WorldWideScience

Sample records for optically carried microwave

  1. Low noise amplication of an optically carried microwave signal: application to atom interferometry

    CERN Document Server

    Lévèque, Thomas; Chaibi, Walid; Landragin, Arnaud

    2010-01-01

    In this paper, we report a new scheme to amplify a microwave signal carried on a laser light at $\\lambda$=852nm. The amplification is done via a semiconductor tapered amplifier and this scheme is used to drive stimulated Raman transitions in an atom interferometer. Sideband generation in the amplifier, due to self-phase and amplitude modulation, is investigated and characterized. We also demonstrate that the amplifier does not induce any significant phase-noise on the beating signal. Finally, the degradation of the performances of the interferometer due to the amplification process is shown to be negligible.

  2. Low noise amplification of an optically carried microwave signal: application to atom interferometry

    Science.gov (United States)

    Lévèque, T.; Gauguet, A.; Chaibi, W.; Landragin, A.

    2010-12-01

    In this paper, we report a new scheme to amplify a microwave signal carried on a laser light at λ=852 nm. The amplification is done via a semiconductor tapered amplifier and this scheme is used to drive stimulated Raman transitions in an atom interferometer. Sideband generation in the amplifier, due to self-phase and amplitude modulation, is investigated and characterized. We also demonstrate that the amplifier does not induce any significant phase-noise on the beating signal. Finally, the degradation of the performances of the interferometer due to the amplification process is shown to be negligible.

  3. An Optical Carry Chain Fast Adder

    Directory of Open Access Journals (Sweden)

    D. Al-Dabass

    1994-12-01

    Full Text Available A significant problem in Arithmetic Unit design and particularly for systolic arrays remains the speed attainable in achieving high speed addition. The root of the problem is carry propagation and a method is presented which is relatively independent of word length. The problem is addressed by the description of a suggested radical design involving a hybrid optical and electronic approach. The method of carry chain addition through pass gates is explained and a suggested implementation utilising Fabry-Perott resonators, optical waveguides and voltage controlled couplers is described. The design is suitable for n-stage modular expansion.

  4. Quasi-Optical Cavity Virtual Cathode Oscillator for Microwave Generation

    Institute of Scientific and Technical Information of China (English)

    凌根深; 陈波; 周津娟

    2003-01-01

    A new configuration of a virtual cathode oscillator(VCO),i.e.,a quasi-optical cavity VCO,is proposed for highpower microwave generation.The analysis and simulation are carried out to investigate the characteristics of this configuration.In the numerical simulation,the microwave output power of 2.93 GW is obtained with an electron beam of 610 keV in electron energy and 26.7kA in the beam current.The beam-to-microwave power efficiency is 18%.The frequency is 17.5 GHz,and the output microwave mode is TEM10.

  5. A reversible optical to microwave quantum interface

    CERN Document Server

    Barzanjeh, Sh; Milburn, G J; Tombesi, P; Vitali, D

    2011-01-01

    Quantum technology, like many mature classical technologies, will ultimately integrate distinct modules to achieve a function that transcends the capability of any one of them. We describe a reversible quantum interface between an optical and a microwave photon using a hybrid device based on the common interaction of microwave and optical fields with a nano-mechanical resonator in a superconducting circuit, which is one of the major challenges in the field. The scheme provides a path for generating a traveling microwave field strongly entangled with an optical mode, thus bridging the gap between quantum optical and solid state implementations of quantum information. This is an effective source of (bright) two-mode squeezing with an optical idler (signal) and a microwave signal (idler) and as such enables a continuous variable teleportation protocol.

  6. Microwave to Optical Link Using an Optical Microresonator

    CERN Document Server

    Jost, J D; Lecaplain, C; Brasch, V; Pfeiffer, M H P; Kippenberg, T J

    2014-01-01

    The ability to phase coherently link optical to radio frequencies with femtosecond modelocked lasers has enabled counting cycles of light and is the basis of optical clocks, absolute frequency synthesis, tests of fundamental physics, and improved spectroscopy. Using an optical microresonator frequency comb to establish a coherent link promises to greatly extend optical frequency synthesis and measurements to areas requiring compact form factor, on chip integration and repetition rates in the microwave regime, including coherent telecommunications, astrophysical spectrometer calibration or microwave photonics. Here we demonstrate for the first time a microwave to optical link using a microresonator. Using a temporal dissipative single soliton state in an ultra high Q crystalline microresonator an optical frequency comb is generated that is self-referenced, allowing to phase coherently link a 190 THZ optical carrier directly to a 14 GHz microwave frequency. Our work demonstrates that precision optical frequency...

  7. Adjustable Fiber Optic Microwave Transversal Filters

    Science.gov (United States)

    Shadaram, Mehdi; Lutes, George F.; Logan, Ronald T.; Maleki, Lutfollah

    1994-01-01

    Microwave transversal filters implemented as adjustable tapped fiber optic delay lines developed. Main advantages of these filters (in comparison with conventional microwave transversal filters) are small size, light weight, no need for matching of radio-frequency impedances, no need for shielding against electromagnetic radiation at suboptical frequencies, no need for mechanical tuning, high stability of amplitude and phase, and active control of transfer functions. Weights of taps in fiber optic delay lines adjusted.

  8. Direct optical to microwave conversion

    Science.gov (United States)

    Taylor, Henry F.

    1990-09-01

    Support of high frequency fiber optic links through development of innovative higher efficiency techniques to convert optical energy directly to RF Energy. Control of Phases Arrays by optical means in an area of expanding technology development. Fiber optics and other forms of optical waveguide can provide greater accuracy and true time delay in a phase delay network. Methods of improvement in transfer of optical energy to RF Energy are determined. Development of Direct Optical-to-RF-Direct Amplifiers will result in higher efficiency, low noise, optical receivers for fiber optic links with improved performance. This results in longer fiber optic links without repeaters and improved BER or shorter links.

  9. Lane of parallel through carry in ternary optical adder

    Institute of Scientific and Technical Information of China (English)

    JIN Yi; HE Huacan; AI Lirong

    2005-01-01

    At the present 50 to 100 microseconds are necessary for a liquid crystal to change its state from opacity to clarity; 1.14× 10-5 microseconds are however proved to be enough for light to pass through a clarity liquid crystal device. Rooted from this great difference in time, an optical adder was constructed with parallel through carry lanes (PTCL) composed of liquid crystals. Because all carries in PTCL process in parallel, the carry delay in the ternary optical computer's adder is avoided. Eliminating the carry delay in adder of ternary optical computer by physical means, the PTCL is also applicable for other types of optical adders. Moreover a light diagram of the adder and one PTCL structure are provided.

  10. Carry

    DEFF Research Database (Denmark)

    Koijen, Ralph S.J.; Moskowitz, Tobias J.; Heje Pedersen, Lasse;

    that include global equities, global bonds, currencies, commodities, US Treasuries, credit, and equity index options. This predictability underlies the strong returns to "carry trades" that go long high-carry and short low-carry securities, applied almost exclusively to currencies, but shown here...

  11. MOD Tool (Microwave Optics Design Tool)

    Science.gov (United States)

    Katz, Daniel S.; Borgioli, Andrea; Cwik, Tom; Fu, Chuigang; Imbriale, William A.; Jamnejad, Vahraz; Springer, Paul L.

    1999-01-01

    The Jet Propulsion Laboratory (JPL) is currently designing and building a number of instruments that operate in the microwave and millimeter-wave bands. These include MIRO (Microwave Instrument for the Rosetta Orbiter), MLS (Microwave Limb Sounder), and IMAS (Integrated Multispectral Atmospheric Sounder). These instruments must be designed and built to meet key design criteria (e.g., beamwidth, gain, pointing) obtained from the scientific goals for the instrument. These criteria are frequently functions of the operating environment (both thermal and mechanical). To design and build instruments which meet these criteria, it is essential to be able to model the instrument in its environments. Currently, a number of modeling tools exist. Commonly used tools at JPL include: FEMAP (meshing), NASTRAN (structural modeling), TRASYS and SINDA (thermal modeling), MACOS/IMOS (optical modeling), and POPO (physical optics modeling). Each of these tools is used by an analyst, who models the instrument in one discipline. The analyst then provides the results of this modeling to another analyst, who continues the overall modeling in another discipline. There is a large reengineering task in place at JPL to automate and speed-up the structural and thermal modeling disciplines, which does not include MOD Tool. The focus of MOD Tool (and of this paper) is in the fields unique to microwave and millimeter-wave instrument design. These include initial design and analysis of the instrument without thermal or structural loads, the automation of the transfer of this design to a high-end CAD tool, and the analysis of the structurally deformed instrument (due to structural and/or thermal loads). MOD Tool is a distributed tool, with a database of design information residing on a server, physical optics analysis being performed on a variety of supercomputer platforms, and a graphical user interface (GUI) residing on the user's desktop computer. The MOD Tool client is being developed using Tcl

  12. MOD Tool (Microwave Optics Design Tool)

    Science.gov (United States)

    Katz, Daniel S.; Borgioli, Andrea; Cwik, Tom; Fu, Chuigang; Imbriale, William A.; Jamnejad, Vahraz; Springer, Paul L.

    1999-01-01

    The Jet Propulsion Laboratory (JPL) is currently designing and building a number of instruments that operate in the microwave and millimeter-wave bands. These include MIRO (Microwave Instrument for the Rosetta Orbiter), MLS (Microwave Limb Sounder), and IMAS (Integrated Multispectral Atmospheric Sounder). These instruments must be designed and built to meet key design criteria (e.g., beamwidth, gain, pointing) obtained from the scientific goals for the instrument. These criteria are frequently functions of the operating environment (both thermal and mechanical). To design and build instruments which meet these criteria, it is essential to be able to model the instrument in its environments. Currently, a number of modeling tools exist. Commonly used tools at JPL include: FEMAP (meshing), NASTRAN (structural modeling), TRASYS and SINDA (thermal modeling), MACOS/IMOS (optical modeling), and POPO (physical optics modeling). Each of these tools is used by an analyst, who models the instrument in one discipline. The analyst then provides the results of this modeling to another analyst, who continues the overall modeling in another discipline. There is a large reengineering task in place at JPL to automate and speed-up the structural and thermal modeling disciplines, which does not include MOD Tool. The focus of MOD Tool (and of this paper) is in the fields unique to microwave and millimeter-wave instrument design. These include initial design and analysis of the instrument without thermal or structural loads, the automation of the transfer of this design to a high-end CAD tool, and the analysis of the structurally deformed instrument (due to structural and/or thermal loads). MOD Tool is a distributed tool, with a database of design information residing on a server, physical optics analysis being performed on a variety of supercomputer platforms, and a graphical user interface (GUI) residing on the user's desktop computer. The MOD Tool client is being developed using Tcl

  13. Remote measurement of microwave distribution based on optical detection

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Zhong; Ding, Wenzheng; Yang, Sihua; Chen, Qun, E-mail: redrocks-chenqun@hotmail.com, E-mail: xingda@scnu.edu.cn; Xing, Da, E-mail: redrocks-chenqun@hotmail.com, E-mail: xingda@scnu.edu.cn [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou 510631 (China)

    2016-01-04

    In this letter, we present the development of a remote microwave measurement system. This method employs an arc discharge lamp that serves as an energy converter from microwave to visible light, which can propagate without transmission medium. Observed with a charge coupled device, quantitative microwave power distribution can be achieved when the operators and electronic instruments are in a distance from the high power region in order to reduce the potential risk. We perform the experiments using pulsed microwaves, and the results show that the system response is dependent on the microwave intensity over a certain range. Most importantly, the microwave distribution can be monitored in real time by optical observation of the response of a one-dimensional lamp array. The characteristics of low cost, a wide detection bandwidth, remote measurement, and room temperature operation make the system a preferred detector for microwave applications.

  14. Coherent conversion between optical and microwave photons in Rydberg gases

    CERN Document Server

    Kiffner, Martin; Kaczmarek, Krzysztof T; Jaksch, Dieter; Nunn, Joshua

    2016-01-01

    Quantum information encoded in optical photons can be transmitted over long distances with very high information density, and suffers from negligible thermal noise at room temperature. On the other hand, microwave photons at cryogenic temperatures can be confined in high quality resonators and strongly coupled to solid-state qubits, providing a quantum bus to connect qubits and a route to deterministic photonic non-linearities. The coherent interconversion of microwave and optical photons has therefore recently emerged as a highly desirable capability that would enable freely-scalable networks of optically-linked qubits, or large-scale photonic information processing with multi-photon interactions mediated by microwaves. Here, we propose a route to efficient and coherent microwave-optical conversion based on frequency mixing in Rydberg atoms. The interaction requires no microfabricated components or cavities, and is tunable, broadband, and both spatially and spectrally multimode.

  15. Optical carrier-based microwave interferometers for sensing application

    Science.gov (United States)

    Huang, Jie; Lan, Xinwei; Wang, Hanzheng; Yuan, Lei; Xiao, Hai

    2014-06-01

    Optical fiber interferometers (OFIs) have been extensively utilized for precise measurements of various physical/chemical quantities (e.g., temperature, strain, pressure, rotation, refractive index, etc.). However, the random change of polarization states along the optical fibers and the strong dependence on the materials and geometries of the optical waveguides are problematic for acquiring high quality interference signal. Meanwhile, difficulty in multiplexing has always been a bottleneck on the application scopes of OFIs. Here, we present a sensing concept of optical carrier based microwave interferometry (OCMI) by reading optical interferometric sensors in microwave domain. It combines the advantages from both optics and microwave. The low oscillation frequency of the microwave can hardly distinguish the optical differences from both modal and polarization dispersion making it insensitive to the optical waveguides/materials. The phase information of the microwave can be unambiguitly resolved so that it has potential in fully distributed sensing. The OCMI concept has been implemented in different types of interferometers (i.e., Michelson, Mach-Zehnder, Fabry-Perot) among different optical waveguides (i.e., singlemode, multimode, and sapphire fibers) with excellent signal-to-noise ratio (SNR) and low polarization dependence. A spatially continuous distributed strain sensing has been demonstrated.

  16. Reversible and efficient conversion between microwave and optical light

    CERN Document Server

    Andrews, R W; Purdy, T P; Cicak, K; Simmonds, R W; Regal, C A; Lehnert, K W

    2013-01-01

    Converting low-frequency electrical signals into much higher frequency optical signals has enabled modern communications networks to leverage both the strengths of microfabricated electrical circuits and optical fiber transmission, allowing information networks to grow in size and complexity. A microwave-to-optical converter in a quantum information network could provide similar gains by linking quantum processors via low-loss optical fibers and enabling a large-scale quantum network. However, no current technology can convert low-frequency microwave signals into high-frequency optical signals while preserving their fragile quantum state. For this demanding application, a converter must provide a near-unitary transformation between different frequencies; that is, the ideal transformation is reversible, coherent, and lossless. Here we demonstrate a converter that reversibly, coherently, and efficiently links the microwave and optical portions of the electromagnetic spectrum. We use our converter to transfer cl...

  17. Microwave-to-Optical Conversion in WGM Resonators

    Science.gov (United States)

    Savchenkov, Anatoliy; Strekalov, Dmitry; Yu, Nan; Matsko, Andrey; Maleki, Lute

    2008-01-01

    Microwave-to-optical frequency converters based on whispering-gallery-mode (WGM) resonators have been proposed as mixers for the input ends of microwave receivers in which, downstream of the input ends, signals would be processed photonically. A frequency converter as proposed (see figure) would exploit the nonlinearity of the electromagnetic response of a WGM resonator made of LiNbO3 or another suitable ferroelectric material. Up-conversion would take place by three-wave mixing in the resonator. The WGM resonator would be de - signed and fabricated to obtain (1) resonance at both the microwave and the optical operating frequencies and (2) phase matching among the input and output microwave and optical signals as described in the immediately preceding article. Because the resonator would be all dielectric there would be no metal electrodes signal losses would be very low and, consequently, the resonance quality factors (Q values) of the microwave and optical fields would be very large. The long lifetimes associated with the large Q values would enable attainment of high efficiency of nonlinear interaction with low saturation power. It is anticipated that efficiency would be especially well enhanced by the combination of optical and microwave resonances in operation at input signal frequencies between 90 and 300 GHz.

  18. Coding metasurface for broadband microwave scattering reduction with optical transparency.

    Science.gov (United States)

    Chen, Ke; Cui, Li; Feng, Yijun; Zhao, Junming; Jiang, Tian; Zhu, Bo

    2017-03-06

    Metasurfaces have promised great possibilities in full control of the electromagnetic wavefront by spatially manipulating the phase characteristics across the interface. Here, we report a scheme to realize broadband backward scattering reduction through diffusion-like microwave reflection by utilizing a flexible indium-tin-oxide (ITO)-based ultrathin coding metasurface (less than 0.1 wavelength thick) with high optical transparence. The diffusion-like scattering is caused by the destructive interference of the scattered far-field electromagnetic wave, which is further attributed to the randomly distributed reflection phases on the metasurface composed of pre-designed meta-atoms arranged with a computer-generated pseudorandom coding sequence. Both simulation and measurement on fabricated prototype sample have been carried out to validate its performance, demonstrating a polarization-independent broadband (nearly from 8 GHz to 15 GHz) 10 dB scattering reduction with good oblique performance. The excellent performances can also be preserved to conformal cases when the flexible metasurface is uniformly wrapped around a metallic cylinder. The proposed metasurface may create new opportunities to tailor the exotic microwave scattering features with simultaneously high transmittance in visible frequencies, which could provide crucial benefits in many practical uses, such as window and solar panel applications.

  19. Changes in optical behaviour of iron pyritohedron upon microwave treatment

    Science.gov (United States)

    Arvind, Hemant K.; Choudhary, B. L.; Dolia, S. N.; Dalela, S.; Jakhar, S. R.; Kumar, Sudhish

    2016-05-01

    We have utilized the volumetric heating of materials by microwave energy absorption for investigating the changes in the optical behavior of a well characterized natural crystal of iron pyritohedron (FeS2). For microwave treatment virgin central core pieces of the FeS2 crystal were ground to fine powder and then heated in a microwave oven for half an hour. Powder XRD measurements confirmed that the microwave treatment on FeS2 does not affect the face centered cubic structure of FeS2. The UV-Visible optical spectrum of the microwave treated FeS2 display a narrow optical absorption peak at ˜315 nm, on the other hand in the UV-Vis spectrum of pure FeS2 a broad absorption band with a maximum centered ˜310-330 nm was observed. The band gap energies for pure and microwave treated FeS2 are estimated to be 1.09 eV and 1.35 eV respectively. This study clearly indicates that microwave treatment results in a blue shift in the absorption edge and enhancement in the band gap energy.

  20. Efficient single sideband microwave to optical conversion using an electro-optical whispering gallery mode resonator

    CERN Document Server

    Rueda, Alfredo; Collodo, Michele C; Vogl, Ulrich; Stiller, Birgit; Schunk, Gerhard; Strekalov, Dmitry V; Marquardt, Christoph; Fink, Johannes M; Painter, Oskar; Leuchs, Gerd; Schwefel, Harald G L

    2016-01-01

    Linking classical microwave electrical circuits to the optical telecommunication band is at the core of modern communication. Future quantum information networks will require coherent microwave-to-optical conversion to link electronic quantum processors and memories via low-loss optical telecommunication networks. Efficient conversion can be achieved with electro-optical modulators operating at the single microwave photon level. In the standard electro-optic modulation scheme this is impossible because both, up- and downconverted, sidebands are necessarily present. Here we demonstrate true single sideband up- or downconversion in a triply resonant whispering gallery mode resonator by explicitly addressing modes with asymmetric free spectral range. Compared to previous experiments, we show a three orders of magnitude improvement of the electro-optical conversion efficiency reaching 0.1% photon number conversion for a 10GHz microwave tone at 0.42mW of optical pump power. The presented scheme is fully compatible...

  1. Synergistic use of optical and microwave data in agrometeorological applications

    Science.gov (United States)

    Myneni, R. B.; Choudhury, B. J.

    1993-05-01

    Remotely sensed optical and microwave data can be synergistically used to infer land surface properties. Optical data can be used to estimate surface albedo, radiation absorption by vegetation canopies and their photosynthetic efficiencies. Vegetation canopy reflectance at red and near-infrared wavelengths can be used to correct for vegetation effect on microwave emissivities at low frequencies for estimating soil moisture. Optical data can also provide information about surface and air temperatures, precipitable water vapor, cloud top temperature and its water content. This information can be utilized to correct microwave data for atmospheric effects. These points are illustrated with theoretical analyses and by application to satellite data. The basic physical mechanisms operative at the various wavelengths are also discussed.

  2. Phase-sensitive microwave optical double resonance in an N system

    Science.gov (United States)

    Preethi, T. M.; Manukumara, M.; Asha, K.; Vijay, J.; Roshi, D. A.; Narayanan, A.

    2011-08-01

    An experimental investigation of a Microwave Optical Double Resonance (MODR) phenomenon is carried out in a four level N system of 85Rb atoms, at room temperature. This N system consists of a closed three level Λ subsystem irradiated with two optical fields and one microwave field. The MODR response is investigated in a separate probe field which drives a resonant transition from one of the ground states of the Λ system to a fourth level. We find that, under two-photon resonance condition for the optical fields, the MODR becomes a function of the relative phase between the beat frequency envelop of the optical fields and the microwave field. The variation in MODR is shown to be correlated with the phase-sensitive variation of the EIT phenomenon seen in such microwave-connected closed Λ systems. We envisage that this phase-sensitive variation in the MODR, can be utilized for a phase-sensitive manipulation of non-linear optical phenomena in N systems.

  3. Using mechanics to convert between microwave and optical frequencies

    Science.gov (United States)

    Vainsencher, A.; Satzinger, K. J.; Peairs, G. A.; Cleland, A. N.

    2016-03-01

    We demonstrate unique piezoelectric optomechanical devices able to coherently transfer microwave electrical signals to modulated optical signals, and vice versa, transferring modulated optical signals to microwave electrical signals. This coherent bilateral transfer, demonstrated most recently in a single device design, holds promise for the eventual demonstration of coherent transfer in the quantum domain. The basis of design for the devices with which this was accomplished is an optomechanical crystal that supports co-located optical and mechanical resonant modes, coupled to one other via moving boundary (index of refraction) modulation, either induced by motion from energy in the mechanical mode, or by optical pressure due to energy in the optical mode. The basis for coupling microwave mechanical motion to microwave electrical signals is via the use of a piezoelectric material for the entire device, where transduction itself is accomplished using metal transducers remote from the optomechanical structure. This remote design minimizes the lossy interaction of any optical signals with the metal electrode structures, but introduces the need to couple the electromechanical transducer to the optomechanical transducer via itinerant phonons, which presents a new challenge.

  4. Multi-Functional Fibre-Optic Microwave Links

    DEFF Research Database (Denmark)

    Gliese, Ulrik Bo

    1998-01-01

    The multi-functionality of microwave links based on remote heterodyne detection of signals from a dual-frequency laser transmitter is discussed and experimentally demonstrated in this paper. Typically, direct detection in conjunction with optical intensity modulation is used to implement fibre......-optic microwave links. The resulting links are inherently transparent and mainly used for signal transmission. As opposed to direct detection links, remote heterodyne detection links can directly perform functionalities such as modulation, frequency conversion, and transparent signal recovery in addition...

  5. Efficient microwave-induced optical frequency conversion

    CERN Document Server

    Kosachiov, D V

    1999-01-01

    Frequency conversion process is studied in a medium of atoms with a $\\Lambda$ configuration of levels, where transition between two lower states is driven by a microwave field. In this system, conversion efficiency can be very high by virtue of the effect of electromagnetically induced transparency (EIT). Depending on intensity of the microwave field, two regimes of EIT are realized: ''dark-state'' EIT for the weak field, and Autler-Townes-type EIT for the strong one. We study both cases via analytical and numerical solution and find optimum conditions for the conversion.

  6. The Influence of Optical Filtering on the Noise Performance of Microwave Photonic Phase Shifters Based on SOAs

    DEFF Research Database (Denmark)

    Lloret, Juan; Ramos, Francisco; Xue, Weiqi

    2011-01-01

    Different optical filtering scenarios involving microwave photonic phase shifters based on semiconductor optical amplifiers are investigated numerically as well as experimentally with respect to noise performance. Investigations on the role of the modulation depth and number of elements in cascaded...... shifting stages are also carried out. Suppression of the noise level by more than 5 dB has been achieved in schemes based on band-pass optical filtering when three phase shifting stages are cascaded....

  7. Optical to microwave clock frequency ratios with a nearly continuous strontium optical lattice clock

    CERN Document Server

    Lodewyck, Jérôme; Bookjans, Eva; Robyr, Jean-Luc; Shi, Chunyan; Vallet, Grégoire; Targat, Rodolphe Le; Nicolodi, Daniele; Coq, Yann Le; Guéna, Jocelyne; Abgrall, Michel; Rosenbusch, Peter; Bize, Sébastien

    2016-01-01

    Optical lattice clocks are at the forefront of frequency metrology. Both the instability and systematic uncertainty of these clocks have been reported to be two orders of magnitude smaller than the best microwave clocks. For this reason, a redefinition of the SI second based on optical clocks seems possible in the near future. However, the operation of optical lattice clocks has not yet reached the reliability that microwave clocks have achieved so far. In this paper, we report on the operation of a strontium optical lattice clock that spans several weeks, with more than 80% uptime. We make use of this long integration time to demonstrate a reproducible measurement of frequency ratios between the strontium clock transition and microwave Cs primary and Rb secondary frequency standards.

  8. Optical Stabilization of a Microwave Oscillator for Fountain Clock Interrogation

    CERN Document Server

    Lipphardt, Burghard; Weyers, Stefan

    2016-01-01

    We describe an optical frequency stabilization scheme of a microwave oscillator that is used for the interrogation of primary caesium fountain clocks. Because of its superior phase noise properties, the new scheme, which is based on an ultrastable laser and a femtosecond laser frequency comb, overcomes the fountain clock frequency instability limitations given by the previously utilized quartz oscillator based frequency synthesis. The presented scheme combines the transfer of the short-term frequency instability of an optical cavity and the long-term frequency instability of a hydrogen maser to the microwave oscillator and is designed to provide continuous long-term operation for extended measurement periods of weeks. The utilization of the twofold stabilization scheme on the one hand ensures referencing of the fountain frequency to the hydrogen maser frequency and on the other hand results in a phase noise level of the fountain interrogation signal, which enables quantum projection noise limited fountain fre...

  9. Microwave photonic true time delay based on cross gain modulation in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Mørk, Jesper

    2010-01-01

    We experimentally demonstrate microwave time delays in a semiconductor optical amplifier by cross gain modulation. In the counter-propagation configuration, ~10.5ps tunable true time delay over a microwave bandwidth of several tens of GHz is obtained.......We experimentally demonstrate microwave time delays in a semiconductor optical amplifier by cross gain modulation. In the counter-propagation configuration, ~10.5ps tunable true time delay over a microwave bandwidth of several tens of GHz is obtained....

  10. Optical-Microwave Interactions in Semiconductor Devices.

    Science.gov (United States)

    1980-02-01

    of the sensitivity for a photoconductor has been 2 given by DiDomenico and Svelto . The change in photocurrent due to optical illumination is qq AT AI... Svelto , Proceedings IEEE 52, 136 (1964). 3. K. Lehovec and R. Zuleeg, Solid State Electron. 13, 1415 (1970). 25

  11. Advanced Optical Processing of Microwave Signals

    Directory of Open Access Journals (Sweden)

    Miguel V. Andrés

    2005-06-01

    Full Text Available The authors present a review on the recent approaches proposed to implement transversal RF filters. Different tunable transversal filters consisting of wavelength tunable optical taps and those employing the tunability of dispersive devices are presented showing their high-performance characteristics. A comprehensive review of the fundamentals and a discussion on the main limitation of these structures are also included.

  12. Leo-Based Optical/Microwave Terrestrial Communications

    CERN Document Server

    Meulenberg, Andrew; Ramanathan, Shivram

    2010-01-01

    We propose a LEO-based communication system that is built by deploying circum-terra, optic fibers connecting hundreds of small (perhaps) phased-array-communications and RF-signal-transfer antennas around the earth on multiple rings. The proposed LEO-earth connection will be through microwave links (Ku or low-Ka band) and many of the ISL's through the optic-fiber rings. Inter-ring connectivity could be with either high-Ka band or optical (laser) links. The initial ring would serve to complement existing terrestrial fiber networks; but, the system would expand with additional rings into non-equatorial planes to provide global connectivity. The proposed system would make use of connectivity & broadcasting capability of satellite constellations as well as the high throughput point-to-point capability of optic-fiber systems. The advantages, options, and economics of the proposed LEO optic-fiber / microwave communication system over existing terrestrial- and space-communication systems (of similar functionality...

  13. Optical, x-ray and microwave diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Tudisco, S.; Mascali, D.; Altana, C.; Anzalone, A.; Gammino, S.; Musumarra, A.; Musumeci, F.; Scordino, A. [INFN-LNS Via S. Sofia 62, 95123 Catania (Italy); Romano, F. P. [INFN-LNS Via S. Sofia 62, 95123 Catania (Italy); IBAM-CNR, Via Biblioteca 4, 95100 Catania (Italy); Tramontana, A. [INFN-LNS Via S. Sofia 62, 95123 Catania (Italy); Università di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy)

    2013-07-26

    Laser-driven ion acceleration is a new approach for the particles acceleration, which allows obtaining ion beams with unique properties, such as short burst duration, large particle number, small size source size, low transverse emittance. Currently, two main acceleration mechanisms have been identified and investigated: target normal sheath acceleration (TNSA) and radiation pressure acceleration (RPA). Electrons dynamics and energies are strongly coupled to these acceleration mechanisms and they can be investigated with optical and X-ray techniques. The main aim of these studies are the identification of few physical observables that can be directly correlated to the proton emission obtained (in terms of reproducibility and intensity) in operations with different target material and structure and laser-target interaction parameters.

  14. Phase Noise of Optically Generated Microwave Using Sideband Injection Locking

    Institute of Scientific and Technical Information of China (English)

    HUANG Jin; SUN Chang-Zheng; SONG Yu; XIONG Bing; LUO Yi

    2008-01-01

    Optically generated 20-GHz microwave carriers with phase noise lower than -75 dBc/Hz at 10 kHz offset and lower than -90 dBc/Hz at 100 kHz offset are obtained using single- and double-sideband injection locking. Within the locking range, the effect of sideband injection locking can be regarded as narrow-band amplification of the modulation sidebands. Increasing the current of slave laser will increase the power of beat signal and reduce the phase noise to a certain extent. Double-sideband injection locking can increase the power of the generated microwave carrier while keeping the phase noise at a low level. It is also revealed that partially destruction of coherence between the two beating lights in the course of sideband injection locking would impair the phase noise performance.

  15. Optically controlled microwave devices and circuits: Emerging applications in space communications systems

    Science.gov (United States)

    Bhasin, Kul B.; Simons, Rainee N.

    1987-01-01

    Optical control of microwave devices and circuits by an optical fiber has the potential to simplify signal distribution networks in high frequency communications systems. The optical response of two terminal and three terminal (GaAs MESFET, HEMT, PBT) microwave devices are compared and several schemes for controlling such devices by modulated optical signals examined. Monolithic integration of optical and microwave functions on a single semiconductor substrate is considered to provide low power, low loss, and reliable digital and analog optical links for signal distribution.

  16. Tunable optical microwave source using spatially resolved laser eigenstates.

    Science.gov (United States)

    Brunel, M; Bretenaker, F; Le Floch, A

    1997-03-15

    A two-propagation-axis solid-state laser is shown to provide a widely tunable optical microwave source. The spatial separation of the laser eigenstates is shown to enable an étalon to act as a coarse tuner, forcing oscillation in any nonadjacent cavity modes. The frequency difference between opposite helicoidal eigenstates operating in nonadjacent cavity modes can then be tuned continuously. The beat note from such a solid-state laser is shown to vary from dc to 26 GHz, i.e., 30 times the laser free-spectral range, and is limited only by the free-spectral range of the étalon.

  17. Microwave and optical remote sensing of forest vegetation

    Science.gov (United States)

    Hoffer, R. M.; Bauer, M. E.; Biehl, L. L.; Mroczynski, R. P.

    1984-01-01

    The objectives and anticipated results of a study to define the strengths and limitations of microwave (SIR-B) and optical (thematic Mapper) data, singly and in combination, for the purpose of characterizing forest cover types and condition classes are described. Other specific objectives include: (1) the assessment of the effectiveness of a contextual classification algorithm (SECHO); (2) evaluation of the utility of different look angles of SAR data in determining differences in stand density of commercial forests; and (3) the determination of the effectiveness of the L-band HH polarized SIR-B data in differentiating forest-stand densities.

  18. Quasi-Optical Control of Intense Microwave Transmission

    CERN Document Server

    Hirshfield, Jay L

    2005-01-01

    This volume assembles the texts of presentations given at the NATO-sponsored Advanced Research Workshop on Quasi-Optical Transmission of High-Power Microwaves, held in Nizhny Novgorod, Russia in February 2004. The presentations bridge a wide range of technical areas, but share common tools of analysis and design. Applications of quasi-optics extend to the use of high-power microwaves—including millimeter-waves— for radar and communications (especially deep space millimeter-wave systems, space debris detection radar, and radar for the detection of small targets moving over heavy clutter); particle accelerators (especially for a future high-acceleration-gradient electron-positron collider); plasma research (especially for controlled nuclear fusion and waste decontamination); and material processing (in particular, ceramic sintering with millimeter-waves, and the coating of metal surfaces with protective dielectric films.). Scientists and engineers working in any of these areas should benefit significantly f...

  19. Microwave-mediated magneto-optical trap for polar molecules

    Science.gov (United States)

    Dizhou, Xie; Wenhao, Bu; Bo, Yan

    2016-05-01

    Realizing a molecular magneto-optical trap has been a dream for cold molecular physicists for a long time. However, due to the complex energy levels and the small effective Lande g-factor of the excited states, the traditional magneto-optical trap (MOT) scheme does not work very well for polar molecules. One way to overcome this problem is the switching MOT, which requires very fast switching of both the magnetic field and the laser polarizations. Switching laser polarizations is relatively easy, but fast switching of the magnetic field is experimentally challenging. Here we propose an alternative approach, the microwave-mediated MOT, which requires a slight change of the current experimental setup to solve the problem. We calculate the MOT force and compare it with the traditional MOT and the switching MOT scheme. The results show that we can operate a good MOT with this simple setup. Project supported by the Fundamental Research Funds for the Central Universities of China.

  20. Optic-microwave mixing velocimeter for superhigh velocity measurement

    Energy Technology Data Exchange (ETDEWEB)

    Weng Jidong; Wang Xiang; Tao Tianjiong; Liu Cangli; Tan Hua [Laboratory for Shock Waves and Detonation Physics Research, Institute of Fluid Physics, P.O. Box 919-102, Mianyang, Sichuan 621900 (China)

    2011-12-15

    The phenomenon that a light beam reflected off a moving object experiences a Doppler shift in its frequency underlies practical interferometric techniques for remote velocity measurements, such as velocity interferometer system for any reflector (VISAR), displacement interferometer system for any reflector (DISAR), and photonic Doppler velocimetry (PDV). While VISAR velocimeters are often bewildered by the fringe loss upon high-acceleration dynamic process diagnosis, the optic-fiber velocimeters such as DISAR and PDV, on the other hand, are puzzled by high velocity measurement over 10 km/s, due to the demand for the high bandwidth digitizer. Here, we describe a new optic-microwave mixing velocimeter (OMV) for super-high velocity measurements. By using currently available commercial microwave products, we have constructed a simple, compact, and reliable OMV device, and have successfully obtained, with a digitizer of bandwidth 6 GH only, the precise velocity history of an aluminum flyer plate being accelerated up to 11.2 km/s in a three stage gas-gun experiment.

  1. Characterizing Status of Selected Ecosystems Using Optical and Microwave Remote Sensing Data

    Science.gov (United States)

    Dabrowska-Zielinska, Katarzyna; Budzynska, Maria; Kowalik, Wanda; Malek, Iwona; Turlej, Konrad

    2010-12-01

    Wetlands areas are one of the most sensitive ecosystem. This study was conducted in the Biebrza Valley, a NATURA 2000 and Ramsar Convention test site situated in Northeast Poland. The paper presents monitoring and mapping of various soil-vegetation variables using optical and microwave satellite data. Satellite data applied for the study included: ENVISAT ASAR and MERIS, ALOS.PALSAR, NOAA.AVHRR. Optical images were used for classification of wetlands communities and calculation of vegetation indices. The method of estimating Latent Heat Flux (LE) from NOAA.AVHRR and meteorological data and calculation of soil moisture index as ratio of Sensible Heat Flux (H) to LE were also applied. Parallel to satellite observations the soil-vegetation variables were measured at the test site. Data from optical and microwave satellite images and soil-vegetation ground truth measurements were analysed to develop methods for the Leaf Area Index (LAI) and soil moisture estimates over wetlands. The presented results allow monitoring and mapping soil-vegetation parameters of wetlands and its changes over the time. The methodology developed is suitable for applications to the system of monitoring wetlands in Europe. The studied areas can be recognized as a reference for other wetlands. The examined ecosystem is of great importance in nature conservation and water storage capability in Europe. The Project was carried out in the framework of the national grant N N526 0217 33. The satellite images have been obtained for ESA projects AO ID 122 and AOALO.3742.

  2. Global Terrestrial Evapotranspiration from Optical and Microwave Satellite Observations

    Science.gov (United States)

    Jia, Li; Zhang, Chaolei; Hu, Guangcheng; Zhou, Jie; Cui, Yaokui; Lu, Jing; Wang, Kun; Liu, Qinhuo; Menenti, Massimo

    2016-08-01

    Terrestrial actual evapotranspiration (ET) is an important component of the terrestrial water cycle and links the hydrological, energy, and carbon cycles. Considering the diverse landscapes and multi-climatic features, a hybrid remotely sensed ET estimation model named ETMonitor was developed to estimate the daily actual evapotranspiration globally at a spatial resolution of 1 km. The ETMonitor model uses a variety of biophysical parameters derived from microwave and optical remote sensing observations as input data to estimate the daily ET for all sky conditions. This dataset provides important support to the large-scale evaluation of the environment, and some preliminary applications were conducted for regional- to global-scale mapping and monitoring of water consumption and drought severity.

  3. Multi-band local microwave signal generation based on an optical frequency comb generator

    Science.gov (United States)

    Wang, Wen Ting; Liu, Jian Guo; Sun, Wen Hui; Chen, Wei; Zhu, Ning Hua

    2015-03-01

    We propose and experimental demonstrate a new method to generate multi-band local microwave signals based on an optical frequency comb generator (OFCG) by applying an optical sideband injection locking technique and an optical heterodyning technique. The generated microwave signal can cover multi bands from S band to Ka band. A tunable multiband microwave signal spanning from 5 GHz to 40 GHz can be generated by the beating between the optical carrier and injection locked modulation sidebands in a photodetector without an optical filter. The wavelength of the slave laser can be continuously and near-linearly adjusted by proper changing its bias current. By tuning the bias current of the slave laser, the wavelength of that is matched to one of the modulation sidebands of the OFCG. The performance of the arrangement in terms of the tunability and stability of the generated microwave signal is also studied.

  4. A Cs-Based Optical Frequency Measurement Using Cross-Linked Optical and Microwave Oscillators

    CERN Document Server

    Tamm, Chr; Lipphardt, B; Gerginov, V; Nemitz, N; Kazda, M; Weyers, S; Peik, E

    2013-01-01

    We describe a measurement of the frequency of the 2S1/2(F = 0) - 2D3/2(F' = 2) transition of 171Yb+ at the wavelength 436 nm (frequency 688 THz), using a single Yb+ ion confined in a Paul trap and two caesium fountains as references. In one of the fountains, the frequency of the microwave oscillator that interrogates the caesium atoms is stabilized by the laser that excites the Yb+ reference transition with a linewidth in the hertz range. The stability is transferred to the microwave oscillator with the use of a fiber laser based optical frequency comb generator that also provides the frequency conversion for the absolute frequency measurement. The frequency comb generator is configured as a transfer oscillator so that fluctuations of the pulse repetition rate and of the carrier offset frequency do not degrade the stability of the frequency conversion. The phase noise level of the generated ultrastable microwave signal is comparable to that of a cryogenic sapphire oscillator. For fountain operation with optic...

  5. Nonclassical correlation between optical and microwave photons in a hybrid electro-optomechanical system

    Science.gov (United States)

    Xie, Hong; Chen, Xiang; Lin, Gongwei; Lin, Xiumin

    2016-10-01

    A scheme to correlate optical and microwave photons is proposed in a hybrid electro-optomechanical system, where mechanical resonator is coupled to both optical and microwave fields. Analytical and numerical simulation results show that the cross-correlation function between Stokes and anti-Stokes photons strongly violates the Cauchy-Schwarz inequality, which confirms the nonclassical correlation between the optical and microwave photons. It is worth noting that the nonclassical photon pairs with vast different wavelengths, which may be useful for quantum communication, are generated under the experimentally accessible weak coupling limit rather than single-photon strong coupling regime. In addition, the protocol provides a possible route to combine the respective advantages of optical photons, microwave photons, and phonons in a hybrid electro-optomechanical system.

  6. Development of near-field scanning microwave and optical dual probe: Application to characterization of high-T(c) superconductors

    Science.gov (United States)

    Aga, Roberto Sabas, Jr.

    In this dissertation, a novel dual-channel near-field scanning microwave and optical microprobe (NSMM/NSOM) was developed for simultaneous mapping of microwave and optical properties of a sample at microscopic scales. This microprobe is composed of an open-end coaxial resonator with its center conductor being replaced by a stainless steel tube terminated by a titanium/silver coated fiber optic with a tapered tip. The optical fiber serves as the channel for NSOM, while its metal coating is the channel for NSMM. Using this dual-channel NSMM/NSOM probe, a spatial resolution of ˜5 mum, that is comparable to the best reported for single-channel NSMM, has been achieved on metallic samples. This resolution is mainly limited by the sensitivity of the NSMM channel and may be further improved when the sensitivity of NSMM is enhanced. Characterization of the microwave properties of the highest-Tc Hg-based superconductors has been carried out using a traditional resonant cavity technique, as well as a novel single-channel NSMM and the dual-channel NSMM/NSOM. Using the traditional technique, the microwave surface resistance (Rs) and power handling capability (Pc) of HgBa 2CaCu2O6 (Hg-1212 with Tc ˜ 125 K) films have been measured for the first time, and the results are superior to the best achieved on other superconductors. For example, a comparable R s ˜ 0.3 mO (10 GHz) can be obtained on Hg-1212 at close to 120 K as opposed to the same Rs for YBa2Cu3O 7 (the most popular high-Tc superconductor with Tc ˜ 92 K) at around 77K. This can be attributed to the large difference in the Tcs between the two materials and has demonstrated the potential of Hg-1212 for microwave applications. A comparison of the microwave properties of Hg-1212, Tl-2212 and YBCO films at reduced temperature scale suggested further room for improvement of Hg-1212 performance. Using NSMM, the localized microwave properties, such as Tcs, sheet resistance and power handling capability have been investigated

  7. Slow and fast light effects in semiconductor optical amplifiers for applications in microwave photonics

    DEFF Research Database (Denmark)

    Xue, Weiqi

    This thesis analyzes semiconductor optical amplifiers based slow and fast light effects with particular focus on the applications in microwave photonics. We conceive novel ideas and demonstrate a great enhancement of light slow down. Furthermore, by cascading several slow light stages, >360 degree...... microwave phase shifts over a bandwidth of several tens of gigahertz are achieved. These also satisfy the basic requirements of microwave photonic systems. As an application demonstration, a tunable microwave notch filter is realized, where slow light based phase shifters provide 100% fractional tuning over...

  8. Demonstration of tunable microwave photonic notch filters using slow and fast light effects in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Sales, Salvador; Mørk, Jesper

    2009-01-01

    We introduce a novel scheme based on slow and fast light effects in semiconductor optical amplifiers, to implement a microwave photonic notch filter with ~100% fractional tuning range at a microwave frequency of 30 GHz.......We introduce a novel scheme based on slow and fast light effects in semiconductor optical amplifiers, to implement a microwave photonic notch filter with ~100% fractional tuning range at a microwave frequency of 30 GHz....

  9. Demonstration of tunable microwave photonic notch filters using slow and fast light effects in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Sales, Salvador; Mørk, Jesper;

    2009-01-01

    We introduce a novel scheme based on slow and fast light effects in semiconductor optical amplifiers, to implement a microwave photonic notch filter with ~100% fractional tuning range at a microwave frequency of 30 GHz.......We introduce a novel scheme based on slow and fast light effects in semiconductor optical amplifiers, to implement a microwave photonic notch filter with ~100% fractional tuning range at a microwave frequency of 30 GHz....

  10. A classical to quantum optical network link for orbital angular momentum carrying light

    CERN Document Server

    Zhou, Zhi-Yuan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Shi, Bao-Sen; Guo, Guang-Can

    2015-01-01

    Light with orbital angular momentum (OAM) has great potentials in both classical and quantum optical communications such as enhancing the transmission capacity of a single communication channel because of its unlimited dimensions. Based on OAM conservation in second order nonlinear interaction processes, we create a classical to quantum optical network link in OAM degree of freedoms of light via sum frequency generation (SFG) following by a spontaneous parametric down conversion (SPDC). A coherent OAM-carrying beams at telecom wavelength 1550nm is up-converted to 525.5nm OAM-carrying beams in the first crystal, then up-converted OAM-carrying beam is used to pump a second crystal to generate non-degenerate OAM entangled photon pairs at 795nm and 1550nm. By switching the OAM carries by the classical party, the OAM correlation in the quantum party is shifted. High OAM entanglements in two dimensional subspaces are verified. This primary study enables to build a hybrid optical communication network contains both ...

  11. Magneto-optic effects of the Cosmic Microwave Background

    CERN Document Server

    Ejlli, Damian

    2016-01-01

    Generation of magneto-optic effects by the cosmic microwave background (CMB) in the presence of cosmic magnetic fields is studied. Four mechanisms which generate polarization of the CMB such as the Cotton-Mouton effect, the vacuum polarization in external magnetic field, the photon-pseudoscalar mixing in external magnetic field and the Faraday effect are studied. Considering the CMB linearly polarized at decoupling time due to Thomson scattering, it is shown that second order effects in the magnetic field amplitude such as the Cotton-Mouton effect in plasma and the vacuum polarization (Euler-Heisenberg term) in cosmic magnetic field, would generate elliptic polarization of the CMB at post decoupling time depending on the photon frequency and magnetic field strength. The Cotton-Mouton effect in plasma turns out to be the dominant effect in the generation of CMB elliptic polarization in the low frequency part while the vacuum polarization in magnetic field is the dominant process in the high frequency part. The...

  12. 3D printed broadband transformation optics based all-dielectric microwave lenses

    Science.gov (United States)

    Yi, Jianjia; Nawaz Burokur, Shah; Piau, Gérard-Pascal; de Lustrac, André

    2016-04-01

    Quasi-conformal transformation optics is applied to design electromagnetic devices for focusing and collimating applications at microwave frequencies. Two devices are studied and conceived by solving Laplace’s equation that describes the deformation of a medium in a space transformation. As validation examples, material parameters of two different lenses are derived from the analytical solutions of Laplace’s equation. The first lens is applied to produce an overall directive in-phase emission from an array of sources conformed on a cylindrical structure. The second lens allows deflecting a directive beam to an off-normal direction. Full-wave simulations are performed to verify the functionality of the calculated lenses. Prototypes presenting a graded refractive index are fabricated through three-dimensional polyjet printing using solely dielectric materials. Experimental measurements carried out show very good agreement with numerical simulations, thereby validating the proposed lenses. Such easily realizable designs open the way to low-cost all-dielectric microwave lenses for beam forming and collimation.

  13. Frequency division multiplexed microwave and baseband digital optical fiber link for phased array antennas

    Science.gov (United States)

    Heim, Peter J.; McClay, C. Phillip

    1990-05-01

    A frequency-division multiplexed optical fiber link is described in which microwave (1-8 GHz) and baseband digital (1-10 Mb/s) signals are combined electrically and transmitted through a direct-modulation microwave optical link. The microwave signal does not affect bit error rate (BER) performance of the Manchester-coded baseband digital data link. The baseband digital signal affects microwave signal quality by generating second-order intermodulation noise. The intermodulation noise power density is found to be proportional to both the microwave input power and the digital input power, enabling the system to be modeled as a mixer (AM modulator). The conversion loss for the digital signal is approximately 68 dB for a 1-GHz microwave signal and is highly dependent on the microwave frequency, reaching a minimum value of 41 dB at 4.5 GHz, corresponding to the laser diode relaxation oscillation frequency. It is shown that Manchester coding on the digital link places the intermodulation noise peak away from the microwave signal, preventing degradation of close-carrier phase noise (<1 kHz offset). A direct trade-off between intermodulation noise and digital link margin is developed to project system performance.

  14. Optical frequency comb based multi-band microwave frequency conversion for satellite applications.

    Science.gov (United States)

    Yang, Xinwu; Xu, Kun; Yin, Jie; Dai, Yitang; Yin, Feifei; Li, Jianqiang; Lu, Hua; Liu, Tao; Ji, Yuefeng

    2014-01-13

    Based on optical frequency combs (OFC), we propose an efficient and flexible multi-band frequency conversion scheme for satellite repeater applications. The underlying principle is to mix dual coherent OFCs with one of which carrying the input signal. By optically channelizing the mixed OFCs, the converted signal in different bands can be obtained in different channels. Alternatively, the scheme can be configured to generate multi-band local oscillators (LO) for widely distribution. Moreover, the scheme realizes simultaneous inter- and intra-band frequency conversion just in a single structure and needs only three frequency-fixed microwave sources. We carry out a proof of concept experiment in which multiple LOs with 2 GHz, 10 GHz, 18 GHz, and 26 GHz are generated. A C-band signal of 6.1 GHz input to the proposed scheme is successfully converted to 4.1 GHz (C band), 3.9 GHz (C band) and 11.9 GHz (X band), etc. Compared with the back-to-back (B2B) case measured at 0 dBm input power, the proposed scheme shows a 9.3% error vector magnitude (EVM) degradation at each output channel. Furthermore, all channels satisfy the EVM limit in a very wide input power range.

  15. Optical and Microwave Spectroscopy of Transient Metal-Containing Molecules

    Science.gov (United States)

    Steimle, Timothy

    2016-06-01

    Small metal containing molecules are ideal venues for testing Fundamental Physics, investigating relativistic effects, and modelling spin-orbit induced unimolecular dynamics. Electronic spectroscopy is an effective method for probing these phenomena because such spectra are readily recorded at the natural linewidth limited resolution and accuracy of 0.0001 wn. The information garnered includes fine and hyperfine interactions, magnetic and electric dipoles, and dynamics. With this in mind, three examples from our recent (unpublished) studies will be highlighted. SiHD: Long ago Duxbury et al. developed a semi-quantitative model invoking Renner-Teller and spin-orbit coupling of the tilde{a}3B{1}, tilde{X}1A1, and tilde{A}1B1, states to explain the observed local perturbations and anomalous radiative lifetimes in the visible spectrum. More recently, the tilde{a}3B1 to tilde{A}1B1 intersystem crossing has been modeled using both semi-classical transition state theory and quantum trajectory surface hopping dynamics. Here we investigate the effects of the reduced symmetry of SiHD on the spectroscopy and dynamics using 2D spectroscopy. Rotationally resolved lines in the origin tilde{X}1A'→ tilde{A}1A" band are assigned to both c-type transitions and additional axis-switching induced transitions. AuO and AuS: The observed markedly different bonding of thiols and alcohols to gold clusters should be traceable to the difference in Au-O and Au-S bonding. To investigate this difference we have used optical Stark and Zeeman spectroscopy to determine the permanent electric dipole moments and magnetic g-factors. The results are rationalized using simple m.o. correlation diagrams and compared to ab initio predictions. TaN: TaN is the best candidate to search for a T,P- violating nuclear magnetic quadrupole moment. Here we report on the optical 2D, Stark, and Zeeman spectra, and our efforts to record the pure rotational spectrum using the separated field pump/probe microwave-optical

  16. Gigahertz to terahertz tunable all-optical single-side-band microwave generation via semiconductor optical amplifier gain engineering.

    Science.gov (United States)

    Li, Fangxin; Helmy, Amr S

    2013-11-15

    We propose and demonstrate a technique to generate low-noise broadly tunable single-side-band microwaves using cascaded semiconductor optical amplifiers (SOAs) using no RF bias. The proposed technique uses no RF components and is based on polarization-state controlled gain-induced four-wave mixing in SOAs. Microwave generation from 40 to 875 GHz with a line-width ~22 KHz is experimentally demonstrated.

  17. Highly linear and transparent 3-18 GHz optical microwave link

    DEFF Research Database (Denmark)

    Nielsen, Torben Nørskov; Gliese, Ulrik Bo; Christensen, T.;

    1994-01-01

    A highly linear optical microwave link transmitter based on heterodyne phase-locked DFB lasers is presented. The transmitter is transparent for FM and PM input signals with carrier frequencies ranging from 3-18 GHz. Distortion-free transmission of a 7.6 GHz FM PAL video signal over 25 km of optical...

  18. Gaussian-shaped Optical Frequency Comb Generation for Microwave Photonic Filtering

    CERN Document Server

    Wu, Rui; Hamidi, Ehsan; Supradeepa, V R; Song, Min Hyup; Leaird, Daniel E; Weiner, Andrew M

    2011-01-01

    Using only electro-optic modulators, we generate a 41-line 10-GHz Gaussian-shaped optical frequency comb. We use this comb to demonstrate apodized microwave photonic filters with greater than 43-dB sidelobe suppression without the need for a pulse shaper.

  19. Nonreciprocal conversion between microwave and optical photons in electro-optomechanical systems

    CERN Document Server

    Xu, Xun-Wei; Chen, Ai-Xi; Liu, Yu-xi

    2015-01-01

    We propose to demonstrate nonreciprocal conversion between microwave photons and optical photons in an electro-optomechanical system where a microwave mode and an optical mode are coupled indirectly via two non-degenerate mechanical modes. The nonreciprocal conversion is obtained in the broken time-reversal symmetry regime, where the conversion of photons from one frequency to the other is enhanced for constructive quantum interference while the conversion in the reversal direction is suppressed due to destructive quantum interference. It is interesting that the nonreciprocal response between the microwave and optical modes in the electro-optomechanical system appears at two different frequencies with opposite directions. The proposal can be used to realize nonreciprocal conversion between photons of any two distinctive modes with different frequencies. Moreover, the electro-optomechanical system can also be used to construct a three-port circulator for three optical modes with distinctively different frequen...

  20. Infrared fiber optic temperature monitoring of biological tissues heated in a microwave oven

    Science.gov (United States)

    Belotserkovsky, Edward; Ashkenasy, Y.; Shenfeld, Ofer; Drizlikh, S.; Zur, Albert; Katzir, Abraham

    1993-05-01

    The heating of tissue by microwave radiation has attained a place of importance in various medical fields such as the treatment of malignancies, urinary retention and hypothermia. Accurate temperature measurements in these treated tissues is important for treatment planning and for the control of the heating process. It is also important to be able to measure spacial temperature distribution in the tissues because they are heated in a non uniform way by the microwave radiation. Fiber optic radiometry makes possible accurate temperature measurement in the presence of microwave radiation and does not require contact with the tissue. Using a IR silver halide fiber optic radiometric temperature sensor we obtained accurate temperature measurements of tissues heated by microwave, enabling us to control the heating process in all regions of the tissue. We also performed temperature mapping of the heated tissues and demonstrated the non-uniform temperature distributions in them.

  1. Free-space optical communication link using perfect vortex beams carrying orbital angular momentum (OAM)

    Science.gov (United States)

    Zhu, Fuquan; Huang, Sujuan; Shao, Wei; Zhang, Jie; Chen, Musheng; Zhang, Weibing; Zeng, Junzhang

    2017-08-01

    We experimentally demonstrate a free-space optical communication link using perfect vortex beams. Perfect vortex beams with different topological charges are generated using a phase-modulation-type spatial light modulator (SLM) loaded with novel phase holograms based on the Bessel function. With the help of a microscope objective and simple lens, perfect vortex beams are transmitted effectively for a certain distance. After completing the demodulation of perfect vortex beams carrying OFDM 16-QAM signals and a series of offline processing on the Gaussian bright spot demodulated from the perfect vortex beams, we also achieve a communication link. The constellations and mean bit error rates (BER) of subcarriers are shown.

  2. Compensation of chromatic and polarization mode dispersion in fiber-optic communication lines in microwave signals transmittion.

    Science.gov (United States)

    Ermolaev, A. N.; Krishpents, G. P.; Davydov, V. V.; Vysoczkiy, M. G.

    2016-08-01

    Methods of dispersion compensation in fiber-optic communication lines. A new proposed method of electronic dispersion compensation in the transmission of microwave signals through fiber-optic lines. Represents is proposed the results of experimental studies of this method.

  3. Broadband microwave phase shifter based on high speed cross gain modulation in quantum dot semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Chen, Yaohui; Mørk, Jesper

    2009-01-01

    We present a scheme to achieve tunable ~180 degrees microwave phase shifts at frequencies exceeding 100 GHz based on high speed cross gain modulation in quantum dot semiconductor optical amplifiers.......We present a scheme to achieve tunable ~180 degrees microwave phase shifts at frequencies exceeding 100 GHz based on high speed cross gain modulation in quantum dot semiconductor optical amplifiers....

  4. Analysis of an effective optical filtering technique to enhance microwave phase shifts based on slow and fast light effects

    DEFF Research Database (Denmark)

    Chen, Yaohui; Öhman, Filip; Xue, Weiqi

    2008-01-01

    We theoretically analyze and interpret an effective mechanism, which employs optical filtering to enhance the microwave phase shift that can be achieved in semiconductor optical amplifiers based on slow and fast light effects.......We theoretically analyze and interpret an effective mechanism, which employs optical filtering to enhance the microwave phase shift that can be achieved in semiconductor optical amplifiers based on slow and fast light effects....

  5. Compact optically-fed microwave true-time delay using liquid crystal photonic bandgap fiber device

    DEFF Research Database (Denmark)

    Wei, Lei; Xue, Weiqi; Chen, Yaohui

    2009-01-01

    Electrically tunable liquid crystal photonic bandgap fiber device based optically-fed microwave true-time delay is demonstrated. A maximum ~60° phase shift and an averaged ~7.2ps true time delay are obtained over the modulation frequency range 1GHz-19GHz.......Electrically tunable liquid crystal photonic bandgap fiber device based optically-fed microwave true-time delay is demonstrated. A maximum ~60° phase shift and an averaged ~7.2ps true time delay are obtained over the modulation frequency range 1GHz-19GHz....

  6. Compact optically-fed microwave true-time delay using liquid crystal photonic bandgap fiber device

    DEFF Research Database (Denmark)

    Wei, Lei; Xue, Weiqi; Chen, Yaohui;

    2009-01-01

    Electrically tunable liquid crystal photonic bandgap fiber device based optically-fed microwave true-time delay is demonstrated. A maximum ~60° phase shift and an averaged ~7.2ps true time delay are obtained over the modulation frequency range 1GHz-19GHz.......Electrically tunable liquid crystal photonic bandgap fiber device based optically-fed microwave true-time delay is demonstrated. A maximum ~60° phase shift and an averaged ~7.2ps true time delay are obtained over the modulation frequency range 1GHz-19GHz....

  7. Digital Square-Wave Frequency Modulated Microwave Sources for a Miniature Optically Pumped Cesium Beam Clock

    Institute of Scientific and Technical Information of China (English)

    CHEN Jingbiao; ZHU Chengjin; LIU Ge; WANG Fengzhi; WANG Yiqiu; YANG Donghai

    2001-01-01

    Three different digital frequencymodulated microwave sources have been designed andapplied to our miniature optically pumped cesiumbeam clock.The main features and their influenceon clock accuracy have been experimentally tested.Itis proved that a digital square-wave frequency modu-lated microwave source using a microprocessor con-trolled direct-digital frequency synthesizer (DDFS)for our miniature optically pumped cesium beamclock works well,the frequency short term stability2 × 10 11/x r and the long term stability 3.5 x 10-13 forone day sample time have been obtained.

  8. Optical microwave generation using two parallel DFB lasers integrated with Y-branch waveguide coupler

    Institute of Scientific and Technical Information of China (English)

    Xie Hong-Yun; Wang Lu; Zhao Ling-Juan; Zhu Hong-Liang; Wang Wei

    2007-01-01

    A new device of two parallel distributed feedback (DFB) lasers integrated monolithically with Y-branch waveguide coupler was fabricated by means of quantum well intermixing. Optical microwave signal was generated in the Y-branch waveguide coupler through frequency beating of the two laser modes coming from two DFB laser in parallel, which had a small difference in frequency. Continuous rapid tuning of optical microwave signal from 13 to 42 GHz were realized by adjusting independently the driving currents injected into the two DFB lasers.

  9. Ultra-low phase noise all-optical microwave generation setup based on commercial devices

    CERN Document Server

    Didier, A; Grop, S; Dubois, B; Bigler, E; Rubiola, E; Lacroûte, C; Kersalé, Y

    2015-01-01

    In this paper, we present a very simple design based on commercial devices for the all-optical generation of ultra-low phase noise microwave signals. A commercial, fibered femtosecond laser is locked to a laser that is stabilized to a commercial ULE Fabry-Perot cavity. The 10 GHz microwave signal extracted from the femtosecond laser output exhibits a single sideband phase noise $\\mathcal{L}(f)=-104 \\ \\mathrm{dBc}/\\mathrm{Hz}$ at 1 Hz Fourier frequency, at the level of the best value obtained with such "microwave photonics" laboratory experiments \\cite{Fortier2011}. Close-to-the-carrier ultra-low phase noise microwave signals will now be available in laboratories outside the frequency metrology field, opening up new possibilities in various domains.

  10. Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise.

    Science.gov (United States)

    Wu, Ben; Wang, Zhenxing; Shastri, Bhavin J; Chang, Matthew P; Frost, Nicholas A; Prucnal, Paul R

    2014-01-13

    A temporal phase mask encryption method is proposed and experimentally demonstrated to improve the security of the stealth channel in an optical steganography system. The stealth channel is protected in two levels. In the first level, the data is carried by amplified spontaneous emission (ASE) noise, which cannot be detected in either the time domain or spectral domain. In the second level, even if the eavesdropper suspects the existence of the stealth channel, each data bit is covered by a fast changing phase mask. The phase mask code is always combined with the wide band noise from ASE. Without knowing the right phase mask code to recover the stealth data, the eavesdropper can only receive the noise like signal with randomized phase.

  11. Design of a multi-point microwave interferometer using the electro-optic effect

    Science.gov (United States)

    Specht, Paul E.; Cooper, Marcia A.; Jilek, Brook A.

    2017-01-01

    A multi-point microwave interferometer (MPMI) concept is presented for non-invasively monitoring the internal transit of a shock, detonation, or reaction front in energetic media. The concept utilizes an electro-optic (EO) crystal to impart a time-varying phase lag onto a laser with a microwave signal. Polarization optics convert this phase lag into an amplitude modulation. A heterodyne interferometer compares the modulated laser beam to a constant reference. This enables the detection of changes in the modulating microwave frequency generated by the motion of the measurement surface. The design is scalable and makes use of the established construction and analysis methods employed in photonic Doppler velocimetry (PDV). The technical challenges associated with the concept are the frequency stability of the lasers, the amount of light return after EO modulation, and the frequency uncertainty of fast Fourier transform (FFT) methods.

  12. Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies

    CERN Document Server

    Tadesse, Semere Ayalew

    2014-01-01

    Light-sound interactions have long been exploited in various acousto-optic devices based on bulk crystalline materials. Conventionally these devices operate in megahertz frequency range where the acoustic wavelength is much longer than the optical wavelength and a long interaction length is required to attain significant coupling. With nanoscale transducers, acoustic waves with sub-optical wavelengths can now be excited to induce strong acousto-optic coupling in nanophotonic devices. Here we demonstrate microwave frequency surface acoustic wave transducers co-integrated with nanophotonic resonators on piezoelectric aluminum nitride substrates. Acousto-optic modulation of the resonance modes at above 10 GHz with the acoustic wavelength significantly below the optical wavelength is achieved. The phase and modal matching conditions in this scheme are investigated for efficient modulation. The new acousto-optic platform can lead to novel optical devices based on nonlinear Brillouin processes and provides a direct...

  13. Optical amplification and pulse interleaving for low noise photonic microwave generation

    CERN Document Server

    Quinlan, Franklyn; Fortier, Tara M; Zhou, Qiugui; Cross, Allen; Campbell, Joe C; Diddams, Scott A

    2013-01-01

    We investigate the impact of pulse interleaving and optical amplification on the spectral purity of microwave signals generated by photodetecting the pulsed output of an Er:fiber-based optical frequency comb. It is shown that the microwave phase noise floor can be extremely sensitive to delay length errors in the interleaver, and the contribution of the quantum noise from optical amplification to the phase noise can be reduced ~10 dB for short pulse detection. We exploit optical amplification, in conjunction with high power handling modified uni-traveling carrier photodetectors, to generate a phase noise floor on a 10 GHz carrier of -175 dBc/Hz, the lowest ever demonstrated in the photodetection of a mode-locked fiber laser. At all offset frequencies, the photodetected 10 GHz phase noise performance is comparable to or better than the lowest phase noise results yet demonstrated with stabilized Ti:sapphire frequency combs.

  14. Multifunctional fiber-optic microwave links based on remote heterodyne detection

    DEFF Research Database (Denmark)

    Gliese, Ulrik Bo; Nielsen, Torben Nørskov; Nielsen, Søren Nørskov

    1998-01-01

    The multifunctionality of microwave links based on remote heterodyne detection (RHD) of signals from a dual-frequency laser transmitter is discussed and experimentally demonstrated in this paper. Typically, direct detection (DD) in conjunction with optical intensity modulation is used to implemen...... carrier to a 9-GHz carrier with penalty-free transmission over 25 km of optical fiber. Finally, the transparent link transmits a standard FM video 7.6-GHz radio-link signal over 25 km of optical fiber without measurable distortion...... fiber-optic microwave links. The resulting links are inherently transparent. As opposed to DD links, RHD links can perform radio-system functionalities such as modulation and frequency conversion in addition to transparency. All of these three functionalities are presented and experimentally...

  15. Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical device

    Science.gov (United States)

    Vainsencher, Amit; Satzinger, K. J.; Peairs, G. A.; Cleland, A. N.

    2016-07-01

    We describe the principles of design, fabrication, and operation of a piezoelectric optomechanical crystal with which we demonstrate bi-directional conversion of energy between microwave and optical frequencies. The optomechanical crystal has an optical mode at 1523 nm co-located with a mechanical breathing mode at 3.8 GHz, with a measured optomechanical coupling strength gom/2π of 115 kHz. The breathing mode is driven and detected by curved interdigitated transducers that couple to a Lamb mode in suspended membranes on either end of the optomechanical crystal, allowing the external piezoelectric modulation of the optical signal as well as the converse, the detection of microwave electrical signals generated by a modulated optical signal. We compare measurements to theory where appropriate.

  16. Synthesis and optical properties of pyrrolidinyl peptide nucleic acid carrying a clicked Nile red label

    Directory of Open Access Journals (Sweden)

    Nattawut Yotapan

    2014-09-01

    Full Text Available DNA or its analogues with an environment-sensitive fluorescent label are potentially useful as a probe for studying the structure and dynamics of nucleic acids. In this work, pyrrolidinyl peptide nucleic acid (acpcPNA was labeled at its backbone with Nile red, a solvatochromic benzophenoxazine dye, by means of click chemistry. The optical properties of the Nile red-labeled acpcPNA were investigated by UV–vis and fluorescence spectroscopy in the absence and in the presence of DNA. In contrast to the usual quenching observed in Nile red-labeled DNA, the hybridization with DNA resulted in blue shifting and an enhanced fluorescence regardless of the neighboring bases. More pronounced blue shifts and fluorescence enhancements were observed when the DNA target carried a base insertion in close proximity to the Nile red label. The results indicate that the Nile red label is located in a more hydrophobic environment in acpcPNA–DNA duplexes than in the single-stranded acpcPNA. The different fluorescence properties of the acpcPNA hybrids of complementary DNA and DNA carrying a base insertion are suggestive of different interactions between the Nile red label and the duplexes.

  17. Synthesis and optical properties of pyrrolidinyl peptide nucleic acid carrying a clicked Nile red label.

    Science.gov (United States)

    Yotapan, Nattawut; Charoenpakdee, Chayan; Wathanathavorn, Pawinee; Ditmangklo, Boonsong; Wagenknecht, Hans-Achim; Vilaivan, Tirayut

    2014-01-01

    DNA or its analogues with an environment-sensitive fluorescent label are potentially useful as a probe for studying the structure and dynamics of nucleic acids. In this work, pyrrolidinyl peptide nucleic acid (acpcPNA) was labeled at its backbone with Nile red, a solvatochromic benzophenoxazine dye, by means of click chemistry. The optical properties of the Nile red-labeled acpcPNA were investigated by UV-vis and fluorescence spectroscopy in the absence and in the presence of DNA. In contrast to the usual quenching observed in Nile red-labeled DNA, the hybridization with DNA resulted in blue shifting and an enhanced fluorescence regardless of the neighboring bases. More pronounced blue shifts and fluorescence enhancements were observed when the DNA target carried a base insertion in close proximity to the Nile red label. The results indicate that the Nile red label is located in a more hydrophobic environment in acpcPNA-DNA duplexes than in the single-stranded acpcPNA. The different fluorescence properties of the acpcPNA hybrids of complementary DNA and DNA carrying a base insertion are suggestive of different interactions between the Nile red label and the duplexes.

  18. Packaged semiconductor laser optical phase locked loop for photonic generation, processing and transmission of microwave signals

    DEFF Research Database (Denmark)

    Langley, L.N.; Elkin, M.D.; Edege, C.

    1999-01-01

    In this paper, we present the first fully packaged semiconductor laser optical phase-locked loop (OPLL) microwave photonic transmitter. The transmitter is based on semiconductor lasers that are directly phase locked without the use of any other phase noise-reduction mechanisms. In this transmitter...

  19. Two-dimensional imaging of optical emission in a multicusp-ECR microwave resonant cavity

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, C.B.; Brake, M.L. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Nuclear Engineering

    1996-02-01

    Optical emission of the electron-cyclotron resonant (ECR) region of a multicusp microwave resonant cavity plasma source has been imaged onto a two-dimensional charge-coupled device (CCD) camera. The technique provides a real-time diagnostic of the plasma emission around the ECR region within a wavelength region defined by low-bandpass filters.

  20. Wideband 360 degrees microwave photonic phase shifter based on slow light in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Sales, Salvador; Capmany, Jose;

    2010-01-01

    oscillations, enhanced by optical filtering, in combination with a regeneration stage realized by four-wave mixing effects. This combination provides scalability: three hybrid stages are demonstrated but the technology allows an all-integrated device. The microwave operation frequency limitations...

  1. Design of a fiber-optic transmitter for microwave analog transmission with high phase stability

    Science.gov (United States)

    Logan, R. T., Jr.; Lutes, G. F.; Primas, L. E.; Maleki, L.

    1990-01-01

    The principal considerations in the design of fiber-optic transmitters for highly phase-stable radio frequency and microwave analog transmission are discussed. Criteria for a fiber-optic transmitter design with improved amplitude and phase-noise performance are developed through consideration of factors affecting the phase noise, including low-frequency laser-bias supply noise, the magnitude and proximity of external reflections into the laser, and temperature excursions of the laser-transmitter package.

  2. On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator

    Science.gov (United States)

    Javerzac-Galy, C.; Plekhanov, K.; Bernier, N. R.; Toth, L. D.; Feofanov, A. K.; Kippenberg, T. J.

    2016-11-01

    We propose a device architecture capable of direct quantum coherent electro-optical conversion of microwave-to-optical photons. The hybrid system consists of a planar superconducting microwave circuit coupled to an integrated whispering-gallery-mode microresonator made from an electro-optical material. We show that by exploiting the large vacuum electric field of the planar microwave resonator, electro-optical (vacuum) coupling strengths g0 as large as ˜2 π O (10 -100 ) kHz are achievable with currently available technology—a more than 3 orders of magnitude improvement over prior designs and realizations. Operating at millikelvin temperatures, such a converter would enable high-efficiency conversion of microwave-to-optical photons. We analyze the added noise and show that maximum quantum coherent conversion efficiency is achieved for a multiphoton cooperativity of unity which can be reached with optical power as low as O (1 ) mW.

  3. On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator

    CERN Document Server

    Javerzac-Galy, Clément; Bernier, Nathan; Toth, Laszlo D; Feofanov, Alexey K; Kippenberg, Tobias J

    2015-01-01

    We propose a device architecture capable of direct quantum electro-optical conversion of microwave to optical photons. The hybrid system consists of a planar superconducting microwave circuit coupled to an integrated whispering-gallery-mode microresonator made from an electro-optical material. We show that electro-optical (vacuum) coupling rates $g_0$ as large as$\\sim 2\\pi \\, \\mathcal{O}(10-100)$ kHz are achievable with currently available technology, due to the small mode volume of the planar microwave resonator. Operating at millikelvin temperatures, such a converter would enable high-efficiency conversion of microwave to optical photons. We analyze the added noise, and show that maximum conversion efficiency is achieved for a multi-photon cooperativity of unity which can be reached with optical power as low as $ \\mathcal{O}(1)\\,\\mathrm{mW} $.

  4. A comparison of optical and microwave scintillometers with eddy covariance derived surface heat fluxes

    KAUST Repository

    Yee, Mei Sun

    2015-11-01

    Accurate measurements of energy fluxes between land and atmosphere are important for understanding and modeling climatic patterns. Several methods are available to measure heat fluxes, and scintillometers are becoming increasingly popular because of their ability to measure sensible (. H) and latent (. LvE) heat fluxes over large spatial scales. The main motivation of this study was to test the use of different methods and technologies to derive surface heat fluxes.Measurements of H and LvE were carried out with an eddy covariance (EC) system, two different makes of optical large aperture scintillometers (LAS) and two microwave scintillometers (MWS) with different frequencies at a pasture site in a semi-arid environment of New South Wales, Australia. We used the EC measurements as a benchmark. Fluxes derived from the EC system and LAS systems agreed (R2>0.94), whereas the MWS systems measured lower H (bias ~60Wm-2) and larger LvE (bias ~65Wm-2) than EC. When the scintillometers were compared against each other, the two LASs showed good agreement of H (R2=0.98), while MWS with different frequencies and polarizations led to different results. Combination of LAS and MWS measurements (i.e., two wavelength method) resulted in performance that fell in between those estimated using either LAS or MWS alone when compared with the EC system. The cause for discrepancies between surface heat fluxes derived from the EC system and those from the MWS systems and the two-wavelength method are possibly related to inaccurate assignment of the structure parameter of temperature and humidity. Additionally, measurements from MWSs can be associated with two values of the Bowen ratio, thereby leading to uncertainties in the estimation of the fluxes. While only one solution has been considered in this study, when LvE was approximately less than 200Wm-2, the alternate solution may be more accurate. Therefore, for measurements of surface heat fluxes in a semi-arid or dry environment, the

  5. Phase modulation parallel optical delay detector for microwave angle-of-arrival measurement with accuracy monitored

    CERN Document Server

    Cao, Z; Lu, R; Boom, H P A van den; Tangdiongga, E; Koonen, A M J

    2014-01-01

    A novel phase modulation parallel optical delay detector is proposed for microwave angle-of-arrival (AOA) measurement with accuracy monitored by using only one dual-electrode Mach-Zenhder modulator. A theoretical model is built up to analyze the proposed system including measurement accuracy monitoring. The spatial delay measurement is translated into the phase shift between two replicas of a microwave signal. Thanks to the accuracy monitoring, the phase shifts from 5{\\deg} to 165{\\deg} are measured with less than 3.1{\\deg} measurement error.

  6. Optically detected electron paramagnetic resonance by microwave modulated magnetic circular dichroism

    Science.gov (United States)

    Börger, Birgit; Bingham, Stephen J.; Gutschank, Jörg; Schweika, Marc Oliver; Suter, Dieter; Thomson, Andrew J.

    1999-11-01

    Electron paramagnetic resonance (EPR) can be detected optically, with a laser beam propagating perpendicular to the static magnetic field. As in conventional EPR, excitation uses a resonant microwave field. The detection process can be interpreted as coherent Raman scattering or as a modulation of the laser beam by the circular dichroism of the sample oscillating at the microwave frequency. The latter model suggests that the signal should show the same dependence on the optical wavelength as the MCD signal. We check this for two different samples [cytochrome c-551, a metalloprotein, and ruby (Cr3+:Al2O3)]. In both cases, the observed wavelength dependence is almost identical to that of the MCD signal. A quantitative estimate of the amplitude of the optically detected EPR signal from the MCD also shows good agreement with the experimental results.

  7. Optical, magnetic, and microwave properties of Ni/NiO nanoparticles

    Science.gov (United States)

    Rostamnejadi, Ali; Bagheri, Saber

    2017-04-01

    In this research, the optical, magnetic, and microwave properties of NiO and Ni/NiO nanoparticles have been studied. The absorbance spectra of the samples show the electronic d-d excitations with energy band gap of about 3.8 eV. The magnetization measurement confirms the existence of ferromagnetic phase at room temperature, which could be originated from the uncompensated surface spins or ferromagnetic clusters in the antiferromagnetic ground state of NiO nanoparticles. The microwave parameters such as ac conductivity, skin depth, electric and magnetic loss tangents, attenuation constant, and reflection loss have been calculated. While both magnetic and dielectric relaxation processes have been observed in the complex permeability and permittivity, the microwave absorption is mainly attributed to the dielectric relaxation processes.

  8. An accurate automated technique for quasi-optics measurement of the microwave diagnostics for fusion plasma

    Science.gov (United States)

    Hu, Jianqiang; Liu, Ahdi; Zhou, Chu; Zhang, Xiaohui; Wang, Mingyuan; Zhang, Jin; Feng, Xi; Li, Hong; Xie, Jinlin; Liu, Wandong; Yu, Changxuan

    2017-08-01

    A new integrated technique for fast and accurate measurement of the quasi-optics, especially for the microwave/millimeter wave diagnostic systems of fusion plasma, has been developed. Using the LabVIEW-based comprehensive scanning system, we can realize not only automatic but also fast and accurate measurement, which will help to eliminate the effects of temperature drift and standing wave/multi-reflection. With the Matlab-based asymmetric two-dimensional Gaussian fitting method, all the desired parameters of the microwave beam can be obtained. This technique can be used in the design and testing of microwave diagnostic systems such as reflectometers and the electron cyclotron emission imaging diagnostic systems of the Experimental Advanced Superconducting Tokamak.

  9. Quantum metamaterials in the microwave and optical ranges

    CERN Document Server

    Zagoskin, A M; Rousseau, Emmanuel

    2016-01-01

    Quantum metamaterials generalize the concept of metamaterials (artificial optical media) to the case when their optical properties are determined by the interplay of quantum effects in the constituent 'artificial atoms' with the electromagnetic field modes in the system. The theoretical investigation of these structures demonstrated that a number of new effects (such as quantum birefringence, strongly nonclassical states of light, etc) are to be expected, prompting the efforts on their fabrication and experimental investigation. Here we provide a summary of the principal features of quantum metamaterials and review the current state of research in this quickly developing field, which bridges quantum optics, quantum condensed matter theory and quantum information processing.

  10. Validation of a Hybrid Microwave-Optical Monitor to Investigate Thermal Provocation in the Microvasculature.

    Science.gov (United States)

    Al-Armaghany, Allann; Tong, Kenneth; Highton, David; Leung, Terence S

    2016-01-01

    We have previously developed a hybrid microwave-optical system to monitor microvascular changes in response to thermal provocation in muscle. The hybrid probe is capable of inducing deep heat from the skin surface using mild microwaves (1-3 W) and raises the tissue temperature by a few degrees Celsius. This causes vasodilation and the subsequent increase in blood volume is detected by the hybrid probe using near infrared spectroscopy. The hybrid probe is also equipped with a skin cooling system which lowers the skin temperature while allowing microwaves to warm up deeper tissues. The hybrid system can be used to assess the condition of the vasculature in response to thermal stimulation. In this validation study, thermal imaging has been used to assess the temperature distribution on the surface of phantoms and human calf, following microwave warming. The results show that the hybrid system is capable of changing the skin temperature with a combination of microwave warming and skin cooling. It can also detect thermal responses in terms of changes of oxy/deoxy-hemoglobin concentrations.

  11. Investigation of Electromagnetic Properties of Multiparticle Systems in the Optical and Microwave Regions

    Science.gov (United States)

    Yip, Wendy

    The goal of this work is to examine the electromagnetic properties of multiple particles ensembles in optical and microwave regions. Electromagnetic scattering problems of multi-particles systems appear in many research areas, including biomedical research problems. When a particle system becomes dense, multiple scattering between the particles need to be included in order to fully describe the response of the system to an EM wave. The generalized multiparticle Mie (GMM) solution is used to rigorously solve the Maxwell's equations for multi-particles systems. The algorithm accounts for multiple scattering effects by transforming the waves scattered by an individual particle to the incident waves of other spheres in the ensemble. In the optical region, light scattering from biological tissues can reveal structural changes in the tissues which can be a mean for disease diagnosis. A new Monte Carlo simulation method is introduced to study the effect of tissue structure on signals from two diagnostic probes, the polarization gating probe and low coherence enhanced back scattering probe (LEBS). In the microwave region, the study of electromagnetic properties with metallic nanoparticles can determine their potential as effective heating agents in microwave hyperthermia therapy. The investigation aims to study the dielectric properties of metallic nanoparticles and quantify the relationship between the characteristics of metallic nanoparticles and the heating effect. The finding should help optimize the design and use of metallic nanoparticles in hyperthermia treatment. In addition, the metallic nanoparticles are studied for their potential to be contrast agents for biological tissue in the microwave region.

  12. Light-controlled microwave whispering-gallery-mode quasi-optical resonators at 50W LED array illumination

    Directory of Open Access Journals (Sweden)

    V. B. Yurchenko

    2015-08-01

    Full Text Available We present experimental observations of light-controlled resonance effects in microwave whispering-gallery-mode quasi-optical dielectric-semiconductor disk resonators in the frequency band of 5 GHz to 20 GHz arising due to illumination from a light emitting diode (LED of 50W power range. We obtain huge enhancement of photo-sensitivity (growing with the resonator Q-factor that makes light-microwave interaction observable with an ordinary light (no laser at conventional brightness (like an office lighting in quasi-optical microwave structures at rather long (centimeter-scale wavelength. We also demonstrate non-conventional photo-response of Fano resonances when the light suppresses one group of resonances and enhances another group. The effects could be used for the optical control and quasi-optical switching of microwave propagation through either one or another frequency channel.

  13. A 2-10 GHz GaAs MMIC opto-electronic phase detector for optical microwave signal generators

    DEFF Research Database (Denmark)

    Bruun, Marlene; Gliese, Ulrik Bo; Petersen, Anders Kongstad;

    1994-01-01

    Optical transmission of microwave signals becomes increasingly important. Techniques using beat between optical carriers of semiconductor lasers are promising if efficient optical phase locked loops are realized. A highly efficient GaAs MMIC optoelectronic phase detector for a 2-10 GHz OPLL...

  14. Ultrahigh-frequency microwave phase shifts mediated by ultrafast dynamics in quantum-dot semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Chen, Yaohui; Mørk, Jesper

    2010-01-01

    We present a novel scheme to achieve tunable microwave phase shifts at frequencies exceeding 100 GHz based on wavelength conversion induced by high-speed cross-gain modulation in quantum-dot semiconductor optical amplifiers.......We present a novel scheme to achieve tunable microwave phase shifts at frequencies exceeding 100 GHz based on wavelength conversion induced by high-speed cross-gain modulation in quantum-dot semiconductor optical amplifiers....

  15. Acousto-optic modulation of a photonic crystal nanocavity with Lamb waves in microwave K band

    CERN Document Server

    Tadesse, Semere A; Liu, Qiyu; Li, Mo

    2015-01-01

    Integrating nanoscale electromechanical transducers and nanophotonic devices potentially can enable new acousto-optic devices to reach unprecedented high frequencies and modulation efficiency. Here, we demonstrate acousto-optic modulation of a photonic crystal nanocavity using Lamb waves with frequency up to 19 GHz, reaching the microwave K band. The devices are fabricated in suspended aluminum nitride membrane. Excitation of acoustic waves is achieved with interdigital transducers with periods as small as 300 nm. Confining both acoustic wave and optical wave within the thickness of the membrane leads to improved acousto-optic modulation efficiency in the new devices than that obtained in previous surface acoustic wave devices. Our system demonstrates a novel scalable optomechanical platform where strong acousto-optic coupling between cavity-confined photons and high frequency traveling phonons can be explored.

  16. Acousto-optic modulation of a photonic crystal nanocavity with Lamb waves in microwave K band

    Energy Technology Data Exchange (ETDEWEB)

    Tadesse, Semere A. [Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States); School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Li, Huan; Liu, Qiyu; Li, Mo, E-mail: moli@umn.edu [Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2015-11-16

    Integrating nanoscale electromechanical transducers and nanophotonic devices potentially can enable acousto-optic devices to reach unprecedented high frequencies and modulation efficiency. Here, we demonstrate acousto-optic modulation of a photonic crystal nanocavity using Lamb waves with frequency up to 19 GHz, reaching the microwave K band. The devices are fabricated in suspended aluminum nitride membrane. Excitation of acoustic waves is achieved with interdigital transducers with period as small as 300 nm. Confining both acoustic wave and optical wave within the thickness of the membrane leads to improved acousto-optic modulation efficiency in these devices than that obtained in previous surface acoustic wave devices. Our system demonstrates a scalable optomechanical platform where strong acousto-optic coupling between cavity-confined photons and high frequency traveling phonons can be explored.

  17. Single-sideband photonic microwave generation with an optically injected quantum-dot semiconductor laser.

    Science.gov (United States)

    Chen, Chih-Ying; Cheng, Chih-Hao; Lin, Fan-Yi

    2016-12-26

    We studied single-sideband (SSB) photonic microwave generation with a high sideband rejection ratio (SRR) based on the period-one dynamical states of an optically injected quantum-dot (QD) semiconductor laser and demonstrated that the SSB signals have SRRs of approximately 15 dB higher than those generated with a conventional quantum-well semiconductor laser under conditions of optimal microwave power. The enhancement of SRR in the QD laser, which is important in mitigating the power penalty effect in applications such as radio-over-fiber optical communications, could be primarily attributed to a lower carrier decay rate in the dots, smaller linewidth enhancement factor, and reduced photon decay rate.

  18. An optical fiber MEMS pressure sensor using microwave photonics filtering technique

    Science.gov (United States)

    Wang, Yiping; Wang, Ming; Ni, Xiaoqi; Xia, Wei; Guo, Dongmei; Hao, Hui; Ma, Qingyu; Zhuang, Wei

    2017-04-01

    A fiber-optic micro-electromechanical systems (MEMS) extrinsic Fabry-Perot interferometer (EFPI) pressure sensor exploiting microwave photonics filtering technique is firstly proposed and experimentally demonstrated. A single-bandpass microwave photonic filter (MPF) which mainly consists of a spectrum-sliced light source, a pressurized EFPI, a phase modulator (PM) and a length of dispersion compensating fiber (DCF) is demonstrated. The frequency response of the filter with respect to the pressure is studied. By detecting the resonance frequency shifts of the MPF, the pressure can be determined. The theoretical and experimental results show that the proposed EFPI pressure sensor has a higher resolution and higher speed than traditional methods based on optical spectrum analysis. The sensitivity of the sensor is measured to be as high as 86 MHz/MPa in the range of 0-4MPa.

  19. Temperature and microwave near field imaging by thermo-elastic optical indicator microscopy

    Science.gov (United States)

    Lee, Hanju; Arakelyan, Shant; Friedman, Barry; Lee, Kiejin

    2016-12-01

    A high resolution imaging of the temperature and microwave near field can be a powerful tool for the non-destructive testing of materials and devices. However, it is presently a very challenging issue due to the lack of a practical measurement pathway. In this work, we propose and demonstrate experimentally a practical method resolving the issue by using a conventional CCD-based optical indicator microscope system. The present method utilizes the heat caused by an interaction between the material and an electromagnetic wave, and visualizes the heat source distribution from the measured photoelastic images. By using a slide glass coated by a metal thin film as the indicator, we obtain optically resolved temperature, electric, and magnetic microwave near field images selectively with a comparable sensitivity, response time, and bandwidth of existing methods. The present method provides a practical way to characterize the thermal and electromagnetic properties of materials and devices under various environments.

  20. Quantum metamaterials in the microwave and optical ranges

    Energy Technology Data Exchange (ETDEWEB)

    Zagoskin, Alexandre M. [Loughborough University, Department of Physics, Loughborough (United Kingdom); Moscow Institute for Steel and Alloys, Theoretical Physics and Quantum Technologies Department, Moscow (Russian Federation); Felbacq, Didier; Rousseau, Emmanuel [University of Montpellier, Laboratory Charles Coulomb UMR CNRS-UM 5221, Montpellier (France)

    2016-12-15

    Quantum metamaterials generalize the concept of metamaterials (artificial optical media) to the case when their optical properties are determined by the interplay of quantum effects in the constituent 'artificial atoms' with the electromagnetic field modes in the system. The theoretical investigation of these structures demonstrated that a number of new effects (such as quantum birefringence, strongly nonclassical states of light, etc.) are to be expected, prompting the efforts on their fabrication and experimental investigation. Here we provide a summary of the principal features of quantum metamaterials and review the current state of research in this quickly developing field, which bridges quantum optics, quantum condensed matter theory and quantum information processing. (orig.)

  1. Relating optical and microwave grain metrics of snow: the relevance of grain shape

    Science.gov (United States)

    Krol, Quirine; Löwe, Henning

    2016-11-01

    Grain shape is commonly understood as a morphological characteristic of snow that is independent of the optical diameter (or specific surface area) influencing its physical properties. In this study we use tomography images to investigate two objectively defined metrics of grain shape that naturally extend the characterization of snow in terms of the optical diameter. One is the curvature length λ2, related to the third-order term in the expansion of the two-point correlation function, and the other is the second moment μ2 of the chord length distributions. We show that the exponential correlation length, widely used for microwave modeling, can be related to the optical diameter and λ2. Likewise, we show that the absorption enhancement parameter B and the asymmetry factor gG, required for optical modeling, can be related to the optical diameter and μ2. We establish various statistical relations between all size metrics obtained from the two-point correlation function and the chord length distribution. Overall our results suggest that the characterization of grain shape via λ2 or μ2 is virtually equivalent since both capture similar aspects of size dispersity. Our results provide a common ground for the different grain metrics required for optical and microwave modeling of snow.

  2. Narrow-linewidth photonic microwave generation based on an optically injected 1550 nm VCSEL subject to optoelectronic feedback

    Science.gov (United States)

    Liang, Qing; Fan, Li; Yang, Ji-Yun; Wang, Zhen-Zhen; Wu, Zheng-Mao; Xia, Guang-Qiong

    2016-11-01

    High-quality photonic microwave generation is experimentally demonstrated based on the period-one (P1) dynamical state output from an optically injected 1550 nm vertical-cavity surface-emitting laser (1550 nm-VCSEL) subject to optoelectronic negative feedback. The experimental results show that, under suitable injection condition, the 1550 nm-VCSEL can generate a photonic microwave signal with single sideband optical spectrum structure, but the linewidth of the microwave signal is relatively wide (on the order of MHz). After further introducing optoelectronic negative feedback, the linewidth of the microwave signal can be narrowed two orders of magnitude to 105.7 kHz. Furthermore, for the case that the feedback strength is set at an optimized value, the frequency of the microwave signal can be tuned continuously within a certain range through simply adjusting the injection strength.

  3. Observations of cloud liquid water path over oceans: Optical and microwave remote sensing methods

    Science.gov (United States)

    Lin, Bing; Rossow, William B.

    1994-01-01

    Published estimates of cloud liquid water path (LWP) from satellite-measured microwave radiation show little agreement, even about the relative magnitudes of LWP in the tropics and midlatitudes. To understand these differences and to obtain more reliable estimate, optical and microwave LWP retrieval methods are compared using the International Satellite Cloud Climatology Project (ISCCP) and special sensor microwave/imager (SSM/I) data. Errors in microwave LWP retrieval associated with uncertainties in surface, atmosphere, and cloud properties are assessed. Sea surface temperature may not produce great LWP errors, if accurate contemporaneous measurements are used in the retrieval. An uncertainty of estimated near-surface wind speed as high as 2 m/s produces uncertainty in LWP of about 5 mg/sq cm. Cloud liquid water temperature has only a small effect on LWP retrievals (rms errors less than 2 mg/sq cm), if errors in the temperature are less than 5 C; however, such errors can produce spurious variations of LWP with latitude and season. Errors in atmospheric column water vapor (CWV) are strongly coupled with errors in LWP (for some retrieval methods) causing errors as large as 30 mg/sq cm. Because microwave radiation is much less sensitive to clouds with small LWP (less than 7 mg/sq cm) than visible wavelength radiation, the microwave results are very sensitive to the process used to separate clear and cloudy conditions. Different cloud detection sensitivities in different microwave retrieval methods bias estimated LWP values. Comparing ISCCP and SSM/I LWPs, we find that the two estimated values are consistent in global, zonal, and regional means for warm, nonprecipitating clouds, which have average LWP values of about 5 mg/sq cm and occur much more frequently than precipitating clouds. Ice water path (IWP) can be roughly estimated from the differences between ISCCP total water path and SSM/I LWP for cold, nonprecipitating clouds. IWP in the winter hemisphere is about

  4. Characterization of vegetation by microwave and optical remote sensing

    Science.gov (United States)

    Daughtry, C. S. T. (Principal Investigator); Ranson, K. J.; Biehl, L. L.

    1986-01-01

    Two series of carefully controlled experiments were conducted. First, plots of important crops (corn, soybeans, and sorghum), prairie grasses (big bluestem, switchgrass, tal fescue, orchardgrass, bromegrass), and forage legumes (alfalfa, red clover, and crown vetch) were manipulated to produce wide ranges of phytomass, leaf area index, and canopy architecture. Second, coniferous forest canopies were simulated using small balsam fir trees grown in large pots of soil and arranged systematically on a large (5 m) platform. Rotating the platform produced many new canopies for frequency and spatial averaging of the backscatter signal. In both series of experiments, backscatter of 5.0 GHz (C-Band) was measured as a function of view angle and polarization. Biophysical measurements included leaf area index, fresh and dry phytomass, water content of canopy elements, canopy height, and soil roughness and moisture content. For a subset of the above plots, additional measurements were acquired to exercise microwave backscatter models. These measurements included size and shape of leaves, stems, and fruit and the probability density function of leaf and stem angles. The relationships of the backscattering coefficients and the biophysical properties of the canopies were evaluated using statistical correlations, analysis of variance, and regression analysis. Results from the corn density and balsam fir experiments are discussed and analyses of data from the other experiments are summarized.

  5. A monolithically integrated dual-mode laser for photonic microwave generation and all-optical clock recovery

    Science.gov (United States)

    Yu, Liqiang; Zhou, Daibing; Zhao, Lingjuan

    2014-09-01

    We demonstrate a monolithically integrated dual-mode laser (DML) with narrow-beat-linewidth and wide-beat-tunability. Using a monolithic DFB laser subjected to amplified feedback, photonic microwave generation of up to 45 GHz is obtained with higher than 15 GHz beat frequency tunability. Thanks to the high phase correlation of the two modes and the narrow mode linewidth, a RF linewidth of lower than 50 kHz is measured. Simulations are also carried out to illustrate the dual-mode beat characteristic. Furthermore, using the DML, an all-optical clock recovery for 40  Gbaud NRZ-QPSK signals is demonstrated. Timing jitter of lower than 363 fs (integrated within a frequency range from 100 Hz to 1 GHz) is obtained.

  6. Frequency comb-based microwave transfer over fiber with $7 \\times 10^{-19}$ instability using fiber-loop optical-microwave phase detectors

    CERN Document Server

    Jung, Kwangyun; Kang, Jinho; Hunziker, Stephan; Min, Chang-Ki; Kim, Jungwon

    2013-01-01

    We demonstrate a remote microwave/radio-frequency (RF) transfer technique based on the stabilization of a fiber link using a fiber-loop optical-microwave phase detector (FLOM-PD). This method compensates for the excess phase fluctuations introduced in fiber transfer by direct phase comparison between the optical pulse train reflected from the remote site and the local microwave/RF signal using the FLOM-PD. This enables sub-fs resolution and long-term stable link stabilization while having wide timing detection range and less demand in fiber dispersion compensation. The demonstrated relative frequency instability between 2.856-GHz RF oscillators separated by a 2.3-km fiber link is $7.6 \\times 10^{-18}$ and $6.5 \\times 10^{-19}$ at 1000 s and 82500 s averaging time, respectively.

  7. Measurement of optical-beat frequency in a photoconductive terahertz-wave generator using microwave higher harmonics

    Science.gov (United States)

    Murasawa, Kengo; Sato, Koki; Hidaka, Takehiko

    2011-05-01

    A new method for measuring optical-beat frequencies in the terahertz (THz) region using microwave higher harmonics is presented. A microwave signal was applied to the antenna gap of a photoconductive (PC) device emitting a continuous electromagnetic wave at about 1 THz by the photomixing technique. The microwave higher harmonics with THz frequencies are generated in the PC device owing to the nonlinearity of the biased photoconductance, which is briefly described in this article. Thirteen nearly periodic peaks in the photocurrent were observed when the microwave was swept from 16 to 20 GHz at a power of -48 dBm. The nearly periodic peaks are generated by the homodyne detection of the optical beat with the microwave higher harmonics when the frequency of the harmonics coincides with the optical-beat frequency. Each peak frequency and its peak width were determined by fitting a Gaussian function, and the order of microwave harmonics was determined using a coarse (i.e., lower resolution) measurement of the optical-beat frequency. By applying the Kalman algorithm to the peak frequencies of the higher harmonics and their standard deviations, the optical-beat frequency near 1 THz was estimated to be 1029.81 GHz with the standard deviation of 0.82 GHz. The proposed method is applicable to a conventional THz-wave generator with a photomixer.

  8. All-Optical Half-Adder Using All-Optical XOR and AND Gates for Optical Generation of "Sum" and "Carry"

    Science.gov (United States)

    Menezes, J. W. M.; Fraga, W. B.; Ferreira, A. C.; Guimarães, G. F.; Filho, A. F. G. F.; Sobrinho, C. S.; Sombra, A. S. B.

    2010-07-01

    In this article, a numerical simulation study using the symmetric planar three-core non-linear directional coupler, operating with a short light pulse (2 ps), for the implementation of an all-optical half-adder is presented. The half-adder is the key building block for many digital processing functions such as shift register, binary counter, and serial parallel data converters. Optical couplers are an important component for application in optical fiber telecommunication systems and all integrated optical circuits because of very high switching speeds (as high as the femto-second range). In this numerical simulation, the symmetric planar three-core non-linear directional coupler presents a planar symmetrical structure with three cores in a parallel equidistant arrangement, three logical inputs (CP, A, and B), and two output logic functions (C and S). The CP(ΔΦ) input is a control pulse with a phase difference ΔΦ = Δθπ (0 ≤ Δθ ≤ 2) between inputs A and B (logical inputs of the half-adder) and one amplitude discriminator circuit. The half-adder uses two output logic functions of Sum(S) and Carry(C), which can be demonstrated by using XOR and AND gates, respectively. For the half-adder, the phase [ΔΦMIN, ΔΦMAX] intervals are studied, allowing the operation of the device as a half-adder. For the selected range of CP(ΔΦBETTER), the extinction ratio was studied, the compression factors for both Sum(S) and Carry(C) outputs of the symmetric planar three-core non-linear directional coupler.

  9. Topiramate and visual loss in a patient carrying a Leber hereditary optic neuropathy mutation.

    Science.gov (United States)

    Rinalduzzi, Steno; Cipriani, Anna Maria; Accornero, Neri

    2012-04-01

    We describe a 43-year-old patient who experienced visual loss 4 years after beginning antiepileptic therapy with topiramate. Ophthalmological and neurological examinations led to a preliminary diagnosis of bilateral toxic optic neuritis. Mitochondrial genome sequence analysis detected a Leber hereditary optic neuropathy 11778G>A mutation. The possibility that topiramate might favor a conversion disease, alerts physicians to seek a history of blindness in patients undergoing chronic antiepileptic therapy.

  10. Partial microwave-assisted wet digestion of animal tissue using a baby-bottle sterilizer for analyte determination by inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Wladiana O. [Grupo de Analise Instrumental Aplicada, Universidade Federal de Sao Carlos, Sao Carlos SP (Brazil); Grupo de Analise Instrumental Aplicada, Embrapa Pecuaria Sudeste, Sao Carlos, SP (Brazil)], E-mail: wladianamatos@yahoo.com.br; Menezes, Eveline A. [Grupo de Analise Instrumental Aplicada, Universidade Federal de Sao Carlos, Sao Carlos SP (Brazil); Grupo de Analise Instrumental Aplicada, Embrapa Pecuaria Sudeste, Sao Carlos, SP (Brazil); Gonzalez, Mario H. [Grupo de Analise Instrumental Aplicada, Universidade Federal de Sao Carlos, Sao Carlos SP (Brazil); Costa, Leticia M. [Departamento de Quimica-ICEx, Universidade Federal de Minas Gerais, Belo Horizonte MG (Brazil); Trevizan, Lilian C. [Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Piracicaba SP (Brazil); Nogueira, Ana Rita A. [Grupo de Analise Instrumental Aplicada, Embrapa Pecuaria Sudeste, Sao Carlos, SP (Brazil)

    2009-06-15

    A procedure for partial digestion of bovine tissue is proposed using polytetrafluoroethylene (PTFE) micro-vessels inside a baby-bottle sterilizer under microwave radiation for multi-element determination by inductively coupled plasma optical emission spectrometry (ICP OES). Samples were directly weighed in laboratory-made polytetrafluoroethylene vessels. Nitric acid and hydrogen peroxide were added to the uncovered vessels, which were positioned inside the baby-bottle sterilizer, containing 500 mL of water. The hydrogen peroxide volume was fixed at 100 {mu}L. The system was placed in a domestic microwave oven and partial digestion was carried out for the determination of Ca, Cu, Fe, Mg, Mn and Zn by inductively coupled plasma optical emission spectrometry. The single-vessel approach was used in the entire procedure, to minimize contamination in trace analysis. Better recoveries and lower residual carbon content (RCC) levels were obtained under the conditions established through a 2{sup 4-1} fractional factorial design: 650 W microwave power, 7 min digestion time, 50 {mu}L nitric acid and 50 mg sample mass. The digestion efficiency was ascertained according to the residual carbon content determined by inductively coupled plasma optical emission spectrometry. The accuracy of the proposed procedure was checked against two certified reference materials.

  11. Image fusion of microwave and optical remote sensing data for topographic map updating in the tropics

    Science.gov (United States)

    Pohl, Christine; van Genderen, John L.

    1995-11-01

    Temporal monitoring using remote sensing for topographic mapping requires continuous acquisition of image data. In many countries, but especially in the human Tropics, the heavy cloud cover is a major drawback for visible and infrared remote sensing. The research project presented in this paper uses the idea of integrating data from optical and microwave sensors using digital image fusion techniques to overcome the cloud cover problem. Additionally the combination of radar with optical data increases the interpretation capabilities and the reliability of the results due to the complementary nature of microwave and optical images. While optical data represents the reflectance of ground cover in visible and near-infrared, the radar is very sensitive to the shape, orientation, roughness and moisture content of the illuminated ground objects. This research investigates the geometric aspect of image fusion for topographic map updating. The paper describes experiences gained from an area in the north of The Netherlands (`Friesland') as calibration test site in comparison with first results from the research test site (`Bengkulu'), located on the south west coast of Sumatra in Indonesia. The data used for this investigated was acquired by SPOT, Landsat, ERS-1 and JERS-1.

  12. Photokinetic analysis of the forces and torques exerted by optical tweezers carrying angular momentum

    Science.gov (United States)

    Yevick, Aaron; Evans, Daniel J.; Grier, David G.

    2017-02-01

    The theory of photokinetic effects expresses the forces and torques exerted by a beam of light in terms of experimentally accessible amplitude and phase profiles. We use this formalism to develop an intuitive explanation for the performance of optical tweezers operating in the Rayleigh regime, including effects arising from the influence of light's angular momentum. First-order dipole contributions reveal how a focused beam can trap small objects, and what features limit the trap's stability. The first-order force separates naturally into a conservative intensity-gradient term that forms a trap and a non-conservative solenoidal term that drives the system out of thermodynamic equilibrium. Neither term depends on the light's polarization; light's spin angular momentum plays no role at dipole order. Polarization-dependent effects, such as trap-strength anisotropy and spin-curl forces, are captured by the second-order dipole-interference contribution to the photokinetic force. The photokinetic expansion thus illuminates how light's angular momentum can be harnessed for optical micromanipulation, even in the most basic optical traps. This article is part of the themed issue 'Optical orbital angular momentum'.

  13. Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers.

    Science.gov (United States)

    Chin, Sanghoon; Thévenaz, Luc; Sancho, Juan; Sales, Salvador; Capmany, José; Berger, Perrine; Bourderionnet, Jérôme; Dolfi, Daniel

    2010-10-11

    We experimentally demonstrate a novel technique to process broadband microwave signals, using all-optically tunable true time delay in optical fibers. The configuration to achieve true time delay basically consists of two main stages: photonic RF phase shifter and slow light, based on stimulated Brillouin scattering in fibers. Dispersion properties of fibers are controlled, separately at optical carrier frequency and in the vicinity of microwave signal bandwidth. This way time delay induced within the signal bandwidth can be manipulated to correctly act as true time delay with a proper phase compensation introduced to the optical carrier. We completely analyzed the generated true time delay as a promising solution to feed phased array antenna for radar systems and to develop dynamically reconfigurable microwave photonic filters.

  14. ENVIRONMENTALLY FRIENDLY METHOD OF GASEOUS FUEL COMBUSTION WITH THE USE OF QUASI-OPTICAL MICROWAVE

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2016-05-01

    Full Text Available Subject of Research.The paper deals with the problem of developing low emission combustors operating on natural gas or LPG, to reduce emissions of nitrogen oxides NOx. The possibility of burning very lean fuel mixtures is studied. To initiate the ignition and combustion stabilization the discharge generated by the quasi-optical microwave is used. Main Results. Initiating ignition by streamer microwave discharge increases the rate of combustion and combustion efficiency about four times as compared with the conventional spark ignition. Streamer discharge ignition by very lean fuel-air mixture is demonstrated with the factor of oxiding agent excess greater than the limit of explosive range under normal conditions. According to indirect indicators, ignition by microwave discharge created by quasi-optical radiation is of non-thermal nature. Microwave discharge excites oxygen atoms, and intense ultra-violet radiation is generated as a result that causes formation of cold nonequilibrium plasma with avalanche growth of free electrons. Streamer discharge propagates at a speed of 5 km /s, so the initiation of the ignition occurs immediately throughout. The temperature of the fuel mixture at the point of ignition initiation does not exceed 400 К.There is no area with a temperature sufficient to initiate thermal Zeldovich mechanism of emission of nitrogen oxides. Combustion rate is high. As a result the Fenimore mechanism of "fast nitrogen oxides" has no chance to be progressing, and NOx emissions in appreciable quantities are excluded. Energy costs are comparable with spark ignition.Practical Relevance. The studied technology is designed for low emission internal combustion engines, power gas turbines, gas compressor units, fueled by natural gas.

  15. Microwave-assisted synthesis and optical properties of cuprous oxide micro/nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Dandan [Key Laboratory of Processing and Testing Technology of Glass and Functional Ceramics of Shandong Province, Qilu University of Technology, Jinan 250353 (China); Du, Yi, E-mail: duyi234@126.com [Key Laboratory of Processing and Testing Technology of Glass and Functional Ceramics of Shandong Province, Qilu University of Technology, Jinan 250353 (China); Tian, Xiuying, E-mail: xiuyingt@yahoo.com [Department of Chemistry and Materials Science, Hunan Institute of Humanities Science and Technology, Loudi 417000 (China); Li, Zhongfu; Chen, Zhongtao; Zhu, Chaofeng [Key Laboratory of Processing and Testing Technology of Glass and Functional Ceramics of Shandong Province, Qilu University of Technology, Jinan 250353 (China)

    2014-12-15

    Graphical abstract: Cuprous oxide micro/nanocrystals were fabricated by a facile and green microwave-assisted method using soluble starch as reductant and dispersant. Spheres with the diameter of about 100 and 600 nm, octahedron and truncated octahedron with the edge length of about 0.8–3 μm cuprous oxide micro/nanocrystals were successfully obtained. Microwave heating was proved to be a efficient method and was advantageous to the homogeneous nucleation. Growth mechanism of the prepared Cu{sub 2}O microcrystals were investigated carefully. Furthermore, the optical properties of the prepared cuprous oxide microcrystals were investigated by UV–vis diffuse reflectance spectroscopy, demonstrating that their band gaps of obtained samples were 1.96–2.07 eV, assigned to their different sizes and morphologies. - Abstract: Cuprous oxide micro/nanocrystals were fabricated by a facile and green microwave-assisted method using soluble starch as reductant and dispersant. It was observed that the addition amounts of NaOH had a prominent effect on the morphologies and size of cuprous oxide products, and microwave heating was proved to be a efficient method and was advantageous to the homogeneous nucleation. The as-obtained samples were characterized by X-ray diffraction (XRD), and field-emission scanning electron microscopy (FESEM). The results indicated that the samples were pure cuprous oxide. Spheres with the diameter of about 100 and 600 nm, octahedron and truncated octahedron with the edge length of about 0.8–3 μm cuprous oxide micro/nanocrystals were successfully obtained. Furthermore, the UV–vis diffuse reflectance spectroscopy was used to investigate the optical properties of the prepared cuprous oxide microcrystals, demonstrating that their band gaps of obtained samples were 1.96–2.07 eV, assigned to their different sizes and morphologies.

  16. Enhanced optical cycling and slowing of YO through rotational state microwave mixing

    Science.gov (United States)

    Yan, Bo; Hummon, Matthew; Yeo, Mark; Collopy, Alejandra; Hemmerling, Boerge; Chae, Eunmi; Anderegg, Loic; Ravi, Aakash; Doyle, John; Ye, Jun

    2015-05-01

    In order to address rotational dark states in the molecule yttrium (II) monoxide (YO) and to enhance optical cycling, we demonstrate the remixing of ground electronic state rotational levels using microwave radiation. This mixing technique, in conjunction with a broadband modulated and frequency chirped laser, is used to decelerate a beam of YO from a cryogenic buffer gas cell. The result is a population of molecules with velocities less than 10 m/s, which are sufficiently slow to be loaded into a magneto-optical trap. With two vibrational repump lasers, the cycling transition is closed to the 10-6 level. Additionally, we present progress towards a three dimensional implementation of a magneto-optical trap for YO. This work was supported in part by the Gordon and Betty Moore Foundation through Grant GBMF3852. We also acknowledge support from ARO, AFOSR (MURI), NIST, and NSF.

  17. Recent Advances in the Design of Electro-Optic Sensors for Minimally Destructive Microwave Field Probing

    Directory of Open Access Journals (Sweden)

    John F. Whitaker

    2011-01-01

    Full Text Available In this paper we review recent design methodologies for fully dielectric electro-optic sensors that have applications in non-destructive evaluation (NDE of devices and materials that radiate, guide, or otherwise may be impacted by microwave fields. In many practical NDE situations, fiber-coupled-sensor configurations are preferred due to their advantages over free-space bulk sensors in terms of optical alignment, spatial resolution, and especially, a low degree of field invasiveness. We propose and review five distinct types of fiber-coupled electro-optic sensor probes. The design guidelines for each probe type and their performances in absolute electric-field measurements are compared and summarized.

  18. Stimulated Brillouin scattering gain bandwidth reduction and applications in microwave photonics and optical signal processing

    Science.gov (United States)

    Preussler, Stefan; Schneider, Thomas

    2016-03-01

    Stimulated Brillouin scattering (SBS) is one of the most dominant nonlinear effects in standard single-mode fibers and its unique spectral characteristics, especially the narrow bandwidth, enable many different applications. Most of the applications would benefit from a narrower bandwidth. Different methods for the bandwidth reduction of SBS in optical fibers are presented and discussed. A bandwidth reduction down to 17% of the natural gain can be achieved by the superposition of the gain with two losses or the utilization of a multistage system. Furthermore, applications in the field of microwave photonics and optical signal processing like high-resolution spectroscopy of communication signals, the storage of optical data packets as well as the processing of frequency combs including generation of millimeter waves and ideal sinc-shaped Nyquist pulses are presented.

  19. Optic flow odometry operates independently of stride integration in carried ants.

    Science.gov (United States)

    Pfeffer, Sarah E; Wittlinger, Matthias

    2016-09-09

    Cataglyphis desert ants are impressive navigators. When the foragers roam the desert, they employ path integration. For these ants, distance estimation is one key challenge. Distance information was thought to be provided by optic flow (OF)-that is, image motion experienced during travel-but this idea was abandoned when stride integration was discovered as an odometer mechanism in ants. We show that ants transported by nest mates are capable of measuring travel distance exclusively by the use of OF cues. Furthermore, we demonstrate that the information gained from the optic flowmeter cannot be transferred to the stride integrator. Our results suggest a dual information channel that allows the ants to measure distances by strides and OF cues, although both systems operate independently and in a redundant manner. Copyright © 2016, American Association for the Advancement of Science.

  20. Low power consumption and continuously tunable all-optical microwave filter based on an opto-mechanical microring resonator.

    Science.gov (United States)

    Liu, Li; Yang, Yue; Li, Zhihua; Jin, Xing; Mo, Wenqin; Liu, Xing

    2017-01-23

    We propose and experimentally demonstrate a continuously tunable all-optical microwave filter using a silicon opto-mechanical microring resonator (MRR). By finely adjusting the pump light with submilliwatt power level, transmission spectrum of the MRR could be continuously shifted based on the nonlinear effects, including the opto-mechanical effect and thermo-optic effect. Therefore, in the case of optical single sideband (OSSB) modulation, the frequency intervals between the optical carrier (near one MRR resonance) and the corresponding resonance could be flexibly manipulated, which is the critical factor to achieve continuously tunable microwave photonic filter (MPF). In the experiment, the central frequency of the MPF could be continuously tuned from 6 GHz to 19 GHz with the pump power lower than -2.5 dBm. The proposed opto-mechanical device is competent to process microwave signals with dominant advantages, such as compact footprint, all-optical control and low power consumption. In the future, using light to control light, the opto-mechanical structure on silicon platforms might have many other potential applications in microwave systems, such as microwave switch.

  1. AM-to-PM conversion in a resonant microwave optical rectification detector.

    Science.gov (United States)

    Kolner, Brian H; Kang, Lanbing

    2017-01-15

    A LiNbO3-loaded microwave cavity pumped with weakly AM-modulated 30 fs optical pulses was used as a platform to investigate AM-to-PM conversion in the optical rectification process. Theoretical treatment of AM-to-PM conversion (i.e., peak-induced electrical phase deviation βi due to optical power modulation with index m) suggests that the dominant mechanism is self-group-velocity modulation due to χ(3) and cascaded χ(2) processes with a value of δ=βi/m=-151  dB, linearly dependent on the optical power at intensities of 6×1010  W/m2 in a 40 mm long LiNbO3 crystal. This is in stark contrast to p-i-n photodiodes which can exhibit an AM-to-PM conversion gain δ>0  dB. In this experiment, we measured values of δ for a resonant optical rectification detector using typical mode-locked Ti:sapphire laser pulses (100 MHz, 30 fs, Pavg≈100  mW) and found an instrumentation-limited lower bound of δ≈-43.5  dB, independent of the optical power.

  2. Integrated wideband optical frequency combs with high stability and their application in microwave photonic filters

    Science.gov (United States)

    Sun, Wenhui; Wang, Sunlong; Zhong, Xin; Liu, Jianguo; Wang, Wenting; Tong, Youwan; Chen, Wei; Yuan, Haiqing; Yu, Lijuan; Zhu, Ninghua

    2016-08-01

    An integrated wideband optical frequency comb (OFC) based on a semiconductor quantum dot laser is realized with high stability. The OFC module is packaged in our lab. A circuit which is designed to provide a low-ripple current and control the temperature regards as a servo system to enhance the stability of the OFC. The frequency stability of the OFC is 2.7×10-9 (Allan Variance). The free spectral range (FSR) of the OFC is 40 GHz and the number of comb lines is up to 55. The flatness of the OFC over span of 4 nm can be limited to 0.5 dB. Negative coefficients microwave photonic filters with multiple taps are generated based on the proposed OFC. For the 10 taps microwave photonic filter, the pass-band at 8.74 GHz has a 3 dB bandwidth of 630 MHz with 16.58 dB side-lobe suppression. Compared with the published microwave photonic filters, the proposed system is more stable, of more compact structures, and of less power consumption.

  3. Novel microwave photonic fractional Hilbert transformer using a ring resonator-based optical all-pass filter.

    Science.gov (United States)

    Zhuang, Leimeng; Khan, Muhammad Rezaul; Beeker, Willem; Leinse, Arne; Heideman, René; Roeloffzen, Chris

    2012-11-19

    We propose and demonstrate a novel wideband microwave photonic fractional Hilbert transformer implemented using a ring resonator-based optical all-pass filter. The full programmability of the ring resonator allows variable and arbitrary fractional order of the Hilbert transformer. The performance analysis in both frequency and time domain validates that the proposed implementation provides a good approximation to an ideal fractional Hilbert transformer. This is also experimentally verified by an electrical S21 response characterization performed on a waveguide realization of a ring resonator. The waveguide-based structure allows the proposed Hilbert transformer to be integrated together with other building blocks on a photonic integrated circuit to create various system-level functionalities for on-chip microwave photonic signal processors. As an example, a circuit consisting of a splitter and a ring resonator has been realized which can perform on-chip phase control of microwave signals generated by means of optical heterodyning, and simultaneous generation of in-phase and quadrature microwave signals for a wide frequency range. For these functionalities, this simple and on-chip solution is considered to be practical, particularly when operating together with a dual-frequency laser. To our best knowledge, this is the first-time on-chip demonstration where ring resonators are employed to perform phase control functionalities for optical generation of microwave signals by means of optical heterodyning.

  4. Decrease-radix design principle for carrying/borrowing free multi-valued and application in ternary optical computer

    Institute of Scientific and Technical Information of China (English)

    YAN JunYong; JIN Yi; ZUO KaiZhong

    2008-01-01

    In this paper a new theory referred to as the decrease-radix design (DRD) is proposed,which is found in the research of logic units of ternary (tri-valued) optical computer.Based on the theory proposed,the principles and the regulations of the DRD for making operation units of multi-valued operation with carrying/borrowing free are also presented.The research work has come to the following important conclusion:let D be a special state contained in n physical informative states,then one may figure out any multi-valued processors within n(n×n) carrying/borrowing free n-valued units by the composition some of n×n×(n-1) simplest basic operating units according to the regulations of DRD proposed in this paper.The detailed systematic way of our design regulations is highlighted step by step in the paper with an example of design of a tri-valued logic optical operating unit.The real architecture,the procedure,and the experimental results of our sample in tri-valued logic operating unit are given.Finally,a re-constructible model of ternary logical optical processor is introduced.The theory proposed in the paper has laid down a solid foundation for the design of re-constructible carrying/borrowing free operating units in ternary optical computers and can be widely used as the designing reference in a variety of multi-valued logic operating units.

  5. Phonon induced optical gain in a current carrying two-level quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Eskandari-asl, Amir, E-mail: amir.eskandari.asl@gmail.com [Department of Physics, Shahid Beheshti University, G.C. Evin, Tehran 1983963113 (Iran, Islamic Republic of); School of Nano Science, Institute for Research in Fundamental Sciences (IPM), P.O. Box: 19395-5531, Tehran, Iran (Iran, Islamic Republic of)

    2017-05-15

    In this work we consider a current carrying two level quantum dot (QD) that is coupled to a single mode phonon bath. Using self-consistent Hartree-Fock approximation, we obtain the I-V curve of QD. By considering the linear response of our system to an incoming classical light, we see that depending on the parametric regime, the system could have weak or strong light absorption or may even show lasing. This lasing occurs at high enough bias voltages and is explained by a population inversion considering side bands, while the total electron population in the higher level is less than the lower one. The frequency at which we have the most significant lasing depends on the level spacing and phonon frequency and not on the electron-phonon coupling strength.

  6. Quasi-optical theory of microwave plasma heating in open magnetic trap

    Science.gov (United States)

    Shalashov, A. G.; Balakin, A. A.; Gospodchikov, E. D.; Khusainov, T. A.

    2016-11-01

    Microwave heating of a high-temperature plasma confined in a large-scale open magnetic trap, including all important wave effects like diffraction, absorption, dispersion, and wave beam aberrations, is described for the first time within the first-principle technique based on consistent Maxwell's equations. With this purpose, the quasi-optical approach is generalized over weakly inhomogeneous gyrotrotropic media with resonant absorption and spatial dispersion, and a new form of the integral quasi-optical equation is proposed. An effective numerical technique for this equation's solution is developed and realized in a new code QOOT, which is verified with the simulations of realistic electron cyclotron heating scenarios at the Gas Dynamic Trap at the Budker Institute of Nuclear Physics (Novosibirsk, Russia).

  7. Quasi-optical theory of microwave plasma heating in open magnetic trap

    CERN Document Server

    Shalashov, A G; Gospodchikov, E D; Khusainov, T A

    2016-01-01

    Microwave heating of a high-temperature plasma confined in a large-scale open magnetic trap, including all important wave effects like diffraction, absorption, dispersion and wave beam aberrations, is described for the first time within the first-principle technique based on consistent Maxwell's equations. With this purpose, the quasi-optical approach is generalized over weakly inhomogeneous gyrotrotropic media with resonant absorption and spatial dispersion, and a new form of the integral quasi-optical equation is proposed. An effective numerical technique for this equation's solution is developed and realized in a new code QOOT, which is verified with the simulations of realistic electron cyclotron heating scenarios at the Gas Dynamic Trap at the Budker Institute of Nuclear Physics (Novosibirsk, Russia).

  8. Estimating vegetation optical depth using L-band passive microwave airborne data in HiWATER

    Science.gov (United States)

    Wang, Qi; Chai, Linna

    2014-11-01

    In this study, a relationship between polarization differences of soil emissivity at different incidence angles was constructed from a large quantity of simulated soil emissivity based on the Advanced Integrated Emission Model (AIEM) input parameters include: a frequency of 1.4 GHz (L-band), incident angles varying from 1°to 60° at a 1° interval, a wide range of soil moisture content and land surface roughness parameters. Then, we used this relationship and the ω-τ zero-order radiation transfer model to develop an inversion method of low vegetation optical depth at L-band, this work were under the assumption that there was no significant polarization difference between the vegetation signals. Based on this inversion method of low vegetation optical depth, we used the land surface passive microwave brightness temperature of Heihe Watershed obtained by airborne Polarimetric L-band Multibeam Radiometer (PLMR) in 2012 Heihe Watershed Allied Telemetry Experimental Research (HiWATER) to retrieve the corn optical depth in the flight areas, then the results were compared with the measured corn LAI. Results show that the retrieved corn optical depths were consisted with the measured LAI of corn. It proved that the corn optical depth inversion method proposed in this study was feasible. Moreover, the method was promising to apply to the satellite observations.

  9. Research on estimation crop planting area by integrating the optical and microwave remote sensing data

    Science.gov (United States)

    Liu, Jiang; Yu, Fan; Liu, Dandan; Tian, Jing; Zhang, Weicheng; Wang, Qiang; Yang, Jinling; Zhang, Lei

    2015-12-01

    Considering the problem in monitoring agricultural condition in the semi-arid areas of Northwest of China, we propose a new method for estimation of crop planting area, using the single phase optical and microwave remote sensing data collaboratively, which have demonstrated their respective advantages in the extraction of surface features. In the model, the ASAR backscatter coefficient is normalized by the incident angle at first, then the classifier based on Bayesian network is developed, and the VV, VH polarization of ASAR and all the 7 TM bands are taken as the input of the classifier to get the class labels of each pixel of the images. Moreover the crop planting areas can be extracted by the classification results. At last, the model is validated for the necessities of normalization by the incident angle and integration of TM and ASAR respectively. It results that the estimation accuracy of crop planting area of corn and other crops garden are 98.47% and 78.25% respectively using the proposed method, with an improvement of estimation accuracy of about 3.28% and 4.18% relative to single TM classification. These illustrate that synthesis of optical and microwave remote sensing data is efficient and potential in estimation crop planting area.

  10. An evaluation of microwave-assisted fusion and microwave-assisted acid digestion methods for determining elemental impurities in carbon nanostructures using inductively coupled plasma optical emission spectrometry

    KAUST Repository

    Patole, Shashikant P.

    2015-10-21

    It is common for as-prepared carbon nanotube (CNT) and graphene samples to contain remnants of the transition metals used to catalyze their growth; contamination may also leave other trace elemental impurities in the samples. Although a full quantification of impurities in as-prepared samples of carbon nanostructures is difficult, particularly when trace elements are intercalated or encapsulated within a protective layer of graphitic carbon, reliable information is essential for reasons such as quantifying the adulteration of physico-chemical properties of the materials and for evaluating environmental issues. Here, we introduce a microwave-based fusion method to degrade single- and double-walled CNTs and graphene nanoplatelets into a fusion flux thereby thoroughly leaching all metallic impurities. Subsequent dissolution of the fusion product in diluted hydrochloric and nitric acid allowed us to identify their trace elemental impurities using inductively coupled plasma optical emission spectrometry. Comparisons of the results from the proposed microwave-assisted fusion method against those of a more classical microwave-assisted acid digestion approach suggest complementarity between the two that ultimately could lead to a more reliable and less costly determination of trace elemental impurities in carbon nanostructured materials. Graphical abstract A method for the complete digestion of carbon nanostructures has been demonstrated. Photographs (on the left side) show zirconium crucibles containing SWCNTs with flux of Na2CO3 and K2CO3, before and after microwave fusion; (on the right side) the appearance of the final solutions containing dissolved samples, from microwave-assisted fusion and microwave-assisted acid digestion. These solutions were used for determining the trace elemental impurities by ICP‒OES.

  11. Efficient cloning and dragging of microwave pulse into optical frequency pulse in a Doppler-broadened atomic medium

    CERN Document Server

    V., Rajitha K

    2015-01-01

    The propagation of a weak optical pulse through an atomic system in closed $\\Lambda$ configuration is investigated in which the hyper fine levels are coupled by a microwave pulse. Under three photon resonance condition, it is observed that the probe pulse shape gets cloned by the shape of the microwave pulse along propagation through the medium. The temporal position of the probe pulse is dragged to that of the microwave pulse. A simple expression for the linear susceptibility of the medium for the corresponding transition is derived in the Fourier domain. From the numerical analysis of dynamics using this expression, it is concluded that the novel effect arises from the ground state coherence of the hyper fine transitions induced by the microwave pulse.

  12. Phase Analysis for Frequency Standards in the Microwave and Optical Domains.

    Science.gov (United States)

    Kazda, Michael; Gerginov, Vladislav; Huntemann, Nils; Lipphardt, Burghard; Weyers, Stefan

    2016-07-01

    Coherent manipulation of atomic states is a key concept in high-precision spectroscopy and used in atomic fountain clocks and a number of optical frequency standards. Operation of these standards can involve a number of cyclic switching processes, which may induce cycle-synchronous phase excursions of the interrogation signal and thus lead to shifts in the output of the frequency standard. We have built a field-programmable gate array (FPGA)-based phase analyzer to investigate these effects and conducted measurements on two kinds of frequency standards. For the caesium fountains PTB-CSF1 and PTB-CSF2, we were able to exclude phase variations of the microwave source at the level of a few microradians, corresponding to relative frequency shifts of less than [Formula: see text]. In the optical domain, we investigated phase variations in PTB's Yb (+) optical frequency standard and made detailed measurements of acousto-optic modulator (AOM) chirps and their scaling with duty cycle and driving power. We ascertained that cycle-synchronous as well as long-term phase excursion do not cause frequency shifts larger than [Formula: see text].

  13. Coherent demodulation of microwave signals by using optical heterodyne technique with applications to point to point indoor wireless communications systems

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Juarez, A; Gomez-Colin, M R; Rojas-Hernandez, A G [Universidad de Sonora (Mexico); Zaldivar-Huerta, I E; Aguayo-Rodriguez, G [Instituto Nacional de Astrofisica, Optica y Electronica (Mexico); Rodriguez-Asomoza, J, E-mail: agarcia@cifus.uson.mx [Universidad de las Americas-Puebla (Mexico)

    2011-01-01

    An optical communications system using a couple microstrip antennas for distributing point to point analog TV with coherent demodulation based on optical heterodyne in close vicinity is reported in this paper. In the proposed experimental setup, two optical waves at different wavelengths are mixed and applied to a photodetector. Then a beat signal with a frequency equivalent to the spacing of the two wavelengths is obtained at the output of the photodetector. This signal corresponds to a microwave signal located at 1.25 GHz, which it is used as a microwave carrier in the transmitter and as a local oscillator in the receiver of our optical communication system. The feasibility of this technique is demonstrated transmitting a TV signal of 66-72 MHz.

  14. Coherent demodulation of microwave signals by using optical heterodyne technique with applications to point to point indoor wireless communications systems

    Science.gov (United States)

    García-Juárez, A.; Zaldívar-Huerta, I. E.; Aguayo-Rodríguez, G.; Rodríguez-Asomoza, J.; Gómez-Colín, M. R.; Rojas-Hernández, A. G.

    2011-01-01

    An optical communications system using a couple microstrip antennas for distributing point to point analog TV with coherent demodulation based on optical heterodyne in close vicinity is reported in this paper. In the proposed experimental setup, two optical waves at different wavelengths are mixed and applied to a photodetector. Then a beat signal with a frequency equivalent to the spacing of the two wavelengths is obtained at the output of the photodetector. This signal corresponds to a microwave signal located at 1.25 GHz, which it is used as a microwave carrier in the transmitter and as a local oscillator in the receiver of our optical communication system. The feasibility of this technique is demonstrated transmitting a TV signal of 66-72MHz.

  15. Optical and microwave communications system conceptual design for a realistic interstellar probe

    Science.gov (United States)

    Boone, Bradley G.; Bokulic, Robert S.; Andrews, G. B.; McNutt, Ralph L., Jr.; Dagalakis, Nicholas G.

    2002-12-01

    The concept of a realistic interstellar explorer has been addressed by the Johns Hopkins University Applied Physics Laboratory with support from the NASA Institute for Advanced Concepts. This paper discusses the requirements, conceptual design and technology issues associated with the optical and RF communications systems envisioned for this mission, in which the spacecraft has a projected range of 1000 AU. Well before a range of 100 AU interactive control of the spacecraft becomes nearly impossible, necessitating a highly autonomous craft and one-way communications to Earth. An approach is taken in which the role of the optical downlink is emphasized for data transfer and that of the microwave uplink emphasized for commands. The communication system is strongly influenced by the large distances involved, the high velocities as well as the requirements for low-mass, low prime power, reliability, and spacecraft autonomy. An optical terminal concept is described that has low mass and prime power in a highly integrated and novel architecture, but new technologies are needed to meet the range, mass, and power requirements. These include high-power, 'wall-plug' efficient diode-pumped fiber lasers; compact, lightweight, and low-power micro-electromechanical (MEM) beam steering elements; and lightweight diffractive quasi-membrane optics. In addition, a very accurate star tracking mechanism must be fully integrated with the laser downlink to achieve unprecedented pointing accuracy. The essential optical, structural, mechanical, and electronic subsystems are described that meet the mission requirements, and the key features of advanced technologies that need to be developed are discussed. The conclusion from this preliminary effort is that an optical communications downlink out to 1000 astronomical units is within the realm of technical feasibility in the next 5-10 years if the identified technical risks for the new technologies can be retired.

  16. Limitations in distance and frequency due to chromatic dispersion in fibre-optic microwave and millimeter-wave links

    DEFF Research Database (Denmark)

    Gliese, Ulrik Bo; Nielsen, Søren Nørskov

    1996-01-01

    Chromatic dispersion significantly limits the distance and/or frequency in fibre-optic microwave and millimeter-wave links based on direct detection due to a decrease of the carrier to noise ratio. The limitations in links based on coherent remote heterodyne detection, however, are far less...

  17. Optically fed microwave true-time delay based on a compact liquid-crystal hotonic-bandgap-fiber device

    DEFF Research Database (Denmark)

    Wei, Lei; Xue, Weiqi; Chen, Yaohui

    2009-01-01

    An electrically tunable liquid-crystal, photonic-bandgap-fiber-device-based, optically fed microwave true-time delay is demonstrated with the response time in the millisecond range. A maximum electrically controlled phase shift of around 70° at 15GHz and an averaged 12.9ps true time delay over...

  18. Optically fed microwave true-time delay based on a compact liquid-crystal hotonic-bandgap-fiber device

    DEFF Research Database (Denmark)

    Wei, Lei; Xue, Weiqi; Chen, Yaohui;

    2009-01-01

    An electrically tunable liquid-crystal, photonic-bandgap-fiber-device-based, optically fed microwave true-time delay is demonstrated with the response time in the millisecond range. A maximum electrically controlled phase shift of around 70° at 15GHz and an averaged 12.9ps true time delay over...

  19. Effect of Neodymium on Optical Bandgap and Microwave Dielectric Properties of Barium Zirconate Ceramic

    Science.gov (United States)

    Parida, Sabyasachi; Satapathy, A.; Sinha, E.; Bisen, Anurag; Rout, S. K.

    2015-03-01

    The ceramics with general formula Ba(1- x) Nd(2 x/3)ZrO3 ( x = 0.0,0.02, 0.04, 0.06, 0.08, and 0.1) were prepared by solid-state reaction. The phase formation of the powders was analyzed by means of X-ray diffraction (XRD), Fourier transform-Raman (FT-Raman), and Fourier transform infrared (FTIR) spectroscopy. XRD patterns revealed that all powders show a perovskite-type cubic structure with space group Pm-3 m. FT-Raman and FTIR spectra suggested the formation of higher degree of symmetry in the crystal. The optical bandgap was found to be decreasing while Urbach energy was found to be increasing with an increase of Nd3+ content. The surface morphology of sintered pellets was studied by scanning electron microscope. Microwave dielectric constant and quality factor were investigated by the TE01 δ mode dielectric resonator method. The microwave dielectric constant and temperature coefficient of resonant frequency decreases with increase in of Nd3+ content. The irregular nature of quality factor ( Q × f) was observed due to the extrinsic losses in materials. The dielectric resonator antenna (DRA) characteristics were investigated experimentally and numerically using a monopole antenna through an infinite ground plane and Ansoft's high-frequency structure simulator software, respectively. The resonant frequency and bandwidth of DRAs were also investigated for the ceramics.

  20. Ultraviolet, Optical, and Near-IR Microwave Kinetic Inductance Detector Materials Developments

    CERN Document Server

    Szypryt, P; Bumble, B; Leduc, H G; Baker, L

    2014-01-01

    We have fabricated 2024 pixel microwave kinetic inductance detector (MKID) arrays in the ultraviolet/optical/near-IR (UVOIR) regime that are currently in use in astronomical instruments. In order to make MKIDs desirable for novel instruments, larger arrays with nearly perfect yield need to be fabricated. As array size increases, however, the percent yield often decreases due to frequency collisions in the readout. The per-pixel performance must also be improved, namely the energy resolution. We are investigating ways to reduce frequency collisions and to improve the per pixel performance of our devices through new superconducting material systems and fabrication techniques. There are two main routes that we are currently exploring. First, we are attempting to create more uniform titanium nitride films through the use of atomic layer deposition rather than the more traditional sputtering method. In addition, we are experimenting with completely new material systems for MKIDs, such as platinum silicide.

  1. Coherent Optical Generation of a 6 GHz Microwave Signal with Directly Phase Locked Semiconductor DFB Lasers

    DEFF Research Database (Denmark)

    Gliese, Ulrik Bo; Nielsen, Torben Nørskov; Bruun, Marlene;

    1992-01-01

    Experimental results of a wideband heterodyne second order optical phase locked loop with 1.5 ¿m semiconductor lasers are presented. The loop has a bandwidth of 180 MHz, a gain of 181 dBHz and a propagation delay of only 400 ps. A beat signal of 8 MHz linewidth is phase locked to become a replica...... of a microwave reference source close to carrier with a noise level of ¿125 dBc/Hz. The total phase variance of the locked carrier is 0.04 rad2 and carriers can be generated in a continuous range from 3 to 18 GHz. The loop reliability is excellent with an average time to cycle slip of 1011 seconds...

  2. Phase Analysis for Frequency Standards in the Microwave and Optical Domains

    CERN Document Server

    Kazda, M; Huntemann, N; Lipphardt, B; Weyers, S

    2015-01-01

    Coherent manipulation of atomic states is a key concept in high-precision spectroscopy and used in atomic fountain clocks and a number of optical frequency standards. Operation of these standards can involve a number of cyclic switching processes, which may induce cycle synchronous phase excursions of the interrogation signal and thus lead to shifts in the output of the frequency standard. We have built a FPGA-based phase analyzer to investigate these effects and conducted measurements on two frequency standards. For the caesium fountain PTB-CSF2 we were able to exclude phase variations of the microwave source at the level of a few $\\mu$rad, corresponding to relative frequency shifts of less than 10$^{-16}$. In the optical domain, we investigated phase variations in PTB's Yb$^+$ optical frequency standard and made detailed measurements of AOM chirps and their scaling with duty cycle and driving power. We ascertained that cycle-synchronous as well as long-term phase excursion do not cause frequency shifts larg...

  3. Constraints on primordial magnetic fields from the optical depth of the cosmic microwave background

    CERN Document Server

    Kunze, Kerstin E

    2015-01-01

    Damping of magnetic fields via ambipolar diffusion and decay of magnetohydrodynamical (MHD) turbulence in the post decoupling era heats the intergalactic medium (IGM). Collisional ionization weakly ionizes the IGM, producing an optical depth to scattering of the cosmic microwave background (CMB). The optical depth generated at $z\\gg 10$ does not affect the "reionization bump" of the CMB polarization power spectrum at low multipoles, but affects the temperature and polarization power spectra at high multipoles. Using the Planck 2013 temperature and lensing data together with the WMAP 9-year polarization data, we constrain the present-day field strength, $B_0$, smoothed over the damping length at the decoupling epoch as a function of the spectral index, $n_B$. We find the 95% upper bounds of $B_0<0.56$, 0.31, and 0.14 nG for $n_B=-2.9$, $-2.5$, and $-1.5$, respectively. For these spectral indices, the optical depth is dominated by dissipation of the decaying MHD turbulence that occurs shortly after the decou...

  4. Machine Learning on Images: Combining Passive Microwave and Optical Data to Estimate Snow Water Equivalent

    Science.gov (United States)

    Dozier, J.; Tolle, K.; Bair, N.

    2014-12-01

    We have a problem that may be a specific example of a generic one. The task is to estimate spatiotemporally distributed estimates of snow water equivalent (SWE) in snow-dominated mountain environments, including those that lack on-the-ground measurements. Several independent methods exist, but all are problematic. The remotely sensed date of disappearance of snow from each pixel can be combined with a calculation of melt to reconstruct the accumulated SWE for each day back to the last significant snowfall. Comparison with streamflow measurements in mountain ranges where such data are available shows this method to be accurate, but the big disadvantage is that SWE can only be calculated retroactively after snow disappears, and even then only for areas with little accumulation during the melt season. Passive microwave sensors offer real-time global SWE estimates but suffer from several issues, notably signal loss in wet snow or in forests, saturation in deep snow, subpixel variability in the mountains owing to the large (~25 km) pixel size, and SWE overestimation in the presence of large grains such as depth and surface hoar. Throughout the winter and spring, snow-covered area can be measured at sub-km spatial resolution with optical sensors, with accuracy and timeliness improved by interpolating and smoothing across multiple days. So the question is, how can we establish the relationship between Reconstruction—available only after the snow goes away—and passive microwave and optical data to accurately estimate SWE during the snow season, when the information can help forecast spring runoff? Linear regression provides one answer, but can modern machine learning techniques (used to persuade people to click on web advertisements) adapt to improve forecasts of floods and droughts in areas where more than one billion people depend on snowmelt for their water resources?

  5. Comparing a mercury optical lattice clock with microwave and optical frequency standards

    CERN Document Server

    Tyumenev, R; Bilicki, S; Bookjans, E; Targat, R Le; Lodewyck, J; Nicolodi, D; Coq, Y Le; Abgrall, M; Guéna, J; De Sarlo, L; Bize, S

    2016-01-01

    In this paper we report the evaluation of an optical lattice clock based on neutral mercury down to a relative uncertainty of $1.7\\times 10^{-16}$. Comparing this characterized frequency standard to a Cs atomic fountain we determine the absolute frequency of the $^1S_0 \\rightarrow \\phantom{}^3P_0$ transition of $^{199}$Hg as $\

  6. Comparing a mercury optical lattice clock with microwave and optical frequency standards

    Science.gov (United States)

    Tyumenev, R.; Favier, M.; Bilicki, S.; Bookjans, E.; Le Targat, R.; Lodewyck, J.; Nicolodi, D.; Le Coq, Y.; Abgrall, M.; Guéna, J.; De Sarlo, L.; Bize, S.

    2016-11-01

    In this paper we report the evaluation of an optical lattice clock based on neutral mercury with a relative uncertainty of 1.7× {10}-16. Comparing this characterized frequency standard to a 133Cs atomic fountain we determine the absolute frequency of the {}1{{{S}}}0\\to {}3{{{P}}}0 transition of 199Hg as {ν }{Hg}=1128 575 290 808 154.62 {Hz}+/- 0.19 {Hz}({statistical})+/- 0.38 {Hz} (systematic), limited solely by the realization of the SI second. Furthermore, by comparing the mercury optical lattice clock to a 87Rb atomic fountain, we determine for the first time to our knowledge the ratio between the 199Hg clock transition and the 87Rb ground state hyperfine transition. Finally we present a direct optical to optical measurement of the 199Hg/87Sr frequency ratio. The obtained value of {ν }{Hg}/{ν }{Sr} = 2.629 314 209 898 909 15 with a fractional uncertainty of 1.8× {10}-16 is in excellent agreement with a similar measurement obtained by Yamanaka et al (2015 Phys. Rev. Lett. 114 230801). This makes this frequency ratio one of the few physical quantities agreed upon by different laboratories to this level of uncertainty. Frequency ratio measurements of the kind reported in this paper have a strong impact for frequency metrology and fundamental physics as they can be used to monitor putative variations of fundamental constants.

  7. System-Level Performance Evaluation of Microwave Fiber-Optic Links

    Science.gov (United States)

    Ackerman, Edward Irving

    Future generations of phased array radar systems as well as steerable communication antennas will require feed and distribution to many hundreds--possibly thousands --of solid-state MMIC radiating elements. In phased arrays operating at millimeter-wave frequencies, backplane interface and signal distribution methods will need to fulfill strict performance criteria. The metallic waveguides and coaxial cables currently used as phased array backplane interconnects will be unable to meet these stringent requirements. At millimeter-wave frequencies, where array backplane congestion is a major problem, distribution of the RF and digital control signals using optical fiber offers significant weight and crosstalk immunity advantages. To realize all the benefits of optical fiber signal distribution in a phased array, the single most critical development is the high-performance RF fiber-optic link. Some radar and communication systems, however, have such stringent transmit and/or receive performance goals which may not be easily met with conventional fiber-optic links. Fulfilling such difficult performance criteria requires prudent link architecture design. Before choosing a fiber-optic link design approach, it would benefit the phased array antenna system designer to possess a means of determining what RF performance could be expected. To do this, the designer needs a means of verifying that the mixing, modulation, and detection methods and the devices selected will result in a link with high -fidelity performance at the RF design frequencies. This work provides just such a design tool. In order to identify how best to leverage the advantages of optical fiber signal distribution in a microwave or millimeter-wave phased array, this thesis will investigate the optical link architectures that offer the maximum potential for achieving high-performance, low-profile array backplane interfaces. To assist the designer in the choice of signal mixing technique, modulation scheme, and

  8. An optical fiber sensor based on cladding photoluminescence for high power microwave plasma ultraviolet lamps used in water treatment

    Science.gov (United States)

    Fitzpatrick, C.; Lewis, E.; Al-Shamma'A, A.; Pandithas, I.; Cullen, J.; Lucas, J.

    2001-11-01

    Low-pressure mercury lamps are commonly used for germicidal applications such as water and wastewater sterilisation. The germicidal effect is due to the emission of light at 254 nm, which leads to the destruction of most waterborne bacteria. The Microwave plasma ultraviolet lamp (MPUVL) is a new technology for generating a high intensity ultraviolet (UV) light. A Fluorescent optical fiber based sensor is presented which is used for monitoring the output of a high power microwave UV light source and its control. This sensor is a fiber which has had its cladding removed and been coated with a phosphor doped polymer.

  9. A novel approach to photonic generate microwave signals based on optical injection locking and four-wave mixing

    Science.gov (United States)

    Zhu, Huatao; Wang, Rong; Xiang, Peng; Pu, Tao; Fang, Tao; Zheng, Jilin; Li, Yuandong

    2017-10-01

    In this paper, a novel approach for photonic generation of microwave signals based on frequency multiplication using an injected distributed-feedback (DFB) semiconductor laser is proposed and demonstrated by a proof-of-concept experiment. The proposed system is mainly made up of a dual-parallel Mach-Zehnder modulator (DPMZM) and an injected DFB laser. By properly setting the bias voltage of the DPMZM, ±2-order sidebands with carrier suppression are generated, which are then injected into the slave laser. Due to the optical sideband locking and four-wave mixing (FWM) nonlinearity in the slave laser, new sidebands are generated. Then these sidebands are sent to an optical notch filter where all the undesired sidebands are removed. Finally, after photodetector detection, frequency multiplied microwave signals can be generated. Thanks to the flexibility of the optical sideband locking and FWM, frequency octupling, 12-tupling, 14-tupling and 16-tupling can be obtained.

  10. Linearized Optically Phase-Modulated Fiber Optic Links for Microwave Signal Transport

    Science.gov (United States)

    2009-03-03

    a number of external modulation techniques. For particularly long links, a single or small number of Erbium-Doped Fiber Amplifiers ( EDFA ) could...amplifier (Erbium-Doped Fiber Amplifier, or EDFA ) is present, its noise contribution is caused by beating between the signal and the...the absence of an EDFA , received optical powers that generate photocurrents below approximately 1 mA cause the system noise to be dominated by the

  11. Microwave photonics

    CERN Document Server

    Lee, Chi H

    2006-01-01

    Wireless, optical, and electronic networks continue to converge, prompting heavy research into the interface between microwave electronics, ultrafast optics, and photonic technologies. New developments arrive nearly as fast as the photons under investigation, and their commercial impact depends on the ability to stay abreast of new findings, techniques, and technologies. Presenting a broad yet in-depth survey, Microwave Photonics examines the major advances that are affecting new applications in this rapidly expanding field.This book reviews important achievements made in microwave photonics o

  12. Optical generation of microwave signals with a dual-phase-shifted Al2O3:Yb3+ distributed-feedback laser

    NARCIS (Netherlands)

    Bernhardi, E.H.; Khan, M.R.H.; Roeloffzen, C.G.H.; Wolferen, van H.A.G.M.; Wörhoff, K.; Ridder, de R.M.; Pollnau, M.

    2012-01-01

    We demonstrate the optical generation of stable microwave signals from a dual-wavelength distributed-feedback waveguide laser in ytterbium-doped alumina. The microwave beat signal was produced at ~15 GHz with a frequency stability of ±2.5 MHz.

  13. Signature analysis of microwave signal generator with a fiber optic delay line in a feedback loop

    Science.gov (United States)

    Biryukov, Vladimir V.; Grachev, Vladimir A.; Kapustin, Sergey A.; Lukoyanova, Tatyana S.; Lobin, Sergey G.; Raevskii, Alexey S.

    2016-03-01

    The authors deal with advantages and disadvantages of optoelectronic microwave generators in comparison with "traditional" solid-state microwave signal generators. The article contains the experimental results of spectral characteristics of a single-stage optoelectronic microwave signal generator (frequency range from 15 up to 22 GHz).

  14. Optical and mechanical properties of diamond like carbon films deposited by microwave ECR plasma CVD

    Indian Academy of Sciences (India)

    S B Singh; M Pandey; N Chand; A Biswas; D Bhattacharya; S Dash; A K Tyagi; R M Dey; S K Kulkarni; D S Patil

    2008-10-01

    Diamond like carbon (DLC) films were deposited on Si (111) substrates by microwave electron cyclotron resonance (ECR) plasma chemical vapour deposition (CVD) process using plasma of argon and methane gases. During deposition, a d.c. self-bias was applied to the substrates by application of 13.56 MHz rf power. DLC films deposited at three different bias voltages (–60 V, –100 V and –150 V) were characterized by FTIR, Raman spectroscopy and spectroscopic ellipsometry to study the variation in the bonding and optical properties of the deposited coatings with process parameters. The mechanical properties such as hardness and elastic modulus were measured by load depth sensing indentation technique. The DLC film deposited at –100 V bias exhibit high hardness (∼ 19 GPa), high elastic modulus (∼ 160 GPa) and high refractive index (∼ 2.16–2.26) as compared to films deposited at –60 V and –150 V substrate bias. This study clearly shows the significance of substrate bias in controlling the optical and mechanical properties of DLC films.

  15. Structural, Optical, and Magnetic Properties of NiMoO4 Nanorods Prepared by Microwave Sintering

    Directory of Open Access Journals (Sweden)

    Ana P. de Moura

    2015-01-01

    Full Text Available We report on the structural, optical, and magnetic properties of α,β-NiMoO4 nanorods synthesized by annealing the NiMoO4:nH2O precursor at 600°C for 10 minutes in a domestic microwave. The crystalline structure properties of α,β-NiMoO4 were investigated using X-ray diffraction (XRD, Fourier transform infrared (FTIR, and Raman (FT-Raman spectroscopies. The particle morphologies and size distributions were identified by field emission microscopy (FE-SEM. Experimental data were obtained by magnetization measurements for different applied magnetic fields. Optical properties were analyzed by ultraviolet-visible (UV-vis and photoluminescence (PL measurements. Our results revealed that the oxygen atoms occupy different positions and are very disturbed in the lattice and exhibit a particular characteristic related to differences in the length of the chemical bonds (Ni-O and Mo-O of the cluster structure or defect densities in the crystalline α,β-NiMoO4 nanorods, which are the key to a deeper understanding of the exploitable physical and chemical properties in this study.

  16. Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source

    Science.gov (United States)

    Xu, Xingyuan; Wu, Jiayang; Shoeiby, Mehrdad; Nguyen, Thach G.; Chu, Sai T.; Little, Brent E.; Morandotti, Roberto; Mitchell, Arnan; Moss, David J.

    2017-09-01

    We propose and experimentally demonstrate a microwave photonic intensity differentiator based on a Kerr optical comb generated by a compact integrated micro-ring resonator (MRR). The on-chip Kerr optical comb, containing a large number of comb lines, serves as a high-performance multi-wavelength source for implementing a transversal filter, which will greatly reduce the cost, size, and complexity of the system. Moreover, owing to the compactness of the integrated MRR, frequency spacings of up to 200-GHz can be achieved, enabling a potential operation bandwidth of over 100 GHz. By programming and shaping individual comb lines according to calculated tap weights, a reconfigurable intensity differentiator with variable differentiation orders can be realized. The operation principle is theoretically analyzed, and experimental demonstrations of the first-, second-, and third-order differentiation functions based on this principle are presented. The radio frequency amplitude and phase responses of multi-order intensity differentiations are characterized, and system demonstrations of real-time differentiations for a Gaussian input signal are also performed. The experimental results show good agreement with theory, confirming the effectiveness of our approach.

  17. Optimization of an analog intersatellite microwave photonics link with an optical preamplifier.

    Science.gov (United States)

    Zhu, Zihang; Zhao, Shanghong; Li, Yongjun; Chu, Xingchun; Hou, Rui; Wang, Xiang; Zhao, Guhao

    2012-12-01

    An exact analytical expression of the signal-to-noise ratio (SNR) for an intersatellite microwave photonics link with an optical preamplifier is derived considering the signal fade caused by the pointing errors of the transceiver, and an optimized model for laser output power and direct current (DC) bias phase shift of the Mach-Zehnder modulator is established. It is shown that, given the desired SNR and the root mean square (rms) random pointing jitter, an optimal DC bias phase shift exists that minimizes laser output power. The effects of the optical preamplifier parameters on the minimum laser output power and optimal DC bias phase shift are also examined. Numerical results show that the preamplifier noise figure determines the minimum laser output power needed to achieve the desired SNR but affects the optimal DC bias phase shift little. For a SNR of 20 dB, doubling the preamplifier noise figure results in a 6.36 dB increase in minimum laser output power for rms pointing jitter of 0.4 μrad.

  18. Microwave heating of aqueous samples on a micro-optical-electro-mechanical system

    Science.gov (United States)

    Beer, Neil Reginald

    2015-03-03

    Apparatus for heating a sample includes a microchip; a microchannel flow channel in the microchip, the microchannel flow channel containing the sample; a microwave source that directs microwaves onto the sample for heating the sample; a wall section of the microchannel flow channel that receives the microwaves and enables the microwaves to pass through wall section of the microchannel flow channel, the wall section the microchannel flow channel being made of a material that is not appreciably heated by the microwaves; a carrier fluid within the microchannel flow channel for moving the sample in the microchannel flow channel, the carrier fluid being made of a material that is not appreciably heated by the microwaves; wherein the microwaves pass through wall section of the microchannel flow channel and heat the sample.

  19. Microwave heating of aqueous samples on a micro-optical-electro-mechanical system

    Energy Technology Data Exchange (ETDEWEB)

    Beer, Neil Reginald

    2016-04-12

    Apparatus for heating a sample includes a microchip; a microchannel flow channel in the microchip, the microchannel flow channel containing the sample; a microwave source that directs microwaves onto the sample for heating the sample; a wall section of the microchannel flow channel that receives the microwaves and enables the microwaves to pass through wall section of the microchannel flow channel, the wall section the microchannel flow channel being made of a material that is not appreciably heated by the microwaves; a carrier fluid within the microchannel flow channel for moving the sample in the microchannel flow channel, the carrier fluid being made of a material that is not appreciably heated by the microwaves; wherein the microwaves pass through wall section of the microchannel flow channel and heat the sample.

  20. Optical and Structural Properties of ZnO Nanoparticles Synthesized by CO2 Microwave Plasma at Atmospheric Pressure

    Directory of Open Access Journals (Sweden)

    Se Min Chun

    2014-01-01

    Full Text Available The results of carbon-doped zinc oxide nanoparticles synthesized by CO2 microwave plasma at atmospheric pressure are presented. The 2.45-GHz microwave plasma torch and feeder for injecting Zn granules are used in the synthesis of zinc oxide nanoparticles. The Zn granules (13.5 g/min were introduced into the microwave plasma by CO2 (5 l/min swirl gas. The microwave power delivered to the CO2 microwave plasma was 1 kW. The synthesis of carbon-doped zinc oxide nanoparticles was carried out in accordance with CO2 + Zn → carbon-doped ZnO + CO. The synthesized carbon-doped zinc oxide nanoparticles have a high purity hexagonal phase. The absorption edge of carbon-doped zinc oxide nanoparticles exhibited a red shift from a high-energy wavelength to lower in the UV-visible spectrum, due to band gap narrowing. A UV-NIR spectrometer, X-ray diffraction, emission scanning electron-microscopy, energy dispersive X-ray microanalysis, Fourier transform infrared spectroscopy, and a UV-Vis-NIR spectrophotometer were used for the characterization of the as-produced products.

  1. Rainfall estimation using an optical and a microwave link in the Ardèche catchment.

    Science.gov (United States)

    Pietersen, Henk; Overeem, Aart; Leijnse, Hidde; Uijlenhoet, Remko

    2013-04-01

    The Mediterranean basin is considered to be one of the "hotspots" for climate change. One of the main factors in these changes is the availability and distribution of water, both in time and space. To gain more understanding about the hydrological cycle in the Mediterranean basin and to quantify the related processes, the HYdrological cycle in the Mediterranean EXperiment (HyMeX) was set up. This experiment focuses on inter-annual to decadal variability in the coupled Mediterranean system, running during the second decade of the 21st century. During this long experiment, special intensive observation periods are planned, of which the first passed during the autumn of 2012. Within the HyMeX framework, one working group pays special attention to (flash) floods and heavy rainfall. To investigate this, several (small) catchments were heavily instrumented during the first special observation period. We show the first results on rainfall estimation employing an optical link, a microwave link, and a disdrometer in the Ardèche catchment in the south of France for the first special observation period of HyMeX. Optical and microwave links can be employed to estimate path-averaged rain intensities along a transect of several kilometers, similar in length to the cross-section of a small catchment. The transmitted signal is attenuated by rain along the link path causing a decrease in received power at the end of the link. The attenuation of this signal has a power-law relation to the average rainfall intensity along the link. As a reference, the disdrometer is placed at one end of the link. Link-based rainfall intensities are compared to those based on disdrometer data. However, due to the nature of the observational technique (point measurement vs. average along a link) errors in representation may occur. The estimation of rainfall intensity from attenuation can be hampered by a number of factors. Principal among these are: moisture on the antennae that is perceived to be

  2. ZnS nanosheets: Egg albumin and microwave-assisted synthesis and optical properties

    Science.gov (United States)

    Tian, Xiuying; Wen, Jin; Hu, Jilin; Chen, Zhanjun; Wang, Shumei; Peng, Hongxia; Li, Jing

    2016-09-01

    ZnS nanosheets were prepared via egg albumin and microwave-assisted method. The phases, crystalline lattice structures, morphologies, chemical and optical properties were characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), field-emission scanning electron microscope(FE-SEM), selected area electron diffraction (SAED), Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy and fluorescence(FL) spectrometer and growth mechanism of ZnS nanosheets was investigated. The results showed that all samples were pure cubic zinc blende with polycrystalline structure. The width of ZnS nanosheets with a rectangular nanostructure was in the range of 450-750 nm. The chemical interaction existed between egg albumin molecules and ZnS nanoparticles via the amide/carboxylate group. The band gap value calculated was 3.72 eV. The band at around 440 nm was attributed to the sulfur vacancies of the ZnS nanosheets. With increasing volumes of egg albumin, the photoluminescence (PL) intensity of ZnS samples firstly increased and then decreased, attributed to concentration quenching.

  3. Title: Rice Crop Monitoring by Fusing Microwave and Optical Satellite Data

    Science.gov (United States)

    Oyoshi, K.; Takeuchi, W.; LE Toan, T.; Sobue, S.

    2015-12-01

    Rapid population and economic growth, and the increase in extreme weather events, are destabilizing global food security. In Asia, rice is a staple cereal crop, and the continent accounts for about 90% of global rice production and consumption. The Group on Earth Observations (GEO) Global Agricultural Monitoring (GLAM) was launched in 2011 to utilize remote sensing tools to enhance crop production projections in order to promote food security and foster sustainable economic growth. Asia---‒Rice Crop Estimation & Monitoring (Asia---‒RiCE) is a component of GEOGLAM, and aims to use remote sensing tools to develop rice---‒related information such as maps of paddy fields, rice growing conditions, yield, and production. However, in some regions in Southeast Asia, rice is planted and harvested more than twice a year, and the crop calendar is quite complicated. In addition, rice is mainly cultivated in the rainy season, and the high density of cloud cover during that season limits the observations that can be made from space using only optical sensors. In contrast, Synthetic Aperture Radar (SAR) is a robust tool because it penetrates cloud cover; however, the revisit frequency of a single SAR satellite is limited, making it difficult to capture the complicated rice crop calendar in Asia. In this research, time---‒series SAR data were fused with optical data to monitor rice crops in Southeast Asia with complicated crop calendars. In addition, a microwave radiometer that also penetrates clouds and has a high revisit frequency but a coarse spatial resolution (greater than several kilometers), was used. The integrated use of a large variety of satellite data enables us to periodically monitor surface conditions such as water inundation, transplanting, and rice crop growth and harvesting, which in turn enables us to examine rice planted areas, rice crop calendars, and rice growing conditions in order to estimate rice production.

  4. Structure and microwave properties analysis of substrate removed GaAs/AIGaAs electro-optic modulator structure by finite element method

    Institute of Scientific and Technical Information of China (English)

    Kambiz ABEDI; Habib VAHIDI

    2013-01-01

    In this paper, structure and microwave properties of a substrate removed GaAs/A1GaAs traveling wave electro-optic modulator structure were analyzed and simulated by using the finite element numerical technique for lower loss, simultaneous matching of optical and microwave velocities and impedance matching with 50 Ω. The effects of core layer thickness, claddings thicknesses, and width of the modulator on the microwave effective index nm were investigated, the characteristic impedance Zc, the microwave losses a, and the half-wave voltage- length product VmL were calculated. The results of the simulation suggest that the electrical bandwidth of 22 GHz and the optical bandwidth of 48 GHz can be obtained for fully matched, lower loss structure, which correspond to a 13 V. cm drive voltage.

  5. Non-intrusive tunable resonant microwave cavity for optical detected magnetic resonance of NV centres in nanodiamonds

    Science.gov (United States)

    Le Floch, Jean-Michel; Bradac, Carlo; Volz, Thomas; Tobar, Michael E.; Castelletto, Stefania

    2013-12-01

    Optically detected magnetic resonance (ODMR) in nanodiamond nitrogen-vacancy (NV) centres is usually achieved by applying a microwave field delivered by micron-size wires, strips or antennas directly positioned in very close proximity (~ μm) of the nanodiamond crystals. The microwave field couples evanescently with the ground state spin transition of the NV centre (2.87 GHz at zero magnetic field), which results in a reduction of the centre photoluminescence. We propose an alternative approach based on the construction of a dielectric resonator. We show that such a resonator allows for the efficient detection of NV spins in nanodiamonds without the constraints associated to the laborious positioning of the microwave antenna next to the nanodiamonds, providing therefore improved flexibility. The resonator is based on a tunable Transverse Electric Mode in a dielectric-loaded cavity, and we demonstrate that the resonator can detect single NV centre spins in nanodiamonds using less microwave power than alternative techniques in a non-intrusive manner. This method can achieve higher precision measurement of ODMR of paramagnetic defects spin transition in the micro to millimetre-wave frequency domain. Our approach would permit the tracking of NV centres in biological solutions rather than simply on the surface, which is desirable in light of the recently proposed applications of using nanodiamonds containing NV centres for spin labelling in biological systems with single spin and single particle resolution.

  6. Microwave photonics

    CERN Document Server

    Lee, Chi H

    2013-01-01

    Microwave photonics continues to see rapid growth. The integration of optical fiber and wireless networks has become a commercial reality and is becoming increasingly pervasive. Such hybrid technology will lead to many innovative applications, including backhaul solutions for mobile networks and ultrabroadband wireless networks that can provide users with very high bandwidth services. Microwave Photonics, Second Edition systematically introduces important technologies and applications in this emerging field. It also reviews recent advances in micro- and millimeter-wavelength and terahertz-freq

  7. Characterising Vegetation Canopies by means of optical data and Microwave Scattering models

    Science.gov (United States)

    Molina, Iñigo; Gonzalez, Constancio; Ormeño, Santiago; Morillo, Carmen; Garcia-Melendez, Eduardo

    One of the main strengths of active microwave remote sensing, in relation to frequency, is its capacity to penetrate vegetation canopies, and reach the ground surface, so that information about the vegetation and hydrological properties of the surface can be drawn. All this infor-mation is gathered in the so called backscattering coefficient (σ 0 ), and in a vegetated medium, this coefficient reveals important information on the vegetation water content, geometry and/or structure of the canopy elements, above ground biomass, and soil roughness and moisture. In the scope of microwave frequencies, modeling the backscattering coefficient of vegetated terrain, involves taking into account scattering models that simulate the soil surface contribution by means of its physical variables, and the vegetation layer, through the knowledge of its biophys-ical properties. Soil surface scattering models require describing parameters of roughness, like soil profile height displacement standard deviation and correlation length, and moisture, which determines sur-face reflective properties. The knowledge of these parameters, allows to establishing surface scattering models with different validity ranges. Some frequently used models are divided into theoretical and empirical models. The vegetation canopy is usually regarded as a homogeneous, or random layer, at a certain height above terrain surface, and it is used to compute the attenuation through this layer. This requires a geometric generalization of the vegetation layer and its constituents, specifying additionally its electromagnetic properties. The main simulation models are based on Radiative Transfer theory, which allows for different approaches and simplifications. In this sense, somo of these models, can be efficiently adapted to any vegetated medium, and the constituents can by approximated by more general variables like Leaf Area Index (LAI), or Water total Content (WTC) of Vegetation. Moreover, in the microwave region

  8. Measurement of axial neutral density profiles in a microwave discharge ion thruster by laser absorption spectroscopy with optical fiber probes.

    Science.gov (United States)

    Tsukizaki, Ryudo; Koizumi, Hiroyuki; Nishiyama, Kazutaka; Kuninaka, Hitoshi

    2011-12-01

    In order to reveal the physical processes taking place within the "μ10" microwave discharge ion thruster, internal plasma diagnosis is indispensable. However, the ability of metallic probes to access microwave plasmas biased at a high voltage is limited from the standpoints of the disturbance created in the electric field and electrical isolation. In this study, the axial density profiles of excited neutral xenon were successfully measured under ion beam acceleration by using a novel laser absorption spectroscopy system. The target of the measurement was metastable Xe I 5p(5)((2)P(0) (3/2))6s[3/2](0) (2) which absorbed a wavelength of 823.16 nm. Signals from laser absorption spectroscopy that swept a single-mode optical fiber probe along the line of sight were differentiated and converted into axial number densities of the metastable neutral particles in the plasma source. These measurements revealed a 10(18) m(-3) order of metastable neutral particles situated in the waveguide, which caused two different modes during the operation of the μ10 thruster. This paper reports a novel spectroscopic measurement system with axial resolution for microwave plasma sources utilizing optical fiber probes.

  9. Electro-optic comb based real time ultra-high sensitivity phase noise measurement system for high frequency microwaves.

    Science.gov (United States)

    Kuse, N; Fermann, M E

    2017-06-06

    Recent progress in ultra low phase noise microwave generation indispensably depends on ultra low phase noise characterization systems. However, achieving high sensitivity currently relies on time consuming averaging via cross correlation, which sometimes even underestimates phase noise because of residual correlations. Moreover, extending high sensitivity phase noise measurements to microwaves beyond 10 GHz is very difficult because of the lack of suitable high frequency microwave components. In this work, we introduce a delayed self-heterodyne method in conjunction with sensitivity enhancement via the use of higher order comb modes from an electro-optic comb for ultra-high sensitivity phase noise measurements. The method obviates the need for any high frequency RF components and has a frequency measurement range limited only by the bandwidth (100 GHz) of current electro-optic modulators. The estimated noise floor is as low as -133 dBc/Hz, -155 dBc/Hz, -170 dBc/Hz and -171 dBc/Hz without cross correlation at 1 kHz, 10 kHz, 100 kHz and 1 MHz Fourier offset frequency for a 10 GHz carrier, respectively. Moreover, since no cross correlation is necessary, RF oscillator phase noise can be directly suppressed via feedback up to 100 kHz frequency offset.

  10. Microwave assisted synthesis of a novel optical chemosensor for selective Fe{sup 3+} detection

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, Muhammad [Department of Chemistry, Kongju National University, Gongju, Chungnam 314-701 (Korea, Republic of); Kang, Sung Kwon [Department of Chemistry Chungnam National University, Daejeon 305-754 (Korea, Republic of); Lee, Ki Hwan, E-mail: khlee@kongju.ac.kr [Department of Chemistry, Kongju National University, Gongju, Chungnam 314-701 (Korea, Republic of)

    2015-06-15

    Recently, there has been significant interest in the design and development of optical chemosensors for recognition of biologically and environmentally important analytes with high selectivity, sensitivity and low detection-limit because of their fundamental role in medical, environmental and biological applications. Herein, a novel fluorogenic signaling probe 6 for the selective detection of ferric ion in mixed aqueous organic media has been developed through microwave assisted Schiff base formation by reacting 4-amino-3-(2-fluorobenzyl)-1H-1,2,4-triazole-5(4H)-thione 5 with thiophene-2-carbaldehyde. The formation of probe 6 was characterized by FT-IR, {sup 1}H NMR, {sup 13}C NMR, mass spectrometric and single crystal X-ray diffraction analysis. The photophysical results of (Z)-3-(2-fluorobenzyl)-4-[(thiophen-2-ylmethylene) amino]-1H-1,2,4-triazole-5(4H)-thione (6) corroborates its applicability as optical sensing platform for selective Fe{sup 3+} detection in pure organic as well as mixed organic-aqueous media. Through fluorescence titration at 478 nm, we were confirmed that the ligand 6 exhibited remarkable decline in the fluorescence intensity by complexation between 6 and Fe{sup 3+} while it appeared negligible fluorescent quenching in case of the competitive ions in MeOH/water (8:2, v/v, pH 7) at ambient temperature. Meanwhile, the emergence of a new characteristic redshifted signal at 357 nm with gradual increment in the absorption intensity on gentle increase in the ferric ion concentration and continuous shifting in the ligand absorption bands after Fe{sup 3+} addition ascribed the conformational changes in the ligand structure upon Fe{sup 3+} binding. Due to simplicity, low cost, fast response time, considerable sensitivity and robustness, the proposed sensing method might be a practical tool for environmental samples analysis and biological studies. - Highlights: • A novel fluorogenic signaling probe for ferric ion has been developed. • The ligand

  11. Color sensing under microwaves

    Science.gov (United States)

    Choudhury, Debesh

    2013-09-01

    Inspired by recent results of artificial color due to Caulfield, we carry out intuitive experimental investigations on color sensing under microwave illumination. Experiemnts have been carried out using a Gunn diode as the microwave source and a microwave diode as a detector. More precise experimental studies have also been carried out utilizing a vector network analyzer. Preliminary results of the experiments validate the feasibility of sensing and discriminating otherwise visual colors under microwave illumination. Caulfield's presumption possibly paves the way for artificial color perception using microwaves.

  12. Plasma-enhanced microwave solid-state synthesis of cadmium sulfide: reaction mechanism and optical properties.

    Science.gov (United States)

    Du, Ke-zhao; Chaturvedi, Apoorva; Wang, Xing-zhi; Zhao, Yi; Zhang, Ke-ke; Iqbal Bakti Utama, M; Hu, Peng; Jiang, Hui; Xiong, Qi-hua; Kloc, Christian

    2015-08-14

    CdS synthesis by plasma-enhanced microwave physical vapor transport (PMPVT) has been developed in this work. The photoluminescence (PL), absorbance, Raman spectra and the mechanism of CdS crystal growth have been investigated. Furthermore, plasma-enhanced microwave chemical vapour transport (PMCVT) synthesis of CdS with additional chemical transport agents has been explored. In addition, other II-VI chalcogenides were also synthesized by PMPVT.

  13. Equivalence of Optical and Electrical Noise Equivalent Power of Hybrid NbTiN-Al Microwave Kinetic Inductance Detectors

    CERN Document Server

    Janssen, R M J; de Visser, P J; Klapwijk, T M; Baselmans, J J A

    2014-01-01

    We have measured and compared the response of hybrid NbTiN-Al Microwave Kinetic Inductance Detectors (MKIDs) to changes in bath temperature and illumination by sub-mm radiation. We show that these two stimulants have an equivalent effect on the resonance feature of hybrid MKIDs. We determine an electrical NEP from the measured temperature responsivity, quasiparticle recombination time, superconducting transition temperature and noise spectrum, all of which can be measured in a dark environment. For the two hybrid NbTiN-Al MKIDs studied in detail the electrical NEP is within a factor of two of the optical NEP, which is measured directly using a blackbody source.

  14. Formation of Mn-doped SnO2 Nanoparticles Via the Microwave Technique: Structural, Optical and Electrical Properties

    Directory of Open Access Journals (Sweden)

    Numan Salah

    2016-03-01

    increasing the Mn content. The activation energy of Mn- doped SnO2 NPs was also calculated, and was found to increase from 0.53 to 1.21 eV by varying the Mn dopant from 0.1 to 5 mol%. These results show that the microwave technique is a powerful tool that can be used to produce a high yield of ultrafine SnO2 NPs. Moreover, Mn was found to be a proper activator for tuning the optical and electrical properties of this material, for its application as a dilute magnetic semiconductor or spintronic devices.

  15. Broadband, large-area microwave antenna for optically detected magnetic resonance of nitrogen-vacancy centers in diamond

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Kento; Monnai, Yasuaki; Saijo, Soya; Fujita, Ryushiro; Ishi-Hayase, Junko; Itoh, Kohei M., E-mail: kitoh@appi.keio.ac.jp; Abe, Eisuke, E-mail: e-abe@keio.jp [School of Fundamental Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Watanabe, Hideyuki [Correlated Electronics Group, Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565 (Japan)

    2016-05-15

    We report on a microwave planar ring antenna specifically designed for optically detected magnetic resonance (ODMR) of nitrogen-vacancy (NV) centers in diamond. It has the resonance frequency at around 2.87 GHz with the bandwidth of 400 MHz, ensuring that ODMR can be observed under external magnetic fields up to 100 G without the need of adjustment of the resonance frequency. It is also spatially uniform within the 1-mm-diameter center hole, enabling the magnetic-field imaging in the wide spatial range. These features facilitate the experiments on quantum sensing and imaging using NV centers at room temperature.

  16. Measurement of Terahertz Optical-Beat Frequency Using High-Order Harmonics of Microwave in a Photoconductive Device

    Directory of Open Access Journals (Sweden)

    Kengo Murasawa

    2011-01-01

    Full Text Available A method for measuring frequencies of the terahertz (THz radiation emitted by the antenna mounted on the photoconductive (PC device is presented. Two laser beams with slightly different frequencies irradiate the PC device, producing a beat current of 1 THz in the photocurrent. A microwave signal is applied to the antenna electrode. The frequency of the THz wave is measured using the homodyne detection of the optical beat with the high-order harmonics of the microwave. It is being investigated that the high-order harmonics are produced by the PC device owing to its nonlinearity. Periodic peaks generated by the homodyne detection were observed in the photocurrent, as the microwave was swept from 16 to 20 GHz with a power of −40 dBm. Using the peak frequencies, the THz-wave frequency was determined to be 1030.3±3.73 GHz. The measurement error is estimated to be less than 0.43 GHz. The proposed method realizes a compact frequency meter in the THz region.

  17. Broadband photonic microwave phase shifter based on controlling two RF modulation sidebands via a Fourier-domain optical processor.

    Science.gov (United States)

    Yang, J; Chan, E H W; Wang, X; Feng, X; Guan, B

    2015-05-04

    An all-optical photonic microwave phase shifter that can realize a continuous 360° phase shift over a wide frequency range is presented. It is based on the new concept of controlling the amplitude and phase of the two RF modulation sidebands via a Fourier-domain optical processor. The operating frequency range of the phase shifter is largely increased compared to the previously reported Fourier-domain optical processor based phase shifter that uses only one RF modulation sideband. This is due to the extension of the lower RF operating frequency by designing the amplitude and phase of one of the RF modulation sidebands while the other sideband is designed to realize the required RF signal phase shift. The two-sideband amplitude-and-phase-control based photonic microwave phase shifter has a simple structure as it only requires a single laser source, a phase modulator, a Fourier-domain optical processor and a single photodetector. Investigation on the bandwidth limitation problem in the conventional Fourier-domain optical processor based phase shifter is presented. Comparisons between the measured phase shifter output RF amplitude and phase responses with theory, which show excellent agreement, are also presented for the first time. Experimental results demonstrate the full -180° to + 180° phase shift with little RF signal amplitude variation of less than 3 dB and with a phase deviation of less than 4° over a 7.5 GHz to 26.5 GHz frequency range, and the phase shifter exhibits a long term stable performance.

  18. Artificial color perception using microwaves

    CERN Document Server

    Choudhury, Debesh

    2013-01-01

    We report the feasibility of artificial color perception under microwave illumination using a standard microwave source and an antenna. We have sensed transmitted microwave power through color objects and have distinguished the colors by analyzing the sensed transmitted power. Experiments are carried out using a Gunn diode as the microwave source, some colored liquids as the objects and a microwave diode as the detector. Results are presented which open up an unusual but new way of perceiving colors using microwaves.

  19. The Design of Passive Optical Networking+Ethernet over Coaxial Cable Access Networking and Video-on-Demand Services Carrying

    Science.gov (United States)

    Ji, Wei

    2013-07-01

    Video on demand is a very attractive service used for entertainment, education, and other purposes. The design of passive optical networking+Ethernet over coaxial cable accessing and a home gateway system is proposed. The network integrates the passive optical networking and Ethernet over coaxial cable to provide high dedicated bandwidth for the metropolitan video-on-demand services. Using digital video broadcasting, IP television protocol, unicasting, and broadcasting mechanisms maximizes the system throughput. The home gateway finishes radio frequency signal receiving and provides three kinds of interfaces for high-definition video, voice, and data, which achieves triple-play and wire/wireless access synchronously.

  20. Microwave signal processing in two-frequency domain for ROF systems implementation: training course

    Science.gov (United States)

    Morozov, Oleg G.; Morozov, Gennady A.

    2014-04-01

    This article is presented materials from two tutorials: "Optical two-frequency domain reflectometry1, 2" and "Microwave technologies in industry, living systems and telecommunications3". These materials were prepared for master training courses and listed in the "SPIE Optical Education Directory" for 2013/2014. The main its theme is microwave photonics. Microwave photonics has been defined as the study of photonic devices operating at microwave frequencies and their application to microwave and optical systems. Its initial rationale was to use the advantages of photonic technologies to provide functions in microwave systems that are very complex or even impossible to carry out directly in the radiofrequency domain. But microwave photonics is also succeeding in incorporating a variety of techniques used in microwave engineering to improve the performance of photonic communication networks and systems. Three parts of this chapter are devoted to applications and construction principles of systems forming microwave photonic filters, measuring instantaneous frequency of microwave heterodyne signals and characterizing stimulated Mandelstam- Brillouin scattering spectrum in ROF systems. The main emphasis is on the use of the two-frequency symmetric radiation, generated by the Il'in-Morozov's method4, in given systems. It is forming radiation for the synthesis of optical filters coefficients, it's application and processing determine the increase in the signal-to-noise ratio during heterodyne frequencies monitoring and characterization of nonlinear effects spectrum.

  1. Microwave-assisted hydrothermal synthesis of CePO{sub 4} nanostructures: Correlation between the structural and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Palma-Ramírez, D. [Instituto Politécnico Nacional, CICATA-Unidad Altamira, Km 14.5, Carretera Tampico-Puerto Industrial Altamira, C.P. 89600 Altamira, Tamps (Mexico); Domínguez-Crespo, M.A., E-mail: mdominguezc@ipn.mx [Instituto Politécnico Nacional, CICATA-Unidad Altamira, Km 14.5, Carretera Tampico-Puerto Industrial Altamira, C.P. 89600 Altamira, Tamps (Mexico); Torres-Huerta, A.M. [Instituto Politécnico Nacional, CICATA-Unidad Altamira, Km 14.5, Carretera Tampico-Puerto Industrial Altamira, C.P. 89600 Altamira, Tamps (Mexico); Dorantes-Rosales, H. [Instituto Politécnico Nacional, ESIQIE, Departamento de Metalurgia, C.P. 07300 México D.F. (Mexico); Ramírez-Meneses, E. [Universidad Iberoamericana, Departamento de Ingeniería y Ciencias Químicas, Prolongación Paseo de la Reforma 880, Lomas de Santa Fe, C.P. 01219 México D.F. (Mexico); Rodríguez, E. [Instituto Politécnico Nacional, CICATA-Unidad Altamira, Km 14.5, Carretera Tampico-Puerto Industrial Altamira, C.P. 89600 Altamira, Tamps (Mexico)

    2015-09-15

    Highlights: • An enhancement in the hydrothermal synthesis for obtaining of CePO{sub 4} is presented. • Microwave energy can replace the energy by convection for obtaining CePO{sub 4}. • CePO{sub 4} demonstrates to be an option to increase the optical properties of polymers. • Adjusting the pH, the sintering process is not necessary to obtain the desire phase. • CePO{sub 4} morphologies undergo evolution from nanorods to semispherical nanoparticles. - Abstract: In this work, the microwave-assisted hydrothermal method is proposed as an alternative to the synthesis of cerium phosphate (CePO{sub 4}) nanostructures to evaluate the influence of different synthesis parameters on both the structural and optical properties. In order to reach this goal, two different sets of experiments were designed, varying the reaction temperature (130 and 180 °C), synthesis time (15 and 30 min) and sintering temperature (400 and 600 °C), maintaining a constant pH = 3. Thereafter, two experimental conditions were selected to assess changes in the properties of CePO{sub 4} nanopowders with pH (1, 5, 9 and 11). The crystal structure and morphology of the nanostructures were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM), respectively. Diffuse reflectance properties of CePO{sub 4} with different microstructures were studied. The results demonstrated that by using the microwave-assisted hydrothermal method, the shape, size and structural phase of CePO{sub 4} can be modulated by using relatively low synthesis temperatures and short reaction times, and depending on pH, a sintering process is not needed to obtain either a desired phase or size. Under the selected experimental conditions, the materials underwent an evolution from nanorods to semispherical nanoparticles, accompanied by a phase transition from hexagonal to monoclinic.

  2. High-purity 60GHz band millimeter-wave generation based on optically injected semiconductor laser under subharmonic microwave modulation.

    Science.gov (United States)

    Fan, Li; Xia, Guangqiong; Chen, Jianjun; Tang, Xi; Liang, Qing; Wu, Zhengmao

    2016-08-08

    Based on an optically injected semiconductor laser (OISL) operating at period-one (P1) nonlinear dynamical state, high-purity millimeter-wave generation at 60 GHz band is experimentally demonstrated via 1/4 and 1/9 subharmonic microwave modulation (the order of subharmonic is with respect to the frequency fc of the acquired 60 GHz band millimeter-wave but not the fundamental frequency f0 of P1 oscillation). Optical injection is firstly used to drive a semiconductor laser into P1 state. For the OISL operates at P1 state with a fundamental frequency f0 = 49.43 GHz, by introducing 1/4 subharmonic modulation with a modulation frequency of fm = 15.32 GHz, a 60 GHz band millimeter-wave with central frequency fc = 61.28 GHz ( = 4fm) is experimentally generated, whose linewidth is below 1.6 kHz and SSB phase noise at offset frequency 10 kHz is about -96 dBc/Hz. For fm is varied between 13.58 GHz and 16.49 GHz, fc can be tuned from 54.32 GHz to 65.96 GHz under matched modulation power Pm. Moreover, for the OISL operates at P1 state with f0 = 45.02 GHz, a higher order subharmonic modulation (1/9) is introduced into the OISL for obtaining high-purity 60 GHz band microwave signal. With (fm, Pm) = (7.23 GHz, 13.00 dBm), a microwave signal at 65.07 GHz ( = 9fm) with a linewidth below 1.6 kHz and a SSB phase noise less than -98 dBc/Hz is experimentally generated. Also, the central frequency fc can be tuned in a certain range through adjusting fm and selecting matched Pm.

  3. Slow and fast light effects and their applications to microwave photonics using semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Sales, Salvador; Xue, Weiqi; Mørk, Jesper;

    2010-01-01

    We provide a comprehensive review of the application of slow and fast light (SFL) techniques to the field of microwave photonics. Basic principles leading to the implementation of phase shifting and true time delay operations which are instrumental in this field are first considered. We then focu....... Finally, the main results obtained for several microwave photonic applications such as filtering, arbitrary waveform generation and optoelectronic scillators (OEOs)are reviewed, and other directions for future research in the field are discussed.......We provide a comprehensive review of the application of slow and fast light (SFL) techniques to the field of microwave photonics. Basic principles leading to the implementation of phase shifting and true time delay operations which are instrumental in this field are first considered. We then focus...

  4. Synergy between optical and microwave remote sensing to derive soil and vegetation parameters from MAC Europe 1991 Experiment

    Science.gov (United States)

    Taconet, O.; Benallegue, M.; Vidal, A.; Vidal-Madjar, D.; Prevot, L.; Normand, M.

    1993-01-01

    The ability of remote sensing for monitoring vegetation density and soil moisture for agricultural applications is extensively studied. In optical bands, vegetation indices (NDVI, WDVI) in visible and near infrared reflectances are related to biophysical quantities as the leaf area index, the biomass. In active microwave bands, the quantitative assessment of crop parameters and soil moisture over agricultural areas by radar multiconfiguration algorithms remains prospective. Furthermore the main results are mostly validated on small test sites, but have still to be demonstrated in an operational way at a regional scale. In this study, a large data set of radar backscattering has been achieved at a regional scale on a French pilot watershed, the Orgeval, along two growing seasons in 1988 and 1989 (mainly wheat and corn). The radar backscattering was provided by the airborne scatterometer ERASME, designed at CRPE, (C and X bands and HH and VV polarizations). Empirical relationships to estimate water crop and soil moisture over wheat in CHH band under actual field conditions and at a watershed scale are investigated. Therefore, the algorithms developed in CHH band are applied for mapping the surface conditions over wheat fields using the AIRSAR and TMS images collected during the MAC EUROPE 1991 experiment. The synergy between optical and microwave bands is analyzed.

  5. Carrying Capacity

    DEFF Research Database (Denmark)

    Schroll, Henning; Andersen, Jan; Kjærgård, Bente

    2012-01-01

    A spatial planning act was introduced inIndonesia 1992 and renewed in 2008. It emphasised the planning role of decentralised authorities. The spatial planning act covers both spatial and environmental issues. It defines the concept of carrying capacity and includes definitions of supportive...... carrying capacity (SCC) and assimilative carrying capacity (ACC). The act mandates that the latter two aspects must be taken into consideration in the local spatial plans. The present study aimed at developing a background for a national guideline for carrying capacity in Indonesian provinces and districts...... standard or governmental political objective exists. In most cases it was possible to select a set of indicators, including thresholds that are workable in a carrying capacity planning at the local administrative levels. Not all relevant sectors at the decentralized level were included. Indicators of SCC...

  6. DNA visualization in single molecule studies carried out with optical tweezers: Covalent versus non-covalent attachment of fluorophores.

    Science.gov (United States)

    Suei, Sandy; Raudsepp, Allan; Kent, Lisa M; Keen, Stephen A J; Filichev, Vyacheslav V; Williams, Martin A K

    2015-10-16

    In this study, we investigated the use of the covalent attachment of fluorescent dyes to double-stranded DNA (dsDNA) stretched between particles using optical tweezers (OT) and compared the mechanical properties of the covalently-functionalized chain to that of unmodified DNA and to DNA bound to a previously uncharacterized groove-binder, SYBR-gold. Modified DNA species were obtained by covalently linking azide-functionalized organic fluorophores onto the backbone of DNA chains via the alkyne moieties of modified bases that were incorporated during PCR. These DNA molecules were then constructed into dumbbells by attaching polystyrene particles to the respective chain ends via biotin or digoxigenin handles that had been pre-attached to the PCR primers which formed the ends of the synthesized molecule. Using the optical tweezers, the DNA was stretched by separating the two optically trapped polystyrene particles. Displacements of the particles were measured in 3D using an interpolation-based normalized cross-correlation method and force-extension curves were calculated and fitted to the worm-like chain model to parameterize the mechanical properties of the DNA. Results showed that both the contour and persistence length of the covalently-modified dsDNAs were indistinguishable from that of the unmodified dsDNA, whereas SYBR-gold binding perturbed the contour length of the chain in a force-dependent manner. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Carrying Capacity

    DEFF Research Database (Denmark)

    Schroll, Henning; Andersen, Jan; Kjærgård, Bente

    2012-01-01

    A spatial planning act was introduced inIndonesia 1992 and renewed in 2008. It emphasised the planning role of decentralised authorities. The spatial planning act covers both spatial and environmental issues. It defines the concept of carrying capacity and includes definitions of supportive...... and ACC may increase the political focus on resources and environmental issues and may help to move local authorities towards a more holistic spatial planning approach. A carrying capacity approach could be an inspiration for local spatial planning in developing countries. A spatial planning act...... was introduced inIndonesia 1992 and renewed in 2008. It emphasised the planning role of decentralised authorities. The spatial planning act covers both spatial and environmental issues. It defines the concept of carrying capacity and includes definitions of supportive carrying capacity (SCC) and assimilative...

  8. Compact optical displacement sensing by detection of microwave signals generated from a monolithic passively mode-locked laser under feedback

    Science.gov (United States)

    Simos, Christos; Simos, Hercules; Nikas, Thomas; Syvridis, Dimitris

    2015-05-01

    A monolithic passively mode-locked laser is proposed as a compact optical sensor for displacements and vibrations of a reflecting object. The sensing principle relies on the change of the laser repetition frequency that is induced by optical feedback from the object under measurement. It has been previously observed that, when a semiconductor passively mode locked laser receives a sufficient level of optical feedback from an external reflecting surface it exhibits a repetition frequency that is no more determined by the mode-locking rule of the free-running operation but is imposed by the length of the external cavity. Therefore measurement of the resulting laser repetition frequency under self-injection permits the accurate and straightforward determination of the relative position of the reflecting object. The system has an inherent wireless capability since the repetition rate of the laser can be wirelessly detected by means of a simple antenna which captures the microwave signal generated by the saturable absorber and is emitted through the wiring of the laser. The sensor setup is very simple as it requires few optical components besides the laser itself. Furthermore, the deduction of the relative position of the reflecting object is straightforward and does not require any processing of the detected signal. The proposed sensor has a theoretical sub-wavelength resolution and its performance depends on the RF linewidth of the laser and the resolution of the repetition frequency measurement. Other physical parameters that induce phase changes of the external cavity could also be quantified.

  9. [The analysis of mitochondrial DNA haplogroups and variants for Leber's hereditary optic neuropathy in Chinese families carrying the m.14484T >C mutation].

    Science.gov (United States)

    Meng, Xiangjuan; Zhu, Jinping; Gao, Min; Zhang, Sai; Zhao, Fuxin; Zhang, Juanjuan; Liu, Xiaoling; Wei, Qiping; Tong, Yi; Zhang, Minglian; Qu, Jia; Guan, Minxin

    2014-04-01

    The m.14484T>C mutation in mitochondrial ND6 gene (MT-ND6) is a primary mutation underlying the development of Leber's hereditary optic neuropathy (LHON) , but by itself not enough to cause visual loss. To explore the role of mitochondrial haplogroups on the expression of LHON for the people carrying the m.14484T>C mutation, we performed systematic and extended mutational screening of MT-ND6 gene in a cohort of 1177 Han Chinese patients with LHON. A total of 67 affected subjects carried the homoplasmic m.14484T>C mutation, accounting for 5.7% of this LHON population. The penetrances of optic neuropathy among 51 pedigrees carrying the m.14484T>C mutation ranged from 5.6% to 100.0%, with the average of 21.5%. The sequence analysis of entire mitochondrial genomes of 51 probands exhibited distinct sets of polymorphisms belonging to 18 Eastern Asian haplogroups. The frequencies of haplogroup A and haplogroup F were sig-nificantly less in the LHON mtDNA samples than those in 106 Chinese controls. On the other hand, the haplogroup M10a accounted for 9.8% of the patient's mtDNA samples but was absent in 106 Chinese controls. Strikingly, the average pene-trance (46.13%) of optic neuropathy for the pedigrees carrying mitochondrial haplogroup M10a was higher than those car-rying other mtDNA haplogroups. These observations indicated that mitochondrial haplogroup M10a may increase the risk of visual loss.

  10. Respiratory function in cybrid cell lines carrying European mtDNA haplogroups: implications for Leber's hereditary optic neuropathy.

    Science.gov (United States)

    Carelli, Valerio; Vergani, Lodovica; Bernazzi, Barbara; Zampieron, Claudia; Bucchi, Laura; Valentino, Maria; Rengo, Chiara; Torroni, Antonio; Martinuzzi, Andrea

    2002-10-09

    The possibility that some combinations of mtDNA polymorphisms, previously associated with Leber's hereditary optic neuropathy (LHON), may affect mitochondrial respiratory function was tested in osteosarcoma-derived transmitochondrial cytoplasmic hybrids (cybrids). In this cellular system, in the presence of the same nuclear background, different exogenous mtDNAs are used to repopulate a parental cell line previously devoid of its original mtDNA. No detectable differences in multiple parameters exploring respiratory function were observed when mtDNAs belonging to European haplogroups X, H, T and J were used. Different possible explanations for the previously established association between haplogroup J and LHON 11778/ND4 and 14484/ND6 pathogenic mutations are discussed, including the unconventional proposal that mtDNA haplogroup J may exert a protective rather than detrimental effect.

  11. Precision Membrane Optical Shell (PMOS) Technology for RF/Microwave to Lightweight LIDAR Apertures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Membrane Optical Shell Technology (MOST) is an innovative combination of 1) very low areal density (40 to 200g/m2) optically smooth (<20 nm rms), metallic coated...

  12. A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers

    DEFF Research Database (Denmark)

    Gliese, Ulrik Bo; Nielsen, Torben Nørskov; Bruun, Marlene

    1992-01-01

    of a microwave reference source close to carrier with a noise level of -125 dBc/Hz. The total phase variance of the locked carrier is 0.04 rad2 and carriers can be generated in a continuous range from 3 to 18 GHz. The loop reliability is excellent with an average time to cycle slip of 1011 s and an acquisition......Experimental results of a wideband heterodyne second-order optical phase-locked loop with 1.5-μm semiconductor lasers are presented. The loop has a bandwidth of 180 MHz, a gain of 181 dBHz, and a propagation delay of only 400 ps. A beat signal of 8 MHz linewidth is phase locked to become a replica...

  13. Structural, Optical and Magnetic Properties of Ni-Zn Ferrite Nanoparticles Prepared by a Microwave Assisted Combustion Method.

    Science.gov (United States)

    Vijaya, J Judith; Bououdina, M

    2016-01-01

    Ni-doped ZnFe₂O₄(Ni(x)Zn₁₋xFe₂O₄; x = 0.0 to 0.5) nanoparticles were synthesized by a simple microwave combustion method. The X-ray diffraction confirms the presence of cubic spinel ZnFe₂O₄for all compositions. The lattice parameter decreases with an increase in Ni content resulting in the reduction of lattice strain. High resolution scanning electron microscope images revealed that the as-prepared samples are crystalline with particle size distribution in 40-50 nm range. Optical properties were determined by UV-Visible diffuse reflectance and photoluminescence spectroscopy respectively. The saturation magnetization (Ms) shows the super paramagnetic nature of the sample for x = 0.0-0.2, whereas for x = 0.3-0.5, it shows ferromagnetic nature. The Ms value is 1.638 emu/g for pure ZnFe₂O₄ sample and it increases with increase in Ni content.

  14. Ultrafast ammonia-driven, microwave-assisted synthesis of nitrogen-doped graphene quantum dots and their optical properties

    Science.gov (United States)

    Zheng, Binjie; Chen, Yuanfu; Li, Pingjian; Wang, Zegao; Cao, Bingqiang; Qi, Fei; Liu, Jinbo; Qiu, Zhiwen; Zhang, Wanli

    2017-01-01

    For the first time, a facile, ultrafast, ammonia-driven microwave-assisted synthesis of high-quality nitrogen-doped graphene quantum dots (NGQDs) at room temperature and atmospheric pressure is presented. This one-step method is very cheap, environment friendly, and suitable for large-scale production. The as-synthesized NGQDs consisting of one to three graphene monolayers exhibit highly crystalline quality with an average size of 5.3 nm. A new fluorescence (FL) emission peak at 390 nm is observed, which might be attributed to the doped nitrogen atoms into the GQDs. An interesting red-shift is observed by comparing the FL excitation spectra to the UV-visible absorption spectra. Based on the optical properties, the detailed Jablonski diagram representing the energy level structure of NGQDs is derived.

  15. Ultrafast ammonia-driven, microwave-assisted synthesis of nitrogen-doped graphene quantum dots and their optical properties

    Directory of Open Access Journals (Sweden)

    Zheng Binjie

    2016-06-01

    Full Text Available For the first time, a facile, ultrafast, ammonia-driven microwave-assisted synthesis of high-quality nitrogen-doped graphene quantum dots (NGQDs at room temperature and atmospheric pressure is presented. This one-step method is very cheap, environment friendly, and suitable for large-scale production. The as-synthesized NGQDs consisting of one to three graphene monolayers exhibit highly crystalline quality with an average size of 5.3 nm. A new fluorescence (FL emission peak at 390 nm is observed, which might be attributed to the doped nitrogen atoms into the GQDs. An interesting red-shift is observed by comparing the FL excitation spectra to the UV-visible absorption spectra. Based on the optical properties, the detailed Jablonski diagram representing the energy level structure of NGQDs is derived.

  16. Equivalence of optical and electrical noise equivalent power of hybrid NbTiN-Al microwave kinetic inductance detectors

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, R. M. J., E-mail: r.m.j.janssen@tudelft.nl [Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628CJ Delft (Netherlands); Endo, A. [Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628CJ Delft (Netherlands); Department of Microelectronics, Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), Delft University of Technology, Mekelweg 4, 2628 CD Delft (Netherlands); Visser, P. J. de [Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628CJ Delft (Netherlands); SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584CA Utrecht (Netherlands); Klapwijk, T. M. [Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628CJ Delft (Netherlands); Physics Department, Moscow State Pedagogical University, Moscow 119991 (Russian Federation); Baselmans, J. J. A. [SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584CA Utrecht (Netherlands)

    2014-11-10

    We have measured and compared the response of hybrid NbTiN-Al Microwave Kinetic Inductance Detectors (MKIDs) to changes in bath temperature and illumination by sub-mm radiation. We show that these two stimulants have an equivalent effect on the resonance feature of hybrid MKIDs. We determine an electrical noise equivalent power (NEP) from the measured temperature responsivity, quasiparticle recombination time, superconducting transition temperature, and noise spectrum, all of which can be measured in a dark environment. For the two hybrid NbTiN-Al MKIDs studied in detail, the electrical NEP is within a factor of two of the optical NEP, which is measured directly using a blackbody source.

  17. Dual-frequency Brillouin fiber laser for optical generation of tunable low-noise radio frequency/microwave frequency.

    Science.gov (United States)

    Geng, Jihong; Staines, Sean; Jiang, Shibin

    2008-01-01

    We demonstrate a new approach, i.e., a cw dual-frequency Brillouin fiber laser pumped by two independent single-frequency Er-doped fiber lasers, for the generation of tunable low-noise rf/microwave optical signals. Its inherent features of both linewidth narrowing effect in a Brillouin fiber cavity and common mode noise cancellation between two laser modes sharing a common cavity allow us to achieve high frequency stability without using a supercavity. Beat frequency of the dual-frequency Brillouin fiber laser can be tuned from tens of megahertz up to 100 GHz by thermally tuning the wavelengths of the two pump lasers with tuning sensitivity of approximately 1.4 GHz/ degrees C. Allan variance measurements show the beat signals have the hertz-level frequency stability.

  18. A study on morphology control and optical properties of ZnO nanorods synthesized by microwave heating

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, M.K.; Huang, C.C. [Department of Electronic Engineering and Research Center for Micro/Nano Technology, Tungnan University, Taipei, Taiwan (China); Lee, Y.C., E-mail: jacklee@mail.tnu.edu.tw [Department of Electronic Engineering and Research Center for Micro/Nano Technology, Tungnan University, Taipei, Taiwan (China); Yang, C.S.; Yu, H.C. [Graduate Institute of Electro-optical Engineering, Tatung University, Taipei, Taiwan (China); Lee, J.W. [Department of Materials Engineering, Ming Chi University of Technology, Taipei, Taiwan (China); Hu, S.Y. [Department of Electrical Engineering, Tung Fang Design University, Kaohsiung, Taiwan (China); Chen, C.H. [Protrustech Corporation Limited, Tainan, Taiwan (China)

    2012-01-15

    In this study, we present morphology control investigations on zinc oxide (ZnO) nanorods synthesized by microwave heating of a mixture of zinc nitrate hexahydrate and hexamethylenetetramine (HMTA) precursors in deionized water (DI water). To study the morphology and structural variations of the obtained ZnO nanorods in different molar ratio of zinc nitrate hexahydrate to HMTA, X-ray diffraction (XRD), scanning electron microscopy (SEM) images, Raman scattering, and photoluminescence (PL) spectroscopy were measured. XRD and SEM images are utilized to examine the crystalline quality as well as the morphological properties of the ZnO nanorods. It is found that morphology control can be achieved by simply adjusting the reactant concentrations and the molar ratio of zinc nitrate hexahydrate to HMTA. Raman scattering and PL spectroscopy measurements were demonstrated to study the size- and shape-dependent optical response of the ZnO nanorods. The Raman scattering result shows that the intensity of LO mode at around 576 cm{sup -1} decreases with the increase in the molar ratio of zinc nitrate hexahydrate to HMTA, indicating the reduction of defect concentrations in the synthesized ZnO nanorods. Room temperature PL spectrum of the synthesized ZnO nanorods reveals an ultraviolet (UV) emission peak and a broad visible emission. An enhancement of UV emission appears in the PL spectra as the molar ratio of zinc nitrate hexahydrate to HMTA increases, indicating that the defect concentration of the synthesized ZnO nanorods can be reduced by increasing the molar ratio. - Highlights: > Morphology of ZnO nanorods can be controlled via microwave-heating synthesis. > Molar ratio of Zn(NO{sub 3}){sub 2}.6H{sub 2}O to C{sub 6}H{sub 12}N{sub 4} affects the aspect ratio of ZnO nanorod. > ZnO nanorod showing higher aspect ratio can exhibit better optical properties.

  19. Artificial color perception using microwaves

    OpenAIRE

    Choudhury, Debesh; Caulfield, H. John

    2013-01-01

    We report the feasibility of artificial color perception under microwave illumination using a standard microwave source and an antenna. We have sensed transmitted microwave power through color objects and have distinguished the colors by analyzing the sensed transmitted power. Experiments are carried out using a Gunn diode as the microwave source, some colored liquids as the objects and a microwave diode as the detector. Results are presented which open up an unusual but new way of perceiving...

  20. Optically tunable microwave, millimeter-wave and submillimeter-wave utilizing single-mode Fabry-Pérot laser diode subject to optical feedback.

    Science.gov (United States)

    Wu, Jian-Wei; Nakarmi, Bikash; Won, Yong Hyub

    2016-02-01

    In this paper, we use optical feedback injection technique to generate tunable microwave, millimeter-wave and submillimeter-wave signals using single-mode Fabry-Pérot laser diode. The beat frequency of the proposed generator ranges from 30.4 GHz to 3.40 THz. The peak power ratio between two resonating modes at the output spectrum of can be less than 0.5 dB by judiciously selecting feedback wavelength. In the stabilization test, the peak fluctuation of photonic signal is as low as 0.19 dB within half hour. Aside from locking regions, where the laser is easily locked by the injection beam, the side-mode suppression ratio is well over 25 dB with the maximum value of 36.6 dB at 30.4 GHz beat frequency. In addition, the minimum beat frequency interval between two adjacent photonic signals is as low as 10 GHz.

  1. Optical and microwave properties of CaBi4Ti4O15 ferroelectric thin films deposited by pulsed laser deposition

    Science.gov (United States)

    Emani, Sivanagi Reddy; Joseph, Andrews; Raju, K. C. James

    2016-05-01

    Transparent CaBi4Ti4O15 (CBTi) ferroelectric thin films are deposited by pulsed laser deposition method. The structural, optical and microwave dielectric properties were investigated. CBTi thin films had polycrystalline bismuth-layered perovskite structure and exhibited excellent optical properties. The X-ray analysis of the thin film demonstrates the phase formation and crystallinity. The optical transmission studies show that film is transparent in VIS-NIR region with a direct band gap of 3.53 EV. Morphological studies provide surface roughness as 3 mm. Dielectric constant and loss factors were 48 and 0.060 respectively, at 10GHz. These results suggest that CBTi thin films are promising multifunctional materials for applications in optoelectronic and microwave devices.

  2. Yeast NDI1 Improve Oxidative Phosphorylation Capacity and Increases Protection Against Oxidative Stress and Cell Death in Cells Carrying a Leber’s Hereditary Optic Neuropathy Mutation

    OpenAIRE

    Park, Jeong Soon; Li, You-Fen; Bai, Yidong

    2007-01-01

    G11778A in the subunit ND4 gene of NADH dehydrogenase complex is the most common primary mutation found in Leber’s hereditary optic neuropathy (LHON) patients. The NDI1 gene, which encodes the internal NADH -quinone oxidoreductase in Saccharomyces cerevisiae, was introduced into the nuclear genome of a mitochondrial defective human cell line, Le1.3.1, carrying the G11778A mutation. In transformant cell lines, LeNDI1-1 and -2, total and complex I-dependent respiration were fully restored and l...

  3. THESEUS: A wavelength division multiplexed/microwave subcarrier multiplexed optical network, its ATM switch applications and device requirements

    Science.gov (United States)

    Xin, Wei

    1997-10-01

    A Terabit Hybrid Electro-optical /underline[Se]lf- routing Ultrafast Switch (THESEUS) has been proposed. It is a self-routing wavelength division multiplexed (WDM) / microwave subcarrier multiplexed (SCM) asynchronous transfer mode (ATM) switch for the multirate ATM networks. It has potential to be extended to a large ATM switch as 1000 x 1000 without internal blocking. Among the advantages of the hybrid implementation are flexibility in service upgrade, relaxed tolerances on optical filtering, protocol simplification and less processing overhead. For a small ATM switch, the subcarrier can be used as output buffers to solve output contention. A mathematical analysis was conducted to evaluate different buffer configurations. A testbed has been successfully constructed. Multirate binary data streams have been switched through the testbed and error free reception ([<]10-9 bit error rate) has been achieved. A simple, intuitive theoretical model has been developed to describe the heterodyne optical beat interference. A new concept of interference time and interference length has been introduced. An experimental confirmation has been conducted. The experimental results match the model very well. It shows that a large portion of optical bandwidth is wasted due to the beat interference. Based on the model, several improvement approaches have been proposed. The photo-generated carrier lifetime of silicon germanium has been measured using time-resolved reflectivity measurement. Via oxygen ion implantation, the carrier lifetime has been reduced to as short as 1 ps, corresponding to 1 THz of photodetector bandwidth. It has also been shown that copper dopants act as recombination centers in the silicon germanium.

  4. Contribution of High Resolution Microwave and Optical Remote Sensing Observations in Detecting and Monitoring Ocean Coastal Features

    Science.gov (United States)

    Gagliardini, D. A.

    Synthetic Aperture Radar SAR satellite sensors have demonstrated their ability to observe ocean features related to dynamical processes Because of the high resolution of available SAR sensors circulation details and small-scale processes can be detected that are not observable by other sensors more frequently used for ocean research such as the NOAA AVHRR and the ORBVIEW2 SeaWiFS In contrast to these LANDSAT-TM thermal and optical channels can be used to observe sea surface temperatures surface layer ocean color upwelled radiance as well as sun glint reflected radiance patterns of surface roughness at a spatial resolution comparable to that of SAR Several examples of TM images obtained in 1997-2003 over the Argentine coastal ocean region where selected from an extensive data set These images were analyzed and compared with a series of SAR images acquired over the same region by the ERS satellites and in some cases near coincident with the TM data This time period allowed the examination of the seasonal cycles as well as interesting episodic events of different ocean processes including currents fronts upwellings algal blooms eddies internal waves and bathymetry signatures Due in situ observations are scarce over this region some of these processes have been documented for first time helping to improve our understanding of some dynamical and biological aspects Therefore it can be concluded that high resolution optical thermal and microwave data have the ability of providing consistent and complementary high-resolution

  5. Optical coefficients of nanometer-thick copper and gold films in microwave frequency range

    Science.gov (United States)

    Khorin, I.; Orlikovsky, N.; Rogozhin, A.; Tatarintsev, A.; Pronin, S.; Andreev, V.; Vdovin, V.

    2016-12-01

    Ultrathin (1-10 nm) Cu and Au films were prepared on the silicon and quartz substrates by magnetron sputtering at room temperature. We measured the transmission coefficient of the films at a wavelength of 3cm and analyzed a surface morphology of these films. It was shown that the films with thicknesses less than 7.5 nm (Au) and 3 nm (Cu) are almost transparent for microwaves. This effect is explained by quick oxidation of Cu and the complex surface morphology of nanometer thick films. The Au film morphology is evolved with increasing average Au thickness d from hemispherical islands initially (1.0 nm

  6. Optical Demonstration of THz, Dual-Polarization Sensitive Microwave Kinetic Inductance Detectors

    CERN Document Server

    Dober, B; Beall, J A; Becker, D; Che, G; Cho, H M; Devlin, M; Duff, S M; Galitzki, N; Gao, J; Groppi, C; Hilton, G C; Hubmayr, J; Irwin, K D; McKenney, C M; Li, D; Lourie, N; Mauskopf, P; Vissers, M R; Wang, Y

    2016-01-01

    The next generation BLAST experiment (BLAST-TNG) is a suborbital balloon payload that seeks to map polarized dust emission in the 250 $\\mu$m, 350 $\\mu$m and 500 $\\mu$m wavebands. The instrument utilizes a stepped half-wave plate to reduce systematics. The general requirement of the detectors is that they are photon-noise-limited and dual-polarization sensitive. To achieve this goal, we are developing three monolithic arrays of cryogenic sensors, one for each waveband. Each array is feedhorn-coupled and each spatial pixel consists of two orthogonally spaced polarization-sensitive microwave kinetic inductance detectors (MKIDs) fabricated from a Ti/TiN multilayer film. In previous work, we demonstrated photon-noise-limited sensitivity in 250 $\\mu$m waveband single polarization devices. In this work, we present the first results of dual-polarization sensitive MKIDs at 250 $\\mu$m.

  7. Parametrization of Land Surface Temperature Fields with Optical and Microwave Remote Sensing in Brazil's Atlantic Forest

    Science.gov (United States)

    McDonald, K. C.; Khan, A.; Carnaval, A. C.

    2016-12-01

    Brazil is home to two of the largest and most biodiverse ecosystems in the world, primarily encompassed in forests and wetlands. A main region of interest in this project is Brazil's Atlantic Forest (AF). Although this forest is only a fraction of the size of the Amazon rainforest, it harbors significant biological richness, making it one of the world's major hotspots for biodiversity. The AF is located on the East to Southeast region of Brazil, bordering the Atlantic Ocean. As luscious and biologically rich as this region is, the area covered by the Atlantic Forest has been diminishing over past decades, mainly due to human influences and effects of climate change. We examine 1 km resolution Land Surface Temperature (LST) data from NASA's Moderate-resolution Imaging Spectroradiometer (MODIS) combined with 25 km resolution radiometric temperature derived from NASA's Advanced Microwave Scanning Radiometer on EOS (AMSR-E) to develop a capability employing both in combination to assess LST. Since AMSR-E is a microwave remote sensing instrument, products derived from its measurements are minimally effected by cloud cover. On the other hand, MODIS data are heavily influenced by cloud cover. We employ a statistical downscaling technique to the coarse-resolution AMSR-E datasets to enhance its spatial resolution to match that of MODIS. Our approach employs 16-day composite MODIS LST data in combination with synergistic ASMR-E radiometric brightness temperature data to develop a combined, downscaled dataset. Our goal is to use this integrated LST retrieval with complementary in situ station data to examine associated influences on regional biodiversity

  8. EFFECTS OF GEOMETRICAL STRUCTURE ON MICROWAVE AND OPTICAL PROPERTIES OF TRAVELING WAVE ELECTROABSORPTION MODULATORS BASED ON ASYMMETRIC COUPLED STRAINED QUANTUM WELLS ACTIVE LAYER

    Directory of Open Access Journals (Sweden)

    KAMBIZ ABEDI

    2011-08-01

    Full Text Available This paper presents the effects of geometrical structure on microwave and optical properties of traveling wave electroabsorption modulators (TWEAMs based on asymmetric intra-step-barrier coupled double strained quantum wells (AICD-SQW active layer. The AICD-SQW active layer structure has advantages such as very low insertion loss, zero chirp, large Stark shift and high extinction ratio in comparison with the intra-step quantum well (IQW structure. Firstly, the influences of the intrinsic (active layer thickness and width on effective optical index and confinement factor are analyzed. Furthermore, the effect of the intrinsic layer thickness on their transmission line microwave properties such as microwave index, microwave loss, andcharacteristic impedance are evaluated. The thickness and width of active layer are changed from 0 μm to 1.4 μm and 1 μm to 3 μm, respectively. Finally, the frequency response of TWEAM based on AICD-SQW active layer is calculated using circuit model.

  9. Yeast NDI1 Improve Oxidative Phosphorylation Capacity and Increases Protection Against Oxidative Stress and Cell Death in Cells Carrying a Leber’s Hereditary Optic Neuropathy Mutation

    Science.gov (United States)

    Park, Jeong Soon; Li, You-fen; Bai, Yidong

    2007-01-01

    G11778A in the subunit ND4 gene of NADH dehydrogenase complex is the most common primary mutation found in Leber’s hereditary optic neuropathy (LHON) patients. The NDI1 gene, which encodes the internal NADH -quinone oxidoreductase in Saccharomyces cerevisiae, was introduced into the nuclear genome of a mitochondrial defective human cell line, Le1.3.1, carrying the G11778A mutation. In transformant cell lines, LeNDI1-1 and -2, total and complex I-dependent respiration were fully restored and largely resistant to complex I inhibitor, rotenone, indicating a dominant role of NDI1 in the transfer of electrons in the host cells. Whereas the original mutant Le1.3.1 cell grows poorly in medium containing galactose, the transformants have a fully restored growth capacity in galactose medium, although the ATP production was not totally recovered. Furthermore, the increased oxidative stress in the cells carrying the G11778A mutation was alleviated in transformants, demonstrated by a decreased reactive oxygen species (ROS) level. Finally, transformants were also shown to be desensitized to induction to apoptosis and also exhibit greater resistance to paraquat-induced cell death. It is concluded that the yeast ND11 enzyme can improve the oxidative phosphorylation capacity in cells carrying the G11778A mutation and protect the cells from oxidative stress and cell death. PMID:17320357

  10. Yeast NDI1 improves oxidative phosphorylation capacity and increases protection against oxidative stress and cell death in cells carrying a Leber's hereditary optic neuropathy mutation.

    Science.gov (United States)

    Park, Jeong Soon; Li, You-Fen; Bai, Yidong

    2007-05-01

    G11778A in the subunit ND4 gene of NADH dehydrogenase complex is the most common primary mutation found in Leber's hereditary optic neuropathy (LHON) patients. The NDI1 gene, which encodes the internal NADH-quinone oxidoreductase in Saccharomyces cerevisiae, was introduced into the nuclear genome of a mitochondrial defective human cell line, Le1.3.1, carrying the G11778A mutation. In transformant cell lines, LeNDI1-1 and -2, total and complex I-dependent respiration were fully restored and largely resistant to complex I inhibitor, rotenone, indicating a dominant role of NDI1 in the transfer of electrons in the host cells. Whereas the original mutant Le1.3.1 cell grows poorly in medium containing galactose, the transformants have a fully restored growth capacity in galactose medium, although the ATP production was not totally recovered. Furthermore, the increased oxidative stress in the cells carrying the G11778A mutation was alleviated in transformants, demonstrated by a decreased reactive oxygen species (ROS) level. Finally, transformants were also shown to be desensitized to induction to apoptosis and also exhibit greater resistance to paraquat-induced cell death. It is concluded that the yeast NDI1 enzyme can improve the oxidative phosphorylation capacity in cells carrying the G11778A mutation and protect the cells from oxidative stress and cell death.

  11. Compact tunable microwave filter using retroreflective acousto-optic filtering and delay controls.

    Science.gov (United States)

    Riza, Nabeel A; Ghauri, Farzan N

    2007-03-01

    Programmable broadband rf filters are demonstrated using a compact retroreflective optical design with an acousto-optic tunable filter and a chirped fiber Bragg grating. This design enables fast 34 micros domain analog-mode control of rf filter time delays and weights. Two proof-of-concept filters are demonstrated including a two-tap notch filter with >35 dB notch depth and a four-tap bandpass filter. Both filters have 2-8 GHz tunability and a 34 micros reset time.

  12. Measurements and analysis of optical crosstalk in a microwave kinetic inductance detector array

    CERN Document Server

    Bisigello, L; Ferrari, L; Baselmans, J J A; Baryshev, A M

    2016-01-01

    The main advantage of Microwave Kinetic Inductance Detector arrays (MKID) is their multiplexing capability, which allows for building cameras with a large number of pixels and good sensitivity, particularly suitable to perform large blank galaxy surveys. However, to have as many pixels as possible it is necessary to arrange detectors close in readout frequency. Consequently KIDs overlap in frequency and are coupled to each other producing crosstalk. Because crosstalk can be only minimised by improving the array design, in this work we aim to correct for this effect a posteriori. We analysed a MKID array consisting of 880 KIDs with readout frequencies at 4-8 GHz. We measured the beam patterns for every detector in the array and described the response of each detector by using a two-dimensional Gaussian fit. Then, we identified detectors affected by crosstalk above -30 dB level from the maximum and removed the signal of the crosstalking detectors. Moreover, we modelled the crosstalk level for each KID as a func...

  13. Enhancement of the low-frequency response of a reflective semiconductor optical amplifier slow light-based microwave phase shifter by forced coherent population oscillations

    Science.gov (United States)

    Meehan, Aidan; Connelly, Michael J.

    2014-05-01

    The enhancement of the low frequency gain response of a microwave phase shifter based on slow light in a bulk reflective semiconductor optical amplifier (RSOA), by using forced coherent population oscillations (FCPO), is experimentally demonstrated. FCPO is achieved by simultaneously modulating the input optical power and bias current. The beat signal gain improvement ranges from 45 to 0 dB over a frequency range of 0.5 to 2.5 GHz, thereby improving the noise performance of the phase shifter. Tunable phase shifts of up to 40º are possible over this frequency range.

  14. Structural and optical study of CaF2 nanoparticles produced by a microwave-assisted hydrothermal method

    Science.gov (United States)

    Bezerra, Claudiane dos S.; Valerio, Mário E. G.

    2016-11-01

    CaF2 nanoparticles were synthesized by the microwave-assisted hydrothermal method. With the addition of the ethylenediamine (EDA) as chelating agent, the size of the particles was reduced. The CaF2 exhibit single phase identified for X-ray diffraction (XRD) and confirmed by Rietveld refinement. Scanning electron microscopy (SEM) images showed nanoparticles with non-uniform morphology and statistical analysis of collections of particles reviewed that the EDA decreases both the average particle size and average aspect ratio of the particles. The chemical composition of the surface of the particles was investigated by X-ray Photoelectron Spectroscopy (XPS) and the results indicated the presence of reasonable amounts of hydroxyl groups and oxygen ions in the samples produced with EDA. Radioluminescence (RL) measurements showed that both types of nanoparticles presented intrinsic scintillation emission formed by two main bands and that the CaF2 samples produced without EDA presented higher emission intensity. The broad RL band centered at approximately 293 nm is related to self-trapped exciton (STE) emission of calcium fluoride, while the band at 428 nm can be due to the presence of F centers. The STE excitation and optical band gap were measured through photoluminescent excitation spectra in the VUV range.

  15. Structural and optical properties of novel ZrO2 nanostructures by microwave and solution combustion method.

    Science.gov (United States)

    Manikandan, A; Selvam, N Clament Sagaya; Kennedy, L John; Kumar, R Thinesh; Vijaya, J Judith

    2013-04-01

    Nanosized zirconium oxide (ZrO2) powders were synthesized by the microwave combustion synthesis (MCS) using glycine as the fuel without using any template, catalyst or surfactant. For the purpose of comparison, it was also prepared using solution combustion synthesis (SCS). The as-synthesized ZrO2 was characterized by X-ray powder diffraction (XRD), Fourier Transform infrared spectra (FT-IR), high resolution scanning electron microscopy (HR-SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) spectroscopy. The XRD results confirmed the formation of cubic phase ZrO2. FT-IR was used to investigate the adsorption of water and CO2 on ZrO2 surface and confirm the formation of Zr-O phase. The formation of ZrO2 nanospheres was confirmed by HR-SEM and TEM and their possible formation mechanisms were also proposed. The optical absorption and photoluminescence emissions were determined by DRS and PL spectra respectively.

  16. Stable dual-wavelength single-longitudinal-mode ring erbium-doped fiber laser for optical generation of microwave frequency

    Science.gov (United States)

    Wang, T.; Liang, G.; Miao, X.; Zhou, X.; Li, Q.

    2012-05-01

    We demonstrate a simple dual-wavelength ring erbium-doped fiber laser operating in single-longitudinal-mode (SLM) at room temperature. A pair of reflection type short-period fiber Bragg gratings (FBGs), which have two different center wavelengths of 1545.072 and 1545.284 nm, are used as the wavelength-selective component of the laser. A segment of unpumped polarization maintaining erbium-doped fiber (PM-EDF) is acted as a narrow multiband filter. By turning the polarization controller (PC) to enhance the polarization hole burning (PHB), the single-wavelength and dual-wavelength laser oscillations are observed at 1545.072 and 1545.284 nm. The output power variation is less than 0.6 dB for both wavelengths over a five-minute period and the optical signal to noise ratio (OSNR) is greater than 50 dB. By beating the dual-wavelengths at a photodetector (PD), a microwave signal at 26.44 GHz is demonstrated.

  17. Magnetic isotope effect on kinetic parameters and quantum beats of radical pairs in micellar solution studied by optically detected esr using pulsed microwave.

    Science.gov (United States)

    Kitahama, Yasutaka; Sakaguchi, Yoshio

    2008-01-17

    We investigated the quantum beats, the oscillation between singlet and triplet states of radical pairs induced by the microwave field resonant to one of the component radicals. They were observed as the alternation of the yields of the component radicals by a nanosecond time-resolved optical absorption with the X-band (9.15 GHz) resonant microwave pulse. This technique was applied to the photochemical reaction of benzophenone, benzophenone-d(10), and benzophenone-carbonyl-(13)C in a sodium dodecylsulfate micellar solution with a step-by-step increase of the resonant microwave pulse width. The yields of the component radicals showed alternation with an increase of the microwave pulse width. This indicates that the radical pair retains spin coherence in the micellar solution. The magnetic isotope effect on the amplitude of the quantum beat was observed. The MW effect on the quantum beat of BP-(13)C decreases from 80% to 60% of that of BP by irradiation of the pi-pulse MW due to spin-locking. The kinetic parameters were also determined using the X- or Ku-band (17.44 GHz) region. They are almost similar to each other except for the intersystem recombination rate in the system of BP-(13)C, which may be slightly higher than those in other systems.

  18. A learning tool for optical and microwave satellite image processing and analysis

    Science.gov (United States)

    Dashondhi, Gaurav K.; Mohanty, Jyotirmoy; Eeti, Laxmi N.; Bhattacharya, Avik; De, Shaunak; Buddhiraju, Krishna M.

    2016-04-01

    This paper presents a self-learning tool, which contains a number of virtual experiments for processing and analysis of Optical/Infrared and Synthetic Aperture Radar (SAR) images. The tool is named Virtual Satellite Image Processing and Analysis Lab (v-SIPLAB) Experiments that are included in Learning Tool are related to: Optical/Infrared - Image and Edge enhancement, smoothing, PCT, vegetation indices, Mathematical Morphology, Accuracy Assessment, Supervised/Unsupervised classification etc.; Basic SAR - Parameter extraction and range spectrum estimation, Range compression, Doppler centroid estimation, Azimuth reference function generation and compression, Multilooking, image enhancement, texture analysis, edge and detection. etc.; SAR Interferometry - BaseLine Calculation, Extraction of single look SAR images, Registration, Resampling, and Interferogram generation; SAR Polarimetry - Conversion of AirSAR or Radarsat data to S2/C3/T3 matrix, Speckle Filtering, Power/Intensity image generation, Decomposition of S2/C3/T3, Classification of S2/C3/T3 using Wishart Classifier [3]. A professional quality polarimetric SAR software can be found at [8], a part of whose functionality can be found in our system. The learning tool also contains other modules, besides executable software experiments, such as aim, theory, procedure, interpretation, quizzes, link to additional reading material and user feedback. Students can have understanding of Optical and SAR remotely sensed images through discussion of basic principles and supported by structured procedure for running and interpreting the experiments. Quizzes for self-assessment and a provision for online feedback are also being provided to make this Learning tool self-contained. One can download results after performing experiments.

  19. [Determination of nine hazardous elements in textiles by inductively coupled plasma optical emission spectrometer after microwave-assisted dilute nitric acid extraction].

    Science.gov (United States)

    Chen, Fei; Xu, Dian-dou; Tang, Xiao-ping; Cao, Jing; Liu, Ya-ting; Deng, Jian

    2012-01-01

    Textiles are easily contaminated by heavy metals in the course of processing. In order to monitor the quality of textiles, a new method was developed for simultaneous determination of arsenic, antimony, lead, cadmium, chromium, cobalt, copper, nickel and mercury in textiles by inductively coupled plasma optical emission spectrometry (ICP-OES) after microwave-assisted dilute nitric acid extraction. After optimizing extraction conditions, we ultimately selected 5% nitric acid as extractant and 5 min as extraction time with the extraction temperature of 120 degrees C and instrument power of 400W in the microwave-assisted extraction procedure. Nine hazardous elements were detected sequentially by ICP-OES. The results showed that the detection limits were 0.3-15 microg x L(-1) and the recoveries 73.6%-105% with the RSDs (n = 3) of 0.1%-3%. The proposed method was successfully used to determine nine elements in cotton, wool, terylene and acrylic.

  20. Transmission system for distribution of video over long-haul optical point-to-point links using a microwave photonic filter in the frequency range of 0.01-10 GHz

    Science.gov (United States)

    Zaldívar Huerta, Ignacio E.; Pérez Montaña, Diego F.; Nava, Pablo Hernández; Juárez, Alejandro García; Asomoza, Jorge Rodríguez; Leal Cruz, Ana L.

    2013-12-01

    We experimentally demonstrate the use of an electro-optical transmission system for distribution of video over long-haul optical point-to-point links using a microwave photonic filter in the frequency range of 0.01-10 GHz. The frequency response of the microwave photonic filter consists of four band-pass windows centered at frequencies that can be tailored to the function of the spectral free range of the optical source, the chromatic dispersion parameter of the optical fiber used, as well as the length of the optical link. In particular, filtering effect is obtained by the interaction of an externally modulated multimode laser diode emitting at 1.5 μm associated to the length of a dispersive optical fiber. Filtered microwave signals are used as electrical carriers to transmit TV-signal over long-haul optical links point-to-point. Transmission of TV-signal coded on the microwave band-pass windows located at 4.62, 6.86, 4.0 and 6.0 GHz are achieved over optical links of 25.25 km and 28.25 km, respectively. Practical applications for this approach lie in the field of the FTTH access network for distribution of services as video, voice, and data.

  1. Correlation between optical emission spectra and the process parameters of a 915 MHz microwave plasma CVD reactor used for depositing polycrystalline diamond coatings

    Indian Academy of Sciences (India)

    Awadesh Kumar Mallik; Sandip Bysakh; Someswar Dutta; Debabrata Basu

    2014-08-01

    In this paper, the hydrogen and hydrogen-methane mixed plasma have been generated inside a 33 cm diameter quartz bell jar with a low power (9 KW) and lower frequency 915 MHz microwave plasma chemical vapor deposition system. The reactor is being used for growing polycrystalline diamond (PCD) over large area (100 mm). The generated plasma is diagnosed by in situ optical emission spectroscopy method with wave length ranging from 200 to 900 nm. The effects of microwave power, chamber pressure and gas concentration on plasma characteristics have been studied in this work. Within the optical range, Balmer H, H, C2swan band and CH lines have been detected at the wavelengths of 655.95, 485.7, 515.82 and 430.17 nm, respectively. It has been observed that for hydrogen plasma, the amount of transition from hydrogen atom inner shell 3 to 2 (H) is almost constant with increasing microwave (MW) power (from 2000 to 2800 W) and pressure (from 15 to 30 Torr) initially, after that it increases with further increase of MW power and pressure, whereas, the transition from 4 to 2 (H) is slowly increased with increasing MW power and pressure. For hydrogen-methane plasma, intensities of C2 swan band, i.e., the transitions from D$^3\\Pi_\\text{g}$ to A$^3\\Pi_{\\mu}$ energy levels, are also increased with the increasing microwave power and reactor pressure. It has been observed that the radicals present in the plasma are affected by variation of different reactor parameters like pressure, MW power, CH4 concentration, etc.

  2. Low gas flow inductively coupled plasma optical emission spectrometry for the analysis of food samples after microwave digestion.

    Science.gov (United States)

    Nowak, Sascha; Gesell, Monika; Holtkamp, Michael; Scheffer, Andy; Sperling, Michael; Karst, Uwe; Buscher, Wolfgang

    2014-11-01

    In this work, the recently introduced low flow inductively coupled plasma optical emission spectrometry (ICP-OES) with a total argon consumption below 0.7 L/min is applied for the first time to the field of food analysis. One goal is the investigation of the performance of this low flow plasma compared to a conventional ICP-OES system when non-aqueous samples with a certain matrix are introduced into the system. For this purpose, arsenic is determined in three different kinds of fish samples. In addition several nutrients (K, Na, Mg, Ca) and trace metals (Co, Cu, Mn, Cd, Pb, Zn, Fe, and Ni) are determined in honey samples (acacia) after microwave digestion. The precision of the measurements is characterized by relative standard deviations (RSD) and compared to the corresponding precision values achieved using the conventional Fassel-type torch of the ICP. To prove the accuracy of the low flow ICP-OES method, the obtained data from honey samples are validated by a conventional ICP-OES. For the measurements concerning arsenic in fish, the low flow ICP-OES values are validated by conventional Fassel-type ICP-OES. Furthermore, a certified reference material was investigated with the low gas flow setup. Limits of detection (LOD), according to the 3σ criterion, were determined to be in the low microgram per liter range for all analytes. Recovery rates in the range of 96-106% were observed for the determined trace metal elements. It was proven that the low gas flow ICP-OES leads to results that are comparable with those obtained with the Fassel-type torch for the analysis of food samples.

  3. Slurry micro-sampling technique for use in argon-helium microwave induced plasma optical emission spectrometry.

    Science.gov (United States)

    Ślachciński, Mariusz

    2016-12-01

    The Flow Focusing Pneumatic Nebulizer (FFPN) working at low liquid flow rates was evaluated for the elemental analysis in slurried samples by argon-helium microwave induced plasma optical emission spectrometry (MIP-OES). The obtained results achieved were compared with commercially available V-groove Babington type nebulizer (VBPN). A univariate approach and the simplex optimization procedure were used to achieve optimized conditions and derive analytical figures of merit. Analytical performance of the micro nebulization system was characterized by a determination of the limits of detection (LODs), the precision (RSDs) and the wash-out times for Ba, Ca, Cd, Cu, Fe, Mg, Mn, Pb and Sr. The experimental concentration detection limits for simultaneous determination, calculated as the concentration giving a signal equal to three times of the standard deviation of the blank (LOD, 3σblank criterion, peak height) were 0.9, 0.2, 0.3, 0.2, 0.3, 0.1, 0.2, 0.4, 0.4 and 0.3ngmL(-1) for Ba, Ca, Cd, Cu, Fe, Mg, Mn, Pb and Sr, respectively. The method offers relatively good precision (RSD ranged from 5% to 8%) for micro-slurry sampling analysis. Analyses of the certified reference materials (NRCC DOLT-2, GBW 07302 and SRM 2710) were performed in order to determine the accuracy available with the presented nebulization systems. The measured contents of elements in the reference materials were in satisfactory agreement with the certified values. In addition, these elements were determined in two real samples. Slurry concentration up to 3% m/v (particles technique. An ultrasonic probe was used to homogenize the slurry in the polypropylene bottle just before its introduction into the nebulizer. The nebulizers exhibited no clogging problems. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A spectrometer designed for 6.7 and 14.1 T DNP-enhanced solid-state MAS NMR using quasi-optical microwave transmission.

    Science.gov (United States)

    Pike, Kevin J; Kemp, Thomas F; Takahashi, Hiroki; Day, Robert; Howes, Andrew P; Kryukov, Eugeny V; MacDonald, James F; Collis, Alana E C; Bolton, David R; Wylde, Richard J; Orwick, Marcella; Kosuga, Kosuke; Clark, Andrew J; Idehara, Toshitaka; Watts, Anthony; Smith, Graham M; Newton, Mark E; Dupree, Ray; Smith, Mark E

    2012-02-01

    A Dynamic Nuclear Polarisation (DNP) enhanced solid-state Magic Angle Spinning (MAS) NMR spectrometer operating at 6.7 T is described and demonstrated. The 187 GHz TE(13) fundamental mode of the FU CW VII gyrotron is used as the microwave source for this magnetic field strength and 284 MHz (1)H DNP-NMR. The spectrometer is designed for use with microwave frequencies up to 395 GHz (the TE(16) second-harmonic mode of the gyrotron) for DNP at 14.1T (600 MHz (1)H NMR). The pulsed microwave output from the gyrotron is converted to a quasi-optical Gaussian beam using a Vlasov antenna and transmitted to the NMR probe via an optical bench, with beam splitters for monitoring and adjusting the microwave power, a ferrite rotator to isolate the gyrotron from the reflected power and a Martin-Puplett interferometer for adjusting the polarisation. The Gaussian beam is reflected by curved mirrors inside the DNP-MAS-NMR probe to be incident at the sample along the MAS rotation axis. The beam is focussed to a ~1 mm waist at the top of the rotor and then gradually diverges to give much more efficient coupling throughout the sample than designs using direct waveguide irradiation. The probe can be used in triple channel HXY mode for 600 MHz (1)H and double channel HX mode for 284 MHz (1)H, with MAS sample temperatures ≥85 K. Initial data at 6.7 T and ~1 W pulsed microwave power are presented with (13)C enhancements of 60 for a frozen urea solution ((1)H-(13)C CP), 16 for bacteriorhodopsin in purple membrane ((1)H-(13)C CP) and 22 for (15)N in a frozen glycine solution ((1)H-(15)N CP) being obtained. In comparison with designs which irradiate perpendicular to the rotation axis the approach used here provides a highly efficient use of the incident microwave beam and an NMR-optimised coil design.

  5. Phase-coherent microwave-to-optical link with a self-referenced microcomb

    Science.gov (United States)

    Del'Haye, Pascal; Coillet, Aurélien; Fortier, Tara; Beha, Katja; Cole, Daniel C.; Yang, Ki Youl; Lee, Hansuek; Vahala, Kerry J.; Papp, Scott B.; Diddams, Scott A.

    2016-08-01

    Precise measurements of the frequencies of light waves have become common with mode-locked laser frequency combs. Despite their huge success, optical frequency combs currently remain bulky and expensive laboratory devices. Integrated photonic microresonators are promising candidates for comb generators in out-of-the-lab applications, with the potential for reductions in cost, power consumption and size. Such advances will significantly impact fields ranging from spectroscopy and trace gas sensing to astronomy, communications and atomic time-keeping. Yet, in spite of the remarkable progress shown over recent years, microresonator frequency combs (‘microcombs’) have been without the key function of direct f-2f self-referencing, which enables precise determination of the absolute frequency of each comb line. Here, we realize this missing element using a 16.4 GHz microcomb that is coherently broadened to an octave-spanning spectrum and subsequently fully phase-stabilized to an atomic clock. We show phase-coherent control of the comb and demonstrate its low-noise operation.

  6. On Interactions of Microwave with Lightwave

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper addresses interactions of lightwave with microwave, and is divided into two parts. In part one, the background and the main topics of the research filed are introduced. In part two, some research activities at Shanghai University are reviewed.These include optical control of microwave devices, photoinduced electromagnetic radiation, lightwave interaction with superconductors, microwave control of lightwave, and the microwave approach to highly irregular fiber optics.

  7. Fundamentals of microwave photonics

    CERN Document Server

    Urick, V J; McKinney , Jason D

    2015-01-01

    A comprehensive resource to designing andconstructing analog photonic links capable of high RFperformanceFundamentals of Microwave Photonics provides acomprehensive description of analog optical links from basicprinciples to applications.  The book is organized into fourparts. The first begins with a historical perspective of microwavephotonics, listing the advantages of fiber optic links anddelineating analog vs. digital links. The second section coversbasic principles associated with microwave photonics in both the RFand optical domains.  The third focuses on analog modulationformats-starti

  8. Microwave engineering

    CERN Document Server

    Pozar, David M

    2012-01-01

    The 4th edition of this classic text provides a thorough coverage of RF and microwave engineering concepts, starting from fundamental principles of electrical engineering, with applications to microwave circuits and devices of practical importance.  Coverage includes microwave network analysis, impedance matching, directional couplers and hybrids, microwave filters, ferrite devices, noise, nonlinear effects, and the design of microwave oscillators, amplifiers, and mixers. Material on microwave and RF systems includes wireless communications, radar, radiometry, and radiation hazards. A large

  9. Optical and Morphological Properties of ZnO- and TiO2-Derived Nanostructures Synthesized via a Microwave-Assisted Hydrothermal Method

    OpenAIRE

    2012-01-01

    A microwave-assisted hydrothermal method was used to synthesize ZnO and TiO2 nanostructures. The experimental results show that the method resulted in crystalline monodispersed ZnO nanorods that have pointed tips with hexagonal crystal phase. TiO2 nanotubes were also formed with minimum bundles. The mechanism for the formation of the tubes was validated by HRTEM results. The optical properties of both ZnO and TiO2 nanostructures showed characteristics of strong quantum confinement regime. The...

  10. Optical and Morphological Properties of ZnO- and TiO2-Derived Nanostructures Synthesized via a Microwave-Assisted Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    Nosipho Moloto

    2012-01-01

    Full Text Available A microwave-assisted hydrothermal method was used to synthesize ZnO and TiO2 nanostructures. The experimental results show that the method resulted in crystalline monodispersed ZnO nanorods that have pointed tips with hexagonal crystal phase. TiO2 nanotubes were also formed with minimum bundles. The mechanism for the formation of the tubes was validated by HRTEM results. The optical properties of both ZnO and TiO2 nanostructures showed characteristics of strong quantum confinement regime. The photoluminescence spectrum of TiO2 nanotubes shows good improvement from previously reported data.

  11. Microwave Ovens

    Science.gov (United States)

    ... ovens heat food using microwaves, a form of electromagnetic radiation similar to radio waves. Microwaves have three characteristics ... that their microwave oven products meet the strict radiation safety standard ... if your microwave oven has damage to its door hinges, latches, or seals, or ...

  12. Microwave dielectric and optical properties of amorphous and crystalline Ba0.5Sr0.5TiO3 thin films

    Science.gov (United States)

    Goud, J. Pundareekam; Joseph, Andrews; Ramakanth, S.; Naidu, Kuna Lakshun; Raju, K. C. James

    2016-05-01

    The thin films of composition Ba0.5Sr0.5TiO3 (BST5) were deposited by Pulsed Laser Deposition technique on amorphous fused silica substrates at room temperature (RT) and at 700°C. The film deposited at RT is amorphous while the other crystallized in cubic structure. The refractive index (n) and optical band gap (Eg) extracted from transmission spectra in the 190 -2500 nm range. Microwave dielectric properties were investigated using the Split Post Dielectric Resonators (SPDR) technique at spot frequencies of 10GHz and 20GHz. The experimental results show that thin films deposited at high temperature (700°C) shows very high dielectric constant for both 10GHz and 20 GHz. These high dielectric constant films can be used in a wide range of applications such as capacitors, non-volatile high speed random access memories, and electro-optic devices.

  13. Phase noise measurement of wideband microwave sources based on a microwave photonic frequency down-converter.

    Science.gov (United States)

    Zhu, Dengjian; Zhang, Fangzheng; Zhou, Pei; Pan, Shilong

    2015-04-01

    An approach for phase noise measurement of microwave signal sources based on a microwave photonic frequency down-converter is proposed. Using the same optical carrier, the microwave signal under test is applied to generate two +1st-order optical sidebands by two stages of electro-optical modulations. A time delay is introduced between the two sidebands through a span of fiber. By beating the two +1st-order sidebands at a photodetector, frequency down-conversion is implemented, and phase noise of the signal under test can be calculated thereafter. The system has a very large operation bandwidth thanks to the frequency conversion in the optical domain, and good phase noise measurement sensitivity can be achieved since the signal degradation caused by electrical amplifiers is avoided. An experiment is carried out. The phase noise measured by the proposed system agrees well with that measured by a commercial spectrum analyzer or provided by the datasheet. A large operation bandwidth of 5-40 GHz is demonstrated using the proposed system. Moreover, good phase noise floor is achieved (-123  dBc/Hz at 1 kHz and -137  dBc/Hz at 10 kHz at 10 GHz), which is nearly constant over the full measurement range.

  14. Introduction to Microwave Linear [Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Whittum, David H

    1999-01-04

    The elements of microwave linear accelerators are introduced starting with the principles of acceleration and accelerating structures. Considerations for microwave structure modeling and design are developed from an elementary point of view. Basic elements of microwave electronics are described for application to the accelerator circuit and instrumentation. Concepts of beam physics are explored together with examples of common beamline instruments. Charged particle optics and lattice diagnostics are introduced. Considerations for fixed-target and colliding-beam experimentation are summarized.

  15. RAPID SYNTHESIS OF NOVEL OPTICALLY ACTIVE POLY(AMIDE-IMIDE)S DERIVED FROM N,N'-(PYROMELLITOYL)-BIS-L-ALANINE DIACID CHLORIDE AND HYDANTOIN DERIVATIVES UNDER MICROWAVE IRRADIATION

    Institute of Scientific and Technical Information of China (English)

    Khalil Faghihi; Azizollah Mirsamie

    2005-01-01

    Eight novel poly(amide-imide)s were synthesized under microwave irradiation by using a domestic microwave oven from the polycondensation reactions of N,N'-(pyromellitoyl)-bis-L-alanine diacid chloride (1) with eight different derivatives of hydantoin compounds (2a-h) in the presence of a small amount of a polar organic medium such as o-cresol.The polycondensation proceeded rapidly, compared with the conventional solution polycondensation and was completed within 8-10 min, producing a series of new poly(amide-imide)s (3a-h) with inherent viscosities about 0.35-0.68 dL/g in high yields. The obtained PAIs (3a-h) were fully characterized by means of FT-IR spectroscopy, elemental analyses, inherent viscosity (ηinh), solubility and specific rotation measurements. All of the resulting polymers show optical rotation and are optically active. Thermal properties of the poly(amide-imide)s were investigated by using thermal gravimetric analysis(TGA).

  16. Microwave imaging

    CERN Document Server

    Pastorino, Matteo

    2010-01-01

    An introduction to the most relevant theoretical and algorithmic aspects of modern microwave imaging approaches Microwave imaging-a technique used in sensing a given scene by means of interrogating microwaves-has recently proven its usefulness in providing excellent diagnostic capabilities in several areas, including civil and industrial engineering, nondestructive testing and evaluation, geophysical prospecting, and biomedical engineering. Microwave Imaging offers comprehensive descriptions of the most important techniques so far proposed for short-range microwave imaging-in

  17. Bidirectional conversion between microwave and light via ferromagnetic magnons

    CERN Document Server

    Hisatomi, Ryusuke; Tabuchi, Yutaka; Ishikawa, Toyofumi; Noguchi, Atsushi; Yamazaki, Rekishu; Usami, Koji; Nakamura, Yasunobu

    2016-01-01

    Coherent conversion of microwave and optical photons in the single-quantum level can significantly expand our ability to process signals in various fields. Efficient up-conversion of a feeble signal in the microwave domain to the optical domain will lead to quantum-noise-limited microwave amplifiers. Coherent exchange between optical photons and microwave photons will also be a stepping stone to realize long-distance quantum communication. Here we demonstrate bidirectional and coherent conversion between microwave and light using collective spin excitations in a ferromagnet. The converter consists of two harmonic oscillator modes, a microwave cavity mode and a magnetostatic mode called Kittel mode, where microwave photons and magnons in the respective modes are strongly coupled and hybridized. An itinerant microwave field and a travelling optical field can be coupled through the hybrid system, where the microwave field is coupled to the hybrid system through the cavity mode, while the optical field addresses ...

  18. Tunable microwave output over a wide RF region generated by an optical dual-wavelength fiber laser

    Science.gov (United States)

    Soltanian, M. R. K.; Ahmad, H.; Pua, C. H.; Harun, S. W.

    2014-10-01

    The dual-wavelength fiber laser provides a compact, robust and stable platform for the generation of microwave signals. Two approaches towards generating microwave emissions using dual wavelengths are explored in this work, with both exploiting the heterodyning beat technique. Both approaches are based on a ring fiber laser with an erbium-doped fiber, having absorption coefficients of 16.0-20.0 dBm at 1531 nm and 11.0-13.0 dBm at 980 nm, serving as the active gain medium. A 10 cm long photonic crystal fiber with a solid core diameter of 4.37 μm and surrounded by air holes of 5.06 μm diameter with a separation of 5.52 μm between them serves to create the desired dual-wavelength output. A tunable band pass filter with bandwidth of 0.8 nm serves as a tuning mechanism together with a polarization controller. Channel spacings as narrow as 0.00043 nm can be realized, giving a microwave output of about 671.9 MHz. Furthermore, the channel spacing can be extended to as large as 0.03631 nm, giving a microwave emission in excess of 4.59 GHz. The output is highly stable, with little change in power or wavelength observed over a test period of 22 min.

  19. Microwave sterilization method and apparatus

    OpenAIRE

    V. N. Vasilenko; Minuhin, V. V.; Podorozhnyak, A. A.; Trubaev, S. I.

    1995-01-01

    Experience of industrially developed countries in utilization of microwave radiation has been analyzed. Apparatus for realization of microwave method of sterilization has been designed. A number of experiments for the estimation of bactericidal, sporacidal, and virusidal properties of microwave radiation action has been carried out in 3 to 13 cm wavelength band. B. Lycheniform shtumm G., B. Subtilis ATTC 6633, E. Coli ATTC 25922 and bacterial virus FX 174 were used as test microbes. Effect of...

  20. Microwave combustion synthesis of hexagonal prism shaped ZnO nanoparticles and effect of Cr on structural, optical and electrical properties of ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Yathisha, R.O. [Department of Chemistry, School of Chemical Sciences, Kuvempu University, Jnanasahyadri, Shankaraghatta 577 451, Karnataka (India); Nayaka, Y. Arthoba, E-mail: drarthoba@yahoo.co.in [Department of Chemistry, School of Chemical Sciences, Kuvempu University, Jnanasahyadri, Shankaraghatta 577 451, Karnataka (India); Vidyasagar, C.C. [Department of Chemistry, School of Basic Sciences, Ranichannamma University, Belgaum 591156, Karnataka (India)

    2016-09-15

    The synthesis and study of semiconducting nanostructure materials have become a considerable interdisciplinary area of research over the past few decades. The control of morphologies and effective doping by right dopant are the two tasks for the synthesis of semiconducting nanoparticles. The present work outlines the synthesis of ZnO and Cr-ZnO nanoparticles via microwave combustion method without using any fuel. The crystal morphology, optical and electrical properties were characterized by X-ray diffraction study (XRD), UV–Visible spectroscopy (UV–Vis), Scanning electron microscopy (SEM), Energy-dispersive analysis using X-rays (EDAX), Transmission electron microscopy (TEM) and Keithley source meter. The crystal size was determined from XRD, whose values were found to be decreased with increase in the concentration of Cr up to 2 wt% and further increase in the dopant concentration resulted the formation secondary phase (ZnCr{sub 2}O{sub 4}). Scanning electron micrographs shows the hexagonal prism structure of ZnO and Cr-ZnO nanoparticles. EDAX shows the existence of Cr ion in the Cr-ZnO. The optical properties and bandgap studies were undertaken by UV–Visible spectroscopy. I-V characterization study was performed to determine the electrical property of ZnO and Cr-ZnO films. - Highlights: • The prism shaped Zn{sub 1−x}Cr{sub x}O (0 ≤ x ≤ 0.15) was prepared by microwave combustion method. • Effect of Cr on the properties of ZnO was reported. • Change in crystal size was explained by lattice strain and Zener-Pinning effect. • The optical measurements shows up to 8 wt% of Cr doping had more efficient. • Compared to ZnO, Cr doped ZnO enhance the photo voltaic activity.

  1. The Annular Microwave Dryer Design and Study on Honeysuckle

    Directory of Open Access Journals (Sweden)

    Geng Yuefeng

    2014-03-01

    Full Text Available In order to dry fresh honeysuckle, microwave drying process were studied on fresh honeysuckle; and microwave drying apparatus on fresh honeysuckle is designed according to the drying process. The designed microwave dryer contains microwave generator, microwave dryer, dehumidifying systems, control system, transmission systems, microwave leakage inhibited mechanism and other components. The drying experiment is carried by the designed dryer, from the setting-to-work test, the design was success.

  2. Microwave Photonics

    OpenAIRE

    Seeds, A.J.; Liu, C. P.; T. Ismail; Fice, M. J.; Pozzi, F; Steed, R. J.; Rouvalis, E.; Renaud, C.C.

    2010-01-01

    Microwave photonics is the use of photonic techniques for the generation, transmission, processing and reception of signals having spectral components at microwave frequencies. This tutorial reviews the technologies used and gives applications examples.

  3. Microwave Sterilization in School Microbiology.

    Science.gov (United States)

    Wynn, Brian; Dixon, Angela

    1988-01-01

    Described are two investigations carried out in a high school biology department using a domestic microwave oven to compare the relative attributes of the autoclave and microwave oven in school use. Discussed are equipment, methods, and results of each investigation. (Author/CW)

  4. Microwave and optical diagnostics in a gadolinium plasma; Diagnostics hyperfrequence et optique dans un plasma magnetise de gadolinium

    Energy Technology Data Exchange (ETDEWEB)

    Larousse, B. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. des Procedes d`Enrichissement]|[Conservatoire National des Arts et Metiers (CNAM), 75 - Paris (France)

    1997-12-31

    The optimization of the separation process of the gadolinium isotopes by Ion Cyclotron Resonance requires a precise knowledge of the physical characteristics of the plasma. Thus, two kinds of diagnostics have been developed: the first one to estimate the microwave power inside the source and the second one to measure the density of atomic and ionic of the gadolinium inside the plasma source and in front of the collector. Microwave diagnostic: A microstrip antenna has been designed and developed in order to characterize the microwave at 36 GHz frequency in the plasma source. The experimental results for different plasma regimes are presented. The measurements inside the plasma source show a maximum of microwave absorption for an argon pressure of 10{sup -4} mb (93% of absorption of the incident wave in the conditions of isotope separation). Laser absorption diagnostic: The theory of laser absorption in presence of a magnetic field is recalled and the first results are presented. In the spectral range between 560 and 620 nm, corresponding to high energy levels of gadolinium, no signal is obtained so that the density is below the detection limit 10{sup 10} cm{sup -3}. In the spectral range between 380 and 400 nm, two lines are observed, issue from the fundamental and metastable (633 cm{sup -1}) levels. The density of metastable level of gadolinium ions is about 10{sup 10} cm{sup -3} with a relative precision of 15 % and its variation is studied as a function of argon pressure, at different sections of the plasma column (source, collector). The achieved set of measurements has been performed in order to check the theoretical models. (author) 32 refs.

  5. Directional spectra of ocean waves from microwave backscatter: A physical optics solution with application to the short-pulse and two-frequency measurement techniques

    Science.gov (United States)

    Jackson, F. C.

    1979-01-01

    Two simple microwave radar techniques that are potentially capable of providing routine satellite measurements of the directional spectrum of ocean waves were developed. One technique, the short pulse technique, makes use of very short pulses to resolve ocean surface wave contrast features in the range direction; the other technique, the two frequency correlation technique makes use of coherency in the transmitted waveform to detect the large ocean wave contrast modulation as a beat or mixing frequency in the power backscattered at two closely separated microwave frequencies. A frequency domain analysis of the short pulse and two frequency systems shows that the two measurement systems are essentially duals; they each operate on the generalized (three frequency) fourth-order statistical moment of the surface transfer function in different, but symmetrical ways, and they both measure the same directional contrast modulation spectrum. A three dimensional physical optics solution for the fourth-order moment was obtained for backscatter in the near vertical, specular regime, assuming Gaussian surface statistics.

  6. Very high penetrance and occurrence of Leber's hereditary optic neuropathy in a large Han Chinese pedigree carrying the ND4 G11778A mutation.

    Science.gov (United States)

    Zhou, Xiangtian; Zhang, Hongxing; Zhao, Fuxin; Ji, Yanchun; Tong, Yi; Zhang, Juanjuan; Zhang, Yu; Yang, Li; Qian, Yaping; Lu, Fan; Qu, Jia; Guan, Min-Xin

    2010-08-01

    We report here the clinical, genetics and molecular characterization of a five-generation Han Chinese family with Leber's hereditary optic neuropathy (LHON). Strikingly, this family exhibits very high penetrance and occurrence of optic neuropathy. In particular, 25 (10 males/15 females) of 30 matrilineal relatives exhibited the variable severity, ranging from profound to mild of visual impairment. This penetrance of optic neuropathy in this Chinese family is much higher than those in many families with LHON worldwide. The age-at-onset for visual impairment in matrilineal relatives in this Chinese family varied from 7 to 24years old, with the average of 15 years old. Furthermore, the ratio between affected male and female matrilineal relatives is 1:1.5 in the Chinese family. This observation is in contrast with the typical features in LHON pedigrees that there was predominance of affected males in LHON in many families from different ethnic origins. Molecular analysis of mitochondrial genome identified the known ND4 G11778A mutation and 51 variants, belonging to Asian haplogroup C4a1. The absence of other known secondary LHON-associated and functionally significant mtDNA mutations in this Chinese family suggested that mitochondrial variants may not play an important role in the phenotypic manifestation of the G11778A mutation in this Chinese family. Therefore, nuclear modifier gene(s) may be responsible for very high penetrance and occurrence of optic neuropathy in this Chinese pedigree.

  7. Mode-Division-Multiplexing of Multiple Bessel-Gaussian Beams Carrying Orbital-Angular-Momentum for Obstruction-Tolerant Free-Space Optical and Millimetre-Wave Communication Links.

    Science.gov (United States)

    Ahmed, Nisar; Zhao, Zhe; Li, Long; Huang, Hao; Lavery, Martin P J; Liao, Peicheng; Yan, Yan; Wang, Zhe; Xie, Guodong; Ren, Yongxiong; Almaiman, Ahmed; Willner, Asher J; Ashrafi, Solyman; Molisch, Andreas F; Tur, Moshe; Willner, Alan E

    2016-03-01

    We experimentally investigate the potential of using 'self-healing' Bessel-Gaussian beams carrying orbital-angular-momentum to overcome limitations in obstructed free-space optical and 28-GHz millimetre-wave communication links. We multiplex and transmit two beams (l = +1 and +3) over 1.4 metres in both the optical and millimetre-wave domains. Each optical beam carried 50-Gbaud quadrature-phase-shift-keyed data, and each millimetre-wave beam carried 1-Gbaud 16-quadrature-amplitude-modulated data. In both types of links, opaque disks of different sizes are used to obstruct the beams at different transverse positions. We observe self-healing after the obstructions, and assess crosstalk and power penalty when data is transmitted. Moreover, we show that Bessel-Gaussian orbital-angular-momentum beams are more tolerant to obstructions than non-Bessel orbital-angular-momentum beams. For example, when obstructions that are 1 and 0.44 the size of the l = +1 beam, are placed at beam centre, optical and millimetre-wave Bessel-Gaussian beams show ~6 dB and ~8 dB reduction in crosstalk, respectively.

  8. A facile green synthesis of Sm2O3 nanoparticles via microwave-assisted urea precipitation route and their optical properties

    Science.gov (United States)

    Xue, Hansong; Zhang, Weina; Li, Xinyu; You, Xiaochang; Rao, Jinsong; Pan, FuSheng

    2017-05-01

    Samarium oxide (Sm2O3) nanoparticles with a narrow size distribution were successfully synthesized by microwave-assisted using urea as precipitant without surfactant or template. The Sm2O3 particles were characterized using X-ray diffraction analysis, field-emission scanning electron microscopy, field-emission transmission electron microscopy and ultraviolet-visible-near-infrared spectrophotometer. The results showed that the samples prepared with different concentration of urea had different particle sizes. When the concentration of urea was 1.2 mol/L, the sample had the smallest particle size. A possible mechanism for the formation of the nanoparticles was proposed. Optical properties of Sm2O3 nanoparticles showed that the nanoparticles had a strong absorption property in the deep ultraviolet region between 200 nm and 270 nm. [Figure not available: see fulltext.

  9. Microwave Power Spectra of Stimulated Phonon Emission and Spatio-Temporal Structures in an Optical-Wavelengths Acoustic Laser (Paramagnetic Phaser)

    CERN Document Server

    Makovetskii, D N

    2012-01-01

    A problem of self-organized motions in solid-state nonequilibrium media has been studied experimentally using methods of quantum acoustics. Generalized Poincare cross-sections of microwave power spectra (MPS) have been obtained in an optical-wavelengths acoustic laser (paramagnetic phaser) based on ruby crystal. Considerable narrowing of MPS and their autowave-like superslow motion have been observed under conditions of periodical pump modulation beyond the region of the phaser relaxation resonance. Some preliminar experimental results of this work were published in: Solid State Communications, Vol.90, No.8, P.501 (1994). An interpretation of the experimental data see arXiv:1101.0482v1 ; arXiv:cond-mat/0410460v1 ; arXiv:cond-mat/0303188v1 .

  10. Acquiring narrow linewidth microwave signals based on an optical injection semiconductor laser under subharmonic microwave mo dulation%基于次谐波调制光注入半导体激光器获取窄线宽微波信号的实验研究∗

    Institute of Scientific and Technical Information of China (English)

    毛嵩; 吴正茂; 樊利; 杨海波; 赵茂戎; 夏光琼

    2014-01-01

    The performances of microwave signals generated by an optically injected semiconductor laser operated at the period-one (P1) oscillation under 1/2 subharmonic microwave modulation, are investigated experimentally. The experimental results show that under suitable injection condition, the microwave signal output from an optically injected semiconductor operated at P1 oscillation can reach a frequency of 26.5 GHz limited to the experimental conditions and may have a single sideband optical spectrum structure, but the linewidth of the microwave signal is relatively wide (on the order of MHz). After adopting 1/2 subharmonic locking technique, the linewidth of the obtained microwave signal can be reduced from tens of MHz to tens of kHz. Furthermore, we analyze the influences of the power and frequency of the subharmonic microwave on the phase noise of the generated microwave signals, and further map the subharmonic microwave locking region in the parameter space of the power and frequency of the subharmonic microwave.%实验研究了处于单周期振荡的光注入半导体激光器在频率等于单周期振荡频率一半的1/2次谐波调制下所产生的微波信号的特性.实验结果显示:在合适的注入条件下,处于单周期(P1)振荡的光注入半导体激光器可输出频率可达26.5 GHz、光谱具有单边带结构的光生微波信号,但微波信号的线宽比较宽(MHz量级);通过采用频率为单周期振荡频率一半的次谐波信号调制光注入半导体激光器,可将微波线宽从十几MHz 压缩到几十kHz.进一步分析了次谐波调制信号的功率以及频率对微波信号的相位噪声的影响,并在由次谐波调制信号的功率和频率构成的参数空间绘制出了能实现次谐波频率锁定的分布区域.

  11. Microwave Semiconductor Equipment Produced in Poland,

    Science.gov (United States)

    1984-01-20

    lQal signal source in other devices. Microwave Transistors As a result of work in the field of microwave transistors , the technology for pnp ...is now commonly carried out on transistors and microwave subsystems. The results of the labors of the DM section connected with the new devices and...level of employment Illustration 2. Microwave diodes and semiconductor transistors presently produced in the ITE (DM section) The Construction and

  12. Relating C-band Microwave and Optical Satellite Observations as A Function of Snow Thickness on First-Year Sea Ice during the Winter to Summer Transition

    Science.gov (United States)

    Zheng, J.; Yackel, J.

    2015-12-01

    The Arctic sea ice and its snow cover have a direct impact on both the Arctic and global climate system through their ability to moderate heat exchange across the ocean-sea ice-atmosphere (OSA) interface. Snow cover plays a key role in the OSA interface radiation and energy exchange, as it controls the growth and decay of first-year sea ice (FYI). However, meteoric accumulation and redistribution of snow on FYI is highly stochastic over space and time, which makes it poorly understood. Previous studies have estimated local-scale snow thickness distributions using in-situ technique and modelling but it is spatially limited and challenging due to logistic difficulties. Moreover, snow albedo is also critical for determining the surface energy balance of the OSA during the critical summer ablation season. Even then, due to persistent and widespread cloud cover in the Arctic at various spatio-temporal scales, it is difficult and unreliable to remotely measure albedo of snow cover on FYI in the optical spectrum. Previous studies demonstrate that only large-scale sea ice albedo was successfully estimated using optical-satellite sensors. However, space-borne microwave sensors, with their capability of all-weather and 24-hour imaging, can provide enhanced information about snow cover on FYI. Daily spaceborne C-band scatterometer data (ASCAT) and MODIS data are used to investigate the the seasonal co-evolution of the microwave backscatter coefficient and optical albedo as a function of snow thickness on smooth FYI. The research focuses on snow-covered FYI near Cambridge Bay, Nunavut (Fig.1) during the winter to advanced-melt period (April-June, 2014). The ACSAT time series (Fig.2) show distinct increase in scattering at melt onset indicating the first occurrence of melt water in the snow cover. The corresponding albedo exhibits no decrease at this stage. We show how the standard deviation of ASCAT backscatter on FYI during winter can be used as a proxy for surface roughness

  13. Structural, optical and microwave dielectric studies of Co doped MgTiO3 thin films fabricated by RF magnetron sputtering

    Science.gov (United States)

    Santhosh Kumar, T.; Gogoi, Pallabi; Bhasaiah, S.; Raju, K. C. James; Pamu, D.

    2015-05-01

    We report the structural, optical, and microwave dielectric characteristics of (Mg0.95Co0.05)TiO3 (MCT) thin films deposited onto amorphous SiO2 (a-SiO2) substrates by RF magnetron sputtering for the first time. The role of the oxygen mixing percentage (OMP) on the growth, morphology, optical, and microwave dielectric properties of MCT thin films has been investigated. The as-deposited MCT films were x-ray amorphous and crystallined after annealing at 700 °C for 1 h in air. A preferred orientation of grains along the (110) direction has been observed with increasing OMP. Such a textured growth is explained by calculating the orientation factors from the Lotgering model. The dispersion in a refractive index with wavelength has been explained using a single oscillator dispersion model. Both the refractive index and bandgap of the films increases on annealing. The annealed films exhibit refractive indices in the range of 1.88-2.08 at 600 nm with an optical bandgap value between 3.95-4.16 eV. The increase in the refractive index is attributed to the improvement in packing density and crystallinity, and decrease in the porosity ratio, whereas the increase in bandgap is due to the decrease in intermediary energy levels within the optical bandgap. (Mg0.95Co0.05)TiO3 thin films exhibited a progressive increase in the dielectric properties with OMP and a maximum dielectric constant of ɛr = 17.3 and low loss (tanδ ˜ 1.1 × 10-3) at a spot frequency of 10 GHz for the films deposited at 75% OMP, beyond which they decreased. The improvement in dielectric properties with an increase in OMP has been correlated to the preferred orientation growth, reduction in oxygen vacancies, and strain. The prepared MCT thin films are suitable candidates for anti-reflection coatings and complementary metal-oxide semiconductor (CMOS) applications.

  14. Two-tone intensity-modulated optical stimulus for self-referencing microwave characterization of high-speed photodetectors

    Science.gov (United States)

    Wang, Heng; Zhang, Shangjian; Zou, Xinhai; Zhang, Yali; Lu, Rongguo; Zhang, Zhiyao; Zhang, Xiaoxia; Liu, Yong

    2016-08-01

    The two-tone intensity modulated optical stimulus is proposed and demonstrated for measuring the high-frequency response of photodetectors. The method provides a narrow linewidth and wide bandwidth optical stimulus based on the two-tone modulation of a Mach-Zehnder electro-optical intensity modulator, and achieves the self-referenced measurement of photodetectors without the need for correcting the power variation of optical stimulus. Moreover, the two-tone intensity modulation method allows bias-independent measurement with doubled measuring frequency range. In the experiment, the consistency between our method and the conventional methods verifies the simple but accurate measurement.

  15. Quasi-Rayleigh light scattering by internal elements of a metamaterial in a light-carrying core of a single-mode optical fiber based on the Veselago effect

    Science.gov (United States)

    Malykin, G. B.

    2016-04-01

    At present, single-mode optical fibers composed of metamaterials—so-called "left-handed" optical media—for the far- and mid-IR ranges have already been created. In the near future, left-handed singlemode optical fibers for the visible and near-IR ranges will be created, light-carrying cores of which will be composed by an ordered structure of dielectric elements, the dimensions of which will be much smaller than the light wavelength, while the effective refractive index of the structure will be negative; i.e., the structure will possess the so-called "Veselago effect." We show that, because the dimensions of these dielectric elements many times exceed the dimensions of molecules of optical media, the elements should strongly scatter light, with this scattering considerably exceeding the Rayleigh (molecular) light scattering that occurs in conventional quartz single-mode optical fibers. We propose to term this phenomenon the quasi-Rayleigh light scattering. Numerical estimates of the quasi-Rayleigh light scattering for left-handed single-mode optical fibers at a light wavelength of λ = 1.55 μm have been made.

  16. Microwave-Assisted Synthesis of (±-Mandelic Acid-d5, Optical Resolution, and Absolute Configuration Determination

    Directory of Open Access Journals (Sweden)

    Claudio Bruno

    2013-01-01

    Full Text Available An efficient microwave-assisted synthesis of (±-mandelic acid-d5 was developed. The racemic mixture was resolved by diastereomeric salt formation using 1-phenylethylamine enantiomers as resolving agents. At each step, the resolution process was checked by determining mandelic acid-d5 enantiomer ee values directly on fractional crystallized diastereomeric salts by chiral capillary electrophoresis analysis. Highly enriched (−- and (+-mandelic acid-d5 (95% and 90% ee, resp. were obtained and their absolute configurations—R and S, respectively—were determined by correlation of the (−-mandelic acid-d5 circular dichroism spectrum to the (R-mandelic acid one.

  17. Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering.

    Science.gov (United States)

    Sagues, Mikel; García Olcina, Raimundo; Loayssa, Alayn; Sales, Salvador; Capmany, José

    2008-01-07

    We propose a novel scheme to implement tunable multi-tap complex coefficient filters based on optical single sideband modulation and narrow band optical filtering. A four tap filter is experimentally demonstrated to highlight the enhanced tuning performance provided by complex coefficients. Optical processing is performed by the use of a cascade of four phase-shifted fiber Bragg gratings specifically fabricated for this purpose.

  18. Very low penetrance of Leber's hereditary optic neuropathy in five Han Chinese families carrying the ND1 G3460A mutation.

    Science.gov (United States)

    Tong, Yi; Sun, Yan-Hong; Zhou, Xiangtian; Zhao, Fuxin; Mao, Yijian; Wei, Qi-ping; Yang, Li; Qu, Jia; Guan, Min-Xin

    2010-04-01

    We report here the clinical, genetic, and molecular characterization of five Han Chinese families with Leber's hereditary optic neuropathy (LHON). Strikingly, there were very low penetrances of visual impairment in these Chinese families, ranging from 4.2% to 22.2%, with an average of 10.2%. In particular, only 7 (4 males/3 females) of 106 matrilineal relatives in these families exhibited the variable severity and age-at-onset in visual dysfunction. The age-at-onset for visual impairment in matrilineal relatives in these families, varied from 20 to 25 years, with an average of 21.8 years old. Molecular analysis of mitochondrial genomes identified the homoplasmic ND1 G3460A mutation and distinct sets of variants, belonging to the Asian haplogroups B5b, C4a1, D5, F1, and R9, respectively. This suggests that the G3640A mutation occurred sporadically and multiplied through evolution of the mtDNA in China. However, there was the absence of known secondary LHON-associated mtDNA mutations in these Chinese families. Very low penetrance of visual loss in these five Chinese pedigrees strongly indicated that the G3640A mutation was itself insufficient to develop the optic neuropathy. The absence of secondary LHON mtDNA mutations suggest that these mtDNA haplogroup-specific variants may not play an important role in the phenotypic expression of the G3640A mutation in those Chinese families with low penetrance of vision loss. However, nuclear modifier genes, epigenetic and environmental factors appear to be modifier factors for the phenotypic manifestation of the G3640A mutation in these Chinese families.

  19. Study of the Morphological, Structural, Optical and Photoelectrochemical Properties of Zinc Oxide Nanorods Grown Using a Microwave Chemical Bath Deposition Method

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Sungjin; Ryu, Hyukhyun [Inje University, Gimhae (Korea, Republic of); Lee, Won-Jae [Dong-Eui University, Busan (Korea, Republic of)

    2017-04-15

    In this study, zinc oxide (ZnO) nanostructures were grown on a ZnO-buffered fluorine-doped tin oxide (FTO) substrate using a microwave chemical bath deposition method with different zinc oxide precursor concentrations from 0.01 to 0.5 M. We investigated the effects of the zinc oxide precursor concentration on the morphological, structural, optical and photoelectrochemical properties of the ZnO nanostructures. From this work, we found that ZnO one-dimensional structures mainly grew along the (002) plane, and the nanorod length, diameter, surface area and photoelectrochemical properties were largely dependent on the precursor concentration. That is, the photoelectrochemical properties were affected by the morphological and structural properties of the ZnO. The morphological, structural, optical and photoelectrochemical properties of the ZnO nanostructure were investigated by field emission scanning electron microscopy (FE-SEM) and atomic force microscope (AFM), X-ray diffraction (XRD), UV-visible spectroscopy and 3-electrode potentiostat. We obtained the highest photocurrent density of 0.37 mA/cm{sup 2} (at 1.1 V vs. SCE) from the precursor concentration of 0.07 M, which resulted in ZnO nanostructures with proper length and diameter, large surface area and good structural properties.

  20. Trace determination of Hg together with As, Sb, Se by miniaturized optical emission spectrometry integrated with chemical vapor generation and capacitively coupled argon microwave miniplasma discharge

    Science.gov (United States)

    Matusiewicz, Henryk; Ślachciński, Mariusz

    2017-07-01

    A miniaturized optical emission spectrometer (OES) with capacitively coupled argon microwave microplasma (μCMP) as and excitation source and chemical vapor generation (CVG) for sample introduction was constructed for the determination of trace Hg, As, Sb and Se. The applied method enabled simultaneous determination of hydride-forming elements (As, Sb, Se) and volatile Hg. Mercury cold vapor and the hydride volatile species of As, Sb and Se were generated when standard or sample solutions were separated from the liquid phase for transport to the capacitively coupled microwave microplasma and detection of their atomic emission. A univariate approach and the simplex optimization procedure were used to achieve optimized conditions and derive analytical figures of merit. The experimental concentration detection limits (LODs) for simultaneous determination, calculated as the concentration giving a signal equal to three times of the standard deviation of the blank (LOD, 3σblank criterion, peak height) were 3.0, 1.4, 1.5 and 3.8 ng mL- 1 for Hg, As, Sb and Se, respectively. The method was validated by the analysis of three Certified Reference Materials (NIST 2711, NRCC DOLT-2, NIST 1643e) of different matrix composition and by the standard addition technique. The method offers relatively good precision (RSD ranged from 5% to 8%) for microsampling (200 μL) analysis. The measured of contents of elements in certified reference materials were in good agreement with the certified values (Hg 1.99-6.25 μg g- 1, As 16.6-105 μg g- 1, Sb 19.4-56.88 μg g- 1, Se 1.52-11.68 μg g- 1), according to the Student t-test, for a confidence level of 95%.

  1. Optical flow and image segmentation analysis for noninvasive precise mapping of microwave thermal ablation in X-ray CT scans - ex vivo study.

    Science.gov (United States)

    Ziv, Omri; Goldberg, S Nahum; Nissenbaum, Yitzhak; Sosna, Jacob; Weiss, Noam; Azhari, Haim

    2017-09-20

    To develop image processing algorithms for noninvasive mapping of microwave thermal ablation using X-ray CT. Ten specimens of bovine liver were subjected to microwave ablation (20-80 W, 8 min) while scanned by X-ray CT at 5 s intervals. Specimens were cut and manually traced by two observers. Two algorithms were developed and implemented to map the ablation zone. The first algorithm utilises images segmentation of Hounsfield units changes (ISHU). The second algorithm utilises radial optical flow (ROF). Algorithm sensitivity to spatiotemporal under-sampling was assessed by decreasing the acquisition rate and reducing the number of acquired projections used for image reconstruction in order to evaluate the feasibility of implementing radiation reduction techniques. The average radial discrepancy between the ISHU and ROF contours and the manual tracing were 1.04±0.74 and 1.16±0.79mm, respectively. When diluting the input data, the ISHU algorithm retained its accuracy, ranging from 1.04 to 1.79mm. By contrast, the ROF algorithm performance became inconsistent at low acquisition rates. Both algorithms were not sensitive to projections reduction, (ISHU: 1.24±0.83mm, ROF: 1.53±1.15mm, for reduction by eight fold). Ablations near large blood vessels affected the ROF algorithm performance (1.83±1.30mm; p mapping algorithms can provide highly accurate contouring of the ablation zone at low scan rates. The ISHU algorithm may be more suitable for clinical practice as it appears more robust when radiation dose reduction strategies are employed and when the ablation zone is near large blood vessels.

  2. Structural and optical characterization of thick and thin polycrystalline diamond films deposited by microwave plasma activated CVD

    Indian Academy of Sciences (India)

    S K Pradhan; B Satpati; B P Bag; T Sharda

    2012-02-01

    Preliminary results of growth of thin diamond film in a recently installed 3 kW capacity microwave plasma activated CVD (MW-PACVD) system are being reported. The films were deposited on Si (100) substrate at 850°C using methane and hydrogen mixture at 1.5 kW MW power. The grown polycrystalline films were characterized by micro-Raman, transmission electron microscope (TEM), spectrophotometer and atomic force microscope (AFM). The results were compared with that of a thicker diamond film grown elsewhere in a same make MWPACVD system at relatively higher power densities. The presence of a sharp Raman peak at 1332 cm-1 confirmed the growth of diamond, and transmission spectra showed typical diamond film characteristics in both the samples. Typical twin bands and also a quintuplet twinned crystal were observed in TEM, further it was found that the twinned region in thin sample composed of very fine platelet like structure.

  3. Microwave Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Makes ultra-high-resolution field measurements. The Microwave Microscope (MWM) has been used in support of several NRL experimental programs involving sea...

  4. Two families with Leber's hereditary optic neuropathy carrying G11778A and T14502C mutations with haplogroup H2a2a1 in mitochondrial DNA.

    Science.gov (United States)

    Qiao, Chen; Wei, Tanwei; Hu, Bo; Peng, Chunyan; Qiu, Xueping; Wei, Li; Yan, Ming

    2015-08-01

    The mitochondrial haplogroup has been reported to affect the clinical expression of Leber's hereditary optic neuropathy (LHON). The present study aimed to investigate the interaction between mutations and the haplogroup of mitochondrial DNA (mtDNA) in families. Two unrelated families with LHON were enrolled in the study, and clinical, genetic and molecular characterizations were determined in the affected and unaffected family members. Polymerase chain reaction direct sequencing was performed using 24 pairs of overlapping primers for whole mtDNA to screen for mutations and haplogroup. Bioinformatics analysis was performed to evaluate the pathogenic effect of these mtDNA mutations and the haplogroup. The G11778A mutation was identified in the two families. In addition, the members of family 2 exhibited the T14502C mutation and those in family 1 exhibited the T3394C and T14502C mutations, which were regarded as secondary mutations. The penetrance of visual loss in families 1 and 2 were 30.8 and 33.3%, respectively. In addition, the two families were found to be in the H2a2a1 haplogroup. In this limited sample size, it was demonstrated that the H2a2a1 haplogroup had a possible protective effect against LHON. Additional modifying factors, including environmental factors, lifestyle, estrogen levels and nuclear genes may also be important in LHON.

  5. Microwaves photonic links components and circuits

    CERN Document Server

    Rumelhard, Christian; Billabert, Anne-Laure

    2013-01-01

    This book presents the electrical models for the different elements of a photonic microwave link like lasers, external modulators, optical fibers, photodiodes and phototransistors. The future trends of these components are also introduced: lasers to VCSEL, external modulators to electro-absorption modulators, glass optical fibers to plastic optical fibers, photodiodes to UTC photodiodes or phototransistors. It also describes an original methodology to evaluate the performance of a microwave photonic link, based on the developed elcetrical models, that can be easily incorporated in

  6. Microwave phase shifter with controllable power response based on slow-and fast-light effects in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Sales, Salvador; Capmany, Jose

    2009-01-01

    We suggest and experimentally demonstrate a method for increasing the tunable rf phase shift of semiconductor waveguides while at the same time enabling control of the rf power. This method is based on the use of slow- and fast-light effects in a cascade of semiconductor optical amplifiers combined...

  7. Microwave-Accelerated Organic Reactions

    Institute of Scientific and Technical Information of China (English)

    LU; TaJung

    2001-01-01

    The use of microwave technology in accelerating organic reactions has received intense attention leading to immense growth recently. Accordingly, we have been interested in improving the efficacy of organic processes by microwave irradiation. Here we report our results on the microwave assisted 1,3-dipolar cycloaddition reaction of nitrile oxides with allylic alcohols, the cleavage reaction of 1,3-diketones under alkaline conditions, and the formation of carbamates from isocyanates with alcohols. The reactions carried out under microwave irradiation, in general, required considerably less reaction time and afforded the desired products in higher yields than those under classical conditions. In all the cases we have studied, the procedures are simplified, the purity of the products are higher, and the cost of reaction is greatly reduced employing microwave.  ……

  8. Microwave-Accelerated Organic Reactions

    Institute of Scientific and Technical Information of China (English)

    LU TaJung

    2001-01-01

    @@ The use of microwave technology in accelerating organic reactions has received intense attention leading to immense growth recently. Accordingly, we have been interested in improving the efficacy of organic processes by microwave irradiation. Here we report our results on the microwave assisted 1,3-dipolar cycloaddition reaction of nitrile oxides with allylic alcohols, the cleavage reaction of 1,3-diketones under alkaline conditions, and the formation of carbamates from isocyanates with alcohols. The reactions carried out under microwave irradiation, in general, required considerably less reaction time and afforded the desired products in higher yields than those under classical conditions. In all the cases we have studied, the procedures are simplified, the purity of the products are higher, and the cost of reaction is greatly reduced employing microwave.

  9. Structural and optical characterization of CuInS2 quantum dots synthesized by microwave-assisted continuous flow methods

    Science.gov (United States)

    Fitzmorris, Robert C.; Oleksak, Richard P.; Zhou, Zheng; Mangum, Benjamin D.; Kurtin, Juanita N.; Herman, Gregory S.

    2015-07-01

    Semiconductor quantum dots (QDs) have recently been incorporated into consumer displays and lighting technologies. Now that these materials are being produced on industrial scales, it is important to investigate scalable synthetic methods and less toxic materials and chemistries. To achieve these goals, we have synthesized cadmium-free, visible light-emitting QDs using a microwave-assisted continuous flow reactor. After synthesis, the CuInS2 QD cores underwent a near-complete Zn cation exchange reaction in a batch reactor, followed by the growth of a ZnS shell. Analysis of X-ray diffraction, transmission electron microscopy, and Raman spectroscopy data indicate that the crystal structure changes from CuInS2 (chalcopyrite) to ZnS (zincblende) during the cation exchange reaction. Compositional analysis indicated that the core/shell QDs were 98 % ZnS, with Cu and In present at much lower concentrations. The photoluminescence (PL) peak position was blue shifted for longer cation exchange reactions, and it was found that the ZnS shell was necessary for improved PL stability. The synthesized QDs have a PL down conversion efficiency of 65 % when using a blue LED source.

  10. Microwave Based Synthesis; Structural, Optical and Magnetic Measurements of Co²⁺ Doped MnFe₂O4.

    Science.gov (United States)

    Amalthi, P; Vijaya, J Judith; Kennedy, L John; Bououdina, M

    2016-01-01

    CO²⁺ doped manganese ferrite (Mn₁₋xCoxFe₂O₄, x = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5) samples were synthesized by a microwave combustion method. Nitrates of the constituent elements and urea were respectively used as the oxidizer and fuel to drive the reaction. On an average a yield of 80% were obtained for all the compositions. Light-absorbing properties from UV-Vis diffuse reflection spectrum were studied and the results infer that the band gap energy (Eg) of the pure MnFe2O4 is 1.76 eV and with increase in C02+ ion concentration, it increases to 2.25 eV. The phase purity and crystal lattice symmetry were estimated from X-ray diffraction (XRD) and was identified as the spinel cubic crystal structure. The lattice parameter is found to decrease with an increase in Co content. The crystallite size was in the range of 19-25 nm. The purity and the composition of the elements were further confirmed by energy dispersive X-ray (EDX) results. Microstructural features obtained by scanning electron microscope (SEM) demonstrate that the nanocrystals were formed with a decrease in average grain size with C02+ content. Room temperature magnetic measurement for stoichiometric samples is discussed with the help of vibrating sample magnetometer (VSM). The saturation magnetization (M), remanant magnetization (Mr) and coercivity (H.) are measured from the respective hysteresis plots.

  11. A Microwave Radiometric Method to Obtain the Average Path Profile of Atmospheric Temperature and Humidity Structure Parameters and Its Application to Optical Propagation System Assessment

    Science.gov (United States)

    Manning, Robert M.; Vyhnalek, Brian E.

    2015-01-01

    The values of the key atmospheric propagation parameters Ct2, Cq2, and Ctq are highly dependent upon the vertical height within the atmosphere thus making it necessary to specify profiles of these values along the atmospheric propagation path. The remote sensing method suggested and described in this work makes use of a rapidly integrating microwave profiling radiometer to capture profiles of temperature and humidity through the atmosphere. The integration times of currently available profiling radiometers are such that they are approaching the temporal intervals over which one can possibly make meaningful assessments of these key atmospheric parameters. Since these parameters are fundamental to all propagation conditions, they can be used to obtain Cn2 profiles for any frequency, including those for an optical propagation path. In this case the important performance parameters of the prevailing isoplanatic angle and Greenwood frequency can be obtained. The integration times are such that Kolmogorov turbulence theory and the Taylor frozen-flow hypothesis must be transcended. Appropriate modifications to these classical approaches are derived from first principles and an expression for the structure functions are obtained. The theory is then applied to an experimental scenario and shows very good results.

  12. Optimization of an open-focused microwave oven digestion procedure for determination of metals in diesel oil by inductively coupled plasma optical emission spectrometry.

    Science.gov (United States)

    Sant'Ana, Flavio W; Santelli, Ricardo E; Cassella, Alessandra R; Cassella, Ricardo J

    2007-10-01

    This work reports the optimization of a focused microwave assisted procedure for the wet acid dissolution of diesel oil in order to allow the determination of metals in the samples by inductively coupled plasma optical emission spectrometry (ICP-OES). The dissolution process was monitored by measuring residual carbon content (RCC), also by ICP-OES, in the final solutions obtained after application of digestion program. All experimental work was performed using a commercial sample of diesel oil containing 85.74+/-0.13% of carbon. The initial dissolution program comprised three steps: (i) carbonization with H(2)SO(4); (ii) oxidation with HNO(3) and (iii) final oxidation with H(2)O(2). During work it was verified that the first step played an important role on the dissolution process of this kind of sample. It is therefore, necessary to give a detailed optimization of such step. Employing the optimized conditions it was possible to digest 2.5 g of diesel oil with a 40 min-heating program. At these conditions, residual carbon content was always lower than 5%. Optimized methodology was applied in the determination of metals in three diesel oil samples by ICP-OES. Recovery tests were also performed by adding 10 microg of metals, as organic standards, to the samples before digestion. Recovery percentages always higher than 90% were obtained for the metals of interest (Al, Cu, Fe and Ni), except for Zn, which presented recoveries between 70 and 78%.

  13. Determination of arsenic, cadmium, cobalt, chromium, lead, molybdenum, nickel, and selenium in fertilizers by microwave digestion and inductively coupled plasma-optical emission spectrometry detection: collaborative study.

    Science.gov (United States)

    Kane, Peter F; Hall, William L

    2006-01-01

    There is increasing regulatory interest in the non-nutritive metals content of fertilizer materials, but at present there is no consensus analytical method for acid digestion and instrument detection of those elements in fertilizer matrixes. This lack of method standardization has resulted in unacceptable variability of results between fertilizer laboratories performing metals analysis. A method has been developed using microwave digestion with nitric acid at 200 degrees C, followed by inductively coupled plasma-optical emission spectrometry instrument detection, for the elements arsenic, cadmium, cobalt, chromium, molybdenum, nickel, lead, and selenium. The method has been collaboratively studied, and statistical results are here reported. Fourteen collaborators were sent 62 sample materials in a blind duplicate design. Materials represented a broad cross section of fertilizer types, including phosphate ore, manufactured phosphate products, N-P-K blends, organic fertilizers, and micro-nutrient materials. As much as possible within the limit of the number of samples, materials were selected from different regions of the United States and the world. Limit of detection (LOD) was determined using synthetic fertilizers consisting of reagent grade chemicals with near zero levels of the non-nutritive elements, analyzed blindly. Samples with high iron content caused the most variability between laboratories. Most samples reasonably above LOD gave HorRat values within the range 0.5 to 2.0, indicating acceptable method performance according to AOAC guidelines for analyses in the mg/kg range. The method is recommended for AOAC Official First Action status.

  14. High-field optically detected EPR and ENDOR of semiconductor defects using W-band microwave Fabry-Pérot resonators.

    Science.gov (United States)

    Spaeth, J-M; Tkach, I; Greulich-Weber, S; Overhof, H

    2005-11-01

    The designs of W-band (approximately 95 GHz) Fabry-Pérot microwave resonators for optically detected EPR and ENDOR using the magnetic circular dichroism of the optical absorption (MCDA) as well as for photo-luminescence-detected EPR are briefly described. We report on the first MCDA-detected high-field EPR/ENDOR investigation of the paramagnetic EL2+ defect in semi-insulating GaAs. The higher-order effects, which prevented the unambiguous analysis of previous MCDA-detected K-band EPR/ENDOR experiments could be suppressed in W-band. The analysis of the ENDOR spectra showed that an extremely precise alignment of the samples is necessary. The paramagnetic El2+ defect turned out to be an As antisite defect, which has four almost equivalent nearest 75As neighbours differing less than 1.5% in the superhyperfine interactions suggestive of an isolated As antisite, while the third 75As shell (fifth neighbour shell) is clearly of lower symmetry than expected for an isolated As antisite. We discuss as a possible solution to this paradoxical situation that EL2+ is an isolated antisite at room temperature, which at low temperature, where all magnetic resonance experiments are performed, associates itself with shallow acceptors such as Zn(Ga)- more than two nearest neighbour distances away. According to recent theoretical calculations, such 'loose' complexes with binding energies between 0.01 eV and 0.05 eV and disturb the equivalence of the nearest neighbour superhyperfine (shf) interactions less than 1.5%. Also, W-band EPR was measured using the photo-luminescence for detection to investigate P dopants in 6H-SiC.

  15. Simultaneous even- and third-order distortion suppression in a microwave photonic link based on orthogonal polarization modulation, balanced detection, and optical sideband filtering.

    Science.gov (United States)

    Han, Xiuyou; Chen, Xiang; Yao, Jianping

    2016-06-27

    A microwave photonic link (MPL) with simultaneous suppression of the even-order and third-order distortions using a polarization modulator (PolM), an optical bandpass filter (OBPF), and a balanced photodetector (BPD) is proposed and experimentally demonstrated. The even-order distortions are suppressed by utilizing orthogonal polarization modulation based on the PolM and balanced differential detection based on the BPD. The third-order distortions (IMD3) are suppressed by optimizing the spectral response of the OBPF with an optimal power ratio between the optical carrier and the sidebands of the phase-modulated signals from the PolM. Since the suppression of the IMD3 is achieved when the MPL is optimized for even-order distortion suppression, the proposed MPL can operate with simultaneous suppression of the even-order and third-order distortions. The proposed MPL is analyzed theoretically and is verified by an experiment. For a two-tone RF signal of f1 = 10 GHz and f2 = 19.95 GHz, the spurious-free dynamic range (SFDR2) is enhanced by 23.4 dB for the second harmonic (2f1), and 29.1 and 27.6 dB for the second intermodulation (f2-f1 and f1 + f2), as compared with a conventional MPL. For a two-tone RF signal of f1 = 9.95 GHz and f2 = 10 GHz, the SFDR3 is increased by 13.1 dB as compared with a conventional MPL.

  16. Design of a portable optical emission tomography system for microwave induced compact plasma for visible to near-infrared emission lines

    Science.gov (United States)

    Rathore, Kavita; Munshi, Prabhat; Bhattacharjee, Sudeep

    2016-03-01

    A new non-invasive diagnostic system is developed for Microwave Induced Plasma (MIP) to reconstruct tomographic images of a 2D emission profile. A compact MIP system has wide application in industry as well as research application such as thrusters for space propulsion, high current ion beams, and creation of negative ions for heating of fusion plasma. Emission profile depends on two crucial parameters, namely, the electron temperature and density (over the entire spatial extent) of the plasma system. Emission tomography provides basic understanding of plasmas and it is very useful to monitor internal structure of plasma phenomena without disturbing its actual processes. This paper presents development of a compact, modular, and versatile Optical Emission Tomography (OET) tool for a cylindrical, magnetically confined MIP system. It has eight slit-hole cameras and each consisting of a complementary metal-oxide-semiconductor linear image sensor for light detection. The optical noise is reduced by using aspheric lens and interference band-pass filters in each camera. The entire cylindrical plasma can be scanned with automated sliding ring mechanism arranged in fan-beam data collection geometry. The design of the camera includes a unique possibility to incorporate different filters to get the particular wavelength light from the plasma. This OET system includes selected band-pass filters for particular argon emission 750 nm, 772 nm, and 811 nm lines and hydrogen emission Hα (656 nm) and Hβ (486 nm) lines. Convolution back projection algorithm is used to obtain the tomographic images of plasma emission line. The paper mainly focuses on (a) design of OET system in detail and (b) study of emission profile for 750 nm argon emission lines to validate the system design.

  17. Microwave Measurements

    CERN Document Server

    Skinner, A D

    2007-01-01

    The IET has organised training courses on microwave measurements since 1983, at which experts have lectured on modern developments. Their lecture notes were first published in book form in 1985 and then again in 1989, and they have proved popular for many years with a readership beyond those who attended the courses. The purpose of this third edition of the lecture notes is to bring the latest techniques in microwave measurements to this wider audience. The book begins with a survey of the theory of current microwave circuits and continues with a description of the techniques for the measureme

  18. Microwave generator

    Science.gov (United States)

    Kwan, T.J.T.; Snell, C.M.

    1987-03-31

    A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit there through effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators. 6 figs.

  19. SUNIST Microwave Power System

    Institute of Scientific and Technical Information of China (English)

    Feng Songlin; Yang Xuanzong; Feng Chunhua; Wang Long; Rao Jun; Feng Kecheng

    2005-01-01

    Experiments on the start-up and formation of spherical tokamak plasmas by electron cyclotron heating alone without ohmic heating and electrode discharge assisted electron cyclotron wave current start-up will be carried out on the SUNIST (Sino United Spherical Tokamak) device.The 2.45 GHz/100 kW/30 ms microwave power system and 1000 V/50 A power supply for electrode discharge are ready for experiments with non-inductive current drive.

  20. Analysis of Sister Carrie

    Institute of Scientific and Technical Information of China (English)

    孙淑珍

    2004-01-01

    Chapter Ⅰ Introduction  Sitting in the rocking chair,Carrie dreams her future.This is the deep impression the novel"Sister Carrie"gives us,which is written by Theodore Dreiser(1871-1945),the great American realism writer.  ……

  1. 基于光载波抑制调制的星间微波光子下变频研究%Research on inter-satellite microwave photonic frequency down conversion based on optical carrier suppression modulation

    Institute of Scientific and Technical Information of China (English)

    李轩; 赵尚弘; 张薇; 朱子行; 韩磊; 赵静

    2013-01-01

    To solve the problem of optical handling of microwave signal in satellite communication,the inter-satellite microwave photonic frequency down conversion system is modeled,two parallel dual-electrode Mach-Zehnder modulators based on optical carrier suppression modulation are utilized to modulate the uplink microwave signal received by satellite and the local oscillator signal produced in satellite,respectively,and the microwave signal is optically amplified,transmitted and frequency-down converted in the inter-satellite optical link.The output signal and noise of system are analyzed with Bessel expansion,the local oscillator signal power is optimized,and the effects of modulator bias phase drift,phase shifter error and emission optical power on the system performance are simulated.The results show that the deterioration of output carrier to noise ratio (CNR) is under 0.05 dB while the modulator bias phase drift is less than 5 ℃,the output CNR deterioration is under 0.02 dB while the phase shifter error is less than 5 ℃,and the frequency down conversion system has high stability.When the emission optical power is 10.48 dB,the system output CNR is 31.33 dB,which can meet the practical requirement.The inter-satellite microwave photonic frequency down conversion system can be applied to the optical handling of microwave signal in the future satellite optical communications.%针对卫星通信中微波信号光学处理问题,建立了星间微波光子下变频系统模型,采用两个双电极马赫-曾德尔调制器(DE-MZM)并联形式,以光载波抑制(DCS)方式实现了星间微波信号的光域放大、传输和下变频.利用贝塞尔函数展开分析了下变频系统中信号和各噪声分量,对射频本振信号功率进行了优化,仿真研究了调制器直流偏置漂移、移相器相移误差和发射光功率对系统性能的影响.结果表明,调制器直流偏置相位漂移小于5℃时输出载噪比(CNR)恶化小于0.05 dB

  2. Modelling Microwave Devices Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Andrius Katkevičius

    2012-04-01

    Full Text Available Artificial neural networks (ANN have recently gained attention as fast and flexible equipment for modelling and designing microwave devices. The paper reviews the opportunities to use them for undertaking the tasks on the analysis and synthesis. The article focuses on what tasks might be solved using neural networks, what challenges might rise when using artificial neural networks for carrying out tasks on microwave devices and discusses problem-solving techniques for microwave devices with intermittent characteristics.Article in Lithuanian

  3. Gain engineering for all-optical microwave and high speed pulse generation in mode-locked fiber lasers

    Science.gov (United States)

    Li, Fangxin; Helmy, Amr S.

    2014-03-01

    Pulsed sources based on approaches that employ only photonic components and no RF components will be discussed in this talk. Several technologies have been explored to generate actively mode-locked sources using electronically driven fiber ring cavities. However, for these sources the pulse repetition rate is usually limited by the bandwidth of the intracavity modulator. Filtering of highly-stable low repetition rate optical combs utilizing cavities such as Fabry-Perot etalons can be used to overcome this limitation. This scheme is not flexible as it requires highly precise control of ultrahigh finesse etalons which limits the repetition rate to the free spectral range of the filter. Pulsed sources based on semiconductor devices offer many advantages, including large gain bandwidth, rapid tunability, long-term stability. In this work we introduce a novel, simple method to generate optical clock with wavelength tunability using two continuous wave (CW) lasers. The lasers are injected into a conventional SOAs-based fiber ring laser. The beating signal generated by these two lasers causes the modulation of the SOA gain saturation inside the cavity. Thus, the SOA provides gain and functions as the modulator as well as the gain medium. When the lasing mode inside the cavity is amplified, it also results in gain-induced four wave mixing. The proposed technique is particularly versatile, overcoming the bandwidth limitation of other techniques, which require RF sources. Moreover, this technique provides the possibility for hybrid integration as it is comprised of semiconductor chips that can be heterogeneously integrated on a Si platform.

  4. Microwave power engineering generation, transmission, rectification

    CERN Document Server

    Okress, Ernest C

    1968-01-01

    Microwave Power Engineering, Volume 1: Generation, Transmission, Rectification considers the components, systems, and applications and the prevailing limitations of the microwave power technology. This book contains four chapters and begins with an introduction to the basic concept and developments of microwave power technology. The second chapter deals with the development of the main classes of high-power microwave and optical frequency power generators, such as magnetrons, crossed-field amplifiers, klystrons, beam plasma amplifiers, crossed-field noise sources, triodes, lasers. The third

  5. Characterization of a microwave microstrip helium plasma with gas-phase sample introduction for the optical emission spectrometric determination of bromine, chlorine, sulfur and carbon using a miniaturized optical fiber spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Pohl, Pawel; Zapata, Israel Jimenez; Amberger, Martin A.; Bings, Nicolas H. [Universitaet Hamburg, Institut fuer Anorganische und Angewandte Chemie, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany); Broekaert, Jose A.C. [Universitaet Hamburg, Institut fuer Anorganische und Angewandte Chemie, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany)], E-mail: jose.broekaert@chemie.uni-hamburg.de

    2008-03-15

    Continuous flow generation of Br{sub 2}, Cl{sub 2} and H{sub 2}S coupled to a low-power 2.45 GHz microwave microstrip He plasma exiting from a capillary gas channel in a micro-fabricated sapphire wafer with microstrip lines has been used for the optical emission spectrometric determination of Br, Cl and S using a miniaturized optical fiber CCD spectrometer. Under optimized conditions, detection limits (3{sigma}) of 330, 190 and 220 {mu}g l{sup -1} for Br, Cl and S, respectively, under the use of the Br II 478.5 nm, Cl I 439.0 nm and S I 469.0 nm lines were obtained and the calibration curves were found to be linear over 2 orders of magnitude. In addition, when introducing CO{sub 2} and using the rotational line of the CN molecular band at 385.7 nm the detection limit for C was 4.6 {mu}g l{sup -1}. The procedure developed was found to be free from interferences from a number of metal cations and non-metal anions. Only the presence of CO{sub 3}{sup 2-} and CN{sup -} was found to cause severe spectral interferences as strong CN and C{sub 2} molecular bands occurred as a result of an introduction of co-generated CO{sub 2} and HCN into the plasma. With the procedure described Br, Cl and S could be determined at a concentration level of 10-30 mg l{sup -1} with accuracy and precision better than 2%.

  6. Sister Carrie in China

    Institute of Scientific and Technical Information of China (English)

    殷希

    2015-01-01

    Sister Carrie has received many Chinese scholar's attention, and it has quantity relevance researches. Therefore, it is valuable to study why it is popular in China and it's education meaning for Chinese people. In addition, to analysis the domestic re-searches and find it's exist problems can help us make a new breakthrough from the study.

  7. Stabilizing an optoelectronic microwave oscillator with photonic filters

    Science.gov (United States)

    Strekalov, D.; Aveline, D.; Yu, N.; Thompson, R.; Matsko, A. B.; Maleki, L.

    2003-01-01

    This paper compares methods of active stabilization of an optoelectronic microwave oscillator (OEO) based on insertion of a source of optical group delay into an OEO loop. The performance of an OEO stabilized with either a high- optical cavity or an atomic cell is analyzed. We show that the elements play a role of narrow-band microwave filters improving an OEO stability.

  8. Improvement electrical characteristics of the microwave oven

    Directory of Open Access Journals (Sweden)

    I. N. Grebenkov

    2007-06-01

    Full Text Available The research of band-off emitting of magnetron generator of microwave oven was carried out. Applying of cutoff waveguide abled to satisfy the requirements of manufacturer and norms of EMC.

  9. Digital microwave communication engineering point-to-point microwave systems

    CERN Document Server

    Kizer, George

    2013-01-01

    The first book to cover all engineering aspects of microwave communication path design for the digital age Fixed point-to-point microwave systems provide moderate-capacity digital transmission between well-defined locations. Most popular in situations where fiber optics or satellite communication is impractical, it is commonly used for cellular or PCS site interconnectivity where digital connectivity is needed but not economically available from other sources, and in private networks where reliability is most important. Until now, no book has adequately treated all en

  10. Environmental biomonitoring of essential and toxic elements in human scalp hair using accelerated microwave-assisted sample digestion and inductively coupled plasma optical emission spectroscopy.

    Science.gov (United States)

    Kumakli, Hope; Duncan, A'ja V; McDaniel, Kiara; Mehari, Tsdale F; Stephenson, Jamira; Maple, Lareisha; Crawford, Zaria; Macemore, Calvin L; Babyak, Carol M; Fakayode, Sayo O

    2017-05-01

    Human scalp hair samples were collected and used to assess exposure to toxic elements and essential elements in the state of North Carolina, USA using accelerated microwave assisted acid digestion and inductively coupled plasma optical emission spectroscopy (ICP-OES). The figures-of-merit of the ICP-OES were appropriate for elemental analysis in scalp hair with detection limits as low as 0.0001 mg/L for Cd, good linearity (R(2) > 0.9978), and percent recoveries that ranged from 96 to 106% for laboratory-fortified-blanks and 88-112% for sample spike recovery study. The concentrations of essential elements in scalp hair were larger than those of toxic elements, with Ca having the highest average concentration (3080 μg/g, s = 14,500, n = 194). Some of the maximum concentrations observed for As (65 μg/g), Ni (331 μg/g), Cd (2.96 μg/g), and Cr (84.6 μg/g) in individual samples were concerning, however. Samples were statistically analyzed to determine the influence of race, gender, smoking habits, or age on the elemental concentrations in scalp hair. Higher concentrations of essential elements were observed in the scalp hair of Caucasians, females, and non-smokers, and the differences were often significant at a 90% confidence level. Several pairs of essential elements, for example Ca-K, Ca-Mg, and Ca-Zn, were strongly correlated in Caucasian hair but uncorrelated in African-American hair. Similarly, essential elements were strongly correlated in female hair but weakly correlated in male hair. Toxic element pairs (As-Cd, As-Se, Pb-As, and Se-Cd) were strongly correlated in the hair of smokers but uncorrelated in that of non-smokers, suggesting that cigarette smoke is a common source of toxic elements in humans. Published by Elsevier Ltd.

  11. Ultrasound- and microwave-assisted extractions followed by hydride generation inductively coupled plasma optical emission spectrometry for lead determination in geological samples.

    Science.gov (United States)

    Welna, Maja; Borkowska-Burnecka, Jolanta; Popko, Malgorzata

    2015-11-01

    Followed the current idea of simplified sample pretratmet before analysis we evaluated the procedure for the determination of Pb in calcium-rich materials such as dolomites after ultrasound- or microwave- assisted extraction with diluted acids using hydride generation inductively coupled plasma optical emission spectrometry (HG-ICP-OES). Corresponding Pb hydride was generated in the reaction of an acidified sample solution with NaBH4 after pre-oxidation of Pb(II) to Pb(IV) by K3[Fe(CN)6]. Several chemical (acidic media: HCl, HNO3 or CH3COOH, concentration of the reductant as well as type and concentration of oxidazing agents) and physical (reagents flow rates, reaction coil length) parameters affecting the efficiency of plumbane formation were optimized in order to improve the detectability of Pb using HG-ICP-OES. Limitation of the method derived from the matrix effects was pointed out. Employing Pb separation by HG technique allows the significant reduction of interferences caused by sample matrix constituents (mainly Ca and Mg), nevertheless they could not be overcame at all, hence calibration based on the standard addition method was recommended for Pb quantification in dolomites. Under the selected conditions, i.e. 0.3 mol L(-1) HCl, HNO3 or CH3COOH, 1.5% NaBH4 and 3.0% K3[Fe(CN)6] the limits of detection (LODs) between 2.3-5.6 μg L(-1) (3.4-6.8 μg L(-1) considering matrix effects) and the precision below 5% were achieved. The accuracy of the procedure was verified by analysis of certified reference materials (NCS DC70308 (Carbonate Rock) and NIST 14000 (Bone Ash)) and recovery test with satisfactory results of Pb recoveries ranging between 94-108% (CRMs analysis) and 92-114% (standard addition method). The applicability of the proposed method was demonstrated by the determination of Pb in dolomites used by different fertiliser factories.

  12. 基于注入半导体激光器的微波副载波相位调制信号产生%Generation of microwave subcarrier phase modulation signal based on optical injection into a semiconductor laser

    Institute of Scientific and Technical Information of China (English)

    吴波; 于晋龙; 王文睿; 韩丙辰; 郭精忠; 罗俊; 王菊; 张晓媛; 刘毅; 杨恩泽

    2012-01-01

    光载无线技术是解决终端超宽带无线通信的重要方法,光信号与微波/毫米波信号的融合处理技术在光-无线的数据格式转换中至关重要.提出了一种基于相位调制信号光注入Fabry-Perot型半导体激光器实现微波副载波相位调制信号产生的方法.光学注入半导体激光器的输出光场会产生一周期(P1)振荡效应,P1振荡产生的边带实现了相位调制信号光的调制分量的放大,被放大的调制分量与注入光载波在激光器腔内拍频形成微波副载波.注入光相位的变化导致新产生的微波副载波相位变化,实现了注入信号光相位信息转化为微波副载波相位信息.本系统完成1.3 Gb/s,2.7 Gb/s,2 Gb/s光相位调制信号到微波副载波相位调制信号的转换,并测量了微波的单边带相位噪声.通过光电转换和电域混频将还原出的光基带信号与原信号进行逻辑对比,证明了数据信息转换的正确性.%Radio-over-fiber technology has become an important solution for ultra wide band wireless communication, and the convergence of signal processing between optics and microwave/millimeter wave is more crucial. In this paper, microwave subcarrier phase modu- lation signal generation based on optical injection into a semiconductor Fabry-Perot laser is proposed. According to the period-one(P 1) oscillation effect of laser output optical field, one modulation component of the optical phase modulation signal is amplified by side- band of P1 oscillation. The amplified component beats with injection optical carder to generate microwave subcarrier. The phase shifts lead to the phase shift of subcarrier, thus the phase information is converted into phase information about microwave subcarrier. The optical phase-shift-keying signals at 1.3 Gb/s, 2.7 Gb/s, 2 Gb/s are converted into microwave subcarrier phase modulation signal, and the single sideband phase noise is measured. By logically comparing the

  13. A tunable and wideband microwave photonic phase shifter based on dual-polarization modulator

    Science.gov (United States)

    Peng, Zhengxue; Wen, Aijun; Gao, Yongsheng; Tu, Zhaoyang

    2017-01-01

    A microwave photonic phase shifter based on dual-polarization Mach-Zehnder modulator (DPol-MZM) is proposed and experimentally demonstrated in this paper. A polarization multiplexed double sideband (DSB) signal is produced by a DPol-MZM. An optical bandpass filter (OBPF) follows after the DPol-MZM to filter out the optical carrier and one sideband. The polarization multiplexed signal is converted into a linear polarization light by a polarizer (Pol), and then beat at a photodiode (PD) to obtain the phase shifted signal. Experiments are carried out, and a continuous phase shift from -180° to 180° over a wide microwave frequency range of 10-33 GHz can be achieved by changing the polarization state using a polarization controller (PC). We also studied the spurious free dynamic range (SFDR) in the experiments. The features of this proposed phase shifter are large operation bandwidth, full-range 360° phase shift, and simple structure.

  14. Theoretical and exp erimental investigation on the narrow-linewidth photonic microwave generation based on parallel polarized optically injected 1550 nm vertical-cavity surface-emitting laser%基于平行偏振光注入的1550 nm波段垂直腔表面发射激光器获取窄线宽光子微波的理论和实验研究∗

    Institute of Scientific and Technical Information of China (English)

    孙波; 吴加贵; 王顺天; 吴正茂; 夏光琼

    2016-01-01

    Photonic microwave generation has attracted much attention in recent years due to its potential applications in various fields such as radio-over-fiber communication, signal processing and radar systems. So far, different photonic microwave generation schemes have been proposed and investigated, such as the optical heterodyne method based on the beat of two independent lasers with a certain wavelength difference, the external modulation method based on electro-optical modulator, the dual-mode beat method based on the monolithic dual-mode semiconductor lasers, and the optoelectronic microwave oscillator method based on optoelectronic feedback loops. These schemes have their own advantages and deficiencies. Unlike the above schemes, in this paper we propose an all optical scheme for generating high-quality microwave based on a 1550 nm vertical-cavity surface-emitting laser (1550 nm-VCSEL). For such a scheme, high frequency microwave can be obtained based on a 1550 nm-VCSEL subjected to external optical injection, where the polarization of the injected light is the same as that of the dominant mode of the free-running 1550 nm-VCSEL (named parallel-polarized optical injection) and its wavelength is adjusted to being close to the wavelength of the suppressed polarization mode of the free-running 1550 nm-VCSEL. With the aid of double optical feedback, the linewidth of the obtained microwave can be narrowed. In this work, firstly, the feasibility of microwave generation based on parallel-polarized optically injected 1550 nm-VCSEL is analyzed theoretically by using the spin-flip model. Next, a corresponding experimental system is constructed, and the performance of microwave generation is preliminarily investigated experi-mentally. The experimental results show that 30 GHz microwave signals could be obtained based on a parallel-polarized, optically injected 1550 nm-VCSEL under suitable injection parameters, but the linewidth of microwave signal is relatively wide (hundreds

  15. Frequency-stabilization of mode-locked laser-based photonic microwave oscillator

    Science.gov (United States)

    Yu, Nan; Tu, Meirong; Salik, Ertan; Maleki, Lute

    2005-01-01

    In this paper, we will describe our recent phase-noise measurements of photonic microwave oscillators. We will aslo discuss our investigation of the frequency stability link between the optical and microwave frequencies in the coupled oscillator.

  16. Bidirectional conversion between microwave and light via ferromagnetic magnons

    Science.gov (United States)

    Hisatomi, R.; Osada, A.; Tabuchi, Y.; Ishikawa, T.; Noguchi, A.; Yamazaki, R.; Usami, K.; Nakamura, Y.

    2016-05-01

    Coherent conversion of microwave and optical photons in the single quantum level can significantly expand our ability to process signals in various fields. Efficient up-conversion of a feeble signal in the microwave domain to the optical domain will lead to quantum-noise-limited microwave amplifiers. Coherent exchange between optical photons and microwave photons will also be a stepping stone to realize long-distance quantum communication. Here we demonstrate bidirectional and coherent conversion between microwave and light using collective spin excitations in a ferromagnet. The converter consists of two harmonic oscillator modes, a microwave cavity mode and a magnetostatic mode called the Kittel mode, where microwave photons and magnons in the respective modes are strongly coupled and hybridized. An itinerant microwave field and a traveling optical field can be coupled through the hybrid system, where the microwave field is coupled to the hybrid system through the cavity mode, while the optical field addresses the hybrid system through the Kittel mode via Faraday and inverse Faraday effects. The conversion efficiency is theoretically analyzed and experimentally evaluated. The possible schemes for improving the efficiency are also discussed.

  17. Parallel microwave chemistry in silicon carbide reactor platforms: an in-depth investigation into heating characteristics.

    Science.gov (United States)

    Damm, Markus; Kappe, C Oliver

    2009-11-01

    The heating behavior of silicon carbide reaction platforms under 2.45 GHz microwave irradiation was investigated with the aid of online thermoimaging cameras and multiple-channel fiber-optic probe temperature sensors placed inside the wells/vials of the silicon carbide microtiter plates. Microwave irradiation leads to a rapid and homogeneous heating of the entire plate, with minimal deviations in the temperature recorded at different positions of the plate or inside the wells. In temperature-controlled experiments using dedicated multimode reactors, solvents with different microwave absorption characteristics can be heated in parallel in individual wells/vials of the silicon carbide plate reaching the same set temperature. Due to the large heat capacity and high thermal conductivity of silicon carbide, the plates are able to moderate any field inhomogeneities inside a microwave cavity. Although the heating of the plates can be performed extremely efficiently inside a microwave reactor, heating and synthetic applications can alternatively be carried out by applying conventional conductive heating of the silicon carbide plates on a standard hotplate. Due to the slower heating of the silicon carbide material under these conditions, somewhat longer reaction times will be required.

  18. Coherent resonant Ka-band photonic microwave receiver

    CERN Document Server

    Ilchenko, Vladimir S; Savchenkov, Anatoliy A; Seidel, David; Matsko, Andrey B; Maleki, Lute

    2008-01-01

    We propose theoretically and demonstrate experimentally a coherent microwave photonic receiver operating at 35 GHz carrier frequency. The device is based on a lithium niobate or lithium tantalate optical whispering gallery mode resonator coupled to a microwave strip line resonator. Microwave local oscillator is fed into the microwave resonator along with the microwave signal. We show that the sensitivity of this receiver significantly exceeds the sensitivity of the incoherent quadratic receiver based on the same technology. The coherent receiver can possess a dynamic range in excess of 100 dB in 5 MHz band if a low noise laser is utilized.

  19. INFLUENCE OF CHROMATIC DISPERSION, DISPERSION SLOPE, DISPERSION CURVATURE ON MICROWAVE GENERATION USING TWO CASCADE MODULATORS

    OpenAIRE

    Mandeep Singh; S.K. Raghuwanshi

    2013-01-01

    This work presents a theoretical study of harmonic generation of microwave signals after detection of a modulated optical carrier in cascaded two electro-optic modulators. Dispersion is one of the major limiting factors for microwave generation in microwave photonics. In this paper, we analyze influence of chromatic dispersion, dispersion slope, dispersion curvature on microwave generation using two cascaded MZMs and it has been found that output intensity of photodetector reduces when disper...

  20. Optical beam forming for phased-array antennas

    NARCIS (Netherlands)

    Meijerink, A.; Roeloffzen, C.G.H.; Zhuang, L.; Marpaung, D.A.I.; Heideman, R.G.; Borreman, A.; Etten, van W.

    2007-01-01

    The activities of the Telecommunication Engineering (TE) group span the communications spectrum from copper cables, optical fibres, microwaves, radio and electromagnetic compatibility. Our research concentrates on optical signal processing and networks, mobile communications, microwave techniques an

  1. Compact Microwave Fourier Spectrum Analyzer

    Science.gov (United States)

    Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry

    2009-01-01

    A compact photonic microwave Fourier spectrum analyzer [a Fourier-transform microwave spectrometer, (FTMWS)] with no moving parts has been proposed for use in remote sensing of weak, natural microwave emissions from the surfaces and atmospheres of planets to enable remote analysis and determination of chemical composition and abundances of critical molecular constituents in space. The instrument is based on a Bessel beam (light modes with non-zero angular momenta) fiber-optic elements. It features low power consumption, low mass, and high resolution, without a need for any cryogenics, beyond what is achievable by the current state-of-the-art in space instruments. The instrument can also be used in a wide-band scatterometer mode in active radar systems.

  2. Microwave power engineering applications

    CERN Document Server

    Okress, Ernest C

    2013-01-01

    Microwave Power Engineering, Volume 2: Applications introduces the electronics technology of microwave power and its applications. This technology emphasizes microwave electronics for direct power utilization and transmission purposes. This volume presents the accomplishments with respect to components, systems, and applications and their prevailing limitations in the light of knowledge of the microwave power technology. The applications discussed include the microwave heating and other processes of materials, which utilize the magnetron predominantly. Other applications include microwave ioni

  3. Advances in microwaves 8

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 8 covers the developments in the study of microwaves. The book discusses the circuit forms for microwave integrated circuits; the analysis of microstrip transmission lines; and the use of lumped elements in microwave integrated circuits. The text also describes the microwave properties of ferrimagnetic materials, as well as their interaction with electromagnetic waves propagating in bounded waveguiding structures. The integration techniques useful at high frequencies; material technology for microwave integrated circuits; specific requirements on technology for d

  4. Fiber-Optic Optical-Microwave Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Used to conduct programs of basic science and applied research in the development of laser sources, high-power fiber amplifiers, photonic control of phased...

  5. Microwave-Assisted Rapid Enzymatic Synthesis of Nucleic Acids.

    Science.gov (United States)

    Hari Das, Rakha; Ahirwar, Rajesh; Kumar, Saroj; Nahar, Pradip

    2016-07-02

    Herein we report microwave-induced enhancement of the reactions catalyzed by Escherichia coli DNA polymerase I and avian myeloblastosis virus-reverse transcriptase. The reactions induced by microwaves result in a highly selective synthesis of nucleic acids in 10-50 seconds. In contrast, same reactions failed to give desired reaction products when carried out in the same time periods, but without microwave irradiation. Each of the reactions was carried out for different duration of microwave exposure time to find the optimum reaction time. The products produced by the respective enzyme upon microwave irradiation of the reaction mixtures were identical to that produced by the conventional procedures. As the microwave-assisted reactions are rapid, microwave could be a useful alternative to the conventional and time consuming procedures of enzymatic synthesis of nucleic acids.

  6. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Ninth Edition Optics: Ninth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommen

  7. Optical and morphological properties of ZnO- and TiO2-derived nanostructures synthesized via a microwave-assisted hydrothermal method

    CSIR Research Space (South Africa)

    Moloto, N

    2012-01-01

    Full Text Available A microwave-assisted hydrothermal method was used to synthesize ZnO and TiO2 nanostructures. The experimental results show that the method resulted in crystalline monodispersed ZnO nanorods that have pointed tips with hexagonal crystal phase. TiO2...

  8. Microwave chirality discrimination in enantiomeric liquids

    Science.gov (United States)

    Hollander, E.; Kamenetskii, E. O.; Shavit, R.

    2017-07-01

    Chirality discrimination is of fundamental interest in biology, chemistry, and metamaterial studies. In optics, near-field plasmon-resonance spectroscopy with superchiral probing fields is effectively applicable for analyses of large biomolecules with chiral properties. We show possibility for microwave near-field chirality discrimination analysis based on magnon-resonance spectroscopy. Newly developed capabilities in microwave sensing using magnetoelectric (ME) probing fields originated from multiresonance magnetic-dipolar-mode oscillations in quasi-2D yttrium-iron-garnet disks provide potential for unprecedented measurements of chemical and biological objects. We report on microwave near-field chirality discrimination for aqueous D- and L-glucose solutions. The shown ME-field sensing is addressed to deepen our understanding of microwave-biosystem interactions. It can also be important for an analysis and design of microwave chiral metamaterials.

  9. Microwave torch. Physics and applications.

    Science.gov (United States)

    Gritsinin, Sergei; Knyazev, Vitalii; Kossyi, Igor

    2004-09-01

    New construction of a coaxial microwave torch (CMT) has been developed, tested and investigated. CMT provides a means for plasma stream production virtually in all gases and gaseous mixture flow at atmospheric pressure. A broad spectrum of diagnostics has been applied including microwave and laser interferometry, optical active and absorptive spectroscopy, laser holographic interferometry, microwave radiation detection, high-speed photography, etc. The time evolution of the torch operating in the pulsed mode is considered. It has been revealed that the evolution is different in noble and molecular gases. The characteristic feature of torches in noble gases is a dense core with plasma density no less than 1016 cm-3. Plasma bunches with density of 1014-1015 cm-3 successively propagate downstream from this core, which are seen as glow bursts. In molecular gases, the core is absent and the torch is formed by propagating plasma bunches. By optical diagnostics application temperature of neutral component of microwave torch has been determined. With high efficiency energy of microwave radiation comes into gas heating. Gas temperature is maximal near the nozzle (4,5 - 5,0 kK) and falls down in axial direction (to 2,5 - 3,0 kK). Torch is thermally-non-equilibrium plasma formation capable of significant change of working and surrounding gaseous state. Peculiarities of discharge development and maintenance are under discussion as well as possibilities to use microwave torch as a spaceborne plasma source, combustion ignitor, mean for nanoparticles production, different plasmachemical applications etc. Contact information: Mailing address: Prof. I.A.Kossyi General Physics Institute, 119991, Vavilov Street 38 Moscow, Russia Tel.: 7(095)135-41-65; Fax: 7(095)135-80-11 E-mail: kossyi@fpl.gpi.ru

  10. "Christian carrying goomies".

    Science.gov (United States)

    1994-01-01

    Dr. Passingan Usurup tells critics of his pragmatic approach on condom promotion that he is a Christian carrying condoms for Christ. He is head of the University of Papua New Guinea Medical Center and is credited with developing an AIDS/HIV policy for the Papua New Guinea Defence Force. The condoms were named Goomy and promoted at launching in 1992 in a blue packet under the slogan "The bond that guards." Goomy was chosen as the name because it is pidgin for rubber, chewing gum, and anything associated with rubber. Blue packets were chosen over the calls of most soldiers for a camouflage design because of its universal appeal as the color of the sea and sky and because it was the preference of women in the airlines. Once firmly ensconced in his role at the University, Usurup plans to develop a policy for students and staff and help to conduct AIDS prevention and education activities on campus. He will encourage students to test for HIV rather than highlighting the gloom and doom of infection and disease.

  11. Acceleration of Organic Reactions Using Microwave

    Institute of Scientific and Technical Information of China (English)

    Lu Ta-Jung

    2004-01-01

    The use of microwave technology in accelerating organic reactions has received intense attention leading to immense growth recently. Accordingly, we have been interested in improving the efficacy of organic processes by microwave irradiation. Here we report our results on the microwave assisted direct amide formation from carboxylic acid and amine, the hydrolysis of biopolymers, and nucleophilic aromatic substitution reaction. The reactions carried out under microwave irradiation, in general, required considerably less reaction time and afforded the desired products in higher yields than those under classical conditions. In all the cases we have studied, the procedures are simplified, the purity of the products are higher, and the cost of reaction is greatly reduced employing microwave.

  12. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Eighth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommended for engineering st

  13. Microwave propagation characteristics under subtropical environment

    Science.gov (United States)

    Sen, Sukla

    The LOS microwave communication is still in existence in many parts of the world. In a well designed link, the radio waves transmitted from the transmitter reaches the receiver with no deterioration in signal quality, but sometimes it is seen that the radio signal while passing through the medium gets degraded and may at times be lost. As the reception quality of the radio signal is controlled by the environment through which the radio signal propagates, it has been an interesting topic of research since the first installation of LOS link. Though, with the advent of optical communications this mode of propagation is believed to have lost its importance, the operation of LOS links are still very much in existence in this country. So a look on the operational reliability and predictability of the microwave hops is worth noting. Degradation of such signal is always measured in terms of attenuation and fading and prediction reliability of such signal is very important, and as a result a number of models with these aims have been developed. But even with all these models and volume of information, there is no single model that can provide a flawless link prediction at different terrain and environmental situations. Such studies also help in understanding the basic physics of the system and more so the coupling processes between earth and the near earth environment as the North Eastern region of India has varied tropospheric and topological characters, a single model will not be sufficient to study and analyse the attenuation or enhancement of microwave signal energy at the receiving end. Very little theoretical and experimental work has been carried out over this region, as a result the necessity arises to develop models to improve the quality of signal reception. The aims of this work is based on these facts. For this purpose, links under study are so selected, they have almost same hop length, same topology but located at different situations. 1. Milmilia

  14. Detecting itinerant single microwave photons

    Science.gov (United States)

    Sathyamoorthy, Sankar Raman; Stace, Thomas M.; Johansson, Göran

    2016-08-01

    Single-photon detectors are fundamental tools of investigation in quantum optics and play a central role in measurement theory and quantum informatics. Photodetectors based on different technologies exist at optical frequencies and much effort is currently being spent on pushing their efficiencies to meet the demands coming from the quantum computing and quantum communication proposals. In the microwave regime, however, a single-photon detector has remained elusive, although several theoretical proposals have been put forth. In this article, we review these recent proposals, especially focusing on non-destructive detectors of propagating microwave photons. These detection schemes using superconducting artificial atoms can reach detection efficiencies of 90% with the existing technologies and are ripe for experimental investigations.

  15. High-Power Microwave Transmission and Mode Conversion Program

    Energy Technology Data Exchange (ETDEWEB)

    Vernon, Ronald J. [Univ. of Wisconsin, Madison, WI (United States)

    2015-08-14

    This is a final technical report for a long term project to develop improved designs and design tools for the microwave hardware and components associated with the DOE Plasma Fusion Program. We have developed basic theory, software, fabrication techniques, and low-power measurement techniques for the design of microwave hardware associated gyrotrons, microwave mode converters and high-power microwave transmission lines. Specifically, in this report we discuss our work on designing quasi-optical mode converters for single and multiple frequencies, a new method for the analysis of perturbed-wall waveguide mode converters, perturbed-wall launcher design for TE0n mode gyrotrons, quasi-optical traveling-wave resonator design for high-power testing of microwave components, and possible improvements to the HSX microwave transmission line.

  16. Practical microwave electron devices

    CERN Document Server

    Meurant, Gerard

    2013-01-01

    Practical Microwave Electron Devices provides an understanding of microwave electron devices and their applications. All areas of microwave electron devices are covered. These include microwave solid-state devices, including popular microwave transistors and both passive and active diodes; quantum electron devices; thermionic devices (including relativistic thermionic devices); and ferrimagnetic electron devices. The design of each of these devices is discussed as well as their applications, including oscillation, amplification, switching, modulation, demodulation, and parametric interactions.

  17. Solvent-free Synthesis of Thiohydantoin Derivatives with Microwave Activation

    Institute of Scientific and Technical Information of China (English)

    LI Jian-ping; MA Chun-ming; QU Gui-rong

    2004-01-01

    The application of microwave techniques for chemical synthesis has attached considerable interests in recent years because of their enhanced selectivity, reduced reaction time ,easier work-up procedure. The synthesis of thiohydantoin derivatives is useful because they display a wide range of biological activities, including anticonvulsant1, antitumor2, antinociceptive3,thyroxine ingibitory properties4, as well as herbicidal and fungicidal reagents5. Recent studies have shown that some used as synthetic precursor of the marine natural product dispacamide6, and some used to synthesis novel optically active poly(amide-imide)s7. Therefore, many methods of synthesis of thiohydantoins have been explored8~10. Generally, these reactions were carried out in solution and using volatile and poisonous solvent, with long reaction time.In order to overcome the disadvantages discussed above, avoid the use of a solvent and synthesize these valuable compounds rapidly and efficiently, we investigated a new way---solvent-free synthesis using a microwave oven.In this paper, a new and rapid solvent-free synthesis of thiohydantoins with microwave activation was studied. It was found that the addition reaction of aryl isothiocyanates and amino acid in the presence of sodium hydroxide and the cyclizative condensation of adduct in the presence of sodium hydrogen sulphate in a microwave oven takes place quickly.By this new method, twelve thiohydantoins have been synthesized in excellent yield(83~91%).This method has significant advantages such as operational simplicity, shorter reaction time, higher yields and environmental acceptability. The structures of the products were characterized by IR, MS,1H NMR, 13C NMR and elemental analysis. And more detailed work about the application of the thiohydantoins in analytical chemistry and physiological activity is in progress in our laboratory.

  18. Microwave Hanle effect in Rydberg atoms

    Science.gov (United States)

    Ryabtsev, Igor I.; Tretyakov, Denis B.

    2001-09-01

    A microwave analog of the interference Hanle effect has been studied in sodium Rydberg atoms. Spontaneous emission of the microwave transition 37P3/2-->37S1/2 at 70.166 GHz was replaced by an induced transition from a pulsed microwave source. A dependence of population of the 37S1/2 state on the magnetic field was recorded in various conditions. Good agreement with the theoretical calculations has been found. The widths and shapes of observed resonances were defined by the spectral widths of the pulsed microwave radiation and parameters of laser excitation of the initial 37P3/2 state. The quantum beats of magnetic sublevels appeared in the signals when the polarization of exciting laser emission was orthogonal to the magnetic field, and the interference occurred in the scheme of transitions similar to the Mach-Zehnder optical interferometer.

  19. High-Frequency Microwave Processing of Materials Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Conducts research on high-frequency microwave processing of materials using a highpower, continuous-wave (CW), 83-GHz, quasi-optical beam system for rapid,...

  20. DESIGN OF OPTIMAL CARRY SKIP ADDER AND CARRY SKIP BCD ADDER USING REVERSIBLE LOGIC GATES

    OpenAIRE

    Praveena Murugesan; Thanushkodi Keppanagounder

    2014-01-01

    Reversible logic circuits have the ability to produce zero power dissipation which has found its importance in quantum computing, optical computing and low power digital circuits. The study presents improved and efficient reversible logic circuits for carry skip adder and carry skip BCD adder. The performance of the proposed architecture is better than the existing works in terms of gate count, garbage outputs and constant inputs. This design forms the basis for different quantum ALU and embe...

  1. Magnetometer Based on Optoelectronic Microwave Oscillator

    Science.gov (United States)

    Maleki, Lute; Strekalov, Dmitry; Matsko, Andrey

    2005-01-01

    proposed instrument, intended mainly for use as a magnetometer, would include an optoelectronic oscillator (OEO) stabilized by an atomic cell that could play the role of a magnetically tunable microwave filter. The microwave frequency would vary with the magnetic field in the cell, thereby providing an indication of the magnetic field. The proposed magnetometer would offer a combination of high accuracy and high sensitivity, characterized by flux densities of less than a picotesla. In comparison with prior magnetometers, the proposed magnetometer could, in principle, be constructed as a compact, lightweight instrument: It could fit into a package of about 10 by 10 by 10 cm and would have a mass <0.5 kg. As described in several prior NASA Tech Briefs articles, an OEO is a hybrid of photonic and electronic components that generates highly spectrally pure microwave radiation, and optical radiation modulated by the microwave radiation, through direct conversion between laser light and microwave radiation in an optoelectronic feedback loop. As used here, "atomic cell" signifies a cell containing a vapor, the constituent atoms of which can be made to undergo transitions between quantum states, denoted hyperfine levels, when excited by light in a suitable wavelength range. The laser light must be in this range. The energy difference between the hyperfine levels defines the microwave frequency. In the proposed instrument (see figure), light from a laser would be introduced into an electro-optical modulator (EOM). Amplitude-modulated light from the exit port of the EOM would pass through a fiber-optic splitter having two output branches. The light in one branch would be sent through an atomic cell to a photodiode. The light in the other branch would constitute the microwave-modulated optical output. Part of the light leaving the atomic cell could also be used to stabilize the laser at a frequency in the vicinity of the desired hyperfine or other quantum transition. The

  2. Microwave-induced thermogenetic activation of single cells

    Energy Technology Data Exchange (ETDEWEB)

    Safronov, N. A. [Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Fedotov, I. V. [Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States); Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 143025 (Russian Federation); Ermakova, Yu. G.; Matlashov, M. E.; Belousov, V. V. [M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997 (Russian Federation); Sidorov-Biryukov, D. A.; Fedotov, A. B. [Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 143025 (Russian Federation); Zheltikov, A. M. [Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States); Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 143025 (Russian Federation); Kurchatov Institute National Research Center, Moscow 123182 (Russian Federation)

    2015-04-20

    Exposure to a microwave field is shown to enable thermogenetic activation of individual cells in a culture of cell expressing thermosensitive ion channels. Integration of a microwave transmission line with an optical fiber and a diamond quantum thermometer has been shown to allow thermogenetic single-cell activation to be combined with accurate local online temperature measurements based on an optical detection of electron spin resonance in nitrogen–vacancy centers in diamond.

  3. On fast carry select adders

    Science.gov (United States)

    Shamanna, M.; Whitaker, S.

    1992-01-01

    This paper presents an architecture for a high-speed carry select adder with very long bit lengths utilizing a conflict-free bypass scheme. The proposed scheme has almost half the number of transistors and is faster than a conventional carry select adder. A comparative study is also made between the proposed adder and a Manchester carry chain adder which shows that the proposed scheme has the same transistor count, without suffering any performance degradation, compared to the Manchester carry chain adder.

  4. On fast carry select adders

    Science.gov (United States)

    Shamanna, M.; Whitaker, S.

    This paper presents an architecture for a high-speed carry select adder with very long bit lengths utilizing a conflict-free bypass scheme. The proposed scheme has almost half the number of transistors and is faster than a conventional carry select adder. A comparative study is also made between the proposed adder and a Manchester carry chain adder which shows that the proposed scheme has the same transistor count, without suffering any performance degradation, compared to the Manchester carry chain adder.

  5. Comparative evaluation of surface porosities in conventional heat polymerized acrylic resin cured by water bath and microwave energy with microwavable acrylic resin cured by microwave energy

    Directory of Open Access Journals (Sweden)

    Sunint Singh

    2013-01-01

    Full Text Available Background: Conventional heat cure poly methyl methacrylate (PMMA is the most commonly used denture base resin despite having some short comings. Lengthy polymerization time being one of them and in order to overcome this fact microwave curing method was recommended. Unavailability of specially designed microwavable acrylic resin made it unpopular. Therefore, in this study, conventional heat cure PMMA was polymerized by microwave energy. Aim and Objectives: This study was designed to evaluate the surface porosities in PMMA cured by conventional water bath and microwave energy and compare it with microwavable acrylic resin cured by microwave energy. Materials and Methods: Wax samples were obtained by pouring molten wax into a metal mold of 25 mm × 12 mm × 3 mm dimensions. These samples were divided into three groups namely C, CM, and M. Group C denotes conventional heat cure PMMA cured by water bath method, CM denotes conventional heat cure PMMA cured by microwave energy, M denotes specially designed microwavable acrylic denture base resin cured by microwave energy. After polymerization, each sample was scanned in three pre-marked areas for surface porosities using the optical microscope. As per the literature available, this instrument is being used for the first time to measure the porosity in acrylic resin. It is a reliable method of measuring area of surface pores. Portion of the sample being scanned is displayed on the computer and with the help of software area of each pore was measured and data were analyzed. Results: Conventional heat cure PMMA samples cured by microwave energy showed maximum porosities than the samples cured by conventional water bath method and microwavable acrylic resin cured by microwave energy. Higher percentage of porosities was statistically significant, but well within the range to be clinically acceptable. Conclusion: Within the limitations of this in-vitro study, conventional heat cure PMMA can be cured by

  6. Microwave Breast Imaging Techniques

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Rubæk, Tonny

    2010-01-01

    This paper outlines the applicability of microwave radiation for breast cancer detection. Microwave imaging systems are categorized based on their hardware architecture. The advantages and disadvantages of various imaging techniques are discussed. The fundamental tradeoffs are indicated between v...

  7. Microwave Breast Imaging Techniques

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Rubæk, Tonny

    2010-01-01

    This paper outlines the applicability of microwave radiation for breast cancer detection. Microwave imaging systems are categorized based on their hardware architecture. The advantages and disadvantages of various imaging techniques are discussed. The fundamental tradeoffs are indicated between...

  8. The microwave effects on the properties of alumina at high frequencies of microwave sintering

    Science.gov (United States)

    Sudiana, I. Nyoman; Mitsudo, Seitaro; Sako, Katsuhide; Inagaki, Shunsuke; Ngkoimani, La Ode; Usman, Ida; Aripin, H.

    2016-03-01

    Microwave sintering of materials has attracted much research interest because of its significant advantages (e.g. reduced sintering temperatures and soaking times) over the conventional heating. Most researchers compared processes that occurred during the microwave and conventional heating at the same temperature and time. The enhancements found in the former method are indicated as a `non-thermal effect` which is usually used for explaining the phenomena in microwave processing. Numerous recent studies have been focused on the effect to elucidate the microwave interaction mechanism with materials. Moreover, recent progress on microwave sources such as gyrotrons has opened the possibility for processing materials by using a higher microwave frequency. Therefore, the technology is expected to exhibit a stronger non-thermal effect. This paper presents results from a series of experiments to study the non-thermal effect on microwave sintered alumina. Sintering by using a wide rage of microwave frequencies up to 300 GHz as well as a conventional furnace was carried out. The linear shrinkages of samples for each sintering method were measured. Pores and grains taken from scanning electron microstructure (SEM) images of cut surfaces were also examined. The results of a comparative study of the shrinkages and microstructure evolutions of the sintered samples under annealing in microwave heating systems and in an electric furnace were analyzed. A notably different behavior of the shrinkages and microstructures of alumina after being annealed was found. The results suggested that microwave radiations provided an additional force for mass transports. The results also indicated that the sintering process depended on microwave frequencies.

  9. The microwave effects on the properties of alumina at high frequencies of microwave sintering

    Energy Technology Data Exchange (ETDEWEB)

    Sudiana, I. Nyoman, E-mail: sudiana75@yahoo.com; Ngkoimani, La Ode; Usman, Ida [Department of Physics, Faculty of Mathematic and Natural Science, Halu Oleo University, Kampus Bumi Tridharma Anduonohu, Kendari 93232 (Indonesia); Mitsudo, Seitaro; Sako, Katsuhide; Inagaki, Shunsuke [Research Center for Development of Far-Infrared Region, University of Fukui, 3-9-1 Bunkyo, Fukui-shi 910-8507 (Japan); Aripin, H. [Center for Material Processing and Renewable Energy, Faculty of Learning Teacher and Education Science, Siliwangi University, Jl. Siliwangi 24 Tasikmalaya 46115, West Java (Indonesia)

    2016-03-11

    Microwave sintering of materials has attracted much research interest because of its significant advantages (e.g. reduced sintering temperatures and soaking times) over the conventional heating. Most researchers compared processes that occurred during the microwave and conventional heating at the same temperature and time. The enhancements found in the former method are indicated as a 'non-thermal effect' which is usually used for explaining the phenomena in microwave processing. Numerous recent studies have been focused on the effect to elucidate the microwave interaction mechanism with materials. Moreover, recent progress on microwave sources such as gyrotrons has opened the possibility for processing materials by using a higher microwave frequency. Therefore, the technology is expected to exhibit a stronger non-thermal effect. This paper presents results from a series of experiments to study the non-thermal effect on microwave sintered alumina. Sintering by using a wide rage of microwave frequencies up to 300 GHz as well as a conventional furnace was carried out. The linear shrinkages of samples for each sintering method were measured. Pores and grains taken from scanning electron microstructure (SEM) images of cut surfaces were also examined. The results of a comparative study of the shrinkages and microstructure evolutions of the sintered samples under annealing in microwave heating systems and in an electric furnace were analyzed. A notably different behavior of the shrinkages and microstructures of alumina after being annealed was found. The results suggested that microwave radiations provided an additional force for mass transports. The results also indicated that the sintering process depended on microwave frequencies.

  10. One-pot microwave assisted approach for synthesis of CdSe/CdS core-shell quantum dots (QDs) and investigating optical properties

    Science.gov (United States)

    Molaei, M.; Bardsiri, F. Salari; Bahador, A. R.; Karimipour, M.

    2016-02-01

    In this work, CdSe QDs were synthesized using a microwave assisted method and chemical reaction between NaHSe, CdSO4 at the presence of TGA as capping molecule. Thereafter without CdSe extraction, CdS shell was grown subsequently around CdSe cores by a reaction based on the heat sensitivity of Na2S2O3 dissociation. Synthesized QDs were characterized by means of X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), UV-Vis and photoluminescence (PL) spectroscopy. All of these analyzes confirmed formation of CdSe QDs and successfully growth of CdS shell on surface of CdSe to forming CdSe/CdS core-shell structure.

  11. Advances in microwaves 7

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 7 covers the developments in the study of microwaves. The book discusses the effect of surface roughness on the propagation of the TEM mode, as well as the voltage breakdown of microwave antennas. The text also describes the theory and design considerations of single slotted-waveguide linear arrays and the techniques and theories that led to the achievement of wide bandwidths and ultralow noise temperatures for communication applications. The book will prove invaluable to microwave engineers.

  12. Magnetoelectric fields for microwave chirality discrimination in enantiomeric liquids

    CERN Document Server

    Hollander, E; Shavit, R

    2016-01-01

    Chirality discrimination is of a fundamental interest in biology, chemistry, and metamaterial studies. In optics, near-field plasmon-resonance spectroscopy with superchiral probing fields is effectively applicable for analyses of large biomolecules with chiral properties. We show possibility for microwave near-field chirality discrimination analysis based on magnon-resonance spectroscopy. Newly developed capabilities in microwave sensing using magnetoelectric (ME) probing fields originated from multiresonance magnetic-dipolar-mode (MDM) oscillations in quasi-2D yttrium-iron-garnet (YIG) disks, provide a potential for unprecedented measurements of chemical and biological objects. We report on microwave near-field chirality discrimination for aqueous D- and L-glucose solutions. The shown ME-field sensing is addressed to microwave biomedical diagnostics and pathogen detection and to deepening our understanding of microwave-biosystem interactions. It can be also important for an analysis and design of microwave c...

  13. Spectral hole burning and its application in microwave photonics

    Science.gov (United States)

    Putz, Stefan; Angerer, Andreas; Krimer, Dmitry O.; Glattauer, Ralph; Munro, William J.; Rotter, Stefan; Schmiedmayer, Jörg; Majer, Johannes

    2017-01-01

    Spectral hole burning, used in inhomogeneously broadened emitters, is a well-established optical technique, with applications from spectroscopy to slow light and frequency combs. In microwave photonics, electron spin ensembles are candidates for use as quantum memories with potentially long storage times. Here, we demonstrate long-lived collective dark states by spectral hole burning in the microwave regime. The coherence time in our hybrid quantum system (nitrogen-vacancy centres strongly coupled to a superconducting microwave cavity) becomes longer than both the ensemble's free-induction decay and the bare cavity dissipation rate. The hybrid quantum system thus performs better than its individual subcomponents. This opens the way for long-lived quantum multimode memories, solid-state microwave frequency combs, spin squeezed states, optical-to-microwave quantum transducers and novel metamaterials. Beyond these, new cavity quantum electrodynamics experiments will be possible where spin-spin interactions and many-body phenomena are directly accessible.

  14. Microwave Radiometer (MWR) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Morris, VR

    2006-08-01

    The Microwave Radiometer (MWR) provides time-series measurements of column-integrated amounts of water vapor and liquid water. The instrument itself is essentially a sensitive microwave receiver. That is, it is tuned to measure the microwave emissions of the vapor and liquid water molecules in the atmosphere at specific frequencies.

  15. Nonlinearities in Microwave Superconductivity

    OpenAIRE

    Ledenyov, Dimitri O.; Ledenyov, Viktor O.

    2012-01-01

    The research is focused on the modeling of nonlinear properties of High Temperature Superconducting (HTS) thin films, using Bardeen, Cooper, Schrieffer and Lumped Element Circuit theories, with purpose to enhance microwave power handling capabilities of microwave filters and optimize design of microwave circuits in micro- and nano- electronics.

  16. Surface modification of plasmonic nanostructured materials with thiolated oligonucleotides in 10 seconds using selective microwave heating

    Energy Technology Data Exchange (ETDEWEB)

    Abel, B.; Aslan, K. [Morgan State University, Department of Chemistry, 1700 East Cold Spring Lane, Baltimore, MD 21251 (United States)

    2012-11-15

    This study demonstrates the proof-of-principle of rapid surface modification of plasmonic nanostructured materials with oligonucleotides using low power microwave heating. Due to their interesting optical and electronic properties, silver nanoparticle films (SNFs, 2 nm thick) deposited onto glass slides were used as the model plasmonic nanostructured materials. Rapid surface modification of SNFs with oligonucleotides was carried out using two strategies (1) Strategy 1: for ss-oligonucleotides, surface hybridization and (2) Strategy 2: for ds-oligonucleotides, solution hybridization, where the samples were exposed to 10, 15, 30 and 60 seconds microwave heating. To assess the efficacy of our new rapid surface modification technique, identical experiments carried out without the microwave heating (i.e., conventional method), which requires 24 hours for the completion of the identical steps. It was found that SNFs can be modified with ss- and ds-oligonucleotides in 10 seconds, which typically requires several hours of incubation time for the chemisorption of thiol groups on to the planar metal surface using conventional techniques. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Upgrading microwave telemetry data communications with an analog lightwave system

    Science.gov (United States)

    Reynolds, Harrell D., Jr.

    The work performed in replacing four microwave telemetry data communications systems with one single analog fiber-optics system at Edwards Air Force Base is described. The fiber-optic system used was initially designed for use in a television video system, and thus a method of aligning the fiber-optic system to meet the needs of the transmission system was required. The objectives were met by utilizing several well-known methods of AM and FM measurement techniques not yet described in the implementation of fiber-optic communications systems. After alignment, the system transmitted the already developed basebands as well as the original microwave equipment.

  18. Microwave combustion synthesis, structural, optical and magnetic properties of Zn{sub 1−x}Co{sub x}Al{sub 2}O{sub 4} (0 ⩽ x ⩽ 0.5) spinel nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Anand, G. Theophil [Materials Division, School of Advanced Sciences, Vellore Institute of Technology (VIT) University, Chennai Campus, Chennai 600 127, Tamil Nadu (India); Department of Physics and Abraham Panampara Research Center (APRC), Sacred Heart College (Autonomous), Tirupattur 635 601, Tamil Nadu (India); Kennedy, L. John, E-mail: jklsac14@yahoo.co.in [Materials Division, School of Advanced Sciences, Vellore Institute of Technology (VIT) University, Chennai Campus, Chennai 600 127, Tamil Nadu (India); Vijaya, J. Judith [Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College (Autonomous), Chennai 600 034, Tamil Nadu (India)

    2013-12-25

    Highlights: •Co doped ZnAl{sub 2}O{sub 4} nanostructures were synthesized by microwave combustion method. •The XRD patterns confirm the formation of single phase ZnAl{sub 2}O{sub 4} without impurities. •The direct band gap decreased with increasing Co{sup 2+} content from 5.01 to 2.89 eV. •Magnetic measurements revealed Co doped ZnAl{sub 2}O{sub 4} has superparamagnetic behavior. -- Abstract: Cobalt doped zinc aluminate spinel type nanostructures were synthesized by microwave combustion method. The structural, vibrational, optical, morphological and magnetic properties were studied by using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), diffuse reflectance spectroscopy (DRS), photoluminescence (PL), high resolution scanning electron microscopy (HR-SEM), energy dispersive X-ray diffraction (EDX) and vibrating sample magnetometry (VSM) respectively. The XRD patterns confirmed the formation of single phase ZnAl{sub 2}O{sub 4} cubic spinel without impurities. The lattice parameter increased from 8.081 to 8.116 Å with increasing Co{sup 2+} content. The average crystallite size of the nanoparticles estimated using Debey–Scherrer’s method was found to be in the range of 11.80–20.21 nm. The presence of tensile strain in the zinc aluminates was determined from Williamson–Hall (W–H) analysis. FT-IR spectra showed the vibrational stretching frequencies corresponding to the zinc aluminate spinel structure. The direct band gap estimated using Kubelka–Munk method decreased with increasing Co{sup 2+} content (5.01–2.89 eV), due to the formation of sub bands in between the energy gap. Optical absorption spectra confirmed the cobalt substitution by the occurrence of a triplet of bands at 542, 584, and 624 nm, which is the characteristic of Co{sup 2+} ions in the tetrahedral sites. For ZnAl{sub 2}O{sub 4} and Co substituted ZnAl{sub 2}O{sub 4}, PL spectra showed the emission bands in UV as well as in the visible regions, due to the

  19. Optimization of Optically Preamplified Inter-Satellite Microwave Photonics Links with Two Radio-Frequency Signals Input%两路输入前置光放大星间微波光子链路优化

    Institute of Scientific and Technical Information of China (English)

    朱子行; 赵尚弘; 赵辉; 李勇军; 楚兴春; 蒋炜; 侯睿; 王翔; 赵顾颢

    2013-01-01

    考虑到星间微波光子链路传输损耗大且多路微波信号之间交调干扰严重,利用前置光放大来提高链路的信号噪声失真比RSNDR.建立了两路输入前置光放大星间微波光子链路模型,推导出了RSNDR的解析表达式.通过优化马赫-曾德尔调制器的直流偏置相移,使得在给定输入射频信号功率条件下RSNDR最大,并进一步分析了前置光放大器参数对最优直流偏置相移和RSNDR的影响.仿真结果表明,前置光放大改变了影响RSNDR的主要因素,使信号放大的倍数大于噪声和三阶交调(IM3)放大的倍数,从而提高了链路的RSNDR.当前置光放大器增益为20 dB、噪声系数为3 dB时,最优的RSNDR比不加前置光放大器时提高24 dB.前置光放大器增益和噪声系数对最优的RSNDR影响很大,而对最优的直流偏置相移几乎无影响.%An optical preamplifier is utilized to improve the signal-to-noise and distortion ratio .RSNDR of inter-satellite microwave photonics links considering the large signal losses in distant propagation and serious deterioration caused by inter-modulation distortion. An optically preamplified inter-satellite microwave photonics links model with two radio-frequency (RF) signals input is established and an analytical expression of .RSNDR is derived. The direct current (DC) bias phase shift of modulator can be optimized so as to maximize the .RSNDR given the desired input RF signal power, and the effects of the optical preamplifier parameters on the optimum DC bias phase shift and .RSNDR are also examined. Simulation results show that the most limitative factors degrading the .RSNDR are changed, and the fundamental power is seen to increase more compared with the power of third-order intermodulation (IM3) plus noise due to optical preamplifier. Thus, .RSNDR can be improved with respect to the case of non-optical preamplifier. For the preamplifier gain of 20 dB and noise figure of 3 dB, an improvement of about

  20. Controlling microwave signals by means of slow and fast light effects in SOA-EA structures

    DEFF Research Database (Denmark)

    Sales, Salvador; Öhman, Filip; Capmany, José

    2007-01-01

    We present a novel scheme for the control of microwave signals in the optical domain. We propose the use of alternating amplifying and absorbing sections to implement phase control by using fast and slow light effects in semiconductors. The potential benefits from the proposed semiconductor optic...... microwave photonic filters....

  1. High brightness microwave lamp

    Science.gov (United States)

    Kirkpatrick, Douglas A.; Dolan, James T.; MacLennan, Donald A.; Turner, Brian P.; Simpson, James E.

    2003-09-09

    An electrodeless microwave discharge lamp includes a source of microwave energy, a microwave cavity, a structure configured to transmit the microwave energy from the source to the microwave cavity, a bulb disposed within the microwave cavity, the bulb including a discharge forming fill which emits light when excited by the microwave energy, and a reflector disposed within the microwave cavity, wherein the reflector defines a reflective cavity which encompasses the bulb within its volume and has an inside surface area which is sufficiently less than an inside surface area of the microwave cavity. A portion of the reflector may define a light emitting aperture which extends from a position closely spaced to the bulb to a light transmissive end of the microwave cavity. Preferably, at least a portion of the reflector is spaced from a wall of the microwave cavity. The lamp may be substantially sealed from environmental contamination. The cavity may include a dielectric material is a sufficient amount to require a reduction in the size of the cavity to support the desired resonant mode.

  2. The influence of narrow optical gap silver oxide on zinc oxide nanoparticles produced by microwave-assisted colloidal synthesis: photocatalytic studies

    Science.gov (United States)

    Prakoso, S. P.; Paramarta, V.; Tju, H.; Taufik, A.; Saleh, R.

    2016-11-01

    This paper reports a photocatalytic study on wide band gap zinc oxide (ZnO) incorporated by narrow band gap silver oxide (Ag2O), namely Ag2O/ZnO nanocomposites, which were prepared by colloidal synthesis with microwave supports. The Ag2O/ZnO nanocomposites were prepared with three different molar ratios (MR) of Ag2O to ZnO (MR: 0.25, 0.5 and 0.75). In order to confirm qualitatively the concentration ratio of Ag2O in ZnO, crystal phase intensity ratio was executed by peak indexing from x-ray diffraction. The Ag2O/ZnO nanocomposites properties were further investigated using diffuse reflectance spectroscopy. The nanocomposites were tested for the degradation of organic dyes solutions under visible and UV light irradiations. The photocatalytic activity of Ag2O/ZnO nanocomposites under visible light increased with increasing molar ratio of Ag2O to ZnO, while the opposite trends observed under UV light irradiation. The improvement of photoabsorption together with photocatalytic activities might be suspected due to the p-n heterojunction structure in Ag2O/ZnO nanocomposites. The corresponding mechanism will be discussed in detail.

  3. Determination of metal concentrations in certified plastic reference materials after small-size autoclave and microwave-assisted digestion followed with inductively coupled plasma optical emission spectrometry

    Science.gov (United States)

    Lehtimäki, Esa; Väisänen, Ari

    2017-01-01

    The digestion methods for the determination of As, Cd, Cr, Pb, Sb, Sn and Zn concentrations in plastic samples using microwave-assisted digestion (MW-AD) and small-size autoclave digestion was developed. The certified polyethylene, polypropylene, polyvinyl chloride and acrylonitrile butadiene styrene certified reference materials were used in order to find digestion method working properly for several sample matrices. Efficiency of the digestion methods was evaluated by analyzing the residual carbon in digests by TOC analyzer. MW-AD using a mixture of 7 mL of HNO3 and 3 mL of H2O2 as a digestion solution resulted in excellent recoveries for As, Cd, Pb, Sb and Zn, and were in the range of 92-107% for all the analytes except Pb in polyethylene material. Autoclave digestion using 5 mL of concentrated HNO3 as a digestion solution resulted in similar recoveries with the exception of a higher As recovery (98%). Tin recovery resulted in low level after both MW-AD and autoclave digestion. Autoclave digestion was further developed resulting in a partially open two-step digestion process especially for the determination of Sn and Cr. The method resulted in higher recoveries of Sn and Cr (87 and 76%) but with the lower concentration of easily volatile As, Cd and Sb.

  4. An Analysis of English Carrie

    Institute of Scientific and Technical Information of China (English)

    孙淑珍

    2004-01-01

    @@ Chapter Ⅰ Introduction Sitting in the rocking chair,Carrie dreams her future.This is the deep impression the novel"Sister Carrie"gives us,which is written by Theodore Dreiser(1871-1945),the great American realism writer.

  5. Continuous Microwave Excitation of Excimer Lamps.

    Science.gov (United States)

    Hassal, Scott Bradley

    1991-01-01

    For decades, microwaves have been used to create gas discharges for many applications. This thesis deals with the use of microwaves to excite gas discharges for incoherent optical sources, with particular emphasis on excimer systems. In addition, microwave excitation of a gas laser is considered. A novel apparatus was designed and built to couple 2.45-GHz microwave radiation into a gas discharge. The microwave resonator is the essential part of this equipment, and a detailed discussion of its design and performance is given. The resonator is characterized both theoretically and experimentally in order to determine the coupling efficiency and peak electric-field strength. Specialized theory is developed in order to evaluate many parameters of a microwave-excited discharge. The phenomenon of skin effect is investigated quantitatively and expressions for the plasma frequency and electron density are developed in terms of collision frequency and observable parameters (e.g., skin depth). Expressions for peak electric-field strength, ionization coefficient and collisionless electron energy are also developed. The results of an extensive investigation of continuous-wave microwave-excited excimer fluorescence are reported. Rare-gas halide, homonuclear halogen and heteronuclear halogen systems are examined and the corresponding ultraviolet spectra are presented. Truly continuous excimer emission has been achieved (for the first time) on several transitions. For systems of particular interest (e.g. XeCl and KrCl), the effects of total pressures and gas composition on fluorescence output are investigated, and the appropriate spectra are presented. Finally, the potential operation of microwave-excited carbon dioxide and argon-ion gas lasers is investigated, and upper limits are deduced for the small-signal gain under various conditions.

  6. 基于椭圆偏振光注入垂直腔表面发射激光器的正交偏振模式单周期振荡产生两路光子微波∗%Two channel photonic microwave generation based on period-one oscillations of two orthogonally polar-ized modes in a vertical-cavity surface-emitting laser subjected to an elliptically polarized optical injection

    Institute of Scientific and Technical Information of China (English)

    周娅; 吴正茂; 樊利; 孙波; 何洋; 夏光琼

    2015-01-01

    Previous investigations demonstrated that a semiconductor laser subjected to optical injection can realize period-one (P1) oscillation output under suitable operational parameters, which can be used to obtain high quality photonic microwave. In this paper, we propose a scheme for simultaneously generating two channel photonic microwave based on the P1 oscillations of two orthogonally polarization modes in a vertical-cavity surface-emitting laser (VCSEL) subjected to an elliptical polarization optical injection, and the relevant characteristics of obtained photonic microwave are numerically simulated and analyzed. The results show that under suitable operational parameters, a free-running VCSEL (named master VCSEL, M-VCSEL) can output an elliptical polarization light in which both X and Y polarization components of the elliptical polarization light oscillate at the same frequency. By using the elliptical polarization light from the M-VCSEL as an injection light into another VCSEL (named slave VCSEL, S-VCSEL), both two polarization components of the S-VCSEL can be driven into P1 oscillation through selecting suitable injection strength under a fixed frequency detuning between the M-VCSEL and the S-VCSEL. Based on the P1 oscillation, two orthogonally photonic microwave signals can be obtained. With the increase of the injection strength from the M-VCSEL, the frequency of photonic microwave shows a gradually increasing trend while the power of photonic microwave displays an increasing process accompanied by slight ripples. Combining the distribution mappings of the frequency, the power, and the amplitude difference between the first sideband and the second sideband of the photonic microwave in the parameter space of the injection strength and the frequency detuning, certain regions with optimally operational parameters can be determined for acquiring high quality photonic microwave.

  7. MICROWAVE REMOTE SENSING IN SOIL QUALITY ASSESSMENT

    Directory of Open Access Journals (Sweden)

    S. K. Saha

    2012-08-01

    Full Text Available Information of spatial and temporal variations of soil quality (soil properties is required for various purposes of sustainable agriculture development and management. Traditionally, soil quality characterization is done by in situ point soil sampling and subsequent laboratory analysis. Such methodology has limitation for assessing the spatial variability of soil quality. Various researchers in recent past showed the potential utility of hyperspectral remote sensing technique for spatial estimation of soil properties. However, limited research studies have been carried out showing the potential of microwave remote sensing data for spatial estimation of various soil properties except soil moisture. This paper reviews the status of microwave remote sensing techniques (active and passive for spatial assessment of soil quality parameters such as soil salinity, soil erosion, soil physical properties (soil texture & hydraulic properties; drainage condition; and soil surface roughness. Past and recent research studies showed that both active and passive microwave remote sensing techniques have great potentials for assessment of these soil qualities (soil properties. However, more research studies on use of multi-frequency and full polarimetric microwave remote sensing data and modelling of interaction of multi-frequency and full polarimetric microwave remote sensing data with soil are very much needed for operational use of satellite microwave remote sensing data in soil quality assessment.

  8. Microwave Radiometer Linearity Measured by Simple Means

    DEFF Research Database (Denmark)

    Skou, Niels

    2002-01-01

    Modern spaceborne radiometer systems feature an almost perfect on-board calibration, hence the primary calibration task to be carried out before launch is a check of radiometer linearity. This paper describes two ways of measuring linearity of microwave radiometers only requiring relatively simple...

  9. Electromagnetic Theory for Microwaves and Optoelectronics

    CERN Document Server

    Zhang, Keqian

    2007-01-01

    This book is a first year graduate text on electromagnetic fields and waves. At the same time it serves as a useful reference for researchers and engineers in the areas of microwaves and optoelectronics. Following the presentation of the physical and mathematical foundations of electromagnetic theory, the book discusses the field analysis of electromagnetic waves confined in material boundaries, or so-called guided waves, electromagnetic waves in the dispersive media and anisotropic media, Gaussian beams and scalar diffraction theory. The theories and methods presented in the book are foundations of wireless engineering, microwave and millimeter wave techniques, optoelectronics and optical fiber communication.

  10. Recent Progresses of Microwave Marine Remote Sensing

    Science.gov (United States)

    Yang, Jingsong; Ren, Lin; Zheng, Gang; Wang, He; He, Shuangyan; Wang, Juan; Li, Xiaohui

    2016-08-01

    It is presented in this paper the recent progresses of Dragon 3 Program (ID. 10412) in the field of microwave marine remote sensing including (1) ocean surface wind fields from full polarization synthetic aperture radars (SAR), (2) joint retrieval of directional ocean wave spectra from SAR and wave spectrometer, (3) error analysis on ENVISAT ASAR wave mode significant wave height (SWH) retrievals using triple collocation model, (4) typhoon observation from SAR and optical sensors, (5) ocean internal wave observation from SAR and optical sensors, (6) ocean eddy observation from SAR and optical sensors, (7) retrieval models of water vapor and wet tropospheric path delay for the HY-2A calibration microwave radiometer, (8) calibration of SWH from HY-2A satellite altimeter.

  11. Optical antennas and plasmonics

    OpenAIRE

    Park, Q-Han

    2009-01-01

    Optical antenna is a nanoscale miniaturization of radio or microwave antennas that is also governed by the rule of plasmonics. We introduce various types of optical antenna and make an overview of recent developments in optical antenna research. The role of local and surface plasmons in optical antenna is explained through antenna resonance and resonance conditions for specific metal structures are explicitly obtained. Strong electric field is shown to exist within a highly localized region o...

  12. Microwave combustion synthesis of Co1-xZnxFe2O4 (0 ⩽ x ⩽ 0.5): Structural, magnetic, optical and vibrational spectroscopic studies

    Science.gov (United States)

    Sundararajan, M.; Kennedy, L. John; Vijaya, J. Judith; Aruldoss, Udaya

    2015-04-01

    Nanostructured pure and zinc doped cobalt ferrites (Co1-xZnxFe2O4 where x fraction ranging from 0 to 0.5) were prepared by microwave combustion method employing urea as a fuel. The nanostructured samples were characterized by using various instrumental techniques such as X-ray powder diffractometry, high resolution scanning electron microscopy, energy dispersive X-ray analysis, UV-visible diffuse reflectance spectroscopy, photoluminescence spectroscopy and Fourier transformed infrared (FT-IR) spectroscopy. Vibrating sample magnetometry at room temperature was recorded to study the magnetic behavior of the samples. X-ray analysis and the FT-IR spectroscopy revealed the formation of cobalt ferrite cubic spinel-type structure. The average crystallite sizes for the samples were in the range of 3.07-11.30 nm. The direct band gap (Eg) was estimated using Kubelka-Munk method and is obtained from the UV-vis spectra. The band gap value decreased with an increase in zinc fraction (2.56-2.17 eV). The violet and green emission observed in the photoluminescence spectra revealed that cobalt ferrites are governed by defect controlled processes. The elemental analysis of zinc doped cobalt ferrites were obtained from energy dispersive X-ray (EDX) analysis. From the magnetic measurements, it is observed that cobalt ferrite and zinc doped cobalt ferrite systems fall under the soft ferrite category. The saturation magnetization (Ms) value of undoped cobalt ferrite is 14.26 emu/g, and it has reached a maximum of 29.61 emu/g for Co0.7Zn0.3Fe2O4.

  13. A simple aloe vera plant-extracted microwave and conventional combustion synthesis: Morphological, optical, magnetic and catalytic properties of CoFe2O4 nanostructures

    Science.gov (United States)

    Manikandan, A.; Sridhar, R.; Arul Antony, S.; Ramakrishna, Seeram

    2014-11-01

    Nanocrystalline magnetic spinel CoFe2O4 was synthesized by a simple microwave combustion method (MCM) using ferric nitrate, cobalt nitrate and Aloe vera plant extracted solution. For the comparative study, it was also prepared by a conventional combustion method (CCM). Powder X-ray diffraction, energy dispersive X-ray and selected-area electron diffraction results indicate that the as-synthesized samples have only single-phase spinel structure with high crystallinity and without the presence of other phase impurities. The crystal structure and morphology of the powders were revealed by high resolution scanning electron microscopy and transmission electron microscopy, show that the MCM products of CoFe2O4 samples contain sphere-like nanoparticles (SNPs), whereas the CCM method of samples consist of flake-like nanoplatelets (FNPs). The band gap of the samples was determined by UV-Visible diffuse reflectance and photoluminescence spectroscopy. The magnetization (Ms) results showed a ferromagnetic behavior of the CoFe2O4 nanostructures. The Ms value of CoFe2O4-SNPs is higher i.e. 77.62 emu/g than CoFe2O4-FNPs (25.46 emu/g). The higher Ms value of the sample suggest that the MCM technique is suitable for preparing high quality nanostructures for magnetic applications. Both the samples were successfully tested as catalysts for the conversion of benzyl alcohol. The resulting spinel ferrites were highly selective for the oxidation of benzyl alcohol and exhibit important difference among their activities. It was found that CoFe2O4-SNPs catalyst show the best performance, whereby 99.5% selectivity of benzaldehyde was achieved at close to 93.2% conversion.

  14. Using your microwave oven. Lesson 6, Microwave oven management

    OpenAIRE

    Woodard, Janice Emelie, 1929-

    1984-01-01

    Discusses cooking and reheating foods in microwave ovens, and adapting conventional recipes for the microwave. Revised Includes the publication: Adapting conventional recipes to microwave cooking : fact sheet 84 by Janice Woodard, Rebecca Lovingood, R.H. Trice.

  15. Using your microwave oven. Lesson 6, Microwave oven management

    OpenAIRE

    Woodard, Janice Emelie, 1929-

    1984-01-01

    Discusses cooking and reheating foods in microwave ovens, and adapting conventional recipes for the microwave. Revised Includes the publication: Adapting conventional recipes to microwave cooking : fact sheet 84 by Janice Woodard, Rebecca Lovingood, R.H. Trice.

  16. Carrying Capacity:An Overview

    Institute of Scientific and Technical Information of China (English)

    Chen Shaofeng

    2004-01-01

    The concept of carrying capacity is derived from ecology, with widespread contentions of its theoretical connotations and applications in the international academic community, especially the impact of human activities on the environment.Disputes on carrying capacity have been occurring not only among biologists and ecologists, but also among mainstream economists. Based on their efforts,the author makes an attempt to describe its origin,connotations, problems, measurement, and at the same time note the latest international progress in this field.

  17. Microwave sintering of sol-gel composite films using a domestic microwave oven

    Science.gov (United States)

    Kobayashi, Makiko; Matsumoto, Makoto

    2016-07-01

    Feasibility study of sol-gel composite microwave sintering using a domestic microwave oven was carried out. Two kinds of lead zirconate titanate (PZT) powders were mixed with PZT sol-gel solution and the mixture was sprayed onto 3-mm-thick titanium substrate. The films were sintered by 700 W domestic oven for 10 min. Ultrasonic measurement was carried out in pulse-echo mode and clear multiple echoes were confirmed. It would be suitable method to fabricate high frequency broadband focused ultrasonic transducers. Further research is required to improve sintering degree.

  18. Microwave and RF engineering

    CERN Document Server

    Sorrentino, Roberto

    2010-01-01

    An essential text for both students and professionals, combining detailed theory with clear practical guidance This outstanding book explores a large spectrum of topics within microwave and radio frequency (RF) engineering, encompassing electromagnetic theory, microwave circuits and components. It provides thorough descriptions of the most common microwave test instruments and advises on semiconductor device modelling. With examples taken from the authors' own experience, this book also covers:network and signal theory;electronic technology with guided electromagnetic pr

  19. Recoil Effects in Microwave Ramsey Spectroscopy

    CERN Document Server

    Wolf, P; Wolf, Peter; Borde, Christian J.

    2004-01-01

    We present a theory of recoil effects in two zone Ramsey spectroscopy, particularly adapted to microwave frequency standards using laser cooled atoms. We describe the atoms by a statistical distribution of Gaussian wave packets which enables us to derive and quantify effects that are related to the coherence properties of the atomic source and that have not been considered previously. We show that, depending on the experimental conditions, the expected recoil frequency shift can be partially cancelled by these effects which can be significant at microwave wavelengths whilst negligible at optical ones. We derive analytical expressions for the observed interference signal in the weak field approximation, and numerical results for realistic caesium fountain parameters. In the near future Cs and Rb fountain clocks are expected to reach uncertainties which are of the same order of magnitude (10^{-16}) as first estimates of the recoil shift at microwave frequencies. We show, however, that the partial cancellation p...

  20. Advanced microwave processing concepts

    Energy Technology Data Exchange (ETDEWEB)

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymeric materials. The variable frequency microwave furnace, whose initial conception and design was funded by the AIM Materials Program, allows the authors, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of various thermoset resins will be studied because it holds the potential of in-situ curing of continuous-fiber composites for strong, lightweight components or in-situ curing of adhesives, including metal-to-metal. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  1. Advanced microwave processing concepts

    Energy Technology Data Exchange (ETDEWEB)

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L. [Oak Ridge National Laboratory, TN (United States)

    1995-05-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymer composites. The variable frequency microwave furnace, whose initial conception and design was funded by the AIC Materials Program, will allow us, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of thermoset resins will be studied because it hold the potential of in-situ curing of continuous-fiber composites for strong, lightweight components. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  2. Advances in microwaves 3

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 3 covers the advances and applications of microwave signal transmission and Gunn devices. This volume contains six chapters and begins with descriptions of ground-station antennas for space communications. The succeeding chapters deal with beam waveguides, which offer interesting possibilities for transmitting microwave energy, as well as with parallel or tubular beams from antenna apertures. A chapter discusses the electron transfer mechanism and the velocity-field characteristics, with a particular emphasis on the microwave properties of Gunn oscillators. The l

  3. Propagation of microwaves in gradient transmission lines: exactly solvable model

    Science.gov (United States)

    Shvartsburg, A. B.; Silin, N. V.

    2015-08-01

    Propagation of microwaves along the transmission line with smoothly continuously distributed capacitance and inductance (gradient transmission line) is considered in the framework of an exactly solvable model. The appearance of strong heterogeneity-induced plasma-like dispersion in gradient transmission line determined by the sizes and shapes of these distributions, is visualized by means of this model. Owing to this dispersion the energy transport in the line discussed can be ensured by both travelling and evanescent microwave modes, characterized by the real and imaginary wave numbers, respectively. The reflectance spectra for microwaves, incident on this heterogeneous transition section located between two homogeneous sections of transmission line are presented, the antireflection properties of this section are demonstrated. The interference of evanescent and anti-evanescent microwave modes is shown to provide the effective weakly attenuated energy transfer in the tunneling regime. The analogy between this microwave system and gradient nano-optical photonic barrier in revealed.

  4. Magnetoelectrical control of nonreciprocal microwave response in a multiferroic helimagnet

    Science.gov (United States)

    Iguchi, Y.; Nii, Y.; Onose, Y.

    2017-05-01

    The control of physical properties by external fields is essential in many contemporary technologies. For example, conductance can be controlled by a gate electric field in a field effect transistor, which is a main component of integrated circuits. Optical phenomena induced by an electric field such as electroluminescence and electrochromism are useful for display and other technologies. Control of microwave propagation is also important for future wireless communication technology. Microwave properties in solids are dominated mostly by magnetic excitations, which cannot be easily controlled by an electric field. One solution to this problem is to use magnetically induced ferroelectrics (multiferroics). Here we show that microwave nonreciprocity, that is, different refractive indices for microwaves propagating in opposite directions, could be reversed by an external electric field in a multiferroic helimagnet Ba2Mg2Fe12O22. This approach offers an avenue for the electrical control of microwave properties.

  5. NOVEL MICROWAVE FILTER DESIGN TECHNIQUES.

    Science.gov (United States)

    ELECTROMAGNETIC WAVE FILTERS, MICROWAVE FREQUENCY, PHASE SHIFT CIRCUITS, BANDPASS FILTERS, TUNED CIRCUITS, NETWORKS, IMPEDANCE MATCHING , LOW PASS FILTERS, MULTIPLEXING, MICROWAVE EQUIPMENT, WAVEGUIDE FILTERS, WAVEGUIDE COUPLERS.

  6. A Tutorial on Microwave Photonic Filters

    Science.gov (United States)

    Capmany, José; Ortega, Beatriz; Pastor, Daniel

    2006-01-01

    Microwave photonic filters are photonic subsystems designed with the aim of carrying equivalent tasks to those of an ordinary microwave filter within a radio frequency (RF) system or link, bringing supplementary advantages inherent to photonics such as low loss, high bandwidth, immunity to electromagnetic interference (EMI), tunability, and reconfigurability. There is an increasing interest in this subject since, on one hand, emerging broadband wireless access networks and standards spanning from universal mobile telecommunications system (UMTS) to fixed access picocellular networks and including wireless local area network (WLAN), World Interoperability for Microwave Access, Inc. (WIMAX), local multipoint distribution service (LMDS), etc., require an increase in capacity by reducing the coverage area. An enabling technology to obtain this objective is based on radio-over-fiber (RoF) systems where signal processing is carried at a central office to where signals are carried from inexpensive remote antenna units (RAUs). On the other hand, microwave photonic filters can find applications in specialized fields such as radar and photonic beamsteering of phased-arrayed antennas, where dynamical reconfiguration is an added value. This paper provides a tutorial introduction of this subject to the reader not working directly in the field but interested in getting an overall introduction of the subject and also to the researcher wishing to get a comprehensive background before working on the subject.

  7. Stabilizing Microwave Frequency of a Photonic Oscillator

    Science.gov (United States)

    Maleki, Lute; Yu, Nan; Tu, Meirong

    2006-01-01

    A scheme for stabilizing the frequency of a microwave signal is proposed that exploits the operational characteristics of a coupled optoelectronic oscillator (COEO) and related optoelectronic equipment. An essential element in the scheme is a fiber mode-locked laser (MLL), the optical frequency of which is locked to an atomic transition. In this scheme, the optical frequency stability of the mode-locked laser is transferred to that of the microwave in the same device. Relative to prior schemes for using wideband optical frequency comb to stabilize microwave signals, this scheme is simpler and lends itself more readily to implementation in relatively compact, rugged equipment. The anticipated development of small, low-power, lightweight, highly stable microwave oscillators based on this scheme would afford great benefits in communication, navigation, metrology, and fundamental sciences. COEOs of various designs, at various stages of development, in some cases called by different names, have been described in a number of prior NASA Tech Briefs articles. A COEO is an optoelectronic apparatus that generates both short (picosecond) optical pulses and a steady microwave signal having an ultrahigh degree of spectral purity. The term "coupled optoelectronic" in the full name of such an apparatus signifies that its optical and electronic oscillations are coupled to each other in a single device. The present frequency-stabilization scheme is best described indirectly by describing the laboratory apparatus used to demonstrate it. The apparatus (see figure) includes a COEO that generates a comb-like optical spectrum, the various frequency components of which interfere, producing short optical pulses. This spectrum is centered at a nominal wavelength of 1,560 nm. The spectrum separation of this comb is about 10 GHz, as determined primarily by the length of an optical loop and the bandpass filter in the microwave feedback loop. The optical loop serves as microwave resonator

  8. Naturalistic Elements in Sister Carrie

    Institute of Scientific and Technical Information of China (English)

    刘艳晖

    2007-01-01

    @@ Theodore Dreiser is considered to be a controversial writer.His first novel.Sister Carrie makes a new way of presenting re-ality.This paper discusses the naturalistic elements from the de-tailed description of the environment in that society.

  9. Evaluation of a Modified SEBAL Algorithm to Estimate Actual Evapotranspiration in Cotton Ecosystems of Central Asia using Microwave and Optical Remote Sensing Data

    Science.gov (United States)

    Knoefel, Patrick; Conrad, Christopher

    2015-04-01

    Being recognized as an essential component of both the water and the energy cycle, actual evapotranspiration (ETa) plays in important role in order to describe the complex interactions within the climate system of the Earth. Here, remote sensing is a powerful tool to estimate regional ETa to support the regional water management. For instance, the water withdrawal of the agricultural sector in OECD countries is on average about 44 %, but in the states of Central Asia it achieves more than 90 %. This fact is identified as one of the main reasons for the increasing water scarcity in this region. An accuracy assessment of the methods used for determining ETa is necessary concerning an appropriate use of the model results to support agriculture and irrigation management. Within Central Asia the Khorezm region in Uzbekistan is a case study region for the problems of irrigated agriculture. For Khorezm the seasonal ETa based on MODIS data was calculated for the years 2009 - 2011 using a partly modified surface energy balance algorithm for land (SEBAL). SEBAL was implemented based on MODIS time series to calculate the energy balance components like net radiation (Rn), sensible heat (H), latent heat (LE), and soil heat flux (G). Whilst SEBAL is using an empirical equation for the estimation of G, a more physically based method was introduced in this study. This method uses microwave soil moisture products (ASAR and ASCAT-SSM) as an additional model input. The input parameters and the model results of all energy balance components (Rn, H, LE, and G) were intensively validated by field measurements with an eddy covariance system and soil sensors. The model shows very good performance for Rn with average model efficiency (NSE) of 0.68 and small relative errors (rRMSE) of about 10%. For turbulent heat fluxes good results can be achieved with NSE of 0.31 for H and 0.55 for LE, the rRMSE are about 21% (H) and 18% (LE). Soil heat flux estimation could be improved using the

  10. Anomalous Microwave Emission in HII regions: is it really anomalous? The case of RCW 49

    CERN Document Server

    Paladini, Roberta; Agliozzo, Claudia; Tibbs, Christopher T; Noriega-Crespo, Alberto; Umana, Grazia; Dickinson, Clive; Trigilio, Corrado

    2015-01-01

    The detection of an excess of emission at microwave frequencies with respect to the predicted free-free emission has been reported for several Galactic HII regions. Here, we investigate the case of RCW 49, for which the Cosmic Background Imager tentatively (~ 3 sigma) detected Anomalous Microwave Emission at 31 GHz on angular scales of 7'. Using the Australia Telescope Compact Array, we carried out a multi-frequency (5 GHz, 19 GHz and 34 GHz) continuum study of the region, complemented by observations of the H109$\\alpha$ radio recombination line. The analysis shows that: 1) the spatial correlation between the microwave and IR emission persists on angular scales from 3.4' to 0.4", although the degree of the correlation slightly decreases at higher frequencies and on smaller angular scales, 2) the spectral indices between 1.4 and 5 GHz are globally in agreement with optically thin free-free emission, however, ~ 30% of these are positive and much greater than -0.1, consistently with a stellar wind scenario, 3) n...

  11. Microstructure and Abrasive Wear Performance of Ni-Wc Composite Microwave Clad

    Science.gov (United States)

    Bansal, Amit; Zafar, Sunny; Sharma, Apurbba Kumar

    2015-10-01

    In the present work, Ni-WC powder was deposited on mild steel substrate to develop clads through microwave hybrid heating technique. The cladding trials were carried out in an industrial microwave applicator at 1.1 kW for 540 s. The Ni-WC composite clads were characterized for microstructure and abrasive wear performance through combination of x-ray diffraction, electron and optical microscopy, microhardness, and wear tests. Phase analysis of the Ni-WC clad indicated the presence of stable carbides such as WC, W2C, Ni2W4C, and Fe6W6C. The microstructure study of the clad layer revealed the presence of a uniformly distributed interlocked WC-based reinforcement embedded in the Ni-based matrix. The average Vicker's microhardness in the clad layer was observed to be 1028 ± 90 HV, which was approximately three times the microhardness of the substrate. Abrasive wear resistance of the microwave clads was superior to the MS substrate. Abrasion was the main wear mechanism in the Ni-WC clads and the substrate samples. However, the presence of WC-based reinforcement in the composite clads reduced microcutting, resulting in enhanced wear resistance.

  12. Microwave-Assisted Transesterification of Macroalgae

    Directory of Open Access Journals (Sweden)

    Angel Sanchez

    2012-03-01

    Full Text Available Nowadays microwave radiation is being researched to produce biodiesel from different raw materials due to the many advantages that this technology presents compared to traditional transesterification, such as shorter reaction times and less amount of heat energy to obtain biodiesel. The aim of this research was to explore the possibility of carrying out the microwave-assisted transesterification of macroalgae and compare the results with the traditional transesterification. For that reason, some experiences were conducted using sunflower oil and macroalgae as raw material. Based on the obtained results, the best conditions for microwave-assisted transesterification reaction were macroalgae to methanol ratio of 1:15 (wt/vol, sodium hydroxide concentration of 2 wt % and reaction time of 3 min.

  13. The Cosmic Microwave Background

    OpenAIRE

    Silk, Joseph

    2002-01-01

    This set of lectures provides an overview of the basic theory and phenomenology of the cosmic microwave background. Topics include a brief historical review; the physics of temperature and polarization fluctuations; acoustic oscillations of the primordial plasma; the space of inflationary cosmological models; current and potential constraints on these models from the microwave background; and constraints on inflation.

  14. Microwave Enhanced Reactive Distillation

    NARCIS (Netherlands)

    Altman, E.

    2011-01-01

    The application of electromagnetic irradiation in form of microwaves (MW) has gathered the attention of the scientific community in recent years. MW used as an alternative energy source for chemical syntheses (microwave chemistry) can provide clear advantages over conventional heating methods in ter

  15. Development of a Multi-Point Microwave Interferometry (MPMI) Method

    Energy Technology Data Exchange (ETDEWEB)

    Specht, Paul Elliott [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cooper, Marcia A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jilek, Brook Anton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    A multi-point microwave interferometer (MPMI) concept was developed for non-invasively tracking a shock, reaction, or detonation front in energetic media. Initially, a single-point, heterodyne microwave interferometry capability was established. The design, construction, and verification of the single-point interferometer provided a knowledge base for the creation of the MPMI concept. The MPMI concept uses an electro-optic (EO) crystal to impart a time-varying phase lag onto a laser at the microwave frequency. Polarization optics converts this phase lag into an amplitude modulation, which is analyzed in a heterodyne interfer- ometer to detect Doppler shifts in the microwave frequency. A version of the MPMI was constructed to experimentally measure the frequency of a microwave source through the EO modulation of a laser. The successful extraction of the microwave frequency proved the underlying physical concept of the MPMI design, and highlighted the challenges associated with the longer microwave wavelength. The frequency measurements made with the current equipment contained too much uncertainty for an accurate velocity measurement. Potential alterations to the current construction are presented to improve the quality of the measured signal and enable multiple accurate velocity measurements.

  16. Efficient carry skip Adder design using full adder and carry skip block based on reversible Logic

    Directory of Open Access Journals (Sweden)

    Varun Pratap Singh

    2015-12-01

    Full Text Available In recent years, Reversible Logic is becoming more and more prominent technology having its applications in Quantum Computing, Nanotechnology, and Optical Computing. Reversibility plays an important role when energy efficient computations are considered. In this paper, binary full Adder with Design I and Design II are proposed. The performance analysis is verified using number of reversible gates, Garbage input/outputs, delay, number of logical calculations and Quantum Cost. According to the suitability of full adder design I and design II carry skip adder block is also constructed with some improvement in terms of delay in block carry generation. It is observed that Reversible carry skip Binary Adder with Design II is efficient compared to Design I

  17. Research on LiNbO_3 Integrated Electro-optical Modulator for Microwave Photonics System%用于微波光子系统的铌酸锂集成电光调制器研究

    Institute of Scientific and Technical Information of China (English)

    舒平; 华勇; 张鸿举; 胡红坤

    2012-01-01

    High-speed LiNbO3 electro-optical modulators were designed and fabricated.Dual-Y directional coupler structure was used to improve the linearity of the modulator and the process tolerance.By applying CPW type traveling-wave electrode,the effects of different phase velocity mismatch and microwave loss on the system bandwidth were analyzed comparatively.By selecting optimal process parameters,the fabricated modulators obtain the insert loss of less than 3 dB,the extinction ratio of 34 dB,the halfwave voltage of the traveling-wave electrode pf 5.5 V,the power reflection of less than-10 dB,and the 6 dB modulate bandwidth of about 18 GHz.%设计和制作了一种高速铌酸锂电光调制器。波导采用双Y定向耦合器型结构以提高线性度,同时能够提高工艺容差;电极采用CPW行波电极结构。通过分析比较不同相速匹配程度及微波损耗程度对电极系统带宽的影响,选择合适的设计参数及工艺参数,制作的调制器样品插入损耗为3dB,开关消光比为34dB,偏置电极半波电压为7V,行波电极半波电压为5.5V,电反射小于-10dB,6dB调制带宽约18GHz,可实现0~18GHz模拟调制。

  18. Properties of Carry Value Transformation

    Directory of Open Access Journals (Sweden)

    Suryakanta Pal

    2012-01-01

    Full Text Available Carry Value Transformation (CVT is a model of discrete deterministic dynamical system. In the present study, it has been proved that (1 the sum of any two nonnegative integers is the same as the sum of their CVT and XOR values. (2 the number of iterations leading to either CVT=0 or XOR=0 does not exceed the maximum of the lengths of the two addenda expressed as binary strings. A similar process of addition of modified Carry Value Transformation (MCVT and XOR requires a maximum of two iterations for MCVT to be zero. (3 an equivalence relation is shown to exist on Z×Z which divides the CV table into disjoint equivalence classes.

  19. The microwave absorption of ceramic-cup microwave ion source

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    An experiment system of ceramic-cup microwave ion source has been built here. Its microwave absorption efficiency as a function of the magnetic field and the pressure is presented. When the microwave incident power is 300~500W the microwave absorption efficiencies are more than 90% if the system is optimized and the magnetic field at the microwave window is 0.095T.

  20. Polarization control based interference microwave photonic filters

    Science.gov (United States)

    Madziar, Krzysztof; Galwas, Bogdan

    2016-12-01

    In this paper we present a concept of multi-line Microwave Photonic Filter (MPF) based on polarization beam splitting and polarization control in each line. Coefficients of investigated filter are determined by attenuation of its lines and that on the other hand can be manipulated by change of the polarization in the fiber. Presented results involve scattering parameters (S21) measurements of optical path over polarization control unit rotation, scattering parameters (S21) characteristics of investigated filter and transmission optimization capabilities.

  1. Quantum switches and nonlocal microwave fields

    Science.gov (United States)

    Davidovich, L.; Maali, A.; Brune, M.; Raimond, J. M.; Haroche, S.

    1993-10-01

    A scheme to realize an optical switch with quantum coherence between its ``open'' and ``closed'' states is presented. It involves a single atom in a superposition of circular Rydberg states crossing a high Q cavity. A combination of switches could be used to prepare a quantum superposition of coherent microwave field states located simultaneously in two cavities. Such nonclassical states and their decoherence due to cavity dissipation could be studied by performing atom correlation experiments.

  2. Microwave Photonics: current challenges towards widespread application.

    Science.gov (United States)

    Capmany, José; Li, Guifang; Lim, Christina; Yao, Jianping

    2013-09-23

    Microwave Photonics, a symbiotic field of research that brings together the worlds of optics and radio frequency is currently facing several challenges in its transition from a niche to a truly widespread technology essential to support the ever-increasing values for speed, bandwidth, processing capability and dynamic range that will be required in next generation hybrid access networks. We outline these challenges, which are the subject of the contributions to this focus issue.

  3. Magnetically Guiding Atoms with Current-Carrying Conductors

    Institute of Scientific and Technical Information of China (English)

    刘南春; 高伟建; 印建平

    2002-01-01

    We propose a novel magnetic guide for cold neutral atoms using some current-carrying conductors. The spatial distributions of the magnetic fields from a V-shaped or U-shaped current-carrying conductor are calculated, and the relationship between the resulting magnetic field and the parameters of the current-carrying conductors is analysed in detail. The result shows that these current-carrying conductors can be used to realize a single or a controllable double magnetic guide of cold atoms in the weak-field-seeking state, and to construct various atom-optical elements, and even to realize a single-mode atomic waveguiding under certain conditions.

  4. Gold Nanoparticle Microwave Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Kelsie E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Christian, Jonathan H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coopersmith, Kaitlin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, II, Aaron L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-27

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  5. Gold Nanoparticle Microwave Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Kelsie E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Christian, Jonathan H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coopersmith, Kaitlin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, II, Aaron L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-27

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, a reduction in reaction time from 10 minutes to 1 minute, maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  6. A readout for large arrays of microwave kinetic inductance detectors.

    Science.gov (United States)

    McHugh, Sean; Mazin, Benjamin A; Serfass, Bruno; Meeker, Seth; O'Brien, Kieran; Duan, Ran; Raffanti, Rick; Werthimer, Dan

    2012-04-01

    Microwave kinetic inductance detectors (MKIDs) are superconducting detectors capable of counting single photons and measuring their energy in the UV, optical, and near-IR. MKIDs feature intrinsic frequency domain multiplexing (FDM) at microwave frequencies, allowing the construction and readout of large arrays. Due to the microwave FDM, MKIDs do not require the complex cryogenic multiplexing electronics used for similar detectors, such as transition edge sensors, but instead transfer this complexity to room temperature electronics where they present a formidable signal processing challenge. In this paper, we describe the first successful effort to build a readout for a photon counting optical/near-IR astronomical instrument, the ARray Camera for Optical to Near-infrared Spectrophotometry. This readout is based on open source hardware developed by the Collaboration for Astronomy Signal Processing and Electronics Research. Designed principally for radio telescope backends, it is flexible enough to be used for a variety of signal processing applications.

  7. A readout for large arrays of Microwave Kinetic Inductance Detectors

    CERN Document Server

    McHugh, Sean; Serfass, Bruno; Meeker, Seth; O'Brien, Kieran; Duan, Ran; Raffanti, Rick; Werthimer, Dan

    2012-01-01

    Microwave Kinetic Inductance Detectors (MKIDs) are superconducting detectors capable of counting single photons and measuring their energy in the UV, optical, and near-IR. MKIDs feature intrinsic frequency domain multiplexing (FDM) at microwave frequencies, allowing the construction and readout of large arrays. Due to the microwave FDM, MKIDs do not require the complex cryogenic multiplexing electronics used for similar detectors, such as Transition Edge Sensors (TESs), but instead transfer this complexity to room temperature electronics where they present a formidable signal processing challenge. In this paper we describe the first successful effort to build a readout for a photon counting optical/near-IR astronomical instrument, the ARray Camera for Optical to Near-infrared Spectrophotometry (ARCONS). This readout is based on open source hardware developed by the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER). Designed principally for radio telescope backends, it is flexible...

  8. Microwave absorption studies of MgB2 superconductor

    Indian Academy of Sciences (India)

    M K Bhide; R M Kadam; M D Sastry; Ajay Singh; Shashwati Sen; Manmeet Kaur; D K Aswal; S K Gupta; V C Sahni

    2002-05-01

    Microwave absorption studies have been carried out on MgB2 superconductor using a standard X-band EPR spectrometer. The modulated low-field microwave absorption signals recorded for polycrystalline (grain size ∼ 10m) samples suggested the absence of weak-link character. The field dependent direct microwave absorption has been found to obey a $\\sqrt{H}$ dependence with two different slopes, which indicated a transition from strongly pinned lattice to flux flow regime.

  9. Wide-Band Microwave Receivers Using Photonic Processing

    Science.gov (United States)

    Matsko, Andrey; Maleki, Lute; Itchenko, Vladimir; Yu, Nan; Strekalov, Dmitry; Savchenkov, Anatoliy

    2008-01-01

    In wide-band microwave receivers of a type now undergoing development, the incoming microwave signals are electronically preamplified, then frequency-up-converted to optical signals that are processed photonically before being detected. This approach differs from the traditional approach, in which incoming microwave signals are processed by purely electronic means. As used here, wide-band microwave receivers refers especially to receivers capable of reception at any frequency throughout the range from about 90 to about 300 GHz. The advantage expected to be gained by following the up-conversion-and-photonic-processing approach is the ability to overcome the limitations of currently available detectors and tunable local oscillators in the frequency range of interest. In a receiver following this approach (see figure), a preamplified incoming microwave signal is up-converted by the method described in the preceeding article. The frequency up-converter exploits the nonlinearity of the electromagnetic response of a whispering gallery mode (WGM) resonator made of LiNbO3. Up-conversion takes place by three-wave mixing in the resonator. The WGM resonator is designed and fabricated to function simultaneously as an electro-optical modulator and to exhibit resonance at the microwave and optical operating frequencies plus phase matching among the microwave and optical signals circulating in the resonator. The up-conversion is an efficient process, and the efficiency is enhanced by the combination of microwave and optical resonances. The up-converted signal is processed photonically by use of a tunable optical filter or local oscillator, and is then detected. Tunable optical filters can be made to be frequency agile and to exhibit high resonance quality factors (high Q values), thereby making it possible to utilize a variety of signal-processing modalities. Therefore, it is anticipated that when fully developed, receivers of this type will be compact and will be capable of both

  10. Advances in microwaves 4

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 4 covers some innovations in the devices and applications of microwaves. This volume contains three chapters and begins with a discussion of the application of microwave phasers and time delay elements as beam steering elements in array radars. The next chapter provides first an overview of the technical aspects and different types of millimeter waveguides, followed by a survey of their application to railroads. The last chapter examines the general mode of conversion properties of nonuniform waveguides, such as waveguide tapers, using converted Maxwell's equatio

  11. Integrated microwave photonics

    CERN Document Server

    Marpaung, David; Heideman, Rene; Leinse, Arne; Sales, Salvador; Capmany, Jose

    2012-01-01

    Microwave photonics (MWP) is an emerging field in which radio frequency (RF) signals are generated, distributed, processed and analyzed using the strength of photonic techniques. It is a technology that enables various functionalities which are not feasible to achieve only in the microwave domain. A particular aspect that recently gains significant interests is the use of photonic integrated circuit (PIC) technology in the MWP field for enhanced functionalities and robustness as well as the reduction of size, weight, cost and power consumption. This article reviews the recent advances in this emerging field which is dubbed as integrated microwave photonics. Key integrated MWP technologies are reviewed and the prospective of the field is discussed.

  12. Advances in microwaves

    CERN Document Server

    Young, Leo

    1967-01-01

    Advances in Microwaves, Volume 2 focuses on the developments in microwave solid-state devices and circuits. This volume contains six chapters that also describe the design and applications of diplexers and multiplexers. The first chapter deals with the parameters of the tunnel diode, oscillators, amplifiers and frequency converter, followed by a simple physical description and the basic operating principles of the solid state devices currently capable of generating coherent microwave power, including transistors, harmonic generators, and tunnel, avalanche transit time, and diodes. The next ch

  13. The Microwave Hall Effect

    OpenAIRE

    2015-01-01

    This paper describes a simple microwave apparatus to measure the Hall effect in semiconductor wafers. The advantage of this technique is that it does not require contacts on the sample or the use of a resonant cavity. Our method consists of placing the semiconductor wafer into a slot cut in an X-band (8 - 12 GHz) waveguide series tee, injecting microwave power into the two opposite arms of the tee, and measuring the microwave output at the third arm. A magnetic field applied perpendicular to ...

  14. Monolithic microwave integrated circuits

    Science.gov (United States)

    Pucel, R. A.

    Monolithic microwave integrated circuits (MMICs), a new microwave technology which is expected to exert a profound influence on microwave circuit designs for future military systems as well as for the commercial and consumer markets, is discussed. The book contains an historical discussion followed by a comprehensive review presenting the current status in the field. The general topics of the volume are: design considerations, materials and processing considerations, monolithic circuit applications, and CAD, measurement, and packaging techniques. All phases of MMIC technology are covered, from design to testing.

  15. First Claisen Rearrangement Reaction in Ionic Liquids with Microwave Heating

    Institute of Scientific and Technical Information of China (English)

    XU Li-Wen; LI Fu-Wei; XIA Chun-Gu

    2003-01-01

    @@ We have demonstrated the first use of the common ionic liquids, [1] bmimBr, bmimBF4 and bmimPF6 as an environmentally benign solvent for the simple Claisen rearrangement under microwave irradiation. In many cases, the re action was carried out in toxic solvents of high boiling point. [2] Here we reported the first example of Claisen rear rangement reaction in green solvents, ionic liquids, under microwave irradiation.

  16. Microwave platform as a valuable tool for characterization of nanophotonic devices

    Science.gov (United States)

    Shishkin, Ivan; Baranov, Dmitry; Slobozhanyuk, Alexey; Filonov, Dmitry; Lukashenko, Stanislav; Samusev, Anton; Belov, Pavel

    2016-01-01

    The rich potential of the microwave experiments for characterization and optimization of optical devices is discussed. While the control of the light fields together with their spatial mapping at the nanoscale is still laborious and not always clear, the microwave setup allows to measure both amplitude and phase of initially determined magnetic and electric field components without significant perturbation of the near-field. As an example, the electromagnetic properties of an add-drop filter, which became a well-known workhorse of the photonics, is experimentally studied with the aid of transmission spectroscopy measurements in optical and microwave ranges and through direct mapping of the near fields at microwave frequencies. We demonstrate that the microwave experiments provide a unique platform for the comprehensive studies of electromagnetic properties of micro- and nanophotonic devices, and allow to obtain data which are hardly acquirable by conventional optical methods. PMID:27759058

  17. Reconfigurable photoinduced metamaterials in the microwave regime

    CERN Document Server

    Rizza, Carlo; De Paulis, Francesco; Palange, Elia; Orlandi, Antonio; Columbo, Lorenzo; Prati, Franco

    2014-01-01

    We investigate optically reconfigurable dielectric metamaterials at gigahertz frequencies. More precisely, we study the microwave response of a subwavelength grating optically imprinted into a semiconductor slab. In the homogenized regime, we analytically evaluate the ordinary and extraordinary component of the effective permittivity tensor by taking into account the photo-carrier dynamics described by the ambipolar diffusion equation. We analyze the impact of semiconductor parameters on the gigahertz metamaterial response which turns out to be highly reconfigurable by varying the photogenerated grating and which can show a marked anisotropic behavior.

  18. Spectroscopic studies of microwave plasmas containing hexamethyldisiloxane

    Science.gov (United States)

    Nave, A. S. C.; Mitschker, F.; Awakowicz, P.; Röpcke, J.

    2016-10-01

    Low-pressure microwave discharges containing hexamethyldisiloxane (HMDSO) with admixtures of oxygen and nitrogen, used for the deposition of silicon containing films, have been studied spectroscopically. Optical emission spectroscopy (OES) in the visible spectral range has been combined with infrared laser absorption spectroscopy (IRLAS). The experiments were carried out in order to analyze the dependence of plasma chemical phenomena on power and gas mixture at relatively low pressures, up to 50 Pa, and power values, up to 2 kW. The evolution of the concentration of the methyl radical, CH3, and of seven stable molecules, HMDSO, CH4, C2H2, C2H4, C2H6, CO and CO2, was monitored in the plasma processes by in situ IRLAS using tunable lead salt diode lasers (TDL) and external-cavity quantum cascade lasers (EC-QCL) as radiation sources. To achieve reliable values for the gas temperature inside and outside the plasma bulk as well as for the temperature in the plasma hot and colder zones, which are of great importance for calculation of species concentrations, three different methods based on emission and absorption spectroscopy data of N2, CH3 and CO have been used. In this approach line profile analysis has been combined with spectral simulation methods. The concentrations of the various species, which were found to be in the range between 1011 to 1015 cm-3, are in the focus of interest. The influence of the discharge parameters power, pressure and gas mixture on the molecular concentrations has been studied. To achieve further insight into general plasma chemical aspects the dissociation of the HMDSO precursor gas including its fragmentation and conversion to the reaction products was analyzed in detail.

  19. Piezoelectric resonance enhanced microwave and optoelectronic interactive devices

    Science.gov (United States)

    McIntosh, Robert

    Electro-optic (EO) devices that modulate optical signals by electric fields are an integrative part of the photonics industry and device optimization is an important area of research. As applications move to large bandwidth and higher frequency, low electro-optic effects and the requirement for large dimension become restrictive for microwave-optical devices. Both experimental and computational evaluations indicate that strain and polarization distribution have a significant impact on electromagnetic wave propagation resulting from a resonant structure; however, no systematic study or fundamental understandings are available. This dissertation research has been carried out to study and further develop the subject of piezoelectric resonance enhanced electro-acoustic-optic process, in order to improve the sensitivity and efficiency of electro-optic sensors and to explore novel applications. Many finite element models have been constructed for evaluating the mechanisms of the phenomena and the effectiveness of the device structure. The enhancement in transmission is found to be directly related to the strain-coupled local polarization. At piezoelectric resonance oscillating dipoles or local polarizations become periodic in the material and have the greatest impact on transmission. Results suggest that the induced charge distribution by a piezoelectric material at certain resonant frequencies is effective for aiding or impeding the transmission of a propagating wave. The behavior of both piezoelectric-defined (or intrinsic piezoelectric materials) and engineered periodic structures are reported. The piezoelectric response of the surface displacement of samples is investigated using an ultra-high frequency laser Doppler vibrometer. A two dimensional view of the surface is obtained and the surface displacement, velocity and acceleration are compared to the electro-optic response under the resonant condition. A study of the acousto-optic (AO) effect in a family of oxide

  20. An Application of Microwave Pre-oxidation in Improving Gold Recovery of a Refractory Gold Ore

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Microwave radiation was employed as a pretreating technology to oxidise a refractory gold ore. Heating characteristics showed that, in an identical microwave field, the bulk temperature of the sample increased with microwave power, microwave radiation time and particle size. The rate of sulphur removal increased with microwave radiation time. Particle size also had a significant effect on the oxidation rate. Pyrite and marcasite could be oxidised into Fe2O3 with a high porous structure. When microwave radiation was carried out in a rotary bed, the oxidation was more uniformly developed, in comparison with in a fixed bed. Gold extraction by cyanidation could be remarkably improved after the ore was subjected to microwave radiation. The results showed that gold recovery could be improved from 37% to 69%~81.2%.

  1. Microwave studies on double rare earth oxalate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Elizabeth, Anit [School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam 686560 (India); Joseph, Cyriac [School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam 686560 (India); Paul, Issac [School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam 686560 (India); Ittyachen, M.A. [School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam 686560 (India); Mathew, K.T. [Microwave Imaging and Material Research Laboratory, Department of Electronics, Cochin University of Science and Technology, Kochi 682022 (India)]. E-mail: ktm@cusat.ac.in; Lonappan, Anil [Microwave Imaging and Material Research Laboratory, Department of Electronics, Cochin University of Science and Technology, Kochi 682022 (India); Jacob, Joe [Microwave Imaging and Material Research Laboratory, Department of Electronics, Cochin University of Science and Technology, Kochi 682022 (India)

    2005-01-25

    Rare earth compounds are recognized for outstanding physical, magnetic and optical properties. The oxalates and molybdates have gained importance for their various properties, which find applications in electro and accusto optical devices. This paper reports the microwave dielectric studies on double rare earth oxalate crystals. Using the cavity perturbation technique dielectric parameters such as complex permittivity and conductivity at microwave frequencies is determined. Using X-ray diffraction study the crystalline nature of the samples was established. The molecular and crystal structures were identified by IR analysis.

  2. Microwave Service Towers

    Data.gov (United States)

    Department of Homeland Security — This file is an extract of the Universal Licensing System (ULS) licensed by the Wireless Telecommunications Bureau (WTB). It consists of Microwave Transmitters (see...

  3. Microwave Radiometer Profiler

    Data.gov (United States)

    Oak Ridge National Laboratory — The microwave radiometer profiler (MWRP) provides vertical profiles of temperature, humidity, and cloud liquid water content as a function of height or pressure at...

  4. Microwave Oven Observations.

    Science.gov (United States)

    Sumrall, William J.; Richardson, Denise; Yan, Yuan

    1998-01-01

    Explains a series of laboratory activities which employ a microwave oven to help students understand word problems that relate to states of matter, collect data, and calculate and compare electrical costs to heat energy costs. (DDR)

  5. Microwave Oven Observations.

    Science.gov (United States)

    Sumrall, William J.; Richardson, Denise; Yan, Yuan

    1998-01-01

    Explains a series of laboratory activities which employ a microwave oven to help students understand word problems that relate to states of matter, collect data, and calculate and compare electrical costs to heat energy costs. (DDR)

  6. Microwave Radiometer - high frequency

    Data.gov (United States)

    Oak Ridge National Laboratory — The Microwave Radiometer-High Frequency (MWRHF) provides time-series measurements of brightness temperatures from two channels centered at 90 and 150 GHz. These two...

  7. Microwave workshop for Windows

    Directory of Open Access Journals (Sweden)

    Colin White

    1995-12-01

    Full Text Available A suite of three programs has been developed to support the teaching of microwave theory and design. A secondary function of the package is to support microwave engineers by providing a library of utilities to assist their design function. All three programs were written in Visual Basic and are aimed at supporting both tutor-directed and student-centred learning methodologies. The development team consisted of three final-year degree students.

  8. Microwave system engineering principles

    CERN Document Server

    Raff, Samuel J

    1977-01-01

    Microwave System Engineering Principles focuses on the calculus, differential equations, and transforms of microwave systems. This book discusses the basic nature and principles that can be derived from thermal noise; statistical concepts and binomial distribution; incoherent signal processing; basic properties of antennas; and beam widths and useful approximations. The fundamentals of propagation; LaPlace's Equation and Transmission Line (TEM) waves; interfaces between homogeneous media; modulation, bandwidth, and noise; and communications satellites are also deliberated in this text. This bo

  9. Ultrahigh and microwave frequency nanomechanical systems

    Science.gov (United States)

    Huang, Xue Ming Henry

    crystal and surface quality on resonator performance at microwave frequencies.Magnetomotive transduction has been used extensively in the above achievements, where eddy current damping is usually negligible. However, it was realized that such damping phenomena may turn out to be crucial for doubly clamped beam nanotube mechanical resonators. This concept has been experimentally demonstrated. Silicon carbide material is used to create a dummy nanotube, and in turn being used to investigate the role of eddy current damping phenomena in the context of studying nanotube mechanical motion.Another nanotube-based novel device structure, using a nanotube carrying a single domain nanomagnet paddle, forming a torsional mechanical resonator, has been designed and analyzed. This device design appears capable of force sensing in zeptoNewton/Hz1/2 range at room temperature.As we cool down GHz nanomechanical resonators to low temperatures, the devices approach their quantum regime of operation. A structure designed to enable observation of quantum jumps in nanomechanical devices is described. A prototype device demonstrating a frequency shift transduction scheme is fabricated and tested in the classical domain. The coupling mechanism involved is analogous to Kerr nonlinearity in quantum optics. This nanomechanical approach should allow quantum nondemolition (QND) measurements if the experimental technique is extended into the quantum regime. Based on quantum simulations and experimental analysis, we argue that single quanta sensitivity can be achieved in next-generation devices of this kind.

  10. Formation Of Picosecond Electron Bunches In The Linear Accelerator By Means Of An Optical Deflector

    CERN Document Server

    Dyomin, V S; Reprintsev, L V; Shendrik, V A

    2004-01-01

    A possibility for forming trains of optical picosecond pulses by the microwave scanning of a laser beam across the adjustable diaphragm is considered. After amplification these pulses can be used for obtaining a photoemission in microwave guns.

  11. Photonic microwave signals with zeptosecond level absolute timing noise

    CERN Document Server

    Xie, Xiaopeng; Nicolodi, Daniele; Giunta, Michele; Hänsel, Wolfgang; Lezius, Matthias; Joshi, Abhay; Datta, Shubhashish; Alexandre, Christophe; Lours, Michel; Tremblin, Pierre-Alain; Santarelli, Giorgio; Holzwarth, Ronald; Coq, Yann Le

    2016-01-01

    Photonic synthesis of radiofrequency revived the quest for unrivalled microwave purity by its seducing ability to convey the benefits of the optics to the microwave world. In this work, we perform a high-fidelity transfer of frequency stability between an optical reference and a microwave signal via a low-noise fiber-based frequency comb and cutting-edge photo-detection techniques. We demonstrate the generation of the purest microwave signal with a fractional frequency stability below 6.5 x 10^-16 at 1 s and a timing noise floor below 41 zs.Hz^-1/2 (phase noise below -173 dBc.Hz^-1 for a 12 GHz carrier). This outclasses existing sources and promises a new era for state-of-the-art microwave generation. The characterization is achieved by building two auxiliary low noise optoelectronic microwave reference and using a heterodyne cross-correlation scheme with lowermost detection noise. This unprecedented level of purity can impact domains such as radar systems, telecommunications and time-frequency metrology. Fur...

  12. Microwave electric field sensing with Rydberg atoms

    Science.gov (United States)

    Stack, Daniel T.; Kunz, Paul D.; Meyer, David H.; Solmeyer, Neal

    2016-05-01

    Atoms form the basis of precise measurement for many quantities (time, acceleration, rotation, magnetic field, etc.). Measurements of microwave frequency electric fields by traditional methods (i.e. engineered antennas) have limited sensitivity and can be difficult to calibrate properly. Highly-excited (Rydberg) neutral atoms have very large electric-dipole moments and many dipole allowed transitions in the range of 1 - 500 GHz. It is possible to sensitively probe the electric field in this range using the combination of two quantum interference phenomena: electromagnetically induced transparency and the Autler-Townes effect. This technique allows for very sensitive field amplitude, polarization, and sub-wavelength imaging measurements. These quantities can be extracted by measuring properties of a probe laser beam as it passes through a warm rubidium vapor cell. Thus far, Rydberg microwave electrometry has relied upon the absorption of the probe laser. We report on our use of polarization rotation, which corresponds to the real part of the susceptibility, for measuring the properties of microwave frequency electric fields. Our simulations show that when a magnetic field is present and directed along the optical propagation direction a polarization rotation signal exists and can be used for microwave electrometry. One central advantage in using the polarization rotation signal rather than the absorption signal is that common mode laser noise is naturally eliminated leading to a potentially dramatic increase in signal-to-noise ratio.

  13. Mathematical models for Enterococcus faecalis recovery after microwave water disinfection.

    Science.gov (United States)

    Benjamin, Earl; Reznik, Aron; Benjamin, Ellis; Pramanik, Saroj K; Sowers, Louise; Williams, Arthur L

    2009-12-01

    Microwave water disinfection is a rapid purification technique which can give billions of people access to clean drinking water. However, better understanding of bacterial recovery after microwave heating over time is necessary to determine parameters such as delayed bacterial growth rates and maximum bacterial yields. Mathematical models for Enterococcus faecalis recovery after microwave treatment in optimum growth conditions were developed for times up to 5 minutes using an optical absorbance method. Microwave times below 3 minutes (2,450 MHz, 130W) showed that bacterial recovery maintained a time-dependent sigmoidal form which included a maximum value. At microwave times greater than three minutes, bacterial recovery, with a time-dependent exponential form, significantly decreased and did not reach the maximum value within the interval of observance (0-8 hours). No bacterial growth was found after 6 minutes of microwave treatment. The prepared mathematical models were produced by transforming the given variables to the logistic or exponential functions. We found that time-dependent maximum growth rates and lag times could be approximated with second order polynomial functions. The determined models can be used as a template to illustrate bacterial survival during water purification using microwave irradiation, in both commercial and industrial processes.

  14. Microwave Diagnostics of Shock Wave and Detonation Processes

    Science.gov (United States)

    Mikhaylov, Anatoly; Belsky, Vladimir; Bogdanov, Evgeny; Rodionov, Alexey; Sedov, Alexander; Khvorostin, Vladimir; Russian Federal Nuclear Center-Vniief 607190, Sarov, Nizhniy Novgorod Reg., Russia Team

    2013-06-01

    The physical bases of laser and microwave Doppler interferometry are the same - measurements of the Doppler shift of probing electromagnetic frequency, reflected from a moving surface. However, using probing wavelength 4 orders of magnitude longer, microwave diagnostics has some specific advantages as compared with laser diagnostics, namely: measurements inside the microwave-transparent media, which spectrum is much more wide than the spectrum of optically transparent media; for microwave measurements the reflecting surfaces of media, but all jumps of medium parameters - density, dielectric permittivity, conductivity; for microwave technique due to its wavelength all practically important hydrodynamical jumps are smooth. The results of application of the microwave technique were presented in the paper, which demonstrate capabilities of diagnostics of various dynamic processes using single equipment, namely: liners and massive objects launching; shock-to-detonation transition in HE; propagation of steady detonation waves; laminar HE combustion etc. In all conducted investigations the using of the microwave technique gives a big amount of interesting experimental information which is inaccessible for the other traditional experimental techniques.

  15. Demonstration and experimental evaluation of a bi-directional 10-GHz microwave photonic filter

    Science.gov (United States)

    Zaldívar-Huerta, I. E.; Correa-Mena, A. G.; Hernández-Nava, P.; García-Juárez, A.; Rodríguez-Asomoza, J.; Lee, Min Won

    2016-09-01

    A bi-directional 10-GHz microwave photonic filter is proposed and experimentally evaluated. Its frequency response consists of a series of microwave band-pass windows obtained by the interaction of externally modulated multimode laser diodes emitting around of 1550 nm associated to the chromatic dispersion parameter of an optical fiber, as well as the length of the optical link. Microwave band-pass windows exhibit on average a-3 dB bandwidth of 378 MHz. This electro-optical system shows an efficient configuration and good performance. Potentially, filtered microwave signals can be used as electrical carriers in optical communication systems to transmit and distribute services such as video, voice and data.

  16. Airborne microwave radiometric imaging system

    Science.gov (United States)

    Guo, Wei; Li, Futang; Zhang, Zuyin

    1999-09-01

    A dual channel Airborne Microwave Radiometric Imaging system (AMRI) was designed and constructed for regional environment mapping. The system operates at 35GHz, which collects radiation at horizontal and vertical polarized channels. It runs at mechanical conical scanning with 45 degrees incidence angle. Two Cassegrain antennas with 1.5 degrees beamwidth scan the scene alternately and two pseudo- color images of two channels are displayed on the screen of PC in real time. Simultaneously, all parameters of flight and radiometric data are sorted in hard disk for post- processing. The sensitivity of the radiometer (Delta) T equals 0.16K. A new displaying method, unequal size element arc displaying method, is used in image displaying. Several experiments on mobile tower were carried out and the images demonstrate that the AMRI is available to work steadily and accurately.

  17. Fiber optics physics and technology

    CERN Document Server

    Mitschke, Fedor

    2016-01-01

    This book tells you all you want to know about optical fibers: Their structure, their light-guiding mechanism, their material and manufacture, their use. It began with telephone, then came telefax and email. Today we use search engines, music downloads and internet videos, all of which require shuffling of bits and bytes by the zillions. The key to all this is the conduit: the line which is designed to carry massive amounts of data at breakneck speed. In their data carrying capacity optical fiber lines beat all other technologies (copper cable, microwave beacons, satellite links) hands down, at least in the long haul; wireless devices rely on fibers, too. Several effects tend to degrade the signal as it travels down the fiber: they are spelled out in detail. Nonlinear processes are given due consideration for a twofold reason: On the one hand they are fundamentally different from the more familiar processes in electrical cable. On the other hand, they form the basis of particularly interesting and innovative ...

  18. Fiber Optics Physics and Technology

    CERN Document Server

    Mitschke, Fedor

    2010-01-01

    Telephone, telefax, email and internet -- the key ingredient of the inner workings is the conduit: the line which is designed to carry massive amounts of data at breakneck speed. In their data-carrying capacity optical fiber lines beat other technologies (copper cable, microwave beacons, satellite links) hands down, at least in the long haul. This book tells you all you want to know about optical fibers: Their structure, their light-guiding mechanism, their material and manufacture, their use. Several effects tend to degrade the signal as it travels down the fiber: they are spelled out in detail. Nonlinear processes are given due consideration for a twofold reason: On the one hand they are fundamentally different from the more familiar processes in electrical cable. On the other hand, they form the basis of particularly interesting and innovative applications, provided they are understood well enough. A case in point is the use of so-called solitons, i.e. special pulses of light which have the wonderful prope...

  19. Optimization of optically pre-amplified inter-satellite microwave photonic links%带前置光放大的星间微波光子链路性能优化

    Institute of Scientific and Technical Information of China (English)

    朱子行; 赵尚弘; 李勇军; 楚兴春; 张辉; 王翔; 赵顾颢

    2013-01-01

    The analytical expression of output signal-to-noise ratio (SNR) for inter-satellite microwave photonic links with an optical pre-amplifier is derived considering the signal fade caused by both transmitter's and receiver's pointing errors,and an optimized model for the average SNR is established. With the desired SNR and the pointing errors of transmitter and receiver,the direct current (DC) bias phase shift of Mach-Zehnder modulator (MZM) can be optimized so as to minimize the output power of laser diode (LD) ,and the effects of the optical pre-amplifier parameters on the minimum output power of LD and optimal DC bias phase shift are also examined. According to the numerical results,the pre-amplifier noise figure determines the minimum output power of LD needed to achieve the desired SNR. The required minimum output power of LD to maintain the SNR of 15. 56 dB increases by 6. 73 dB for an RMS pointing jitter of 0. 4 μrad when doubling the pre-amplifier noise figure. In contrast, the pre-amplifier noise figure has little influence on the optimal DC bias phase shift, doubling the pre-amplifier noise figure , resulting in no more than 0. 003π increase in the optimum DC bias phase shift.%考虑发射机和接收机对准误差引起的信号衰落,推导出带前置光放大的星间微波光子链路输出信噪比(SNR)的解析表达式,并建立了基于平均SNR原则的链路优化模型.在给定SNR要求及对准误差条件下,对Mach-Zehnder调制器(MZM)直流偏置相移进行了优化,使所需激光器(LD)输出功率最小,并进一步分析了前置放大器参数对最小LD输出功率和最优直流偏置相移的影响.数值仿真结果表明,与增益相比,前置放大器噪声系数决定了指定SNR所需的最小LD输出功率.当对准误差角标准差为0.4 μrad时,噪声系数加倍会使SNR达到15.56 dB时所需的最小LD输出功率增加6.73 dB.然而,前置放大器噪声系数对最优的直流偏置相移几乎无影响,噪声系

  20. Microwave induced fast pyrolysis of scrap rubber tires

    Science.gov (United States)

    Ani, Farid Nasir; Mat Nor, Nor Syarizan

    2012-06-01

    Pyrolysis is the thermal degradation of carbonaceous solid by heat in the absence of oxygen. The feedstocks, such as biomass or solid wastes are heated to a temperature between 400 and 600°C, without introducing oxygen to support the reaction. The reaction produces three products: gas, pyro-fuel oil and char. This paper presents the techniques of producing pyro-oil from waste tires, as well as investigation of the fuel properties suitable for diesel engine applications. In this study, microwave heating technique is employed to pyrolyse the used rubber tires into pyro-oil. Thermal treatment of as received used rubber tires is carried out in a modified domestic microwave heated fixed bed technology. It has been found that, rubber tires, previously used by various researchers, are poor microwave absorbers. Studies have shown that an appropriate microwave-absorbing material, such as biomass char or activated carbon, could be added to enhance the pyrolysis process; thus producing the pyro-oil. The characteristics of pyro-oil, as well as the effect of microwave absorber on its yield, are briefly described in this paper. The temperature profiles during the microwave heating process are also illustratively emphasized. The study provides a means of converting scrap tires into pyro-oil and pyrolytic carbon black production. The proposed microwave thermal conversion process therefore has the potentials of substantially saving time and energy.

  1. Microwave photonics technologies supporting high capacity and flexible wireless communications systems

    DEFF Research Database (Denmark)

    Lu, Xiaofeng; Tatarczak, Anna; Rommel, Simon;

    2015-01-01

    Emerging 5G wireless systems require technologies for increased capacity, guarantee robustness, low latency and flexibility. We review a number of approaches to provide the above based on microwave photonics and hybrid optical fiber-wireless communication techniques.......Emerging 5G wireless systems require technologies for increased capacity, guarantee robustness, low latency and flexibility. We review a number of approaches to provide the above based on microwave photonics and hybrid optical fiber-wireless communication techniques....

  2. Comparison of active microwave and optical sensors

    NARCIS (Netherlands)

    Schwering, P.B.W.; Theil, A.

    2002-01-01

    This paper describes a number of projects at TNO-FEL in the field of sensor fusion of radar and electrooptical sensors. These fusion approaches consider land, air, and maritime scenarios for surveillance and autonomous detection tasks. Fusion benefits are present when uncorrelated and complementary

  3. RECENT MATHEMATICAL STUDIES IN THE MODELING OF OPTICS AND ELECTROMAGNETICS

    Institute of Scientific and Technical Information of China (English)

    Gang Bao

    2004-01-01

    This work is concerned with mathematical modeling, analysis, and computation of optics and electromagnetics, motivated particularly by optical and microwave applications.The main technical focus is on Maxwell's equations in complex linear and nonlinear media.

  4. Anomalous Microwave Emission

    CERN Document Server

    Kogut, A J

    1999-01-01

    Improved knowledge of diffuse Galactic emission is important to maximize the scientific return from scheduled CMB anisotropy missions. Cross-correlation of microwave maps with maps of the far-IR dust continuum show a ubiquitous microwave emission component whose spatial distribution is traced by far-IR dust emission. The spectral index of this emission, beta_{radio} = -2.2 (+0.5 -0.7) is suggestive of free-free emission but does not preclude other candidates. Comparison of H-alpha and microwave results show that both data sets have positive correlations with the far-IR dust emission. Microwave data, however, are consistently brighter than can be explained solely from free-free emission traced by H-alpha. This ``anomalous'' microwave emission can be explained as electric dipole radiation from small spinning dust grains. The anomalous component at 53 GHz is 2.5 times as bright as the free-free emission traced by H-alpha, providing an approximate normalization for models with significant spinning dust emission.

  5. Microwave engineering concepts and fundamentals

    CERN Document Server

    Khan, Ahmad Shahid

    2014-01-01

    Detailing the active and passive aspects of microwaves, Microwave Engineering: Concepts and Fundamentals covers everything from wave propagation to reflection and refraction, guided waves, and transmission lines, providing a comprehensive understanding of the underlying principles at the core of microwave engineering. This encyclopedic text not only encompasses nearly all facets of microwave engineering, but also gives all topics—including microwave generation, measurement, and processing—equal emphasis. Packed with illustrations to aid in comprehension, the book: •Describes the mathematical theory of waveguides and ferrite devices, devoting an entire chapter to the Smith chart and its applications •Discusses different types of microwave components, antennas, tubes, transistors, diodes, and parametric devices •Examines various attributes of cavity resonators, semiconductor and RF/microwave devices, and microwave integrated circuits •Addresses scattering parameters and their properties, as well a...

  6. Software-defined microwave photonic filter with high reconfigurable resolution

    Science.gov (United States)

    Wei, Wei; Yi, Lilin; Jaouën, Yves; Hu, Weisheng

    2016-01-01

    Microwave photonic filters (MPFs) are of great interest in radio frequency systems since they provide prominent flexibility on microwave signal processing. Although filter reconfigurability and tunability have been demonstrated repeatedly, it is still difficult to control the filter shape with very high precision. Thus the MPF application is basically limited to signal selection. Here we present a polarization-insensitive single-passband arbitrary-shaped MPF with ~GHz bandwidth based on stimulated Brillouin scattering (SBS) in optical fibre. For the first time the filter shape, bandwidth and central frequency can all be precisely defined by software with ~MHz resolution. The unprecedented multi-dimensional filter flexibility offers new possibilities to process microwave signals directly in optical domain with high precision thus enhancing the MPF functionality. Nanosecond pulse shaping by implementing precisely defined filters is demonstrated to prove the filter superiority and practicability. PMID:27759062

  7. Comparative Study of Microwave Induced and Conventional Synthesis of Acetylated Sugar Isothiocyanates and Related Thiocarbamides

    Directory of Open Access Journals (Sweden)

    Atul V. Yadgire

    2011-01-01

    Full Text Available The synthesis of several acetylated sugar isothiocyanates have been carried out under microwave irradiation in excellent yields of products by using related bromides and lead thiocyanate in sodium dried xylene. Several acetylated sugar thiocarbamides have been synthesized by the interaction of respective acetylated sugar isothiocyanates with appropriate aryl amines under microwave irradiation.

  8. Active Microwave Metamaterials Incorporating Ideal Gain Devices

    Directory of Open Access Journals (Sweden)

    Hao Xin

    2010-12-01

    Full Text Available Incorporation of active devices/media such as transistors for microwave and gain media for optics may be very attractive for enabling desired low loss and broadband metamaterials. Such metamaterials can even have gain which may very well lead to new and exciting physical phenomena. We investigate microwave composite right/left-handed transmission lines (CRLH-TL incorporating ideal gain devices such as constant negative resistance. With realistic lumped element values, we have shown that the negative phase constant of this kind of transmission lines is maintained (i.e., left-handedness kept while gain can be obtained (negative attenuation constant of transmission line simultaneously. Possible implementation and challenging issues of the proposed active CRLH-TL are also discussed.

  9. Quartz tuning fork based microwave impedance microscopy

    Science.gov (United States)

    Cui, Yong-Tao; Ma, Eric Yue; Shen, Zhi-Xun

    2016-06-01

    Microwave impedance microscopy (MIM), a near-field microwave scanning probe technique, has become a powerful tool to characterize local electrical responses in solid state samples. We present the design of a new type of MIM sensor based on quartz tuning fork and electrochemically etched thin metal wires. Due to a higher aspect ratio tip and integration with tuning fork, such design achieves comparable MIM performance and enables easy self-sensing topography feedback in situations where the conventional optical feedback mechanism is not available, thus is complementary to microfabricated shielded stripline-type probes. The new design also enables stable differential mode MIM detection and multiple-frequency MIM measurements with a single sensor.

  10. Microwave-assisted preparation of naphthenic acid esters

    Directory of Open Access Journals (Sweden)

    VERA CIRIN-NOVTA

    2006-12-01

    Full Text Available The synthesis of esters of natural petroleum acids of the naphthenic type assisted with microwave irradiation under the conditions of acid catalysis was carried out with various alcohols: methanol, ethanol, n-butanol and tert-butyl alcohol. Microwave dielectric heating of the reaction mixture in an unmodified microwave oven with activation of the naphthenic acids with sulfuric and p-toluenesulfonic acid afforded the esters of the naphthenic acids. Depending on the catalyst and the steric and nucleophilic properties of the alcohols, the yield of naphthenic esters ranged from 31.25 % to 88.90 %. As a consequence of microwave dielectric heating, the esterification time was reduced from 6–10 h to 5 min.

  11. The applications of microwave energy to improve grindability and extraction of gold ores

    CERN Document Server

    Huang, J H

    2000-01-01

    decomposed than pyrite at the same exposure conditions. Scanning electron microscope (SEM), optical microscope, and X-ray diffraction results indicated that the alterations during microwave treatment were complex. Some intermediate products (e.g. Fe sub ( sub 1 sub - sub x sub ) S) were formed before the sulphides were completely oxidised into hematite (Fe sub 2 O sub 3). Oxidation developed from the surfaces into the cores of the microwaved particles. Metallic particles were also formed during microwave exposure. Lihir gold ore, in which gold was finely disseminated in pyrite and marcasite, was an extremely refractory gold ore. Without pretreatment, only 37 approx 39% of the gold could be extracted with sodium cyanide. However, this was improved after the head ores or floatation concentrates were pretreated by microwave radiation. 74.5 approx 81.2% of the gold was extracted from the microwave treated head ore. The hydrometallurgical pretreatment of pyrite and marcasite in a microwave field and a conventional...

  12. High power microwaves

    CERN Document Server

    Benford, James; Schamiloglu, Edl

    2016-01-01

    Following in the footsteps of its popular predecessors, High Power Microwaves, Third Edition continues to provide a wide-angle, integrated view of the field of high power microwaves (HPMs). This third edition includes significant updates in every chapter as well as a new chapter on beamless systems that covers nonlinear transmission lines. Written by an experimentalist, a theorist, and an applied theorist, respectively, the book offers complementary perspectives on different source types. The authors address: * How HPM relates historically and technically to the conventional microwave field * The possible applications for HPM and the key criteria that HPM devices have to meet in order to be applied * How high power sources work, including their performance capabilities and limitations * The broad fundamental issues to be addressed in the future for a wide variety of source types The book is accessible to several audiences. Researchers currently in the field can widen their understanding of HPM. Present or pot...

  13. Microwave-assisted Chemical Transformations

    Science.gov (United States)

    In recent years, there has been a considerable interest in developing sustainable chemistries utilizing green chemistry principles. Since the first published report in 1986 by Gedye and Giguere on microwave assisted synthesis in household microwave ovens, the use of microwaves as...

  14. Physics of the Microwave Oven

    Science.gov (United States)

    Vollmer, Michael

    2004-01-01

    This is the first of two articles about the physics of microwave ovens. This article deals with the generation of microwaves in the oven and includes the operation of the magnetrons, waveguides and standing waves in resonant cavities. It then considers the absorption of microwaves by foods, discussing the dielectric relaxation of water,…

  15. Physics of the Microwave Oven

    Science.gov (United States)

    Vollmer, Michael

    2004-01-01

    This is the first of two articles about the physics of microwave ovens. This article deals with the generation of microwaves in the oven and includes the operation of the magnetrons, waveguides and standing waves in resonant cavities. It then considers the absorption of microwaves by foods, discussing the dielectric relaxation of water,…

  16. Selection of Lipases for the Synthesis of Biodiesel from Jatropha Oil and the Potential of Microwave Irradiation to Enhance the Reaction Rate

    National Research Council Canada - National Science Library

    Souza, Livia T. A; Mendes, Adriano A; Castro, Heizir F. de

    2016-01-01

    .... Purified biodiesel was characterized by different techniques. Transesterification reaction carried out under microwave irradiation exhibited higher yield and productivity than conventional heating...

  17. Infections That Pets Carry (For Parents)

    Science.gov (United States)

    ... Your 1- to 2-Year-Old Infections That Pets Carry KidsHealth > For Parents > Infections That Pets Carry ... how to protect your family from infections. How Pets Spread Infections Like people, all animals carry germs . ...

  18. Dynamic modes of microwave signal autogeneration in a radio photonic ring generator

    Science.gov (United States)

    Kondrashov, A. V.; Ustinov, A. B.; Kalinikos, B. A.

    2017-02-01

    Dynamic modes of microwave signal autogeneration in a radio photonic generator have been investigated. The generator is a ring circuit with a low-pass filter and microwave amplifier in its microwave path. The optical path contains an optical fiber delay line. The generator demonstrates the periodical, chaotic, and noise dynamics. It has been shown that the correlation dimensionality of the random signal attractor in the chaotic generation mode saturates with increasing phase space dimensionality. Saturation is not observed in the noise-generation mode.

  19. A microwave powered sensor assembly for microwave ovens

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a microwave powered sensor assembly for micro- wave ovens. The microwave powered sensor assembly comprises a microwave antenna for generating an RF antenna signal in response to microwave radiation at a predetermined excitation frequency. A dc power supply circuit...... of the microwave powered sensor assembly is operatively coupled to the RF antenna signal for extracting energy from the RF antenna signal and produce a power supply voltage. A sensor is connected to the power supply voltage and configured to measure a physical or chemical property of a food item under heating...

  20. Broadband microwave photonic phase shifter based on polarisation rotation

    DEFF Research Database (Denmark)

    Xue, Weiqi; Öhman, Filip; Blaaberg, Søren;

    2008-01-01

    A broadband microwave photonic phase shifter is presented based on the polarisation properties of a Mach-Zehnder intensity modulator and nonlinear polarisation rotation in a semiconductor optical amplifier. The system can realise about 150deg phase shift in the frequency range from 50 MHz to 19 GHz....

  1. ECRH microwave beam broadening in the edge turbulent plasma

    Energy Technology Data Exchange (ETDEWEB)

    Sysoeva, E. V.; Gusakov, E. Z.; Popov, A. Yu. [Ioffe Institute, St. Petersburg, Russia and RL PAT SPbSPU, St. Petersburg (Russian Federation); Silva, F. da [Institute of Plasmas and Nuclear Fusion, IST, Lisbon (Portugal); Heuraux, S. [IJL UMR-7198 CNRS-Université de Lorraine, BP70239, 54506 Vandoeuvre Cedex (France)

    2014-02-12

    The influence of turbulent plasma density fluctuations on angular and spatial beam width is treated analytically in the framework of WKB based eikonal method. Reasonable agreement of analytical and numerical treatment results is demonstrated within the domain of quasi-optical approximation validity. Significant broadening of microwave beams is predicted for future ECRH experiments at ITER.

  2. Synthesis of ZnO nanoparticles using surfactant free in-air and microwave method

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Deepali, E-mail: dpschem@gmail.com [Department of Chemistry, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar-144011, Punjab (India); Sharma, Sapna [Department of Basic Sciences, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni-173 230, Solan (India); Kaith, B.S.; Rajput, Jaspreet [Department of Chemistry, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar-144011, Punjab (India); Kaur, Mohinder [Department of Basic Sciences, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni-173 230, Solan (India)

    2011-09-01

    Zinc oxide nanoparticles have been successfully prepared by a facile route involving the reaction of zinc sulphate heptahydrate and sodium hydroxide through drop-by-drop mixing synthesis-IA, instant mixing synthesis-IA and under the influence of microwave radiations. The synthesis under different reaction conditions played an important role and led to the formation of zinc oxide nanoparticles of different size and shapes. The synthesized nanoparticles were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. The concentration dependent antimicrobial activity of synthesized ZnO nanoparticles was carried out. The photocatalytic activity was evaluated using the photodegradation of methylene blue (MB) dye under UV irradiation. Further, the optical properties of as-prepared ZnO nanoparticles were investigated by UV-vis spectrophotometry. The absence of surfactant led to a simple, cheap and fast method of synthesis of zinc oxide nanoparticles.

  3. Microwave Frequency Polarizers

    Science.gov (United States)

    Ha, Vien The; Mirel, Paul; Kogut, Alan J.

    2013-01-01

    This article describes the fabrication and analysis of microwave frequency polarizing grids. The grids are designed to measure polarization from the cosmic microwave background. It is effective in the range of 500 to 1500 micron wavelength. It is cryogenic compatible and highly robust to high load impacts. Each grid is fabricated using an array of different assembly processes which vary in the types of tension mechanisms to the shape and size of the grids. We provide a comprehensive study on the analysis of the grids' wire heights, diameters, and spacing.

  4. Microwave Discharge Ion Sources

    CERN Document Server

    Celona, L

    2013-01-01

    This chapter describes the basic principles, design features and characteristics of microwave discharge ion sources. A suitable source for the production of intense beams for high-power accelerators must satisfy the requirements of high brightness, stability and reliability. The 2.45 GHz off-resonance microwave discharge sources are ideal devices to generate the required beams, as they produce multimilliampere beams of protons, deuterons and singly charged ions. A description of different technical designs will be given, analysing their performance, with particular attention being paid to the quality of the beam, especially in terms of its emittance.

  5. Microwave circulator design

    CERN Document Server

    Linkhart, Douglas K

    2014-01-01

    Circulator design has advanced significantly since the first edition of this book was published 25 years ago. The objective of this second edition is to present theory, information, and design procedures that will enable microwave engineers and technicians to design and build circulators successfully. This resource contains a discussion of the various units used in the circulator design computations, as well as covers the theory of operation. This book presents numerous applications, giving microwave engineers new ideas about how to solve problems using circulators. Design examples are provided, which demonstrate how to apply the information to real-world design tasks.

  6. Microwave Assisted Drug Delivery

    DEFF Research Database (Denmark)

    Jónasson, Sævar Þór; Zhurbenko, Vitaliy; Johansen, Tom Keinicke

    2014-01-01

    In this work, the microwave radiation is adopted for remote activation of pharmaceutical drug capsules inside the human body in order to release drugs at a pre-determined time and location. An array of controllable transmitting sources is used to produce a constructive interference at a certain...... focus point inside the body, where the drugs are then released from the specially designed capsules. An experimental setup for microwave activation has been developed and tested on a body phantom that emulates the human torso. A design of sensitive receiving structures for integration with a drug...

  7. Microwave Assisted Drug Delivery

    DEFF Research Database (Denmark)

    Jónasson, Sævar Þór; Zhurbenko, Vitaliy; Johansen, Tom Keinicke

    2014-01-01

    In this work, the microwave radiation is adopted for remote activation of pharmaceutical drug capsules inside the human body in order to release drugs at a pre-determined time and location. An array of controllable transmitting sources is used to produce a constructive interference at a certain...... focus point inside the body, where the drugs are then released from the specially designed capsules. An experimental setup for microwave activation has been developed and tested on a body phantom that emulates the human torso. A design of sensitive receiving structures for integration with a drug...

  8. EDITORIAL: Microwave Moisture Measurements

    Science.gov (United States)

    Kaatze, Udo; Kupfer, Klaus; Hübner, Christof

    2007-04-01

    Microwave moisture measurements refer to a methodology by which the water content of materials is non-invasively determined using electromagnetic fields of radio and microwave frequencies. Being the omnipresent liquid on our planet, water occurs as a component in most materials and often exercises a significant influence on their properties. Precise measurements of the water content are thus extremely useful in pure sciences, particularly in biochemistry and biophysics. They are likewise important in many agricultural, technical and industrial fields. Applications are broad and diverse, and include the quality assessment of foodstuffs, the determination of water content in paper, cardboard and textile production, the monitoring of moisture in sands, gravels, soils and constructions, as well as the measurement of water admixtures to coal and crude oil in reservoirs and in pipelines. Microwave moisture measurements and evaluations require insights in various disciplines, such as materials science, dielectrics, the physical chemistry of water, electrodynamics and microwave techniques. The cooperation of experts from the different fields of science is thus necessary for the efficient development of this complex discipline. In order to advance cooperation the Workshop on Electromagnetic Wave Interaction with Water and Moist Substances was held in 1993 in Atlanta. It initiated a series of international conferences, of which the last one was held in 2005 in Weimar. The meeting brought together 130 scientists and engineers from all over the world. This special issue presents a collection of some selected papers that were given at the event. The papers cover most topics of the conference, featuring dielectric properties of aqueous materials, electromagnetic wave interactions, measurement methods and sensors, and various applications. The special issue is dedicated to Dr Andrzej W Kraszewski, who died in July 2006 after a distinguished career of 48 years in the research of

  9. CURING OF POLYMERIC COMPOSITES USING MICROWAVE RESIN TRANSFER MOULDING (RTM

    Directory of Open Access Journals (Sweden)

    R. YUSOFF

    2007-08-01

    Full Text Available The main objective of this work is to compare the difference between microwave heating and conventional thermal heating in fabricating carbon/epoxy composites. Two types of epoxy resin systems were used as matrices, LY5052-HY5052 and DGEBA-HY917-DY073. All composite samples were fabricated using resin transfer moulding (RTM technique. The curing of the LY5052-HY5052-carbon and the DGEBA-HY917-DY073-carbon composite systems, were carried out at 100 °C and 120 °C, respectively. Microwave heating showed better temperature control than conventional heating, however, the heating rate of the microwave cured samples were slower than the conventionally cured samples. This was attributed to the lower power (250 W used when heating with microwaves compared to 2000 W used in conventional heating. Study of thermal characteristics as curing progressed showed that the polymerisation reaction occurred at a faster rate during microwave curing than in conventional curing for both the DGEBA and the LY/HY5052 carbon composite systems. The actual cure cycle was reduced from 60 minutes to 40 minutes when using microwaves for curing DGEBA-carbon composites. As for LY/HY5052-carbon composites, the actual cure cycle was reduced from 3 hours to 40 minutes. Both conventional and microwave heating yielded similar glass transition temperatures (120 °C for DGEBA systems and 130 °C for LY/HY5052 systems. Microwave cured composites had higher void contents than conventionally cured composites (2.2-2.8% and 1.8-2.4% for DGEBA and LY/HY5052 microwave cured composites, respectively, compared to 0.2-0.4% for both DGEBA and LY/HY5052 thermally cured composites. C-scan traces showed that all composites, regardless of methods of curing, had minimal defects.

  10. Effect of etchant concentration on microwave induced chemical etching (MICE) of CR-39 detector

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, G.S. [Health Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Tripathy, S.P., E-mail: sam.tripathy@gmail.com [Health Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Sharma, S.D. [Radiological Physics and Advisor Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Homi Bhabha National Institute, Mumbai 400094 (India); Bandyopadhyay, T. [Health Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Homi Bhabha National Institute, Mumbai 400094 (India)

    2015-11-11

    The recently introduced microwave induced chemical etching (MICE) has been found to be a fast and effective etching technique for CR-39 detector. In the present work, the MICE technique was used to develop the neutron induced recoil tracks in CR-39 detectors. Special attention was paid in carrying out a systematic investigation to study the effect of etchant concentration and microwave power on the development of tracks and various track parameters. NaOH solution of different concentrations, viz. 3–8 N was tested at 300, 450, 600 and 900 W of microwave power. Temperature profiles for 200 ml solution of each concentration were generated to maintain a fixed operating condition for all concentrations at each microwave power. The bulk etch rate was found to increase with the microwave power as well as with the etchant concentration. Empirical relations were established to relate the variation of bulk etch rate with microwave power and etchant concentration.

  11. PROPERTIES OF GAS AND CHAR FROM MICROWAVE PYROLYSIS OF PINE SAWDUST

    Directory of Open Access Journals (Sweden)

    Xian-Hua Wang

    2009-08-01

    Full Text Available Pine sawdust pyrolysis was carried out respectively using microwave and conventional electrical heating at different temperatures in order to understand the properties of pyrolytic products from microwave pyrolysis of biomass. Less char material was obtained by microwave pyrolysis compared to conventional heating at the same temperature. While comparing the components of the pyrolytic gases, it was revealed that the microwave pyrolysis gas usually had higher H2 and CO contents and lower CH4 and CO2 contents than those obtained by conventional pyrolysis at the same temperature. The texture analysis results of the microwave pyrolysis chars showed that the chars would melt and the pores would shrink at high temperatures, and hence, the specific surface areas of the chars decreased with increasing temperature. Similarly, the reactivity of the char was remarkably reduced when the microwave pyrolysis temperature exceeded 600°C.

  12. PROCESS INTENSIFICATION: OXIDATION OF BENZYL ALCOHOL USING A CONTINUOUS ISOTHERMAL REACTOR UNDER MICROWAVE IRRADIATION

    Science.gov (United States)

    In the past two decades, several investigations have been carried out using microwave radiation for performing chemical transformations. These transformations have been largely performed in conventional batch reactors with limited mixing and heat transfer capabilities. The reacti...

  13. Microwave heating systems for atmospheric pressure: Nonequilibrium plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Guest, G.E.; Dandl, R.A. (AMPC, Inc., Carlsbad, CA (USA))

    1989-03-01

    Nonequilibrium plasma-chemical processing is attracting increasing interest because of the possibility of creating mixtures of active species that would not be available in thermal equilibrium. For significant throughput of reactants it would be advantageous to create nonequilibrium plasmas in large volumes of atmospheric-pressure mixtures of gases. Techniques for accomplishing this are very limited at present. Here they describe a novel microwave approach to creating nonequilibrium plasmas in large volumes of atmospheric-pressure gases using pulses of microwave radiation with very high peak power that are focused by quasi-optical techniques at one or more points in the interior of the reaction chamber. A new type of microwave source, the Plasma Electron Microwave Source (PEMS), is able to produce the require power levels by storing cw microwave power in a mirror-confined, relativistic-electron plasma and periodically transforming a fraction of that stored energy into intense microwave pulses. This approach avoids many of the limitations inherent in resonant cavity approaches and is expected to permit ultrahigh purity discharges to be produced.

  14. Photonic microwave signals with zeptosecond-level absolute timing noise

    Science.gov (United States)

    Xie, Xiaopeng; Bouchand, Romain; Nicolodi, Daniele; Giunta, Michele; Hänsel, Wolfgang; Lezius, Matthias; Joshi, Abhay; Datta, Shubhashish; Alexandre, Christophe; Lours, Michel; Tremblin, Pierre-Alain; Santarelli, Giorgio; Holzwarth, Ronald; Le Coq, Yann

    2017-01-01

    Photonic synthesis of radiofrequency (RF) waveforms revived the quest for unrivalled microwave purity because of its ability to convey the benefits of optics to the microwave world. In this work, we perform a high-fidelity transfer of frequency stability between an optical reference and a microwave signal via a low-noise fibre-based frequency comb and cutting-edge photodetection techniques. We demonstrate the generation of the purest microwave signal with a fractional frequency stability below 6.5 × 10-16 at 1 s and a timing noise floor below 41 zs Hz-1/2 (phase noise below -173 dBc Hz-1 for a 12 GHz carrier). This outperforms existing sources and promises a new era for state-of-the-art microwave generation. The characterization is achieved through a heterodyne cross-correlation scheme with the lowermost detection noise. This unprecedented level of purity can impact domains such as radar systems, telecommunications and time-frequency metrology. The measurement methods developed here can benefit the characterization of a broad range of signals.

  15. A Brief Analysis of Sister Carrie's Character

    Science.gov (United States)

    Yu, Hanying

    2010-01-01

    Carrie is always dreaming while the rocking chair is rocking again and again, this is the deep impression on us after we read "Sister Carrie" which is the first novel of Theodore Dreiser. In this novel the protagonist Sister Carrie is a controversial person. This paper tries to analyze the character of Sister Carrie in order to find out…

  16. Microwave Radiation Hazards

    Directory of Open Access Journals (Sweden)

    G. Subrahmanian

    1973-07-01

    Full Text Available Excessive exposure to microwave radiation could lead to biological damage. The criteria for maximum permissible exposure limits derived from experiments by several countries are discussed. Recommendations made for safety of operating personnel based on a recent protection survey are also presented.

  17. Leakage of Microwave Ovens

    Science.gov (United States)

    Abdul-Razzaq, W.; Bushey, R.; Winn, G.

    2011-01-01

    Physics is essential for students who want to succeed in science and engineering. Excitement and interest in the content matter contribute to enhancing this success. We have developed a laboratory experiment that takes advantage of microwave ovens to demonstrate important physical concepts and increase interest in physics. This experiment…

  18. Leakage of Microwave Ovens

    Science.gov (United States)

    Abdul-Razzaq, W.; Bushey, R.; Winn, G.

    2011-01-01

    Physics is essential for students who want to succeed in science and engineering. Excitement and interest in the content matter contribute to enhancing this success. We have developed a laboratory experiment that takes advantage of microwave ovens to demonstrate important physical concepts and increase interest in physics. This experiment…

  19. Invisible to Microwaves

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Scientists can't yet make an invisibility cloak like the one that Harry Potter uses.But,for the first time,they've constructed a simple cloaking(1)d__that makes itself and something placed inside it invisible to microwaves.

  20. FDTD modeling of EM field inside microwave cavities

    CERN Document Server

    Narayan, Shiv; Kanth, V Krushna

    2017-01-01

    This book deals with the EM analysis of closed microwave cavities based on a three-dimensional FDTD method. The EM analysis is carried out for (i) rectangular microwave ovens and (ii) hybrid-cylindrical microwave autoclaves at 2.45 GHz. The field distribution is first estimated inside domestic rectangular ovens in xy-, yz-, and zx-plane. Further, the RF leakage from the oven door is determined to study the effect of leakage radiation on wireless communication at 2.45 GHz. Furthermore, the EM analysis of the autoclave is carried out based on 3D FDTD using staircase approximation. In order to show the capability of autoclaves (excited with five source) for curing the aerospace components and materials, the field distribution inside autoclave cavity is studied in presence of aerospace samples. The FDTD based modelling of oven and autoclave are explained with the appropriate expressions and illustrations.

  1. Frequency up-conversion of microwave photons to the telecommunications band in an Er:YSO crystal

    CERN Document Server

    Fernandez-Gonzalvo, Xavier; Yin, Chunming; Rogge, Sven; Longdell, Jevon J

    2015-01-01

    The ability to convert quantum states from microwave photons to optical photons will be important for hybrid system approaches to quantum information processing. In this paper we report the conversion of microwave photons into telecommunications band photons using erbium dopants in a yttrium orthosilicate crystal using stimulated Raman scattering. The microwaves were applied to the sample using a 3D copper loop-gap resonator and the signal and coupling optical fields were single passed. The conversion efficiency was low, in agreement with a theoretical analysis, but can be significantly enhanced with an optical resonator.

  2. Optical clock networks

    Science.gov (United States)

    Riehle, Fritz

    2017-01-01

    Within the last decade, optical atomic clocks have surpassed the best cesium clocks, which are used to realize the unit of time and frequency, in terms of accuracy and stability by about two orders of magnitude. When remote optical atomic clocks are connected by links without degradation in the clock signals, an optical clock network is formed, with distinct advantages for the dissemination of time, geodesy, astronomy and basic and applied research. Different approaches for time and frequency transfer in the microwave and optical regime, via satellites and free-space links, optical fibre links, or transportable optical atomic clocks, can be used to form a hybrid clock network that may allow a future redefinition of the unit of time based on an optical reference transition.

  3. Magnetic nanoparticles for tunable microwave metamaterials

    KAUST Repository

    Noginova, Natalia

    2012-09-24

    Commonly, metamaterials are electrically engineered systems with optimized spatial arrangement of subwavelength sized metal and dielectric components. We explore alternative methods based on use of magnetic inclusions, such as magnetic nanoparticles, which can allow permeability of a composite to be tuned from negative to positive at the range of magnetic resonance. To better understand effects of particle size and magnetization dynamics, we performed electron magnetic resonance study on several varieties of magnetic nanoparticles and determined potential of nanoparticle use as building blocks for tunable microwave metamaterials. © (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  4. Compressive sensing with a microwave photonic filter

    DEFF Research Database (Denmark)

    Chen, Ying; Yu, Xianbin; Chi, Hao

    2015-01-01

    In this letter, we present a novel approach to realizing photonics-assisted compressive sensing (CS) with the technique of microwave photonic fi ltering. In the proposed system, an input spectrally sparse signal to be captured and a random sequence are modulated on an optical carrier via two Mach...... to a frequency- dependent power fading, low-pass fi ltering required in the CS is then realized. A proof-of-concept ex- periment for compressive sampling and recovery of a signal containing three tones at 310 MHz, 1 GHz and 2 GHz with a compression factor up to 10 is successfully demonstrated. More simulation...

  5. Optical solenoid beams

    National Research Council Canada - National Science Library

    Lee, Sang-Hyuk; Roichman, Yohai; Grier, David G

    2010-01-01

    We introduce optical solenoid beams, diffractionless solutions of the Helmholtz equation whose diffraction-limited in-plane intensity peak spirals around the optical axis, and whose wavefronts carry...

  6. Synthesis of N-graphene using microwave plasma-based methods

    Science.gov (United States)

    Dias, Ana; Tatarova, Elena; Henriques, Julio; Dias, Francisco; Felizardo, Edgar; Abrashev, Miroslav; Bundaleski, Nenad; Cvelbar, Uros

    2016-09-01

    In this work a microwave atmospheric plasma driven by surface waves is used to produce free-standing graphene sheets (FSG). Carbonaceous precursors are injected into a microwave plasma environment, where decomposition processes take place. The transport of plasma generated gas-phase carbon atoms and molecules into colder zones of plasma reactor results in carbon nuclei formation. The main part of the solid carbon is gradually carried from the ``hot'' plasma zone into the outlet plasma stream where carbon nanostructures assemble and grow. Subsequently, the graphene sheets have been N-doped using a N2-Ar large-scale remote plasma treatment, which consists on placing the FSG on a substrate in a remote zone of the N2-Ar plasma. The samples were treated with different compositions of N2-Ar gas mixtures, while maintaining 1 mbar pressure in the chamber and a power applied of 600 W. The N-doped graphene sheets were characterized by scanning and by high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. Plasma characterization was also performed by optical emission spectroscopy. Work partially funded by Portuguese FCT - Fundacao para a Ciencia e a Tecnologia, under grant SFRH/BD/52413/2013 (PD-F APPLAuSE).

  7. Preface to the special issue on "Integrated Microwave Photonic Signal Processing"

    Science.gov (United States)

    Azaña, José; Yao, Jianping

    2016-08-01

    As Guest Editors, we are pleased to introduce this special issue on ;Integrated Microwave Photonic Signal Processing; published by the Elsevier journal Optics Communications. Microwave photonics is a field of growing importance from both scientific and practical application perspectives. The field of microwave photonics is devoted to the study, development and application of optics-based techniques and technologies aimed to the generation, processing, control, characterization and/or distribution of microwave signals, including signals well into the millimeter-wave frequency range. The use of photonic technologies for these microwave applications translates into a number of key advantages, such as the possibility of dealing with high-frequency, wide bandwidth signals with minimal losses and reduced electromagnetic interferences, and the potential for enhanced reconfigurability. The central purpose of this special issue is to provide an overview of the state of the art of generation, processing and characterization technologies for high-frequency microwave signals. It is now widely accepted that the practical success of microwave photonics at a large scale will essentially depend on the realization of high-performance microwave-photonic signal-processing engines in compact and integrated formats, preferably on a chip. Thus, the focus of the issue is on techniques implemented using integrated photonic technologies, with the goal of providing an update of the most recent advances toward realization of this vision.

  8. Intracity Quantum Communication via Thermal Microwave Networks

    Directory of Open Access Journals (Sweden)

    Ze-Liang Xiang

    2017-03-01

    Full Text Available Communication over proven-secure quantum channels is potentially one of the most wide-ranging applications of currently developed quantum technologies. It is generally envisioned that in future quantum networks, separated nodes containing stationary solid-state or atomic qubits are connected via the exchange of optical photons over large distances. In this work, we explore an intriguing alternative for quantum communication via all-microwave networks. To make this possible, we describe a general protocol for sending quantum states through thermal channels, even when the number of thermal photons in the channel is much larger than 1. The protocol can be implemented with state-of-the-art superconducting circuits and enables the transfer of quantum states over distances of about 100 m via microwave transmission lines cooled to only T=4  K. This opens up new possibilities for quantum communication within and across buildings and, consequently, for the implementation of intracity quantum networks based on microwave technology only.

  9. Microwave synthesis of electrode materials for lithium batteries

    Indian Academy of Sciences (India)

    M Harish Bhat; B P Chakravarthy; P A Ramakrishnan; A Levasseur; K J RAO

    2000-12-01

    A novel microwave method is described for the preparation of electrode materials required for lithium batteries. The method is simple, fast and carried out in most cases with the same starting material as in conventional methods. Good crystallinity has been noted and lower temperatures of reaction has been inferred in cases where low temperature products have been identified.

  10. PROCESS INTENSIFICATION: MICROWAVE INITIATED REACTIONS USING A CONTINUOUS FLOW REACTOR

    Science.gov (United States)

    The concept of process intensification has been used to develop a continuous narrow channel reactor at Clarkson capable of carrying out reactions under isothermal conditions whilst being exposed to microwave (MW) irradiation thereby providing information on the true effect of mi...

  11. Dielectric measurements on PWB materials at microwave frequencies

    Indian Academy of Sciences (India)

    A Tanwar; K K Gupta; P J Singh; Y K Vijay

    2006-04-01

    In quest of finding new substrate for printed wiring board (PWB) having low dielectric constant, we have made PSF/PMMA blends and evaluated the dielectric parameters at 8.92 GHz frequency and at 35°C temperature. Incorporating PMMA in PSF matrix results in reduced dielectric constant than that of pure PSF. The dielectric parameters of pure PMMA and PSF films of different thicknesses have also been obtained at microwave frequencies. We have used dielectric data at microwave frequencies as a tool to evaluate optical constants, absorption index `’ and refractive index `’. The blends of PSF/PMMA may be used as base materials for PWBs.

  12. Photonic microwave generation with high-power photodiodes

    CERN Document Server

    Fortier, Tara M; Hati, Archita; Nelson, Craig; Taylor, Jennifer A; Fu, Yang; Campbell, Joe; Diddams, Scott A

    2013-01-01

    We utilize and characterize high-power, high-linearity modified uni-traveling carrier (MUTC) photodiodes for low-phase-noise photonic microwave generation based on optical frequency division. When illuminated with picosecond pulses from a repetition-rate-multiplied gigahertz Ti:sapphire modelocked laser, the photodiodes can achieve 10 GHz signal power of +14 dBm. Using these diodes, a 10 GHz microwave tone is generated with less than 500 attoseconds absolute integrated timing jitter (1 Hz-10 MHz) and a phase noise floor of -177 dBc/Hz. We also characterize the electrical response, amplitude-to-phase conversion, saturation and residual noise of the MUTC photodiodes.

  13. Present and future applications of analogue microwave photonics

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso

    2009-01-01

    Photonics may be even more suited for analog than for digital signal applications. Today, microwave photonics techniques are currently used in radio-over-fibre signal transmission and other commercial applications, but recent advances are widening the scope of application to new areas. The speakers...... will introduce present and emerging opportunities for analog photonics, among which microwave filters, arbitrary optical waveform control, THz radiation and UWB pulse generation. A panel discussion will contrast different views from company, academy and funding bodies, to identify the most promising ones...... for commercial applications as well as the challenges and research opportunities to be pursued to make it reality....

  14. Monodisperse Silver Nanoparticles Synthesized by a Microwave-Assisted Method

    Institute of Scientific and Technical Information of China (English)

    ZHU Shao-Peng; TANG Shao-Chun; MENG Xiang-Kang

    2009-01-01

    Silver nanoparticles with an average size of about 2Onto are synthesized in a colloidal solution with the aid of microwave irradiation. Neither additional reductant nor stabilizer is required in this microwave-assisted method.The color of the colloidal solution is found to be dark green, different from the characteristic yellow of silver colloidal solutions. The silver nanoparticles in the colloidal solution have a narrow size distribution and large yield quantity. UV-visible absorption spectroscopy analysis reveals that the as-synthesized monodisperse silver nanoparticles have exceptional optical properties. Raman spectroscopy measurements demonstrate that these silver nanoparticles exhibit a notable surface-enhanced Raman scattering ability.

  15. Microwave synthesizer using an on-chip Brillouin oscillator.

    Science.gov (United States)

    Li, Jiang; Lee, Hansuek; Vahala, Kerry J

    2013-01-01

    Low-phase-noise microwave oscillators are important to a wide range of subjects, including communications, radar and metrology. Photonic-based microwave-wave sources now provide record, close-to-carrier phase-noise performance, and compact sources using microcavities are available commercially. Photonics-based solutions address a challenging scaling problem in electronics, increasing attenuation with frequency. A second scaling challenge, however, is to maintain low phase noise in reduced form factor and even integrated systems. On this second front, there has been remarkable progress in the area of microcavity devices with large storage time (high optical quality factor). Here we report generation of highly coherent microwaves using a chip-based device that derives stability from high optical quality factor. The device has a record low electronic white-phase-noise floor for a microcavity-based oscillator and is used as the optical, voltage-controlled oscillator in the first demonstration of a photonic-based, microwave frequency synthesizer. The synthesizer performance is comparable to mid-range commercial devices.

  16. Optical properties of stabilized copper nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mohindroo, Jeevan Jyoti, E-mail: jjmdav@gmail.com [Punjab Technical University, Kapurthala Punjab (India); Department of Chemistry, DAV College, Amritsar, Punjab India (India); Garg, Umesh Kumar, E-mail: Umeshkgarg@gmail.com [Punjab Technical University, Kapurthala Punjab (India); Guru Teg Bahadur Khalsa College of IT, Malout, Punjab (India); Sharma, Anshul Kumar [Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India)

    2016-05-06

    Optical studies involving calculation of Band Gap of the synthesized copper nanoparticles were carried out in the wavelength range of 500 to 650 nm at room temperature, the particles showed high absorption at 550 nm indicating their good absorptive properties. In this method water is used as the medium for reduction of copper ions in to copper Nanoparticles the stabilization of copper Nanoparticles was studied with starch both as a reductant and stabilizer,. The reaction mixture was heated using a kitchen microwave for about 5 minutes to attain the required temp for the reaction. The pH of the solution was adjusted to alkaline using 5% solution of NaOH. Formation of Copper Nanoparticles was indicated by change in color of the solution from blue to yellowish black which is supported by the UV absorption at 570 nm.the synthesized particles were washed with water and alcohol. The optical properties depend upon absorption of radiations which in turn depends upon ratio of electrons and holes present in the material and also on the shape of the nanoparticles. In the present investigation it was observed that optical absorption increases with increase in particle size. The optical band gap for the Nanoparticles was obtained from plots between hv vs. (αhv){sup 2} and hv vs. (αhv){sup 1/2}. The value of Band gap came out to be around 1.98–2.02 eV which is in close agreement with the earlier reported values.

  17. ANOMALOUS MICROWAVE EMISSION IN H ii REGIONS: IS IT REALLY ANOMALOUS? THE CASE OF RCW 49

    Energy Technology Data Exchange (ETDEWEB)

    Paladini, Roberta [Infrared Processing Analysis Center, California Institute of Technology, 770 South Wilson Ave., Pasadena, CA 91125 (United States); Ingallinera, Adriano; Agliozzo, Claudia; Umana, Grazia; Trigilio, Corrado [Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania Italy (Italy); Tibbs, Christopher T. [Scientific Support Office, Directorate of Science and Robotic Exploration,European Space Research and Technology Centre (ESA/ESTEC), Keplerlaan 1, 2201 AZ, Noordwijk (Netherlands); Noriega-Crespo, Alberto [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Dickinson, Clive [Jodrell Bank Centre for Astrophysics, Alan Turing Building, School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom)

    2015-11-01

    The detection of an excess of emission at microwave frequencies with respect to the predicted free–free emission has been reported for several Galactic H ii regions. Here, we investigate the case of RCW 49, for which the Cosmic Background Imager tentatively (∼3σ) detected Anomalous Microwave Emission (AME) at 31 GHz on angular scales of 7′. Using the Australia Telescope Compact Array, we carried out a multi-frequency (5, 19, and 34 GHz) continuum study of the region, complemented by observations of the H109α radio recombination line. The analysis shows that: (1) the spatial correlation between the microwave and IR emission persists on angular scales from 3.′4 to 0.″4, although the degree of the correlation slightly decreases at higher frequencies and on smaller angular scales; (2) the spectral indices between 1.4 and 5 GHz are globally in agreement with optically thin free–free emission, however, ∼30% of these are positive and much greater than −0.1, consistent with a stellar wind scenario; and (3) no major evidence for inverted free–free radiation is found, indicating that this is likely not the cause of the Anomalous Emission in RCW 49. Although our results cannot rule out the spinning dust hypothesis to explain the tentative detection of AME in RCW 49, they emphasize the complexity of astronomical sources that are very well known and studied, such as H ii regions, and suggest that, at least in these objects, the reported excess of emission might be ascribed to alternative mechanisms such as stellar winds and shocks.

  18. Characteristics of the microwave pyrolysis and microwave CO2-assisted gasification of dewatered sewage sludge.

    Science.gov (United States)

    Chun, Young Nam; Jeong, Byeo Ri

    2017-07-28

    Microwave drying-pyrolysis or drying-gasification characteristics were examined to convert sewage sludge into energy and resources. The gasification was carried out with carbon dioxide as a gasifying agent. The examination results were compared with those of the conventional heating-type electric furnace to compare both product characteristics. Through the pyrolysis or gasification, gas, tar, and char were generated as products. The produced gas was the largest component of each process, followed by the sludge char and the tar. During the pyrolysis process, the main components of the produced gas were hydrogen and carbon monoxide, with a small amount of hydrocarbons such as methane and ethylene. In the gasification process, however, the amount of carbon monoxide was greater than the amount of hydrogen. In microwave gasification, a large amount of heavy tar was produced. The largest amount of benzene in light tar was generated from the pyrolysis or gasification. Ammonia and hydrogen cyanide, which are precursors of NOx, were also generated. In the microwave heating method, the sludge char produced by pyrolysis and gasification had pores in the mesopore range. This could be explained that the gas obtained from the microwave pyrolysis or gasification of the wet sewage sludge can be used as an alternative fuel, but the tar and NOx precursors in the produced gas should be treated. Sludge char can be used as a biomass solid fuel or as a tar removal adsorbent if necessary.

  19. Exploration of Development Mode for Telecom Operators Carrying out the Application of Family Information in All-Optical Network%运营商在全光网络下开展家庭信息化应用的发展模式探讨

    Institute of Scientific and Technical Information of China (English)

    金海; 刘文超; 万象; 赵伟峰

    2011-01-01

    从光进铜退、宽带提速的发展及演进出发,结合PON接入、云计算等新技术的发展,探讨光网络环境下运营商开展家庭信息化应用的发展模式,主要包括接入终端形态与家庭应用场景、信息应用创新、家庭宽带服务等多个方面,提出在光进铜退、光网城市建设背景下的家庭信息化相关产品与业务的开发与发展建议.%Begin with the development of copper back into the fiber and broadband acceleration, combined with PON access,cloud computing and other new technologies, this article explore the development mode for telecom operators carrying out the application of family information in all-optical network, including access terminal morphology and family scenarios, innovation of information application, home broadband services and other aspects of Intemet, putting forward development proposals for family-related information products and business in the context of copper back into the fiber and fiber urban development.

  20. Decomposição de argilas em forno de microondas e determinação simultânea dos seus constituintes principais por espectrometria de emissão óptica em plasma indutivamente acoplado Analysis of clays by inductively coupled plasma optical emission spectrometry after closed-vessel microwave-assisted acid decomposition

    Directory of Open Access Journals (Sweden)

    Claudineia R. Silva

    2005-02-01

    Full Text Available In this work a closed-vessel microwave-assisted acid decomposition procedure for clays was developed. Aluminum, Ca, Fe, K, Mg, Na, Si, and Ti were determined in clay digestates by inductively coupled plasma optical emission spectrometry. The most critical parameter for total decomposition of clays was the composition of the reagent mixture. The applied power and the heating time exerted a less critical influence. Best decomposition conditions were attained using a reagent mixture containing 4 mL aqua regia plus 3 mL HF and the heating program was implemented in 12 min. The accuracy of the results was demonstrated using two standard reference materials and a paired t-test showed a good agreement between determined and certified values at a 95% confidence level.

  1. The Cosmic Microwave Background

    Directory of Open Access Journals (Sweden)

    Jones Aled

    1998-01-01

    Full Text Available We present a brief review of current theory and observations of the cosmic microwave background (CMB. New predictions for cosmological defect theories and an overview of the inflationary theory are discussed. Recent results from various observations of the anisotropies of the microwave background are described and a summary of the proposed experiments is presented. A new analysis technique based on Bayesian statistics that can be used to reconstruct the underlying sky fluctuations is summarised. Current CMB data is used to set some preliminary constraints on the values of fundamental cosmological parameters $Omega$ and $H_circ$ using the maximum likelihood technique. In addition, secondary anisotropies due to the Sunyaev-Zel'dovich effect are described.

  2. 25 CFR 167.6 - Carrying capacities.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Carrying capacities. 167.6 Section 167.6 Indians BUREAU... Carrying capacities. (a) The Commissioner of Indian Affairs on June 26, 1943, promulgated the authorized carrying capacity for each land management district of the Navajo Reservation. (b) Recommended...

  3. 7 CFR 1437.402 - Carrying capacity.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Carrying capacity. 1437.402 Section 1437.402... Determining Coverage of Forage Intended for Animal Consumption § 1437.402 Carrying capacity. (a) CCC will establish a carrying capacity for all grazed forage present in the county for purposes of administering...

  4. A FEMINIST READING OF SISTER CARRIE

    Institute of Scientific and Technical Information of China (English)

    高陈科

    2011-01-01

    In the history of American literature, Sister Carrie has always been a controversial character. The critics regard Carrie either as a "fallen woman" or as a "new women". This thesis aims to offer a feminist reading of the image of Sister Carrie in the con

  5. Local Dynamic Stability Associated with Load Carrying

    Directory of Open Access Journals (Sweden)

    Jian Liu

    2013-03-01

    Conclusion: Current study confirmed the sensitivity of local dynamic stability measure in load carrying situation. It was concluded that load carrying tasks were associated with declined local dynamic stability, which may result in increased risk of fall accident. This finding has implications in preventing fall accidents associated with occupational load carrying.

  6. Microwave Processing of Materials

    Science.gov (United States)

    1994-01-01

    Pennsylvania: Materials Research Society. Wagner, C., and W. Schottky. 1930. Zeitschrift fuer Physikalische Chemie. BL11:163. Walkiewicz, J. W., A. E. Clark...Science and Engineering. 66:468--469. Bloch, F. 1928. Zeitschrift fuer Physik. 52:555. Boch, P., N. Lequeux and P. Piluso. 1992. Reaction Sintering...Frankel, J. 1926. Zeitschrift fuer Physik. 35:652. Fukushima, H., T. Yamaka, and M. Matsui. 1990. Microwave Heating of Ceramics and its Application to

  7. Microwave Multicomponent Synthesis

    Directory of Open Access Journals (Sweden)

    Helmut M. Hügel

    2009-12-01

    Full Text Available In the manner that very important research is often performed by multidisciplinary research teams, the applications of multicomponent reactions involving the combination of multiple starting materials with different functional groups leading to the higher efficiency and environmentally friendly construction of multifunctional/complex target molecules is growing in importance. This review will explore the advances and advantages in microwave multicomponent synthesis (MMS that have been achieved over the last five years.

  8. Microwave milk pasteurization without food safety risk

    Directory of Open Access Journals (Sweden)

    Gábor Géczi

    2013-02-01

    Full Text Available 96 Normal 0 false false false CS JA X-NONE According to nutrition science, milk and milk products are essential food for humans. The primary processing of milk includes its storage, separation, homogenization and the pasteurization process as well. The latter is a kind of heat treatment, which has been used to extend the storage life of food since the late 18th century. Although heat treatment of milk can be achieved through the use of microwave technology, the inhomogeneity of electromagnetic fields leads to an uneven distribution of temperature in the food products, therefore precluding their use in industry. The pasteurization operation is very often Critical Controll Point (CCP according of food safety systems. In recent years our research team has developed continuously operating heat treatment pilot-plant equipment, capable of measuring and contrasting the effects of different heat treatment methods, such as thermostat-controlled water baths and microwave energy, on liquid food products. We examined and compared protein, fat and bacterial content in samples of fresh cow milk with heat-treated cow milk samples. In addition, storage experiments were carried out under a microscope and recordings made of fat globules. Our results so far show that the microwave heat treatment is equivalent to the convection manner pasteurization technology, as we found no difference between the heat-treated products.doi:10.5219/260

  9. Microwave-Assisted Olefin Metathesis

    Science.gov (United States)

    Nicks, François; Borguet, Yannick; Sauvage, Xavier; Bicchielli, Dario; Delfosse, Sébastien; Delaude, Lionel; Demonceau, Albert

    Since the first reports on the use of microwave irradiation to accelerate organic chemical transformations, a plethora of papers have been published in this field. In most examples, microwave heating has been shown to dramatically reduce reaction times, increase product yields, and enhance product purity by reducing unwanted side reactions compared to conventional heating methods. The present contribution aims at illustrating the advantages of this technology in olefin metathesis and, when data are available, at comparing microwave-heated and conventionally heated experiments

  10. Microwave Photonics Parallel Quantum Key Distribution

    CERN Document Server

    Mora, Jose; Amaya, Waldimar; Martinez, Alfonso; Munoz, Victor Garcia-; Calvo, David; Capmany, Jose

    2011-01-01

    The incorporation of multiplexing techniques used in Microwave Photonics to Quantum Key Distribution (QKD) systems bring important advantages enabling the simultaneous and parallel delivery of multiple keys between a central station and different end-users in the context of multipoint access and metropolitan networks, or by providing higher key distribution rates in point to point links by suitably linking the parallel distributed keys. It also allows the coexistence of classical information and quantum key distribution channels over a single optical fibre infrastructure. Here we show, for the first time to our knowledge, the successful operation of a two domain (subcarrier and wavelength division) multiplexed strong reference BB84 quantum key distribution system. A four independent channel QKD system featuring 10 kb/s/channel over an 11 km link with Quantum Bit Error Rate (QBER) < 2 % is reported. These results open the way for multi-quantum key distribution over optical fiber networks.

  11. Tunable optical frequency division using a phase-locked optical parametric oscillator.

    Science.gov (United States)

    Lee, D; Wong, N C

    1992-01-01

    We report the experimental demonstration of a novel optical parametric oscillator approach to tunable optical frequency division. The beat frequency of the signal and idler subharmonic outputs of a tunable cw KTP optical parametric oscillator was phase locked to a microwave reference frequency source, which thus permitted precise determination of the output frequencies at approximately half the input pump frequency.

  12. Investigation of a metallic photonic crystal high power microwave mode converter

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2015-02-01

    Full Text Available It is demonstrated that an L band metallic photonic crystal TEM-TE11 mode converter is suitable for narrow band high power microwave application. The proposed mode converter is realized by partially filling metallic photonic crystals along azimuthal direction in a coaxial transmission line for phase-shifting. A three rows structure is designed and simulated by commercial software CST Microwave Studio. Simulation results show that its conversion efficiency is 99% at the center frequency 1.58 GHz. Over the frequency range of 1.56-1.625 GHz, the conversion efficiency exceeds 90 %, with a corresponding bandwidth of 4.1 %. This mode converter has a gigawatt level power handling capability which is suitable for narrow band high power microwave application. Using magnetically insulated transmission line oscillator(MILO as a high power microwave source, particle-in-cell simulation is carried out to test the performance of the mode converter. The expected TE11 mode microwave output is obtained and the MILO works well. Mode conversion performance of the converter is tested by far-field measurement method. And the experimental result confirms the validity of our design. Then, high power microwave experiment is carried out on a Marx-driven Blumlein water line pulsed power accelerator. Microwave frequency, radiated pattern and power are measured in the far-field region and the results agree well with simulation results. The experiment also reveals that no microwave breakdown or pulse shortening took place in the experimental setup.

  13. TRANSMISSION AND ABSORPTION OF MICROWAVES BY AN INHOMOGENEOUS SPHERE PLASMA

    Institute of Scientific and Technical Information of China (English)

    SONG Falun; CAO Jinxiang; WANG Ge

    2004-01-01

    The numerical calculation of the transmission and absorption of microwaves at an arbitrarily incident angle to the inhomogeneous spherically symmetric plasma is presented.The nonuniform sphere is modeled by a series of concentric spherical shells, and the electron density is constant in each shell. The overall density profile follows any given distribution function. By using the geometrical optics approximation and considering the propagation coefficient is complex, as well as the attenuation and phase coefficients are vectors, the detailed evaluation shows that the transmission and absorption of microwaves in the inhomogeneous spherically symmetric plasma depend on the electron and neutral particle collision frequency, central density, incident angle of the microwaves and density distribution profiles.

  14. Microwave brightness temperature imaging and dielectric properties of lunar soil

    Indian Academy of Sciences (India)

    Wu Ji; Li Dihui; Zhang Xiaohui; Jiang Jingshan; A T Altyntsev; B I Lubyshev

    2005-12-01

    Among many scientific objectives of lunar exploration, investigations on lunar soil become attractive due to the existence of He3 and ilmenite in the lunar soil and their possible utilization as nuclear fuel for power generation.Although the composition of the lunar surface soil can be determined by optical and /X-ray spectrometers, etc., the evaluation of the total reserves of He3 and ilmenite within the regolith and in the lunar interior are still not available.In this paper,we give a rough analysis of the microwave brightness temperature images of the lunar disc observed using the NRAO 12 meter Telescope and Siberian Solar Radio Telescope.We also present the results of the microwave dielectric properties of terrestrial analogues of lunar soil and,discuss some basic relations between the microwave brightness temperature and lunar soil properties.

  15. Attosecond Precision Multi-km Laser-Microwave Network

    CERN Document Server

    Xin, M; Peng, M Y; Kalaydzhyan, A; Wang, W; Muecke, O D; Kaertner, F X

    2016-01-01

    Synchronous laser-microwave networks consisting of many optical and microwave sources distributed over km-distances are crucial for scientific efforts requiring highest spatio-temporal resolution. However, present synchronization techniques limit these networks to 10-fs relative timing jitter between their sub-sources. Here, we present a novel 4.7 km laser-microwave network with attosecond precision for over tens of hours of continuous operation. It is achieved through new metrological devices and careful balancing of fiber nonlinearities and fundamental noise contributions. This work may enable next-generation attosecond photon-science facilities to revolutionize many research fields from structural biology to material science and chemistry to fundamental physics. It will also accelerate the development in other research areas requiring high spatio-temporal resolution such as geodesy, very-long-baseline interferometry, high-precision navigation and multi-telescope arrays.

  16. Numerical modeling of microwave heating

    Directory of Open Access Journals (Sweden)

    Shukla A.K.

    2010-01-01

    Full Text Available The present study compares the temperature distribution within cylindrical samples heated in microwave furnace with those achieved in radiatively-heated (conventional furnace. Using a two-dimensional finite difference approach the thermal profiles were simulated for cylinders of varying radii (0.65, 6.5, and 65 cm and physical properties. The influence of susceptor-assisted microwave heating was also modeled for the same. The simulation results reveal differences in the heating behavior of samples in microwaves. The efficacy of microwave heating depends on the sample size and its thermal conductivity.

  17. The Microwave SQUID Multiplexer

    Science.gov (United States)

    Mates, John Arthur Benson

    2011-12-01

    This thesis describes a multiplexer of Superconducting Quantum Interference Devices (SQUIDs) with low-noise, ultra-low power dissipation, and great scalability. The multiplexer circuit measures the magnetic flux in a large number of unshunted rf SQUIDs by coupling each SQUID to a superconducting microwave resonator tuned to a unique resonance frequency and driving the resonators from a common feedline. A superposition of microwave tones measures each SQUID simultaneously using only two coaxial cables between the cryogenic device and room temperature. This multiplexer will enable the instrumentation of arrays with hundreds of thousands of low-temperature detectors for new applications in cosmology, materials analysis, and nuclear non-proliferation. The driving application of the Microwave SQUID Multiplexer is the readout of large arrays of superconducting transition-edge sensors, by some figures of merit the most sensitive detectors of electromagnetic signals over a span of more than nine orders of magnitude in energy, from 40 GHz microwaves to 200 keV gamma rays. Modern transition-edge sensors have noise-equivalent power as low as 10-20 W / Hz1/2 and energy resolution as good as 2 eV at 6 keV. These per-pixel sensitivities approach theoretical limits set by the underlying signals, motivating a rapid increase in pixel count to access new science. Compelling applications, like the non-destructive assay of nuclear material for treaty verification or the search for primordial gravity waves from inflation use arrays of these detectors to increase collection area or tile a focal plane. We developed three generations of SQUID multiplexers, optimizing the first for flux noise 0.17 muPhi0 / Hz1/2, the second for input current noise 19 pA / Hz1/2, and the last for practical multiplexing of large arrays of cosmic microwave background polarimeters based on transition-edge sensors. Using the last design we demonstrated multiplexed readout of prototype polarimeters with the

  18. Microwave control using a high-gain bias-free optoelectronic switch

    Science.gov (United States)

    Freeman, J. L.; Ray, S.; West, D. L.; Thompson, A. G.; Lagasse, M. J.

    1991-08-01

    We describe an optoelectronic microwave switch that exploits the high optical sensitivity of the air-GaAs interface. With an optical power of 100 micro-W, the switch has an insertion loss of 3.4 dB and an isolation of greater than 20 dB from 0 to 10 GHz. No electrical power is needed.

  19. Non-Ionizing Radiation Used in Microwave Ovens

    Science.gov (United States)

    ... in Microwave Ovens Non-Ionizing Radiation Used in Microwave Ovens Explore the interactive, virtual community of RadTown USA ! ... learn more About Non-Ionizing Radiation Used in Microwave Ovens Microwave Oven. Microwave ovens use electromagnetic waves that ...

  20. Preparation of Porous Mullite Composite by Microwave Sintering

    Institute of Scientific and Technical Information of China (English)

    FAN Bingbing; ZHANG Rui; SUN Bing; LI Xuqin; LI Chunguang

    2012-01-01

    Microwave sintering method was carried out to prepare porous mullite composite.An insulation structure based on hybrid heating mode was well designed with the wall of mullite and the aided heaters of SiC.The obtained samples were characterized by XRD analysis,apparent porosity detection,and bending strength measurement.SEM was used to observe the microstructure of the sample.It is found that the porous mullite composite could be prepared through the microwave sintering within 2 h at relatively low temperatures around 1000 ℃.The lasted samples show comparatively superior properties to the products prepared by conventional processing.