WorldWideScience

Sample records for optically directed molecular

  1. Direct optical determination of interfacial transport barriers in molecular tunnel junctions.

    Science.gov (United States)

    Fereiro, Jerry A; McCreery, Richard L; Bergren, Adam Johan

    2013-07-03

    Molecular electronics seeks to build circuitry using organic components with at least one dimension in the nanoscale domain. Progress in the field has been inhibited by the difficulty in determining the energy levels of molecules after being perturbed by interactions with the conducting contacts. We measured the photocurrent spectra for large-area aliphatic and aromatic molecular tunnel junctions with partially transparent copper top contacts. Where no molecular absorption takes place, the photocurrent is dominated by internal photoemission, which exhibits energy thresholds corresponding to interfacial transport barriers, enabling their direct measurement in a functioning junction.

  2. Direct optical to microwave conversion

    Science.gov (United States)

    Taylor, Henry F.

    1990-09-01

    Support of high frequency fiber optic links through development of innovative higher efficiency techniques to convert optical energy directly to RF Energy. Control of Phases Arrays by optical means in an area of expanding technology development. Fiber optics and other forms of optical waveguide can provide greater accuracy and true time delay in a phase delay network. Methods of improvement in transfer of optical energy to RF Energy are determined. Development of Direct Optical-to-RF-Direct Amplifiers will result in higher efficiency, low noise, optical receivers for fiber optic links with improved performance. This results in longer fiber optic links without repeaters and improved BER or shorter links.

  3. DISSYMMETRY MODEL OF MOLECULAR POLARIZABILITY AND OPTICAL ACTIVITY

    Institute of Scientific and Technical Information of China (English)

    周志华; 汤杰

    1991-01-01

    Dissymmetry model of molecular polarizability divided into some layers within a sphere,some rules and sequence according to the magnitude of polarizability replaced by bond refraction for many groups have been suggested.The relationship between the dissymmetry of molecular polarizability arrounding the dissymmetric carbon atom and the direction of optical activity has been discussed .The accuracy is above 95 persent to use our model and rules to determine over 6000 compounds of optical activity.

  4. Direct UV-written integrated optical components

    DEFF Research Database (Denmark)

    Svalgaard, Mikael

    2004-01-01

    Direct UV writing is an emerging method for flexible, low cost fabrication of integrated optical waveguides and components. The performance of UV written components can be similar to that achieved with more elaborate fabrication techniques.......Direct UV writing is an emerging method for flexible, low cost fabrication of integrated optical waveguides and components. The performance of UV written components can be similar to that achieved with more elaborate fabrication techniques....

  5. Network Communication by Optical Directional Link

    Directory of Open Access Journals (Sweden)

    V. Biolkova

    1999-04-01

    Full Text Available In this article, infrared point-to-point technologies (optical directional links are discussed which are designed for digital transmissions. Optical directional links (ODLs are transparent for the SDH/ATM, FDDI-II, Ethernet, and Token Ring protocols. Depending on type, ODL ranges are 300 m, 500 m, 1000 m and 2000 m. Steady and statistical models of ODL are presented as well as the measuring ODL arrangement and the graphs concerning the fluctuations of the received signal.

  6. Molecular junctions: can pulling influence optical controllability?

    Science.gov (United States)

    Parker, Shane M; Smeu, Manuel; Franco, Ignacio; Ratner, Mark A; Seideman, Tamar

    2014-08-13

    We suggest the combination of single molecule pulling and optical control as a way to enhance control over the electron transport characteristics of a molecular junction. We demonstrate using a model junction consisting of biphenyl-dithiol coupled to gold contacts. The junction is pulled while optically manipulating the dihedral angle between the two rings. Quantum dynamics simulations show that molecular pulling enhances the degree of control over the dihedral angle and hence over the transport properties.

  7. Rigorous theory of molecular orientational nonlinear optics

    Directory of Open Access Journals (Sweden)

    Chong Hoon Kwak

    2015-01-01

    Full Text Available Classical statistical mechanics of the molecular optics theory proposed by Buckingham [A. D. Buckingham and J. A. Pople, Proc. Phys. Soc. A 68, 905 (1955] has been extended to describe the field induced molecular orientational polarization effects on nonlinear optics. In this paper, we present the generalized molecular orientational nonlinear optical processes (MONLO through the calculation of the classical orientational averaging using the Boltzmann type time-averaged orientational interaction energy in the randomly oriented molecular system under the influence of applied electric fields. The focal points of the calculation are (1 the derivation of rigorous tensorial components of the effective molecular hyperpolarizabilities, (2 the molecular orientational polarizations and the electronic polarizations including the well-known third-order dc polarization, dc electric field induced Kerr effect (dc Kerr effect, optical Kerr effect (OKE, dc electric field induced second harmonic generation (EFISH, degenerate four wave mixing (DFWM and third harmonic generation (THG. We also present some of the new predictive MONLO processes. For second-order MONLO, second-order optical rectification (SOR, Pockels effect and difference frequency generation (DFG are described in terms of the anisotropic coefficients of first hyperpolarizability. And, for third-order MONLO, third-order optical rectification (TOR, dc electric field induced difference frequency generation (EFIDFG and pump-probe transmission are presented.

  8. Optical antenna for photofunctional molecular systems.

    Science.gov (United States)

    Ikeda, Katsuyoshi; Uosaki, Kohei

    2012-02-06

    Optical antennas can enhance the efficiency of photon-molecule interactions. To design efficient antenna structures, it is essential to consider physicochemical aspects in addition to electromagnetic considerations. Specifically, chemical interactions between optical antennas and molecules have to be controlled to enhance the overall efficiency. For this purpose, sphere-plane nanostructures are suitable optical antennas for molecular-modified functional electrode systems when a well-defined electrode is utilized as a platform.

  9. Advances in atomic, molecular, and optical physics

    CERN Document Server

    Bederson, Benjamin

    1993-01-01

    Advances in Atomic, Molecular, and Optical Physics, established in 1965, continues its tradition of excellence with Volume 32, published in honor of Founding Editor Sir David Bates upon his retirement as editorof the series. This volume presents reviews of topics related to the applications of atomic and molecular physics to atmospheric physics and astrophysics.

  10. Optical Pumping of Molecular Gases

    Science.gov (United States)

    1976-04-01

    in Hg, excimer system. IV. OPTICALLY PUMPED Na Ř The details of our optical pumping studies of Na2 are presented in Appendix I. The study showed that...inversitot In IM -Second set of linesn have. tentatively been Identified ats D asid A btuu~t-sa A-band tratsitiwts termiuiatitig, oilt*n 3,4,5 for J0 TO HELIUM

  11. NAOMI: nanoparticle-assisted optical molecular imaging

    Science.gov (United States)

    Faber, Dirk J.; de Bruin, Martijn; Aalders, Maurice C. G.; Verbraak, Frank D.; van Leeuwen, Ton G.

    2007-02-01

    We present our first steps towards nanoparticle assisted, optical molecular imaging (NAOMI) using biodegradable nanoparticles. Our focus is on using optical coherence tomography(OCT) as the imaging modality. We propose to use nanoparticles based on biodegradable polymers, loaded with carefully selected dyes as contrast agent, and outline a method for establishing their desired optical properties prior to synthesis. Moreover, we perform a qualitative pilot study using these biodegradable nanoparticles, measuring their optical properties which are found to be in line with theoretical predictions.

  12. Optical models of the molecular atmosphere

    Science.gov (United States)

    Zuev, V. E.; Makushkin, Y. S.; Mitsel, A. A.; Ponomarev, Y. N.; Rudenko, V. P.; Firsov, K. M.

    1986-01-01

    The use of optical and laser methods for performing atmospheric investigations has stimulated the development of the optical models of the atmosphere. The principles of constructing the optical models of molecular atmosphere for radiation with different spectral composition (wideband, narrowband, and monochromatic) are considered in the case of linear and nonlinear absorptions. The example of the development of a system which provides for the modeling of the processes of optical-wave energy transfer in the atmosphere is presented. Its physical foundations, structure, programming software, and functioning were considered.

  13. Direct optical lithography of functional inorganic nanomaterials

    Science.gov (United States)

    Wang, Yuanyuan; Fedin, Igor; Zhang, Hao; Talapin, Dmitri V.

    2017-07-01

    Photolithography is an important manufacturing process that relies on using photoresists, typically polymer formulations, that change solubility when illuminated with ultraviolet light. Here, we introduce a general chemical approach for photoresist-free, direct optical lithography of functional inorganic nanomaterials. The patterned materials can be metals, semiconductors, oxides, magnetic, or rare earth compositions. No organic impurities are present in the patterned layers, which helps achieve good electronic and optical properties. The conductivity, carrier mobility, dielectric, and luminescence properties of optically patterned layers are on par with the properties of state-of-the-art solution-processed materials. The ability to directly pattern all-inorganic layers by using a light exposure dose comparable with that of organic photoresists provides an alternate route for thin-film device manufacturing.

  14. Optical gears in a nanophotonic directional coupler

    CERN Document Server

    Zhang, Fengchun; Zhang, Heran; Zhang, Yong; Huang, Xu-Guang; Jia, Baohua; Liu, Songhao

    2016-01-01

    Gears are rotating machines, meshing with each other by teeth to transmit torque. Interestingly, the rotating directions of two meshing gears are opposite, clockwise and counterclockwise. Although this opposite handedness motion has been widely investigated in machinery science, the analogue behavior of photons remains undiscovered. Here, we present a simple nanophotonic directional coupler structure which can generate two meshing gears of angular momentum (AM) of light, optical gears. Due to the abrupt phase shift effect and birefringence effect, the AM states of photons vary with the propagation distance in two adjacent waveguides of the coupler. Thus, by the choice of coupling length, it is able to obtain two light beams with opposite handedness of AM, confirming the appearance of optical gears. The full control in the handedness of output beams is achieved via tuning the relative phase between two orthogonal modes at the input ports. Optical gears thus offer the possibility of exploring light-matter inter...

  15. Optical dynamics of molecular aggregates

    NARCIS (Netherlands)

    de Boer, Steven

    2006-01-01

    The subject of this thesis is the spectroscopy and dynamics of molecular aggregates in amorphous matrices. Aggregates of three different molecules were studied. The molecules are depicted in Fig. (1.1). Supersaturated solutions of these molecules show aggregate formation. Aggregation is a process si

  16. Committee on Atomic, Molecular and Optical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Lancaster, James [National Academy of Sciences, Washington, DC (United States)

    2015-06-30

    The Committee on Atomic, Molecular, and Optical Sciences (CAMOS) is a standing activity of the National Research Council (NRC) that operates under the auspices of the Board on Physics and Astronomy. CAMOS is one of five standing committees of the BPA that are charged with assisting it in achieving its goals—monitoring the health of physics and astronomy, identifying important new developments at the scientific forefronts, fostering interactions with other fields, strengthening connections to technology, facilitating effective service to the nation, and enhancing education in physics. CAMOS provides these capabilities for the atomic, molecular and optical (AMO) sciences.

  17. Hybrid optical antenna with high directivity gain.

    Science.gov (United States)

    Bonakdar, Alireza; Mohseni, Hooman

    2013-08-01

    Coupling of a far-field optical mode to electronic states of a quantum absorber or emitter is a crucial process in many applications, including infrared sensors, single molecule spectroscopy, and quantum metrology. In particular, achieving high quantum efficiency for a system with a deep subwavelength quantum absorber/emitter has remained desirable. In this Letter, a hybrid optical antenna based on coupling of a photonic nanojet to a metallo-dielectric antenna is proposed, which allows such efficient coupling. A quantum efficiency of about 50% is predicted for a semiconductor with volume of ~λ³/170. Despite the weak optical absorption coefficient of 2000 cm(-1) in the long infrared wavelength of ~8 μm, very strong far-field coupling has been achieved, as evidenced by an axial directivity gain of 16 dB, which is only 3 dB below of theoretical limit. Unlike the common phased array antenna, this structure does not require coherent sources to achieve a high directivity. The quantum efficiency and directivity gain are more than an order of magnitude higher than existing metallic, dielectric, or metallo-dielectric optical antenna.

  18. Direct optical nanoscopy with axially localized detection

    CERN Document Server

    Bourg, N; Dupuis, G; Barroca, T; Bon, P; Lécart, S; Fort, E; Lévêque-Fort, S

    2014-01-01

    Evanescent light excitation is widely used in super-resolution fluorescence microscopy to confine light and reduce background noise. Herein we propose a method of exploiting evanescent light in the context of emission. When a fluorophore is located in close proximity to a medium with a higher refractive index, its near-field component is converted into light that propagates beyond the critical angle. This so-called Supercritical Angle Fluorescence (SAF) can be captured using a hig-NA objective and used to determine the axial position of the fluorophore with nanometer precision. We introduce a new technique for 3D nanoscopy that combines direct STochastic Optical Reconstruction Microscopy (dSTORM) imaging with dedicated detection of SAF emission. We demonstrate that our approach of a Direct Optical Nanoscopy with Axially Localized Detection (DONALD) yields a typical isotropic 3D localization precision of 20 nm.

  19. Advances in atomic, molecular, and optical physics

    CERN Document Server

    Walther, Herbert; Walther, Herbert

    1999-01-01

    This series, established in 1965, is concerned with recent developments in the general area of atomic, molecular, and optical physics. The field is in a state of rapid growth, as new experimental and theoretical techniques are used on many old and new problems. Topics covered also include related applied areas, such as atmospheric science, astrophysics, surface physics, and laser physics.

  20. [Hereditary optic neuropathies: clinical and molecular genetic characteristics].

    Science.gov (United States)

    Khanakova, N A; Sheremet, N L; Loginova, A N; Chukhrova, A L; Poliakov, A V

    2013-01-01

    The article presents a review of literature on hereditary optic neuropathies: Leber mitochondrial hereditary optic neuropathy, autosomal dominant and autosomal recessive optic neuropathies, X-linked optic atrophy. Clinical and molecular genetic characteristics are covered. Isolated optic neuropathies, as well as hereditary optic disorders, being a part of a complex syndromic disease are described.

  1. Axial Optical Traps: A New Direction for Optical Tweezers.

    Science.gov (United States)

    Yehoshua, Samuel; Pollari, Russell; Milstein, Joshua N

    2015-06-16

    Optical tweezers have revolutionized our understanding of the microscopic world. Axial optical tweezers, which apply force to a surface-tethered molecule by directly moving either the trap or the stage along the laser beam axis, offer several potential benefits when studying a range of novel biophysical phenomena. This geometry, although it is conceptually straightforward, suffers from aberrations that result in variation of the trap stiffness when the distance between the microscope coverslip and the trap focus is being changed. Many standard techniques, such as back-focal-plane interferometry, are difficult to employ in this geometry due to back-scattered light between the bead and the coverslip, whereas the noise inherent in a surface-tethered assay can severely limit the resolution of an experiment. Because of these complications, precision force spectroscopy measurements have adapted alternative geometries such as the highly successful dumbbell traps. In recent years, however, most of the difficulties inherent in constructing a precision axial optical tweezers have been solved. This review article aims to inform the reader about recent progress in axial optical trapping, as well as the potential for these devices to perform innovative biophysical measurements. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. NAOMI: nanoparticle assisted optical molecular imaging

    Science.gov (United States)

    Faber, Dirk J.; van Velthoven, Mirjam E. J.; de Bruin, Martijn; Aalders, Maurice C. G.; Verbraak, Frank D.; Graf, Christina; van Leeuwen, Ton G.

    2006-02-01

    Our first steps towards nanoparticle assisted, optical molecular imaging (NAOMI) using OCT as the imaging modality are presented. We derive an expression to estimate the sensitivity of this technique. We propose to use nanoparticles based on biodegradable polymers, loaded with suitable dyes as contrast agent, and outline a method for establishing their desired optical properties prior to synthesis. This report presents preliminary results of our investigation on the use of nanoshells to serve as contrast agents We injected nanoshells with specific contrast features in the 800 nm wavelength region in excised porcine eyes. The nanoshells showed up as bright reflecting structures in the OCT images, which confirm their potential as contrast agents.

  3. Electrophoretic High Molecular Weight DNA Purification Enables Optical Mapping

    Science.gov (United States)

    Maydan, Jason; Thomas, Matthew; Tabanfar, Leyla; Mai, Laura; Poon, Hau-Ling; Pe, Joel; Hahn, Kristen; Goji, Noriko; Amoako, Kingsley; Marziali, Andre; Hanson, Dan

    2013-01-01

    Optical mapping generates an ordered restriction map from single, long DNA molecules. By overlapping restriction maps from multiple molecules, a physical map of entire chromosomes and genomes is constructed, greatly facilitating genome assembly in next generation sequencing projects, comparative genomics and strain typing. However, optical mapping relies on a method of preparing high quality DNA >250 kb in length, which can be challenging from some organisms and sample types. Here we demonstrate the ability of Boreal Genomics' Aurora instrument to provide pure, high molecular weight (HMW) DNA 250-1,100 kb in length, ideally suited for optical mapping. The Aurora performs electrophoretic DNA purification within an agarose gel in reusable cartridges, protecting long DNA molecules from shearing forces associated with liquid handling steps common to other purification methods. DNA can be purified directly from intact cells embedded and lysed within an agarose gel, preserving the highest molecular weight DNA possible while achieving exceptional levels of purity. The Aurora delivers DNA in a buffer solution, where DNA can be condensed and protected from shearing during recovery with a pipette. DNA is then returned to its regular coiled state by simple dilution prior to optical mapping. Here we present images showing HMW DNA purification taking place in the Aurora and subsequent images of single DNA molecules on OpGen's Argus® Optical Mapping System. Future work will focus on further optimizing Aurora HMW DNA purification to bias DNA recovery in favor of only the longest molecules in a sample, maximizing the benefits of optical mapping.

  4. On the classical theory of molecular optical activity

    CERN Document Server

    Frolov, Alexei M

    2010-01-01

    The basic principles of classical and semi-classical theories of molecular optical activity are discussed. These theories are valid for dilute solutions of optically active organic molecules. It is shown that all phenomena known in the classical theory of molecular optical activity can be described with the use of one pseudo-scalar which is a uniform function of the incident light frequency $\\omega$. The relation between optical rotation and circular dichroism is derived from the basic Kramers-Kronig relations. In our discussion of the general theory of molecular optical activity we introduce the tensor of molecular optical activity. It is shown that to evaluate the optical rotation and circular dichroism at arbitrary frequencies one needs to know only nine (3 + 6) molecular tensors. The quantum (or semi-classical) theory of molecular optical activity is also briefly discussed. We also raise the possibility of measuring the optical rotation and circular dichroism at wavelengths which correspond to the vacuum ...

  5. Direct laser cooling Al+ ions optical clocks

    CERN Document Server

    Zhang, J; Luo, J; Lu, Z H

    2016-01-01

    Al$^+$ ions optical clock is a very promising optical frequency standard candidate due to its extremely small blackbody radiation shift. It has been successfully demonstrated with indirect cooled, quantum-logic-based spectroscopy technique. Its accuracy is limited by second-order Doppler shift, and its stability is limited by the number of ions that can be probed in quantum logic processing. We propose a direct laser cooling scheme of Al$^+$ ions optical clocks where both the stability and accuracy of the clocks are greatly improved. In the proposed scheme, two Al$^+$ ions traps are utilized. The first trap is used to trap a large number of Al$^+$ ions to improve the stability of the clock laser, while the second trap is used to trap a single Al$^+$ ions to provide the ultimate accuracy. Both traps are cooled with a continuous wave 167 nm laser. The expected clock laser stability can reach $9.0\\times10^{-17}/\\sqrt{\\tau}$. For the second trap, in addition to 167 nm laser Doppler cooling, a second stage pulsed ...

  6. Direct optical nanoscopy with axially localized detection

    Science.gov (United States)

    Bourg, N.; Mayet, C.; Dupuis, G.; Barroca, T.; Bon, P.; Lécart, S.; Fort, E.; Lévêque-Fort, S.

    2015-09-01

    Evanescent light excitation is widely used in super-resolution fluorescence microscopy to confine light and reduce background noise. Here, we propose a method of exploiting evanescent light in the context of emission. When a fluorophore is located in close proximity to a medium with a higher refractive index, its near-field component is converted into light that propagates beyond the critical angle. This so-called supercritical-angle fluorescence can be captured using a high-numerical-aperture objective and used to determine the axial position of the fluorophore with nanometre precision. We introduce a new technique for three-dimensional nanoscopy that combines direct stochastic optical reconstruction microscopy (dSTORM) with dedicated detection of supercritical-angle fluorescence emission. We demonstrate that our approach of direct optical nanoscopy with axially localized detection (DONALD) typically yields an isotropic three-dimensional localization precision of 20 nm within an axial range of ∼150 nm above the coverslip.

  7. Effect of rotational-state-dependent molecular alignment on the optical dipole force

    CERN Document Server

    Kim, Lee Yeong; Kim, Hye Ah; Kwak, Sang Kyu; Friedrich, Bretislav; Zhao, Bum Suk

    2016-01-01

    The properties of molecule-optical elements such as lenses or prisms based on the interaction of molecules with optical fields depend in a crucial way on the molecular quantum state and its alignment created by the optical field. However, in previous experimental studies, the effects of state-dependent alignment have never been included in estimates of the optical dipole force acting on the molecules while previous theoretical investigations took the state-dependent molecular alignment into account only implicitly. Herein, we consider the effects of molecular alignment explicitly and, to this end, introduce an effective polarizability which takes proper account of molecular alignment and is directly related to the alignment-dependent optical dipole force. We illustrate the significance of including molecular alignment in the optical dipole force by a trajectory study that compares previously used approximations with the present approach. The trajectory simulations were carried out for an ensemble of linear mo...

  8. Atomic, molecular, and optical physics charged particles

    CERN Document Server

    Dunning, F B

    1995-01-01

    With this volume, Methods of Experimental Physics becomes Experimental Methods in the Physical Sciences, a name change which reflects the evolution of todays science. This volume is the first of three which will provide a comprehensive treatment of the key experimental methods of atomic, molecular, and optical physics; the three volumes as a set will form an excellent experimental handbook for the field. The wide availability of tunable lasers in the pastseveral years has revolutionized the field and lead to the introduction of many new experimental methods that are covered in these volumes. Traditional methods are also included to ensure that the volumes will be a complete reference source for the field.

  9. Advances in atomic, molecular, and optical physics

    CERN Document Server

    Walther, Herbert; Walther, Herbert

    2002-01-01

    This series, established in 1965, is concerned with recent developments in the general area of atomic, molecular and optical physics. The field is in a state of rapid growth, as new experimental and theoretical techniques are used on many old and new problems. Topics covered include related applied areas, such as atmospheric science, astrophysics, surface physics and laser physics. Articles are written by distinguished experts who are active in their research fields. The articles contain both relevant review material and detailed descriptions of important recent developments.

  10. Advances in atomic, molecular, and optical physics

    CERN Document Server

    Berman, Paul R; Arimondo, Ennio

    2006-01-01

    Volume 54 of the Advances Series contains ten contributions, covering a diversity of subject areas in atomic, molecular and optical physics. The article by Regal and Jin reviews the properties of a Fermi degenerate gas of cold potassium atoms in the crossover regime between the Bose-Einstein condensation of molecules and the condensation of fermionic atom pairs. The transition between the two regions can be probed by varying an external magnetic field. Sherson, Julsgaard and Polzik explore the manner in which light and atoms can be entangled, with applications to quantum information processing

  11. Advances in atomic, molecular, and optical physics

    CERN Document Server

    Walther, Herbert; Walther, Herbert

    2000-01-01

    This series, established in 1965, is concerned with recent developments in the general area of atomic, molecular, and optical physics. The field is in a state of rapid growth, as new experimental and theoretical techniques are used on many old and new problems. Topics covered also include related applied areas, such as atmospheric science, astrophysics, surface physics, and laser physics. Articles are written by distinguished experts who are active in their research fields. The articles contain both relevant review material and detailed descriptions of important recent developments.

  12. Advances in atomic, molecular, and optical physics

    CERN Document Server

    Walther, Herbert; Walther, Herbert

    2001-01-01

    This series, established in 1965, is concerned with recent developments in the general area of atomic, molecular, and optical physics. The field is in a state of rapid growth, as new experimental and theoretical techniques are used on many old and new problems. Topics covered also include related applied areas, such as atmospheric science, astrophysics, surface physics, and laser physics. Articles are written by distinguished experts who are active in their research fields. The articles contain both relevant review material and detailed descriptions of important recent developments.

  13. Atomic, molecular, and optical physics electromagnetic radiation

    CERN Document Server

    Dunning, F B; Lucatorto, Thomas

    1997-01-01

    Combined with Volumes 29A and 29B, this volume is a comprehensive treatment of the key experimental methods of atomic, molecular, and optical physics, as well as an excellent experimental handbook for the field. Thewide availability of tunable lasers in the past several years has revolutionized the field and lead to the introduction of many new experimental methods that are covered in these volumes. Traditional methods are also included to ensure that the volumes will be a complete reference source for the field.

  14. Advances in atomic, molecular, and optical physics

    CERN Document Server

    Walther, Herbert; Walther, Herbert

    1998-01-01

    This series, established in 1965, is concerned with recent developments in the general area of atomic, molecular, and optical physics. The field is in a state of rapid growth, as new experimental and theoretical techniques are used on many old and new problems. Topics covered also include related applied areas, such as atmospheric science, astrophysics, surface physics, and laser physics. Articles are written by distinguished experts who are active in their research fields. The articles contain both relevant review material as well as detailed descriptions of important recent developments.

  15. Testglass changer for direct optical monitoring

    Science.gov (United States)

    Zoeller, A.; Hagedorn, H.; Weinrich, W.; Wirth, E.

    2011-09-01

    For the production of high performance multilayer systems with tight specifications and large numbers of layers optical monitoring is essential. Substantial progress was achieved by the introduction of direct monitoring on the rotating substrate holder. Pre production analysis by computer simulation of coating processes helps to optimise monitoring strategies and reduces the effort for expensive and time consuming test runs significantly. However not in any case we can find error compensating monitoring strategies. Also we have to deal with error accumulation effects especially with multi layer systems with large number of layers. Changing the monitor glass after the layer stack is deposited partly is a useful method to discontinue accumulation or to simplify the monitoring strategy. A testglass changer which helps to suppress error accumulation was developed and automized. The testglasses are located on the rotating substrate holder which may be a calotte or a plane substrate holder. It combines the advantages of direct monitoring with the flexibility to change testglasses in a fully automatic process. The basic principle will be described. Results of multilayer systems demonstrate the benefits of the newly developed testglass changer.

  16. Molecular recordings by directed CRISPR spacer acquisition.

    Science.gov (United States)

    Shipman, Seth L; Nivala, Jeff; Macklis, Jeffrey D; Church, George M

    2016-07-29

    The ability to write a stable record of identified molecular events into a specific genomic locus would enable the examination of long cellular histories and have many applications, ranging from developmental biology to synthetic devices. We show that the type I-E CRISPR (clustered regularly interspaced short palindromic repeats)-Cas system of Escherichia coli can mediate acquisition of defined pieces of synthetic DNA. We harnessed this feature to generate records of specific DNA sequences into a population of bacterial genomes. We then applied directed evolution so as to alter the recognition of a protospacer adjacent motif by the Cas1-Cas2 complex, which enabled recording in two modes simultaneously. We used this system to reveal aspects of spacer acquisition, fundamental to the CRISPR-Cas adaptation process. These results lay the foundations of a multimodal intracellular recording device.

  17. Broadband Optical Cooling of Molecular Rotors

    Science.gov (United States)

    Lien, Chien-Yu

    Laser cooling of atoms is a widely utilized technique in scientific research, and has been developed over more than three decades. Recently, optically controlling and manipulating the external and internal degrees of freedom of molecules has aroused wide interest in the physics and chemistry communities. However, owing to the more complicated internal structure of molecules, laser cooling of molecules is still underdeveloped. Here we demonstrate cooling the rotation of trapped molecular ions from room temperature to 4 K. The molecule of interest, AlH+, is co-trapped and sympathetically cooled with Ba+ to milliKelvin temperatures in its translational degree of freedom. The nearly diagonal Franck-Condon-Factors between the electronic X and A states of AlH+ create semi-closed cycling transitions between the vibrational ground states of X and A states. A spectrally filtered femtosecond laser is used to optically pump the population to the two lowest rotational levels, with opposite parities, in as little as 100 mus by driving the A-X transition. In addition, a cooling scheme including vibrational relaxation brings the population to the N=0positive-parity level on the order of 100 ms. The population distribution among the rotational levels is detected by resonance-enhanced multiphoton dissociation (REMPD) and time-of-flight mass-spectrometry (TOFMS). This technique opens new avenues to many further studies such as high-precision molecular quantum logic spectroscopy (mQLS) and fundamental constant measurements.

  18. Career Directions--Fiber Optic Installer

    Science.gov (United States)

    Tech Directions, 2012

    2012-01-01

    Fiber-optic communication is a method of transmitting information from one place to another by sending pulses of light through an optical fiber that is roughly the diameter of a human hair. The light forms an electromagnetic carrier wave that is modulated to carry information. Each optical fiber is capable of carrying an enormous amount of…

  19. Direct Imaging of Laser-driven Ultrafast Molecular Rotation.

    Science.gov (United States)

    Mizuse, Kenta; Fujimoto, Romu; Mizutani, Nobuo; Ohshima, Yasuhiro

    2017-02-04

    We present a method for visualizing laser-induced, ultrafast molecular rotational wave packet dynamics. We have developed a new 2-dimensional Coulomb explosion imaging setup in which a hitherto-impractical camera angle is realized. In our imaging technique, diatomic molecules are irradiated with a circularly polarized strong laser pulse. The ejected atomic ions are accelerated perpendicularly to the laser propagation. The ions lying in the laser polarization plane are selected through the use of a mechanical slit and imaged with a high-throughput, 2-dimensional detector installed parallel to the polarization plane. Because a circularly polarized (isotropic) Coulomb exploding pulse is used, the observed angular distribution of the ejected ions directly corresponds to the squared rotational wave function at the time of the pulse irradiation. To create a real-time movie of molecular rotation, the present imaging technique is combined with a femtosecond pump-probe optical setup in which the pump pulses create unidirectionally rotating molecular ensembles. Due to the high image throughput of our detection system, the pump-probe experimental condition can be easily optimized by monitoring a real-time snapshot. As a result, the quality of the observed movie is sufficiently high for visualizing the detailed wave nature of motion. We also note that the present technique can be implemented in existing standard ion imaging setups, offering a new camera angle or viewpoint for the molecular systems without the need for extensive modification.

  20. Broadband optical cooling of molecular rotors

    CERN Document Server

    Lien, Chien-Yu; Odom, Brian C

    2014-01-01

    Contrary to intuition, resonant laser excitation of bound electrons can decrease the temperature of a system, with electronic relaxation times as fast as nanoseconds allowing for rapid cooling to far below ambient temperature. Although laser cooling of atoms is routine owing to their relatively simple internal structure, laser cooling of molecular translational speeds, vibrations, or rotations is challenging because a different laser frequency is required to electronically excite each populated vibrational and rotational state. Here, we show that molecules with decoupled vibrational and electronic modes can be rotationally cooled using a single spectrally filtered broadband laser to simultaneously address many rotational states. We optically cool AlH$^+$ ions held in a room-temperature radiofrequency Paul trap to collect 96% of the population in the ground quantum state, corresponding to a rotational temperature of 4 K. In our current implementation, parity-preserving electronic cycling cools to the two lowes...

  1. Design of a directed molecular network.

    Science.gov (United States)

    Ashkenasy, Gonen; Jagasia, Reshma; Yadav, Maneesh; Ghadiri, M Reza

    2004-07-27

    An ability to rationally design complex networks from the bottom up can offer valuable quantitative model systems for use in gaining a deeper appreciation for the principles governing the self-organization and functional characteristics of complex systems. We report herein the de novo design, graph prediction, experimental analysis, and characterization of simple self-organized, nonlinear molecular networks. Our approach makes use of the sequence-dependent auto- and cross-catalytic functional characteristics of template-directed peptide fragment condensation reactions in neutral aqueous solutions. Starting with an array of 81 sequence similar 32-residue coiled-coil peptides, we estimated the relative stability difference between all plausible A(2)B-type coiled-coil ensembles and used this information to predict the auto- and cross-catalysis pathways and the resulting plausible network motif and connectivities. Similar to most complex systems, the generated graph displays clustered nodes with an overall hierarchical architecture. To test the validity of the design principles used, nine nodes composing a main segment of the graph were experimentally analyzed for their capacity in establishing the predicted network connectivity. The resulting self-organized chemical network is shown to display 25 directed edges in good agreement with the graph analysis estimations. Moreover, we show that by varying the system parameters (presence or absence of certain substrates or templates), its operating network motif can be altered, even to the extremes of turning pathways on or off. We suggest that this approach can be expanded for the construction of large-scale networks, offering a means to study and to understand better the emergent, collective behaviors of networks.

  2. Direct anharmonic correction method by molecular dynamics

    Science.gov (United States)

    Liu, Zhong-Li; Li, Rui; Zhang, Xiu-Lu; Qu, Nuo; Cai, Ling-Cang

    2017-04-01

    The quick calculation of accurate anharmonic effects of lattice vibrations is crucial to the calculations of thermodynamic properties, the construction of the multi-phase diagram and equation of states of materials, and the theoretical designs of new materials. In this paper, we proposed a direct free energy interpolation (DFEI) method based on the temperature dependent phonon density of states (TD-PDOS) reduced from molecular dynamics simulations. Using the DFEI method, after anharmonic free energy corrections we reproduced the thermal expansion coefficients, the specific heat, the thermal pressure, the isothermal bulk modulus, and the Hugoniot P- V- T relationships of Cu easily and accurately. The extensive tests on other materials including metal, alloy, semiconductor and insulator also manifest that the DFEI method can easily uncover the rest anharmonicity that the quasi-harmonic approximation (QHA) omits. It is thus evidenced that the DFEI method is indeed a very efficient method used to conduct anharmonic effect corrections beyond QHA. More importantly it is much more straightforward and easier compared to previous anharmonic methods.

  3. Optical characterization of directly deposited graphene on a dielectric substrate

    DEFF Research Database (Denmark)

    Kaplas, Tommi; Karvonen, Lasse; Ahmadi, Sepehr

    2016-01-01

    By using scanning multiphoton microscopy we compare the nonlinear optical properties of the directly deposited and transferred to the dielectric substrate graphene. The direct deposition of graphene on oxidized silicon wafer was done by utilizing sacrificial copper catalyst film. We demonstrate...... that the directly deposited graphene and bi-layered transferred graphene produce comparable third harmonic signals and have almost the same damage thresholds. Therefore, we believe directly deposited graphene is suitable for the use of e.g. nanofabricated optical setups. (C) 2016 Optical Society of America...

  4. Optical activity of oriented molecular systems in terms of the magnetoelectric tensor of gyrotropy

    CERN Document Server

    Arteaga, Oriol

    2014-01-01

    The optical activity of oriented molecular systems is investigated using bianisotropic material constitutives for Maxwell's equations. It is shown that the circular birefringence and circular dichroism in a given direction can be conveniently expressed in terms of the two components of the symmetric magnetoelectric tensor of gyrotropy that are perpendicular to this direction of light propagation. This description establishes a direct link between measurable anisotropic optical activity and the tensors that describe the oscillating electric and magnetic dipole and electric quadrupole moments induced by the optical wave.

  5. DIRECTIVITY PATTERN INVESTIGATION OF DUAL FIBER OPTIC HYDROPHONE

    Directory of Open Access Journals (Sweden)

    M. E. Efimov

    2015-11-01

    Full Text Available Subject of Research. The paper provides comparison of theoretical and experimental research results of directivity pattern of dual fiber optic hydrophone at various acoustic frequencies. Application of multiple fiber optic transducers in fiber optic hydrophone design placed in sensitive arm of the interferometer gives the possibility for increasing the sensitivity of a fiber optic hydrophone without changing the fiber-optic transducers. In the simplest case, such fiber optic hydrophone can be built on the basis of two spatially separated acoustic transducers. However, this diversity inevitably leads to the directivity pattern unevenness of the fiber optic hydrophone at acoustic frequencies which wavelengths are commensurate with the size of the transducers system. Method. Mathematical model has been created and it became the base material for a theoretical study of two acoustic transducers system in Mathcad environment. Directivity pattern was described by a mathematical formula, depending on the frequency of the acoustic impact and the distance between sensors. To confirm the correctness of theoretical research of the directivity pattern, dual fiber optic hydrophone on Bragg gratings was produced and investigated experimentally. It consists of two consequently welded sensitive elements with a 9 cm distance between them. In trials carried out in open water conditions, fiber-optic hydrophone was placed on the rotator and rotated relative to the piezoceramic emitter for 360 degrees. During investigation, the signal from a fiber optic hydrophone has been recorded simultaneously with the rotation. Further, after the data processing in MATLAB, amplitude of the measured phase signal and the directivity pattern of the test sample were estimated. Amplitude estimation of the measured phase signal and directivity pattern creation of the sample was performed at frequencies equal to 1000, 3000 and 8000 Hz. Main Results. Sensitivity of the dual fiber optic

  6. Translational research of optical molecular imaging for personalized medicine.

    Science.gov (United States)

    Qin, C; Ma, X; Tian, J

    2013-12-01

    In the medical imaging field, molecular imaging is a rapidly developing discipline and forms many imaging modalities, providing us effective tools to visualize, characterize, and measure molecular and cellular mechanisms in complex biological processes of living organisms, which can deepen our understanding of biology and accelerate preclinical research including cancer study and medicine discovery. Among many molecular imaging modalities, although the penetration depth of optical imaging and the approved optical probes used for clinics are limited, it has evolved considerably and has seen spectacular advances in basic biomedical research and new drug development. With the completion of human genome sequencing and the emergence of personalized medicine, the specific drug should be matched to not only the right disease but also to the right person, and optical molecular imaging should serve as a strong adjunct to develop personalized medicine by finding the optimal drug based on an individual's proteome and genome. In this process, the computational methodology and imaging system as well as the biomedical application regarding optical molecular imaging will play a crucial role. This review will focus on recent typical translational studies of optical molecular imaging for personalized medicine followed by a concise introduction. Finally, the current challenges and the future development of optical molecular imaging are given according to the understanding of the authors, and the review is then concluded.

  7. Optical Anisotropy and Molecular Orientation of Neutralized Curdlan Gels

    National Research Council Canada - National Science Library

    Yasuyuki Maki; Hideki Okamura; Toshiaki Dobashi

    2017-01-01

    Curdlan gels were prepared by dialyzing its alkaline solutions in HCl solutions, and its optical anisotropy and molecular orientation in the gel were investigated by birefringence and small-angle X-ray scattering (SAXS...

  8. Effect of rotational-state-dependent molecular alignment on the optical dipole force

    Science.gov (United States)

    Kim, Lee Yeong; Lee, Ju Hyeon; Kim, Hye Ah; Kwak, Sang Kyu; Friedrich, Bretislav; Zhao, Bum Suk

    2016-07-01

    The properties of molecule-optical elements such as lenses or prisms based on the interaction of molecules with optical fields depend in a crucial way on the molecular quantum state and its alignment created by the optical field. Herein, we consider the effects of state-dependent alignment in estimating the optical dipole force acting on the molecules and, to this end, introduce an effective polarizability which takes proper account of molecular alignment and is directly related to the alignment-dependent optical dipole force. We illustrate the significance of including molecular alignment in the optical dipole force by a trajectory study that compares previously used approximations with the present approach. The trajectory simulations were carried out for an ensemble of linear molecules subject to either propagating or standing-wave optical fields for a range of temperatures and laser intensities. The results demonstrate that the alignment-dependent effective polarizability can serve to provide correct estimates of the optical dipole force, on which a state-selection method applicable to nonpolar molecules could be based. We note that an analogous analysis of the forces acting on polar molecules subject to an inhomogeneous static electric field reveals a similarly strong dependence on molecular orientation.

  9. Reconfigurable Optical Directed-Logic Circuits

    Science.gov (United States)

    2015-11-20

    and their switching delays do not accumulate. This is in contrast to conventional logic circuits where gate delays are cascaded, resulting in a...transistor logic circuits wherein gate delays are cascaded resulting in increased latencies with increased logic elements. Thus directed- logic ... reverse biased at -5 V ( logic ‘1’) and the transmission is high when the bias voltage is zero ( logic ‘0’). So the switch works in the block/pass mode

  10. PECASE: New Directions for Silicon Integrated Optics

    Science.gov (United States)

    2013-04-30

    passive silicon photonic components by direct-write electron beam lithography ( EBL ). Using waveguide transmission loss as a metric, we study the...impact of EBL writing parameters on waveguide performance and writing time. As expected, write strategies that reduce sidewall roughness improve waveguide...writing using the smaller field-size option of our EBL system. The authors quantify the improvement for each variation and option, along with the

  11. Optical studies of directly synthesized trans-polyacetylene films

    Energy Technology Data Exchange (ETDEWEB)

    Nishioka, T. [Department of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152 (Japan); Suruga, K. [Department of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152 (Japan); Natsume, N. [Department of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152 (Japan); Ishikawa, K. [Department of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152 (Japan); Takezoe, H. [Department of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152 (Japan); Fukuda, A. [Department of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152 (Japan)

    1995-03-01

    We studied optical spectra of directly synthesized trans-polyacetylene films. Reflection and resonance Raman spectra show that effective conjugation length distribution has longer average length and narrower width than that of ordinary thermoisomerized films. Moreover, ESR spectra show that directly synthesized films have fewer defects than ordinary thermoisomerized films. (orig.)

  12. Plasmonic enhancement of direct optical initiation of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Moore, David Steven [Los Alamos National Laboratory; Clarke, Steven A [Los Alamos National Laboratory; Glambra, Anna M [Los Alamos National Laboratory

    2010-01-01

    Current Direct Optical Initiation (DOI) detonators use a laser focused onto a thin metal layer to drive a hot plasma and/or fragments into PETN powder. Previous studies showed a dramatic decrease in laser energies required to initiate the detonation using this approach over direct laser illumination of the PETN powder. Plasmonic metal nanostructures have been shown capable of strongly coupling laser energy into adjacent materials. We have incorporated gold nanospheres into PETN powder and are investigating their plasmonic enhancement of direct optical initiation via measurements of threshold laser energies and streak camera measurements for calculation of run to detonation distances compared to other DOI schemes.

  13. Plasmonic enhancement of direct optical initiation of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Moore, David Steven [Los Alamos National Laboratory; Akinci, Adrian A [Los Alamos National Laboratory; Giambra, Anna M [Los Alamos National Laboratory; Clarke, Steven A [Los Alamos National Laboratory

    2009-01-01

    Current Direct Optical Initiation (DOI) detonators use a laser focused onto a thin metal layer to drive a hot plasma and/or fragments into PETN powder. Previous studies showed a dramatic decrease in laser energies required to initiate the detonation using this approach over direct laser illumination of the PETN powder. Plasmonic metal nanostructures have been shown capable of strongly coupling laser energy into adjacent materials. We have incorporated gold nanospheres into PETN powder and are investigating their plasmonic enhancement of direct optical initiation via measurements of threshold laser energies and streak camera measurements for calculation of run to detonation distances compared to other DOI schemes.

  14. Light-driven rotary molecular motors : an ultrafast optical study

    NARCIS (Netherlands)

    Augulis, Ramunas; Klok, Martin; Loosdrecht, Paul H.M. van; Feringa, Bernard

    2009-01-01

    Molecular rotary motors, though common in nature, were first synthesized rather recently. One of the most promising categories of light-driven rotary molecular motors which allow for optical control is based on helical overcrowded alkenes. In this category of motors, the rotation of the motor’s roto

  15. OPTICAL-PROPERTIES OF DISORDERED MOLECULAR AGGREGATES - A NUMERICAL STUDY

    NARCIS (Netherlands)

    FIDDER, H; KNOESTER, J; WIERSMA, DA

    1991-01-01

    We present results of numerical simulations on optical properties of linear molecular aggregates with diagonal and off-diagonal disorder. In contrast to previous studies, we introduce off-diagonal disorder indirectly through Gaussian randomness in the molecular positions; this results in a strongly

  16. Optical properties of disordered molecular aggregates : A numerical study

    NARCIS (Netherlands)

    Fidder, Henk; Knoester, Jasper; Wiersma, Douwe A.

    1991-01-01

    We present results of numerical simulations on optical properties of linear molecular aggregates with diagonal and off-diagonal disorder. In contrast to previous studies, we introduce off-diagonal disorder indirectly through Gaussian randomness in the molecular positions; this results in a strongly

  17. Physics through the 1990s: Atomic, molecular and optical physics

    Science.gov (United States)

    1986-01-01

    The volume presents a program of research initiatives in atomic, molecular, and optical physics. The current state of atomic, molecular, and optical physics in the US is examined with respect to demographics, education patterns, applications, and the US economy. Recommendations are made for each field, with discussions of their histories and the relevance of the research to government agencies. The section on atomic physics includes atomic theory, structure, and dynamics; accelerator-based atomic physics; and large facilities. The section on molecular physics includes spectroscopy, scattering theory and experiment, and the dynamics of chemical reactions. The section on optical physics discusses lasers, laser spectroscopy, and quantum optics and coherence. A section elucidates interfaces between the three fields and astrophysics, condensed matter physics, surface science, plasma physics, atmospheric physics, and nuclear physics. Another section shows applications of the three fields in ultra-precise measurements, fusion, national security, materials, medicine, and other topics.

  18. Molecular transport network security using multi-wavelength optical spins.

    Science.gov (United States)

    Tunsiri, Surachai; Thammawongsa, Nopparat; Mitatha, Somsak; Yupapin, Preecha P

    2016-01-01

    Multi-wavelength generation system using an optical spin within the modified add-drop optical filter known as a PANDA ring resonator for molecular transport network security is proposed. By using the dark-bright soliton pair control, the optical capsules can be constructed and applied to securely transport the trapped molecules within the network. The advantage is that the dark and bright soliton pair (components) can securely propagate for long distance without electromagnetic interference. In operation, the optical intensity from PANDA ring resonator is fed into gold nano-antenna, where the surface plasmon oscillation between soliton pair and metallic waveguide is established.

  19. Molecular ultrasound imaging: current status and future directions

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, N. [Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California (United States); Needles, A. [Visualsonics, Toronto (Canada); Willmann, J.K., E-mail: willmann@stanford.ed [Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California (United States)

    2010-07-15

    Targeted contrast-enhanced ultrasound (molecular ultrasound) is an emerging imaging strategy that combines ultrasound technology with novel molecularly-targeted ultrasound contrast agents for assessing biological processes at the molecular level. Molecular ultrasound contrast agents are nano- or micro-sized particles that are targeted to specific molecular markers by adding high-affinity binding ligands onto the surface of the particles. Following intravenous administration, these targeted ultrasound contrast agents accumulate at tissue sites overexpressing specific molecular markers, thereby enhancing the ultrasound imaging signal. High spatial and temporal resolution, real-time imaging, non-invasiveness, relatively low costs, lack of ionising irradiation and wide availability of ultrasound systems are advantages compared to other molecular imaging modalities. In this article we review current concepts and future directions of molecular ultrasound imaging, including different classes of molecular ultrasound contrast agents, ongoing technical developments of pre-clinical and clinical ultrasound systems, the potential of molecular ultrasound for imaging different diseases at the molecular level, and the translation of molecular ultrasound into the clinic.

  20. Nano-engineering by optically directed self-assembly.

    Energy Technology Data Exchange (ETDEWEB)

    Furst, Eric (University of Delaware, Newark, DE); Dunn, Elissa (Yale University, New Haven, CT); Park, Jin-Gyu (Yale University, New Haven, CT); Brinker, C. Jeffrey; Sainis, Sunil (Yale University, New Haven, CT); Merrill, Jason (Yale University, New Haven, CT); Dufresne, Eric (Yale University, New Haven, CT); Reichert, Matthew D.; Brotherton, Christopher M.; Bogart, Katherine Huderle Andersen; Molecke, Ryan A.; Koehler, Timothy P.; Bell, Nelson Simmons; Grillet, Anne Mary; Gorby, Allen D.; Singh, John (University of Delaware, Newark, DE); Lele, Pushkar (University of Delaware, Newark, DE); Mittal, Manish (University of Delaware, Newark, DE)

    2009-09-01

    Lack of robust manufacturing capabilities have limited our ability to make tailored materials with useful optical and thermal properties. For example, traditional methods such as spontaneous self-assembly of spheres cannot generate the complex structures required to produce a full bandgap photonic crystals. The goal of this work was to develop and demonstrate novel methods of directed self-assembly of nanomaterials using optical and electric fields. To achieve this aim, our work employed laser tweezers, a technology that enables non-invasive optical manipulation of particles, from glass microspheres to gold nanoparticles. Laser tweezers were used to create ordered materials with either complex crystal structures or using aspherical building blocks.

  1. Plasmonic Optical Tweezers toward Molecular Manipulation: Tailoring Plasmonic Nanostructure, Light Source, and Resonant Trapping.

    Science.gov (United States)

    Shoji, Tatsuya; Tsuboi, Yasuyuki

    2014-09-04

    This Perspective describes recent progress in optical trappings of nanoparticles based on localized surface plasmon. This plasmonic optical trapping has great advantages over the conventional optical tweezers, being potentially applicable for a molecular manipulation technique. We review this novel trapping technique from the viewpoints of (i) plasmonic nanostructure, (ii) the light source for plasmon excitation, and (iii) the polarizability of the trapping target. These findings give us future outlook for plasmonic optical trapping. In addition to a brief review, recent developments on plasmonic optical trapping of soft nanomaterials such as proteins, polymer chains, and DNA will be discussed to point out the important issue for further development on this trapping method. Finally, we explore new directions of plasmonic optical trapping.

  2. Complete control, direct observation and study of molecular super rotors

    CERN Document Server

    Korobenko, Aleksey; Milner, Valery

    2013-01-01

    Extremely fast rotating molecules carrying significantly more energy in their rotation than in any other degree of freedom are known as "super rotors". It has been speculated that super rotors may exhibit a number of unique and intriguing properties. Theoretical studies showed that ultrafast molecular rotation may change the character of molecular scattering from solid surfaces, alter molecular trajectories in external fields, make super rotors surprisingly stable against collisions, and lead to the formation of gas vortices. New ways of molecular cooling and selective chemical bond breaking by ultrafast spinning have been proposed. Owing to the fundamental laws of nature, bringing a large number of molecules to fast, directional and synchronous rotation is rather challenging. As a result, only indirect evidence of super rotors has been reported to date. Here we demonstrate the first controlled creation, direct observation and study of molecular super rotors. Using intense laser pulses tailored to produce an ...

  3. Artificial Neural Network Model for Optical Fiber Direction Coupler Design

    Institute of Scientific and Technical Information of China (English)

    李九生; 鲍振武

    2004-01-01

    A new approach to the design of the optical fiber direction coupler by using neural network is proposed. To train the artificial neural network,the coupling length is defined as the input sample, and the coupling ratio is defined as the output sample. Compared with the numerical value calculation of the theoretical formula, the error of the neural network model output is 1% less.Then, through the model, to design a broadband or a single wavelength optical fiber direction coupler becomes easy. The method is proved to be reliable, accurate and time-saving. So it is promising in the field of both investigation and application.

  4. Molecular basis for optical clearing of collagenous tissues

    Science.gov (United States)

    Hirshburg, Jason M.; Ravikumar, Krishnakumar M.; Hwang, Wonmuk; Yeh, Alvin T.

    2010-09-01

    Molecular interactions of optical clearing agents were investigated using a combination of molecular dynamics (MD) simulations and optical spectroscopy. For a series of sugar alcohols with low to high optical clearing potential, Raman spectroscopy and integrating sphere measurements were used to quantitatively characterize tissue water loss and reduction in light scattering following agent exposures. The rate of tissue water loss was found to correlate with agent optical clearing potential, but equivalent tissue optical clearing was measured in native and fixed tissue in vitro, given long-enough exposure times to the polyol series. MD simulations showed that the rate of tissue optical clearing correlated with the preferential formation of hydrogen bond bridges between agent and collagen. Hydrogen bond bridge formation disrupts the collagen hydration layer and facilitates replacement by a chemical agent to homogenize tissue refractive index. However, the reduction in tissue light scattering did not correlate with the agent index of refraction. Our results suggest that a necessary property of optical clearing agents is hyperosmolarity to tissue, but that the most effective agents with the highest rates of optical clearing are a subset with the highest collagen solubilities.

  5. Progress in self-directed growth of molecular assemblies

    Science.gov (United States)

    Wolkow, Robert

    2004-03-01

    Nanowires, if synthesized in solution or in a CVD reactor need to be harvested and appropriately placed on a substrate for study or application. Structures grown with absolute position control, directly onto a substrate that is amenable to study have inherent advantages. Not only are complex handling issues circumvented, but new hybrid properties of the substrate and line can be attained. By growing molecular assemblies on silicon, a wealth of opportunities become available (1). It becomes possible to directly study molecule-molecule and molecule-substrate coupling. Modes and materials for creating molecular wires can be studied in a rational fashion. Methods for transport determination can be employed. Our original work in this area employed styrene molecules on H-terminated Si(100) to create a self-directed growth procedure for making molecular assemblies of predefined absolute position, order, extent and composition - all without the need for arduous atom-by-atom crafting with a scanned probe (2). In this talk many material and mechanistic advances in this area will be summarized. These include new chemical linking strategies, post attachment rearrangements in tethered molecules, kinetic measurements and a non-aromatic intermediate stabilization stategy. 1) Controlled Molecular Adsorption on Si: Laying a Foundation for Molecular Devices, R.A. Wolkow, Ann. Rev. Phys.Chem., 50, 413-41, 1999. 2)Self-Directed Growth of Molecular Nano Structures on Silicon, G.P Lopinski, D.D.M. Wayner and R.A. Wolkow, Nature 406, 48 (2000).

  6. Direction-dependent Optical Modes in Nanoscale Silicon Waveguides

    CERN Document Server

    Robinson, Jacob T

    2010-01-01

    On-chip photonic networks have the potential to transmit and route information more efficiently than electronic circuits. Recently, a number of silicon-based optical devices including modulators, buffers, and wavelength converts have been reported. However, a number of technical challenges need to be overcome before these devices can be combined into network-level architectures. In particular, due to the high refractive index contrast between the core and cladding of semiconductor waveguides, nanoscale defects along the waveguide often scatter light into the backward-propagating mode. These reflections could result in unwanted feedback to optical sources or crosstalk in bidirectional interconnects such as those employed in fiber-optic networks. It is often assumed that these reflected waves spatially overlap the forward-propagating waves making it difficult to implement optical circulators or isolators which separate or attenuate light based on its propagation direction. Here, we individually identify and map...

  7. Molecular and crystal design of nonlinear optical organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Suponitsky, Kirill Yu; Antipin, Mikhail Yu [A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow (Russian Federation); Timofeeva, Tatiana V [Department of Chemistry, New Mexico Highlands University (United States)

    2006-06-30

    The results of theoretical and experimental studies on the second-order molecular and crystal nonlinear optical susceptibilities of organic and several classes of organoelement compounds are summarised. Modern methods used in these studies are briefly characterised, their advantages and drawbacks are outlined as regards their application to the systematic search for efficient nonlinear optical materials. Recent achievements and the main challenges in the field are thoroughly discussed and an optimum algorithm of the design of such materials is proposed.

  8. In Vivo Diffuse Optical Tomography and Fluorescence Molecular Tomography

    Directory of Open Access Journals (Sweden)

    Mingze Li

    2010-01-01

    Full Text Available Diffuse optical tomography (DOT and fluorescence molecular tomography (FMT are two attractive imaging techniques for in vivo physiological and psychological research. They have distinct advantages such as non-invasiveness, non-ionizing radiation, high sensitivity and longitudinal monitoring. This paper reviews the key components of DOT and FMT. Light propagation model, mathematical reconstruction algorithm, imaging instrumentation and medical applications are included. Future challenges and perspective on optical tomography are discussed.

  9. Detailed noise statistics for an optically preamplified direct detection receiver

    DEFF Research Database (Denmark)

    Danielsen, Søren Lykke; Mikkelsen, Benny; Durhuus, Terji

    1995-01-01

    We describe the exact statistics of an optically preamplified direct detection receiver by means of the moment generating function. The theory allows an arbitrary shaped electrical filter in the receiver circuit. The moment generating function (MGF) allows for a precise calculation of the error...

  10. Variable optical attenuator fabricated by direct UV writing

    DEFF Research Database (Denmark)

    Svalgaard, Mikael; Færch, Kjartan Ullitz; Andersen, L.U.

    2003-01-01

    It is demonstrated that direct ultraviolet writing of waveguides is a method suitable for mass production of compact variable optical attenuators with low insertion loss, low polarization-dependent loss, and high dynamic range. The fabrication setup is shown to be robust, providing good device...

  11. Direct-Dispense Polymeric Waveguides Platform for Optical Chemical Sensors

    Directory of Open Access Journals (Sweden)

    Mohamad Hajj-Hassan

    2008-12-01

    Full Text Available We describe an automated robotic technique called direct-dispense to fabricate a polymeric platform that supports optical sensor arrays. Direct-dispense, which is a type of the emerging direct-write microfabrication techniques, uses fugitive organic inks in combination with cross-linkable polymers to create microfluidic channels and other microstructures. Specifically, we describe an application of direct-dispensing to develop optical biochemical sensors by fabricating planar ridge waveguides that support sol-gelderived xerogel-based thin films. The xerogel-based sensor materials act as host media to house luminophore biochemical recognition elements. As a prototype implementation, we demonstrate gaseous oxygen (O2 responsive optical sensors that operate on the basis of monitoring luminescence intensity signals. The optical sensor employs a Light Emitting Diode (LED excitation source and a standard silicon photodiode as the detector. The sensor operates over the full scale (0%-100% of O2 concentrations with a response time of less than 1 second. This work has implications for the development of miniaturized multisensor platforms that can be cost-effectively and reliably mass-produced.

  12. Removal of pedestals and directional ambiguity of optical anemometer signals.

    Science.gov (United States)

    Durst, F; Zaré, M

    1974-11-01

    Laser Doppler anemometry permits, in principle, the measurement of both magnitude and direction of components of a particle's velocity vector. Most exiting anemometers, however, permit measurements only with a directional ambiguity of 180 degrees , resulting in errors in certain flow fields. Available methods of eliminating the directional ambiguity of Laser Doppler anemometers are reviewed, covering frequency shifting of the incident and scattered light beams, the use of beams with different polarization properties, and employment of multicolor laser beams. The advantages and disadvantages of existing methods are summarized, and suggestions for alterations are made. Different techniques used to remove the pedestal of laser Doppler anemometer signals are also reviewed. Optical techniques should be employed in any advanced optical anemometer system to avoid dynamic range limitations by electronic bandpass filters. Suggestions are made for advanced optical anemometers employing multielement avalanche photodiodes that can be used for simultaneous measurements of two velocity components. These anemometers incorporate devices to sense the direction of the velocity components and to eliminate optically the pedestal of laser Doppler signals.

  13. Optical vs. chemical driving for molecular machines.

    Science.gov (United States)

    Astumian, R D

    2016-12-22

    Molecular machines use external energy to drive transport, to do mechanical, osmotic, or electrical work on the environment, and to form structure. In this paper the fundamental difference between the design principles necessary for a molecular machine to use light or external modulation of thermodynamic parameters as an energy source vs. the design principle for using an exergonic chemical reaction as a fuel will be explored. The key difference is that for catalytically-driven motors microscopic reversibility must hold arbitrarily far from equilibrium. Applying the constraints of microscopic reversibility assures that a coarse grained model is consistent with an underlying model for motion on a single time-independent potential energy surface. In contrast, light-driven processes, and processes driven by external modulation of the thermodynamic parameters of a system cannot in general be described in terms of motion on a single time-independent potential energy surface, and the rate constants are not constrained by microscopic reversibility. The results presented here call into question the value of the so-called power stroke model as an explanation of the function of autonomous chemically-driven molecular machines such as are commonly found in biology.

  14. The Direct Detectability of Giant Exoplanets in the Optical

    CERN Document Server

    Greco, Johnny P

    2015-01-01

    (abridged) Motivated by the possibility that an optical coronagraph will be put on WFIRST/AFTA, we present an exploration of the general character of the direct detectability of extrasolar giant planets (EGPs) in the optical. We quantify a planet's direct detectability by the fraction of its orbit for which it is in an observable configuration--defined to be its observability fraction ($f_{obs}$). Using a suite of Monte Carlo experiments, we study the dependence of $f_{obs}$ upon various technological and astrophysical parameters, including the inner working angle (IWA) and minimum achievable contrast ($C_{min}$) of the direct-imaging observatory; the planet's scattering phase function, geometric albedo, single-scattering albedo, radius, and distance from Earth; and the semi-major axis distribution of EGPs. We assume cloud-free, homogeneous atmospheres and calculate phase functions for a given geometric or single-scattering albedo, assuming various scattering mechanisms. We find that the often-assumed Lambert...

  15. Optical heterodyne detected velocity modulation molecular ionic spectroscopy

    Institute of Scientific and Technical Information of China (English)

    CHEN Guanglong; YANG Xiaohua; YING Xuping; LIU Gang; HUANG Yunxia; CHEN Yangqin

    2004-01-01

    Optical heterodyne detected velocity modulation molecular ionic spectroscopy is presented and employed to observe the rovibrantional spectra of and That the lineshape of OH-VMS is of the second derivative of Gaussian profile and its sensitivity is 3.5×10-8 are theoretically analyzed, and they are both in good agreement with our experimental results.

  16. Miniature and Molecularly Specific Optical Screening Technologies for Breast Cancer

    Science.gov (United States)

    2008-10-01

    and molecular contrast in breast cancer V. Millon SR, Provenzano PP, Elicieri, KW, Brown, JQ, Keely, PJ, Ramanujam, N. "Imaging of ALA-induced PpIX...calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms. Appl Opt, 2006. 45(5): p. 1062-71. 4. Baumann, M., C

  17. Optical Molecular Imaging of Ultrasound-mediated Drug Delivery

    NARCIS (Netherlands)

    Derieppe, M.P.P.

    2015-01-01

    The goal of this PhD project was to develop optical molecular imaging methods to study drug delivery facilitated by ultrasound waves (US) and hyperthermia. Fibered confocal fluorescence microscopy (FCFM), together with dedicated image analysis, was used in vitro on a cell monolayer, and in vivo at

  18. Atomic, Molecular, and Optical Physics Workshop Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Jr., Lloyd [University of Southern California

    1997-09-21

    This document contains the final reports from the five panels that comprised a Workshop held to explore future directions, scientific impacts and technological connections of research in Atomic, Molecular and Optical Physics. This workshop was sponsored by the Department of Energy, Office of Basic Energy Sciences, Chemical Sciences Division and was held at the Westfields International Conference Center in Chantilly, Virginia on September 21-24, 1997. The workshop was chaired by Lloyd Armstrong, Jr., University of Southern California and the five panels focused on the following topics: Panel A: Interactions of Atoms and Molecules with Photons - Low Field Daniel Kleppner (Massachusetts Institute of Technology), chair Panel B: Interactions of Atoms and Molecules with Photons - High Field Phil Bucksbaum (University of Michigan), chair Panel C: Surface Interactions with Photons, Electrons, Ions, Atoms and Molecules J. Wayne Rabalais (University of Houston), chair Panel D: Theory of Structure and Dynamics Chris Greene (University of Colorado), chair Panel E: Nano- and Mesocopic Structures Paul Alivisatos (Lawrence Berkeley National Laboratory), chair The choice of focus areas reflects areas of significant interest to DOE/BES but is clearly not intended to span all fields encompassed by the designation of atomic, molecular and optical physics, nor even all areas that would be considered for review and funding under DOE’s AMOP program. In a similar vein, not all research that might be suggested under these topics in this report would be appropriate for consideration by DOE’s AMOP program. The workshop format included overview presentations from each of the panel chairs, followed by an intensive series of panel discussion sessions held over a two-day period. The panels were comprised of scientists from the U. S. and abroad, many of whom are not supported by DOE’s AMOP Program. This workshop was held in lieu of the customary “Contractors Meeting” held annually for

  19. Stokes-vector direct detection for optical communications

    Science.gov (United States)

    Shieh, William; Li, An; Che, Di; Yuan, Feng; Khodakarami, Hamid

    2017-01-01

    To cope with the exponential growth of the Internet traffic, optical communications has advanced by leaps and bounds. For several decades, Intensity modulation with direct detection (IM-DD) dominates the commercial short-reach optical communications. However, when upgrading the data-rate distance product to 1000 Gb/s·km per wavelength and beyond, IM-DD faces severe performance barrier. Aiming to improve the electrical SE and extend the transmission distance, advanced DD modulation formats have been proposed through a so-called self-coherent (SCOH) approach, where a carrier is transmitted together with the signal to achieve a linear mapping between the electrical baseband signal and the optical field. In that way, the impact of the CD can be removed from the received signal, greatly extending the transmission distance of the DD system. Particularly, Stokes-vector direct detection (SV-DD) has been proposed to realize linear complex optical channels as well as enhance the electrical spectral efficiency and transmission reach. In this talk, we present the principle and discuss the performance of SV-DD systems.

  20. PREFACE: Colloidal and molecular electro-optics Colloidal and molecular electro-optics

    Science.gov (United States)

    Palberg, Thomas; Löwen, Hartmut

    2010-12-01

    exciting trends and earn the interest of a good fraction of contemporary soft matter scientists. Note1 http://www.elopto2010.fb08.uni-mainz.de Note2 http://www.sfb-tr6.de References [1] Weinberger P 2008 John Kerr and his effects found in 1877 and 1878 Phil. Mag. Lett. 88 897-907 [2] Benoit H 1948 Calcul de l'écart quadratique moyen entre les extrémités de diverses chaînes moléculaires de type usuel J. Polym. Sci. 3 376-87 [3] Benoit H 1949 Sur un dispositif de mesure de l'effet Kerr par impulsions electriques isoles Comptes Rendus 228 1716-8 [4] Benoit H 1951 Contribution a l'etude de l'effet Kerr presente par les solutions diluees de macromolecules rigide Ann. Phys. 6 561-609 Colloidal and molecular electro-optics contents Electric dichroism transients of aqueous solutions of DNA J A Bertolotto, G M Corral, E M Farias de La Torre and G B Roston The role of effective charges in the electrophoresis of highly charged colloids Apratim Chatterji and Jürgen Horbach Nonlinear response of the electric birefringence of polyelectrolyte solutions J L Déjardin and J M Martinez Kerr constant of multi-subunit particles and semiflexible, wormlike chains J García de la Torre, F G Díaz Baños and H E Pérez Sánchez Self-assembling electroactive hydrogels for flexible display technology Scott L Jones, Kok Hou Wong, Pall Thordarson and François Ladouceur Electrooptical effects in colloid systems subjected to short pulses of strong electric field S A Klemeshev, M P Petrov, A A Trusov and A V Voitylov The effect of ionic strength on electrical properties of polyelectrolyte multilayers on colloidal particles V Milkova and Ts Radeva Charge transport and current in non-polar liquids Kristiaan Neyts, Filip Beunis, Filip Strubbe, Matthias Marescaux, Bart Verboven, Masoumeh Karvar and Alwin Verschueren Ionic concentration- and pH-dependent electrophoretic mobility as studied by single colloid electrophoresis I Semenov, P Papadopoulos, G Stober and F Kremer Effect of magnesium ions and

  1. Directionality of evolution at molecular and organismic levels.

    Science.gov (United States)

    Livshits, M A; Volkenstein, M V

    1991-01-01

    The molecular evolution theories of Eigen and Kimura are compared and their difference is explained. In terms of Eigen's theory for the evolution of macromolecules, the selection of genotypes occurs directly. The physical meaning of the neutral theory is the degeneracy of the correlation between a phenotype and a genotype at the molecular level. A model theory of evolution on a fitness landscape is proposed. The theory shows that the constraints of selection determined by the structure and dynamics of previous evolution stages increases its rate strongly.

  2. Evidence of Excitonic Optical Tamm States using Molecular Materials

    CERN Document Server

    Núñez-Sánchez, S; Murshidy, M M; Abdel-Hady, A G; Serry, M Y; Adawi, A M; Rarity, J G; Oulton, R; Barnes, W L

    2015-01-01

    We report the first experimental observation of an Excitonic Optical Tamm State supported at the interface between a periodic multilayer dielectric structure and an organic dye-doped polymer layer. The existence of such states is enabled by the metal-like optical properties of the excitonic layer based on aggregated dye molecules. Experimentally determined dispersion curves, together with simulated data, including field profiles, allow us to identify the nature of these new modes. Our results demonstrate the potential of organic excitonic materials as a powerful means to control light at the nanoscale, offering the prospect of a new alternative type of nanophotonics based on molecular materials.

  3. Enhanced sensing of molecular optical activity with plasmonic nanohole arrays

    CERN Document Server

    Gorkunov, Maxim V; Kondratov, Alexey V

    2016-01-01

    Prospects of using metal hole arrays for the enhanced optical detection of molecular chirality in nanosize volumes are investigated. Light transmission through the holes filled with an optically active material is modeled and the activity enhancement by more than an order of magnitude is demonstrated. The spatial resolution of the chirality detection is shown to be of a few tens of nanometers. From comparing the effect in arrays of cylindrical holes and holes of complex chiral shape, it is concluded that the detection sensitivity is determined by the plasmonic near field enhancement. The intrinsic chirality of the arrays due to their shape appears to be less important.

  4. Calculation of nonlinear optical properties of molecular clusters

    Energy Technology Data Exchange (ETDEWEB)

    Yartsev, V. M.; Marcano O, A. [Instituto Venezolano de Investigaciones Cientificas, Caracas (Venezuela)

    2001-03-01

    Effects of electronic correlation and electron-intramolecular vibration coupling on the non-linear optical properties are studied. The Hubbard Hamiltonian is used for explicit treatment of electronic correlation in molecular dimmer. The static polarizability and the static second hyper polarizability {gamma} are calculated and their dependences on the model parameters are analyzed. The role of interaction between ion-radical complexes is considered within the model of two parallel dimers. [Spanish] Se estudian los efectos de correlacion y el acoplamiento del electron con las vibraciones moleculares sobre las propiedades opticas no lineales de agregados moleculares. Se utiliza un hamiltoniano de tipo Hubbard para el tratamiento explicito de la correlacion electronica en un dimero molecular. Se calculan la polarizabilidad estatica {alpha} y la hiperpolarizabilidad de segundo orden {gamma} al igual que se analizan sus dependencias de los parametros del modelo. Se estudia ademas el papel de la interaccion entre complejos ino-radical dentro del modelo de dos dimeros paralelos.

  5. Molecular imaging true-colour spectroscopic optical coherence tomography

    Science.gov (United States)

    Robles, Francisco E.; Wilson, Christy; Grant, Gerald; Wax, Adam

    2011-12-01

    Molecular imaging holds a pivotal role in medicine due to its ability to provide invaluable insight into disease mechanisms at molecular and cellular levels. To this end, various techniques have been developed for molecular imaging, each with its own advantages and disadvantages. For example, fluorescence imaging achieves micrometre-scale resolution, but has low penetration depths and is mostly limited to exogenous agents. Here, we demonstrate molecular imaging of endogenous and exogenous chromophores using a novel form of spectroscopic optical coherence tomography. Our approach consists of using a wide spectral bandwidth laser source centred in the visible spectrum, thereby allowing facile assessment of haemoglobin oxygen levels, providing contrast from readily available absorbers, and enabling true-colour representation of samples. This approach provides high spectral fidelity while imaging at the micrometre scale in three dimensions. Molecular imaging true-colour spectroscopic optical coherence tomography (METRiCS OCT) has significant implications for many biomedical applications including ophthalmology, early cancer detection, and understanding fundamental disease mechanisms such as hypoxia and angiogenesis.

  6. Experiments on room temperature optical fiber-fiber direct bonding

    Science.gov (United States)

    Hao, Jinping; Yan, Ping; Xiao, Qirong; Wang, Yaping; Gong, Mali

    2012-08-01

    High quality permanent connection between optical fibers is a significant issue in optics and communication. Studies on room temperature optical large diameter fiber-fiber direct bonding, which is essentially surface interactions of glass material, are presented here. Bonded fiber pairs are obtained for the first time through the bonding technics illustrated here. Two different kinds of bonding technics are provided-fresh surface (freshly grinded and polished) bonding and hydrophobic surface (activated by H2SO4 and HF) bonding. By means of fresh surface bonding, a bonded fiber pair with light transmitting efficiency of 98.1% and bond strength of 21.2 N is obtained. Besides, in the bonding process, chemical surface treatment of fibers' end surfaces is an important step. Therefore, various ways of surface treatment are analyzed and compared, based on atomic force microscopy force curves of differently disposed surfaces. According to the comparison, fresh surfaces are suggested as the prior choice in room temperature optical fiber-fiber bonding, owing to their larger adhesive force, attractive force, attractive distance, and adhesive range.

  7. Mathematical model of an optically pumped molecular laser

    CSIR Research Space (South Africa)

    Botha, LR

    2009-07-01

    Full Text Available pumped molecular laser Dr L R Botha, Dr C Bollig, D Esser, C Jacobs, D Preussler SAIP 2009 Durban Page 2 © CSIR 2008 www.csir.co.za Structure of talk • Introduction • Overview of HBr laser • Numerical Model • Comparison... µm laser ring oscillator & pre-amplifier 1.9 µm Optically Pumped Molecular laser @ 4 µm 95:5 HBr Absorption cell Fast detector 2.064 µm ± 1 nm Feedback control box Feedback loop 1 P ie zo m o u nt Fast detector Feedback loop 2 Gas...

  8. Molecular system generation with strong resonance optical pumping

    Energy Technology Data Exchange (ETDEWEB)

    Kuntsevich, B.F.; Churakov, V.V.

    1977-03-01

    A study was made of molecular system generation modulated by three oscillating levels with a rotating structure with strong resonance optical pumping. Molecular behavior of the active medium is described by equations for the density matrix. The relationship between the amplification coefficient and pressure at various pumping intensities was examined. In approaching the assigned pumping field, an examination was made of how the generation field is affected by the volumetric density of the pumping energy, partial pressure of the buffer gas and frequency difference in the pumping channel.

  9. Directed assembly of hybrid nanostructures using optically resonant nanotweezers

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, David [Cornell Univ., Ithaca, NY (United States)

    2015-09-09

    This represents the final report for this project. Over the course of the project we have made significant progress in photonically driven nano-assembly including: (1) demonstrating the first direct optical tweezer based manipulation of proteins, (2) the ability to apply optical angular torques to microtubuals and other rod-shaped microparticles, (3) direct assembly of hybrid nanostructures comprising of polymeric nanoparticles and carbon nanotubes and, (4) the ability to drive biological reactions (specifically protein aggregation) that are thermodynamically unfavorable by applying localized optical work. These advancements are described in the list of papers provided in section 2.0 of the below. Summary details are provided in prior year annual reports. We have two additional papers which will be submitted shortly based on the work done under this award. An updated publication list will be provided to the program manager when those are accepted. In this report, we report on a new advancement made in the final project year, which uses the nanotweezer technology to perform direct measurements of particle-surface interactions. Briefly, these measurements are important for characterizing the stability and behavior of colloidal and nanoparticle suspensions and current techniques are limited in their ability to measure piconewton scale interaction forces on sub-micrometer particles due to signal detection limits and thermal noise. In this project year we developed a new technique called “Nanophotonic Force Microscopy” which uses the localized region of exponentially decaying, near-field, light to confine small particles close to a surface. From the statistical distribution of the light intensity scattered by the particle the technique maps out the potential well of the trap and directly quantify the repulsive force between the nanoparticle and the surface. The major advantage of the technique is that it can measure forces and energy wells below the thermal noise

  10. Optical characterization of gaps in directly bonded Si compound optics using infrared spectroscopy

    CERN Document Server

    Gully-Santiago, Michael; White, Victor

    2015-01-01

    Silicon direct bonding offers flexibility in the design and development of Si optics by allowing manufacturers to combine subcomponents with a potentially lossless and mechanically stable interface. The bonding process presents challenges in meeting the requirements for optical performance because air gaps at the Si interface cause large Fresnel reflections. Even small (35 nm) gaps reduce transmission through a direct bonded Si compound optic by 4% at $\\lambda = 1.25 \\; \\mu$m at normal incidence. We describe a bond inspection method that makes use of precision slit spectroscopy to detect and measure gaps as small as 14 nm. Our method compares low finesse Fabry-P\\'{e}rot models to high precision measurements of transmission as a function of wavelength. We demonstrate the validity of the approach by measuring bond gaps of known depths produced by microlithography.

  11. Direct observation of stepwise movement of a synthetic molecular transporter

    Science.gov (United States)

    Wickham, Shelley F. J.; Endo, Masayuki; Katsuda, Yousuke; Hidaka, Kumi; Bath, Jonathan; Sugiyama, Hiroshi; Turberfield, Andrew J.

    2011-03-01

    Controlled motion at the nanoscale can be achieved by using Watson-Crick base-pairing to direct the assembly and operation of a molecular transport system consisting of a track, a motor and fuel, all made from DNA. Here, we assemble a 100-nm-long DNA track on a two-dimensional scaffold, and show that a DNA motor loaded at one end of the track moves autonomously and at a constant average speed along the full length of the track, a journey comprising 16 consecutive steps for the motor. Real-time atomic force microscopy allows direct observation of individual steps of a single motor, revealing mechanistic details of its operation. This precisely controlled, long-range transport could lead to the development of systems that could be programmed and routed by instructions encoded in the nucleotide sequences of the track and motor. Such systems might be used to create molecular assembly lines modelled on the ribosome.

  12. Direct Observation of Molecular Oxygen Production from Carbon Dioxide

    CERN Document Server

    Larimian, Seyedreza; Mai, Sebastian; Marquetand, Philipp; González, Leticia; Baltuška, Andrius; Kitzler, Markus; Xie, Xinhua

    2016-01-01

    Oxygen ($O_2$) is one of the most important elements required to sustain life. The concentration of $O_2$ on Earth has been accumulated over millions of years and has a direct connection with that of $CO_2$. Further, $CO_2$ plays an important role in many other planetary atmospheres. Therefore, molecular reactions involving $CO_2$ are critical for studying the atmospheres of such planets. Existing studies on the dissociation of $CO_2$ are exclusively focused on the C--O bond breakage. Here we report first experiments on the direct observation of molecular Oxygen formation from $CO_2$ in strong laser fields with a reaction microscope. Our accompanying simulations suggest that $CO_2$ molecules may undergo bending motion during and after strong-field ionization which supports the molecular Oxygen formation process. The observation of the molecular Oxygen formation from $CO_2$ may trigger further experimental and theoretical studies on such processes with laser pulses, and provide hints in studies of the $O_2$ an...

  13. Direct Tunneling Delay Time Measurement in an Optical Lattice.

    Science.gov (United States)

    Fortun, A; Cabrera-Gutiérrez, C; Condon, G; Michon, E; Billy, J; Guéry-Odelin, D

    2016-07-01

    We report on the measurement of the time required for a wave packet to tunnel through the potential barriers of an optical lattice. The experiment is carried out by loading adiabatically a Bose-Einstein condensate into a 1D optical lattice. A sudden displacement of the lattice by a few tens of nanometers excites the micromotion of the dipole mode. We then directly observe in momentum space the splitting of the wave packet at the turning points and measure the delay between the reflected and the tunneled packets for various initial displacements. Using this atomic beam splitter twice, we realize a chain of coherent micron-size Mach-Zehnder interferometers at the exit of which we get essentially a wave packet with a negative momentum, a result opposite to the prediction of classical physics.

  14. Optical Microstructures Fabricated with Direct Laser Writing Technique

    Directory of Open Access Journals (Sweden)

    Kowalczyk M.

    2014-12-01

    Full Text Available Three-dimensional photolitography, also known as Direct Laser Writing (DLW, is a powerful technique for fabrication of photonic microstructures. In this paper we present the basics of the relevant technology and discuss some features of the fabrication process. We also describe the experimental setup designed for making colour filters based on diffraction gratings, fibre-tip-integrated lens and anti-reflective coating designed for telecom wavelength (1550 nm. The results obtained demonstrate the DLW technique to be a promising fast prototyping fabrication method that may allow manipulating the properties of optical materials.

  15. High-Speed Optical Local Access Network System Using Bi-Directional Polarization Multiplexing

    Institute of Scientific and Technical Information of China (English)

    Mitsuru Miyauchi; Yanjun Sun

    2003-01-01

    A high-speed and economical optical local access network system is proposed where bi-directional polarization multiplexing is applied to a bi-directional transmission. Experimental results using a prototype system confirmlow optical loss and environmental stabilities.

  16. High-Speed Optical Local Access Network System Using Bi-Directional Polarization Multiplexing

    Institute of Scientific and Technical Information of China (English)

    Mitsuru; Miyauchi; Yanjun; Sun

    2003-01-01

    A high-speed and economical optical local access network system is proposed where bi-directional polarization multiplexing is applied to a bi-directional transmission. Experimental results using a prototype system confirm low optical loss and environmental stabilities.

  17. Experimental methods of molecular matter-wave optics.

    Science.gov (United States)

    Juffmann, Thomas; Ulbricht, Hendrik; Arndt, Markus

    2013-08-01

    We describe the state of the art in preparing, manipulating and detecting coherent molecular matter. We focus on experimental methods for handling the quantum motion of compound systems from diatomic molecules to clusters or biomolecules.Molecular quantum optics offers many challenges and innovative prospects: already the combination of two atoms into one molecule takes several well-established methods from atomic physics, such as for instance laser cooling, to their limits. The enormous internal complexity that arises when hundreds or thousands of atoms are bound in a single organic molecule, cluster or nanocrystal provides a richness that can only be tackled by combining methods from atomic physics, chemistry, cluster physics, nanotechnology and the life sciences.We review various molecular beam sources and their suitability for matter-wave experiments. We discuss numerous molecular detection schemes and give an overview over diffraction and interference experiments that have already been performed with molecules or clusters.Applications of de Broglie studies with composite systems range from fundamental tests of physics up to quantum-enhanced metrology in physical chemistry, biophysics and the surface sciences.Nanoparticle quantum optics is a growing field, which will intrigue researchers still for many years to come. This review can, therefore, only be a snapshot of a very dynamical process.

  18. Optical fiber tip templating using direct focused ion beam milling.

    Science.gov (United States)

    Micco, A; Ricciardi, A; Pisco, M; La Ferrara, V; Cusano, A

    2015-11-04

    We report on a method for integrating sub-wavelength resonant structures on top of optical fiber tip. Our fabrication technique is based on direct milling of the glass on the fiber facet by means of focused ion beam. The patterned fiber tip acts as a structured template for successive depositions of any responsive or functional overlay. The proposed method is validated by depositing on the patterned fiber a high refractive index material layer, to obtain a 'double-layer' photonic crystal slab supporting guided resonances, appearing as peaks in the reflection spectrum. Morphological and optical characterizations are performed to investigate the effects of the fabrication process. Our results show how undesired effects, intrinsic to the fabrication procedure should be taken into account in order to guarantee a successful development of the device. Moreover, to demonstrate the flexibility of our approach and the possibility to engineering the resonances, a thin layer of gold is also deposited on the fiber tip, giving rise to a hybrid photonic-plasmonic structure with a complementary spectral response and different optical field distribution at the resonant wavelengths. Overall, this work represents a significant step forward the consolidation of Lab-on-Fiber Technology.

  19. Optimizing legacy molecular dynamics software with directive-based offload

    Science.gov (United States)

    Michael Brown, W.; Carrillo, Jan-Michael Y.; Gavhane, Nitin; Thakkar, Foram M.; Plimpton, Steven J.

    2015-10-01

    Directive-based programming models are one solution for exploiting many-core coprocessors to increase simulation rates in molecular dynamics. They offer the potential to reduce code complexity with offload models that can selectively target computations to run on the CPU, the coprocessor, or both. In this paper, we describe modifications to the LAMMPS molecular dynamics code to enable concurrent calculations on a CPU and coprocessor. We demonstrate that standard molecular dynamics algorithms can run efficiently on both the CPU and an x86-based coprocessor using the same subroutines. As a consequence, we demonstrate that code optimizations for the coprocessor also result in speedups on the CPU; in extreme cases up to 4.7X. We provide results for LAMMPS benchmarks and for production molecular dynamics simulations using the Stampede hybrid supercomputer with both Intel® Xeon Phi™ coprocessors and NVIDIA GPUs. The optimizations presented have increased simulation rates by over 2X for organic molecules and over 7X for liquid crystals on Stampede. The optimizations are available as part of the "Intel package" supplied with LAMMPS.

  20. Master Equation Approach to Molecular Motor's Directed Motion

    Institute of Scientific and Technical Information of China (English)

    FENG Juan; ZHUO Yi-Zhong

    2005-01-01

    @@ The master equation approach based on the periodic one-dimensional three-state hopping model is developed to study the molecular motor's directed motion. An explicit solution Px ( t ) is obtained for the probability distribution as a function of the time for any initial distribution Px(0) with all the transients included. We introduce dj to represent the sub-step lengths, which can reflect how the external load affects the individual rate via load distribution factors θ+j and θ-j. A wide variety of molecular motor behaviour under external load f can readily be obtained by the unequal-distance transition model with load-dependent transition rates. By comparison with the experiments, namely of the drift velocity v and the randomness parameter r versus adenosine triphosphate concentration and external load f, it is shown that the model presented here can rather satisfactorily explain the available data.

  1. Quantum signatures of a molecular nanomagnet in direct magnetocaloric measurements.

    Science.gov (United States)

    Sharples, Joseph W; Collison, David; McInnes, Eric J L; Schnack, Jürgen; Palacios, Elias; Evangelisti, Marco

    2014-10-22

    Geometric spin frustration in low-dimensional materials, such as the two-dimensional kagome or triangular antiferromagnetic nets, can significantly enhance the change of the magnetic entropy and adiabatic temperature following a change in the applied magnetic field, that is, the magnetocaloric effect. In principle, an equivalent outcome should also be observable in certain high-symmetry zero-dimensional, that is, molecular, structures with frustrated topologies. Here we report experimental realization of this in a heptametallic gadolinium molecule. Adiabatic demagnetization experiments reach ~200 mK, the first sub-Kelvin cooling with any molecular nanomagnet, and reveal isentropes (the constant entropy paths followed in the temperature-field plane) with a rich structure. The latter is shown to be a direct manifestation of the trigonal antiferromagnetic net structure, allowing study of frustration-enhanced magnetocaloric effects in a finite system.

  2. A Direct Two-Dimensional Pressure Formulation in Molecular Dynamics

    CERN Document Server

    YD, Sumith

    2016-01-01

    Two-dimensional (2D) pressure field estimation in molecular dynamics (MD) simulations has been done using three-dimensional (3D) pressure field calculations followed by averaging, which is computationally expensive due to 3D convolutions. In this work, we develop a direct 2D pressure field estimation method which is much faster than 3D methods without losing accuracy. The method is validated with MD simulations on two systems: a liquid film and a cylindrical drop of argon suspended in surrounding vapor.

  3. Airborne molecular contamination: quality criterion for laser and optical components

    Science.gov (United States)

    Otto, Michael

    2015-02-01

    Airborne molecular contaminations (AMCs) have been recognized as a major problem in semiconductor fabrication. Enormous technical and financial efforts are made to remove or at least reduce these contaminations in production environments to increase yield and process stability. It can be shown that AMCs from various sources in laser devices have a negative impact on quality and lifetime of lasers and optical systems. Outgassing of organic compounds, especially condensable compounds were identified as the main source for deterioration of optics. These compounds can lead to hazing on surfaces of optics, degradation of coating, reducing the signal transmission or the laser signal itself and can enhance the probability of laser failure and damage. Sources of organic outgassing can be molding materials, resins, seals, circuit boards, cable insulation, coatings, paints and others. Critical compounds are siloxanes, aromatic amines and high boiling aromatic hydrocarbons like phthalates which are used as softeners in plastic materials. Nowadays all sensitive assembly steps are performed in controlled cleanroom environments to reduce risks of contamination. We will demonstrate a high efficient air filter concept to remove AMCs for production environments with special AMC filters and methods for the qualification and monitoring of these environments. Additionally, we show modern techniques and examples for the pre-qualification of materials. For assembled components, we provide sampling concepts for a routine measurement for process, component and product qualification. A careful selection of previously tested and certified materials and components is essential to guarantee the quality of lasers and optical devices.

  4. Controllable Optical Bistability in a Crystal of Molecular Magnets System

    Institute of Scientific and Technical Information of China (English)

    LIU Ji-Bing; LU Xin-You; HAO Xiang-Ying; SI Liu-Gang; YANG Xiao-Xue

    2008-01-01

    We investigate the formation of opticai bistability (OB) in a crystal of molecular magnets contained in a unidirectional ring cavity. The crystal is subjected to one de magnetic field and two (probe and coupling) ac resonant magnetic field. The results show that OB can be controlled efficiently by adjusting the intensity of the control field, the detuning of probe magnetic field and the cooperation parameter. Furthermore, within certain parameter range, the optical multistablity (OM) can also be observed in the crystal medium. This investigation can be used for designing new types of nonelectronic devices for realizing switching process.

  5. Molecular design of porphyrin-based nonlinear optical materials.

    Science.gov (United States)

    Keinan, Shahar; Therien, Michael J; Beratan, David N; Yang, Weitao

    2008-11-27

    Nonlinear optical chromophores containing (porphyrinato)Zn(II), proquinoid, and (terpyridyl)metal(II) building blocks were optimized in a library containing approximately 10(6) structures using the linear combination of atomic potentials (LCAP) methodology. We report here the library design and molecular property optimizations. Two basic structural types of large beta(0) chromophores were examined: linear and T-shaped motifs. These T-shaped geometries suggest a promising NLO chromophoric architecture for experimental investigation and further support the value of performing LCAP searches in large chemical spaces.

  6. PAMOP: Petascale Atomic, Molecular and Optical Collision Calculations

    CERN Document Server

    McLaughlin, Brendan M; Pindzola, Michael S; Müller, Alfred

    2015-01-01

    Petaflop architectures are currently being utilized efficiently to perform large scale computations in Atomic, Molecular and Optical Collisions. We solve the Schr\\"odinger or Dirac equation for the appropriate collision problem using the R-matrix or R-matrix with pseudo-states approach. We briefly outline the parallel methodology used and implemented for the current suite of Breit-Pauli and DARC codes. In this report, various examples are shown from our theoretical results compared with experimental results obtained from Synchrotron Radiation facilities where the Cray architecture at HLRS is playing an integral part in our computational projects.

  7. Threshold ratios for molecular lasers with optical pumping

    Energy Technology Data Exchange (ETDEWEB)

    Kuntsevich, B.F.; Churakou, U.V.

    1976-01-01

    A series of relationships was obtained for threshold characteristics of high pressure molecular lasers with optical pumping. The threshold pumping density increases in proportion to the square of the active medium's pressure. The minimum value of threshold pumping corresponds to the maximum of the Boltzmann distribution function for rotating sublevels both in the pumping channel and in generation. A weak or strong relationship was observed between the threshold impulse energy and the pressure that is caused by fluctuative relaxation of the upper laser level for various relationships between the intensity of the pumping impulse, pressure and loss coefficient.

  8. Optical spectra and lattice dynamics of molecular crystals

    CERN Document Server

    Zhizhin, GN

    1995-01-01

    The current volume is a single topic volume on the optical spectra and lattice dynamics of molecular crystals. The book is divided into two parts. Part I covers both the theoretical and experimental investigations of organic crystals. Part II deals with the investigation of the structure, phase transitions and reorientational motion of molecules in organic crystals. In addition appendices are given which provide the parameters for the calculation of the lattice dynamics of molecular crystals, procedures for the calculation of frequency eigenvectors of utilizing computers, and the frequencies and eigenvectors of lattice modes for several organic crystals. Quite a large amount of Russian literature is cited, some of which has previously not been available to scientists in the West.

  9. Optical monitoring of high power direct diode laser cladding

    Science.gov (United States)

    Liu, Shuang; Farahmand, Parisa; Kovacevic, Radovan

    2014-12-01

    Laser cladding is one of the most advanced surface modification techniques which can be used to build and repair high-value components. High power direct diode laser (HPDDL) offers unique quality and cost advantages over other lasers (CO2, Nd:YAG). Especially its rectangular laser beam with top-hat intensity distribution makes HPDDL an ideal tool for large area cladding. In order to utilize this technique successfully, the development of on-line monitoring and process control is necessary. In this study, an optical monitoring system consisting of a high-speed CCD camera, a pyrometer, and an infrared camera was used to analyze the mass- and heat-transfer in the cladding process. The particle transport in flight was viewed by a high-speed CCD camera; the interaction between powder flow and laser beam was observed by an infrared camera; and the thermal behavior of the molten pool was recorded by the pyrometer and the infrared camera. The effects of the processing parameters on the laser attenuation, particle heating and clad properties were investigated based on the obtained signals. The optical monitoring method improved the understanding about mutual interrelated phenomena in the cladding process.

  10. Decision-Directed Correction for Bloom in Optical Recording Channels

    Science.gov (United States)

    Gopalaswamy, Srinivasan; Kee, Ng See; Farhang-Boroujeny, B.

    2000-02-01

    A threshold adaptation scheme is proposed in a non-Viterbi simple detector for d=2 minimum run-length-constraint coded optical recording schemes, to increase robustness to bloom. The detector has a simple structure comprising of a threshold detector, post processing error correction, and decision directed threshold adaptation. The equalization target is a free symmetric 7-tap target and the detection exploits the d=2 constraint in the input sequence. The detector is evaluated for digital versatile disk (DVD) specifications and compared with other threshold-based detectors as well as Viterbi detectors following targets of length up to 5. Performance improvement of over 1.5 dB is observed with the proposed feature for bloom larger than 15% of the channel bit period.

  11. Direct Optical Probing of Transverse Electric Mode in Graphene

    CERN Document Server

    Menabde, Sergey; Kornev, Evgeny; Lee, Changhee; Park, Namkyoo

    2015-01-01

    Unique electrodynamic response of graphene implies a manifestation of an unusual propagating and localised transverse-electric (TE) mode near the spectral onset of interband transitions. However, excitation and further detection of the TE mode supported by graphene is considered to be a challenge for it is extremely sensitive to excitation environment and phase matching condition adherence. Here for the first time, we experimentally prove an existence of the TE mode by its direct optical probing, demonstrating significant coupling to an incident wave in electrically doped multilayer graphene sheet at room temperature. We believe that proposed technique of careful phase matching and obtained access to graphene TE excitation would stimulate further studies of this unique phenomenon, and enable its potential employing in various fields of photonics as well as for characterization of graphene.

  12. Mid-infrared continuous wave cavity ring down spectroscopy of molecular ions using an optical parametric oscillator

    NARCIS (Netherlands)

    Verbraak, H.; Ngai, A.K.Y.; Persijn, S.T.; Harren, F.J.M.; Linnartz, H.

    2007-01-01

    A sensitive infrared detection scheme is presented in which continuous wave cavity ring down spectroscopy is used to record rovibrational spectra of molecular ions in direct absorption through supersonically expanding planar plasma. A cw optical parametric oscillator is used as a light source and

  13. Direct evidence of the molecular interaction propagation in the phase transition of liquid crystals

    Science.gov (United States)

    Katayama, Kenji; Sato, Takahiro; Kuwahara, Shota

    2016-09-01

    The molecular interaction sometimes propagates in a collective manner, reaching for a long distance on the order of millimeters. Such interactions have been well known in the field of strongly-correlated electron systems in a beautiful crystal interleaved by donor and acceptor layers, induced by photo-stimulus. The other examples can be found in liquid crystals (LCs), which could be found in many places in nature such as bio-membrane. Different from crystals, LCs features "softness", which enables it to be a curved structure such as a cell. In LCs, even a small molecular change would trigger the overall structural change by the propagation of the molecular interaction. Here we will show, for the first time, how long and how fast the molecular interaction propagates in LCs. The patterned phase transition was induced in a LC, causing the phase transition propagation in a controlled way and the propagation was measured with an time-resolved optical technique, called the transient grating. A LC sample doped with azobenzene was put into a thermally controlled LC cell. A grating pattern of a pulse light with 355 nm was impinged to the LC cell, and the light was absorbed by the dyes, releasing heat or photomechanical motion. We could observe the fringe spacing dependence on the phase transition response, which indicates that phase transition was delayed as the fringe spacing due to the delay by the phase transition propagation. This is the first direct evidence of the molecular interaction propagation of the LC molecules.

  14. All-optical link for direct comparison of distant optical clocks

    CERN Document Server

    Fujieda, Miho; Nagano, Shigeo; Yamaguchi, Atsushi; Hachisu, Hidekazu; Ido, Tetsuya

    2011-01-01

    We developed an all-optical link system for making remote comparisons of two distant ultra-stable optical clocks. An optical carrier transfer system based on a fiber interferometer was employed to compensate the phase noise accumulated during the propagation through a fiber link. Transfer stabilities of $2\\times10^{-15}$ at 1 second and $4\\times10^{-18}$ at 1000 seconds were achieved in a 90-km link. An active polarization control system was additionally introduced to maintain the transmitted light in an adequate polarization, and consequently, a stable and reliable comparison was accomplished. The instabilities of the all-optical link system, including those of the erbium doped fiber amplifiers (EDFAs) which are free from phase-noise compensation, were below $2\\times10^{-15}$ at 1 second and $7\\times10^{-17}$ at 1000 seconds. The system was available for the direct comparison of two distant $^{87}$Sr lattice clocks via an urban fiber link of 60 km. This technique will be essential for the measuring the repro...

  15. Maximum likelihood sequence estimation for optical complex direct modulation.

    Science.gov (United States)

    Che, Di; Yuan, Feng; Shieh, William

    2017-04-17

    Semiconductor lasers are versatile optical transmitters in nature. Through the direct modulation (DM), the intensity modulation is realized by the linear mapping between the injection current and the light power, while various angle modulations are enabled by the frequency chirp. Limited by the direct detection, DM lasers used to be exploited only as 1-D (intensity or angle) transmitters by suppressing or simply ignoring the other modulation. Nevertheless, through the digital coherent detection, simultaneous intensity and angle modulations (namely, 2-D complex DM, CDM) can be realized by a single laser diode. The crucial technique of CDM is the joint demodulation of intensity and differential phase with the maximum likelihood sequence estimation (MLSE), supported by a closed-form discrete signal approximation of frequency chirp to characterize the MLSE transition probability. This paper proposes a statistical method for the transition probability to significantly enhance the accuracy of the chirp model. Using the statistical estimation, we demonstrate the first single-channel 100-Gb/s PAM-4 transmission over 1600-km fiber with only 10G-class DM lasers.

  16. FIBER-OPTIC BIOSENSOR FOR DIRECT DETERMINATION OF ORGANOPHOSPHATE NERVE AGENTS. (R823663)

    Science.gov (United States)

    A fiber-optic enzyme biosensor for the direct measurement of organophosphate nerveagents was developed. The basic element of this biosensor is organophosphorus hydrolaseimmobilized on a nylon membrane and attached to the common end of a bifurcated optical fiberbundle....

  17. Enabling Technologies for Direct Detection Optical Phase Modulation Formats

    Science.gov (United States)

    Xu, Xian

    Phase modulation formats are believed to be one of the key enabling techniques for next generation high speed long haul fiber-optic communication systems due to the following main advantages: (1) with a balanced detection, a better receiver sensitivity over conventional intensity modulation formats, e.g., a ˜3-dB sensitivity improvement using differential phase shift keying (DPSK) and a ˜1.3-dB sensitivity improvement using differential quadrature phase shift keying (DQPSK); (2) excellent robustness against fiber nonlinearities; (3) high spectrum efficiency when using multilevel phase modulation formats, such as DQPSK. As the information is encoded in the phase of the optical field, the phase modulation formats are sensitive to the phase-related impairments and the deterioration induced in the phase-intensity conversion. This consequently creates new challenging issues. The research objective of this thesis is to depict some of the challenging issues and provide possible solutions. The first challenge is the cross-phase modulation (XPM) penalty for the phase modulated channels co-propagating with the intensity modulated channels. The penalty comes from the pattern dependent intensity fluctuations of the neighboring intensity modulated channels being converted into phase noise in the phase modulation channels. We propose a model to theoretically analyze the XPM penalty dependence on the walk off effect. From this model, we suggest that using fibers with large local dispersion or intentionally introducing some residual dispersion per span would help mitigate the XPM penalty. The second challenge is the polarization dependent frequency shift (PDf) induced penalty during the phase-intensity conversion. The direct detection DPSK is usually demodulated in a Mach-Zehnder delay interferometer (DI). The polarization dependence of DI introduces a PDf causing a frequency offset between the laser's frequency and the transmissivity peak of DI, degrading the demodulated DPSK

  18. Molecular imprinted polymer-coated optical fiber sensor for the identification of low molecular weight molecules.

    Science.gov (United States)

    Lépinay, Sandrine; Ianoul, Anatoli; Albert, Jacques

    2014-10-01

    A biomimetic optical probe for detecting low molecular weight molecules (maltol, 3-hydroxy-2-methyl-4H-pyran-4-one, molecular weight of 126.11 g/mol), was designed, fabricated, and characterized. The sensor couples a molecular imprinted polymer (MIP) and the Bragg grating refractometry technology into an optical fiber. The probe is fabricated first by inscribing tilted grating planes in the core of the fiber, and then by photopolymerization to immobilize a maltol imprinted MIP on the fiber cladding surface over the Bragg grating. The sensor response to the presence of maltol in different media is obtained by spectral interrogation of the fiber transmission signal. The results showed that the limit of detection of the sensor reached 1 ng/mL in pure water with a sensitivity of 6.3 × 10(8)pm/M. The selectivity of the sensor against other compounds and its reusability were also studied experimentally. Finally, the unambiguous detection of concentrations as little as 10nM of maltol in complex media (real food samples) by the MIP-coated tilted fiber Bragg grating sensor was demonstrated.

  19. Nanofluid optical property characterization: towards efficient direct absorption solar collectors.

    Science.gov (United States)

    Taylor, Robert A; Phelan, Patrick E; Otanicar, Todd P; Adrian, Ronald; Prasher, Ravi

    2011-03-15

    Suspensions of nanoparticles (i.e., particles with diameters nanofluids, show remarkable thermal and optical property changes from the base liquid at low particle loadings. Recent studies also indicate that selected nanofluids may improve the efficiency of direct absorption solar thermal collectors. To determine the effectiveness of nanofluids in solar applications, their ability to convert light energy to thermal energy must be known. That is, their absorption of the solar spectrum must be established. Accordingly, this study compares model predictions to spectroscopic measurements of extinction coefficients over wavelengths that are important for solar energy (0.25 to 2.5 μm). A simple addition of the base fluid and nanoparticle extinction coefficients is applied as an approximation of the effective nanofluid extinction coefficient. Comparisons with measured extinction coefficients reveal that the approximation works well with water-based nanofluids containing graphite nanoparticles but less well with metallic nanoparticles and/or oil-based fluids. For the materials used in this study, over 95% of incoming sunlight can be absorbed (in a nanofluid thickness ≥10 cm) with extremely low nanoparticle volume fractions - less than 1 × 10-5, or 10 parts per million. Thus, nanofluids could be used to absorb sunlight with a negligible amount of viscosity and/or density (read: pumping power) increase.

  20. Nanofluid optical property characterization: towards efficient direct absorption solar collectors

    Directory of Open Access Journals (Sweden)

    Otanicar Todd

    2011-01-01

    Full Text Available Abstract Suspensions of nanoparticles (i.e., particles with diameters < 100 nm in liquids, termed nanofluids, show remarkable thermal and optical property changes from the base liquid at low particle loadings. Recent studies also indicate that selected nanofluids may improve the efficiency of direct absorption solar thermal collectors. To determine the effectiveness of nanofluids in solar applications, their ability to convert light energy to thermal energy must be known. That is, their absorption of the solar spectrum must be established. Accordingly, this study compares model predictions to spectroscopic measurements of extinction coefficients over wavelengths that are important for solar energy (0.25 to 2.5 μm. A simple addition of the base fluid and nanoparticle extinction coefficients is applied as an approximation of the effective nanofluid extinction coefficient. Comparisons with measured extinction coefficients reveal that the approximation works well with water-based nanofluids containing graphite nanoparticles but less well with metallic nanoparticles and/or oil-based fluids. For the materials used in this study, over 95% of incoming sunlight can be absorbed (in a nanofluid thickness ≥10 cm with extremely low nanoparticle volume fractions - less than 1 × 10-5, or 10 parts per million. Thus, nanofluids could be used to absorb sunlight with a negligible amount of viscosity and/or density (read: pumping power increase.

  1. Nanofluid optical property characterization: towards efficient direct absorption solar collectors

    Science.gov (United States)

    Taylor, Robert A.; Phelan, Patrick E.; Otanicar, Todd P.; Adrian, Ronald; Prasher, Ravi

    2011-12-01

    Suspensions of nanoparticles (i.e., particles with diameters nanofluids, show remarkable thermal and optical property changes from the base liquid at low particle loadings. Recent studies also indicate that selected nanofluids may improve the efficiency of direct absorption solar thermal collectors. To determine the effectiveness of nanofluids in solar applications, their ability to convert light energy to thermal energy must be known. That is, their absorption of the solar spectrum must be established. Accordingly, this study compares model predictions to spectroscopic measurements of extinction coefficients over wavelengths that are important for solar energy (0.25 to 2.5 μm). A simple addition of the base fluid and nanoparticle extinction coefficients is applied as an approximation of the effective nanofluid extinction coefficient. Comparisons with measured extinction coefficients reveal that the approximation works well with water-based nanofluids containing graphite nanoparticles but less well with metallic nanoparticles and/or oil-based fluids. For the materials used in this study, over 95% of incoming sunlight can be absorbed (in a nanofluid thickness ≥10 cm) with extremely low nanoparticle volume fractions - less than 1 × 10-5, or 10 parts per million. Thus, nanofluids could be used to absorb sunlight with a negligible amount of viscosity and/or density (read: pumping power) increase.

  2. Atomic and Molecular Data for Optical Stellar Spectroscopy

    CERN Document Server

    Heiter, U; Asplund, M; Barklem, P S; Bergemann, M; Magrini, L; Masseron, T; Mikolaitis, Š; Pickering, J C; Ruffoni, M P

    2015-01-01

    High-precision spectroscopy of large stellar samples plays a crucial role for several topical issues in astrophysics. Examples include studying the chemical structure and evolution of the Milky Way galaxy, tracing the origin of chemical elements, and characterizing planetary host stars. Data are accumulating from instruments that obtain high-quality spectra of stars in the ultraviolet, optical and infrared wavelength regions on a routine basis. These instruments are located at ground-based 2- to 10-m class telescopes around the world, in addition to the spectrographs with unique capabilities available at the Hubble Space Telescope. The interpretation of these spectra requires high-quality transition data for numerous species, in particular neutral and singly ionized atoms, and di- or triatomic molecules. We rely heavily on the continuous efforts of laboratory astrophysics groups that produce and improve the relevant experimental and theoretical atomic and molecular data. The compilation of the best available ...

  3. [Clinical and molecular genetic analysis of hereditary optic neuropathies].

    Science.gov (United States)

    Avetisov, S É; Sheremet, N L; Vorob'eva, O K; Eliseeva, É G; Chukhrova, A L; Loginova, A N; Khanakova, N A; Poliakov, A V

    2013-01-01

    DNA samples of 50 patients with optic neuropathy (ON) associated with congenital cataract were studied to find 3 major mt-DNA mutations (m.11778G>A, m.3460G>A, m.14484T>C), mutations in "hot" regions of OPA 1 gene (exons 8, 14, 15, 16, 18, 27, 28) and in the entire coding sequence of OPA3 gene for molecular genetic confirmation of diagnosis of hereditary Leber and autosomal dominant ON. Primary mutations of mtDNA responsible for hereditary Leber ON were found in 16 patients (32%). Pathogenic mutations of OPAl gene (c.869G>A and c. 2850delT) were identified in 2 patients (4%), these mutations were not found in the literature. OPA3 gene mutations were not revealed.

  4. Optical Fiber Nanotips Coated with Molecular Beacons for DNA Detection

    Directory of Open Access Journals (Sweden)

    Ambra Giannetti

    2015-04-01

    Full Text Available Optical fiber sensors, thanks to their compactness, fast response and real-time measurements, have a large impact in the fields of life science research, drug discovery and medical diagnostics. In recent years, advances in nanotechnology have resulted in the development of nanotools, capable of entering the single cell, resulting in new nanobiosensors useful for the detection of biomolecules inside living cells. In this paper, we provide an application of a nanotip coupled with molecular beacons (MBs for the detection of DNA. The MBs were characterized by hybridization studies with a complementary target to prove their functionality both free in solution and immobilized onto a solid support. The solid support chosen as substrate for the immobilization of the MBs was a 30 nm tapered tip of an optical fiber, fabricated by chemical etching. With this set-up promising results were obtained and a limit of detection (LOD of 0.57 nM was reached, opening up the possibility of using the proposed nanotip to detect mRNAs inside the cytoplasm of living cells.

  5. Augmenting reality in Direct View Optical (DVO) overlay applications

    Science.gov (United States)

    Hogan, Tim; Edwards, Tim

    2014-06-01

    The integration of overlay displays into rifle scopes can transform precision Direct View Optical (DVO) sights into intelligent interactive fire-control systems. Overlay displays can provide ballistic solutions within the sight for dramatically improved targeting, can fuse sensor video to extend targeting into nighttime or dirty battlefield conditions, and can overlay complex situational awareness information over the real-world scene. High brightness overlay solutions for dismounted soldier applications have previously been hindered by excessive power consumption, weight and bulk making them unsuitable for man-portable, battery powered applications. This paper describes the advancements and capabilities of a high brightness, ultra-low power text and graphics overlay display module developed specifically for integration into DVO weapon sight applications. Central to the overlay display module was the development of a new general purpose low power graphics controller and dual-path display driver electronics. The graphics controller interface is a simple 2-wire RS-232 serial interface compatible with existing weapon systems such as the IBEAM ballistic computer and the RULR and STORM laser rangefinders (LRF). The module features include multiple graphics layers, user configurable fonts and icons, and parameterized vector rendering, making it suitable for general purpose DVO overlay applications. The module is configured for graphics-only operation for daytime use and overlays graphics with video for nighttime applications. The miniature footprint and ultra-low power consumption of the module enables a new generation of intelligent DVO systems and has been implemented for resolutions from VGA to SXGA, in monochrome and color, and in graphics applications with and without sensor video.

  6. Direct optical imaging of structural inhomogeneities in crystalline materials.

    Science.gov (United States)

    Grigorev, A M

    2016-05-10

    A method for optical imaging of structural inhomogeneities in crystalline materials is proposed, based on the differences in the optical properties of the structural inhomogeneity and the homogeneous material near the fundamental absorption edge of the crystalline material. The method can be used to detect defects in both semiconductors and insulators.

  7. Hard X-ray-induced optical luminescence via biomolecule-directed metal clusters.

    Science.gov (United States)

    Osakada, Yasuko; Pratx, Guillem; Sun, Conroy; Sakamoto, Masanori; Ahmad, Moiz; Volotskova, Olga; Ong, Qunxiang; Teranishi, Toshiharu; Harada, Yoshie; Xing, Lei; Cui, Bianxiao

    2014-04-07

    Here, we demonstrate that biomolecule-directed metal clusters are applicable in the study of hard X-ray excited optical luminescence, promising a new direction in the development of novel X-ray-activated imaging probes.

  8. Cold cesium molecules produced directly in a magneto-optical trap

    Institute of Scientific and Technical Information of China (English)

    Zhang Hong-Shan; Ji Zhong-Hua; Yuan Jin-Peng; Zhao Yan-Ting; Ma Jie; Wang Li-Rong; Xiao Lian-Tuan; Jia Suo-Tang

    2011-01-01

    We report on the observation of ultracold ground electric-state cesium molecules produced directly in a magnetooptical trap with a good signal-to-noise ratio.These molecules arise from the photoassociation of magneto-optical trap lasers and they are detected by resonantly enhanced multiphoton ionization technology.The production rate of ultracold cesium molecules is up to 4× 104 s-1.We measure the characteristic time of the ground electric-state cesium molecules generated in the experiment and investigate the Cs2+ molecular ion intensity as a function of the trapping laser intensity and the ionization pulse laser energy.We conclude that the production of cold cesium molecules may be enhanced by using appropriate experimental parameters,which is useful for future experiments involving the production and trapping of ultracold ground electric-state molecules.

  9. Frequency interleaving towards spectrally efficient directly detected optical OFDM for next-generation optical access networks.

    Science.gov (United States)

    Mehedy, Lenin; Bakaul, Masuduzzaman; Nirmalathas, Ampalavanapillai

    2010-10-25

    In this paper, we theoretically analyze and demonstrate that spectral efficiency of a conventional direct detection based optical OFDM system (DDO-OFDM) can be improved significantly using frequency interleaving of adjacent DDO-OFDM channels where OFDM signal band of one channel occupies the spectral gap of other channel and vice versa. We show that, at optimum operating condition, the proposed technique can effectively improve the spectral efficiency of the conventional DDO-OFDM system as much as 50%. We also show that such a frequency interleaved DDO-OFDM system, with a bit rate of 48 Gb/s within 25 GHz bandwidth, achieves sufficient power budget after transmission over 25 km single mode fiber to be used in next-generation time-division-multiplexed passive optical networks (TDM-PON). Moreover, by applying 64- quadrature amplitude modulation (QAM), the system can be further scaled up to 96 Gb/s with a power budget sufficient for 1:16 split TDM-PON.

  10. Optical contrast agents to visualize molecular expression in breast cancer

    Science.gov (United States)

    Langsner, Robert James

    tissue, a portable, inexpensive device was developed as a tool to help physicians visualize expression of surface markers. The system visualizes absorbance from nanoshell aggregates and fluorescence in the visible and near-infrared light spectrum. This study represents the first step in the development of an intraoperative optical imaging device to enhance the visualization of molecular markers overexpressed in cancerous cells.

  11. New directions for ion beam processing of optical materials

    Energy Technology Data Exchange (ETDEWEB)

    White, C.W.; Budai, J.D.; Zhu, J.G.; Withrow, S.P. [Oak Ridge National Lab., TN (United States)

    1997-03-01

    Recent developments in the use of ion implantation to modify the properties of optical materials are summarized. The use of ion implantation to form nanocrystal and quantum dots is emphasized. (author)

  12. High directivity optical antenna substrates for surface enhanced Raman scattering.

    Science.gov (United States)

    Wang, Dongxing; Zhu, Wenqi; Chu, Yizhuo; Crozier, Kenneth B

    2012-08-22

    A two-dimensional array of gold optical antennas integrated with a one-dimensional array of gold strips and mirrors is introduced and fabricated. The experimental results show that this design achieves average surface-enhanced Raman scattering (SERS) enhancement factors as high as 1.2 × 10(10) , which is more than two orders of magnitude larger than optical antennas without the gold strips and gold mirror.

  13. Introduction: feature issue on optical molecular probes, imaging, and drug delivery.

    Science.gov (United States)

    Campagnola, Paul; French, Paul M W; Georgakoudi, Irene; Mycek, Mary-Ann

    2014-02-01

    The editors introduce the Biomedical Optics Express feature issue "Optical Molecular Probes, Imaging, and Drug Delivery," which is associated with a Topical Meeting of the same name held at the 2013 Optical Society of America (OSA) Optics in the Life Sciences Congress in Waikoloa Beach, Hawaii, April 14-18, 2013. The international meeting focused on the convergence of optical physics, photonics technology, nanoscience, and photochemistry with drug discovery and clinical medicine. Papers in this feature issue are representative of meeting topics, including advances in microscopy, nanotechnology, and optics in cancer research.

  14. Nanomedicine: Perspective and promises with ligand-directed molecular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pan Dipanjan [Department of Medicine, Washington University Medical School, St. Louis, MO (United States)], E-mail: dipanjan@wustl.edu; Lanza, Gregory M.; Wickline, Samuel A. [Department of Medicine, Washington University Medical School, St. Louis, MO (United States); Caruthers, Shelton D. [Department of Medicine, Washington University Medical School, St. Louis, MO (United States); Philips Healthcare, Andover, MA (United States)], E-mail: scaruthers@cmrl.wustl.edu

    2009-05-15

    Molecular imaging and targeted drug delivery play an important role toward personalized medicine, which is the future of patient management. Of late, nanoparticle-based molecular imaging has emerged as an interdisciplinary area, which shows promises to understand the components, processes, dynamics and therapies of a disease at a molecular level. The unprecedented potential of nanoplatforms for early detection, diagnosis and personalized treatment of diseases, have found application in every biomedical imaging modality. Biological and biophysical barriers are overcome by the integration of targeting ligands, imaging agents and therapeutics into the nanoplatform which allow for theranostic applications. In this article, we have discussed the opportunities and potential of targeted molecular imaging with various modalities putting a particular emphasis on perfluorocarbon nanoemulsion-based platform technology.

  15. A distributed optical fiber bi-directional strain-displacement sensor

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A distributed optical fiber strain-displacement sensor is developed, which consists of an optical fiber gauge of strain-displacement and an optical time domain reflectometer (OTDR). The operational principle is the modulation of fiber loss in OTDR, i.e. the strain and displacement in monitoring position are obtained from the bending loss of optical fiber bonded on the optical fiber gauge of strain-displacement. After examining the strain and displacement in the cantilever and the micro displacement rack respectively, the result indicates that the distributed optical fiber gauge of strain-displacement can monitor strains or displacements in different sensitive lengths. The key technique for measuring bi-directional strain-displacement is the pretreatment of bending of the freely suspended optical fibers, which can be identified with OTDR by inserting time delay optical fiber.

  16. Configurational Molecular Glue: One Optically Active Polymer Attracts Two Oppositely Configured Optically Active Polymers.

    Science.gov (United States)

    Tsuji, Hideto; Noda, Soma; Kimura, Takayuki; Sobue, Tadashi; Arakawa, Yuki

    2017-03-24

    D-configured poly(D-lactic acid) (D-PLA) and poly(D-2-hydroxy-3-methylbutanoic acid) (D-P2H3MB) crystallized separately into their homo-crystallites when crystallized by precipitation or solvent evaporation, whereas incorporation of L-configured poly(L-2-hydroxybutanoic acid) (L-P2HB) in D-configured D-PLA and D-P2H3MB induced co-crystallization or ternary stereocomplex formation between D-configured D-PLA and D-P2H3MB and L-configured L-P2HB. However, incorporation of D-configured poly(D-2-hydroxybutanoic acid) (D-P2HB) in D-configured D-PLA and D-P2H3MB did not cause co-crystallization between D-configured D-PLA and D-P2H3MB and D-configured D-P2HB but separate crystallization of each polymer occurred. These findings strongly suggest that an optically active polymer (L-configured or D-configured polymer) like unsubstituted or substituted optically active poly(lactic acid)s can act as "a configurational or helical molecular glue" for two oppositely configured optically active polymers (two D-configured polymers or two L-configured polymers) to allow their co-crystallization. The increased degree of freedom in polymer combination is expected to assist to pave the way for designing polymeric composites having a wide variety of physical properties, biodegradation rate and behavior in the case of biodegradable polymers.

  17. Beyond the Hookean Spring Model: Direct Measurement of Optical Forces Through Light Momentum Changes.

    Science.gov (United States)

    Farré, Arnau; Marsà, Ferran; Montes-Usategui, Mario

    2017-01-01

    The ability to measure forces in the range of 0.1-100 pN is a key feature of optical tweezers used for biophysical and cell biological studies. Analysis of the interactions between biomolecules and the forces that biomolecular motors generate at the single-molecule level has provided valuable insights in the molecular mechanisms that govern key cellular functions such as gene expression and the long-distance transport of organelles. Methods for determining the minute forces that biomolecular motors generate exhibit notable constraints that limit their application for studies other than the well-controlled in vitro experiments (although recent advances have been made that permit more quantitative optical tweezers studies insight living cells). One constraint comes from the linear approximation of the distance vs. force relationship used to extract the force from the position of the bead in the trap. This commonly employed "indirect" approach, although usually sufficiently precise, restricts the use of optical tweezers to a limited range of displacements (typically up to ±150 nm for small beads). Measurements based on the detection of the light-momentum changes, on the other hand, offer a "direct" and precise way to determine forces even when the generated displacements reach the escape point, thus covering the complete force range developed by the trap. In this chapter, we detail the requirements for the design of a force-sensor instrument based on light-momentum changes using a high-numerical-aperture objective lens and provide insights into its construction. We further discuss the calibration of the system and the main steps for its routine operation.

  18. Final Report: Photo-Directed Molecular Assembly of Multifunctional Inorganic Materials

    Energy Technology Data Exchange (ETDEWEB)

    B.G. Potter, Jr.

    2010-10-15

    This final report details results, conclusions, and opportunities for future effort derived from the study. The work involved combining the molecular engineering of photoactive Ti-alkoxide systems and the optical excitation of hydrolysis and condensation reactions to influence the development of the metal-oxygen-metal network at the onset of material formation. Selective excitation of the heteroleptic alkoxides, coupled with control of alkoxide local chemical environment, enabled network connectivity to be influenced and formed the basis for direct deposition and patterning of Ti-oxide-based materials. The research provided new insights into the intrinsic photoresponse and assembly of these complex, alkoxide molecules. Using a suite of electronic, vibrational, and nuclear spectroscopic probes, coupled with quantum chemical computation, the excitation wavelength and fluence dependence of molecular photoresponse and the nature of subsequent hydrolysis and condensation processes were probed in pyridine-carbinol-based Ti-alkoxides with varied counter ligand groups. Several methods for the patterning of oxide material formation were demonstrated, including the integration of this photoprocessing approach with conventional, dip-coating methodologies.

  19. High contrast all-optical diode based on direction-dependent optical bistability within asymmetric ring cavity

    Science.gov (United States)

    Xia, Xiu-Wen; Zhang, Xin-Qin; Xu, Jing-Ping; Yang, Ya-Ping

    2016-08-01

    We propose a simple all-optical diode which is comprised of an asymmetric ring cavity containing a two-level atomic ensemble. Attributed to spatial symmetry breaking of the ring cavity, direction-dependent optical bistability is obtained in a classical bistable system. Therefore, a giant optical non-reciprocity is generated, which guarantees an all-optical diode with a high contrast up to 22 dB. Furthermore, its application as an all-optical logic AND gate is also discussed. Project supported by the National Natural Science Foundation of China (Grant Nos. 11274242, 11474221, and 11574229), the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1330203), and the National Key Basic Research Special Foundation of China (Grant Nos. 2011CB922203 and 2013CB632701).

  20. Molecular aspects of prostate cancer: implications for future directions

    Directory of Open Access Journals (Sweden)

    Etel R. P. Gimba

    2003-10-01

    Full Text Available Many studies have been developed trying to understand the complex molecular mechanisms involved in oncogenesis and progression of prostate cancer (PCa. Current biotechnological methodologies, especially genomic studies, are adding important aspects to this area. The construction of extensive DNA sequence data and gene expression profiles have been intensively explored to search for candidate biomarkers to evaluate PCa. The use of DNA micro-array robotic systems constitutes a powerful approach to simultaneously monitor the expression of a great number of genes. The resulting gene expressing profiles can be used to specifically describe tumor staging and response to cancer therapies. Also, it is possible to follow PCa pathological properties and to identify genes that anticipate the behavior of clinical disease. The molecular pathogenesis of PCa involves many contributing factors, such as alterations in signal transduction pathways, angiogenesis, adhesion molecules expression and cell cycle control. Also, molecular studies are making clear that many genes, scattered through several different chromosomal regions probably cause predisposition to PCa. The discovery of new molecular markers for PCa is another relevant advance resulting from molecular biology studies of prostate tumors. Interesting tissue and serum markers have been reported, resulting in many cases in useful novelties to diagnostic and prognostic approaches to follow-up PCa. Finally, gene therapy comes as an important approach for therapeutic intervention in PCa. Clinical trials for PCa have been demonstrating that gene therapy is relatively safe and well tolerated, although some improvements are yet to be developed.

  1. Molecular Beam Optical Study of Gold Sulfide and Gold Oxide

    Science.gov (United States)

    Zhang, Ruohan; Yu, Yuanqin; Steimle, Timothy

    2016-06-01

    Gold-sulfur and gold-oxygen bonds are key components to numerous established and emerging technologies that have applications as far ranging as medical imaging, catalysis, electronics, and material science. A major theoretical challenge for describing this bonding is correctly accounting for the large relativistic and electron correlation effects. Such effects are best studied in diatomic, AuX, molecules. Recently, the observed AuS electronic state energy ordering was measured and compared to a simple molecular orbital diagram prediction. Here we more thoroughly investigate the nature of the electronic states of both AuS and AuO from the analysis of high-resolution (FWHM\\cong35MHz) optical Zeeman spectroscopy of the (0,0){B}2Σ--{X}2Π3/2 bands. The determined fine and hyperfine parameters for the {B}2Σ- state of AuO differ from those extracted from the analysis of a hot, Doppler-limited, spectrum. It is demonstrated that the nature of the {B}2Σ- states of AuO and AuS are radically different. The magnetic tuning of AuO and AuS indicates that the {B}2Σ- states are heavily contaminated. Supported by the National Science Foundation under Grant No.1265885. D. L. Kokkin, R. Zhang, T. C. Steimle, I. A. Wyse, B. W. Pearlman and T. D. Varberg, J. Phys. Chem. A., 119(48), 4412, 2015. L. C. O'Brien, B. A. Borchert, A. Farquhar, S. Shaji, J. J. O'Brien and R. W. Field, J. Mol. Spectrosc., 252(2), 136, 2008

  2. Molecular therapy of colorectal cancer: progress and future directions.

    Science.gov (United States)

    Weng, Wenhao; Feng, Junlan; Qin, Huanlong; Ma, Yanlei

    2015-02-01

    Colorectal cancer (CRC) remains one of the most common types of cancer and leading causes of cancer death worldwide. Although the introduction of cytotoxic drugs such as oxaliplatin, irinotecan and fluorouracil has improved the treatment of advanced CRC, the individual response to chemoradiotherapy varies tremendously from one patient to another. However, recent progress in CRC molecular therapies may provide new insight into the treatment of this disease. Currently, components of the EGFR, VEGF, Wnt and NF-kB pathways are the most important targets for CRC therapy. This review chronicles the development of molecular CRC therapies over the past few decades. We also provide an update on the current progress of research concerning the molecular pathways leading to CRC and discuss the possible implications for CRC therapy.

  3. Ultrafast ignition of a uni-directional molecular motor

    Directory of Open Access Journals (Sweden)

    Feringa Ben L.

    2013-03-01

    Full Text Available Light-driven molecular motors convert light into mechanical energy via excited state reactions. In this work we follow sub-picosecond primary events in the cycle of a two-stroke unidirectional motor by fluorescence up-conversion and transient absorption.

  4. Optical Molecular Imaging Frontiers in Oncology: The Pursuit of Accuracy and Sensitivity

    Directory of Open Access Journals (Sweden)

    Kun Wang

    2015-09-01

    Full Text Available Cutting-edge technologies in optical molecular imaging have ushered in new frontiers in cancer research, clinical translation, and medical practice, as evidenced by recent advances in optical multimodality imaging, Cerenkov luminescence imaging (CLI, and optical image-guided surgeries. New abilities allow in vivo cancer imaging with sensitivity and accuracy that are unprecedented in conventional imaging approaches. The visualization of cellular and molecular behaviors and events within tumors in living subjects is improving our deeper understanding of tumors at a systems level. These advances are being rapidly used to acquire tumor-to-tumor molecular heterogeneity, both dynamically and quantitatively, as well as to achieve more effective therapeutic interventions with the assistance of real-time imaging. In the era of molecular imaging, optical technologies hold great promise to facilitate the development of highly sensitive cancer diagnoses as well as personalized patient treatment—one of the ultimate goals of precision medicine.

  5. Adaption and application of the Green function method to research on molecular ultrathin film optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Setrajcic, Jovan P [Department of Physics, Faculty of Sciences, University of Novi Sad, Vojvodina (Serbia); Ilic, Dusan I; Markoski, Branko [Faculty of Technical Sciences, University of Novi Sad, Vojvodina (Serbia); Setrajcic, Ana J; Vucenovic, Sinisa M [Faculty of Medicine-Pharmacy, University of Novi Sad, Vojvodina (Serbia); Mirjanic, Dragoljub Lj [Faculty of Medicine, University of Banja Luka, Republic of Srpska (Bosnia and Herzegowina); Skipina, Blanka [Faculty of Technology, University of Banja Luka, Republic of Srpska (Bosnia and Herzegowina); Pelemis, Svetlana [Faculty of Technology Zvornik, University of East Sarajevo, Republic of Srpska (Bosnia and Herzegowina)], E-mail: idilic@EUnet.yu

    2009-07-15

    Interest in the study of the exciton subsystem in crystalline structures (in this case nanostructures, i.e. thin films) occurred because dielectric, optical, photoelectric and other properties of materials can be explained by means of it. The basic question to be solved concerning theoretical research into the spatially strongly bounded structures is the inability to apply the standard mathematical tools: differential equations and Fourier analysis. In this paper, it is shown how the Green function method can also be efficiently applied to crystalline samples so constrained that quantum size effects play a significant role on them. For the purpose of exemplification of this method's application, we shall consider a molecular crystal of simple cubic structure: spatially unbounded (bulk) and strongly bounded alongside one direction (ultrathin film)

  6. 16-level differential phase shift keying (D16PSK) in direct detection optical communication systems

    DEFF Research Database (Denmark)

    Sambaraju, R.; Tokle, Torger; Jensen, J.B.;

    2006-01-01

    Optical 16-level differential phase shift keying (D16PSK) carrying four bits for every symbol is proposed for direct detection optical communication systems. Transmitter and receiver schematics are presented, and the receiver sensitivity is discussed. We numerically investigate the impact...

  7. Directional Radiometry and Radiative Transfer: the Convoluted Path From Centuries-old Phenomenology to Physical Optics

    Science.gov (United States)

    Mishchenko, Michael I.

    2014-01-01

    This Essay traces the centuries-long history of the phenomenological disciplines of directional radiometry and radiative transfer in turbid media, discusses their fundamental weaknesses, and outlines the convoluted process of their conversion into legitimate branches of physical optics.

  8. Holographic Optical Element-Based Laser Diode Source System for Direct Metal Deposition in Space Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To meet the challenges of rapid prototyping, direct hardware fabrication, and on-the-spot repairs on the ground and on NASA space platforms, Physical Optics...

  9. First Extragalactic Direct Detection of Large-Scale Molecular Hydrogen in the Disk of NGC 891

    Science.gov (United States)

    Valentijn, Edwin A.; van der Werf, Paul P.

    1999-09-01

    We present direct observations of molecular hydrogen in the disk of the nearby edge-on spiral galaxy NGC 891. With Infrared Space Observatory's Short-Wavelength Spectrometer (SWS) it has been possible, for the first time, to observe the lowest pure rotational lines of H2 [S(0) at 28.2 μm and S(1) at 17.0 μm] at eight positions throughout the stellar disk of NGC 891. Both lines have been detected at all the surveyed positions out to 11 kpc north of the center of the galaxy. An H2 rotation curve is derived, and we compare H2 radial profiles with CO and H I data. The observed line ratios indicate relatively warm (T=150-230 K) molecular clouds scattered throughout the disk in addition to a massive cooler (T=80-90 K) component which dominates the signal in the outer regions. For H2 ortho/para ratios of 2-3, the cool gas has typical edge-on column densities (1-3)×1023 cm-2 (or ~3000 Msolar pc-2), in which case it outweighs the H I by a factor of 5-15. This factor matches well the mass required to resolve the problem of the missing matter of spiral galaxies within at least the optical disk. The newly discovered cool H2 component would be less massive in the case in which its dominant ortho/para ratio is near unity. We address the thermal balance of this component by a comparison with [C II] 158 μm data. When combining the new coolish molecular gas results with recent SCUBA cold dust observations of NGC 891, the total gas-to-dust ratio at rISO, an ESA project with instruments funded by ESA member states (especially the PI countries: France, Germany, the Netherlands, and the United Kingdom) and with the participation of ISAS and NASA.

  10. Direct experimental determination of spectral densities of molecular complexes

    Energy Technology Data Exchange (ETDEWEB)

    Pachón, Leonardo A. [Grupo de Física Atómica y Molecular, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Chemical Physics Theory Group, Department of Chemistry and Center for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6 (Canada); Brumer, Paul [Chemical Physics Theory Group, Department of Chemistry and Center for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6 (Canada)

    2014-11-07

    Determining the spectral density of a molecular system immersed in a proteomic scaffold and in contact to a solvent is a fundamental challenge in the coarse-grained description of, e.g., electron and energy transfer dynamics. Once the spectral density is characterized, all the time scales are captured and no artificial separation between fast and slow processes need to be invoked. Based on the fluorescence Stokes shift function, we utilize a simple and robust strategy to extract the spectral density of a number of molecular complexes from available experimental data. Specifically, we show that experimental data for dye molecules in several solvents, amino acid proteins in water, and some photochemical systems (e.g., rhodopsin and green fluorescence proteins), are well described by a three-parameter family of sub-Ohmic spectral densities that are characterized by a fast initial Gaussian-like decay followed by a slow algebraic-like decay rate at long times.

  11. Direct Experimental Determination of Spectral Densities of Molecular Complexes

    CERN Document Server

    Pachon, Leonardo A

    2014-01-01

    Determining the spectral density of a molecular system immersed in a proteomic scaffold and in contact to a solvent is a fundamental challenge in the coarse-grained description of, e.g., electron and energy transfer dynamics. Once the spectral density is characterized, all the time scales are captured and no artificial separation between fast and slow processes need be invoked. Based on the fluorescence Stokes shift function, we utilize a simple and robust strategy to extract the spectral density of a number of molecular complexes from available experimental data. Specifically, we show that experimental data for dye molecules in several solvents, amino acid proteins in water, and some photochemical systems (e.g., rhodopsin and green fluorescence proteins), are well described by a three-parameter family of sub-Ohmic spectral densities that are characterized by a fast initial Gaussian-like decay followed by a slow algebraic-like decay rate at long times.

  12. Molecular Imaging of Breast Cancer: Present and future directions

    Directory of Open Access Journals (Sweden)

    David eAlcantara

    2014-12-01

    Full Text Available Medical imaging technologies have undergone explosive growth over the past few decades and now play a central role in clinical oncology. But the truly transformative power of imaging in the clinical management of cancer patients lies ahead. Today, imaging is at a crossroads, with molecularly targeted imaging agents expected to broadly expand the capabilities of conventional anatomical imaging methods. Molecular imaging will allow clinicians to not only see where a tumour is located in the body, but also to visualize the expression and activity of specific molecules (e.g. proteases and protein kinases and biological processes (e.g. apoptosis, angiogenesis, and metastasis that influence tumour behavior and/or response to therapy. Breast cancer, the most common cancer among women and a research area where our group is actively involved, is a very heterogeneous disease with diverse patterns of development and response to treatment. Hence, molecular imaging is expected to have a major impact on this type of cancer, leading to important improvements in diagnosis, individualized treatment, and drug development, as well as our understanding of how breast cancer arises.

  13. An optical reflected device using a molecularly imprinted polymer film sensor

    Energy Technology Data Exchange (ETDEWEB)

    Wu Nan; Feng Liang; Tan Yiyong [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Hu Jiming, E-mail: jmhu@whu.edu.cn [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)

    2009-10-19

    A novel and highly selective optical sensor with molecularly imprinted polymer (MIP) film was fabricated and investigated. The optical sensor head employing a medium finesse molecularly imprinted polymer film has been fabricated and characterised. A blank polymer and formaldehyde imprinted polymer were using methacrylic acid as the functional monomer and the ethylene glycol dimethacrylate as a crosslinker. The transduction mechanism is discussed based on the changes of optical intensity of molecularly imprinted polymer film acting as an optical reflected sensor. Template molecules, which diffused into MIP, could cause film density, and refractive index change, and then induce measurable optical reflective intensity shifts. Based on the reflective intensity shifts, an optical reflection detection of formaldehyde was achieved by illuminating MIP with a laser beam. For the same MIP, the reflective intensity shift was proportional to the amount of template molecule. This optical sensor, based on an artificial recognition system, demonstrates long-time stability and resistance to harsh chemical environments. As the research moves forward gradually, we establish the possibilities of quantitative analysis primly, setting the groundwork to the synthesis of the molecular imprinted optical fiber sensor. The techniques show good reproducibility and sensitivity and will be of significant interest to the MIPcommunity.

  14. Molecular terms, magnetic moments, and optical transitions of molecular ions C60mplus-or-minus

    Science.gov (United States)

    Nikolaev, A. V.; Michel, K. H.

    2002-09-01

    Starting from a multipole expansion of intramolecular Coulomb interactions, we present configuration interaction calculations of the molecular energy terms of the hole configurations (hu)+m, m=2-5, of C60m+ cations, of the electron configurations t1un, n=2-4, of the C60n- anions, and of the exciton configurations (hu+t1u)-, (hu+t1g)- of the neutral C60 molecule. The ground state of C602- is either 3T1g or 1Ag, depending on the energy separation between t1g and t1u levels. There are three close (approx0.03 eV) low lying spin triplets 3T1g, 3Gg, 3T2g for C602+, and three spin quartets 4T1u, 4Gu, 4T2u for C603+, which can be subjected to the Jahn-Teller effect. The number of low lying nearly degenerate states is largest for m=3 holes. We have calculated the magnetic moments of the hole and electron configurations and found that they are independent of molecular orientation with respect to an external magnetic field. The coupling of spin and orbital momenta differs from the atomic case. We analyze the electronic dipolar transitions (t1u)2[right arrow] t1ut1g and (t1u)3 [right arrow](t1u)2t1g for C602- and C603-. Three optical absorption lines (3T1g[right arrow] 3Hu, 3T1u, 3Au) are found for the ground level of C602- and only one line (4Au[right arrow]4T1g) for the ground state of C603-. We compare our results with the experimental data for C60n- in solutions and with earlier theoretical studies.

  15. Colorless ONU implementation for WDM-PON using direct-detection optical OFDM

    Science.gov (United States)

    Feng, Min; Luo, Qing-long; Bai, Cheng-lin

    2013-03-01

    A novel architecture for the colorless optical network unit (ONU) is proposed and experimentally demonstrated with direct-detection optical orthogonal frequency division multiplexing (DDO-OFDM). In this architecture, polarization-division multiplexing is used to reduce the cost at ONU. In optical line terminal (OLT), quadrature amplitude modulation (QAM) intensity-modulated OFDM signal with x-polarization at 10 Gbit/s is transmitted as downstream. At each ONU, the optical OFDM signal is demodulated with direct detection, and γ-polarization signal is modulated for upstream on-off keying (OOK) data at 5 Gbit/s. Simulation results show that the power penalty is negligible for both optical OFDM downstream and the on-off keying upstream signals after over 50 km single-mode fiber (SMF) transmission.

  16. NONLINEAR OPTICAL MOLECULAR CRYSTAL BASED ON 2,6-DIAMINOPYRIDINE: SYNTHESIS AND CHARACTERIZATION

    Directory of Open Access Journals (Sweden)

    I. M. Pavlovetc

    2014-05-01

    Full Text Available The paper deals with investigation of a new nonlinear optical material based on nonlinear optical chromophore (4-Nitrophenol and aminopyridine (2,6-Diaminopyridine. Calculation results are presented for molecular packing in the crystalline compound, based on the given components. According to these results the finite material must have a noncentrosymmetric lattice, which determines the presence of the second order nonlinear optical response. Investigations carried out in this work confirm these calculations. Results of experiments are given describing the co-crystallization of these components and the following re-crystallization of the obtained material. In order to get a monocrystal form, the optimal conditions for the synthesis of molecular crystals based on these components are determined. Sufficiently large homogeneous crystals are obtained, that gave the possibility to record their spectra in the visible and near infrared parts of the spectrum, to determine their nonlinear optical properties and the level of homogeneity. Their optical (optical transmission and optical laser damage threshold and nonlinear optical properties are presented. For observation and measurement of the nonlinear optical properties an installation was built which implements the comparative method for measurements of nonlinear optical properties. A potassium titanyl oxide phosphate crystal was used as a sample for comparison. Results are given for the conversion efficiency of the primary laser radiation in the second optical harmonic relative to the signal obtained on the potassium titanyl oxide phosphate crystal. Obtained results show that the molecular co-crystal based on 2,6-Diaminopyridine is a promising nonlinear optical material for generating the second optical harmonic on the Nd: YAG laser (532 nm.

  17. Optical chaos synchronization and encrypted communications of VCSEL by direct optical injection

    Science.gov (United States)

    Hosomi, Naohito; Sasaki, Wakao

    2014-09-01

    In this work, we propose electro-optical nonlinear delayed feedback systems (NDFS) for optical secure communications using VCSEL for the first time. Its optical output can perform more sensitive chaotic dynamics by varying only a few mA of injection current range resulting in very significant charges of VCSEL's operation conditions from threshold to maximum rating. This enables us to vary chaotic output dynamically by a slight difference of initial values in NDFS. We have proposed a chaos synchronization system using two identical NDFS's of VCSEL, and realized chaos synchronization by optical injection. As a result of experiment the correlation coefficient up to about 0.88 was obtained. Moreover, by varying the delay time and feedback gain in the parameters of NDFSs, we have confirmed that the variations of these parameters may affect variations of correlation.

  18. Measuring Molecular Forces Using Calibrated Optical Tweezers in Living Cells.

    Science.gov (United States)

    Hendricks, Adam G; Goldman, Yale E

    2017-01-01

    Optical tweezers have been instrumental in uncovering the mechanisms motor proteins use to generate and react to force. While optical traps have primarily been applied to purified, in vitro systems, emerging methods enable measurements in living cells where the actively fluctuating, viscoelastic environment and varying refractive index complicate calibration of the instrument. Here, we describe techniques to calibrate optical traps in living cells using the forced response to sinusoidal oscillations and spontaneous fluctuations, and to measure the forces exerted by endogenous ensembles of kinesin and dynein motor proteins as they transport cargoes in the cell.

  19. Dynamic Gradient Directed Molecular Transport and Concentration in Hydrogel Films.

    Science.gov (United States)

    Tsai, Tsung-Han; Ali, Mohammad A; Jiang, Zhelong; Braun, Paul V

    2017-04-24

    Materials which selectively transport molecules along defined paths offer new opportunities for concentrating, processing and sensing chemical and biological agents. Here, we present the use of traveling ionic waves to drive molecular transport and concentration of hydrophilic molecules entrained within a hydrogel. The traveling ionic wave is triggered by the spatially localized introduction of ions, which through a dissipative ion exchange process, converts quaternary ammonium groups in the hydrogel from hydrophilic to hydrophobic. Through a reaction-diffusion process, the hydrophobic region expands with a sharp transition at the leading edge; it is this sharp gradient in hydrophilicity that drives the transport of hydrophilic molecules dispersed within the film. The traveling wave moved up to 450 μm within 30 min, while the gradient length remained 20 μm over this time. As an example of the potential of molecular concentration using this approach, a 70-fold concentration of a hydrophilic dye was demonstrated. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Bulk and integrated acousto-optic spectrometers for molecular astronomy with heterodyne spectrometers

    Science.gov (United States)

    Chin, G.; Buhl, D.; Florez, J. M.

    1981-01-01

    A survey of acousto-optic spectrometers for molecular astronomy is presented, noting a technique of combining the acoustic bending of a collimated coherent light beam with a Bragg cell followed by an array of sensitive photodetectors. This acousto-optic spectrometer has a large bandwidth, a large number of channels, high resolution, and is energy efficient. Receiver development has concentrated on high-frequency heterodyne systems for the study of the chemical composition of the interstellar medium. RF spectrometers employing acousto-optic diffraction cells are described. Acousto-optic techniques have been suggested for applications to electronic warfare, electronic countermeasures and electronic support systems. Plans to use integrated optics for the further miniaturization of acousto-optic spectrometers are described. Bulk acousto-optic spectrometers with 300 MHz and 1 GHz bandwidths are being developed for use in the back-end of high-frequency heterodyne receivers for astronomical research.

  1. Direct diamond turning of steel molds for optical replication

    Science.gov (United States)

    Klocke, Fritz; Dambon, Olaf; Bulla, Benjamin; Heselhaus, Michael

    2009-05-01

    In this paper the most recent investigations in ultrasonic assisted diamond machining of hardened steel at the Fraunhofer IPT is presented. The goal of this technology is to unify the outrageous specifications of diamond machining process with steel material. The focus lies on the kinematic influence of the discrete frequencies 40 kHz and 60 kHz. Special interest is given to the reachable surface roughness depending on process parameters. The machined steel (1.2083, X40Cr14, STAVAX ESU) is a common mold die material for optical replication processes.Results of the accomplished investigations show the potential of the ultrasonic assisted process and recent developments. By increasing the frequency from 40 kHz to 60 kHz the overall process stability is increased. This makes the process less vulnerable towards feed rate variation or towards the variation of machined material hardness. Furthermore no tool wear is detected at high material removal rates or high cutting distances during component machining.

  2. Electrophoretic High Molecular Weight DNA Purification Enables Optical Mapping

    OpenAIRE

    Maydan, Jason; THOMAS, Matthew; Tabanfar, Leyla; Mai, Laura; Poon, Hau-Ling; Pe, Joel; HAHN, KRISTEN; Goji, Noriko; Amoako, Kingsley; Marziali, Andre; Hanson, Dan

    2013-01-01

    Optical mapping generates an ordered restriction map from single, long DNA molecules. By overlapping restriction maps from multiple molecules, a physical map of entire chromosomes and genomes is constructed, greatly facilitating genome assembly in next generation sequencing projects, comparative genomics and strain typing. However, optical mapping relies on a method of preparing high quality DNA >250 kb in length, which can be challenging from some organisms and sample types. Here we demonstr...

  3. Direct correlation of charge transfer absorption with molecular donor:acceptor interfacial area via photothermal deflection spectroscopy

    KAUST Repository

    Domingo, Ester

    2015-04-09

    We show that the Charge Transfer (CT) absorption signal in bulk-heterojunction (BHJ) solar cell blends, measured by photothermal deflection spectroscopy (PDS), is directly proportional to the density of molecular donor/acceptor interfaces. Since the optical transitions from ground state to the interfacial CT state are weakly allowed at photon energies below the optical gap of both donor and acceptor, we can exploit the use of this sensitive linear absorption spectroscopy for such quantification. Moreover, we determine the absolute molar extinction coefficient of the CT transition for an archetypical polymer-fullerene interface. The latter is ~100 times lower than the extinction coefficient of the donor chromophore involved, allowing us to experimentally estimate the transition dipole moment (0.3 D) and the electronic coupling between ground state and CT state to be on the order of 30 meV.

  4. Light amplification by stimulated emission from an optically pumped molecular junction in a scanning tunneling microscope

    CERN Document Server

    Braun, K; Wang, X; Adler, H; Peisert, H; Chasse, T; Zhang, D; Meixner, A J

    2013-01-01

    Here, we introduce and experimentally demonstrate optical amplification and stimulated emission from a single optically pumped molecular tunneling junction of a scanning tunneling microscope. The gap between a sharp gold tip and a flat gold substrate covered with a self-assembled monolayer of 5-chloro-2-mercaptobenzothiazole molecules forms an extremely small optical gain medium. When electrons tunnel from the molecules highest occupied molecular orbital to the tip, holes are left behind. These can be repopulated by hot electrons induced by the laser-driven plasmon oscillation on the metal surfaces enclosing the cavity. Solving the laser-rate equations for this system shows that the repopulation process can be efficiently stimulated by the gap modes near field, TERS scattering from neighboring molecules acting as an optical seed. Our results demonstrate how optical enhancement inside the plasmonic cavity can be further increased by a stronger localization via tunneling through molecules. We anticipate that st...

  5. Direct (1)O2 optical excitation: A tool for redox biology.

    Science.gov (United States)

    Blázquez-Castro, Alfonso

    2017-10-01

    Molecular oxygen (O2) displays very interesting properties. Its first excited state, commonly known as singlet oxygen ((1)O2), is one of the so-called Reactive Oxygen Species (ROS). It has been implicated in many redox processes in biological systems. For many decades its role has been that of a deleterious chemical species, although very positive clinical applications in the Photodynamic Therapy of cancer (PDT) have been reported. More recently, many ROS, and also (1)O2, are in the spotlight because of their role in physiological signaling, like cell proliferation or tissue regeneration. However, there are methodological shortcomings to properly assess the role of (1)O2 in redox biology with classical generation procedures. In this review the direct optical excitation of O2 to produce (1)O2 will be introduced, in order to present its main advantages and drawbacks for biological studies. This photonic approach can provide with many interesting possibilities to understand and put to use ROS in redox signaling and in the biomedical field. Copyright © 2017 The Author. Published by Elsevier B.V. All rights reserved.

  6. Fundamental Limits:. Developing New Tools for a Better Understanding of Second-Order Molecular Nonlinear Optics

    Science.gov (United States)

    Pérez-Moreno, Javier; Clays, Koen

    The generalized Thomas-Kuhn sum rules are used to characterize the nonlinear optical response of organic chromophores in terms of fundamental parameters that can be measured experimentally. The nonlinear optical performance of organic molecules is evaluated from the combination of hyper-Rayleigh scattering measurements and the analysis in terms of the fundamental limits. Different strategies for the enhancement of nonlinear optical behavior at the molecular and supramolecular level are evaluated and new paradigms for the design of more efficient nonlinear optical molecules are proposed and investigated.

  7. Electronic Transport Properties of a Naphthopyran-Based Optical Molecular Switch:an ab initio Study

    Institute of Scientific and Technical Information of China (English)

    XIA Cai-Juan; LIU De-Sheng; ZHANG Ying-Tang

    2011-01-01

    The electronic transport properties of a. Naphthopyran-based molecular optical switch are investigated by using the nonequilibrium Green's Function formalism combined with first-principles density functional theory. The molecule that comprises the switch can convert between its open and closed forms upon photoexcitation. Theoretical results show that the current through the open form is significantly larger than that through the closed form, which is different from other optical switches based on ring-opening reactions of the molecular bridge. The maximum on-off ratio (about 90) can be obtained at 1.4 V. The physical origin of the switching behavior is interpreted based on the spatial distributions of molecular orbitals and the HOMO-LUMO gap. Our result shows that the naphthopyran-based molecule is a good candidate for optical molecular switches and will be useful in the near future.%@@ ronic transport properties of a naphthopyran-based molecular optical switch are investigated by using the nonequilibrium Green's function formalism combined with first-principles density functional theory.The molecule that comprises the switch can convert between its open and closed forms upon photoexcitation.Theoretical results show that the current through the open form is significantly larger than that through the closed form,which is different from other optical switches based on ring-opening reactions of the molecular bridge.The maximum on-off ratio(about 90)can be obtained at 1.4 V.The physical origin of the switching behavior is interpreted based on the spatial distributions of molecular orbitals and the HOMO-LUMO gap.Our result shows that the naphthopyran-based molecule is a good candidate for optical molecular switches and will be useful in the near future.

  8. Evidence for direct molecular oxygen production in CO2 photodissociation

    OpenAIRE

    Z. Lu; Chang, YC; Yin, Q-Z; Ng, CY; Jackson, WM

    2014-01-01

    Photodissociation of carbon dioxide (CO2) has long been assumed to proceed exclusively to carbon monoxide (CO) and oxygen atom (O) primary products. However, recent theoretical calculations suggested that an exit channel to produce C + O2 should also be energetically accessible. Here we report the direct experimental evidence for the C + O2channel in CO2 photodissociation near the energetic threshold of the C(3P) + O2(X3Σg -) channel with a yield of 5 ± 2% using vacuum ultraviolet laser pump-...

  9. Immobilization of aptamer-based molecular beacons onto optically-encoded micro-sized beads.

    Science.gov (United States)

    Jun, Bong-Hyun; Kim, Ji-Eun; Rho, Chul; Byun, Jang-Woong; Kim, Yo Han; Kang, Homan; Kim, Jong-Ho; Kang, Taegyu; Cho, Myung-Haing; Lee, Yoon-Sik

    2011-07-01

    This paper presents a method for the novel immobilization of aptamer-based molecular beacons (apta-beacons) onto optically-encoded micro-sized beads (apta-beacon beads). To immobilize apta-beacons onto flourescently-encoded micro-sized beads, core-shell type beads containing a fluorescent dye-encoded core and apta beacon-coupled shell were prepared. The fluorescent dye-encoded beads were prepared from TentaGel resins by coupling RITC to the amino groups of the core region, after partial protection of amino groups with Fmoc-OSu in a diffusion-controlled manner. After deprotection of the Fmoc-amino groups, FITC-coupled molecular beacons (MBs) were immobilized to the beads together with a quencher by covelent bonding. Briefly, aspartic acid (Asp) was coupled to the shell part of the beads. Then, the quencher was coupled to the N-terminal amino group of Asp and the MBs were coupled to the side chain carboxyl group. In a model study, thrombin was directly detected using this apta-beacon bead method. The thrombin-bound apta-beacon beads were easily recognized by the appearance of fluorescence without any further labeling step.

  10. Optical molecular imaging for detection of Barrett's-associated neoplasia

    Institute of Scientific and Technical Information of China (English)

    Nadhi Thekkek; Sharmila Anandasabapathy; Rebecca Richards-Kortum

    2011-01-01

    Recent advancements in the endoscopic imaging of Barrett's esophagus can be used to probe a wide range of optical properties that are altered with neoplastic progression.This review summarizes relevant changes in optical properties as well as imaging approaches that measures those changes.Wide-field imaging approaches include narrow-band imaging that measures changes in light scattering and absorption,and autofluorescence imaging that measure changes in endogenous fluorophores.High-resolution imaging approaches include optical coherence tomography,endocytoscopy,confocal microendoscopy,and high-resolution microendoscopy.These technologies,some coupled with an appropriate contrast agent,can measure differences in glandular morphology,nuclear morphology,or vascular alterations associated with neoplasia.Advances in targeted contrast agents are further discussed.Studies that have explored these technologies are highlighted;as are the advantages and limitations of each.

  11. Photochemistry. Evidence for direct molecular oxygen production in CO₂ photodissociation.

    Science.gov (United States)

    Lu, Zhou; Chang, Yih Chung; Yin, Qing-Zhu; Ng, C Y; Jackson, William M

    2014-10-03

    Photodissociation of carbon dioxide (CO2) has long been assumed to proceed exclusively to carbon monoxide (CO) and oxygen atom (O) primary products. However, recent theoretical calculations suggested that an exit channel to produce C + O2 should also be energetically accessible. Here we report the direct experimental evidence for the C + O2 channel in CO2 photodissociation near the energetic threshold of the C((3)P) + O2(X(3)Σ(g)(-)) channel with a yield of 5 ± 2% using vacuum ultraviolet laser pump-probe spectroscopy and velocity-map imaging detection of the C((3)PJ) product between 101.5 and 107.2 nanometers. Our results may have implications for nonbiological oxygen production in CO2-heavy atmospheres.

  12. Direct Position Resolution Measurement with DROIDs at Optical Wavelengths

    Science.gov (United States)

    Hijmering, R. A.; Verhoeve, P.; Martin, D. D. E.; Jerjen, I.; Kozorezov, A. G.; Venn, R.

    2008-04-01

    The DROID (Distributed Read-Out Imaging Detector) is being developed to overcome the limitation in sensitive area with the use of single STJ’s (Superconducting Tunnel Junctions). The DROID configuration allows the reconstruction of the position of the photon absorption and therefore it can replace a number of single STJ’s in a detector array. The position resolution dictates how many STJ the DROID can replace. We present direct measurements of the position resolution in DROIDs, using a 10 µm spot of visible light which illuminates the DROID locally and which is scanned along the absorber length. The DROIDs used for the measurements have 100 nm thick Ta absorber strips with Ta/Al/AlO x /Al/Ta STJ’s on either end. The STJ’s are square with the same size as the absorber width and the base Ta layer are adjacent to the absorber. The position resolution is measured for absorber length ranging from 200 to 400 µm and 30 µm width.

  13. Reconfigurable electro-optical directed-logic circuit using carrier-depletion micro-ring resonators.

    Science.gov (United States)

    Qiu, Ciyuan; Gao, Weilu; Soref, Richard; Robinson, Jacob T; Xu, Qianfan

    2014-12-15

    Here we demonstrate a reconfigurable electro-optical directed-logic circuit based on a regular array of integrated optical switches. Each 1×1 optical switch consists of a micro-ring resonator with an embedded lateral p-n junction and a micro-heater. We achieve high-speed on-off switching by applying electrical logic signals to the p-n junction. We can configure the operation mode of each switch by thermal tuning the resonance wavelength. The result is an integrated optical circuit that can be reconfigured to perform any combinational logic operation. As a proof-of-principle, we fabricated a multi-spectral directed-logic circuit based on a fourfold array of switches and showed that this circuit can be reconfigured to perform arbitrary two-input logic functions with speeds up to 3  GB/s.

  14. Direct observation of Rogue Waves in optical turbulence using Time Microscopy

    CERN Document Server

    Suret, Pierre; Tikan, Alexey; Evain, Clement; Randoux, Stephane; Szwaj, Christophe; Bielawski, Serge

    2016-01-01

    The formation of coherent structures in noise driven phenomena and in Turbulence is a complex and fundamental question. A particulary important structure is the so-called Rogue Wave (RW) that arises as the sudden appearance of a localized and giant peak. First studied in Oceanography, RWs have been extensively investigated in Optics since 2007, in particular in optical fibers experiments on supercontinua and optical turbulence. However the typical time scales underlying the random dynamics in those experiments prevented --up to now-- the direct observation of isolated RWs. Here we report on the direct observation of RWs, using an ultrafast acquisition system equivalent to microscope in the time domain. The RWs are generated by nonlinear propagation of random waves inside an optical fiber, and recorded with $\\sim 250$~fs resolution. Our experiments demonstrate the central role played by "breathers-like" solutions of the one-dimensional nonlinear Schr\\"odinger equation (1D-NLSE) in the formation of RWs

  15. Laser based bi-directional Gbit ground links with the Tesat transportable adaptive optical ground station

    Science.gov (United States)

    Heine, Frank; Saucke, Karen; Troendle, Daniel; Motzigemba, Matthias; Bischl, Hermann; Elser, Dominique; Marquardt, Christoph; Henninger, Hennes; Meyer, Rolf; Richter, Ines; Sodnik, Zoran

    2017-02-01

    Optical ground stations can be an alternative to radio frequency based transmit (forward) and receive (return) systems for data relay services and other applications including direct to earth optical communications from low earth orbit spacecrafts, deep space receivers, space based quantum key distribution systems and Tbps capacity feeder links to geostationary spacecrafts. The Tesat Transportable Adaptive Optical Ground Station is operational since September 2015 at the European Space Agency site in Tenerife, Spain.. This paper reports about the results of the 2016 experimental campaigns including the characterization of the optical channel from Tenerife for an optimized coding scheme, the performance of the T-AOGS under different atmospheric conditions and the first successful measurements of the suitability of the Alphasat LCT optical downlink performance for future continuous variable quantum key distribution systems.

  16. Deterministic Entanglement via Molecular Dissociation in Integrated Atom Optics

    OpenAIRE

    Zhao, Bo; Chen, Zeng-Bing; Pan, Jian-Wei; Schmiedmayer, J.; Recati, Alessio; Astrakharchik, Grigory E.; Calarco, Tommaso

    2005-01-01

    Deterministic entanglement of neutral cold atoms can be achieved by combining several already available techniques like the creation/dissociation of neutral diatomic molecules, manipulating atoms with micro fabricated structures (atom chips) and detecting single atoms with almost 100% efficiency. Manipulating this entanglement with integrated/linear atom optics will open a new perspective for quantum information processing with neutral atoms.

  17. The determination of the direction of the optic axis of uniaxial crystalline materials

    Science.gov (United States)

    Lock, J. A.; Schock, H. J.; Regan, C. A.

    1986-01-01

    The birefringence of crystalline substances in general, and of sapphire in particular, is described. A test is described whose purpose is to determine the direction of the optic axis of a cylindrically machined single crystal of sapphire. This test was performed on the NASA Lewis sapphire cylinder and it was found that the optic axis made an angle of 18 deg with the axis of symmetry of the cylinder.

  18. Direct molecular hydrogen sulphide scrubbing with hollowfibre membranes.

    Science.gov (United States)

    Boucif, N; Jefferson, B; Parsons-, S A; Judd, S J; Stuetz, R M

    2001-01-01

    The emission of hydrogen sulphide is a major problem associated with anaerobic treatment of sulphate and sulphite containing wastewaters. Conventional absorbing processes, such as packed towers, spray towers or bubble columns, are all constrained by factors such as flooding and foaming. Membrane systems, on the other hand, enable independent control of the liquid and gas flow rate and a step change order of magnitude increase in the specific surface area of the contact process. The membrane acts as a gas absorber with a design similar to a shell and tube heat exchanger. On the other hand, they are limited by facets of the membrane such as its resistance to mass transfer and permselectivity, as well as its cost. The work presented in this paper refers to an absorption process based on a non-wetted hollow fibre membrane for the scrubbing of hydrogen sulphide from air, with water as the contact solvent. Results presented describe the performance of the unit in terms of overall transfer and outlet liquid concentration as a function of circulation regime, gas flow rate, liquid flow rate and specific surface area. In particular, results are presented using traditional plots of Sherwood number (Sh) against Graetz (Gr) number for the liquid flowing in the lumens, such that experimental and available empirical descriptions of the process performance are directly compared. Results suggest that, as expected, very efficient mass transfer is obtained. However, the mass transfer was found to reach a maximum value against Gr, contrary to available empirical models.

  19. DNA-directed immobilization of horseradish peroxidase onto porous SiO2 optical transducers

    Science.gov (United States)

    Shtenberg, Giorgi; Massad-Ivanir, Naama; Engin, Sinem; Sharon, Michal; Fruk, Ljiljana; Segal, Ester

    2012-08-01

    Multifunctional porous Si nanostructure is designed to optically monitor enzymatic activity of horseradish peroxidase. First, an oxidized PSi optical nanostructure, a Fabry-Pérot thin film, is synthesized and is used as the optical transducer element. Immobilization of the enzyme onto the nanostructure is performed through DNA-directed immobilization. Preliminary studies demonstrate high enzymatic activity levels of the immobilized horseradish peroxidase, while maintaining its specificity. The catalytic activity of the enzymes immobilized within the porous nanostructure is monitored in real time by reflective interferometric Fourier transform spectroscopy. We show that we can easily regenerate the surface for consecutive biosensing analysis by mild dehybridization conditions.

  20. A novel modulation and direct detection scheme of optical phase shift keying

    Institute of Scientific and Technical Information of China (English)

    Yongcai Yang(杨永才); Wolfgang Vogel

    2004-01-01

    This paper introduces a new modulation and direct detection scheme of optical phase shift keying (PSK)which is simple and practical in fiber optical communication. A phase modulator is used to modulate a continuous wave (CW) laser source and return-to-zero (RZ) signal that is changed from the initial transmitting information is used to control a phase modulator to form a optical PSK signal. In the receiver terminal, just add a signal delayed a half of one bit to itself so that the initial information can be restored.

  1. Molecular Cloning of Human Gene(s) Directing the Synthesis of Nervous System Cholinesterases

    Science.gov (United States)

    1987-09-01

    Report No. 4 If MOLECULAR CLONING OF O HUMAN GENE(S) DIRECTING qTHE SYNTHESIS OF NERVOUS SYSTEM CHOLINESTERASES cc Annual/Final Report 0 N November...62734A I734A875 IAl 451 MOLECULAR CLONING OF HUMAN GEME(S) DIRECTING THE SYNTHESIS OF NERVOUS SYSTEM CHOLINESTERASE 12. PERSONAL AUTHOR(S) Hermona Soreq...important roles in regulating the pace and mode of function of particular types of synapses. For example, molecular cloning of the nicotinic (44-46) and the

  2. Optically induced transport through semiconductor-based molecular electronics

    Science.gov (United States)

    Li, Guangqi; Fainberg, Boris D.; Seideman, Tamar

    2015-04-01

    A tight binding model is used to investigate photoinduced tunneling current through a molecular bridge coupled to two semiconductor electrodes. A quantum master equation is developed within a non-Markovian theory based on second-order perturbation theory with respect to the molecule-semiconductor electrode coupling. The spectral functions are generated using a one dimensional alternating bond model, and the coupling between the molecule and the electrodes is expressed through a corresponding correlation function. Since the molecular bridge orbitals are inside the bandgap between the conduction and valence bands, charge carrier tunneling is inhibited in the dark. Subject to the dipole interaction with the laser field, virtual molecular states are generated via the absorption and emission of photons, and new tunneling channels open. Interesting phenomena arising from memory are noted. Such a phenomenon could serve as a switch.

  3. Radio Continuum Observations towards Optical and Molecular Outflows

    Directory of Open Access Journals (Sweden)

    J. M. Girart

    2002-01-01

    Full Text Available Presentamos observaciones de continuo en varias frecuencias, realizadas con el VLA, en ocho regiones de formación estelar asociadas con flujos moleculares y ópticos: L1489, HH 68{69, HH 94{95, NGC 2264D, L1681B, L778, MWC 1080 y V645 Cyg. Detectamos tres chorros térmicos de radio, L1489, YLW 16A en L1681B y NGC 2264D VLA 7, asociados con ujos moleculares y/o flujos HH. Los chorros térmicos de radio en L1489 y NGC 2264D VLA 7 aparecen colimados en la dirección del ujo a mayor escala. Presentamos la primera detección tentativa de un chorro no térmico de radio, L778 VLA 5, asociado con una protoestrella de baja masa de clase I y con un flujo molecular. En HH 68{69, HH 94{95 y en el ujo molecular en NGC 2264D no hemos podido identificar las fuentes de excitación de estos flujos. La emisión de radio asociada con V645 Cyg es bastante extendida, 0:1 pc y variable. Detectamos tres radio fuentes en la región de MWC 1080 que podrán estar asociadas a fuentes jóvenes.

  4. Electronic absorption spectra and nonlinear optical properties of CO2 molecular aggregates: A quantum chemical study

    Indian Academy of Sciences (India)

    Tarun K Mandal; Sudipta Dutta; Swapan K Pati

    2009-09-01

    We have investigated the structural aspects of several carbon dioxide molecular aggregates and their spectroscopic and nonlinear optical properties within the quantum chemical theory framework. We find that, although the single carbon dioxide molecule prefers to be in a linear geometry, the puckering of angles occur in oligomers because of the intermolecular interactions. The resulting dipole moments reflect in the electronic excitation spectra of the molecular assemblies. The observation of significant nonlinear optical properties suggests the potential application of the dense carbon dioxide phases in opto-electronic devices.

  5. Selective photodissociation of tailored molecular tags as a tool for quantum optics

    Science.gov (United States)

    Sezer, Ugur; Geyer, Philipp; Kriegleder, Moritz; Debiossac, Maxime; Shayeghi, Armin; Arndt, Markus; Felix, Lukas

    2017-01-01

    Recent progress in synthetic chemistry and molecular quantum optics has enabled demonstrations of the quantum mechanical wave–particle duality for complex particles, with masses exceeding 10 kDa. Future experiments with even larger objects will require new optical preparation and manipulation methods that shall profit from the possibility to cleave a well-defined molecular tag from a larger parent molecule. Here we present the design and synthesis of two model compounds as well as evidence for the photoinduced beam depletion in high vacuum in one case. PMID:28243571

  6. The Morphological and Molecular Changes of Brain Cells Exposed to Direct Current Electric Field Stimulation

    OpenAIRE

    Pelletier, Simon J.; Lagacé, Marie; St-Amour, Isabelle; Arsenault, Dany; Cisbani, Giulia; Chabrat, Audrey; Fecteau, Shirley; Lévesque, Martin; Cicchetti, Francesca

    2015-01-01

    Background: The application of low-intensity direct current electric fields has been experimentally used in the clinic to treat a number of brain disorders, predominantly using transcranial direct current stimulation approaches. However, the cellular and molecular changes induced by such treatment remain largely unknown. Methods: Here, we tested various intensities of direct current electric fields (0, 25, 50, and 100V/m) in a well-controlled in vitro environment in order to investigate the r...

  7. Fabrication of Micro/Nano optical Fiber by Electrospinning Direct-writing

    Science.gov (United States)

    Yifang, Liu

    2017-01-01

    Because of the excellent performance, Micro/Nano optical fiber has been more and more widely applied in passive photonic devices, micro-optical sensors, field of atomic manipulation, etc. Currently the main manufacturing mode of Micro/Nano optical fiber is the stretching method which is susceptible to air impact, vulnerable to contaminant and has poor reproducibility. In order to solve these problems, the fabrication of the Micro/Nano optical fiber by electrospinning direct-writing is researched in this article. The experimental platform is set up after the scheme of electrospinning direct-writing is designed. A series of comparative experiments are carried out with changing three experimental variables. The PMMA Micro/Nano optical fiber of controllable diameter is fabricated by regulating the distance between the sprinkler head and collecting plate, flow rate and concentration of PMMA solution. The testing results indicate that the light transmission power loss rate of the PMMA Micro/Nano optical fiberis 0.41dB/mmexcited by a 633-nm-wavelength light. The problem is expected to be solved by further optimization of the experimental process and parameters.

  8. RadSensor: Xray Detection by Direct Modulation of an Optical Probe Beam

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, M E; Bennett, C V; Vernon, S P; Bond, T; Welty, R; Behymer, E; Petersen, H; Krey, A; Stewart, R; Kobayashi, N P; Sperry, V; Stephan, P; Reinhardt, C; Simpson, S; Stratton, P; Bionta, R; McKernan, M; Ables, E; Ott, L; Bond, S; Ayers, J.; Landen, O L; Bell, P M

    2003-08-01

    We present a new x-ray detection technique based on optical measurement of the effects of x-ray absorption and electron hole pair creation in a direct band-gap semiconductor. The electron-hole pairs create a frequency dependent shift in optical refractive index and absorption. This is sensed by simultaneously directing an optical carrier beam through the same volume of semiconducting medium that has experienced an xray induced modulation in the electron-hole population. If the operating wavelength of the optical carrier beam is chosen to be close to the semiconductor band-edge, the optical carrier will be modulated significantly in phase and amplitude. This approach should be simultaneously capable of very high sensitivity and excellent temporal response, even in the difficult high-energy xray regime. At xray photon energies near 10 keV and higher, we believe that sub-picosecond temporal responses are possible with near single xray photon sensitivity. The approach also allows for the convenient and EMI robust transport of high-bandwidth information via fiber optics. Furthermore, the technology can be scaled to imaging applications. The basic physics of the detector, implementation considerations, and preliminary experimental data are presented and discussed.

  9. Optical signatures of molecular particles via mass-selected cluster spectroscopy

    Science.gov (United States)

    Duncan, Michael A.

    1990-01-01

    A new molecular beam apparatus was developed to study optical absorption in cold (less than 100 K) atomic clusters and complexes produced by their condensation with simple molecular gases. In this instrument, ionized clusters produced in a laser vaporization nozzle source are mass selected and studied with photodissociation spectroscopy at visible and ultraviolet wavelengths. This new approach can be applied to synthesize and characterize numerous particulates and weakly bound complexes expected in planetary atmospheres and in comets.

  10. A Study of an Optical Lunar Surface Communications Network with High Bandwidth Direct to Earth Link

    Science.gov (United States)

    Wilson, K.; Biswas, A.; Schoolcraft, J.

    2011-01-01

    Analyzed optical DTE (direct to earth) and lunar relay satellite link analyses, greater than 200 Mbps downlink to 1-m Earth receiver and greater than 1 Mbps uplink achieved with mobile 5-cm lunar transceiver, greater than 1Gbps downlink and greater than 10 Mpbs uplink achieved with 10-cm stationary lunar transceiver, MITLL (MIT Lincoln Laboratory) 2013 LLCD (Lunar Laser Communications Demonstration) plans to demonstrate 622 Mbps downlink with 20 Mbps uplink between lunar orbiter and ground station; Identified top five technology challenges to deploying lunar optical network, Performed preliminary experiments on two of challenges: (i) lunar dust removal and (ii)DTN over optical carrier, Exploring opportunities to evaluate DTN (delay-tolerant networking) over optical link in a multi-node network e.g. Desert RATS.

  11. Directional Raman scattering from single molecules in the feed gaps of optical antennas.

    Science.gov (United States)

    Wang, Dongxing; Zhu, Wenqi; Best, Michael D; Camden, Jon P; Crozier, Kenneth B

    2013-05-08

    Controlling light from single emitters is an overarching theme of nano-optics. Antennas are routinely used to modify the angular emission patterns of radio wave sources. "Optical antennas" translate these principles to visible and infrared wavelengths and have been recently used to modify fluorescence from single quantum dots and single molecules. Understanding the properties of single molecules, however, would be advanced were one able to observe their vibrational spectra through Raman scattering in a very reproducible manner but it is a hugely challenging task, as Raman scattering cross sections are very weak. Here we measure for the first time the highly directional emission patterns of Raman scattering from single molecules in the feed gaps of optical antennas fabricated on a chip. More than a thousand single molecule events are observed, revealing that an unprecedented near-unity fraction of optical antennas have single molecule sensitivity.

  12. Hybrid optics for three-dimensional microstructuring of polymers via direct laser writing

    Science.gov (United States)

    Burmeister, Frank; Zeitner, Uwe D.; Nolte, Stefan; Tünnermann, Andreas

    2012-03-01

    We present an immersion hybrid optics specially designed for focusing ultrashort laser pulses into a polymer for direct laser writing via two-photon polymerization. The hybrid optics enables well corrected focusing over a working distance range of 577 μm with a numerical aperture (NA) of 1.33 thereby causing low internal dispersion. We combine the concepts of an aplanatic solid immersion lens (ASIL) for achieving a high NA with the correction of aberrations with a diffractive optical element (DOE). To demonstrate the improvements for volume structuring of the polymer, we compare achievable feature sizes of structures written with our optics and a commercial available oil immersion objective (100x, NA=1.4).

  13. Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical device

    Science.gov (United States)

    Vainsencher, Amit; Satzinger, K. J.; Peairs, G. A.; Cleland, A. N.

    2016-07-01

    We describe the principles of design, fabrication, and operation of a piezoelectric optomechanical crystal with which we demonstrate bi-directional conversion of energy between microwave and optical frequencies. The optomechanical crystal has an optical mode at 1523 nm co-located with a mechanical breathing mode at 3.8 GHz, with a measured optomechanical coupling strength gom/2π of 115 kHz. The breathing mode is driven and detected by curved interdigitated transducers that couple to a Lamb mode in suspended membranes on either end of the optomechanical crystal, allowing the external piezoelectric modulation of the optical signal as well as the converse, the detection of microwave electrical signals generated by a modulated optical signal. We compare measurements to theory where appropriate.

  14. Direct detection of orchid viruses using nanorod-based fiber optic particle plasmon resonance immunosensor.

    Science.gov (United States)

    Lin, Hsing-Ying; Huang, Chen-Han; Lu, Sin-Hong; Kuo, I-Ting; Chau, Lai-Kwan

    2014-01-15

    A fiber optic particle plasmon resonance (FOPPR) immunosensor is developed for label-free detection of orchid viruses that use gold nanorods (AuNRs) as the sensing material. The AuNRs are employed to create a near-infrared sensing window to solve the color interference problem of sample matrix for direct sensing of target analyte. This work cannot be achieved using gold nanospheres (AuNSs) because the signal of sample color absorption largely overlaps the signal of molecular recognition events in the visible spectrum, making the signal interpretation much more difficult. The AuNRs are immobilized on the unclad fiber core surface, and functionalized by antibodies which can specifically recognize the corresponding Cymbidium mosaic virus (CymMV) or Odontoglossum ringspot virus (ORSV) for rapid viral infection diagnosis. The refractive index resolution of the AuNR-FOPPR sensor is estimated to be 8×10(-6) RIU. The limits of detection (LODs) for CymMV and ORSV in leaf saps are 48 and 42 pg/mL, respectively, which are better than the LODs of 1200 pg/mL for both viruses obtained by enzyme-linked immunosorbent assay (ELISA). Exploiting the AuNR-FOPPR sensing strategy not only solves the color interference problem encountered by using AuNSs, but provides faster analysis, better reproducibility, and lower detection limit than ELISA. The sensor can distinguish between healthy and infected orchids in 10 min, and can further provide the quantitative analysis of infection level. It is potentially applicable to the quality control of orchid cultivation industry, but not limited to this, especially for creating special spectral sensing window for particular samples. © 2013 Elsevier B.V. All rights reserved.

  15. Direct Estimation of Optical Parameters From Photoacoustic Time Series in Quantitative Photoacoustic Tomography.

    Science.gov (United States)

    Pulkkinen, Aki; Cox, Ben T; Arridge, Simon R; Goh, Hwan; Kaipio, Jari P; Tarvainen, Tanja

    2016-11-01

    Estimation of optical absorption and scattering of a target is an inverse problem associated with quantitative photoacoustic tomography. Conventionally, the problem is expressed as two folded. First, images of initial pressure distribution created by absorption of a light pulse are formed based on acoustic boundary measurements. Then, the optical properties are determined based on these photoacoustic images. The optical stage of the inverse problem can thus suffer from, for example, artefacts caused by the acoustic stage. These could be caused by imperfections in the acoustic measurement setting, of which an example is a limited view acoustic measurement geometry. In this work, the forward model of quantitative photoacoustic tomography is treated as a coupled acoustic and optical model and the inverse problem is solved by using a Bayesian approach. Spatial distribution of the optical properties of the imaged target are estimated directly from the photoacoustic time series in varying acoustic detection and optical illumination configurations. It is numerically demonstrated, that estimation of optical properties of the imaged target is feasible in limited view acoustic detection setting.

  16. Optical tuning of three-dimensional photonic crystals fabricated by femtosecond direct writing

    Science.gov (United States)

    McPhail, Dennis; Straub, Martin; Gu, Min

    2005-08-01

    In this letter, we report on an optically tunable three-dimensional photonic crystal that exhibits main gaps in the 3-4μm range. The photonic crystal is manufactured via a femtosecond direct writing technique. Optical tuning is achieved by a luminary polling technique with a low-power polarized laser beam. The refractive index variation resulting from liquid-crystal rotation causes a shift in the photonic band gap of up to 65 nm with an extinction of transmission of up to 70% in the stacking direction. Unlike other liquid-crystal tuning techniques where a pregenerated structure is infiltrated, this optical tuning method is a one-step process that allows arbitrary structures to be written into a solid liquid-crystal-polymer composite and leads to a high dielectric contrast.

  17. Translational Optic Flow Induces Shifts in Direction of Active Forward and Backward Self-Motion

    Directory of Open Access Journals (Sweden)

    Kenzo Sakurai

    2011-05-01

    Full Text Available Previously, we reported that when observers passively experience real linear oscillatory somatic motion while viewing orthogonal visual optic flow patterns, their perceived motion direction is intermediate to those specified by visual and vestibular information individually (Sakurai et al., 2002, ACV; 2003, ECVP; 2010, VSS; Kubodera et al., 2010, APCV. Here, we extend those studies to active somatic motion, measuring the angular shift in body direction after active body motion while viewing synchronized orthogonal optic flow. Experimental visual stimuli consisted of 1 second of translating leftward (rightward random-dots and 1 second of random noise. Control stimuli consisted of two 1-second intervals of random noise separated by a static interval. Observers viewed the stimulus for 30 seconds through a face-mounted display while actively stepping forward and backward such that their forward body movement was synchronized with the random-dot translational motion. Observers' body direction was measured before and after each trial. Translational optic flow induced shifts in body direction that were opposite to shifts in perceived direction with passive viewing in our previous reports. Observers may have compensated their body motion in response to perceived direction shifts similar to those we reported for passive viewing.

  18. Implementation of European Directive on Optical Radiation Safety takes place in May 2010

    NARCIS (Netherlands)

    Wieringa, F.P.

    2009-01-01

    At the latest by May 10th 2010, Directive 2006/25/EC regarding the exposure of workers to risks arising from artificial optical radiation must be implemented by all EU-member states, thus legally adopting ICNIRP limit values for ultraviolet, visible and infrared radiation. For IUVA-members the

  19. Direct UV-Written Integrated Optical Beam Combiner for Stellar Interferometry

    DEFF Research Database (Denmark)

    Olivero, Massimo; Svalgaard, Mikael; Jocou, L.;

    2007-01-01

    In this paper, we report the fabrication of an optical-beam combiner for stellar interferometry by means of direct ultraviolet (UV) writing. The component is shown to have good performance (fringe contrast > 95%, total loss similar to 0.7, -40-dB crosstalk, broadband operation covering at least...

  20. Optical and transport properties of complex molecular systems

    OpenAIRE

    2009-01-01

    Esta Tesis presenta el estudio de las propiedades ópticas y de transporte de sistemas de baja dimensionalidad a través de modelos de enlace fuerte. Nuestro trabajo se centra en dos tipos de sistemas: agregados moleculares lineales y moléculas de ADN.En los Capítulos 2, 3 y 4 se estudian las propiedades de localización de un Hamiltoniano de Frenkel desordenado unidimensional. El desorden se introduce en las energías de sitio y es correlacionado de largo alcance. Para correlaciones fuertes, se ...

  1. Direct Calculation of Ice Homogeneous Nucleation Rate for a Molecular Model of Water

    CERN Document Server

    Haji-Akbari, Amir

    2015-01-01

    Ice formation is ubiquitous in nature, with important consequences in a variety of systems and environments, including biological cells [1], soil [2], aircraft [3], transportation infrastructure [4] and atmospheric clouds [5,6]. However, its intrinsic kinetics and microscopic mechanism are difficult to discern with current experiments. Molecular simulations of ice nucleation are also challenging, and direct rate calculations have only been performed for coarse-grained models of water [7-9]. For the more realistic molecular models, only indirect estimates have been obtained, e.g.~by assuming the validity of classical nucleation theory [10]. Here, we use a path sampling approach to perform the first direct rate calculation of homogeneous nucleation of ice in a molecular model of water. We use TIP4P/Ice [11], the most accurate among the existing molecular models for studying ice polymorphs. By using a novel topological order parameter for distinguishing different polymorphs, we are able to identify a freezing me...

  2. Directional property of the retinal reflection measured with optical coherence tomography and wavefront sensing

    Science.gov (United States)

    Gao, Weihua

    The last thirty years have experienced tremendous advancement in our understanding of light-tissue interactions in the human retina. Nevertheless, major gaps remain, and our modeling of light return from the back of the eye continues to evolve. The objective of this thesis is to investigate one of these gaps, specifically that related to the directional property (angular dependence) of the retinal reflection and in particular that of cone photoreceptors. Directionality of cones is commonly referred to as the optical Stiles-Crawford effect (SCE). While cone directionality is well known to originate from their waveguide properties, considerable uncertainty remains as to which reflections are waveguided. Since normal directionality of the photoreceptor requires normal morphology, the optical SCE has significant clinical interest. The research presented in this thesis contains three main objectives. First, I evaluated the potential of spectral-domain optical coherence tomography (SD-OCT) to study the optical SCE. Second, motivated by these first results, I developed a custom high-resolution SD-OCT that was designed specifically for directional reflectance measurements. This allowed a more complete study to be performed and extended the analysis from photoreceptors to several other major layers of the retina. Directional properties were measured for the retinal pigment epithelium (RPE), two principle reflections of the photoreceptor layer (inner/outer segment (IS/OS) and posterior tips of outer segment (PTOS), Henle's fiber layer (HFL), retinal nerve fiber layer (RNFL), and finally the sum of all the layers considered (overall directionality). Reflectance of the IS/OS and PTOS were found highly sensitive to illumination angle regardless of retinal eccentricity. In contrast, the reflectance of the RPE showed little directionality. The reflectance of HFL and RNFL showed directional dependence, but unlike that of the photoreceptors, depended strongly on pupil meridian and

  3. Optical and electrical properties of isotype crystalline molecular organic heterojunctions

    Science.gov (United States)

    Forrest, S. R.; Leu, L. Y.; So, F. F.; Yoon, W. Y.

    1989-12-01

    Optical and electronic properties of a p-P isotype heterojunctions (HJs) consisting of copper phthalocyanine (CuPc) and 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) were investigated. It was found that the charge-transport properties of the HJ are limited by thermionic emission of holes over the energy barrier at the CuPc/PTCDA HJ at low forward and reverse bias, and by series resistance at high voltage. The HJ energy barrier at the CuPc/PTCDA valence-band edge, measured using current-volage and capacitance-voltage analyses, was found to be equal to 0.48 + or - 0.05 eV.

  4. Essay: Fifty years of atomic, molecular and optical physics in Physical Review Letters.

    Science.gov (United States)

    Haroche, Serge

    2008-10-17

    The fiftieth anniversary of Physical Review Letters is a good opportunity to review the extraordinary progress of atomic, molecular, and optical physics reported in this journal during the past half-century. As both a witness and an actor of this story, I recall personal experiences and reflect about the past, present, and possible future of my field of research.

  5. Improved performance of traveling wave directional coupler modulator based on electro-optic polymer

    CERN Document Server

    Zhang, Xingyu; Lin, Che-yun; Wang, Alan X; Hosseini, Amir; Lin, Xiaohui; Chen, Ray T

    2014-01-01

    Polymer based electro-optic modulators have shown great potentials in high frequency analog optical links. Existing commercial LiNibO3 Mach-Zehnder modulators have intrinsic drawbacks in linearity to provide high fidelity communication. In this paper, we present the design, fabrication and characterization of a traveling wave directional coupler modulator based on electro-optic polymer, which is able to provide high linearity, high speed, and low optical insertion loss. A silver ground electrode is used to reduce waveguide sidewall roughness due to the scattering of UV light in photolithography process in addition to suppressing the RF loss. A 1-to-2 multi-mode interference 3dB-splitter, a photobleached refractive index taper and a quasi-vertical taper are used to reduce the optical insertion loss of the device. The symmetric waveguide structure of the MMI-fed directional coupler is intrinsically bias-free, and the modulation is obtained at the 3-dB point regardless of the ambient temperature. By achieving lo...

  6. Resolving directional ambiguity in dynamic light scattering-based transverse motion velocimetry in optical coherence tomography

    Science.gov (United States)

    Huang, Brendan K.; Choma, Michael A.

    2014-01-01

    Dynamic Light Scattering-based Optical Coherence Tomography approaches have been successfully implemented to measure total transverse (xy) flow speed, but are unable to resolve directionality. We propose a method to extract directional velocity in the transverse plane by introducing a variable scan bias to our system. Our velocity estimation, which yields the directional velocity component along the scan axis, is also independent of any point spread function calibration. By combining our approach with Doppler velocimetry, we show three-component velocimetry that is appropriately dependent on latitudinal and longitudinal angle. PMID:24487855

  7. Direct comparison of optical lattice clocks with an intercontinental baseline of 9 000 km

    CERN Document Server

    Hachisu, H; Nagano, S; Gotoh, T; Nogami, A; Ido, T; Falke, St; Huntemann, N; Grebing, C; Lipphardt, B; Lisdat, Ch; Piester, D

    2014-01-01

    We have demonstrated a direct frequency comparison between two $^{87}{\\rm Sr}$ lattice clocks operated in intercontinentally separated laboratories in real time. Two-way satellite time and frequency transfer technique based on the carrier phase was employed for a direct comparison with a baseline of 9 000 km between Japan and Germany. A clock comparison was achieved for 83 640 s resulting in a fractional difference of $(1.1\\pm1.6) \\times 10^{-15}$, where the statistical part is the biggest contribution to the uncertainty. This measurement directly confirms the agreement of the two optical clocks on an intercontinental scale.

  8. Universal solders for direct and powerful bonding on semiconductors, diamond, and optical materials

    Science.gov (United States)

    Mavoori, Hareesh; Ramirez, Ainissa G.; Jin, Sungho

    2001-05-01

    The surfaces of electronic and optical materials such as nitrides, carbides, oxides, sulfides, fluorides, selenides, diamond, silicon, and GaAs are known to be very difficult to bond with low melting point solders (<300 °C). We have achieved a direct and powerful bonding on these surfaces by using low temperature solders doped with rare-earth elements. The rare earth is stored in micron-scale, finely-dispersed intermetallic islands (Sn3Lu or Au4Lu), and when released, causes chemical reactions at the interface producing strong bonds. These solders directly bond to semiconductor surfaces and provide ohmic contacts. They can be useful for providing direct electrical contacts and interconnects in a variety of electronic assemblies, dimensionally stable and reliable bonding in optical fiber, laser, or thermal management assemblies.

  9. Computational challenges in atomic, molecular and optical physics.

    Science.gov (United States)

    Taylor, Kenneth T

    2002-06-15

    Six challenges are discussed. These are the laser-driven helium atom; the laser-driven hydrogen molecule and hydrogen molecular ion; electron scattering (with ionization) from one-electron atoms; the vibrational and rotational structure of molecules such as H(3)(+) and water at their dissociation limits; laser-heated clusters; and quantum degeneracy and Bose-Einstein condensation. The first four concern fundamental few-body systems where use of high-performance computing (HPC) is currently making possible accurate modelling from first principles. This leads to reliable predictions and support for laboratory experiment as well as true understanding of the dynamics. Important aspects of these challenges addressable only via a terascale facility are set out. Such a facility makes the last two challenges in the above list meaningfully accessible for the first time, and the scientific interest together with the prospective role for HPC in these is emphasized.

  10. Surface-enhanced Raman scattering: a new optical probe in molecular biophysics and biomedicine

    DEFF Research Database (Denmark)

    Kneipp, J.; Wittig, B.; Bohr, Henrik

    2010-01-01

    Sensitive and detailed molecular structural information plays an increasing role in molecular biophysics and molecular medicine. Therefore, vibrational spectroscopic techniques, such as Raman scattering, which provide high structural information content are of growing interest in biophysical...... of the free electrons in the metal. This effect of surface-enhanced Raman scattering (SERS) allows us to push vibrational spectroscopy to new limits in detection sensitivity, lateral resolution, and molecular structural selectivity. This opens up exciting perspectives also in molecular biospectroscopy...... and biomedical research. Raman spectroscopy can be revolutionized when the inelastic scattering process takes place in the very close vicinity of metal nanostructures. Under these conditions, strongly increased Raman signals can be obtained due to resonances between optical fields and the collective oscillations...

  11. Dust and Molecular Gas from the Optically Faint Quasars at z 6

    Science.gov (United States)

    Wang, Ran; Carilli, C.; Neri, R.; Riechers, D.; Wagg, J.; Walter, F.; Bertoldi, F.; Omont, A.; Cox, P.; Menten, K.; Fan, X.; Strauss, M.

    2011-01-01

    We present millimeter observations of the twelve z 6 quasars discovered from the SDSS southern survey. These objects are typically one or two magnitudes fainter in the optical (i.e., 20.6 Max Plank Millimeter Bolometer Array (MAMBO) on the IRAM-30m telescope and three of them have been detected. We also searched for Molecular CO (6-5) line emission in the three MAMBO detections with the IRAM Plateau de Bure Interferometer and two of them have been detected. The millimeter continuum and CO detections in the optically faint quasars at z 6 reveal strong FIR emission from 40 to 60 K warm dust and highly excited molecular gas in the quasar host galaxies. The molecular gas masses of the two CO detections are all about 10^10 Msun, which are comparable to that of the CO-detected optically bright quasars at z 6. Their FIR-to-CO luminosity ratios are also consistent with that of the previous CO-detected quasars at z 2 to 6 and the dusty starbusrt systems, e.g., the submillimeter galaxies. However, their FIR-to-UV luminosity ratios are higher than that of the millimeter-detected optically bright quasars at z 6. This confirms the shallow nonlinear FIR-to-AGN luminosity relationship found with other AGN-starburst systems at local and high-z universe. All these results suggest massive star formation coeval with rapid black hole accretion in the host galaxies of the millimeter-detected optically faint quasars at z 6. Further high-resolution imaging of the Molecular CO emission (e.g., with ALMA) will be important to measure the dynamical masses of the spheroidal hosts and understand the black hole-bulge relationship of the optically faint quasars at the earliest epoch.

  12. Direct measurement of the extraordinary optical momentum using a nano-cantilever

    CERN Document Server

    Antognozzi, M; Harniman, R; Senior, J; Hayward, R; Hoerber, H; Dennis, M R; Bekshaev, A Y; Bliokh, K Y; Nori, F

    2015-01-01

    Radiation pressure has been known since Kepler's observation that a comet's tail is always oriented away from the sun, and in the past centuries this phenomenon stimulated remarkable discoveries in electromagnetism, quantum physics and relativity [1-3]. In modern terms, the pressure of light is associated with the momentum of photons, which plays a crucial role in a variety of systems, from atomic [4-7] to astronomical [8,9] scales. Experience from these cases leads us to assume that the direction of the optical momentum and the radiation-pressure force are naturally aligned with the propagation of light, i.e., its wavevector. Here we report the direct observation of an extraordinary optical momentum and force directed perpendicular to the wavevector, and proportional to the optical spin (i.e., degree of circular polarization). This transverse spin-dependent optical force, a few orders of magnitude weaker than the usual radiation pressure, was recently predicted for evanescent waves [10] and other structured ...

  13. Molecular probes for nonlinear optical imaging of biological membranes

    Science.gov (United States)

    Blanchard-Desce, Mireille H.; Ventelon, Lionel; Charier, Sandrine; Moreaux, Laurent; Mertz, Jerome

    2001-12-01

    Second-harmonic generation (SHG) and two-photon excited fluorescence (TPEF) are nonlinear optical (NLO) phenomena that scale with excitation intensity squared, and hence give rise to an intrinsic 3-dimensional resolution when used in microscopic imaging. TPEF microscopy has gained widespread popularity in the biology community whereas SHG microscopy promises to be a powerful tool because of its sensitivity to local asymmetry. We have implemented an approach toward the design of NLO-probes specifically adapted for SHG and/or TPEF imaging of biological membranes. Our strategy is based on the design of nanoscale amphiphilic NLO-phores. We have prepared symmetrical bolaamphiphilic fluorophores combining very high two-photon absorption (TPA) cross-sections in the visible red region and affinity for cellular membranes. Their incorporation and orientation in lipid membranes can be monitored via TPEF anisotropy. We have also prepared amphiphilic push-pull chromophores exhibiting both large TPA cross-sections and very large first hyperpolarizabilities in the near-IR region. These NLO-probes have proved to be particularly useful for imaging of biological membranes by simultaneous SHG and TPEF microscopy and offer attractive prospects for real-time imaging of fundamental biological processes such as adhesion, fusion or reporting of membrane potentials.

  14. Infrared optical properties of $\\alpha$ quartz by molecular dynamics simulations

    CERN Document Server

    Gangemi, Fabrizio; Carati, Andrea; Maiocchi, Alberto; Galgani, Luigi

    2016-01-01

    This paper is concerned with theoretical estimates of the refractive--index curves for quartz, obtained by the Kubo formul\\ae\\ in the classical approximation, through MD simulations for the motions of the ions. Two objectives are considered. The first one is to understand the role of nonlinearities in situations where they are very large, as at the $\\alpha$--$\\beta$ structural phase transition. We show that on the one hand they don't play an essential role in connection with the form of the spectra in the infrared. On the other hand they play an essential role in introducing a chaoticity which involves a definite normal mode. This might explain why that mode is Raman active in the $\\alpha$ phase, but not in the $\\beta$ phase. The second objective concerns whether it is possible in a microscopic model to obtain normal mode frequencies, or peak frequencies in the optical spectra, that are in good agreement with the experimental data for quartz. Notwithstanding a lot of effort, we were unable to find results agr...

  15. Molecular Beam Optical Zeeman Spectroscopy of Vanadium Monoxide, VO

    Science.gov (United States)

    Nguyen, Trung; Zhang, Ruohan; Steimle, Timothy

    2016-06-01

    Like almost all astronomical studies, exoplanet investigations are observational endeavors that rely primarily on remote spectroscopic sensing to infer the physical properties of planets. Most exoplanet related information is inferred from to temporal variation of luminosity of the parent star. An effective method of monitoring this variation is via Magnetic Doppler Imaging (MDI), which uses optical polarimetry of paramagnetic molecules or atoms. One promising paramagnetic stellar absorption is the near infrared spectrum of VO. With this in mind, we have begun a project to record and analyze the field-free and Zeeman spectrum of the band. A cold (approx. 20 K) beam of VO was probed with a single frequency laser and detected using laser induced fluorescence. The determined spectral parameters will be discussed and compared to those extracted from the analysis of a hot spectrum. Supported by the National Science Foundation under the Grant No. CHE-1265885. O. Kochukhov, N. Rusomarov, J. A. Valenti, H. C. Stempels, F. Snik, M. Rodenhuis, N. Piskunov, V. Makaganiuk, C. U. Keller and C. M. Johns-Krull, Astron. Astrophys. 574 (Pt. 2), A79/71-A79/12 (2015). S. V. Berdyugina, Astron. Soc. Pac. Conf. Ser. 437 (Solar Polarization 6), 219-235 (2011). S. V. Berdyugina, P. A. Braun, D. M. Fluri and S. K. Solanki, Astron. Astrophys. 444 (3), 947-960 (2005). A. S. C. Cheung, P. G. Hajigeorgiou, G. Huang, S. Z. Huang and A. J. Merer, J. Mol. Spectrosc. 163 (2), 443-458 (1994)

  16. Dual and chiral objects for optical activity in general scattering directions

    CERN Document Server

    Fernandez-Corbaton, Ivan; Rockstuhl, Carsten

    2016-01-01

    Optically active artificial structures have attracted tremendous research attention. Such structures must meet two requirements: Lack of spatial inversion symmetries and, a condition usually not explicitly considered, the structure shall preserve the helicity of light, which implies that there must be a vanishing coupling between the states of opposite polarization handedness among incident and scattered plane waves. Here, we put forward and demonstrate that a unit cell made from chiraly arranged electromagnetically dual scatterers serves exactly this purpose. We prove this by demonstrating optical activity of such unit cell in general scattering directions.

  17. [The results of direct electrostimulation of the involved optic nerves in neurosurgical patients].

    Science.gov (United States)

    Khil'ko, V A; Gaĭdar, B V; Kondrat'eva, M I; Nikol'skaia, I M; Usanov, E I

    1989-01-01

    The article generalizes experience in the restoration of vision by direct stimulation of damaged optic nerves after operations for pathological conditions of the chiasmal-sellar region (tumors of the chiasmal-sellar region, optochiasmic arachnoiditis, damage of the optic nerve in the bone canal) in 111 patients. The therapeutic effect was favourable in two thirds of the patients. Indications are determined for the use of the method in various types, duration, and severity of the disease. The use of the method with due regard for the determined indications increases the reliability, degree, and rate of restoration of vision in patients who underwent operation.

  18. Direct induction of molecular alignment in liquid crystal polymer network film by photopolymerization

    Science.gov (United States)

    Hisano, K.; Aizawa, M.; Ishizu, M.; Kurata, Y.; Shishido, A.

    2016-09-01

    Liquid crystal (LC) is the promising material for the fabrication of high-performance soft, flexible devices. The fascinating and useful properties arise from their cooperative effect that inherently allows the macroscopic integration and control of molecular alignment through various external stimuli. To date, light-matter interaction is the most attractive stimuli and researchers developed photoalignment through photochemical or photophysical reactions triggered by linearly polarized light. Here we show the new choice based on molecular diffusion by photopolymerization. We found that photopolymerization of a LC monomer and a crosslinker through a photomask enables to direct molecular alignment in the resultant LC polymer network film. The key generating the molecular alignment is molecular diffusion due to the difference of chemical potentials between irradiated and unirradiated regions. This concept is applicable to various shapes of photomask and two-dimensional molecular alignments can be fabricated depending on the spatial design of photomask. By virtue of the inherent versatility of molecular diffusion in materials, the process would shed light on the fabrication of various high-performance flexible materials with molecular alignment having controlled patterns.

  19. Stable inverted small molecular organic solar cells using a p-doped optical spacer.

    Science.gov (United States)

    Lee, Sang-Hoon; Seo, Ji-Won; Lee, Jung-Yong

    2015-01-07

    We report inverted small molecular organic solar cells using a doped window layer as an optical spacer. The optical spacer was used to shift the optical field distribution inside the active layers, generating more charge carriers from sunlight. In this report, N,N,N',N'-tetrakis(4-methoxyphenyl)-benzidine (MeO-TPD) was doped with 2,2-(perfluoronaphthalene-2,6-diylidene)dimalononitrile (F6-TCNNQ), a p-type dopant material. P-doped MeO-TPD was adopted as an optical spacer because it has a large energy band gap, and its conductivity can be increased by several orders of magnitude through a doping process. As a result, a power conversion efficiency of 4.15% was achieved with the doped window layer of optimized thickness. Lastly, we present significantly improved stability of the inverted devices with the MeO-TPD layer.

  20. Modeling Human Control of Self-Motion Direction With Optic Flow and Vestibular Motion.

    Science.gov (United States)

    Zaal, Peter M T; Nieuwenhuizen, Frank M; van Paassen, Marinus M; Mulder, Max

    2013-04-01

    In this paper, we investigate the effects of visual and motion stimuli on the manual control of one's direction of self-motion. In a flight simulator, subjects conducted an active target-following disturbance-rejection task, using a compensatory display. Simulating a vehicular control task, the direction of vehicular motion was shown on the outside visual display in two ways: an explicit presentation using a symbol and an implicit presentation, namely, through the focus of radial outflow that emerges from optic flow. In addition, the effects of the relative strength of congruent vestibular motion cues were investigated. The dynamic properties of human visual and vestibular motion perception paths were modeled using a control-theoretical approach. As expected, improved tracking performance was found for the configurations that explicitly showed the direction of self-motion. The human visual time delay increased with approximately 150 ms for the optic flow conditions, relative to explicit presentations. Vestibular motion, providing higher order information on the direction of self-motion, allowed subjects to partially compensate for this visual perception delay, improving performance. Parameter estimates of the operator control model show that, with vestibular motion, the visual feedback becomes stronger, indicating that operators are more confident to act on optic flow information when congruent vestibular motion cues are present.

  1. Smartphone-Based Android app for Determining UVA Aerosol Optical Depth and Direct Solar Irradiances.

    Science.gov (United States)

    Igoe, Damien P; Parisi, Alfio; Carter, Brad

    2014-01-01

    This research describes the development and evaluation of the accuracy and precision of an Android app specifically designed, written and installed on a smartphone for detecting and quantifying incident solar UVA radiation and subsequently, aerosol optical depth at 340 and 380 nm. Earlier studies demonstrated that a smartphone image sensor can detect UVA radiation and the responsivity can be calibrated to measured direct solar irradiance. This current research provides the data collection, calibration, processing, calculations and display all on a smartphone. A very strong coefficient of determination of 0.98 was achieved when the digital response was recalibrated and compared to the Microtops sun photometer direct UVA irradiance observations. The mean percentage discrepancy for derived direct solar irradiance was only 4% and 6% for observations at 380 and 340 nm, respectively, lessening with decreasing solar zenith angle. An 8% mean percent difference discrepancy was observed when comparing aerosol optical depth, also decreasing as solar zenith angle decreases. The results indicate that a specifically designed Android app linking and using a smartphone image sensor, calendar and clock, with additional external narrow bandpass and neutral density filters can be used as a field sensor to evaluate both direct solar UVA irradiance and low aerosol optical depths for areas with low aerosol loads. © 2013 The American Society of Photobiology.

  2. All-optical switching using a new photonic crystal directional coupler

    Directory of Open Access Journals (Sweden)

    B. Vakili

    2015-07-01

    Full Text Available In this paper all-optical switching in a new photonic crystal directional coupler is performed.  The structure of the switch consists of a directional coupler and a separate path for a control signal called “control waveguide”. In contrast to the former reported structures in which the directional couplers are made by removing a row of rods entirely, the directional coupler in our optical switch is constructed by two reduced-radius line-defect waveguides separated by the control waveguide. Furthermore, in our case the background material has the nonlinear Kerr property. Therefore, in the structure of this work, no frequency overlap occurs between the control waveguide mode and the directional coupler modes. It is shown that such a condition provides a very good isolation between the control and the probe signals at the output ports. In the control waveguide, nonlinear Kerr effect causes the required refractive index change by the presence of a high power control (pump signal. Even and odd modes of the coupler are investigated by applying the distribution of the refractive index change in the nonlinear region of a super-cell so that a switching length of about 94 µm is obtained at the wavelength of 1.55 µm. Finally, all-optical switching of the 1.55 µm probe signal using a control signal at the wavelength of 1.3 µm, is simulated through the finite-difference time-domain method, where both signals are desirable in optical communication systems. A very high extinction ratio of 67 dB is achieved and the temporal characteristics of the switch are demonstrated.

  3. Orientational tomography of optical axes directions distributions of multilayer biological tissues birefringent polycrystalline networks

    Science.gov (United States)

    Zabolotna, Natalia I.; Dovhaliuk, Rostyslav Y.

    2013-09-01

    We present a novel measurement method of optic axes orientation distribution which uses a relatively simple measurement setup. The principal difference of our method from other well-known methods lies in direct approach for measuring the orientation of optical axis of polycrystalline networks biological crystals. Our test polarimetry setup consists of HeNe laser, quarter wave plate, two linear polarizers and a CCD camera. We also propose a methodology for processing of measured optic axes orientation distribution which consists of evaluation of statistical, correlational and spectral moments. Such processing of obtained data can be used to classify particular tissue sample as "healthy" or "pathological". For our experiment we use thin layers of histological section of normal and muscular dystrophy tissue sections. It is shown that the difference between mentioned moments` values of normal and pathological samples can be quite noticeable with relative difference up to 6.26.

  4. Optical lattice-like cladding waveguides by direct laser writing: fabrication, luminescence, and lasing.

    Science.gov (United States)

    Nie, Weijie; He, Ruiyun; Cheng, Chen; Rocha, Uéslen; Rodríguez Vázquez de Aldana, Javier; Jaque, Daniel; Chen, Feng

    2016-05-15

    We report on the fabrication of optical lattice-like waveguide structures in an Nd:YAP laser crystal by using direct femtosecond laser writing. With periodically arrayed laser-induced tracks, the waveguiding cores can be located in either the regions between the neighbored tracks or the central zone surrounded by a number of tracks as outer cladding. The polarization of the femtosecond laser pulses for the inscription has been found to play a critical role in the anisotropic guiding behaviors of the structures. The confocal photoluminescence investigations reveal different stress-induced modifications of the structures inscribed by different polarization of the femtosecond laser beam, which are considered to be responsible for the refractive index changes of the structures. Under optical pump at 808 nm, efficient waveguide lasing at ∼1  μm wavelength has been realized from the optical lattice-like structure, which exhibits potential applications as novel miniature light sources.

  5. Theoretical and experimental investigation of direct detection optical OFDM transmission using beat interference cancellation receiver.

    Science.gov (United States)

    Nezamalhosseini, S Alireza; Chen, Lawrence R; Zhuge, Qunbi; Malekiha, Mahdi; Marvasti, Farokh; Plant, David V

    2013-07-01

    We theoretically and experimentally evaluate a beat interference cancellation receiver (BICR) for direct detection optical orthogonal frequency-division multiplexing (DD-OFDM) systems that improves the spectral efficiency (SE) by reducing the guard band between the optical carrier and the optical OFDM signal while mitigating the impact of signal-signal mixing interference (SSMI). Experimental results show that the bit-error-rate (BER) is improved by about three orders of magnitude compared to the conventional receiver after 320 km single-mode fiber (SMF) transmission for 10 Gb/s data with a 4-QAM modulation using reduced guard band single-sideband OFDM (RSSB-OFDM) signal with 1.67 bits/s/Hz SE.

  6. Absolute Determination of Optical Constants by a Direct Physical Modeling of Reflection Electron Energy Loss Spectra

    CERN Document Server

    Xu, H; Toth, J; Tokesi, K; Ding, Z J

    2016-01-01

    We present an absolute extraction method of optical constants of metal from the measured reflection electron energy loss (REELS) spectra by using the recently developed reverse Monte Carlo (RMC) technique. The method is based on a direct physical modeling of electron elastic and electron inelastic scattering near the surface region where the surface excitation becomes important to fully describe the spectrum loss feature intensity in relative to the elastic peak intensity. An optimization procedure of oscillator parameters appeared in the energy loss function (ELF) for describing electron inelastic scattering due to the bulk- and surface-excitations was performed with the simulated annealing method by a successive comparison between the measured and Monte Carlo simulated REELS spectra. The ELF and corresponding optical constants of Fe were obtained from the REELS spectra measured at incident energies of 1000, 2000 and 3000 eV. The validity of the present optical data has been verified with the f- and ps-sum r...

  7. Surface Plasmon Resonance-Based Fiber Optic Sensors Utilizing Molecular Imprinting

    Directory of Open Access Journals (Sweden)

    Banshi D. Gupta

    2016-08-01

    Full Text Available Molecular imprinting is earning worldwide attention from researchers in the field of sensing and diagnostic applications, due to its properties of inevitable specific affinity for the template molecule. The fabrication of complementary template imprints allows this technique to achieve high selectivity for the analyte to be sensed. Sensors incorporating this technique along with surface plasmon or localized surface plasmon resonance (SPR/LSPR provide highly sensitive real time detection with quick response times. Unfolding these techniques with optical fiber provide the additional advantages of miniaturized probes with ease of handling, online monitoring and remote sensing. In this review a summary of optical fiber sensors using the combined approaches of molecularly imprinted polymer (MIP and the SPR/LSPR technique is discussed. An overview of the fundamentals of SPR/LSPR implementation on optical fiber is provided. The review also covers the molecular imprinting technology (MIT with its elementary study, synthesis procedures and its applications for chemical and biological anlayte detection with different sensing methods. In conclusion, we explore the advantages, challenges and the future perspectives of developing highly sensitive and selective methods for the detection of analytes utilizing MIT with the SPR/LSPR phenomenon on optical fiber platforms.

  8. Integrating Nanostructured Artificial Receptors with Whispering Gallery Mode Optical Microresonators via Inorganic Molecular Imprinting Techniques.

    Science.gov (United States)

    Hammond, G Denise; Vojta, Adam L; Grant, Sheila A; Hunt, Heather K

    2016-06-15

    The creation of label-free biosensors capable of accurately detecting trace contaminants, particularly small organic molecules, is of significant interest for applications in environmental monitoring. This is achieved by pairing a high-sensitivity signal transducer with a biorecognition element that imparts selectivity towards the compound of interest. However, many environmental pollutants do not have corresponding biorecognition elements. Fortunately, biomimetic chemistries, such as molecular imprinting, allow for the design of artificial receptors with very high selectivity for the target. Here, we perform a proof-of-concept study to show how artificial receptors may be created from inorganic silanes using the molecular imprinting technique and paired with high-sensitivity transducers without loss of device performance. Silica microsphere Whispering Gallery Mode optical microresonators are coated with a silica thin film templated by a small fluorescent dye, fluorescein isothiocyanate, which serves as our model target. Oxygen plasma degradation and solvent extraction of the template are compared. Extracted optical devices are interacted with the template molecule to confirm successful sorption of the template. Surface characterization is accomplished via fluorescence and optical microscopy, ellipsometry, optical profilometry, and contact angle measurements. The quality factors of the devices are measured to evaluate the impact of the coating on device sensitivity. The resulting devices show uniform surface coating with no microstructural damage with Q factors above 10⁶. This is the first report demonstrating the integration of these devices with molecular imprinting techniques, and could lead to new routes to biosensor creation for environmental monitoring.

  9. Integrating Nanostructured Artificial Receptors with Whispering Gallery Mode Optical Microresonators via Inorganic Molecular Imprinting Techniques

    Directory of Open Access Journals (Sweden)

    G. Denise Hammond

    2016-06-01

    Full Text Available The creation of label-free biosensors capable of accurately detecting trace contaminants, particularly small organic molecules, is of significant interest for applications in environmental monitoring. This is achieved by pairing a high-sensitivity signal transducer with a biorecognition element that imparts selectivity towards the compound of interest. However, many environmental pollutants do not have corresponding biorecognition elements. Fortunately, biomimetic chemistries, such as molecular imprinting, allow for the design of artificial receptors with very high selectivity for the target. Here, we perform a proof-of-concept study to show how artificial receptors may be created from inorganic silanes using the molecular imprinting technique and paired with high-sensitivity transducers without loss of device performance. Silica microsphere Whispering Gallery Mode optical microresonators are coated with a silica thin film templated by a small fluorescent dye, fluorescein isothiocyanate, which serves as our model target. Oxygen plasma degradation and solvent extraction of the template are compared. Extracted optical devices are interacted with the template molecule to confirm successful sorption of the template. Surface characterization is accomplished via fluorescence and optical microscopy, ellipsometry, optical profilometry, and contact angle measurements. The quality factors of the devices are measured to evaluate the impact of the coating on device sensitivity. The resulting devices show uniform surface coating with no microstructural damage with Q factors above 106. This is the first report demonstrating the integration of these devices with molecular imprinting techniques, and could lead to new routes to biosensor creation for environmental monitoring.

  10. Molecular Optics Nonlinear Optical Processes in Organic and Polymeric Crystals and Films. Part 2

    Science.gov (United States)

    1991-11-01

    susceptibility gamma ijkl(-omega 4; omega 1, omega 2, omega 3 ) demonstrate that the microscopic origin of the nonresonant third order nonlinear optical...interaction calculations of gamma jkl(-omega 4; omega 1, omega 2, omega 3 ) for the archetypal class of quasi-one dimensional conjugated structures...largest of the two dominant, competing virtual excitation processes that determine gamma ijkl(- omega 4; omega 1, omega 2, omega 3 ). It is also found in

  11. Synthesis of Non-molecular Nitrogen Phases at Mbar Pressures by Direct Laser-heating

    Energy Technology Data Exchange (ETDEWEB)

    Lipp, M J; Klepeis, J P; Baer, B J; Cynn, H; Evans, W J; Iota, V; Yoo, C

    2007-03-26

    Direct laser heating of molecular N2 to above 1400 K at 120-130 GPa results in the formation of a reddish amorphous phase and a transparent crystalline solid above 2000 K. Raman and x-ray data confirm that the transparent phase is cubic-gauche nitrogen (cg-N), while the reddish color of the amorphous phase might indicate the presence of N=N dish bonds. The quenched amorphous phase is stable down to at least 70GPa, analogous to cg-N, and could be a new non-molecular phase or an extension of the already known {eta}-phase. A chemo-physical phase diagram is presented which emphasizes the difference between pressure- and temperature-induced transitions from molecular to non-molecular solids, as found in other low Z systems.

  12. The Morphological and Molecular Changes of Brain Cells Exposed to Direct Current Electric Field Stimulation

    Science.gov (United States)

    Pelletier, Simon J.; Lagacé, Marie; St-Amour, Isabelle; Arsenault, Dany; Cisbani, Giulia; Chabrat, Audrey; Fecteau, Shirley; Lévesque, Martin

    2015-01-01

    Background: The application of low-intensity direct current electric fields has been experimentally used in the clinic to treat a number of brain disorders, predominantly using transcranial direct current stimulation approaches. However, the cellular and molecular changes induced by such treatment remain largely unknown. Methods: Here, we tested various intensities of direct current electric fields (0, 25, 50, and 100V/m) in a well-controlled in vitro environment in order to investigate the responses of neurons, microglia, and astrocytes to this type of stimulation. This included morphological assessments of the cells, viability, as well as shape and fiber outgrowth relative to the orientation of the direct current electric field. We also undertook enzyme-linked immunosorbent assays and western immunoblotting to identify which molecular pathways were affected by direct current electric fields. Results: In response to direct current electric field, neurons developed an elongated cell body shape with neurite outgrowth that was associated with a significant increase in growth associated protein-43. Fetal midbrain dopaminergic explants grown in a collagen gel matrix also showed a reorientation of their neurites towards the cathode. BV2 microglial cells adopted distinct morphological changes with an increase in cyclooxygenase-2 expression, but these were dependent on whether they had already been activated with lipopolysaccharide. Finally, astrocytes displayed elongated cell bodies with cellular filopodia that were oriented perpendicularly to the direct current electric field. Conclusion: We show that cells of the central nervous system can respond to direct current electric fields both in terms of their morphological shape and molecular expression of certain proteins, and this in turn can help us to begin understand the mechanisms underlying the clinical benefits of direct current electric field. PMID:25522422

  13. The morphological and molecular changes of brain cells exposed to direct current electric field stimulation.

    Science.gov (United States)

    Pelletier, Simon J; Lagacé, Marie; St-Amour, Isabelle; Arsenault, Dany; Cisbani, Giulia; Chabrat, Audrey; Fecteau, Shirley; Lévesque, Martin; Cicchetti, Francesca

    2014-12-07

    The application of low-intensity direct current electric fields has been experimentally used in the clinic to treat a number of brain disorders, predominantly using transcranial direct current stimulation approaches. However, the cellular and molecular changes induced by such treatment remain largely unknown. Here, we tested various intensities of direct current electric fields (0, 25, 50, and 100V/m) in a well-controlled in vitro environment in order to investigate the responses of neurons, microglia, and astrocytes to this type of stimulation. This included morphological assessments of the cells, viability, as well as shape and fiber outgrowth relative to the orientation of the direct current electric field. We also undertook enzyme-linked immunosorbent assays and western immunoblotting to identify which molecular pathways were affected by direct current electric fields. In response to direct current electric field, neurons developed an elongated cell body shape with neurite outgrowth that was associated with a significant increase in growth associated protein-43. Fetal midbrain dopaminergic explants grown in a collagen gel matrix also showed a reorientation of their neurites towards the cathode. BV2 microglial cells adopted distinct morphological changes with an increase in cyclooxygenase-2 expression, but these were dependent on whether they had already been activated with lipopolysaccharide. Finally, astrocytes displayed elongated cell bodies with cellular filopodia that were oriented perpendicularly to the direct current electric field. We show that cells of the central nervous system can respond to direct current electric fields both in terms of their morphological shape and molecular expression of certain proteins, and this in turn can help us to begin understand the mechanisms underlying the clinical benefits of direct current electric field. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  14. Temperature dependent direct-bandgap light emission and optical gain of Ge

    Science.gov (United States)

    Zhi, Liu; Chao, He; Dongliang, Zhang; Chuanbo, Li; Chunlai, Xue; Yuhua, Zuo; Buwen, Cheng

    2016-05-01

    Band structure, electron distribution, direct-bandgap light emission, and optical gain of tensile strained, n-doped Ge at different temperatures were calculated. We found that the heating effects not only increase the electron occupancy rate in the Γ valley of Ge by thermal excitation, but also reduce the energy difference between its Γ valley and L valley. However, the light emission enhancement of Ge induced by the heating effects is weakened with increasing tensile strain and n-doping concentration. This phenomenon could be explained by that Ge is more similar to a direct bandgap material under tensile strain and n-doping. The heating effects also increase the optical gain of tensile strained, n-doped Ge at low temperature, but decrease it at high temperature. At high temperature, the hole and electron distributions become more flat, which prevent obtaining higher optical gain. Meanwhile, the heating effects also increase the free-carrier absorption. Therefore, to obtain a higher net maximum gain, the tensile strained, n-doped Ge films on Si should balance the gain increased by the heating effects and the optical loss induced by the free-carrier absorption. Project supported by the National Basic Research Development Program of China (Grant No. 2013CB632103) and the National Natural Science Foundation of China (Grant Nos. 61377045, 61435013, and 61176013).

  15. Development of a super-resolution optical microscope for directional dark matter search experiment

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrov, A., E-mail: andrey.alexandrov@na.infn.it [INFN - Napoli, I-80125 Napoli (Italy); LPI - Lebedev Physical Institute of the Russian Academy of Sciences, RUS-119991 Moscow (Russian Federation); Asada, T. [Nagoya University, J-464-8602 Nagoya (Japan); Consiglio, L.; D' Ambrosio, N. [INFN - Laboratori Nazionali del Gran Sasso, I-67010 Assergi (AQ) (Italy); De Lellis, G. [INFN - Napoli, I-80125 Napoli (Italy); University of Naples, I-80125 Napoli (Italy); Di Crescenzo, A. [INFN - Napoli, I-80125 Napoli (Italy); Di Marco, N. [INFN - Laboratori Nazionali del Gran Sasso, I-67010 Assergi (AQ) (Italy); Furuya, S.; Hakamata, K.; Ishikawa, M.; Katsuragawa, T.; Kuwabara, K.; Machii, S.; Naka, T. [Nagoya University, J-464-8602 Nagoya (Japan); Pupilli, F. [INFN - Laboratori Nazionali di Frascati, I-00044 Frascati (RM) (Italy); Sirignano, C. [University of Padova and INFN, Padova (PD), 35131 Italy (Italy); Tawara, Y. [Nagoya University, J-464-8602 Nagoya (Japan); Tioukov, V. [INFN - Napoli, I-80125 Napoli (Italy); Umemoto, A.; Yoshimoto, M. [Nagoya University, J-464-8602 Nagoya (Japan)

    2016-07-11

    Nuclear emulsion is a perfect choice for a detector for directional DM search because of its high density and excellent position accuracy. The minimal detectable track length of a recoil nucleus in emulsion is required to be at least 100 nm, making the resolution of conventional optical microscopes insufficient to resolve them. Here we report about the R&D on a super-resolution optical microscope to be used in future directional DM search experiments with nuclear emulsion as a detector media. The microscope will be fully automatic, will use novel image acquisition and analysis techniques, will achieve the spatial resolution of the order of few tens of nm and will be capable of reconstructing recoil tracks with the length of at least 100 nm with high angular resolution.

  16. Optically and thermally controlled terahertz metamaterial via transition between direct and indirect electromagnetically induced transparency

    Directory of Open Access Journals (Sweden)

    Jiawei Sui

    2014-12-01

    Full Text Available This passage presents a design of tunable terahertz metamaterials via transition between indirect and direct electromagnetically induced transparency (EIT effects by changing semiconductor InSb’s properties to terahertz wave under optical and thermal stimuli. Mechanical model and its electrical circuit model are utilized in analytically calculating maximum transmission of transparency window. Simulated results show consistency with the analytical expressions. The results show that the metamaterials hold 98.4% modulation depth at 189 GHz between 300 K, σInSb =256000 S/m, and 80 K, σInSb =0.0162 S/m conditions , 1360 ps recovery time of the excited electrons in InSb under optical stimulus at 300 K mainly considering the direct EIT effect, and minimum bandwidth 1 GHz.

  17. Measurement of the optical density of packable composites: comparison between direct and indirect digital systems

    Directory of Open Access Journals (Sweden)

    Graziottin Luiz Felipe Rodrigues

    2002-01-01

    Full Text Available The aim of this study was to measure the optical density of four packable composite resins with widths of 1, 2, 3 and 4 mm, by means of Digora® (direct and DentScan DentView® (indirect digital imaging systems, in order to compare both methods. Twenty acrylic plates, with the proposed thicknesses, were used, each one containing a sample of each resin. Each acrylic plate was radiographed three times, under a standardized technique. For the Digora® system, an optical plate was used under each resin sample, and, for the DentScan DentView® system, occlusal films were employed, totalizing 60 exposures for each system. Optical plates and films were scanned and three consecutive optical readouts were carried out, totalizing 1,440 readouts. The results were submitted to statistical analysis and revealed that the average optical density of the four resins always increased as thickness increased. Regarding the comparisons between the composite resins, in both analysis the resin with the greater optical density was SurefilTM followed by ProdigyTM Condensable, AlertTM and Solitaire®. The correlations between the results of Digora® and DentScan DentView® were significant for the different thicknesses and materials. The observed tendency is that as the values obtained with the Digora® system increase, so do the values obtained with DentScan DentView®. While thickness increased, the values of optical density in both Digora® and DentScan DentView® tended to approach each other. The Digora® system presented smaller amplitude between the results obtained in adjacent thicknesses.

  18. Research on Continuous Injection Direct Rolling Process for PMMA Optical Plate

    Directory of Open Access Journals (Sweden)

    HaiXiong Wang

    2014-06-01

    Full Text Available Continuous injection direct rolling (CIDR combined intermittent injection and rolling process is a new technology for molding optical polymer plates with microstructured patterns; research on forming PMMA optical plates is an aspect of it in this paper. The equipment of CIDR process consists of plastic injection module, precision rolling module, and automatic coiling module. Based on the establishing mathematical CIDR models, numerical analysis was used to explode the distribution of velocity, temperature, and pressure in injection-rolling zone. The simulation results show that it is feasible to control the temperature, velocity, and injection-rolling force, so it can form polymer plate under certain process condition. CIDR experiment equipment has been designed and produced. PMMA optical plate was obtained by CIDR experiments, longitudinal thickness difference is 0.005 mm/200 mm, horizontal thickness difference is 0.02/200 mm, transmittance is 86.3%, Haze is 0.61%, and the difference is little compared with optical glasses. So it can be confirmed that CIDR process is practical to produce PMMA optical plates.

  19. Nonlinear chiro-optical amplification by plasmonic nanolens arrays formed via directed assembly of gold nanoparticles.

    Science.gov (United States)

    Biswas, Sushmita; Liu, Xiaoying; Jarrett, Jeremy W; Brown, Dean; Pustovit, Vitaliy; Urbas, Augustine; Knappenberger, Kenneth L; Nealey, Paul F; Vaia, Richard A

    2015-03-11

    Metal nanoparticle assemblies are promising materials for nanophotonic applications due to novel linear and nonlinear optical properties arising from their plasmon modes. However, scalable fabrication approaches that provide both precision nano- and macroarchitectures, and performance commensurate with design and model predictions, have been limiting. Herein, we demonstrate controlled and efficient nanofocusing of the fundamental and second harmonic frequencies of incident linearly and circularly polarized light using reduced symmetry gold nanoparticle dimers formed by surface-directed assembly of colloidal nanoparticles. Large ordered arrays (>100) of these C∞v heterodimers (ratio of radii R1/R2 = 150 nm/50 nm = 3; gap distance l = 1 ± 0.5 nm) exhibit second harmonic generation and structure-dependent chiro-optic activity with the circular dichroism ratio of individual heterodimers varying less than 20% across the array, demonstrating precision and uniformity at a large scale. These nonlinear optical properties were mediated by interparticle plasmon coupling. Additionally, the versatility of the fabrication is demonstrated on a variety of substrates including flexible polymers. Numerical simulations guide architecture design as well as validating the experimental results, thus confirming the ability to optimize second harmonic yield and induce chiro-optical responses for compact sensors, optical modulators, and tunable light sources by rational design and fabrication of the nanostructures.

  20. Molecular beam epitaxy growth and optical properties of single crystal Zn3N2 films

    Science.gov (United States)

    Wu, Peng; Tiedje, T.; Alimohammadi, H.; Bahrami-Yekta, V.; Masnadi-Shirazi, M.; Wang, Cong

    2016-10-01

    Single crystal Zn3N2 films with (100) orientation have been grown by plasma-assisted molecular beam epitaxy on MgO and A-plane sapphire substrates with in situ optical reflectance monitoring of the growth. The optical bandgap was found to be 1.25-1.28 eV and an electron Hall mobility as high as 395 cm2 V-1 s-1 was measured. The films were n-type with carrier concentrations in the 1018-1019 cm-3 range.

  1. Molecular imaging by optically-detected electron spin resonance of nitrogen-vacancies in nanodiamond

    CERN Document Server

    Hegyi, Alex

    2012-01-01

    Molecular imaging refers to a class of noninvasive biomedical imaging techniques with the sensitivity and specificity to image biochemical variations in-vivo. An ideal molecular imaging technique visualizes a biochemical target according to a range of criteria, including high spatial and temporal resolution, high contrast relative to non-targeted tissues, depth-independent penetration into tissue, lack of harm to the organism under study, and low cost. Because no existing molecular imaging modality is ideal for all purposes, new imaging approaches are needed. Here we demonstrate a novel molecular imaging approach, called nanodiamond imaging, that uses nanodiamonds containing nitrogen-vacancy (NV) color centers as an imaging agent, and image nanodiamond targets in pieces of chicken breast. Nanodiamonds can be tagged with biologically active molecules so they bind to specific receptors; their distribution can then be quantified in-vivo via optically-detected magnetic resonance of the NVs. In effect, we are demo...

  2. Direct Writing of Fiber Bragg Grating in Microstructured Polymer Optical Fiber

    DEFF Research Database (Denmark)

    Stefani, Alessio; Stecher, Matthias; Town, G. E.

    2012-01-01

    We report point-by-point laser direct writing of a 1520-nm fiber Bragg grating in a microstructured polymer optical fiber (mPOF). The mPOF is specially designed such that the microstructure does not obstruct the writing beam when properly aligned. A fourth-order grating is inscribed in the mPOF w......POF with only a 2.5-s writing time....

  3. Optical properties of the direct-coupled Y-branch filters by using photonic crystal slabs

    Institute of Scientific and Technical Information of China (English)

    Tian Jie; Ren Cheng; Feng Shuai; Liu Ya-Zhao; Tao Hai-Hua; Li Zhi-Yuan; Cheng Bing-Ying; Zhang Dao-Zhong; Jin Ai-Zi

    2006-01-01

    We fabricated a new type of two-dimensional photonic crystal slab filter. The resonant cavities were directly put into the waveguide arms. The optical transmissions of the filters were measured and the results show that the optimized two-channel filters give good intensity distribution at the output ports of the waveguide. A minimum wavelength spacing of 5 nm of the filter outputs is realized by accurately controlling the size of the resonant cavities.

  4. Design of optical cloaks and illusion devices along a circumferential direction in curvilinear coordinates

    Science.gov (United States)

    Chen, Tungyang; Yu, Shang-Ru

    2010-11-01

    We propose a cloaking and illusion device of circumferential topology based on the concept of transformation optics. The device is capable to cloak an object and/or simultaneously generate illusion images along a circumferential direction in curvilinear orthogonal coordinates. This feature allows us to construct multiple illusions in different ways, irrespective of the profile and direction of incident wave. Particularly when the device is served as a building brick of a larger device, one can generate a circumferential array of illusions in a periodic or any preferred pattern. We demonstrate the effectiveness of the proposed illusion devices by carrying out full wave simulations based on finite element calculations.

  5. Detecting moving objects in an optic flow field using direction- and speed-tuned operators.

    Science.gov (United States)

    Royden, Constance S; Holloway, Michael A

    2014-05-01

    An observer moving through a scene must be able to identify moving objects. Psychophysical results have shown that people can identify moving objects based on the speed or direction of their movement relative to the optic flow field generated by the observer's motion. Here we show that a model that uses speed- and direction-tuned units, whose responses are based on the response properties of cells in the primate visual cortex, can successfully identify the borders of moving objects in a scene through which an observer is moving.

  6. Development of a Direct Fabrication Technique for Full-Shell X-Ray Optics

    Science.gov (United States)

    Gubarev, M.; Kolodziejczak, J. K.; Griffith, C.; Roche, J.; Smith, W. S.; Kester, T.; Atkins, C.; Arnold, W.; Ramsey, B.

    2016-01-01

    Future astrophysical missions will require fabrication technology capable of producing high angular resolution x-ray optics. A full-shell direct fabrication approach using modern robotic polishing machines has the potential for producing high resolution, light-weight and affordable x-ray mirrors that can be nested to produce large collecting area. This approach to mirror fabrication, based on the use of the metal substrates coated with nickel phosphorous alloy, is being pursued at MSFC. The design of the polishing fixtures for the direct fabrication, the surface figure metrology techniques used and the results of the polishing experiments are presented.

  7. Optical materials based on molecular nano/microcrystals and ultrathin films

    Indian Academy of Sciences (India)

    A Patra; K Rajesh; T P Radhakrishnan

    2008-06-01

    Methodologies that we developed recently for the fabrication of molecular crystals with size variation in the nano to micro regime and polyelectrolyte templated mono and multilayer Langmuir–Blodgett films, are reviewed. The electronic absorption and strong fluorescence in the molecular nano/microcrystals are found to be size-dependent. Crystal structure and computational investigations provide a unified model to explain these observations. Role of polyelectrolyte templating in achieving stable and enhanced optical second harmonic generation response from LB films based on a hemicyanine amphiphile is highlighted.

  8. Reconfigurable intensity modulation and direct detection optical transceivers for variable-rate wavelength-division-multiplexing passive optical networks utilizing digital signal processing-based symbol mapper

    Science.gov (United States)

    Zhang, Zhiguo; Zhang, Bingbing; Chen, Yanxu; Chen, Xue

    2017-01-01

    Variable-rate intensity modulation and direct detection-based optical transceivers with software-controllable reconfigurability and transmission performance adaptability are experimentally demonstrated, utilizing M-QAM symbol mapping implemented in MATLAB® programs. A frequency division multiplexing-based symbol demapping and wavelength management method is proposed for the symbol demapper and tunable laser management used in colorless optical network unit.

  9. Optically resonant magneto-electric cubic nanoantennas for ultra-directional light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sikdar, Debabrata, E-mail: debabrata.sikdar@monash.edu; Premaratne, Malin [Advanced Computing and Simulation Laboratory (A chi L), Department of Electrical and Computer Systems Engineering, Monash University, Clayton 3800, Victoria (Australia); Cheng, Wenlong [Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton 3800, Victoria (Australia); The Melbourne Centre for Nanofabrication, 151 Wellington Road, Clayton 3168, Victoria (Australia)

    2015-02-28

    Cubic dielectric nanoparticles are promising candidates for futuristic low-loss, ultra-compact, nanophotonic applications owing to their larger optical coefficients, greater packing density, and relative ease of fabrication as compared to spherical nanoparticles; besides possessing negligible heating at nanoscale in contrast to their metallic counterparts. Here, we present the first theoretical demonstration of azimuthally symmetric, ultra-directional Kerker's-type scattering of simple dielectric nanocubes in visible and near-infrared regions via simultaneous excitation and interference of optically induced electric- and magnetic-resonances up to quadrupolar modes. Unidirectional forward-scattering by individual nanocubes is observed at the first generalized-Kerker's condition for backward-scattering suppression, having equal electric- and magnetic-dipolar responses. Both directionality and magnitude of these unidirectional-scattering patterns get enhanced where matching electric- and magnetic-quadrupolar responses spectrally overlap. While preserving azimuthal-symmetry and backscattering suppression, a nanocube homodimer provides further directionality improvement for increasing interparticle gap, but with reduced main-lobe magnitude due to emergence of side-scattering lobes from diffraction-grating effect. We thoroughly investigate the influence of interparticle gap on scattering patterns and propose optimal range of gap for minimizing side-scattering lobes. Besides suppressing undesired side-lobes, significant enhancement in scattering magnitude and directionality is attained with increasing number of nanocubes forming a linear chain. Optimal directionality, i.e., the narrowest main-scattering lobe, is found at the wavelength of interfering quadrupolar resonances; whereas the largest main-lobe magnitude is observed at the wavelength satisfying the first Kerker's condition. These unique optical properties of dielectric nanocubes thus can

  10. Lighting the Dark Molecular Gas: H2 as a Direct Tracer

    Science.gov (United States)

    Togi, Aditya; Smith, J. D. T.

    2016-10-01

    Robust knowledge of molecular gas mass is critical for understanding star formation in galaxies. The {{{H}}}2 molecule does not emit efficiently in the cold interstellar medium, hence the molecular gas content of galaxies is typically inferred using indirect tracers. At low metallicity and in other extreme environments, these tracers can be subject to substantial biases. We present a new method of estimating total molecular gas mass in galaxies directly from pure mid-infrared rotational {{{H}}}2 emission. By assuming a power-law distribution of {{{H}}}2 rotational temperatures, we can accurately model {{{H}}}2 excitation and reliably obtain warm (T ≳ 100 K) {{{H}}}2 gas masses by varying only the power law’s slope. With sensitivities typical of Spitzer/IRS, we are able to directly probe the {{{H}}}2 content via rotational emission down to ∼80 K, accounting for ∼15% of the total molecular gas mass in a galaxy. By extrapolating the fitted power-law temperature distributions to a calibrated single lower cutoff temperature, the model also recovers the total molecular content within a factor of ∼2.2 in a diverse sample of galaxies, and a subset of broken power-law models performs similarly well. In ULIRGs, the fraction of warm {{{H}}}2 gas rises with dust temperature, with some dependency on α CO. In a sample of five low-metallicity galaxies ranging down to 12+{log}[{{O}}/{{H}}]=7.8, the model yields molecular masses up to ∼100× larger than implied by CO, in good agreement with other methods based on dust mass and star formation depletion timescale. This technique offers real promise for assessing molecular content in the early universe where CO and dust-based methods may fail.

  11. Nonlinear optical molecular imaging enables metabolic redox sensing in tissue-engineered constructs

    Science.gov (United States)

    Chen, Leng-Chun; Lloyd, William R.; Wilson, Robert H.; Kuo, Shiuhyang; Marcelo, Cynthia L.; Feinberg, Stephen E.; Mycek, Mary-Ann

    2011-07-01

    Tissue-engineered constructs require noninvasive monitoring of cellular viability prior to implantation. In a preclinical study on human Ex Vivo Produced Oral Mucosa Equivalent (EVPOME) constructs, nonlinear optical molecular imaging was employed to extract morphological and functional information from intact constructs. Multiphoton excitation fluorescence images were acquired using endogenous fluorescence from cellular nicotinamide adenine dinucleotide phosphate [NAD(P)H] and flavin adenine dinucleotide (FAD). The images were analyzed to report quantitatively on tissue structure and metabolism (redox ratio). Both thickness variations over time and cell distribution variations with depth were identified, while changes in redox were quantified. Our results show that nonlinear optical molecular imaging has the potential to visualize and quantitatively monitor the growth and viability of a tissue-engineered construct over time.

  12. Optical Absorption in Molecular Crystals from Time-Dependent Density Functional Theory

    Science.gov (United States)

    2017-04-23

    quantitatively and non-empirically within the framework of time-dependent density functional theory (TDDFT), using the recently-developed optimally-tuned...showing that fundamental gaps and optical spectra of molecular solids can be predicted quantitatively and non-empirically within the framework of...II. THEORETICAL AND COMPUTATIONAL APPROACH A. Optimally-tuned range-separated hybrid functionals In the range-separated hybrid (RSH) method, the

  13. Mapping of the extinction in Giant Molecular Clouds using optical star counts

    OpenAIRE

    Cambresy, L.

    1999-01-01

    This paper presents large scale extinction maps of most nearby Giant Molecular Clouds of the Galaxy (Lupus, rho-Ophiuchus, Scorpius, Coalsack, Taurus, Chamaeleon, Musca, Corona Australis, Serpens, IC 5146, Vela, Orion, Monoceros R1 and R2, Rosette, Carina) derived from a star count method using an adaptive grid and a wavelet decomposition applied to the optical data provided by the USNO-Precision Measuring Machine. The distribution of the extinction in the clouds leads to estimate their total...

  14. Growth direction of oblique angle electron beam deposited silicon monoxide thin films identified by optical second-harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Vejling Andersen, Søren; Lund Trolle, Mads; Pedersen, Kjeld [Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, DK-9220 Aalborg Øst (Denmark)

    2013-12-02

    Oblique angle deposited (OAD) silicon monoxide (SiO) thin films forming tilted columnar structures have been characterized by second-harmonic generation. It was found that OAD SiO leads to a rotationally anisotropic second-harmonic response, depending on the optical angle of incidence. A model for the observed dependence of the second-harmonic signal on optical angle of incidence allows extraction of the growth direction of OAD films. The optically determined growth directions show convincing agreement with cross-sectional scanning electron microscopy images. In addition to a powerful characterization tool, these results demonstrate the possibilities for designing nonlinear optical devices through SiO OAD.

  15. The effect of hot multistage drawing on molecular structure and optical properties of polyethylene terephthalate fibers

    Directory of Open Access Journals (Sweden)

    Aminoddin Haji

    2012-08-01

    Full Text Available In this work, mechanical and structural parameters related to the optical properties of polyethylene terephthalate (PET fibers drawn at hot multistage have been investigated. The changes in optical parameters upon changing draw ratio are used to obtain the mechanical orientation factors and , various orientation functions f2(θ, f4(θ and f6(θ, and amorphous and crystalline orientation functions (f a and f c. Also, the numbers of random links between the network junction points (N1, the average optical orientation (Fav, and the distribution function of segment ω(cos θ were calculated. In addition, an empirical formula was suggested to correlate changes in the birefringence with the draw ratio and its constants were determined. The study demonstrated change on the molecular orientation functions and structural parameters upon hot multistage drawing. Significant variations in the characteristic properties of the drawn PET fibers were due to reorientation of the molecules caused by applied heat and external tension.

  16. Measuring the optical chirality of molecular aggregates at liquid-liquid interfaces.

    Science.gov (United States)

    Watarai, Hitoshi; Adachi, Kenta

    2009-10-01

    Some new experimental methods for measuring the optical chirality of molecular aggregates formed at liquid-liquid interfaces have been reviewed. Chirality measurements of interfacial aggregates are highly important not only in analytical spectroscopy but also in biochemistry and surface nanochemistry. Among these methods, a centrifugal liquid membrane method was shown to be a highly versatile method for measuring the optical chirality of the liquid-liquid interface when used in combination with a commercially available circular dichroism (CD) spectropolarimeter, provided that the interfacial aggregate exhibited a large molar absorptivity. Therefore, porphyrin and phthalocyanine were used as chromophoric probes of the chirality of itself or guest molecules at the interface. A microscopic CD method was also demonstrated for the measurement of a small region of a film or a sheet sample. In addition, second-harmonic generation and Raman scattering methods were reviewed as promising methods for detecting interfacial optical molecules and measuring bond distortions of chiral molecules, respectively.

  17. Decision-directed iterative methods for PAPR reduction in optical wireless OFDM systems

    Science.gov (United States)

    Azim, Ali W.; Le Guennec, Yannis; Maury, Ghislaine

    2017-04-01

    In this paper, we propose two iterative decision-directed methods for peak-to-average power ratio (PAPR) reduction in optical-orthogonal frequency division multiplexing (O-OFDM) systems. The proposed methods are applicable to state-of-the-art intensity modulation-direct detection (IM-DD) O-OFDM techniques for optical wireless communication (OWC) systems, including both direct-current (DC) biased O-OFDM (DCO-OFDM), and asymmetrically clipped O-OFDM (ACO-OFDM). Conventional O-OFDM suffers from high power consumption due to high PAPR. The high PAPR of the O-OFDM signal can be counteracted by clipping the signal to a predefined threshold. However, because of clipping an inevitable distortion occurs due to the loss of useful information, thus, clipping mitigation methods are required. The proposed iterative decision-directed methods operate at the receiver, and recover the lost information by mitigating the clipping distortion. Simulation results acknowledge that the high PAPR of O-OFDM can be significantly reduced using clipping, and the proposed methods can successfully circumvent the clipping distortions. Furthermore, the proposed PAPR reduction methods exhibit a much lower computational complexity compared to standard PAPR reduction methods.

  18. All-optical integrated logic operations based on chemical communication between molecular switches.

    Science.gov (United States)

    Silvi, Serena; Constable, Edwin C; Housecroft, Catherine E; Beves, Jonathon E; Dunphy, Emma L; Tomasulo, Massimiliano; Raymo, Françisco M; Credi, Alberto

    2009-01-01

    Molecular logic gates process physical or chemical "inputs" to generate "outputs" based on a set of logical operators. We report the design and operation of a chemical ensemble in solution that behaves as integrated AND, OR, and XNOR gates with optical input and output signals. The ensemble is composed of a reversible merocyanine-type photoacid and a ruthenium polypyridine complex that functions as a pH-controlled three-state luminescent switch. The light-triggered release of protons from the photoacid is used to control the state of the transition-metal complex. Therefore, the two molecular switching devices communicate with one another through the exchange of ionic signals. By means of such a double (optical-chemical-optical) signal-transduction mechanism, inputs of violet light modulate a luminescence output in the red/far-red region of the visible spectrum. Nondestructive reading is guaranteed because the green light used for excitation in the photoluminescence experiments does not affect the state of the gate. The reset is thermally driven and, thus, does not involve the addition of chemicals and accumulation of byproducts. Owing to its reversibility and stability, this molecular device can afford many cycles of digital operation.

  19. Superluminescence from an optically pumped molecular tunneling junction by injection of plasmon induced hot electrons

    Directory of Open Access Journals (Sweden)

    Kai Braun

    2015-05-01

    Full Text Available Here, we demonstrate a bias-driven superluminescent point light-source based on an optically pumped molecular junction (gold substrate/self-assembled molecular monolayer/gold tip of a scanning tunneling microscope, operating at ambient conditions and providing almost three orders of magnitude higher electron-to-photon conversion efficiency than electroluminescence induced by inelastic tunneling without optical pumping. A positive, steadily increasing bias voltage induces a step-like rise of the Stokes shifted optical signal emitted from the junction. This emission is strongly attenuated by reversing the applied bias voltage. At high bias voltage, the emission intensity depends non-linearly on the optical pump power. The enhanced emission can be modelled by rate equations taking into account hole injection from the tip (anode into the highest occupied orbital of the closest substrate-bound molecule (lower level and radiative recombination with an electron from above the Fermi level (upper level, hence feeding photons back by stimulated emission resonant with the gap mode. The system reflects many essential features of a superluminescent light emitting diode.

  20. Molecular states in double quantum wells: nanochemistry for metatmaterials with new optical properties

    Science.gov (United States)

    Gutierrez, Rafael M.; Castañeda, Arcesio

    2009-08-01

    Quantum mechanics explains the existence and properties of the chemical bond responsible for the formation of molecules from isolated atoms. In this work we study quantum states of Double Quantum Wells, DQW, formed from isolated Single Quantum Wells, SQWs, that can be considered metamaterials. Using the quantum chemistry definition of the covalent bond, we discuss molecular states in DQW as a kind of nanochemistry of metamaterials with new properties, in particular new optical properties. An important particularity of such nanochemistry, is the possible experimental control of the geometrical parameters and effective masses characterizing the semiconductor heterostructures represented by the corresponding DQW. This implies a great potential for new applications of the controlled optical properties of the metamaterials. The use of ab initio methods of intensive numerical calculations permits to obtain macroscopic optical properties of the metamaterials from the fundamental components: the spatial distribution of the atoms and molecules constituting the semiconductor layers. The metamaterial new optical properties emerge from the coexistence of many body processes at atomic and molecular level and complex quantum phenomena such as covalent-like bonds at nanometric dimensions.

  1. Superluminescence from an optically pumped molecular tunneling junction by injection of plasmon induced hot electrons.

    Science.gov (United States)

    Braun, Kai; Wang, Xiao; Kern, Andreas M; Adler, Hilmar; Peisert, Heiko; Chassé, Thomas; Zhang, Dai; Meixner, Alfred J

    2015-01-01

    Here, we demonstrate a bias-driven superluminescent point light-source based on an optically pumped molecular junction (gold substrate/self-assembled molecular monolayer/gold tip) of a scanning tunneling microscope, operating at ambient conditions and providing almost three orders of magnitude higher electron-to-photon conversion efficiency than electroluminescence induced by inelastic tunneling without optical pumping. A positive, steadily increasing bias voltage induces a step-like rise of the Stokes shifted optical signal emitted from the junction. This emission is strongly attenuated by reversing the applied bias voltage. At high bias voltage, the emission intensity depends non-linearly on the optical pump power. The enhanced emission can be modelled by rate equations taking into account hole injection from the tip (anode) into the highest occupied orbital of the closest substrate-bound molecule (lower level) and radiative recombination with an electron from above the Fermi level (upper level), hence feeding photons back by stimulated emission resonant with the gap mode. The system reflects many essential features of a superluminescent light emitting diode.

  2. Optical dating in a new light: A direct, non-destructive probe of trapped electrons.

    Science.gov (United States)

    Prasad, Amit Kumar; Poolton, Nigel R J; Kook, Myungho; Jain, Mayank

    2017-09-26

    Optical dating has revolutionized our understanding of Global climate change, Earth surface processes, and human evolution and dispersal over the last ~500 ka. Optical dating is based on an anti-Stokes photon emission generated by electron-hole recombination within quartz or feldspar; it relies, by default, on destructive read-out of the stored chronometric information. We present here a fundamentally new method of optical read-out of the trapped electron population in feldspar. The new signal termed as Infra-Red Photo-Luminescence (IRPL) is a Stokes emission (~1.30 eV) derived from NIR excitation (~1.40 eV) on samples previously exposed to ionizing radiation. Low temperature (7-295 K) spectroscopic and time-resolved investigations suggest that IRPL is generated from excited-to-ground state relaxation within the principal (dosimetry) trap. Since IRPL can be induced even in traps remote from recombination centers, it is likely to contain a stable (non-fading), steady-state component. While IRPL is a powerful tool to understand details of the electron-trapping center, it provides a novel, alternative approach to trapped-charge dating based on direct, non-destructive probing of chronometric information. The possibility of repeated readout of IRPL from individual traps will open opportunities for dating at sub-micron spatial resolution, thus, marking a step change in the optical dating technology.

  3. Direct optical patterning of poly(dimethylsiloxane) microstructures for microfluidic chips

    Science.gov (United States)

    Gao, Shaorui; Tung, Wing-Tai; Wong, Dexter S.; Bian, Liming; Zhang, A. Ping

    2016-10-01

    In this paper, we present an optical maskless exposure approach for direct patterning of large-area high resolution microfluidic chips using photosensitive poly(dimethylsiloxane) (PDMS) materials. Both positive- and negative-tone photosensitive PDMS (photoPDMS) were successfully patterned into various microfluidic devices with complex geometries by using an optical maskless lithography process. The positive-tone PDMS is used for patterning of largearea chips, while the negative-tone PDMS is demonstrated to fabricate high-resolution microstructures and on-chip devices. With the seamless pattern-stitching technique, a large-area microfluidic chip with size of 5.5 × 2.8 cm2 with complex three-dimensional (3D) staggered herringbone mixers (SHMs) for micro-flow gradient generation has been directly fabricated within 125 minutes by using the positive-tone PDMS. A small microfluidic chip with feature size as small as 5 μm is demonstrated by using the negative-tone PDMS. The experimental results reveal that the optical maskless lithography technology enables to rapidly pattern high-resolution microstructures and is very promising for development of lab-on-a-chip devices.

  4. Fiber Optic Versus Direct Laser Delivery For Endarterectomy Of Experimental Atheromas

    Science.gov (United States)

    Eugene, John; Pollock, Marc E.; McColgan, Stephen J.; Hammer-Wilson, Marie; Berns, Michael W.

    1986-01-01

    Direct laser energy delivery was compared to fiber optic laser energy delivery by the performance of open laser endarterectomy in the rabbit arteriosclerosis model. In Group I, 6 open laser endarterectomies were performed with a hand-held CO2 laser (10.6 pm). In Group II, 6 open laser endarterectomies were performed with an argon ion laser (488 nm and 514.5 nm) with the laser beam directed through a 400 μm quartz fiber optic. Gross and light microscopic examination revealed uneven endarterectomy surfaces and frequent perforations at the end points in Group I. In Group II, the endarterectomy surfaces were even and the end points were fused with a tapered transition. Energy density for Group I was 38 ±5 J/cm2. Energy density for Group II was 110±12 J/cm2. CO2 laser energy was better absorbed by arteriosclerotic rabbit aortas than argon ion laser energy, but it could not be as easily controlled. We conclude that a more precise endarterectomy can be performed with fiber optic delivery of laser energy.

  5. Direct optical band gap measurement in polycrystalline semiconductors: A critical look at the Tauc method

    Science.gov (United States)

    Dolgonos, Alex; Mason, Thomas O.; Poeppelmeier, Kenneth R.

    2016-08-01

    The direct optical band gap of semiconductors is traditionally measured by extrapolating the linear region of the square of the absorption curve to the x-axis, and a variation of this method, developed by Tauc, has also been widely used. The application of the Tauc method to crystalline materials is rooted in misconception-and traditional linear extrapolation methods are inappropriate for use on degenerate semiconductors, where the occupation of conduction band energy states cannot be ignored. A new method is proposed for extracting a direct optical band gap from absorption spectra of degenerately-doped bulk semiconductors. This method was applied to pseudo-absorption spectra of Sn-doped In2O3 (ITO)-converted from diffuse-reflectance measurements on bulk specimens. The results of this analysis were corroborated by room-temperature photoluminescence excitation measurements, which yielded values of optical band gap and Burstein-Moss shift that are consistent with previous studies on In2O3 single crystals and thin films.

  6. Direct optical measurement of light coupling into planar waveguide by plasmonic nanoparticles

    CERN Document Server

    Pennanen, Antti M; 10.1364/OE.21.000A23

    2012-01-01

    Coupling of light into a thin layer of high refractive index material by plasmonic nanoparticles has been widely studied for application in photovoltaic devices, such as thin-film solar cells. In numerous studies this coupling has been investigated through measurement of e.g. quantum efficiency or photocurrent enhancement. Here we present a direct optical measurement of light coupling into a waveguide by plasmonic nanoparticles. We investigate the coupling efficiency into the guided modes within the waveguide by illuminating the surface of a sample, consisting of a glass slide coated with a high refractive index planar waveguide and plasmonic nanoparticles, while directly measuring the intensity of the light emitted out of the waveguide edge. These experiments were complemented by transmittance and reflectance measurements. We show that the light coupling is strongly affected by thin-film interference, localized surface plasmon resonances of the nanoparticles and the illumination direction (front or rear).

  7. Electronic transport properties of molecular junctions based on the direct binding of aromatic ring to electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Tran Nguyen, E-mail: lantran@ims.ac.jp

    2014-01-15

    Highlights: • Transport properties of molecular junction having direct binding of aromatic ring to electrode have been investigated. • The conductance of junction with sp-type electrode is higher than that of junction with sd-type electrode. • The rectifying mechanism critically depends on the nature of benzene–electrode coupling. • The p–n junction-like can be obtained even without heteroatom doping. • The negative differential resistance effect was observed for the case of sp-type electrode. - Abstract: We have used the non-equilibrium Green’s function in combination with the density functional theory to investigate the quantum transport properties of the molecular junctions including a terminated benzene ring directly coupled to surface of metal electrodes (physisorption). The other side of molecule was connected to electrode via thiolate bond (chemisorption). Two different electrodes have been studied, namely Cu and Al. Rectification and negative differential resistance behavior have been observed. We found that the electron transport mechanism is affected by the nature of benzene–electrode coupling. In other words, the transport mechanism depends on the nature of metallic electrode. Changing from sp- to sd-metallic electrode, the molecular junction changes from the Schottky to p–n junction-like diode. The transmission spectra, projected density of state, molecular projected self-consistent Hamiltonian, transmission eigenchannel, and Muliken population have been analyzed for explanation of electronic transport properties. Understanding the transport mechanism in junction having direct coupling of π-conjugate to electrode will be useful to design the future molecular devices.

  8. Directed Molecular Evolution of Nitrite Oxido-reductase by DNA-shuffling

    Institute of Scientific and Technical Information of China (English)

    JUN-WEN LI; JIN-LAI ZHENG; XIN-WEI WANG; MIN JIN; FU-HUAN CHAO

    2007-01-01

    Objective To develtop directly molecular evolution of nitrite oxido-reductase using DNA-shuffling technique because nitrobacteria grow extremely slow and are unable to nitrify effectively inorganic nitrogen in wastewater treatment. Methods The norB gene coding the nitrite oxido-reductase in nitrobacteria was cloned and sequenced. Then, directed molecular evolution of nitrite oxido-reductase was developed by DNA-shuffling of 15 norB genes from different nitrobacteria. Results After DNA-shuffling with sexual PCR and staggered extension process PCR, the sequence was different from its parental DNA fragments and the homology ranged from 98% to 99%. The maximum nitrification rate of the modified bacterium of X16 by modified bacterium had the same characteristics of its parental bacteria of E. coli and could grow rapidly in normal cultures.Conclusion DNA-shuffling was successfully used to engineer E. coli, which had norB gene and could degrade inorganic nitrogen effectively.

  9. Leber′s hereditary optic neuropathy with molecular characterization in two Indian families

    Directory of Open Access Journals (Sweden)

    Verma I

    2005-01-01

    Full Text Available PURPOSE: Leber′s hereditary optic neuropathy (LHON presents in early adulthood with painless progressive blindness of one or both eyes. Usually there is a positive family history of similar disease on the maternal side. Definitive diagnosis can be established by finding the change in the mitochondrial gene. No molecular studies have been reported from India. MATERIAL AND METHODS: Clinical, ophthalmologic and molecular studies were carried out in two patients from different families and available first degree relatives. The subjects were tested for the three common mutations seen in LHON by molecular techniques of polymerase chain reaction using mutation specific primers. RESULTS: The mutations G3460A and G11778A in the mitochondrial genes MTND1 and MTND4, known to be causative for LHON, were found in one family each. CONCLUSION: Diagnosis of LHON should be considered in familial cases and in young adults with optic atrophy. Confirmation of diagnosis should be sought by molecular gene analysis. Genetic counselling should be offered to all ′at risk′ relatives of a patient harbouring the mutation.

  10. Fiber optic profenofos sensor based on surface plasmon resonance technique and molecular imprinting.

    Science.gov (United States)

    Shrivastav, Anand M; Usha, Sruthi P; Gupta, Banshi D

    2016-05-15

    A successful approach for the fabrication and characterization of an optical fiber sensor for the detection of profenofos based on surface plasmon resonance (SPR) and molecular imprinting is introduced. Molecular imprinting technology is used for the creation of three dimensional binding sites having complementary shape and size of the specific template molecule over a polymer for the recognition of the same. Binding of template molecule with molecularly imprinted polymer (MIP) layer results in the change in the dielectric nature of the sensing surface (polymer) and is identified by SPR technique. Spectral interrogation method is used for the characterization of the sensing probe. The operating profenofos concentration range of the sensor is from 10(-4) to 10(-1)µg/L. A red shift of 18.7 nm in resonance wavelength is recorded for this profenofos concentration range. The maximum sensitivity of the sensor is 12.7 nm/log (µg/L) at 10(-4)µg/L profenofos concentration. Limit of detection (LOD) of the sensor is found to be 2.5×10(-6)µg/L. Selectivity measurements predict the probe highly selective for the profenofos molecule. Besides high sensitivity due to SPR technique and selectivity due to molecular imprinting, proposed sensor has numerous other advantages like immunity to electromagnetic interference, fast response, low cost and capability of online monitoring and remote sensing of analyte due to the fabrication of the probe on optical fiber.

  11. Genotyping Single Nucleotide Polymorphisms Using Different Molecular Beacon Multiplexed within a Suspended Core Optical Fiber

    Directory of Open Access Journals (Sweden)

    Linh Viet Nguyen

    2014-08-01

    Full Text Available We report a novel approach to genotyping single nucleotide polymorphisms (SNPs using molecular beacons in conjunction with a suspended core optical fiber (SCF. Target DNA sequences corresponding to the wild- or mutant-type have been accurately recognized by immobilizing two different molecular beacons on the core of a SCF. The two molecular beacons differ by one base in the loop-probe and utilize different fluorescent indicators. Single-color fluorescence enhancement was obtained when the immobilized SCFs were filled with a solution containing either wild-type or mutant-type sequence (homozygous sample, while filling the immobilized SCF with solution containing both wild- and mutant-type sequences resulted in dual-color fluorescence enhancement, indicating a heterozygous sample. The genotyping was realized amplification-free and with ultra low-volume for the required DNA solution (nano-liter. This is, to our knowledge, the first genotyping device based on the combination of optical fiber and molecular beacons.

  12. Lighting the dark molecular gas: H$_{2}$ as a direct tracer

    CERN Document Server

    Togi, Aditya

    2016-01-01

    Robust knowledge of molecular gas mass is critical for understanding star formation in galaxies. The H$_{2}$ molecule does not emit efficiently in the cold interstellar medium, hence the molecular gas content of galaxies is typically inferred using indirect tracers. At low metallicity and in other extreme environments, these tracers can be subject to substantial biases. We present a new method of estimating total molecular gas mass in galaxies directly from pure mid-infrared rotational H$_{2}$ emission. By assuming a power-law distribution of H$_{2}$ rotational temperatures, we can accurately model H$_{2}$ excitation and reliably obtain warm ($T\\!\\gtrsim\\!100$ K) H$_{2}$ gas masses by varying only the power law's slope. With sensitivities typical of Spitzer/IRS, we are able to directly probe the H$_{2}$ content via rotational emission down to ~80 K, accounting for ~15% of the total molecular gas mass in a galaxy. By extrapolating the fitted power law temperature distributions to a calibrated \\emph{single} low...

  13. Effects of Arbitrarily Directed Field on Spin Phase Oscillations in Biaxial Molecular Magnets

    Institute of Scientific and Technical Information of China (English)

    HU Hui; ZHU JiaLin; LU Rong; XIONG JiaJiong

    2001-01-01

    Quantum phase interference and spin-parity effects are studied in biaxial molecular magnets in a magnetic field at an arbitrarily directed angle. The calculations of the ground-state tunnel splitting are performed on the basis of the instanton technique in the spin-coherent-state path-integral representation, and complemented by exactly numerical diagonalization. Both the Wentzel-Kramers-Brillouin exponent and the pre-exponential factor are obtained for the entire region of the direction of the field. Our results show that the tunnel splitting oscillates with the field for the small field angle, while for the large field angle the oscillation is completely suppressed. This distinct angular dependence, together with the dependence of the tunnel splitting on the field strength, provides an independent test for spin-parity effects in biaxial molecular magnets. The analytical results for the molecular Fes magnet are found to be in good agreement with the numerical simulations, which suggests that even the molecular magnet with total spin S = 10 is large enough to be treated as a giant spin system.``

  14. Direct determination of three-phase contact line properties on nearly molecular scale

    OpenAIRE

    Winkler, P. M.; McGraw, R. L.; Bauer, P. S.; Rentenberger, C.; Wagner, P. E.

    2016-01-01

    Wetting phenomena in multi-phase systems govern the shape of the contact line which separates the different phases. For liquids in contact with solid surfaces wetting is typically described in terms of contact angle. While in macroscopic systems the contact angle can be determined experimentally, on the molecular scale contact angles are hardly accessible. Here we report the first direct experimental determination of contact angles as well as contact line curvature on a scale of the order of ...

  15. Continuous all-optical deceleration and single-photon cooling of molecular beams

    CERN Document Server

    Jayich, A M; Hummon, M T; Porto, J V; Campbell, W C

    2013-01-01

    Ultracold molecular gases are promising as an avenue to rich many-body physics, quantum chemistry, quantum information, and precision measurements. This richness, which flows from the complex internal structure of molecules, makes the creation of ultracold molecular gases using traditional methods (laser plus evaporative cooling) a challenge, in particular due to the spontaneous decay of molecules into dark states. We propose a way to circumvent this key bottleneck using an all-optical method for decelerating molecules using stimulated absorption and emission with a single ultrafast laser. We further describe single-photon cooling of the decelerating molecules that exploits their high dark state pumping rates, turning the principal obstacle to molecular laser cooling into an advantage. Cooling and deceleration may be applied simultaneously and continuously to load molecules into a trap. We discuss implementation details including multi-level numerical simulations of strontium monohydride (SrH). These techniqu...

  16. Systematic control of optical features in aluminosilicate glass waveguides using direct femtosecond laser writing

    Science.gov (United States)

    Babu, B. Hari; Niu, Mengsi; Yang, Xiaoyu; Wang, Yanbo; Feng, Lin; Qin, Wei; Hao, Xiao-Tao

    2017-10-01

    Low loss optical waveguides inside aluminosilicate glasses have been successfully fabricated using direct femtosecond laser writing. To establish the influence of pulse energy and host variations on the optical waveguides have been tentatively explored and systematically studied with the help of different spectroscopic techniques. Isochronal annealing treatment effectively reduces the insertion losses to 1.01 ± 0.28 dB at 632.8 nm. A red shift of the Raman band has been observed with increasing Al2O3 content due to the bond angle variations. The point defects such as non-bridging oxygen hole centers have been corroborated by the photoluminescence studies and significant red-shift has also been documented with increasing Al2O3 content. In addition, there is no NBOHC defects perceived after isochronal annealing treatment inside the glass waveguides. Our results envisage that the present glass waveguides should be promising and potential for applications in passive waveguides and integrated photonic devices.

  17. Paraxial Theory of Direct Electro-optic Sampling of the Quantum Vacuum

    Science.gov (United States)

    Moskalenko, A. S.; Riek, C.; Seletskiy, D. V.; Burkard, G.; Leitenstorfer, A.

    2015-12-01

    Direct detection of vacuum fluctuations and analysis of subcycle quantum properties of the electric field are explored by a paraxial quantum theory of ultrafast electro-optic sampling. The feasibility of such experiments is demonstrated by realistic calculations adopting a thin ZnTe electro-optic crystal and stable few-femtosecond laser pulses. We show that nonlinear mixing of a short near-infrared probe pulse with the multiterahertz vacuum field leads to an increase of the signal variance with respect to the shot noise level. The vacuum contribution increases significantly for appropriate length of the nonlinear crystal, short pulse duration, tight focusing, and a sufficiently large number of photons per probe pulse. If the vacuum input is squeezed, the signal variance depends on the probe delay. Temporal positions with a noise level below the pure vacuum may be traced with subcycle resolution.

  18. Super-resolution optical DNA Mapping via DNA methyltransferase-directed click chemistry

    DEFF Research Database (Denmark)

    Vranken, Charlotte; Deen, Jochem; Dirix, Lieve

    2014-01-01

    We demonstrate an approach to optical DNA mapping, which enables near single-molecule characterization of whole bacteriophage genomes. Our approach uses a DNA methyltransferase enzyme to target labelling to specific sites and copper-catalysed azide-alkyne cycloaddition to couple a fluorophore...... to the DNA. We achieve a labelling efficiency of ∼70% with an average labelling density approaching one site every 500 bp. Such labelling density bridges the gap between the output of a typical DNA sequencing experiment and the long-range information derived from traditional optical DNA mapping. We lay...... the foundations for a wider-scale adoption of DNA mapping by screening 11 methyltransferases for their ability to direct sequence-specific DNA transalkylation; the first step of the DNA labelling process and by optimizing reaction conditions for fluorophore coupling via a click reaction. Three of 11 enzymes...

  19. Stability of the proton-to-electron mass ratio tested with molecular spectroscopy using an optical link to frequency reference

    Energy Technology Data Exchange (ETDEWEB)

    Amy-Klein, Anne; Lopez, Olivier; Daussy, Christophe; Kefelian, Fabien; Chardonnet, Christian [LPL, CNRS, Universite Paris-13, Villetaneuse (France); Shelkovnikov, Alexander [LPL, CNRS, Universite Paris-13, Villetaneuse (France); Lebedev Physical Institute, Moscow (Russian Federation); Butcher, Robert J. [LPL, CNRS, Universite Paris-13, Villetaneuse (France); Cavendish Laboratory, Cambridge (United Kingdom); Jiang, Haifeng; Santarelli, Giorgio [LNE-SYRTE, Observatoire de Paris, CNRS, UPMC (France)

    2010-07-01

    Time and frequency metrology has experienced a lot of developments since ten years leading to the possibility of many fundamental tests of physics, as, for example, the search for a temporal variation of fundamental constants. However these tests are limited to macroscopic resonators or atomic systems while molecular systems are still difficult to probe with a high sensitivity, since experiments on molecules lacks of absolute frequency measurements set-ups. In that context, we have developed an optical link between our lab and the LNE-SYRTE, which allows us to benefit from their frequency references. Using this link, we performed the first experimental comparison of a molecular clock to an atomic clock, which gives a direct line to the proton-to-electron mass ratio stability. Recently, we extended the frequency dissemination technique to non-dedicated fibers of the telecommunication network simultaneously carrying digital data from the Internet traffic. This is very challenging for the development of transcontinental atomic and molecular clocks comparisons.

  20. Halogen-directed drug design for Alzheimer's disease: a combined density functional and molecular docking study.

    Science.gov (United States)

    Rahman, Adhip; Ali, Mohammad Tuhin; Shawan, Mohammad Mahfuz Ali Khan; Sarwar, Mohammed Golam; Khan, Mohammad A K; Halim, Mohammad A

    2016-01-01

    A series of halogen-directed donepezil drugs has been designed to inhibit acetyl cholinesterase (AChE). Density Functional theory (DFT) has been employed to optimize the chair as well as boat conformers of the parent drug and modified ligands at B3LYP/MidiX and B3LYP/6-311G + (d,p) level of theories. Charge distribution, dipole moment, enthalpy, free energy and molecular orbitals of these ligands are also investigated to understand how the halogen-directed modifications impact the ligand structure and govern the non-bonding interactions with the receptors. Molecular docking calculation has been performed to understand the similarities and differences between the binding modes of unmodified and halogenated chair-formed ligands. Molecular docking indicated donepezil and modified ligands had non-covalent interactions with hydrophobic gorges and anionic subsites of AChE. The -CF3-directed ligand possessed the most negative binding affinity. Non-covalent interactions within the ligand-receptor systems were found to be mostly hydrophobic and π- stacking type. F, Cl and -CF3 containing ligands emerge as effective and selective AChE inhibitors, which can strongly interact with the two active sites of AChE. In addition, we have also investigated selected pharmacokinetic parameters of the parent and modified ligands.

  1. Computational Combination of the Optical Properties of Fenestration Layers at High Directional Resolution

    Directory of Open Access Journals (Sweden)

    Lars Oliver Grobe

    2017-03-01

    Full Text Available Complex fenestration systems typically comprise co-planar, clear and scattering layers. As there are many ways to combine layers in fenestration systems, a common approach in building simulation is to store optical properties separate for each layer. System properties are then computed employing a fast matrix formalism, often based on a directional basis devised by JHKlems comprising 145 incident and 145 outgoing directions. While this low directional resolution is found sufficient to predict illuminance and solar gains, it is too coarse to replicate the effects of directionality in the generation of imagery. For increased accuracy, a modification of the matrix formalism is proposed. The tensor-tree format of RADIANCE, employing an algorithm subdividing the hemisphere at variable resolutions, replaces the directional basis. The utilization of the tensor-tree with interfaces to simulation software allows sharing and re-use of data. The light scattering properties of two exemplary fenestration systems as computed employing the matrix formalism at variable resolution show good accordance with the results of ray-tracing. Computation times are reduced to 0.4% to 2.5% compared to ray-tracing through co-planar layers. Imagery computed employing the method illustrates the effect of directional resolution. The method is supposed to foster research in the field of daylighting, as well as applications in planning and design.

  2. Homing peptide guiding optical molecular imaging for the diagnosis of bladder cancer

    Science.gov (United States)

    Yang, Xiao-feng; Pang, Jian-zhi; Liu, Jie-hao; Zhao, Yang; Jia, Xing-you; Li, Jun; Liu, Reng-xin; Wang, Wei; Fan, Zhen-wei; Zhang, Zi-qiang; Yan, San-hua; Luo, Jun-qian; Zhang, Xiao-lei

    2014-11-01

    Background: The limitations of primary transurethral resection of bladder tumor (TURBt) have led the residual tumors rates as high as 75%. The intraoperative fluorescence imaging offers a great potential for improving TURBt have been confirmed. So we aim to distinguish the residual tumors and normal mucosa using fluorescence molecular imaging formed by conjugated molecule of the CSNRDARRC bladder cancer homing peptide with fluorescent dye. The conjugated molecule was abbreviated FIuo-ACP. In our study, we will research the image features of FIuo-ACP probe targeted bladder cancer for fluorescence molecular imaging diagnosis for bladder cancer in vivo and ex vivo. Methods: After the FIuo-ACP probe was synthetized, the binding sites, factors affecting binding rates, the specificity and the targeting of Fluo-ACP labeled with bladder cancer cells were studied respectively by laser scanning confocal microscope (LSCM), immunofluorescence and multispectral fluorescence ex vivo optical molecular imaging system. Results: The binding sites were located in nucleus and the binding rates were correlated linearly with the dose of probe and the grade of pathology. Moreover, the probe has a binding specificity with bladder cancer in vivo and ex vivo. Tumor cells being labeled by the Fluo-ACP, bright green spots were observed under LSCM. The tissue samples and tumor cells can be labeled and identified by fluorescence microscope. Optical molecular imaging of xenograft tumor tissues was exhibited as fluorescent spots under EMCCD. Conclusion: The CSNRDARRC peptides might be a useful bladder cancer targeting vector. The FIuo-ACP molecular probe was suitable for fluorescence molecular imaging diagnosis for bladder cancer in vivo and ex vivo.

  3. Optical signatures of molecular dissymmetry: combining theory with experiments to address stereochemical puzzles.

    Science.gov (United States)

    Mukhopadhyay, Parag; Wipf, Peter; Beratan, David N

    2009-06-16

    Modern chemistry emerged from the quest to describe the three-dimensional structure of molecules: van't Hoff's tetravalent carbon placed symmetry and dissymmetry at the heart of chemistry. In this Account, we explore how modern theory, synthesis, and spectroscopy can be used in concert to elucidate the symmetry and dissymmetry of molecules and their assemblies. Chiroptical spectroscopy, including optical rotatory dispersion (ORD), electronic circular dichroism (ECD), vibrational circular dichroism (VCD), and Raman optical activity (ROA), measures the response of dissymmetric structures to electromagnetic radiation. This response can in turn reveal the arrangement of atoms in space, but deciphering the molecular information encoded in chiroptical spectra requires an effective theoretical approach. Although important correlations between ECD and molecular stereochemistry have existed for some time, a battery of accurate new theoretical methods that link a much wider range of chiroptical spectroscopies to structure have emerged over the past decade. The promise of this field is considerable: theory and spectroscopy can assist in assigning the relative and absolute configurations of complex products, revealing the structure of noncovalent aggregates, defining metrics for molecular diversity based on polarization response, and designing chirally imprinted nanomaterials. The physical organic chemistry of chirality is fascinating in its own right: defining atomic and group contributions to optical rotation (OR) is now possible. Although the common expectation is that chiroptical response is determined solely by a chiral solute's electronic structure in a given environment, chiral imprinting effects on the surrounding medium and molecular assembly can, in fact, dominate the chiroptical signatures. The theoretical interpretation of chiroptical markers is challenging because the optical properties are subtle, resulting from the strong electric dipole and the weaker electric

  4. Nanostructured grating patterns over a large area fabricated by optically directed assembly

    Science.gov (United States)

    Huang, Xiaoping; Chen, Kai; Qi, Mingxi; Li, Yu; Hou, Yumeng; Wang, Ying; Zhao, Qing; Luo, Xiangang; Xu, Qingyu

    2016-07-01

    Optical trapping and manipulation of nanoparticles (NPs) have been widely used in nanotechnology and biology. Here, we demonstrate an optically directed assembly (ODA) route for bottom-up fabrication of stable nanostructured grating patterns in solution using laser standing evanescent wave (LSEW) fields. The control mechanism is the intriguing cooperative action of the periodically line-centered attractive optical gradient force and the near field dipolar coupling force induced by LSEW, which leads to assembly of the colloidal silver NPs into robust grating patterns within minutes. The anisotropic polarization nature of the grating patterns was studied further by examining the morphology correlation of the surface-enhanced Raman scattering (SERS)-based signal amplification. We show the LSEW ODA method can optimize and stabilize the strongest dipolar coupling style among the NPs during pattern assembly. These results advance the further understanding of ODA of colloid NPs and might have many potential applications in SERS, catalysis, nanophotonics and nano-fabrication.Optical trapping and manipulation of nanoparticles (NPs) have been widely used in nanotechnology and biology. Here, we demonstrate an optically directed assembly (ODA) route for bottom-up fabrication of stable nanostructured grating patterns in solution using laser standing evanescent wave (LSEW) fields. The control mechanism is the intriguing cooperative action of the periodically line-centered attractive optical gradient force and the near field dipolar coupling force induced by LSEW, which leads to assembly of the colloidal silver NPs into robust grating patterns within minutes. The anisotropic polarization nature of the grating patterns was studied further by examining the morphology correlation of the surface-enhanced Raman scattering (SERS)-based signal amplification. We show the LSEW ODA method can optimize and stabilize the strongest dipolar coupling style among the NPs during pattern assembly

  5. Directional, horizontal inhomogeneities of cloud optical thickness fields retrieved from ground-based and airbornespectral imaging

    Science.gov (United States)

    Schäfer, Michael; Bierwirth, Eike; Ehrlich, André; Jäkel, Evelyn; Werner, Frank; Wendisch, Manfred

    2017-02-01

    Clouds exhibit distinct horizontal inhomogeneities of their optical and microphysical properties, which complicate their realistic representation in weather and climate models. In order to investigate the horizontal structure of cloud inhomogeneities, 2-D horizontal fields of optical thickness (τ) of subtropical cirrus and Arctic stratus are investigated with a spatial resolution of less than 10 m. The 2-D τ-fields are derived from (a) downward (transmitted) solar spectral radiance measurements from the ground beneath four subtropical cirrus and (b) upward (reflected) radiances measured from aircraft above 10 Arctic stratus. The data were collected during two field campaigns: (a) Clouds, Aerosol, Radiation, and tuRbulence in the trade wind regime over BArbados (CARRIBA) and (b) VERtical Distribution of Ice in Arctic clouds (VERDI). One-dimensional and 2-D autocorrelation functions, as well as power spectral densities, are derived from the retrieved τ-fields. The typical spatial scale of cloud inhomogeneities is quantified for each cloud case. Similarly, the scales at which 3-D radiative effects influence the radiance field are identified. In most of the investigated cloud cases considerable cloud inhomogeneities with a prevailing directional structure are found. In these cases, the cloud inhomogeneities favour a specific horizontal direction, while across this direction the cloud is of homogeneous character. The investigations reveal that it is not sufficient to quantify horizontal cloud inhomogeneities using 1-D inhomogeneity parameters; 2-D parameters are necessary.

  6. Direct composite fillings: an optical coherence tomography and microCT investigation

    Science.gov (United States)

    Negrutiu, Meda L.; Sinescu, Cosmin; Borlea, Mugurel V.; Manescu, Adrian; Duma, Virgil F.; Rominu, Mihai; Podoleanu, Adrian G.

    2015-03-01

    The treatment of carious lesions requires removal of affected dental tissue thus creating cavities that are to be filled with dedicated materials. There are several methods known which are used to assess the quality of direct dental restorations, but most of them are invasive. Optical tomographic techniques are of particular importance in the medical imaging field, because these techniques can provide non-invasive diagnostic images. Using an en-face version of OCT, we have recently demonstrated real time thorough evaluation of quality of dental fillings. The major aim of this study was to analyses the optical performance of adhesives modified with zirconia particles in different concentrations in order to improve the contrast of OCT imaging of the interface between the tooth structure, adhesive and composite resin. The OCT investigations were validated by micro CT using synchrotron radiation. The OCT Swept Source is a valuable investigation tool for the clinical evaluation of class II direct composite restorations. The unmodified adhesive layer shows poor contrast on regular OCT investigations. Adding zirconia particles to the adhesive layer provides a better scattering which allows a better characterization and quantification of direct restorations.

  7. Optical biosensor technologies for molecular diagnostics at the point-of-care

    Science.gov (United States)

    Schotter, Joerg; Schrittwieser, Stefan; Muellner, Paul; Melnik, Eva; Hainberger, Rainer; Koppitsch, Guenther; Schrank, Franz; Soulantika, Katerina; Lentijo-Mozo, Sergio; Pelaz, Beatriz; Parak, Wolfgang; Ludwig, Frank; Dieckhoff, Jan

    2015-05-01

    Label-free optical schemes for molecular biosensing hold a strong promise for point-of-care applications in medical research and diagnostics. Apart from diagnostic requirements in terms of sensitivity, specificity, and multiplexing capability, also other aspects such as ease of use and manufacturability have to be considered in order to pave the way to a practical implementation. We present integrated optical waveguide as well as magnetic nanoparticle based molecular biosensor concepts that address these aspects. The integrated optical waveguide devices are based on low-loss photonic wires made of silicon nitride deposited by a CMOS compatible plasma-enhanced chemical vapor deposition (PECVD) process that allows for backend integration of waveguides on optoelectronic CMOS chips. The molecular detection principle relies on evanescent wave sensing in the 0.85 μm wavelength regime by means of Mach-Zehnder interferometers, which enables on-chip integration of silicon photodiodes and, thus, the realization of system-on-chip solutions. Our nanoparticle-based approach is based on optical observation of the dynamic response of functionalized magneticcore/ noble-metal-shell nanorods (`nanoprobes') to an externally applied time-varying magnetic field. As target molecules specifically bind to the surface of the nanoprobes, the observed dynamics of the nanoprobes changes, and the concentration of target molecules in the sample solution can be quantified. This approach is suitable for dynamic real-time measurements and only requires minimal sample preparation, thus presenting a highly promising point-of-care diagnostic system. In this paper, we present a prototype of a diagnostic device suitable for highly automated sample analysis by our nanoparticle-based approach.

  8. Geant4 simulation of optical photon transport in scintillator tile with direct readout by silicon photomultiplier

    Science.gov (United States)

    Korpachev, S.; Chadeeva, M.

    2017-01-01

    The direct coupling of silicon photomultiplier to the scintillator tile is considered to be the main option for active elements of the highly granular hadron calorimeter developed for future linear collider experiments. In this study, the response of the scintillator-SiPM system to minimum ionising particles was simulated using the optical photon transport functionality available in the Geant4 package. The uniformity of response for both flat tile and tile with dimple was estimated from the simulations and compared to the experimental results obtained in the previous studies.

  9. Flipped-Exponential Nyquist Pulse Technique to Optimize PAPR in Optical Direct-Detection OFDM Systems

    Institute of Scientific and Technical Information of China (English)

    Jiangnan Xiao; Zizheng Cao; Fan Li; Jin Tang; Lin Chen

    2012-01-01

    In this paper, we describe a novel technique based on the flipped-exponential (FE) Nyquist pulse method for reducing peak-to-average power ratio (PAPR) in an optical direct-detection orthogonal frequency-division multiplexing (DD-QFDM) system, The technique involves proper selection of the FE Nyquist pulses for shaping the different subcarriers of the OFDM. We apply this technique to a DD-OFDM transmission system to significantly reduce PAPR. We also investigate the sensitivity of a received OFDM signal with strong nonlinearity in a standard single-mode fiber (SMF).

  10. Direct laser writing of polymeric nanostructures via optically induced local thermal effect

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Quang Cong [Laboratoire de Photonique Quantique et Moléculaire, UMR 8537, École Normale Supérieure de Cachan, CentraleSupélec, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan (France); Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, 10000 Hanoi (Viet Nam); Nguyen, Dam Thuy Trang; Do, Minh Thanh; Luong, Mai Hoang; Journet, Bernard; Ledoux-Rak, Isabelle; Lai, Ngoc Diep, E-mail: nlai@lpqm.ens-cachan.fr [Laboratoire de Photonique Quantique et Moléculaire, UMR 8537, École Normale Supérieure de Cachan, CentraleSupélec, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan (France)

    2016-05-02

    We demonstrate the fabrication of desired structures with feature size below the diffraction limit by use of a positive photoresist. The direct laser writing technique employing a continuous-wave laser was used to optically induce a local thermal effect in a positive photoresist, which then allowed the formation of solid nanostructures. This technique enabled us to realize multi-dimensional sub-microstructures by use of a positive photoresist, with a feature size down to 57 nm. This mechanism acting on positive photoresists opens a simple and low-cost way for nanofabrication.

  11. Direct optical observation of magnetic domains in Ni-Mn-Ga martensite

    Science.gov (United States)

    Ge, Y.; Heczko, O.; Söderberg, O.; Hannula, S.-P.

    2006-08-01

    This letter reports the direct optical observation, i.e., without polarization, of the magnetic domain structure explained by a large surface relief in Ni-Mn-Ga martensite. The authors suggest that the relief is due to the different straining of the surface and the bulk caused by the internal stresses associated with the magnetic shape memory effect. As a result of the relief the projection of the (011) twin traces upon the (010) plane creates the observed zigzag pattern. The surface tilt angle calculated from the zigzag pattern is ˜3°.

  12. Highly directive Fabry-Perot leaky-wave nanoantennas based on optical partially reflective surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lorente-Crespo, M.; Mateo-Segura, C., E-mail: C.Mateo-Segura@hw.ac.uk [Institute of Sensors, Signals and Systems, Heriot-Watt University, EH14 4AS Edinburgh (United Kingdom)

    2015-05-04

    Nanoantennas enhance the conversion between highly localized electromagnetic fields and far-field radiation. Here, we investigate the response of a nano-patch partially reflective surface backed with a silver mirror to an optical source embedded at the centre of the structure. Using full wave simulations, we demonstrate a two orders of magnitude increased directivity compared to the isotropic radiator, 50% power confinement to a 13.8° width beam and a ±16 nm bandwidth. Our antenna does not rely on plasmonic phenomena thus reducing non-radiative losses and conserving source coherence.

  13. Impacts of environmental factors to bi-directional 2×40 Gb/s WDM free-space optical communication

    Science.gov (United States)

    Liaw, Shien-Kuei; Hsu, Kuang-Yu; Yeh, Jai-Ger; Lin, Yu-Ming; Yu, Yi-Lin

    2017-08-01

    Bi-directional short-range free-space optical (FSO) communication with bi-directional 2×4×10 Gb/s wavelength division multiplexing (WDM) channel signals is demonstrated by using a transmission distance of 25 m. The single-mode-fiber components are used in the optical terminals for both optical transmitting and receiving functions. The measured power penalties for the 25-m bi-directional four-channel FSO communication compared with the back-to-back link and uni-directional transmission system are less than 0.8 dB and 0.2 dB, respectively. The environmental factor effects, including the oblique incidence through the building window glasses, thermally induced non-uniform air index as well as rainfall on the FSO performance are investigated and analyzed. The experimental results show that rainfall is influential for free space optical transmission.

  14. Selective Adsorption on Fluorinated Plastic Enables the Optical Detection of Molecular Pollutants in Water

    Science.gov (United States)

    Lanfranco, R.; Giavazzi, F.; Salina, M.; Tagliabue, G.; Di Nicolò, E.; Bellini, T.; Buscaglia, M.

    2016-05-01

    Amorphous fluorinated plastic can be produced with a refractive index similar to that of water, a condition that makes it essentially invisible when immersed in aqueous solutions. Because of this property, even a small amount of adsorbed molecules on the plastic-water interface provides a detectable optical signal. We investigate two distinct substrates made of this material, characterized by different interface areas: a prism and a microporous membrane. We demonstrate that both substrates enable the label-free detection of molecular compounds in water even without any surface functionalization. The adsorption of molecules on the planar surface of the prism provides an increase of optical reflectivity, whereas the adsorption on the internal surface of the microporous membrane yields an increase of scattered light. Despite the different mechanisms, we find a similar optical response upon adsorption. We confirm this result by a theoretical model accounting for both reflection and scattering. We investigate the spontaneous adsorption process for different kinds of molecules: surfactants with different charges, a protein (lysozyme), and a constituent of gasoline (hexane). The measured equilibrium and kinetic constants for adsorption differ by orders of magnitudes among the different classes of molecules. By suitable analytical models, accounting for the effects of mass limitation and transport, we find a simple and general scaling of the adsorption parameters with the molecular size.

  15. Optical birefringence and molecular orientation of crazed fibres utilizing the phase shifting interferometric technique

    Science.gov (United States)

    Sokkar, T. Z. N.; El-Farahaty, K. A.; El-Bakary, M. A.; Omar, E. Z.; Hamza, A. A.

    2017-09-01

    In this article, the features of the phase shifting interferometric technique were utilized to investigate the effect of the presence of crazes in both outer and inner layers on optical birefringence and molecular orientation of polypropylene fibres. The Pluta polarizing interference microscope was used as a phase shifting technique. This method includes adding a stepper motor with a control unit to the micrometer screw of the Pluta microscope. This optical system was calibrated to be used as a phase shifting interferometric technique. The advantage of this technique is that it can detect the crazes in both inner and outer layers of the sample under test. Via this method, the relation between the presence of the crazes (in both inner and outer layers) and the optical molecular orientation of polypropylene (PP) fibres was demonstrated. To clarify the role of this method, the spatial carrier frequency technique was used to show the effect of the presence of the crazes only in the outer layers on the phase distribution values and hence the structural properties of PP fibres.

  16. Fast direct reconstruction strategy of dynamic fluorescence molecular tomography using graphics processing units

    Science.gov (United States)

    Chen, Maomao; Zhang, Jiulou; Cai, Chuangjian; Gao, Yang; Luo, Jianwen

    2016-06-01

    Dynamic fluorescence molecular tomography (DFMT) is a valuable method to evaluate the metabolic process of contrast agents in different organs in vivo, and direct reconstruction methods can improve the temporal resolution of DFMT. However, challenges still remain due to the large time consumption of the direct reconstruction methods. An acceleration strategy using graphics processing units (GPU) is presented. The procedure of conjugate gradient optimization in the direct reconstruction method is programmed using the compute unified device architecture and then accelerated on GPU. Numerical simulations and in vivo experiments are performed to validate the feasibility of the strategy. The results demonstrate that, compared with the traditional method, the proposed strategy can reduce the time consumption by ˜90% without a degradation of quality.

  17. Electronic polarization-division demultiplexing based on digital signal processing in intensity-modulation direct-detection optical communication systems.

    Science.gov (United States)

    Kikuchi, Kazuro

    2014-01-27

    We propose a novel configuration of optical receivers for intensity-modulation direct-detection (IM · DD) systems, which can cope with dual-polarization (DP) optical signals electrically. Using a Stokes analyzer and a newly-developed digital signal-processing (DSP) algorithm, we can achieve polarization tracking and demultiplexing in the digital domain after direct detection. Simulation results show that the power penalty stemming from digital polarization manipulations is negligibly small.

  18. Towards high-resolution retinal prostheses with direct optical addressing and inductive telemetry

    Science.gov (United States)

    Ha, Sohmyung; Khraiche, Massoud L.; Akinin, Abraham; Jing, Yi; Damle, Samir; Kuang, Yanjin; Bauchner, Sue; Lo, Yu-Hwa; Freeman, William R.; Silva, Gabriel A.; Cauwenberghs, Gert

    2016-10-01

    Objective. Despite considerable advances in retinal prostheses over the last two decades, the resolution of restored vision has remained severely limited, well below the 20/200 acuity threshold of blindness. Towards drastic improvements in spatial resolution, we present a scalable architecture for retinal prostheses in which each stimulation electrode is directly activated by incident light and powered by a common voltage pulse transferred over a single wireless inductive link. Approach. The hybrid optical addressability and electronic powering scheme provides separate spatial and temporal control over stimulation, and further provides optoelectronic gain for substantially lower light intensity thresholds than other optically addressed retinal prostheses using passive microphotodiode arrays. The architecture permits the use of high-density electrode arrays with ultra-high photosensitive silicon nanowires, obviating the need for excessive wiring and high-throughput data telemetry. Instead, the single inductive link drives the entire array of electrodes through two wires and provides external control over waveform parameters for common voltage stimulation. Main results. A complete system comprising inductive telemetry link, stimulation pulse demodulator, charge-balancing series capacitor, and nanowire-based electrode device is integrated and validated ex vivo on rat retina tissue. Significance. Measurements demonstrate control over retinal neural activity both by light and electrical bias, validating the feasibility of the proposed architecture and its system components as an important first step towards a high-resolution optically addressed retinal prosthesis.

  19. Direct synthesis of strong grating couplers for efficient integrated optical beam forming

    CERN Document Server

    Urošević, Stevan

    2014-01-01

    We describe a computational method for the direct synthesis of non-uniform optical grating coupler geometries on a photonic chip to form beams of arbitrary field distribution. The method is applied to grating couplers using high index contrast, typically encountered in silicon photonics for fiber-to-chip coupling and chip-based optical beam forming. We use a numerical synthesis approach to synthesize a non-uniform structure that emits a particular desired beam pattern, and explicitly take into account chirp generated by non-uniform gratings. Even for strong, short gratings, and for designs within the constraints of existing standard 45nm SOI-CMOS foundry process, mode overlaps exceeding 90% can be obtained. We discuss strengths and shortcomings of the approach and particular implementation. We demonstrate the method by synthesizing non-uniform grating coupler designs for efficient mode matching to optical fiber modes or single free-space beam modes with Gaussian magnitude and flat phase front and show that go...

  20. Direct design of two freeform optical surfaces for wide field of view line imaging applications

    Science.gov (United States)

    Nie, Yunfeng; Thienpont, Hugo; Duerr, Fabian

    2016-04-01

    In this paper, we propose a multi-fields direct design method aiming to calculate two freeform surfaces with an entrance pupil incorporated for wide field of view on-axis line imaging applications. Both infinite and finite conjugate objectives can be designed with this approach. Since a wide angle imaging system requires more than few discrete perfect imaging points, the multi-fields design approach is based on partial coupling of multiple fields, which guarantees a much more balanced imaging performance over the full field of view. The optical path lengths (OPLs) and image points of numerous off-axis fields are calculated during the procedure, thus very few initial parameters are needed. The procedure to calculate such a freeform lens is explained in detail. We have designed an exemplary monochromatic single lens to demonstrate the functionality of the design method. A rotationally symmetric counterpart following the same specifications is compared in terms of RMS spot radius to demonstrate the clear benefit that freeform lens brings to on-axis line imaging systems. In addition, a practical achromatic wide angle objective is designed by combining our multi-fields design method with classic optical design strategies, serving as a very good starting point for further optimization in a commercial optical design program. The results from the perspective of aberrations plots and MTF values show a very good and well balanced performance over the full field of view.

  1. Direct-detection optical OFDM superchannel for long-reach PON using pilot regeneration.

    Science.gov (United States)

    Hu, Rong; Yang, Qi; Xiao, Xiao; Gui, Tao; Li, Zhaohui; Luo, Ming; Yu, Shaohua; You, Shanhong

    2013-11-04

    We demonstrate a novel long-reach PON downstream scheme based on the regenerated pilot assisted direct-detection optical orthogonal frequency division multiplexing (DDO-OFDM) superchannel transmission. We use the optical comb source to form DDO-OFDM superchannel, and reserve the center carrier as a seed pilot. The seed pilot is further tracked and reused to generate multiple optical carriers at the local exchange. Each regenerated pilot carrier is selected to beat with an adjacent OFDM sub-band at ONU, so that the electrical bandwidth limitation can be much released compared to the conventional DDO-OFDM superchannel detection. With the proposed proof-of-concept architecture, we experimentally demonstrated a 116.7 Gb/s superchannel OFDM-PON system with transmission reach of 100 km, and 1:64 splitting ratio. We analyze the impact of carrier-to-sideband power ratio (CSPR) on system performance. The experiment result shows that, 5 dB power margin is still remained at ONU using such technique.

  2. Laser-induced optical breakdown spectroscopy of polymer materials based on evaluation of molecular emission bands

    Science.gov (United States)

    Trautner, Stefan; Jasik, Juraj; Parigger, Christian G.; Pedarnig, Johannes D.; Spendelhofer, Wolfgang; Lackner, Johannes; Veis, Pavel; Heitz, Johannes

    2017-03-01

    Laser-induced breakdown spectroscopy (LIBS) for composition analysis of polymer materials results in optical spectra containing atomic and ionic emission lines as well as molecular emission bands. In the present work, the molecular bands are analyzed to obtain spectroscopic information about the plasma state in an effort to quantify the content of different elements in the polymers. Polyethylene (PE) and a rubber material from tire production are investigated employing 157 nm F2 laser and 532 nm Nd:YAG laser ablation in nitrogen and argon gas background or in air. The optical detection reaches from ultraviolet (UV) over the visible (VIS) to the near infrared (NIR) spectral range. In the UV/VIS range, intense molecular emissions, C2 Swan and CN violet bands, are measured with an Echelle spectrometer equipped with an intensified CCD camera. The measured molecular emission spectra can be fitted by vibrational-rotational transitions by open access programs and data sets with good agreement between measured and fitted spectra. The fits allow determining vibrational-rotational temperatures. A comparison to electronic temperatures Te derived earlier from atomic carbon vacuum-UV (VUV) emission lines show differences, which can be related to different locations of the atomic and molecular species in the expanding plasma plume. In the NIR spectral region, we also observe the CN red bands with a conventional CDD Czerny Turner spectrometer. The emission of the three strong atomic sulfur lines between 920 and 925 nm is overlapped by these bands. Fitting of the CN red bands allows a separation of both spectral contributions. This makes a quantitative evaluation of sulfur contents in the start material in the order of 1 wt% feasible.

  3. Optically anisotropic microlens array film directly formed on a single substrate.

    Science.gov (United States)

    Ren, Hongwen; Xu, Su; Liu, Yifan; Wu, Shin-Tson

    2013-12-02

    An optically anisotropic microlens array film directly formed on a single substrate is demonstrated. UV curable diacrylate monomers are coated as a film on the substrate. Under the action of fringing field, not only the film surface is flattened by the generated dielectric force but also the monomers are reoriented to form a gradient refractive index (GRIN) distribution in the film. Via UV exposure, the GRIN distribution is fixed and the polymeric film behaves as a microlens array. The fabrication process is simple and the film offers a switchable focus through controlling the polarization direction of the incident light. Integrating with a 90° twisted-nematic liquid crystal cell, our polymeric microlens array film shows great potential for switchable 2D/3D autostereoscopic displays.

  4. Direct generation of optical frequency combs in $\\chi^{(2)}$ nonlinear cavities

    CERN Document Server

    Mosca, S; Parisi, M; Maddaloni, P; Santamaria, L; De Natale, P; De Rosa, M

    2015-01-01

    Quadratic nonlinear processes are currently exploited for frequency comb transfer and extension from the visible and near infrared regions to other spectral ranges where direct comb generation cannot be accomplished. However, frequency comb generation has been directly observed in continuously-pumped quadratic nonlinear crystals placed inside an optical cavity. At the same time, an introductory theoretical description of the phenomenon has been provided, showing a remarkable analogy with the dynamics of third-order Kerr microresonators. Here, we give an overview of our recent work on $\\chi^{(2)}$ frequency comb generation. Furthermore, we generalize the preliminary three-wave spectral model to a many-mode comb and present a stability analysis of different cavity field regimes. Although at a very early stage, our work lays the groundwork for a novel class of highly efficient and versatile frequency comb synthesizers based on second-order nonlinear materials.

  5. Fiber optic direct Raman imaging system based on a hollow-core fiber bundle

    Science.gov (United States)

    Inoue, S.; Katagiri, T.; Matsuura, Y.

    2015-03-01

    A Raman imaging system which combined a hollow fiber bundle and a direct imaging technique was constructed for high-speed endoscopic Raman imaging. The hollow fiber bundle is fabricated by depositing a silver thin film on the inner surface of pre-drawn glass capillary bundle. It performs as a fiber optic probe which transmits a Raman image with high signal-to-noise ratio because the propagating light is confined into the air core inducing little light scattering. The field of view on the sample is uniformly irradiated by the excitation laser light via the probe. The back-scattered image is collected by the probe and captured directly by an image sensor. A pair of thin film tunable filters is used to select target Raman band. This imaging system enables flexible and high-speed Raman imaging of biological tissues.

  6. On Peres' statement "opposite momenta lead to opposite directions", decaying systems and optical imaging

    CERN Document Server

    Struyve, W; De Neve, J; De Weirdt, S

    2004-01-01

    We re-examine Peres' statement ``opposite momenta lead to opposite directions''. It will be shown that Peres' statement is only valid in the large distance or large time limit. In the short distance or short time limit an additional deviation from perfect alignment occurs due to the uncertainty of the location of the source. This error contribution plays a major role in Popper's orginal experimental proposal. Peres' statement applies rather to the phenomenon of optical imaging, which was regarded by him as a verification of his statement. This is because this experiment can in a certain sense be seen as occurring in the large distance limit. We will also reconsider both experiments from the viewpoint of Bohmian mechanics. In Bohmian mechanics particles with exactly opposite momenta will move in opposite directions. In addition it will prove particularly usefull to use Bohmian mechanics because the Bohmian trajectories coincide with the conceptual trajectories drawn by Pittman et al. In this way Bohmian mechan...

  7. Highly Directional Small-Size Antenna Designed with Homogeneous Transformation Optics

    Directory of Open Access Journals (Sweden)

    Zuojia Wang

    2014-01-01

    Full Text Available Achieving high directivity antenna usually requires a large size antenna aperture in traditional antenna design. Previous work shows that, with the help of metamaterials and transformation optics, a small size antenna can perform as high directivity as a large size antenna, but the material parameters are inhomogeneous and difficult to realize. In this paper, we propose a linear homogeneous coordinate transformation to design the small size antenna. Distinguishing from inhomogeneous transformation, we construct a regular polygon in virtual space and then divide it into several triangle segments. By applying linear homogeneous coordinate transformation, the antenna devices can be greatly compressed without disturbing the radiation patterns by using homogeneous metamaterial substrates. The material parameters of the antenna designed from this method are homogeneous and easy to fabricate. Square and hexagonal antenna structures are numerically demonstrated to illustrate the validity of our methodology.

  8. Direct generation of optical frequency combs in χ(2 nonlinear cavities

    Directory of Open Access Journals (Sweden)

    Mosca Simona

    2016-06-01

    Full Text Available Quadratic nonlinear processes are currently exploited for frequency comb transfer and extension from the visible and near infrared regions to other spectral ranges where direct comb generation cannot be accomplished. However, frequency comb generation has been directly observed in continuously pumped quadratic nonlinear crystals placed inside an optical cavity. At the same time, an introductory theoretical description of the phenomenon has been provided, showing a remarkable analogy with the dynamics of third-order Kerr microresonators. Here, we give an overview of our recent work on χ(2 frequency comb generation. Furthermore, we generalize the preliminary three-wave spectral model to a many-mode comb and present a stability analysis of different cavity field regimes. Although our work is a very early stage, it lays the groundwork for a novel class of highly efficient and versatile frequency comb synthesizers based on second-order nonlinear materials.

  9. Determining molecular structures and conformations directly from electron diffraction using a genetic algorithm.

    Science.gov (United States)

    Habershon, Scott; Zewail, Ahmed H

    2006-02-13

    A global optimization strategy, based upon application of a genetic algorithm (GA), is demonstrated as an approach for determining the structures of molecules possessing significant conformational flexibility directly from gas-phase electron diffraction data. In contrast to the common approach to molecular structure determination, based on trial-and-error assessment of structures available from quantum chemical calculations, the GA approach described here does not require expensive quantum mechanical calculations or manual searching of the potential energy surface of the sample molecule, relying instead upon simple comparison between the experimental and calculated diffraction pattern derived from a proposed trial molecular structure. Structures as complex as all-trans retinal and p-coumaric acid, both important chromophores in photosensing processes, may be determined by this approach. In the examples presented here, we find that the GA approach can determine the correct conformation of a flexible molecule described by 11 independent torsion angles. We also demonstrate applications to samples comprising a mixture of two distinct molecular conformations. With these results we conclude that applications of this approach are very promising in elucidating the structures of large molecules directly from electron diffraction data.

  10. On-surface molecular nanoarchitectonics: From self-assembly to directed assembly

    Science.gov (United States)

    Wakayama, Yutaka

    2016-11-01

    The rogress of on-surface molecular nanoarchitectonics over the last two decades has been reviewed. Over the early period in the 1990s-2000s, molecular self-assemblies were intensively studied, where van der Waals (vdW) interaction was predominant. After that, in the 2000s, selective intermolecular interactions based on hydrogen bonds and metal-molecule coordination enabled one to direct the assembling behaviors. Here, the concept of this directed assembly is opposite to that of the vdW-based self-assembly because the resulting architectures are purposefully tailored by programing intermolecular interaction. These efforts brought forth fruit in the on-surface syntheses of covalent bond networks. Particularly in the 2010s, on-surface covalent coupling was applied to graphene nanoribbons, where widths and edge structures can be precisely defined on the atomic scale. These works have the potential to bridge fundamental material nanoarchitectonics and functional device fabrication. In this paper, such a historical development of on-surface molecular nanoarchitectonics is reviewed, with the specific emphasis on the superiority of scanning tunneling microscopy.

  11. Fick diffusion coefficients of liquid mixtures directly obtained from equilibrium molecular dynamics.

    Science.gov (United States)

    Liu, Xin; Schnell, Sondre K; Simon, Jean-Marc; Bedeaux, Dick; Kjelstrup, Signe; Bardow, André; Vlugt, Thijs J H

    2011-11-10

    A methodology for computing Fick diffusivities directly from equilibrium molecular dynamics (MD) simulations is presented and validated for acetone-methanol and acetone-tetrachloromethane liquid mixtures. Fick diffusivities are obtained from Maxwell-Stefan (MS) diffusivities and the so-called thermodynamic factor. MS diffusivities describe the friction between different components, while the thermodynamic factor is the concentration derivative of the activity describing the deviation from ideal mixing behavior. It is important to note that all mutual diffusion experiments measure Fick diffusion coefficients, while molecular simulation provides MS diffusivities. The required thermodynamic factor to convert MS into Fick diffusivities and vice versa, however, is usually difficult to extract from both simulations and experiments leaving a gap between theory and application. Here, we employ our novel method to compute the thermodynamic factor from small-scale density fluctuations in equilibrium MD simulations [Chem. Phys. Lett.2011, 504, 199-201]. Previously, this method was developed and validated for molecules with single interaction sites only. In this work, we applied this method to acetone-methanol and acetone-tetrachloromethane liquid mixtures and show that the method also works well in these more complex systems. This provides the missing step to extract Fick diffusion coefficients directly from equilibrium MD simulations. The computed Fick diffusivities of acetone-methanol and acetone-tetrachloromethane mixtures are in excellent agreement with experimental values. The suggested framework thus provides an efficient route to model diffusion in liquids on the basis of a consistent molecular picture.

  12. Towards a unifying theory for the first-, second-, and third-order molecular (non)linear optical response

    Science.gov (United States)

    Pérez-Moreno, Javier; Clays, Koen; Kuzyk, Mark G.

    2010-05-01

    We present a procedure for the modeling of the dispersion of the nonlinear optical response of complex molecular structures that is based strictly on the results from experimental characterization. We show how under some general conditions, the use of the Thomas-Kuhn sum-rules leads to a successful modeling of the nonlinear response of complex molecular structures.

  13. Modifying Geometric-Optical Bidirectional Reflectance Model for Direct Inversion of Forest Canopy Leaf Area Index

    Directory of Open Access Journals (Sweden)

    Congrong Li

    2015-08-01

    Full Text Available Forest canopy leaf area index (LAI inversion based on remote sensing data is an important method to obtain LAI. Currently, the most widely-used model to achieve forest canopy structure parameters is the Li-Strahler geometric-optical bidirectional reflectance model, by considering the effect of crown shape and mutual shadowing, which is referred to as the GOMS model. However, it is difficult to retrieve LAI through the GOMS model directly because LAI is not a fundamental parameter of the model. In this study, a gap probability model was used to obtain the relationship between the canopy structure parameter nR2 and LAI. Thus, LAI was introduced into the GOMS model as an independent variable by replacing nR2 The modified GOMS (MGOMS model was validated by application to Dayekou in the Heihe River Basin of China. The LAI retrieved using the MGOMS model with optical multi-angle remote sensing data, high spatial resolution images and field-measured data was in good agreement with the field-measured LAI, with an R-square (R2 of 0.64, and an RMSE of 0.67. The results demonstrate that the MGOMS model obtained by replacing the canopy structure parameter nR2 of the GOMS model with LAI can be used to invert LAI directly and precisely.

  14. Column ozone and aerosol optical properties retrieved from direct solar irradiance measurements during SOLVE II

    Directory of Open Access Journals (Sweden)

    W. H. Swartz

    2004-11-01

    Full Text Available Direct observation of the Sun at large solar zenith angles during the second SAGE III Ozone Loss and Validation Experiment (SOLVE II/Validation of International Satellites and study of Ozone Loss (VINTERSOL campaign by several instruments provided a rich dataset for the retrieval and analysis of line-of-sight column composition, intercomparison, and measurement validation. A flexible, multi-species spectral fitting technique is presented and applied to spectral solar irradiance measurements made by the NCAR Direct beam Irradiance Atmospheric Spectrometer (DIAS on-board the NASA DC-8. The approach allows for the independent retrieval of O3, O2·O2, and aerosol optical properties, by constraining Rayleigh extinction. We examine the 19 January 2003 and 6 February 2003 flights and find very good agreement of O3 and O2·O2 retrievals with forward-modeling calculations, even at large solar zenith angles, where refraction is important. Intercomparisons of retrieved ozone and aerosol optical thickness with results from the Ames Airborne Tracking Sunphotometer (AATS-14 are summarized.

  15. Blind symbol synchronization for direct detection optical OFDM using a reduced number of virtual subcarriers.

    Science.gov (United States)

    Bouziane, R; Killey, R I

    2015-03-09

    Symbol synchronization constitutes a major component in optical OFDM transceivers. In this paper, we propose reducing the complexity of a blind symbol synchronization technique for direct detection OFDM receivers based on virtual subcarriers by optimizing the number and location of the virtual subcarriers. Compared to the system design in our previous study, this new technique offers a reduction of 92% in the number of virtual subcarriers (from 26 to 2 in a system with 50 data carrying subchannels) resulting in significant savings in complexity with a minimal penalty. Moreover, it offers an increase in the system capacity as more subcarriers can be used to transmit data. The technique was assessed experimentally using a transmission system of direct detection 16-QAM optical OFDM operating at a data rate of 30.65 Gb/s over 23.3 km SSMF with BER of 10(-3). Negligible penalty was observed at high received powers. However, at low received powers, the number of averaging symbols had to be increased in order to improve the robustness of the method.

  16. Force spectroscopy with dual-trap optical tweezers: molecular stiffness measurements and coupled fluctuations analysis.

    Science.gov (United States)

    Ribezzi-Crivellari, M; Ritort, F

    2012-11-07

    Dual-trap optical tweezers are often used in high-resolution measurements in single-molecule biophysics. Such measurements can be hindered by the presence of extraneous noise sources, the most prominent of which is the coupling of fluctuations along different spatial directions, which may affect any optical tweezers setup. In this article, we analyze, both from the theoretical and the experimental points of view, the most common source for these couplings in dual-trap optical-tweezers setups: the misalignment of traps and tether. We give criteria to distinguish different kinds of misalignment, to estimate their quantitative relevance and to include them in the data analysis. The experimental data is obtained in a, to our knowledge, novel dual-trap optical-tweezers setup that directly measures forces. In the case in which misalignment is negligible, we provide a method to measure the stiffness of traps and tether based on variance analysis. This method can be seen as a calibration technique valid beyond the linear trap region. Our analysis is then employed to measure the persistence length of dsDNA tethers of three different lengths spanning two orders of magnitude. The effective persistence length of such tethers is shown to decrease with the contour length, in accordance with previous studies. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Direct effect of aerosol optical properties on global dimming and brightening

    Science.gov (United States)

    Kudo, R.; Uchiyama, A.

    2011-12-01

    Surface solar radiation observed at numerous locations has decreased from the 1960s to the 1980s (Global dimming), thereafter increased (Global brightening). The dimming and brightening is considered to be due to the changes in both clouds and aerosols. Aerosols have a direct impact on the surface solar radiation by scattering and absorption. The impact is determined by three parameters: optical depth (AOD), single scattering albedo (SSA), and asymmetry factor, but the effect of asymmetry factor is rather smaller than the others. Therefore, the long-term changes in AOD and SSA are necessary to evaluate the aerosol impact on the global dimming and brightening. We have developed the method to estimate AOD and SSA from the hourly accumulated direct and diffuse irradiances measured by the ground-based broadband radiometers. In the estimation, the real part of the refractive index is fixed, and the size distribution is defined by the Junge distribution with a fixed shaping constant. Using the developed method, the measurements from 1975 to 2008 at 14 sites in Japan were analyzed. Consequently, a decrease of AOD by 0.02 and an increase of SSA by 0.2 during the period were seen. The surface solar radiation under the clear sky conditions, which was calculated from the estimated aerosol optical properties, was increased by 5% due to the changes in AOD and SSA; the influence of SSA was dominant. We also investigate the cloud impact on the surface solar radiation which was simply defined as the difference between the surface solar radiation under the cloudy sky conditions and under the clear sky conditions; the cloud impact had no statistically significant trends. The brightening in Japan may be due to the changes in aerosol optical properties, especially SSA. Our developed method can be applied to measurements at other sites around the world and would be helpful to understand the causes of the global dimming and brightening.

  18. Bilateral simultaneous anterior ischemic optic neuropathy, an extrahepatic manifestation of hepatitis C cured with direct acting antivirals

    Directory of Open Access Journals (Sweden)

    Prud’homme, Sylvie

    2016-04-01

    Full Text Available We report a patient with a bilateral optic anterior ischemic neuropathy as an extrahepatic complication of a chronic hepatitis C (HCV infection. The patient presented with a bilateral visual acuity loss and bilateral optic disc oedema. The optic neuropathy was associated with a sudden increase in the viral HCV load after a recent liver transplantation. The stop of the calcineurin inhibitor had no effect on the course of the optic neuropathy. Visual improvement and normalization of HCV viraemia occurred after treatment with sofosbuvir and daclatasvir, which are direct acting antivirals.

  19. Modeling of coherent ultrafast magneto-optical experiments: Light-induced molecular mean-field model

    Energy Technology Data Exchange (ETDEWEB)

    Hinschberger, Y. [Instituto de Física dos Materiais da Universidade do Porto, Departamento de Física et Astronomia, Rua do campo Alegre, 687, 4169-007 Porto (Portugal); Hervieux, P.-A. [Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504 BP 43 - F-67034 Strasbourg Cedex 2 (France)

    2015-12-28

    We present calculations which aim to describe coherent ultrafast magneto-optical effects observed in time-resolved pump-probe experiments. Our approach is based on a nonlinear semi-classical Drude-Voigt model and is used to interpret experiments performed on nickel ferromagnetic thin film. Within this framework, a phenomenological light-induced coherent molecular mean-field depending on the polarizations of the pump and probe pulses is proposed whose microscopic origin is related to a spin-orbit coupling involving the electron spins of the material sample and the electric field of the laser pulses. Theoretical predictions are compared to available experimental data. The model successfully reproduces the observed experimental trends and gives meaningful insight into the understanding of magneto-optical rotation behavior in the ultrafast regime. Theoretical predictions for further experimental studies are also proposed.

  20. An open source digital servo for atomic, molecular, and optical physics experiments.

    Science.gov (United States)

    Leibrandt, D R; Heidecker, J

    2015-12-01

    We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of (27)Al(+) in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser.

  1. Development of molecular based optical techniques for thermometry and velocimetry for fluorocarbon media

    Science.gov (United States)

    Pouya, Shahram; Blanchard, Gary; Koochesfahani, Manoochehr

    2016-11-01

    Fluorocarbon solvents are very stable inert fluids with unique physical properties that make them attractive compounds as refrigerant and several medical applications such as contrast enhanced ultrasound imaging. Since they do not mix with typical organic solvents or water, most luminescent (fluorescent or phosphorescent) probes cannot be used as tracers for optical diagnostic techniques. Perfluoropentane, a compound from this family, is used as a simulant fluid by NASA for two-phase heat transfer/mixing experiments under micro-gravity condition due to its low boiling temperature. Here we study the feasibility of employing non-intrusive optical methods for measurements of temperature and/or velocity within Perfluoropentane as the working fluid. Preliminary results of temperature and velocity measurement using Laser Induced Fluorescence and Molecular Tagging Velocimetry are presented. This work was supported by NASA Grant Number NNX16AD52A.

  2. Development of a Confocal Optical System Design for Molecular Imaging Applications of Biochip

    Directory of Open Access Journals (Sweden)

    Guoliang Huang

    2007-01-01

    Full Text Available A novel confocal optical system design and a dual laser confocal scanner have been developed to meet the requirements of highly sensitive detection of biomolecules on microarray chips, which is characterized by a long working distance (wd>3.0 mm, high numerical aperture (NA=0.72, and only 3 materials and 7 lenses used. This confocal optical system has a high scanning resolution, an excellent contrast and signal-to-noise ratio, and an efficiency of collected fluorescence of more than 2-fold better than that of other commercial confocal biochip scanners. The scanner is as equally good for the molecular imaging detection of enclosed biochips as for the detection of biological samples on a slide surface covered with a cover-slip glass. Some applications of gene and protein imagings using the dual laser confocal scanner are described.

  3. Non-linear non-local molecular electrodynamics with nano-optical fields.

    Science.gov (United States)

    Chernyak, Vladimir Y; Saurabh, Prasoon; Mukamel, Shaul

    2015-10-28

    The interaction of optical fields sculpted on the nano-scale with matter may not be described by the dipole approximation since the fields may vary appreciably across the molecular length scale. Rather than incrementally adding higher multipoles, it is advantageous and more physically transparent to describe the optical process using non-local response functions that intrinsically include all multipoles. We present a semi-classical approach for calculating non-local response functions based on the minimal coupling Hamiltonian. The first, second, and third order response functions are expressed in terms of correlation functions of the charge and the current densities. This approach is based on the gauge invariant current rather than the polarization, and on the vector potential rather than the electric and magnetic fields.

  4. Coherent site-directed transport in complex molecular networks: an effective Hamiltonian approach.

    Science.gov (United States)

    Weissman, Shira; Peskin, Uri

    2010-03-21

    Defining the conditions for coherent site-directed transport from an electron donor to a specific acceptor through tunneling barriers in a network of multiple donor/acceptors sites is an important step toward controlling electronic processes in molecular networks. The required analysis is most challenging since the entire network in essentially involved in coherent transport. In this work we introduce an efficient approach for formulating an effective donor/acceptor coupling in terms of the entire network parameters. The approach is based on implementation of Feshbach projection operators to map the entire network Hamiltonian onto a subspace defined by two specific donor and acceptor sites. This nonperturbative approach enables to define regimes of network parameters in which the effective donor-acceptor coupling is optimal. This is demonstrated numerically for simple models of molecular networks.

  5. Molecular dynamics simulations suggest that electrostatic funnel directs binding of Tamiflu to influenza N1 neuraminidases.

    Directory of Open Access Journals (Sweden)

    Ly Le

    Full Text Available Oseltamivir (Tamiflu is currently the frontline antiviral drug employed to fight the flu virus in infected individuals by inhibiting neuraminidase, a flu protein responsible for the release of newly synthesized virions. However, oseltamivir resistance has become a critical problem due to rapid mutation of the flu virus. Unfortunately, how mutations actually confer drug resistance is not well understood. In this study, we employ molecular dynamics (MD and steered molecular dynamics (SMD simulations, as well as graphics processing unit (GPU-accelerated electrostatic mapping, to uncover the mechanism behind point mutation induced oseltamivir-resistance in both H5N1 "avian" and H1N1pdm "swine" flu N1-subtype neuraminidases. The simulations reveal an electrostatic binding funnel that plays a key role in directing oseltamivir into and out of its binding site on N1 neuraminidase. The binding pathway for oseltamivir suggests how mutations disrupt drug binding and how new drugs may circumvent the resistance mechanisms.

  6. Total and Direct Correlation Function Integrals from Molecular Simulation of Binary Systems

    DEFF Research Database (Denmark)

    Wedberg, Nils Hejle Rasmus Ingemar; O’Connell, John P.; Peters, Günther H.J.

    2011-01-01

    The possibility for obtaining derivative properties for mixtures from integrals of spatial total and direct correlation functions obtained from molecular dynamics simulations is explored. Theoretically well-supported methods are examined to extend simulation radial distribution functions to long...... range so the integrals can converge. A previously published method developed for pure atomic fluids is here extended to handle simulations of molecular mixtures using all-atom force fields. We first test the method on simulations of Lennard-Jones/Stockmayer mixtures and show that that the results...... are consistent with an excess Helmholtz energy model fitted to available simulations. In addition, simulations of water/methanol and water/t-butanol mixtures have been carried out. The method yields results for partial molar volumes, activity coefficient derivatives, and individual correlation function integrals...

  7. Early detection of breast cancer: a molecular optical imaging approach using novel estrogen conjugate fluorescent dye

    Science.gov (United States)

    Bhattacharjee, Shubhadeep; Jose, Iven

    2011-02-01

    Estrogen induced proliferation of mutant cells is widely understood to be the one of major risk determining factor in the development of breast cancer. Hence determination of the Estrogen Receptor[ER] status is of paramount importance if cancer pathogenesis is to be detected and rectified at an early stage. Near Infrared Fluorescence [NIRf] Molecular Optical Imaging is emerging as a powerful tool to monitor bio-molecular changes in living subjects. We discuss pre-clinical results in our efforts to develop an optical imaging diagnostic modality for the early detection of breast cancer. We have successfully carried out the synthesis and characterization of a novel target-specific NIRf dye conjugate aimed at measuring Estrogen Receptor[ER] status. The conjugate was synthesized by ester formation between 17-β estradiol and a hydrophilic derivative of Indocyanine Green (ICG) cyanine dye, bis-1,1-(4-sulfobutyl) indotricarbocyanine-5-carboxylic acid, sodium salt. In-vitro studies regarding specific binding and endocytocis of the dye performed on ER+ve [MCF-7] and control [MDA-MB-231] adenocarcinoma breast cancer cell lines clearly indicated nuclear localization of the dye for MCF-7 as compared to plasma level staining for MDA-MB-231. Furthermore, MCF-7 cells showed ~4.5-fold increase in fluorescence signal intensity compared to MDA-MB-231. A 3-D mesh model mimicking the human breast placed in a parallel-plate DOT Scanner is created to examine the in-vivo efficacy of the dye before proceeding with clinical trials. Photon migration and florescence flux intensity is modeled using the finite-element method with the coefficients (quantum yield, molar extinction co-efficient etc.) pertaining to the dye as obtained from photo-physical and in-vitro studies. We conclude by stating that this lipophilic dye can be potentially used as a target specific exogenous contrast agent in molecular optical imaging for early detection of breast cancer.

  8. Reconfigurable all-optical dual-directional half-subtractor for high-speed differential phase shift keying signal based on semiconductor optical amplifiers

    Institute of Scientific and Technical Information of China (English)

    Zhang Yin; Dong Jian-Ji; Lei Lei; Zhang Xin-Liang

    2012-01-01

    All-optical digital logic elementary circuits are the building blocks of many important computational operations in future high-speed all-optical networks and computing systems.Multifunctional and reconfigurable logic units are essential in this respect.Employing the demodulation properties of delay interferometers for input differential phase shift keying signals and the gain saturation effect in two parallel semiconductor optical amplifiers,a novel design of 40 Gbit/s reconfigurable all-optical dual-directional half-subtractor is proposed and demonstrated.All output logic results show that the scheme achieves over 11=dB extinction ratio,clear and wide open eye diagram,as well as low polarization dependence (< 1 dB),without using any additional input light beam.The scheme may provide a promising candidate for future ultrafast all-optical signal processing applications.

  9. Direct spectroscopy of exoplanets revealing the presence of various molecular species

    Science.gov (United States)

    Konopacky, Quinn M.

    2017-01-01

    In the past decade, several new jovian exoplanets at wide separations have been revealed using ground based telescopes equipped with adaptive optics systems. These planets, with masses between ~2-14 MJup, remain a puzzle for both major planet formation models - core accretion and gravitational instability. At the same time, they offer a powerful tool in the hunt for observational constraints of formation, as they can be characterized with both imaging and spectroscopy. I will describe our recent efforts to push beyond the discovery phase into the realm of detailed characterization of these planetary systems. Using Keck, we have been targeting the HR 8799 multiplanet system. OSIRIS observations of HR 8799b and c have yielded the best-ever spectra for any exoplanet. These observations have allowed us to resolve molecular lines for species such as water, carbon monoxide and methane. Using these observations, we have measured the C/O ratio in these planets, which can be used as a diagnostic for planet formation. Our observations demonstrate the power of the Keck adaptive optics instrument suite to offer a new window into planet formation and evolution.

  10. Surface-structured molecular sensor for the optical detection of acidity.

    Science.gov (United States)

    Martínez-Otero, Alberto; Evangelio, Emilia; Alibés, Ramon; Bourdelande, José Luis; Ruiz-Molina, Daniel; Busqué, Félix; Hernando, Jordi

    2008-04-01

    In this letter, we report on the development of a surface molecular sensor for the detection of acidity. Lithographically controlled wetting deposition has been applied to form the nanostructure of a new fluorescent compound with three protonation states featuring different optical properties on a glass substrate. Atomic force microscopy demonstrates the functionalization of the surface with ordered arrays of the sensor molecules. The fluorescence properties of the resulting nanopattern at different pH values have been investigated by confocal fluorescene microsopy, thus revealing the fast, sensitive, reversible response of the prepared nanosensor to gas flows of varying acidity.

  11. Glucose optical fibre sensor based on a luminescent molecularly imprinted polymer

    Science.gov (United States)

    Elosua, C.; Wren, S. P.; Sun, T.; Arregui, F. J.; Grattan, Kenneth T. V.

    2015-09-01

    An optrode able to detect glucose dissolved in water has been implemented. The device is based on the luminescence emission of a Molecularly Imprinted Polymer synthesized specifically for glucose detection, therefore its intensity changes in presence of glucose. This sensing material is attached onto a cleaved ended polymer-clad optical fibre and it is excited by light via 1x2 fibre coupler. The reflected fluorescence signal increases when it is immersed into glucose solutions and recovers to the baseline when it is dipped in ultrapure water. This reversible behaviour indicates the measurement repeatability of using such a glucose sensor.

  12. Mid-Infrared Optical Frequency Combs based on Difference Frequency Generation for Molecular Spectroscopy

    CERN Document Server

    Cruz, Flavio C; Johnson, Todd; Ycas, Gabriel; Klose, Andrew; Giorgetta, Fabrizio R; Coddington, Ian; Diddams, Scott A

    2015-01-01

    Mid-infrared femtosecond optical frequency combs were produced by difference frequency generation of the spectral components of a near-infrared comb in a 3-mm-long MgO:PPLN crystal. We observe strong pump depletion and 9.3 dB parametric gain in the 1.5 \\mu m signal, which yields powers above 500 mW (3 \\mu W/mode) in the idler with spectra covering 2.8 \\mu m to 3.5 \\mu m. Potential for broadband, high-resolution molecular spectroscopy is demonstrated by absorption spectra and interferograms obtained by heterodyning two combs.

  13. R-matrix theory of atomic collisions. Application to atomic, molecular and optical processes

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Philip G. [Queen' s Univ., Belfast (United Kingdom). School of Mathematics and Physics

    2011-07-01

    Commencing with a self-contained overview of atomic collision theory, this monograph presents recent developments of R-matrix theory and its applications to a wide-range of atomic molecular and optical processes. These developments include electron and photon collisions with atoms, ions and molecules required in the analysis of laboratory and astrophysical plasmas, multiphoton processes required in the analysis of superintense laser interactions with atoms and molecules and positron collisions with atoms and molecules required in antimatter studies of scientific and technological importance. Basic mathematical results and general and widely used R-matrix computer programs are summarized in the appendices. (orig.)

  14. R-Matrix Theory of Atomic Collisions Application to Atomic, Molecular and Optical Processes

    CERN Document Server

    Burke, Philip George

    2011-01-01

    Commencing with a self-contained overview of atomic collision theory, this monograph presents recent developments of R-matrix theory and its applications to a wide-range of atomic molecular and optical processes. These developments include electron and photon collisions with atoms, ions and molecules required in the analysis of laboratory and astrophysical plasmas, multiphoton processes required in the analysis of superintense laser interactions with atoms and molecules and positron collisions with atoms and molecules required in antimatter studies of scientific and technologial importance. Basic mathematical results and general and widely used R-matrix computer programs are summarized in the appendices.

  15. ACCOUNTING OF MANY-PARTICLE INTERACTIONS IN MOLECULAR J-AGGREGATES AND NONLINEAR OPTICAL EFFECTS IN THESE SYSTEMS

    Directory of Open Access Journals (Sweden)

    N. A. Veretenov

    2014-09-01

    Full Text Available The paper deals with generalization of investigation materials performed by the authors in recent years and analysis of obtained results. The subject of the paper is accounting of many-particle interactions in molecular J-aggregates at their resonance excitation by laser radiation. In this case, not only twin interactions are taken into considerations, but also the interactions of a given particle with three and more particles simultaneously. Three basic directions can be denoted among carried out investigations. The first direction is connected with derivation (from the first principles of motion equations for molecular of J-aggregates in view of many-particle interactions, and also twin correlations between particles. The derivation of equations from the first principles leads in general to the system of coupled equations for the means of products of n operators relating to n different molecules. Since n increases in every following equation, the problems arise, connected with uncoupling of this system and also factorization of the means with the highest n. The most difficult and complicated problem in this process is correct calculation of relaxed terms, arising due to exciton-exciton annihilation. The first direction is connected concretely with solution of all above mentioned problems. Within the second direction the study of bistability has been carried out on the basis of obtained equations, in view of three-particle interactions. Meanwhile primary attention has been concentrated on analysis of homogeneous regimes in J-aggregates. It has been shown, in particular, that accounting of many-particle contributions leads to the shift of bistability boundary into region of smaller constants of exciton-exciton annihilation. And, at last, the third direction of investigations is connected with analysis of modulation instability for stationary states of J-aggregates considered earlier at bistability study. The study of stability region boundaries

  16. Why do we need three levels to understand the molecular optical response?

    Science.gov (United States)

    Perez-Moreno, Javier; Clays, Koen; Kuzyk, Mark G.

    2011-10-01

    Traditionally, the nonlinear optical response at the molecular level has been modeled using the two-level approximation, under the assumption that the behavior of the exact sum-over-states (SOS) expressions for the molecular polarizabilities is well represented by the contribution of only two levels. We show how, a rigorous application of the Thomas-Kuhn sum-rules over the SOS expression for the diagonal component of the first-hyperpolarziability proves that the two-level approximation is unphysical. In addition, we indicate how the contributions of potentially infinite number of states to the SOS expressions for the first-hyperpolarizability are well represented by the contributions of a generic three-level system. This explains why the analysis of the three-level model in conjugation with the sum rules has lead to successful paradigms for the optimization of organic chromophores.

  17. A robust molecular platform for non-volatile memory devices with optical and magnetic responses.

    Science.gov (United States)

    Simão, Cláudia; Mas-Torrent, Marta; Crivillers, Núria; Lloveras, Vega; Artés, Juan Manuel; Gorostiza, Pau; Veciana, Jaume; Rovira, Concepció

    2011-05-01

    Bistable molecules that behave as switches in solution have long been known. Systems that can be reversibly converted between two stable states that differ in their physical properties are particularly attractive in the development of memory devices when immobilized in substrates. Here, we report a highly robust surface-confined switch based on an electroactive, persistent organic radical immobilized on indium tin oxide substrates that can be electrochemically and reversibly converted to the anion form. This molecular bistable system behaves as an extremely robust redox switch in which an electrical input is transduced into optical as well as magnetic outputs under ambient conditions. The fact that this molecular surface switch, operating at very low voltages, can be patterned and addressed locally, and also has exceptionally high long-term stability and excellent reversibility and reproducibility, makes it a very promising platform for non-volatile memory devices.

  18. Implementation of a single femtosecond optical frequency comb for molecular cooling

    CERN Document Server

    Shi, W

    2010-01-01

    We show that a single femtosecond optical frequency comb may be used to induce two-photon transitions between molecular vibrational levels to form ultracold molecules, e.g., KRb. The phase across an individual pulse in the pulse train is sinusoidally modulated with a carefully chosen amplitude and modulation frequency. Piecewise adiabatic population transfer is fulfilled to the final state by each pulse in the applied pulse train providing a controlled population accumulation in the final state. Detuning the pule train parameters to less than the frequency difference between the initial and final states changes the time scale of molecular dynamics but leads to the same complete population transfer to the cold state.

  19. Direct evidence for coastal iodine particles from Laminaria macroalgae – linkage to emissions of molecular iodine

    Directory of Open Access Journals (Sweden)

    D. Wevill

    2004-02-01

    Full Text Available Renewal of ultrafine aerosols in the marine boundary layer may lead to repopulation of the marine distribution and ultimately determine the concentration of cloud condensation nuclei (CCN. Thus the formation of nanometre-scale particles can lead to enhanced scattering of incoming radiation and a net cooling of the atmosphere. The recent demonstration of the chamber formation of new particles from the photolytic production of condensable iodine-containing compounds from diiodomethane (CH2I2, (O'Dowd et al., 2002; Kolb, 2002; Jimenez et al., 2003a; Burkholder and Ravishankara, 2003, provides an additional mechanism to the gas-to-particle conversion of sulphuric acid formed in the photo-oxidation of dimethylsulphide for marine aerosol repopulation. CH2I2 is emitted from seaweeds (Carpenter et al., 1999, 2000 and has been suggested as an initiator of particle formation. We demonstrate here for the first time that ultrafine iodine-containing particles are produced by intertidal macroalgae exposed to ambient levels of ozone. The particle composition is very similar both to those formed in the chamber photo-oxidation of diiodomethane and in the oxidation of molecular iodine by ozone. The particles formed in all three systems are similarly aspherical and behave alike when exposed to increased humidity environments. Direct coastal boundary layer observations of molecular iodine, ultrafine particle production and iodocarbons are reported. Using a newly measured molecular iodine photolysis rate, it is shown that, if atomic iodine is involved in the observed particle bursts, it is of the order of at least 1000 times more likely to result from molecular iodine photolysis than diiodomethane photolysis. A hypothesis for molecular iodine release from intertidal macroalgae is presented and the potential importance of macroalgal iodine particles in their contribution to CCN and global radiative forcing are discussed.

  20. Real-time molecular epidemiology of tuberculosis by direct genotyping of smear-positive clinical specimens.

    Science.gov (United States)

    Alonso, María; Herranz, Marta; Martínez Lirola, Miguel; González-Rivera, Milagros; Bouza, Emilio; García de Viedma, Darío

    2012-05-01

    We applied MIRU-VNTR (mycobacterial interspersed repetitive-unit-variable-number tandem-repeat typing) to directly analyze the bacilli present in 61 stain-positive specimens from tuberculosis patients. A complete MIRU type (24 loci) was obtained for all but one (no amplification in one locus) of the specimens (98.4%), and the allelic values fully correlated with those obtained from the corresponding cultures. Our study is the first to demonstrate that real-time genotyping of Mycobacterium tuberculosis can be achieved, fully transforming the way in which molecular epidemiology techniques can be integrated into control programs.

  1. Fine- and hyperfine-structure effects in molecular photoionization: I. General theory and direct photoionization

    CERN Document Server

    Germann, Matthias

    2016-01-01

    We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O$_2$ (reported by H. Palm and F. Merkt, Phys. Rev. Lett. 81, 1385 (1998)) and are used for predicting hyperfine populations of molecular ions produced by photoionization.

  2. Molecular structure refinement by direct fitting of atomic coordinates to experimental ESR spectra

    CERN Document Server

    Charnock, G T P; Kuprov, Ilya

    2011-01-01

    An attempt is made to bypass spectral analysis and fit internal coordinates of radicals directly to experimental liquid- and solid-state electron spin resonance (ESR) spectra. We take advantage of the recently introduced large-scale spin dynamics simulation algorithms and of the fact that the accuracy of quantum mechanical calculations of ESR parameters has improved to the point of quantitative correctness. Partial solutions are offered to the local minimum problem in spectral fitting and to the problem of spin interaction parameters (hyperfine couplings, chemical shifts, etc.) being very sensitive to distortions in molecular geometry.

  3. Molecular screening of 980 cases of suspected hereditary optic neuropathy with a report on 77 novel OPA1 mutations

    DEFF Research Database (Denmark)

    Ferré, Marc; Bonneau, Dominique; Milea, Dan

    2009-01-01

    We report the results of molecular screening in 980 patients carried out as part of their work-up for suspected hereditary optic neuropathies. All the patients were investigated for Leber's hereditary optic neuropathy (LHON) and autosomal dominant optic atrophy (ADOA), by searching for the ten...... novel OPA1 mutations reported here. The statistical analysis of this large set of mutations has led us to propose a diagnostic strategy that should help with the molecular work-up of optic neuropathies. Our results highlight the importance of investigating LHON-causing mtDNA mutations as well as OPA1...... and OPA3 mutations in cases of suspected hereditary optic neuropathy, even in absence of a family history of the disease....

  4. Pitfalls in the molecular genetic diagnosis of Leber hereditary optic neuropathy (LHON)

    Energy Technology Data Exchange (ETDEWEB)

    Johns, D.R. (Beth Israel Hospital, Boston, MA (United States)); Neufeld, M.J. (Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States))

    1993-10-01

    Pathogenetic mutations in mtDNA are found in the majority of patients with Leber hereditary optic neuropathy (LHON), and molecular genetic techniques to detect them are important for diagnosis. A false-positive molecular genetic error has adverse consequences for the diagnosis of this maternally inherited disease. The authors found a number of mtDNA polymorphisms that occur adjacent to known LHON-associated mutations and that confound their molecular genetic detection. These transition mutations occur at mtDNA nt 11779 (SfaNI site loss, 11778 mutation), nt 3459 (BsaHI site loss, 3460 mutation), nt 15258 (AccI site loss, 15257 mutation), nt 14485 (mismatch primer Sau3AI site loss, 14484 mutation), and nt 13707 (BstNI site loss, 13708 mutation). Molecular genetic detection of the most common pathogenetic mtDNA mutations in LHON, using a single restriction enzyme, may be confounded by adjacent polymorphisms that occur with a false-positive rate of 2%-7%. 19 refs.

  5. Continuous all-optical deceleration and single-photon cooling of molecular beams

    Science.gov (United States)

    Jayich, A. M.; Vutha, A. C.; Hummon, M. T.; Porto, J. V.; Campbell, W. C.

    2014-02-01

    Ultracold molecular gases are promising as an avenue to rich many-body physics, quantum chemistry, quantum information, and precision measurements. This richness, which flows from the complex internal structure of molecules, makes the creation of ultracold molecular gases using traditional methods (laser plus evaporative cooling) a challenge, in particular due to the spontaneous decay of molecules into dark states. We propose a way to circumvent this key bottleneck using an all-optical method for decelerating molecules using stimulated absorption and emission with a single ultrafast laser. We further describe single-photon cooling of the decelerating molecules that exploits their high dark state pumping rates, turning the principal obstacle to molecular laser cooling into an advantage. Cooling and deceleration may be applied simultaneously and continuously to load molecules into a trap. We discuss implementation details including multilevel numerical simulations of strontium monohydride. These techniques are applicable to a large number of molecular species and atoms with the only requirement being an electric dipole transition that can be accessed with an ultrafast laser.

  6. Direct interaction of the molecular scaffolds POSH and JIP is required for apoptotic activation of JNKs.

    Science.gov (United States)

    Kukekov, Nickolay V; Xu, Zhiheng; Greene, Lloyd A

    2006-06-02

    A sequential pathway (the JNK pathway) that includes activation of Rac1/Cdc42, mixed lineage kinases, MAP kinase kinases 4 and 7, and JNKs plays a required role in many paradigms of apoptotic cell death. However, the means by which this pathway is assembled and directed toward apoptotic death has been unclear. Here, we report that propagation of the apoptotic JNK pathway requires the cooperative interaction of two molecular scaffolds, POSH and JIPs. POSH (plenty of SH3s) is a multidomain GTP-Rac1-interacting protein that binds and promotes activation of mixed lineage kinases. JIPs are reported to bind MAP kinase kinases 4/7 and JNKs. We find that POSH and JIPs directly associate with one another to form a multiprotein complex, PJAC (POSH-JIP apoptotic complex), that includes all of the known kinase components of the pathway. Our observations indicate that this complex is required for JNK activation and cell death in response to apoptotic stimuli.

  7. Structure Prediction of Self-Assembled Dye Aggregates from Cryogenic Transmission Electron Microscopy, Molecular Mechanics, and Theory of Optical Spectra.

    Science.gov (United States)

    Friedl, Christian; Renger, Thomas; Berlepsch, Hans V; Ludwig, Kai; Schmidt Am Busch, Marcel; Megow, Jörg

    2016-09-01

    Cryogenic transmission electron microscopy (cryo-TEM) studies suggest that TTBC molecules self-assemble in aqueous solution to form single-walled tubes with a diameter of about 35 Å. In order to reveal the arrangement and mutual orientations of the individual molecules in the tube, we combine information from crystal structure data of this dye with a calculation of linear absorbance and linear dichroism spectra and molecular dynamics simulations. We start with wrapping crystal planes in different directions to obtain tubes of suitable diameter. This set of tube models is evaluated by comparing the resulting optical spectra with experimental data. The tubes that can explain the spectra are investigated further by molecular dynamics simulations, including explicit solvent molecules. From the trajectories of the most stable tube models, the short-range ordering of the dye molecules is extracted and the optimization of the structure is iteratively completed. The final structural model is a tube of rings with 6-fold rotational symmetry, where neighboring rings are rotated by 30° and the transition dipole moments of the chromophores form an angle of 74° with respect to the symmetry axis of the tube. This model is in agreement with cryo-TEM images and can explain the optical spectra, consisting of a sharp red-shifted J-band that is polarized parallel to to the symmetry axis of the tube and a broad blue-shifted H-band polarized perpendicular to this axis. The general structure of the homogeneous spectrum of this hybrid HJ-aggregate is described by an analytical model that explains the difference in redistribution of oscillator strength inside the vibrational manifolds of the J- and H-bands and the relative intensities and excitation energies of those bands. In addition to the particular system investigated here, the present methodology can be expected to aid the structure prediction for a wide range of self-assembled dye aggregates.

  8. Direct characterization of ultraviolet-light-induced refractive index structures by scanning near-field optical microscopy

    DEFF Research Database (Denmark)

    Svalgaard, Mikael; Madsen, S.; Hvam, Jørn Märcher;

    1998-01-01

    We have applied a reflection scanning near-field optical microscope to directly probe ultraviolet (UV)-light-induced refractive index structures in planar glass samples. This technique permits direct comparison between topography and refractive index changes (10(-5)-10(-3)) with submicrometer...

  9. Comparison of the marginal adaptation of direct and indirect composite inlay restorations with optical coherence tomography

    Science.gov (United States)

    TÜRK, Ayşe Gözde; SABUNCU, Metin; ÜNAL, Sena; ÖNAL, Banu; ULUSOY, Mübin

    2016-01-01

    ABSTRACT Objective The purpose of the study was to use the photonic imaging modality of optical coherence tomography (OCT) to compare the marginal adaptation of composite inlays fabricated by direct and indirect techniques. Material and Methods Class II cavities were prepared on 34 extracted human molar teeth. The cavities were randomly divided into two groups according to the inlay fabrication technique. The first group was directly restored on cavities with a composite (Esthet X HD, Dentsply, Germany) after isolating. The second group was indirectly restored with the same composite material. Marginal adaptations were scanned before cementation with an invisible infrared light beam of OCT (Thorlabs), allowing measurement in 200 µm intervals. Restorations were cemented with a self-adhesive cement resin (SmartCem2, Dentsply), and then marginal adaptations were again measured with OCT. Mean values were statistically compared by using independent-samples t-test and paired samples t-test (prestorations after cementation (p=0.00008839, p=0.000000952 for direct and indirect inlays, respectively). The mean marginal discrepancy value of the direct group increased from 56.88±20.04 µm to 91.88±31.7 µm, whereas the indirect group increased from 107.54±35.63 µm to 170.29±54.83 µm. Different techniques are available to detect marginal adaptation of restorations, but the OCT system can give quantitative information about resin cement thickness and its interaction between tooth and restoration in a nondestructive manner. Conclusions Direct inlays presented smaller marginal discrepancy than indirect inlays. The marginal discrepancy values were increased for all restorations that refer to cement thickness after cementation. PMID:27556210

  10. A novel lithography process for 3D (three-dimensional) interconnect using an optical direct-writing exposure system

    Science.gov (United States)

    Azuma, T.; Sekiguchi, M.; Matsuo, M.; Kawasaki, A.; Hagiwara, K.; Matsui, H.; Kawamura, N.; Kishimoto, K.; Nakamura, A.; Washio, Y.

    2010-03-01

    A novel lithography process for 3D (Three-dimensional) interconnect was developed using an optical direct-writing exposure tool. A reflective IR (Infra-red) alignment system allows a direct detection of alignment marks both on front-side and back-side of wafer, and consequently allows feasible micro-fabrication for 3D interconnect using the reversed wafer. A combination of the optical direct-writing exposure tool of Dainippon Screen MFG. Co., Ltd. with the reflective IR alignment system and a high aspect chemically amplified resist of Tokyo Ohka Kogyo Co., Ltd. provides the lithography process exclusively for 12-inch wafer level 3D interconnect.

  11. Molecular Order and Dynamics of Tris(2-ethylhexyl)phosphate Confined in Uni-Directional Nanopores

    Energy Technology Data Exchange (ETDEWEB)

    Kipnusu, Wycliffe Kiprop [University of Leipzig, Germany; Kossack, Wilhelm [University of Leipzig, Germany; Iacob, Ciprian [University of Leipzig; Jasiurkowska, Malgorzata [University of Leipzig, Germany; Sangoro, Joshua R [ORNL; Kremer, Friedrich [University of Leipzig

    2012-01-01

    Infrared Transition Moment Orientational Analysis (IR-TMOA) and Broadband Dielectric Spectroscopy (BDS) are combined to study molecular order and dynamics of the glass-forming liquid Tris(2-ethylhexy)phosphate (TEHP) confined in uni-directional nanopores with diameters of 4, 8, and 10.4 nm. The former method enables one to determine the molecular order parameter of specific IR transition moments. It is observed that the central P=O moiety of TEHP has a weak orientational effect (molecular order parameter Sz = 0.1 0.04) due the nanoporous confinement, in contrast to the terminal C H groups. BDS traces the dynamic glass transition of the guest molecules in a broad spectral range and at widely varying temperature. An enhancement of the mobility takes place when approaching the glass transition temperature and becomes more pronounced with decreasing pore diameter. This is attributed to a slight reduction of the density of the confined liquid caused by the 2-dimensional geometrical constraint.

  12. Molecular investigations of protriptyline as a multi-target directed ligand in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Sneha B Bansode

    Full Text Available Alzheimer's disease (AD is a complex neurodegenerative disorder involving multiple cellular and molecular processes. The discovery of drug molecules capable of targeting multiple factors involved in AD pathogenesis would greatly facilitate in improving therapeutic strategies. The repositioning of existing non-toxic drugs could dramatically reduce the time and costs involved in developmental and clinical trial stages. In this study, preliminary screening of 140 FDA approved nervous system drugs by docking suggested the viability of the tricyclic group of antidepressants against three major AD targets, viz. Acetylcholinesterase (AChE, β-secretase (BACE-1, and amyloid β (Aβ aggregation, with one member, protriptyline, showing highest inhibitory activity. Detailed biophysical assays, together with isothermal calorimetry, fluorescence quenching experiments, kinetic studies and atomic force microscopy established the strong inhibitory activity of protriptyline against all three major targets. The molecular basis of inhibition was supported with comprehensive molecular dynamics simulations. Further, the drug inhibited glycation induced amyloid aggregation, another important causal factor in AD progression. This study has led to the discovery of protriptyline as a potent multi target directed ligand and established its viability as a promising candidate for AD treatment.

  13. Optical imaging of human cone photoreceptors directly following the capture of light.

    Directory of Open Access Journals (Sweden)

    Phillip Bedggood

    Full Text Available Capture of light in the photoreceptor outer segment initiates a cascade of chemical events that inhibit neurotransmitter release, ultimately resulting in vision. The massed response of the photoreceptor population can be measured non-invasively by electrical recordings, but responses from individual cells cannot be measured without dissecting the retina. Here we used optical imaging to observe individual human cones in the living eye as they underwent bleaching of photopigment and associated phototransduction. The retina was simultaneously stimulated and observed with high intensity visible light at 1 kHz, using adaptive optics. There was marked variability between individual cones in both photosensitivity and pigment optical density, challenging the conventional assumption that photoreceptors act as identical subunits (coefficient of variation in rate of photoisomerization = 23%. There was also a pronounced inverse correlation between these two parameters (p<10(-7; the temporal evolution of image statistics revealed this to be a dynamic relationship, with cone waveguiding efficiency beginning a dramatic increase within 3 ms of light onset. Beginning as early as 2 ms after light onset and including half of cells by ∼7 ms, cone intensity showed reversals characteristic of interference phenomena, with greater delays in reversal corresponding to cones with more photopigment (p<10(-3. The timing of these changes is argued to best correspond with either the cessation of dark current, or to related events such as changes in intracellular cGMP. Cone intensity also showed fluctuations of high frequency (332±25 Hz and low amplitude (3.0±0.85%. Other groups have shown similar fluctuations that were directly evoked by light; if this corresponds to the same phenomenon, we propose that the amplitude of fluctuation may be increased by the use of a bright flash followed by a brief pause, to allow recovery of cone circulating current.

  14. UV-Vis Ratiometric Resonance Synchronous Spectroscopy for Determination of Nanoparticle and Molecular Optical Cross Sections.

    Science.gov (United States)

    Nettles, Charles B; Zhou, Yadong; Zou, Shengli; Zhang, Dongmao

    2016-03-01

    Demonstrated herein is a UV-vis Ratiometric Resonance Synchronous Spectroscopic (R2S2, pronounced as "R-two-S-two" for simplicity) technique where the R2S2 spectrum is obtained by dividing the resonance synchronous spectrum of a NP-containing solution by the solvent resonance synchronous spectrum. Combined with conventional UV-vis measurements, this R2S2 method enables experimental quantification of the absolute optical cross sections for a wide range of molecular and nanoparticle (NP) materials that range optically from pure photon absorbers or scatterers to simultaneous photon absorbers and scatterers, simultaneous photon absorbers and emitters, and all the way to simultaneous photon absorbers, scatterers, and emitters in the UV-vis wavelength region. Example applications of this R2S2 method were demonstrated for quantifying the Rayleigh scattering cross sections of solvents including water and toluene, absorption and resonance light scattering cross sections for plasmonic gold nanoparticles, and absorption, scattering, and on-resonance fluorescence cross sections for semiconductor quantum dots (Qdots). On-resonance fluorescence quantum yields were quantified for the model molecular fluorophore Eosin Y and fluorescent Qdots CdSe and CdSe/ZnS. The insights and methodology presented in this work should be of broad significance in physical and biological science research that involves photon/matter interactions.

  15. ProteinVista: a fast molecular visualization system using Microsoft Direct3D.

    Science.gov (United States)

    Park, Chan-Yong; Park, Sung-Hee; Park, Soo-Jun; Park, Sun-Hee; Hwang, Chi-Jung

    2008-09-01

    Many tools have been developed to visualize protein and molecular structures. Most high quality protein visualization tools use the OpenGL graphics library as a 3D graphics system. Currently, the performance of recent 3D graphics hardware has rapidly improved. Recent high-performance 3D graphics hardware support Microsoft Direct3D graphics library more than OpenGL and have become very popular in personal computers (PCs). In this paper, a molecular visualization system termed ProteinVista is proposed. ProteinVista is well-designed visualization system using the Microsoft Direct3D graphics library. It provides various visualization styles such as the wireframe, stick, ball and stick, space fill, ribbon, and surface model styles, in addition to display options for 3D visualization. As ProteinVista is optimized for recent 3D graphics hardware platforms and because it uses a geometry instancing technique, its rendering speed is 2.7 times faster compared to other visualization tools.

  16. Optical critical dimension metrology for directed self-assembly assisted contact hole shrink

    Science.gov (United States)

    Dixit, Dhairya; Green, Avery; Hosler, Erik R.; Kamineni, Vimal; Preil, Moshe E.; Keller, Nick; Race, Joseph; Chun, Jun Sung; O'Sullivan, Michael; Khare, Prasanna; Montgomery, Warren; Diebold, Alain C.

    2016-01-01

    Directed self-assembly (DSA) is a potential patterning solution for future generations of integrated circuits. Its main advantages are high pattern resolution (˜10 nm), high throughput, no requirement of high-resolution mask, and compatibility with standard fab-equipment and processes. The application of Mueller matrix (MM) spectroscopic ellipsometry-based scatterometry to optically characterize DSA patterned contact hole structures fabricated with phase-separated polystyrene-b-polymethylmethacrylate (PS-b-PMMA) is described. A regression-based approach is used to calculate the guide critical dimension (CD), DSA CD, height of the PS column, thicknesses of underlying layers, and contact edge roughness of the post PMMA etch DSA contact hole sample. Scanning electron microscopy and imaging analysis is conducted as a comparative metric for scatterometry. In addition, optical model-based simulations are used to investigate MM elements' sensitivity to various DSA-based contact hole structures, predict sensitivity to dimensional changes, and its limits to characterize DSA-induced defects, such as hole placement inaccuracy, missing vias, and profile inaccuracy of the PMMA cylinder.

  17. Chemotaxis study using optical tweezers to observe the strength and directionality of forces of Leishmania amazonensis

    Science.gov (United States)

    Pozzo, Liliana d. Y.; Fontes, Adriana; de Thomaz, André A.; Barbosa, Luiz C.; Ayres, Diana C.; Giorgio, Selma; Cesar, Carlos L.

    2006-08-01

    The displacements of a dielectric microspheres trapped by an optical tweezers (OT) can be used as a force transducer for mechanical measurements in life sciences. This system can measure forces on the 50 femto Newtons to 200 pico Newtons range, of the same order of magnitude of a typical forces induced by flagellar motion. The process in which living microorganisms search for food and run away from poison chemicals is known is chemotaxy. Optical tweezers can be used to obtain a better understanding of chemotaxy by observing the force response of the microorganism when placed in a gradient of attractors and or repelling chemicals. This report shows such observations for the protozoa Leishmania amazomenzis, responsible for the leishmaniasis, a serious tropical disease. We used a quadrant detector to monitor the movement of the protozoa for different chemicals gradient. This way we have been able to observe both the force strength and its directionality. The characterization of the chemotaxis of these parasites can help to understand the infection mechanics and improve the diagnosis and the treatments employed for this disease.

  18. Aimulet: a multilingual spatial optical voice card terminal for location and direction based information services

    Science.gov (United States)

    Itoh, Hideo; Lin, Xin; Kaji, Ryosaku; Niwa, Tatsuya; Nakamura, Yoshiyuki; Nishimura, Takuichi

    2006-01-01

    The National Institute of Advanced Industrial Science and Technology (AIST) in Japan has been developing Aimulet, which is a compact low-power consuming information terminal for a personal information services. Conventional Aimulet, which is called Aimulet ver. 1 or CoBIT, has features of location and direction sensitive information service device without batteries. On the other hand, the Aimulet ver. 1 has two subjects, one is multiplex and demultiplex of some contents, and another is operation under sunshine. In Former subject is of solved by the wavelength multiplex technique using LED emitter with different wavelength and dielectric optical filters. Latter subject is solved by new micro spherical solar cells with a visible-light-eliminating optical filter and a new design of light irradiation. These techniques are applied to the EXPO 2005, Aichi Japan and introduced in public. The former technique is applied on Aimulet GH, which is used in Orange Hall of the Global House, scientific museum with a fossil of a frozen mammoth. The latter technique is applied on Aimulet LA, which is used in the Laurie Anderson's WALK project in the Japanese Garden.

  19. Layered ACO-OFDM for intensity-modulated direct-detection optical wireless transmission.

    Science.gov (United States)

    Wang, Qi; Qian, Chen; Guo, Xuhan; Wang, Zhaocheng; Cunningham, David G; White, Ian H

    2015-05-04

    Layered asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) with high spectral efficiency is proposed in this paper for optical wireless transmission employing intensity modulation with direct detection. In contrast to the conventional ACO-OFDM, which only utilizes odd subcarriers for modulation, leading to an obvious spectral efficiency loss, in layered ACO-OFDM, the subcarriers are divided into different layers and modulated by different kinds of ACO-OFDM, which are combined for simultaneous transmission. In this way, more subcarriers are used for data transmission and the spectral efficiency is improved. An iterative receiver is also proposed for layered ACO-OFDM, where the negative clipping distortion of each layer is subtracted once it is detected so that the signals from different layers can be recovered. Theoretical analysis shows that the proposed scheme can improve the spectral efficiency by up to 2 times compared with conventional ACO-OFDM approaches with the same modulation order. Meanwhile, simulation results confirm a considerable signal-to-noise ratio gain over ACO-OFDM at the same spectral efficiency.

  20. Fiber-optic Michelson interferometer fixed in a tilted tube for direction-dependent ultrasonic detection

    Science.gov (United States)

    Gang, Tingting; Hu, Manli; Qiao, Xueguang; Li, JiaCheng; Shao, Zhihua; Tong, Rongxin; Rong, Qiangzhou

    2017-01-01

    A fiber-optic interferometer is proposed and demonstrated experimentally for ultrasonic detection. The sensor consists of a compact Michelson interferometer (MI), which is fixed in a tilted-tube end-face (45°). Thin gold films are used for the reflective coatings of two arms and one of the interference arms is etched serving as the sensing arm. The spectral sideband filter technique is used to interrogate the continuous and pulse ultrasonic signals (with frequency of 300 KHz). Furthermore, because of the asymmetrical structure of the sensor, it presents strong direction-dependent ultrasonic sensitivity, such that the sensor can be considered a vector detector. The experimental results show that the sensor is highly sensitive to ultrasonic signals, and thus it can be a candidate for ultrasonic imaging of seismic physical models.

  1. Analysis on vertical directional couplers with long range surface plasmons for multilayer optical routing

    Energy Technology Data Exchange (ETDEWEB)

    Alam, B., E-mail: badrul.alam@uniroma1.it; Veroli, A.; Benedetti, A. [Department of Information Engineering, Electronics and Telecommunications (DIET), University of Rome “La Sapienza,” Rome (Italy)

    2016-08-28

    A structure featuring vertical directional coupling of long-range surface plasmon polaritons between strip waveguides at λ = 1.55 μm is investigated with the aim of producing efficient elements that enable optical multilayer routing for 3D photonics. We have introduced a practical computational method to calculate the interaction on the bent part. This method allows us both to assess the importance of the interaction in the bent part and to control it by a suitable choice of the fabrication parameters that helps also to restrain effects due to fabrication issues. The scheme adopted here allows to reduce the insertion losses compared with other planar and multilayer devices.

  2. DESIGN OF DPSK MODULATOR AND DIRECT DETECTION RECEIVER FOR DWDM BASED OPTICAL COMMUNICATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Gurjit Kaur

    2016-06-01

    Full Text Available In this paper a 16-bit differential phase shift keying (DPSK modulator is designed for 32 dense wavelength division multiplexing (DWDM channels. The DWDM channels are designed with 0.8nm separation in wavelength and operated at 4dBm input power. In the DWDM system, these 32 multiplexed signals propagate through a fiber length of 100 km followed by an erbium-doped fiber amplifier (EDFA inline. The channel is equipped with pre-amplifier and a dispersion compensating fiber for better performance. Also, a threshold detector is designed for both in-phase and quadrature components to detect the input amplitude and provide a quantized output amplitude level. The result shows that, a 16-bit DPSK optical signal is demodulated successfully using direct detection receiver.

  3. Optical intensity modulation direct detection versus heterodyne detection: A high-SNR capacity comparison

    KAUST Repository

    Chaaban, Anas

    2016-09-15

    An optical wireless communications system which employs either intensity-modulation and direct-detection (IM-DD) or heterodyne detection (HD) is considered. IM-DD has lower complexity and cost than HD, but on the other hand, has lower capacity. It is therefore interesting to investigate the capacity gap between the two systems. The main focus of this paper is to investigate this gap at high SNR. Bounds on this gap are established for two cases: between IM-DD and HD, and between IM-DD and an HD-PAM which is an HD system employing pulse-amplitude modulation (PAM). While the gap between IM-DD and HD increases as the signal-to-noise ratio (SNR) increases, the gap between IM-DD and an HD-PAM is upper bounded by a constant at high SNR. © 2015 IEEE.

  4. Investigation of PMD in direct-detection optical OFDM with zero padding.

    Science.gov (United States)

    Li, Xiang; Alphones, Arokiaswami; Zhong, Wen-De; Yu, Changyuan

    2013-09-09

    We investigate the polarization-mode dispersion (PMD) effect of zero padding OFDM (ZP-OFDM) in direct-detection optical orthogonal frequency division multiplexing (DDO-OFDM) systems. We first study the conventional equalization method for ZP-OFDM. Then an equalization method based on sorted QR decomposition is proposed to further improve the performance. It is found that the performance improvement of ZP-OFDM is due to the frequency domain oversampling (FDO) induced inter-carrier interference (ICI). Numerical simulation results show that compared with cyclic prefix OFDM (CP-OFDM), ZP-OFDM has a significantly higher tolerance to PMD in DDO-OFDM systems when the channel spectral nulls occur at certain differential group delay (DGD) values.

  5. Noninvasive optical measurement of cerebral blood flow in mice using molecular dynamics analysis of indocyanine green.

    Directory of Open Access Journals (Sweden)

    Taeyun Ku

    Full Text Available In preclinical studies of ischemic brain disorders, it is crucial to measure cerebral blood flow (CBF; however, this requires radiological techniques with heavy instrumentation or invasive procedures. Here, we propose a noninvasive and easy-to-use optical imaging technique for measuring CBF in experimental small animals. Mice were injected with indocyanine green (ICG via tail-vein catheterization. Time-series near-infrared fluorescence signals excited by 760 nm light-emitting diodes were imaged overhead by a charge-coupled device coupled with an 830 nm bandpass-filter. We calculated four CBF parameters including arrival time, rising time and mean transit time of a bolus and blood flow index based on time and intensity information of ICG fluorescence dynamics. CBF maps were generated using the parameters to estimate the status of CBF, and they dominantly represented intracerebral blood flows in mice even in the presence of an intact skull and scalp. We demonstrated that this noninvasive optical imaging technique successfully detected reduced local CBF during middle cerebral artery occlusion. We further showed that the proposed method is sufficiently sensitive to detect the differences between CBF status in mice anesthetized with either isoflurane or ketamine-xylazine, and monitor the dynamic changes in CBF after reperfusion during transient middle cerebral artery occlusion. The near-infrared optical imaging of ICG fluorescence combined with a time-series analysis of the molecular dynamics can be a useful noninvasive tool for preclinical studies of brain ischemia.

  6. Molecularly imprinted polymer diffraction grating as label-free optical bio(mimetic)sensor.

    Science.gov (United States)

    Barrios, C A; Zhenhe, C; Navarro-Villoslada, F; López-Romero, D; Moreno-Bondi, M C

    2011-01-15

    Micropatterned molecularly imprinted polymer (MIP) transmissive 2D diffraction gratings (DGs) are fabricated and evaluated as label-free antibiotic bio(mimetic)sensors. Polymeric gratings are prepared by using microtransfer molding based on SiO(2)/Si molds. The morphology of the MIP gratings is studied by optical and atomic force microscopes. MIP 2D-DGs exhibit 2D optical diffraction patterns, and measurement of changes in diffraction efficiency is used as sensor response. The refractive index of the micropatterned MIP material was estimated, via solvent index matching experiments, to be 1.486. Immersion of a MIP 2D-DG in different solutions of target-antibiotic enrofloxacin leads to significant variations in diffraction efficiency, demonstrating target-molecule detection. On the other hand, no significant response is observed for both control experiments: MIP grating exposed to a non-retained analyte and an equivalent non-imprinted polymer grating exposed to the target analyte, showing highly specific antibiotic label-free optical recognition.

  7. Wettability, optical properties and molecular structure of plasma polymerized diethylene glycol dimethyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, T C A M; Algatti, M A; Mota, R P; Honda, R Y; Kayama, M E; Kostov, K G; Fernandes, R S [FEG-DFQ-UNESP, Av. Ariberto Pereira da Cunha 333, 12516-410 - Guaratingueta, SP (Brazil); Cruz, N C; Rangel, E C, E-mail: algatti@feg.unesp.b [UNESP, Avenida Tres de Marco, 511, 18087-180 Sorocaba, SP (Brazil)

    2009-05-01

    Modern industry has frequently employed ethylene glycol ethers as monomers in plasma polymerization process to produce different types of coatings. In this work we used a stainless steel plasma reactor to grow thin polymeric films from low pressure RF excited plasma of diethylene glycol dimethyl ether. Plasmas were generated at 5W RF power in the range of 16 Pa to 60 Pa. The molecular structure of plasma polymerized films and their optical properties were analyzed by Fourier Transform Infrared Spectroscopy (FTIR) and Ultraviolet-Visible Spectroscopy, respectively. The IR spectra show C-H stretching at 3000-2900 cm{sup -1}, C=O stretching at 1730-1650 cm{sup -1}, C-H bending at 1440-1380 cm{sup -1}, C-O and C-O-C stretching at 1200-1000 cm{sup -1}. The refraction index was around 1.5 and the optical gap calculated from absorption coefficient presented value near 3.8 eV. Water contact angle of the films ranged from 40 deg. to 35 deg. with corresponding surface energy from 66 to 73x10{sup -7} J. Because of its favorable optical and hydrophilic characteristics these films can be used in ophthalmic industries as glass lenses coatings.

  8. Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors.

    Science.gov (United States)

    Voisin, Valérie; Pilate, Julie; Damman, Pascal; Mégret, Patrice; Caucheteur, Christophe

    2014-01-15

    Surface Plasmon resonance (SPR) optical fiber biosensors constitute a miniaturized counterpart to the bulky prism configuration and offer remote operation in very small volumes of analyte. They are a cost-effective and relatively straightforward technique to yield in situ (or even possibly in vivo) molecular detection. The biosensor configuration reported in this work uses nanometric-scale gold-coated tilted fiber Bragg gratings (TFBGs) interrogated by light polarized radially to the optical fiber outer surface, so as to maximize the optical coupling with the SPR. These gratings were recently associated to aptamers to assess their label-free biorecognition capability in buffer and serum solutions. In this work, using the well-acknowledged biotin-streptavidin pair as a benchmark, we go forward in the demonstration of their unique sensitivity. In addition to the monitoring of the self-assembled monolayer (SAM) in real time, we report an unprecedented limit of detection (LOD) as low as 2 pM. Finally, an immunosensing experiment is realized with human transferrin (dissociation constant Kd~10(-8) M(-1)). It allows to assess both the reversibility and the robustness of the SPR-TFBG biosensors and to confirm their high sensitivity.

  9. Direct evidence for coastal iodine particles from Laminaria macroalgae – linkage to emissions of molecular iodine

    Directory of Open Access Journals (Sweden)

    G. McFiggans

    2004-01-01

    Full Text Available Renewal of ultrafine aerosols in the marine boundary layer may lead to repopulation of the marine distribution and ultimately determine the concentration of cloud condensation nuclei (CCN. Thus the formation of nanometre-scale particles can lead to enhanced scattering of incoming radiation and a net cooling of the atmosphere. The recent demonstration of the chamber formation of new particles from the photolytic production of condensable iodine-containing compounds from diiodomethane (CH2I2, (O'Dowd et al., 2002; Kolb, 2002; Jimenez et al., 2003a; Burkholder and Ravishankara, 2003, provides an additional mechanism to the gas-to-particle conversion of sulphuric acid formed in the photo-oxidation of dimethylsulphide for marine aerosol repopulation. CH2I2 is emitted from seaweeds (Carpenter et al., 1999, 2000 and has been suggested as an initiator of particle formation. We demonstrate here for the first time that ultrafine iodine-containing particles are produced by intertidal macroalgae exposed to ambient levels of ozone. The particle composition is very similar both to those formed in the chamber photo-oxidation of diiodomethane and in the oxidation of molecular iodine by ozone. The particles formed in all three systems are similarly aspherical. When small, those formed in the molecular iodine system swell only moderately when exposed to increased humidity environments, and swell progressively less with increasing size; this behaviour occurs whether they are formed in dry or humid environments, in contrast to those in the CH2I2 system. Direct coastal boundary layer observations of molecular iodine, ultrafine particle production and iodocarbons are reported. Using a newly measured molecular iodine photolysis rate, it is shown that, if atomic iodine is involved in the observed particle bursts, it is of the order of at least 1000 times more likely to result from molecular iodine photolysis than diiodomethane photolysis. A hypothesis for molecular

  10. Smart freeform optics solution for an extremely thin direct-lit application

    Science.gov (United States)

    Leiner, Claude; Nemitz, Wolfgang; Schweitzer, Susanne; Wenzl, Franz P.; Kuna, Ladislav; Reil, Frank; Hartmann, Paul; Sommer, Christian

    2016-09-01

    Common direct-lit systems for general lighting applications are using LEDs as light sources, which are placed in a certain distance in a regularly arranged array. In order to achieve a homogenous light distribution a diffuser sheet has to be placed on the out-coupling side in a certain height above the LED array. The position of the diffuser sheet is strongly correlated to the distance between the LEDs and is responsible for the positional homogenization of the LED spots, while the rough side of the diffuser averages the angular light distribution. In order to maintain the uniformity of the luminance the distance of the LEDs compared to the height of the diffuser sheet placement (DHR ratio) is of relevance. DHR values of 1 are hardly achievable. To overcome this limitation additional optical elements like freeform lenses are necessary. In this contribution we discuss a smart design concept for an extremely flat direct-lit lighting system. It is characterized by an improved distance (LEDs) to height (diffuser sheet) ratio compared to diffuser sheet only-approaches and a smaller thickness compared to common freeform approaches. For this demand we designed very thin freeform lenses with a maximal height of 75 μm that allow to maintain a uniform illumination in a flat direct-lit backlight using an LEDarray with a comparably large distance between the individual LEDs. The concept emphasizes the use of maskless laser direct write lithography for the cost-effective fabrication of the thin freeform micro-lens array.

  11. Measurement of uranium concentration by molecular absorption spectrophotometry by means optical fibers; Medicion continua de concentracion de uranio por espectrofotometria de absorcion molecular mediante fibras opticas

    Energy Technology Data Exchange (ETDEWEB)

    Gauna, Alberto C.; Pascale, Ariel A. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Centro Atomico Ezeiza. Agencia Minipost

    1996-07-01

    An on-line method for measuring the concentration of uranium in uranyl nitrate-nitric acid aqueous solutions is described. The method is based on molecular absorption spectrophotometry with transmission of light by means of optical fibers. It is ideally suited for control and processes development applications. (author)

  12. Femtosecond laser inscription of asymmetric directional couplers for in-fiber optical taps and fiber cladding photonics.

    Science.gov (United States)

    Grenier, Jason R; Fernandes, Luís A; Herman, Peter R

    2015-06-29

    Precise alignment of femtosecond laser tracks in standard single mode optical fiber is shown to enable controllable optical tapping of the fiber core waveguide light with fiber cladding photonic circuits. Asymmetric directional couplers are presented with tunable coupling ratios up to 62% and bandwidths up to 300 nm at telecommunication wavelengths. Real-time fiber monitoring during laser writing permitted a means of controlling the coupler length to compensate for micron-scale alignment errors and to facilitate tailored design of coupling ratio, spectral bandwidth and polarization properties. Laser induced waveguide birefringence was harnessed for polarization dependent coupling that led to the formation of in-fiber polarization-selective taps with 32 dB extinction ratio. This technology enables the interconnection of light propagating in pre-existing waveguides with laser-formed devices, thereby opening a new practical direction for the three-dimensional integration of optical devices in the cladding of optical fibers and planar lightwave circuits.

  13. Molecularly imprinted polymer microspheres for optical measurement of ultra trace nonfluorescent cyhalothrin in honey.

    Science.gov (United States)

    Gao, Lin; Li, Xiuying; Zhang, Qi; Dai, Jiangdong; Wei, Xiao; Song, Zhilong; Yan, Yongsheng; Li, Chunxiang

    2014-08-01

    In this study, we first present a general protocol for making fluorescent molecularly imprinted polymer microspheres via precipitation polymerisation. We first prepared the fluorescent molecularly imprinted polymer microspheres upon copolymerisation of acrylamide with a small quantity of allyl fluorescein in the presence of cyhalothrin to form recognition sites without doping. The as-synthesised microspheres exhibited spherical shape, high fluorescence intensity and highly selective recognition. Under optical conditions, polymer microspheres were successfully applied to selectively and sensitively detect cyhalothrin, and a linear relationship could be obtained covering the lower concentration range of 0-1.0nM with a correlation coefficient of 0.9936 described by the Stern-Volmer equation. A lower limit of detection was found to be 0.004nM. The results of practical detection suggested that the developed method was satisfactory for determination of cyhalothrin in honey samples. This study therefore demonstrated the potential of molecularly imprinted polymers for detection of cyhalothrin in food.

  14. Variable Delay With Directly-Modulated R-SOA and Optical Filters for Adaptive Antenna Radio-Fiber Access

    DEFF Research Database (Denmark)

    Prince, Kamau; Presi, Marco; Chiuchiarelli, Andrea

    2009-01-01

    on a directly-modulated reflective emiconductor amplifier (R-SOA) and exploits the interplay between transmission-line dispersion and tunable optical filtering to achieve flexible true time delay, with $2pi$ beam steering at the different antennas. The system was characterized, then successfully tested with two......We present an all-optical adaptive-antenna radio over fiber transport system that uses proven, commercially-available components to effectively deliver standard-compliant optical signaling to adaptive multiantenna arrays for current and emerging radio technology implementations. The system is based...

  15. Direct laser writing of microstructures on optically opaque and reflective surfaces

    Science.gov (United States)

    Rekštytė, S.; Jonavičius, T.; Malinauskas, M.

    2014-02-01

    Direct laser writing (DLW) based on ultra-localized polymerization is an efficient way to produce three-dimensional (3D) micro/nano-structures for diverse applications in science and industry. It is attractive for its flexibility to materialize CAD models out of wide spectrum of materials on the desired substrates. In case of direct laser lithography, photo-crosslinking can be achieved by tightly focusing ultrashort laser pulses to a photo- or thermo-polymers. Selectively exposing material to laser radiation allows creating fully 3D structures with submicrometer spatial resolution. In this paper we present DLW results of hybrid organic-inorganic material SZ2080 on optically opaque and reflective surfaces, such as silicon and various metals (Cr, Ti, Au). Our studies prove that one can precisely fabricate 2D and 3D structures with lower than 1 μm spatial resolution even on glossy or rough surfaces (surface roughness rms 0.068-0.670 μm) using sample translation velocities of up to 1 mm/s. Using femtosecond high pulse repetition rate laser, sample translation velocity can reach over 1 mm/s ensuring repeatable submicrometer structuring resolution.

  16. Fabrication of conjugated polymers nanostructures via direct near-field optical lithography

    Energy Technology Data Exchange (ETDEWEB)

    Cacialli, F.; Riehn, Robert; Downes, A.; Latini, G.; Charas, Ana; Morgado, Jorge

    2004-08-15

    We report our investigations into the fabrication of nanostructures of poly(p-phenylene vinylene) via direct scanning near-field lithography of its soluble precursor. Our technique is based on the spatially selective inhibition of the precursor solubility by exposure to the ultraviolet optical field present at the apex of commercially available, Au-coated near-field probes with aperture diameters between 40 and 80 nm ({+-}5 nm). After development in methanol and thermal conversion under vacuum we obtain features with a minimum dimension of 160 nm. We analyse our results via tapping-mode atomic force microscopy, and find a clear phase contrast between the core and the centre of the lithographed features, corroborating the hypothesis that hard, fully insolubilised regions are surrounded by a gel-like phase, which we estimate of the order of 110-130 nm for the smallest features, by comparing our experiments with simulations carried out using a Bethe-Bouwkamp model. Use of such model also allows us to discuss the influence of probe size, tip-sample distance, and film thickness on the resolution of the lithographic process. We demonstrate the use of the technique for the direct writing of two-dimensional periodic structures with intentional defects and a periodicity relevant to applications in the visible range.

  17. Molecular dynamics in an optical trap of glutamate receptors labeled with quantum-dots on living neurons

    Science.gov (United States)

    Kishimoto, Tatsunori; Maezawa, Yasuyo; Kudoh, Suguru N.; Taguchi, Takahisa; Hosokawa, Chie

    2017-04-01

    Molecular dynamics of glutamate receptor, which is major neurotransmitter receptor at excitatory synapse located on neuron, is essential for synaptic plasticity in the complex neuronal networks. Here we studied molecular dynamics in an optical trap of AMPA-type glutamate receptor (AMPAR) labeled with quantum-dot (QD) on living neuronal cells with fluorescence imaging and fluorescence correlation spectroscopy (FCS). When a 1064-nm laser beam for optical trapping was focused on QD-AMPARs located on neuronal cells, the fluorescence intensity of QD-AMPARs gradually increased at the focal spot. Using single-particle tracking of QD-AMPARs on neurons, the average diffusion coefficient decreased in an optical trap. Moreover, the decay time obtained from FCS analysis increased with the laser power and the initial assembling state of AMPARs depended on culturing day, suggesting that the motion of QD-AMPAR was constrained in an optical trap.

  18. Experimental demonstration of directive Si3N4 optical leaky wave antenna with semiconductor perturbations at near infrared frequencies

    CERN Document Server

    Zhao, Qiancheng; Huang, Yuewang; Campione, Salvatore; Capolino, Filippo; Boyraz, Ozdal

    2015-01-01

    Directive optical leaky wave antennas (OLWAs) with tunable radiation pattern are promising integrated optical modulation and scanning devices. OLWAs fabricated using CMOS-compatible semiconductor planar waveguide technology have the potential of providing high directivity with electrical tunability for modulation and switching capabilities. We experimentally demonstrate directive radiation from a silicon nitride ($Si_3N_4$) waveguide-based OLWA. The OLWA design comprises 50 crystalline Si perturbations buried inside the waveguide, with a period of 1 {\\mu}m, each with a length of 260 nm and a height of 150 nm, leading to a directive radiation pattern at telecom wavelengths. The measured far-field radiation pattern at the wavelength of 1540 nm is very directive, with the maximum intensity at the angle of 84.4{\\deg} relative to the waveguide axis and a half-power beam width around 6.2{\\deg}, which is consistent with our theoretical predictions. The use of semiconductor perturbations facilitates electronic radiat...

  19. Full-direct method for imaging pharmacokinetic parameters in dynamic fluorescence molecular tomography

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guanglei, E-mail: guangleizhang@bjtu.edu.cn [Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084 (China); Department of Biomedical Engineering, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044 (China); Pu, Huangsheng; Liu, Fei; Bai, Jing [Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084 (China); He, Wei [China Institute of Sport Science, Beijing 100061 (China); Luo, Jianwen, E-mail: luo-jianwen@tsinghua.edu.cn [Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084 (China); Center for Biomedical Imaging Research, School of Medicine, Tsinghua University, Beijing 100084 (China)

    2015-02-23

    Images of pharmacokinetic parameters (also known as parametric images) in dynamic fluorescence molecular tomography (FMT) can provide three-dimensional metabolic information for biological studies and drug development. However, the ill-posed nature of FMT and the high temporal variation of fluorophore concentration together make it difficult to obtain accurate parametric images in small animals in vivo. In this letter, we present a method to directly reconstruct the parametric images from the boundary measurements based on hybrid FMT/X-ray computed tomography (XCT) system. This method can not only utilize structural priors obtained from the XCT system to mitigate the ill-posedness of FMT but also make full use of the temporal correlations of boundary measurements to model the high temporal variation of fluorophore concentration. The results of numerical simulation and mouse experiment demonstrate that the proposed method leads to significant improvements in the reconstruction quality of parametric images.

  20. Nickel enhanced graphene growth directly on dielectric substrates by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Wofford, Joseph M., E-mail: joewofford@gmail.com, E-mail: lopes@pdi-berlin.de; Lopes, Joao Marcelo J., E-mail: joewofford@gmail.com, E-mail: lopes@pdi-berlin.de; Riechert, Henning [Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany); Speck, Florian; Seyller, Thomas [Technische Universität Chemnitz, Institut für Physik, Reichenhainer Str. 70, 09126 Chemnitz (Germany)

    2016-07-28

    The efficacy of Ni as a surfactant to improve the crystalline quality of graphene grown directly on dielectric Al{sub 2}O{sub 3}(0001) substrates by molecular beam epitaxy is examined. Simultaneously exposing the substrate to a Ni flux throughout C deposition at 950 °C led to improved charge carrier mobility and a Raman spectrum indicating less structural disorder in the resulting nanocrystalline graphene film. X-ray photoelectron spectroscopy confirmed that no residual Ni could be detected in the film and showed a decrease in the intensity of the defect-related component of the C1s level. Similar improvements were not observed when a lower substrate temperature (850 °C) was used. A close examination of the Raman spectra suggests that Ni reduces the concentration of lattice vacancies in the film, possibly by catalytically assisting adatom incorporation.

  1. Direct determination of three-phase contact line properties on nearly molecular scale

    Science.gov (United States)

    Winkler, P. M.; McGraw, R. L.; Bauer, P. S.; Rentenberger, C.; Wagner, P. E.

    2016-05-01

    Wetting phenomena in multi-phase systems govern the shape of the contact line which separates the different phases. For liquids in contact with solid surfaces wetting is typically described in terms of contact angle. While in macroscopic systems the contact angle can be determined experimentally, on the molecular scale contact angles are hardly accessible. Here we report the first direct experimental determination of contact angles as well as contact line curvature on a scale of the order of 1nm. For water nucleating heterogeneously on Ag nanoparticles we find contact angles around 15 degrees compared to 90 degrees for the corresponding macroscopically measured equilibrium angle. The obtained microscopic contact angles can be attributed to negative line tension in the order of ‑10‑10 J/m that becomes increasingly dominant with increasing curvature of the contact line. These results enable a consistent theoretical description of heterogeneous nucleation and provide firm insight to the wetting of nanosized objects.

  2. Full-direct method for imaging pharmacokinetic parameters in dynamic fluorescence molecular tomography

    Science.gov (United States)

    Zhang, Guanglei; Pu, Huangsheng; He, Wei; Liu, Fei; Luo, Jianwen; Bai, Jing

    2015-02-01

    Images of pharmacokinetic parameters (also known as parametric images) in dynamic fluorescence molecular tomography (FMT) can provide three-dimensional metabolic information for biological studies and drug development. However, the ill-posed nature of FMT and the high temporal variation of fluorophore concentration together make it difficult to obtain accurate parametric images in small animals in vivo. In this letter, we present a method to directly reconstruct the parametric images from the boundary measurements based on hybrid FMT/X-ray computed tomography (XCT) system. This method can not only utilize structural priors obtained from the XCT system to mitigate the ill-posedness of FMT but also make full use of the temporal correlations of boundary measurements to model the high temporal variation of fluorophore concentration. The results of numerical simulation and mouse experiment demonstrate that the proposed method leads to significant improvements in the reconstruction quality of parametric images.

  3. Molecular Targeted Therapies for the Treatment of Leptomeningeal Carcinomatosis: Current Evidence and Future Directions.

    Science.gov (United States)

    Lee, Dae-Won; Lee, Kyung-Hun; Kim, Jin Wook; Keam, Bhumsuk

    2016-07-05

    Leptomeningeal carcinomatosis (LMC) is the multifocal seeding of cerebrospinal fluid and leptomeninges by malignant cells. The incidence of LMC is approximately 5% in patients with malignant tumors overall and the rate is increasing due to increasing survival time of cancer patients. Eradication of the disease is not yet possible, so the treatment goals of LMC are to improve neurologic symptoms and to prolong survival. A standard treatment for LMC has not been established due to low incidences of LMC, the rapidly progressing nature of the disease, heterogeneous populations with LMC, and a lack of randomized clinical trial results. Treatment options for LMC include intrathecal chemotherapy, systemic chemotherapy, and radiation therapy, but the prognoses remain poor with a median survival of <3 months. Recently, molecular targeted agents have been applied in the clinic and have shown groundbreaking results in specific patient groups epidermal growth factor receptor (EGFR)-targeted therapy or an anaplastic lymphoma kinase (ALK) inhibitor in lung cancer, human epidermal growth factor receptor 2 (HER2)-directed therapy in breast cancer, and CD20-targeted therapy in B cell lymphoma). Moreover, there are results indicating that the use of these agents under proper dose and administration routes can be effective for managing LMC. In this article, we review molecular targeted agents for managing LMC.

  4. Molecular Targeted Therapies for the Treatment of Leptomeningeal Carcinomatosis: Current Evidence and Future Directions

    Directory of Open Access Journals (Sweden)

    Dae-Won Lee

    2016-07-01

    Full Text Available Leptomeningeal carcinomatosis (LMC is the multifocal seeding of cerebrospinal fluid and leptomeninges by malignant cells. The incidence of LMC is approximately 5% in patients with malignant tumors overall and the rate is increasing due to increasing survival time of cancer patients. Eradication of the disease is not yet possible, so the treatment goals of LMC are to improve neurologic symptoms and to prolong survival. A standard treatment for LMC has not been established due to low incidences of LMC, the rapidly progressing nature of the disease, heterogeneous populations with LMC, and a lack of randomized clinical trial results. Treatment options for LMC include intrathecal chemotherapy, systemic chemotherapy, and radiation therapy, but the prognoses remain poor with a median survival of <3 months. Recently, molecular targeted agents have been applied in the clinic and have shown groundbreaking results in specific patient groups epidermal growth factor receptor (EGFR-targeted therapy or an anaplastic lymphoma kinase (ALK inhibitor in lung cancer, human epidermal growth factor receptor 2 (HER2-directed therapy in breast cancer, and CD20-targeted therapy in B cell lymphoma. Moreover, there are results indicating that the use of these agents under proper dose and administration routes can be effective for managing LMC. In this article, we review molecular targeted agents for managing LMC.

  5. Rapid exploration of configuration space with diffusion-map-directed molecular dynamics.

    Science.gov (United States)

    Zheng, Wenwei; Rohrdanz, Mary A; Clementi, Cecilia

    2013-10-24

    The gap between the time scale of interesting behavior in macromolecular systems and that which our computational resources can afford often limits molecular dynamics (MD) from understanding experimental results and predicting what is inaccessible in experiments. In this paper, we introduce a new sampling scheme, named diffusion-map-directed MD (DM-d-MD), to rapidly explore molecular configuration space. The method uses a diffusion map to guide MD on the fly. DM-d-MD can be combined with other methods to reconstruct the equilibrium free energy, and here, we used umbrella sampling as an example. We present results from two systems: alanine dipeptide and alanine-12. In both systems, we gain tremendous speedup with respect to standard MD both in exploring the configuration space and reconstructing the equilibrium distribution. In particular, we obtain 3 orders of magnitude of speedup over standard MD in the exploration of the configurational space of alanine-12 at 300 K with DM-d-MD. The method is reaction coordinate free and minimally dependent on a priori knowledge of the system. We expect wide applications of DM-d-MD to other macromolecular systems in which equilibrium sampling is not affordable by standard MD.

  6. Molecular Weight and Structural Properties of Biodegradable PLA Synthesized with Different Catalysts by Direct Melt Polycondensation

    Directory of Open Access Journals (Sweden)

    Hyung Woo Lee

    2015-09-01

    Full Text Available Production of biodegradable polylactic acid (PLA from biomassbased lactic acid is widely studied for substituting petro-based plastics or polymers. This study investigated PLA production from commercial lactic acid in a batch reactor by applying a direct melt polycondensation method with two kinds of catalyst, γ-aluminium(III oxide (γ-Al2O3 or zinc oxide (ZnO, in reduced pressure. The molecular weight of the synthesized PLA was determined by capillary viscometry and its structural properties were analyzed by functional group analysis using FT-IR. The yields of polymer production with respect to the theoretical conversion were 47% for γ-Al2O3 and 35% for ZnO. However, the PLA from ZnO had a higher molecular weight (150,600 g/mol than that from γ-Al2O3 (81,400 g/mol. The IR spectra of the synthesized PLA from both catalysts using polycondensation show the same behavior of absorption peaks at wave numbers from 4,500 cm-1 to 500 cm-1, whereas the PLA produced by two other polymerization methods – polycondensation and ring opening polymerization –showed a significant difference in % transmittance intensity pattern as well as peak area absorption at a wave number of 3,500 cm-1 as –OH vibration peak and at 1,750 cm-1 as –C=O carbonyl vibrational peak.

  7. Photosystem II and terminal respiratory oxidases: molecular machines operating in opposite directions.

    Science.gov (United States)

    Siletsky, Sergey A; Borisov, Vitaliy B; Mamedov, Mahir D

    2017-03-01

    In the thylakoid membrane of green plants, cyanobacteria and algae, photosystem II (PSII) uses light energy to split water and generate molecular oxygen. In the opposite process of the biochemical transformation of dioxygen, in heterotrophs, the terminal respiratory oxidases (TRO) are at the end of the respiratory chain in mitochondria and in plasma membrane of many aerobic bacteria reducing dioxygen back to water. Despite the different sources of free energy (light or oxidation of the substrates), energy conversion by these enzymes is based on the spatial organization of enzymatic reactions in which the conversion of water to dioxygen (and vice versa) involves the transfer of protons and electrons in opposite directions across the membrane, which is accompanied by generation of proton-motive force. Similar and distinctive features in structure and function of these important energy-converting molecular machines are described. Information about many fascinating parallels between the mechanisms of TRO and PSII could be used in the artificial light-driven water-splitting process and elucidation of energy conversion mechanism in protein pumps.

  8. Optical emission spectroscopy diagnostics of an atmospheric pressure direct current microplasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Sismanoglu, B.N., E-mail: bogos@ita.b [Departamento de Fisica, Instituto Tecnologico de Aeronautica, Comando-Geral de Tecnologia Aeroespacial, Pca Marechal Eduardo Gomes 50, 12 228-900, Sao Jose dos Campos, SP (Brazil); Amorim, J., E-mail: jayr.amorim@bioetanol.org.b [Centro de Ciencia e Tecnologia do Bioetanol - CTBE, Caixa Postal 6170, 13083-970 Campinas, Sao Paulo (Brazil); Souza-Correa, J.A., E-mail: jorge.correa@bioetanol.org.b [Centro de Ciencia e Tecnologia do Bioetanol - CTBE, Caixa Postal 6170, 13083-970 Campinas, Sao Paulo (Brazil); Oliveira, C., E-mail: carlosf@ita.b [Departamento de Fisica, Instituto Tecnologico de Aeronautica, Comando-Geral de Tecnologia Aeroespacial, Pca Marechal Eduardo Gomes 50, 12 228-900, Sao Jose dos Campos, SP (Brazil); Gomes, M.P., E-mail: gomesmp@ita.b [Departamento de Fisica, Instituto Tecnologico de Aeronautica, Comando-Geral de Tecnologia Aeroespacial, Pca Marechal Eduardo Gomes 50, 12 228-900, Sao Jose dos Campos, SP (Brazil)

    2009-11-15

    This paper is about the use of optical emission spectroscopy as a diagnostic tool to determine the gas discharge parameters of a direct current (98% Ar-2% H{sub 2}) non-thermal microplasma jet, operated at atmospheric pressure. The electrical and optical behaviors were studied to characterize this glow discharge. The microplasma jet was investigated in the normal and abnormal glow regimes, for current ranging from 10 to 130 mA, at approx 220 V of applied voltage for copper cathode. OH (A {sup 2}SIGMA{sup +}, nu = 0 -> X {sup 2}PI, nu' = 0) rotational bands at 306.357 nm and also the 603.213 nm Ar I line, which is sensitive to van der Waals broadening, were used to determine the gas temperature, which ranges from 550 to 800 K. The electron number densities, ranging from 6.0 x 10{sup 14} to 1.4 x 10{sup 15} cm{sup -3}, were determined through a careful analysis of the main broadening mechanisms of the H{sub beta} line. From both 603.213 nm and 565.070 nm Ar I line broadenings, it was possible to obtain simultaneously electron number density and temperature (approx 8000 K). Excitation temperatures were also measured from two methods: from two Cu I lines and from Boltzmann-plot of 4p-4s and 5p-4s Ar I transitions. By employing H{sub alpha} line, the hydrogen atoms' H temperature was estimated (approx 18,000 K) and found to be surprisingly hotter than the excitation temperature.

  9. Structural and optical characterizations of InPBi thin films grown by molecular beam epitaxy.

    Science.gov (United States)

    Gu, Yi; Wang, Kai; Zhou, Haifei; Li, Yaoyao; Cao, Chunfang; Zhang, Liyao; Zhang, Yonggang; Gong, Qian; Wang, Shumin

    2014-01-13

    InPBi thin films have been grown on InP by gas source molecular beam epitaxy. A maximum Bi composition of 2.4% is determined by Rutherford backscattering spectrometry. X-ray diffraction measurements show good structural quality for Bi composition up to 1.4% and a partially relaxed structure for higher Bi contents. The bandgap was measured by optical absorption, and the bandgap reduction caused by the Bi incorporation was estimated to be about 56 meV/Bi%. Strong and broad photoluminescence signals were observed at room temperature for samples with xBi < 2.4%. The PL peak position varies from 1.4 to 1.9 μm, far below the measured InPBi bandgap.

  10. Optically monitoring voltage in neurons by photo-induced electron transfer through molecular wires.

    Science.gov (United States)

    Miller, Evan W; Lin, John Y; Frady, E Paxon; Steinbach, Paul A; Kristan, William B; Tsien, Roger Y

    2012-02-07

    Fluorescence imaging is an attractive method for monitoring neuronal activity. A key challenge for optically monitoring voltage is development of sensors that can give large and fast responses to changes in transmembrane potential. We now present fluorescent sensors that detect voltage changes in neurons by modulation of photo-induced electron transfer (PeT) from an electron donor through a synthetic molecular wire to a fluorophore. These dyes give bigger responses to voltage than electrochromic dyes, yet have much faster kinetics and much less added capacitance than existing sensors based on hydrophobic anions or voltage-sensitive ion channels. These features enable single-trial detection of synaptic and action potentials in cultured hippocampal neurons and intact leech ganglia. Voltage-dependent PeT should be amenable to much further optimization, but the existing probes are already valuable indicators of neuronal activity.

  11. Characterization of water molecular state in in-vivo thick tissues using diffuse optical spectroscopic imaging

    Science.gov (United States)

    Chung, So Hyun

    Structural changes in water molecules are related to physiological, anatomical and pathological properties of tissues. Near infrared (NIR) optical absorption methods are sensitive to water; however, detailed characterization of water in thick tissues is difficult to achieve because subtle spectral shifts can be obscured by multiple light scattering. In the NIR, a water absorption peak is observed around 975 nm. The precise NIR peak's shape and position are highly sensitive to water molecular disposition. A bound water index (BWI) was developed that quantifies the spectral shift and shape changes observed in tissue water absorption spectra measured by broadband diffuse optical spectroscopic imaging (DOSI). DOSI quantitatively measures light absorption and scattering spectra in cm-deep tissues and therefore reveals bound water spectral shifts. BWI as a water state index was validated by comparing broadband DOSI to MRI and a conductivity cell using bound water phantoms. Non-invasive BWI measurements of malignant and normal tissues in 18 subjects showed a significantly higher fraction of free water in malignant tissues (pbreast cancer patients. The BWI and ADC correlated (R=0.8, p=<0.01) and both parameters decreased with increasing bulk water content in cancer tissues. Although BWI and ADC are positively correlated in vivo, BWI appears to be more sensitive to free water in the extracellular matrix while ADC reflects increased tumor cellularity. The relationship between ADC, BWI and bulk water concentration suggests that both parameters have potential for assessing tumor histopathological grade. My results confirm the importance of water as a critical tissue component that can potentially provide unique insight into the molecular pathophysiology of cancer.

  12. The use of Molecular Beacons to Directly Measure Bacterial mRNA Abundances and Transcript Degradation

    Science.gov (United States)

    Kuechenmeister, Lisa J.; Anderson, Kelsi L.; Morrison, John M.; Dunman, Paul M.

    2009-01-01

    The regulation of mRNA turnover is a dynamic means by which bacteria regulate gene expression. Although current methodologies allow characterization of the stability of individual transcripts, procedures designed to measure alterations in transcript abundance/turnover on a high throughput scale are lacking. In the current report, we describe the development of a rapid and simplified molecular beacon-based procedure to directly measure the mRNA abundances and mRNA degradation properties of well-characterized Staphylococcus aureus pathogenicity factors. This method does not require any PCR-based amplification, can monitor the abundances of multiple transcripts within a single RNA sample, and was successfully implemented into a high throughput screen of transposon mutant library members to detect isolates with altered mRNA turnover properties. It is expected that the described methodology will provide great utility in characterizing components of bacterial RNA degradation processes and can be used to directly measure the mRNA levels of virtually any bacterial transcript. PMID:18992285

  13. Molecularly imprinted polymers as biomimetic receptors for fluorescence-based optical sensors

    Science.gov (United States)

    Moreno-Bondi, María C.; Urraca, Javier L.; Benito-Peña, Elena; Navarro-Villoslada, Fernando; Martins, Sofía A.; Orellana, Guillermo; Sellergren, Börje

    2007-07-01

    Molecularly imprinted polymers (MIPs), human-made polymers capable of recognizing a particular molecule in the presence of others due to the selective cavities of the material, have been successfully applied to the development of chromatographic and solid phase extraction methods. They have also been applied to the development of electrochemical, piezoelectrical and optical sensors. In parallel with the classification of biosensors, MIP-based devices can work according to two different detection schemes: (1) affinity sensors ("plastic-bodies") and, (2) catalytic sensors ("plastic-enzymes"). In the first case the change in a characteristic optical property, most frequently fluorescence, of the analyte or of the polymer is monitored, upon their mutual interaction. Alternatively, a fluorescent analogue of the target analyte can also be used to develop sensors based on competitive assays (MIAs). Optimization of the polymer composition and, in particular, a proper choice of the nature of the functional monomers involved in the polymerization process, is critical to prepare materials able to selectively interact with the analyte in aqueous media and with the fast kinetics required for analytical applications. Moreover, a rational design of fluorescent analogues of non-naturally fluorescent templates or of fluorescent monomers able to change its property upon interaction with the analyte, is also a bottle neck for wide application of this recognition elements in optical sensing. In this paper we present several approaches to address these issues namely the optimization of MIP composition and the design and synthesis of novel fluorophores for the analysis of antibiotics and mycotoxins in real samples.

  14. A rapid molecular detection protocol for Chikungunya virus directly performed on Aedes albopictus (tiger mosquito

    Directory of Open Access Journals (Sweden)

    Simone Barocci

    2010-03-01

    Full Text Available In the last few years tiger mosquitoes (Aedes albopictus, quickly and widely spread in Italy, represent ideal vectors for different Arboviruses, particularly Dengue virus (DenV and Chikungunya virus (ChikV, who are causing millions of patients in the world per year. For ChikV, appeared for the first time in Italy in 2007, a Surveillance Plan was defined in the Marche Region, a neighbour county of the Italian outbreak site. As a support for this surveillance, we decided to create a new multiplex RT-PCR protocol to detect ChikV directly in tiger mosquitoes. All the mosquitoes were collected with BG-Sentinel® traps (Biogents AG, Regensburg, Germany.Total RNA extraction was carried with Helix RNA plus kit (Diatech srl, Jesi, Italy. For retro-transcription and amplification a Mastercycler® ep gradient S thermal cycler (Eppendorf AG, Hamburg, Germany was used. From the whole RNA extracted from captured mosquitoes, we developed a new end-point multiplex retro transcriptase polymerase chain reaction (RT-PCR, for both the detection and identification of Aedes spp. and ChikV. This RT-PCR protocol is able to detect ChikV directly from adult insects, during alerts or emergencies.The entomological trapping associated with bio-molecular methods represents an effective strategy to detect ChikV directly from vectors. Moreover, after a specific evaluation, this RT-PCR protocol could be applied also for human blood samples in regions with the certain presence of this virus.

  15. Ammonium sensing in aqueous solutions with plastic optical fiber modified by molecular imprinting

    Science.gov (United States)

    Sequeira, F.; Duarte, D.; Rudnitskaya, A.; Gomes, M. T. S. R.; Nogueira, R.; Bilro, L.

    2016-05-01

    We report the development of a low cost plastic optical fibre (POF) sensor for ammonium detection using molecularly imprinted polymers (MIP's). The cladding of a 1 mm diameter PMMA fiber is removed, in which is grafted a molecular imprinted polymer (MIP), by radical polymerization with thermal initiation, that act as a selective sensing layer. For the polymerization, 2,2'-Azobis(2-methylpropionamidine)dihydrochloride (AAPH) is used as initiator, methacrylic acid (MAA) as a monomer, ethylene glycol dimethacrylate (EDMA) as a cross-linker, ammonium chloride (NH4Cl) as a template and 30% of ethanol in water as a solvent. The sensing method consists of an intensity based scheme. The response to different concentrations of ammonium solutions in water has been evaluated at room temperature. Solutions with (0 - 0.6) M concentration, with the corresponding refractive indexes varying between 1.3325 - 1.3387, at 25°C were used. The response of the fiber with the original cladding, and after cladding removal has been monitored and compared to the response given by the developed sensor. The response is very fast, less than 1 minute and reversible, which allows the continuum use of the sensor. Further developments are focused in optimization of MIP grafting procedure and sensor performance, in order to increase sensitivity.

  16. Low-threshold terahertz molecular laser optically pumped by a quantum cascade laser

    Directory of Open Access Journals (Sweden)

    A. Pagies

    2016-06-01

    Full Text Available We demonstrate a low-threshold, compact, room temperature, and continuous-wave terahertz molecular laser optically pumped by a mid-infrared quantum cascade laser. These characteristics are obtained, thanks to large dipole transitions of the active medium: NH3 (ammonia in gas state. The low-power (<60 mW laser pumping excites the molecules, thanks to intense mid-infrared transitions around 10.3 μm. The molecules de-excite by stimulated emission on pure inversion “umbrella-mode” quantum transitions allowed by the tunnel effect. The tunability of the quantum cascade laser gives access to several pure inversion transitions with different rotation states: we demonstrate the continuous-wave generation of ten laser lines around 1 THz. At 1.07 THz, we measure a power of 34 μW with a very low-threshold of 2 mW and a high differential efficiency of 0.82 mW/W. The spectrum was measured showing that the linewidth is lower than 1 MHz. To our knowledge, this is the first THz molecular laser pumped by a solid-state source and this result opens the way for compact, simple, and efficient THz source at room temperature for imaging applications.

  17. Rapid Classification of Imaged Objects Using Molecular Factor and Multivariate Optical Computing

    Science.gov (United States)

    Pearl, Megan Renee

    Unique algorithm development is vital for the success of novel instrumentation. Our lab has focused on the design of imaging systems based on molecular factor and multivariate optical computing. A simulation-driven design approach was utilized to develop a multimode infrared imaging system for chemical contrast enhancement. This infrared thermal imaging system is based on molecular factor (MFC) and lockin computing methods. MFC was accomplished with filter elements made of thin organic films deposited on IR-transparent substrates and allows a system response to be tuned to a specific analyte. Unique algorithms were written in-house using MatLabRTM (The Mathworks, Natick, MA). The algorithms used a lock-in computing technique to amplify the diffuse re ectance signal, which is only a few percent of the total signal. Intensive thin film studies were conducted to understand the effects of films on fabric to improve our simulation-driven design approach. A prototype instrument has been validated through the production of a real setup. We have shown that it is able to detect trace amounts of blood diluted in water (as small as 1:100) on fabric as well as differentiate blood from common false positives of other blood detection methods (i.e., luminol). The second imaging system was designed for the differentiation of phytoplankton species in the ocean. Multivariate optical computing (MOC) was applied to the uorescence excitation spectra of individual phytoplankton cells to design multivariate optical elements (MOEs). MOEs are filters fabricated to mimic linear discriminants analysis (LDA) results based on plankton spectroscopy. The imaging system uses these MOEs housed in a filter wheel to produce "streak" images of phytoplankton as they flow past a CCD camera, with each streak having the appearance of a barcode whose intensities are related to scores of the plankton spectra on linear discriminant functions. Algorithms for this system have been designed to automatically

  18. Optical directional coupler and Mach-Zehnder interferometer enhanced via 4H-SiC phonons

    Science.gov (United States)

    Finch, Michael F.; Saunders Filho, Claudio A. B.; Lail, Brian A.

    2016-09-01

    Surface phonon polaritons (SPhPs), similar to it cousin phenomenon surface plasmon polaitons (SPPs), are quasi-neutral particles resulting from light-matter coupling that can provide high modal confinement and long propagation in the mid to long infrared (IR). Mach-Zehnder interferometer (MZI) is a combination of two connected optical directional couplers (ODC). With the use of SPhPs, sub-wavelength feature sizes and modal areas can be achieved and to this end a hybrid SPhP waveguide, where propagation length and modal area can be trade-off, will be employed in the design of an ODC and MZI. This endeavor analyzes and characteristics both an ODC and MZI using commercially available numerical simulation software employing finite element method (FEM). The ODC and MZI are design using a novel SPhP hybrid waveguide design where a 4H-SiC substrate provides the polariton mode. The output ports power and relative phase difference between ports are investigated. SPhP enhanced ODC and MZI has applications including, but not limited to, next-generation ultra-compact photonic integrated circuits and waveguide based IR sensing.

  19. On the Capacity Region of the Intensity-Modulation Direct-Detection Optical Broadcast Channel

    KAUST Repository

    Chaaban, Anas

    2015-08-11

    The capacity of the intensity-modulation direct-detection free-space optical broadcast channel (OBC) is investigated. The Gaussian model with input-independent Gaussian noise is used, with both average and peak intensity constraints. An outer bound on the capacity region is derived by adapting Bergmans\\' approach to the OBC. Inner bounds are derived by using superposition coding with either truncated-Gaussian distributions or discrete distributions. While the discrete input distribution achieves higher rates than the truncated-Gaussian distribution, the latter allows expressing the achievable rate region in a closed form. At high signal-to-noise ratio (SNR), it is shown that the truncated-Gaussian distribution is nearly optimal. It achieves the symmetric-capacity within a constant gap (independent of SNR), which approaches half a bit as the number of users grows large. It also achieves the capacity region within a constant gap, which depends on the number of users. At low SNR, it is shown that on-off keying with time-division multiple-access (TDMA) is optimal, as it achieves any point on the boundary of the developed outer bound. This is interesting in practice since both OOK and TDMA have low complexity. At moderate SNR (typically [0,8] dB), a discrete distribution with a small alphabet size achieves a fairly good performance in terms of symmetric rate.

  20. Polymer optical fibers integrated directly into 3D orthogonal woven composites for sensing

    Science.gov (United States)

    Hamouda, Tamer; Seyam, Abdel-Fattah M.; Peters, Kara

    2015-02-01

    This study demonstrates that standard polymer optical fibers (POF) can be directly integrated into composites from 3D orthogonal woven preforms during the weaving process and then serve as in-situ sensors to detect damage due to bending or impact loads. Different composite samples with embedded POF were fabricated of 3D orthogonal woven composites with different parameters namely number of y-/x-layers and x-yarn density. The signal of POF was not affected significantly by the preform structure. During application of resin using VARTM technique, significant drop in backscattering level was observed due to pressure caused by vacuum on the embedded POF. Measurements of POF signal while in the final composites after resin cure indicated that the backscattering level almost returned to the original level of un-embedded POF. The POF responded to application of bending and impact loads to the composite with a reduction in the backscattering level. The backscattering level almost returned back to its original level after removing the bending load until damage was present in the composite. Similar behavior occurred due to impact events. As the POF itself is used as the sensor and can be integrated throughout the composite, large sections of future 3D woven composite structures could be monitored without the need for specialized sensors or complex instrumentation.

  1. Sensitivity of aerosol optical thickness and aerosol direct radiative effect to relative humidity

    Directory of Open Access Journals (Sweden)

    H. Bian

    2008-07-01

    Full Text Available We present a sensitivity study on the effects of spatial and temporal resolution of atmospheric relative humidity (RH on calculated aerosol optical thickness (AOT and the aerosol direct radiative effects (DRE in a global model. Using the same aerosol fields simulated in the Global Modeling Initiative (GMI model, we find that, on a global average, the calculated AOT from RH in 1° latitude by 1.25° longitude spatial resolution is 11% higher than that in 2° by 2.5° resolution, and the corresponding DRE at the top of the atmosphere is 8–9% higher for total aerosols and 15% higher for only anthropogenic aerosols in the finer spatial resolution case. The difference is largest over surface escarpment regions (e.g. >200% over the Andes Mountains where RH varies substantially with surface terrain. The largest zonal mean AOT difference occurs at 50–60°N (16–21%, where AOT is also relatively larger. A similar increase is also found when the time resolution of RH is increased. This increase of AOT and DRE with the increase of model resolution is due to the highly non-linear relationship between RH and the aerosol mass extinction efficiency (MEE at high RH (>80%. Our study suggests that caution should be taken in a multi-model comparison (e.g. AeroCom since the comparison usually deals with results coming from different spatial/temporal resolutions.

  2. Molecular Imaging Probes for Positron Emission Tomography and Optical Imaging of Sentinel Lymph Node and Tumor

    Science.gov (United States)

    Qin, Zhengtao

    Molecular imaging is visualizations and measurements of in vivo biological processes at the molecular or cellular level using specific imaging probes. As an emerging technology, biocompatible macromolecular or nanoparticle based targeted imaging probes have gained increasing popularities. Those complexes consist of a carrier, an imaging reporter, and a targeting ligand. The active targeting ability dramatically increases the specificity. And the multivalency effect may further reduce the dose while providing a decent signal. In this thesis, sentinel lymph node (SLN) mapping and cancer imaging are two research topics. The focus is to develop molecular imaging probes with high specificity and sensitivity, for Positron Emission Tomography (PET) and optical imaging. The objective of this thesis is to explore dextran radiopharmaceuticals and porous silicon nanoparticles based molecular imaging agents. Dextran polymers are excellent carriers to deliver imaging reporters or therapeutic agents due to its well established safety profile and oligosaccharide conjugation chemistry. There is also a wide selection of dextran polymers with different lengths. On the other hand, Silicon nanoparticles represent another class of biodegradable materials for imaging and drug delivery. The success in fluorescence lifetime imaging and enhancements of the immune activation potency was briefly discussed. Chapter 1 begins with an overview on current molecular imaging techniques and imaging probes. Chapter 2 presents a near-IR dye conjugated probe, IRDye 800CW-tilmanocept. Fluorophore density was optimized to generate the maximum brightness. It was labeled with 68Ga and 99mTc and in vivo SLN mapping was successfully performed in different animals, such as mice, rabbits, dogs and pigs. With 99mTc labeled IRDye 800CW-tilmanocept, chapter 3 introduces a two-day imaging protocol with a hand-held imager. Chapter 4 proposed a method to dual radiolabel the IRDye 800CW-tilmanocept with both 68Ga and

  3. Analysis of the normal optical, Michel and molecular potentials on the $^{40}$Ca($^6$Li, d)$^{44}$ Ti reaction

    Indian Academy of Sciences (India)

    MAZUMDER UTTAM K; SOMADDER ANOCK; HOQUE ENAMUL; HAQUE YASMEEN; DAS SUSANTA K; SEN GUPTA H M

    2016-06-01

    Full finite-range (FFR) distorted-wave Born approximation (DWBA) method has been applied to analyse the angular distributions of cross-sections of the $^{40}$Ca($^{6}$Li, d)$^{44}$Ti reaction at 28 MeV incident energy for the 22 transitions involving both the bound and unbound states of $^{44}$Ti byusing the normal optical, Michel and molecular potentials. The extracted spectroscopic factors for the three optical potentials are compared with those of some previous studies of zero-range (ZR) calculations of the$^{40}$Ca($^{6}$Li, d)$^{44}$Ti reaction using the normal optical potential. The $\\chi^{2}$ values of all the levels are obtained for the three optical potentials to estimate the quality of the fits. Molecular and Michel potentials have been used for the first time to analyse the four-nucleon transfer reaction and it seems that the molecular potential fits the experimental data more satisfactorily for some of the states than the normal optical and Michel potentials.

  4. "Peak tracking chip" for label-free optical detection of bio-molecular interaction and bulk sensing.

    Science.gov (United States)

    Bougot-Robin, Kristelle; Li, Shunbo; Zhang, Yinghua; Hsing, I-Ming; Benisty, Henri; Wen, Weijia

    2012-10-21

    A novel imaging method for bulk refractive index sensing or label-free bio-molecular interaction sensing is presented. This method is based on specially designed "Peak tracking chip" (PTC) involving "tracks" of adjacent resonant waveguide gratings (RWG) "micropads" with slowly evolving resonance position. Using a simple camera the spatial information robustly retrieves the diffraction efficiency, which in turn transduces either the refractive index of the liquids on the tracks or the effective thickness of an immobilized biological layer. Our intrinsically multiplex chip combines tunability and versatility advantages of dielectric guided wave biochips without the need of costly hyperspectral instrumentation. The current success of surface plasmon imaging techniques suggests that our chip proposal could leverage an untapped potential to routinely extend such techniques in a convenient and sturdy optical configuration toward, for instance for large analytes detection. PTC design and fabrication are discussed with challenging process to control micropads properties by varying their period (step of 2 nm) or their duty cycle through the groove width (steps of 4 nm). Through monochromatic imaging of our PTC, we present experimental demonstration of bulk index sensing on the range [1.33-1.47] and of surface biomolecule detection of molecular weight 30 kDa in aqueous solution using different surface densities. A sensitivity of the order of 10(-5) RIU for bulk detection and a sensitivity of the order of ∼10 pg mm(-2) for label-free surface detection are expected, therefore opening a large range of application of our chip based imaging technique. Exploiting and chip design, we expect as well our chip to open new direction for multispectral studies through imaging.

  5. Direct molecular typing of Bordetella pertussis from nasopharyngeal specimens in China in 2012-2013.

    Science.gov (United States)

    Du, Q; Wang, X; Liu, Y; Luan, Y; Zhang, J; Li, Y; Liu, X; Ma, C; Li, H; Wang, Z; He, Q

    2016-07-01

    Data on the molecular epidemiology of Bordetella pertussis are limited in developing countries where whole-cell pertussis vaccines (WCVs) have been used. The aim of this study was to determine the genotypes of circulating B. pertussis in China by direct molecular typing of clinical specimens. DNA extracts of 122 nasopharyngeal swabs (NPs) positive for B. pertussis by polymerase chain reaction (PCR) (targeting IS481 and ptx-Pr) from 2012 to 2013 were used for typing using the multiple-locus variable number tandem repeat analysis (MLVA) and also by PCR-based multilocus sequence typing (MLST) of B. pertussis virulence genes (ptxP, prn, and fim3). One hundred and eight DNA extracts (89 %) generated a complete MLVA type (MT). Among the 18 MTs obtained, MT55 (52 %) and MT104 (13 %) were the most common. MT27, which is linked to the ptxP3 allele and is prevalent in many developed countries using acellular pertussis vaccines (ACVs), was only found in 7 (6 %) DNA extracts. Eighty-seven DNA extracts (71 %) produced a complete multiantigen sequence typing (MAST) type. Of them, 77 (89 %) had the ptxP1/prn1/fim3-1 allele profile. Four DNA extracts (5 %) had the ptxP3/prn2/fim3-2 profile and 3 (4 %) had the ptxP3/prn1/fim3-2 allele profile. These seven DNA extracts also harbored MT27. Our result shows that B. pertussis circulating in China was different from those found in countries where ACVs have been in use, supporting the notion that selection pressure induced by WCVs and ACVs on the bacterial population differs.

  6. Fast recovery of free energy landscapes via diffusion-map-directed molecular dynamics.

    Science.gov (United States)

    Preto, Jordane; Clementi, Cecilia

    2014-09-28

    The reaction pathways characterizing macromolecular systems of biological interest are associated with high free energy barriers. Resorting to the standard all-atom molecular dynamics (MD) to explore such critical regions may be inappropriate as the time needed to observe the relevant transitions can be remarkably long. In this paper, we present a new method called Extended Diffusion-Map-directed Molecular Dynamics (extended DM-d-MD) used to enhance the sampling of MD trajectories in such a way as to rapidly cover all important regions of the free energy landscape including deep metastable states and critical transition paths. Moreover, extended DM-d-MD was combined with a reweighting scheme enabling to save on-the-fly information about the Boltzmann distribution. Our algorithm was successfully applied to two systems, alanine dipeptide and alanine-12. Due to the enhanced sampling, the Boltzmann distribution is recovered much faster than in plain MD simulations. For alanine dipeptide, we report a speedup of one order of magnitude with respect to plain MD simulations. For alanine-12, our algorithm allows us to highlight all important unfolded basins in several days of computation when one single misfolded event is barely observable within the same amount of computational time by plain MD simulations. Our method is reaction coordinate free, shows little dependence on the a priori knowledge of the system, and can be implemented in such a way that the biased steps are not computationally expensive with respect to MD simulations thus making our approach well adapted for larger complex systems from which little information is known.

  7. Direct molecular diagnosis of aspergillosis and CYP51A profiling from respiratory samples of French patients

    Directory of Open Access Journals (Sweden)

    Yanan Zhao

    2016-07-01

    Full Text Available Background: Microbiological diagnosis of aspergillosis and triazole resistance is limited by poor culture yield. To better estimate this shortcoming, we compared culture and molecular detection of A. fumigatus in respiratory samples from French patients at risk for aspergillosis. Methods: A total of 97 respiratory samples including bronchoalveolar lavages (BAL, bronchial aspirates (BA, tracheal aspirates, sputa, pleural fluids, and lung biopsy were collected from 33 patients having invasive aspergillosis (n=12, chronic pulmonary aspergillosis (n=3, allergic bronchopulmonary aspergillosis (n=7 or colonization (n=11 and 28 controls. Each specimen was evaluated by culture, pan-Aspergillus qPCR, and CYP51A PCR and sequencing. Results: One A. flavus and 19 A. fumigatus with one multiazole resistant strain (5.3% were cultured from 20 samples. Culture positivity was 62.5%, 75%, 42.9%, and 15.8% in ABPA, CPA, IA and colonized patients, respectively. Aspergillus detection rate was significantly higher by pan-Aspergillus qPCR than by culture in IA (90.5% vs 42.9%; P<0.05 and colonization group (73.7% vs 15.8%; P<0.05. The CYP51A PCR found one TR34/L98H along with 5 novel cyp51A mutations (4 non-synonymous and 1 promoter mutations, yet no association can be established currently between these novel mutations and azole resistance. The analysis of 11 matched pairs of BA and BAL samples found that 9/11 BA carried greater fungal load than BAL and CYP51A detection was more sensitive in BA than in BAL. Conclusion: Direct molecular detection of Aspergillus spp. and azole resistance markers are useful adjunct tools for comprehensive aspergillosis diagnosis. The observed superior diagnostic value of BAs to BAL fluids warrants more in-depth study.

  8. Diode lasers for direct application by utilizing a trepanning optic for remote oscillation welding of aluminum and copper

    Science.gov (United States)

    Fritsche, Haro; Müller, Norbert; Ferrario, Fabio; Fetissow, Sebastian; Grohe, Andreas; Hagen, Thomas; Steger, Ronny; Katzemaikat, Tristan; Ashkenasi, David; Gries, Wolfgang

    2017-02-01

    We report the first direct diode laser module integrated with a trepanning optic for remote oscillation welding. The trepanning optic is assembled with a collimated DirectProcess 900 laser engine. This modular laser is based on single emitters and beam combiners to achieve fiber coupled modules with a beam parameter product or BPP design consists in vertically stacking several diodes in the fast axis which leads to a rectangular output of about 100 W with BPP of product of the original vertical stack without the power loss of fiber coupling. The 500 W building blocks feature a highly flexible emitting wavelength bandwidth. New wavelengths can be configured by simply exchanging parts and without modifying the production process. This design principle provides the option to adapt the wavelength configuration to match a broad set of applications, from the UV to the visible and to the far IR depending on the commercial availability of laser diodes. This opens numerous additional applications like laser pumping, scientific and medical applications, as well as materials processing applications such as cutting and welding of copper aluminum or steel. Furthermore, the module's short lead lengths enable very short pulses. Integrated with electronics, the module's pulse width can be adjusted from micro-seconds to cw mode operation by simple software commands. An optical setup can be directly attached instead of a fiber to the laser module thanks to its modular design. This paper's experimental results are based on a trepanning optic attached to the laser module. Alltogether the setup approximately fits in a shoe box and weighs less than 20 kg which allows for direct mounting onto a 3D-gantry system. The oscillating weld performance of the 500 W direct diode laser utilizing a novel trepanning optic is discussed for its application to aluminum/aluminum and aluminum/copper joints.

  9. Investigation of the linear and second-order nonlinear optical properties of molecular crystals within the local field theory.

    Science.gov (United States)

    Seidler, Tomasz; Stadnicka, Katarzyna; Champagne, Benoît

    2013-09-21

    In this paper it is shown that modest calculations combining first principles evaluations of the molecular properties with electrostatic interaction schemes to account for the crystal environment effects are reliable for predicting and interpreting the experimentally measured electric linear and second-order nonlinear optical susceptibilities of molecular crystals within the experimental error bars. This is illustrated by considering two molecular crystals, namely: 2-methyl-4-nitroaniline and 4-(N,N-dimethylamino)-3-acetamidonitrobenzene. Three types of surrounding effects should be accounted for (i) the polarization due to the surrounding molecules, described here by static electric fields originating from their electric dipoles or charge distributions, (ii) the intermolecular interactions, which affect the geometry and particularly the molecular conformation, and (iii) the screening of the external electric field by the constitutive molecules. This study further highlights the role of electron correlation on the linear and nonlinear responses of molecular crystals and the challenge of describing frequency dispersion.

  10. [Comparison of direct microscopy, culture, ELISA and molecular methods for diagnosis of Entamoeba histolytica].

    Science.gov (United States)

    Tüzemen, Nazmiye Ulkü; Doğan, Nihal

    2014-01-01

    Amebiasis, a parasitic infection caused by Entamoeba histolytica, is one of the most common parasitic infections worldwide. Since it is still an important public health problem in developing countries, rapid differential diagnosis of amebiasis is crucial in terms of treatment. The most frequently used method for laboratory diagnosis is direct microscopy, however more reliable and specific methods are needed in order to differentiate the apathogenic Entamoeba dispar under the microscope. This study was conducted to compare the results of different methods namely, direct microscopy, culture, ELISA and PCR for the detection of E.histolytica in stool samples and to evaluate the performances of those methods. A total of 1049 stool samples collected from pediatric and adult patients who were admitted to hospital with diarrhea complaint between January 2011-March 2013, and randomly selected samples from primary school children, were included in the study. Direct microscopic examination was performed by native-lugol, physiological saline, modified formol-ethyl acetate sedimentation and trichrome staining methods. The stool samples were also inoculated into TYI-S-33 media for axenic cultivation of amoeba. The presence of amebic antigens in the samples were screened by a commercial ELISA kit (TechLab, E.histolytica II, USA). For the molecular diagnosis, a multiplex tandem real-time PCR (MT-PCR) kit (AusDiagnostics Pty Ltd, Australia) was used, after the extraction of DNAs with QIAamp DNA Stool Mini Kit (Qiagen, USA). A total of 354 samples which could be evaluated by all of the methods, were included in the study. Of the 354 stool samples, 84 (23.7%) were found E.histolytica/E.dispar positive by direct microscopy, 61 (17.2%) by trichrome staining, 46 (12.9%) by culture, 31 (8.7%) by ELISA and 9 (2.5%) by MT-PCR. Of direct microscopy positive samples 54.7% (46/84) were also positive with trichrome staining, 39.3% (33/84) with culture, 15.5% (13/84) with ELISA and 7.1% (6

  11. Irrelevance of the power stroke for the directionality, stopping force, and optimal efficiency of chemically driven molecular machines.

    Science.gov (United States)

    Astumian, R Dean

    2015-01-20

    A simple model for a chemically driven molecular walker shows that the elastic energy stored by the molecule and released during the conformational change known as the power-stroke (i.e., the free-energy difference between the pre- and post-power-stroke states) is irrelevant for determining the directionality, stopping force, and efficiency of the motor. Further, the apportionment of the dependence on the externally applied force between the forward and reverse rate constants of the power-stroke (or indeed among all rate constants) is irrelevant for determining the directionality, stopping force, and efficiency of the motor. Arguments based on the principle of microscopic reversibility demonstrate that this result is general for all chemically driven molecular machines, and even more broadly that the relative energies of the states of the motor have no role in determining the directionality, stopping force, or optimal efficiency of the machine. Instead, the directionality, stopping force, and optimal efficiency are determined solely by the relative heights of the energy barriers between the states. Molecular recognition--the ability of a molecular machine to discriminate between substrate and product depending on the state of the machine--is far more important for determining the intrinsic directionality and thermodynamics of chemo-mechanical coupling than are the details of the internal mechanical conformational motions of the machine. In contrast to the conclusions for chemical driving, a power-stroke is very important for the directionality and efficiency of light-driven molecular machines and for molecular machines driven by external modulation of thermodynamic parameters.

  12. 25 Gbit/s differential phase-shift-keying signal generation using directly modulated quantum-dot semiconductor optical amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Zeghuzi, A., E-mail: zeghuzi@mailbox.tu-berlin.de; Schmeckebier, H.; Stubenrauch, M.; Bimberg, D. [Department of Solid-State Physics, Technische Universitaet Berlin, Hardenbergstr. 36, 10623 Berlin (Germany); Meuer, C.; Schubert, C. [Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, Einsteinufer 37, 10587 Berlin (Germany); Bunge, C.-A. [Hochschule fuer Telekommunikation Leipzig (HfTL), Gustav-Freytag-Str. 43-45, 04277 Leipzig (Germany)

    2015-05-25

    Error-free generation of 25-Gbit/s differential phase-shift keying (DPSK) signals via direct modulation of InAs quantum-dot (QD) based semiconductor optical amplifiers (SOAs) is experimentally demonstrated with an input power level of −5 dBm. The QD SOAs emit in the 1.3-μm wavelength range and provide a small-signal fiber-to-fiber gain of 8 dB. Furthermore, error-free DPSK modulation is achieved for constant optical input power levels from 3 dBm down to only −11 dBm for a bit rate of 20 Gbit/s. Direct phase modulation of QD SOAs via current changes is thus demonstrated to be much faster than direct gain modulation.

  13. Direct ab initio molecular dynamics study of the two photodissociation channels of formic acid

    Energy Technology Data Exchange (ETDEWEB)

    Kurosaki, Yuzuru; Yokoyama, Keiichi; Teranishi, Yoshiaki

    2005-01-31

    A total of {approx}1200 trajectories have been integrated for the two photodissociation channels of formic acid, HCOOH {yields} H{sub 2}O + CO (1) and HCOOH {yields} CO{sub 2} + H{sub 2} (2), which occur with 248 and 193 nm photons, using the direct ab initio molecular dynamics method at the RMP2(full)/cc-pVDZ level of theory. It was found that the percentage of the energy distributed to a relative translational mode in reaction is much larger than that in reaction . This is mainly due to the difference in the geometry of transition state (TS); the H{sub 2}O geometry in the TS of reaction was predicted to significantly deviate from the equilibrium one, whereas the CO{sub 2} and H{sub 2} geometries in the TS of reaction were found to be more similar to their equilibrium ones. It was also found that the product diatomic molecules, CO and H{sub 2}, are both vibrationally and rotationally excited. The calculated relative population of the vibrationally excited CO for the 248 nm photodissociation was consistent with experiment.

  14. Direct molecular simulation of nitrogen dissociation based on an ab initio potential energy surface

    Energy Technology Data Exchange (ETDEWEB)

    Valentini, Paolo, E-mail: vale0142@umn.edu; Schwartzentruber, Thomas E., E-mail: schwart@aem.umn.edu; Bender, Jason D., E-mail: jbender73@gmail.com; Nompelis, Ioannis, E-mail: nompelis@umn.edu; Candler, Graham V., E-mail: candler@umn.edu [Department of Aerospace Engineering and Mechanics, College of Science and Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2015-08-15

    The direct molecular simulation (DMS) approach is used to predict the internal energy relaxation and dissociation dynamics of high-temperature nitrogen. An ab initio potential energy surface (PES) is used to calculate the dynamics of two interacting nitrogen molecules by providing forces between the four atoms. In the near-equilibrium limit, it is shown that DMS reproduces the results obtained from well-established quasiclassical trajectory (QCT) analysis, verifying the validity of the approach. DMS is used to predict the vibrational relaxation time constant for N{sub 2}–N{sub 2} collisions and its temperature dependence, which are in close agreement with existing experiments and theory. Using both QCT and DMS with the same PES, we find that dissociation significantly depletes the upper vibrational energy levels. As a result, across a wide temperature range, the dissociation rate is found to be approximately 4–5 times lower compared to the rates computed using QCT with Boltzmann energy distributions. DMS calculations predict a quasi-steady-state distribution of rotational and vibrational energies in which the rate of depletion of high-energy states due to dissociation is balanced by their rate of repopulation due to collisional processes. The DMS approach simulates the evolution of internal energy distributions and their coupling to dissociation without the need to precompute rates or cross sections for all possible energy transitions. These benchmark results could be used to develop new computational fluid dynamics models for high-enthalpy flow applications.

  15. Direct molecular interactions between Beclin 1 and the canonical NFκB activation pathway.

    Science.gov (United States)

    Niso-Santano, Mireia; Criollo, Alfredo; Malik, Shoaib Ahmad; Michaud, Michael; Morselli, Eugenia; Mariño, Guillermo; Lachkar, Sylvie; Galluzzi, Lorenzo; Maiuri, Maria Chaira; Kroemer, Guido

    2012-02-01

    General (macro)autophagy and the activation of NFκB constitute prominent responses to a large array of intracellular and extracellular stress conditions. The depletion of any of the three subunits of the inhibitor of NFκB (IκB) kinase (IKKα, IKKβ, IKKγ/NEMO), each of which is essential for the canonical NFκB activation pathway, limits autophagy induction by physiological or pharmacological triggers, while constitutive active IKK subunits suffice to stimulate autophagy. The activation of IKK usually relies on TGFβ-activated kinase 1 (TAK1), which is also necessary for the optimal induction of autophagy in multiple settings. TAK1 interacts with two structurally similar co-activators, TAK1-binding proteins 2 and 3 (TAB2 and TAB3). Importantly, in resting conditions both TAB2 and TAB3 bind the essential autophagic factor Beclin 1, but not TAK1. In response to pro-autophagic stimuli, TAB2 and TAB3 dissociate from Beclin 1 and engage in stimulatory interactions with TAK1. The inhibitory interaction between TABs and Beclin 1 is mediated by their coiled-coil domains (CCDs). Accordingly, the overexpression of either TAB2 or TAB3 CCD stimulates Beclin 1- and TAK1-dependent autophagy. These results point to the existence of a direct molecular crosstalk between the canonical NFκB activation pathway and the autophagic core machinery that guarantees the coordinated induction of these processes in response to stress.

  16. Modeling of molecular nitrogen collisions and dissociation processes for direct simulation Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, Neal, E-mail: neal.parsons@cd-adapco.com; Levin, Deborah A., E-mail: deblevin@illinois.edu [Department of Aerospace Engineering, The Pennsylvania State University, 233 Hammond Building, University Park, Pennsylvania 16802 (United States); Duin, Adri C. T. van, E-mail: acv13@engr.psu.edu [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, 136 Research East, University Park, Pennsylvania 16802 (United States); Zhu, Tong, E-mail: tvz5037@psu.edu [Department of Aerospace Engineering, The Pennsylvania State University, 136 Research East, University Park, Pennsylvania 16802 (United States)

    2014-12-21

    The Direct Simulation Monte Carlo (DSMC) method typically used for simulating hypersonic Earth re-entry flows requires accurate total collision cross sections and reaction probabilities. However, total cross sections are often determined from extrapolations of relatively low-temperature viscosity data, so their reliability is unknown for the high temperatures observed in hypersonic flows. Existing DSMC reaction models accurately reproduce experimental equilibrium reaction rates, but the applicability of these rates to the strong thermal nonequilibrium observed in hypersonic shocks is unknown. For hypersonic flows, these modeling issues are particularly relevant for nitrogen, the dominant species of air. To rectify this deficiency, the Molecular Dynamics/Quasi-Classical Trajectories (MD/QCT) method is used to accurately compute collision and reaction cross sections for the N{sub 2}({sup 1}Σ{sub g}{sup +})-N{sub 2}({sup 1}Σ{sub g}{sup +}) collision pair for conditions expected in hypersonic shocks using a new potential energy surface developed using a ReaxFF fit to recent advanced ab initio calculations. The MD/QCT-computed reaction probabilities were found to exhibit better physical behavior and predict less dissociation than the baseline total collision energy reaction model for strong nonequilibrium conditions expected in a shock. The MD/QCT reaction model compared well with computed equilibrium reaction rates and shock-tube data. In addition, the MD/QCT-computed total cross sections were found to agree well with established variable hard sphere total cross sections.

  17. An Event-Driven Hybrid Molecular Dynamics and Direct Simulation Monte Carlo Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Donev, A; Garcia, A L; Alder, B J

    2007-07-30

    A novel algorithm is developed for the simulation of polymer chains suspended in a solvent. The polymers are represented as chains of hard spheres tethered by square wells and interact with the solvent particles with hard core potentials. The algorithm uses event-driven molecular dynamics (MD) for the simulation of the polymer chain and the interactions between the chain beads and the surrounding solvent particles. The interactions between the solvent particles themselves are not treated deterministically as in event-driven algorithms, rather, the momentum and energy exchange in the solvent is determined stochastically using the Direct Simulation Monte Carlo (DSMC) method. The coupling between the solvent and the solute is consistently represented at the particle level, however, unlike full MD simulations of both the solvent and the solute, the spatial structure of the solvent is ignored. The algorithm is described in detail and applied to the study of the dynamics of a polymer chain tethered to a hard wall subjected to uniform shear. The algorithm closely reproduces full MD simulations with two orders of magnitude greater efficiency. Results do not confirm the existence of periodic (cycling) motion of the polymer chain.

  18. Molecular template-directed synthesis of microporous polymer networks for highly selective CO2 capture.

    Science.gov (United States)

    Shi, Yao-Qi; Zhu, Jing; Liu, Xiao-Qin; Geng, Jian-Cheng; Sun, Lin-Bing

    2014-11-26

    Porous polymer networks have great potential in various applications including carbon capture. However, complex monomers and/or expensive catalysts are commonly used for their synthesis, which makes the process complicated, costly, and hard to scale up. Herein, we develop a molecular template strategy to fabricate new porous polymer networks by a simple nucleophilic substitution reaction of two low-cost monomers (i.e., chloromethylbenzene and ethylene diamine). The polymerization reactions can take place under mild conditions in the absence of any catalysts. The resultant materials are interconnected with secondary amines and show well-defined micropores due to the structure-directing role of solvent molecules. These properties make our materials highly efficient for selective CO2 capture, and unusually high CO2/N2 and CO2/CH4 selectivities are obtained. Furthermore, the adsorbents can be completely regenerated under mild conditions. Our materials may provide promising candidates for selective capture of CO2 from mixtures such as flue gas and natural gas.

  19. Bi-directional roles of bone morphogenetic proteins in cancer: another molecular Jekyll and Hyde?

    Science.gov (United States)

    Ehata, Shogo; Yokoyama, Yuichiro; Takahashi, Kei; Miyazono, Kohei

    2013-06-01

    Bone morphogenetic proteins (BMPs) are multi-functional cytokines, which belong to the transforming growth factor-β (TGF-β) family. In some cancer tissues, aberrant expression of various BMP signal components has been detected. Here, we describe the divergent roles of BMPs during the progression of cancer. BMPs exhibit various effects on both cancer cells and on tumor microenvironments. BMPs inhibit the proliferation of cancer cells, with some exceptions. BMPs also induce the differentiation of certain cancer stem cells, and attenuate their aggressiveness. In parallel, BMPs play a critical role in the regulation of tumor angiogenesis and the metastasis of cancer cells. Some mouse xenograft models have revealed that cancer metastases are prevented by the inhibition of BMP signaling. Together, these findings imply that BMPs function as both suppressors and promoters of tumors in a context dependent manner. The bi-directional characteristics of BMPs in cancer are similar to those of TGF-β, which was previously described as a molecular 'Jekyll and Hyde.' © 2013 The Authors. Pathology International © 2013 Japanese Society of Pathology and Wiley Publishing Asia Pty Ltd.

  20. Chemical structure-optical property understanding in bisphenyls and substituted polycarbonates by molecular simulations: Role of polarizabilities and conformations

    Science.gov (United States)

    Natarajan, Upendra; Sulatha, M. S.

    2005-03-01

    We present calculations of polarizability tensors, optical anisotropy of organic molecules, repeating units and polymer chains of several bisphenyls, bisphenol carbonates and polycarbonates with a variety of chemical substitutions.^1,2 Theoretical calculations of polarizabilities and optical birefringence of several newer structures having specific side-group substitutions which render low birefringence, not previously reported, is also shown here. Our method combines VOSRIS scheme^3, molecular geometry and conformations from force-field simulations and accurate anisotropic polarizability tensors. Aliphatic, aliphatic aromatic and cycloaliphatic substitutions reduce optical anisotropy in relation to bisphenol A polycarbonate. Calculated /x of these structurally modified polycarbonates^2 follows linear behavior with respect to experimentally observed melt stress-optical coefficient (Cm). *J. Phys. Chem. A, 107, 97 (2003) *Macromolecules, 36, 2944 (2003) *P.J. Flory, Statistical Mechanics of Chain Molecules, Wiley Interscience, New York (1969)

  1. Improved silica-PLC Mach-Zehnder interferometer type optical switches with error dependence compensation of directional coupler

    Science.gov (United States)

    Wang, Jun; Yi, Jia; Guo, Lijun; Liu, Peng; Hall, Trevor J.; Sun, DeGui

    2017-03-01

    For the most popular structure of planer lightwave circuit (PLC) 2×2 thermo-optic switches, Mach-Zehnder interferometer (MZI), a full range of splitting ratio errors of directional coupler (DC) are investigated. All the parameters determining the splitting ratio are the dimensions and the refractive indices of the waveguide core and cladding layers. In this work, the coherent relationships between the waveguide size and the refractive indices are analyzed and then the error compensation between the width and the refractive index of waveguide core, and the controllable effect of over clad layer refractive index error upon the MZI-type optical switch are all discovered with numerical calculation and BPM simulations. Then, an MZI-type 2×2 thermo-optic switch having a higher error tolerance is established with the efficient optimizations of all the 3 dB-DC parameters. As a result, for the symmetric MZI switch, an insertion loss of 1.5 dB and optical extinction ratio of over 20 dB are realized for the average tolerance of±5.0%. An asymmetric arm optical phase and unequal arm lengths is also employed to improve the uniformities of insertion loss. The agreements between the designs and the experiments are recognized, leading to a wide adoption of practical silica-PLC optical switch products.

  2. Sensitivity of aerosol optical thickness and aerosol direct radiative effect to relative humidity

    Directory of Open Access Journals (Sweden)

    H. Bian

    2009-04-01

    Full Text Available We present a sensitivity study of the effects of spatial and temporal resolution of atmospheric relative humidity (RH on calculated aerosol optical thickness (AOT and the aerosol direct radiative effects (DRE in a global model. We carry out different modeling experiments using the same aerosol fields simulated in the Global Modeling Initiative (GMI model at a resolution of 2° latitude by 2.5° longitude, using time-averaged fields archived every three hours by the Goddard Earth Observation System Version 4 (GEOS-4, but we change the horizontal and temporal resolution of the relative humidity fields. We find that, on a global average, the AOT calculated using RH at a 1°×1.25° horizontal resolution is 11% higher than that using RH at a 2°×2.5° resolution, and the corresponding DRE at the top of the atmosphere is 8–9% and 15% more negative (i.e., more cooling for total aerosols and anthropogenic aerosol alone, respectively, in the finer spatial resolution case. The difference is largest over surface escarpment regions (e.g. >200% over the Andes Mountains where RH varies substantially with surface terrain. The largest zonal mean AOT difference occurs at 50–60° N (16–21%, where AOT is also relatively larger. A similar impact is also found when the time resolution of RH is increased. This increase of AOT and aerosol cooling with the increase of model resolution is due to the highly non-linear relationship between RH and the aerosol mass extinction efficiency (MEE at high RH (>80%. Our study is a specific example of the uncertainty in model results highlighted by multi-model comparisons such as AeroCom, and points out one of the many inter-model differences that can contribute to the overall spread among models.

  3. Bladeless Direct Optical Trocar Insertion in Laparoscopic Procedures on the Obese Patient

    Science.gov (United States)

    Malvasi, Antonio; Mynbaev, Ospan A.; Tsin, Daniel Alberto; Davila, Fausto; Dominguez, Guillermo; Perrone, Emanuele; Nezhat, Farr R.

    2013-01-01

    Background: Recently, we have shown advantages of a direct optical entry (DOE) using a bladeless trocar in comparison with the open Hasson technique (OHT) in older reproductive-age women with previous operations, as well as in comparison with Veress needle entry in reproductive-age and postmenopausal women. Objectives: A prospective multicenter randomized study to determine whether the DOE is feasible for establishing safe and rapid entry into the abdomen in comparison with those of the OHT in reproductive-age obese women. Methods: Two types of surgical techniques were blindly applied in 224 obese reproductive-age women with benign neoplastic diseases of ovary and uterus. Namely, laparoscopic entry into the abdomen in 108 patients was performed by DOE and in 116 women by OHT. Following parameters (entry time in seconds needed to establish the intra-abdominal vision after pneumoperitoneum, blood loss, occurrence of vascular and/or bowel injuries) were compared during surgery as main outcomes. Results: Main baseline characteristics of patients, including age (36.1 ± 4.5 vs 35.7 ± 5.8), body mass index (34.9 ± 5.1 vs 35.1 ± 4.9 kg/m2), and parity (2.1 ± 0.4 vs 1.9 ± 0.9), were not significantly different between the DOE and OHT groups (P > .05). While intraoperative parameters such as the entry time (71.9 ± 3.7 vs 215.1 ± 6.2 seconds) and blood loss value (9.7 ± 6.1 vs 12.2 ± 2.9 mL) were significantly reduced in the DOE group in comparison with those of OHT group (respectively, P obese women; however, further larger trials need to confirm the possible additional benefits of a DOE. PMID:24398192

  4. Integrated optical devices for wavelength division multiplexing using PECVD and direct UV writing techniques

    DEFF Research Database (Denmark)

    Zauner, Dan; Leistiko, Otto

    1999-01-01

    Wavelength division multiplexing (WDM) is the currents tep in the development of optical telecommunication. The emphasis of the project is to explore the exisiting photonic technology to realize integrated optical structures for WDM systems. Two methods of fabricting silica on silicon buried...

  5. Influence of observed diurnal cycles of aerosol optical depth on aerosol direct radiative effect

    Directory of Open Access Journals (Sweden)

    A. Arola

    2013-08-01

    Full Text Available The diurnal variability of aerosol optical depth (AOD can be significant, depending on location and dominant aerosol type. However, these diurnal cycles have rarely been taken into account in measurement-based estimates of aerosol direct radiative forcing (ADRF or aerosol direct radiative effect (ADRE. The objective of our study was to estimate the influence of diurnal aerosol variability at the top of the atmosphere ADRE estimates. By including all the possible AERONET sites, we wanted to assess the influence on global ADRE estimates. While focusing also in more detail on some selected sites of strongest impact, our goal was to also see the possible impact regionally. We calculated ADRE with different assumptions about the daily AOD variability: taking the observed daily AOD cycle into account and assuming diurnally constant AOD. Moreover, we estimated the corresponding differences in ADREs, if the single AOD value for the daily mean was taken from the the Moderate Resolution Imaging Spectroradiometer (MODIS Terra or Aqua overpass times, instead of accounting for the true observed daily variability. The mean impact of diurnal AOD variability on 24 h ADRE estimates, averaged over all AERONET sites, was rather small and it was relatively small even for the cases when AOD was chosen to correspond to the Terra or Aqua overpass time. This was true on average over all AERONET sites, while clearly there can be much stronger impact in individual sites. Examples of some selected sites demonstrated that the strongest observed AOD variability (the strongest morning afternoon contrast does not typically result in a significant impact on 24 h ADRE. In those cases, the morning and afternoon AOD patterns are opposite and thus the impact on 24 h ADRE, when integrated over all solar zenith angles, is reduced. The most significant effect on daily ADRE was induced by AOD cycles with either maximum or minimum AOD close to local noon. In these cases, the impact on

  6. Influence of Observed Diurnal Cycles of Aerosol Optical Depth on Aerosol Direct Radiative Effect

    Science.gov (United States)

    Arola, A.; Eck, T. F.; Huttunen, J.; Lehtinen, K. E. J.; Lindfors, A. V.; Myhre, G.; Smirinov, A.; Tripathi, S. N.; Yu, H.

    2013-01-01

    The diurnal variability of aerosol optical depth (AOD) can be significant, depending on location and dominant aerosol type. However, these diurnal cycles have rarely been taken into account in measurement-based estimates of aerosol direct radiative forcing (ADRF) or aerosol direct radiative effect (ADRE). The objective of our study was to estimate the influence of diurnal aerosol variability at the top of the atmosphere ADRE estimates. By including all the possible AERONET sites, we wanted to assess the influence on global ADRE estimates. While focusing also in more detail on some selected sites of strongest impact, our goal was to also see the possible impact regionally.We calculated ADRE with different assumptions about the daily AOD variability: taking the observed daily AOD cycle into account and assuming diurnally constant AOD. Moreover, we estimated the corresponding differences in ADREs, if the single AOD value for the daily mean was taken from the the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra or Aqua overpass times, instead of accounting for the true observed daily variability. The mean impact of diurnal AOD variability on 24 h ADRE estimates, averaged over all AERONET sites, was rather small and it was relatively small even for the cases when AOD was chosen to correspond to the Terra or Aqua overpass time. This was true on average over all AERONET sites, while clearly there can be much stronger impact in individual sites. Examples of some selected sites demonstrated that the strongest observed AOD variability (the strongest morning afternoon contrast) does not typically result in a significant impact on 24 h ADRE. In those cases, the morning and afternoon AOD patterns are opposite and thus the impact on 24 h ADRE, when integrated over all solar zenith angles, is reduced. The most significant effect on daily ADRE was induced by AOD cycles with either maximum or minimum AOD close to local noon. In these cases, the impact on 24 h ADRE was

  7. Optical emission of strained direct-band-gap Ge quantum well embedded inside InGaAs alloy layers

    OpenAIRE

    Pavarelli, Nicola; Ochalski, Tomasz J.; Murphy-Armando, Felipe; Huo, Y; Schmidt, Michael; Huyet, Guillaume; Harris, J. S.

    2013-01-01

    We studied the optical properties of a strain-induced direct-band-gap Ge quantum well embedded in InGaAs. We showed that the band offsets depend on the electronegativity of the layer in contact with Ge, leading to different types of optical transitions in the heterostructure. When group-V atoms compose the interfaces, only electrons are confined in Ge, whereas both carriers are confined when the interface consists of group-III atoms. The different carrier confinement results in different emis...

  8. Efficient one-pot synthesis of hydrophilic and fluorescent molecularly imprinted polymer nanoparticles for direct drug quantification in real biological samples.

    Science.gov (United States)

    Niu, Hui; Yang, Yaqiong; Zhang, Huiqi

    2015-12-15

    Efficient one-pot synthesis of hydrophilic and fluorescent molecularly imprinted polymer (MIP) nanoparticles and their application as optical chemosensor for direct drug quantification in real, undiluted biological samples are described. The general principle was demonstrated by preparing tetracycline (Tc, a broad-spectrum antibiotic)-imprinted fluorescent polymer nanoparticles bearing hydrophilic polymer brushes via poly(2-hydroxyethyl methacrylate) (PHEMA) macromolecular chain transfer agent-mediated reversible addition-fragmentation chain transfer (RAFT) precipitation polymerization in the presence of a fluorescent monomer. The introduction of hydrophilic PHEMA brushes and fluorescence labeling onto/into the MIP nanoparticles proved to not only significantly improve their surface hydrophilicity and lead to their obvious specific binding and high selectivity toward Tc in the undiluted bovine serum, but also impart them with strong fluorescent properties. In particular, significant fluorescence quenching was observed upon their binding with Tc in such complex biological milieu, which makes these Tc-MIP nanoparticles useful optical chemosensor with a detection limit of 0.26 μM. Furthermore, such advanced functional MIP nanoparticles-based chemosensor was also successfully utilized for the direct, sensitive, and accurate determination of Tc in another biological medium (i.e., the undiluted pig serum) with average recoveries ranging from 98% to 102%, even in the presence of several interfering drugs.

  9. Using the combination refraction-reflection solid to design omni-directional light source used in underwater wireless optical communication

    Science.gov (United States)

    Rao, Jionghui; Yao, Wenming; Wen, Linqiang

    2015-10-01

    Underwater wireless optical communication is a communication technology which uses laser as an information carrier and transmits data through water. Underwater wireless optical communication has some good features such as broader bandwidth, high transmission rate, better security, anti—interference performance. Therefore, it is promising to be widely used in the civil and military communication domains. It is also suitable for high-speed, short-range communication between underwater mobile vehicles. This paper presents a design approach of omni-directional light source used in underwater wireless optical communication, using TRACEPRO simulation tool to help design a combination solid composed of the lens, conical reflector and parabolic reflector, and using the modulated DPSS green laser in the transmitter module to output the laser beam in small divergence angles, after expanded by the combination refraction-reflection solid, the angle turns into a space divergence angle of 2π, achieving the omni-directional light source of hemisphere space, and test in the air and underwater, the result shows that the effect is fine. This paper analyzes the experimental test in the air and water, in order to make further improvement of the uniformity of light distribution, we optimize the reflector surface parameters of combination refraction-reflection solid and test in the air and water. The result shows that omni-directional light source used in underwater wireless optical communication optimized could achieve the uniformity of light distribution of underwater space divergence angle of 2π. Omni-directional light source used in underwater wireless optical communication designed in this paper has the characteristics of small size and uniformity of light distribution, it is suitable for application between UUVs, AUVs, Swimmer Delivery Vehicles (SDVs) and other underwater vehicle fleet, it realizes point-to-multipoint communications.

  10. BER OPTIC SENSOR MODIFIED BY GRAFTING OF THE MOLECULARLY IMPRINTED POLYMER FOR THE DETECTION OF AMMONIUM IN AQUEOUS MEDIA

    Directory of Open Access Journals (Sweden)

    N. Lopes,

    2015-07-01

    Full Text Available Subject of Research.The paper deals with novel chemical sensors based on the polymeric optical fibers modified by grafting of the molecularly imprinted polymer for the detection of ammonium in aqueous solutions. Elevated concentrations of ammonium in surface waters lead to their eutrophication, that’s why, monitoring of the content of this ion is very important for the evaluation of surface water quality. However, currently in situ monitoring of relevant parameters in surface waters is constrained by the availability and cost of commercial sensors. Attractive approach to the development of chemical sensors for remote controls is the use of polymeric optical fibers. Polymer optical fibers have high mechanical resistance and low cost, and give the possibility for multiplexing and remote sensing. Method. Polymeric layer imprinted with ammonium ions was grafted on the surface of the methylmethacrylate fiber. Methacrylic acid was used as a monomer, ethylene glycol dimethacylate as a cross-linker, 2.2'-Azobis (2-ethylpropionamidine dihydrochloride as a radical initiator, ammonium as a template and water:ethanol 4:1 mixture as a solvent. Optimization of the imprinted polymer synthesis conditions was carried out using intensity of transmitted light, uniformity of the grafted polymeric layer and response in the aqueous ammonium solutions as optimization criteria. Main Results. Chemical sensors based on the polymeric optical fibers modified by grafting of the molecularly imprinted polymer for the detection of ammonium in aqueous solutions have been developed. New method of the grafting of the molecularly imprinted polymer on the surface of the methylmethacrylate optical fiber has been developed. It was found out, that high concentrations of the monomer and cross-linker in the polymerization solutions cause optical fiber damage while longer polymerization times result in the decrease of the intensity of transmitted light. Optical sensor demonstrating

  11. Poly(ethylene oxide)-silica hybrids entrapping sensitive dyes for biomedical optical pH sensors: Molecular dynamics and optical response

    Science.gov (United States)

    Fabbri, Paola; Pilati, Francesco; Rovati, Luigi; McKenzie, Ruel; Mijovic, Jovan

    2011-06-01

    Polymer-silica hybrid nanocomposites prepared by sol-gel process based on triethoxisilane-terminated poly(ethylene oxide) chains and tetraethoxysilane as silica precursor, doped with organic pH sensitive dyes, have been prepared and their suitability for use as sensors coupled with plastic optic fibers has been evaluated. Sensors were prepared by immobilizing a drop of the hybrid materials onto the tip of a multi-mode poly(methyl methacrylate) optical fiber. The performance of the optical sensor in terms of sensitivity and response time was tested in different experimental conditions, and was found to be markedly higher than analogous sensors present on the market. The very fast kinetic of the hybrid's optical response was supported by studies performed at the molecular level by broadband dielectric relaxation spectroscopy (DRS), investigated over a wide range of frequency and temperature, showing that poly(ethylene oxide) chains maintain their dynamics even when covalently bonded to silica domains, which decrease the self-association interactions and promote motions of polymer chain segments. Due to the fast response kinetic observed, these pH optical sensors result suitable for the fast-detection of biomedical parameters, i.e. fast esophageous pH-metry.

  12. Microfabrication with femtosecond laser processing : (A) laser ablation of ferrous alloys, (B) direct-write embedded optical waveguides and integrated optics in bulk glasses.

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Junpeng; McDaniel, Karen Lynn; Palmer, Jeremy Andrew; Yang, Pin; Griffith, Michelle Lynn; Vawter, Gregory Allen; Harris, Marc F.; Tallant, David Robert; Luk, Ting Shan; Burns, George Robert

    2004-11-01

    At Sandia National Laboratories, miniaturization dominates future hardware designs, and technologies that address the manufacture of micro-scale to nano-scale features are in demand. Currently, Sandia is developing technologies such as photolithography/etching (e.g. silicon MEMS), LIGA, micro-electro-discharge machining (micro-EDM), and focused ion beam (FIB) machining to fulfill some of the component design requirements. Some processes are more encompassing than others, but each process has its niche, where all performance characteristics cannot be met by one technology. For example, micro-EDM creates highly accurate micro-scale features but the choice of materials is limited to conductive materials. With silicon-based MEMS technology, highly accurate nano-scale integrated devices are fabricated but the mechanical performance may not meet the requirements. Femtosecond laser processing has the potential to fulfill a broad range of design demands, both in terms of feature resolution and material choices, thereby improving fabrication of micro-components. One of the unique features of femtosecond lasers is the ability to ablate nearly all materials with little heat transfer, and therefore melting or damage, to the surrounding material, resulting in highly accurate micro-scale features. Another unique aspect to femtosecond radiation is the ability to create localized structural changes thought nonlinear absorption processes. By scanning the focal point within transparent material, we can create three-dimensional waveguides for biological sensors and optical components. In this report, we utilized the special characteristics of femtosecond laser processing for microfabrication. Special emphasis was placed on the laser-material interactions to gain a science-based understanding of the process and to determine the process parameter space for laser processing of metals and glasses. Two areas were investigated, including laser ablation of ferrous alloys and direct

  13. Massively parallel dual-comb molecular detection with subharmonic optical parametric oscillators

    CERN Document Server

    Smolski, Viktor O; Xu, Jia; Vodopyanov, Konstantin L

    2016-01-01

    Mid-infrared (mid-IR) spectroscopy offers unparalleled sensitivity for the detection of trace gases, solids and liquids, which is based on the existence of strong telltale vibrational bands in this part of the spectrum. It was shown more than a decade ago that a dual-comb Fourier spectroscopy could provide superior spectral coverage combined with high resolution and extremely fast data acquisition. Capabilities of this method were limited because of difficulty of producing twins of mutually coherent frequency combs in the mid- IR. Here we report a phase-coherent and broadband dual-comb system that is based on a pair of subharmonic (frequency-divide-by-two) optical parametric oscillators, pumped in turn by two phase-locked thulium fiber lasers at 2-micron wavelength. We demonstrate simultaneous detection of multiple molecular species in the whole band of 3.2-5.3 microns (frequency span 1200 cm^{-1}) augmented by the pump laser band of 1.85-2 microns (span 400 cm^{-1}), with spectral resolution 0.01-0.07 cm^{-1...

  14. Understanding the optical spectroscopy of amphiphilic molecular rectifiers: a density functional approach.

    Science.gov (United States)

    Tan, Osbert; Clark, S J; Szablewski, M; Cross, G H

    2010-12-28

    We present results of first principles density functional theory calculations of the electronic and atomic structural properties of model Z-type Langmuir-Blodgett (LB) layers comprising amphiphilic quinolinium tricyanoquinodimethanide (Q3CNQ) chromophores. We find that the chromophore electronic ground state is not as clearly "zwitterionic" as required by models to explain electrical rectification purportedly seen in such systems. The computed visible region transitions are not what have been assumed to be the intervalence charge transfer bands seen in the visible region of molecules in Z-type LB films. Our own LB deposition and spectroscopic studies suggest that almost all visible region features previously seen may be ascribed to aggregates. The calculated lowest energy electronic excitation between HOMO and LUMO levels, which is located in the near infrared region, has a transition moment aligned approximately 9° off the molecular long axis, and has a normalized oscillator strength of 1 order of magnitude higher than those of the visible region transitions. This most dominant feature has been neglected from discussions of Langmuir-Blodgett layer rectification but our own deposition studies show no sign of this feature, indicating that the structure of the modeled system differs from that of typical experimental structures. The model indicates that such idealized LB layer structures cannot confidently be invoked to explain their experimental optical or electrical properties.

  15. Mapping of the extinction in Giant Molecular Clouds using optical star counts

    CERN Document Server

    Cambresy, L

    1999-01-01

    This paper presents large scale extinction maps of most nearby Giant Molecular Clouds of the Galaxy (Lupus, rho-Ophiuchus, Scorpius, Coalsack, Taurus, Chamaeleon, Musca, Corona Australis, Serpens, IC 5146, Vela, Orion, Monoceros R1 and R2, Rosette, Carina) derived from a star count method using an adaptive grid and a wavelet decomposition applied to the optical data provided by the USNO-Precision Measuring Machine. The distribution of the extinction in the clouds leads to estimate their total individual masses M and their maximum of extinction. I show that the relation between the mass contained within an iso-extinction contour and the extinction is similar from cloud to cloud and allows the extrapolation of the maximum of extinction in the range 5.7 to 25.5 magnitudes. I found that about half of the mass is contained in regions where the visual extinction is smaller than 1 magnitude. The star count method used on large scale (about 250 square degrees) is a powerful and relatively straightforward method to es...

  16. Molecular anisotropy effects in carbon K-edge scattering: depolarized diffuse scattering and optical anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Kevin H.

    2014-07-14

    Some polymer properties, such as conductivity, are very sensitive to short- and intermediate-range orientational and positional ordering of anisotropic molecular functional groups, and yet means to characterize orientational order in disordered systems are very limited. We demonstrate that resonant scattering at the carbon K-edge is uniquely sensitive to short-range orientation correlations in polymers through depolarized scattering at high momentum transfers, using atactic polystyrene as a well-characterized test system. Depolarized scattering is found to coexist with unpolarized fluorescence, and to exhibit pronounced anisotropy. We also quantify the spatially averaged optical anisotropy from low-angle reflectivity measurements, finding anisotropy consistent with prior visible, x-ray absorption, and theoretical studies. The average anisotropy is much smaller than that in the depolarized scattering and the two have different character. Both measurements exhibit clear spectral signatures from the phenyl rings and the polyethylene-like backbone. Discussion focuses on analysis considerations and prospects for using this depolarized scattering for studies of disorder in soft condensed matter.

  17. Molecular anisotropy effects in carbon K-edge scattering: Depolarized diffuse scattering and optical anisotropy

    Science.gov (United States)

    Stone, Kevin H.; Kortright, Jeffrey B.

    2014-09-01

    Some polymer properties, such as conductivity, are very sensitive to short- and intermediate-range orientational and positional ordering of anisotropic molecular functional groups, and yet means to characterize orientational order in disordered systems are very limited. We demonstrate that resonant scattering at the carbon K edge is uniquely sensitive to short-range orientation correlations in polymers through depolarized scattering at high momentum transfers, using atactic polystyrene as a well-characterized test system. Depolarized scattering is found to coexist with unpolarized fluorescence and to exhibit pronounced anisotropy. We also quantify the spatially averaged optical anisotropy from low-angle reflectivity measurements, finding anisotropy consistent with prior visible, x-ray absorption, and theoretical studies. The average anisotropy is much smaller than that in the depolarized scattering and the two have different character. Both measurements exhibit clear spectral signatures from the phenyl rings and the polyethylenelike backbone. Discussion focuses on analysis considerations and prospects for using this depolarized scattering for studies of disorder in soft condensed matter.

  18. Applying universal scaling laws to identify the best molecular design paradigms for third-order nonlinear optics

    CERN Document Server

    Perez-Moreno, Javier; Kuzyk, Mark G

    2016-01-01

    The scaling of the fundamental limits of the second hyperpolarizability is used to define the intrinsic second hyperpolarizability, which aids in identifying material classes with ultralarge nonlinear-optical response per unit of molecular size. The intrinsic nonlinear response is a size-independent metric that we apply to comparing classes of molecular homologues, which are made by adding repeat units to extend their lengths. Several new figures of merit are proposed that quantify not only the intrinsic nonlinear response, but also how the second hyperpolarizability increases with size within a molecular class. Scaling types can be classified into sub-scaling, nominal scaling that follows the theory of limits, and super-scaling behavior. Super-scaling homologues that have large intrinsic nonlinearity are the most promising because they efficiently take advantage of increased size. We apply our approach to data in the literature to identify the best super-scaling molecular paradigms and articulate the importa...

  19. Applying universal scaling laws to identify the best molecular design paradigms for second-order nonlinear optics

    CERN Document Server

    Perez-Moreno, Javier; Kuzyk, Mark G

    2016-01-01

    We apply scaling and the theory of the fundamental limits of the second-order molecular susceptibility to identify material classes with ultralarge nonlinear-optical response. Size effects are removed by normalizing all nonlinearities to get intrinsic values so that the scaling behavior of a series of molecular homologues can be determined. Several new figures of merit are proposed that quantify the desirable properties for molecules that can be designed by adding a sequence of repeat units, and used in the assessment of the data. Three molecular classes are found. They are characterized by sub-scaling, nominal scaling, or super-scaling. Super-scaling homologues most efficiently take advantage of increased size. We apply our approach to data currently available in the literature to identify the best super-scaling molecular paradigms with the aim of identifying desirable traits of new materials.

  20. Machine Learning for Optical Performance Monitoring from Directly Detected PDM-QAM Signals

    DEFF Research Database (Denmark)

    Wass, J.; Thrane, Jakob; Piels, Molly

    2016-01-01

    Supervised machine learning methods are applied and demonstrated experimentally for inband OSNR estimation and modulation format classification in optical communication systems. The proposed methods accurately evaluate coherent signals up to 64QAM using only intensity information....

  1. Direct Bandgap Light Emission from Strained Ge Nanowires Coupled with High-Q Optical Cavities

    CERN Document Server

    Petykiewicz, Jan; Sukhdeo, David S; Gupta, Shashank; Buckley, Sonia; Piggott, Alexander Y; Vučković, Jelena; Saraswat, Krishna C

    2015-01-01

    A silicon-compatible light source is the final missing piece for completing high-speed, low-power on-chip optical interconnects. In this paper, we present a germanium-based light emitter that encompasses all the aspects of potential low-threshold lasers: highly strained germanium gain medium, strain-induced pseudo-heterostructure, and high-Q optical cavity. Our light emitting structure presents greatly enhanced photoluminescence into cavity modes with measured quality factors of up to 2,000. The emission wavelength is tuned over more than 400 nm with a single lithography step. We find increased optical gain in optical cavities formed with germanium under high (>2.3%) tensile strain. Through quantitative analysis of gain/loss mechanisms, we find that free carrier absorption from the hole bands dominates the gain, resulting in no net gain even from highly strained, n-type doped germanium.

  2. Design and implementation of omni-directional light source and receiving system used in underwater wireless optical communication

    Science.gov (United States)

    Rao, Jionghui; Yao, Wenming; Chen, Nannan

    2013-08-01

    Underwater wireless optical communication is a communication mode which uses light as an information carrier and water as transmission medium. As a result of the inherent characteristics of the light waves, underwater wireless optical communication has the advantages of high transmission rate, good security, and strong anti-interference ability. It is suitable for high-speed, short-range communication between underwater mobile vehicles. Underwater optical wireless communication system designed in this paper is composed of the omni-directional communication light source and the receiving system. In the omni-directional communication light source, the laser beams with small divergence angle of 532nm wavelength produced by modulated laser are expanded through a combination refraction-reflection solid and then obtain more than 2π space divergence angle. The paper use TRACEPRO simulation tool to help design a combination solid composed of the lens, conical reflector and parabolic reflector, and test in the air and underwater, the result shows that the effect is fine. Unlike in the air, light attenuation is heavy in the water and a large range of variations in light intensity at different distances appear during underwater optical communication. In order to overcome this problem, the paper use a small photomultiplier as the detection device, design the receiving system using the automatic gain control technique. Underwater wireless optical communication system designed in this paper has the characteristics of small size, low power dissipation and the omni-directional communication function, it is suitable for application in the UUV, AUV, Swimmer Delivery Vehicle (SDV) and other underwater mobile platform, it realizes point-to-point communications and point-to-multipoint communications.

  3. Direct monitoring of molecular recognition processes using fluorescence enhancement at colloid-coated microplates.

    Science.gov (United States)

    Lobmaier, C; Hawa, G; Götzinger, M; Wirth, M; Pittner, F; Gabor, F

    2001-01-01

    Direct monitoring of recognition processes at the molecular level is a valuable tool for studying reaction kinetics to assess affinity constants (e.g. drugs to receptors) and for designing rapid single step immunoassays. Methods currently used to gain information about binding processes predominantly depend on surface plasmon resonance. These systems use excitation with coherent light in attenuated total reflection geometry to obtain discrimination between surface-bound and free molecules in solution. Therefore labeling of the compounds is not necessary, but due to the complexity of the measuring setup the method is rather costly. In this contribution we present a simple method for performing kinetic single step biorecognition assays with fluorophore labeled compounds using the fluorescence enhancement properties of surface bound silver colloids. Silver colloids are bound to standard microplates via silanization of the plastic surface. Fluorophores close to this colloid coated surface show a significant gain in fluorescence compared to fluorophores farther away in the bulk solution. Therefore discrimination between surface bound and free fluorophores is possible and the binding of, for example, fluorophore labeled antibodies to antigens immobilized on the colloid surface results in increasing fluorescence intensity. Utilization of standard microplates makes this method fully compatible with conventional microplate processing and reading devices. Neither excitation with coherent laser light nor ATR geometry is required, the measurement is performed in a standard fluorescence microplate reader in front face geometry with a xenon flash lamp as excitation source. Methods for the preparation of colloid-coated microplates and fluorescence-enhanced biorecognition assays are presented. Additionally the dependence of the system performance on the structure and properties of the metal colloid coated surface is described. A two-component biorecognition model system shows a

  4. Molecular detection of Streptococcus agalactiae in bovine raw milk samples obtained directly from bulk tanks.

    Science.gov (United States)

    Elias, Acácia Orieth; Cortez, Adriana; Brandão, Paulo Eduardo; da Silva, Rodrigo Costa; Langoni, Helio

    2012-08-01

    Mastitis is the most common infectious disease affecting dairy cattle; in addition, it remains the most economically important disease of dairy industries around the world. Streptococcus agalactiae, a contagious pathogen associated with subclinical mastitis, is highly infectious. This bacterium can cause an increase in bulk tank bacterial counts (BTBC) and bulk tank somatic cell counts (BTSCC). The microbiological identification of S. agalactiae in samples from bulk tanks is an auxiliary method to control contagious mastitis. Thus, there are some limitations for time-consuming cultures or identification methods and additional concerns about the conservation and transport of samples. Bulk tank samples from 247 dairy farms were cultured and compared through polymerase chain reaction (PCR), directed to 16S rRNA genes of S. agalactiae, followed by BTBC and S. agalactiae isolation. The mean value of BTBC was 1.08×10(6) CFU mL(-1) and the bacterium was identified through the microbiological method in 98 (39.7%; CI(95%)=33.8-45.9%) and through PCR in 110 (44.5%; CI(95%)=38.5-50.8%) samples. Results indicated sensitivity of 0.8571±0.0353 (CI(95%)=0.7719-0.9196) and specificity of 0.8255±0.0311 (CI(95%)=0.7549-0.8827). The lack of significant difference between microbiological and molecular results (κ=0.6686±0.0477 and CI(95%)=0.5752-0.7620) indicated substantial agreement between the methods. This suggests that PCR can be used for bulk tank samples to detect contagious mastitis caused by S. agalactiae.

  5. Machine Learning Techniques for Optical Performance Monitoring from Directly Detected PDM-QAM Signals

    DEFF Research Database (Denmark)

    Thrane, Jakob; Wass, Jesper; Piels, Molly

    2017-01-01

    Linear signal processing algorithms are effective in dealing with linear transmission channel and linear signal detection, while the nonlinear signal processing algorithms, from the machine learning community, are effective in dealing with nonlinear transmission channel and nonlinear signal...... detection. In this paper, a brief overview of the various machine learning methods and their application in optical communication is presented and discussed. Moreover, supervised machine learning methods, such as neural networks and support vector machine, are experimentally demonstrated for in-band optical...

  6. Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission

    CERN Document Server

    Devilez, Alexis; Stout, Brian

    2010-01-01

    We report the design of highly efficient optical antennas employing a judicious synthesis of metallic and dielectric materials. In the proposed scheme, a pair of metallic coupled nanoparticles permits large enhancements in both excitation strength and radiative decay rates, while a high refractive index dielectric microsphere is employed to efficiently collect light without spoiling the emitter quantum efficiency. Our simulations indicate potential fluorescence rate enhancements of 3 orders of magnitude over the entire optical frequency range.

  7. Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission.

    Science.gov (United States)

    Devilez, Alexis; Stout, Brian; Bonod, Nicolas

    2010-06-22

    We report the design of highly efficient optical antennas employing a judicious synthesis of metallic and dielectric materials. In the proposed scheme, a pair of metallic coupled nanoparticles permits large enhancements in both excitation strength and radiative decay rates, while a high refractive index dielectric microsphere is employed to efficiently collect light without spoiling the emitter quantum efficiency. Our simulations indicate potential fluorescence rate enhancements of 3 orders of magnitude over the entire optical frequency range.

  8. Optical characterization of HfO{sub 2} by spectroscopic ellipsometry: Dispersion models and direct data inversion

    Energy Technology Data Exchange (ETDEWEB)

    Sancho-Parramon, Jordi [Ruder Boskovic Institute, Bijenicka 54, Zagreb 10000 (Croatia)], E-mail: j.sancho.parramon@gmail.com; Modreanu, Mircea [University College Cork, Tyndall National Institute (TYNDALL), Lee Maltings, Prospect Row, Cork (Ireland); Bosch, Salvador [Universitat de Barcelona, Marti i Franques 1, Barcelona 08930 (Spain); Stchakovsky, Michel [HORIBA Jobin Yvon, Thin Film Division, Chilly-Mazarin 91380 (France)

    2008-09-30

    Hafnium oxide (HfO{sub 2}) has attracted much interest as high-k material of choice for gate oxide replacement in future CMOS technologies and for its use in optical coating technology. The determination of optical properties, like refractive index and bandgap, is focus of intense research, since the optical constants of HfO{sub 2} depend on the physical microstructure and the deposition methods and conditions. In the present study optical characterization of very thin HfO{sub 2} films deposited by plasma ion assisted deposition and annealed at different temperatures is carried out. The characterization is performed using ellipsometric measurements in the spectral range from 1.5 to 8 eV and by using the Tauc-Lorentz and Cody-Lorentz dispersion models. In addition, direct inversion of the ellipsometric data is also carried out. The combination of the Cody-Lorentz model with Urbach tail results in the best description of the data and enables to determine meaningful parameters. On the other hand, the direct data inversion is shown to be useful to provide additional information like the presence of subgap absorption peaks and points out features associated to the crystallinity of the material.

  9. Direct Observation of Molecular Preorganization for Chirality Transfer on a Catalyst Surface

    DEFF Research Database (Denmark)

    Demers-Carpentier, Vincent; Goubert,, Guillaume; Masini, Federico

    2011-01-01

    The chemisorption of specific optically active compounds on metal surfaces can create catalytically active chirality transfer sites. However, the mechanism through which these sites bias the stereoselectivity of reactions (typically hydrogenations) is generally assumed to be so complex that conti...

  10. Normal and system lupus erythematosus red blood cell interactions studied by double trap optical tweezers: direct measurements of aggregation forces

    Science.gov (United States)

    Khokhlova, Maria D.; Lyubin, Eugeny V.; Zhdanov, Alexander G.; Rykova, Sophia Yu.; Sokolova, Irina A.; Fedyanin, Andrey A.

    2012-02-01

    Direct measurements of aggregation forces in piconewton range between two red blood cells in pair rouleau are performed under physiological conditions using double trap optical tweezers. Aggregation and disaggregation properties of healthy and pathologic (system lupus erythematosis) blood samples are analyzed. Strong difference in aggregation speed and behavior is revealed using the offered method which is proposed to be a promising tool for SLE monitoring at single cell level.

  11. Direct implementation of a scalable non-local multi-qubit controlled phase gate via optical fibres and adiabatic passage

    Institute of Scientific and Technical Information of China (English)

    Tang Yao-Xiang; Lin Xiu-Min; Lin Gong-Wei; Chen Li-Bo; Huang Xiu-Hua

    2008-01-01

    This paper presents a direct implementation scheme of the non-local multi-qubit controlled phase gate by using optical fibres and adiabatic passage. The smaller operation number for implementing the multi-qubit controlled phase gate and needlessness for addressing individually save physical resource and lower the difficulties of experiment. Meanwhile, the scheme is immune from some decoherence effects such as the atomic spontaneous emission and fibre loss. In principle, it is scalable.

  12. Thermo-optic control of dielectric-loaded plasmonic Mach-Zehnder interferometers and directional coupler switches

    DEFF Research Database (Denmark)

    Gosciniak, J.; Markey, L.; Dereux, A.

    2012-01-01

    We report detailed experimental studies of compact fiber-coupled dielectric-loaded plasmonic waveguide components-Mach-Zehnder interferometers (MZIs) and directional couplers (DCs)-whose operation at telecom wavelengths is controlled via the thermo-optic effect by electrically heating the gold st......, and wavelength dependent low power (similar to 0.92 mW) rerouting is achieved with DC switches. Furthermore, simulations were performed to confirm the switching characteristics of the components....

  13. Non-linear optical properties of molecules in heterogeneous environments: a quadratic density functional/molecular mechanics response theory.

    Science.gov (United States)

    Rinkevicius, Zilvinas; Li, Xin; Sandberg, Jaime A R; Ågren, Hans

    2014-05-21

    We generalize a density functional theory/molecular mechanics approach for heterogeneous environments with an implementation of quadratic response theory. The updated methodology allows us to address a variety of non-linear optical, magnetic and mixed properties of molecular species in complex environments, such as combined metallic, solvent and confined organic environments. Illustrating calculations of para-nitroaniline on gold surfaces and in solution reveals a number of aspects that come into play when analyzing second harmonic generation of such systems--such as surface charge flow, coupled surface-solvent dynamics and induced geometric and electronic structure effects of the adsorbate. Some ramifications of the methodology for applied studies are discussed.

  14. Three-dimensional optical micro-angiography maps directional blood perfusion deep within microcirculation tissue beds in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruikang K [Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97237 (United States)

    2007-12-07

    Optical micro-angiography (OMAG) is a recently developed method of imaging localized blood perfusion at capillary level resolution within microcirculatory beds. This paper reports that the OMAG is capable of directional blood perfusion mapping in vivo. This is achieved simply by translating the mirror located in the reference arm back and forth while 3D imaging is performed. The mirror which moves toward the incident beam gives the blood perfusion that flows away from the beam direction and vice versa. The approach is experimentally demonstrated by imaging of a flow phantom and then cerebro-vascular perfusion of a live mouse with cranium intact.

  15. Optical sites in Eu- and Mg-codoped GaN grown by NH3-source molecular beam epitaxy

    Science.gov (United States)

    Sekiguchi, Hiroto; Sakai, Masaru; Kamada, Takuho; Tateishi, Hiroki; Syouji, Atsushi; Wakahara, Akihiro

    2016-10-01

    Mg codoping can improve the luminescence properties of Eu-doped GaN. However, the enhanced optical sites differ depending on the fabrication method. In this study, the optical sites in Eu- and Mg-codoped GaN [GaN:(Eu, Mg)] grown by NH3-source molecular beam epitaxy (MBE) were evaluated. The optical properties of an Eu-Mg-related site grown by NH3-MBE were highly stable against thermal annealing. Although the luminescence at sites A (622.3 and 633.8 nm) and B (621.9 and 622.8 nm) was dominant under indirect excitation of Eu ions through GaN, four different optical site groups in addition to sites A and B were observed under resonant excitation. These optical sites are inconsistent with the Eu-Mg-related sites reportedly observed in GaN:(Eu, Mg) fabricated by organometallic vapor phase epitaxy, indicating that the optical site constitution strongly depends on the growth method. Furthermore, site A, with a high cross section, contributed to as much as 22% of the total photoluminescence (PL) integrated intensity for GaN:(Eu, Mg) grown by NH3-MBE, which resulted in a high PL intensity.

  16. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Ninth Edition Optics: Ninth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommen

  17. A Closed-Cycle Optical Cryostat and Improved Optical Elements for Studies of Dissipation at the Molecular Scale

    Science.gov (United States)

    2016-02-05

    dependent resistivity of the Au film constituting the wire . The heating is considerably enhanced when the incident polarization is aligned...Zolotavin, Douglas Natelson. Plasmonic Heating in Au nanowires at Low Temperatures, ACS Nano (02 2016) TOTAL: 1 Books Number of Manuscripts: Patents...Inventions (DD882) Scientific Progress See attachment. Technology Transfer Final report: A closed-cycle optical cryostat and

  18. Aero-optic analysis of anisotropic turbulent boundary layer by direct integration

    Science.gov (United States)

    Taylor, S.; Price, J.; Chen, C. P.; Pond, John E.; Sutton, G. W.

    2013-09-01

    Aero-optic aberrations that effect optical sensor performance and laser beam propagation, can be caused by changes in the index-of-refraction field as the optical wave traverses a compressible non-uniform, turbulent flowfield. Mean flowfield non-uniformities cause bore sight error and blurring and, if the mean flowfield is unsteady, jitter. Turbulence causes blurring and high frequency jitter. Blurring also causes the signal-to-noise ratio to decrease and image distortion, and adversely affects centroid location for precision tracking. The objective of this study is to develop an unified approach for whole-field aero-optics prediction using hybrid LES/RANS (Large Eddy Simulation/Reynolds Average Navier-Stokes) turbulence modeling in combination with a newly formulated optical Modulation Transfer Function (MTF). The whole field turbulence includes the near-vehicle boundary layer mean and turbulence, as well as far-field atmospheric turbulence. A flat plate compressible boundary layer case is used to demonstrate the methodology. the abstract two lines below author names and addresses.

  19. FIRST OPTICAL AND NEAR-INFRARED POLARIMETRY OF A MOLECULAR CLOUD FORMING A PROTO-BROWN DWARF CANDIDATE

    Energy Technology Data Exchange (ETDEWEB)

    Soam, A.; Maheswar, G. [Aryabhatta Research Institute of Observational Sciences (ARIES), Manora Peak, Nainital-263 002 (India); Kwon, Jugmi; Tamura, Motohide [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Lee, Chang Won, E-mail: archana@aries.res.in [Korea Astronomy and Space Science Institute (KASI), 776 Daedeokdae-ro, Yuseong-gu, Daejeon 305-348 (Korea, Republic of)

    2015-04-20

    LDN 328 is cited as an example of a fairly isolated clump contracting to form multiple sub-cores, possibly through gravitational fragmentation. In one of these sub-cores, a proto-brown dwarf (L328-IRS) candidate is in the process of formation through the self-gravitating contraction, similar to the formation scenario of a low-mass star. We present results of our optical and near-infrared polarization observations of regions toward LDN 328. This is the first observational attempt to map the magnetic field geometry of a cloud harboring a proto-brown dwarf candidate associated with a sub-parsec-scale molecular outflow. On a parsec scale, the magnetic field is found to follow the curved structure of the cloud showing a head–tail morphology. The magnetic field is found to be well ordered over a 0.02–0.2 pc scale around L328-IRS. Taking into account the uncertainties in the determination of position angles, the projected angular offset between the magnetic field direction and the outflow axis is found to be in the range of 0°–70°. Considering outflow to be the proxy for the rotation axis, the result obtained in this study implies that the rotation axis in L328 is preferably parallel to the local magnetic field. The magnetic field strength estimated in the close vicinity of L328-IRS is ∼20 μG. Results from the present study suggest that the magnetic field may be playing a vital role even in the cores that are forming sub-stellar sources.

  20. Gigahertz optical memory with up to 20 dB gain via molecular quenching in caesium vapour

    CERN Document Server

    Thomas, S E; Kaczmarek, K T; Qiu, C; Brecht, B; Feizpour, A; Ledingham, P M; Walmsley, I A; Nunn, J; Saunders, D J

    2016-01-01

    Raman interactions in alkali vapours are used in applications such as atomic clocks, optical signal processing, generation of squeezed light and Raman quantum memories for temporal multiplexing. To achieve a strong interaction the alkali ensemble needs both a large optical depth and a high level of spin-polarisation. We implement a technique known as quenching using a molecular buffer gas which allows near-perfect spin-polarisation of over 99.5% in caesium vapour at high optical depths of up to $\\sim 10^5$; a factor of 4 higher than can be achieved without quenching. We use this system to explore efficient light storage with high gain in a GHz bandwidth Raman memory.

  1. Lick Observatory's Shane telescope adaptive optics system (ShaneAO): research directions and progress

    Science.gov (United States)

    Gavel, Donald T.; Kupke, Renate; Rudy, Alexander R.; Srinath, Srikar; Dillon, Daren; Poyneer, Lisa A.

    2016-07-01

    We present a review of the ongoing research activity surrounding the adaptive optics system at the Shane telescope (ShaneAO) particularly the R&D efforts on the technology and algorithms for that will advance AO into wider application for astronomy. We are pursuing the AO challenges for whole sky coverage diffraction-limited correction down to visible science wavelengths. This demands high-order wavefront correction and bright artificial laser beacons. We present recent advancements in the development of MEMS based AO correction, woofer-tweeter architecture, wind-predictive wavefront control algorithms, atmospheric characterization, and a pulsed fiber amplifier guide star laser tuned for optical pumping of the sodium layer. We present the latest on-sky results from the new AO system and present status and experimental plans for the optical pumping guide star laser.

  2. Synthetic Molecular Motors: Thermal N Inversion and Directional Photoinduced C=N Bond Rotation of Camphorquinone Imines.

    Science.gov (United States)

    Greb, Lutz; Eichhöfer, Andreas; Lehn, Jean-Marie

    2015-11-23

    The thermal and photochemical E/Z isomerization of camphorquinone-derived imines was studied by a combination of kinetic, structural, and computational methods. The thermal isomerization proceeds by linear N inversion, whereas the photoinduced process occurs through C=N bond rotation with preferred directionality as a result of diastereoisomerism. Thereby, these imines are arguably the simplest example of synthetic molecular motors. The generality of the orthogonal trajectories of the thermal and photochemical pathways allows for the postulation that every suitable chiral imine qualifies, in principle, as a molecular motor driven by light or heat.

  3. Hybrid plasmonic magnetic nanoparticles as molecular specific agents for MRI/optical imaging and photothermal therapy of cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Timothy A [Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712 (United States); Bankson, James [Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX 77030 (United States); Aaron, Jesse [Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712 (United States); Sokolov, Konstantin [Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712 (United States)

    2007-08-15

    Nanoparticles which consist of a plasmonic layer and an iron oxide moiety could provide a promising platform for development of multimodal imaging and therapy approaches in future medicine. However, the feasibility of this platform has yet to be fully explored. In this study we demonstrated the use of gold-coated iron oxide hybrid nanoparticles for combined molecular specific MRI/optical imaging and photothermal therapy of cancer cells. The gold layer exhibits a surface plasmon resonance that provides optical contrast due to light scattering in the visible region and also presents a convenient surface for conjugating targeting moieties, while the iron oxide cores give strong T{sub 2} (spin-spin relaxation time) contrast. The strong optical absorption of the plasmonic gold layer also makes these nanoparticles a promising agent for photothermal therapy. We synthesized hybrid nanoparticles which specifically target epidermal growth factor receptor (EGFR), a common biomarker for many epithelial cancers. We demonstrated molecular specific MRI and optical imaging in MDA-MB-468 breast cancer cells. Furthermore, we showed that receptor-mediated aggregation of anti-EGFR hybrid nanoparticles allows selective destruction of highly proliferative cancer cells using a nanosecond pulsed laser at 700 nm wavelength, a significant shift from the peak absorbance of isolated hybrid nanoparticles at 532 nm.

  4. Direct optical imaging of graphene in vitro by nonlinear femtosecond laser spectral reshaping.

    Science.gov (United States)

    Li, Baolei; Cheng, Yingwen; Liu, Jie; Yi, Congwen; Brown, April S; Yuan, Hsiangkuo; Vo-Dinh, Tuan; Fischer, Martin C; Warren, Warren S

    2012-11-14

    Nonlinear optical microscopy, based on femtosecond laser spectral reshaping, characterized and imaged graphene samples made from different methods, both on slides and in a biological environment. This technique clearly discriminates between graphene flakes with different numbers of layers and reveals the distinct nonlinear optical properties of reduced graphene oxide as compared to mechanically exfoliated or chemical vapor deposition grown graphene. The nonlinearity makes it applicable to scattering samples (such as tissue) as opposed to previous methods, such as transmission. This was demonstrated by high-resolution imaging of breast cancer cells incubated with graphene flakes.

  5. DNA origami-directed, discrete three-dimensional plasmonic tetrahedron nanoarchitectures with tailored optical chirality.

    Science.gov (United States)

    Dai, Gaole; Lu, Xuxing; Chen, Zhong; Meng, Chun; Ni, Weihai; Wang, Qiangbin

    2014-04-23

    Discrete, three-dimensional (3D) gold nanoparticle (AuNP) tetrahedron nanoarchitectures are successfully self-assembled with DNA origami as template with high purity (>85%). A distinct plasmonic chiral response is experimentally observed from the AuNP tetrahedron nanoarchitectures and appears in a configuration-dependent manner. The chiral optical properties are then rationally engineered by modifying the structural parameters including the AuNP size and interparticle distance. Theoretical study of the AuNP tetrahedron nanoarchitectures shows the dependence of the chiral optical property on the AuNP size and interparticle distance, consistent with the ensemble averaged measurements.

  6. Molecular and cellular characterization of a zebrafish optic pathway tumor line implicates glia-derived progenitors in tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Staci L Solin

    Full Text Available In this study we describe the molecular and cellular characterization of a zebrafish mutant that develops tumors in the optic pathway. Heterozygous Tg(flk1:RFPis18 transgenic adults develop tumors of the retina, optic nerve and optic tract. Molecular and genetic mapping demonstrate the tumor phenotype is linked to a high copy number transgene array integrated in the lincRNA gene lincRNAis18/Zv9_00007276 on chromosome 3. TALENs were used to isolate a 147 kb deletion allele that removes exons 2-5 of the lincRNAis18 gene. Deletion allele homozygotes are viable and do not develop tumors, indicating loss of function of the lincRNAis18 locus is not the trigger for tumor onset. Optic pathway tumors in the Tg(flk1:RFPis18 mutant occur with a penetrance of 80-100% by 1 year of age. The retinal tumors are highly vascularized and composed of rosettes of various sizes embedded in a fibrous matrix. Immunohistochemical analysis showed increased expression of the glial markers GFAP and BLBP throughout retinal tumors and in dysplastic optic nerve. We performed transcriptome analysis of pre-tumorous retina and retinal tumor tissue and found changes in gene expression signatures of radial glia and astrocytes (slc1a3, activated glia (atf3, blbp, apoeb, proliferating neural progenitors (foxd3, nestin, cdh2, her9/hes1, and glioma markers (S100β, vim. The transcriptome also revealed activation of cAMP, Stat3 and Wnt signal transduction pathways. qRT-PCR confirmed >10-fold overexpression of the Wnt pathway components hbegfa, ascl1a, and insm1a. Together the data indicate Müller glia and/or astrocyte-derived progenitors could contribute to the zebrafish Tg(flk1:RFPis18 optic pathway tumors.

  7. Quality control of direct molecular diagnostics for methicillin-resistant Staphylococcus aureus.

    NARCIS (Netherlands)

    A.F. van Belkum (Alex); H.G.M. Niesters (Bert); W.G. MacKay (William); W.B. van Leeuwen (Willem)

    2007-01-01

    textabstractTen samples containing various amounts of methicillin-resistant Staphylococcus aureus (MRSA), methicillin-susceptible S. aureus, methicillin-resistant Staphylococcus epidermidis (MRSE), and combinations thereof were distributed to 51 laboratories for molecular diagnostics testing. Sample

  8. Quality control of direct molecular diagnostics for methicillin-resistant Staphylococcus aureus

    NARCIS (Netherlands)

    van Belkum, Alex; Niesters, Hubert G M; MacKay, William G; van Leeuwen, Willem B

    2007-01-01

    Ten samples containing various amounts of methicillin-resistant Staphylococcus aureus (MRSA), methicillin-susceptible S. aureus, methicillin-resistant Staphylococcus epidermidis (MRSE), and combinations thereof were distributed to 51 laboratories for molecular diagnostics testing. Samples containing

  9. In-situ monitoring of undercoating corrosion damage by Direct Optical Interrogation (DOI)

    Science.gov (United States)

    Lopez-Garrity, Meng

    An approach referred to as "Direct Optical Interrogation" (DOI) has been developed as an extension of the thin film pitting approach developed and used by Frankel and others. Samples were prepared by depositing Al and Al-Cu alloy metallizations about 800 nm thick on glass substrates. These metallizations were then coated with various coatings and coating systems. Samples were introduced to aggressive environments and the progression of corrosion of the metallization under the coating was monitored in situ using low power videography. Because metallizations were thin, corrosion quickly penetrated through the metal layer to the glass substrate and then spread laterally. Measurement of the lateral spread of corrosion enabled non-electrochemical assessment of the corrosion kinetics. In Al-Cu thin films, both aged and as-deposited, corrosion sites are irregularly shaped because there is not enough cathodic current to propagate the entire corrosion site margin at equal rates. In a number of cases, corrosion propagates with a filamentary morphology resembling filiform corrosion. Cu played a strong role in determining under coating corrosion morphology and growth kinetics in experiments with Al-Cu thin films substrates. As-deposited Al-Cu metallizations were more corrosion resistant than aged metallization and both were more corrosion resistant than pure Al. Cu-rich dendrites were formed on the corrosion front. Corrosion rate (current density) was calculated using Faraday's law by collecting corrosion site perimeter and bottom area. Systematic exploration of the effects of a chromate and chromate-free conversion coatings, chromate and chromate-free primer coatings and the presence or absence of a polyurethane topcoat confirmed the extraordinary corrosion protection by chromates. A commercial praseodymium-pigmented primer coating was not particularly effective in retarding undercoating corrosion site growth unless paired with a chromate conversion coating. The presence of a

  10. The amplitude and the phase or: Measuring directional and random motion with optical coherence tomography

    NARCIS (Netherlands)

    Weiss, N.M.

    2016-01-01

    Optical coherence tomography (OCT) uses a low coherence light source and a Michelson interferometer to measure path-length resolved backscatter profiles of samples with micrometer resolution and up to a few millimeters long. The OCT amplitude is typically used to generate images of the sample. Addit

  11. SC-FDE for MMF short reach optical interconnects using directly modulated 850 nm VCSELs

    DEFF Research Database (Denmark)

    Teichmann, Victor S. C.; Barreto, Andre N.; Pham, Tien Thang

    2012-01-01

    We propose the use of single-carrier frequency-domain equalization (SC-FDE) for the compensation of modal dispersion in short distance optical links using multimode fibers and 850 nm VCSELs. By post-processing of experimental data, we demonstrate, at 7.9% overhead, the error-free transmission (ov...

  12. Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures

    Institute of Scientific and Technical Information of China (English)

    Thomas Allsop; Raz Arif; Ron Neal; Kyriacos Kalli; Vojtěch Kundrát; Aleksey Rozhin; Phil Culverhouse

    2016-01-01

    We investigate the modification of the optical properties of carbon nanotubes (CNTs) resulting from a chemical reaction triggered by the presence of a specific compound (gaseous carbon dioxide (CO2)) and show this mechanism has important consequences for chemical sensing.CNTs have attracted significant research interest because they can be functionalized for a particular chemical,yielding a specific physical response which suggests many potential applications in the fields of nanotechnology and sensing.So far,however,utilizing their optical properties for this purpose has proven to be challenging.We demonstrate the use of localized surface plasmons generated on a nanostructured thin film,resembling a large array of nano-wires,to detect changes in the optical properties of the CNTs.Chemical selectivity is demonstrated using CO2 in gaseous form at room temperature.The demonstrated methodology results additionally in a new,electrically passive,optical sensing configuration that opens up the possibilities of using CNTs as sensors in hazardous/explosive environments.

  13. Molecular-Based Optical Measurement Techniques for Transition and Turbulence in High-Speed Flow

    Science.gov (United States)

    Bathel, Brett F.; Danehy, Paul M.; Cutler, Andrew D.

    2013-01-01

    photogrammetry (for model attitude and deformation measurement) are excluded to limit the scope of this report. Other physical probes such as heat flux gauges, total temperature probes are also excluded. We further exclude measurement techniques that require particle seeding though particle based methods may still be useful in many high speed flow applications. This manuscript details some of the more widely used molecular-based measurement techniques for studying transition and turbulence: laser-induced fluorescence (LIF), Rayleigh and Raman Scattering and coherent anti-Stokes Raman scattering (CARS). These techniques are emphasized, in part, because of the prior experience of the authors. Additional molecular based techniques are described, albeit in less detail. Where possible, an effort is made to compare the relative advantages and disadvantages of the various measurement techniques, although these comparisons can be subjective views of the authors. Finally, the manuscript concludes by evaluating the different measurement techniques in view of the precision requirements described in this chapter. Additional requirements and considerations are discussed to assist with choosing an optical measurement technique for a given application.

  14. Optical Properties of Titania Coatings Prepared by Inkjet Direct Patterning of a Reverse Micelles Sol-Gel Composition

    Directory of Open Access Journals (Sweden)

    Veronika Schmiedova

    2015-08-01

    Full Text Available Thin layers of titanium dioxide were fabricated by direct inkjet patterning of a reverse micelles sol-gel composition onto soda-lime glass plates. Several series of variable thickness samples were produced by repeated overprinting and these were further calcined at different temperatures. The resulting layers were inspected by optical and scanning electronic microscopy and their optical properties were investigated by spectroscopic ellipsometry in the range of 200–1000 nm. Thus the influence of the calcination temperature on material as well as optical properties of the patterned micellar titania was studied. The additive nature of the deposition process was demonstrated by a linear dependence of total thickness on the number of printed layers without being significantly affected by the calcination temperature. The micellar imprints structure of the titania layer resulted into significant deviation of measured optical constants from the values reported for bulk titania. The introduction of a void layer into the ellipsometric model was found necessary for this particular type of titania and enabled correct ellipsometric determination of layer thickness, well matching the thickness values from mechanical profilometry.

  15. Comparison of epoxy- and siloxane-based single-mode optical waveguides defined by direct-write lithography

    Science.gov (United States)

    Elmogi, Ahmed; Bosman, Erwin; Missinne, Jeroen; Van Steenberge, Geert

    2016-02-01

    This paper reports on the fabrication and characterization of single-mode polymer optical waveguides at telecom and SOI compatible wavelengths; by making a comparison between an epoxy and a siloxane polymer waveguide material system (both commercially-available). The proposed waveguides can be used in short-reach optical interconnects targeting chip-to-chip communication on the interposer level or providing a coupling interface between single-mode optical fibers and photonic integrated circuits (PICs). This technology enables the integration of optoelectronic chips for photonic packaging purposes. First, the single-mode dimensions (4 × 4 μm2 and 5 × 5 μm2) for both materials at selected wavelengths (1.31 μm and 1.55 μm) were determined based on the refractive index measurements. Then, the waveguides were patterned by a direct-write lithography method. The fabricated waveguides show a high-quality surface with smooth sidewalls. The optical propagation losses were measured using the cut-back method. For the siloxane-based waveguides, the propagation losses were found to be 0.34 dB/cm and 1.36 dB/cm at 1.31 μm and 1.55 μm respectively while for the epoxy-based waveguides the losses were 0.49 dB/cm and 2.23 dB/cm at 1.31 μm and 1.55 μm respectively.

  16. Phase-sensitive optical pulse characterization on a chip via Spectral Phase Interferometry for Direct Electric-Field Reconstruction (SPIDER)

    CERN Document Server

    Pasquazi, Alessia; Park, Yongwoo; Little, Brent E; Chu, Sai T; Morandotti, Roberto; Azana, Jose; Moss, David J

    2014-01-01

    The recent introduction of coherent optical communications has created a compelling need for ultra-fast phase-sensitive measurement techniques operating at milliwatt peak power levels and in time scales ranging from sub-picoseconds to nanoseconds. Previous reports of ultrafast optical signal measurements in integrated platforms[8-10] include time-lens temporal imaging on a silicon chip[8,9] and waveguide-based Frequency-Resolved Optical Gating (FROG). Time-lens imaging is phase insensitive while waveguide-based FROG methods require the integration of long tuneable delay lines - still an unsolved challenge. Here, we report a device capable of characterizing both the amplitude and phase of ultrafast optical pulses with the aid of a synchronized incoherently-related clock pulse. It is based on a novel variation of Spectral Phase Interferometry for Direct Electric-Field Reconstruction (SPIDER)that exploits degenerate four-wave-mixing (FWM) in a CMOS compatible chip. We measure pulses with 1THz, and up to 100ps pu...

  17. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Eighth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommended for engineering st

  18. Directed assembly of nanoparticles monitored by liquid crystal topological defects for advanced optical properties of the composites (Conference Presentation)

    Science.gov (United States)

    Lacaze, Emmanuelle

    2016-09-01

    Directed assembly of nanoparticles is a promising alternative for original nanoparticle organizations. New kinds of optical properties are expected when semi-conductive or metallic nanoparticles are concerned. Using liquid crystal matrices oriented by their interfaces, it is possible to induce anisotropic nanoparticle organizations. We can then investigate the influence of these matrices on the optical properties of the nanoparticles. I will show how to create hierarchical arrays of oriented topological defects in thin smectic films that act as efficient traps for a specific localization and orientation of nanoparticles [1]. I will show how specific nanoparticle assemblies can be obtained, depending on the nanoparticle size and shape. Fluorescent nanorods trapped in smectic dislocations become strictly oriented along a single direction, providing, a fine control of the polarization of the emmitted single photons [2]. Similarly the orientation of gold nanorods leads to the control of their luminescence as well as of their plasmon resonance by light polarization. I will show that, when the nanoparticle concentration is increased, single chains are formed, and can lead to a strong anisotropic electromagnetic coupling between the particles [3]. We are not only capable of linearly confining the particles, but also of varying the inter-particle interactions and thus modifing their optical properties which are sensitive to the inter-particle distance [4]. [1] D. Coursault, Soft Matter 12 (2016) 629. [2] L. Pelliser et al, Adv. Funct. Mat. 25 (2015) 1719. [3] D. Coursault et al., Adv. Mat. 24 (2012) 1461. [4] D. Coursault et al., ACSNano 9 (2015) 11678.

  19. The characterization of low energy molecular hydrogen ion—induced defects in synthetic diamond by optical absorption

    Institute of Scientific and Technical Information of China (English)

    MaZhong-Quan; AokiY; 等

    1998-01-01

    The results of optical absorption analysis of the synthetic diamonds(type Ib) which were implanted with 40 keV molecular hydrogen ions at doses of 1015-1017H/cm2(at 100K),showed that the increase of optical density(OD) of modified layer(-140nm) in UV-VIS region was dependent upon the damage level caused by ion implantation process.The range of relative optical band gap(Er.opt) around 2.0eV suggested that an amorphous carbon network structure like a-C film,which probably contains some localized subtetrabedral-coordinated clusters embedded in the fourflod(sp3) sites.was tentatively found in this layer,basing on the optical gap of carbon materials.The evolution of Er,opt with ion fluence indicated that no more hydrogenated carbon compositions were produced in as -implanted samples,while the increase of Er,opt with annealing temperature was very similar to that of hydrogen content dependence of Eopt in hydrogenately amorphous carbon(a-C:H):In addition the optical inhomogeneity of type Ib diamond has been revealed by a 2-dimension topograph in transmission mode at λ=430nm。

  20. Direct assignment of molecular vibrations via normal mode analysis of the neutron dynamic pair distribution function technique

    Energy Technology Data Exchange (ETDEWEB)

    Fry-Petit, A. M., E-mail: mcqueen@jhu.edu, E-mail: afry@fullerton.edu; Sheckelton, J. P.; McQueen, T. M., E-mail: mcqueen@jhu.edu, E-mail: afry@fullerton.edu [Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218 (United States); Institute for Quantum Matter and Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218 (United States); Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Rebola, A. F.; Fennie, C. J. [Department of Applied Physics, Cornell University, Ithaca, New York 14853 (United States); Mourigal, M.; Valentine, M.; Drichko, N. [Institute for Quantum Matter and Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2015-09-28

    For over a century, vibrational spectroscopy has enhanced the study of materials. Yet, assignment of particular molecular motions to vibrational excitations has relied on indirect methods. Here, we demonstrate that applying group theoretical methods to the dynamic pair distribution function analysis of neutron scattering data provides direct access to the individual atomic displacements responsible for these excitations. Applied to the molecule-based frustrated magnet with a potential magnetic valence-bond state, LiZn{sub 2}Mo{sub 3}O{sub 8}, this approach allows direct assignment of the constrained rotational mode of Mo{sub 3}O{sub 13} clusters and internal modes of MoO{sub 6} polyhedra. We anticipate that coupling this well known data analysis technique with dynamic pair distribution function analysis will have broad application in connecting structural dynamics to physical properties in a wide range of molecular and solid state systems.

  1. The Question of Absolute Space and Time Directions in Relation to Molecular Chirality, Parity Violation, and Biomolecular Homochirality

    Energy Technology Data Exchange (ETDEWEB)

    Quack, Martin (ETH - Zurich)

    2001-03-21

    The questions of the absolute directions of space and time or the “observability” of absolute time direction as well as absolute handedness-left or right- are related to the fundamental symmetries of physics C, P, T as well as their combinations, in particular CPT, and their violations, such as parity violation. At the same time there is a relation to certain still open questions in chemistry concerning the fundamental physical- chemical principles of molecular chirality and in biochemistry concerning the selection of homochirality in evolution. In the lecture we shall introduce the concepts and then report new theoretical results from our work on parity violation in chiral molecules, showing order of magnitude increases with respect to previously accepted values. We discus as well our current experimental efforts. We shall briefly mention the construction of an absolute molecular clock.

  2. The Question of Absolute Space and Time Directions in Relation to Molecular Chirality, Parity Violation, and Biomolecular Homochirality

    Energy Technology Data Exchange (ETDEWEB)

    Quack, Martin (ETH - Zurich)

    2001-03-21

    The questions of the absolute directions of space and time or the 'observability' of absolute time direction as well as absolute handedness - left or right - are related to the fundamental symmetries of physics C, P, T as well as their combinations, in particular CPT, and their violations, such as parity violation. At the same time there is a relation to certain still open questions in chemistry concerning the fundamental physical-chemical principles of molecular chirality and in biochemistry concerning the selection of homochirality in evolution. In the lecture we shall introduce the concepts and then report new theoretical results from our work on parity violation in chiral molecules, showing order of magnitude increases with respect to previously accepted values. We discuss as well our current experimental efforts. We shall briefly mention the construction of an absolute molecular clock.

  3. Direct Observation of Early-stage Quantum Dot Growth Mechanisms with High-temperature Ab Initio Molecular Dynamics

    OpenAIRE

    2015-01-01

    Colloidal quantum dots (QDs) exhibit highly desirable size- and shape-dependent properties for applications from electronic devices to imaging. Indium phosphide QDs have emerged as a primary candidate to replace the more toxic CdSe QDs, but production of InP QDs with the desired properties lags behind other QD materials due to a poor understanding of how to tune the growth process. Using high-temperature ab initio molecular dynamics (AIMD) simulations, we report the first direct observation o...

  4. Modeling focusing characteristics of low Fnumber diffractive optical elements with continuous relief fabricated by laser direct writing.

    Science.gov (United States)

    Shan, Mingguang; Tan, Jiubin

    2007-12-10

    A theoretical model is established using Rayleigh-Sommerfeld diffraction theory to describe the diffraction focusing characteristics of low F-number diffractive optical elements with continuous relief fabricated by laser direct writing, and continuous-relief diffractive optical elements with a design wavelength of 441.6nm and a F-number of F/4 are fabricated and measured to verify the validity of the diffraction focusing model. The measurements made indicate that the spot size is 1.75mum and the diffraction efficiency is 70.7% at the design wavelength, which coincide well with the theoretical results: a spot size of 1.66mum and a diffraction efficiency of 71.2%.

  5. Performance improvement of hybrid subcarrier multiplexing optical spectrum code division multiplexing system using spectral direct decoding detection technique

    Science.gov (United States)

    Sahbudin, R. K. Z.; Abdullah, M. K.; Mokhtar, M.

    2009-06-01

    This paper proposes a hybrid subcarrier multiplexing/optical spectrum code division multiplexing (SCM/OSCDM) system for the purpose of combining the advantages of both techniques. Optical spectrum code division multiple-access (OSCDMA) is one of the multiplexing techniques that is becoming popular because of the flexibility in the allocation of channels, ability to operate asynchronously, enhanced privacy and increased capacity in bursty nature networks. On the other hand, subcarrier multiplexing (SCM) technique is able to enhance the channel data rate of OSCDMA systems. In this paper, a newly developed detection technique for the OSCDM called spectral direct decoding (SDD) detection technique is compared mathematically with the AND subtraction detection technique. The system utilizes a new unified code construction named KS (Khazani-Syed) code. The results characterizing the bit-error-rate (BER) show that SDD offers a significant improved performance at BER of 10 -9.

  6. Experimental demonstration of 30 Gb/s direct-detection optical OFDM transmission with blind symbol synchronisation using virtual subcarriers.

    Science.gov (United States)

    Bouziane, R; Milder, P A; Erkılınç, S; Galdino, L; Kilmurray, S; Thomsen, B C; Bayvel, P; Killey, R I

    2014-02-24

    The paper investigates the performance of a blind symbol synchronisation technique for optical OFDM systems based on virtual subcarriers. The test-bed includes a real-time 16-QAM OFDM transmitter operating at a net data rate of 30.65 Gb/s using a single OFDM band with a single FPGA-DAC subsystem and demonstrates transmission over 23.3 km SSMF with direct detection at a BER of 10(-3). By comparing the performance of the proposed synchronisation scheme with that of the Schmidl and Cox algorithm, it was found that the two approaches achieve similar performance for large numbers of averaging symbols, but the performance of the proposed scheme degrades as the number of averaging symbols is reduced. The proposed technique has lower complexity and bandwidth overhead as it does not rely on training sequences. Consequently, it is suitable for implementation in high speed optical OFDM transceivers.

  7. Direct optical sensing of single unlabeled small proteins and super-resolution microscopy of their binding sites

    CERN Document Server

    Piliarik, Marek

    2013-01-01

    More than twenty years ago, scientists succeeded in pushing the limits of optical detection to single molecules using fluorescence. This breakthrough has revolutionized biophysical measurements, but restrictions in photophysics and labeling protocols have motivated many efforts to achieve fluorescence-free single-molecule sensitivity in biological studies. Although several interesting mechanisms using vibrational spectroscopy, photothermal detection, plasmonics or microcavities have been proposed for biosensing at the single-protein level, no method has succeeded in direct label-free detection of single proteins. Here, we present the first results using interferometric detection of scattering (iSCAT) from single proteins without the need for any label, optical nanostructure or microcavity. Furthermore, we demonstrate super-resolution imaging of protein binding with nanometer localization precision. The ease of iSCAT instrumentation promises a breakthrough for industrial usage as well as fundamental laboratory...

  8. Direct optical activation of skeletal muscle fibres efficiently controls muscle contraction and attenuates denervation atrophy.

    Science.gov (United States)

    Magown, Philippe; Shettar, Basavaraj; Zhang, Ying; Rafuse, Victor F

    2015-10-13

    Neural prostheses can restore meaningful function to paralysed muscles by electrically stimulating innervating motor axons, but fail when muscles are completely denervated, as seen in amyotrophic lateral sclerosis, or after a peripheral nerve or spinal cord injury. Here we show that channelrhodopsin-2 is expressed within the sarcolemma and T-tubules of skeletal muscle fibres in transgenic mice. This expression pattern allows for optical control of muscle contraction with comparable forces to nerve stimulation. Force can be controlled by varying light pulse intensity, duration or frequency. Light-stimulated muscle fibres depolarize proportionally to light intensity and duration. Denervated triceps surae muscles transcutaneously stimulated optically on a daily basis for 10 days show a significant attenuation in atrophy resulting in significantly greater contractile forces compared with chronically denervated muscles. Together, this study shows that channelrhodopsin-2/H134R can be used to restore function to permanently denervated muscles and reduce pathophysiological changes associated with denervation pathologies.

  9. [Molecular biology of renal cancer: bases for genetic directed therapy in advanced disease].

    Science.gov (United States)

    Maroto Rey, José Pablo; Cillán Narvaez, Elena

    2013-06-01

    There has been expansion of therapeutic options in the management of metastatic renal cell carcinoma due to a better knowledge of the molecular biology of kidney cancers. There are different tumors grouped under the term renal cell carcinoma, being clear cell cancer the most frequent and accounting for 80% of kidney tumors. Mutations in the Von Hippel-Lindau gene can be identified in up to 80% of sporadic clear cell cancer, linking a genetically inheritable disease where vascular tumors are frequent, with renal cell cancer. Other histologic types present specific alterations in molecular pathways, like c-MET in papillary type I tumors, and Fumarase Hydratase in papillary type II tumors. Identification of the molecular alteration for a specific tumor may offer an opportunity for treatment selection based on biomarkers, and, in the future, for developing an engineering designed genetic treatment.

  10. Ultrabroadband Two-Dimensional Coherent Optical Spectrometer for Directed Energy Trapping in Quantum Dynamical Systems

    Science.gov (United States)

    2015-12-04

    technique combining super-continuum generation with multi-dimensional coherent optical spectroscopy, which can realize simultaneous high spectral and...onto a single-element detector. Each mask yields one intensity value on the detector, and by measuring the intensities for a sequence of different...in the 2DFT spectrum. 9 Figure 8. Comparison of 2DFT spectra. Absolute- value 2DFT spectra of (a) IR-144 cyanine dye ( ) and (b) LH2

  11. Flow patterns on spectral-domain optical coherence tomography reveal flow directions at retinal vessel bifurcations

    DEFF Research Database (Denmark)

    Willerslev, Anne; Li, Xiao Q; Munch, Inger C

    2014-01-01

    PURPOSE: To study intravascular characteristics of flowing blood in retinal vessels using spectral-domain optical coherence tomography (SD-OCT). METHODS: Examination of selected arterial bifurcations and venous sites of confluence in 25 healthy 11-year-old children recruited as an ad hoc subsample...... be determined using SD-OCT. This feature may assist the identification of flow reversal near sites of vascular occlusion, the analysis of blood flow near vascular malformations and the segmentation of retinal SD-OCT images....

  12. Nonlinear Transformation Optics Techniques in the Design of Counter-Directed Energy Weapon Shields for Satellites

    Science.gov (United States)

    2012-12-01

    or proof, rather as a review and reference for subsequent sections. Brau’s Modern Problems in Electrodynamics and Mill’s Nonlinear Optics are both... Modern Problems in Electrodynamics , follows from the Lorentz-Drude Model for the polarization of the atom[2]. In this model, the electron is harmonically...2] C. A. Brau, Modern Problems in Classical Electrodynamics , New York: Oxford University Press, 2004. [3] K. Than, “Scientists Create Cloak of

  13. Effect of D2 outdiffusion on direct writing of optical waveguides

    DEFF Research Database (Denmark)

    Svalgaard, Mikael

    1999-01-01

    It is shown that the performance of UV written waveguides can be influenced strongly by the outdiffusion of molecular deuterium during fabrication. By cooling the sample to -33 °C, the time available for UV writing may be increased to > 10 h, compared to ~15 min at room temperature....

  14. Effect of D2 outdiffusion on direct writing of optical waveguides

    DEFF Research Database (Denmark)

    Svalgaard, Mikael

    1999-01-01

    It is shown that the performance of UV written waveguides can be influenced strongly by the outdiffusion of molecular deuterium during fabrication. By cooling the sample to -33 °C, the time available for UV writing may be increased to > 10 h, compared to ~15 min at room temperature....

  15. Thermal and Mechanical Non-Equilibrium Effects on Turbulent Flows: Fundamental Studies of Energy Exchanges Through Direct Numerical Simulations, Molecular Simulations and Experiments

    Science.gov (United States)

    2016-02-26

    massive direct numerical simulations ( DNS ), detailed molecular dynamics simulations and novel laser based experimental approaches were developed to explore...TERMS Aerothermodynamics and Nonequillibrium, Hypersonic and Gas-surface Interaction 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18...multidisciplinary nature of the scientific problem, a combination of state-of-the-art massive direct numerical simulations ( DNS ), detailed molecular dynamics

  16. Fiber-optic array using molecularly imprinted microspheres for antibiotic analysisElectronic supplementary information (ESI) available: Details of: (1) synthesis of BODIFLOXACIN, (2) purification of BODIFLOXACIN by semi-preparative HPLC and spectroscopic characterization, (3) chromatographic conditions for the separation of fluoroquinolones and other antibiotics, (4) binding of BODIFLOXACIN and ENRO to the encoded polymer microspheres and, (5) image acquisition and data analysis. Also included: Scheme 1, Tables S1 and S2, Fig. S1-S5. See DOI: 10.1039/c5sc00115c

    National Research Council Canada - National Science Library

    Carrasco, Sergio; Benito-Peña, Elena; Walt, David R; Moreno-Bondi, María C

    2015-01-01

    In this article we describe a new class of high-density optical microarrays based on molecularly imprinted microsphere sensors that directly incorporate specific recognition capabilities to detect enrofloxacin (ENRO...

  17. Direct observation of exceptional points in coupled photonic-crystal lasers with asymmetric optical gains

    Science.gov (United States)

    Kim, Kyoung-Ho; Hwang, Min-Soo; Kim, Ha-Reem; Choi, Jae-Hyuck; No, You-Shin; Park, Hong-Gyu

    2016-12-01

    Although counter-intuitive features have been observed in non-Hermitian optical systems based on micrometre-sized cavities, the achievement of a simplified but unambiguous approach to enable the efficient access of exceptional points (EPs) and the phase transition to desired lasing modes remains a challenge, particularly in wavelength-scale coupled cavities. Here, we demonstrate coupled photonic-crystal (PhC) nanolasers with asymmetric optical gains, and observe the phase transition of lasing modes at EPs through tuning of the area of graphene cover on one PhC cavity and systematic scanning photoluminescence measurements. As the gain contrast between the two identical PhC cavities exceeds the intercavity coupling, the phase transition occurs from the bonding/anti-bonding lasing modes to the single-amplifying lasing mode, which is confirmed by the experimental measurement of the mode images and the theoretical modelling of coupled cavities with asymmetric gains. In addition, we demonstrate active tuning of EPs by controlling the optical loss of graphene through electrical gating.

  18. Femtosecond laser direct-write of optofluidics in polymer-coated optical fiber

    Science.gov (United States)

    Joseph, Kevin A. J.; Haque, Moez; Ho, Stephen; Aitchison, J. Stewart; Herman, Peter R.

    2017-03-01

    Multifunctional lab in fiber technology seeks to translate the accomplishments of optofluidic, lab on chip devices into silica fibers. a robust, flexible, and ubiquitous optical communication platform that can underpin the `Internet of Things' with distributed sensors, or enable lab on chip functions deep inside our bodies. Femtosecond lasers have driven significant advances in three-dimensional processing, enabling optical circuits, microfluidics, and micro-mechanical structures to be formed around the core of the fiber. However, such processing typically requires the stripping and recoating of the polymer buffer or jacket, increasing processing time and mechanically weakening the device. This paper reports on a comprehensive assessment of laser damage in urethane-acrylate-coated fiber. The results show a sufficient processing window is available for femtosecond laser processing of the fiber without damaging the polymer jacket. The fiber core, cladding, and buffer could be simultaneously processed without removal of the buffer jacket. Three-dimensional lab in fiber devices were successfully fabricated by distortion-free immersionlens focusing, presenting fiber-cladding optical circuits and progress towards chemically-etched channels, microfluidic cavities, and MEMS structure inside buffer-coated fiber.

  19. Directed Motion of a Molecular Motor Based Qn the Four-State Model with Unequal Substeps

    Institute of Scientific and Technical Information of China (English)

    WUWei-Xia; ZHANYong; ZHAOTong-Jun; MEIJumPing

    2003-01-01

    A periodic one-dimensional four-state hopping model is proposed. In the model, the substeps between arbitrary adjacent states are unequal, and an explicit solution of the master equation is first obtained for the probability distribution as a function of the time and position for any initial distribution with all the transients included. Next, the transient behaviors in the initial period of time and the characteristic time to reach the steady state for the molecular motor are discussed. Finally, we compare the steady state results to experiments and illustrate qualitatively the kinetic behaviors of a molecular motor under external load F.

  20. Direct Observation of Molecular Preorganization for Chirality Transfer on a Catalyst Surface

    DEFF Research Database (Denmark)

    Demers-Carpentier, Vincent; Goubert,, Guillaume; Masini, Federico

    2011-01-01

    The chemisorption of specific optically active compounds on metal surfaces can create catalytically active chirality transfer sites. However, the mechanism through which these sites bias the stereoselectivity of reactions (typically hydrogenations) is generally assumed to be so complex that conti......The chemisorption of specific optically active compounds on metal surfaces can create catalytically active chirality transfer sites. However, the mechanism through which these sites bias the stereoselectivity of reactions (typically hydrogenations) is generally assumed to be so complex...... functional theory calculations reveals the stereodirecting forces governing preorganization into precise chiral modifier-substrate bimolecular surface complexes. The study shows that the chiral modifier induces prochiral switching on the surface and that different prochiral ratios prevail at different...