, forming inner sphere complexes. In this study, the adsorption and desorption behaviors of radioactive cesium from suspended clay particles in river water have been investigated. The radioactive cesium adsorption and desorption experiments were performed with two kinds of suspended particulate using a batch method with 137 Cs tracers. In the cesium adsorption treatment performed before the desorption experiments, simulated river water having a total cesium concentration ([ 133+137 Cs + ] total ) of 1.3 nM (10 -9  mol/L) was used. The desorption experiments were mainly conducted at a solid-to-liquid ratio of 0.17 g/L. The desorption agents were natural seawater collected at 10 km north of the Fukushima-Daiichi nuclear power plant, artificial seawater, solutions of NaCl, KCl, NH 4 Cl, and 133 CsCl, and ultrapure water. The desorption behavior, which depends on the preloaded cesium concentration in the suspended particles, was also investigated. Based on the cesium desorption experiments using suspended particles, which contained about 1000 ng/g loaded cesium, the order of cesium desorption ratios for each desorption agent was determined as 1 M NaCl (80%) > 470 mM NaCl (65%) > 1 M KCl (30%) ≈ seawater (natural seawater and Daigo artificial seawater) > 1 M NH 4 Cl (20%) > 1 M 133 CsCl (15%) ≫ ultrapure water (2%). Moreover, an interesting result was obtained: The desorption ratio in the 470 mM NaCl solution was much higher than that in seawater, even though the Na + concentrations were identical. These results indicate that the cesium desorption mechanism is not a simple ion exchange reaction

  13. Cesium transport in Four Mile Creek of the Savannah River Plant

    International Nuclear Information System (INIS)

    Kiser, D.L.

    1979-04-01

    The behavior of a large radioactive cesium release to a Savannah River Plant (SRP) stream was examined using a stable cesium release to Four Mile Creek. Measurements following the release show that most of the cesium released was transported downstream; however, sorption and desorption decreased the maximum concentration and increased the travel time and duration, relative to a dye tracer, at sampling stations downstream. The study was made possible by the development of an analytical technique using ammonium molybdophosphate and neutron activation that permitted the measurement of stable cesium concentrations as low as 0.2 μg/L

  14. Myocardial imaging with cesium-130

    International Nuclear Information System (INIS)

    Harper, P.V.; Resnekov, L.; Stark, V.; Odeh, N.

    1984-01-01

    Recently comparative studies using nitrogen-13 ammonia and cesium-130 have shown strikingly different myocardial localization patterns in the same subjects with ischemic heart disease. Initial localization of ammonia, an avidly extracted agent, reflects the perfusion pattern in viable myocardial tissue. The myocardial localization of cesium ion, taking place more slowly over 15 to 20 minutes, is apparently much less flow dependent, causing uptake defects shown with ammonia to be largely filled in. Cesium thus appears to provide information on the extent of the viable myocardial mass, apart from perfusion. Cesium-130 (t1/2 30 m) decays by positron emission and electron capture. The whole body radiation absorbed dose, assuming uniform distribution, is 24 mrad/mCi. While abundant production of Cs-130 results from proton bombardment of natural xenon [Xe-130(rho,n)Cs-130] at 15 MeV, small amounts of Cs-129, -131, and -132 are also produced, and enriched Xe-130 is not available. Alternatively almost completely uncontaminated Cs-130 is available by alpha bombardment of natural I-127. Anhydrous sodium iodide is dissolved in acetone and a thin layer (≅20 mg per centimeter squared) is evaporated onto the gold plated tip of the internal target backing which is oscillated vertically to spread out the area upon which the beam is incident. The target surface is inclined 2.5 degrees to the beam giving a power density of about 400 watts per centimeter squared at 100μA which is adequately handled by water cooling. A 30-minute bombardment yields 4 to 5 mCi of Cs-130 which is dissolved directly from the target. This approach appears to offer a new and helpful method for evaluating ischemic heart disease by permitting evaluation of viable myocardial mass

  15. Hydrological Methods can Separate Cesium from Nuclear Waste Saltcake

    International Nuclear Information System (INIS)

    Brooke, J.N.; Peters, J.F.; Staheli, K.

    1999-01-01

    Interstitial Fluid Displacement (IFD) is a new and novel method for separating cesium from saltcake waste. Hydrologic modeling of liquid flow through porous saltcake suggests that the cesium, potassium and sodium hydroxide can be separated at high recovery and low volume using IFD.'

  16. Efficient Ho:YLF laser pumped by a Tm:fiber laser

    CSIR Research Space (South Africa)

    Koen, W

    2013-10-01

    Full Text Available A thulium fiber laser pumped Ho:YLF laser delivering 45.1 W in a near diffraction limited beam when pumped with 84.7 W is demonstrated. The optical-to-optical efficiency of 53 % compares favorably with similar Ho:YAG lasers....

  17. A model for radial cesium transport in a fuel pellet

    International Nuclear Information System (INIS)

    Imoto, Shosuke

    1989-01-01

    In order to explain the radial redistribution of cesium in an irradiated pellet, a two-step release model is proposed. The first step involves the migration of cesium by atomic diffusion to some channels, such as grain boundaries and cracks, and the second step assumes a thermomigration down along the temperature gradient. Distribution profiles of cesium are obtained by numerical calculation with the present model assuming a constant and spatially uniform birth rate of cesium in the pellet. The result agrees well with the profile observed by micro-gamma scanning for the LWR fuel in the outer region of the pellet but diverges from it at the inner region. Discussion is made on the steady-state model hitherto generally utilized. (orig.)

  18. Accumulation and mobility of cesium in roots of tulip popular seedlings

    International Nuclear Information System (INIS)

    Cox, T.L.

    1975-01-01

    Tulip poplar, Liriodendron tulipifera L., seedlings were stem-well tagged with cesium, periodically harvested, and separated into root and shoot compartments to determine seasonal cesium distributions in different root-diameter classes and to delineate element pathways to forest soils. The cesium concentration (μCi/g) in roots less than 0.1 cm in diameter averaged 1.5 and 3.0 times greater than in roots in the 0.5- to 0.1-cm- and 1.0- to 0.5-cm-diameter classes, respectively. Roots contained 24 percent of the seedling pool of cesium in 1 week and about 40 percent in 7 weeks after inoculation. Sixty-five percent of the seedling content was in the root system 8 months after tagging. On an annual basis, roots of the less than 0.5-cm-diameter classes contained an average of 36 percent of the seedling pool (root and shoot) and 72 percent of the root pool of cesium. This is important because small roots constituted a considerable portion of the annual turnover in these root systems. Soil content of cesium (3.37 μCi) at the termination of the study and analysis of treatment effects (aboveground inputs to soil allowed or not allowed) indicated that root processes contributed twice as much cesium to the soil during the study period as the combined aboveground processes contributed

  19. Protection of cesium-antimony photocathodes

    International Nuclear Information System (INIS)

    Buzulutskov, A.; Breskin, A.; Chechik, R.; Prager, M.; Shefer, E.

    1996-06-01

    In order to operate gaseous photomultipliers in the visible range it was suggested to protect sensitive photocathodes against contact to air and counting gases by their coating with a thin solid dielectric film. We present data on coating of cesium- antimony photocathodes with alkali-halide (NaI, CsI, CsF, NaF), oxide (SiO) and organic (hexatriacontane, calcium stearate) films. The photoelectron transmission through these films and their protection capability have been studied in detail. Cesium-antimony photocathodes are shown to withstand exposure to considerable doses of oxygen and dry air when coated with Nal films. This opens ways to their operation in gas media. (authors), 11 refs., 6 figs

  20. Operational experience with the TRIUMF optically pumped polarized H- ion source

    International Nuclear Information System (INIS)

    Schmor, P.W.; Buchmann, L.; Jayamanna, K.; Levy, C.D.P.; McDonald, M.; Ruegg, R.

    1991-05-01

    The initial goal of a polarized proton beam extracted from the TRIUMF cyclotron, having a current of 5 μA with 60% polarization, has been achieved with the development of the optically pumped polarized H - ion source. This beam is now being used to produce an intense secondary beam of polarized neutrons for the TRIUMF experimental program. Much of the recent development effort has addressed the reliability requirements for routine operation. This paper describes the results with emphasis on the laser stabilization subsystem, the modifications to the electron cyclotron resonance proton ion source (ECRIS), the sodium charge exchange cells and the development of a low energy polarimeter. Also discussed are the developments which should lead to a higher polarization. (Author) 7 refs

  1. Frequency-doubled diode laser for direct pumping of Ti:sapphire lasers

    DEFF Research Database (Denmark)

    Müller, André; Jensen, Ole Bjarlin; Unterhuber, Angelika

    2012-01-01

    . However, the superior electro-optical efficiency of the diode laser improves the overall efficiency of the Ti:sapphire laser by a factor > 2. The optical spectrum emitted by the Ti:sapphire laser shows a spectral width of 112 nm (FWHM). Based on autocorrelation measurements, pulse widths of less than 20...... fs are measured. These results open the opportunity of establishing diode laser pumped Ti:sapphire lasers for e.g. biophotonic applications like retinal optical coherence tomography or pumping of photonic crystal fibers for CARS microscopy.......A single-pass frequency doubled high-power tapered diode laser emitting nearly 1.3 W of green light suitable for direct pumping of Ti:sapphire lasers generating ultrashort pulses is demonstrated. The pump efficiencies reached 75 % of the values achieved with a commercial solid-state pump laser...

  2. Cesium-137 as a radiation source

    International Nuclear Information System (INIS)

    McMullen, W.H.; Sloan, D.P.

    1985-01-01

    The U.S. Department of Energy (DOE) Byproducts Utilization Program (BUP) seeks to develop and encourage widespread commercial use of defense byproducts that are produced by DOE. Cesium-l37 is one such byproduct that is radioactive and decays with emission of gamma rays. The beneficial use of this radiation to disinfect sewage sludge or disinfest food commodities is actively being pursued by the program. The radiation produced by cesium-l37(Cs-l37) is identical in form to that produced by cobalt-60(Co-60), an isotope that is widely used in commercial applications such as medical product sterilization. The choice of isotope to use depends on several factors ranging from inherent properties of the isotopes to availability and cost. The BUP, although centrally concerned with the beneficial use of Cs-l37, by investigating and assessing the feasibility of various uses hopes to define appropriate circumstances where cesium or cobalt might best be used to accomplish specific objectives. This paper discusses some of the factors that should be considered when evaluating potential uses for isotopic sources

  3. Electrically switched cesium ion exchange

    International Nuclear Information System (INIS)

    Lilga, M.A.; Orth, R.J.; Sukamto, J.P.H.; Schwartz, D.T.; Haight, S.M.; Genders, J.D.

    1997-04-01

    Electrically Switched Ion Exchange (ESIX) is a separation technology being developed as an alternative to conventional ion exchange for removing radionuclides from high-level waste. The ESIX technology, which combines ion exchange and electrochemistry, is geared toward producing electroactive films that are highly selective, regenerable, and long lasting. During the process, ion uptake and elution are controlled directly by modulating the potential of an ion exchange film that has been electrochemically deposited onto a high surface area electrode. This method adds little sodium to the waste stream and minimizes the secondary wastes associated with traditional ion exchange techniques. Development of the ESIX process is well underway for cesium removal using ferrocyanides as the electroactive films. Films having selectivity for perrhenate (a pertechnetate surrogate) over nitrate also have been deposited and tested. A case study for the KE Basin on the Hanford Site was conducted based on the results of the development testing. Engineering design baseline parameters for film deposition, film regeneration, cesium loading, and cesium elution were used for developing a conceptual system. Order of magnitude cost estimates were developed to compare with conventional ion exchange. This case study demonstrated that KE Basin wastewater could be processed continuously with minimal secondary waste and reduced associated disposal costs, as well as lower capital and labor expenditures

  4. System of laser pump and synchrotron radiation probe microdiffraction to investigate optical recording process

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Nobuhiro; Fukuyama, Yoshimitsu; Osawa, Hitoshi [Research and Utilization Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Kimura, Shigeru [Research and Utilization Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Japan Science and Technology Agency, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075 (Japan); Ito, Kiminori; Tanaka, Yoshihito [RIKEN SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Matsunaga, Toshiyuki; Kojima, Rie; Hisada, Kazuya; Tsuchino, Akio; Birukawa, Masahiro [R and D Division, Panasonic Corporation, 3-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237 (Japan); Yamada, Noboru [Department of Materials Science and Engineering, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto, Kyoto 606-8501 (Japan); Sekiguchi, Koji; Fujiie, Kazuhiko; Kawakubo, Osamu [Advanced Optical Storage Development Department, Advanced Device Technology Platform, Sony Corporation, 4-14-1 Asahi-cho, Atsugi, Kanagawa 243-0014 (Japan); Takata, Masaki [Research and Utilization Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); RIKEN SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Department of Advanced Materials Science, School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan)

    2013-06-15

    We have developed a system of laser-pump and synchrotron radiation probe microdiffraction to investigate the phase-change process on a nanosecond time scale of Ge{sub 2}Sb{sub 2}Te{sub 5} film embedded in multi-layer structures, which corresponds to real optical recording media. The measurements were achieved by combining (i) the pump-laser system with a pulse width of 300 ps, (ii) a highly brilliant focused microbeam with wide peak-energy width ({Delta}E/E {approx} 2%) made by focusing helical undulator radiation without monochromatization, and (iii) a precise sample rotation stage to make repetitive measurements. We successfully detected a very weak time-resolved diffraction signal by using this system from 100-nm-thick Ge{sub 2}Sb{sub 2}Te{sub 5} phase-change layers. This enabled us to find the dependence of the crystal-amorphous phase change process of the Ge{sub 2}Sb{sub 2}Te{sub 5} layers on laser power.

  5. Dye linked conjugated homopolymers: using conjugated polymer electroluminescence to optically pump porphyrin-dye emission

    DEFF Research Database (Denmark)

    Nielsen, K.T.; Spanggaard, H.; Krebs, Frederik C

    2004-01-01

    . Electroluminescent devices of the homopolymer itself and of the zinc-porphyrin containing polymer were prepared and the nature of the electroluminescence was characterized. The homopolymer segments were found to optically pump the emission of the zinc-porphyrin dye moities. The homopolymer exhibits blue......Zinc-porphyrin dye molecules were incorporated into the backbone of a conjugated polymer material by a method, which allowed for the incorporation of only one zinc-porphyrin dye molecule into the backbone of each conjugated polymer molecule. The electronic properties of the homopolymer were...

  6. Comparative study of diode-pumped alkali vapor laser and exciplex-pumped alkali laser systems and selection principal of parameters

    Science.gov (United States)

    Huang, Wei; Tan, Rongqing; Li, Zhiyong; Han, Gaoce; Li, Hui

    2017-03-01

    A theoretical model based on common pump structure is proposed to analyze the output characteristics of a diode-pumped alkali vapor laser (DPAL) and XPAL (exciplex-pumped alkali laser). Cs-DPAL and Cs-Ar XPAL systems are used as examples. The model predicts that an optical-to-optical efficiency approaching 80% can be achieved for continuous-wave four- and five-level XPAL systems with broadband pumping, which is several times the pumped linewidth for DPAL. Operation parameters including pumped intensity, temperature, cell's length, mixed gas concentration, pumped linewidth, and output coupler are analyzed for DPAL and XPAL systems based on the kinetic model. In addition, the predictions of selection principal of temperature and cell's length are also presented. The concept of the equivalent "alkali areal density" is proposed. The result shows that the output characteristics with the same alkali areal density but different temperatures turn out to be equal for either the DPAL or the XPAL system. It is the areal density that reflects the potential of DPAL or XPAL systems directly. A more detailed analysis of similar influences of cavity parameters with the same areal density is also presented.

  7. Cesium removal flow studies using ion exchange

    International Nuclear Information System (INIS)

    Lee, D.D.; Walker, J.F. Jr.; Taylor, P.A.

    1997-01-01

    Cesium and strontium radionuclides are a small fraction of the mainly sodium and potassium salts in underground storage tank supernatant at US Department of Energy (DOE) sites at Hanford, Oak Ridge, Savannah River, and Idaho that DOE must remediate. Cesium-137 ( 137 Cs) is the primary gamma radiation source in the dissolved tank waste at these sites, and its removal from the supernatant can reduce the hazard and waste classification of the treated waste reducing the further treatment and disposal costs. Several cesium removal sorbents have been developed by private industry and the US DOE's Office of Science and Technology. Several of these removal technologies have been previously tested in small batch and column tests using simulated and a few actual supernatant under DOE's Environmental Management (EM) programs including the Tanks Focus Area (TFA) and the Efficient Separations and Processing (ESP) Cross-Cutting Program

  8. Catalytic oxidation of silicon by cesium ion bombardment

    International Nuclear Information System (INIS)

    Souzis, A.E.; Huang, H.; Carr, W.E.; Seidl, M.

    1991-01-01

    Results for room-temperature oxidation of silicon using cesium ion bombardment and low oxygen exposure are presented. Bombardment with cesium ions is shown to allow oxidation at O 2 pressures orders of magnitude smaller than with noble gas ion bombardment. Oxide layers of up to 30 A in thickness are grown with beam energies ranging from 20--2000 eV, O 2 pressures from 10 -9 to 10 -6 Torr, and total O 2 exposures of 10 0 to 10 4 L. Results are shown to be consistent with models indicating that initial oxidation of silicon is via dissociative chemisorption of O 2 , and that the low work function of the cesium- and oxygen-coated silicon plays the primary role in promoting the oxidation process

  9. Cesium separation using integrated electro-membrane technique

    International Nuclear Information System (INIS)

    Fors, Patrik; Lillfors-Pintér, Christina; Widestrand, Henrik; Velin, Anna; Bengtsson, Bernt

    2014-01-01

    Conventional separation technologies such as ion exchange, electro-deionisation and cross flow filtration are not always effective to eliminate nuclides, which are weekly ionised, complexed or hydrated in effluents. Specific nuclide selective absorbers perform well for the treatment of active and contaminated wastewaters but most absorbers generate additional waste while treating high volumes of contaminated water and often show limitations in operating at high flow rates. Electrochemical Ion Exchange (EIX) and EIX in combination with absorbers may offer an alternative solution that overcomes those limitations. This paper reports on the optimization and performance of the integrated technique EIX, for the treatment of low activity effluents that contain cesium and other nuclides. The three-compartment EIX system, which operates with authentic reactor coolant with enhanced nuclide content, indicates high, over 90%, elimination of cesium in a single pass operation mode. With the in-situ and instant ion exchange regeneration, the system successfully reduces the activity from an initial range of 400-2600 Bq/kg to close to detection limit at a velocity of 10-15 cm/min. The applied current density varies between 50-200 mA/cm 2 and the mass balance is close to 100%. During the process, the eliminated cesium and other nuclides are concentrated up to the limits where reverse migration from the concentrated chamber occurs. The concentrate could then be treated with specific absorbents at low flow rates. EIX in combination with cesium-selective ion exchanger CsTreat ® separates the cesium-137 efficiently, but up to now the process does not perform according to EIX principles for the treatment of low grade radioactive wastewaters it rather performs as an irreversible adsorber. The aim with the outcome of the presently ongoing long-term tests is to further support the Best Available Technique Minimizing All Nuclide (BATMAN) projects of Vattenfall NPPs. (author)

  10. Cesium-137 in ash from combustion of biofuels. Application of regulations from the Swedish Radiation Safety Authority; Cesium-137 i aska fraan foerbraenning av biobraenslen. Tillaempning av Straalsaekerhetsmyndighetens regler

    Energy Technology Data Exchange (ETDEWEB)

    Sjoeblom, Rolf (Tekedo AB, Nykoeping (SE))

    2009-03-19

    The Swedish Radiation Safety Authority, SSM, has issued an ordinance on ash contaminated with Cesium-137. It implies amongst other things that ash containing 0,5 - 10 kBq/kg Cesium-137 (so-called contaminated ash) can be used for geotechnical purposes provided that the content in a near-by well does not exceed 1 Bq/litre and that the increase in a near-by fish producing recipient does not exceed 0,1 Bq/litre. The initial plan with the presently reported work was to provide a compilation of how the ordinance for Cesium-137 can be applied in practical work. It became evident, however, in the course of the work that issues related to the co-variation between potassium and Cesium needed further investigation. As a result, the present report comprises also a compilation of this extended information search. Cesium-137 is present in ash as a result of the accident in a nuclear power reactor in Chernobyl in 1986 during which material having a very small grain size was spread to a high altitude. A few days later, Cesium-137 was deposited during rains over large parts of Sweden. This activity penetrated to a depth of one or a few decimetres during the course of the subsequent few days and weeks, after which it was partially taken up by plants and spread in the ecosystem. Section 2 has the character of a handbook. It provides basic information on radiation, and also about the ordinance and other material from the SSI. Section 3 comprises compilations of relevant international status of knowledge. This regards how potassium and Cesium behave in soil and ash, and also how spreading of Cesium can be modelled. Cesium behaves similarly to Potassium but with the difference that Cesium is bonded much more strongly to mineral soil and ash. Potassium and Cesium appears in soil in four different forms: dissolved in the pore water, exchangeable, non-exchangeable and as bonded to minerals. The amount dissolved in the pore water is the smallest and that bonded to minerals is the largest

  11. Measurements of nuclear polarization and nuclear magnetic moment of 170Tm in 170Tm:SrF2 by optical pumping

    International Nuclear Information System (INIS)

    Shimomura, K.

    1988-01-01

    Significant nuclear polarization of unstable 170 Tm in Tm 2+ :SrF 2 was for the first time achieved with β-ray radiation detected optical pumping in solids, providing a new powerful method to measure magnetic moments of unstable nuclei. (author)

  12. Fluoroscopic screen which is optically homogeneous

    International Nuclear Information System (INIS)

    1975-01-01

    A high efficiency fluoroscopic screen for X-ray examination consists of an optically homogeneous crystal plate of fluorescent material such as activated cesium iodide, supported on a transparent protective plate, with the edges of the assembly beveled and optically coupled to a light absorbing compound. The product is dressed to the desired thickness and provided with an X-ray-transparent light-opaque cover. (Auth.)

  13. Fiber-based modulated optical reflectance configuration allowing for offset pump and probe beams

    Science.gov (United States)

    Fleming, A.; Folsom, C.; Jensen, C.; Ban, H.

    2016-12-01

    A new fiber-based modulated optical reflectance configuration is developed in this work. The technique maintains the fiber-based heating laser (pump) and detection laser (probe) in close proximity at a fixed separation distance in a ceramic ferrule. The pump beam periodically heats the sample inducing thermal waves into the sample. The probe beam measures the temperature response at a known distance from the pump beam over a range of heating modulation frequencies. The thermal diffusivity of the sample may be calculated from the phase response between the input heat flux and the temperature response of a sample having a reflective surface. The unique measurement configuration is ideal for in situ measurements and has many advantages for laboratory-based systems. The design and development of the system are reported along with theoretical justification for the experimental design. The thermal diffusivities of Ge and SiC are measured and found to be within 10% of reported literature values. The diffusivity for SiO2 is measured with a relative difference of approximately 100% from the literature value when the ferrule is in contact with the sample. An additional measurement was made on the SiO2 sample with the ferrule not in contact resulting in a difference of less than 2% from the literature value. The difference in the SiO2 measurement when the ferrule is in contact with the sample is likely due to a parallel heat transfer path through the dual-fiber ferrule assembly.

  14. Hot demonstration of proposed commercial cesium removal technology

    International Nuclear Information System (INIS)

    Lee, D.D.; Travis, J.R.; Gibson, M.R.

    1997-12-01

    This report describes the work done in support of the development of technology for the continuous removal and concentration of radioactive cesium in supernatant from Melton Valley Storage Tanks (MVSTs) at the ORNL site. The primary objective was to test candidate absorbers and ion exchangers under continuous-flow conditions using actual supernatant from the MVSTs. An experimental system contained in a hot-cell facility was constructed to test the materials in columns or modules using the same batch of supernatant to allow comparison on an equal basis. Resorcinol/formaldehyde (RF) resin was evaluated at three flow rates with 50% breakthrough ranges of 35 to 50 column volumes (CV) and also through a series of five loading/elution/regeneration cycles. The results reported here include the cesium loading breakthrough curves, elution curves (when applicable), and operational problems and observations for each material. The comparative evaluations should provide critical data for the selection of the sorbent for the ORNL Cesium Removal Demonstration project. These results will be used to help determine the design parameters for demonstration-scale systems. Such parameters include rates of cesium removal, quantity of resin or sorbent to be used, and elution and regeneration requirements, if applicable

  15. Fast concentration of dissolved forms of cesium radioisotopes from large seawater samples

    International Nuclear Information System (INIS)

    Jan Kamenik; Henrieta Dulaiova; Ferdinand Sebesta; Kamila St'astna; Czech Technical University, Prague

    2013-01-01

    The method developed for cesium concentration from large freshwater samples was tested and adapted for analysis of cesium radionuclides in seawater. Concentration of dissolved forms of cesium in large seawater samples (about 100 L) was performed using composite absorbers AMP-PAN and KNiFC-PAN with ammonium molybdophosphate and potassium–nickel hexacyanoferrate(II) as active components, respectively, and polyacrylonitrile as a binding polymer. A specially designed chromatography column with bed volume (BV) 25 mL allowed fast flow rates of seawater (up to 1,200 BV h -1 ). The recovery yields were determined by ICP-MS analysis of stable cesium added to seawater sample. Both absorbers proved usability for cesium concentration from large seawater samples. KNiFC-PAN material was slightly more effective in cesium concentration from acidified seawater (recovery yield around 93 % for 700 BV h -1 ). This material showed similar efficiency in cesium concentration also from natural seawater. The activity concentrations of 137 Cs determined in seawater from the central Pacific Ocean were 1.5 ± 0.1 and 1.4 ± 0.1 Bq m -3 for an offshore (January 2012) and a coastal (February 2012) locality, respectively, 134 Cs activities were below detection limit ( -3 ). (author)

  16. Cesium-137, a drama recounted

    International Nuclear Information System (INIS)

    Vieira, Suzane de Alencar

    2013-01-01

    The radiological accident with Cesium-137, which started on Goiania in 1987, did not stop with the end of radiological contamination and continues in a judicial, scientific and narrative process of identification and recognition of new victims. The drama occupies a central place on the dynamics of radiological event, as it extends its limits, inflects its intensity and updates the event. As a narrative of the event, the ethnography incorporates and brings up to date the drama as an analysis landmark and the description of the theme as it is absorbed by a dramatic process. Cesium-137, a drama recounted is a textual experimentation based on real events and characters picked out from statements reported in various narratives about the radiological accident. (author)

  17. Towards precision measurements of parity violation in cesium: construction of a new experiment using an active detection method by induced emission; Vers des mesures precises de violation de la parite dans le cesium: construction d'une experience nouvelle utilisant une detection active par emission induite

    Energy Technology Data Exchange (ETDEWEB)

    Jacquier, Ph

    1991-04-15

    Experiments that show the breaking of parity invariance in atoms can be considered as valid tests of the electroweak theory complementary to those made at high energies. The accurate measurement of the weak charge of a cesium nucleus would bring useful information on radiative corrections. The experiment, that is proposed in this work concerns the strongly forbidden 6S-7S transition of cesium at 540 nm, aims at reaching an accuracy of 1% for this measurement. Cesium atoms are first excited from 6S level to 7S level by a pulsed laser (10 ns) in the presence of a longitudinal electrical field. Then they are detected through induced emission by a probe laser set on 7S-6P(3/2) transition at 1.470 {mu}m. The transitory amplification of the probe beam can be over 100%.The vapour presents a strong plane dichroism due to the alignment of 7S level through the linear polarization of the pumping beam. The weak interaction in the atom makes this alignment tilt by a small angle (1 to 10 micro-radians) that the measurement of the polarization of the amplified probe enables us to determine. In this work we have described the 3 steps we have passed through: the test with a transverse field and a continuous laser beam, the use of a pulsed laser, and the setting of a longitudinal configuration. Preliminary results show that the experiment will be useful and feasible.

  18. Slow hot carrier cooling in cesium lead iodide perovskites

    Science.gov (United States)

    Shen, Qing; Ripolles, Teresa S.; Even, Jacky; Ogomi, Yuhei; Nishinaka, Koji; Izuishi, Takuya; Nakazawa, Naoki; Zhang, Yaohong; Ding, Chao; Liu, Feng; Toyoda, Taro; Yoshino, Kenji; Minemoto, Takashi; Katayama, Kenji; Hayase, Shuzi

    2017-10-01

    Lead halide perovskites are attracting a great deal of interest for optoelectronic applications such as solar cells, LEDs, and lasers because of their unique properties. In solar cells, heat dissipation by hot carriers results in a major energy loss channel responsible for the Shockley-Queisser efficiency limit. Hot carrier solar cells offer the possibility to overcome this limit and achieve energy conversion efficiency as high as 66% by extracting hot carriers. Therefore, fundamental studies on hot carrier relaxation dynamics in lead halide perovskites are important. Here, we elucidated the hot carrier cooling dynamics in all-inorganic cesium lead iodide (CsPbI3) perovskite using transient absorption spectroscopy. We observe that the hot carrier cooling rate in CsPbI3 decreases as the fluence of the pump light increases and the cooling is as slow as a few 10 ps when the photoexcited carrier density is 7 × 1018 cm-3, which is attributed to phonon bottleneck for high photoexcited carrier densities. Our findings suggest that CsPbI3 has a potential for hot carrier solar cell applications.

  19. Quantitative determination of total cesium in highly active liquid waste by using liquid electrode plasma optical emission spectrometry.

    Science.gov (United States)

    Do, Van-Khoai; Yamamoto, Masahiko; Taguchi, Shigeo; Takamura, Yuzuru; Surugaya, Naoki; Kuno, Takehiko

    2018-06-01

    A sensitive analytical method for determination of total cesium (Cs) in highly active liquid waste (HALW) by using modified liquid electrode plasma optical emission spectrometry (LEP-OES) is developed in this study. The instrument is modified to measure radioactive samples in a glove box. The effects of important factors, including pulsed voltage sequence and nitric acid concentration, on the emission of Cs are investigated. The limit of detection (LOD) and limit of quantification (LOQ) are 0.005 mg/L and 0.02 mg/L, respectively. The achieved LOD is one order lower than that of recently developed spectroscopic methods using liquid discharge plasma. The developed method is validated by subjecting a simulated HALW sample to inductively coupled plasma mass spectrometry (ICP-MS). The recoveries obtained from a spike-and-recovery test are 96-102%, implying good accuracy. The method is successfully applied to the quantification of Cs in a real HALW sample at the Tokai reprocessing plant in Japan. Apart from dilution and filtration of the HALW sample, no other pre-treatment process is required. The results agree well with the values obtained using gamma spectrometry. The developed method offers a reliable technique for rapid analysis of total Cs in HALW samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Separation of cesium from aqueous solutions using alkylated tetraaryl borates

    International Nuclear Information System (INIS)

    Feldmaier, F.

    1991-01-01

    The water solubility of cesium tetraaryl borates was lowered by introducing hydrophobic aliphatic side chains into corresponding acid-resistant fluorosubstituted tetraaryl borates. This improved cesium spearability both in precipitation and in extraction from aqueous solutions. (orig.) [de

  1. Improvement of cesium retention in uranium dioxide by additional phases

    International Nuclear Information System (INIS)

    Gamaury Dubois, S.

    1995-01-01

    The objective of this study is to improve the cesium retention in nuclear fuel. A bibliographic survey indicates that cesium is rapidly released from uranium dioxide in an accident condition. At temperatures higher than 1500 deg C or in oxidising conditions, our experiments show the difficulty of maintaining cesium inside simulated fuel. Two ternary systems are potentially interesting for the retention of cesium and to reduce the kinetics of release from the fuel: Cs 2 O-Al 2 O 3 -SiO 2 et Cs 2 O-ZrO 2 -SO 2 . The compounds CsAISi 2 O 6 and Cs 2 ZrSi 6 O 15 were studied from 1200 deg C to 2000 deg C by thermogravimetric analysis. The volumetric diffusion coefficients of cesium in these structures, in solid state as well as in liquid one, were measured. A fuel was sintered with (Al 2 O 3 + SiO 2 ) or (ZrO 2 + SiO 2 ) and the intergranular phase was characterized. In the presence of (Al 2 O 3 + SiO 2 ), the sintering is realized at 1610 deg C in H 2 . It is a liquid phase sintering. On the other end, with (ZrO 2 + SiO 2 ), the sintering is a low temperature one in oxidising atmosphere. Finally, cesium containing simulated fuels were produced with these additives. According to the effective diffusion coefficients that were measured, the additives improved the retention of cesium. We have predicted the improvement that could be hoped for in a nuclear reactor, depending on the dispersion of the intergranular additives, the temperature and the degree of oxidation of the UO 2+x . We wait for a factor of 2 for x=0 and more than 8 for x=0.05, up to 2000 deg C. (author). 148 refs., 122 figs., 34 tabs

  2. Co-precipitation and solubility studies of cesium, potassium and sodium tetraphenylborate

    International Nuclear Information System (INIS)

    Peterson, R.A.

    1999-01-01

    This report contains the results from a study requested by High Level Waste Division on the co-precipitation and solubility of cesium, potassium, and sodium tetraphenylborate. Co-precipitation of cesium (Cs), potassium (K), and sodium (Na) tetraphenylborate (TPB) helps determine the efficiency of reagent usage in the Small Tank Precipitation Process. This process uses NaTPB to remove cesium from waste by means of precipitation. Previous studies by McCabe suggested that if the sodium ion concentration [Na+] increased the rate at which cesium tetraphenylborate (KTPB) in the presence of high [Na+] (∼5M) appears to produce a mixed solid phase composed of NaTPB and KTPB together in the crystal lattice

  3. Concentrating cesium-137 from seawater using resorcinol-formaldehyde resin for radioecological monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Egorin, Andrei; Tokar, Eduard; Tutov, Mikhail; Avramenko, Valentin [Institute of Chemistry FEBRAS, Vladivostok (Russian Federation); Far Eastern Federal Univ., Vladivostok (Russian Federation); Palamarchuk, Marina; Marinin, Dmitry [Institute of Chemistry FEBRAS, Vladivostok (Russian Federation)

    2017-04-01

    A method of preconcentrating cesium-137 from seawater using a resorcinol-formaldehyde resin, which enables one to optimize the ecological monitoring procedure, has been suggested. Studies of sorption of cesium-137 from seawater by resorcinol-formaldehyde resin have been performed, and it has been demonstrated that the cation exchanger is characterized by high selectivity with respect to cesium-137. It was found that the selectivity depended on the temperature of resin solidification and the seawater pH value. The maximal value of the cesium-137 distribution coefficient is equal to 4.1-4.5 x 10{sup 3} cm{sup 3} g{sup -1}. Under dynamic conditions, the ion-exchange resin capacity is 310-910 bed volumes depending on the seawater pH, whereas the efficiency of cesium removal exceeds 95%. The removal of more than 95% of cesium-137 has been attained using 1-3 M solutions of nitric acid: here, the eluate volume was 8-8.4 bed volumes. Application of 3 M solution of nitric acid results in resin degradation with the release of gaseous products.

  4. Frequency comb generation by a continuous-wave-pumped optical parametric oscillator based on cascading quadratic nonlinearities.

    Science.gov (United States)

    Ulvila, Ville; Phillips, C R; Halonen, Lauri; Vainio, Markku

    2013-11-01

    We report optical frequency comb generation by a continuous-wave pumped optical parametric oscillator (OPO) without any active modulation. The OPO is configured as singly resonant with an additional nonlinear crystal (periodically poled MgO:LiNbO3) placed inside the OPO for phase mismatched second harmonic generation (SHG) of the resonating signal beam. The phase mismatched SHG causes cascading χ(2) nonlinearities, which can substantially increase the effective χ(3) nonlinearity in MgO:LiNbO3, leading to spectral broadening of the OPO signal beam via self-phase modulation. The OPO generates a stable 4 THz wide (-30 dB) frequency comb centered at 1.56 μm.

  5. Measurements of cesium and strontium diffusion in biotite gneiss

    International Nuclear Information System (INIS)

    Skagius, K.; Neretnieks, I.

    1988-01-01

    A significant retardation of radionuclides transported by flowing water from an underground repository can be expected if the nuclides are able to diffuse into the water filled micropores in the rock. This diffusion into the pores will also increase the surface available to interactions between the nuclides in the ground water and the rock material, such as sorption. To calculate the retardation, it is necessary to know the sorption properties and the diffusivities in the rock matrix for the radionuclides. Diffusion experiments with cesium and strontium in biotite gneiss samples have been performed. Both the transport of strontium and cesium through rock samples and the concentration profiles of cesium and strontium inside rock samples have been determined. The result shows that diffusion of cesium and strontium occurs in the rock material. A diffusion model has been used to evaluate the diffusivity. Both pore diffusion and surface diffusion had to be included in the model to give good agreement with the experimental data. If surface diffusion is not included in the model, the effective pore diffusivity that gives the best fit to the experimental data is found to be higher than expected from earlier measurement of iodide diffusion in the same type of rock material. This indicates that the diffusion of cesium and strontium (sorbing components) in rock material is caused by both pore diffusion and surface diffusion acting in parallel

  6. Diffusion measurements of cesium and strontium in biotite gneiss

    International Nuclear Information System (INIS)

    Skagius, K.; Neretnieks, I.

    1985-01-01

    A significant retardation of radionuclides transported by flowing water from an underground repository can be expected if the nuclides are able to diffuse into the water filled micropores in the rock. This diffusion into the pores will also increase the surface available to interaction between the nuclides in the groundwater and the rock material, such as sorption. To calculate the retardation it is necessary to know the sorption properties and the diffusivities in the rock matrix for the radionuclides. Diffusion experiments with cesium and strontium in biotite gneiss samples have been performed. Both the transport of strontium and cesium through rock samples and the concentration profiles of cesium and strontium inside rock samples have been determined. The result show that diffusion of cesium and strontium occurs in the rock material. A diffusion model has been used to evaluate the diffusivity. Both pore diffusion and surface diffusion had to be included in the model to give good agreement with the experimental data. If surface diffusion is not included in the model, the effective pore diffusivity that gives the best fit to the experimental data is found to be higher than expected from earlier measurements of iodide diffusion in the same type of rock material. This indicates that the diffusion of cesium and strontium (sorbing components) in rock material is caused by both pore diffusion and surface diffusion acting in parallel. (author)

  7. Cesium removal using crystalline silicotitanate. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-05-01

    Approximately 100 million gallons of radioactive waste is stored in underground storage tanks at the Hanford Site, Idaho National Engineering and Environmental Laboratory (INEEL), Oak Ridge Reservation, and Savannah River Site (SRS). Most of the radioactivity comes from 137 Cs, which emits high-activity gamma radiation. The Cesium Removal System is a modular, transportable, ion-exchange system configured as a compact processing unit. Liquid tank waste flows through columns packed with solid material, called a sorbent, that selectively adsorbs cesium and allows the other materials to pass through. The sorbent is crystalline silicotitanate (CST), an engineered material with a high capacity for sorbing cesium from alkaline wastes. The Cesium Removal System was demonstrated at Oak Ridge using Melton Valley Storage Tank (MVST) waste for feed. Demonstration operations began in September 1996 and were completed during June 1997. Prior to the demonstration, a number of ion-exchange materials were evaluated at Oak Ridge with MVST waste. Also, three ion-exchange materials and three waste types were tested at Hanford. These bench-scale tests were conducted in a hot cell. Hanford's results showed that 300 times less sorbent was used by selecting Ionsiv IE-911 over organic ion-exchange resins for cesium removal. This paper gives a description of the technology and discusses its performance, applications, cost, regulatory and policy issues and lessons learned

  8. Sorption kinetics of cesium on hydrous titanium dioxide

    International Nuclear Information System (INIS)

    Altas, Y.; Tel, H.; Yaprak, G.

    2003-01-01

    Two types of hydrous titanium dioxide possessing different surface properties were prepared and characterized to study the sorption kinetics of cesium. The effect of pH on the adsorption capacity were determined in both type sorbents and the maximum adsorption percentage of cesium were observed at pH 12. To elucidate the kinetics of ion-exchange reaction on hydrous titanium dioxide, the isotopic exchange rates of cesium ions between hydrous titanium dioxides and aqueous solutions were measured radiochemically and compared with each other. The diffusion coefficients of Cs + ion for Type1 and Type2 titanium dioxides at pH 12 were calculated as 2.79 x 10 -11 m 2 s -1 and 1.52 x 10 -11 m 2 s -1 , respectively, under particle diffusion controlled conditions. (orig.)

  9. Laser threshold and optical gain of blue optically pumped InGaN/GaN multiple quantum wells (MQW) grown on Si

    International Nuclear Information System (INIS)

    Lutsenko, E.V.; Danilchyk, A.V.; Tarasuk, N.P.; Andryieuski, A.V.; Pavlovskii, V.N.; Gurskii, A.L.; Yablonskii, G.P.; Kalisch, H.; Jansen, R.H.; Dikme, Y.; Schineller, B.; Heuken, M.

    2008-01-01

    Optical and laser properties of a series of MQW heterostructures with varying geometry grown on silicon with Al predeposition were investigated. Photoluminescence (PL) band positions covered a spectral range of 430-460 nm under I exc =1 MW/cm 2 and 445-505 nm under I exc =0.15 W/cm 2 . Laser action was achieved under transversal optical pumping at room temperature using only cleaved lateral facets of the samples as laser mirrors. The laser threshold rose from 137 kW/cm 2 to 300 kW/cm 2 with laser wavelength increase from 440 nm to 465 nm. Numerical simulation of the laser conditions shows that the minimal threshold is realized on the fifth order mode. However, the calculated value of material optical gain of InGaN at the laser threshold increases only from 750 cm -1 to 1020 cm -1 , mainly due to absorption rise in the substrate with increasing wavelength. Correlation was observed between PL characteristics and laser threshold. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Sorption of cesium in intact rock

    International Nuclear Information System (INIS)

    Puukko, E.

    2014-04-01

    The mass distribution coefficient K d is used in performance assessment (PA) to describe sorption of a radionuclide on rock. The R d is determined using crushed rock which causes uncertainty in converting the R d values to K d values for intact rock. This work describes a method to determine the equilibrium of sorption on intact rock. The rock types of the planned Olkiluoto waste disposal site were T-series mica gneiss (T-MGN), T-series tonalite granodiorite granite gneiss (T-TGG), P-series tonalite granodiorite granite gneiss (P-TGG) and pegmatitic granite (PGR). These rocks contain different amount of biotite which is the main sorbing mineral. The sorption of cesium on intact rock slices was studied by applying an electrical field to speed up migration of cesium into the rock. Cesium is in the solution as a noncomplex cation Cs + and it is sorbed by ion exchange. The tracer used in the experiments was 134 Cs. The experimental sorption on the intact rock is compared with values calculated using the in house cation exchange sorption model (HYRL model) in PHREEQC program. The observed sorption on T-MGN and T-TGG rocks was close to the calculated values. Two PGR samples were from a depth of 70 m and three samples were from a depth of 150 m. Cesium sorbed more than predicted on the two 70 m PGR samples. The sorption of Cs on the three 150 m PGR samples was small which was consistent with the calculations. The pegmatitic granite PGR has the smallest content of biotite of the four rock types. In the case of P-TGG rock the observed values of sorption were only half of the calculated values. Two kind of slices were cut from P-TGG drill core. The slices were against and to the direction of the foliation of the biotite rims. The sorption of cesium on P-TGG rock was same in both cases. The results indicated that there was no effect of the directions of the electric field and the foliation of biotite in the P-TGG rock. (orig.)

  11. 650-nJ pulses from a cavity-dumped Yb:fiber-pumped ultrafast optical parametric oscillator

    Science.gov (United States)

    Lamour, Tobias P.; Reid, Derryck T.

    2011-08-01

    Sub-250-fs pulses with energies of up to 650 nJ and peak powers up to 2.07 MW were generated from a cavity-dumped optical parametric oscillator, synchronously-pumped at 15.3 MHz with sub-400-fs pulses from an Yb:fiber laser. The average beam quality factor of the dumped output was M2 ~1.2 and the total relative-intensity noise was 8 mdBc, making the system a promising candidate for ultrafast laser inscription of infrared materials.

  12. Test procedures and instructions for Hanford tank waste supernatant cesium removal

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, D.W., Westinghouse Hanford

    1996-05-31

    This document provides specific test procedures and instructions to implement the test plan for the preparation and conduct of a cesium removal test using Hanford Double-Shell Slurry Feed supernatant liquor from tank 251-AW-101 in a bench-scale column.Cesium sorbents to be tested include resorcinol-formaldehyde resin and crystalline silicotitanate. The test plan for which this provides instructions is WHC-SD-RE-TP-022, Hanford Tank Waste Supernatant Cesium Removal Test Plan.

  13. Diode-laser-pump module with integrated signal ports for pumping amplifying fibers and method

    Science.gov (United States)

    Savage-Leuchs,; Matthias, P [Woodinville, WA

    2009-05-26

    Apparatus and method for collimating pump light of a first wavelength from laser diode(s) into a collimated beam within an enclosure having first and second optical ports, directing pump light from the collimated beam to the first port; and directing signal light inside the enclosure between the first and second port. The signal and pump wavelengths are different. The enclosure provides a pump block having a first port that emits pump light to a gain fiber outside the enclosure and that also passes signal light either into or out of the enclosure, and another port that passes signal light either out of or into the enclosure. Some embodiments use a dichroic mirror to direct pump light to the first port and direct signal light between the first and second ports. Some embodiments include a wavelength-conversion device to change the wavelength of at least some of the signal light.

  14. Co-precipitation and solubility studies of cesium, potassium and sodium tetraphenylborate

    International Nuclear Information System (INIS)

    Peterson, R.A.

    2000-01-01

    This report contains the results from a study requested by High Level Waste on the co-precipitation and solubility of cesium, potassium, and sodium tetraphenylborate. Co-precipitation of cesium (Cs), potassium (K), and sodium (Na) tetraphenylborate (TPB) helps determine the efficiency of reagent usage in the Small Tank Precipitation Process. This process uses NaTPB to remove cesium from waste by means of precipitation. Previous studies by McCabe suggested that if the sodium ion concentration [Na + ] increased the rate at which cesium tetraphenylborate (CsTPB) precipitates also increases. Serkiz also demonstrated that the precipitation of potassium tetraphenylborate (KTPB) in the presence of high [Na + ] (∼5M) appears to produce a mixed solid phase composed of NaTPB and KTPB together in the crystal lattice. In the crystallographic structure of these three tetraphenylborate salts (Cs,K,NaTPB), the tetraphenylborate ion dominates the size of the crystals. Also, note that the three crystals have nearly identical structures with the exception of two additional peaks in the cesium pattern. Given these similarities, TPB precipitation in the presence of Na + , Cs + and K + likely produces an impure isomorphic crystalline mixture of CsTPB, KTPB and NaTPB. The authors speculate that the primary crystalline structure resembles that of KTPB with NaTPB and CsTPB mixed throughout the crystal structure. The precipitation of NaTPB makes some of the anticipated excess tetraphenylborate relatively unavailable for precipitation of cesium. Thus, the amount of excess tetraphenylborate required to completely precipitate all of the potassium and cesium may increase significantly

  15. Potassium effect on cesium 137 behaviour in natural waters of contaminated regions (Belarus)

    International Nuclear Information System (INIS)

    Kudel'skij, A.V.; Pashkevich, V.I.; Ovsyannikova, S.V.; Petrovich, A.A.; Smit, D.T.

    1998-01-01

    Very close relationships between cesium 137 activity of water objects (soil solutions, bog and lake water) and their stable potassium contents have been revealed in the contaminated area in south-eastern Belarus. It was revealed the increase of cesium 137 activity in soil solutions and bog ecosystems proportionally with the increase of potassium content. The exponential dependence of cesium 137 activity of fish production was similar to reverse. The coefficient of cesium 137 accumulation in plants was estimated to be reverse connected with the potassium content in soils. So an universal character of these relations and their specificity are of interest when elaborating countermeasures for reducing population dose loads due to cesium 137 water migration

  16. Optical pump-and-probe test system for thermal characterization of thin metal and phase-change films

    International Nuclear Information System (INIS)

    Watabe, Kazuo; Polynkin, Pavel; Mansuripur, Masud

    2005-01-01

    A single-shot optical pump-and-probe test system is reported. The system is designed for thermal characterization of thin-film samples that can change their phase state under the influence of a short and intense laser pulse on a subnanosecond time scale. In combination with numerical analysis, the system can be used to estimate thermal constants of thin films, such as specific heat and thermal conductivity. In-plane and out-of plane thermal conductivity can be estimated independently. The system is intended for use in research on optical data storage and material processing with pulsed laser light. The system design issues are discussed. As application examples, we report on using the system to study thermal dynamics in two different thin-film samples: a gold film on a glass substrate (a single-phase system) and the quadrilayer phase-change stack typical in optical data-storage applications

  17. Measurement of low levels of cesium-137 in water

    International Nuclear Information System (INIS)

    Milham, R.C.; Kantelo, M.V.

    1984-10-01

    Large volume water sampling systems were developed to measure very low levels of cesium-137 in river water and in finished water from water treatment plants. Three hundred to six hundred liters of filtered water are passed through the inorganic ion exchanger potassium cobalti-ferrocyanide to remove greater than 90% of the cesium. Measurement of cesium-137 by gamma ray spectrometry results in a sensitivity of 0.001 pCi/L. Portable as well as stationary samplers were developed to encompass a variety of applications. Results of a one year study of water from the Savannah River and from water treatment plants processing Savannah River water are presented. 3 references, 7 figures

  18. Helium nanodroplets. Pump-probe ionization of alkali dopings and spin-echo scattering on undoped drops

    International Nuclear Information System (INIS)

    Droppelmann, G.

    2005-09-01

    In the framework of this thesis several aspects of the properties of helium nanodroplets and their dopings. The formation of the exciplexes RbHe and KHe on helium droplets was studied by means of pump-probe ionization in real time, whereby the main interest lied on the influence of the applied helium isotopes. The experiments with cesium atoms on the droplet surface aimed on the elucidation of the relaxation dynamics of the surface under regardment both of isotope and size effects. From the pump-probe measurements on the formation of the exciplex RbHe on helium nanodroplets performed in the framework of this thesis formation times of 8.5 ps for Rb 4 He and 11.6 ps for Rb 3 He resulted

  19. Widely tunable dispersive wave generation and soliton self-frequency shift in a tellurite microstructured optical fiber pumped near the zero dispersion wavelength

    International Nuclear Information System (INIS)

    Zhang, Lei; Tuan, Tong-Hoang; Liu, Lai; Gao, Wei-Qing; Kawamura, Harutaka; Suzuki, Takenobu; Ohishi, Yasutake

    2015-01-01

    Widely tunable dispersive waves (DW) and Raman solitons are generated in a tellurite microstructured optical fiber (TMOF) by pumping in the anomalous dispersion regime, close to the zero dispersion wavelength (ZDW). The DW can be generated from 1518.3 nm to 1315.5 nm, and the soliton can be shifted from the pump wavelength of 1570 nm to 1828.7 nm, by tuning the average pump power from 3 dBm to 17.5 dBm. After the average pump power is increased to 18.8 dBm, two DW peaks (centered at 1323 nm and 1260 nm) and three soliton peaks (centered at 1762 nm, 1825 nm, and 1896 nm) can be observed simultaneously. When the average pump power is greater than 23.4 dBm, a flat and broadband supercontinuum (SC) can be formed by the combined nonlinear effects of soliton self-frequency shift (SSFS), DW generation, and cross phase modulation (XPM). (paper)

  20. Measurement of cesium emissions during the vitrification of simulated high level radioactive waste

    International Nuclear Information System (INIS)

    Zamecnik, J.R.; Miller, D.H.; Carter, J.T.

    1992-01-01

    In the Defense Waste Processing Facility at the Savannah River Site, it is desired to eliminate a startup test that would involve adding small amounts of radioactive cesium-137 to simulated high-level waste. In order to eliminate this test, a reliable method for measuring non-radioactive cesium in the offgas system from the glass melter is required. From a pilot scale melter system, offgas particulate samples were taken on filter paper media and analyzed by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The ICPMS method proved to be sufficiently sensitive to measure cesium quantities as low as 0.135 μg, with the sensitivity being limited by the background cesium present in the filter paper. Typical particulate loadings ranged from 800 μg of cesium. This sensitivity allowed determination of cesium decontamination factors for four of the five major components of the offgas system. The decontamination factors measured experimentally compared favorably with the process design basis values

  1. Low-frequency, self-sustained oscillations in inductively coupled plasmas used for optical pumping

    Energy Technology Data Exchange (ETDEWEB)

    Coffer, J.; Encalada, N.; Huang, M.; Camparo, J. [Physical Sciences Laboratories, The Aerospace Corporation 2310, E. El Segundo Blvd., El Segundo, California 90245 (United States)

    2014-10-28

    We have investigated very low frequency, on the order of one hertz, self-pulsing in alkali-metal inductively-coupled plasmas (i.e., rf-discharge lamps). This self-pulsing has the potential to significantly vary signal-to-noise ratios and (via the ac-Stark shift) resonant frequencies in optically pumped atomic clocks and magnetometers (e.g., the atomic clocks now flying on GPS and Galileo global navigation system satellites). The phenomenon arises from a nonlinear interaction between the atomic physics of radiation trapping and the plasma's electrical nature. To explain the effect, we have developed an evaporation/condensation theory (EC theory) of the self-pulsing phenomenon.

  2. Cesium-137 inventory of the undisturbed soil areas in the Londrina Region, Parana, Brazil

    International Nuclear Information System (INIS)

    Andrello, Avacir C.; Appoloni, Carlos Roberto

    2005-01-01

    Cesium-137 is an artificial radionuclide introduced in the environment through the radioactive fallout of the superficial tests of nuclear weapons. The cesium-137 deposition occurred to middles of the 1980-decade and, due to the Chernobyl accident, great part of Europe had a additional fallout of cesium-137. The contaminations of this accident do not have reached Southern Hemisphere. Cesium-137 is an alkaline metal, high electropositive, that in contact with the soil is strongly adsorbed to the clay in the FES (Frayed Edge Sites) and RES (Regular Edge Sites) positions, and it movement by chemical processes in the soil is insignificant. Because of this, cesium-137 became a good soil marker, and its movement is related to the soil movement particles, so that the cesium-137 have been used in the study of the soil redistribution processes, as a tool of quantifying the rates of soil losses and gain. To use this methodology, it is necessary the knowledge of the reference inventory of cesium-137, that is given as function of the total concentration of cesium-137 deposited in an area by the radioactive fallout. If a sampling point presents less cesium-137 than the reference inventory, this point is considered a point with soil loss; otherwise, the point is considered a point with soil deposition. To evaluate the cesium-137 inventory in the Londrina region, four areas of the undisturbed soil were sampling in grid of 3x3, with a distance of 9 meters among the points. Of these four sampling areas, three areas were of native forest (labeled Mata1, Mata2 and Mata UEL), and one was a pasture area. Cesium-137 inventory was 223 ± 41 Bq m -2 , 240 ± 65 Bq m -2 and 305 ± 36 Bq m -2 for Mata UEL, Mata1 and Mata2, respectively, and of 211 ± 28 Bq m -2 for the native pasture. Considering the deviation in each value, it is not possible to conclude that there are differences among the values of cesium-137 inventory, so that the average reference inventory of cesium-137 for the

  3. Microbial accumulation of uranium, radium, and cesium

    International Nuclear Information System (INIS)

    Strandberg, G.W.; Shumate, S.E. II; Parrott, J.R. Jr.; North, S.E.

    1981-05-01

    Diverse microbial species varied considerably in their ability to accumulate uranium, cesium, and radium. Mechanistic differences in uranium uptake by Saccharomyces cerevisiae and Pseudomonas aeruginosa were indicated. S. serevisiae exhibited a slow (hours) surface accumulation of uranium which was subject to environmental factors, while P. aeruginosa accumulated uranium rapidly (minutes) as dense intracellular deposits and did not appear to be affected by environmental parameters. Metabolism was not required for uranium uptake by either organism. Cesium and radium were concentrated to a considerably lesser extent than uranium by the several species tested

  4. Towards precision measurements of parity violation in cesium: construction of a new experiment using an active detection method by induced emission; Vers des mesures precises de violation de la parite dans le cesium: construction d'une experience nouvelle utilisant une detection active par emission induite

    Energy Technology Data Exchange (ETDEWEB)

    Jacquier, Ph

    1991-04-15

    Experiments that show the breaking of parity invariance in atoms can be considered as valid tests of the electroweak theory complementary to those made at high energies. The accurate measurement of the weak charge of a cesium nucleus would bring useful information on radiative corrections. The experiment, that is proposed in this work concerns the strongly forbidden 6S-7S transition of cesium at 540 nm, aims at reaching an accuracy of 1% for this measurement. Cesium atoms are first excited from 6S level to 7S level by a pulsed laser (10 ns) in the presence of a longitudinal electrical field. Then they are detected through induced emission by a probe laser set on 7S-6P(3/2) transition at 1.470 {mu}m. The transitory amplification of the probe beam can be over 100%.The vapour presents a strong plane dichroism due to the alignment of 7S level through the linear polarization of the pumping beam. The weak interaction in the atom makes this alignment tilt by a small angle (1 to 10 micro-radians) that the measurement of the polarization of the amplified probe enables us to determine. In this work we have described the 3 steps we have passed through: the test with a transverse field and a continuous laser beam, the use of a pulsed laser, and the setting of a longitudinal configuration. Preliminary results show that the experiment will be useful and feasible.

  5. Theoretical and experimental study of a laser-diode-pumped actively Q-switched Yb:NaY(WO4)2 laser with acoustic-optic modulator

    Science.gov (United States)

    Zhang, Haikun; Xia, Wei; Song, Peng; Wang, Jing; Li, Xin

    2018-03-01

    A laser-diode-pumped actively Q-switched Yb:NaY(WO4)2 laser operating at around 1040 nm is presented for the first time with acoustic-optic modulator. The dependence of pulse width on incident pump power for different pulse repetition rates is measured. By considering the Guassian spatial distribution of the intracavity photon density and the initial population-inversion density as well as the longitudinal distribution of the photon density along the cavity axis and the turn off time of the acoustic-optic Q-switch, the coupled equations of the actively Q-switched Yb:NaY(WO4)2 laser are given. The coupled rate equations are used to simulate the Q-switched process of laser, and the numerical solutions agree with the experimental results.

  6. Adsorption of Radioactive Cesium to Illite-Sericite Mixed Clays

    Science.gov (United States)

    Hwang, J. H.; Choung, S.; Park, C. S.; Jeon, S.; Han, J. H.; Han, W. S.

    2016-12-01

    Once radioactive cesium is released into aquatic environments through nuclear accidents such as Chernobyl and Fukushima, it is harmful to human and ecological system for a long time (t1/2 = 30.2 years) because of its chemical toxicity and γ-radiation. Sorption mechanism is mainly applied to remove the cesium from aquatic environments. Illite is one of effective sorbent, considering economical cost for remediation. Although natural illite is typically produced as a mixture with sericite formed by phyllic alteration in hydrothermal ore deposits, the effects of illite-sericite mixed clays on cesium sorption was rarely studied. This study evaluated the sorption properties of cesium to natural illite collected at Yeongdong in Korea as the world-largest illite producing areas (termed "Yeongdong illite"). The illite samples were analyzed by XRF, XRD, FT-IR and SEM-EDX to determine mineralogy, chemical composition, and morphological characteristics, and used for batch sorption experiments. Most of "Yeongdong illite" samples predominantly consist of sericite, quartz, albite, plagioclase feldspar and with minor illite. Cesium sorption distribution coefficients (Kd,Cs) of various "Yeongdong illite" samples ranged from 500 to 4000 L/kg at low aqueous concentration (Cw 10-7 M). Considering Kd,Cs values were 400 and 6000 using reference sericite and illite materials, respectively, in this study, these results suggested that high contents of sericite significantly affect the decrease of sorption capabilities for radiocesium by natural illite (i.e., illite-sericite mixed clay).

  7. Diode-pumped glass laser (10 J X 10 HZ) development

    International Nuclear Information System (INIS)

    Tadashi Kanabe; Toshiyuki Kawashima; Masanobu Yamanaka; Masahiro Nakatsuka; Yasukazu Izawa; Takeshi Kanzaki; Hirofumi Kan; Sadao Nakai

    2002-01-01

    A high-energy, high beam quality, diode-pumped 1053-nm Nd:phosphate glass laser amplifier has been demonstrated in order to verify the conceptual design of HALNA (High Average-power Laser for Nuclear-fusion Application): a diode-pumped solid-state laser based on a water-cooled zig-zag slab optical geometry. This amplifier yielded 8.5 J output energy per pulse at 0.5 Hz in a 20 ns pulse of two times the diffraction limit beam quality with an optical-to-optical conversion efficiency of 10.9%. The experimental results revealed that the primary requirements for the IFE driver, such as diode-pumping, energy storage and extraction efficiencies, and beam quality have been fulfilled

  8. Diode laser-pumped Ho:YLF laser

    International Nuclear Information System (INIS)

    Hemmati, H.

    1987-01-01

    The author reports laser action in Ho:YLF at 2.06 μm following optical pumping with a cw diode laser array. Diode laser-pumped Nd-YAG and Ho:YAG have been reported recently. Lasers with a wavelength of 2 μm have medical and optical communication applications. The diode laser light is focused with a 60-mm focal length lens onto the YLF crystal. A high-reflectivity mirror with 100-mm radius of curvature was used as the output coupler. The lasing threshold was at 5 mWof incident power. This is higher than expected considering that a high reflector was used as the output coupler. However, a more uniform cooling of the crystal is expected to lower the lasing threshold. With 100 mW of pump power coupled into the crystal, --20 mW of 2-μm radiation was observed from this unoptimized setup. The 2-μm laser output is highly sensitive to output coupler alignment, YLF crystal temperature, and pump laser wavelength. The 20% optical conversion efficiency achieved in his preliminary measurements is expected to be improved by better crystal cooling, proper matching of laser wavelength to crystal absorption, variations in the concentration of Ho and sensitizers and use of a proper output coupler. A study of the parameters mentioned above and the effect of crystal temperature on the laser output is under way

  9. Application of nuclear pumped laser to an optical self-powered neutron detector

    Science.gov (United States)

    Yamanaka, N.; Takahashi, H.; Iguchi, T.; Nakazawa, M.; Kakuta, T.; Yamagishi, H.; Katagiri, M.

    1996-05-01

    A Nuclear Pumped Laser (NPL) using 3He/Ne/Ar gas mixture is investigated for a purpose of applying to an optical self-powered neutron detector. Reactor experiments and simulations on lasing mechanism have been made to estimate the best gas pressure and mixture ratios on the threshold input power density (or thermal neutron flux) in 3He/Ne/Ar mixture. Calculational results show that the best mixture pressure is 3He/Ne/Ar=2280/60/100 Torr and thermal neutron flux threshold 5×1012 n/cm2 sec, while the reactor experiments made in the research reactor ``YAYOI'' of the University of Tokyo and ``JRR-4'' of JAERI also demonstrate that excitational efficiency is maximized in a similar gas mixture predicted by the calculation.

  10. Dosage of cesium 137 in radioactive wastes by the application of sodium tetraphenylborate; Dosage du cesium 137 dans les effluents radioactifs par le tetraphenylborate de sodium

    Energy Technology Data Exchange (ETDEWEB)

    Testemale, G; Girault, J [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1967-07-01

    A simple technique of the dosage of {sup 137}Cs has been developed. The technique consists in the formation of cesium tetraphenyl borate, followed by a double extraction with isoamyl acetate, and washing of the organic phase. The counting of known parts of the cesium solution assaying of its purity by {gamma} spectrometry enable the determination of the {sup 137}Cs. The yield is about 98 per cent. (authors) [French] Une technique simple du dosage du {sup 137}Cs a ete mise au point. Elle consiste en une double extraction du tetraphenylborate de cesium forme par l'acetate d'isoamyle suivie d'un lavage de la phase organique. Des comptages sur des parties aliquotes de la solution de cesium et un controle de purete par spectrometrie {gamma} permettent la determination de cet element. Rendement: environ 98 pour cent. (auteurs)

  11. Towards precision measurements of parity violation in cesium: construction of a new experiment using an active detection method by induced emission

    International Nuclear Information System (INIS)

    Jacquier, Ph.

    1991-04-01

    Experiments that show the breaking of parity invariance in atoms can be considered as valid tests of the electroweak theory complementary to those made at high energies. The accurate measurement of the weak charge of a cesium nucleus would bring useful information on radiative corrections. The experiment, that is proposed in this work concerns the strongly forbidden 6S-7S transition of cesium at 540 nm, aims at reaching an accuracy of 1% for this measurement. Cesium atoms are first excited from 6S level to 7S level by a pulsed laser (10 ns) in the presence of a longitudinal electrical field. Then they are detected through induced emission by a probe laser set on 7S-6P(3/2) transition at 1.470 μm. The transitory amplification of the probe beam can be over 100%.The vapour presents a strong plane dichroism due to the alignment of 7S level through the linear polarization of the pumping beam. The weak interaction in the atom makes this alignment tilt by a small angle (1 to 10 micro-radians) that the measurement of the polarization of the amplified probe enables us to determine. In this work we have described the 3 steps we have passed through: the test with a transverse field and a continuous laser beam, the use of a pulsed laser, and the setting of a longitudinal configuration. Preliminary results show that the experiment will be useful and feasible

  12. Removal of radioactive cesium from soil by ammonium citrate solution and ionic liquid

    International Nuclear Information System (INIS)

    Ishiwata, Shunji; Kitakouji, Manabu; Taga, Atsushi; Ogata, Fumihiko; Ouchi, Hidekazu; Yamanishi, Hirokuni; Inagaki, Masayo

    2015-01-01

    Radioactive cesium has strongly bound soil as time proceeded, which could not be cleaved in mild condition. We have found that serial treatment of ammonium citrate solution and ionic liquid removed radioactive cesium from soil effectively. The sequence of the treatment is crucial, since inverse serial treatment or mixture of two kinds of solution did not show such an effect, which suggested that ammonium citrate unlocked trapped cesium in soil and ionic liquid solved it. We also found that repeating serial treatment and prolonged treatment time additively removed cesium from soil. (author)

  13. Compact and highly efficient laser pump cavity

    Science.gov (United States)

    Chang, Jim J.; Bass, Isaac L.; Zapata, Luis E.

    1999-01-01

    A new, compact, side-pumped laser pump cavity design which uses non-conventional optics for injection of laser-diode light into a laser pump chamber includes a plurality of elongated light concentration channels. In one embodiment, the light concentration channels are compound parabolic concentrators (CPC) which have very small exit apertures so that light will not escape from the pumping chamber and will be multiply reflected through the laser rod. This new design effectively traps the pump radiation inside the pump chamber that encloses the laser rod. It enables more uniform laser pumping and highly effective recycle of pump radiation, leading to significantly improved laser performance. This new design also effectively widens the acceptable radiation wavelength of the diodes, resulting in a more reliable laser performance with lower cost.

  14. Cesium-plasma-conductivity enhancement in the advanced thermionic energy converter. Final report

    International Nuclear Information System (INIS)

    Manikopoulos, C.N.

    Two methods of plasma conductivity enhancement in a cesium vapor thermionic energy converter have been studied. The first involved resonance photoabsorption of several cesium lines and the second utilized cesium plasma sustenance by application of microwave power. An extensive study of ionization processes in a cesium discharge in the presence of resonance ionization was made. Calculations were made of expected percentage excitation levels for several cesium resonance transitions for different values of neutral density and temperature as well as incident radiation power levels. The results of some of these computations were tabulated. Several ionization schemes were considered. A number of cesium transitions were investigated in the range of 799 to 870 nanometers for four different cesium reservoir temperatures, 467, 511, 550 and 591 K. The related absorption coefficients of the radiation lines in the plasma were deduced and tabulated. The resulting plasma conductivity increase was recorded and the associated ionization enhancement was deduced. A microwave cavity was built where the emitter and collector of a simple thermionic converter made up two of the cavity walls and resonant microwave power was externally applied. The I-V characteristics of the thermionic converter were studied under several microwave power levels in the range of 0 to 2 watts. Significant shifts to higher currents were observed as the microwave power levels were raised. In conclusion, both methods show promise as auxiliary ionization mechanisms for the thermionic energy converter, especially at low emitter temperatures

  15. Emission characteristics of the Yb3+-sensitized Tm3+-doped optical fiber upon pumping with infrared LED

    International Nuclear Information System (INIS)

    Htein, Lin; Fan, Weiwei; Han, Won-Taek

    2014-01-01

    Near infrared emissions at 975, 1040 and 1450 nm of the Yb 3+ -sensitized Tm 3+ -doped optical fiber were obtained upon simultaneous excitation of Yb 3+ and Tm 3+ ions using the infrared LED. -- Highlights: • A novel pumping scheme for 1450 nm emission from 3 H 4 → 3 F 4 transition of Tm was demonstrated. • The absorption bands of Yb and Tm located within 690–970 nm were simultaneously excited with the IR LED. • Near infrared emissions at 975, 1040 and 1450 nm were obtained. • The Yb 3+ /Tm 3+ -codoped fiber showed the good spectroscopic quality and the increase of radiative lifetime of 3 H 4 level. • This LED pumping scheme can be useful for low-cost S-band fiber laser/amplifier applications

  16. Single mode operation of a hybrid optically pumped D2O far infrared laser

    International Nuclear Information System (INIS)

    Yuan, D.C.; Siegrist, M.R.

    1990-04-01

    We have achieved single mode operation in a hybrid optically pumped D 2 O far infrared laser. The active volume of the resonator was divided into two sections separated by a thin plastic foil. The larger section served as the main gain medium and the shorter section as mode selective element. The vapor pressure in the smaller volume was either very low or alternatively about 3 times higher than the pressure in the main part. In both cases single mode operation was achieved without any reduction of the total output energy. (author) 13 refs., 7 figs

  17. Cesium immobilization into potassium magnesium phosphate matrix

    International Nuclear Information System (INIS)

    Sayenko, S.Y.; Shkuropatenko, V.A.; Bereznyak, O.P.; Hodyreva, Y.S.; Tarasov, R.V.; Virych, V.D.; Ulybkina, E.A.; Pylypenko, O.V.; Kholomeev, G.O.; Zykova, A.V.; Wagh, Arun S.

    2017-01-01

    The possibility of isomorphous substitution of potassium ions by cesium ions in the structure of potassium magnesium phosphate KMgPO 4 centred dot 6H 2 O (PMP) was shown. It was established, that the Cs included into the PMP matrix does not transfer to the environment during high temperatures heating process (1176 deg C, 3 hours). Analysis of the IR absorption spectrum of the PMP sample has demonstrated that an increase in the amount of additive of the cesium chloride resulted in the shift of the main bands in the spectrum to the low-frequency region with average shift value 10 cm -1 , which indicates the strengthening of bonds in the crystal lattice of matter. The calculated degree of substitution of potassium by cesium during energy release process in the PMP matrix at the level of vitrified high level wastes is about 4%, i. e. the PMP matrix should correspond to the formula K 0.96 Cs 0.04 MgPO 4 centred dot 6H 2 O.

  18. Pilot unit for cesium-137 separation

    International Nuclear Information System (INIS)

    Raggenbass, A.; Quesney, M.; Fradin, J.; Dufrene, J.

    1958-01-01

    Users of radiation are becoming increasingly interested in cesium-137. At the same time the starting up of the industrial plant at Marcoule will make available in the near future large stocks of fission products which should be made use of as quickly as possible. The installation described is a pilot plant for cesium-137 production which should make it possible: - to verify the chemical method on actual solutions of fission products, by treating about 100 curies of 137 Cs by operation, - to obtain technical information on the chemical equipment (tele-commands, corrosion, maintenance, etc...), - to obtain 137 Cs in sufficient quantity to perfect the technique of the manufacture of sealed sources. (author) [fr

  19. High-current negative hydrogen ion beam production in a cesium-injected multicusp source

    International Nuclear Information System (INIS)

    Takeiri, Y.; Tsumori, K.; Kaneko, O.

    1997-01-01

    A high-current negative hydrogen ion source has been developed, where 16.2 A of the H - current was obtained with a current density of 31 mA/cm 2 . The ion source is a multicusp source with a magnetic filter for negative ion production, and cesium vapor is injected into the arc chamber, leading to enhancement of the negative ion yields. The cesium-injection effects are discussed, based on the experimental observations. Although the surface production of the negative ions on the cesium-covered plasma grid is thought to be a dominant mechanism of the H - current enhancement, the cesium effects in the plasma volume, such as the cesium ionization and the electron cooling, are observed, and could contribute to the improved operation of the negative ion source. (author)

  20. Cesium 137 in oils and plants from Guatemala

    International Nuclear Information System (INIS)

    Ayala, R.E.; Perez, J.F.

    1993-01-01

    Since 1990 the project of radioactive and environmental contamination started in Guatemala. Studies about the radioactive contamination levels are made within the framework of this project. Cesium-137 has been an interest radionuclide, because it is a fission product released to the environment by the use of nuclear weapons and nuclear power plants accidents. The sampling consisted in collection of soil and grass in 20 provinces of Guatemala, one point by province, and it was made in 1990. The cesium-137 concentration in the samples, was determined by gamma spectrometry, using an hyper pure germanium detector. The results show the presence of radioactive contamination in soil and grass due to cesium-137, at levels that might be considered as normal. The levels found are not harmful for human health, and its importance is the fact that can be used as reference levels for the environmental radioactivity monitoring in Guatemala

  1. Cesium uptake capacity of simulated ferrocyanide tank waste. Interim report FY 1994, Ferrocyanide Safety Project

    International Nuclear Information System (INIS)

    Burgeson, I.E.; Bryan, S.A.; Burger, L.E.

    1994-09-01

    The objective of this project is to determine the capacity for 137 CS uptake by mixed metal ferrocyanides present in Hanford waste tanks, and to assess the potential for aggregation of these 137 CS exchanged materials to form tank ''hot-spots.'' This research, performed at the Pacific Northwest Laboratory (PNL) for the Westinghouse Hanford Company (WHC), stems from concerns of possible localized radiolytic heating within the tanks. If radioactive cesium is exchanged and concentrated by the remaining nickel ferrocyanide present in the tanks, this heating could cause temperatures to rise above the safety limits specified for the ferrocyanide tanks. For the purposes of this study, two simulants, In-Farm-2 and U-Plant-2, were chosen to represent the wastes generated by the scavenging processes. These simulants were formulated using protocols from the original cesium scavenging campaign. Later additions of cesium-rich wastes from various processes also were considered. The simulants were prepared and centrifuged to obtain a moist ferrocyanide sludge. The centrifuged sludges were treated with the original supernate spiked with a known amount of cesium nitrate. After analysis by flame atomic absorption spectrometry, distribution coefficients (K d ) were calculated. The capacity of solid waste simulants to exchange radioactive cesium from solution was examined. Initial results showed that the greater the molar ratio of cesium to cesium nickel ferrocyanide, the less effective the exchange of cesium from solution. The theoretical capacity of 2 mol cesium per mol of nickel ferrocyanide was not observed. The maximum capacity under experimental conditions was 0.35 mol cesium per mol nickel ferrocyanide. Future work on this project will examine the layering tendency of the cesium nickel ferrocyanide species

  2. Experimental study on cesium immobilization in struvite structures

    International Nuclear Information System (INIS)

    Wagh, Arun S.; Sayenko, S.Y.; Shkuropatenko, V.A.; Tarasov, R.V.; Dykiy, M.P.; Svitlychniy, Y.O.; Virych, V.D.; Ulybkina, E.A.

    2016-01-01

    Graphical abstract: X-ray diffraction patterns of Ceramicrete forms, green representing struvite-K, and red, struvite-(K,Cs) with 10 wt.% CsCl in it. Cs substitutes partially for K, which immobilizes Cs at room temperature by the acid–base reaction. - Highlights: • Struvite structure of Ceramicrete is an excellent host of radioactive cesium. • The volatility problem of cesium can be avoided by this method. • This method can be used to produce cesium waste forms in ambient conditions. • It can also be used to pretreat cesium in glass vitrification technology. • It also provides a method to produce safe sealed radioactive sources of cesium. - Abstract: Ceramicrete, a chemically bonded phosphate ceramic, was developed for nuclear waste immobilization and nuclear radiation shielding. Ceramicrete products are fabricated by an acid–base reaction between magnesium oxide and mono potassium phosphate that has a struvite-K mineral structure. In this study, we demonstrate that this crystalline structure is ideal for incorporating radioactive Cs into a Ceramicrete matrix. This is accomplished by partially replacing K by Cs in the struvite-K structure, thus forming struvite-(K, Cs) mineral. X-ray diffraction and thermo-gravimetric analyses are used to confirm such a replacement. The resulting product is non-leachable and stable at high temperatures, and hence it is an ideal matrix for immobilizing Cs found in high-activity nuclear waste streams. The product can also be used for immobilizing secondary waste streams generated during glass vitrification of spent fuel, or the method described in this article can be used as a pretreatment method during glass vitrification of high level radioactive waste streams. Furthermore, it suggests a method of producing safe commercial radioactive Cs sources.

  3. Experimental study on cesium immobilization in struvite structures

    Energy Technology Data Exchange (ETDEWEB)

    Wagh, Arun S., E-mail: asw@anl.gov [Environmental Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, IL 60439 (United States); Sayenko, S.Y.; Shkuropatenko, V.A.; Tarasov, R.V.; Dykiy, M.P.; Svitlychniy, Y.O.; Virych, V.D.; Ulybkina, E.A. [National Science Center, Kharkov Institute of Physics and Technology, Kharkov (Ukraine)

    2016-01-25

    Graphical abstract: X-ray diffraction patterns of Ceramicrete forms, green representing struvite-K, and red, struvite-(K,Cs) with 10 wt.% CsCl in it. Cs substitutes partially for K, which immobilizes Cs at room temperature by the acid–base reaction. - Highlights: • Struvite structure of Ceramicrete is an excellent host of radioactive cesium. • The volatility problem of cesium can be avoided by this method. • This method can be used to produce cesium waste forms in ambient conditions. • It can also be used to pretreat cesium in glass vitrification technology. • It also provides a method to produce safe sealed radioactive sources of cesium. - Abstract: Ceramicrete, a chemically bonded phosphate ceramic, was developed for nuclear waste immobilization and nuclear radiation shielding. Ceramicrete products are fabricated by an acid–base reaction between magnesium oxide and mono potassium phosphate that has a struvite-K mineral structure. In this study, we demonstrate that this crystalline structure is ideal for incorporating radioactive Cs into a Ceramicrete matrix. This is accomplished by partially replacing K by Cs in the struvite-K structure, thus forming struvite-(K, Cs) mineral. X-ray diffraction and thermo-gravimetric analyses are used to confirm such a replacement. The resulting product is non-leachable and stable at high temperatures, and hence it is an ideal matrix for immobilizing Cs found in high-activity nuclear waste streams. The product can also be used for immobilizing secondary waste streams generated during glass vitrification of spent fuel, or the method described in this article can be used as a pretreatment method during glass vitrification of high level radioactive waste streams. Furthermore, it suggests a method of producing safe commercial radioactive Cs sources.

  4. Theoretical study of the chemical properties of cesium hydride; Teoreticke studium chemickych vlastnosti hydridu cezia

    Energy Technology Data Exchange (ETDEWEB)

    Skoviera, J [Univerzita Komenskeho v Bratislave, Prirodovedecka fakulta, Katedra fyzikalnej a teoretickej chemie, 84215 Bratislava (Slovakia)

    2012-04-25

    A theoretical study of radiofrequency source of hydrogen ions in the International Thermonuclear Experimental Reactor (ITER) used a cesium grid as a source of electrons for ionization of hydrogen. In the process of ionization of hydrogen, however, there is a weathering of cesium grid, resulting into a group of undesired products - cesium hydrides and materials derived from cesium hydride. We calculated the potential curves of cesium hydride and of its anion and cation, their spectroscopic properties and partly their electrical properties. To make electrical properties comparable with the experiment, we calculated for all also the vibration corrections. Lack of convergence in RASSCF step caused, that the electrical properties of excited states are still an open question of chemical properties of cesium hydride. (authors)

  5. Optical beam transport to a remote location for low jitter pump-probe experiments with a free electron laser

    Directory of Open Access Journals (Sweden)

    P. Cinquegrana

    2014-04-01

    Full Text Available In this paper we propose a scheme that allows a strong reduction of the timing jitter between the pulses of a free electron laser (FEL and external laser pulses delivered simultaneously at the FEL experimental stations for pump-probe–type experiments. The technique, applicable to all seeding-based FEL schemes, relies on the free-space optical transport of a portion of the seed laser pulse from its optical table to the experimental stations. The results presented here demonstrate that a carefully designed laser beam transport, incorporating also a transverse beam position stabilization, allows one to keep the timing fluctuations, added by as much as 150 m of free space propagation and a number of beam folding mirrors, to less than 4 femtoseconds rms. By its nature our scheme removes the major common timing jitter sources, so the overall jitter in pump-probe measurements done in this way will be below 10 fs (with a margin to be lowered to below 5 fs, much better than the best results reported previously in the literature amounting to 33 fs rms.

  6. Searches for spatial anisotropy and a permanent atomic electric dipole moment using optically-pumped mercury

    International Nuclear Information System (INIS)

    Lamoreaux, S.K.

    1986-01-01

    The nuclear magnetic resonance frequencies of 201 Hg (l = 3/2) and 199 Hg (l = 1.2) were compared in driven optically-pumped atomic light-absorption oscillators to see if the relative frequencies depend on the orientation of the quantization axis in space. The null result obtained (δnu 199 Hg nuclear magnetic resonance frequency in the presence of a reversible electric field of 9 kV/cm. The null result obtained (d/sub A/ < 5e cm) reduces previous limits on possible time-reversal violating interactions in atoms by an order of magnitude

  7. Ho:YLF pumped HBr laser

    CSIR Research Space (South Africa)

    Botha, LR

    2009-10-01

    Full Text Available , “Optically Pumped Mid-Infrared HBr Laser,” IEEE J. Quantum Electron. 30(10), 2395–2400 (1994). 2. C. S. Kletecka, N. Campbell, C. R. Jones, J. W. Nicolson, and W. Rudolph, “Cascade Lasing of Molecular HBr in the Four Micron Region Pumped by a Nd:YAG laser...-Infrared Coherent Sources, (European Physical Society 2009) Invited Talk Mo3. 5. C. Bollig, H. J. Strauss, M. J. D. Esser, W. Koen, M.Schellhorn, D. Preussler, K. Nyangaza, C. Jacobs, E. H. Bernardi and L. R. Botha, “Compact Fibre-Laser-Pumped Ho:YLF Oscillator...

  8. Electrically Pumped Vertical-Cavity Amplifiers

    DEFF Research Database (Denmark)

    Greibe, Tine

    2007-01-01

    In this work, the design of electrically pumped vertical cavity semiconductor optical amplifiers (eVCAs) for use in a mode-locked external-cavity laser has been developed, investigated and analysed. Four different eVCAs, one top-emitting and three bottom emitting structures, have been designed...... and discussed. The thesis concludes with recommendations for further work towards the realisation of compact electrically pumped mode-locked vertical externalcavity surface emitting lasers....

  9. Structure of cesium loaded iron phosphate glasses: An infrared and Raman spectroscopy study

    International Nuclear Information System (INIS)

    Joseph, Kitheri; Premila, M.; Amarendra, G.; Govindan Kutty, K.V.; Sundar, C.S.; Vasudeva Rao, P.R.

    2012-01-01

    The structure of cesium loaded iron phosphate glasses (IPG) was investigated using infrared and Raman spectroscopy. The spectra of the cesium doped samples revealed a structural modification of the parent glass owing to the incorporation of cesium. The structural changes could be correlated with the variation observed in the glass transition temperature of these glasses. Increased Cs-mediated cationic cross linking appears to be the reason for the initial rise in glass transition temperature up to 21 mol% Cs 2 O in IPG; while, breakdown of the phosphate network with increasing cesium content, brings down the glass transition temperature.

  10. Accumulation of strontium 90 and cesium 137 in some hydrobionts

    International Nuclear Information System (INIS)

    Boyadzhiev, A.; Keslev, D.; Kerteva, A.; Novakova, E.

    1974-01-01

    Factors responsible for the accumulation of strontium 90 and cesium 137 in some plant organisms, characteristic for fishes in Bulgarian fresh-water reservoirs and in Black Seawater, were examined. The investigated samples were taken during spring, summer and autumn-winter seasons 1967/1968. Each sample burnt to ashes at 450 0 C was examined for strontium 90 and cesium 137 content as well as stable isotopes of calcuim and potassium. Accumulation factors for strontium 90 and cesium 137 were significantly higher in freshwater hydrobionts than in seawater hydrobionts. This could be explained by variations in the concentration of stable isotopes of calcium and potassium from freshwater reservoirs and from seawater. Potassium and calcium concentrations were relatively constant in seawater while in freshwater they were significantly variable. Accumulation factors for these radionuclides increased according to the amount of rain and the altitude above sea level. Strontium 90 was deposited mostly in fins, less in scales and least in the meat of fishes; cesium 137 was mainly deposited in the meat and less in the other parts of fishes. The highest accumulation factors for strontium 90 were determined in fishes and for cesium 137 in plant organisms. The most convenient plant and fish species for tracing radioactive contamination of freshwater reservoirs and in the Black Sea were indicated. (A.B.)

  11. The molar enthalpies of solution and vapour pressures of saturated aqueous solutions of some cesium salts

    International Nuclear Information System (INIS)

    Apelblat, Alexander; Korin, Eli

    2006-01-01

    Vapour pressures of water over saturated solutions of cesium chloride, cesium bromide, cesium nitrate, cesium sulfate, cesium formate, and cesium oxalate were determined as a function of temperature. These vapour pressures were used to evaluate the water activities, osmotic coefficients and molar enthalpies of vapourization. Molar enthalpies of solution of cesium chloride, Δ sol H m (T = 295.73 K; m = 0.0622 mol . kg -1 ) = (17.83 ± 0.50) kJ . mol -1 ; cesium bromide, Δ sol H m (T = 293.99 K; m = 0.0238 mol . kg -1 ) = (26.91 ± 0.59) kJ . mol -1 ; cesium nitrate, Δ sol H m (T = 294.68 K; m = 0.0258 mol . kg -1 ) = (37.1 ± 2.3) kJ . mol -1 ; cesium sulfate, Δ sol H m (T = 296.43 K; m = 0.0284 mol . kg -1 ) (16.94 ± 0.43) kJ . mol -1 ; cesium formate, Δ sol H m (T = 295.64 K; m = 0.0283 mol . kg -1 ) = (11.10 ± 0.26) kJ . mol -1 and Δ sol H m (T = 292.64 K; m = 0.0577 mol . kg -1 ) = (11.56 ± 0.56) kJ . mol -1 ; and cesium oxalate, Δ sol H m (T = 291.34 K; m = 0.0143 mol . kg -1 ) = (22.07 ± 0.16) kJ . mol -1 were determined calorimetrically. The purity of the chemicals was generally greater than 0.99 mass fraction, except for HCOOCs and (COOCs) 2 where purities were approximately 0.95 and 0.97 mass fraction, respectively. The uncertainties are one standard deviations

  12. Phase separation of cesium from lead borosilicate glass by heat treatment under a reducing atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhanglian; Okada, Takashi, E-mail: t-okada@u-fukui.ac.jp; Nishimura, Fumihiro; Yonezawa, Susumu

    2016-11-05

    Highlights: • Cesium was phase separated from lead borosilicate glass under a reductive atmosphere. • The phase separation occurred on the glass surface that was in contact with the gas. • The leachability of cesium was enhanced by the phase separation. • The degree of such enhancement varied depending on the heat treatment conditions. - Abstract: A phase-separation technique for removing sodium from glass using a heat-treatment method under a reducing atmosphere was previously developed for sodium recovery from waste glass. In this study, this technique was applied to cesium-containing lead borosilicate glass to concentrate the cesium in phase-separated sodium-rich materials for efficient cesium extraction. The theoretical phase-separation temperature of the sodium-rich phase was simulated by thermodynamic equilibrium calculations and was predicted to occur below 700 °C for lead borosilicate glass. Experimentally, a simulated lead borosilicate glass was melted at 1000 °C and subsequently annealed below 700 °C under a CO-containing reducing atmosphere. The phase separation of cesium was found to occur with sodium enrichment on the glass surface that was in contact with the gas phase, promoting cesium extraction from the treated glass using water. The cesium extraction efficiency was affected by the surface area of the treated glass that was in contact with water, and under the examined conditions, the cesium extraction efficiency was up to 66%. Phase separation using reductive heat treatment, combined with a water leaching technique, is suggested to be effective for extracting cesium incorporated in borosilicate glass waste.

  13. Functions and requirements for a cesium demonstration unit

    International Nuclear Information System (INIS)

    Howden, G.F.

    1994-04-01

    Westinghouse Hanford Company is investigating alternative means to pretreat the wastes in the Hanford radioactive waste storage tanks. Alternatives include (but are not limited to) in-tank pretreatment, use of above ground transportable compact processing units (CPU) located adjacent to a tank farm, and fixed processing facilities. This document provides the functions and requirements for a CPU to remove cesium from tank waste as a demonstration of the CPU concept. It is therefore identified as the Cesium Demonstration Unit CDU

  14. Solar pumped continuous wave carbon dioxide laser

    Science.gov (United States)

    Yesil, O.; Christiansen, W. H.

    1978-01-01

    In an effort to demonstrate the feasibility of a solar pumped laser concept, gain has been measured in a CO2-He laser medium optically pumped by blackbody radiation. Various gas mixtures of CO2 and He have been pumped by blackbody radiation emitted from an electrically heated oven. Using a CO2 laser as a probe, an optical gain coefficient of 1.8 x 10 to the -3rd/cm has been measured at 10.6 microns for a 9:1 CO2-He mixture at an oven temperature of about 1500 K, a gas temperature of about 400 K and a pressure of about 1 torr. This corresponds to a small signal gain coefficient when allowance is made for saturation effects due to the probe beam, in reasonable agreement with a theoretical value.

  15. The production and extraction of polarized electrons from an optically pumped helium discharge

    International Nuclear Information System (INIS)

    Vandiver, R.J.; Schearer, L.D.; Gay, T.J.

    1992-01-01

    Polarized electrons are produced from interactions involving nearly 100% polarized helium 2 3 S 1 metastable atoms in a weak electrical discharge. The high metastable polarizations are obtained through the use of recently developed, high-power lasers tunable to the relevant helium transitions near 1083 nm and the development of a crossed beam pumping technique. The dominant interactions involving the 2 3 S 1 atoms and electrons are spin preserving; hence the electrons of the discharge attain a high polarization. The authors have extracted a well collimated electron beam with over 20 μA of current from the discharge. An optical polarimeter will be used to determine the polarization of the extracted electrons

  16. High energy erbium laser end-pumped by a laser diode bar array coupled to a Nonimaging Optic Concentrator

    OpenAIRE

    Tanguy , Eric; Feugnet , Gilles; Pocholle , Jean-Paul; Blondeau , R.; Poisson , M.A.; Duchemin , J.P.

    1998-01-01

    International audience; A high energy Er3+, Yb3+:glass laser end pumped by a laser diode array emitting at 980 nm coupled to a Nonimaging Optic Concentrator (NOC) is demonstrated. Energy up to 100 mJ and a 16% slope efficiency are achieved in a plano-plano laser cavity. The energy transfer coefficient from Yb3+ to Er3+ is estimated by a new method.

  17. Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser

    Science.gov (United States)

    Ellis, Bryan; Mayer, Marie A.; Shambat, Gary; Sarmiento, Tomas; Harris, James; Haller, Eugene E.; Vučković, Jelena

    2011-05-01

    Efficient, low-threshold and compact semiconductor laser sources are under investigation for many applications in high-speed communications, information processing and optical interconnects. The best edge-emitting and vertical-cavity surface-emitting lasers have thresholds on the order of 100 µA (refs 1,2), but dissipate too much power to be practical for many applications, particularly optical interconnects. Optically pumped photonic-crystal nanocavity lasers represent the state of the art in low-threshold lasers; however, to be practical, techniques to electrically pump these structures must be developed. Here, we demonstrate a quantum-dot photonic-crystal nanocavity laser in gallium arsenide pumped by a lateral p-i-n junction formed by ion implantation. Continuous-wave lasing is observed at temperatures up to 150 K. Thresholds of only 181 nA at 50 K and 287 nA at 150 K are observed--the lowest thresholds ever observed in any type of electrically pumped laser.

  18. Impact of pumping configuration on all-fibered femtosecond chirped pulse amplification

    Science.gov (United States)

    Lecourt, Jean-Bernard; Duterte, Charles; Bertrand, Anthony; Liégeois, Flavien; Hernandez, Yves; Giannone, Domenico

    2008-04-01

    We experimentally compared the co- and counter-propagative pumping scheme for the amplification of ultra-short optical pulses. According to pumping direction we show that optical pulses with a duration of 75 fs and 100mW of average output power can be obtained for co-propagative pumping, while pulse duration is never shorter than 400 fs for the counter-propagative case. We show that the impact of non-linear effects on pulse propagation is different for the two pumping configurations. We assume that Self Phase Modulation (SPM) is the main effect in the copropagative case, whereas the impact of Stimulated Raman Scattering is bigger for the counter-propagative case.

  19. Design and analysis of optically pumped submillimeter waveguide maser amplifiers and oscillators

    Science.gov (United States)

    Galantowicz, T. A.

    1975-01-01

    The design and experimental measurements are described of an optically pumped far-infrared (FIR) waveguide maser; preliminary measurements on a FIR waveguide amplifier are presented. The FIR maser was found to operate satisfactorily in a chopped CW mode using either methanol (CH3OH) or acetonitrile (CH3CN) as the active molecule. Two other gases, difluoroethane and difluoroethylene, produced an unstable output with high threshold and low output power when operated in the chopped CW mode. Experimental measurements include FIR output versus cavity length, output beam pattern, output power versus pressure, and input power. The FIR output was the input to an amplifier which was constructed similar to the oscillator. An increase of 10% in output power was noted on the 118.8 microns line of methanol.

  20. Cesium-137 accumulation in higher plants before and after Chernobyl

    International Nuclear Information System (INIS)

    Sawidis, T.; Drossos, E.; Papastefanou, C.; Heinrick, G.

    1990-01-01

    Cesium-137 concentrations in plant species of three biotypes of northern Greece, differing in location as well as in vegetation, are reported following the Chernobyl reactor accident. The cesium uptake by plants was due to the foliar deposition rather than the root uptake. The highest level of cesium in plants was found in Ranunculus sardous, a pubescent plant. The 137 Cs concentration was about 22kBq kg -1 d.w. A high level of cesium was also found in Salix alba ( 137 Cs: 19.6 kBq kg -1 d.w.), a deciduous tree showing that hairy leaves or leaves having rough and large surfaces can absorb greater amounts of radioactivity (surface effect). A comparison is also made between the results of measurements of the present study and the results of measurements of some herbarium plants collected one year before the accident as well as the results of measurements of some new plants grown and collected one year after the accident resulting in a natural removal rate of 137 Cs in plants varying from 14 to 130 days

  1. Cesium powder and pellets inner container decontamination method determination

    International Nuclear Information System (INIS)

    Ferrell, P.C.

    1998-01-01

    The cesium powder and pellets inner container is to be performance tested per the criteria specified in Section 4.0 of HNF-2399, ''Design, Fabrication, and Assembly Criteria for Cesium Powder and Pellet Inner Container.'' The test criteria specifies that the inner container be water tight during decontamination of the exterior surface. Three prototypes will be immersed into a pool of water to simulate a water decontamination process

  2. New separation techniques of cesium by redox type ion exchange materials

    International Nuclear Information System (INIS)

    Tanihara, Koichi

    1998-01-01

    RIECS method, new cesium separation method, was developed in which a porous strong base anionic exchanger with copper ferrocyanide (CuFC) and inhibitor were used. Cesium could be separated from the high concentration nitric solution. By developing new impregnation method, large amount of CuFC was impregnated into the micropolar porous resin and silica gel pores. KFC adhered to outside of pores was recovered. Good complex with CuFC was prepared by use of copper chloride in ethyl alcohol solution. The adsorption ratio of cesium increased radically to 80% level in the very small range of hydrazine concentration 1.7 to 2.4x10 -4 M. The adsorption-desorption ratio of cesium did not decrease by repeating it seven times. The glassificated materials decreased large amount of γ-ray unless increase of volume could be produced by built RIECS method in the high level waste processing system. (S.Y.)

  3. Improvement of cesium retention in uranium dioxide by additional phases; Amelioration de la retention du cesium dans le dioxyde d`uranium au moyen de phases exogenes

    Energy Technology Data Exchange (ETDEWEB)

    Gamaury Dubois, S

    1995-09-19

    The objective of this study is to improve the cesium retention in nuclear fuel. A bibliographic survey indicates that cesium is rapidly released from uranium dioxide in an accident condition. At temperatures higher than 1500 deg C or in oxidising conditions, our experiments show the difficulty of maintaining cesium inside simulated fuel. Two ternary systems are potentially interesting for the retention of cesium and to reduce the kinetics of release from the fuel: Cs{sub 2}O-Al{sub 2}O{sub 3}-SiO{sub 2} et Cs{sub 2}O-ZrO{sub 2}-SO{sub 2}. The compounds CsAISi{sub 2}O{sub 6} and Cs{sub 2}ZrSi{sub 6}O{sub 15} were studied from 1200 deg C to 2000 deg C by thermogravimetric analysis. The volumetric diffusion coefficients of cesium in these structures, in solid state as well as in liquid one, were measured. A fuel was sintered with (Al{sub 2}O{sub 3} + SiO{sub 2}) or (ZrO{sub 2} + SiO{sub 2}) and the intergranular phase was characterized. In the presence of (Al{sub 2}O{sub 3} + SiO{sub 2}), the sintering is realized at 1610 deg C in H{sub 2}. It is a liquid phase sintering. On the other end, with (ZrO{sub 2} + SiO{sub 2}), the sintering is a low temperature one in oxidising atmosphere. Finally, cesium containing simulated fuels were produced with these additives. According to the effective diffusion coefficients that were measured, the additives improved the retention of cesium. We have predicted the improvement that could be hoped for in a nuclear reactor, depending on the dispersion of the intergranular additives, the temperature and the degree of oxidation of the UO{sub 2+x}. We wait for a factor of 2 for x=0 and more than 8 for x=0.05, up to 2000 deg C. (author). 148 refs., 122 figs., 34 tabs.

  4. Removal of cesium from red deer meat

    International Nuclear Information System (INIS)

    Jandl, J.; Novosad, J.; Francova, J.; Prochazka, H.

    1989-01-01

    The effect was studied of marinading on the reduction of cesium radionuclide activity in red deer meat contaminated by ingestion of feed containing 134 Cs+ 137 Cs from radioactive fallout following the Chernobyl accident. Two types of marinade were studied, viz., a vinegar infusion and a vinegar infusion with an addition of vegetables and spices. The meat was chopped to cubes of about 1.5 cm in size and the marinading process took place at temperatures of 5 and 11 degC. The drop of cesium content in the meat was determined by gamma spectrometry at given time intervals. The replacement of the marinade and the duration of the process were found to maximally affect efficiency. If the solution was not replaced, about 80% of cesium radionuclides were removed after seven hours of marinading. With one replacement of the infusion the drop in 134 Cs+ 137 Cs radioactivity amounted to up to 90% after seven hours of marinading. No effects were shown of vegetable additions to the vinegar infusion and of the change in temperature from 5 to 11 degC on the efficiency of the process. (author). 3 tabs., 6 refs

  5. Ion exchange flowsheet for recovery of cesium from purex sludge supernatant at B Plant

    International Nuclear Information System (INIS)

    Carlstrom, R.F.

    1977-01-01

    Purex Sludge Supernatant (PSS) contains significant amounts of 137 Cs left after removal of strontium from fission product bearing Purex wastes. To remove cesium from PSS, an Ion Exchange Recovery system has been set up in Cells 17-21 at B Plant. The cesium that is recovered is stored within B Plant for eventual purification through the Cesium Purification process in Cell 38 and eventual encapsulation and storage in a powdered form at the Waste Encapsulation Storage Facility. Cesium depleted waste streams from the Ion Exchange processes are transferred to underground storage

  6. Analysis of cesium extracting solvent using GCMS and HPLC

    International Nuclear Information System (INIS)

    White, T.L.; Herman, C.C.; Crump, S.L.; Marinik, A.R.; Lambert, D.P.; Eibling, R.E.

    2007-01-01

    A high-level waste (HLW) remediation process scheduled to begin in 2007 at the Savannah River Site is the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU). The MCU will use a hydrocarbon solvent (diluent) containing a cesium extractant, a calix[4]arene compound, to extract radioactive cesium from caustic HLW. The resulting decontaminated HLW waste or raffinate will be processed into grout at the Saltstone Production Facility (SPF). The cesium containing CSSX stream will undergo washing with dilute nitric acid followed by stripping of the cesium nitrate into a very dilute nitric acid or the strip effluent stream and the CSSX solvent will be recycled. The Defense Waste Processing Facility (DWPF) will receive the strip effluent stream and immobilize the cesium into borosilicate glass. Excess CSSX solvent carryover from the MCU creates a potential flammability problem during DWPF processing. Bench-scale DWPF process testing was performed with simulated waste to determine the fate of the CSSX solvent components. A simple high performance liquid chromatography (HPLC) method was developed to identify the modifier (which is used to increase Cs extraction and extractant solubility) and extractant within the DWPF process. The diluent and trioctylamine (which is used to suppress impurity effect and ion-pair disassociation) were determined using gas chromatography mass spectroscopy (GCMS). To close the organic balance, two types of sample preparation methods were needed. One involved extracting aqueous samples with methylene chloride or hexane, and the second was capturing the off gas of the DWPF process using carbon tubes and rinsing the tubes with carbon disulfide for analysis. This paper addresses the development of the analytical methods and the bench-scale simulated waste study results. (author)

  7. Optical Chirality in Nonlinear Optics: Application to High Harmonic Generation

    Science.gov (United States)

    Neufeld, Ofer; Cohen, Oren

    2018-03-01

    Optical chirality (OC)—one of the fundamental quantities of electromagnetic fields—corresponds to the instantaneous chirality of light. It has been utilized for exploring chiral light-matter interactions in linear optics, but has not yet been applied to nonlinear processes. Motivated to explore the role of OC in the generation of helically polarized high-order harmonics and attosecond pulses, we first separate the OC of transversal and paraxial beams to polarization and orbital terms. We find that the polarization-associated OC of attosecond pulses corresponds approximately to that of the pump in the quasimonochromatic case, but not in the multichromatic pump cases. We associate this discrepancy with the fact that the polarization OC of multichromatic pumps vary rapidly in time along the optical cycle. Thus, we propose new quantities, noninstantaneous polarization-associated OC, and time-scale-weighted polarization-associated OC, and show that these quantities link the chirality of multichromatic pumps and their generated attosecond pulses. The presented extension to OC theory should be useful for exploring various nonlinear chiral light-matter interactions. For example, it stimulates us to propose a tricircular pump for generation of highly elliptical attosecond pulses with a tunable ellipticity.

  8. Optical Chirality in Nonlinear Optics: Application to High Harmonic Generation.

    Science.gov (United States)

    Neufeld, Ofer; Cohen, Oren

    2018-03-30

    Optical chirality (OC)-one of the fundamental quantities of electromagnetic fields-corresponds to the instantaneous chirality of light. It has been utilized for exploring chiral light-matter interactions in linear optics, but has not yet been applied to nonlinear processes. Motivated to explore the role of OC in the generation of helically polarized high-order harmonics and attosecond pulses, we first separate the OC of transversal and paraxial beams to polarization and orbital terms. We find that the polarization-associated OC of attosecond pulses corresponds approximately to that of the pump in the quasimonochromatic case, but not in the multichromatic pump cases. We associate this discrepancy with the fact that the polarization OC of multichromatic pumps vary rapidly in time along the optical cycle. Thus, we propose new quantities, noninstantaneous polarization-associated OC, and time-scale-weighted polarization-associated OC, and show that these quantities link the chirality of multichromatic pumps and their generated attosecond pulses. The presented extension to OC theory should be useful for exploring various nonlinear chiral light-matter interactions. For example, it stimulates us to propose a tricircular pump for generation of highly elliptical attosecond pulses with a tunable ellipticity.

  9. Potential of solar-simulator-pumped alexandrite lasers

    Science.gov (United States)

    Deyoung, Russell J.

    1990-01-01

    An attempt was made to pump an alexandrite laser rod using a Tamarak solar simulator and also a tungsten-halogen lamp. A very low optical laser cavity was used to achieve the threshold minimum pumping-power requirement. Lasing was not achieved. The laser threshold optical-power requirement was calculated to be approximately 626 W/sq cm for a gain length of 7.6 cm, whereas the Tamarak simulator produces 1150 W/sq cm over a gain length of 3.3 cm, which is less than the 1442 W/sq cm required to reach laser threshold. The rod was optically pulsed with 200 msec pulses, which allowed the alexandrite rod to operate at near room temperature. The optical intensity-gain-length product to achieve laser threshold should be approximately 35,244 solar constants-cm. In the present setup, this product was 28,111 solar constants-cm.

  10. Biological effects of cesium-137 injected in beagle dogs of different ages

    International Nuclear Information System (INIS)

    Nikula, K.J.; Muggenburg, B.A.; Griffith, W.C.

    1995-01-01

    The toxicity of cesium-137 ( 137 Cs) in the Beagle dog was investigated at the Argonne National Laboratory (ANL) as part of a program to evaluate the biological effects of internally deposited radionuclides. The toxicity and health effects of 137 Cs are important to understand because 137 Cs is produced in large amounts in light-water nuclear reactors. Large quantities of cesium radioisotopes have entered the human food chain as a result of atmospheric nuclear weapons test, and additional cesium radioisotopes were released during the Chernobyl accident. Although the final analyses are not complete, three findings are significant: older dogs dies significantly earlier than juvenile and young adult dogs; greater occurrence of sarcomas in the cesium-137 injected dogs; the major nonneoplastic effect in dogs surviving beyond 52 d appears to be testicular atrophy

  11. Rocksalt or cesium chloride: Investigating the relative stability of the cesium halide structures with random phase approximation based methods

    Science.gov (United States)

    Nepal, Niraj K.; Ruzsinszky, Adrienn; Bates, Jefferson E.

    2018-03-01

    The ground state structural and energetic properties for rocksalt and cesium chloride phases of the cesium halides were explored using the random phase approximation (RPA) and beyond-RPA methods to benchmark the nonempirical SCAN meta-GGA and its empirical dispersion corrections. The importance of nonadditivity and higher-order multipole moments of dispersion in these systems is discussed. RPA generally predicts the equilibrium volume for these halides within 2.4% of the experimental value, while beyond-RPA methods utilizing the renormalized adiabatic LDA (rALDA) exchange-correlation kernel are typically within 1.8%. The zero-point vibrational energy is small and shows that the stability of these halides is purely due to electronic correlation effects. The rAPBE kernel as a correction to RPA overestimates the equilibrium volume and could not predict the correct phase ordering in the case of cesium chloride, while the rALDA kernel consistently predicted results in agreement with the experiment for all of the halides. However, due to its reasonable accuracy with lower computational cost, SCAN+rVV10 proved to be a good alternative to the RPA-like methods for describing the properties of these ionic solids.

  12. Seven-laser diode end-pumped Nd

    International Nuclear Information System (INIS)

    Berger, J.; Welch, D.F.; Streifer, W.; Scifres, D.R.; Smith, J.J.; Hoffman, H.J.; Peisley, D.; Radecki, D.

    1988-01-01

    End pumping of solid-state lasers by single semiconductor laser diode arrays (LDAs) is efficient, but the maximum pump power is limited by the source brightness and matching the TEM/sub 00/ Nd:YAG cavity mode. To increase the output power from a solid-state Nd:YAG laser, one option is to employ a multiplicity of LDA to provide more pump power than is available from a single source. The authors report herein a 660-mW cw TEM/sub 00/ Nd:YAG laser, end-pumped by seven LDA, with bundled optical fibers coupling the light from each diode to the Nd:YAG rod end. The maximum electrical-to-optical conversion efficiency attained was 4.7% at 560-mW Nd:YAG output power. The LDAs (SDL-2430-C, 100 μm wide) were mounted on separate thermoelectric coolers to tune emission wavelength to the Nd:YAG absorption bands. The diodes were operated at their rated output power (50,000 h mean time to failure). The 110/125-μm diam 0.37-N.A. fibers were butt coupled to the lasers and glued together into a hexagonal close pack. The authors have obtained the highest average power demonstrated to date in the TEM/sub 00/ mode from a Nd:YAG laser, reliably end-pumped by multiple laser diodes with good efficiency

  13. Hybrid micro-particles as a magnetically-guidable decontaminant for cesium-eluted ash slurry

    Science.gov (United States)

    Namiki, Yoshihisa; Ueyama, Toshihiko; Yoshida, Takayuki; Watanabe, Ryoei; Koido, Shigeo; Namiki, Tamami

    2014-09-01

    Decontamination of the radioactive cesium that is widely dispersed owing to a nuclear power station accident and concentrated in fly ash requires an effective elimination system. Radioactive fly ash contains large amounts of water-soluble cesium that can cause severe secondary contamination and represents a serious health risk, yet its complete removal is complicated and difficult. Here it is shown that a new fine-powder formulation can be magnetically guided to eliminate cesium after being mixed with the ash slurry. This formulation, termed MagCE, consists of a ferromagnetic porous structure and alkaline- and salt-resistant nickel ferrocyanide. It has potent cesium-adsorption- and magnetic-separation-properties. Because of its resistance against physical and chemical attack such as with ash particles, as well as with the high pH and salt concentration of the ash slurry, MagCE simplifies the decontamination process without the need of the continued presence of the hazardous water-soluble cesium in the treated ash.

  14. Test procedures and instructions for Hanford complexant concentrate supernatant cesium removal using CST

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, D.W.

    1997-01-08

    This document provides specific test procedures and instructions to implement the test plan for the preparation and conduct of a cesium removal test, using Hanford Complexant Concentrate supernatant liquor from tank 241-AN-107, in a bench-scale column. The cesium sorbent to be tested is crystalline silicotitanate. The test plan for which this provides instructions is WHC-SD-RE-TP-023, Hanford Complexant Concentrate Supernatant Cesium Removal Test Plan.

  15. Photon interactions in a cesium beam

    International Nuclear Information System (INIS)

    Nygaard, K.J.; Jones, J.D.; Hebner, R.E. Jr

    1974-01-01

    Photoionization of excited cesium atoms in the 6 2 P3/2 - state has been studied in a triple crossed-beam experiment. A thermal beam of cesium atoms was intersected by one photon beam of wavelength 8521A that served to excite the atoms and another photon beam with wavelengths below 5060A that served to ionize the excited atoms. The resulting ions were detected with a channel electron multiplier. All background effects were discriminated against by chopping the beam of exciting radiation and by analyzing the net count rate with digital synchronous techniques. The relative cross section for photoionization fo Cs(6 2 P3/2) has been measured from threshold (5060A) to 2500A. The results fall off faster than the theoretical calculations of Weisheit and Norcross

  16. Investigations of the sorption of cesium from acid solutions by various inorganic sorbents

    International Nuclear Information System (INIS)

    Suess, M.; Pfrepper, G.

    1981-01-01

    Studies have been made to investigate the suitability of various inorganic sorbents for separating and obtaining cesium from acid solutions. In greater details, the distribution coefficients of cesium from nitric acid and ammonium nitrate solution were determined. To determine the saturation capacities it was necessary to plot the isotherms of adsorption from 0.5 N and 3.1 N nitric acid. Experimental sorption from a model solution, of which the composition was equal to that of the liquid Purex waste, enabled the suitability of the various exchangers for obtaining cesium from fission product solutions to be determined. From the results obtained it is apparent that ammonium phosphomolybdate is best suited for obtaining cesium from acid fission product solutions. (orig.)

  17. Solar pumped laser technology options for space power transmission

    Science.gov (United States)

    Conway, E. J.

    1986-01-01

    An overview of long-range options for in-space laser power transmission is presented. The focus is on the new technology and research status of solar-pumped lasers and their solar concentration needs. The laser options include gas photodissociation lasers, optically-pumped solid-state lasers, and blackbody-pumped transfer lasers. The paper concludes with a summary of current research thrusts.

  18. Actual situation of concentration and inventory of radioactive cesium in Matsukawaura Lagoon sediment, Fukushima Prefecture

    International Nuclear Information System (INIS)

    Arita, Koichi; Yabe, Tohru; Hayashi, Seiji

    2014-01-01

    In order to qualitatively evaluate the current status of inventory of radioactive cesium in Matsukawaura Lagoon, profiles of radioactive cesium concentration in sediment cores and sediment characteristics were measured at 36 points. It was shown that sediment characteristics were different even at high concentration of radioactive cesium to the same extent. As a result, the inventory of radioactive cesium were also different. Even at high concentration of radioactive cesium, inventory in southwestern high mud content rate was less than the western. The total inventory of down to 20 cm of sediment throughout Matsukawaura Lagoon was estimated to be about 220 GBq, that more than 80% distributed to 15 cm shallower than has been revealed. (author)

  19. A quasi-electrostatic trap for neutral atoms

    International Nuclear Information System (INIS)

    Engler, H.

    2000-01-01

    This thesis reports on the realization of a ''quasi-electrostatic trap'' (QUEST) for neutral atoms. Cesium ( 133 Cs) and Lithium ( 7 Li) atoms are stored, which represents for the first time a mixture of different species in an optical dipole trap. The trap is formed by the focused Gaussian beam of a 30 W cw CO 2 -laser. For a beam waist of 108 μm the resulting trap depth is κ B x 118 μK for Cesium and κ B x 48 μK for Lithium. We transfer up to 2 x 10 6 Cesium and 10 5 Lithium atoms from a magneto-optical trap into the QUEST. When simultaneously transferred, the atom number currently is reduced by roughly a factor of 10. Since photon scattering from the trapping light can be neglected, the QUEST represents an almost perfect conservative trapping potential. Atoms in the QUEST populate the electronic ground state sublevels. Arbitrary sublevels can be addressed via optical pumping. Due to the very low background gas pressure of 2 x 10 -11 mbar storage times of several minutes are realized. Evaporative cooling of Cesium is observed. In addition, laser cooling is applied to the trapped Cesium sample, which reduces the temperature from 25 μK to a value below 7 μK. If prepared in the upper hyper-fine ground state sublevel, spin changing collisions are observed not only within one single species, but also between the two different species. The corresponding relaxation rates are quantitatively analyzed. (orig.)

  20. Compact corner-pumped Nd:YAG/YAG composite slab 1319 nm/1338 nm laser

    International Nuclear Information System (INIS)

    Liu, H; Gong, M; Wushouer, X; Gao, S

    2010-01-01

    A corner-pumped type is a new pumping type in the diode-pumped solid-state lasers, which has the advantages of high pump efficiency and favorable pump uniformity. A corner-pumped Nd:YAG/YAG composite slab continuous-wave 1319 nm/1338 nm dual-wavelength laser is first demonstrated in this paper. When the cavity length is 25 mm, the maximal output power is up to 7.62 W with a slope efficiency of 16.6% and an optical-to-optical conversion efficiency of 17%. The corresponding spectral line widths of 1319 nm laser and 1338 nm laser are 0.11 and 0.1 nm, respectively. The short-term instability of the output power is better than 1% when the pumping power is 39.5 W. The experimental results show that a corner-pumped type is a kind of feasible schedules in the design of diode-pumped solid-state 1.3 μm lasers with low or medium output powers

  1. A novel role for methyl cysteinate, a cysteine derivative, in cesium accumulation in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Adams, Eri; Miyazaki, Takae; Hayaishi-Satoh, Aya

    2017-01-01

    Phytoaccumulation is a technique to extract metals from soil utilising ability of plants. Cesium is a valuable metal while radioactive isotopes of cesium can be hazardous. In order to establish a more efficient phytoaccumulation system, small molecules which promote plants to accumulate cesium we...

  2. Experimental characterization of true spontaneous emission rate of optically-pumped InGaAs/GaAs quantum-well laser structure

    Directory of Open Access Journals (Sweden)

    Q.-N. Yu

    2017-08-01

    Full Text Available In this paper, an experimental approach to acquiring true spontaneous emission rate of optically-pumped InGaAs/GaAs quantum-well laser structure is described. This method is based on a single edge-emitting laser chip with simple sample processing. The photoluminescence spectra are measured at both facets of the edge-emitting device and transformed to the spontaneous emission rate following the theory described here. The unusual double peaks appearing in the spontaneous emission rate spectra are observed for the InGaAs/GaAs quantum-well structure. The result is analyzed in terms of Indium-rich island and Model-Solid theories. The proposed method is suitable for electrically-pumped quantum-well laser structures, as well.

  3. Nuclear spin polarized H and D by means of spin-exchange optical pumping

    Science.gov (United States)

    Stenger, Jörn; Grosshauser, Carsten; Kilian, Wolfgang; Nagengast, Wolfgang; Ranzenberger, Bernd; Rith, Klaus; Schmidt, Frank

    1998-01-01

    Optically pumped spin-exchange sources for polarized hydrogen and deuterium atoms have been demonstrated to yield high atomic flow and high electron spin polarization. For maximum nuclear polarization the source has to be operated in spin temperature equilibrium, which has already been demonstrated for hydrogen. In spin temperature equilibrium the nuclear spin polarization PI equals the electron spin polarization PS for hydrogen and is even larger than PS for deuterium. We discuss the general properties of spin temperature equilibrium for a sample of deuterium atoms. One result are the equations PI=4PS/(3+PS2) and Pzz=PSṡPI, where Pzz is the nuclear tensor polarization. Furthermore we demonstrate that the deuterium atoms from our source are in spin temperature equilibrium within the experimental accuracy.

  4. A Q-switched Ho:YAG laser with double anti-misalignment corner cubes pumped by a diode-pumped Tm:YLF laser

    Science.gov (United States)

    Wang, Y. P.; Dai, T. Y.; Wu, J.; Ju, Y. L.; Yao, B. Q.

    2018-06-01

    We report the acousto-optically Q-switched Ho:YAG laser with double anti-misalignment corner cubes pumped by a diode-pumped Tm:YLF laser. In the continuous-wave operation of Ho:YAG laser, the maximum s-polarized output power of 3.2 W at 2090.3 nm was obtained under the absorbed pump power of 12.9 W by rotating the fast axis of quarter-wave plate to change the output transmission of laser cavity. The corresponding optical-to-optical conversion efficiency was 24.8% and the slope efficiency was 55.7%. When one of the corner cubes was rotated to 11.8° around vertical direction or 6.7° around horizontal direction, the laser could still operate stably. For the Q-switched operation, the pulse energy of Ho:YAG laser was 9.9 mJ with a pulse width of 53 ns at the repetition rate of 100 Hz, resulting in a peak power of 186.8 kW. The beam quality factor M2 of Ho:YAG laser was 1.3.

  5. Preparation and characterization of cesium-137 aluminosilicate pellets for radioactive source applications

    International Nuclear Information System (INIS)

    Schultz, F.J.; Tompkins, J.A.; Haff, K.W.; Case, F.N.

    1981-07-01

    Twenty-seven fully loaded 137 Cs aluminosilicate pellets were fabricated in a hot cell by the vacuum hot pressing of a cesium carbonate/montmorillonite clay mixture at 1500 0 C and 570 psig. Four pellets were selected for characterization studies which included calorimetric measurements, metallography, scanning electron microscope and electron backscattering (SEM-BSE), electron microprobe, x-ray diffraction, and cesium ion leachability measurements. Each test pellet contained 437 to 450 curies of 137 Cs as determined by calorimetric measurements. Metallographic examinations revealed a two-phase system: a primary, granular, gray matrix phase containing large and small pores and small pore agglomerations, and a secondary fused phase interspersed throughout the gray matrix. SEM-BSE analyses showed that cesium and silicon were uniformly distributed throughout both phases of the pellet. This indicated that the cesium-silicon-clay reaction went to completion. Aluminum homogeneity was unconfirmed due to the high background noise associated with the inherent radioactivity of the test specimens. X-ray diffraction analyses of both radioactive and non-radioactive aluminosilicate pellets confirmed the crystal lattice structure to be pollucite. Cesium ion quasistatic leachability measurements determined the leach rates of fully loaded 137 Cs sectioned pollucite pellets to date to be 4.61 to 34.4 x 10 -10 kg m -2 s -1 , while static leach tests performed on unsectioned fully loaded pellets showed the leach rates of the cesium ion to date to be 2.25 to 3.41 x 10 -12 kg m -2 s -1 . The cesium ion diffusion coefficients through the pollucite pellet were calculated using Fick's first and second laws of diffusion. The diffusion coefficients calculated for three tracer level 137 Cs aluminosilicate pellets were 1.29 x 10 -16 m 2 s -1 , 6.88 x 10 -17 m 2 s -1 , and 1.35 x 10 -17 m 2 s -1 , respectively

  6. Efficiency of fly ash belite cement and zeolite matrices for immobilizing cesium

    International Nuclear Information System (INIS)

    Goni, S.; Guerrero, A.; Lorenzo, M.P.

    2006-01-01

    The efficiency of innovative matrices for immobilizing cesium is presented in this work. The matrix formulation included the use of fly ash belite cement (FABC-2-W) and gismondine-type Na-P1 zeolite, both of which are synthesized from fly ash of coal combustion. The efficiency for immobilizing cesium is evaluated from the leaching test ANSI/ANS 16.1-1986 at the temperature of 40 deg. C, from which the apparent diffusion coefficient of cesium is obtained. Matrices with 100% of FABC-2-W are used as a reference. The integrity of matrices is evaluated by porosity and pore-size distribution from mercury intrusion porosimetry, X-ray diffraction and nitrogen adsorption analyses. Both matrices can be classified as good solidify systems for cesium, specially the FABC-2-W/zeolite matrix in which the replacement of 50% of belite cement by the gismondine-type Na-P1 zeolite caused a decrease of two orders of magnitude of cesium mean Effective Diffusion Coefficient (D e ) (2.8e-09 cm 2 /s versus 2.2e-07 cm 2 /s, for FABC-2-W/zeolite and FABC-2-W matrices, respectively)

  7. Biological effects of cesium-137 injected in beagle dogs of different ages

    Energy Technology Data Exchange (ETDEWEB)

    Nikula, K.J.; Muggenburg, B.A.; Griffith, W.C. [and others

    1995-12-01

    The toxicity of cesium-137 ({sup 137}Cs) in the Beagle dog was investigated at the Argonne National Laboratory (ANL) as part of a program to evaluate the biological effects of internally deposited radionuclides. The toxicity and health effects of {sup 137}Cs are important to understand because {sup 137}Cs is produced in large amounts in light-water nuclear reactors. Large quantities of cesium radioisotopes have entered the human food chain as a result of atmospheric nuclear weapons test, and additional cesium radioisotopes were released during the Chernobyl accident. Although the final analyses are not complete, three findings are significant: older dogs dies significantly earlier than juvenile and young adult dogs; greater occurrence of sarcomas in the cesium-137 injected dogs; the major nonneoplastic effect in dogs surviving beyond 52 d appears to be testicular atrophy.

  8. Collinear laser spectroscopy of manganese isotopes using optical pumping in ISCOOL

    CERN Multimedia

    Marsh, B A; Neyens, G; Flanagan, K; Rajabali, M M; Reponen, M; Campbell, P; Procter, T J

    Recently, optical pumping of ions has been achieved inside an ion beam cooler-buncher. By illuminating the central axis of the cooler with laser light, subsequent decay populates selected ionic metastable states. This population enhancement is retained as the ion beam is delivered to an experimental station. In the case of collinear laser spectroscopy, transitions can then be excited from a preferred metastable level, rather than the ground-state. This proposal seeks to establish and develop the technique for ISCOOL. As a test of efficiency, this will be applied to the study of $^{55-66}$Mn isotopes using collinear laser spectroscopy-expanding an earlier study where the benefit of the technique was demonstrated. This will provide nuclear spins, magnetic-dipole and electric-quadrupole moments and changes in mean-square charge radii across N = 40 shell closure candidate and into a region where an onset of deformation, and a new "island of inversion" is predicted.

  9. The determination of cesium and rubidium in highly radioactive waste liquid

    International Nuclear Information System (INIS)

    Wei Songsheng

    1991-01-01

    Cesium and rubidium in high-level waste liquid were determined by atomic absorption spectrometry with the instrument modified for analyzing radioactive samples. The results show that the method is effective and safe. The error of the method is less than +- 3%, and it has been used in the production of cesium

  10. High-power Femtosecond Optical Parametric Amplification at 1 kHz in BiB(3)O(6) pumped at 800 nm.

    Science.gov (United States)

    Petrov, Valentin; Noack, Frank; Tzankov, Pancho; Ghotbi, Masood; Ebrahim-Zadeh, Majid; Nikolov, Ivailo; Buchvarov, Ivan

    2007-01-22

    Substantial power scaling of a travelling-wave femtosecond optical parametric amplifier, pumped near 800 nm by a 1 kHz Ti:sapphire laser amplifier, is demonstrated using monoclinic BiB(3)O(6) in a two stage scheme with continuum seeding. Total energy output (signal plus idler) exceeding 1 mJ is achieved, corresponding to an intrinsic conversion efficiency of approximately 32% for the second stage. The tunability extends from 1.1 to 2.9 microm. The high parametric gain and broad amplification bandwidth of this crystal allowed the maintenance of the pump pulse duration, leading to pulse lengths less than 140 fs, both for the signal and idler pulses, even at such high output levels.

  11. Lanthanide doped strontium-barium cesium halide scintillators

    Science.gov (United States)

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  12. Mineral-deposit model for lithium-cesium-tantalum pegmatites

    Science.gov (United States)

    Bradley, Dwight C.; McCauley, Andrew D.; Stillings, Lisa L.

    2017-06-20

    Lithium-cesium-tantalum (LCT) pegmatites comprise a compositionally defined subset of granitic pegmatites. The major minerals are quartz, potassium feldspar, albite, and muscovite; typical accessory minerals include biotite, garnet, tourmaline, and apatite. The principal lithium ore minerals are spodumene, petalite, and lepidolite; cesium mostly comes from pollucite; and tantalum mostly comes from columbite-tantalite. Tin ore as cassiterite and beryllium ore as beryl also occur in LCT pegmatites, as do a number of gemstones and high-value museum specimens of rare minerals. Individual crystals in LCT pegmatites can be enormous: the largest spodumene was 14 meters long, the largest beryl was 18 meters long, and the largest potassium feldspar was 49 meters long.Lithium-cesium-tantalum pegmatites account for about one-fourth of the world’s lithium production, most of the tantalum production, and all of the cesium production. Giant deposits include Tanco in Canada, Greenbushes in Australia, and Bikita in Zimbabwe. The largest lithium pegmatite in the United States, at King’s Mountain, North Carolina, is no longer being mined although large reserves of lithium remain. Depending on size and attitude of the pegmatite, a variety of mining techniques are used, including artisanal surface mining, open-pit surface mining, small underground workings, and large underground operations using room-and-pillar design. In favorable circumstances, what would otherwise be gangue minerals (quartz, potassium feldspar, albite, and muscovite) can be mined along with lithium and (or) tantalum as coproducts.Most LCT pegmatites are hosted in metamorphosed supracrustal rocks in the upper greenschist to lower amphibolite facies. Lithium-cesium-tantalum pegmatite intrusions generally are emplaced late during orogeny, with emplacement being controlled by pre-existing structures. Typically, they crop out near evolved, peraluminous granites and leucogranites from which they are inferred to be

  13. A Mid-IR 14.1 W ZnGeP{sub 2} Optical Parametric Oscillator Pumped by a Tm,Ho:GdVO{sub 4} Laser

    Energy Technology Data Exchange (ETDEWEB)

    Guo-Li, Zhu; You-Lun, Ju; Tian-Heng, Wang; Yue-Zhu, Wang [National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2009-03-15

    We report a high power and high efficiency double resonant ZnGeP{sub 2} (ZGP) optical parametric oscillator (OPO) pumped by a Tm,Ho:GdVO{sub 4} laser. We employ a Tm,Ho:GdVO{sub 4} laser as the pump source operated at 2.049 {mu}m with M{sup 2} = 1.1. The ZGP OPO can generate a total combined output power of 14.1 W at 3.80 {mu}m signal and 4.45 {mu}m idler under pumping power of 28.7 W. The slope efficiency reaches 61.8%, and M{sup 2} = 3.6 for OPO output is obtained. (fundamental areas of phenomenology (including applications))

  14. A High-Energy Good-Beam-Quality Krypton-Lamp-Pumped Nd:YAG Solid-State Laser with One Pump Cavity

    Institute of Scientific and Technical Information of China (English)

    LIU Xue-Sheng; WANG Zhi-Yong; YAN Xin; CAO Ying-Hua

    2008-01-01

    We investigate a high-energy good-beam-quality krypton-lamp-pumped pulsed Nd:YAG solid-state laser with one pump cavity.The symmetrical resonator laser is developed and is rated at 80 J with beam parameter product 12mm mrad.The total system electro-optics efficiency of the lamp-pumped YAG laser is as high as 3.3% and the stability of output energy is ±2% with pulse width tunable between 0.1 ms and 10ms.The experimental results are consistent with the theoretical analysis and simulation.

  15. Cesium-137 in Norwegian milk 1960-1976

    International Nuclear Information System (INIS)

    Hvinden, T.

    1977-03-01

    Cesium-137 in milk has been measured at 11 sampling sites in Norway since 1960. The results show seasonal variations, normally with a peak during summer, and variations from district to district, depending upon farming and precipitation conditions. The concentration of cesium-137, averaged over the 11 sampling sites, reached a maximum of 0.44 nanocurie/litre in 1964, decreasing to 0.05 in 1975 and 1976. The range of variations within the 11 sites is of the order of 10. At other sites, with high precipitation and low grazing field qualities, the concentration has been found to be higher than at the 11 sites, giving a range of variations of more than 100. (Auth.)

  16. Cesium titanium silicate and method of making

    Science.gov (United States)

    Balmer, Mari L.

    1997-01-01

    The invention is the new material, a ternary compound of cesium, silica, and titania, together with a method of making the ternary compound, cesium titanium silicate pollucite. More specifically, the invention is Cs.sub.2 Ti.sub.2 Si.sub.4 O.sub.13 pollucite which is a new crystalline phase representing a novel class of Ti-containing zeolites. Compositions contain relatively high Cs.sub.2 O and TiO.sub.2 loadings and are durable glass and ceramic materials. The amount of TiO.sub.2 and Cs.sub.2 that can be incorporated into these glasses and crystalline ceramics far exceeds the limits set for the borosilicate high level waste glass.

  17. Ferrocyanide tank safety program: Cesium uptake capacity of simulated ferrocyanide tank waste. Final report

    International Nuclear Information System (INIS)

    Burgeson, I.E.; Bryan, S.A.

    1995-07-01

    The objective of this project is to determine the capacity for 137 Cs uptake by mixed metal ferrocyanides present in Hanford Site waste tanks, and to assess the potential for aggregation of these 137 Cs-exchanged materials to form ''hot-spots'' in the tanks. This research, performed at Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company, stems from concerns regarding possible localized radiolytic heating within the tanks. After ferrocyanide was added to 18 high-level waste tanks in the 1950s, some of the ferrocyanide tanks received considerable quantities of saltcake waste that was rich in 137 Cs. If radioactive cesium was exchanged and concentrated by the nickel ferrocyanide present in the tanks, the associated heating could cause tank temperatures to rise above the safety limits specified for the ferrocyanide-containing tanks, especially if the supernate in the tanks is pumped out and the waste becomes drier

  18. Analytical study of nonlinear phase shift through stimulated Brillouin scattering in single mode fiber with the pump power recycling technique

    International Nuclear Information System (INIS)

    Al-Asadi, H A; Mahdi, M A; Bakar, A A A; Adikan, F R Mahamd

    2011-01-01

    We present a theoretical study of nonlinear phase shift through stimulated Brillouin scattering in single mode optical fiber. Analytical expressions describing the nonlinear phase shift for the pump and Stokes waves in the pump power recycling technique have been derived. The dependence of the nonlinear phase shift on the optical fiber length, the reflectivity of the optical mirror and the frequency detuning coefficient have been analyzed for different input pump power values. We found that with the recycling pump technique, the nonlinear phase shift due to stimulated Brillouin scattering reduced to less than 0.1 rad for 5 km optical fiber length and 0.65 reflectivity of the optical mirror, respectively, at an input pump power equal to 30 mW

  19. Modelling the transport of radioactive cesium released from the Fukushima Dai-ichi NPP with sediments through the hydrologic system

    Science.gov (United States)

    Kinouchi, T.; Omata, T.; Wei, L.; Liu, T.; Araya, M.

    2013-12-01

    Due to the accident of the Fukushima Dai-ichi Nuclear Power Plant on March 2011, a huge amount of radionuclides including Cesium-134 and Cesium-137 was deposited over the main island of Japan and the Pacific Ocean, resulting in further transfer and diffusion of Cesium through the atmospheric flow, watershed hydrological processes, and terrestrial ecosystem. Particularly, for the transfer of Cesium-134 and Cesium-137, sediments eroded and transported by the rainfall-runoff processes play an important role as Cesium tends to be strongly adsorbed to soil particles such as clay and silt. In this study, we focus on the transport of sediment and adsorbed Cesium in the watershed-scale hydrologic system to predict the long-term change of distribution of Cesium and its discharge to rivers and ocean. We coupled a physically-based distributed hydrological model with the modules of erosion and transport of sediments and adsorbed Cesium, and applied the coupled model to the Abukuma River watershed, which is located over the area of higher deposition of Cesium. In the model, complex land use and land cover distributions, and the effect of human activities such as irrigation, dam control and urban drainage system are taken into accounts. Simulation was conducted for the period of March 2011 until August 2012, with initial spatial distribution of Cesium-134 and Cesium-137 obtained by the airborne survey. Simulated flow rates and sediment concentrations agreed well with observed, and found that since the accident, two major storms in July and September 2011 transported about 50% of total sediments transported during the simulated periods. Cesium concentration in the sediment was reproduced well except for the difference in the initial periods. This difference is attributable to the uncertainty arisen from the initial distribution of Cesium in the soil and the transfer of Cesium from the forest canopy.

  20. Formation, decomposition and cesium adsorption mechanisms of highly alkali-tolerant nickel ferrocyanide prepared by interfacial synthesis

    International Nuclear Information System (INIS)

    Ichikawa, Tsuneki; Yamada, Kazuo; Osako, Masahiro; Haga, Kazuko

    2017-01-01

    Highly alkali-tolerant nickel ferrocyanide was prepared as an adsorbent for preventing the leaching of radioactive cesium from municipal solid waste incinerator fly ash containing large amounts of calcium hydroxide and potassium chloride, which act as an alkaline source and the suppressor for cesium adsorption, respectively. Nickel ferrocyanide prepared by contacting concentrated nickel and ferrocyanide solutions without mixing adsorbed cesium ions in alkaline conditions even the concentration of coexisting potassium ions was more than ten thousand times higher than that of the cesium ions. Large particles of nickel ferrocyanide slowly grew at the interface between the two solutions, which reduced the surface energy of the particles and therefore increased the alkali tolerance. The interfacially-synthesized nickel ferrocyanide was possible to prevent the leaching of radioactive cesium from cement-solidified fly ash for a long period. The mechanisms of the formation, selective cesium adsorption, and alkali-induced decomposition of the nickel ferrocyanide were elucidated. Comparison of the cesium adsorption mechanism with that of the other adsorbents revealed that an adsorbent can selectively adsorb cesium ions without much interference from potassium ions, if the following conditions are fulfilled. 1) The adsorption site is small enough for supplying sufficient electrostatic energy for the dehydration of ions adsorbed. 2) Both the cesium and potassium ions are adsorbed as dehydrated ions. 3) The adsorption site is flexible enough for permitting the penetration of dehydrated ions with the size comparable to that of the site. (author)

  1. Effect of electrolytes concentration on recovery of cesium from AMP-PAN by Electrodialysis-Ion Exchange (EDIX)

    International Nuclear Information System (INIS)

    Mahendra, Ch.; Rajan, K.K.; SatyaSai, P.M.; Anand Babu, C.

    2014-01-01

    Cesium from the simulated acidic waste solution was separated using Ammonium Molybdophosphate (AMP) - Polyacrylonitrile (PAN) ion exchange resin in column operations. Electrodialysis - Ion exchange (EDIX) has been tried for the recovery of cesium from the AMP-PAN which was saturated with cesium. The electrodialysis setup consists of three compartments; cesium loaded AMP-PAN is placed in the middle compartment and is separated from the anode and cathode compartments by cation exchange membranes. Ammonium sulphate was used as anolyte and HNO 3 as catholyte. 0.1N HNO 3 was circulated in the middle compartment containing AMP-PAN to keep the resin in acidic form. On application of potential, the ammonium ions from the anode compartment migrate towards cathode through the middle compartment where they exchange with cesium ions on the resin and the exchanged cesium ions migrate towards cathode to get concentrated. Some part of cesium is recovered in the middle compartment due to convection. Cesium recovery from the AMP-PAN in the electrodialysis setup was studied at different anolyte and catholyte concentrations. All the experiments were carried out at constant current density of 40 mA/cm 2 for 15h. It was found that more than 50% of cesium recovery was observed for all the experiments studied and recovery percentage increased with increasing the anolyte concentration. It was observed that the electrolytes concentration affects the voltage drop across the cell

  2. Cesium absorption from acidic solutions using ammonium molybdophosphate on a polyacrylonitrile support (AMP-PAN)

    International Nuclear Information System (INIS)

    Miller, C.J.; Olson, A.L.; Johnson, C.K.

    1995-01-01

    Recent efforts at the Idaho Chemical Processing Plant (ICPP) have included evaluation of cesium removal technologies as applied to ICPP acidic radioactive waste streams. Ammonium molybdophosphate (AMP) immobilized on a polyacrylonitrile support (AMP-PAN) has been studied as an ion exchange agent for cesium removal from acidic waste solutions. Capacities, distribution coefficients, elutability, and kinetics of cesium-extraction have been evaluated. Exchange breakthrough curves using small columns have been determined from 1M HNO 3 and simulated waste solutions. The theoretical capacity of AMP is 213 g Cs/kg AMP. The average experimental capacity in batch contacts with various acidic solutions was 150 g Cs/kg AMP. The measured cesium distribution coefficients from actual waste solutions were 3287 mL/g for dissolved zirconia calcines, and 2679 mL/g for sodium-bearing waste. The cesium in the dissolved alumina calcines was analyzed for; however, the concentration was below analytical detectable limits resulting in inconclusive results. The reaction kinetics are very rapid (2-10 minutes). Cesium absorption appears to be independent of acid concentration over the range tested (0.1 M to 5 M HNO 3 )

  3. Generation of a slow and continuous cesium atomic beam for an atomic clock

    International Nuclear Information System (INIS)

    Park, Sang Eon; Lee, Ho Seong; Shin, Eun-joo; Kwon, Taeg Yong; Yang, Sung Hoon; Cho, Hyuck

    2002-01-01

    A thermal atomic beam from a cesium oven was slowed down by use of the Hoffnagle modified white-light cooling technique. In addition, the atomic beam was collimated by use of a two-dimensional optical molasses that was installed transverse to the atomic-beam direction. The flux of the atomic beam was 2x10 10 atoms/s, an increase of a factor of 16 as a result of the collimation. The mean longitudinal velocity was ∼24.4 m/s, and the rms velocity spread of the slowed atomic beam was ∼1 m/s. Compared with other methods, we found that the Hoffnagle method is suitable for the generation of slow atomic beams to be used in an atomic clock, which requires an ultralow magnetic field environment. This atomic beam was deflected by an angle of 30 deg. by a one-dimensional optical molasses to separate it from laser light and high-velocity atoms

  4. Numerical modelling of the pump-to-signal relative intensity noise ...

    Indian Academy of Sciences (India)

    An accurate numerical model to investigate the pump-to-signal relative intensity noise (RIN) transfer in two-pump fibre optical parametric amplifiers (2-P FOPAs) for low modulation frequencies is presented. Compared to other models in the field, this model takes into account the fibre loss, pump depletion as well as the gain ...

  5. Laboratory plant for the separation of cesium from waste solutions of the PUREX process

    International Nuclear Information System (INIS)

    Richter, M.; Eckert, B.; Riemenschneider, J.; Mallon, C.; Mann, D.

    1983-01-01

    A laboratory plant for the separation of cesium from a fission product waste solution of the fuel reprocessing is described. The plant consists of two stages. In the first stage cesium is adsorbed on ammonium molybdatophosphate (AMP). Then the adsorbent is dissolved. From the solution cesium is adsorbed on a cationic ion exchanger in the second stage. Then AMP can be reproduced from this solution. For the elution of cesium in the second stage a NH 4 NO 3 solution (3 m) is used. Flow sheet, construction and the control device of the plant are described and the results of tests with a model solution are given. (author)

  6. Ten years optically pumped semiconductor lasers: review, state-of-the-art, and future developments

    Science.gov (United States)

    Kannengiesser, Christian; Ostroumov, Vasiliy; Pfeufer, Volker; Seelert, Wolf; Simon, Christoph; von Elm, Rüdiger; Zuck, Andreas

    2010-02-01

    Optically Pumped Semiconductor Lasers - OPSLs - have been introduced in 2001. Their unique features such as power scalability and wavelength flexibility, their excellent beam parameters, power stability and reliability opened this pioneering technology access to a wide range of applications such as flow cytometry, confocal microscopy, sequencing, medical diagnosis and therapy, semiconductor inspection, graphic arts, forensic, metrology. This talk will introduce the OPSL principles and compare them with ion, diode and standard solid state lasers. It will revue the first 10 years of this exciting technology, its current state and trends. In particular currently accessible wavelengths and power ranges, frequency doubling, ultra-narrow linewidth possibilities will be discussed. A survey of key applications will be given.

  7. Mobility of radioactive cesium in soil originated from the Fukushima Daiichi nuclear disaster. Application of extraction experiments

    International Nuclear Information System (INIS)

    Yoshikazu Kikawada; Takao Oi; Katsumi Hirose; Masaaki Hirose; Atsushi Tsukamoto; Ko Nakamachi; Teruyuki Honda; Hiroaki Takahashi

    2015-01-01

    Extraction experiments on soil radioactively contaminated by the Fukushima Daiichi Nuclear Power Plant accident were conducted by using a variety of extractants to acquire knowledge on the mobility of radioactive cesium in soil. The experimental results revealed that cesium is tightly bound with soil particles and that radioactive cesium newly deposited on soil due to the accident had apparently a higher mobility than stable cesium commonly existing in soil. The results suggested that radioactive cesium deposited on soil hardly migrates via aqueous processes, although chemical and mineralogical conditions of soil affect their mobility. (author)

  8. Short pulse generation from a passively mode-locked fiber optical parametric oscillator with optical time-stretch.

    Science.gov (United States)

    Qiu, Yi; Wei, Xiaoming; Du, Shuxin; Wong, Kenneth K Y; Tsia, Kevin K; Xu, Yiqing

    2018-04-16

    We propose a passively mode-locked fiber optical parametric oscillator assisted with optical time-stretch. Thanks to the lately developed optical time-stretch technique, the onset oscillating spectral components can be temporally dispersed across the pump envelope and further compete for the parametric gain with the other parts of onset oscillating sidebands within the pump envelope. By matching the amount of dispersion in optical time-stretch with the pulse width of the quasi-CW pump and oscillating one of the parametric sidebands inside the fiber cavity, we numerically show that the fiber parametric oscillator can be operated in a single pulse regime. By varying the amount of the intracavity dispersion, we further verify that the origin of this single pulse mode-locking regime is due to the optical pulse stretching and compression.

  9. Review and assessment of technologies for the separation of cesium from acidic media

    Energy Technology Data Exchange (ETDEWEB)

    Orth, R.J.; Brooks, K.P.; Kurath, D.E.

    1994-09-01

    A preliminary literature survey has been conducted to identify and evaluate methods for the separation of cesium from acidic waste. The most promising solvent extraction, precipitation, and ion exchange methods, along with some of the attributes for each method, are listed. The main criteria used in evaluating the separation methods were as follows: (1) good potential for cesium separation must be demonstrated (i.e., cesium decontamination factors on the order of 50 to 100). (2) Good selectivity for cesium over bulk components must be demonstrated. (3) The method must show promise for evolving into a practical and fairly simple process. (4) The process should be safe to operate. (5) The method must be robust (i.e., capable of separating cesium from various acidic waste types). (6) Secondary waste generation must be minimized. (7) The method must show resistance to radiation damage. The most promising separation methods did not necessarily satisfy all of the above criteria, thus key areas requiring further development are suggested for each method. The report discusses in detail these and other areas requiring further development, as well as alternative solvent extraction, precipitation, ion exchange, and {open_quote}other{close_quote} technologies that, based on current information, show less promise for the separation of cesium from acidic wastes because of significant process limitations. When appropriate, the report recommends areas of future development.

  10. A simple equilibrium theoretical model and predictions for a continuous wave exciplex pumped alkali laser

    International Nuclear Information System (INIS)

    Carroll, David L; Verdeyen, Joseph T

    2013-01-01

    The exciplex pumped alkali laser (XPAL) system has been demonstrated in mixtures of Cs vapour, Ar, with and without ethane, by pumping Cs-Ar atomic collision pairs and subsequent dissociation of diatomic, electronically excited CsAr molecules (exciplexes or excimers). The blue satellites of the alkali D 2 lines provide an advantageous pathway for optically pumping atomic alkali lasers on the principal series (resonance) transitions with broad linewidth (>2 nm) semiconductor diode lasers. The development of a simple theoretical analysis of continuous-wave XPAL systems is presented along with predictions as a function of temperature and pump intensity. The model predicts that an optical-to-optical efficiency in the range of 40-50% can be achieved for XPAL.

  11. Immobilization of aqueous radioactive cesium wastes by conversion to aluminosilicate minerals

    International Nuclear Information System (INIS)

    Barney, G.S.

    1975-05-01

    Radioactive cesium (primarily 137 Cs) is a major toxic constituent of liquid wastes from nuclear fuel processing plants. Because of the long half-life, highly penetrating radiation, and mobility of 137 Cs, it is necessary to convert wastes containing this radioisotope into a solid form which will prevent movement to the biosphere during long-term storage. A method for converting cesium wastes to solid, highly insoluble, thermally stable aluminosilicate minerals is described. Aluminum silicate clays (bentonite, kaolin, or pyrophyllite) or hydrous aluminosilicate gels are reacted with basic waste solutions to form pollucite, cesium zeolite (Cs-D), Cs-F, cancrinite, or nepheline. Cesium is trapped in the aluminosilicate crystal lattice of the mineral and is permanently immobilized. The identity of the mineral product is dependent on the waste composition and the SiO 2 /Al 2 O 3 ratio of the clay or gel. The stoichiometry and kinetics of mineral formation reactions are described. The products are evaluated with respect to leachability, thermal stability, and crystal morphology. (U.S.)

  12. Radioactive cesium content in selected food products. Pt. 2. Radioactive cesium in daily food rations of selected population groups

    International Nuclear Information System (INIS)

    Skibniewska, K.; Smoczynski, S.S.; Wisniewska, I.

    1993-01-01

    The content of radioactive cesium isotopes emitting beta radiation was studied in daily food rations analysed in diets of working-class and non-working-class families from food products from the regions of Olsztyn, Poznan, Lublin, Warsaw and Wroclaw in 1987 and 1988. In 1987 the highest level of radioactive cesium was found in the food rations in Olsztyn, and lowest in the rations in Poznan (3.32 and 0.65 Bq/kg respectively). In 1988 higher radiocesium content was found in rations composed according to the data on the diet consumed daily in non-working-class families. In that case the highest content was in the daily food rations composed in Warsaw - 2.35 Bq/kg and lowest in Poznan - 1.19 Bq/kg in the daily food rations of working-class families about one half of that value was found. The calculated means values of both analysed rations were: 1.35 for Olsztyn, 0.89 for Poznan, and 1.86 Bq/kg for Warsaw. The calculated mean value of the contamination with radioactive cesium was in 1988 0.93 Bq/kg for the rations in working-class families (in 1987 it was 1.80 Bq/kg). (author). 15 refs, 1 tab

  13. Phase-sensitive detection of optical resonances by using an acousto-optic modulator in the Raman - Nath diffraction mode

    International Nuclear Information System (INIS)

    Baryshev, V N; Domnin, Yu S; Kopylov, L N

    2007-01-01

    A new method for frequency control of an external cavity diode laser without direct modulation of the injection current is proposed. The Pound - Drever optical heterodyne technique or the method of frequency control by frequency-modulated sidebands, in which an acousto-optic modulator operating in the Raman - Nath diffraction mode is used as an external phase modulator, can be employed to obtain error signals upon automatic frequency locking of the diode laser to the saturated absorption resonances within the D 2 line of cesium atoms or to the optical cavity resonances. (control of laser radiation parameters)

  14. Removal of cesium from simulated liquid waste with countercurrent two-stage adsorption followed by microfiltration

    Energy Technology Data Exchange (ETDEWEB)

    Han, Fei; Zhang, Guang-Hui [School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072 (China); Gu, Ping, E-mail: guping@tju.edu.cn [School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072 (China)

    2012-07-30

    Highlights: Black-Right-Pointing-Pointer The adsorption isotherm of cesium by copper ferrocyanide followed a Freundlich model. Black-Right-Pointing-Pointer Decontamination factor of cesium was higher in lab-scale test than that in jar test. Black-Right-Pointing-Pointer A countercurrent two-stage adsorption-microfiltration process was achieved. Black-Right-Pointing-Pointer Cesium concentration in the effluent could be calculated. Black-Right-Pointing-Pointer It is a new cesium removal process with a higher decontamination factor. - Abstract: Copper ferrocyanide (CuFC) was used as an adsorbent to remove cesium. Jar test results showed that the adsorption capacity of CuFC was better than that of potassium zinc hexacyanoferrate. Lab-scale tests were performed by an adsorption-microfiltration process, and the mean decontamination factor (DF) was 463 when the initial cesium concentration was 101.3 {mu}g/L, the dosage of CuFC was 40 mg/L and the adsorption time was 20 min. The cesium concentration in the effluent continuously decreased with the operation time, which indicated that the used adsorbent retained its adsorption capacity. To use this capacity, experiments on a countercurrent two-stage adsorption (CTA)-microfiltration (MF) process were carried out with CuFC adsorption combined with membrane separation. A calculation method for determining the cesium concentration in the effluent was given, and batch tests in a pressure cup were performed to verify the calculated method. The results showed that the experimental values fitted well with the calculated values in the CTA-MF process. The mean DF was 1123 when the dilution factor was 0.4, the initial cesium concentration was 98.75 {mu}g/L and the dosage of CuFC and adsorption time were the same as those used in the lab-scale test. The DF obtained by CTA-MF process was more than three times higher than the single-stage adsorption in the jar test.

  15. MODELING AN ION EXCHANGE PROCESS FOR CESIUM REMOVAL FROM ALKALINE RADIOACTIVE WASTE SOLUTIONS

    International Nuclear Information System (INIS)

    Smith, F.; Hamm, Luther; Aleman, Sebastian; Michael, Johnston

    2008-01-01

    The performance of spherical Resorcinol-Formaldehyde ion-exchange resin for the removal of cesium from alkaline radioactive waste solutions has been investigated through computer modeling. Cesium adsorption isotherms were obtained by fitting experimental data using a thermodynamic framework. Results show that ion-exchange is an efficient method for cesium removal from highly alkaline radioactive waste solutions. On average, two 1300 liter columns operating in series are able to treat 690,000 liters of waste with an initial cesium concentration of 0.09 mM in 11 days achieving a decontamination factor of over 50,000. The study also tested the sensitivity of ion-exchange column performance to variations in flow rate, temperature and column dimensions. Modeling results can be used to optimize design of the ion exchange system

  16. Highly scalable, resonantly cladding-pumped, Er-doped fiber laser with record efficiency.

    Science.gov (United States)

    Dubinskii, M; Zhang, J; Ter-Mikirtychev, V

    2009-05-15

    We report the performance of a resonantly cladding-pumped, Yb-free, Er-doped fiber laser. We believe this is the first reported resonantly cladding-pumped fiber-Bragg-grating-based, Er-doped, large-mode-area (LMA) fiber laser. The laser, pumped by fiber-coupled InGaAsP/InP laser diode modules at 1,532.5 nm, delivers approximately 48 W of cw output at 1,590 nm. It is believed to be the highest power ever reported from a Yb-free Er-doped LMA fiber. This fully integrated laser also has the optical-to-optical efficiency of approximately 57%, to the best of our knowledge, the highest efficiency reported for cladding-pumped unidirectionally emitting Er-doped laser.

  17. A 526 W Diode-Pumped Nd:YAG Ceramic Slab Laser

    International Nuclear Information System (INIS)

    Chen Yan-Zhong; Bo Yong; Xu Jian; Xu Yi-Ting; Xu Jia-Lin; Guo Ya-Ding; Yang Feng-Tu; Peng Qin-Jun; Cui Da-Fu; Xu Zu-Yan; Liu Wen-Bin; Jiang Ben-Xue; Kou Hua-Min; Pan Yu-Bai; Jiang Dong-Liang

    2011-01-01

    A diode-side-pumped Nd:YAG ceramic slab laser with a high power output is presented. An average power of 526 W is achieved at 1064 nm with a repetition rate of 120 Hz and a pulse width of 180 μs from a 93mm × 52mm × 8 mm ceramic slab at a pump power of 1928 W, corresponding to an optical-to-optical efficiency of 27.3%. (fundamental areas of phenomenology(including applications))

  18. Cement materials for cesium and iodine confinement

    International Nuclear Information System (INIS)

    Nicolas, G.; Lequeux, N.; Boch, P.; Prene, S.

    2001-01-01

    The following topics were dealt with: radioactive waste storage, cement materials reacting with radioactive cesium and iodine, chemical barrier formation against radioactive pollution, ceramization, long term stability, XRD, PIXE analysis

  19. Fiber-laser-based, green-pumped, picosecond optical parametric oscillator using fan-out grating PPKTP.

    Science.gov (United States)

    Chaitanya Kumar, S; Parsa, S; Ebrahim-Zadeh, M

    2016-01-01

    We report a stable, Yb-fiber-laser-based, green-pumped, picosecond optical parametric oscillator (OPO) for the near-infrared based on periodically poled potassium titanyl phosphate (PPKTP) nonlinear crystal, using fan-out grating design and operating near room temperature. The OPO is continuously tunable across 726-955 nm in the signal and 1201-1998 nm in the idler, resulting in a total signal plus idler wavelength coverage of 1026 nm by grating tuning at a fixed temperature. The device generates up to 580 mW of average power in the signal at 765 nm and 300 mW in the idler at 1338 nm, with an overall extraction efficiency of up to 52% and a pump depletion >76%. The extracted signal at 765 nm and idler at 1746 nm exhibit excellent passive power stability better than 0.5% and 0.8% rms, respectively, over 1 h with good beam quality in TEM00 mode profile. The output signal pulses have a Gaussian temporal duration of 13.2 ps, with a FWHM spectral bandwidth of 3.4 nm at 79.5 MHz repetition rate. Power scaling limitations of the OPO due to the material properties of PPKTP are studied.

  20. Influence of absorbed pump profile on the temperature distribution ...

    Indian Academy of Sciences (India)

    Influence of absorbed pump profile on the temperature distribution within a diode side-pumped laser rod ... Department of Physics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran; Institute of Optics and Laser, Malek-ashtar University of Technology, Shahin Shahr, Postal Code: 83145/115, Iran; Department of ...

  1. Levitated atoms in a CO2 laser trap: towards BEC with cesium

    International Nuclear Information System (INIS)

    Herbig, J.; Weber, T.; Naegerl, H.-C.; Grimm, R.

    2001-01-01

    Full text: Since the standard approach towards Bose-Einstein condensation has failed for cesium, we are exploring a novel concept employing an optical dipole trap formed by intense CO2 lasers. These provide a conservative and large-volume trapping potential. In order to compensate the gravitational force, a magnetic field gradient along the vertical axis is applied. This counterbalances gravitation for the absolute internal ground state of Cs (F=3, mF=3), effectively levitating those atoms. Other spin states are expelled from the trap, opening up a path for rf exploration. Our approach to trap the lowest spin state at low densities minimizes inelastic processes. The free choice of a magnetic bias field allows exploration of Feshbach resonances to tune scattering properties. (author)

  2. Web-Based Geospatial Visualization of GPM Data with CesiumJS

    Science.gov (United States)

    Lammers, Matt

    2018-01-01

    Advancements in the capabilities of JavaScript frameworks and web browsing technology have made online visualization of large geospatial datasets such as those coming from precipitation satellites viable. These data benefit from being visualized on and above a three-dimensional surface. The open-source JavaScript framework CesiumJS (http://cesiumjs.org), developed by Analytical Graphics, Inc., leverages the WebGL protocol to do just that. This presentation will describe how CesiumJS has been used in three-dimensional visualization products developed as part of the NASA Precipitation Processing System (PPS) STORM data-order website. Existing methods of interacting with Global Precipitation Measurement (GPM) Mission data primarily focus on two-dimensional static images, whether displaying vertical slices or horizontal surface/height-level maps. These methods limit interactivity with the robust three-dimensional data coming from the GPM core satellite. Integrating the data with CesiumJS in a web-based user interface has allowed us to create the following products. We have linked with the data-order interface an on-the-fly visualization tool for any GPM/partner satellite orbit. A version of this tool also focuses on high-impact weather events. It enables viewing of combined radar and microwave-derived precipitation data on mobile devices and in a way that can be embedded into other websites. We also have used CesiumJS to visualize a method of integrating gridded precipitation data with modeled wind speeds that animates over time. Emphasis in the presentation will be placed on how a variety of technical methods were used to create these tools, and how the flexibility of the CesiumJS framework facilitates creative approaches to interact with the data.

  3. Design of a tensor polarized deuterium target polarized by spin-exchange with optically pumped NA

    International Nuclear Information System (INIS)

    Green, M.C.

    1984-01-01

    A proposed design for a tensor polarized deuterium target (approx. 10 15 atoms/cm 2 ) for nuclear physics studies in an electron storage ring accelerator is presented. The deuterium atoms undergo electron spin exchange with a highly polarized sodium vapor; this polarization is transferred to the deuterium nuclei via the hyperfine interaction. The deuterium nuclei obtain their tensor polarization through repeated electron spin exchange/hyperfine interactions. The sodium vapor polarization is maintained by standard optical pumping techniques. Model calculations are presented in detail leading to a discussion of the expected performance and the technical obstacles to be surmounted in the development of such a target

  4. Analytical Solutions of Temporal Evolution of Populations in Optically-Pumped Atoms with Circularly Polarized Light

    Directory of Open Access Journals (Sweden)

    Heung-Ryoul Noh

    2016-03-01

    Full Text Available We present an analytical calculation of temporal evolution of populations for optically pumped atoms under the influence of weak, circularly polarized light. The differential equations for the populations of magnetic sublevels in the excited state, derived from rate equations, are expressed in the form of inhomogeneous second-order differential equations with constant coefficients. We present a general method of analytically solving these differential equations, and obtain explicit analytical forms of the populations of the ground state at the lowest order in the saturation parameter. The obtained populations can be used to calculate lineshapes in various laser spectroscopies, considering transit time relaxation.

  5. Design of a tensor polarized deuterium target polarized by spin-exchange with optically pumped NA

    International Nuclear Information System (INIS)

    Green, M.C.

    1984-05-01

    A proposed design for a tensor polarized deuterium target (approx. 10 15 atoms/cm 2 ) for nuclear physics studies in an electron storage ring accelerator is presented. The deuterium atoms undergo electron spin exchange with a highly polarized sodium vapor; this polarization is transferred to the deuterium nuclei via the hyperfine interaction. The deuterium nuclei obtain their tensor polarization through repeated electron spin exchange/hyperfine interactions. The sodium vapor polarization is maintained by standard optical pumping techniques. Model calculations are presented in detail leading to a discussion of the expected performance and the technical obstacles to be surmounted in the development of such a target. 15 references, 10 figures

  6. An Experimental Study of the Fluorescence Spectrum of Cesium Atoms in the Presence of a Buffer Gas

    Science.gov (United States)

    Davydov, V. G.; Kulyasov, V. N.

    2018-01-01

    A direct experiment is performed to determine the quantum efficiency of a cesium fluorescence filter. The fluorescence spectra of cesium atoms are recorded under excitation of the upper states of the second resonance doublet with a Bell-Bloom cesium lamp. Introduction of different noble gases into the cell with cesium leads to the appearance of additional fluorescence photons. It is found that a fluorescence filter based on atomic cesium vapor with addition of helium in the working cell has the highest efficiency and response rate of all known fluorescence filters based on alkali-metal atomic vapors.

  7. Studies on the synthesis and characterization of cesium-containing iron phosphate glasses

    Science.gov (United States)

    Joseph, Kitheri; Govindan Kutty, K. V.; Chandramohan, P.; Vasudeva Rao, P. R.

    2009-02-01

    Isotopes of cesium and strontium can be utilized as radiation source for various industrial and medical applications after their separation from high level nuclear waste. However, these elements need to be immobilized in a suitable matrix. In the present work, a systematic approach has been made to immobilize inactive cesium into iron phosphate glass. Up to 36 mol% of Cs 2O has been loaded successfully without crystallization. The glass transition temperature of the cesium loaded glass was found to increase initially and then decrease as a function of Cs 2O content. Mössbauer studies show that the concentration of Fe 3+ ions in the cesium loaded glasses is >95%. Volatilization experiments at 1263 K show that the weight loss is >0.5% for a period of 4 h. The 36 mol% of Cs 2O loaded iron phosphate glass with high Fe 3+ content described in this paper is reported for the first time.

  8. Historical Cost Curves for Hydrogen Masers and Cesium Beam Frequency and Timing Standards

    Science.gov (United States)

    Remer, D. S.; Moore, R. C.

    1985-01-01

    Historical cost curves were developed for hydrogen masers and cesium beam standards used for frequency and timing calibration in the Deep Space Network. These curves may be used to calculate the cost of future hydrogen masers or cesium beam standards in either future or current dollars. The cesium beam standards are decreasing in cost by about 2.3% per year since 1966, and hydrogen masers are decreasing by about 0.8% per year since 1978 relative to the National Aeronautics and Space Administration inflation index.

  9. Effects of mineralogy on sorption of strontium and cesium onto Calico Hills Tuff

    International Nuclear Information System (INIS)

    Meyer, R.E.; Arnold, W.D.; Case, F.I.; O'Kelley, G.D.; Land, J.F.

    1990-04-01

    The sorption properties of tuff formations at the proposed site for the high-level nuclear waste repository at Yucca Mountain, Nevada, have been extensively studied. Sorption and desorption measurements were made of strontium and cesium onto clinoptilolite and Calico Hills Tuff. The object was to see whether there was a correlation between sorption of strontium and cesium onto Calico Hills Tuff and the sorption of strontium and cesium onto clinoptilolite based on the content of clinoptilolite in the Calico Hills Tuff. 13 refs., 10 figs., 6 tabs

  10. Cesium-137 in biota from the Bothnian sea after the Chernobyl accident

    International Nuclear Information System (INIS)

    Notter, M.

    1990-01-01

    The Chernobyl fallout in April 1986 hit the Swedish Bothnian Sea coast to a relatively large extent. Extended sampling programs to follow uptake and mobilization of Cs-137 at different trophic levels in the aquatic environment started immediately after the accident. Water, sediment, algae, fish and food organisms for fish have regularly been sampled during 1986 and 1988. The highest cesium concentration (3400 Bq/m 3 ) in water from the Bothnian sea was detected in May-July 1986. Since September 1986 the cesium concentration has been decreasing and was about 500 Bq/m 3 in March-June 1987. During the same period, green algae (Cladophora), from early top values at 17000 Bq/kg d.w., have rapidly decreased to about 200 Bq/kg d.w. Of the investigated food organisms, fish-spawn rapidly got high values (3000 Bq/kg d.w.) of cesium. There is also reason to believe that this was the case for plankton. The cesium concentration on the other food organisms was lower, about (500-1200 Bq/kg d.w.). The decrease was fast and already during August 1986 they had relatively low concentrations (less than 500 Bq/kg d.w.). The cesium metabolism was rapid in species that feed on plankton and filtered material from the pelagial, such as mussles and herring. The maximum concentration was reached (1000-1500 Bq/kg d.w.) in September 1986. Fish species with algae in the nutrient chain (e.g. roach) reached concentrations of about 1000 Bq/kg d.w. and the decrease is slower. The accessible cesium for prey fish became relatively good depending on the high concentrations in fish-spawn. The maximum value for the cesium concentration in perch and pike was 2000-3000 Bq/kg d.w. and the decrease is slow. From the results from late 1988 the concentration factor (CF) has been calculated for several fish species in brackish water

  11. Cesium-137 uptake studies on ammonium phospho molybdate irradiated with electrons

    International Nuclear Information System (INIS)

    Rao, K.L.N.; Balasubramanian, K.R.; Shukla, J.P.

    1992-01-01

    Ammonium phospho molybdate is an important inorganic ion exchanger having high selectivity for cesium. This paper discusses the effects of electron irradiation to a dose of 1 mGy on this exchanger with special reference to its ion exchange performance using cesium-137 as a tracer. An explanation is attempted for the slight increase in the distribution coefficients. (author). 5 refs., 1 tab

  12. Strontium-90 and cesium-137 in sea sediments (from May 1984 to Sep 1984)

    International Nuclear Information System (INIS)

    1984-01-01

    Strontium-90 and cesium-137 monitoring results are presented for sea sediment samples of 12 sampling points located all over Japan from Tomari, Hokkaido to Kinnakagusuku Bay, Okinawa. The samples were collected by considering of enough sea water depth, no significant sedimental movement and sediment characteristics, and by employing a conventional sampling device. Approximately 4 kg-wet sample was dried and was passed through a 20 cm mesh sieve. After adding of strontium and cesium carriers, strontium-90 and cesium-137 were leached with a hot hydrochloric acid solution. The leachate was treated by ion exchange and coprecipitation to concentrate and isolate strontium-90 or cesium-137. Radiation counting was carried out by employing a low background beta counter usually for 60 minutes for the samples of strontium carbonate or cesium chloroplatinate. Determined strontium-90 contents in sea sediment were distributed from 0 +- 2.7 pCi/kg-dry (Mutsu Bay, Aomori, Yamaguchi Bay, Yamaguchi) to 14 +- 3.2 pCi/kg-dry (Mutsu Bay), and those of cesium-137 were from 9 +- 3.5 pCi/kg-dry (Mutsu Bay) to 250 +- 9 pCi/kg-dry (Off-Niigata Port, Niigata). Local variation of the contents of these radionuclides was very large, and for seasonal variation, it was also found large for the both nuclides content in the Mutsu Bay samples of May, 1984 and August 1984, as for strontium-90, 0 +- 2.7 pCi/kg and 14 +- 3.2 pCi/kg, for cesium-137, 9 +- 3.5 pCi/kg and 200 +- 8 pCi/kg, respectively. (Takagi, S.)

  13. Studies of cesium and strontium migration in unconsolidated Canadian geological materials

    International Nuclear Information System (INIS)

    Gillham, R.W.; Lindsay, L.E.; Reynolds, W.D.; Kewen, T.J.; Cherry, J.A.; Reddy, M.R.

    1981-06-01

    Distribution coefficients (Ksub(d)) were measured for cesium and strontium in 16 samples of Canadian unconsolidated geological materials. The samples were collected to cover a wide range of grain size, clay-mineral composition, cation exchange capacity and carbonate mineral content. Distribution coefficients ranged between 10 2 and 2.0 x 10 4 ml/g for cesium and between 2.5 and 10 2 ml/g for strontium, indicating that most unconsolidated geological materials have a substantial ability to retard the migration of cesium, while strontium could generally be expected to be somewhat more mobile. The measured K values were not significantly correlated with the measured soil properties, but appeared to be significantly affected by the background concentration of stable isotopes of the respective radionuclides

  14. Performance assessment of a new laser system for efficient spin exchange optical pumping in a spin maser measurement of 129Xe EDM

    International Nuclear Information System (INIS)

    Funayama, C.; Furukawa, T.; Sato, T.; Ichikawa, Y.; Ohtomo, Y.; Sakamoto, Y.; Kojima, S.; Suzuki, T.; Hirao, C.; Chikamori, M.; Hikota, E.; Tsuchiya, M.; Yoshimi, A.; Bidinosti, C. P.; Ino, T.; Ueno, H.; Matsuo, Y.; Fukuyama, T.; Asahi, K.

    2015-01-01

    We demonstrate spin-exchange optical pumping of 129 Xe atoms with our newly made laser system. The new laser system was prepared to provide higher laser power required for the stable operation of spin maser oscillations in the 129 Xe EDM experiment. We studied the optimum cell temperature and pumping laser power to improve the degree of 129 Xe spin polarization. The best performance was achieved at the cell temperature of 100 ∘ C with the presently available laser power of 1 W. The results show that a more intense laser is required for further improvement of the spin polarization at higher cell temperatures in our experiment

  15. Transfer of radio-cesium from forest soil to woodchips using fungal activities

    Science.gov (United States)

    Kaneko, Nobuhiro; Huang, Yao; Tanaka, Yoichiro; Fujiwara, Yoshihiro; Sasaki, Michiko; Toda, Hiroto; Takahashi, Terumasa; Kobayashi, Tatsuaki; Harada, Naoki; Nonaka, Masahiro

    2014-05-01

    Raido-cesium released to terrestrial ecosystems by nuclear accidents is know to accumulate forest soil and organic layer on the soil. Forests in Japan are not exceptions. Practically it is impossible to decontaminate large area of forests. However, there is a strong demand from local people, who has been using secondary forests (Satoyama) around croplands in hilly areas, to decontaminate radio-cesium, because those people used to collect wild mushrooms and edible plants, and there are active cultures of mushrooms using logs and sawdusts. These natural resource uses consist substantial part of their economical activities, Therefore it is needed to decontaminate some selected part of forests in Japan to local economy. Clear cutting and scraping surface soil and organic matter are common methods of decontamination. However the efficiency of decontamination is up to 30% reduction of aerial radiation, and the cost to preserve contaminated debris is not affordable. In this study we used wood chips as a growth media for saprotrophic fungi which are known to accumulate redio-cesium. There are many studies indicated that mushrooms accumulated redio-cesium from forest soil and organic layer. It is not practical to collect mushrooms to decontaminate redio-cesium, because biomass of mushrooms are not enough to collect total contaminants. Mushrooms are only minor part of saprotrophic fungi. Fungal biomass in forest soil is about 1% of dead organic matter on forest floor. Our previous study to observe Cs accumulation to decomposing leaf litter indicated 18% absorption of total soil radio-Cs to litter during one year field incubation (Kaneko et al., 2013), and Cs concentration was proportional to fungal biomass on litter. This result indicated that fungi transferred radio-cesium around newly supplied leaf litter free of contamination. Therefore effective decontamination will be possible if we can provide large amount of growth media for saprotrophic fungi, and the media can be

  16. Single-mode, All-Solid-State Nd:YAG Laser Pumped UV Converter

    Science.gov (United States)

    Prasad, Narasimha S.; Armstrong, Darrell, J.; Edwards, William C.; Singh, Upendra N.

    2008-01-01

    In this paper, the status of a high-energy, all solid-state Nd:YAG laser pumped nonlinear optics based UV converter development is discussed. The high-energy UV transmitter technology is being developed for ozone sensing applications from space based platforms using differential lidar technique. The goal is to generate greater than 200 mJ/pulse with 10-50 Hz PRF at wavelengths of 308 nm and 320 nm. A diode-pumped, all-solid-state and single longitudinal mode Nd:YAG laser designed to provide conductively cooled operation at 1064 nm has been built and tested. Currently, this pump laser provides an output pulse energy of >1 J/pulse at 50 Hz PRF and a pulsewidth of 22 ns with an electrical-to-optical system efficiency of greater than 7% and a M(sup 2) value of UV converter arrangement basically consists of an IR Optical Parametric Oscillator (OPO) and a Sum Frequency Generator (SFG) setups that are pumped by 532 nm wavelength obtained via Second Harmonic Generation (SHG). In this paper, the operation of an inter cavity SFG with CW laser seeding scheme generating 320 nm wavelength is presented. Efforts are underway to improve conversion efficiency of this mJ class UV converter by modifying the spatial beam profile of the pump laser.

  17. Atom optics in the time domain

    Science.gov (United States)

    Arndt, M.; Szriftgiser, P.; Dalibard, J.; Steane, A. M.

    1996-05-01

    Atom-optics experiments are presented using a time-modulated evanescent light wave as an atomic mirror in the trampoline configuration, i.e., perpendicular to the direction of the atomic free fall. This modulated mirror is used to accelerate cesium atoms, to focus their trajectories, and to apply a ``multiple lens'' to separately focus different velocity classes of atoms originating from a point source. We form images of a simple two-slit object to show the resolution of the device. The experiments are modelled by a general treatment analogous to classical ray optics.

  18. Free induction decay MR signal measurements toward ultra-low field MRI with an optically pumped atomic magnetometer.

    Science.gov (United States)

    Oida, Takenori; Kobayashi, Tetsuo

    2013-01-01

    Ultra-low field magnetic resonance imaging (ULF-MRI) has attracted attention because of its low running costs and minimum patient exposure. An optically pumped atomic magnetometer (OPAM) is a magnetic sensor with high sensitivity in the low frequency range, which does not require a cryogenic cooling system. In an effort to develop a ULF-MRI, we attempted to measure the free induction decay MR signals with an OPAM. We successfully detected the MR signals by combining an OPAM and a flux transformer, demonstrating the feasibility of the proposed system.

  19. A solution for cesium removal from high-salinity acidic or alkaline liquid waste: The crown calix[4]arenes

    International Nuclear Information System (INIS)

    Dozol, J.F.; Simon, N.; Lamare, V.; Rouquette, H.; Eymard, S.; Tournois, B.; Marc, D. de; Macias, R.M.

    1999-01-01

    Calix[4]arenes monocrown or biscrown, blocked in 1,3 alternative cone conformation, display an exceptional efficiency for cesium extraction, even from very acid or alkaline media. Moreover, they possess an important selectivity for cesium over sodium that makes possible the extraction of cesium from media containing high sodium nitrate loadings. Another advantage, since the extraction of cesium is reversible, is that the stripping of cesium can be carried out in deionized water, a property which leads to very high concentration factors. 79 refs., 10 figs., 6 tabs

  20. Measurements of cesium-137 in residents of Seascale and its environs

    Energy Technology Data Exchange (ETDEWEB)

    Fry, F A; Sumerling, T J

    1984-07-01

    Measurements of the body content of cesium-137 have been made on almost 300 members of the public residing in or near Seascale, a community in west Cumbria close to the nuclear installation at Sellafield operated by British Nuclear Fuels plc. The major objective of this study was to compare the levels found in the population with those predicted from environmental measurements. No artificially-produced radionuclides were detected in the overwhelming majority of those measured. Cesium-137 was detected in about 7% of the measured population but, in general, the levels were much lower than those expected. The highest body content found was comparable with the average predicted from environmental measurements and estimates of food consumption rates; this body content corresponds to intake of cesium-137 at a rate of somewhat less than 2% of the appropriate annual limit on intake for members of the public. From this study, it is concluded that contamination of foodstuffs with cesium-137 leads to exposure of the local population at levels that are of low radiological significance, and that estimates of intake obtained from environmental monitoring data are cautious for most of the population.

  1. Prussian blue caged in spongiform adsorbents using diatomite and carbon nanotubes for elimination of cesium

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Baiyang [Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810 (Japan); Fugetsu, Bunshi, E-mail: hu@ees.hokudai.ac.jp [Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810 (Japan); Yu, Hongwen [Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810 (Japan); Abe, Yoshiteru [Kyoei Engineering Corporation, Niigata 959-1961 (Japan)

    2012-05-30

    Highlights: Black-Right-Pointing-Pointer Prussian blue was sealed in cavities of diatomite using carbon nanotubes. Black-Right-Pointing-Pointer The caged Prussian blue after being permanently immobilized in polyurethane spongy showed a 167 mg/g capability for absorbing cesium. Black-Right-Pointing-Pointer Cesium elimination was accomplished by simply adding the Prussian-blue based spongiform adsorbent to radioactive water. - Abstract: We developed a spongiform adsorbent that contains Prussian blue, which showed a high capacity for eliminating cesium. An in situ synthesizing approach was used to synthesize Prussian blue inside diatomite cavities. Highly dispersed carbon nanotubes (CNTs) were used to form CNT networks that coated the diatomite to seal in the Prussian blue particles. These ternary (CNT/diatomite/Prussian-blue) composites were mixed with polyurethane (PU) prepolymers to produce a quaternary (PU/CNT/diatomite/Prussian-blue), spongiform adsorbent with an in situ foaming procedure. Prussian blue was permanently immobilized in the cell walls of the spongiform matrix and preferentially adsorbed cesium with a theoretical capacity of 167 mg/g cesium. Cesium was absorbed primarily by an ion-exchange mechanism, and the absorption was accomplished by self-uptake of radioactive water by the quaternary spongiform adsorbent.

  2. Thirteen pump-probe resonances of the sodium D1 line

    International Nuclear Information System (INIS)

    Wong, Vincent; Boyd, Robert W.; Stroud, C. R. Jr.; Bennink, Ryan S.; Marino, Alberto M.

    2003-01-01

    We present the results of a pump-probe laser spectroscopic investigation of the Doppler-broadened sodium D1 resonance line. We find 13 resonances in the resulting spectra. These observations are well described by the numerical predictions of a four-level atomic model of the hyperfine structure of the sodium D1 line. We also find that many, but not all, of these features can be understood in terms of processes originating in a two-level or three-level subset of the full four-level model. The processes we observed include forward near-degenerate four-wave mixing and saturation in a two-level system, difference-frequency crossing and nondegenerate four-wave mixing in a three-level V system, electromagnetically induced transparency and optical pumping in a three-level lambda system, cross-transition resonance in a four-level double-lambda system, and conventional optical pumping. Most of these processes lead to sub-Doppler or even subnatural linewidths. The dependence of these resonances on the pump intensity and pump detuning from atomic resonance are also studied

  3. Environmental application of cesium-137 irradiation technology: sludges and foods

    International Nuclear Information System (INIS)

    Sivinski, J.S.

    1983-01-01

    Several activities have been undertaken to investigate and implement the use of the military byproduct cesium-137 in ways which benefit mankind. Gamma radiation from cesium-137 has been shown to be effective in reducing pathogens in sewage sludge to levels where reuse of the material in public areas meets current regulatory criteria for protection of public health. Food irradiation at doses of 10 kGy or less have been found by international expert committees to be wholesome and safe for human consumption. Cesium-137 can be used as a means of enhancing particular properties of various food commodities by means of sterilization, insect disinfestation, delayed senescence and ripening, and sprout inhibition. This paper discusses the U.S. Department of Energy Beneficial Uses Program research and engineering history, as well as current activities and future plans, relating to both sewage sludge and food irradiation. (author)

  4. Environmental application of cesium-137 irradiation technology: Sludges and foods

    Science.gov (United States)

    Sivinski, Jacek S.

    Several activities have been undertaken to investigate and implement the use of the military byproduct cesium-137 in ways which benefit mankind. Gamma radiation from cesium-137 has been shown to be effective in reducing pathogens in sewage sludge to levels where reuse of the material in public areas meets current regulatory criteria for protection of public health. Food irradiation at doses of 10 kGy or less have been found by international expert committees to be wholesome and safe for human consumption. Cesium-137 can be used as a means of enhancing particular properties of various food commodities by means of sterilization, insect disinfestation, delayed senescence and ripening, and sprout inhibition. This paper discusses the U.S. Department of Energy Beneficial Uses Program research and engineering history, as well as current activities and future plans, relating to both sewage sludge and food irradiation.

  5. Tungstate-based glass-ceramics for the immobilization of radio cesium

    Science.gov (United States)

    Drabarek, Elizabeth; McLeod, Terry I.; Hanna, John V.; Griffith, Christopher S.; Luca, Vittorio

    2009-02-01

    The preparation of tungstate-containing glass-ceramic composites (GCC) for the potential immobilization of radio cesium has been considered. The GCC materials were prepared by blending two oxide precursor compositions in various proportions. These included a preformed Cs-containing hexagonal tungsten bronze (HTB) phase (Cs 0.3Ti 0.2W 0.8O 3, P6 3/ mcm) and a blend of silica and other oxides. The use of the HTB phase was motivated on the assumption that a HTB-based adsorbent could be used to remove cesium directly from aqueous high level liquid waste feeds. In the absence of the HTB, glass-ceramics were relatively easily prepared from the Cs-containing glass-forming oxide blend. On melting the mixture a relative complex GCC phase assemblage formed. The principal components of this phase assemblage were determined using X-ray powder diffraction, 133Cs MAS-NMR, and cross-sectional SEM and included glass, various zeolites, scheelite (CaWO 4) and a range of other oxide phases and Cs-containing aluminosilicate. Importantly, under no circumstance was cesium partitioned into the glass phase irrespective of whether or not the composition included the preformed Cs-containing HTB compound. For compositions containing the HTB, cesium was partitioned into one of four major phases including zeolite; Cs-silica-tungstate bronze, pollucite (CsAlSi 2O 6), and an aluminosilicate with an Al/Si ratio close to one. The leach resistance of all materials was evaluated and related to the cesium distribution within the GCC phase assemblages. In general, the GCCs prepared from the HTB had superior durability compared with materials not containing tungsten. Indeed the compositions in many cases had leach resistances comparable to the best ceramics or glass materials.

  6. SIMS diagnostics of nanometer semiconductor structures with the use of cesium ions

    International Nuclear Information System (INIS)

    Pustovit, A.N.; Vyatkin, A.F.

    2006-01-01

    The modernization of cesium ion source was carried out to increase the lifetime, the power range of primary ions and temporary stability of primary ion beam. The elements depth profiles obtained with the help of primary cesium ions and primary iodine ions are in good agreement with transmission electron microscopy data [ru

  7. Transition of cesium in food chains [after Chernobyl catastrophe

    International Nuclear Information System (INIS)

    Procházka, H.; Brunclík, T.; Jandl, J.; Jirásek, V.; Novosad, J.; Hampl, J.

    1990-01-01

    An investigation of 25,000 samples of foodstuffs and feedstuffs in Czechoslovakia, contaminated by fall-out cesium after the accident in the Chernobyl nuclear power plant, performed from May 5, 1986 to March 31, 1988, revealed that both the values of cesium transfer-factors in food--animal tissues--milk transitions and the values of biological half-life of cesium are functions of internal and external conditions of contamination. Organism individuality as the main internal condition causes the variance of about +/- 50% of the mean value of the respective transfer-factor. Through the external conditions, mainly the environmental contamination level, type of ingested food and time of ingestion, the mean values of transfer-factors are influenced up to 500%, e.g. to the value of 0.5. But this value converges with growing up contamination of food and environment to the limit of 0.3. The first two to three biological half-lives after the last ingestion of contaminated food are up to ten-times shorter than those at stabilized state

  8. Ion-exchange properties of cesium and strontium into zeolites from sodium salt solutions

    International Nuclear Information System (INIS)

    Kanno, Takuji; Hashimoto, Hiroyuki; Ohtani, Tozo.

    1978-01-01

    The ion-exchange properties of cesium and strontium into zeolite from sodium salt solution has been studied in zeolite A, zeolite X, zeolite Y, mordenite and clinoptilolite. The distribution of cesium into mordenite from about 1 -- 2 M sodium chloride and sodium hydroxide solutions is considerably larger than that into zeolite A. The distribution coefficient for 2 M solution of sodium salts was about 300. Therefore, the separation of cesium from sodium salt solution is possible by using mordenite. The distribution of strontium into zeolites form 1 -- 2 M solutions of sodium chloride and sodium nitrate were in the order of zeolite A>zeolite X>zeolite Y asymptoticaly equals mordenite. The distribution coefficient of 230 was obtained for 1 M solutions of sodium salts. The anion in solutions had no effect on the distribution of cesium and strontium into zeolite from sodium salt solution. (author)

  9. Validation and Application of Concentrated Cesium Eluate Physical Property Models

    International Nuclear Information System (INIS)

    Choi, A.S.

    2004-01-01

    This work contained two objectives. To verify the mathematical equations developed for the physical properties of concentrated cesium eluate solutions against experimental test results obtained with simulated feeds. To estimate the physical properties of the radioactive AW-101 cesium eluate at saturation using the validated models. The Hanford River Protection Project (RPP) Hanford Waste Treatment and Immobilization Plant (WTP) is currently being built to extract radioisotopes from the vast inventory of Hanford tank wastes and immobilize them in a silicate glass matrix for eventual disposal at a geological repository. The baseline flowsheet for the pretreatment of supernatant liquid wastes includes removal of cesium using regenerative ion-exchange resins. The loaded cesium ion-exchange columns will be eluted with nitric acid nominally at 0.5 molar, and the resulting eluate solution will be concentrated in a forced-convection evaporator to reduce the storage volume and to recover the acid for reuse. The reboiler pot is initially charged with a concentrated nitric acid solution and kept under a controlled vacuum during feeding so the pot contents would boil at 50 degrees Celsius. The liquid level in the pot is maintained constant by controlling both the feed and boilup rates. The feeding will continue with no bottom removal until the solution in the pot reaches the target endpoint of 80 per cent saturation with respect to any one of the major salt species present

  10. Scaling of an Optically Pumped Mid-Infrared Rubidium Laser

    Science.gov (United States)

    2015-03-26

    beam, and the saturation intensity, Isat , was calculated using Equation 4.6: = ℎ( + ) , (6) where h is the...4.91 mm2, the intensity of the laser at a pump energy of 0.05 mJ was 10.2 mW/cm2. Thus I/ Isat ~ 290, so ∆νsat should have been about 17 times... Isat ~ 5796, so ∆νsat should have been about 76∆νD, in reasonable agreement with the experimental result of 53∆νD. Rb Laser Output Energy vs. Pump

  11. Optically pumped FIR lasers and their application in plasma diagnostics

    International Nuclear Information System (INIS)

    Bakos, J.S.

    1986-06-01

    The pysics and the construction of the far infrared lasers (FIRL) and of the infrared lasers pumping them are reviewed. The details of the construction, resonating and pumping systems, spectral and power characteristics of the FIRLs are discussed. Recently more than 1000 laser lines are known and used in the 27-80 mm wavelength range, but in many cases the laser kinetics are not fully understood, and some instability phenomena cannot be prevented. New nonlinear processes were found: two-photon pumping, hyper Raman laser tuning and relaxation phenomena. A broad application field, the plasma diagnostics by far infrared lasers is described. Scattering of infrared laser radiation can give new interesting information on the not understood effect of the anomalous transport in the high temperature plasma. (D.Gy.)

  12. Optical gain in colloidal quantum dots achieved with direct-current electrical pumping

    Science.gov (United States)

    Lim, Jaehoon; Park, Young-Shin; Klimov, Victor I.

    2018-01-01

    Chemically synthesized semiconductor quantum dots (QDs) can potentially enable solution-processable laser diodes with a wide range of operational wavelengths, yet demonstrations of lasing from the QDs are still at the laboratory stage. An important challenge--realization of lasing with electrical injection--remains unresolved, largely due to fast nonradiative Auger recombination of multicarrier states that represent gain-active species in the QDs. Here we present population inversion and optical gain in colloidal nanocrystals realized with direct-current electrical pumping. Using continuously graded QDs, we achieve a considerable suppression of Auger decay such that it can be outpaced by electrical injection. Further, we apply a special current-focusing device architecture, which allows us to produce high current densities (j) up to ~18 A cm-2 without damaging either the QDs or the injection layers. The quantitative analysis of electroluminescence and current-modulated transmission spectra indicates that with j = 3-4 A cm-2 we achieve the population inversion of the band-edge states.

  13. Carrier dynamics in silicon nanowires studied using optical-pump terahertz-probe spectroscopy

    Science.gov (United States)

    Beaudoin, Alexandre; Salem, Bassem; Baron, Thierry; Gentile, Pascal; Morris, Denis

    2014-03-01

    The advance of non-contact measurements involving pulsed terahertz radiation presents great interests for characterizing electrical properties of a large ensemble of nanowires. In this work, N-doped and undoped silicon nanowires (SiNWs) grown by chemical vapour deposition (CVD) on quartz substrate were characterized using optical-pump terahertz probe (OPTP) transmission experiments. Our results show that defects and ionized impurities introduced by N-doping the CVD-grown SiNWs tend to reduce the photoexcited carrier lifetime and degrade their conductivity properties. Capture mechanisms by the surface trap states play a key role on the photocarrier dynamics in theses small diameters' (~100 nm) SiNWs and the doping level is found to alter this dynamics. We propose convincing capture and recombination scenarios that explain our OPTP measurements. Fits of our photoconductivity data curves, from 0.5 to 2 THz, using a Drude-plasmon conductivity model allow determining photocarrier mobility values of 190 and 70 cm2/V .s, for the undoped and N-doped NWs samples, respectively.

  14. Kinetics of 137cesium in cerebral structures and blood

    International Nuclear Information System (INIS)

    Ribas, B.; Gonzalez, M.D.; Rio, J. del; Reus, M.I.S.; Gonzalez-Baron, M.

    1987-01-01

    The old clinical use of cesium in epilepsy expresses a relation of this metal with the central nervous system. Two groups of male Wistar rats of 200 g were administered single doses of 50μCi intravenously for blood kinetics and 2μCi 137 CsCl in each lateral ventricle of the brain for the kinetics in the cerebral structures, respectively. In both cases under ether anesthesia. Blood samples of IV gouts were weighed, and cerebral structure hypothalamus, hypocampus, striatum, cortex, cerebellum, mesencephalon and medulla oblongata dissected, cleaned, washed, dried, weighed, and in both cases cpm of the samples evaluated submitting it to the gamma radiations detector. In both experimental values of the 137 CsCl kinetics are expressed and applying the retroprojection method; parameters and constants are obtained. tsub(1/2) alpha = 0.0358 h and tsub(1/2) beta = 6.7159 h. In tables the equations of the alpha and beta phases are expressed. In blood after the rapid diminution of the radioactivity in the first 5 min the equilibrium phase is reached in 30 min afterwards, and the values remain almost the same 4 h after the injection and cesium is slowly eliminated by the rat. Cerebral structures after its intracerebroventricular application show that cesium has a great uptake velocity, it is rapidly incorporated by hypothalamus and after by cortex, hypocampus, striatum, mesencephalon and medulla oblongata, the two last showing the slower incorporation. After 24 h the cesium radioactivity declines slowly and progressively. (author)

  15. Direct pumping of ultrashort Ti:sapphire lasers by a frequency doubled diode laser

    DEFF Research Database (Denmark)

    Müller, André; Jensen, Ole Bjarlin; Unterhuber, Angelika

    2011-01-01

    electro-optical efficiency of the diode laser. Autocorrelation measurements show that pulse widths of less than 20 fs can be expected with an average power of 52 mW when using our laser. These results indicate the high potential of direct diode laser pumped Ti: sapphire lasers to be used in applications....... When using our diode laser system, the optical conversion efficiencies from green to near-infrared light reduces to 75 % of the values achieved with the commercial pump laser. Despite this reduction the overall efficiency of the Ti: sapphire laser is still increased by a factor > 2 due to the superior...... like retinal optical coherence tomography (OCT) or pumping of photonic crystal fibers for CARS (coherent anti-stokes Raman spectroscopy) microscopy....

  16. Efficient diode-pumped Tm:KYW 1.9-μm microchip laser with 1 W cw output power.

    Science.gov (United States)

    Gaponenko, Maxim; Kuleshov, Nikolay; Südmeyer, Thomas

    2014-05-19

    We report on a diode-pumped Tm:KYW microchip laser generating 1 W continuous-wave output power. The laser operates at a wavelength of 1.94 μm in the fundamental TEM(00) mode with 71% slope efficiency relative to the absorbed pump radiation and 59% slope efficiency relative to the incident pump radiation. The optical-to-optical laser efficiency is 43%.

  17. Efficient diode-pumped Tm:KYW 1.9-μm microchip laser with 1 W cw output power

    OpenAIRE

    Gaponenko, M. S.; Kuleshov, N. V.; Südmeyer, T.

    2014-01-01

    We report on a diode-pumped Tm:KYW microchip laser generating 1 W continuous-wave output power. The laser operates at a wavelength of 1.94 μm in the fundamental TEM00 mode with 71% slope efficiency relative to the absorbed pump radiation and 59% slope efficiency relative to the incident pump radiation. The optical-to-optical laser efficiency is 43%.

  18. Release and transport of fission product cesium in the TMI-2 accident

    International Nuclear Information System (INIS)

    Lorenz, R.A.; Collins, J.L.

    1986-01-01

    Approximately 50% of the fission product cesium was released from the overheated UO 2 fuel in the TMI-2 accident. Steam that boiled away from a water pool in the bottom of the reactor vessel transported the released fission products throughout the reactor coolant system (RCS). Some fission products passed directly through a leaking valve with steam and water into the containment structure, but most deposited on dry surfaces inside of the RCS before being dissolved or resuspended when the RCS was refilled with water. A cesium transport model was developed that extended measured cesium in the RCS back to the first day of the accident. The model revealed that ∼62% of the released 137 Cs deposited on dry surfaces inside of the RCS before being slowly leached and transported out of the RCS in leaked or letdown water. The leach rates from the model agreed reasonably well with those measured in the laboratory. The chemical behavior of cesium in the TMI-2 accident agreed with that observed in fission product release tests at Oak Ridge National Laboratory (ORNL)

  19. Studies on synthesis of some composites and their uses for cesium separation

    International Nuclear Information System (INIS)

    Someda, H.H.; El-Zahhar, A.A.; Shehata, M.K.K.; El-Naggar, H.A.

    2002-01-01

    In this study some composite sorbents were prepared by supporting hexacyanoferrate complexes of some transition metals like Co, Ni, Fe and Zn on some different solid supports e.g. cellulose and other natural materials as wood powder. These composites were used for cesium sorption and showed that the highest sorption capacity is for zinc composite and the lowest is for cobalt composite. Also the factors affecting the sorption capacity like acid concentration, competing ions and cesium ion concentration were studied. The release of the sorbed cesium from the composite materials was also studied under different concentrations of different solutions like sodium nitrate, silver nitrate, ammonium nitrate and a mixture of ammonium nitrate and silver nitrate solutions

  20. Use of cesium-137 methodology in the evaluation of superficial erosive processes

    International Nuclear Information System (INIS)

    Andrello, Avacir Casanova; Appoloni, Carlos Roberto; Guimaraes, Maria de Fatima; Nascimento Filho, Virgilio Franco do

    2003-01-01

    Superficial erosion is one of the main soil degradation agents and erosion rates estimations for different edaphic climate conditions for the conventional models, as USLE and RUSLE, are expensive and time-consuming. The use of cesium- 137 anthropogenic radionuclide is a new methodology that has been much studied and its application in the erosion soil evaluation has grown in countries as USA, UK, Australia and others. A brief narration of this methodology is being presented, as the development of the equations utilized for the erosion rates quantification through the cesium- 137 measurements. Two watersheds studied in Brazil have shown that the cesium- 137 methodology was practicable and coherent with the survey in field for applications in erosion studies. (author)

  1. Distribution of plutonium and cesium in alluvial soils of the Los Alamos environs

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Miera, F.R. Jr.; Peters, R.J.

    1976-01-01

    The alluvial soils of three liquid waste disposal areas at Los Alamos were sampled to determine plutonium and cesium distributional relationships and correlations with soil physical-chemical properties. Radionuclide concentrations were determined for soil samples as a function of soil depth and distance from the waste outfall. The cesium-plutonium data were correlated with levels of organic carbon, carbonates, exchangeable and water-soluble cations, pH, cation exchange capacity, bulk density, surface area and geometric particle size of these soils. The distribution patterns of soil plutonium and cesium were also compared to the waste use history of the three study areas

  2. Adsorption of iodine and cesium onto some cement materials

    Energy Technology Data Exchange (ETDEWEB)

    Mine, Tatsuya [Mitsui Shipbuilding and Engineering Co. Ltd., Tokyo (Japan); Mihara, Morihiro; Ito, Masaru [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works; Kato, Hiroshige [IDC, Tokai, Ibaraki (Japan)

    1997-06-01

    Cement materials, being expected to be used in structural materials in underground disposals of radioactive wastes, may adsorb nuclides resulting in retardation of their migration in environment. In this report adsorption behaviors of cement pastes toward iodine (as anion) and cesium (as cation) were studied. Adsorption of iodine was remarkable for OPC and MHP pastes that are known to have high molar ratio CaO/SiO{sub 2}, partition coefficient being 100 ml/g for initial tracer concentration of 10{sup -5} mol/l. Partition coefficient for cesium for PFA paste was found to be 5 ml/g on average. (S. Ohno)

  3. Adsorption of iodine and cesium onto some cement materials

    International Nuclear Information System (INIS)

    Mine, Tatsuya; Mihara, Morihiro; Ito, Masaru

    1997-06-01

    Cement materials, being expected to be used in structural materials in underground disposals of radioactive wastes, may adsorb nuclides resulting in retardation of their migration in environment. In this report adsorption behaviors of cement pastes toward iodine (as anion) and cesium (as cation) were studied. Adsorption of iodine was remarkable for OPC and MHP pastes that are known to have high molar ratio CaO/SiO 2 , partition coefficient being 100 ml/g for initial tracer concentration of 10 -5 mol/l. Partition coefficient for cesium for PFA paste was found to be 5 ml/g on average. (S. Ohno)

  4. Efficiency of Dry (Psidium guava) Leaves for The Removal of Cesium-137 from Aqueous Solutions

    International Nuclear Information System (INIS)

    Omar, H.A.; Abu-Kharda, S.A.; Abd El -Baset, L.A.; Abu-Shohba, R.M.

    2012-01-01

    Batch experiments for the removal of cesium-137 from aqueous solution onto guava leaves (psidium guava) and carbonized guava leaves were studied as a function of contact time, dosage, ph value and initial concentration ion. The sorption process was described by pseudo first-order, pseudo second-order, Morris and Elovich kinetic models. Cesium concentrations were ranged between 2x10 -5 - 1x10 -3 M. Sorption data have been interpreted in terms of Langmuir, Freundlich and Dubinin-Radushkevich isotherms. The maximum sorption capacity of carbonized guava leaves adsorbent for cesium removal was 8.02 mgg -1 . The results of the present study suggest that carbonized guava leaves can be used beneficially for cesium removal from aqueous solution.

  5. Caustic-Side Solvent Extraction: Prediction of Cesium Extraction from Actual Wastes and Actual Waste Simulants

    International Nuclear Information System (INIS)

    Delmau, L.H.; Haverlock, T.J.; Sloop, F.V. Jr.; Moyer, B.A.

    2003-01-01

    This report presents the work that followed the CSSX model development completed in FY2002. The developed cesium and potassium extraction model was based on extraction data obtained from simple aqueous media. It was tested to ensure the validity of the prediction for the cesium extraction from actual waste. Compositions of the actual tank waste were obtained from the Savannah River Site personnel and were used to prepare defined simulants and to predict cesium distribution ratios using the model. It was therefore possible to compare the cesium distribution ratios obtained from the actual waste, the simulant, and the predicted values. It was determined that the predicted values agree with the measured values for the simulants. Predicted values also agreed, with three exceptions, with measured values for the tank wastes. Discrepancies were attributed in part to the uncertainty in the cation/anion balance in the actual waste composition, but likely more so to the uncertainty in the potassium concentration in the waste, given the demonstrated large competing effect of this metal on cesium extraction. It was demonstrated that the upper limit for the potassium concentration in the feed ought to not exceed 0.05 M in order to maintain suitable cesium distribution ratios

  6. Multiphoton ionization of atomic cesium

    International Nuclear Information System (INIS)

    Compton, R.N.; Klots, C.E.; Stockdale, J.A.D.; Cooper, C.D.

    1984-01-01

    We describe experimental studies of resonantly enhanced multi-photon ionization (MPI) of cesium atoms in the presence and absence of an external electric field. In the zero-field studies, photo-electron angular distributions for one- and two-photon resonantly enhanced MPI are compared with the theory of Tang and Lambropoulos. Deviations of experiment from theory are attributed to hyperfine coupling effects in the resonant intermediate state. The agreement between theory and experiment is excellent. In the absence of an external electric field, signal due to two-photon resonant three-photon ionization of cesium via np states is undetectable. Application of an electric field mixes nearby nd and ns levels, thereby inducing excitation and subsequent ionization. Signal due to two-photon excitation of ns levels in field-free experiments is weak due to their small photoionization cross section. An electric field mixes nearby np levels which again allows detectable photo-ionization signal. For both ns and np states the ''field induced'' MPI signal increases as the square of the electric field for a given principal quantum number and increases rapidly with n for a given field strength

  7. Strontium-90 and cesium-137 in freshwater (from September, 1982, to December, 1982)

    International Nuclear Information System (INIS)

    1982-01-01

    Strontium-90 and cesium-137 in fresh water measured at 4 locations across Japan from September to December, 1982, are given in pCi/l, respectively. The methods of the collection and pretreatment of samples, the preparation of samples for analysis, the separation of strontium-90 and cesium-137, and the counting are also described. The sample was passed through a cation exchange column. Strontium and cesium were eluted with hydrochloric acid from the cation exchange column. The sample solution prepared was neutralized with sodium hydroxide. After sodium carbonate was added, the precipitate of strontium and calcium carbonates was separated. The supernatant solution was retained for cesium-137 determination. After the radiochemical separation, the mounted precipitate was counted for activity using a low background beta counter normally for 60 min. The radioactivity ranged 0.08 to 0.22 pCi/l for Sr-90 and 0.003 to 0.020 pCi/l for Cs-137 in the freshwater. (J.P.N.)

  8. Metabolism of {sup 137}cesium, {sup 137}barium in the rat. Therapeutics of the contamination; Metabolisme du {sup 137}cesium, {sup 137}baryum chez le rat. Therapeutique de la contamination

    Energy Technology Data Exchange (ETDEWEB)

    Remy, J; Philippon, A; Lafuma, J; Walter, C [Commissariat a l' Energie Atomique, 92 - Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires. Departement de la Protection Sanitaire, Laboratoire de Radiopathologie

    1967-07-01

    The authors carry out research into the distribution kinetics, the metabolism and the excretion of {sup 137}Cs - {sup 137}Ba in the rat. They show that these phenomena are independent of the method of applying a single dose. The distribution tends to adopt in all cases a typical shape which remains the same depending on the body burden. Biological analysis of the state of the cesium in the biological media shows that it is transported in the free and ionised form. Considering the problem of the method of penetration of the cesium ion in the intracellular medium, and in particular by the in vivo and in vitro kinetic study of the plasma - red cell system, the authors make the assumption that an active transport of cesium occurs by the cell membrane. They thus arrive at an overall picture of the cesium distribution in the organism which is essentially characterized by a dynamic distribution equilibrium between two compartments: 99 per cent of the cesium accumulates in the intracellular pool, 1 per cent in the extracellular liquids. This latter compartment is open to the emunctories. Because, of the active transport by the cell membranes, the intracellular pool is filled rapidly but discharge is slow. This phenomenon is the limiting factor in the decrease of the body burden. From this representation, the authors deduce the reasons for the relative failure of the various therapeutic methods examined up till now by themselves or by other authors. The stimulation of the natural emunctories in the case of diuretics for example, can only improve the purification of the extracellular compartment. Now this latter contains only 1 per cent of the body burden and recharging is slow. Furthermore the methods designed to counteract or inhibit the active transport of cesium by the cell membrane are still at the present time incompatible with the survival of the cell. (authors) [French] Les auteurs etudient experimentalement la cinetique de distribution, le metabolisme et l

  9. Metabolism of {sup 137}cesium, {sup 137}barium in the rat. Therapeutics of the contamination; Metabolisme du {sup 137}cesium, {sup 137}baryum chez le rat. Therapeutique de la contamination

    Energy Technology Data Exchange (ETDEWEB)

    Remy, J.; Philippon, A.; Lafuma, J.; Walter, C. [Commissariat a l' Energie Atomique, 92 - Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires. Departement de la Protection Sanitaire, Laboratoire de Radiopathologie

    1967-07-01

    The authors carry out research into the distribution kinetics, the metabolism and the excretion of {sup 137}Cs - {sup 137}Ba in the rat. They show that these phenomena are independent of the method of applying a single dose. The distribution tends to adopt in all cases a typical shape which remains the same depending on the body burden. Biological analysis of the state of the cesium in the biological media shows that it is transported in the free and ionised form. Considering the problem of the method of penetration of the cesium ion in the intracellular medium, and in particular by the in vivo and in vitro kinetic study of the plasma - red cell system, the authors make the assumption that an active transport of cesium occurs by the cell membrane. They thus arrive at an overall picture of the cesium distribution in the organism which is essentially characterized by a dynamic distribution equilibrium between two compartments: 99 per cent of the cesium accumulates in the intracellular pool, 1 per cent in the extracellular liquids. This latter compartment is open to the emunctories. Because, of the active transport by the cell membranes, the intracellular pool is filled rapidly but discharge is slow. This phenomenon is the limiting factor in the decrease of the body burden. From this representation, the authors deduce the reasons for the relative failure of the various therapeutic methods examined up till now by themselves or by other authors. The stimulation of the natural emunctories in the case of diuretics for example, can only improve the purification of the extracellular compartment. Now this latter contains only 1 per cent of the body burden and recharging is slow. Furthermore the methods designed to counteract or inhibit the active transport of cesium by the cell membrane are still at the present time incompatible with the survival of the cell. (authors) [French] Les auteurs etudient experimentalement la cinetique de distribution, le metabolisme et l

  10. Diode-laser-pumped high efficiency continuous-wave operation at 912 nm laser in Nd:GdVO4 crystal

    International Nuclear Information System (INIS)

    Yu, X; Chen, F; Gao, J; Li, X D; Yan, R P; Zhang, K; Yu, J H; Zhang, Z H

    2009-01-01

    High efficiency operation on continuous-wave (cw) 912 nm laser at room temperature in Nd:GdVO 4 crystal pumped by 808 nm diode-laser is reported in this letter. The maximum output power of 8.0 W was obtained at the incident un-polarized pump power of 47.0 W, giving the corresponding optical-to-optical conversion efficiency of 17.0% and the average slope efficiency of 22.9%. Further tests show that the lasing threshold is reduced and the efficiency is increased evidently when using the π-polarized 808 nm pump source. 4.8 W 912 nm laser was achieved at the polarized pump power of 21.8 W, optical-to-optical conversion efficiency is increased to 22.0% and average slope efficiency is up to 33.6%

  11. Therapeutic effects of cesium-137 radiation in head and neck malignancy

    International Nuclear Information System (INIS)

    Lee, J.W.

    1978-01-01

    In radiation therapy, many fundamental physical and biological facts and theories must be applied in order to establish a scientific level of practice. There is a voluminous amount of information pertaining to these matters. Cesium-137 is a radioactive nuclide available as a fission product from nuclear reactions. Cesium-137 emits gamma rays at 0.663 MeV. Its half life of about 30 years is an advantage over that of cobalt-60, but cesium-137 is lower, and the specific activity is much less. Author has clinically observed of 150 cases of cesium-137 therapy on head and neck malignancies from Jan. 1971 to Oct. 1978. The following results were observed: 1) Age distribution showed predilection in fifth and decades and sex ratio revealed higher in male than female about 4 times. 2) Laryngeal cancer (34%) maxillary cancer (20.7%) and tongue cancer (12%) occupied high incidence in classification of disease. 3) The cases of radiation only therapeutic group (5000-7000 rad) revealed 61 cases (41.2%) and pre and post operative radiation group (1000-3000 rad) revealed 36 cases (24.3%). 4) In combined therapy (60 cases) arterial infusion group revealed 29 cases and 10 cases of operative group, 11 cases of well prognostic group respectively. (author)

  12. Immobilisation of radio cesium loaded ammonium molybdo phosphate in glass matrices

    International Nuclear Information System (INIS)

    Yalmali, Vrunda S.; Singh, I.J.; Sathi Sasidharan, N.; Deshingkar, D.S.

    2004-11-01

    Long half life and easy availability from high level wastes make 137 Cesium most economical radiation source. High level liquid waste processing for 137 Cesium removal has become easier due to development of Cesium specific granulated ammonium molybdophosphate (AMP) composite. In such applications, resulting spent composite AMP itself represents high active solid waste and immobilization of these materials in cement may not be acceptable. Studies on immobilization of 137 Cs loaded AMP were taken up in order to achieve twin goals of increasing safety and minimizing processing costs of the final matrix. Studies indicated that phosphate modified sodium borosilicate SPNM glasses prepared under usual oxidizing conditions are not suitable for immobilization of 137 Cs loaded on AMP .Phosphate glasses containing Na 2 O, P 2 O 5 , B 2 O 3 , Fe 2 O 3 , Al 2 O 3 and SiO 2 as major constituents are capable of incorporating 6 to 8 % AMP. The Normalized Leach rates of these glasses for sodium, cesium, boron and silica are 10 -4 to 10 -6 gm/cm 2 /day which are comparable to or better than those reported for NBS glasses incorporating HLW. Homogeneity of the final matrix was confirmed by x-ray diffraction analysis. Further studies on characterization of these glasses would establish their acceptability. (author)

  13. Strontium-90 and cesium-137 in freshwater from May 1984

    International Nuclear Information System (INIS)

    1984-01-01

    Strontium-90 and cesium-137 in freshwater measured in May 1984 are given in pCi/l. The sampling point is 1, Kasumigaura-Lake (Ibaraki). Collection and pretreatment of samples, preparation of samples for analysis, separation of strontium-90 and cesium-137, determination of stable strontium, calcium and potassium, and counting are described. The sample was passed through a cation exchange column. After the radiochemical separation, the mounted precipitates were counted for activity using low background beta counters normally for 60 minutes. (Mori, K.)

  14. High-efficiency, 154  W CW, diode-pumped Raman fiber laser with brightness enhancement.

    Science.gov (United States)

    Glick, Yaakov; Fromzel, Viktor; Zhang, Jun; Ter-Gabrielyan, Nikolay; Dubinskii, Mark

    2017-01-20

    We demonstrate a high-power, high-efficiency Raman fiber laser pumped directly by laser diode modules at 978 nm. 154 W of CW power were obtained at a wavelength of 1023 nm with an optical to optical efficiency of 65%. A commercial graded-index (GRIN) core fiber acts as the Raman fiber in a power oscillator configuration, which includes spectral selection to prevent generation of the second Stokes. In addition, brightness enhancement of the pump beam by a factor of 8.4 is attained due to the Raman gain distribution profile in the GRIN fiber. To the best of our knowledge this is the highest power and highest efficiency Raman fiber laser demonstrated in any configuration allowing brightness enhancement (i.e., in either cladding-pumped configuration or with GRIN fibers, excluding step-index core pumped), regardless of pumping scheme (i.e., either diode pumped or fiber laser pumped).

  15. Development of diode-pumped solid-state laser HALNA for fusion reactor driver

    International Nuclear Information System (INIS)

    Kawashima, Toshiyuki; Kanabe, Tadashi; Matsumoto, Osamu

    2005-01-01

    The diode-pumped slab laser for inertial fusion energy driver has been demonstrated, which produces the 1053-nm output energy of 10 J at 10 Hz. The glass slab laser amplifier has been pumped by quasi-CW 290 kW AlGaAs laser-diode arrays at 803 nm. The optical system can compensate for thermal effects by use of zig-zag optical propagation, image-relayed telescope, and 45deg Faraday rotator. The output energy of 10.6 J at 1 Hz with the optical to optical conversion efficiency of 19.9% has been successfully obtained. Also the 10 Hz operation has been performed with a 5.1 J output energy. (author)

  16. Modeling approach to various time and spatial scale environmental issues in Fukushima. Related to radioactive cesium migration in aquatic systems

    International Nuclear Information System (INIS)

    Kurikami, Hiroshi; Kitamura, Akihiro; Yamada, Susumu; Machida, Masahiko

    2015-01-01

    Several numerical models have been prepared to deal with various time- and spatial-scale issues related to radioactive cesium migration in environment in Fukushima area. The SACT (Soil and Cesium Transport) model developed by the Japan Atomic Energy Agency (JAEA) predicts middle- to long-term evolution of radioactive cesium distribution due to soil erosion, subsequent sediment transport and deposition, and radioactive cesium migration based on the Universal Soil Loss Equation (USLE). The TODAM (Time-dependent One-dimensional Degradation and Migration) model, iRIC/Nays2D and the FLESCOT (Flow, Energy, Salinity, Sediment, Contaminant Transport) model are one-, two- and three-dimensional river/reservoir/coastal models, respectively. Based on conservation equations of sediment and radioactive cesium, they treat advection and diffusion of suspended sediment and cesium, deposition of sediment to bed, re-suspension from bed and adsorption/desorption of radioactive cesium. These models are suitable for small and short time scale issues such as high discharges of sediment and radioactive cesium from rivers due to heavy rainfall events. This paper describes fragments of the JAEA’s approaches of modeling to deal with the issues corresponding to radioactive cesium migration in environment with some case studies. (author)

  17. Test procedures and instructions for single shell tank saltcake cesium removal with crystalline silicotitanate

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, J.B.

    1997-01-07

    This document provides specific test procedures and instructions to implement the test plan for the preparation and conduct of a cesium removal test, using Hanford Single Shell Tank Saltcake from tanks 24 t -BY- I 10, 24 1 -U- 108, 24 1 -U- 109, 24 1 -A- I 0 1, and 24 t - S-102, in a bench-scale column. The cesium sorbent to be tested is crystalline siticotitanate. The test plan for which this provides instructions is WHC-SD-RE-TP-024, Hanford Single Shell Tank Saltcake Cesium Removal Test Plan.

  18. Decorporation of mixture of strontium and cesium isotopes with domestic mineral waters

    International Nuclear Information System (INIS)

    Slavov, S.; Filev, G.; Kiradzhiev, G.

    1990-01-01

    The possibilities of Bulgarian mineral waters to decorporate mixtures of strontium and cesium radioisotopes, simultaneous entering the body, were studied. A modified effect in respect to radioactive strontium was found. Modification of the effect of mixing two diferent types of mineral waters was not proven. No effect was found of potassium-containing mineral water on radioactive cesium kinetics. 1 tab., 7 refs

  19. Decontamination of Radioactive Cesium Released from Fukushima Daiichi Nuclear Power Plant - 13277

    Energy Technology Data Exchange (ETDEWEB)

    Parajuli, Durga; Minami, Kimitaka; Tanaka, Hisashi; Kawamoto, Tohru [Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology - AIST (Japan)

    2013-07-01

    Peculiar binding of Cesium to the soil clay minerals remained the major obstacle for the immediate Cs-decontamination of soil and materials containing clay minerals like sludge. Experiments for the removal of Cesium from soil and ash samples from different materials were performed in the lab scale. For soil and sludge ash formed by the incineration of municipal sewage sludge, acid treatment at high temperature is effective while washing with water removed Cesium from ashes of plants or burnable garbage. Though total removal seems a difficult task, water-washing of wood-ash or garbage-ash at 40 deg. C removes >90% radiocesium, while >60% activity can be removed from soil and sludge-ash by acid washing at 95 deg. C. (authors)

  20. Floquet Engineering of Optical Solenoids and Quantized Charge Pumping along Tailored Paths in Two-Dimensional Chern Insulators

    Science.gov (United States)

    Wang, Botao; Ünal, F. Nur; Eckardt, André

    2018-06-01

    The insertion of a local magnetic flux, as the one created by a thin solenoid, plays an important role in gedanken experiments of quantum Hall physics. By combining Floquet engineering of artificial magnetic fields with the ability of single-site addressing in quantum gas microscopes, we propose a scheme for the realization of such local solenoid-type magnetic fields in optical lattices. We show that it can be employed to manipulate and probe elementary excitations of a topological Chern insulator. This includes quantized adiabatic charge pumping along tailored paths inside the bulk, as well as the controlled population of edge modes.