WorldWideScience

Sample records for optical vibronic spectra

  1. Vibronic effects and destruction of exciton coherence in optical spectra of J-aggregates: A variational polaron transformation approach

    Energy Technology Data Exchange (ETDEWEB)

    Bloemsma, E.A.; Silvis, M.H.; Stradomska, A.; Knoester, J., E-mail: j.knoester@rug.nl

    2016-12-20

    Using a symmetry adapted polaron transformation of the Holstein Hamiltonian, we study the interplay of electronic excitation-vibration couplings, resonance excitation transfer interactions, and temperature in the linear absorption spectra of molecular J-aggregates. Semi-analytical expressions for the spectra are derived and compared with results obtained from direct numerical diagonalization of the Hamiltonian in the two-particle basis set representation. At zero temperature, we show that our polaron transformation reproduces both the collective (exciton) and single-molecule (vibrational) optical response associated with the appropriate standard perturbation limits. Specifically, for the molecular dimer excellent agreement with the spectra from the two-particle approach for the entire range of model parameters is obtained. This is in marked contrast to commonly used polaron transformations. Upon increasing the temperature, the spectra show a transition from the collective to the individual molecular features, which results from the thermal destruction of the exciton coherence.

  2. Vibron Solitons and Soliton-Induced Infrared Spectra of Crystalline Acetanilide

    Science.gov (United States)

    Takeno, S.

    1986-01-01

    Red-shifted infrared spectra at low temperatures of amide I (C=O stretching) vibrations of crystalline acetanilide measured by Careri et al. are shown to be due to vibron solitons, which are nonlinearity-induced localized modes of vibrons arising from their nonlinear interactions with optic-type phonons. A nonlinear eigenvalue equation giving the eigenfrequency of stationary solitons is solved approximately by introducing lattice Green's functions, and the obtained result is in good agreement with the experimental result. Inclusion of interactions with acoustic phonons yields the Debye-Waller factor in the zero-phonon line spectrum of vibron solitons, in a manner analogous to the case of impurity-induced localized harmonic phonon modes in alkali halides.

  3. Vibronic spectra of Gd3+ in metaphosphate glasses: Comparison with Raman and infrared spectra

    International Nuclear Information System (INIS)

    Hall, D.W.; Brawer, S.A.; Weber, M.J.

    1982-01-01

    Vibronic sidebands associated with the 6 P/sub 7/2/→ 8 S/sub 7/2/ transition of Gd 3+ -doped metaphosphate glasses are observed using line-narrowed fluorescence techniques. Glasses having metal cations of different mass and charge (La,Al,Mg,Ba) are examined. Vibronic spectra, which probe vibrations about the rare-earth element site, are compared with polarized Raman scattering data and the infrared dielectric constant obtained from near-normal reflectance measurements. Results indicate that in metaphosphate glasses vibronic selection rules are similar to HV (vertical height) Raman selection rules. The wavelengths and relative intensities of peaks in the high-frequency portion of the vibronic spectra change with respect to corresponding peaks in the Raman spectra when the mass and/or charge of Gd 3+ differs significantly from that of the metal cation

  4. Quasi-classical approaches to vibronic spectra revisited

    Science.gov (United States)

    Karsten, Sven; Ivanov, Sergei D.; Bokarev, Sergey I.; Kühn, Oliver

    2018-03-01

    The framework to approach quasi-classical dynamics in the electronic ground state is well established and is based on the Kubo-transformed time correlation function (TCF), being the most classical-like quantum TCF. Here we discuss whether the choice of the Kubo-transformed TCF as a starting point for simulating vibronic spectra is as unambiguous as it is for vibrational ones. Employing imaginary-time path integral techniques in combination with the interaction representation allowed us to formulate a method for simulating vibronic spectra in the adiabatic regime that takes nuclear quantum effects and dynamics on multiple potential energy surfaces into account. Further, a generalized quantum TCF is proposed that contains many well-established TCFs, including the Kubo one, as particular cases. Importantly, it also provides a framework to construct new quantum TCFs. Applying the developed methodology to the generalized TCF leads to a plethora of simulation protocols, which are based on the well-known TCFs as well as on new ones. Their performance is investigated on 1D anharmonic model systems at finite temperatures. It is shown that the protocols based on the new TCFs may lead to superior results with respect to those based on the common ones. The strategies to find the optimal approach are discussed.

  5. Vibronic Boson Sampling: Generalized Gaussian Boson Sampling for Molecular Vibronic Spectra at Finite Temperature.

    Science.gov (United States)

    Huh, Joonsuk; Yung, Man-Hong

    2017-08-07

    Molecular vibroic spectroscopy, where the transitions involve non-trivial Bosonic correlation due to the Duschinsky Rotation, is strongly believed to be in a similar complexity class as Boson Sampling. At finite temperature, the problem is represented as a Boson Sampling experiment with correlated Gaussian input states. This molecular problem with temperature effect is intimately related to the various versions of Boson Sampling sharing the similar computational complexity. Here we provide a full description to this relation in the context of Gaussian Boson Sampling. We find a hierarchical structure, which illustrates the relationship among various Boson Sampling schemes. Specifically, we show that every instance of Gaussian Boson Sampling with an initial correlation can be simulated by an instance of Gaussian Boson Sampling without initial correlation, with only a polynomial overhead. Since every Gaussian state is associated with a thermal state, our result implies that every sampling problem in molecular vibronic transitions, at any temperature, can be simulated by Gaussian Boson Sampling associated with a product of vacuum modes. We refer such a generalized Gaussian Boson Sampling motivated by the molecular sampling problem as Vibronic Boson Sampling.

  6. Vibronic-structure tracking: A shortcut for vibrationally resolved UV/Vis-spectra calculations

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Dennis; König, Carolin; Neugebauer, Johannes, E-mail: j.neugebauer@uni-muenster.de [Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster (Germany)

    2014-10-28

    The vibrational coarse structure and the band shapes of electronic absorption spectra are often dominated by just a few molecular vibrations. By contrast, the simulation of the vibronic structure even in the simplest theoretical models usually requires the calculation of the entire set of normal modes of vibration. Here, we exploit the idea of the mode-tracking protocol [M. Reiher and J. Neugebauer, J. Chem. Phys. 118, 1634 (2003)] in order to directly target and selectively calculate those normal modes which have the largest effect on the vibronic band shape for a certain electronic excitation. This is achieved by defining a criterion for the importance of a normal mode to the vibrational progressions in the absorption band within the so-called “independent mode, displaced harmonic oscillator” (IMDHO) model. We use this approach for a vibronic-structure investigation for several small test molecules as well as for a comparison of the vibronic absorption spectra of a truncated chlorophyll a model and the full chlorophyll a molecule. We show that the method allows to go beyond the often-used strategy to simulate absorption spectra based on broadened vertical excitation peaks with just a minimum of computational effort, which in case of chlorophyll a corresponds to about 10% of the cost for a full simulation within the IMDHO approach.

  7. Energy spectra of vibron and cluster models in molecular and nuclear systems

    Science.gov (United States)

    Jalili Majarshin, A.; Sabri, H.; Jafarizadeh, M. A.

    2018-03-01

    The relation of the algebraic cluster model, i.e., of the vibron model and its extension, to the collective structure, is discussed. In the first section of the paper, we study the energy spectra of vibron model, for diatomic molecule then we derive the rotation-vibration spectrum of 2α, 3α and 4α configuration in the low-lying spectrum of 8Be, 12C and 16O nuclei. All vibrational and rotational states with ground and excited A, E and F states appear to have been observed, moreover the transitional descriptions of the vibron model and α-cluster model were considered by using an infinite-dimensional algebraic method based on the affine \\widehat{SU(1,1)} Lie algebra. The calculated energy spectra are compared with experimental data. Applications to the rotation-vibration spectrum for the diatomic molecule and many-body nuclear clusters indicate that there are solvable models and they can be approximated very well using the transitional theory.

  8. Engineering an all-optical route to ultracold molecules in their vibronic ground state

    OpenAIRE

    Koch, Christiane P.; Moszynski, Robert

    2008-01-01

    We propose an improved photoassociation scheme to produce ultracold molecules in their vibronic ground state for the generic case where non-adiabatic effects facilitating transfer to deeply bound levels are absent. Formation of molecules is achieved by short laser pulses in a Raman-like pump-dump process where an additional near-infrared laser field couples the excited state to an auxiliary state. The coupling due to the additional field effectively changes the shape of the excited state pote...

  9. Tunneling Splittings in Vibronic Structure of CH_3F^+ ( X^2E): Studied by High Resolution Photoelectron Spectra and AB Initio Theoretical Method

    Science.gov (United States)

    Mo, Yuxiang; Gao, Shuming; Dai, Zuyang; Li, Hua

    2013-06-01

    We report a combined experimental and theoretical study on the vibronic structure of CH_3F^+. The results show that the tunneling splittings of vibrational energy levels occur in CH_3F^+ due to the Jahn-Teller effect. Experimentally, we have measured a high resolution ZEKE spectrum of CH_3F up to 3500 cm^-^1 above the ground state. Theoretically, we performed an ab initio calculation based on the diabatic model. The adiabatic potential energy surfaces (APES) of CH_3F^+ have been calculated at the MRCI/CAS/avq(t)z level and expressed by Taylor expansions with normal coordinates as variables. The energy gradients for the lower and upper APES, the derivative couplings between them and also the energies of the APES have been used to determine the coefficients in the Taylor expansion. The spin-vibronic energy levels have been calculated by accounting all six vibrational modes and their couplings. The experimental ZEKE spectra were assigned based on the theoretical calculations. W. Domcke, D. R. Yarkony, and H. Köpple (Eds.), Conical Intersections: Eletronic Structure, Dynamics and Spectroscopy (World Scientific, Singapore, 2004). M. S. Schuurman, D. E. Weinberg, and D. R. Yarkony, J. Chem. Phys. 127, 104309 (2007).

  10. Complicated Fermi-type vibronic resonance: Untangling of the single-site quasi-line fluorescence excitation spectra of a methylated dibenzoporphin

    International Nuclear Information System (INIS)

    Arabei, S.M.; Kuzmitsky, V.A.; Solovyov, K.N.

    2008-01-01

    The quasi-line low-temperature (4.2 K) fluorescence excitation spectra of 2,3,12,13-tetramethyldibenzo[g,q]porphin introduced into an n-octane matrix have been measured in the range of the S 2 0 electronic transition at selective fluorescence monitoring for the two main types of impurity centers (sites). A characteristic feature of these spectra is that a conglomerate of quasi-lines - a structured complex band - is observed instead of one 0-0 quasi-line of the S 2 0 transition. In this band, the intensity distributions for the two main sites considerably differ from each other. The occurrence of such conglomerates is interpreted as a result of nonadiabatic vibrational-electronic interaction between the vibronic S 2 and S 1 states (the complex vibronic analogue of the Fermi resonance). The frequencies and intensities of individual transitions determined from the deconvolution of complex conglomerates are used as the initial data for solving the inverse spectroscopic problem: the determination of the unperturbed electronic and vibrational levels of states involved in the resonance and the vibronic-interaction matrix elements between them. This problem is solved with a method developed previously. The experimental results and their analysis are compared to the analogous data obtained earlier for meso-tetraazaporphin and meso-tetrapropylporphin. The energy intervals between the S 2 and S 1 electronic levels (ΔE S 2 S 1 ) of the two main types of impurity centers formed by molecules of a given porphyrin in the crystal matrix are found to significantly differ from each other, the values of this difference (δΔE S 2 S 1 ) being considerably greater for tetramethyldibenzoporphin, δΔE S 2 S 1 =228cm -1 , than for the two other porphyrins. At the same time, the energies of the unperturbed vibrational states of the S 1 electronic level participating in the resonance are very close to each other for these two sites

  11. Nonlinear optical and electroabsorption spectra of polydiacetylene crystals and films

    Science.gov (United States)

    Mukhopadhyay, D.; Soos, Z. G.

    1996-01-01

    Vibronic structure of nonlinear optical (NLO) coefficients is developed within the Condon approximation, displaced harmonic oscillators, and crude adiabatic states. The displacements of backbone modes of conjugated polymers are taken from vibrational data on the ground and 1B excited state. NLO resonances are modeled by three excitations and transition moments taken from Pariser-Parr-Pople (PPP) theory and optimized to polydiacetylene (PDA) spectra in crystals and films, with blue-shifted 1B exciton. The joint analysis of third-harmonic-generation, two-photon absorption, and nondegenerate four-wave-mixing spectra of PDA crystals and films shows weak two-photon absorption to 2A below 1B, leading to overlapping resonances in the THG spectrum, strong two-photon absorption to an nA state some 35% above 1B, and weak Raman resonances in nondegenerate FWM spectra. The full π-π* spectrum contributes to Stark shifts and field-induced transitions, as shown by PPP results for PDA oligomers. The Stark shift dominates high-resolution electroabsorption (EA) spectra of PDA crystals below 10 K. The close correspondence between EA and the first-derivative I'(ω) of the linear absorption above the 1B exciton in PDA crystals provides an experimental separation of vibrational and electronic contributions that limits any even-parity state in this 0.5 eV interval. An oscillator-strength sum rule is applied to the convergence of PDA oligomers with increasing length, N, and the crystal oscillator strengths are obtained without adjustable parameters. The sum rule for the 1B exciton implies large transition moments to higher-energy Ag states, whose locations in recent models are contrasted to PPP results. Joint analysis of NLO and EA spectra clarifies when a few electronic excitations are sufficient, distinguishes between vibrational and electronic contributions, and supports similar π-electron interactions in conjugated molecules and polymers.

  12. Effect of molecular weight on the vibronic structure of a diketopyrrolopyrrole polymer

    KAUST Repository

    Hayes, Sophia C.

    2016-09-27

    Resonance Raman Spectroscopy (RRS) is employed in this study to examine the influence of molecular weight on the optical response of a diketopyrrolopyrrole polymer (DPP-TT-T) in solution. The vibronic structure observed for the ground state absorption of this polymer is found to vary with molecular weight and solvent. Resonance Raman Intensity Analysis (RRIA) revealed that the absorption spectra can be described by at least two dipole-allowed transitions and the vibronic structure variation is due to differing contributions from linear and curved segments of the polymer.

  13. Effect of molecular weight on the vibronic structure of a diketopyrrolopyrrole polymer

    KAUST Repository

    Hayes, Sophia C.; Pieridou, Galatia; Vezie, Michelle; Few, Sheridan; Bronstein, Hugo; Meager, Iain; McCulloch, Iain; Nelson, Jenny

    2016-01-01

    Resonance Raman Spectroscopy (RRS) is employed in this study to examine the influence of molecular weight on the optical response of a diketopyrrolopyrrole polymer (DPP-TT-T) in solution. The vibronic structure observed for the ground state absorption of this polymer is found to vary with molecular weight and solvent. Resonance Raman Intensity Analysis (RRIA) revealed that the absorption spectra can be described by at least two dipole-allowed transitions and the vibronic structure variation is due to differing contributions from linear and curved segments of the polymer.

  14. Communication: Strong excitonic and vibronic effects determine the optical properties of Li₂O₂

    DEFF Research Database (Denmark)

    García Lastra, Juan Maria; Bass, J. D.; Thygesen, Kristian Sommer

    2011-01-01

    The band structure and optical absorption spectrum of lithium peroxide (Li2O2) is calculated from first-principles using the G0W0 approximation and the Bethe-Salpeter equation, respectively. A strongly localized (Frenkel type) exciton corresponding to the π*→σ* transition on the O2 −2 peroxide ion...

  15. Optical absorption spectra of Ag-11 isomers

    DEFF Research Database (Denmark)

    Martinez, Jose Ignacio; Fernandez, E. M.

    2009-01-01

    The optical absorption spectra of the three most; stable structural isomers of the Ag-11 cluster were calculated using the time-dependent, density functional theory within the Casida formalism. The slightly different, spectra, of the isomers may permit the identification of the ground-stale confi......The optical absorption spectra of the three most; stable structural isomers of the Ag-11 cluster were calculated using the time-dependent, density functional theory within the Casida formalism. The slightly different, spectra, of the isomers may permit the identification of the ground...

  16. Franck-Condon Simulations including Anharmonicity of the Ã(1)A''-X̃(1)A' Absorption and Single Vibronic Level Emission Spectra of HSiCl and DSiCl.

    Science.gov (United States)

    Mok, Daniel W K; Lee, Edmond P F; Chau, Foo-Tim; Dyke, John M

    2009-03-10

    RCCSD(T) and/or CASSCF/MRCI calculations have been carried out on the X̃(1)A' and Ã(1)A'' states of HSiCl employing basis sets of up to the aug-cc-pV5Z quality. Contributions from core correlation and extrapolation to the complete basis set limit were included in determining the computed equilibrium geometrical parameters and relative electronic energy of these two states of HSiCl. Franck-Condon factors which include allowance for anharmonicity and Duschinsky rotation between these two states of HSiCl and DSiCl were calculated employing RCCSD(T) and CASSCF/MRCI potential energy functions, and were used to simulate the Ã(1)A'' ← X̃(1)A' absorption and Ã(1)A'' → X̃(1)A' single vibronic level (SVL) emission spectra of HSiCl and DSiCl. Simulated absorption and experimental LIF spectra, and simulated and observed Ã(1)A''(0,0,0) → X̃(1)A' SVL emission spectra, of HSiCl and DSiCl are in very good agreement. However, agreement between simulated and observed Ã(1)A''(0,1,0) → X̃(1)A' and Ã(1)A''(0,2,1) → X̃(1)A' SVL emission spectra of DSiCl is not as good. Preliminary calculations on low-lying excited states of HSiCl suggest that vibronic interaction between low-lying vibrational levels of the Ã(1)A'' state and highly excited vibrational levels of the ã(3)A'' is possible. Such vibronic interaction may change the character of the low-lying vibrational levels of the Ã(1)A'' state, which would lead to perturbation in the SVL emission spectra from these vibrational levels.

  17. Quantum optical emulation of molecular vibronic spectroscopy using a trapped-ion device.

    Science.gov (United States)

    Shen, Yangchao; Lu, Yao; Zhang, Kuan; Zhang, Junhua; Zhang, Shuaining; Huh, Joonsuk; Kim, Kihwan

    2018-01-28

    Molecules are one of the most demanding quantum systems to be simulated by quantum computers due to their complexity and the emergent role of quantum nature. The recent theoretical proposal of Huh et al. (Nature Photon., 9, 615 (2015)) showed that a multi-photon network with a Gaussian input state can simulate a molecular spectroscopic process. Here, we present the first quantum device that generates a molecular spectroscopic signal with the phonons in a trapped ion system, using SO 2 as an example. In order to perform reliable Gaussian sampling, we develop the essential experimental technology with phonons, which includes the phase-coherent manipulation of displacement, squeezing, and rotation operations with multiple modes in a single realization. The required quantum optical operations are implemented through Raman laser beams. The molecular spectroscopic signal is reconstructed from the collective projection measurements for the two-phonon-mode. Our experimental demonstration will pave the way to large-scale molecular quantum simulations, which are classically intractable, but would be easily verifiable by real molecular spectroscopy.

  18. Determination of the optical absorption spectra of thin layers from their photoacoustic spectra

    Science.gov (United States)

    Bychto, Leszek; Maliński, Mirosław; Patryn, Aleksy; Tivanov, Mikhail; Gremenok, Valery

    2018-05-01

    This paper presents a new method for computations of the optical absorption coefficient spectra from the normalized photoacoustic amplitude spectra of thin semiconductor samples deposited on the optically transparent and thermally thick substrates. This method was tested on CuIn(Te0.7Se0.3)2 thin films. From the normalized photoacoustic amplitude spectra, the optical absorption coefficient spectra were computed with the new formula as also with the numerical iterative method. From these spectra, the value of the energy gap of the thin film material and the type of the optical transitions were determined. From the experimental optical transmission spectra, the optical absorption coefficient spectra were computed too, and compared with the optical absorption coefficient spectra obtained from photoacoustic spectra.

  19. Optical spectra analysis for breast cancer diagnostics

    Science.gov (United States)

    Belkov, S. A.; Kochemasov, G. G.; Lyubynskaya, T. E.; Maslov, N. V.; Nuzhny, A. S.; da Silva, L. B.; Rubenchik, A.

    2011-11-01

    Minimally invasive probe and optical biopsy system based on optical spectra recording and analysis seem to be a promising tool for early diagnostics of breast cancer. Light scattering and absorption spectra are generated continuously as far as the needle-like probe with one emitting and several collecting optical fibers penetrates through the tissues toward to the suspicious area. That allows analyzing not only the state of local site, but also the structure of tissues along the needle trace. The suggested method has the advantages of automated on-line diagnosing and minimal tissue destruction and in parallel with the conventional diagnostic procedures provides the ground for decision-making. 165 medical trials were completed in Nizhny Novgorod Regional Oncology Centre, Russia. Independent diagnoses were the results of fine biopsy and histology. Application of wavelet expansion and clasterization techniques for spectra analysis revealed several main spectral types for malignant and benign tumors. Automatic classification algorithm demonstrated specificity ˜90% and sensitivity ˜91%. Large amount of information, fuzziness in criteria and data noisiness make neural networks to be an attractive analytic tool. The model based on three-layer perceptron was tested over the sample of 29 `cancer' and 29 `non-cancer' cases and demonstrated total separation.

  20. Vibronic coupling density and related concepts

    International Nuclear Information System (INIS)

    Sato, Tohru; Uejima, Motoyuki; Iwahara, Naoya; Haruta, Naoki; Shizu, Katsuyuki; Tanaka, Kazuyoshi

    2013-01-01

    Vibronic coupling density is derived from a general point of view as a one-electron property density. Related concepts as well as their applications are presented. Linear and nonlinear vibronic coupling density and related concepts, orbital vibronic coupling density, reduced vibronic coupling density, atomic vibronic coupling constant, and effective vibronic coupling density, illustrate the origin of vibronic couplings and enable us to design novel functional molecules or to elucidate chemical reactions. Transition dipole moment density is defined as an example of the one-electron property density. Vibronic coupling density and transition dipole moment density open a way to design light-emitting molecules with high efficiency.

  1. Theory of optical spectra of solvated electrons

    International Nuclear Information System (INIS)

    Kestner, N.R.

    1975-01-01

    During the last few years better theoretical models of solvated electron have been developed. These models allow one to calculate a priori the observable properties of the trapped electron. One of the most important and most widely determined properties is the optical spectrum. In this paper we consider the predictions of the theories not only as to the band maximum but line shape and width. In addition we will review how the theories predict these will depend on the solvent, pressure, temperature, and solvent density. In all cases extensive comparisons will be made with experimental work. In addition four new areas will be explored and recent results will be presented. These concern electrons in dense polar gases, the time development of the solvated electron spectrum, solvated electrons in mixed solvents, and photoelectron emission spectra (PEE) as it relates to higher excited states. This paper will review all recent theoretical calculations and present a critical review of the present status and future developments which are anticipated. The best theories are quite successful in predicting trends, and qualitative agreement concerning band maximum. The theory is still weak in predicting line shape and line width

  2. Optical properties of organic semiconductor thin films. Static spectra and real-time growth studies

    Energy Technology Data Exchange (ETDEWEB)

    Heinemeyer, Ute

    2009-07-20

    The aim of this work was to establish the anisotropic dielectric function of organic thin films on silicon covered with native oxide and to study their optical properties during film growth. While the work focuses mainly on the optical properties of Diindenoperylene (DIP) films, also the optical response of Pentacene (PEN) films during growth is studied for comparison. Spectroscopic ellipsometry and differential reflectance spectroscopy are used to determine the dielectric function of the films ex-situ and in-situ, i.e. in air and in ultrahigh vacuum. Additionally, Raman- and fluorescence spectroscopy is utilized to characterize the DIP films serving also as a basis for spatially resolved optical measurements beyond the diffraction limit. Furthermore, X-ray reflectometry and atomic force microscopy are used to determine important structural and morphological film properties. The absorption spectrum of DIP in solution serves as a monomer reference. The observed vibronic progression of the HOMO-LUMO transition allows the determination of the Huang-Rhys parameter experimentally, which is a measure of the electronic vibrational coupling. The corresponding breathing modes are measured by Raman spectroscopy. The optical properties of DIP films on native oxide show significant differences compared to the monomer spectrum due to intermolecular interactions. First of all, the thin film spectra are highly anisotropic due to the structural order of the films. Furthermore the Frenkel exciton transfer is studied and the energy difference between Frenkel and charge transfer excitons is determined. Real-time measurements reveal optical differences between interfacial or surface molecules and bulk molecules that play an important role for device applications. They are not only performed for DIP films but also for PEN films. While for DIP films on glass the appearance of a new mode is visible, the spectra of PEN show a pronounced energy red-shift during growth. It is shown how the

  3. The importance of nuclear quantum effects in spectral line broadening of optical spectra and electrostatic properties in aromatic chromophores

    Science.gov (United States)

    Law, Y. K.; Hassanali, A. A.

    2018-03-01

    In this work, we examine the importance of nuclear quantum effects on capturing the line broadening and vibronic structure of optical spectra. We determine the absorption spectra of three aromatic molecules indole, pyridine, and benzene using time dependent density functional theory with several molecular dynamics sampling protocols: force-field based empirical potentials, ab initio simulations, and finally path-integrals for the inclusion of nuclear quantum effects. We show that the absorption spectrum for all these chromophores are similarly broadened in the presence of nuclear quantum effects regardless of the presence of hydrogen bond donor or acceptor groups. We also show that simulations incorporating nuclear quantum effects are able to reproduce the heterogeneous broadening of the absorption spectra even with empirical force fields. The spectral broadening associated with nuclear quantum effects can be accounted for by the broadened distribution of chromophore size as revealed by a particle in the box model. We also highlight the role that nuclear quantum effects have on the underlying electronic structure of aromatic molecules as probed by various electrostatic properties.

  4. VARIABILITY IN OPTICAL SPECTRA OF ε ORIONIS

    International Nuclear Information System (INIS)

    Thompson, Gregory B.; Morrison, Nancy D.

    2013-01-01

    We present the results of a time series analysis of 130 échelle spectra of ε Ori (B0 Ia), acquired over seven observing seasons between 1998 and 2006 at Ritter Observatory. The equivalent widths of Hα (net) and He I λ5876 were measured and radial velocities were obtained from the central absorption of He I λ5876. Temporal variance spectra (TVS) revealed significant wind variability in both Hα and He I λ5876. The He I TVS have a double-peaked profile consistent with radial velocity oscillations. A periodicity search was carried out on the equivalent width and radial velocity data, as well as on wavelength-binned spectra. This analysis has revealed several periods in the variability with timescales of two to seven days. Many of these periods exhibit sinusoidal modulation in the associated phase diagrams. Several of these periods were present in both Hα and He I, indicating a possible connection between the wind and the photosphere. Due to the harmonic nature of these periods, stellar pulsations may be the origin of some of the observed variability. Periods on the order of the rotational period were also detected in the He I line in the 1998-1999 season and in both lines during the 2004-2005 season. These periods may indicate rotational modulation due to structure in the wind.

  5. Optical spectra obtained from amorphous films of rubrene: Evidence for predominance of twisted isomer

    Science.gov (United States)

    Kytka, M.; Gisslen, L.; Gerlach, A.; Heinemeyer, U.; Kováč, J.; Scholz, R.; Schreiber, F.

    2009-06-01

    In order to investigate the optical properties of rubrene we study the vibronic progression of the first absorption band (lowest π →π∗ transition). We analyze the dielectric function ɛ2 of rubrene in solution and thin films using the displaced harmonic oscillator model and derive all relevant parameters of the vibronic progression. The findings are supplemented by density functional calculations using B3LYP hybrid functionals. Our theoretical results for the molecule in two different conformations, i.e., with a twisted or planar tetracene backbone, are in very good agreement with the experimental data obtained for rubrene in solution and thin films. Moreover, a simulation based on the monomer spectrum and the calculated transition energies of the two conformations indicates that the thin film spectrum of rubrene is dominated by the twisted isomer.

  6. Resonance spectra of diabolo optical antenna arrays

    Directory of Open Access Journals (Sweden)

    Hong Guo

    2015-10-01

    Full Text Available A complete set of diabolo optical antenna arrays with different waist widths and periods was fabricated on a sapphire substrate by using a standard e-beam lithography and lift-off process. Fabricated diabolo optical antenna arrays were characterized by measuring the transmittance and reflectance with a microscope-coupled FTIR spectrometer. It was found experimentally that reducing the waist width significantly shifts the resonance to longer wavelength and narrowing the waist of the antennas is more effective than increasing the period of the array for tuning the resonance wavelength. Also it is found that the magnetic field enhancement near the antenna waist is correlated to the shift of the resonance wavelength.

  7. Optical spectra and radio properties of quasars

    International Nuclear Information System (INIS)

    Wills, B.J.

    1982-01-01

    Using high quality spectrophotometric scans obtained at the McDonald Observatory, and data from the literature the author shows that, for quasars, the relative strength of optical Fe II emission (the broad blended feature lambda4570) may be roughly inversely proportional to line widths (full width at half maximum, FWHM). A similar relation between the relative intensity of the UV Fe II blend between 2300 and 2600 A (the lambda2500 feature) and the widths of Mg II and Hβ is shown. She distinguishes between compact and extended radio sources and includes radio quiet quasars, Seyfert 1 galaxies and BLRG's. The quasars associated with extended radio sources have the broadest emission lines and the weakest Fe II, falling close to the region occupied by BLRG's which also have extended radio structure. Those quasars with strong Fe II and compact radio structure are most similar to the Seyfert 1 galaxies. (Auth.)

  8. Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bizimana, Laurie A.; Brazard, Johanna; Carbery, William P.; Gellen, Tobias; Turner, Daniel B., E-mail: dturner@nyu.edu [Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003 (United States)

    2015-10-28

    Coherent multidimensional optical spectroscopy is an emerging technique for resolving structure and ultrafast dynamics of molecules, proteins, semiconductors, and other materials. A current challenge is the quality of kinetics that are examined as a function of waiting time. Inspired by noise-suppression methods of transient absorption, here we incorporate shot-by-shot acquisitions and balanced detection into coherent multidimensional optical spectroscopy. We demonstrate that implementing noise-suppression methods in two-dimensional electronic spectroscopy not only improves the quality of features in individual spectra but also increases the sensitivity to ultrafast time-dependent changes in the spectral features. Measurements on cresyl violet perchlorate are consistent with the vibronic pattern predicted by theoretical models of a highly displaced harmonic oscillator. The noise-suppression methods should benefit research into coherent electronic dynamics, and they can be adapted to multidimensional spectroscopies across the infrared and ultraviolet frequency ranges.

  9. Interface phonon effect on optical spectra of quantum nanostructures

    International Nuclear Information System (INIS)

    Maslov, Alexander Yu.; Proshina, Olga V.; Rusina, Anastasia N.

    2009-01-01

    This paper deals with theory of large radius polaron effect in quantum wells, wires and dots. The interaction of charge particles and excitons with both bulk and interface optical phonons is taken into consideration. The analytical expression for polaron binding energy is obtained for different types of nanostructures. It is shown that the contribution of interface phonons to the polaron binding energy may exceed the bulk phonon part. The manifestation of polaron effects in optical spectra of quantum nanostructures is discussed.

  10. The characterization of the high-frequency vibronic contributions to the 77 K emission spectra of ruthenium-am(m)ine-bipyridyl complexes, their attenuation with decreasing energy gaps, and the implications of strong electronic coupling for inverted-region electron transfer.

    Science.gov (United States)

    Xie, Puhui; Chen, Yuan-Jang; Uddin, Md Jamal; Endicott, John F

    2005-06-02

    The 77 K emission spectra of a series of [Ru(Am)6-2n(bpy)n]2+ complexes (n = 1-3) have been determined in order to evaluate the effects of appreciable excited state (e)/ground state (g) configurational mixing on the properties of simple electron-transfer systems. The principal focus is on the vibronic contributions, and the correlated distortions of the bipyridine ligand in the emitting MLCT excited state. To address the issues that are involved, the emission band shape at 77 K is interpreted as the sum of a fundamental component, corresponding to the {e,0'} --> {g,0} transition, and progressions in the ground-state vibrational modes that correlate with the excited-state distortion. Literature values of the vibrational parameters determined from the resonance-Raman (rR) for [Ru(NH3)4bpy]2+ and [Ru(bpy)3]2+ are used to model the emission spectra and to evaluate the spectral analysis. The Gaussian fundamental component with an energy Ef and bandwidth Deltanu1/2 is deconvoluted from the observed emission spectrum. The first-, second-, and third-order terms in the progressions of the vibrational modes that contribute to the band shape are evaluated as the sums of Gaussian-shaped contributions of width Deltanu1/2. The fundamental and the rR parameters give an excellent fit of the observed emission spectrum of [Ru(NH3)4bpy]2+, but not as good for the [Ru(bpy)3]2+ emission spectrum probably because the Franck-Condon excited state probed by the rR is different in symmetry from the emitting MLCT excited state. Variations in vibronic contributions for the series of complexes are evaluated in terms of reorganizational energy profiles (emreps, Lambdax) derived from the observed spectra, and modeled using the rR parameters. This modeling demonstrates that most of the intensity of the vibronic envelopes obtained from the frozen solution emission spectra arises from the overlapping of first-order vibronic contributions of significant bandwidth with additional convoluted

  11. Probing molecular chirality by coherent optical absorption spectra

    Energy Technology Data Exchange (ETDEWEB)

    Jia, W. Z. [Quantum Optoelectronics Laboratory, School of Physics and Technology, Southwest Jiaotong University, Chengdu 610031 (China); Wei, L. F. [Quantum Optoelectronics Laboratory, School of Physics and Technology, Southwest Jiaotong University, Chengdu 610031 (China); State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)

    2011-11-15

    We propose an approach to sensitively probe the chirality of molecules by measuring their coherent optical-absorption spectra. It is shown that quantum dynamics of the cyclic three-level chiral molecules driven by appropriately designed external fields is total-phase dependent. This will result in chirality-dependent absorption spectra for the probe field. As a consequence, the charality-dependent information in the spectra (such as the locations and relative heights of the characteristic absorption peaks) can be utilized to identify molecular chirality and determinate enantiomer excess (i.e., the percentages of different enantiomers). The feasibility of the proposal with chiral molecules confined in hollow-core photonic crystal fiber is also discussed.

  12. Raman Optical Activity and Raman Spectra of Amphetamine Species

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Shim, Irene; White, Peter Cyril

    2012-01-01

    Theoretical calculations and preliminary measurements of vibrational Raman optical activity (ROA) spectra of different species of amphetamine (amphetamine and amphetamine-H+) are reported for the first time. The quantum chemical calculations were carried out as hybrid ab initio DFT-molecular orbi......Theoretical calculations and preliminary measurements of vibrational Raman optical activity (ROA) spectra of different species of amphetamine (amphetamine and amphetamine-H+) are reported for the first time. The quantum chemical calculations were carried out as hybrid ab initio DFT...... are employed for identification purposes. The DFT calculations show that the most stable conformations are those allowing for close contact between the aromatic ring and the amine hydrogen atoms. The internal rotational barrier within the same amphetamine enanti- omer has a considerable influence on the Raman...

  13. Optical Spectra of Hemoglobin Taken from Alcohol Dependent Humans

    OpenAIRE

    Dudok K.; Dudok T.; Vlokh I.; Vlokh R.

    2005-01-01

    Optical spectra of CNMetHb and CNMetHb-Coomassi G-250, taken from the blood of humans with alcohol dependence, are studied in the spectral range of 450–750nm. The shifts in the spectral absorption maxima of CNMetHb-Coomassi G-250 complexes are observed for the diseased persons with alcohol dependence. The obtained results show that the hemoglobin structure of alcohol dependent humans is changed.

  14. Optical emission line spectra of Seyfert galaxies and radio galaxies

    International Nuclear Information System (INIS)

    Osterbrock, D.E.

    1978-01-01

    Many radio galaxies have strong emission lines in their optical spectra, similar to the emission lines in the spectra of Seyfert galaxies. The range of ionization extends from [O I] and [N I] through [Ne V] and [Fe VII] to [Fe X]. The emission-line spectra of radio galaxies divide into two types, narrow-line radio galaxies whose spectra are indistinguishable from Seyfert 2 galaxies, and broad-line radio galaxies whose spectra are similar to Seyfert 1 galaxies. However on the average the broad-line radio galaxies have steeper Balmer decrements, stronger [O III] and weaker Fe II emission than the Seyfert 1 galaxies, though at least one Seyfert 1 galaxy not known to be a radio source has a spectrum very similar to typical broad-line radio galaxies. Intermediate-type Seyfert galaxies exist that show various mixtures of the Seyfert 1 and Seyfert 2 properties, and the narrow-line or Seyfert 2 property seems to be strongly correlated with radio emission. (Auth.)

  15. HIGH RESOLUTION OPTICAL AND NIR SPECTRA OF HBC 722

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong-Eun; Park, Sunkyung [School of Space Research, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of); Green, Joel D.; Cochran, William D. [Department of Astronomy, University of Texas at Austin, TX (United States); Kang, Wonseok; Lee, Sang-Gak [National Youth Space Center, 200 Deokheungyangjjok-gil, Dongil-myeon, Goheung-gun, Jeollanam-do 548-951 (Korea, Republic of); Sung, Hyun-Il, E-mail: jeongeun.lee@khu.ac.kr, E-mail: sunkyung@khu.ac.kr, E-mail: joel@astro.as.utexas.edu, E-mail: wdc@astro.as.utexas.edu, E-mail: wskang@kywa.or.kr, E-mail: sanggak@kywa.or.kr, E-mail: hisung@kasi.re.kr [Korea Astronomy and Space Science Institute, 776 Daedeok-daero, Yuseong-gu, Daejeon 305-348 (Korea, Republic of)

    2015-07-01

    We present the results of high resolution (R ≥ 30,000) optical and near-IR spectroscopic monitoring observations of HBC 722, a recent FU Orionis object that underwent an accretion burst in 2010. We observed HBC 722 in the optical/near-IR with the Bohyunsan Optical Echelle Spectrograph, Hobby–Eberly Telescope-HRS, and Immersion Grating Infrared Spectrograph, at various points in the outburst. We found atomic lines with strongly blueshifted absorption features or P Cygni profiles, both evidence of a wind driven by the accretion. Some lines show a broad double-peaked absorption feature, evidence of disk rotation. However, the wind-driven and disk-driven spectroscopic features are anti-correlated in time; the disk features became strong as the wind features disappeared. This anti-correlation might indicate that the rebuilding of the inner disk was interrupted by the wind pressure during the first 2 years. The half-width at half-depth of the double-peaked profiles decreases with wavelength, indicative of the Keplerian rotation; the optical spectra with the disk feature are fitted by a G5 template stellar spectrum convolved with a rotation velocity of 70 km s{sup −1} while the near-IR disk features are fitted by a K5 template stellar spectrum convolved with a rotation velocity of 50 km s{sup −1}. Therefore, the optical and near-IR spectra seem to trace the disk at 39 and 76 R{sub ⊙}, respectively. We fit a power-law temperature distribution in the disk, finding an index of 0.8, comparable to optically thick accretion disk models.

  16. Isotope effects on the optical spectra of semiconductors

    Science.gov (United States)

    Cardona, Manuel; Thewalt, M. L. W.

    2005-10-01

    Since the end of the cold war, macroscopic amounts of separated stable isotopes of most elements have been available “off the shelf” at affordable prices. Using these materials, single crystals of many semiconductors have been grown and the dependence of their physical properties on isotopic composition has been investigated. The most conspicuous effects observed have to do with the dependence of phonon frequencies and linewidths on isotopic composition. These affect the electronic properties of solids through the mechanism of electron-phonon interaction, in particular, in the corresponding optical excitation spectra and energy gaps. This review contains a brief introduction to the history, availability, and characterization of stable isotopes, including their many applications in science and technology. It is followed by a concise discussion of the effects of isotopic composition on the vibrational spectra, including the influence of average isotopic masses and isotopic disorder on the phonons. The final sections deal with the effects of electron-phonon interaction on energy gaps, the concomitant effects on the luminescence spectra of free and bound excitons, with particular emphasis on silicon, and the effects of isotopic composition of the host material on the optical transitions between the bound states of hydrogenic impurities.

  17. FHILs in Seyferts and Liners in the optical spectra

    Science.gov (United States)

    Vera, R. J. C.; Rodriguez, A. M.; Portilla, J. G.

    2014-10-01

    We present the main results from a selection of optical spectra of Seyfert and LINER galaxies taken from the 9^{th} release of the SDSS with detectable emission of forbidden high ionization lines (FHILs), better known as coronal lines. A catalog of 345 Seyfert 1 (Sy1) and Seyfert 2 (Sy2) galaxies with FHILs emission is presented. By analyzing their spectra and utilizing data from the literature we found the following results: (1) The flux ratios between FHILs suggests anisotropy of emission between Sy1 and Sy2 galaxies, which agrees with the results found by Nagao et al. (2002) and Portilla (2012). Sy1 seems to emit more FHILs than Sy2. (2) This anisotropy suggests the idea that an important, but not the majority, of the emission of FHILs comes from the inner part of the obscuring torus. (3) We present diagnostic diagrams between FHILs lines which indicate clear correlations between the flux ratios. (4) It is observed that the ratio of Ne V/Fe VII is of the order of 3 to 10, while the ratios between iron lines (i.e., Fe VII, Fe X, Fe XI) are roughly around the unity. (5) At least in the optical spectra, the present study continues to support the general idea that LINERs are not energetic enough to present FHILs. A complete version of this study including the catalog with the objects of study, and diagnosis diagrams using only this kind of lines can be found in Vera & Portilla (in prep).

  18. Thermoluminescence emission spectra and optical bleaching of oligoclase

    International Nuclear Information System (INIS)

    Bos, A.J.J.; Piters, T.M.; Ypma, P.J.

    1994-01-01

    Thermoluminescence (TL) spectra of oligoclase samples have been recorded in the temperature range from 300 to 700 K and the wavelength range from 300 to 850 nm. Like other feldspars, oligoclase produces blue (peaking at 460 nm) and red (peaking at 765 nm) emission bands. The maximum of the red emission occurs 20 K lower than that of the blue band. Optical bleaching was performed at wavelengths varying from 360 to 800 nm. Bleaching of artificially irradiated oligoclase causes a decrease of the TL signal. The bleaching efficiency increases with decreasing wavelength. Bleaching does not only influence the height of the glow curve but also the shape. An interesting observation is that the ratio of the blue and red band intensities is not affected by a bleaching procedure. No evidence has been found that bleaching influences the shape of the emission spectra. The correlation between the blue and red bands is discussed. (Author)

  19. Optical absorption and scattering spectra of pathological stomach tissues

    Science.gov (United States)

    Giraev, K. M.; Ashurbekov, N. A.; Lakhina, M. A.

    2011-03-01

    Diffuse reflection spectra of biotissues in vivo and transmission and reflection coefficients for biotissues in vitro are measured over 300-800 nm. These data are used to determine the spectral absorption and scattering indices and the scattering anisotropy factor for stomach mucous membranes under normal and various pathological conditions (chronic atrophic and ulcerous defects, malignant neoplasms). The most importan tphysiological (hemodynamic and oxygenation levels) and structural-morphological (scatterer size and density) parameters are also determined. The results of a morphofunctional study correlate well with the optical properties and are consistent with data from a histomorphological analysis of the corresponding tissues.

  20. Infrared Spectra and Optical Constants of Elusive Amorphous Methane

    Science.gov (United States)

    Gerakines, Perry A.; Hudson, Reggie L.

    2015-01-01

    New and accurate laboratory results are reported for amorphous methane (CH4) ice near 10 K for the study of the interstellar medium (ISM) and the outer Solar System. Near- and mid-infrared (IR) data, including spectra, band strengths, absorption coefficients, and optical constants, are presented for the first time for this seldom-studied amorphous solid. The apparent IR band strength near 1300 cm(exp -1) (7.69 micrometer) for amorphous CH4 is found to be about 33% higher than the value long used by IR astronomers to convert spectral observations of interstellar CH4 into CH4 abundances. Although CH4 is most likely to be found in an amorphous phase in the ISM, a comparison of results from various laboratory groups shows that the earlier CH4 band strength at 1300 cm(exp -1) (7.69 micrometer) was derived from IR spectra of ices that were either partially or entirely crystalline CH4 Applications of the new amorphous-CH4 results are discussed, and all optical constants are made available in electronic form.

  1. CORRELATIONS OF QUASAR OPTICAL SPECTRA WITH RADIO MORPHOLOGY

    International Nuclear Information System (INIS)

    Kimball, Amy E.; Ivezic, Zeljko; Wiita, Paul J.; Schneider, Donald P.

    2011-01-01

    Using the largest homogeneous quasar sample with high-quality optical spectra and robust radio morphology classifications assembled to date, we investigate relationships between radio and optical properties with unprecedented statistical power. The sample consists of 4714 radio quasars from FIRST with S 20 ≥ 2 mJy and with spectra from the Sloan Digital Sky Survey (SDSS). Radio morphology classes include core-only (core), core-lobe (lobe), core-jet (jet), lobe-core-lobe (triple), and double-lobe. Electronic tables of the quasar samples, along with spectral composites for individual morphology classes, are made available. We examine the optical colors of these subsamples and find that radio quasars with core emission unresolved by FIRST (on ∼5'' scale) have a redder color distribution than radio-quiet quasars (S 20 ∼ I ) are correlated, which supports the hypothesis that both parameters are indicative of line-of-sight orientation. We investigate spectral line equivalent widths (EWs) as a function of R and R I , including the O [III] narrow line doublet and the C IV λ1549 and Mg II λ2799 broad lines. We find that the rest EWs of the broad lines correlate positively with R I at the 4σ-8σ level. However, we find no strong dependence of EW on R, in contrast to previously published results. A possible interpretation of these results is that EWs of quasar emission lines increase as the line-of-sight angle to the radio-jet axis decreases. These results are in stark contrast to commonly accepted orientation-based theories, which suggest that continuum emission should increase as the angle to the radio-jet axis decreases, resulting in smaller EWs of emission lines (assumed isotropic). Finally, we observe the Baldwin effect in our sample and find that it does not depend strongly on quasar radio morphology.

  2. Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime.

    Science.gov (United States)

    Guo, Zijian; Favazza, Christopher; Garcia-Uribe, Alejandro; Wang, Lihong V

    2012-06-01

    Photoacoustic (PA) microscopy (PAM) can image optical absorption contrast with ultrasonic spatial resolution in the optical diffusive regime. Conventionally, accurate quantification in PAM requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. With the acoustic spectral method, the absorption coefficients of an oxygenated bovine blood phantom at 560, 565, 570, and 575 nm were quantified with errors of <3%. We also quantified the total hemoglobin concentration and hemoglobin oxygen saturation in a live mouse. Compared with the conventional amplitude method, the acoustic spectral method provides greater quantification accuracy in the optical diffusive regime. The limitations of the acoustic spectral method was also discussed.

  3. Noise spectra in balanced optical detectors based on transimpedance amplifiers

    Science.gov (United States)

    Masalov, A. V.; Kuzhamuratov, A.; Lvovsky, A. I.

    2017-11-01

    We present a thorough theoretical analysis and experimental study of the shot and electronic noise spectra of a balanced optical detector based on an operational amplifier connected in a transimpedance scheme. We identify and quantify the primary parameters responsible for the limitations of the circuit, in particular, the bandwidth and shot-to-electronic noise clearance. We find that the shot noise spectrum can be made consistent with the second-order Butterworth filter, while the electronic noise grows linearly with the second power of the frequency. Good agreement between the theory and experiment is observed; however, the capacitances of the operational amplifier input and the photodiodes appear significantly higher than those specified in manufacturers' datasheets. This observation is confirmed by independent tests.

  4. Optical spectra and lattice dynamics of molecular crystals

    CERN Document Server

    Zhizhin, GN

    1995-01-01

    The current volume is a single topic volume on the optical spectra and lattice dynamics of molecular crystals. The book is divided into two parts. Part I covers both the theoretical and experimental investigations of organic crystals. Part II deals with the investigation of the structure, phase transitions and reorientational motion of molecules in organic crystals. In addition appendices are given which provide the parameters for the calculation of the lattice dynamics of molecular crystals, procedures for the calculation of frequency eigenvectors of utilizing computers, and the frequencies and eigenvectors of lattice modes for several organic crystals. Quite a large amount of Russian literature is cited, some of which has previously not been available to scientists in the West.

  5. Linear optical absorption spectra of mesoscopic structures in intense THz fields: Free-particle properties

    DEFF Research Database (Denmark)

    Johnsen, Kristinn; Jauho, Antti-Pekka

    1998-01-01

    We theoretically study the effect of THz radiation on the linear optical absorption spectra of semiconductor structures. A general theoretical framework, based on nonequilibrium Green functions, is formulated and applied to the calculation of linear optical absorption spectrum for several...

  6. Multi-State Vibronic Interactions in Fluorinated Benzene Radical Cations.

    Science.gov (United States)

    Faraji, S.; Köppel, H.

    2009-06-01

    Conical intersections of potential energy surfaces have emerged as paradigms for signalling strong nonadiabatic coupling effects. An important class of systems where some of these effects have been analyzed in the literature, are the benzene and benzenoid cations, where the electronic structure, spectroscopy, and dynamics have received great attention in the literature. In the present work a brief overview is given over our theoretical treatments of multi-mode and multi-state vibronic interactions in the benzene radical cation and some of its fluorinated derivatives. The fluorobenzene derivatives are of systematic interest for at least two different reasons. (1) The reduction of symmetry by incomplete fluorination leads to a disappearance of the Jahn-Teller effect present in the parent cation. (2) A specific, more chemical effect of fluorination consists in the energetic increase of the lowest σ-type electronic states of the radical cations. The multi-mode multi-state vibronic interactions between the five lowest electronic states of the fluorobenzene radical cations are investigated theoretically, based on ab initio electronic structure data, and employing the well-established linear vibronic coupling model, augmented by quadratic coupling terms for the totally symmetric vibrational modes. Low-energy conical intersections, and strong vibronic couplings are found to prevail within the set of tilde{X}-tilde{A} and tilde{B}-tilde{C}-tilde{D} cationic states, while the interactions between these two sets of states are found to be weaker and depend on the particular isomer. This is attributed to the different location of the minima of the various conical intersections occurring in these systems. Wave-packet dynamical simulations for these coupled potential energy surfaces, utilizing the powerful multi-configuration time-dependent Hartree method are performed. Ultrafast internal conversion processes and the analysis of the MATI and photo-electron spectra shed new light

  7. Vibronic coupling effect on the electron transport through molecules

    Science.gov (United States)

    Tsukada, Masaru; Mitsutake, Kunihiro

    2007-03-01

    Electron transport through molecular bridges or molecular layers connected to nano-electrodes is determined by the combination of coherent and dissipative processes, controlled by the electron-vibron coupling, transfer integrals between the molecular orbitals, applied electric field and temperature. We propose a novel theoretical approach, which combines ab initio molecular orbital method with analytical many-boson model. As a case study, the long chain model of the thiophene oligomer is solved by a variation approach. Mixed states of moderately extended molecular orbital states mediated and localised by dress of vibron cloud are found as eigen-states. All the excited states accompanied by multiple quanta of vibration can be solved, and the overall carrier transport properties including the conductance, mobility, dissipation spectra are analyzed by solving the master equation with the transition rates estimated by the golden rule. We clarify obtained in a uniform systematic way, how the transport mode changes from a dominantly coherent transport to the dissipative hopping transport.

  8. VizieR Online Data Catalog: BD+46 442 optical spectra (Bollen+, 2017)

    Science.gov (United States)

    Bollen, D.; van Winckel, H.; Kamath, D.

    2017-08-01

    Reduced high-resolution (R~85000) optical spectra of BD+46 442. These 104 spectra were obtained between July 2009 and January 2016 from the HERMES spectrograph, mounted on the 1.2m Flemish Mercator telescope at La Palma, Canary Islands, Spain. The spectra cover a wavelength range from 3770 to 9000 angstrom in logscale. The flux is given in arbitrary units. The spectra are collected as FITS files. The numbering of the spectra corresponds to the numbering in Table B.1 in the article (e.g. spec_15.fits corresponds to N=15). (2 data files).

  9. Laser- and gamma-induced transformations of optical spectra of indium-doped sodium borate glass

    CERN Document Server

    Kopyshinsky, O V; Zelensky, S E; Danilchenko, B A; Shakhov, O P

    2003-01-01

    The optical absorption and luminescence properties of indium-doped sodium borate glass irradiated by gamma-rays and by powerful UV lasers within the impurity-related absorption band are investigated experimentally. It is demonstrated that both the laser- and gamma-irradiation cause similar transformations of optical spectra in the UV and visible regions. The changes of the spectra observed are described with the use of a model which includes three types of impurity centres formed by differently charged indium ions.

  10. Spectral shaping for non-Gaussian source spectra in optical coherence tomography

    NARCIS (Netherlands)

    Tripathi, R; Nassif, N. A.; Nelson, JS; Park, B.H.; de Boer, JF

    2002-01-01

    We present a digital spectral shaping technique to reduce the sidelobes (ringing) of the axial point-spread function in optical coherence tomography for non-Gaussian-shaped source spectra. The spectra of two superluminescent diodes were combined to generate a spectrum with significant modulation.

  11. Zooming in on vibronic structure by lowest-value projection reconstructed 4D coherent spectroscopy

    Science.gov (United States)

    Harel, Elad

    2018-05-01

    A fundamental goal of chemical physics is an understanding of microscopic interactions in liquids at and away from equilibrium. In principle, this microscopic information is accessible by high-order and high-dimensionality nonlinear optical measurements. Unfortunately, the time required to execute such experiments increases exponentially with the dimensionality, while the signal decreases exponentially with the order of the nonlinearity. Recently, we demonstrated a non-uniform acquisition method based on radial sampling of the time-domain signal [W. O. Hutson et al., J. Phys. Chem. Lett. 9, 1034 (2018)]. The four-dimensional spectrum was then reconstructed by filtered back-projection using an inverse Radon transform. Here, we demonstrate an alternative reconstruction method based on the statistical analysis of different back-projected spectra which results in a dramatic increase in sensitivity and at least a 100-fold increase in dynamic range compared to conventional uniform sampling and Fourier reconstruction. These results demonstrate that alternative sampling and reconstruction methods enable applications of increasingly high-order and high-dimensionality methods toward deeper insights into the vibronic structure of liquids.

  12. Two-dimensional spectroscopy of a molecular dimer unveils the effects of vibronic coupling on exciton coherences

    NARCIS (Netherlands)

    Halpin, Alexei; Johnson, Philip J. M.; Tempelaar, Roel; Murphy, R. Scott; Knoester, Jasper; Jansen, Thomas L. C.; Miller, R. J. Dwayne

    The observation of persistent oscillatory signals in multidimensional spectra of protein-pigment complexes has spurred a debate on the role of coherence-assisted electronic energy transfer as a key operating principle in photosynthesis. Vibronic coupling has recently been proposed as an explanation

  13. The physics of thin film optical spectra an introduction

    CERN Document Server

    Stenzel, Olaf

    2016-01-01

    The book bridges the gap between fundamental physics courses (such as optics, electrodynamics, quantum mechanics and solid state physics) and highly specialized literature on the spectroscopy, design, and application of optical thin film coatings. Basic knowledge from the above-mentioned courses is therefore presumed. Starting from fundamental physics, the book enables the reader derive the theory of optical coatings and to apply it to practically important spectroscopic problems. Both classical and semiclassical approaches are included. Examples describe the full range of classical optical coatings in various spectral regions as well as highly specialized new topics such as rugate filters and resonant grating waveguide structures.The second edition has been updated and extended with respect to probing matter in different spectral regions, homogenous and inhomogeneous line broadening mechanisms and the Fresnel formula for the effect of planar interfaces.

  14. STELLAR POPULATIONS IN MEDIUM REDSHIFT CLUSTERS .2. OPTICAL-INFRARED PHOTOMETRY AND SPECTRA

    NARCIS (Netherlands)

    PICKLES, AJ; VANDERKRUIT, PC

    1991-01-01

    We present optical and infrared photometry (BV RI, J H K) and spectra of galaxies in 6 medium redshift clusters covering the redshift range 0.19 less-than-or-equal-to z less-than-or-equal-to 0.4. The array photometry is used to note the radial distribution of the cluster galaxies with optical and

  15. Comparison of optical and electron spectra in an infra-red free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    MacLeod, A.M.; Gillespie, W.A.; Martin, P.F. [Univ. of Abertay, Dundee (United Kingdom)] [and others

    1995-12-31

    Time-resolved electron and optical spectra recently acquired at the FELIX facility are presented, showing the evolution of the respective macropulses. A comparison is made between the optical power output during the macropulse and the measured power extracted from the electron beam using a simple model of the cavity losses. Data are available for a wide range of operating conditions: the wavelength range is from 9 {mu}m to 28 {mu}m and detuning are between 1/4{lambda} and 2{lambda}. The effect of rapid electron beam energy changes on the optical and electron spectra will also be discussed.

  16. Importance of Vibronic Effects in the UV-Vis Spectrum of the 7,7,8,8-Tetracyanoquinodimethane Anion.

    Science.gov (United States)

    Tapavicza, Enrico; Furche, Filipp; Sundholm, Dage

    2016-10-11

    We present a computational method for simulating vibronic absorption spectra in the ultraviolet-visible (UV-vis) range and apply it to the 7,7,8,8-tetracyanoquinodimethane anion (TCNQ - ), which has been used as a ligand in black absorbers. Gaussian broadening of vertical electronic excitation energies of TCNQ - from linear-response time-dependent density functional theory produces only one band, which is qualitatively incorrect. Thus, the harmonic vibrational modes of the two lowest doublet states were computed, and the vibronic UV-vis spectrum was simulated using the displaced harmonic oscillator approximation, the frequency-shifted harmonic oscillator approximation, and the full Duschinsky formalism. An efficient real-time generating function method was implemented to avoid the exponential complexity of conventional Franck-Condon approaches to vibronic spectra. The obtained UV-vis spectra for TCNQ - agree well with experiment; the Duschinsky rotation is found to have only a minor effect on the spectrum. Born-Oppenheimer molecular dynamics simulations combined with calculations of the electronic excitation energies for a large number of molecular structures were also used for simulating the UV-vis spectrum. The Born-Oppenheimer molecular dynamics simulations yield a broadening of the energetically lowest peak in the absorption spectrum, but additional vibrational bands present in the experimental and simulated quantum harmonic oscillator spectra are not observed in the molecular dynamics simulations. Our results underline the importance of vibronic effects for the UV-vis spectrum of TCNQ - , and they establish an efficient method for obtaining vibronic spectra using a combination of linear-response time-dependent density functional theory and a real-time generating function approach.

  17. Rotational Parameters from Vibronic Eigenfunctions of Jahn-Teller Active Molecules

    Science.gov (United States)

    Garner, Scott M.; Miller, Terry A.

    2017-06-01

    The structure in rotational spectra of many free radical molecules is complicated by Jahn-Teller distortions. Understanding the magnitudes of these distortions is vital to determining the equilibrium geometric structure and details of potential energy surfaces predicted from electronic structure calculations. For example, in the recently studied {\\widetilde{A}^2E^{''} } state of the NO_3 radical, the magnitudes of distortions are yet to be well understood as results from experimental spectroscopic studies of its vibrational and rotational structure disagree with results from electronic structure calculations of the potential energy surface. By fitting either vibrationally resolved spectra or vibronic levels determined by a calculated potential energy surface, we obtain vibronic eigenfunctions for the system as linear combinations of basis functions from products of harmonic oscillators and the degenerate components of the electronic state. Using these vibronic eigenfunctions we are able to predict parameters in the rotational Hamiltonian such as the Watson Jahn-Teller distortion term, h_1, and compare with the results from the analysis of rotational experiments.

  18. Explicit versus Implicit Solvent Modeling of Raman Optical Activity Spectra

    Czech Academy of Sciences Publication Activity Database

    Hopmann, K. H.; Ruud, K.; Pecul, M.; Kudelski, A.; Dračínský, Martin; Bouř, Petr

    2011-01-01

    Roč. 115, č. 14 (2011), s. 4128-4137 ISSN 1520-6106 R&D Projects: GA MŠk(CZ) LH11033; GA ČR GAP208/11/0105 Grant - others:AV ČR(CZ) M200550902 Institutional research plan: CEZ:AV0Z40550506 Keywords : raman optical activity * lactamide * solvent models Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.696, year: 2011

  19. Phase sensitive control of vibronic guest-host interaction: Br2 in Ar matrix.

    Science.gov (United States)

    Ibrahim, Heide; Héjjas, Mónika; Fushitani, Mizuho; Schwentner, Nikolaus

    2009-07-02

    Vibronic progressions are programmed into a pulse shaper which converts them via the inherent Fourier transformation into a train of femtosecond pulses in time domain for chromophore excitation. Double pulse results agree with phase-sensitive wave packet superposition from a Michelson interferometer which delivers coherence times with high reliability. Spectral resolution of 1 nm and a spacing of around 4 nm within the 20 nm envelope centered at 590 nm delivers a train of seven phase-controlled 40 fs subpulses separated by 250 fs. Combs adjusted to the zero phonon lines (ZPL) and phonon sidebands (PSB) of the B state vibronic progression are reproduced in the chromophore for a coherent subpulse accumulation. B state ZPL wave packet dynamics dominates in pump-probe spectra due to its coherence despite an overwhelming but incoherent A state contribution in absorption. PSB comb accumulation is also phase sensitive and demonstrates coherence within several 100 matrix degrees of freedom in the vicinity.

  20. Optical spectra of phthalocyanines and related compounds a guide for beginners

    CERN Document Server

    Isago, Hiroaki

    2015-01-01

    This book displays how optical (absorption, emission, and magnetic circular dichroism) spectra of phthalocyanines and related macrocyclic dyes can be varied from their prototypical ones depending on conditions. As these compounds can be involved in colorful chemistry (which might be driven by impurities in solvents), their spectra behave like the sea-god Proteus in their mutability. Therefore, those who have been engaged with phthalocyanines for the first time, including even educated professional researchers and engineers, may have been embarrassed by the deceptive behavior of their compounds and could have, in the worst cases, given up their projects. This book is aimed not merely at reviewing the optical spectra, but also at helping such people, particularly beginners, to figure them out by showing some examples of their prototypical spectra and their variations in several situations. For the purpose of better understanding, the book also provides an introduction to their theoretical backgrounds as graphic...

  1. Analysis of aggregate optical spectra using moments. Application to the purple membrane of halobacterium halobium

    International Nuclear Information System (INIS)

    Hemenger, R.P.

    1978-01-01

    The problem of extracting structural information from the optical spectra of aggregates of molecules interacting through their electronic transitions is studied. One serious difficulty common to all approaches to this problem is that of properly taking into account the effects of molecular vibrations. A series of exact relations derived previously which are correct with regard to molecular vibrations provide a number of independent, explicit connections between aggregate geometrical parameters and moments of experimental spectra. It is shown that, by applying these moment relations to the optical absorption and circular dichroism spectra of simple aggregates, a complete set of equations can be found, i.e., enough equations can be found to solve for all of the geometrical parameters which enter into the expressions for absorption and circular dichroism spectra. This procedure is applied in some detail to the purple membrane of Halobacterium halobium. The results are completely consistent with what is known about its structure

  2. The Raman and vibronic activity of intermolecular vibrations in aromatic-containing complexes and clusters

    International Nuclear Information System (INIS)

    Maxton, P.M.; Schaeffer, M.W.; Ohline, S.M.; Kim, W.; Venturo, V.A.; Felker, P.M.

    1994-01-01

    Theoretical and experimental results pertaining to the excitation of intermolecular vibrations in the Raman and vibronic spectra of aromatic-containing, weakly bound complexes and clusters are reported. The theoretical analysis of intermolecular Raman activity is based on the assumption that the polarizability tensor of a weakly bound species is given by the sum of the polarizability tensors of its constituent monomers. The analysis shows that the van der Waals bending fundamentals in aromatic--rare gas complexes may be expected to be strongly Raman active. More generally, it predicts strong Raman activity for intermolecular vibrations that involve the libration or internal rotation of monomer moieties having appreciable permanent polarizability anisotropies. The vibronic activity of intermolecular vibrations in aromatic-rare gas complexes is analyzed under the assumption that every vibronic band gains its strength from an aromatic-localized transition. It is found that intermolecular vibrational excitations can accompany aromatic-localized vibronic excitations by the usual Franck--Condon mechanism or by a mechanism dependent on the librational amplitude of the aromatic moiety during the course of the pertinent intermolecular vibration. The latter mechanism can impart appreciable intensity to bands that are forbidden by rigid-molecule symmetry selection rules. The applicability of such rules is therefore called into question. Finally, experimental spectra of intermolecular transitions, obtained by mass-selective, ionization-detected stimulated Raman spectroscopies, are reported for benzene--X (X=Ar, --Ar 2 , N 2 , HCl, CO 2 , and --fluorene), fluorobenzene--Ar and --Kr, aniline--Ar, and fluorene--Ar and --Ar 2 . The results support the conclusions of the theoretical analyses and provide further evidence for the value of Raman methods in characterizing intermolecular vibrational level structures

  3. Hardware authentication using transmission spectra modified optical fiber

    International Nuclear Information System (INIS)

    Grubbs, Robert K.; Romero, Juan A.

    2010-01-01

    The ability to authenticate the source and integrity of data is critical to the monitoring and inspection of special nuclear materials, including hardware related to weapons production. Current methods rely on electronic encryption/authentication codes housed in monitoring devices. This always invites the question of implementation and protection of authentication information in an electronic component necessitating EMI shielding, possibly an on board power source to maintain the information in memory. By using atomic layer deposition techniques (ALD) on photonic band gap (PBG) optical fibers we will explore the potential to randomly manipulate the output spectrum and intensity of an input light source. This randomization could produce unique signatures authenticating devices with the potential to authenticate data. An external light source projected through the fiber with a spectrometer at the exit would 'read' the unique signature. No internal power or computational resources would be required.

  4. LO-TO splittings, effective charges and interactions in electro-optic meta-nitroaniline crystal as studied by polarized IR reflection and transmission spectra

    Science.gov (United States)

    Szostak, M. M.; Le Calvé, N.; Romain, F.; Pasquier, B.

    1994-10-01

    The polarized IR reflection spectra of the meta-nitroaniline ( m-NA) single crystal along the a, b and c crystallographic axes as well as the b and c polarized transmission spectra have been measured in the 100-400 cm -1 region. The LO-TO splitting values have been calculated from the reflection spectra by fitting them with the four parameter dielectric function. The dipole moment derivatives, relevant to dynamic effective charges, of the vibrations have also been calculated and used to check the applicability of the oriented gas model (OGM) to reflection spectra. The discrepancies from the OGM have been discussed in terms of vibronic couplings, weak hydrogen bondings (HB) and intramolecular charge transfer.

  5. Theory of Excitonic Delocalization for Robust Vibronic Dynamics in LH2.

    Science.gov (United States)

    Caycedo-Soler, Felipe; Lim, James; Oviedo-Casado, Santiago; van Hulst, Niek F; Huelga, Susana F; Plenio, Martin B

    2018-06-11

    Nonlinear spectroscopy has revealed long-lasting oscillations in the optical response of a variety of photosynthetic complexes. Different theoretical models that involve the coherent coupling of electronic (excitonic) or electronic-vibrational (vibronic) degrees of freedom have been put forward to explain these observations. The ensuing debate concerning the relevance of either mechanism may have obscured their complementarity. To illustrate this balance, we quantify how the excitonic delocalization in the LH2 unit of Rhodopseudomonas acidophila purple bacterium leads to correlations of excitonic energy fluctuations, relevant coherent vibronic coupling, and importantly, a decrease in the excitonic dephasing rates. Combining these effects, we identify a feasible origin for the long-lasting oscillations observed in fluorescent traces from time-delayed two-pulse single-molecule experiments performed on this photosynthetic complex and use this approach to discuss the role of this complementarity in other photosynthetic systems.

  6. VIBRONIC PROGRESSIONS IN SEVERAL DIFFUSE INTERSTELLAR BANDS

    International Nuclear Information System (INIS)

    Duley, W. W.; Kuzmin, Stanislav

    2010-01-01

    A number of vibronic progressions based on low-energy vibrational modes of a large molecule have been found in the diffuse interstellar band (DIB) spectrum of HD 183143. Four active vibrational modes have been identified with energies at 5.18 cm -1 , 21.41 cm -1 , 31.55 cm -1 , and 34.02 cm -1 . The mode at 34.02 cm -1 was previously recognized by Herbig. Four bands are associated with this molecule, with origins at 6862.61 A, 6843.64 A, 6203.14 A, and 5545.11 A (14589.1 cm -1 , 14608.08 cm -1 , 16116.41 cm -1 , and 18028.9 cm -1 , respectively). The progressions are harmonic and combination bands are observed involving all modes. The appearance of harmonic, rather than anharmonic, terms in these vibronic progressions is consistent with torsional motion of pendant rings, suggesting that the carrier is a 'floppy' molecule. Some constraints on the type and size of the molecule producing these bands are discussed.

  7. Vibronic Spectroscopy of the Phenylcyanomethyl Radical

    Science.gov (United States)

    Mehta, Deepali N.; Kidwell, Nathanael M.; Zwier, Timothy S.

    2011-06-01

    Resonance stabilized radicals (RSRs) are thought to be key intermediates in the formation of larger molecules in planetary atmospheres. Given the nitrogen-rich atmosphere of Titan, and the prevalence of nitriles there, it is likely that nitrile and isonitrile RSRs could be especially important in pathways leading to the formation of more complex nitrogen-containing compounds and the aerosols ("tholins") that are ultimately produced. In this talk, the results of a gas phase, jet-cooled vibronic spectroscopy study of the phenylcyanomethyl radical (C_6H_5.{C}HCN), the nitrogen-containing analog of the 1-phenylpropargyl radical, will be presented. A resonant two color photon ionization spectrum over the range 21,350-22,200 Cm-1 (450.0-468.0 nm) has been recorded, and the D_0-D_1 origin band has been tentatively identified at 21,400 Cm-1. Studies identifying the ionization threshold, and characterizing the vibronic structure will also be presented. An analogous study of the phenylisocyanomethyl radical, C_6H_5.{C}HNC, is currently being pursued for comparison with that of phenylcyanomethyl radical.

  8. Electronic transient processes and optical spectra in quantum dots for quantum computing

    Czech Academy of Sciences Publication Activity Database

    Král, Karel; Zdeněk, Petr; Khás, Zdeněk

    2004-01-01

    Roč. 3, č. 1 (2004), s. 17-25 ISSN 1536-125X R&D Projects: GA AV ČR IAA1010113 Institutional research plan: CEZ:AV0Z1010914 Keywords : depopulation * electronic relaxation * optical spectra * quantum dots * self-assembled quantum dots * upconversion Subject RIV: BE - Theoretical Physics Impact factor: 3.176, year: 2004

  9. A first-principles investigation of the optical spectra of oxidized graphene

    KAUST Repository

    Singh, Nirpendra

    2013-01-14

    The electronic and optical properties of mono, di, tri, and tetravacancies in graphene are studied in comparison to each other, using density functional theory. In addition, oxidized monovacancies are considered for different oxygen concentrations. Pristine graphene is found to be more absorptive than any defect configuration at low energy. We demonstrate characteristic differences in the optical spectra of the various defects for energies up to 3 eV. This makes it possible to quantify by optical spectroscopy the ratios of the defect species present in a sample.

  10. A first-principles investigation of the optical spectra of oxidized graphene

    KAUST Repository

    Singh, Nirpendra; Kaloni, Thaneshwor P.; Schwingenschlö gl, Udo

    2013-01-01

    The electronic and optical properties of mono, di, tri, and tetravacancies in graphene are studied in comparison to each other, using density functional theory. In addition, oxidized monovacancies are considered for different oxygen concentrations. Pristine graphene is found to be more absorptive than any defect configuration at low energy. We demonstrate characteristic differences in the optical spectra of the various defects for energies up to 3 eV. This makes it possible to quantify by optical spectroscopy the ratios of the defect species present in a sample.

  11. Alkali-Responsive Absorption Spectra and Third-Order Optical Nonlinearities of Imino Squaramides

    International Nuclear Information System (INIS)

    Li Zhong-Yu; Xu Song; Zhou Xin-Yu; Zhang Fu-Shi

    2012-01-01

    Third-order optical nonlinearities and dynamic responses of two imino squaramides under neutral and base conditions were studied using the femtosecond degenerate four-wave mixing technique at 800 nm. Ultrafast optical responses have been observed and the magnitude of the second-order hyperpolarizabilities of the squaramides has been measured to be as large as 10 −31 esu. The absorption spectra, color of solution, and third-order optical nonlinearities of two imino squaramides change with the addition of sodium hydroxide. The γ value under the base condition for each dye is approximately 1.25 times larger than that under neutral conditions. (fundamental areas of phenomenology(including applications))

  12. Late time optical spectra from the /sup 56/Ni model for Type I supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Axelrod, T.S.

    1980-07-01

    The hypothesis that the optical luminosity of Type I supernovae results from the radioactive decay of /sup 56/Ni synthesized and ejected by the explosion has been investigated by numerical simulation of the optical spectrum resulting from a homologously expanding shell composed initially of pure /sup 56/Ni core. This model, which neglects the effects of material external to the /sup 56/Ni core, is expected to provide a reasonable representation of the supernova at late times when the star is nearly transparent to optical photons. The numerical simulation determines the temperature, ionization state, and non-LTE level populations which result from energy deposition by the radioactive decay products of /sup 56/Ni and /sup 56/Co. The optical spectrum includes the effects of both allowed and forbidden lines. The optical spectra resulting from the simulation are found to be sensitive to the mass and ejection velocity of the /sup 56/Ni shell. A range of these parameters has been found which results in good agreement with the observed spectra of SN1972e over a considerable range of time. In particular, evidence for the expected decaying abundance of /sup 56/Co has been found in the spectra of SN1972e. These results are used to assess the validity of the /sup 56/Ni model and set limits on the mass and explosion mechanism of the Type I progenitor. The possibilities for improvement of the numerical model are discussed and future atomic data requirements defined.

  13. Late time optical spectra from the 56Ni model for Type I supernovae

    International Nuclear Information System (INIS)

    Axelrod, T.S.

    1980-07-01

    The hypothesis that the optical luminosity of Type I supernovae results from the radioactive decay of 56 Ni synthesized and ejected by the explosion has been investigated by numerical simulation of the optical spectrum resulting from a homologously expanding shell composed initially of pure 56 Ni core. This model, which neglects the effects of material external to the 56 Ni core, is expected to provide a reasonable representation of the supernova at late times when the star is nearly transparent to optical photons. The numerical simulation determines the temperature, ionization state, and non-LTE level populations which result from energy deposition by the radioactive decay products of 56 Ni and 56 Co. The optical spectrum includes the effects of both allowed and forbidden lines. The optical spectra resulting from the simulation are found to be sensitive to the mass and ejection velocity of the 56 Ni shell. A range of these parameters has been found which results in good agreement with the observed spectra of SN1972e over a considerable range of time. In particular, evidence for the expected decaying abundance of 56 Co has been found in the spectra of SN1972e. These results are used to assess the validity of the 56 Ni model and set limits on the mass and explosion mechanism of the Type I progenitor. The possibilities for improvement of the numerical model are discussed and future atomic data requirements defined

  14. Study of optical and electronic properties of nickel from reflection electron energy loss spectra

    Science.gov (United States)

    Xu, H.; Yang, L. H.; Da, B.; Tóth, J.; Tőkési, K.; Ding, Z. J.

    2017-09-01

    We use the classical Monte Carlo transport model of electrons moving near the surface and inside solids to reproduce the measured reflection electron energy-loss spectroscopy (REELS) spectra. With the combination of the classical transport model and the Markov chain Monte Carlo (MCMC) sampling of oscillator parameters the so-called reverse Monte Carlo (RMC) method was developed, and used to obtain optical constants of Ni in this work. A systematic study of the electronic and optical properties of Ni has been performed in an energy loss range of 0-200 eV from the measured REELS spectra at primary energies of 1000 eV, 2000 eV and 3000 eV. The reliability of our method was tested by comparing our results with the previous data. Moreover, the accuracy of our optical data has been confirmed by applying oscillator strength-sum rule and perfect-screening-sum rule.

  15. The Radio-optical Spectra of BL Lacs and Possible Relatives

    Science.gov (United States)

    Dennett-Thorpe, J.

    I consider the suggestion that, in a complete sample of flat-spectrum radio sources with available optical spectra (Marcha et al 1996), the strong emission line objects, or those with passive elliptical spectra are close relatives of the BL Lacs. New observations at four frequencies from 8 to 43GHz are presented, together with evidence for radio variability. Combined with other radio and optical data from the literature, we are able to construct the non-thermal SEDs and use these to address the questions: are the optically passive objects potentially `unrecognised' BL Lacs (either intrinsically weak and/or hidden by starlight)? What is the relationship between the surprising number of strong emission-line objects and the BL Lacs?

  16. Quasiparticle energies, excitons, and optical spectra of few-layer black phosphorus

    International Nuclear Information System (INIS)

    Tran, Vy; Fei, Ruixiang; Yang, Li

    2015-01-01

    We report first-principles GW–Bethe–Salpeter-equation (BSE) studies of excited-state properties of few-layer black phosphorus (BP) (phosphorene). With improved GW computational methods, we obtained converged quasiparticle band gaps and optical absorption spectra by the single-shot (G 0 W 0 ) procedure. Moreover, we reveal fine structures of anisotropic excitons, including the series of one-dimensional like wave functions, spin singlet–triplet splitting, and electron–hole binding energy spectra by solving BSE. An effective-mass model is employed to describe these electron–hole pairs, shedding light on estimating the exciton binding energy of anisotropic two-dimensional semiconductors without expensive ab initio simulations. Finally, the anisotropic optical response of BP is explained by using optical selection rules based on the projected single-particle density of states at band edges. (paper)

  17. Ionization potential depression and optical spectra in a Debye plasma model

    Science.gov (United States)

    Lin, Chengliang; Röpke, Gerd; Reinholz, Heidi; Kraeft, Wolf-Dietrich

    2017-11-01

    We show how optical spectra in dense plasmas are determined by the shift of energy levels as well as the broadening owing to collisions with the plasma particles. In lowest approximation, the interaction with the plasma particles is described by the RPA dielectric function, leading to the Debye shift of the continuum edge. The bound states remain nearly un-shifted, their broadening is calculated in Born approximation. The role of ionization potential depression as well as the Inglis-Teller effect are shown. The model calculations have to be improved going beyond the lowest (RPA) approximation when applying to WDM spectra.

  18. INFRARED SPECTRA AND OPTICAL CONSTANTS OF NITRILE ICES RELEVANT TO TITAN's ATMOSPHERE

    International Nuclear Information System (INIS)

    Moore, Marla H.; Hudson, Reggie; Ferrante, Robert F.; James Moore, W.

    2010-01-01

    Spectra and optical constants of nitrile ices known or suspected to be in Titan's atmosphere are presented from 2.0 to 333.3 μm (∼5000-30 cm -1 ). These results are relevant to the ongoing modeling of Cassini CIRS observations of Titan's winter pole. Ices studied are: HCN, hydrogen cyanide; C 2 N 2 , cyanogen; CH 3 CN, acetonitrile; C 2 H 5 CN, propionitrile; and HC 3 N, cyanoacetylene. For each of these molecules, we also report new cryogenic measurements of the real refractive index, n, determined in both the amorphous and crystalline phases at 670 nm. These new values have been incorporated into our optical constant calculations. Spectra were measured and optical constants were calculated for each nitrile at a variety of temperatures, including, but not limited to, 20, 35, 50, 75, 95, and 110 K, in both the amorphous phase and the crystalline phase. This laboratory effort used a dedicated FTIR spectrometer to record transmission spectra of thin-film ice samples. Laser interference was used to measure film thickness during condensation onto a transparent cold window attached to the tail section of a closed-cycle helium cryostat. Optical constants, real (n) and imaginary (k) refractive indices, were determined using Kramers-Kronig analysis. Our calculation reproduces the complete spectrum, including all interference effects.

  19. Modification of Optical Properties of Seawater Exposed to Oil Contaminants Based on Excitation-Emission Spectra

    Science.gov (United States)

    Baszanowska, E.; Otremba, Z.

    2015-10-01

    The optical behaviour of seawater exposed to a residual amount of oil pollution is presented and a comparison of the fluorescence spectra of oil dissolved in both n-hexane and seawater is discussed based on excitation-emission spectra. Crude oil extracted from the southern part of the Baltic Sea was used to characterise petroleum properties after contact with seawater. The wavelength-independent fluorescence maximum for natural seawater and seawater artificially polluted with oil were determined. Moreover, the specific excitation-emission peaks for natural seawater and polluted water were analysed to identify the natural organic matter composition. It was found that fluorescence spectra identification is a promising method to detect even an extremely low concentration of petroleum residues directly in the seawater. In addition, alien substances disturbing the fluorescence signatures of natural organic substances in a marine environment is also discussed.

  20. Optical spectra of vanadium (5, 4) compounds during extraction by di-2-ethylhexylphosphoric acid

    International Nuclear Information System (INIS)

    Kurbatova, L.D.; Medvedeva, N.I.

    2000-01-01

    Optical spectra of vanadium (5, 4) complexes with HDEHP are studied using literature data on quantum-chemical calculations of vanadium (5) and vanadium (4) oxides. Extraction of vanadium is conducted by undiluted HDEHP from sulfuric acid solutions. Absorption electron spectra (AES) of vanadium (5), vanadium (4) and vanadium (5, 4) compounds are presented. In AES of vanadium (5, 4) four absorption bands at 24000, 17000, 14500 and 13500 cm -1 appear. Comparison with spectra of vanadium (5) and vanadium (4) shows that band 17000 cm -1 which appears only during mutual extraction of vanadium (5) and vanadium (4) is caused by transitions appearing between filled and empty levels of d-zone broadened by vanadium (5) and vanadium (4) interaction [ru

  1. Electron and nuclear spin interactions in the optical spectra of single GaAs quantum dots.

    Science.gov (United States)

    Gammon, D; Efros, A L; Kennedy, T A; Rosen, M; Katzer, D S; Park, D; Brown, S W; Korenev, V L; Merkulov, I A

    2001-05-28

    Fine and hyperfine splittings arising from electron, hole, and nuclear spin interactions in the magneto-optical spectra of individual localized excitons are studied. We explain the magnetic field dependence of the energy splitting through competition between Zeeman, exchange, and hyperfine interactions. An unexpectedly small hyperfine contribution to the splitting close to zero applied field is described well by the interplay between fluctuations of the hyperfine field experienced by the nuclear spin and nuclear dipole/dipole interactions.

  2. An atlas of optical spectra of DZ white dwarfs and related objects

    International Nuclear Information System (INIS)

    Sion, E.M.; Kenyon, S.J.; Aannestad, P.A.

    1990-01-01

    An atlas of optical spectra and equivalent width measurements for DZ stars and several related objects is described. These data should improve abundance measurements for Ca/He, Mg/He, and Fe/He in these stars and provide tests for calculations of accretion, diffusion, and radiative transfer in white-dwarf atmospheres. Also reported is the possible detection of He I (3888-A) in three DZ white dwarfs, 0246 + 735, 1705 + 030, and 2215 + 388. 25 refs

  3. Optical properties and energy spectra of donors in Gasub(x)Insub(1-x)P

    International Nuclear Information System (INIS)

    Berndt, V.; Kopylov, A.A.; Pikhtin, A.N.

    1977-01-01

    Impurity optical absorption is studied in n-Gasub(x)Insub(1-x)P for compositions with indirect band structure. For the first time the photoionization bands of shallow donor centers have been observed in semiconductor solid solutions. Analysis of spectra has shown the electron transitions to excited states of donor to contribute considerably to absorption. A simple theoretical model is presented to explain the shift of ionization energy of silicon donor and the variation in shape of the impurity absorption band

  4. Ordering-induced changes in the optical spectra of semiconductor alloys

    International Nuclear Information System (INIS)

    Bernard, J.E.; Wei, S.; Wood, D.M.; Zunger, A.

    1988-01-01

    It is shown how the recently predicted and subsequently observed spontaneous long-range ordering of pseudobinary A/sub 0.5/B/sub 0.5/C isovalent semiconductor alloys into the (AC) 1 (BC) 1 superlattice structure (a CuAuI-type crystal) gives rise to characteristic changes in the optical and photoemission spectra. We predict new direct transitions and substantial splittings of transitions absent in the disordered alloy

  5. Infrared Spectra, Index of Refraction, and Optical Constants of Nitrile Ices Relevant to Titan's Atmosphere

    Science.gov (United States)

    Moore, Marla; Ferrante, Robert; Moore, William; Hudson, Reggie

    2010-01-01

    Spectra and optical constants of nitrite ices known or suspected to be in Titan's atmosphere are presented from 2.5 to 200 microns (4000 to 50 per cm ). These results are relevant to the ongoing modeling of Cassini CIRS observations of Titan's winter pole. Ices studied include: HCN, hydrogen cyanide; C2N2, cyanogen; CH3CN, acetonitrile; C 2H5CN, propionitrile; and HC3N, cyanoacetylene. For each of these molecules we report new measurements of the index of refraction, n, determined in both the amorphous- and crystallinephase at 670 nm. Spectra were measured and optical constants were calculated for each nitrite at a variety of temperatures including 20, 35, 50, 75, 95, and 110 K, in the amorphous- and crystalline-phase. This laboratory effort uses a dedicated FTIR spectrometer to record transmission spectra of thin-film ice samples. Laser interference is used to measure film thickness during condensation onto a transparent cold window attached to the tail section of a closed-cycle helium cryostat. Optical constants, real (n) and imaginary (k) refractive indices, are determined using Kramers-Kronig (K-K) analysis. Our calculation reproduces the complete spectrum, including all interference effects. Index of refraction measurements are made in a separate dedicated FTIR spectrometer where interference deposit fringes are measured using two 670 nm lasers at different angles to the ice substrate. A survey of these new measurements will be presented along with a discussion of their validation, errors, and application to Titan data.

  6. Interpretation of the parameters of the EPR spectra of transition metal complexes

    International Nuclear Information System (INIS)

    Murav'ev, V.I.

    2005-01-01

    The calculated parameters of the EPR spectra of complexes of d 1 and d 9 ions, inclusive of MoOX 5 (X = Cl, Br), are reviewed. The covalent bond parameters used in the calculations were determined from EPR and experimental optical data (inverse problem of EPR spectroscopy). Various contributions to the expressions for the EPR parameters were compared. The observed abnormal values of the EPR parameters were discussed. The effects of charge-transfer states and the vibronic coupling on the components of g, A, and A L tensors were considered. Mechanisms of spin density transfer to ligands in paramagnetic complexes were proposed [ru

  7. Optical spectra of 73 stripped-envelope core-collapse supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Modjaz, M.; Bianco, F. B.; Liu, Y. Q. [Center for Cosmology and Particle Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Blondin, S. [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388, Marseille (France); Kirshner, R. P.; Challis, P.; Hicken, M.; Marion, G. H. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Matheson, T. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Berlind, P.; Calkins, M. L. [F. L. Whipple Observatory, 670 Mt. Hopkins Road, P.O. Box 97, Amado, AZ 85645 (United States); Garnavich, P. [Department of Physics, 225 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556 (United States); Jha, S., E-mail: mmodjaz@nyu.edu [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States)

    2014-05-01

    We present 645 optical spectra of 73 supernovae (SNe) of Types IIb, Ib, Ic, and broad-lined Ic. All of these types are attributed to the core collapse of massive stars, with varying degrees of intact H and He envelopes before explosion. The SNe in our sample have a mean redshift (cz) = 4200 km s{sup –1}. Most of these spectra were gathered at the Harvard-Smithsonian Center for Astrophysics (CfA) between 2004 and 2009. For 53 SNe, these are the first published spectra. The data coverage ranges from mere identification (1-3 spectra) for a few SNe to extensive series of observations (10-30 spectra) that trace the spectral evolution for others, with an average of 9 spectra per SN. For 44 SNe of the 73 SNe presented here, we have well-determined dates of maximum light to determine the phase of each spectrum. Our sample constitutes the most extensive spectral library of stripped-envelope SNe to date. We provide very early coverage (as early as 30 days before V-band max) for photospheric spectra, as well as late-time nebular coverage when the innermost regions of the SN are visible (as late as 2 yr after explosion, while for SN 1993J, we have data as late as 11.6 yr). This data set has homogeneous observations and reductions that allow us to study the spectroscopic diversity of these classes of stripped SNe and to compare these to SNe-gamma-ray bursts. We undertake these matters in follow-up papers.

  8. The temporal evolution process from fluorescence bleaching to clean Raman spectra of single solid particles optically trapped in air

    Science.gov (United States)

    Gong, Zhiyong; Pan, Yong-Le; Videen, Gorden; Wang, Chuji

    2017-12-01

    We observe the entire temporal evolution process of fluorescence and Raman spectra of single solid particles optically trapped in air. The spectra initially contain strong fluorescence with weak Raman peaks, then the fluorescence was bleached within seconds, and finally only the clean Raman peaks remain. We construct an optical trap using two counter-propagating hollow beams, which is able to stably trap both absorbing and non-absorbing particles in air, for observing such temporal processes. This technique offers a new method to study dynamic changes in the fluorescence and Raman spectra from a single optically trapped particle in air.

  9. Wavelength-selective bleaching of the optical spectra of trapped electrons in organic glasses. II

    International Nuclear Information System (INIS)

    Paraszczak, J.; Willard, J.E.

    1979-01-01

    Further resolution of the inhomogeneous optical spectra of trapped electrons (e - /sub t/) in organic glasses has been obtained from wavelength selective bleaching and thermal decay studies on 3-methylpentane-d 14 (3MP-d 14 ) and 2-methyltetrahydrofuran (MTHF) following γ irradiation in the temperature region of 20 K, and limits on the degree of resolution achievable have been indicated. Exposure of 3MP-d 14 to light of wavelengths >2100 nm (from a tunable laser) reduces the optical densities at the bleaching wavelength and longer to zero, while ''peeling off'' a portion of the O.D. at all shorter wavelengths but leaving the remainder of the spectrum unaffected. The fraction of the integrated optical spectrum, ∫OD d (eV), removed by bleaching at each wavelength tested, and also by thermal decay, is equivalent to the fraction of the total e - /sub t/ spins removed and measured by ESR. 1064 nm light bleaches the spectrum nearly uniformly, confirming that the spectra of all of the e - /sub t/ have blue tails with similar ease of bleaching. Heretofore unobserved low temperature thermal decay of e - /sub t/ occurs at 20 and 40 K (20% of the spin concentration in 30 min, 35% in 3h). The rate of decay of the optical spectrum decreases with decreasing wavelength of observation (2.5, 2.2, 1.8, and 1.5 μ), but at each wavelength is the same at 40 K as at 20 K, consistent

  10. Exciton scattering approach for optical spectra calculations in branched conjugated macromolecules

    International Nuclear Information System (INIS)

    Li, Hao; Wu, Chao; Malinin, Sergey V.; Tretiak, Sergei; Chernyak, Vladimir Y.

    2016-01-01

    The exciton scattering (ES) technique is a multiscale approach based on the concept of a particle in a box and developed for efficient calculations of excited-state electronic structure and optical spectra in low-dimensional conjugated macromolecules. Within the ES method, electronic excitations in molecular structure are attributed to standing waves representing quantum quasi-particles (excitons), which reside on the graph whose edges and nodes stand for the molecular linear segments and vertices, respectively. Exciton propagation on the linear segments is characterized by the exciton dispersion, whereas exciton scattering at the branching centers is determined by the energy-dependent scattering matrices. Using these ES energetic parameters, the excitation energies are then found by solving a set of generalized “particle in a box” problems on the graph that represents the molecule. Similarly, unique energy-dependent ES dipolar parameters permit calculations of the corresponding oscillator strengths, thus, completing optical spectra modeling. Both the energetic and dipolar parameters can be extracted from quantum-chemical computations in small molecular fragments and tabulated in the ES library for further applications. Subsequently, spectroscopic modeling for any macrostructure within a considered molecular family could be performed with negligible numerical effort. We demonstrate the ES method application to molecular families of branched conjugated phenylacetylenes and ladder poly-para-phenylenes, as well as structures with electron donor and acceptor chemical substituents. Time-dependent density functional theory (TD-DFT) is used as a reference model for electronic structure. The ES calculations accurately reproduce the optical spectra compared to the reference quantum chemistry results, and make possible to predict spectra of complex macromolecules, where conventional electronic structure calculations are unfeasible.

  11. Exciton scattering approach for optical spectra calculations in branched conjugated macromolecules

    Science.gov (United States)

    Li, Hao; Wu, Chao; Malinin, Sergey V.; Tretiak, Sergei; Chernyak, Vladimir Y.

    2016-12-01

    The exciton scattering (ES) technique is a multiscale approach based on the concept of a particle in a box and developed for efficient calculations of excited-state electronic structure and optical spectra in low-dimensional conjugated macromolecules. Within the ES method, electronic excitations in molecular structure are attributed to standing waves representing quantum quasi-particles (excitons), which reside on the graph whose edges and nodes stand for the molecular linear segments and vertices, respectively. Exciton propagation on the linear segments is characterized by the exciton dispersion, whereas exciton scattering at the branching centers is determined by the energy-dependent scattering matrices. Using these ES energetic parameters, the excitation energies are then found by solving a set of generalized "particle in a box" problems on the graph that represents the molecule. Similarly, unique energy-dependent ES dipolar parameters permit calculations of the corresponding oscillator strengths, thus, completing optical spectra modeling. Both the energetic and dipolar parameters can be extracted from quantum-chemical computations in small molecular fragments and tabulated in the ES library for further applications. Subsequently, spectroscopic modeling for any macrostructure within a considered molecular family could be performed with negligible numerical effort. We demonstrate the ES method application to molecular families of branched conjugated phenylacetylenes and ladder poly-para-phenylenes, as well as structures with electron donor and acceptor chemical substituents. Time-dependent density functional theory (TD-DFT) is used as a reference model for electronic structure. The ES calculations accurately reproduce the optical spectra compared to the reference quantum chemistry results, and make possible to predict spectra of complex macromolecules, where conventional electronic structure calculations are unfeasible.

  12. Exciton scattering approach for optical spectra calculations in branched conjugated macromolecules

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hao [Department of Chemistry, University of Houston, Houston, TX 77204 (United States); Wu, Chao [Electronic Structure Lab, Center of Microscopic Theory and Simulation, Frontier Institute of Science and Technology, Xian Jiaotong University, Xian 710054 (China); Malinin, Sergey V. [Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202 (United States); Tretiak, Sergei, E-mail: serg@lanl.gov [Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Chernyak, Vladimir Y., E-mail: chernyak@chem.wayne.edu [Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202 (United States)

    2016-12-20

    The exciton scattering (ES) technique is a multiscale approach based on the concept of a particle in a box and developed for efficient calculations of excited-state electronic structure and optical spectra in low-dimensional conjugated macromolecules. Within the ES method, electronic excitations in molecular structure are attributed to standing waves representing quantum quasi-particles (excitons), which reside on the graph whose edges and nodes stand for the molecular linear segments and vertices, respectively. Exciton propagation on the linear segments is characterized by the exciton dispersion, whereas exciton scattering at the branching centers is determined by the energy-dependent scattering matrices. Using these ES energetic parameters, the excitation energies are then found by solving a set of generalized “particle in a box” problems on the graph that represents the molecule. Similarly, unique energy-dependent ES dipolar parameters permit calculations of the corresponding oscillator strengths, thus, completing optical spectra modeling. Both the energetic and dipolar parameters can be extracted from quantum-chemical computations in small molecular fragments and tabulated in the ES library for further applications. Subsequently, spectroscopic modeling for any macrostructure within a considered molecular family could be performed with negligible numerical effort. We demonstrate the ES method application to molecular families of branched conjugated phenylacetylenes and ladder poly-para-phenylenes, as well as structures with electron donor and acceptor chemical substituents. Time-dependent density functional theory (TD-DFT) is used as a reference model for electronic structure. The ES calculations accurately reproduce the optical spectra compared to the reference quantum chemistry results, and make possible to predict spectra of complex macromolecules, where conventional electronic structure calculations are unfeasible.

  13. Fine hematite particles of Martian interest: absorption spectra and optical constants

    International Nuclear Information System (INIS)

    Marra, A C; Blanco, A; Fonti, S; Jurewicz, A; Orofino, V

    2005-01-01

    Hematite is an iron oxide very important for the study of climatic evolution of Mars. It can occur in two forms: red and grey, mainly depending on the granulometry of the samples. Spectra of bright regions of Mars suggest the presence of red hematite particles. Moreover the Thermal Emission Spectrometer (TES), on board the Mars Global Surveyor mission, has discovered a deposit of crystalline grey hematite in Sinus Meridiani. TES spectra of that Martian region exhibit features at about 18, 23 and 33 μm that are consistent with hematite. Coarse grey hematite is considered strong evidence for longstanding water, while it is unknown whether the formation of fine-grained red hematite requires abundant water. Studies are needed in order to further characterize the spectral properties of the two kinds of hematite. For this reason we have analyzed a sample of submicron hematite particles in the 6.25-50 μm range in order to study the influence of particles size and shape on the infrared spectra. The optical constants of a particulate sample have been derived and compared with published data concerning bulk samples of hematite. Our results seem to indicate that particle shape is an important factor to take into account for optical constants derivation

  14. Effect of ladder diagrams on optical absorption spectra in a quasiparticle self-consistent GW framework

    Science.gov (United States)

    Cunningham, Brian; Grüning, Myrta; Azarhoosh, Pooya; Pashov, Dimitar; van Schilfgaarde, Mark

    2018-03-01

    We present an approach to calculate the optical absorption spectra that combines the quasiparticle self-consistent GW method [Phys. Rev. B 76, 165106 (2007), 10.1103/PhysRevB.76.165106] for the electronic structure with the solution of the ladder approximation to the Bethe-Salpeter equation for the macroscopic dielectric function. The solution of the Bethe-Salpeter equation has been implemented within an all-electron framework, using a linear muffin-tin orbital basis set, with the contribution from the nonlocal self-energy to the transition dipole moments (in the optical limit) evaluated explicitly. This approach addresses those systems whose electronic structure is poorly described within the standard perturbative GW approaches with density-functional theory calculations as a starting point. The merits of this approach have been exemplified by calculating optical absorption spectra of a strongly correlated transition metal oxide, NiO, and a narrow gap semiconductor, Ge. In both cases, the calculated spectrum is in good agreement with the experiment. It is also shown that for systems whose electronic structure is well-described within the standard perturbative GW , such as Si, LiF, and h -BN , the performance of the present approach is in general comparable to the standard GW plus Bethe-Salpeter equation. It is argued that both vertex corrections to the electronic screening and the electron-phonon interaction are responsible for the observed systematic overestimation of the fundamental band gap and spectrum onset.

  15. Media effects on the optical absorption spectra of silver clusters embedded in rara gas matrices

    International Nuclear Information System (INIS)

    Fedrigo, S.; Harbich, W.; Buttet, J.

    1993-01-01

    The optical absorption of small mass selected Ag n -clusters (n=7, 11, 15, 21) embedded in solid Ar, Kr and Xe has been measured. The absorption spectra show 1 to 3 major peaks between 3 and 4.5 eV, depending on the cluster size. Changing the matrix gas Ar→Kr→Xe induces a redshift which is comparable for all sizes studied and does not affect the main structure of the absorption spectra. We propose a scheme to estimate the gas phase value of the absorption energies which is in fair agreement with an estimation obtained by a simple model based on a Drude metal. (author). 10 refs, 2 figs

  16. Zn-VI quasiparticle gaps and optical spectra from many-body calculations.

    Science.gov (United States)

    Riefer, A; Weber, N; Mund, J; Yakovlev, D R; Bayer, M; Schindlmayr, Arno; Meier, C; Schmidt, W G

    2017-06-01

    The electronic band structures of hexagonal ZnO and cubic ZnS, ZnSe, and ZnTe compounds are determined within hybrid-density-functional theory and quasiparticle calculations. It is found that the band-edge energies calculated on the [Formula: see text] (Zn chalcogenides) or GW (ZnO) level of theory agree well with experiment, while fully self-consistent QSGW calculations are required for the correct description of the Zn 3d bands. The quasiparticle band structures are used to calculate the linear response and second-harmonic-generation (SHG) spectra of the Zn-VI compounds. Excitonic effects in the optical absorption are accounted for within the Bethe-Salpeter approach. The calculated spectra are discussed in the context of previous experimental data and present SHG measurements for ZnO.

  17. Extracting Optical Fiber Background from Surface-Enhanced Raman Spectroscopy Spectra Based on Bi-Objective Optimization Modeling.

    Science.gov (United States)

    Huang, Jie; Shi, Tielin; Tang, Zirong; Zhu, Wei; Liao, Guanglan; Li, Xiaoping; Gong, Bo; Zhou, Tengyuan

    2017-08-01

    We propose a bi-objective optimization model for extracting optical fiber background from the measured surface-enhanced Raman spectroscopy (SERS) spectrum of the target sample in the application of fiber optic SERS. The model is built using curve fitting to resolve the SERS spectrum into several individual bands, and simultaneously matching some resolved bands with the measured background spectrum. The Pearson correlation coefficient is selected as the similarity index and its maximum value is pursued during the spectral matching process. An algorithm is proposed, programmed, and demonstrated successfully in extracting optical fiber background or fluorescence background from the measured SERS spectra of rhodamine 6G (R6G) and crystal violet (CV). The proposed model not only can be applied to remove optical fiber background or fluorescence background for SERS spectra, but also can be transferred to conventional Raman spectra recorded using fiber optic instrumentation.

  18. Comparison of optical spectra recorded during DPF-1000U plasma experiments with gas-puffing

    Directory of Open Access Journals (Sweden)

    Zaloga Dobromil R.

    2015-06-01

    Full Text Available The results are presented of the optical spectra measurements for free plasma streams generated with the use of the modified DPF-1000U machine. This facility was recently equipped with a gas injection system (the so-called gas-puff placed on the symmetry axis behind the central opening in the inner electrode. The DPF-1000U experimental chamber was filled up with pure deuterium at the initial pressure of 1.6 or 2.4 mbar. Additionally, when the use was made of the gas-puff system about 1 cm3 of pure deuterium was injected at the pressure of 2 bars. The gas injection was initiated 1.5 or 2 ms before the triggering of the main discharge. The investigated plasma discharges were powered from a condenser bank charged initially to 23 kV (corresponding to the energy of 352 kJ, and the maximum discharge current amounted to about 1.8 MA. In order to investigate properties of a dense plasma column formed during DPF-1000U discharges the use was made of the optical emission spectroscopy. The optical spectra were recorded along the line of sight perpendicular to the vacuum chamber, using a Mechelle®900 spectrometer. The recent analysis of all the recorded spectra made it possible to compare the temporal changes in the electron density of a freely propagating plasma stream for discharges without and with the gas-puffing. Using this data an appropriate mode of operation of the DPF-1000U facility could be determined.

  19. Optical absorption spectra of semiconductors and insulators: ab initio calculation of many-body effects

    International Nuclear Information System (INIS)

    Albrecht, Stefan

    1999-01-01

    A method for the inclusion of self-energy and excitonic effects in first-principle calculations of absorption spectra, within the state-of-the-art plane wave pseudopotential approach, is presented. Starting from a ground state calculation, using density functional theory (DFT) in the local density approximation (LDA), we correct the exchange-correlation potential of DFT-LDA with the self-energy applying Hedin's GW approximation to obtain the physical quasiparticles states. The electron-hole interaction is treated solving an effective two-particle equation, which we derive from Hedin's coupled integral equations, leading to the fundamental Bethe-Salpeter equation in an intermediate step. The interaction kernel contains the screened electron-hole Coulomb interaction and the electron-hole exchange effects, which reflect the microscopic structure of the system and are thus also called local-field effects. We obtain the excitonic eigenstates through diagonalization. This allows us a detailed analysis of the optical properties. The application of symmetry properties enables us to reduce the size of the two-particle Hamiltonian matrix, thus minimizing the computational effort. We apply our method to silicon, diamond, lithium oxide and the sodium tetramer. Good agreement with experiment is obtained for the absorption spectra of Si and diamond, the static dielectric constant of diamond, and for the onset of optical absorption of Li 2 O due to discrete bound excitons. We discuss various approximations of our method and show the strong mixing of independent particle transitions to a bound excitonic state in the Na 4 cluster. The influence of ground state calculations on optical spectra is investigated under particular consideration of the pseudopotential generation and we discuss the use of different Brillouin zone point sampling schemes for spectral calculations. (author) [fr

  20. Infrared Spectra and Optical Constants of Astronomical Ices: II. Ethane and Ethylene

    Science.gov (United States)

    Hudson, Reggie L.; Gerakines, Perry A.; Moore, M. H.

    2014-01-01

    Infrared spectroscopic observations have established the presence of hydrocarbon ices on Pluto and other TNOs, but the abundances of such molecules cannot be deduced without accurate optical constants (n, k) and reference spectra. In this paper we present our recent measurements of near- and mid-infrared optical constants for ethane (C2H6) and ethylene (C2H4) in multiple ice phases and at multiple temperatures. As in our recent work on acetylene (C2H2), we also report new measurements of the index of refraction of each ice at 670 nm. Comparisons are made to earlier work where possible, and electronic versions of our new results are made available.

  1. Temperature dependence of the optical absorption spectra of InP/ZnS quantum dots

    Science.gov (United States)

    Savchenko, S. S.; Vokhmintsev, A. S.; Weinstein, I. A.

    2017-03-01

    The optical-absorption spectra of InP/ZnS (core/shell) quantum dots have been studied in a broad temperature range of T = 6.5-296 K. Using the second-order derivative spectrophotometry technique, the energies of optical transitions at room temperature were found to be E 1 = 2.60 ± 0.02 eV (for the first peak of excitonic absorption in the InP core) and E 2 = 4.70 ± 0.02 eV (for processes in the ZnS shell). The experimental curve of E 1( T) has been approximated for the first time in the framework of a linear model and in terms of the Fan's formula. It is established that the temperature dependence of E 1 is determined by the interaction of excitons and longitudinal acoustic phonons with hω = 15 meV.

  2. Meeting the Cool Neighbors. XII. An Optically Anchored Analysis of the Near-infrared Spectra of L Dwarfs

    Science.gov (United States)

    Cruz, Kelle L.; Núñez, Alejandro; Burgasser, Adam J.; Abrahams, Ellianna; Rice, Emily L.; Reid, I. Neill; Looper, Dagny

    2018-01-01

    Discrepancies between competing optical and near-infrared (NIR) spectral typing systems for L dwarfs have motivated us to search for a classification scheme that ties the optical and NIR schemes together, and addresses complexities in the spectral morphology. We use new and extant optical and NIR spectra to compile a sample of 171 L dwarfs, including 27 low-gravity β and γ objects, with spectral coverage from 0.6–2.4 μm. We present 155 new low-resolution NIR spectra and 19 new optical spectra. We utilize a method for analyzing NIR spectra that partially removes the broad-band spectral slope and reveals similarities in the absorption features between objects of the same optical spectral type. Using the optical spectra as an anchor, we generate near-infrared spectral average templates for L0–L8, L0–L4γ, and L0–L1β type dwarfs. These templates reveal that NIR spectral morphologies are correlated with the optical types. They also show the range of spectral morphologies spanned by each spectral type. We compare low-gravity and field-gravity templates to provide recommendations on the minimum required observations for credibly classifying low-gravity spectra using low-resolution NIR data. We use the templates to evaluate the existing NIR spectral standards and propose new ones where appropriate. Finally, we build on the work of Kirkpatrick et al. to provide a spectral typing method that is tied to the optical and can be used when only H or K band data are available. The methods we present here provide resolutions to several long-standing issues with classifying L dwarf spectra and could also be the foundation for a spectral classification scheme for cloudy exoplanets.

  3. Real-time Fourier transformation of lightwave spectra and application in optical reflectometry.

    Science.gov (United States)

    Malacarne, Antonio; Park, Yongwoo; Li, Ming; LaRochelle, Sophie; Azaña, José

    2015-12-14

    We propose and experimentally demonstrate a fiber-optics scheme for real-time analog Fourier transform (FT) of a lightwave energy spectrum, such that the output signal maps the FT of the spectrum of interest along the time axis. This scheme avoids the need for analog-to-digital conversion and subsequent digital signal post-processing of the photo-detected spectrum, thus being capable of providing the desired FT processing directly in the optical domain at megahertz update rates. The proposed concept is particularly attractive for applications requiring FT analysis of optical spectra, such as in many optical Fourier-domain reflectrometry (OFDR), interferometry, spectroscopy and sensing systems. Examples are reported to illustrate the use of the method for real-time OFDR, where the target axial-line profile is directly observed in a single-shot oscilloscope trace, similarly to a time-of-flight measurement, but with a resolution and depth of range dictated by the underlying interferometry scheme.

  4. Infrared Spectra and Optical Constants of Nitrile Ices Relevant to Titan's Atmosphere

    Science.gov (United States)

    Anderson, Carrie; Ferrante, Robert F.; Moore, W. James; Hudson, Reggie; Moore, Marla H.

    2011-01-01

    Spectra and optical constants of nitrile ices known or suspected to be in Titan?s atmosphere have been determined from 2.0 to 333.3 microns (approx.5000 to 30/cm). These results are relevant to the ongoing modeling of Cassini CIRS observations of Titan?s winter pole. Ices studied were: HCN, hydrogen cyanide; C2N2, cyanogen; CH3CN, acetonitrile; C2H5CN, propionitrile; and HC3N, cyanoacetylene. Optical constants were calculated, using Kramers-Kronig analysis, for each nitrile ice?s spectrum measured at a variety of temperatures, in both the amorphous- and crystalline phases. Spectra were also measured for many of the nitriles after quenching at the annealing temperature and compared with those of annealed ices. For each of these molecules we also measured the real component, n, of the refractive index for amorphous and crystalline phases at 670 nm. Several examples of the information contained in these new data sets and their usefulness in modeling Titan?s observed features will be presented (e.g., the broad emission feature at 160/cm; Anderson and Samuelson, 2011).

  5. Optical spectra of composite silver-porous silicon (Ag-pSi) nanostructure based periodical lattice

    Science.gov (United States)

    Amedome Min-Dianey, Kossi Aniya; Zhang, Hao-Chun; Brohi, Ali Anwar; Yu, Haiyan; Xia, Xinlin

    2018-03-01

    Numerical finite differential time domain (FDTD) tools were used in this study for predicting the optical characteristics through the nanostructure of composite silver-porous silicon (Ag-pSi) based periodical lattice. This is aimed at providing an interpretation of the optical spectra at known porosity in improvement of the light manipulating efficiency through a proposed structure. With boundary conditions correctly chosen, the numerical simulation was achieved using FDTD Lumerical solutions. This was used to investigate the effect of porosity and the number of layers on the reflection, transmission and absorption characteristics through a proposed structure in a visible wavelength range of 400-750 nm. The results revealed that the higher the number of layers, the lower the reflection. Also, the reflection increases with porosity increase. The transmission characteristics were the inverse to those found in the case of reflection spectra and optimum transmission was attained at high number of layers. Also, increase in porosity results in reduced transmission. Increase in porosity as well as in the number of layers led to an increase in absorption. Therefore, absorption into such structure can be enhanced by elevating the number of layers and the degree of porosity.

  6. The Intrinsically X-Ray-weak Quasar PHL 1811. II. Optical and UV Spectra and Analysis

    Science.gov (United States)

    Leighly, Karen M.; Halpern, Jules P.; Jenkins, Edward B.; Casebeer, Darrin

    2007-11-01

    This is the second of two papers reporting observations and analysis of the unusually bright (mb=14.4), luminous (MB=-25.5), nearby (z=0.192) narrow-line quasar PHL 1811. The first paper reported that PHL 1811 is intrinsically X-ray-weak and presented a spectral energy distribution (SED). Here we present HST STIS optical and UV spectra, and ground-based optical spectra. The optical and UV line emission is very unusual. There is no evidence for forbidden or semiforbidden lines. The near-UV spectrum is dominated by very strong Fe II and Fe III, and unusual low-ionization lines such as Na I D and Ca II H and K are observed. High-ionization lines are very weak; C IV has an equivalent width of 6.6 Å, a factor of ~5 smaller than measured from quasar composite spectra. An unusual feature near 1200 Å can be deblended in terms of Lyα, N V, Si II, and C III* using the blueshifted C IV profile as a template. Photoionization modeling shows that the unusual line emission can be explained qualitatively by the unusually soft SED. Principally, a low gas temperature results in inefficient emission of collisionally excited lines, including the semiforbidden lines generally used as density diagnostics. The emission resembles that of high-density gas; in both cases this is a consequence of inefficient cooling. PHL 1811 is very unusual, but we note that quasar surveys may be biased against finding similar objects. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. These observations are associated with proposal 9181. Based on observations obtained at Kitt Peak National Observatory, a division of the National Optical Astronomy Observatories, which is operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.

  7. Predicting ambient aerosol Thermal Optical Reflectance (TOR) measurements from infrared spectra: organic carbon

    Science.gov (United States)

    Dillner, A. M.; Takahama, S.

    2014-11-01

    Organic carbon (OC) can constitute 50% or more of the mass of atmospheric particulate matter. Typically, the organic carbon concentration is measured using thermal methods such as Thermal-Optical Reflectance (TOR) from quartz fiber filters. Here, methods are presented whereby Fourier Transform Infrared (FT-IR) absorbance spectra from polytetrafluoroethylene (PTFE or Teflon) filters are used to accurately predict TOR OC. Transmittance FT-IR analysis is rapid, inexpensive, and non-destructive to the PTFE filters. To develop and test the method, FT-IR absorbance spectra are obtained from 794 samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites sampled during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to artifact-corrected TOR OC. The FTIR spectra are divided into calibration and test sets by sampling site and date which leads to precise and accurate OC predictions by FT-IR as indicated by high coefficient of determination (R2; 0.96), low bias (0.02 μg m-3, all μg m-3 values based on the nominal IMPROVE sample volume of 32.8 m-3), low error (0.08 μg m-3) and low normalized error (11%). These performance metrics can be achieved with various degrees of spectral pretreatment (e.g., including or excluding substrate contributions to the absorbances) and are comparable in precision and accuracy to collocated TOR measurements. FT-IR spectra are also divided into calibration and test sets by OC mass and by OM / OC which reflects the organic composition of the particulate matter and is obtained from organic functional group composition; this division also leads to precise and accurate OC predictions. Low OC concentrations have higher bias and normalized error due to TOR analytical errors and artifact correction errors, not due to the range of OC mass of the samples in the calibration set. However, samples with low OC mass can be used to predict samples with high OC mass indicating that the

  8. OPTICAL SPECTRA OF CANDIDATE INTERNATIONAL CELESTIAL REFERENCE FRAME (ICRF) FLAT-SPECTRUM RADIO SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Titov, O.; Stanford, Laura M. [Geoscience Australia, P.O. Box 378, Canberra, ACT 2601 (Australia); Johnston, Helen M.; Hunstead, Richard W. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Pursimo, T. [Nordic Optical Telescope, Nordic Optical Telescope Apartado 474E-38700 Santa Cruz de La Palma, Santa Cruz de Tenerife (Spain); Jauncey, David L. [CSIRO Astronomy and Space Science, ATNF and Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Maslennikov, K. [Central Astronomical Observatory at Pulkovo, Pulkovskoye Shosse, 65/1, 196140, St. Petersburg (Russian Federation); Boldycheva, A., E-mail: oleg.titov@ga.gov.au [Ioffe Physical Technical Institute, 26 Polytekhnicheskaya, St. Petersburg, 194021 (Russian Federation)

    2013-07-01

    Continuing our program of spectroscopic observations of International Celestial Reference Frame (ICRF) sources, we present redshifts for 120 quasars and radio galaxies. Data were obtained with five telescopes: the 3.58 m European Southern Observatory New Technology Telescope, the two 8.2 m Gemini telescopes, the 2.5 m Nordic Optical Telescope (NOT), and the 6.0 m Big Azimuthal Telescope of the Special Astrophysical Observatory in Russia. The targets were selected from the International VLBI Service for Geodesy and Astrometry candidate International Celestial Reference Catalog which forms part of an observational very long baseline interferometry (VLBI) program to strengthen the celestial reference frame. We obtained spectra of the potential optical counterparts of more than 150 compact flat-spectrum radio sources, and measured redshifts of 120 emission-line objects, together with 19 BL Lac objects. These identifications add significantly to the precise radio-optical frame tie to be undertaken by Gaia, due to be launched in 2013, and to the existing data available for analyzing source proper motions over the celestial sphere. We show that the distribution of redshifts for ICRF sources is consistent with the much larger sample drawn from Faint Images of the Radio Sky at Twenty cm (FIRST) and Sloan Digital Sky Survey, implying that the ultra-compact VLBI sources are not distinguished from the overall radio-loud quasar population. In addition, we obtained NOT spectra for five radio sources from the FIRST and NRAO VLA Sky Survey catalogs, selected on the basis of their red colors, which yielded three quasars with z > 4.

  9. Investigation of radio objects with continuos optical spectra. The results of four-color electrophotometric observations

    International Nuclear Information System (INIS)

    Beskin, G.M.; Lyutyj, V.M.; Neizvestnyj, S.I.; Pustil'nik, S.I.; Shvartsman, V.F.

    1985-01-01

    The results of UBVR photometry of 30 radio objects with continuous optical spectra (ROCOSes) are reported. The observations were performed using five telescopes during the years 1979-1982; 54 values have been obtained of U, B, V magnitudes and 26 ones of R magnitude. Colours for 16 ROCOSes have been obtained for the first time. The analysis of the data results in the following conclusions. 1) Practically all colours of ROCOSes have proved to be in the region of localization of BL Lac objects' colours on UBV and BVR diagrams. This fact (altogether with the other data) indicates on the proximity of the objects of the two classes. 2) In half of all cases, instantaneous colours of ROCOSes corresponded to purely power-law optical continua F(ν) varies as νsup(α) with α approximately= -(1-2.5). 3) In the remaining cases, optical continua differed significantly from the power-law ones. 4) 6 ROCOSes appeared to be in the phases of deep minimum of brightness at the moment of observations (namely, about 3sup(m)-5sup(m) fainter than in the brightest phase known from the literature). The UBVR colours of none of them give indication on the presence of an elliptical galaxy which, according to conventional concepts, must encompass a variable nonthermal source. 5) Two blue objects, 0548+165 and 0713+199, which are situated at low galactic latitudes (b 2 =-5 deg and +14 deg respectively) have shown colours unusual for lacertids. Appendices contain the results of theoretical calculations of (U-B), (B-V) and (V-R) colours for purely power-law spectra F(ν)=constxνsup(α) with α in the range (-6.5-+2.5) and the results of UBV photometry of the BL Lac object OJ 287 during the years 1976-1982 (24 measurements)

  10. Electronic structure and optical spectra of semiconducting carbon nanotubes functionalized by diazonium salts

    Science.gov (United States)

    Ramirez, Jessica; Mayo, Michael L.; Kilina, Svetlana; Tretiak, Sergei

    2013-02-01

    We report density functional (DFT) calculations on finite-length semiconducting carbon nanotubes covalently and non-covalently functionalized by aryl diazonium moieties and their chlorinated derivatives. For these systems, we investigate (i) an accuracy of different functionals and basis sets, (ii) a solvent effect, and (iii) the impact of the chemical functionalization on optical properties of nanotubes. In contrast to B3LYP, only long-range-corrected functionals, such as CAM-B3LYP and wB97XD, properly describe the ground and excited state properties of physisorbed molecules. We found that physisorbed cation insignificantly perturbs the optical spectra of nanotubes. In contrast, covalently bound complexes demonstrate strong redshifts and brightening of the lowest exciton that is optically dark in pristine nanotubes. However, the energy and oscillator strength of the lowest state are dictated by the position of the molecule on the nanotube. Thus, if controllable and selective chemical functionalization is realized, the PL of nanotubes could be improved.

  11. Optical and Near-infrared Spectra of σ Orionis Isolated Planetary-mass Objects

    Energy Technology Data Exchange (ETDEWEB)

    Zapatero Osorio, M. R. [Centro de Astrobiología (CSIC-INTA), Crta. Ajalvir km 4, E-28850 Torrejón de Ardoz, Madrid (Spain); Béjar, V. J. S. [Instituto de Astrofísica de Canarias, C/. Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Ramírez, K. Peña, E-mail: mosorio@cab.inta-csic.es, E-mail: vbejar@iac.es, E-mail: karla.pena@uantof.cl [Unidad de Astronomía de la Universidad de Antofagasta, Av. U. de Antofagasta. 02800 Antofagasta (Chile)

    2017-06-10

    We have obtained low-resolution optical (0.7–0.98 μ m) and near-infrared (1.11–1.34 μ m and 0.8–2.5 μ m) spectra of 12 isolated planetary-mass candidates ( J = 18.2–19.9 mag) of the 3 Myr σ Orionis star cluster with the aim of determining the spectroscopic properties of very young, substellar dwarfs and assembling a complete cluster mass function. We have classified our targets by visual comparison with high- and low-gravity standards and by measuring newly defined spectroscopic indices. We derived L0–L4.5 and M9–L2.5 using high- and low-gravity standards, respectively. Our targets reveal clear signposts of youth, thus corroborating their cluster membership and planetary masses (6–13 M {sub Jup}). These observations complete the σ Orionis mass function by spectroscopically confirming the planetary-mass domain to a confidence level of ∼75%. The comparison of our spectra with BT-Settl solar metallicity model atmospheres yields a temperature scale of 2350–1800 K and a low surface gravity of log g ≈ 4.0 [cm s{sup −2}], as would be expected for young planetary-mass objects. We discuss the properties of the cluster’s least-massive population as a function of spectral type. We have also obtained the first optical spectrum of S Ori 70, a T dwarf in the direction of σ Orionis. Our data provide reference optical and near-infrared spectra of very young L dwarfs and a mass function that may be used as templates for future studies of low-mass substellar objects and exoplanets. The extrapolation of the σ Orionis mass function to the solar neighborhood may indicate that isolated planetary-mass objects with temperatures of ∼200–300 K and masses in the interval 6–13 M {sub Jup} may be as numerous as very low-mass stars.

  12. Quantum dynamics of a vibronically coupled linear chain using a surrogate Hamiltonian approach

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myeong H., E-mail: myeong.lee@warwick.ac.uk; Troisi, Alessandro [Department of Chemistry and Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2016-06-07

    Vibronic coupling between the electronic and vibrational degrees of freedom has been reported to play an important role in charge and exciton transport in organic photovoltaic materials, molecular aggregates, and light-harvesting complexes. Explicitly accounting for effective vibrational modes rather than treating them as a thermal environment has been shown to be crucial to describe the effect of vibronic coupling. We present a methodology to study dissipative quantum dynamics of vibronically coupled systems based on a surrogate Hamiltonian approach, which is in principle not limited by Markov approximation or weak system-bath interaction, using a vibronic basis. We apply vibronic surrogate Hamiltonian method to a linear chain system and discuss how different types of relaxation process, intramolecular vibrational relaxation and intermolecular vibronic relaxation, influence population dynamics of dissipative vibronic systems.

  13. Infrared Spectra and Optical Constants of Astronomical Ices: I. Amorphous and Crystalline Acetylene

    Science.gov (United States)

    Hudson, R. L.; Ferrante, R. F.; Moore, M. H.

    2013-01-01

    Here we report recent measurements on acetylene (C2H2) ices at temperatures applicable to the outer Solar System and the interstellar medium. New near- and mid-infrared data, including optical constants (n, k), absorption coefficients (alpha), and absolute band strengths (A), are presented for both amorphous and crystalline phases of C2H2 that exist below 70 K. Comparisons are made to earlier work. Electronic versions of the data are made available, as is a computer routine to use our reported n and k values to simulate the observed IR spectra. Suggestions are given for the use of the data and a comparison to a spectrum of Makemake is made.

  14. Band resolution of optical spectra of solvated electrons in water, alcohols, and tetrahydrofuran

    International Nuclear Information System (INIS)

    Jou, F.-Y.; Freeman, G.R.

    1979-01-01

    The optical absorption spectra of solvated electrons in water, alcohols, and tetrahydrofuran are empirically resolved into two Gaussian bands and a continuum tail. The first Gaussian band covers most of the low energy side of the spectrum. The second Gaussian band lies at an energy slightly above that of the absorption maximum of the total spectrum. With the exception of tert-butyl alcohol, in water and alcohols the following were observed: (a) the first Gaussian bands have the same half-width, but the oscillator strength in water is about double that in an alcohol; (b) the second Gaussian bands have similar half-widths and oscillator strengths; (c) the continuum tails have similar half-widths, yet that in water possesses only about one third as much oscillator strength as the one in alcohol. In tert-butyl alcohol and tetrahydrofuran the first Gaussian band and the continuum tail each carry nearly half of the total oscillator strength. (author)

  15. Spectral scalability and optical spectra of fractal multilayer structures: FDTD analysis

    Science.gov (United States)

    Simsek, Sevket; Palaz, Selami; Mamedov, Amirullah M.; Ozbay, Ekmel

    2017-01-01

    An investigation of the optical properties and band structures for the conventional and Fibonacci photonic crystals (PCs) based on SrTiO3 and Sb2Te3 is made in the present research. Here, we use one-dimensional SrTiO3- and Sb2Te3-based layers. We have theoretically calculated the photonic band structure and transmission spectra of SrTiO3- and Sb2Te3-based PC superlattices. The position of minima in the transmission spectrum correlates with the gaps obtained in the calculation. The intensity of the transmission depths is more intense in the case of higher refractive index contrast between the layers.

  16. Optical spectra of radio planetary nebulae in the large Magellanic Cloud

    Directory of Open Access Journals (Sweden)

    Payne J.L.

    2008-01-01

    Full Text Available We present 11 spectra from 12 candidate radio sources co-identified with known planetary nebulae (PNe in the Large Magellanic Cloud (LMC. Originally found in Australia Telescope Compact Array (ATCA LMC surveys at 1.4, 4.8 and 8.64 GHz and confirmed by new high resolution ATCA images at 6 and 3 cm (4' /2' , these complement data recently presented for candidate radio PNe in the Small Magellanic Cloud (SMC. Their spectra were obtained using the Radcliff 1.9-meter telescope in Sutherland (South Africa. All of the optical PNe and radio candidates are within 2' and may represent a population of selected radio bright sample only. Nebular ionized masses of these objects are estimated to be as high as 1.8 Mfi, supporting the idea that massive PNe progenitor central stars lose much of their mass in the asymptotic giant branch (AGB phase or prior. We also identify a sub-population (33% of radio PNe candidates with prominent ionized iron emission lines.

  17. Optical Spectra of Radio Planetary Nebulae in the Large Magellanic Cloud

    Directory of Open Access Journals (Sweden)

    Payne, J. L.

    2008-12-01

    Full Text Available We present 11 spectra from 12 candidate radio sources co-identified with known planetary nebulae (PNe in the Large Magellanic Cloud (LMC. Originally found in Australia Telescope Compact Array (ATCA LMC surveys at 1.4, 4.8 and 8.64~GHz and confirmed by new high resolution ATCA images at 6 and 3~cm (4arcsec/2arcsec, these complement data recently presented for candidate radio PNe in the Small Magellanic Cloud (SMC. Their spectra were obtained using the Radcliffe 1.9-meter telescope in Sutherland (South Africa. All of the optical PNe and radio candidates are within 2arcsec and may represent a population of selected radio bright sample only. Nebular ionized masses of these objects are estimated to be as high as 1.8~$M_odot$, supporting the idea that massive PNe progenitor central stars lose much of their mass in the asymptotic giant branch (AGB phase or prior. We also identify a sub-population (33\\% of radio PNe candidates with prominent ionized iron emission lines.

  18. Jahn-Teller effect in Rydberg series: A multi-state vibronic coupling problem

    International Nuclear Information System (INIS)

    Staib, A.; Domcke, W.; Sobolewski, A.L.

    1990-01-01

    Two simple limiting cases of Jahn-Teller (JT) coupling in Rydberg states of polyatomic molecules are considered, namely (i) JT coupling in Rydberg orbitals as well as in the ionization continuum (nondegenerate ion core, degenerate Rydberg series) and (ii) JT coupling in the ion core (degenerate ion core, nondegenerate Rydberg series). For both models simple and efficient algorithms for the computation of spectra (dynamical JT effect) are developed. The orbital JT effect is shown to represent a novel type of multi-state vibronic coupling, giving rise to interesting spectroscopic phenomena, among them resonant inter-Rydberg perturbations and JT induced autoionization. Particular attention is paid to the demonstration of the characteristic spectroscopic signatures of the two types of JT coupling in Rydberg states. (orig.)

  19. Vibronic coupling in asymmetric bichromophores: Experimental investigation of diphenylmethane-d5

    International Nuclear Information System (INIS)

    Pillsbury, Nathan R.; Kidwell, Nathanael M.; Nebgen, Benjamin; Slipchenko, Lyudmila V.; Zwier, Timothy S.; Douglass, Kevin O.; Plusquellic, David F.; Cable, John R.

    2014-01-01

    Vibrationally and rotationally resolved electronic spectra of diphenylmethane-d 5 (DPM-d 5 ) are reported in the isolated-molecule environment of a supersonic expansion. While small, the asymmetry induced by deuteration of one of the aromatic rings is sufficient to cause several important effects that change the principle mechanism of vibronic coupling between the close-lying S 1 and S 2 states, and spectroscopic signatures such coupling produces. The splitting between S 1 and S 2 origins is 186 cm −1 , about 50% greater than its value in DPM-d 0 (123 cm −1 ), and an amount sufficient to bring the S 2 zero-point level into near-resonance with the v = 1 level in the S 1 state of a low-frequency phenyl flapping mode, ν R = 191 cm −1 . Dispersed fluorescence spectra bear clear evidence that Δv(R) = 1 Herzberg-Teller coupling dominates the near-resonant internal mixing between the S 1 and S 2 manifolds. The fluorescence into each pair of Franck-Condon active ring modes shows an asymmetry that suggests incorrectly that the S 1 and S 2 states may be electronically localized. From rotationally resolved studies, the S 0 and S 1 states have been well-fit to asymmetric rotor Hamiltonians while the S 2 state is perturbed and not fit. The transition dipole moment (TDM) orientation of the S 1 state is nearly perpendicular to the C 2 symmetry axes with 66(2)%:3(1)%:34(2)% a:b:c hybrid-type character while that of the S 2 origin contains 50(10)% a:c-type (S 1 ) and 50(10)% b-type (S 2 ) character. A model is put forward that explains qualitatively the TDM compositions and dispersed emission patterns without the need to invoke electronic localization. The experimental data discussed here serve as a foundation for a multi-mode vibronic coupling model capable of being applied to asymmetric bichromophores, as presented in the work of B. Nebgen and L. V. Slipchenko [“Vibronic coupling in asymmetric bichromophores: Theory and application to diphenylmethane-d 5 ,” J. Chem

  20. Vibronic coupling in asymmetric bichromophores: Experimental investigation of diphenylmethane-d{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Pillsbury, Nathan R.; Kidwell, Nathanael M.; Nebgen, Benjamin; Slipchenko, Lyudmila V.; Zwier, Timothy S., E-mail: david.plusquellic@nist.gov, E-mail: zwier@purdue.edu [Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084 (United States); Douglass, Kevin O.; Plusquellic, David F., E-mail: david.plusquellic@nist.gov, E-mail: zwier@purdue.edu [Quantum Electronics and Photonics Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80305-3328 (United States); Cable, John R. [Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403-0213 (United States)

    2014-08-14

    Vibrationally and rotationally resolved electronic spectra of diphenylmethane-d{sub 5} (DPM-d{sub 5}) are reported in the isolated-molecule environment of a supersonic expansion. While small, the asymmetry induced by deuteration of one of the aromatic rings is sufficient to cause several important effects that change the principle mechanism of vibronic coupling between the close-lying S{sub 1} and S{sub 2} states, and spectroscopic signatures such coupling produces. The splitting between S{sub 1} and S{sub 2} origins is 186 cm{sup −1}, about 50% greater than its value in DPM-d{sub 0} (123 cm{sup −1}), and an amount sufficient to bring the S{sub 2} zero-point level into near-resonance with the v = 1 level in the S{sub 1} state of a low-frequency phenyl flapping mode, ν{sub R} = 191 cm{sup −1}. Dispersed fluorescence spectra bear clear evidence that Δv(R) = 1 Herzberg-Teller coupling dominates the near-resonant internal mixing between the S{sub 1} and S{sub 2} manifolds. The fluorescence into each pair of Franck-Condon active ring modes shows an asymmetry that suggests incorrectly that the S{sub 1} and S{sub 2} states may be electronically localized. From rotationally resolved studies, the S{sub 0} and S{sub 1} states have been well-fit to asymmetric rotor Hamiltonians while the S{sub 2} state is perturbed and not fit. The transition dipole moment (TDM) orientation of the S{sub 1} state is nearly perpendicular to the C{sub 2} symmetry axes with 66(2)%:3(1)%:34(2)% a:b:c hybrid-type character while that of the S{sub 2} origin contains 50(10)% a:c-type (S{sub 1}) and 50(10)% b-type (S{sub 2}) character. A model is put forward that explains qualitatively the TDM compositions and dispersed emission patterns without the need to invoke electronic localization. The experimental data discussed here serve as a foundation for a multi-mode vibronic coupling model capable of being applied to asymmetric bichromophores, as presented in the work of B. Nebgen and L. V

  1. Predicting ambient aerosol thermal-optical reflectance measurements from infrared spectra: elemental carbon

    Science.gov (United States)

    Dillner, A. M.; Takahama, S.

    2015-10-01

    Elemental carbon (EC) is an important constituent of atmospheric particulate matter because it absorbs solar radiation influencing climate and visibility and it adversely affects human health. The EC measured by thermal methods such as thermal-optical reflectance (TOR) is operationally defined as the carbon that volatilizes from quartz filter samples at elevated temperatures in the presence of oxygen. Here, methods are presented to accurately predict TOR EC using Fourier transform infrared (FT-IR) absorbance spectra from atmospheric particulate matter collected on polytetrafluoroethylene (PTFE or Teflon) filters. This method is similar to the procedure developed for OC in prior work (Dillner and Takahama, 2015). Transmittance FT-IR analysis is rapid, inexpensive and nondestructive to the PTFE filter samples which are routinely collected for mass and elemental analysis in monitoring networks. FT-IR absorbance spectra are obtained from 794 filter samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to collocated TOR EC measurements. The FT-IR spectra are divided into calibration and test sets. Two calibrations are developed: one developed from uniform distribution of samples across the EC mass range (Uniform EC) and one developed from a uniform distribution of Low EC mass samples (EC < 2.4 μg, Low Uniform EC). A hybrid approach which applies the Low EC calibration to Low EC samples and the Uniform EC calibration to all other samples is used to produce predictions for Low EC samples that have mean error on par with parallel TOR EC samples in the same mass range and an estimate of the minimum detection limit (MDL) that is on par with TOR EC MDL. For all samples, this hybrid approach leads to precise and accurate TOR EC predictions by FT-IR as indicated by high coefficient of determination (R2; 0.96), no bias (0.00 μg m-3, a

  2. Predicting ambient aerosol thermal-optical reflectance (TOR) measurements from infrared spectra: organic carbon

    Science.gov (United States)

    Dillner, A. M.; Takahama, S.

    2015-03-01

    Organic carbon (OC) can constitute 50% or more of the mass of atmospheric particulate matter. Typically, organic carbon is measured from a quartz fiber filter that has been exposed to a volume of ambient air and analyzed using thermal methods such as thermal-optical reflectance (TOR). Here, methods are presented that show the feasibility of using Fourier transform infrared (FT-IR) absorbance spectra from polytetrafluoroethylene (PTFE or Teflon) filters to accurately predict TOR OC. This work marks an initial step in proposing a method that can reduce the operating costs of large air quality monitoring networks with an inexpensive, non-destructive analysis technique using routinely collected PTFE filter samples which, in addition to OC concentrations, can concurrently provide information regarding the composition of organic aerosol. This feasibility study suggests that the minimum detection limit and errors (or uncertainty) of FT-IR predictions are on par with TOR OC such that evaluation of long-term trends and epidemiological studies would not be significantly impacted. To develop and test the method, FT-IR absorbance spectra are obtained from 794 samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least-squares regression is used to calibrate sample FT-IR absorbance spectra to TOR OC. The FTIR spectra are divided into calibration and test sets by sampling site and date. The calibration produces precise and accurate TOR OC predictions of the test set samples by FT-IR as indicated by high coefficient of variation (R2; 0.96), low bias (0.02 μg m-3, the nominal IMPROVE sample volume is 32.8 m3), low error (0.08 μg m-3) and low normalized error (11%). These performance metrics can be achieved with various degrees of spectral pretreatment (e.g., including or excluding substrate contributions to the absorbances) and are comparable in precision to collocated TOR measurements. FT-IR spectra are also

  3. Predicting ambient aerosol Thermal Optical Reflectance (TOR) measurements from infrared spectra: elemental carbon

    Science.gov (United States)

    Dillner, A. M.; Takahama, S.

    2015-06-01

    Elemental carbon (EC) is an important constituent of atmospheric particulate matter because it absorbs solar radiation influencing climate and visibility and it adversely affects human health. The EC measured by thermal methods such as Thermal-Optical Reflectance (TOR) is operationally defined as the carbon that volatilizes from quartz filter samples at elevated temperatures in the presence of oxygen. Here, methods are presented to accurately predict TOR EC using Fourier Transform Infrared (FT-IR) absorbance spectra from atmospheric particulate matter collected on polytetrafluoroethylene (PTFE or Teflon) filters. This method is similar to the procedure tested and developed for OC in prior work (Dillner and Takahama, 2015). Transmittance FT-IR analysis is rapid, inexpensive, and non-destructive to the PTFE filter samples which are routinely collected for mass and elemental analysis in monitoring networks. FT-IR absorbance spectra are obtained from 794 filter samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to collocated TOR EC measurements. The FTIR spectra are divided into calibration and test sets. Two calibrations are developed, one which is developed from uniform distribution of samples across the EC mass range (Uniform EC) and one developed from a~uniform distribution of low EC mass samples (EC < 2.4 μg, Low Uniform EC). A hybrid approach which applies the low EC calibration to low EC samples and the Uniform EC calibration to all other samples is used to produces predictions for low EC samples that have mean error on par with parallel TOR EC samples in the same mass range and an estimate of the minimum detection limit (MDL) that is on par with TOR EC MDL. For all samples, this hybrid approach leads to precise and accurate TOR EC predictions by FT-IR as indicated by high coefficient of variation (R2; 0.96), no

  4. Calculation of optical and K pre-edge absorption spectra for ferrous iron of distorted sites in oxide crystals

    Science.gov (United States)

    Vercamer, Vincent; Hunault, Myrtille O. J. Y.; Lelong, Gérald; Haverkort, Maurits W.; Calas, Georges; Arai, Yusuke; Hijiya, Hiroyuki; Paulatto, Lorenzo; Brouder, Christian; Arrio, Marie-Anne; Juhin, Amélie

    2016-12-01

    Advanced semiempirical calculations have been performed to compute simultaneously optical absorption and K pre-edge x-ray absorption spectra of Fe2 + in four distinct site symmetries found in minerals. The four symmetries, i.e., a distorted octahedron, a distorted tetrahedron, a square planar site, and a trigonal bipyramidal site, are representative of the Fe2 + sites found in crystals and glasses. A particular attention has been paid to the definition of the p -d hybridization Hamiltonian which occurs for noncentrosymmetric symmetries in order to account for electric dipole transitions. For the different sites under study, an excellent agreement between calculations and experiments was found for both optical and x-ray absorption spectra, in particular in terms of relative intensities and energy positions of electronic transitions. To our knowledge, these are the first calculations of optical absorption spectra on Fe2 + placed in such diverse site symmetries, including centrosymmetric sites. The proposed theoretical model should help to interpret the features of both the optical absorption and the K pre-edge absorption spectra of 3 d transition metal ions and to go beyond the usual fingerprint interpretation.

  5. Analysis of the Vignale-Kohn current functional in the calculation of the optical spectra of semiconductors

    NARCIS (Netherlands)

    Berger, J. A.; de Boeij, P. L.; van Leeuwen, R.

    In this work, we investigate the Vignale-Kohn current functional when applied to the calculation of optical spectra of semiconductors. We discuss our results for silicon. We found qualitatively similar results for other semiconductors. These results show that there are serious limitations to the

  6. Anharmonic effects in IR, Raman, and Raman optical activity spectra of alanine and proline zwitterions.

    Science.gov (United States)

    Danecek, Petr; Kapitán, Josef; Baumruk, Vladimír; Bednárová, Lucie; Kopecký, Vladimír; Bour, Petr

    2007-06-14

    The difference spectroscopy of the Raman optical activity (ROA) provides extended information about molecular structure. However, interpretation of the spectra is based on complex and often inaccurate simulations. Previously, the authors attempted to make the calculations more robust by including the solvent and exploring the role of molecular flexibility for alanine and proline zwitterions. In the current study, they analyze the IR, Raman, and ROA spectra of these molecules with the emphasis on the force field modeling. Vibrational harmonic frequencies obtained with 25 ab initio methods are compared to experimental band positions. The role of anharmonic terms in the potential and intensity tensors is also systematically explored using the vibrational self-consistent field, vibrational configuration interaction (VCI), and degeneracy-corrected perturbation calculations. The harmonic approach appeared satisfactory for most of the lower-wavelength (200-1800 cm(-1)) vibrations. Modern generalized gradient approximation and hybrid density functionals, such as the common B3LYP method, provided a very good statistical agreement with the experiment. Although the inclusion of the anharmonic corrections still did not lead to complete agreement between the simulations and the experiment, occasional enhancements were achieved across the entire region of wave numbers. Not only the transitional frequencies of the C-H stretching modes were significantly improved but also Raman and ROA spectral profiles including N-H and C-H lower-frequency bending modes were more realistic after application of the VCI correction. A limited Boltzmann averaging for the lowest-frequency modes that could not be included directly in the anharmonic calculus provided a realistic inhomogeneous band broadening. The anharmonic parts of the intensity tensors (second dipole and polarizability derivatives) were found less important for the entire spectral profiles than the force field anharmonicities (third

  7. Vibronic excitation in atom molecule collisions

    International Nuclear Information System (INIS)

    Kleyn, A.W.

    1980-01-01

    The molecular beam machine used for the experiments is described. Three setups are discussed: one to measure total cross sections for negative ion formation in Na, K, Cs + O 2 collisions (3-6000 eV); another to measure differential cross sections for neutral scattering and positive ion formation in K, Cs + O 2 and K + Br 2 collisions (20 - 150 eV); and a third to measure energy-loss spectra for neutral K scattered at a certain angle after a collision with O 2 or Br 2 (20 - 150 eV). (Auth.)

  8. Optical contrast spectra studies for determining thickness of stage-1 graphene-FeCl{sub 3} intercalation compounds

    Energy Technology Data Exchange (ETDEWEB)

    Han, Wen-Peng, E-mail: han-wenpeng@163.com, E-mail: yunze.long@163.com; Yan, Xu; Zhao, Hui [College of Physics, Qingdao University, Qingdao 266071 (China); Li, Qiao-Qiao; Lu, Yan [State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Long, Yun-Ze, E-mail: han-wenpeng@163.com, E-mail: yunze.long@163.com [College of Physics, Qingdao University, Qingdao 266071 (China); Collaborative Innovation Center for Low-Dimensional Nanomaterials and Optoelectronic Devices, Qingdao University, Qingdao 266071 (China)

    2016-07-15

    Because of novel features in their structural, electronic, magnetic and optical properties, especially potential applications in nanoelectronics, the few-layer graphene intercalation compounds (FLGICs) have been intensively studied recently. In this work, the dielectric constant of the doped graphene of stage-1 FeCl{sub 3}-GIC is obtained by fitting the optical contrast spectra. And fully intercalated stage-1 FeCl{sub 3}-FLGICs were prepared by micromechanical cleavage method from graphite intercalation compounds (GICs) for the first time. Finally, we demonstrated that the thickness of stage-1 FeCl{sub 3}-GICs by micromechanical cleavage can be determined by optical contrast spectra. This method also can be used to other FLGICs, such as SbCl{sub 5}-FLGICs and AuCl{sub 5}-FLGICs, etc.

  9. Electronic structure, photoemission spectra, and vacuum-ultraviolet optical spectra of CsPbCl3 and CsPbBr3

    Science.gov (United States)

    Heidrich, K.; Schäfer, W.; Schreiber, M.; Söchtig, J.; Trendel, G.; Treusch, J.; Grandke, T.; Stolz, H. J.

    1981-11-01

    Optical spectra of CsPbCl3 and CsPbBr3 have been measured in the range from 2 to 10 eV and have been combined with ultraviolet-photoemission-spectroscopy (UPS)-measurements at 21.1 and 40.8 eV. A quantitative band calculation is presented, which takes into account anion-anion interaction as well as electronic states of the Cs+ ion. The prominent features of earlier band models and measurements are reestablished through our measurements and calculations, namely that the valence band consists of anionic p functions and Pb 6s functions, the lowest conduction band being Pb 6p type, and the lowest gap occuring at the R point of the Brillouin zone. Inclusion of a further (Cs 6s-type) conduction band, however, is necessary to bring the calculated joint density of states into agreement with vacuum-ultraviolet optical spectra. The calculated densities of states of the valence bands are in quantitative agreement with those deduced from our UPS measurements.

  10. Quantifying the Performances of DFT for Predicting Vibrationally Resolved Optical Spectra: Asymmetric Fluoroborate Dyes as Working Examples.

    Science.gov (United States)

    Bednarska, Joanna; Zaleśny, Robert; Bartkowiak, Wojciech; Ośmiałowski, Borys; Medved', Miroslav; Jacquemin, Denis

    2017-09-12

    This article aims at a quantitative assessment of the performances of a panel of exchange-correlation functionals, including semilocal (BLYP and PBE), global hybrids (B3LYP, PBE0, M06, BHandHLYP, M06-2X, and M06-HF), and range-separated hybrids (CAM-B3LYP, LC-ωPBE, LC-BLYP, ωB97X, and ωB97X-D), in predicting the vibrationally resolved absorption spectra of BF 2 -carrying compounds. To this end, for 19 difluoroborates as examples, we use, as a metric, the vibrational reorganization energy (λ vib ) that can be determined based on the computationally efficient linear coupling model (a.k.a. vertical gradient method). The reference values of λ vib were determined by employing the CC2 method combined with the cc-pVTZ basis set for a representative subset of molecules. To validate the performances of CC2, comparisons with experimental data have been carried out as well. This study shows that the vibrational reorganization energy, involving Huang-Rhys factors and normal-mode frequencies, can indeed be used to quantify the reliability of functionals in the calculations of the vibrational fine structure of absorption bands, i.e., an accurate prediction of the vibrational reorganization energy leads to absorption band shapes better fitting the selected reference. The CAM-B3LYP, M06-2X, ωB97X-D, ωB97X, and BHandHLYP functionals all deliver vibrational reorganization energies with absolute relative errors smaller than 20% compared to CC2, whereas 10% accuracy can be achieved with the first three functionals. Indeed, the set of examined exchange-correlation functionals can be divided into three groups: (i) BLYP, B3LYP, PBE, PBE0, and M06 yield inaccurate band shapes (λ vib,TDDFT poor band topologies (λ vib,TDDFT > λ vib,CC2 ). This study also demonstrates that λ vib can be reliably estimated using the CC2 model and the relatively small cc-pVDZ basis set. Therefore, the linear coupling model combined with the CC2/cc-pVDZ level of theory can be used as a very efficient

  11. Modelling telluric line spectra in the optical and infrared with an application to VLT/X-Shooter spectra

    Science.gov (United States)

    Rudolf, N.; Günther, H. M.; Schneider, P. C.; Schmitt, J. H. M. M.

    2016-01-01

    Context. Earth's atmosphere imprints a large number of telluric absorption and emission lines on astronomical spectra, especially in the near infrared, that need to be removed before analysing the affected wavelength regions. Aims: These lines are typically removed by comparison to A- or B-type stars used as telluric standards that themselves have strong hydrogen lines, which complicates the removal of telluric lines. We have developed a method to circumvent that problem. Methods: For our IDL software package tellrem we used a recent approach to model telluric absorption features with the line-by-line radiative transfer model (LBLRTM). The broad wavelength coverage of the X-Shooter at VLT allows us to expand their technique by determining the abundances of the most important telluric molecules H2O, O2, CO2, and CH4 from sufficiently isolated line groups. For individual observations we construct a telluric absorption model for most of the spectral range that is used to remove the telluric absorption from the object spectrum. Results: We remove telluric absorption from both continuum regions and emission lines without systematic residuals for most of the processable spectral range; however, our method increases the statistical errors. The errors of the corrected spectrum typically increase by 10% for S/N ~ 10 and by a factor of two for high-quality data (S/N ~ 100), I.e. the method is accurate on the percent level. Conclusions: Modelling telluric absorption can be an alternative to the observation of standard stars for removing telluric contamination. Based on observations collected at the European Southern Observatory, Paranal, Chile, 085.C-0764(A) and 60.A-9022(C).The tellrem package is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/585/A113

  12. The shape of the electronic circular dichroism spectrum of (2,6-dimethylphenyl)(phenyl)methanol: interplay between conformational equilibria and vibronic effects.

    Science.gov (United States)

    Padula, Daniele; Cerezo, Javier; Pescitelli, Gennaro; Santoro, Fabrizio

    2017-12-13

    Comparison between chiroptical spectra and theoretical predictions is the method of choice for the assignment of the absolute configuration of chiral compounds in solution. Here we report the case of an apparently simple biarylcarbinol, whose electronic circular dichroism (ECD) in the 1 L b region exhibits a peculiar alternation of negative and positive bands. Adopting Density Functional Theory, and describing solvent effects with implicit methods, we found three stable conformers in ethanol, each of them with two close lying states corresponding to similar local 1 L b excitations on the two phenyls. We computed the corresponding vibronic ECD spectra in harmonic approximation, including Duschinsky mixings as well as both Franck Condon (FC) and Herzberg Teller (HT) effects. Exploiting a recently developed mixed quantum/classical method, we further investigated the contribution of the vibronic spectra of out-of-equilibrium structures along the interconversion path connecting the different conformers. In this way, we achieved a reasonable agreement with experiment and attributed the alternating signs of the bands to the existence of different conformers. The remaining discrepancies with experiment indicate that specific solute-solvent interactions modulate the relative conformers' stabilities, calling for new methods able to combine Molecular Dynamics explorations and vibronic calculations. Moreover, the poor performance of HT approaches and the existence of two closely-lying states suggest the necessity of an improved fully-nonadiabatic vibronic approach. These findings demonstrate that even for such a simple system as the biarylcarbinol investigated here, a full reproduction of the fine details of the ECD spectrum requires the development of new improved methods.

  13. Detector Sampling of Optical/IR Spectra: How Many Pixels per FWHM?

    Science.gov (United States)

    Robertson, J. Gordon

    2017-08-01

    Most optical and IR spectra are now acquired using detectors with finite-width pixels in a square array. Each pixel records the received intensity integrated over its own area, and pixels are separated by the array pitch. This paper examines the effects of such pixellation, using computed simulations to illustrate the effects which most concern the astronomer end-user. It is shown that coarse sampling increases the random noise errors in wavelength by typically 10-20 % at 2 pixels per Full Width at Half Maximum, but with wide variation depending on the functional form of the instrumental Line Spread Function (i.e. the instrumental response to a monochromatic input) and on the pixel phase. If line widths are determined, they are even more strongly affected at low sampling frequencies. However, the noise in fitted peak amplitudes is minimally affected by pixellation, with increases less than about 5%. Pixellation has a substantial but complex effect on the ability to see a relative minimum between two closely spaced peaks (or relative maximum between two absorption lines). The consistent scale of resolving power presented by Robertson to overcome the inadequacy of the Full Width at Half Maximum as a resolution measure is here extended to cover pixellated spectra. The systematic bias errors in wavelength introduced by pixellation, independent of signal/noise ratio, are examined. While they may be negligible for smooth well-sampled symmetric Line Spread Functions, they are very sensitive to asymmetry and high spatial frequency sub-structure. The Modulation Transfer Function for sampled data is shown to give a useful indication of the extent of improperly sampled signal in an Line Spread Function. The common maxim that 2 pixels per Full Width at Half Maximum is the Nyquist limit is incorrect and most Line Spread Functions will exhibit some aliasing at this sample frequency. While 2 pixels per Full Width at Half Maximum is nevertheless often an acceptable minimum for

  14. Rest-Frame Optical Spectra of Three Strongly Lensed Galaxies at z ~ 2

    Science.gov (United States)

    Hainline, Kevin N.; Shapley, Alice E.; Kornei, Katherine A.; Pettini, Max; Buckley-Geer, Elizabeth; Allam, Sahar S.; Tucker, Douglas L.

    2009-08-01

    We present Keck II NIRSPEC rest-frame optical spectra for three recently discovered lensed galaxies: the Cosmic Horseshoe (z = 2.38), the Clone (z = 2.00), and SDSS J090122.37+181432.3 (z = 2.26). The boost in signal-to-noise ratio (S/N) from gravitational lensing provides an unusually detailed view of the physical conditions in these objects. A full complement of high S/N rest-frame optical emission lines is measured, spanning from rest frame 3600 to 6800 Å, including robust detections of fainter lines such as Hγ, [S II]λ6717,6732, and in one instance [Ne III]λ3869. SDSS J090122.37+181432.3 shows evidence for active galactic nucleus activity, and therefore we focus our analysis on star-forming regions in the Cosmic Horseshoe and the Clone. For these two objects, we estimate a wide range of physical properties. Current lensing models for the Cosmic Horseshoe and the Clone allow us to correct the measured Hα luminosity and calculated star formation rate. Metallicities have been estimated with a variety of indicators, which span a range of values of 12+ log(O/H) = 8.3-8.8, between ~0.4 and ~1.5 of the solar oxygen abundance. Dynamical masses were computed from the Hα velocity dispersions and measured half-light radii of the reconstructed sources. A comparison of the Balmer lines enabled measurement of dust reddening coefficients. Variations in the line ratios between the different lensed images are also observed, indicating that the spectra are probing different regions of the lensed galaxies. In all respects, the lensed objects appear fairly typical of ultraviolet-selected star-forming galaxies at z ~ 2. The Clone occupies a position on the emission-line diagnostic diagram of [O III]/Hβ versus [N II]/Hα that is offset from the locations of z ~ 0 galaxies. Our new NIRSPEC measurements may provide quantitative insights into why high-redshift objects display such properties. From the [S II] line ratio, high electron densities (~1000 cm-3) are inferred compared

  15. A novel measuring method for arbitrary optical vortex by three spiral spectra

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Bo [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Guo, Lana [School of Electronics and Information, Guangdong Polytechnic Normal University, Guangzhou 510665 (China); Yue, Chengfeng [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Tang, Zhilie, E-mail: tangzhl@scnu.edu.cn [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China)

    2017-02-26

    In this letter, the topological charge of non-integer vortices determined by three arbitrary spiral spectra is theoretically demonstrated for the first time. Based on the conclusion, a novel method to measure non-integer vortices is presented. This method is applicable not only to arbitrary non-integer vortex but also to arbitrary integer vortex. - Highlights: • Different non-integer vortices cannot have three spiral spectra is demonstrated. • Relationship between the non-integer topological charge and the spiral spectra is presented. • Topological charge of non-integer vortices can be determined by three arbitrary spiral spectra.

  16. Longitudinal correlation properties of an optical field with broad angular and frequency spectra and their manifestation in interference microscopy

    International Nuclear Information System (INIS)

    Lyakin, D V; Ryabukho, V P

    2013-01-01

    The results of theoretical and experimental studies of the longitudinal correlation properties of an optical field with broad angular and frequency spectra and manifestations of these properties in interference microscopy are presented. The joint and competitive influence of the angular and frequency spectra of the object-probing field on the longitudinal resolution and on the amplitude of the interference microscope signals from the interfaces between the media inside a multilayer object is demonstrated. The method of compensating the so-called defocusing effect that arises in the interference microscopy using objectives with a large numerical aperture is experimentally demonstrated, which consists in using as a light source in the interference microscope an illuminating interferometer with a frequency-broadband light source. This method of compensation may be used as the basis of simultaneous determination of geometric thickness and refractive index of media forming a multilayer object. (optical fields)

  17. Tensile strain induced changes in the optical spectra of SrTiO.sub.3./sub. epitaxial thin films

    Czech Academy of Sciences Publication Activity Database

    Dejneka, Alexandr; Tyunina, M.; Narkilahti, J.; Levoska, J.; Chvostová, Dagmar; Jastrabík, Lubomír; Trepakov, Vladimír

    2010-01-01

    Roč. 52, č. 10 (2010), 2082-2089 ISSN 1063-7834 R&D Projects: GA ČR GA202/08/1009; GA AV ČR KAN301370701; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : SrTiO 3 epitaxial thin films * effect of biaxial tensile strains on optical spectra Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.727, year: 2010

  18. Nonlinear optical spectra having characteristics of Fano interferences in coherently coupled lowest exciton biexciton states in semiconductor quantum dots

    Directory of Open Access Journals (Sweden)

    Hideki Gotoh

    2014-10-01

    Full Text Available Optical nonlinear effects are examined using a two-color micro-photoluminescence (micro-PL method in a coherently coupled exciton-biexciton system in a single quantum dot (QD. PL and photoluminescence excitation spectroscopy (PLE are employed to measure the absorption spectra of the exciton and biexciton states. PLE for Stokes and anti-Stokes PL enables us to clarify the nonlinear optical absorption properties in the lowest exciton and biexciton states. The nonlinear absorption spectra for excitons exhibit asymmetric shapes with peak and dip structures, and provide a distinct contrast to the symmetric dip structures of conventional nonlinear spectra. Theoretical analyses with a density matrix method indicate that the nonlinear spectra are caused not by a simple coherent interaction between the exciton and biexciton states but by coupling effects among exciton, biexciton and continuum states. These results indicate that Fano quantum interference effects appear in exciton-biexciton systems at QDs and offer important insights into their physics.

  19. Optical absorption spectra of linear and cyclic thiophenes--selection rules manifestation

    International Nuclear Information System (INIS)

    Bednarz, Mariusz; Reineker, Peter; Mena-Osteritz, Elena; Baeuerle, Peter

    2004-01-01

    We theoretically study the size-dependent relation between absorption spectra of thiophene-based oligomers and the corresponding cyclothiophenes. In our approach based on a Frenkel exciton Hamiltonian, we demonstrate that the geometry and selection rules determine the observed relations between the spectra

  20. OPTICAL CONSTANTS AND LAB SPECTRA OF WATER ICE V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Transmission spectra of amorphous and crystalline H2O-ice at temperatures from 20-150 K for a wavelength range from 1.11 to 2.63 microns. These spectra have not been...

  1. OPTICAL CONSTANTS AND LAB SPECTRA OF WATER ICE V1.1

    Data.gov (United States)

    National Aeronautics and Space Administration — Transmission spectra of amorphous and crystalline H2O-ice at temperatures from 20-150 K for a wavelength range from 1.11 to 2.63 microns. These spectra have not been...

  2. Rabi-vibronic resonance with large number of vibrational quanta

    OpenAIRE

    Glenn, R.; Raikh, M. E.

    2011-01-01

    We study theoretically the Rabi oscillations of a resonantly driven two-level system linearly coupled to a harmonic oscillator (vibrational mode) with frequency, \\omega_0. We show that for weak coupling, \\omega_p \\ll \\omega_0, where \\omega_p is the polaronic shift, Rabi oscillations are strongly modified in the vicinity of the Rabi-vibronic resonance \\Omega_R = \\omega_0, where \\Omega_R is the Rabi frequency. The width of the resonance is (\\Omega_R-\\omega_0) \\sim \\omega_p^{2/3} \\omega_0^{1/3} ...

  3. Toward a general mixed quantum/classical method for the calculation of the vibronic ECD of a flexible dye molecule with different stable conformers: Revisiting the case of 2,2,2-trifluoro-anthrylethanol.

    Science.gov (United States)

    Cerezo, Javier; Aranda, Daniel; Avila Ferrer, Francisco J; Prampolini, Giacomo; Mazzeo, Giuseppe; Longhi, Giovanna; Abbate, Sergio; Santoro, Fabrizio

    2018-06-01

    We extend a recently proposed mixed quantum/classical method for computing the vibronic electronic circular dichroism (ECD) spectrum of molecules with different conformers, to cases where more than one hindered rotation is present. The method generalizes the standard procedure, based on the simple Boltzmann average of the vibronic spectra of the stable conformers, and includes the contribution of structures that sample all the accessible conformational space. It is applied to the simulation of the ECD spectrum of (S)-2,2,2-trifluoroanthrylethanol, a molecule with easily interconvertible conformers, whose spectrum exhibits a pattern of alternating positive and negative vibronic peaks. Results are in very good agreement with experiment and show that spectra averaged over all the sampled conformational space can deviate significantly from the simple average of the contributions of the stable conformers. The present mixed quantum/classical method is able to capture the effect of the nonlinear dependence of the rotatory strength on the molecular structure and of the anharmonic couplings among the modes responsible for molecular flexibility. Despite its computational cost, the procedure is still affordable and promises to be useful in all cases where the ECD shape arises from a subtle balance between vibronic effects and conformational variety. © 2018 Wiley Periodicals, Inc.

  4. Optical Spectra of Candidate International Celestial Reference Frame (ICRF) Flat-spectrum Radio Sources. III

    Energy Technology Data Exchange (ETDEWEB)

    Titov, O.; Stanford, Laura M. [Geoscience Australia, P.O. Box 378, Canberra, ACT 2601 (Australia); Pursimo, T. [Nordic Optical Telescope, Nordic Optical Telescope Apartado 474E-38700 Santa Cruz de La Palma, Santa Cruz de Tenerife (Spain); Johnston, Helen M.; Hunstead, Richard W. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Jauncey, David L. [CSIRO Astronomy and Space Science, ATNF and Mount Stromlo Observatory, Cotter Road, Weston, ACT 2611 (Australia); Zenere, Katrina A., E-mail: oleg.titov@ga.gov.au [School of Physics, University of Sydney, NSW 2006 (Australia)

    2017-04-01

    In extending our spectroscopic program, which targets sources drawn from the International Celestial Reference Frame (ICRF) Catalog, we have obtained spectra for ∼160 compact, flat-spectrum radio sources and determined redshifts for 112 quasars and radio galaxies. A further 14 sources with featureless spectra have been classified as BL Lac objects. Spectra were obtained at three telescopes: the 3.58 m European Southern Observatory New Technology Telescope, and the two 8.2 m Gemini telescopes in Hawaii and Chile. While most of the sources are powerful quasars, a significant fraction of radio galaxies is also included from the list of non-defining ICRF radio sources.

  5. VizieR Online Data Catalog: A library of high-S/N optical spectra of FGKM stars (Yee+, 2017)

    Science.gov (United States)

    Yee, S. W.; Petigura, E. A.; von Braun, K.

    2017-09-01

    Classification of stars, by comparing their optical spectra to a few dozen spectral standards, has been a workhorse of observational astronomy for more than a century. Here, we extend this technique by compiling a library of optical spectra of 404 touchstone stars observed with Keck/HIRES by the California Planet Search. The spectra have high resolution (R~60000), high signal-to-noise ratio (S/N~150/pixel), and are registered onto a common wavelength scale. The library stars have properties derived from interferometry, asteroseismology, LTE spectral synthesis, and spectrophotometry. To address a lack of well-characterized late-K dwarfs in the literature, we measure stellar radii and temperatures for 23 nearby K dwarfs, using modeling of the spectral energy distribution and Gaia parallaxes. This library represents a uniform data set spanning the spectral types ~M5-F1 (Teff~3000-7000K, R*~0.1-16R{Sun}). We also present "Empirical SpecMatch" (SpecMatch-Emp), a tool for parameterizing unknown spectra by comparing them against our spectral library. For FGKM stars, SpecMatch-Emp achieves accuracies of 100K in effective temperature (Teff), 15% in stellar radius (R*), and 0.09dex in metallicity ([Fe/H]). Because the code relies on empirical spectra it performs particularly well for stars ~K4 and later, which are challenging to model with existing spectral synthesizers, reaching accuracies of 70K in Teff, 10% in R*, and 0.12dex in [Fe/H]. We also validate the performance of SpecMatch-Emp, finding it to be robust at lower spectral resolution and S/N, enabling the characterization of faint late-type stars. Both the library and stellar characterization code are publicly available. (2 data files).

  6. Built-in electric field effect on optical absorption spectra of strained (In,Ga)N–GaN nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    El Ghazi, Haddou, E-mail: hadghazi@gmail.com [LPS, Faculty of Science, Dhar EL Mehrez, BP 1796 Fes-Atlas (Morocco); Special Mathematics, CPGE Rabat, Rabat (Morocco); John Peter, A. [Department of Physics, Govt. Arts and Science College, Melur, 625106 Madurai (India)

    2015-08-15

    Based on the effective-mass and the one band parabolic approximations, first order linear, third-order nonlinear and total optical properties related to 1s–1p intra-conduction band transition in wurtzite strained (In,Ga)N–GaN spherical QDs are calculated. The built-in electric field effect, due to the spontaneous and piezoelectric components, is investigated variationally under finite confinement potential. The results reveal that size and internal composition of the dot have a great influence on in-built electric field which affects strongly the optical absorption spectra. It is also found that the modulation of the absorption coefficient, which is suitable for the better performance of optical device applications, can be easily obtained by adjusting geometrical size and internal composition.

  7. Phylogenetic Distribution of Leaf Spectra and Optically Derived Functional Traits in the American Oaks

    Science.gov (United States)

    Cavender-Bares, J.; Meireles, J. E.; Couture, J. J.; Kaproth, M.; Townsend, P. A.

    2015-12-01

    Detecting functional traits of species, genotypes and phylogenetic lineages is critical in monitoring functional biodiversity remotely. We examined the phylogenetic distribution of leaf spectra across the American Oaks for 35 species under greenhouse conditions as well as genetic variation in leaf spectra across Central American populations of a single species grown in common gardens in Honduras. We found significant phylogenetic signal in the leaf spectra (Blomberg's K > 1.0), indicating similarity in spectra among close relatives. Across species, full range leaf spectra were used in a Partial Least Squares Discriminant Analysis (PLS-DA) that allowed species calibration (kappa statistic = 0.55). Validation of the model used to detect species (kappa statistic = 0.4) indicated reasonably good detection of individual species within the same the genus. Among four populations from Belize, Costa Rica, Honduras, and Mexico within a single species (Quercus oleoides), leaf spectra were also able to differentiate populations. Ordination of population-level data using dissimilarities of predicted foliar traits, including leaf mass per area (LMA), lignin content, fiber content, chlorophyll a+b, and C:N ratio in genotypes in either watered or unwatered conditions showed significant differentiation among populations and treatments. These results provide promise for remote detection and differentiation of plant functional traits among plant phylogenetic lineages and genotypes, even among closely related populations and species.

  8. Towards quantification of vibronic coupling in photosynthetic antenna complexes

    Energy Technology Data Exchange (ETDEWEB)

    Singh, V. P.; Westberg, M.; Wang, C.; Gellen, T.; Engel, G. S., E-mail: gsengel@uchicago.edu [Department of Chemistry, The James Franck Institute and The Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637 (United States); Dahlberg, P. D. [Graduate Program in the Biophysical Sciences, The James Franck Institute and The Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637 (United States); Gardiner, A. T.; Cogdell, R. J. [Department of Botany, Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, Scotland (United Kingdom)

    2015-06-07

    Photosynthetic antenna complexes harvest sunlight and efficiently transport energy to the reaction center where charge separation powers biochemical energy storage. The discovery of existence of long lived quantum coherence during energy transfer has sparked the discussion on the role of quantum coherence on the energy transfer efficiency. Early works assigned observed coherences to electronic states, and theoretical studies showed that electronic coherences could affect energy transfer efficiency—by either enhancing or suppressing transfer. However, the nature of coherences has been fiercely debated as coherences only report the energy gap between the states that generate coherence signals. Recent works have suggested that either the coherences observed in photosynthetic antenna complexes arise from vibrational wave packets on the ground state or, alternatively, coherences arise from mixed electronic and vibrational states. Understanding origin of coherences is important for designing molecules for efficient light harvesting. Here, we give a direct experimental observation from a mutant of LH2, which does not have B800 chromophores, to distinguish between electronic, vibrational, and vibronic coherence. We also present a minimal theoretical model to characterize the coherences both in the two limiting cases of purely vibrational and purely electronic coherence as well as in the intermediate, vibronic regime.

  9. Non vertical vibronic transitions in atom molecule collisions

    International Nuclear Information System (INIS)

    Klomp, U.C.

    1982-01-01

    This thesis is mainly devoted to an experimental and theoretical study on vibronic transitions which occur in collisions between an alkali atom and several diatomic molecules. An experimental study on electron and ion production in repulsive Cs-CO and Cs-N 2 collisions, and in Cs-NO and Cs-O 2 non-repulsive collisions is presented. The experimental data are discussed in terms of some existing models. It is clear that a new consistent theory on vibronic transitions is needed to explain the experimental data. Such a theory is presented, and it is shown that some existing models are limiting cases of this theory. An experimental study on the relative probabilities for ion and electron production in collisions between a Na, K or Cs atom and an O 2 or NO molecule is also described. These experiments suggest that the incident velocity of the alkali atoms has a predominant influence on the relative probabilities for ion and electron production in these collisions. (Auth.)

  10. High-level ab initio calculations on HGeCl and the equilibrium geometry of the A1A'' state derived from Franck-Condon analysis of the single-vibronic-level emission spectra of HGeCl and DGeCl.

    Science.gov (United States)

    Mok, Daniel K W; Chau, Foo-Tim; Lee, Edmond P F; Dyke, John M

    2010-02-01

    CCSD(T) and/or CASSCF/MRCI calculations have been carried out on the X(1)A' and A(1)A'' states of HGeCl. The fully relativistic effective core potential, ECP10MDF, and associated standard valence basis sets of up to the aug-cc-pV5Z quality were employed for Ge. Contributions from core correlation and extrapolation to the complete basis set limit were included in determining the computed equilibrium geometrical parameters and relative electronic energy of these two states of HGeCl. Based on the currently, most systematic CCSD(T) calculations performed in this study, the best theoretical geometrical parameters of the X(1)A' state are r(e)(HGe) = 1.580 +/- 0.001 A, theta(e) = 93.88 +/- 0.01 degrees and r(e)(GeCl) = 2.170 +/- 0.001 A. In addition, Franck-Condon factors including allowance for anharmonicity and Duschinsky rotation between these two states of HGeCl and DGeCl were calculated employing CCSD(T) and CASSCF/MRCI potential energy functions, and were used to simulate A(1)A'' --> X(1)A' SVL emission spectra of HGeCl and DGeCl. The iterative Franck-Condon analysis (IFCA) procedure was carried out to determine the equilibrium geometrical parameters of the A(1)A'' state of HGeCl by matching the simulated, and available experimental SVL emission spectra of HGeCl and DGeCl of Tackett et al., J Chem Phys 2006, 124, 124320, using the available, estimated experimental equilibrium (r(e)(z)) structure for the X(1)A' state, while varying the equilibrium geometrical parameters of the A(1)A'' state systematically. Employing the derived IFCA geometry of r(e)(HGe) = 1.590 A, r(e)(GeCl) = 2.155 A and theta(e)(HGeCl) = 112.7 degrees for the A(1)A'' state of HGeCl in the spectral simulation, the simulated absorption and SVL emission spectra of HGeCl and DGeCl agree very well with the available experimental LIF and SVL emission spectra, respectively. Copyright 2009 Wiley Periodicals, Inc.

  11. Vibronic coupling explains the ultrafast carotenoid-to-bacteriochlorophyll energy transfer in natural and artificial light harvesters

    Energy Technology Data Exchange (ETDEWEB)

    Perlík, Václav; Seibt, Joachim; Šanda, František; Mančal, Tomáš [Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, Prague 121 16 (Czech Republic); Cranston, Laura J.; Cogdell, Richard J. [Institute of Molecular Cell and System Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Biomedical Research Centre, 120 University Place, Glasgow G12 8TA, Scotland (United Kingdom); Lincoln, Craig N.; Hauer, Jürgen, E-mail: juergen.hauer@tuwien.ac.at [Photonics Institute, Vienna University of Technology, Gusshausstrasse 27, 1040 Vienna (Austria); Savolainen, Janne [Department of Physical Chemistry II, Ruhr-University Bochum, 44780 Bochum (Germany)

    2015-06-07

    The initial energy transfer steps in photosynthesis occur on ultrafast timescales. We analyze the carotenoid to bacteriochlorophyll energy transfer in LH2 Marichromatium purpuratum as well as in an artificial light-harvesting dyad system by using transient grating and two-dimensional electronic spectroscopy with 10 fs time resolution. We find that Förster-type models reproduce the experimentally observed 60 fs transfer times, but overestimate coupling constants, which lead to a disagreement with both linear absorption and electronic 2D-spectra. We show that a vibronic model, which treats carotenoid vibrations on both electronic ground and excited states as part of the system’s Hamiltonian, reproduces all measured quantities. Importantly, the vibronic model presented here can explain the fast energy transfer rates with only moderate coupling constants, which are in agreement with structure based calculations. Counterintuitively, the vibrational levels on the carotenoid electronic ground state play the central role in the excited state population transfer to bacteriochlorophyll; resonance between the donor-acceptor energy gap and the vibrational ground state energies is the physical basis of the ultrafast energy transfer rates in these systems.

  12. Vibronic coupling explains the ultrafast carotenoid-to-bacteriochlorophyll energy transfer in natural and artificial light harvesters

    International Nuclear Information System (INIS)

    Perlík, Václav; Seibt, Joachim; Šanda, František; Mančal, Tomáš; Cranston, Laura J.; Cogdell, Richard J.; Lincoln, Craig N.; Hauer, Jürgen; Savolainen, Janne

    2015-01-01

    The initial energy transfer steps in photosynthesis occur on ultrafast timescales. We analyze the carotenoid to bacteriochlorophyll energy transfer in LH2 Marichromatium purpuratum as well as in an artificial light-harvesting dyad system by using transient grating and two-dimensional electronic spectroscopy with 10 fs time resolution. We find that Förster-type models reproduce the experimentally observed 60 fs transfer times, but overestimate coupling constants, which lead to a disagreement with both linear absorption and electronic 2D-spectra. We show that a vibronic model, which treats carotenoid vibrations on both electronic ground and excited states as part of the system’s Hamiltonian, reproduces all measured quantities. Importantly, the vibronic model presented here can explain the fast energy transfer rates with only moderate coupling constants, which are in agreement with structure based calculations. Counterintuitively, the vibrational levels on the carotenoid electronic ground state play the central role in the excited state population transfer to bacteriochlorophyll; resonance between the donor-acceptor energy gap and the vibrational ground state energies is the physical basis of the ultrafast energy transfer rates in these systems

  13. Vibronic coupling in molecular crystals: A Franck-Condon Herzberg-Teller model of H-aggregate fluorescence based on quantum chemical cluster calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wykes, M., E-mail: mikewykes@gmail.com; Parambil, R.; Gierschner, J. [Madrid Institute for Advanced Studies, IMDEA Nanoscience, Calle Faraday 9, Campus Cantoblanco, 28049 Madrid (Spain); Beljonne, D. [Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, 7000 Mons (Belgium)

    2015-09-21

    Here, we present a general approach to treating vibronic coupling in molecular crystals based on atomistic simulations of large clusters. Such clusters comprise model aggregates treated at the quantum chemical level embedded within a realistic environment treated at the molecular mechanics level. As we calculate ground and excited state equilibrium geometries and vibrational modes of model aggregates, our approach is able to capture effects arising from coupling to intermolecular degrees of freedom, absent from existing models relying on geometries and normal modes of single molecules. Using the geometries and vibrational modes of clusters, we are able to simulate the fluorescence spectra of aggregates for which the lowest excited state bears negligible oscillator strength (as is the case, e.g., ideal H-aggregates) by including both Franck-Condon (FC) and Herzberg-Teller (HT) vibronic transitions. The latter terms allow the adiabatic excited state of the cluster to couple with vibrations in a perturbative fashion via derivatives of the transition dipole moment along nuclear coordinates. While vibronic coupling simulations employing FC and HT terms are well established for single-molecules, to our knowledge this is the first time they are applied to molecular aggregates. Here, we apply this approach to the simulation of the low-temperature fluorescence spectrum of para-distyrylbenzene single-crystal H-aggregates and draw comparisons with coarse-grained Frenkel-Holstein approaches previously extensively applied to such systems.

  14. Can a one-layer optical skin model including melanin and inhomogeneously distributed blood explain spatially resolved diffuse reflectance spectra?

    Science.gov (United States)

    Karlsson, Hanna; Pettersson, Anders; Larsson, Marcus; Strömberg, Tomas

    2011-02-01

    Model based analysis of calibrated diffuse reflectance spectroscopy can be used for determining oxygenation and concentration of skin chromophores. This study aimed at assessing the effect of including melanin in addition to hemoglobin (Hb) as chromophores and compensating for inhomogeneously distributed blood (vessel packaging), in a single-layer skin model. Spectra from four humans were collected during different provocations using a twochannel fiber optic probe with source-detector separations 0.4 and 1.2 mm. Absolute calibrated spectra using data from either a single distance or both distances were analyzed using inverse Monte Carlo for light transport and Levenberg-Marquardt for non-linear fitting. The model fitting was excellent using a single distance. However, the estimated model failed to explain spectra from the other distance. The two-distance model did not fit the data well at either distance. Model fitting was significantly improved including melanin and vessel packaging. The most prominent effect when fitting data from the larger separation compared to the smaller separation was a different light scattering decay with wavelength, while the tissue fraction of Hb and saturation were similar. For modeling spectra at both distances, we propose using either a multi-layer skin model or a more advanced model for the scattering phase function.

  15. Multiplexing 32,000 spectra onto 8 detectors: the HARMONI field splitting, image slicing, and wavelength selecting optics

    Science.gov (United States)

    Tecza, Matthias; Thatte, Niranjan; Clarke, Fraser; Freeman, David; Kosmalski, Johan

    2012-09-01

    HARMONI, the High Angular Resolution Monolithic Optical & Near-infrared Integral field spectrograph is one of two first-light instruments for the European Extremely Large Telescope. Over a 256x128 pixel field-of-view HARMONI will simultaneously measure approximately 32,000 spectra. Each spectrum is about 4000 spectral pixels long, and covers a selectable part of the 0.47-2.45 μm wavelength range at resolving powers of either R≍4000, 10000, or 20000. All 32,000 spectra are imaged onto eight HAWAII4RG detectors using a multiplexing scheme that divides the input field into four sub-fields, each imaged onto one image slicer that in turn re-arranges a single sub-field into two long exit slits feeding one spectrograph each. In total we require eight spectrographs, each with one HAWAII4RG detector. A system of articulated and exchangeable fold-mirrors and VPH gratings allows one to select different spectral resolving powers and wavelength ranges of interest while keeping a fixed geometry between the spectrograph collimator and camera avoiding the need for an articulated grating and camera. In this paper we describe both the field splitting and image slicing optics as well as the optics that will be used to select both spectral resolving power and wavelength range.

  16. Optical-absorption spectra associated with shallow donor impurities in GaAs-(Ga,Al)As quantum-dots

    International Nuclear Information System (INIS)

    Silva Valencia, J.

    1995-08-01

    The binding energy of a hydrogenic donor impurity and the optical-absorption spectra associated with transitions between the n=1 valence level and the donor-impurity band were calculated for infinite barrier-well spherical GaAs-(Ga,Al)As quantum-dots of different radii, using the effective mass approximation within a variational scheme. An absorption peak associated with transitions involving impurities at the center of the well and a peak related with impurities at the edge of the dot were the main features observed for the different radii of the dots considered in the calculations. Also as a result of the higher electronic confinement in a quantum- dot, we found a much wider energy range of the absorption spectra when compared to infinite GaAs-(Ga,Al)As quantum-wells and quantum-well wires of width and diameter comparable to the diameter of the quantum dot. (author). 13 refs, 3 figs

  17. Mixed-Valence Molecular Unit for Quantum Cellular Automata: Beyond the Born-Oppenheimer Paradigm through the Symmetry-Assisted Vibronic Approach.

    Science.gov (United States)

    Clemente-Juan, Juan Modesto; Palii, Andrew; Coronado, Eugenio; Tsukerblat, Boris

    2016-08-09

    In this article, we focus on the electron-vibrational problem of the tetrameric mixed-valence (MV) complexes proposed for implementation as four-dot molecular quantum cellular automata (mQCA).1 Although the adiabatic approximation explored in ref 2 is an appropriate tool for the qualitative analysis of the basic characteristics of mQCA, like vibronic trapping of the electrons encoding binary information and cell-cell response, it loses its accuracy providing moderate vibronic coupling and fails in the description of the discrete pattern of the vibronic levels. Therefore, a precise solution of the quantum-mechanical vibronic problem is of primary importance for the evaluation of the shapes of the electron transfer optical absorption bands and quantitative analysis of the main parameters of tetrameric quantum cells. Here, we go beyond the Born-Oppenheimer paradigm and present a solution of the quantum-mechanical pseudo Jahn-Teller (JT) vibronic problem in bielectronic MV species (exemplified by the tetra-ruthenium complexes) based on the recently developed symmetry-assisted approach.3,4 The mathematical approach to the vibronic eigenproblem takes into consideration the point symmetry basis, and therefore, the total matrix of the JT Hamiltonian is blocked to the maximum extent. The submatrices correspond to the irreducible representations (irreps) of the point group. With this tool, we also extend the theory of the mQCA cell beyond the limit of prevailing Coulomb repulsion in the electronic pair (adopted in ref 2), and therefore, the general pseudo-JT problems for spin-singlet ((1)B1g, 2(1)A1g, (1)B2g, (1)Eu) ⊗ (b1g + eu) and spin-triplet states ((3)A2g, (3)B1g, 2(3)Eu) ⊗ (b1g + eu) in a square-planar bielectronic system are solved. The obtained symmetry-adapted electron-vibrational functions are employed for the calculation of the profiles (shape functions) of the charge transfer absorption bands in the tetrameric MV complexes and for the discussion of the

  18. Continuous registration of optical absorption spectra of periodically produced solvated electrons

    International Nuclear Information System (INIS)

    Krebs, P.

    1975-01-01

    Absorption spectra of unstable intermediates, such as solvated electrons, were usually taken point by point, recording the time-dependent light absorption after their production by a flash. The experimental arrangement for continuous recording of the spectra consists of a conventional one beam spectral photometer with a stabilized white light source, a monochromator, and a light detector. By periodic production of light absorbing intermediates such as solvated electrons, e.g., by ac uv light, a small ac signal is modulated on the light detector output which after amplification can be continuously recorded as a function of wavelength. This method allows the detection of absorption spectra when disturbances from the outside provide a signal-to-noise ratio smaller than 1

  19. General Method for Calculating the Response and Noise Spectra of Active Fabry-Perot Semiconductor Waveguides With External Optical Injection

    DEFF Research Database (Denmark)

    Blaaberg, Søren; Mørk, Jesper

    2009-01-01

    We present a theoretical method for calculating small-signal modulation responses and noise spectra of active Fabry-Perot semiconductor waveguides with external light injection. Small-signal responses due to either a modulation of the pump current or due to an optical amplitude or phase modulatio...... amplifiers and an injection-locked laser. We also demonstrate the applicability of the method to analyze slow and fast light effects in semiconductor waveguides. Finite reflectivities of the facets are found to influence the phase changes of the injected microwave-modulated light....

  20. Optical absorption and magnetic circular dichroism spectra of thiouracils: a quantum mechanical study in solution

    DEFF Research Database (Denmark)

    Martínez-Fernández, L.; Fahleson, Tobias; Norman, Patrick

    2017-01-01

    The excited electronic states of 2-thiouracil, 4-thiouracil and 2,4-dithiouracil, the analogues of uracil where the carbonyl oxygens are substituted by sulphur atoms, have been investigated by computing the magnetic circular dichroism (MCD) and one-photon absorption (OPA) spectra at the time-depe...

  1. Application of magnetic circular dichroism spectroscopy to the optical spectra of natural and irradiated diamonds

    International Nuclear Information System (INIS)

    Douglas, I.N.; Ruciman, W.A.; Australian National Univ., Canberra. Research School of Physical Sciences)

    1977-01-01

    The MCD spectra of natural type Ia and electron-irradiated type Ia and type IIa diamonds have been measured. The information obtained from MCD spectroscopy complements that obtained from absorption spectroscopy and can be helpful in the assignment of electronic transitions. (orig.) [de

  2. Effect of Er doping on optical transmission and EL spectra of (Zn, Cd)S:Cu phosphors

    International Nuclear Information System (INIS)

    Patil, P.K.; Nandgave, J.K.; Lawangar Pawar, R.D.

    1991-01-01

    Powder phosphors((Znsub(0.4)Cdsub(0.6))S)doped with Cu and Er have been prepared under the inert atmosphere of argon. The optical transmission spectra of Cu doped phosphors have been investigated and explained on the basis of copper associated defect states. The improvement of optical transmission of the phosphors due to Er doping has been reported and explained. The EL emission spectrum of (Znsub(0.4)Cdsub(0.6))S:Cu:Er phosphors exhibits two broad bands characteristic of Cu. The absence of characteristic Er bands has been explained as an effect of thermal quenching of Er donor levels. (author). 9 refs., 2 figs

  3. Reassigning the CaH+ 11Σ → 21Σ vibronic transition with CaD+

    Science.gov (United States)

    Condoluci, J.; Janardan, S.; Calvin, A. T.; Rugango, R.; Shu, G.; Sherrill, C. D.; Brown, K. R.

    2017-12-01

    We observe vibronic transitions in CaD+ between the 11Σ and 21Σ electronic states by resonance enhanced multiphoton photodissociation spectroscopy in a Coulomb crystal. The vibronic transitions are compared with previous measurements on CaH+. The result is a revised assignment of the CaH+ vibronic levels and a disagreement with multi-state-complete-active-space second-order perturbation theory theoretical calculations by approximately 700 cm-1. Updated high-level coupled-cluster calculations that include core-valence correlations reduce the disagreement between theory and experiment to 300 cm-1.

  4. CPAC moisture study: Phase 1 report on the study of optical spectra calibration for moisture

    International Nuclear Information System (INIS)

    Veltkamp, D.

    1993-01-01

    This report discusses work done to investigate the feasibility of using optical spectroscopic methods, combined with multivariate Partial Least Squares (PLS) calibration modeling, to quantitatively predict the moisture content of the crust material in Hanford's waste tank materials. Experiments were conducted with BY-104 simulant material for the 400--1100 nm (VIS), 1100--2500 (NIR), and 400-4000 cm -1 (IR) optical regions. The test data indicated that the NIR optical region, with a single PLS calibration factor, provided the highest accuracy response (better than 0.5 wt %) over a 0--25 wt % moisture range. Issues relating to the preparation of moisture samples with the BY-104 materials and the potential implementation within hot cell and waste tanks are also discussed. The investigation of potential material interferences, including physical and chemical properties, and the scaled demonstration of fiber optic and camera types of applications with simulated waste tanks are outlined as future work tasks

  5. Simulation of the single-vibronic-level emission spectrum of HPS.

    Science.gov (United States)

    Mok, Daniel K W; Lee, Edmond P F; Chau, Foo-tim; Dyke, John M

    2014-05-21

    We have computed the potential energy surfaces of the X¹A' and ùA" states of HPS using the explicitly correlated multi-reference configuration interaction (MRCI-F12) method, and Franck-Condon factors between the two states, which include anharmonicity and Duschinsky rotation, with the aim of testing the assignment of the recently reported single-vibronic-level (SVL) emission spectrum of HPS [R. Grimminger, D. J. Clouthier, R. Tarroni, Z. Wang, and T. J. Sears, J. Chem. Phys. 139, 174306 (2013)]. These are the highest level calculations on these states yet reported. It is concluded that our spectral simulation supports the assignments of the molecular carrier, the electronic states involved and the vibrational structure of the experimental laser induced fluorescence, and SVL emission spectra proposed by Grimminger et al. [J. Chem. Phys. 139, 174306 (2013)]. However, there remain questions unanswered regarding the relative electronic energies of the two states and the geometry of the excited state of HPS.

  6. Simulation of the single-vibronic-level emission spectrum of HPS

    Energy Technology Data Exchange (ETDEWEB)

    Mok, Daniel K. W., E-mail: bcdaniel@polyu.edu.hk, E-mail: epl@soton.ac.uk; Chau, Foo-tim [Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom (Hong Kong); Lee, Edmond P. F., E-mail: bcdaniel@polyu.edu.hk, E-mail: epl@soton.ac.uk [Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom (Hong Kong); School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Dyke, John M. [School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom)

    2014-05-21

    We have computed the potential energy surfaces of the X{sup ~1}A{sup ′} and A{sup ~1}A{sup ′′} states of HPS using the explicitly correlated multi-reference configuration interaction (MRCI-F12) method, and Franck–Condon factors between the two states, which include anharmonicity and Duschinsky rotation, with the aim of testing the assignment of the recently reported single-vibronic-level (SVL) emission spectrum of HPS [R. Grimminger, D. J. Clouthier, R. Tarroni, Z. Wang, and T. J. Sears, J. Chem. Phys. 139, 174306 (2013)]. These are the highest level calculations on these states yet reported. It is concluded that our spectral simulation supports the assignments of the molecular carrier, the electronic states involved and the vibrational structure of the experimental laser induced fluorescence, and SVL emission spectra proposed by Grimminger et al. [J. Chem. Phys. 139, 174306 (2013)]. However, there remain questions unanswered regarding the relative electronic energies of the two states and the geometry of the excited state of HPS.

  7. Simulation of the single-vibronic-level emission spectrum of HPS

    International Nuclear Information System (INIS)

    Mok, Daniel K. W.; Chau, Foo-tim; Lee, Edmond P. F.; Dyke, John M.

    2014-01-01

    We have computed the potential energy surfaces of the X ~1 A ′ and A ~1 A ′′ states of HPS using the explicitly correlated multi-reference configuration interaction (MRCI-F12) method, and Franck–Condon factors between the two states, which include anharmonicity and Duschinsky rotation, with the aim of testing the assignment of the recently reported single-vibronic-level (SVL) emission spectrum of HPS [R. Grimminger, D. J. Clouthier, R. Tarroni, Z. Wang, and T. J. Sears, J. Chem. Phys. 139, 174306 (2013)]. These are the highest level calculations on these states yet reported. It is concluded that our spectral simulation supports the assignments of the molecular carrier, the electronic states involved and the vibrational structure of the experimental laser induced fluorescence, and SVL emission spectra proposed by Grimminger et al. [J. Chem. Phys. 139, 174306 (2013)]. However, there remain questions unanswered regarding the relative electronic energies of the two states and the geometry of the excited state of HPS

  8. Two-Dimensional Resonance Raman Signatures of Vibronic Coherence Transfer in Chemical Reactions.

    Science.gov (United States)

    Guo, Zhenkun; Molesky, Brian P; Cheshire, Thomas P; Moran, Andrew M

    2017-11-02

    Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in condensed phase systems. 2DRR spectroscopy is motivated by knowledge of non-equilibrium effects that cannot be detected with traditional resonance Raman spectroscopy. For example, 2DRR spectra may reveal correlated distributions of reactant and product geometries in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this chapter, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide. We show that signatures of "vibronic coherence transfer" in the photodissociation process can be targeted with particular 2DRR pulse sequences. Key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopy techniques are also addressed. Overall, recent experimental developments and applications of the 2DRR method suggest that it will be a valuable tool for elucidating ultrafast chemical reaction mechanisms.

  9. Modeling Optical Spectra of Large Organic Systems Using Real-Time Propagation of Semiempirical Effective Hamiltonians.

    Science.gov (United States)

    Ghosh, Soumen; Andersen, Amity; Gagliardi, Laura; Cramer, Christopher J; Govind, Niranjan

    2017-09-12

    We present an implementation of a time-dependent semiempirical method (INDO/S) in NWChem using real-time (RT) propagation to address, in principle, the entire spectrum of valence electronic excitations. Adopting this model, we study the UV/vis spectra of medium-sized systems such as P3B2 and f-coronene, and in addition much larger systems such as ubiquitin in the gas phase and the betanin chromophore in the presence of two explicit solvents (water and methanol). RT-INDO/S provides qualitatively and often quantitatively accurate results when compared with RT- TDDFT or experimental spectra. Even though we only consider the INDO/S Hamiltonian in this work, our implementation provides a framework for performing electron dynamics in large systems using semiempirical Hartree-Fock Hamiltonians in general.

  10. Intense Vibronic Modulation of the Chiral Photoelectron Angular Distribution Generated by Photoionization of Limonene Enantiomers with Circularly Polarized Synchrotron Radiation.

    Science.gov (United States)

    Rafiee Fanood, Mohammad M; Ganjitabar, Hassan; Garcia, Gustavo A; Nahon, Laurent; Turchini, Stefano; Powis, Ivan

    2018-04-17

    Photoionization of the chiral monoterpene limonene has been investigated using polarized synchrotron radiation between the adiabatic ionization threshold, 8.505 and 23.5 eV. A rich vibrational structure is seen in the threshold photoelectron spectrum and is interpreted using a variety of computational methods. The corresponding photoelectron circular dichroism-measured in the photoelectron angular distribution as a forward-backward asymmetry with respect to the photon direction-was found to be strongly dependent on the vibronic structure appearing in the photoelectron spectra, with the observed asymmetry even switching direction in between the major vibrational peaks. This effect can be ultimately attributed to the sensitivity of this dichroism to small phase shifts between adjacent partial waves of the outgoing photoelectron. These observations have implications for potential applications of this chiroptical technique, where the enantioselective analysis of monoterpene components is of particular interest. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The coherence lifetime-borrowing effect in vibronically coupled molecular aggregates under non-perturbative system-environment interactions.

    Science.gov (United States)

    Yeh, Shu-Hao; Engel, Gregory S.; Kais, Sabre

    Recently it has been suggested that the long-lived coherences in some photosynthetic pigment-protein systems, such as the Fenna-Matthews-Olson complex, could be attributed to the mixing of the pigments' electronic and vibrational degrees of freedom. In order to verify whether this is the case and to understand its underlying mechanism, a theoretical model capable of including both the electronic excitations and intramolecular vibrational modes of the pigments is necessary. Our model simultaneously considers the electronic and vibrational degrees of freedom, treating the system-environment interactions non-perturbatively by implementing the hierarchical equations of motion approach. Here we report the simulated two-dimensional electronic spectra of vibronically coupled molecular dimers to demonstrate how the electronic coherence lifetimes can be extended by borrowing the lifetime from the vibrational coherences. Funded by Qatar National Research Fund and Qatar Environment and Energy Research Institute.

  12. Donor-related optical absorption spectra in GaAs-(Ga,Al)As quantum wells: hydrostatic pressure effects

    International Nuclear Information System (INIS)

    Lopez, S.Y.; Duque, C.A.; Porras-Montenegro, N.

    2004-01-01

    Full text: Donor-related optical-absorption spectra for GaAs-(Ga,Al)As quantum wells under hydrostatic pressure are investigated. A variational procedure in the e effective-mass approximation is used in order to obtain binding energies and wave functions. As a general feature, we observe that the binding energy increases with the pressure and with the decreasing of the width of the well. The pressure-related Γ-X crossover has been taken into account in the whole calculation. For the low-pressure regime we observe a linear binding energy behavior, whereas for high pressure the main effect associated with the height of the barrier is the bending of the binding energy curves towards smaller values. Two special structures in the density of impurity states and in the donor-related optical-absorption spectra are observed: an edge associated with transitions involving impurities at the center of the well and a peak associated with transitions related to impurities at the edges of the quantum well. Also, we observe shifts to higher energies of the density of impurity states as a function of the binding energy, as well as changes in the intensity with a red shift of the absorption effect with the hydrostatic pressure. (author)

  13. Establishing the link between fibril formation and Raman optical activity spectra of insulin

    Czech Academy of Sciences Publication Activity Database

    Kessler, Jiří; Yamamoto, S.; Bouř, Petr

    2017-01-01

    Roč. 19, č. 21 (2017), s. 13614-13621 ISSN 1463-9076 R&D Projects: GA ČR(CZ) GA16-05935S; GA ČR GA15-09072S Grant - others:COST(XE) CA15214 Institutional support: RVO:61388963 Keywords : molecular dynamics clusters * absolute configuration * vibrational spectra Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.123, year: 2016

  14. Anharmonic effects in IR, Raman, and Raman optical activity spectra of alanine and proline zwitterions

    Czech Academy of Sciences Publication Activity Database

    Daněček, Petr; Kapitán, Josef; Baumruk, V.; Bednárová, Lucie; Kopecký, V.; Bouř, Petr

    2007-01-01

    Roč. 126, č. 22 (2007), s. 224513-1 ISSN 0021-9606 R&D Projects: GA ČR GA203/06/0420; GA ČR GA202/07/0732; GA AV ČR IAA400550702 Institutional research plan: CEZ:AV0Z40550506 Keywords : IR * Raman * ROA spectra * Anharmonic effects Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.044, year: 2007

  15. Optical properties of Lactuca and Taraxacum seed and fruit coats: Their role as light filters [phytochrome, photoblasty, fiber optics, transmission, spectra

    International Nuclear Information System (INIS)

    Widell, K.-O.; Vogelmann, T.C.

    1985-01-01

    The optical properties of seed and fruit coats were examined from several varieties of light-sensitive achenes. Taraxacum vulgare L. and Lactuca sativa L. cv. Grand Rapids achenes with dark fruit coats and L. sativa cvs Huvudsallat and Issallat with white fruit coats were examined. Transmission spectra varied among the different achenes: white fruit coats of Lactuca acted as neutral density filters between 450 and 780 nm, whereas Taraxacum transmitted 2–36% in this region. The ribbed fruit coat structure greatly affected transmission so that at different locations in the same coat, transmission varied between 20 to 80% at 660 and 730 nm. Fruit coats of Grand Rapids lettuce and Taraxacum transmitted more far-red than red light with T 660 /T 730 ratios of 0.8 and 0.4, respectively. The relationship between the optical properties of fruit coats and light-stimulated germination is discussed. (author)

  16. Comments on the optical lineshape function: Application to transient hole-burned spectra of bacterial reaction centers

    International Nuclear Information System (INIS)

    Reppert, Mike; Kell, Adam; Pruitt, Thomas; Jankowiak, Ryszard

    2015-01-01

    The vibrational spectral density is an important physical parameter needed to describe both linear and non-linear spectra of multi-chromophore systems such as photosynthetic complexes. Low-temperature techniques such as hole burning (HB) and fluorescence line narrowing are commonly used to extract the spectral density for a given electronic transition from experimental data. We report here that the lineshape function formula reported by Hayes et al. [J. Phys. Chem. 98, 7337 (1994)] in the mean-phonon approximation and frequently applied to analyzing HB data contains inconsistencies in notation, leading to essentially incorrect expressions in cases of moderate and strong electron-phonon (el-ph) coupling strengths. A corrected lineshape function L(ω) is given that retains the computational and intuitive advantages of the expression of Hayes et al. [J. Phys. Chem. 98, 7337 (1994)]. Although the corrected lineshape function could be used in modeling studies of various optical spectra, we suggest that it is better to calculate the lineshape function numerically, without introducing the mean-phonon approximation. New theoretical fits of the P870 and P960 absorption bands and frequency-dependent resonant HB spectra of Rb. sphaeroides and Rps. viridis reaction centers are provided as examples to demonstrate the importance of correct lineshape expressions. Comparison with the previously determined el-ph coupling parameters [Johnson et al., J. Phys. Chem. 94, 5849 (1990); Lyle et al., ibid. 97, 6924 (1993); Reddy et al., ibid. 97, 6934 (1993)] is also provided. The new fits lead to modified el-ph coupling strengths and different frequencies of the special pair marker mode, ω sp , for Rb. sphaeroides that could be used in the future for more advanced calculations of absorption and HB spectra obtained for various bacterial reaction centers

  17. Comments on the optical lineshape function: Application to transient hole-burned spectra of bacterial reaction centers

    Energy Technology Data Exchange (ETDEWEB)

    Reppert, Mike; Kell, Adam; Pruitt, Thomas [Department of Chemistry, Kansas State University, Manhattan, Kansas 66506 (United States); Jankowiak, Ryszard, E-mail: ryszard@ksu.edu [Department of Chemistry, Kansas State University, Manhattan, Kansas 66506 (United States); Department of Physics, Kansas State University, Manhattan, Kansas 66506 (United States)

    2015-03-07

    The vibrational spectral density is an important physical parameter needed to describe both linear and non-linear spectra of multi-chromophore systems such as photosynthetic complexes. Low-temperature techniques such as hole burning (HB) and fluorescence line narrowing are commonly used to extract the spectral density for a given electronic transition from experimental data. We report here that the lineshape function formula reported by Hayes et al. [J. Phys. Chem. 98, 7337 (1994)] in the mean-phonon approximation and frequently applied to analyzing HB data contains inconsistencies in notation, leading to essentially incorrect expressions in cases of moderate and strong electron-phonon (el-ph) coupling strengths. A corrected lineshape function L(ω) is given that retains the computational and intuitive advantages of the expression of Hayes et al. [J. Phys. Chem. 98, 7337 (1994)]. Although the corrected lineshape function could be used in modeling studies of various optical spectra, we suggest that it is better to calculate the lineshape function numerically, without introducing the mean-phonon approximation. New theoretical fits of the P870 and P960 absorption bands and frequency-dependent resonant HB spectra of Rb. sphaeroides and Rps. viridis reaction centers are provided as examples to demonstrate the importance of correct lineshape expressions. Comparison with the previously determined el-ph coupling parameters [Johnson et al., J. Phys. Chem. 94, 5849 (1990); Lyle et al., ibid. 97, 6924 (1993); Reddy et al., ibid. 97, 6934 (1993)] is also provided. The new fits lead to modified el-ph coupling strengths and different frequencies of the special pair marker mode, ω{sub sp}, for Rb. sphaeroides that could be used in the future for more advanced calculations of absorption and HB spectra obtained for various bacterial reaction centers.

  18. Observation of Lorentzian lineshapes in the room temperature optical spectra of strongly coupled Jaggregate/metal hybrid nanostructures by linear two-dimensional optical spectroscopy

    International Nuclear Information System (INIS)

    Wang, Wei; Sommer, Ephraim; De Sio, Antonietta; Gross, Petra; Vogelgesang, Ralf; Lienau, Christoph; Vasa, Parinda

    2014-01-01

    We analyze the linear optical reflectivity spectra of a prototypical, strongly coupled metal/molecular hybrid nanostructure by means of a new experimental approach, linear two-dimensional optical spectroscopy. White-light, broadband spectral interferometry is used to measure amplitude and spectral phase of the sample reflectivity or transmission with high precision and to reconstruct the time structure of the electric field emitted by the sample upon impulsive excitation. A numerical analysis of this time-domain signal provides a two-dimensional representation of the coherent optical response of the sample as a function of excitation and detection frequency. The approach is used to study a nanostructure formed by depositing a thin J-aggregated dye layer on a gold grating. In this structure, strong coupling between excitons and surface plasmon polaritons results in the formation of hybrid polariton modes. In the strong coupling regime, Lorentzian lineshape profiles of different polariton modes are observed at room temperature. This is taken as an indication that the investigated strongly coupled polariton excitations are predominantly homogeneously broadened at room temperature. This new approach presents a versatile, simple and highly precise addition to nonlinear optical spectroscopic techniques for the analysis of line broadening phenomena. (paper)

  19. Optical maturity variation in lunar spectra as measured by Moon Mineralogy Mapper data

    Science.gov (United States)

    Nettles, J.W.; Staid, M.; Besse, S.; Boardman, J.; Clark, R.N.; Dhingra, D.; Isaacson, P.; Klima, R.; Kramer, G.; Pieters, C.M.; Taylor, L.A.

    2011-01-01

    High spectral and spatial resolution data from the Moon Mineralogy Mapper (M3) instrument on Chandrayaan-1 are used to investigate in detail changes in the optical properties of lunar materials accompanying space weathering. Three spectral parameters were developed and used to quantify spectral effects commonly thought to be associated with increasing optical maturity: an increase in spectral slope ("reddening"), a decrease in albedo ("darkening"), and loss of spectral contrast (decrease in absorption band depth). Small regions of study were defined that sample the ejecta deposits of small fresh craters that contain relatively crystalline (immature) material that grade into local background (mature) soils. Selected craters are small enough that they can be assumed to be of constant composition and thus are useful for evaluating trends in optical maturity. Color composites were also used to identify the most immature material in a region and show that maturity trends can also be identified using regional soil trends. The high resolution M3 data are well suited to quantifying the spectral changes that accompany space weathering and are able to capture subtle spectral variations in maturity trends. However, the spectral changes that occur as a function of maturity were observed to be dependent on local composition. Given the complexity of space weathering processes, this was not unexpected but poses challenges for absolute measures of optical maturity across diverse lunar terrains. Copyright 2011 by the American Geophysical Union.

  20. Acousto-Optic Tunable Filter Hyperspectral Microscope Imaging Method for Characterizing Spectra from Foodborne Pathogens.

    Science.gov (United States)

    Hyperspectral microscope imaging (HMI) method, which provides both spatial and spectral characteristics of samples, can be effective for foodborne pathogen detection. The acousto-optic tunable filter (AOTF)-based HMI method can be used to characterize spectral properties of biofilms formed by Salmon...

  1. Pulse radiolysis of LiBr-KBr melts. Optical transient absorption spectra

    International Nuclear Information System (INIS)

    Sawamura, S.; Gebicki, J.L.; Mayer, J.; Kroh, J.

    1990-01-01

    Absorption spectra of the irradiated melts of LiBr and LiBr-KBr mixtures were investigated in the temperature range 673-873 K by nanosecond pulse radiolysis. The visible band ascribed to e s - shows the apparent shift towards longer wavelengths with increasing temperature and increasing content of KBr in the mixture. The UV transient absorption was attributed to superimposed Br 2 - and Br 3 - bands. The relation between the transition energy of visible band and the inverse mean ion distance is given for alkali bromide and chloride systems. (author)

  2. Effect of Molar Concentration on Optical Absorption Spectra of ZnS:Mn Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ravi Sharma

    2010-01-01

    Full Text Available The present paper reports the synthesis and characterization of luminescent nanocrystals of manganese doped zinc sulphide. Nanocrystals of zinc sulphide were prepared by chemical precipitation method using the solution of zinc chloride, sodium sulphide, manganese chloride and mercaptoethanol was used as the capping agent. It was found that change in the molar concentration changes the particle size. The particle size of such nanocrystals was measured using XRD pattern and it is found to be in between 3 nm – 5 nm. The blue-shift in absorption spectra was found with reducing size of the nanoparticles

  3. Optical spectra and analysis of Pr3+ in β-NaYF4

    International Nuclear Information System (INIS)

    Martin, N.; Boutinaud, P.; Mahiou, R.; Cousseins, J.C.

    1998-01-01

    We report a spectroscopic investigation of β-NaYF 4 :Pr 3+ . In order to study the upconversion properties of this system we determined the Stark energy level of different multiplets from luminescence spectra using polycrystalline samples with several concentrations at temperatures between 15 and 300 K. We correlate the luminescence and structural description and confirm the presence of three sites for the rare-earth ions in this material. Selective excitation is used to assign the self energy levels for each Pr 3+ ion in the three sites. (orig.)

  4. Electronic structure and optical absorption spectra of Y2 and Zr2 dimers

    International Nuclear Information System (INIS)

    Gutsev, G.L.

    1989-01-01

    The electron structure, ionization potentials from valent levels and energies of optic transitions of Y 2 and Zr 2 dimers are calculated within the framework of discrete-variatin X α -method. It is shown that the symmetry state 1 Σ g + is the main state of Y 2 and Zr 2 dimers, and the atoms in dimers have high-spin 4d n+1 5s 1 configuration. The chemical binding in Y 2 has the dominating 5s-5s nature which is revealed in a considerable interatomic distance; binding of 4d-electrons brings about a significant decrease in the bond length in Zr 2 dimer. The theoretical spectrum of optical absorption of Zr 2 agrees well with the obtained experimental spectrum of this molecule isolated in the organ matrix

  5. Interpreting the optical spectra of trace Fe2+ in layer silicates

    International Nuclear Information System (INIS)

    Tarasevich, Yu.I.; Pustovit, A.V.

    1988-01-01

    Estimates have been made of Fe 2+ term splittings in axial crystalline fields. It is found that all three long-wave bands in the optical spectrum are due to Fe 2+ α Fe 3+ charge transfer, while the splitting of 5 T/sub 2g/ and 5 E/sub g/ occurs in low-symmetry fields. Experimental evidence is presented for these calculations

  6. Semiclassical Path Integral Calculation of Nonlinear Optical Spectroscopy.

    Science.gov (United States)

    Provazza, Justin; Segatta, Francesco; Garavelli, Marco; Coker, David F

    2018-02-13

    Computation of nonlinear optical response functions allows for an in-depth connection between theory and experiment. Experimentally recorded spectra provide a high density of information, but to objectively disentangle overlapping signals and to reach a detailed and reliable understanding of the system dynamics, measurements must be integrated with theoretical approaches. Here, we present a new, highly accurate and efficient trajectory-based semiclassical path integral method for computing higher order nonlinear optical response functions for non-Markovian open quantum systems. The approach is, in principle, applicable to general Hamiltonians and does not require any restrictions on the form of the intrasystem or system-bath couplings. This method is systematically improvable and is shown to be valid in parameter regimes where perturbation theory-based methods qualitatively breakdown. As a test of the methodology presented here, we study a system-bath model for a coupled dimer for which we compare against numerically exact results and standard approximate perturbation theory-based calculations. Additionally, we study a monomer with discrete vibronic states that serves as the starting point for future investigation of vibronic signatures in nonlinear electronic spectroscopy.

  7. Theoretical emission line ratios for [Fe III] and [Fe VII] applicable to the optical and infrared spectra of gaseous nebulae.

    Science.gov (United States)

    Keenan, F P; Aller, L H; Ryans, R S; Hyung, S

    2001-08-14

    Recent calculations of electron impact excitation rates and Einstein A-coefficients for transitions among the 3d(6) levels of Fe III and among the 3d(2) levels of Fe VII are used to derive theoretical emission line ratios applicable to the optical and infrared spectra of gaseous nebulae. Results for [Fe III] are generated for electron temperatures T(e) = 7,000-20,000 K and densities N(e) = 10(2)-10(8) cm(-3), whereas those for [Fe VII] are provided for T(e) = 10,000-30,000 K and N(e) = 10(2)-10(8) cm(-3). The theoretical line ratios are significantly different in some instances from earlier calculations and resolve discrepancies between theory and observation found for the planetary nebulae IC 4997 and NGC 7027.

  8. Optimized geometry, vibration (IR and Raman spectra and nonlinear optical activity of p-nitroanilinium perchlorate molecule: A theoretical study

    Directory of Open Access Journals (Sweden)

    Tamer Ömer

    2016-03-01

    Full Text Available The molecular modeling of p-nitroanilinium perchlorate molecule was carried out by using B3LYP and HSEH1PBE levels of density functional theory (DFT. The IR and Raman spectra were simulated and the assignments of vibrational modes were performed on the basis of relative contribution of various internal co-ordinates. NBO analysis was performed to demonstrate charge transfer, conjugative interactions and the formation of intramolecular hydrogen bonding interactions within PNAPC. Obtained large dipole moment values showed that PNAPC is a highly polarizable complex, and the charge transfer occurs within PNAPC. Hydrogen bonding and charge transfer interactions were also displayed by small HOMO-LUMO gap and molecular electrostatic potential (MEP surface. The strong evidences that the material can be used as an efficient nonlinear optical (NLO material of PNAPC were demonstrated by considerable polarizability and hyperpolarizability values obtained at DFT levels.

  9. Influence of weak vibrational-electronic couplings on 2D electronic spectra and inter-site coherence in weakly coupled photosynthetic complexes

    Energy Technology Data Exchange (ETDEWEB)

    Monahan, Daniele M.; Whaley-Mayda, Lukas; Fleming, Graham R., E-mail: grfleming@lbl.gov [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Kavli Energy NanoSciences Institute at Berkeley, Berkeley, California 94720 (United States); Ishizaki, Akihito [Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585 (Japan)

    2015-08-14

    Coherence oscillations measured in two-dimensional (2D) electronic spectra of pigment-protein complexes may have electronic, vibrational, or mixed-character vibronic origins, which depend on the degree of electronic-vibrational mixing. Oscillations from intrapigment vibrations can obscure the inter-site coherence lifetime of interest in elucidating the mechanisms of energy transfer in photosynthetic light-harvesting. Huang-Rhys factors (S) for low-frequency vibrations in Chlorophyll and Bacteriochlorophyll are quite small (S ≤ 0.05), so it is often assumed that these vibrations influence neither 2D spectra nor inter-site coherence dynamics. In this work, we explore the influence of S within this range on the oscillatory signatures in simulated 2D spectra of a pigment heterodimer. To visualize the inter-site coherence dynamics underlying the 2D spectra, we introduce a formalism which we call the “site-probe response.” By comparing the calculated 2D spectra with the site-probe response, we show that an on-resonance vibration with Huang-Rhys factor as small as S = 0.005 and the most strongly coupled off-resonance vibrations (S = 0.05) give rise to long-lived, purely vibrational coherences at 77 K. We moreover calculate the correlation between optical pump interactions and subsequent entanglement between sites, as measured by the concurrence. At 77 K, greater long-lived inter-site coherence and entanglement appear with increasing S. This dependence all but vanishes at physiological temperature, as environmentally induced fluctuations destroy the vibronic mixing.

  10. Optical and EPR spectra of the thionitrosyl complex [Cr(OH2)5(NS)]2+

    DEFF Research Database (Denmark)

    Døssing, Anders Rørbæk; Dethlefsen, Johannes Wied

    2008-01-01

    . The optical data indicate that the NS ligand is a weaker p-acceptor than the NO ligand. The EPR parameters of [Cr(OH2)5(NS)]2+ were determined: giso, g¦ and g-: 1.96515, 1.92686(5) and 1.986860(8); Aiso(53Cr), A¦(53Cr) and A-(53Cr): 25.3´10-4, 38´10-4 and 18.5´10-4cm-1; Aiso(14N), A¦(14N) and A-(14N): 6...

  11. Side Chain and Flexibility Contributions to the Raman Optical Activity Spectra of a Model Cyclic Hexapeptide

    Czech Academy of Sciences Publication Activity Database

    Hudecová, J.; Kapitán, Josef; Baumruk, V.; Hammer, R. P.; Keiderling, T. A.; Bouř, Petr

    2010-01-01

    Roč. 114, č. 28 (2010), s. 7642-7651 ISSN 1089-5639 R&D Projects: GA ČR GA203/06/0420; GA ČR GA202/07/0732; GA AV ČR IAA400550702 Grant - others:GA UK(CZ) 126310 Institutional research plan: CEZ:AV0Z40550506 Keywords : Raman optical activity * ab initio * side chain * flexibility * peptide Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.732, year: 2010

  12. A method to increase optical timing spectra measurement rates using a multi-hit TDC

    International Nuclear Information System (INIS)

    Moses, W.W.

    1993-01-01

    A method is presented for using a modern time to digital converter (TDC) to increase the data collection rate for optical timing measurements such as scintillator decay times. It extends the conventional delayed coincidence method, where a synchronization signal ''starts'' a TDC and a photomultiplier tube (PMT) sampling the optical signal ''stops'' the TDC. Data acquisition rates are low with the conventional method because ε, the light collection efficiency of the ''stop'' PMT, is artificially limited to ε∼0.01 photons per ''start'' signal to reduce the probability of detecting more than one photon during the sampling period. With conventional TDCs, these multiple photon events bias the time spectrum since only the first ''stop'' pulse is digitized. The new method uses a modern TDC to detect whether additional ''stop'' signals occur during the sampling period, and actively reject these multiple photon events. This allows ε to be increased to almost 1 photon per ''start'' signal, which maximizes the data acquisition rate at a value nearly 20 times higher. Multi-hit TDCs can digitize the arrival times of n ''stop'' signals per ''start'' signal, which allows ε to be increased to ∼3n/4. While overlap of the ''stop'' signals prevents the full gain in data collection rate to be realized, significant improvements are possible for most applications. (orig.)

  13. The role of ligands in the optical and electronic spectra of CdSe nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Kilina, Svletana [Los Alamos National Laboratory; Sergei, Ivanov A [Los Alamos National Laboratory; Victor, Klimov I [Los Alamos National Laboratory; Sergei, Tretiak [Los Alamos National Laboratory

    2008-01-01

    We investigate the impact of ligands on morphology, electronic structure, and optical response of the Cd33Se33 cluster, which already overlapps in size with the smallest synthesized CdSe quantum dots (QDs). Our Density Functional Theory (DFT) calculations demonstrate significant surface reorganization both for the bare cluster and for the cluster capped by amine and phosphine oxide ligand models. We observe strong surface-ligand interactions leading to substantial charge redistribution and polarization effects on the surface. This effect results in the appearance of hybridized states, where the electronic density is spread over the cluster and the ligands. Neither the ligand's nor hybridized molecular orbitals appear as trap states inside or near the band gap of the QD. Instead, being optically dark, dense hybridized states from the edges of the valence and the conduction bands could open new relaxation channels for high energy photoexcitations. Comparing quantum dots passivated by different ligands, we found that hybridized states are denser in at the edge of the conduction band of the cluster ligated with phosphine oxide molecules than that with primary amines. Such a different manifestation of ligand binding may potentially lead to the faster electron relaxation in dots passivated by phosphine oxide than by amine ligands, which is in agreement with experimental data.

  14. Ab initio study of vibronic transitions between x2π and 12Σ+ electronic states of HCP+ ion

    Directory of Open Access Journals (Sweden)

    Stojanović Ljiljana

    2013-01-01

    Full Text Available The ground and low-lying excited doublet electronic states of the HCP+ ion were studied by means of multireference configuration interaction method. Vibronic energy levels of the X2Π state of Σ, Π, Δ, and Φ symmetry, up to the 2500 cm-1, have been calculated variationally, employing previously developed ab initio methods which take into account vibronic and spin-orbit interactions. Obtained vibronic wave functions were used to estimate transition moments between vibronic energy levels of the X2Π and 12Σ+ electronic states. Results were compared to available experimental and theoretical data. [Projekat Ministarstva nauke Republike Srbije, br. 172040

  15. Hyperspectral optical imaging of human iris in vivo: characteristics of reflectance spectra

    Science.gov (United States)

    Medina, José M.; Pereira, Luís M.; Correia, Hélder T.; Nascimento, Sérgio M. C.

    2011-07-01

    We report a hyperspectral imaging system to measure the reflectance spectra of real human irises with high spatial resolution. A set of ocular prosthesis was used as the control condition. Reflectance data were decorrelated by the principal-component analysis. The main conclusion is that spectral complexity of the human iris is considerable: between 9 and 11 principal components are necessary to account for 99% of the cumulative variance in human irises. Correcting image misalignments associated with spontaneous ocular movements did not influence this result. The data also suggests a correlation between the first principal component and different levels of melanin present in the irises. It was also found that although the spectral characteristics of the first five principal components were not affected by the radial and angular position of the selected iridal areas, they affect the higher-order ones, suggesting a possible influence of the iris texture. The results show that hyperspectral imaging in the iris, together with adequate spectroscopic analyses provide more information than conventional colorimetric methods, making hyperspectral imaging suitable for the characterization of melanin and the noninvasive diagnosis of ocular diseases and iris color.

  16. Optical Spectra of Radio Planetary Nebulae in the Small Magellanic Cloud

    Directory of Open Access Journals (Sweden)

    Payne, J. L.

    2008-06-01

    Full Text Available We present preliminary results from spectral observations of four (4 candidate radio sources co-identified with known planetary nebulae (PNe in the Small Magellanic Cloud (SMC. These were made using the Radcliffe 1.9-meter telescope in Sutherland, South Africa. These radio PNe were originally found in Australia Telescope Compact Array (ATCA surveys of the SMC at 1.42 and 2.37~GHz, and were further confirmed by new high resolution ATCA images at 6 and 3 cm (4arcsec/2arcsec. Optical PNe and radio candidates are within 2arcsec and may represent a sub-population of selected radio bright objects. Nebular ionized masses of these objects may be 2.6~$M_odot$ or greater, supporting the existence of PNe progenitor central stars with masses up to 8 $M_odot$.

  17. Optical spectra of radio planetary nebulae in the small Magellanic cloud

    Directory of Open Access Journals (Sweden)

    Payne J.L.

    2008-01-01

    Full Text Available We present preliminary results from spectral observations of four (4 candidate radio sources co-identified with known planetary nebulae (PNe in the Small Magellanic Cloud (SMC. These were made using the Radcliffe 1.9-meter telescope in Sutherland, South Africa. These radio PNe were originally found in Australia Telescope Compact Array (ATCA surveys of the SMC at 1.42 and 2.37 GHz, and were further confirmed by new high resolution ATCA images at 6 and 3 cm (400 /200 . Optical PNe and radio candidates are within 200 and may represent a sub- population of selected radio bright objects. Nebular ionized masses of these objects may be 2.6 Mo or greater, supporting the existence of PNe progenitor central stars with masses up to 8 Mo.

  18. Optical emission spectra of a copper plasma produced by a metal vapour vacuum arc plasma source

    International Nuclear Information System (INIS)

    Yotsombat, B.; Poolcharuansin, P.; Vilaithong, T.; Davydov, S.; Brown, I.G.

    2001-01-01

    Optical emission spectroscopy in the range 200-800 nm was applied for investigation of the copper plasma produced by a metal vapour vacuum arc plasma source. The experiments were conducted for the cases when the plasma was guided by straight and Ω-shaped curved solenoids as well as without solenoids, and also for different vacuum conditions. It was found that, besides singly- and doubly-charged ions, a relatively high concentration of excited neutral copper atoms was present in the plasma. The relative fraction of excited atoms was much higher in the region close to the cathode surface than in the plasma column inside the solenoid. The concentration of excited neutral, singly- and doubly-ionized atoms increased proportionally when the arc current was increased to 400 A. Some weak lines were attributed to more highly ionized copper species and impurities in the cathode material. (author)

  19. Phonon anomalies in optical spectra of LiNbO3 single crystals

    Directory of Open Access Journals (Sweden)

    ANDREJA VALCIC

    2004-06-01

    Full Text Available LiNbO3 single crystals were grown by the Czochralski technique in an air atmosphere. The critical crystal diameter Dc = 1.5 cm and the critical rate of rotation wc = 35 rpm were calculated by equations from the hydrodynamics of the melt. The domain inversion was carried out at 1430 K using a 3.75 V/cm electric field for 10 min. The obtained crystals were cut, polished and etched to determine the presence of dislocations and single domain structures. The optical properties were studied by infrared and Raman spectroscopy as a function of temperature. With decreasing temperature, an atypical behaviour of the phonon modes could be seen in the ferroelectrics LiNbO3. The obtained results are discussed and compared with published data.

  20. Nebular and auroral emission lines of [Cl III] in the optical spectra of planetary nebulae.

    Science.gov (United States)

    Keenan, F P; Aller, L H; Ramsbottom, C A; Bell, K L; Crawford, F L; Hyung, S

    2000-04-25

    Electron impact excitation rates in Cl III, recently determined with the R-matrix code, are used to calculate electron temperature (T(e)) and density (N(e)) emission line ratios involving both the nebular (5517.7, 5537.9 A) and auroral (8433.9, 8480.9, 8500.0 A) transitions. A comparison of these results with observational data for a sample of planetary nebulae, obtained with the Hamilton Echelle Spectrograph on the 3-m Shane Telescope, reveals that the R(1) = I(5518 A)/I(5538 A) intensity ratio provides estimates of N(e) in excellent agreement with the values derived from other line ratios in the echelle spectra. This agreement indicates that R(1) is a reliable density diagnostic for planetary nebulae, and it also provides observational support for the accuracy of the atomic data adopted in the line ratio calculations. However the [Cl iii] 8433.9 A line is found to be frequently blended with a weak telluric emission feature, although in those instances when the [Cl iii] intensity may be reliably measured, it provides accurate determinations of T(e) when ratioed against the sum of the 5518 and 5538 A line fluxes. Similarly, the 8500.0 A line, previously believed to be free of contamination by the Earth's atmosphere, is also shown to be generally blended with a weak telluric emission feature. The [Cl iii] transition at 8480.9 A is found to be blended with the He i 8480.7 A line, except in planetary nebulae that show a relatively weak He i spectrum, where it also provides reliable estimates of T(e) when ratioed against the nebular lines. Finally, the diagnostic potential of the near-UV [Cl iii] lines at 3344 and 3354 A is briefly discussed.

  1. [Growth of codoped CdWO4 crystals by Bridgman method and their optical spectra].

    Science.gov (United States)

    Yu, Can; Xia, Hai-Ping; Wang, Dong-Jie; Chen, Hong-Bing

    2011-09-01

    The CdWO4 crystals with good quality in the size of Phi25 mm x 120 mm, doped with Co in 0.5% molar fraction in the raw composition, were grown by the Bridgman method by taking -70 degrees C x cm(-1) of solid-liquid interface and -0.50 mm x h(-1) growth rate. The crystal presents transparence and deep blue. The X-ray diffraction (XRD) was used to characterize the crystals. Three absorption peaks at 518, 564 and 655 nm respectively, which are attributed to the overlapping of 4 T1 (4F) --> 4A2 (4F) and 4 T1 (4F) --> 4 T1 (4P) of Co2+ octahedrons, and a wide band centered at 1 863 nm, which is attributed to 4Ti (4F) --> 4 T2 (4F), was observed. The absorption results indicated that the Co ions presented +2 valence in crystal and located within the distorted oxygen octahedrons. The crystal-field parameter D(q) and the Racah parameter B were estimated to be 990 and 726.3 cm(-1) respectively based on the absorption spectra. A fluorescence emission at 778 nm (4T1 (4P) --> 4 T1 (4F)) for codoped CdWO4 crystals was observed under excitation by 520 nm light. It can be deduced from the changes in absorption and emission intensity of different parts of crystal that the concentration of Co2+ ion in crystal increased along growing direction and the effective distribution coefficient of Co2+ ion in CdWO4 crystal is less than 1.

  2. Emission lines of [K V] in the optical spectra of gaseous nebulae.

    Science.gov (United States)

    Keenan, Francis P; Aller, Lawrence H; Espey, Brian R; Exter, Katrina M; Hyung, Siek; Keenan, Michael T C; Pollacco, Don L; Ryans, Robert S I

    2002-04-02

    Recent R-matrix calculations of electron impact excitation rates in K v are used to derive the nebular emission line ratio R = I(4122.6 A)/I(4163.3 A) as a function of electron density (N(e)). This ratio is found to be very sensitive to changes in N(e) over the density range 10(3) to 10(6) cm(-3), but does not vary significantly with electron temperature, and hence in principle should provide an excellent optical N(e) diagnostic for the high-excitation zones of nebulae. The observed value of R for the planetary nebula NGC 7027, measured from a spectrum obtained with the Hamilton Echelle spectrograph on the 3-m Shane Telescope, implies a density in excellent agreement with that derived from [Ne iv], formed in the same region of the nebula as [K v]. This observation provides observational support for the accuracy of the theoretical [K v] line ratios, and hence the atomic data on which they are based. However, the analysis of a high-resolution spectrum of the symbiotic star RR Telescopii, obtained with the University College London Echelle Spectrograph on the 3.9-m Anglo-Australian Telescope, reveals that the [K v] 4122.6 A line in this object is badly blended with Fe ii 4122.6 A. Hence, the [K v] diagnostic may not be used for astrophysical sources that show a strong Fe ii emission line spectrum.

  3. Effect of optical pumping on absorption spectra for the doppler broadened rubidium

    International Nuclear Information System (INIS)

    Shin, Seo Ro; Noh, Heung Ryoul

    2008-01-01

    The absorption of a laser beam in the Doppler broadened atomic vapor cell is one of the simplest problems in atomic physics. Although many reports on theoretical and experimental studies of linear absorption have been reported, the effect of optical pumping on the absorption coefficient has not been studied in detail. In this presentation, we present a theoretical and experimental study on linear absorption for the Doppler broadened rubidium vapor cell. The absorption coefficient of a σ"+"(or π)polarized laser beam was calculated as a function of the laser frequency for the various laser intensities. The calculated results were compared with the experimental results. Figure 1(a) shows the calculated absorption coefficient of the π polarized laser beam for the transition F"g"=1→F"e"=0,1,2 of the "87"Rb atom. The diameter of the laser beam was 3mm and the intensity was I=0 and I=0.1I"8"(I"8"=16.2W/m"2"). The peak values for various intensities are shown in Fig. 1(b). We found that the absorption coefficient for the transition from the lower hyperfine state decreased with the increased laser intensity, whereas that for the transition from the upper hyperfine state increased(decreased)for the σ"+"(π)polarized laser beam

  4. Understanding the electron-phonon interaction in polar crystals: Perspective presented by the vibronic theory

    Science.gov (United States)

    Pishtshev, A.; Kristoffel, N.

    2017-05-01

    We outline our novel results relating to the physics of the electron-TO-phonon (el-TO-ph) interaction in a polar crystal. We explained why the el-TO-ph interaction becomes effectively strong in a ferroelectric, and showed how the electron density redistribution establishes favorable conditions for soft-behavior of the long-wavelength branch of the active TO vibration. In the context of the vibronic theory it has been demonstrated that at the macroscopic level the interaction of electrons with the polar zone-centre TO phonons can be associated with the internal long-range dipole forces. Also we elucidated a methodological issue of how local field effects are incorporated within the vibronic theory. These result provided not only substantial support for the vibronic mechanism of ferroelectricity but also presented direct evidence of equivalence between vibronic and the other lattice dynamics models. The corresponding comparison allowed us to introduce the original parametrization for constants of the vibronic interaction in terms of key material constants. The applicability of the suggested formula has been tested for a wide class of polar materials.

  5. Optical to ultraviolet spectra of sandwiches of benzene and transition metal atoms: Time dependent density functional theory and many-body calculations

    DEFF Research Database (Denmark)

    Martinez, Jose Ignacio; García Lastra, Juan Maria; Lopez, M. J.

    2010-01-01

    The optical spectra of sandwich clusters formed by transition metal atoms (titanium, vanadium, and chromium) intercalated between parallel benzene molecules have been studied by time-dependent density functional theory (TDDFT) and many-body perturbation theory. Sandwiches with different number...

  6. Simulations and analysis of the Raman scattering and differential Raman scattering/Raman optical activity (ROA) spectra of amino acids, peptides and proteins in aqueous solution

    DEFF Research Database (Denmark)

    Jalkanen, Karl J.; Nieminen, R. M.; Bohr, Jakob

    2000-01-01

    The Raman and Raman optical activity (ROA) spectra of amino acids and small peptides in aqueous solution have been simulated by density functional theory and restricted Hartree/Fock methods. The treatment of the aqueous environment in treated in two ways. The water molecules in the first hydratio...

  7. Optical absorption spectra and g factor of MgO: Mn2+explored by ab initio and semi empirical methods

    Science.gov (United States)

    Andreici Eftimie, E.-L.; Avram, C. N.; Brik, M. G.; Avram, N. M.

    2018-02-01

    In this paper we present a methodology for calculations of the optical absorption spectra, ligand field parameters and g factor for the Mn2+ (3d5) ions doped in MgO host crystal. The proposed technique combines two methods: the ab initio multireference (MR) and the semi empirical ligand field (LF) in the framework of the exchange charge model (ECM) respectively. Both methods of calculations are applied to the [MnO6]10-cluster embedded in an extended point charge field of host matrix ligands based on Gellé-Lepetit procedure. The first step of such investigations was the full optimization of the cubic structure of perfect MgO crystal, followed by the structural optimization of the doped of MgO:Mn2+ system, using periodic density functional theory (DFT). The ab initio MR wave functions approaches, such as complete active space self-consistent field (CASSCF), N-electron valence second order perturbation theory (NEVPT2) and spectroscopy oriented configuration interaction (SORCI), are used for the calculations. The scalar relativistic effects have also been taken into account through the second order Douglas-Kroll-Hess (DKH2) procedure. Ab initio ligand field theory (AILFT) allows to extract all LF parameters and spin-orbit coupling constant from such calculations. In addition, the ECM of ligand field theory (LFT) has been used for modelling theoptical absorption spectra. The perturbation theory (PT) was employed for the g factor calculation in the semi empirical LFT. The results of each of the aforementioned types of calculations are discussed and the comparisons between the results obtained and the experimental results show a reasonable agreement, which justifies this new methodology based on the simultaneous use of both methods. This study establishes fundamental principles for the further modelling of larger embedded cluster models of doped metal oxides.

  8. Observation of vibronic emission spectrum of jet-cooled 3,5-difluorobenzyl radical.

    Science.gov (United States)

    Lee, Seung Woon; Yoon, Young Wook; Lee, Sang Kuk

    2010-09-02

    We applied the technique of corona-excited supersonic expansion using a pinhole-type glass nozzle to observe the vibronic emission spectrum of jet-cooled benzyl-type radicals from the corona discharge of precursor 3,5-difluorotoluene seeded in a large amount of inert helium carrier gas. The vibronically well-resolved emission spectrum was recorded with a long-path monochromator in the visible region. After subtracting the vibronic bands originating from isomeric difluorobenzyl radicals from the observed spectrum, we identified for the first time the bands belonging to the 3,5-difluorobenzyl radical, from which the electronic energy and vibrational mode frequencies of the 3,5-difluorobenzyl radical were accurately determined in the ground electronic state by comparison with those of the precursor and with those from an ab initio calculation.

  9. Construction of Vibronic Diabatic Hamiltonian for Excited-State Electron and Energy Transfer Processes.

    Science.gov (United States)

    Xie, Yu; Jiang, Shengshi; Zheng, Jie; Lan, Zhenggang

    2017-12-21

    Photoinduced excited-state electron and energy transfer processes are crucial in biological photoharvesting systems and organic photovoltaic devices. We discuss the construction of a diabatic vibronic Hamiltonian for the proper treatment of these processes involving the projection approach acting on both electronic wave functions and vibrational modes. In the electronic part, the wave function projection approach is used to construct the diabatic Hamiltonian in which both local excited states and charge-transfer states are included on the same footing. For the vibrational degrees of freedom, the vibronic couplings in the diabatic Hamiltonian are obtained in the basis of the pseudonormal modes localized on each monomer site by applying delocalized-to-localized mode projection. This systematic approach allows us to construct the vibronic diabatic Hamiltonian in molecular aggregates.

  10. Principal component analysis for the forensic discrimination of black inkjet inks based on the Vis-NIR fibre optics reflection spectra.

    Science.gov (United States)

    Gál, Lukáš; Oravec, Michal; Gemeiner, Pavol; Čeppan, Michal

    2015-12-01

    Nineteen black inkjet inks of six different brands were examined by fibre optics reflection spectroscopy in Visible and Near Infrared Region (Vis-NIR FORS) directly on paper with a view to achieving good resolution between them. These different inks were tested on nineteen different inkjet printers from three brands. Samples were obtained from prints by reflection probe. Processed reflection spectra in the range 500-1000 nm were used as samples in principal component analysis. Variability between spectra of the same ink obtained from different prints, as well as between spectra of square areas and lines was examined. For both spectra obtained from square areas and lines reference, Principal Component Analysis (PCA) models were created. According to these models, the inkjet inks were divided into clusters. PCA method is able to separate inks containing carbon black as main colorant from the other inks using other colorants. Some spectra were recorded from another piece of printer and used as validation samples. Spectra of validation samples were projected onto reference PCA models. According to position of validation samples in score plots it can be concluded that PCA based on Vis-NIR FORS can reliably differentiate inkjet inks which are included in the reference database. The presented method appears to be a suitable tool for forensic examination of questioned documents containing inkjet inks. Inkjet inks spectra were obtained without extraction or cutting sample with possibility to measure out of the laboratory. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Electron-vibron coupling effects on electron transport via a single-molecule magnet

    Science.gov (United States)

    McCaskey, Alexander; Yamamoto, Yoh; Warnock, Michael; Burzurí, Enrique; van der Zant, Herre S. J.; Park, Kyungwha

    2015-03-01

    We investigate how the electron-vibron coupling influences electron transport via an anisotropic magnetic molecule, such as a single-molecule magnet (SMM) Fe4, by using a model Hamiltonian with parameter values obtained from density-functional theory (DFT). The magnetic anisotropy parameters, vibrational energies, and electron-vibron coupling strengths of the Fe4 are computed using DFT. A giant spin model is applied to the Fe4 with only two charge states, specifically a neutral state with a total spin S =5 and a singly charged state with S =9 /2 , which is consistent with our DFT result and experiments on Fe4 single-molecule transistors. In sequential electron tunneling, we find that the magnetic anisotropy gives rise to new features in the conductance peaks arising from vibrational excitations. In particular, the peak height shows a strong, unusual dependence on the direction as well as magnitude of applied B field. The magnetic anisotropy also introduces vibrational satellite peaks whose position and height are modified with the direction and magnitude of applied B field. Furthermore, when multiple vibrational modes with considerable electron-vibron coupling have energies close to one another, a low-bias current is suppressed, independently of gate voltage and applied B field, although that is not the case for a single mode with a similar electron-vibron coupling. In the former case, the conductance peaks reveal a stronger B -field dependence than in the latter case. The new features appear because the magnetic anisotropy barrier is of the same order of magnitude as the energies of vibrational modes with significant electron-vibron coupling. Our findings clearly show the interesting interplay between magnetic anisotropy and electron-vibron coupling in electron transport via the Fe4. Similar behavior can be observed in transport via other anisotropic magnetic molecules.

  12. Two-vibron bound states in the β–Fermi–Pasta–Ulam model

    International Nuclear Information System (INIS)

    Hu Xinguang; Tang Yi

    2008-01-01

    This paper studies the two-vibron bound states in the β–Fermi–Pasta–Ulam model by means of the number conserving approximation combined with the number state method. The results indicate that on-site, adjacent-site and mixed two-vibron bound states may exist in the model. Specially, wave number has a significant effect on such bound states, which may be considered as the quantum effects of the localized states in quantum systems. (condensed matter: structure, thermal and mechanical properties)

  13. Analysis of vibronic interactions in the molecules of cross-conjugated ketones

    Directory of Open Access Journals (Sweden)

    Kompaneez V.V.

    2017-01-01

    Full Text Available We have done quantitative analysis of vibronic parameters of two cross-conjugated δ-dimethylaminoketones. The research shows the influence of С-N and C=O bonds in the rings, and the radicals with nitro compounds on the vibronic parameters of characteristic bands, which describe the state (vibrations, types of deformation under excitation of the phenyl ring and the polyene bridge. Results described impact of the substituent’s nature on the parameters of intra- and intermolecular interactions presents for the studied compounds.

  14. [Study on Square Super-Lattice Pattern with Surface Discharge in Dielectric Barrier Discharge by Optical Emission Spectra].

    Science.gov (United States)

    Niu, Xue-jiao; Dong, Li-fang; Liu, Ying; Wang, Qian; Feng, Jian-yu

    2016-02-01

    Square super-lattice pattern with surface discharge consisting of central spots and dim spots is firstly observed in the mixture of argon and air by using a dielectric barrier discharge device with water electrodes. By observing the image, it is found that the central spot is located at the centriod of its surrounding four dim spots. The short-exposure image recorded by a high speed video camera shows that the dim spot results from the surface discharges (SDs). The brightness of the central spot and is quite different from that of the dim spot, which indicates that the plasma states of the central spot and the dim spot may be differentiated. The optical emission spectrum method is used to further study the several plasma parameters of the central spot and the dim spot in different argon content. The emission spectra of the N₂ second positive band (C³IIu --> B³ IIg) are measured, from which the molecule vibration temperatures of the central spot and the dim spot are calculated respectively. The broadening of spectral line 696.57 nm (2P₂-->1S₅) is used to study the electron densities of the central spot and the dim spot. It is found that the molecule vibration temperature and electron density of the dim spot are higher than those of the central spot in the same argon content The molecule vibration temperature and electron density of the central spot and the dim spot increase with the argon content increasing from 90% to 99.9%. The surface discharge induced by the volume discharge (VD) has the determinative effect on the formation of the dim spot The experimental results above play an important role in studying the formation mechanism of surface discharg&of square super-lattice pattern with surface discharge. In addition, the studies exert an influence on the application of surface discharge and volume discharge in different fields.

  15. Electron-vibron coupling effects on electron transport via a single-molecule magnet

    NARCIS (Netherlands)

    McCaskey, A.; Yamamoto, Y.; Warnock, M.; Burzuri, E.; Van der Zant, H.S.J.; Park, K.

    2015-01-01

    We investigate how the electron-vibron coupling influences electron transport via an anisotropic magnetic molecule, such as a single-molecule magnet (SMM) Fe4, by using a model Hamiltonian with parameter values obtained from density-functional theory (DFT). The magnetic anisotropy parameters,

  16. Vibronic relaxation in molecular mixed crystals : Pentacene in naphthalene and p-terphenyl

    NARCIS (Netherlands)

    Hesselink, Wim H.; Wiersma, Douwe A.

    1981-01-01

    Picosecond photon echo techniques are used to measure directly vibronic relaxation times in the first excited singlet state of pentacene in naphthalene and p-terphenyl. In regions of low (< 300 cm–1) and high (> 1000 cm–1) vibrational energy, relaxation is fast (τ <2 ps) due to direct phonon

  17. Optical and EPR spectra of γ-irradiated glasses of the Ba(PO3)2-LiF system

    International Nuclear Information System (INIS)

    Bocharova, T.V.; Karapetyan, G.O.; Khalilev, V.D.; Yashchurzhinskaya, O.A.

    1985-01-01

    EPR and optical absorption spectra of the Be(PO 3 ) 2 -LiF system glasses are obtained. Introduction of LiF up to 60 mol. % doesn't lead to occurrence of an additional absorption band (AAB) and EPR signals connected with F-centers formed under γ-irradiation in the LiF monocrystal. As a result of γ-irradiation of glasses activated by terbium, radiation color centers (RCC) are formed, which are, probably, the centers of electron capture and possess no unambiguous correlation with the known paramagnetic centers (PMC). Parallel investigation into the thermal decolouration kinetics by the EPR and optical spectroscopy method is reliable for establishing correlation between AAB and PMC signals in EPR spectra

  18. The optical spectra of 24 mu m galaxies in the cosmos field. I. Spitzer MIPS bright sources in the zCOSMOS-bright 10k catalog

    NARCIS (Netherlands)

    Caputi, K. I.; Lilly, S. J.; Aussel, H.; Sanders, D.; Frayer, D.; Le Fevre, O.; Renzini, A.; Zamorani, G.; Scodeggio, M.; Contini, T.; Scoville, N.; Carollo, C. M.; Hasinger, G.; Iovino, A.; Le Brun, V.; Le Floc'h, E.; Maier, C.; Mainieri, V.; Mignoli, M.; Salvato, M.; Schiminovich, D.; Silverman, J.; Surace, J.; Tasca, L.; Abbas, U.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Bottini, D.; Capak, P.; Cappi, A.; Cassata, P.; Cimatti, A.; Cucciati, O.; de la Torre, S.; de Ravel, L.; Franzetti, P.; Fumana, M.; Garilli, B.; Halliday, C.; Ilbert, O.; Kampczyk, P.; Kartaltepe, J.; Kneib, J. -P.; Knobel, C.; Kovac, K.; Lamareille, F.; Leauthaud, A.; Le Borgne, J. F.; Maccagni, D.; Marinoni, C.; McCracken, H.; Meneux, B.; Oesch, P.; Pello, R.; Perez-Montero, E.; Porciani, C.; Ricciardelli, E.; Scaramella, R.; Scarlata, C.; Tresse, L.; Vergani, D.; Walcher, J.; Zamojski, M.; Zucca, E.

    2008-01-01

    We study zCOSMOS-bright optical spectra for 609 Spitzer MIPS 24 mu m-selected galaxies with S-24 (mu m) > 0: 30 mJy and I <22.5 (AB mag) over 1.5 deg(2) of the COSMOS field. From emission-line diagnostics we find the following: (1) SFRs derived from the observed H alpha lambda 6563 and H beta lambda

  19. Quantitative analysis of reflection electron energy loss spectra to determine electronic and optical properties of Fe–Ni alloy thin films

    International Nuclear Information System (INIS)

    Tahir, Dahlang; Oh, Sukh Kun; Kang, Hee Jae; Tougaard, Sven

    2016-01-01

    Highlights: • Electronic and optical properties of Fe-Ni alloy thin films grown on Si (1 0 0) were studied via quantitative analyses of reflection electron energy loss spectra (REELS). • The energy loss functions (ELF) are dominated by a plasmon peak at 23.6 eV for Fe and moves gradually to lower energies in Fe-Ni alloys towards the bulk plasmon energy of Ni at 20.5 eV. • Fe has a strong effect on the dielectric and optical properties of Fe-Ni alloy thin films even for an alloy with 72% Ni. Electronic and optical properties of Fe-Ni alloy thin films grown on Si (1 0 0) were studied via quantitative analyses of reflection electron energy loss spectra (REELS). - Abstract: Electronic and optical properties of Fe–Ni alloy thin films grown on Si (1 0 0) by ion beam sputter deposition were studied via quantitative analyses of reflection electron energy loss spectra (REELS). The analysis was carried out by using the QUASES-XS-REELS and QUEELS-ε(k,ω)-REELS softwares to determine the energy loss function (ELF) and the dielectric functions and optical properties by analyzing the experimental spectra. For Ni, the ELF shows peaks around 3.6, 7.5, 11.7, 20.5, 27.5, 67 and 78 eV. The peak positions of the ELF for Fe_2_8Ni_7_2 are similar to those of Fe_5_1Ni_4_9, even though there is a small peak shift from 18.5 eV for Fe_5_1Ni_4_9 to 18.7 eV for Fe_2_8Ni_7_2. A plot of n, k, ε_1, and ε_2 shows that the QUEELS-ε(k,ω)-REELS software for analysis of REELS spectra is useful for the study of optical properties of transition metal alloys. For Fe–Ni alloy with high Ni concentration (Fe_2_8Ni_7_2), ε_1, and ε_2 have strong similarities with those of Fe. This indicates that the presence of Fe in the Fe–Ni alloy thin films has a strong effect.

  20. Vibronic coupling in the excited-states of carotenoids

    Energy Technology Data Exchange (ETDEWEB)

    Miki, Takeshi [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg; Germany; Buckup, Tiago [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg; Germany; Krause, Marie S. [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg; Germany; Southall, June [College of Medical; Veterinary, and Life Science; University of Glasgow; G12 8QQ Glasgow; UK; Cogdell, Richard J. [College of Medical; Veterinary, and Life Science; University of Glasgow; G12 8QQ Glasgow; UK; Motzkus, Marcus [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg; Germany

    2016-01-01

    The ultrafast femtochemistry of carotenoids is governed by the interaction between electronic excited states, which has been explained by the relaxation dynamics within a few hundred femtoseconds from the lowest optically allowed excited state S2to the optically dark state S1.

  1. Vibronic Rabi resonances in harmonic and hard-wall ion traps for arbitrary laser intensity and detuning

    International Nuclear Information System (INIS)

    Lizuain, I.; Muga, J. G.

    2007-01-01

    We investigate laser-driven vibronic transitions of a single two-level atomic ion in harmonic and hard-wall traps. In the Lamb-Dicke regime, for tuned or detuned lasers with respect to the internal frequency of the ion, and weak or strong laser intensities, the vibronic transitions occur at well-isolated Rabi resonances, where the detuning-adapted Rabi frequency coincides with the transition frequency between vibrational modes. These vibronic resonances are characterized as avoided crossings of the dressed levels (eigenvalues of the full Hamiltonian). Their peculiarities due to symmetry constraints and trapping potential are also examined

  2. Development of procedures for spectrometer brand Spectral Products to capture spectra of incoherent optical radiation for the Laboratorio de Fotonica y Tecnologia Laser Aplicada

    International Nuclear Information System (INIS)

    Arias Avendano, Fabio Andres

    2008-01-01

    The procedure to capture spectra of incoherent optical radiation for the Laboratorio de Fotonica y Tecnologia Laser Aplicada (LAFTLA), of the Escuela de Ingenieria Electrica de la Universidad de Costa Rica is developed through the use of a spectrometer brand Spectral Products. The thorough understanding of manuals spectrometer brand Spectral Products was necessary for the satisfactory development of the project. Spectrometer and the card National Instruments are installed and run both devices with a montage of suitable laboratory. Two catches of spectrum for two different sources of optical radiation are performanced, since damages to the files .ddl precluded that the SM 240 spectrometer worked properly to take more catches to other sources of optical radiation. A final report containing the two catches is produced with the respective analysis. (author) [es

  3. Photoluminescence and optical absorption spectra of {gamma}{sub 1}-(Ga{sub x}In{sub 1-x}){sub 2}Se{sub 3} mixed crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kranjcec, M. [Department of Geotechnics, University of Zagreb, 7 Hallerova Aleja, Varazdin, 42000 (Croatia); Ruder Boskovic Institute, 54 Bijenicka Cesta, Zagreb, 10000 (Croatia); Studenyak, I.P. [Uzhhorod National University, 46 Pidhirna Str., Uzhhorod, 88000 (Ukraine); Azhniuk, Yu. M. [Institute of Electron Physics, Ukr. Nat. Acad. Sci., 21 Universytetska Str., Uzhhorod, 88000 (Ukraine)

    2005-08-01

    Temperature and compositional studies of photoluminescence and optical absorption edge spectra of {gamma}{sub 1}-(Ga{sub x}In{sub 1-x}){sub 2}Se{sub 3} mixed crystals with x=0.1-0.4 are performed. Exciton and impurity-related photoluminescence bands are revealed at low temperatures and Urbach shape of the absorption edge is observed in the temperature range 77-300 K. Temperature and compositional dependences of the photoluminescence band spectral positions and halfwidths as well as optical pseudogap and absorption edge energy width are investigated. Mechanisms of radiative recombination and optical absorption as well as crystal lattice disordering processes in {gamma}{sub 1}-(Ga{sub x}In{sub 1-x}){sub 2}Se{sub 3} solid solutions are studied. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Wetting effect on optical sum frequency generation (SFG) spectra of D-glucose, D-fructose, and sucrose

    Science.gov (United States)

    Hieu, Hoang Chi; Li, Hongyan; Miyauchi, Yoshihiro; Mizutani, Goro; Fujita, Naoko; Nakamura, Yasunori

    2015-03-01

    We report a sum frequency generation (SFG) spectroscopy study of D-glucose, D-fructose and sucrose in the Csbnd H stretching vibration regime. Wetting effect on the SFG spectra was investigated. The SFG spectrum of D-glucose changed from that of α-D-glucose into those of α-D-glucose monohydrate by wetting. The SFG spectra showed evidence of a small change of β-D-fructopyranose into other anomers by wetting. SFG spectra of sucrose did not change by wetting. Assignments of the vibrational peaks in the SFG spectra of the three sugars in the dry and wet states were performed in the Csbnd H stretching vibration region near 3000 cm-1.

  5. X-ray absorption spectra and emission spectra of plasmas

    International Nuclear Information System (INIS)

    Peng Yonglun; Yang Li; Wang Minsheng; Li Jiaming

    2002-01-01

    The author reports a theoretical method to calculate the resolved absorption spectra and emission spectra (optically thin) of hot dense plasmas. Due to its fully relativistic treatment incorporated with the quantum defect theory, it calculates the absorption spectra and emission spectra for single element or multi-element plasmas with little computational efforts. The calculated absorption spectra of LTE gold plasmas agree well with the experimental ones. It also calculates the optical thin emission spectra of LTE gold plasmas, which is helpful to diagnose the plasmas of relevant ICF plasmas. It can also provide the relevant parameters such as population density of various ionic stages, precise radiative properties for ICF studies

  6. A study of vibronic coupling in the tilde C state of CO2+

    International Nuclear Information System (INIS)

    Roy, P.; Ferrett, T.A.; Schmidt, V.; Parr, A.C.; Southworth, S.H.; Hardis, J.E.; Bartlett, R.; Trela, W.; Dehmer, J.L.

    1987-01-01

    We have studied vibronic coupling in vibrationally resolved photoionization to the fourth electronic state of CO 2 + , C( 2 Σ/sub g/ + ), in the photon-energy range h nu = 20 to 28.5 eV. The measurements utilize high-resolution hemispherical electron analyzers, equipped with area detectors, and the SURF-II synchrotron radiation source at the National Bureau of Standards. The angular distribution asymmetry-parameters (β) for the allowed C(0,0,0) and forbidden C(1,0,1) (19.747 eV binding energy) peaks are found to be quite different. However, similarities between the C(1,0,1) β curve and that for the B state suggest that vibronic coupling to the B( 2 Σ/sub u/ + ) state of CO 2 + is the explanation for the intensity of the C state forbidden band in the first 8 eV above threshold

  7. Selective two-photon excitation of a vibronic state by correlated photons.

    Science.gov (United States)

    Oka, Hisaki

    2011-03-28

    We theoretically investigate the two-photon excitation of a molecular vibronic state by correlated photons with energy anticorrelation. A Morse oscillator having three sets of vibronic states is used, as an example, to evaluate the selectivity and efficiency of two-photon excitation. We show that a vibrational mode can be selectively excited with high efficiency by the correlated photons, without phase manipulation or pulse-shaping techniques. This can be achieved by controlling the quantum correlation so that the photon pair concurrently has two pulse widths, namely, a temporally narrow width and a spectrally narrow width. Though this concurrence is seemingly contradictory, we can create such a photon pair by tailoring the quantum correlation between two photons.

  8. Organic Microcrystal Vibronic Lasers with Full-Spectrum Tunable Output beyond the Franck-Condon Principle.

    Science.gov (United States)

    Dong, Haiyun; Zhang, Chunhuan; Liu, Yuan; Yan, Yongli; Hu, Fengqin; Zhao, Yong Sheng

    2018-03-12

    The very broad emission bands of organic semiconductor materials are, in theory, suitable for achieving versatile solid-state lasers; however, most of organic materials only lase at short wavelength corresponding to the 0-1 transition governed by the Franck-Condon (FC) principle. A strategy is developed to overcome the limit of FC principle for tailoring the output of microlasers over a wide range based on the controlled vibronic emission of organic materials at microcrystal state. For the first time, the output wavelength of organic lasers is tailored across all vibronic (0-1, 0-2, 0-3, and even 0-4) bands spanning the entire emission spectrum. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Theoretical investigations of the optical and EPR spectra for trivalent cerium and ytterbium ions in orthorhombic YF{sub 3} crystal

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hong-Gang, E-mail: kezhouliu@163.com; Zheng, Wen-Chen

    2016-09-01

    The optical spectra and electron paramagnetic resonance (EPR) parameters (g factors and hyperfine structure constants A) for trivalent cerium and ytterbium ions in YF{sub 3} crystal with orthorhombic structure are investigated together by the complete diagonalization (of energy matrix) method (CDM). The obtained results are in reasonable agreement with the experimental ones. More importantly, two magnetically nonequivalent centers in YF{sub 3} crystal observed in EPR experiments are confirmed and ascribed to their specific positions in a unit cell by our calculations based on superposition model (SPM) analysis. Such identification of local sites with different magnetic properties would help us to understand not only the EPR spectra and magnetic susceptibility of other lanthanide ions doped in crystals with the same structure as YF{sub 3} but also the energy transfer scheme between two lanthanide ions occupying such two sites. All results are discussed carefully.

  10. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. III. Optical and UV Spectra of a Blue Kilonova from Fast Polar Ejecta

    Energy Technology Data Exchange (ETDEWEB)

    Nicholl, M.; Berger, E.; Kasen, D.; Metzger, B. D.; Elias, J.; Briceño, C.; Alexander, K. D.; Blanchard, P. K.; Chornock, R.; Cowperthwaite, P. S.; Eftekhari, T.; Fong, W.; Margutti, R.; Villar, V. A.; Williams, P. K. G.; Brown, W.; Annis, J.; Bahramian, A.; Brout, D.; Brown, D. A.; Chen, H. -Y.; Clemens, J. C.; Dennihy, E.; Dunlap, B.; Holz, D. E.; Marchesini, E.; Massaro, F.; Moskowitz, N.; Pelisoli, I.; Rest, A.; Ricci, F.; Sako, M.; Soares-Santos, M.; Strader, J.

    2017-10-16

    We present optical and ultraviolet spectra of the first electromagnetic counterpart to a gravitational wave (GW) source, the binary neutron star merger GW170817. Spectra were obtained nightly between 1.5 and 9.5 days post-merger, using the SOAR and Magellan telescopes; the UV spectrum was obtained with the \\textit{Hubble Space Telescope} at 5.5 days. Our data reveal a rapidly-fading blue component ($T\\approx5500$ K at 1.5 days) that quickly reddens; spectra later than $\\gtrsim 4.5$ days peak beyond the optical regime. The spectra are mostly featureless, although we identify a possible weak emission line at $\\sim 7900$ \\AA\\ at $t\\lesssim 4.5$ days. The colours, rapid evolution and featureless spectrum are consistent with a "blue" kilonova from polar ejecta comprised mainly of light $r$-process nuclei with atomic mass number $A\\lesssim 140$. This indicates a sight-line within $\\theta_{\\rm obs}\\lesssim 45^{\\circ}$ of the orbital axis. Comparison to models suggests $\\sim0.03$ M$_\\odot$ of blue ejecta, with a velocity of $\\sim 0.3c$. The required lanthanide fraction is $\\sim 10^{-4}$, but this drops to $<10^{-5}$ in the outermost ejecta. The large velocities point to a dynamical origin, rather than a disk wind, for this blue component, suggesting that both binary constituents are neutron stars (as opposed to a binary consisting of a neutron star and a black hole). For dynamical ejecta, the high mass favors a small neutron star radius of $\\lesssim 12$ km. This mass also supports the idea that neutron star mergers are a major contributor to $r$-process nucleosynthesis.

  11. Identification of persons by means of the Fourier spectra of the optical transmission binary models of the human irises

    Czech Academy of Sciences Publication Activity Database

    Muroň, A.; Koiš, P.; Pospíšil, Jaroslav

    2001-01-01

    Roč. 192, - (2001), s. 161-167 ISSN 0030-4018 Institutional research plan: CEZ:AV0Z1010921 Keywords : human iris * coherent optical Fourier transform * identification of persons Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.354, year: 2001

  12. Vibronic intensities for Er3+ in Cs2 NaErCl6

    International Nuclear Information System (INIS)

    Acevedo, R.; Navarro, G.; Meruane, T.

    2001-01-01

    In this current study, we have undertaken vibronic intensity calculations for the absorptions (( 4 I 15/2 ) Γ k ) → (( 4 I 13/2 ) Γ l ) of the Er 3+ in the Cs 2 NaErCl 6 elpasolite type system. This system is extremely complicated to handle from both a theoretical and an experimental viewpoints. This theoretical work shows that over an energy range of about 400 cm -1 , a substantial amount of transitions are likely to take place (about 100 transitions; twenty five of them are magnetic dipole allowed and seventy five are vibronically allowed). It is then a formidable task to identify and assign all of these transitions in a non-ambiguous way. Also the experimental evidence available for these absorptions is related to a total of about twenty lines in the luminescence spectrum of this system. The spectrum itself is very challenging and the superposition of spectral features is most likely to occur. A careful analysis of the calculated vibronic intensities and overall oscillator strengths for the various transitions indicates that the current model used is both flexible and appropriate to deal with this kind of systems. In a forthcoming paper, we will examine the rather unusual high intensity associated with the (( 4 I 15/2 ) Γ k ) → (( 4 S 3/2 ) Γ l ) excitations. (Author)

  13. Link between optical spectra, crystal-field parameters, and local environments of Eu3+ ions in Eu2O3-doped sodium disilicate glass

    International Nuclear Information System (INIS)

    Qin, T.; Mountjoy, G.; Afify, N. D.; Reid, M. F.; Yeung, Y. Y.; Speghini, A.; Bettinelli, M.

    2011-01-01

    Rare-earth-doped glasses are key materials for optical technology due to the luminescent properties of 4f n ions. The crystal-field model describes the effect of local environment on transitions between 4f electrons. We present a detailed modeling study of the optical spectra of sodium disilicate glass, 33Na 2 O·67SiO 2 , doped with 0.2% and 1.0 mol%Eu 2 O 3 . This study uses very large molecular dynamics models with up to 100 Eu 3+ ions, the superposition model for covalent and overlap effects on crystal-field parameters, and realistic values for homogeneous linewidth broadening. The simulated spectra are in reasonable agreement with experiment. The trends in 7 F J energy levels across different Eu 3+ ion sites have been examined and a very detailed analysis is presented that looks at how features of the spectra are related to features of the local environment of Eu 3+ ions. Increasing the crystal-field strength S total causes the 7 F 0 energy level to decrease and causes the splitting of 7 F J manifolds to increase, and this is due to increasing mixing of 4f wave functions. To a reasonable approximation the crystal-field strength components S k depend on angular positions of ligands independently of distances to ligands. The former are seen to be more significant in determining S k , which are closely related to the rotationally invariant bond-orientational order parameters Q k . The values of S 2 are approximately linear in Q 2 , and the values of Q 2 are higher for fivefold than sixfold coordinated rare-earth ions. These results can be of importance for efforts to enhance the local environment of rare-earth ions in oxide glasses for optical applications.

  14. Li-impurity effect in optical spectra of KTaO.sub.3./sub.:Er.sup.3+./sup. crystals

    Czech Academy of Sciences Publication Activity Database

    Skvortsov, A. P.; Potůček, Zdeněk; Poletaev, N.K.; Syrnikov, P. P.; Bryknar, Z.; Dejneka, Alexandr; Jastrabík, Lubomír; Trepakov, Vladimír

    2016-01-01

    Roč. 121, č. 4 (2016), s. 534-537 ISSN 0030-400X Institutional support: RVO:68378271 Keywords : f–f absorption and emission spectra * Er impurities * KTaO 3 and K 1-x Li x TaO 3 * crystals Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.716, year: 2016

  15. First-principles calculation of optical absorption spectra in conjugated polymers: Role of electron-hole interaction

    International Nuclear Information System (INIS)

    Rohlfing, Michael; Tiago, M.L.; Louie, Steven G.

    2000-01-01

    Experimental and theoretical studies have shown that excitonic effects play an important role in the optical properties of conjugated polymers. The optical absorption spectrum of trans-polyacetylene, for example, can be understood as completely dominated by the formation of exciton bound states. We review a recently developed first-principles method for computing the excitonic effects and optical spectrum, with no adjustable parameters. This theory is used to study the absorption spectrum of two conjugated polymers: trans-polyacetylene and poly-phenylene-vinylene(PPV)

  16. First-principles calculation of optical absorption spectra in conjugated polymers: Role of electron-hole interaction

    Energy Technology Data Exchange (ETDEWEB)

    Rohlfing, Michael; Tiago, M.L.; Louie, Steven G.

    2000-03-20

    Experimental and theoretical studies have shown that excitonic effects play an important role in the optical properties of conjugated polymers. The optical absorption spectrum of trans-polyacetylene, for example, can be understood as completely dominated by the formation of exciton bound states. We review a recently developed first-principles method for computing the excitonic effects and optical spectrum, with no adjustable parameters. This theory is used to study the absorption spectrum of two conjugated polymers: trans-polyacetylene and poly-phenylene-vinylene(PPV).

  17. Theoretical studies of the optical and EPR spectra for VO^{2+} in Na_3C_6H_5O_7·2H_2O single crystal

    Directory of Open Access Journals (Sweden)

    Ch.-Y. Li

    2015-06-01

    Full Text Available On the basis of the perturbation formulas for a d^1 configuration ion in a tetragonal crystal field, the three optical absorption bands and electron paramagnetic resonance (EPR parameters (g factors g_i and hyperfine structure constants A_i for i = || and ⊥, respectively of VO^{2+} in Na_3C_6H_5O_7·2H_2O (TSCD single crystals were studied using the perturbation theory method. By simulating the calculated optical and EPR spectra to the observed values, local structure parameters and negative signs of the hyperfine structure constants A_i of the octahedral (VO_6^{8-} cluster in TSCD single crystal can be obtained.

  18. Optical spectra of Zn{sub 1-x}Be{sub x}Te mixed crystals determined by IR-VIS-UV ellipsometry and photoluminescence measurements

    Energy Technology Data Exchange (ETDEWEB)

    Wronkowska, A.A., E-mail: aleksandra.wronkowska@utp.edu.p [Institute of Mathematics and Physics, University of Technology and Life Sciences, S. Kaliskiego 7, PL-85796 Bydgoszcz (Poland); Arwin, H. [Department of Physics, Chemistry and Biology, Linkoeping University, SE-58183 Linkoeping (Sweden); Firszt, F.; Legowski, S. [Institute of Physics, Nicholas Copernicus University, Grudziadzka 5, PL-87100 Torun (Poland); Wronkowski, A.; Skowronski, L. [Institute of Mathematics and Physics, University of Technology and Life Sciences, S. Kaliskiego 7, PL-85796 Bydgoszcz (Poland)

    2011-02-28

    Spectroscopic ellipsometry in the photon energy range from 0.04 eV to 6.50 eV is used for investigation of the optical response of Zn{sub 1-x}Be{sub x}Te crystals grown by a high-pressure Bridgman method in the composition range x {<=} 0.12. Infrared spectra display absorption bands centred between 411 cm{sup -1} and 420 cm{sup -1} associated with BeTe-type optical phonon modes. The positions of the transverse-optical and longitudinal-optical phonon modes have been found by modelling the line shape of the complex dielectric functions, {epsilon}-tilde and Im(-{epsilon}-tilde{sup -1}), using a classical damped Lorentzian oscillator approach. Ellipsometric measurements in the VIS-UV range allow determination of the fundamental energy-gap (E{sub 0}) and the higher threshold energies (E{sub 1}, E{sub 1} + {Delta}{sub 1}, E{sub 2}) originating from the band edge and spin-orbit splitting critical points. We have found that the Be content x = 0.12 causes an increase of the fundamental energy gap about 0.15 eV at room temperature when compared to the E{sub 0} = 2.23 eV of ZnTe crystal at the same temperature. Photoluminescence spectra were measured in the temperature range from 30 K to room temperature. Luminescence at temperature T > 200 K is very weak. The peak positions of the exciton emission lines agree well with the E{sub 0} band-gaps derived from ellipsometric data if corrected for their temperature dependence.

  19. Optical properties of ion-implanted InP and GaAs: Selectivity-excited photoluminescence spectra

    International Nuclear Information System (INIS)

    Makita, Yunosuke; Yamada, Akimasa; Kimura, Shinji; Niki, Shigeru; Yoshinaga, Hiroshi; Matsumori, Tokue; Iida, Tsutomu; Uekusa, Ichiro

    1993-01-01

    Implantation of Mg+ ions was carried out into high purity InP grown by liquid encapsulated Czochralski method. Mg+ ion-implanted InP presented the formation of plural novel emissions with increasing Mg concentration, [Mg] in the low temperature photoluminescence spectra. Selectively-excited photoluminescence (SPL) measurements were made to examine the features of two-hole replicas pertinent to the emissions of excitons bound to neutral Mg and residual Zn acceptors. Systematic variation of the emission intensities from the two types of two-hole replicas was found to be utilized for the evaluation of ion-implanted materials. The significant discrepancy of emission spectra between PL and SPL was attributed to the difference of the depth examined by using the excitation light with high and low absorption coefficient. The results revealed that the diffusion of ion-implanted Mg is extremely enhanced when [Mg] exceeds 1x10 17 cm -3

  20. Impact effects of gamma irradiation on the optical and FT infrared absorption spectra of some Nd3+-doped soda lime phosphate glasses

    Science.gov (United States)

    Marzouk, M. A.; Elkashef, I. M.; Elbatal, H. A.

    2018-04-01

    The main aim of the present work is to study by two collective optical and FTIR spectral measurements some prepared Nd2O3-doped soda lime phosphate glasses before and after gamma irradiation with dose (9 Mrad). The spectral data reveal two strong UV absorption peaks which are correlated with unavoidable trace iron impurities beside extended additional characteristic bands due to Nd3+ ions. Gamma irradiation on the undoped glass produces slight decrease of the intensity of the UV absorption and the generation of an induced visible band and these effects are controlled with two photochemical reduction of some Fe3+ ions to Fe2+ ions together with the formation of nonbridging oxygen hole center (NBOHC) or phosphorous oxygen hole center (POHC). The impact effect of gamma irradiation on the spectra of Nd2O3-doped glasses is limited due to suggested shielding behavior of neodymium ions. FT-infrared spectra show vibrational modes due to main Q2-Q3 phosphate groups and the response of gamma irradiation of the IR spectra is low and the limited variations are related to suggested changes in some bond angles and bond lengths which cause the observed decrease to the intensities of some IR bands.

  1. Optical and ESR spectra of gamma irradiated glasses in the Ba(PO/sub 3/)/sub 2/-LiF system

    Energy Technology Data Exchange (ETDEWEB)

    Bocharova, T.V.; Karapetyan, G.O.; Khalilev, V.D.; Yashchurzhinskaya, O.A.

    1985-11-01

    This study obtains the ESR and optical absorption spectra for glasses in the Ba(PO/sub 3/)/sub 2/-LiF system. Obtaining radiation color centers (RCC) induced by ionizing radiation in alkali halide crystals (AHC), in particular LiF, has been given an enormous practical impetus according to the authors, because of the development of lasers and passive laser gates based on AHC with color centers. The glasses studied were synthesized from reagents of ''exceptionally pure'' and ''chemically pure'' grades in vitreous carbon crucibles in a dry argon atmosphere at 900-1000/sup 0/C for 60 min. followed by an anneal in a muffle at 300-450/sup 0/C. The compositions of the experimental specimens and the spectra of their optical parameters are given. The addition of up to 60 mole% of LiF does not lead to the emergence of additional absorption band (AAB) or ESR signals associated with F centers formed by gamma radiation in an LiF single crystal. As a result of gamma irradiation of glasses activated by terbium, RCC are formed which are probably electron trapping centers and correspond to the paramagnetic center (PMC).

  2. Optical trapping with Bessel beams generated from semiconductor lasers

    International Nuclear Information System (INIS)

    Sokolovskii, G S; Dudelev, V V; Losev, S N; Soboleva, K K; Deryagin, A G; Kuchinskii, V I; Sibbett, W; Rafailov, E U

    2014-01-01

    In this paper, we study generation of Bessel beams from semiconductor lasers with high beam propagation parameter M 2 and their utilization for optical trapping and manipulation of microscopic particles including living cells. The demonstrated optical tweezing with diodegenerated Bessel beams paves the way to replace their vibronic-generated counterparts for a range of applications towards novel lab-on-a-chip configurations

  3. Structured optical vortices with broadband comb-like optical spectra in Yb:Y3Al5O12/YVO4 Raman microchip laser

    Science.gov (United States)

    Dong, Jun; Wang, Xiaolei; Zhang, Mingming; Wang, Xiaojie; He, Hongsen

    2018-04-01

    Structured optical vortices with 4 phase singularities have been generated in a laser diode pumped continuous-wave Yb:Y3Al5O12/YVO4 (Yb:YAG/YVO4) Raman microchip laser. The broadband comb-like first order Stokes laser emitting spectrum including 30 longitudinal modes covers from 1072.49 nm to 1080.13 nm with a bandwidth of 7.64 nm, which is generated with the Raman shift 259 cm-1 of the c-cut YVO4 crystal converted from the fundamental laser around 1.05 μm. Pump power dependent optical vortex beams are attributed to overlap of the Stokes laser field with the fundamental laser field caused by dynamically changing the coupling losses of the fundamental laser field. The maximum output power is 1.16 W, and the optical-to-optical efficiency is 18.4%. This work provides a method for generating structured optical vortices with an optical frequency comb in solid-state Raman microchip lasers, which have potential applications in quantum computations, micro-machining, and information processing.

  4. Optical Absorption Spectra and Electronic Properties of Symmetric and Asymmetric Squaraine Dyes for Use in DSSC Solar Cells: DFT and TD-DFT Studies

    Directory of Open Access Journals (Sweden)

    Reda M. El-Shishtawy

    2016-04-01

    Full Text Available The electronic absorption spectra, ground-state geometries and electronic structures of symmetric and asymmetric squaraine dyes (SQD1–SQD4 were investigated using density functional theory (DFT and time-dependent (TD-DFT density functional theory at the B3LYP/6-311++G** level. The calculated ground-state geometries reveal pronounced conjugation in these dyes. Long-range corrected time dependent density functionals Perdew, Burke and Ernzerhof (PBE, PBE1PBE (PBE0, and the exchange functional of Tao, Perdew, Staroverov, and Scuseria (TPSSh with 6-311++G** basis set were employed to examine optical absorption properties. In an extensive comparison between the optical data and DFT benchmark calculations, the BEP functional with 6-311++G** basis set was found to be the most appropriate in describing the electronic absorption spectra. The calculated energy values of lowest unoccupied molecular orbitals (LUMO were 3.41, 3.19, 3.38 and 3.23 eV for SQD1, SQD2, SQD3, and SQD4, respectively. These values lie above the LUMO energy (−4.26 eV of the conduction band of TiO2 nanoparticles indicating possible electron injection from the excited dyes to the conduction band of the TiO2 in dye-sensitized solar cells (DSSCs. Also, aromaticity computation for these dyes are in good agreement with the data obtained optically and geometrically with SQD4 as the highest aromatic structure. Based on the optimized molecular geometries, relative positions of the frontier orbitals, and the absorption maxima, we propose that these dyes are suitable components of photovoltaic DSSC devices.

  5. Application of some Hartree-Fock model calculations to the analysis of atomic and free-ion optical spectra

    International Nuclear Information System (INIS)

    Hayhurst, T.L.

    1980-01-01

    Techniques for applying ab-initio calculations to the analysis of atomic spectra are investigated, along with the relationship between the semi-empirical and ab-initio forms of Slater-Condon theory. Slater-Condon theory is reviewed with a focus on the essential features that lead to the effective Hamiltonians associated with the semi-empirical form of the theory. Ab-initio spectroscopic parameters are calculated from wavefunctions obtained via self-consistent field methods, while multiconfiguration Hamiltonian matrices are constructed and diagonalized with computer codes written by Robert Cowan of Los Alamos Scientific Laboratory. Group theoretical analysis demonstrates that wavefunctions more general than Slater determinants (i.e. wavefunctions with radical correlations between electrons) lead to essentially the same parameterization of effective Hamiltonians. In the spirit of this analysis, a strategy is developed for adjusting ab-initio values of the spectroscopic parameters, reproducing parameters obtained by fitting the corresponding effective Hamiltonian. Secondary parameters are used to screen the calculated (primary) spectroscopic parameters, their values determined by least squares. Extrapolations of the secondary parameters determined from analyzed spectra are attempted to correct calculations of atoms and ions without experimental levels. The adjustment strategy and extrapolations are tested on the KI sequence from K 0+ through Fe 7+ , fitting to experimental levels for V 4+ , and Cr 5+ ; unobserved levels and spectra are predicted for several members of the sequence. A related problem is also discussed: Energy levels of the Uranium hexahalide complexes, (UX 6 ) 2- for X = F, Cl, Br, and I, are fit to an effective Hamiltonian (the f 2 configuration in O/sub h/ symmetry) with corrections proposed by Brian Judd

  6. Application of some Hartree-Fock model calculations to the analysis of atomic and free-ion optical spectra

    International Nuclear Information System (INIS)

    Hayhurst, T.L.

    1980-05-01

    Techniques for applying ab-initio calculations to the analysis of atomic spectra are investigated, along with the relationship between the semi-empirical and ab-initio forms of Slater-Condon theory. Slater-Condon theory is reviewed with a focus on the essential features that lead to the effective Hamiltonians associated with the semi-empirical form of the theory. Ab-initio spectroscopic parameters are calculated from wavefunctions obtained via self-consistent field methods, while multi-configuration Hamiltonian matrices are constructed and diagonalized with computer codes written by Robert Cowan of Los Alamos Scientific Laboratory. Group theoretical analysis demonstrates that wavefunctions more general than Slater determinants (i.e., wavefunctions with radial correlations between electrons) lead to essentially the same parameterization of effective Hamiltonians. In the spirit of this analysis, a strategy is developed for adjusting ab-initio values of the spectroscopic parameters, reproducing parameters obtained by fitting the corresponding effective Hamiltonian. Secondary parameters are used to screen the calculated (primary) spectroscopic parameters, their values determined by least squares. Extrapolations of the secondary parameters determined from analyzed spectra are attempted to correct calculations of atoms and ions without experimental levels. The adjustment strategy and extrapolations are tested on the K I sequence from K 0+ through Fe 7+ , fitting to experimental levels for V 4+ , and Cr 5+ ; unobserved levels and spectra are predicted for several members of the sequence. A related problem is also discussed: energy levels of the uranium hexahalide complexes, (UX 6 ) 2- for X = F, Cl, Br, and I, are fit to an effective Hamiltonian (the f 2 configuration in O/sub h/ symmetry) with corrections proposed by Brian Judd

  7. Quantitative analysis of sugar composition in honey using 532-nm excitation Raman and Raman optical activity spectra

    Czech Academy of Sciences Publication Activity Database

    Šugar, Jan; Bouř, Petr

    2016-01-01

    Roč. 47, č. 11 (2016), s. 1298-1303 ISSN 0377-0486 R&D Projects: GA ČR GA15-09072S Institutional support: RVO:61388963 Keywords : honey * sugar mixtures * spectral decompositions * Raman spectroscopy * Raman optical activity Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.969, year: 2016

  8. Electronic structure, optical spectra and contact terms of the CoF64- cluster in LiF

    International Nuclear Information System (INIS)

    Albuquerque, E.L.; Maffeo, B.; Brandi, H.S.; Siqueira, M.L. de

    1975-01-01

    The electronic structure, the optical absorption bands and the magnetic hyperfine contact terms have been calculated for CoF 6 4- in LiF using the Multiple Scattering Xα Method. The results obtained are compared with experiment and once more indicated that this scheme is convenient to treat such complex problems

  9. A multifrequency virtual spectrometer for complex bio-organic systems: vibronic and environmental effects on the UV/Vis spectrum of chlorophyll a.

    Science.gov (United States)

    Barone, Vincenzo; Biczysko, Malgorzata; Borkowska-Panek, Monika; Bloino, Julien

    2014-10-20

    The subtle interplay of several different effects means that the interpretation and analysis of experimental spectra in terms of structural and dynamic characteristics is a challenging task. In this context, theoretical studies can be helpful, and as such, computational spectroscopy is rapidly evolving from a highly specialized research field toward a versatile and widespread tool. However, in the case of electronic spectra (e.g. UV/Vis, circular dichroism, photoelectron, and X-ray spectra), the most commonly used methods still rely on the computation of vertical excitation energies, which are further convoluted to simulate line shapes. Such treatment completely neglects the influence of nuclear motions, despite the well-recognized notion that a proper account of vibronic effects is often mandatory to correctly interpret experimental findings. Development and validation of improved models rooted into density functional theory (DFT) and its time-dependent extension (TD-DFT) is of course instrumental for the optimal balance between reliability and favorable scaling with the number of electrons. However, the implementation of easy-to-use and effective procedures to simulate vibrationally resolved electronic spectra, and their availability to a wide community of users, is at least equally important for reliable simulations of spectral line shapes for compounds of biological and technological interest. Here, such an approach has been applied to the study of the UV/Vis spectra of chlorophyll a. The results show that properly tailored approaches are feasible for state-of-the-art computational spectroscopy studies, and allow, with affordable computational resources, vibrational and environmental effects on the spectral line shapes to be taken into account for large systems. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Photoluminescence and optical transmission of diamond and its imitators

    International Nuclear Information System (INIS)

    Lipatov, E.I.; Avdeev, S.M.; Tarasenko, V.F.

    2010-01-01

    Photoluminescence and optical transmission spectra of several samples of natural and synthetic diamond and its imitators - fianite and corundum - are investigated. The band-A of luminescence at 440 nm, the vibronic N3 system of luminescence and absorption at 415.2 nm, the fundamental absorption edge at 225 nm, and the secondary absorption below 308 nm are the main identifying markers of natural diamonds. For synthetic diamonds, however, such identifying markers are the free-exciton luminescence at 235 nm, the band-A, and the fundamental absorption edge. Fianites can be identified by the structureless wideband at 500 nm and the wide transmission band in the entire visible range. Colored corundum samples with chrome impurities emit the narrow line at 693 nm and show the absorption band in the 500-600 nm spectral range. A new method for diamond express identification is developed on the basis of measurement of photoluminescence and optical transmission spectra of the samples. It is shown that a diamond tester can be designed combining a spectrometer and a KrCl-excilamp radiating at 222 nm.

  11. Lowest excited states and optical absorption spectra of donor–acceptor copolymers for organic photovoltaics: a new picture emerging from tuned long-range corrected density functionals

    KAUST Repository

    Pandey, Laxman; Doiron, Curtis; Sears, John S.; Bré das, Jean-Luc

    2012-01-01

    Polymers with low optical gaps are of importance to the organic photovoltaics community due to their potential for harnessing a large portion of the solar energy spectrum. The combination along their backbones of electron-rich and electron-deficient fragments contributes to the presence of low-lying excited states that are expected to display significant charge-transfer character. While conventional hybrid functionals are known to provide unsatisfactory results for charge-transfer excitations at the time-dependent DFT level, long-range corrected (LRC) functionals have been reported to give improved descriptions in a number of systems. Here, we use such LRC functionals, considering both tuned and default range-separation parameters, to characterize the absorption spectra of low-optical-gap systems of interest. Our results indicate that tuned LRC functionals lead to simulated optical-absorption properties in good agreement with experimental data. Importantly, the lowest-lying excited states (excitons) are shown to present a much more localized nature than initially anticipated. © 2012 the Owner Societies.

  12. Predicting ambient aerosol thermal-optical reflectance (TOR) measurements from infrared spectra: extending the predictions to different years and different sites

    Science.gov (United States)

    Reggente, Matteo; Dillner, Ann M.; Takahama, Satoshi

    2016-02-01

    Organic carbon (OC) and elemental carbon (EC) are major components of atmospheric particulate matter (PM), which has been associated with increased morbidity and mortality, climate change, and reduced visibility. Typically OC and EC concentrations are measured using thermal-optical methods such as thermal-optical reflectance (TOR) from samples collected on quartz filters. In this work, we estimate TOR OC and EC using Fourier transform infrared (FT-IR) absorbance spectra from polytetrafluoroethylene (PTFE Teflon) filters using partial least square regression (PLSR) calibrated to TOR OC and EC measurements for a wide range of samples. The proposed method can be integrated with analysis of routinely collected PTFE filter samples that, in addition to OC and EC concentrations, can concurrently provide information regarding the functional group composition of the organic aerosol. We have used the FT-IR absorbance spectra and TOR OC and EC concentrations collected in the Interagency Monitoring of PROtected Visual Environments (IMPROVE) network (USA). We used 526 samples collected in 2011 at seven sites to calibrate the models, and more than 2000 samples collected in 2013 at 17 sites to test the models. Samples from six sites are present both in the calibration and test sets. The calibrations produce accurate predictions both for samples collected at the same six sites present in the calibration set (R2 = 0.97 and R2 = 0.95 for OC and EC respectively), and for samples from 9 of the 11 sites not included in the calibration set (R2 = 0.96 and R2 = 0.91 for OC and EC respectively). Samples collected at the other two sites require a different calibration model to achieve accurate predictions. We also propose a method to anticipate the prediction error; we calculate the squared Mahalanobis distance in the feature space (scores determined by PLSR) between new spectra and spectra in the calibration set. The squared Mahalanobis distance provides a crude method for assessing the

  13. Optical detection of magnetic resonance of the F-centre in CaO in its phosphorescent state

    International Nuclear Information System (INIS)

    Krap, C.J.

    1980-01-01

    The F-centre in CaO consists of two electrons trapped in an oxygen vacancy. The centre possesses bound excited states, of which the phosphorescent 3 Tsub(1u) state is a Jahn-Teller state. Jahn-Teller systems have been of interest in many investigations. However, detailed experimental studies about the relaxation paths for the Jahn-Teller states are relatively few. The author studies by means of optical detection of magnetic resonance (ODMR) and phosphorescence microwave double resonance (PMDR) techniques the relaxation between the components of the 3 Tsub(1u) state, the magnetic properties of the individual spin-vibronic Jahn-Teller states and the inhomogeneous line broadening in the ODMR and PMDR spectra. (Auth.)

  14. Vibronic oscillator strengths in cubic systems. I.- The adsorption spectrum of Tm+3

    International Nuclear Information System (INIS)

    Acevedo, R.; Hurtado, O.F.; Meruane, T.

    2000-01-01

    A symmetry adapted vibronic crystal field-ligand polarisation scheme is utilised with reference to the elpasolite type system, to gain understanding about the role played by both the electronic and the vibrational factors in the absorption intensity mechanisms of various selected excitation in this crystal. The calculation is performed assuming: The coupling among the internal and the external vibrations is negligible and therefore a seven atom system may be employed (though, we recognise that the vibrational frequencies values depend en several factors; among others the nature of both the host and the temperature. Additionally, no attempt has been made to include corrections due to spectral line shapes and to the shapes of the potential energy hypersurfaces associated with the terminal electronic terminal states). We have included some sophistication as for both the electronic and the vibrational wavefunctions are concerned. Three different set of electronic wavefunctions are reported and the sensitivity of the estimated overall vibronic intensities on both electronic and vibrational factors is tested against the experimental data , with reference to the 10K absorption spectrum. At this stage, we have excluded , the effects of both concentration and pressure upon the observed vibronic intensities, though new experiments and model calculations are needed. In this article, we report calculations for the whole set of transitions associated with the (a) , (b) and (c) .Our model calculation is based upon a minimum set of parameters to be fitted from experiment, mainly because. our main target is to advance the knowledge on mechanistic factors and the most likely paths for both emission and absorption for these type systems

  15. Vibronic coupling in ionized organic molecules. Structural distortions and chemical reactions

    International Nuclear Information System (INIS)

    Williams, F.

    2002-01-01

    Complete text of publication follows. Ionized organic molecules (radical cations, RC) are prone to undergo vibronic coupling whenever there is a relatively small energy gap ( 2v point group of the neutral parent molecule by twisting at the olefinic π bond to the lower C 2 symmetry in the RC (Chem. Eur. J. 2002, 8, 1074). These experiments clearly revealed a double minimum in the potential energy surface along the a 2 torsional mode. This is in accord with the coupling of the 2 B 1 and 2 B 2 Born-Oppenheimer states in C 2v symmetry, this mixing of the 2 B 1 π-ionized ground state and the 2 B 2 δ-ionized excited state being facilitated by the low (∼ 1.0 eV) gap between these states, as estimated from photoelectron spectroscopy. Turning to the second class of RC where unimolecular rearrangement reactions are promoted by vibronic interaction, several cases have emerged where the rearrangement would not be expected if it were based only on the ground-state properties of the RC. It was found (Chem. Phy. Lett. 1988, 143, 521) that the ethylene oxide RC undergoes C-C ring opening to the oxallyl species despite the fact that the ground state corresponds to ionization from the nonbonding oxygen π lone-pair orbital. The reaction develops excited-state character as a result of the vibronic mixing so that the activation barrier to ring opening is lowered. We will discuss the unusual rearrangements of the bicyclo[1.1.1.]pentane and [1.1.1]propellane RC from a similar perspective, emphasis being placed on the decisive role of symmetry in predicting the course of these rearrangements. We illustrate how this approach can reconcile conflicting considerations on some of the 'unexpected' reaction pathways followed by highly strained organic RC

  16. L-Alanyl-L-alanine Conformational Changes Induced by pH As Monitored by the Raman Optical Activity Spectra

    Czech Academy of Sciences Publication Activity Database

    Šebek, Jiří; Kapitán, Josef; Šebestík, Jaroslav; Baumruk, V.; Bouř, Petr

    2009-01-01

    Roč. 113, č. 27 (2009), s. 7760-7768 ISSN 1089-5639 R&D Projects: GA ČR GA202/07/0732; GA ČR GA203/07/1517; GA AV ČR IAA400550702 Institutional research plan: CEZ:AV0Z40550506 Keywords : Raman optical activity * peptides * conformation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.899, year: 2009

  17. Vacuum-ultraviolet ellipsometry spectra and optical properties of Ba(Zr,Ti)O.sub.3./sub. films

    Czech Academy of Sciences Publication Activity Database

    Suchaneck, G.; Chernova, Ekaterina; Kleiner, A.; Liebschner, R.; Jastrabík, Lubomír; Meyer, D.C.; Dejneka, Alexandr; Gerlach, G.

    2017-01-01

    Roč. 621, Jan (2017), s. 58-62 ISSN 0040-6090 R&D Projects: GA ČR GA15-13778S Institutional support: RVO:68378271 Keywords : barium zirconate titanate thin film * film structure * VUV ellipsometry * optical properties Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.879, year: 2016

  18. A reverse Monte Carlo method for deriving optical constants of solids from reflection electron energy-loss spectroscopy spectra

    International Nuclear Information System (INIS)

    Da, B.; Sun, Y.; Ding, Z. J.; Mao, S. F.; Zhang, Z. M.; Jin, H.; Yoshikawa, H.; Tanuma, S.

    2013-01-01

    A reverse Monte Carlo (RMC) method is developed to obtain the energy loss function (ELF) and optical constants from a measured reflection electron energy-loss spectroscopy (REELS) spectrum by an iterative Monte Carlo (MC) simulation procedure. The method combines the simulated annealing method, i.e., a Markov chain Monte Carlo (MCMC) sampling of oscillator parameters, surface and bulk excitation weighting factors, and band gap energy, with a conventional MC simulation of electron interaction with solids, which acts as a single step of MCMC sampling in this RMC method. To examine the reliability of this method, we have verified that the output data of the dielectric function are essentially independent of the initial values of the trial parameters, which is a basic property of a MCMC method. The optical constants derived for SiO 2 in the energy loss range of 8-90 eV are in good agreement with other available data, and relevant bulk ELFs are checked by oscillator strength-sum and perfect-screening-sum rules. Our results show that the dielectric function can be obtained by the RMC method even with a wide range of initial trial parameters. The RMC method is thus a general and effective method for determining the optical properties of solids from REELS measurements.

  19. Meson and baryon families as vibronic states in sl(2) quantum universal enveloping algebra

    International Nuclear Information System (INIS)

    Iwao, Syurei; Ono, Yasuji

    1990-01-01

    A mass formula of the q-deformed modified harmonic oscillator type in the sl(2) quantum universal enveloping algebra is proposed for the meson and baryon families, by taking into account the known theories as a guide. Specifying the vibronic quantum number, the deformation parameter and associated ones of the theory are determined from available data for the scalar, pseudoscalar, vector meson and baryon families. The parameters determined from totally ten families not only predict many unobserved states, but also give restrictions on the observable number of states. The method may admit taking into account non-perturbative effects. (author)

  20. The structure, vibrational spectra and nonlinear optical properties of the L-lysine × tartaric acid complex—Theoretical studies

    Science.gov (United States)

    Drozd, M.; Marchewka, M. K.

    2006-05-01

    The room temperature X-ray studies of L-lysine × tartaric acid complex are not unambiguous. The disorder of three atoms of carbon in L-lysine molecule is observed. These X-ray studies are ambiguous. The theoretical geometry study performed by DFT methods explain the most doubts which are connected with crystallographic measurements. The theoretical vibrational frequencies and potential energy distribution (PED) of L-lysine × tartaric acid were calculated by B3LYP method. The calculated frequencies were compared with experimental measured IR spectra. The complete assignment of the bands has been made on the basis of the calculated PED. The restricted Hartee-Fock (RHF) methods were used for calculation of the hyperpolarizability for investigated compound. The theoretical results are compared with experimental value of β.

  1. Vibration and Fluorescence Spectra of Porphyrin- CoredBis(methylol-propionic Acid Dendrimers

    Directory of Open Access Journals (Sweden)

    Boris Minaev

    2009-03-01

    Full Text Available Bis-MPA dendron-coated free-base tetraphenylporphyrin and zinc-tetraphenyl-porphyrin (TPPH2 and TPPZn were studied in comparison with simple porphyrins (H2P, ZnP by theoretical simulation of their infrared, Raman and electronic absorption spectra, as well as fluorescense emission. Infrared and fluorescence spectra of the dendrimers were measured and interpreted along with time-resolved measurements of the fluorescence. The 0-1 emission band of the dendron substituted TPPZn was found to experience a "heavy substitution"-effect. The 0-1 vibronic emission signal is associated with a longer decay time (approx. 7 - 8 ns than the 0-0 emission (approx. 1 - 1.5 ns. The former contributed with more relative emission yield for larger dendron substituents, in agreement with the appearance of steady-state emission spectra showing increased contribution from the 0-1 vibronic fluorescence band at 650 nm. No such substitution effect was observed in the electronic or vibrational spectra of the substituted free-base variant, TPPH2. Vibration spectra of the parent porphyrins (H2P, ZnP, TPPH2 and TPPZn were calculated by density functional theory (DFT using the B3LYP/6-31G** approximation and a detailed analysis of the most active vibration modes was made based on both literature and our own experimental data. Based on the results of theoretical calculations the wide vibronic bands in the visible region were assigned. The vibronic structure also gave a qualitative interpretation of bands in the electronic absorption spectra as well as in fluorescence emission depending on the size of dendrimer substitution. From the results of time-dependent DFT calculations it is suggested that the TPPZn-cored dendrimers indicate strong vibronic interaction and increased Jahn-Teller distortion of the prophyrin core for larger dendrimer generations. Specifically, this leads to the entirely different behaviour of the emission spectra upon substitution of the TPPH2 and TPPZn

  2. Spectra of Wolf-Rayet stars. I. Optical line strengths and the hydrogen-to-helium ratios in WN type stars

    International Nuclear Information System (INIS)

    Conti, P.S.; Leep, E.M.; Perry, D.N.

    1983-01-01

    We begin a series of systematic studies of spectra of Wolf-Rayet stars by examining the optical line strengths of WN stars in the Galaxy and the Large Magellanic Cloud to see what similarities and differences exist among them. Tables of equivalent widths extracted from spectra are presented and some conclusions are drawn. We have found that there is a wide dispersion, up to a factor of 10 or more, in line strengths for all ions even among stars of the same subtype, with WN 7 stars weaker overall than surrounding types. Type-to-type trends are consistent with changing ionization balance in the stellar wind. Nitrogen line ratios indicate that the WN subtypes represent an ionization sequence, but one with considerable overlap: the classification scheme is not single valued; other physical parameters must play a role. The line strength dispersion does not appear to be primarily due to ionization, or luminosity. The Balmer-Pickering decrement has been used to estimate the H/He ratio for most of the WN stars with available spectra; semiquantitative results are presented. Significant differences in H/He are observed (10 stars may have H/He>2). At a given subclass, the strongest line stars have no detectable H. The abundance of H probably relates to structural differences in the winds that, in part, give rise to a dispersion in observed line strengths. Finally, we have estimated the C/N ratio from the C IV lambda5805/N IV lambda4057 line ratio. In most cases our observations suggest that the C/N ratio is consistent with ''evolved'' models for WN stars. A few stars show strong C IV implying much larger values for C/N, but hydrogen was not detected in them. These stars may be in transition from the WN to WC classes

  3. Simulating quantum search algorithm using vibronic states of I2 manipulated by optimally designed gate pulses

    International Nuclear Information System (INIS)

    Ohtsuki, Yukiyoshi

    2010-01-01

    In this paper, molecular quantum computation is numerically studied with the quantum search algorithm (Grover's algorithm) by means of optimal control simulation. Qubits are implemented in the vibronic states of I 2 , while gate operations are realized by optimally designed laser pulses. The methodological aspects of the simulation are discussed in detail. We show that the algorithm for solving a gate pulse-design problem has the same mathematical form as a state-to-state control problem in the density matrix formalism, which provides monotonically convergent algorithms as an alternative to the Krotov method. The sequential irradiation of separately designed gate pulses leads to the population distribution predicted by Grover's algorithm. The computational accuracy is reduced by the imperfect quality of the pulse design and by the electronic decoherence processes that are modeled by the non-Markovian master equation. However, as long as we focus on the population distribution of the vibronic qubits, we can search a target state with high probability without introducing error-correction processes during the computation. A generalized gate pulse-design scheme to explicitly include decoherence effects is outlined, in which we propose a new objective functional together with its solution algorithm that guarantees monotonic convergence.

  4. Vibronic coupling in ionized organic molecules: structural distortions and chemical reactions

    International Nuclear Information System (INIS)

    Williams, Ffrancon

    2003-01-01

    Ionized organic molecules (radical cations) in radiation chemistry are liable to undergo vibronic coupling whenever there is a relatively small energy gap (∼0.5-1.5 eV) between their ground and excited states. As a result of this mixing, the force constant for the symmetry-allowed vibrational mode that couples these states is lowered in the ground state of the radical cation so that deformation can take place more easily along this specific mode. This pseudo-Jahn-Teller effect can then result in a permanent structural distortion of the radical cation relative to the symmetry of the parent neutral molecule. It can also bring about an energetically favored pathway for a facile chemical rearrangement along a reaction coordinate defined by the coupling mode. Examples taken from matrix-isolation studies are used to illustrate these dramatic consequences of vibronic coupling in radical cations. Thus, the bicyclo[2.2.2]oct-2-ene and tetramethylurea radical cations are found to have twisted structures departing from the C 2v symmetry of their parent molecules, while the oxirane and bicyclo[1.1.1]pentane radical cations undergo ring-opening rearrangements along reaction coordinates that correspond to the deformational modes predicted by the pseudo-Jahn-Teller effect

  5. Ab initio ro-vibronic spectroscopy of SiCCl (X{sup ~2}Π)

    Energy Technology Data Exchange (ETDEWEB)

    Brites, Vincent [Université d’Evry Val d’Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, LAMBE CNRS UMR 8587, Boulevard F. Mitterrand, 91025 Evry Cedex (France); Mitrushchenkov, Alexander O.; Léonard, Céline, E-mail: celine.leonard@u-pem.fr [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée (France); Peterson, Kirk A. [Department of Chemistry, Washington State University, Pullman, Washington 99164 (United States)

    2014-07-21

    The full dimensional potential energy surfaces of the {sup 2}A{sup ′} and {sup 2}A{sup ′′} electronic components of X{sup ~2}Π SiCCl have been computed using the explicitly correlated coupled cluster method, UCCSD(T)-F12b, combined with a composite approach taking into account basis set incompleteness, core-valence correlation, scalar relativity, and higher order excitations. The spin-orbit and dipole moment surfaces have also been computed ab initio. The ro-vibronic energy levels and absorption spectrum at 5 K have been determined from variational calculations. The influence of each correction on the fundamental frequencies is discussed. An assignment is proposed for bands observed in the LIF experiment of Smith et al. [J. Chem. Phys. 117, 6446 (2002)]. The overall agreement between the experimental and calculated ro-vibronic levels is better than 7 cm{sup −1} which is comparable with the 10–20 cm{sup −1} resolution of the emission spectrum.

  6. Probing the electronic structure of Ni–Mn–In–Si based Heusler alloys thin films using magneto-optical spectra in martensitic and austenitic phases

    Energy Technology Data Exchange (ETDEWEB)

    Novikov, A. [Department of Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Sokolov, A., E-mail: asokol@unlserve.unl.edu [Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Gan’shina, E.A. [Department of Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Quetz, Abdiel; Dubenko, I.S. [Department of Physics, Southern Illinois University, Carbondale, IL 62901 (United States); Stadler, S. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Ali, N. [Department of Physics, Southern Illinois University, Carbondale, IL 62901 (United States); Titov, I.S.; Rodionov, I.D. [Department of Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Lähderanta, E. [Lappeenranta University of Technology, 53851 (Finland); Zhukov, A. [Dpto. de Física de Materiales, Fac. Químicas, UPV/EHU, 20018 San Sebastian (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain); Granovsky, A.B. [Department of Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Sabirianov, R. [Department of Physics, University of Nebraska at Omaha, Omaha, NE 68182 (United States)

    2017-06-15

    Highlights: • Magneto-optical properties of NiMnIn thin films with a magnetostructural transition. • Comparative analysis of magnetic properties in martensitic and austenite phases. • DFT calculations of the MO Kerr effect and site-resolved DOS agree with experiment. • The electronic structure does not change significantly with Martensitic transition. - Abstract: Thin films of Ni{sub 52}Mn{sub 35−x}In{sub 11+x}Si{sub 2} were fabricated by magnetron sputtering on MgO (0 0 1) single crystal substrates. Magnetization as function of temperature for Ni{sub 52}Mn{sub 35}In{sub 11}Si{sub 2} exhibits features consistent with a magnetostructural transition (MST) from an austenitic phase to a martensitic phase, similar to the bulk material. We observed that the martensitic transformation is externally sensitive to small changes in chemical composition and stoichiometry. It has been found that thin films of Ni{sub 52}Mn{sub 34−x}In{sub 11+x}Si{sub 2} with x = 0 and 1 undergo a temperature-induced MST or remain in a stable austenitic phase, respectively. Comparison of magneto-optical transverse Kerr effect spectra obtained at 0.5–4.0 eV in the 35–300 K temperature interval reveal insignificant differences between the martensitic and austenite phases. We found that the field and temperature dependencies of the transverse Kerr effect are quite different from the magnetization behavior, which is attributed to magnetic inhomogeneity across the films. To elucidate the effects of magnetostructural phase transitions on the electronic properties, we performed density functional calculations of the magneto-optical Kerr effect.

  7. Polar Mixing Optical Phonon Spectra in Wurtzite GaN Cylindrical Quantum Dots: Quantum Size and Dielectric Effects

    International Nuclear Information System (INIS)

    Zhang Li; Liao Jianshang

    2010-01-01

    The interface-optical-propagating (IO-PR) mixing phonon modes of a quasi-zero-dimensional (QoD) wurtzite cylindrical quantum dot (QD) structure are derived and studied by employing the macroscopic dielectric continuum model. The analytical phonon states of IO-PR mixing modes are given. It is found that there are two types of IO-PR mixing phonon modes, i.e. ρ-IO/z-PR mixing modes and the z-IO/ρ-PR mixing modes existing in QoD wurtzite QDs. And each IO-PR mixing modes also have symmetrical and antisymmetrical forms. Via a standard procedure of field quantization, the Froehlich Hamiltonians of electron-(IO-PR) mixing phonons interaction are obtained. Numerical calculations on a wurtzite GaN cylindrical QD are performed. The results reveal that both the radial-direction size and the axial-direction size as well as the dielectric matrix have great influence on the dispersive frequencies of the IO-PR mixing phonon modes. The limiting features of dispersive curves of these phonon modes are discussed in depth. The phonon modes 'reducing' behavior of wurtzite quantum confined systems has been observed obviously in the structures. Moreover, the degenerating behaviors of the IO-PR mixing phonon modes in wurtzite QoD QDs to the IO modes and PR modes in wurtzite Q2D QW and Q1D QWR systems are analyzed deeply from both of the viewpoints of physics and mathematics. (interdisciplinary physics and related areas of science and technology)

  8. Vibrational and vibronic coherences in the dynamics of the FMO complex

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaomeng; Kühn, Oliver, E-mail: oliver.kuehn@uni-rostock.de

    2016-12-20

    The coupled exciton–vibrational dynamics of a seven site Frenkel exciton model of the Fenna–Matthews–Olson (FMO) complex is investigated using a Quantum Master Equation approach. Thereby, one vibrational mode per monomer is treated explicitly as being part of the relevant system. Emphasis is put on the comparison of this model with that of a purely excitonic relevant system. Further, the effects of two different approximations to the exciton–vibrational basis are investigated, namely the one- and two-particle description. Analysis of the vibronic and vibrational density matrix in the site basis points to the importance of on- and inter-site coherences for the exciton transfer. Here, one- and two-particle approximations give rise to qualitatively different results.

  9. Vibronic dephasing model for coherent-to-incoherent crossover in DNA

    Science.gov (United States)

    Karasch, Patrick; Ryndyk, Dmitry A.; Frauenheim, Thomas

    2018-05-01

    In this paper, we investigate the interplay between coherent and incoherent charge transport in cytosine-guanine (GC-) rich DNA molecules. Our objective is to introduce a physically grounded approach to dephasing in large molecules and to understand the length-dependent charge transport characteristics, and especially the crossover from the coherent tunneling to incoherent hopping regime at different temperatures. Therefore, we apply the vibronic dephasing model and compare the results to the Büttiker probe model which is commonly used to describe decoherence effects in charge transport. Using the full ladder model and simplified one-dimensional model of DNA, we consider molecular junctions with alternating and stacked GC sequences and compare our results to recent experimental measurements.

  10. Two Schemes for Generation of Entanglement for Vibronic Collective States of Multiple Trapped Ions

    International Nuclear Information System (INIS)

    Yang Wenxing; Li Jiahua; Zheng Anshou

    2007-01-01

    We propose two schemes to prepare entanglement for the vibronic collective states of multiple trapped ions. The first scheme aims to generating multipartite entanglement for vibrational modes of trapped ions, which only requires a single laser beam tuned to the ionic carrier frequency. Our scheme works in the mediated excitation regime, in which the corresponding Rabi frequency is equal to the trap frequency. Beyond their fundamental importance, these states may be of interest for experimental studies on decoherence since the present scheme operates in a fast way. The second scheme aims to preparing the continuous variable multimode maximally Greenberger-Horne-Zeilinger state. The distinct advantage is that the operation time is only limited by the available laser intensity, not by the inherent mechanisms such as off-resonant excitations. This makes it promising to obtain entanglement of multiple coherent and squeezing states with desired amplitudes in a reasonable time.

  11. Predicting Keto-Enol Equilibrium from Combining UV/Visible Absorption Spectroscopy with Quantum Chemical Calculations of Vibronic Structures for Many Excited States. A Case Study on Salicylideneanilines.

    Science.gov (United States)

    Zutterman, Freddy; Louant, Orian; Mercier, Gabriel; Leyssens, Tom; Champagne, Benoît

    2018-06-21

    Salicylideneanilines are characterized by a tautomer equilibrium, between an enol and a keto form of different colors, at the origin of their remarkable thermochromic, solvatochromic, and photochromic properties. The enol form is usually the most stable but appropriate choice of substituents and conditions (solvent, crystal, host compound) can displace the equilibrium toward the keto form so that there is a need for fast prediction of the keto:enol abundance ratio. Here we demonstrate the reliability of a combined theoretical-experimental method, based on comparing simulated and measured UV/visible absorption spectra, to determine this keto/enol ratio. The calculations of the excitation energies, oscillator strengths, and vibronic structures of both enol and keto forms are performed for all excited states absorbing in the relevant (visible and near-UV) wavelength range at the time-dependent density functional theory level by accounting for solvent effects using the polarizable continuum model. This approach is illustrated for two salicylideneaniline derivatives, which are present, in solution, under the form of keto-enol mixtures. The results are compared to those of chemometric analysis as well as ab initio predictions of the reaction free enthalpies.

  12. Electronic and vibronic properties of a discotic liquid-crystal and its charge transfer complex

    Energy Technology Data Exchange (ETDEWEB)

    Haverkate, Lucas A.; Mulder, Fokko M. [Reactor Institute Delft, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629JB Delft (Netherlands); Zbiri, Mohamed, E-mail: zbiri@ill.fr; Johnson, Mark R. [Institut Laue Langevin, 38042 Grenoble Cedex 9 (France); Carter, Elizabeth [Vibrational Spectroscopy Facility, School of Chemistry, The University of Sydney, NSW 2008 (Australia); Kotlewski, Arek; Picken, S. [ChemE-NSM, Faculty of Chemistry, Delft University of Technology, 2628BL/136 Delft (Netherlands); Kearley, Gordon J. [Bragg Institute, Australian Nuclear Science and Technology Organisation, Menai, NSW 2234 (Australia)

    2014-01-07

    Discotic liquid crystalline (DLC) charge transfer (CT) complexes combine visible light absorption and rapid charge transfer characteristics, being favorable properties for photovoltaic (PV) applications. We present a detailed study of the electronic and vibrational properties of the prototypic 1:1 mixture of discotic 2,3,6,7,10,11-hexakishexyloxytriphenylene (HAT6) and 2,4,7-trinitro-9-fluorenone (TNF). It is shown that intermolecular charge transfer occurs in the ground state of the complex: a charge delocalization of about 10{sup −2} electron from the HAT6 core to TNF is deduced from both Raman and our previous NMR measurements [L. A. Haverkate, M. Zbiri, M. R. Johnson, B. Deme, H. J. M. de Groot, F. Lefeber, A. Kotlewski, S. J. Picken, F. M. Mulder, and G. J. Kearley, J. Phys. Chem. B 116, 13098 (2012)], implying the presence of permanent dipoles at the donor-acceptor interface. A combined analysis of density functional theory calculations, resonant Raman and UV-VIS absorption measurements indicate that fast relaxation occurs in the UV region due to intramolecular vibronic coupling of HAT6 quinoidal modes with lower lying electronic states. Relatively slower relaxation in the visible region the excited CT-band of the complex is also indicated, which likely involves motions of the TNF nitro groups. The fast quinoidal relaxation process in the hot UV band of HAT6 relates to pseudo-Jahn-Teller interactions in a single benzene unit, suggesting that the underlying vibronic coupling mechanism can be generic for polyaromatic hydrocarbons. Both the presence of ground state CT dipoles and relatively slow relaxation processes in the excited CT band can be relevant concerning the design of DLC based organic PV systems.

  13. Effect of metal nanoparticles on energy spectra and optical properties of peripheral light-harvesting LH2 complexes from photosynthetic bacteria

    International Nuclear Information System (INIS)

    Goliney, I.Yu.; Sugakov, V.I.; Valkunas, L.; Vertsimakha, G.V.

    2012-01-01

    Highlights: ► Excitons of light-harvesting complexes (LH2) hybridize with plasmon modes. ► Light absorption of LH2 is enhanced by a metal nanoparticle. ► Using nanoshells allows reaching resonance between molecular and plasmons. ► Metal nanoparticles introduce additional channel of excitation decay. ► Light-harvesting may gain from the proper positioning of nanoshells. -- Abstract: The paper explores the theoretical possibility of affecting optical spectra and the quantum yield of the energy transfer in the peripheral light-harvesting complexes (LH2) from photosynthetic bacteria by placing a metal nanoparticle or a nanoshell nearby. An increased probability of the excitonic transition in the LH2 arises due to the borrowing of the oscillator strength from surface plasmons of the metal particle or the nanoshell. While both absorption and quenching of the excitations increase in the vicinity to a metal nanoparticle, having opposite effects, the total yield of the excitation transfer to reaction centers is shown to grow in the certain range of parameters.

  14. Effect of metal nanoparticles on energy spectra and optical properties of peripheral light-harvesting LH2 complexes from photosynthetic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Goliney, I.Yu., E-mail: igoliney@kinr.kiev.ua [Institute for Nuclear Research, National Academy of Science of Ukraine, 47 Nauki pr., 03680 Kyiv (Ukraine); Sugakov, V.I. [Institute for Nuclear Research, National Academy of Science of Ukraine, 47 Nauki pr., 03680 Kyiv (Ukraine); Valkunas, L. [Center for Physical Sciences and Technology, Savanoriu Ave. 231, 02300 Vilnius (Lithuania); Department of Theoretical Physics, Vilnius University, Sauletekio 9, Build. 3, 10222 Vilnius (Lithuania); Vertsimakha, G.V. [Institute for Nuclear Research, National Academy of Science of Ukraine, 47 Nauki pr., 03680 Kyiv (Ukraine)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Excitons of light-harvesting complexes (LH2) hybridize with plasmon modes. Black-Right-Pointing-Pointer Light absorption of LH2 is enhanced by a metal nanoparticle. Black-Right-Pointing-Pointer Using nanoshells allows reaching resonance between molecular and plasmons. Black-Right-Pointing-Pointer Metal nanoparticles introduce additional channel of excitation decay. Black-Right-Pointing-Pointer Light-harvesting may gain from the proper positioning of nanoshells. -- Abstract: The paper explores the theoretical possibility of affecting optical spectra and the quantum yield of the energy transfer in the peripheral light-harvesting complexes (LH2) from photosynthetic bacteria by placing a metal nanoparticle or a nanoshell nearby. An increased probability of the excitonic transition in the LH2 arises due to the borrowing of the oscillator strength from surface plasmons of the metal particle or the nanoshell. While both absorption and quenching of the excitations increase in the vicinity to a metal nanoparticle, having opposite effects, the total yield of the excitation transfer to reaction centers is shown to grow in the certain range of parameters.

  15. Fluorescence spectra and collisional energy transfer of YO (A2PIsub(1/2, 3/2)) molecules in flames

    International Nuclear Information System (INIS)

    Wijchers, T.

    1981-01-01

    The aim of this investigation was (a) to determine, from fluorescence spectra in the visible, the normalized, radiatively induced extra populations of vibronic levels of a diatomic metal compound; (b) to calculate therefrom the normalized collisional transition probabilities between vibrational levels in an excited electronic state. Yttrium monoixde (YO) was chosen as the metal compound and A 2 PIsub(1/2,3/2) as the state(s) to be investigated. (Auth.)

  16. Optical waveguiding and temperature dependent photoluminescence of nanotubulars grown from molecular building blocks

    DEFF Research Database (Denmark)

    Maibohm, Christian; Rastedt, Maren; Kutscher, Frauke

    2013-01-01

    -Tbf). The propagating blue light is strongly attenuated due to self-absorption. Vibronic spectra for both nanotubulars and macroscopic crystallites for temperatures between 5 and 300 K show a behavior of TMS-Tbf that resembles that of long chained molecules while 17H-TbF resembles that of small organic molecules...

  17. BETA SPECTRA. I. Negatrons spectra

    International Nuclear Information System (INIS)

    Grau Malonda, A.; Garcia-Torano, E.

    1978-01-01

    Using the Fermi theory of beta decay, the beta spectra for 62 negatrons emitters have been computed introducing a correction factor for unique forbidden transitions. These spectra are plotted vs. energy, once normal i sed, and tabulated with the related Fermi functions. The average and median energies are calculated. (Author)

  18. Raman spectra of lithium compounds

    Science.gov (United States)

    Gorelik, V. S.; Bi, Dongxue; Voinov, Y. P.; Vodchits, A. I.; Gorshunov, B. P.; Yurasov, N. I.; Yurasova, I. I.

    2017-11-01

    The paper is devoted to the results of investigating the spontaneous Raman scattering spectra in the lithium compounds crystals in a wide spectral range by the fibre-optic spectroscopy method. We also present the stimulated Raman scattering spectra in the lithium hydroxide and lithium deuteride crystals obtained with the use of powerful laser source. The symmetry properties of the lithium hydroxide, lithium hydroxide monohydrate and lithium deuteride crystals optical modes were analyzed by means of the irreducible representations of the point symmetry groups. We have established the selection rules in the Raman and infrared absorption spectra of LiOH, LiOH·H2O and LiD crystals.

  19. Molecular near-field antenna effect in resonance hyper-Raman scattering: Intermolecular vibronic intensity borrowing of solvent from solute through dipole-dipole and dipole-quadrupole interactions

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Rintaro; Hamaguchi, Hiro-o, E-mail: hhama@nctu.edu.tw [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan (China)

    2014-05-28

    We quantitatively interpret the recently discovered intriguing phenomenon related to resonance Hyper-Raman (HR) scattering. In resonance HR spectra of all-trans-β-carotene (β-carotene) in solution, vibrations of proximate solvent molecules are observed concomitantly with the solute β-carotene HR bands. It has been shown that these solvent bands are subject to marked intensity enhancements by more than 5 orders of magnitude under the presence of β-carotene. We have called this phenomenon the molecular-near field effect. Resonance HR spectra of β-carotene in benzene, deuterated benzene, cyclohexane, and deuterated cyclohexane have been measured precisely for a quantitative analysis of this effect. The assignments of the observed peaks are made by referring to the infrared, Raman, and HR spectra of neat solvents. It has been revealed that infrared active and some Raman active vibrations are active in the HR molecular near-field effect. The observed spectra in the form of difference spectra (between benzene/deuterated benzene and cyclohexane/deuterated cyclohexane) are quantitatively analyzed on the basis of the extended vibronic theory of resonance HR scattering. The theory incorporates the coupling of excited electronic states of β-carotene with the vibrations of a proximate solvent molecule through solute–solvent dipole–dipole and dipole–quadrupole interactions. It is shown that the infrared active modes arise from the dipole–dipole interaction, whereas Raman active modes from the dipole–quadrupole interaction. It is also shown that vibrations that give strongly polarized Raman bands are weak in the HR molecular near-field effect. The observed solvent HR spectra are simulated with the help of quantum chemical calculations for various orientations and distances of a solvent molecule with respect to the solute. The observed spectra are best simulated with random orientations of the solvent molecule at an intermolecular distance of 10 Å.

  20. ExoCross: Spectra from molecular line lists

    Science.gov (United States)

    Yurchenko, Sergei N.; Al-Refaie, Ahmed; Tennyson, Jonathan

    2018-03-01

    ExoCross generates spectra and thermodynamic properties from molecular line lists in ExoMol, HITRAN, or several other formats. The code is parallelized and also shows a high degree of vectorization; it works with line profiles such as Doppler, Lorentzian and Voigt and supports several broadening schemes. ExoCross is also capable of working with the recently proposed method of super-lines. It supports calculations of lifetimes, cooling functions, specific heats and other properties. ExoCross converts between different formats, such as HITRAN, ExoMol and Phoenix, and simulates non-LTE spectra using a simple two-temperature approach. Different electronic, vibronic or vibrational bands can be simulated separately using an efficient filtering scheme based on the quantum numbers.

  1. Use of neural network based auto-associative memory as a data compressor for pre-processing optical emission spectra in gas thermometry with the help of neural network

    International Nuclear Information System (INIS)

    Dolenko, S.A.; Filippov, A.V.; Pal, A.F.; Persiantsev, I.G.; Serov, A.O.

    2003-01-01

    Determination of temperature from optical emission spectra is an inverse problem that is often very difficult to solve, especially when substantial noise is present. One of the means that can be used to solve such a problem is a neural network trained on the results of modeling of spectra at different temperatures (Dolenko, et al., in: I.C. Parmee (Ed.), Adaptive Computing in Design and Manufacture, Springer, London, 1998, p. 345). Reducing the dimensionality of the input data prior to application of neural network can increase the accuracy and stability of temperature determination. In this study, such pre-processing is performed with another neural network working as an auto-associative memory with a narrow bottleneck in the hidden layer. The improvement in the accuracy and stability of temperature determination in presence of noise is demonstrated on model spectra similar to those recorded in a DC-discharge CVD reactor

  2. Vibronic intensities for Er{sup 3+} in Cs{sub 2} NaErCl{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Acevedo, R.; Navarro, G. [Departamento de Quimica Basica, Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile, Beauchef 850, Casilla 2777, Santiago (Chile); Meruane, T. [Universidad Metropolitana de Ciencias y Educacion, Av. Jose Pedro Alessandri 774, Casilla 147-C Santiago (Chile)

    2001-07-01

    In this current study, we have undertaken vibronic intensity calculations for the absorptions (({sup 4}I{sub 15/2}) {gamma}{sub k}) {yields} (({sup 4}I{sub 13/2}) {gamma}{sub l}) of the Er{sup 3+} in the Cs{sub 2}NaErCl{sub 6} elpasolite type system. This system is extremely complicated to handle from both a theoretical and an experimental viewpoints. This theoretical work shows that over an energy range of about 400 cm{sup -1}, a substantial amount of transitions are likely to take place (about 100 transitions; twenty five of them are magnetic dipole allowed and seventy five are vibronically allowed). It is then a formidable task to identify and assign all of these transitions in a non-ambiguous way. Also the experimental evidence available for these absorptions is related to a total of about twenty lines in the luminescence spectrum of this system. The spectrum itself is very challenging and the superposition of spectral features is most likely to occur. A careful analysis of the calculated vibronic intensities and overall oscillator strengths for the various transitions indicates that the current model used is both flexible and appropriate to deal with this kind of systems. In a forthcoming paper, we will examine the rather unusual high intensity associated with the (({sup 4}I{sub 15/2}) {gamma}{sub k}) {yields} (({sup 4}S{sub 3/2}) {gamma}{sub l}) excitations. (Author)

  3. Study of atmospheric air AC glow discharge using optical emission spectroscopy and near infrared diode laser cavity ringdown spectroscopy

    Science.gov (United States)

    Srivastava, Nimisha; Wang, Chuji; Dibble, Theodore S.

    2008-11-01

    AC glow discharges were generated in atmospheric pressure by applying high voltage AC in the range of 3500-15000 V to a pair of stainless steel electrodes separated by an air gap. The discharges were characterized by optical emission spectroscopy (OES) and continuous wave cavity ringdown spectroscopy (cw-CRDS). The electronic (Tex), vibrational (Tv), and rotational (Tr) temperatures were measured. Spectral stimulations of the emission spectra of several vibronic bands of the 2^nd positive system of N2, the 1^st negative system of N2^+, the (0,1,2,3-0) bands of NO (A-X), and the (0-0) band of OH (A-X), which were obtained under various plasma operating conditions, show that Tr, Tv, and Tex are in the ranges of 2000 - 3800, 3500 - 5000, and 6000 - 10500^ K, respectively. Emission spectra show that OH concentration increases while NO concentration decreases with an increase of electrode spacing. The absorption spectra of H2O and OH overtone in the near infrared (NIR) were measured by the cw-CRDS with a telecommunications diode laser at wavelength near 1515 nm.

  4. Carotenoid-to-bacteriochlorophyll energy transfer through vibronic coupling in LH2 from Phaeosprillum molischianum.

    Science.gov (United States)

    Thyrhaug, Erling; Lincoln, Craig N; Branchi, Federico; Cerullo, Giulio; Perlík, Václav; Šanda, František; Lokstein, Heiko; Hauer, Jürgen

    2018-03-01

    The peripheral light-harvesting antenna complex (LH2) of purple photosynthetic bacteria is an ideal testing ground for models of structure-function relationships due to its well-determined molecular structure and ultrafast energy deactivation. It has been the target for numerous studies in both theory and ultrafast spectroscopy; nevertheless, certain aspects of the convoluted relaxation network of LH2 lack a satisfactory explanation by conventional theories. For example, the initial carotenoid-to-bacteriochlorophyll energy transfer step necessary on visible light excitation was long considered to follow the Förster mechanism, even though transfer times as short as 40 femtoseconds (fs) have been observed. Such transfer times are hard to accommodate by Förster theory, as the moderate coupling strengths found in LH2 suggest much slower transfer within this framework. In this study, we investigate LH2 from Phaeospirillum (Ph.) molischianum in two types of transient absorption experiments-with narrowband pump and white-light probe resulting in 100 fs time resolution, and with degenerate broadband 10 fs pump and probe pulses. With regard to the split Q x band in this system, we show that vibronically mediated transfer explains both the ultrafast carotenoid-to-B850 transfer, and the almost complete lack of transfer to B800. These results are beyond Förster theory, which predicts an almost equal partition between the two channels.

  5. Quantum phase transition in the U(4) vibron model and the E(3) symmetry

    International Nuclear Information System (INIS)

    Zhang Yu; Hou Zhanfeng; Chen Huan; Wei Haiqing; Liu Yuxin

    2008-01-01

    We study the details of the U(3)-O(4) quantum phase transition in the U(4) vibron model. Both asymptotic analysis in the classical limit and rigorous calculations for finite boson number systems indicate that a second-order phase transition is still there even for the systems with boson number N ranging from tens to hundreds. Two kinds of effective order parameters, including E1 transition ratios B(E1:2 1 →1 1 )/B(E1:1 1 →0 1 ) and B(E1:0 2 →1 1 )/B(E1:1 1 →0 1 ), and the energy ratios E 2 1 /E 0 2 and E 3 1 /E 0 2 are proposed to identify the second-order phase transition in experiments. We also found that the critical point of phase transition can be approximately described by the E(3) symmetry, which persists even for moderate N∼10 protected by the scaling behaviors of quantities at the critical point. In addition, a possible empirical example exhibiting roughly the E(3) symmetry is discussed

  6. Effect of isotopic substitution on the collisional quenching of vibronically excited CO+

    International Nuclear Information System (INIS)

    Katayama, D.H.; Welsh, J.A.

    1983-01-01

    Rovibronic levels of the A 2 Pi/sub i/ state for 12 C 16 O + and 13 C 16 O + have been selectively excited by a pulsed, tunable dye laser and their time resolved fluorescence obtained as a function of helium pressure. These ions are formed by reaction of neutral carbon monoxide with helium metastable atoms created in a dc discharge. Since 13 CO + has essentially the same potential energy curves as 12 CO + , but differs primarily in its vibrational energy spacings, this experiment accentuates the role, in the collisional deactivation process, of the high lying ground state vibrational levels which are adjacent to the laser populated vibronic levels of the A 2 Pi/sub i/ state. Quenching rates are determined for the v' = 0, 1, and 2 levels which have relatively insignificant isotope shifts of a few wave numbers for the two isotopes. The difference in rates for the two isotopic ions demonstrates the importance of the positions for the high lying v'' = 10 and 11 ground state levels which have large isotope shifts of hundreds of wave numbers. A discussion of the deactivation process is given in terms of perturbations, Franck--Condon factors, energy gaps, and other considerations

  7. Ultrafast vibronic dynamics of dye molecules studied by the induced grating method

    International Nuclear Information System (INIS)

    Liu, C.H.; Troeger, P.; Laubereau, A.

    1985-08-01

    Previous work on transient polarization spectroscopy applying the induced grating technique concentrated on the time scale > 10 -11 s. Only one earlier study on a shorter time scale showed the occurrence of the so-called coherence peak without a detailed explanation for this phenomena. We report new theoretical and experimental data on a polarization effect that occurs in the nonlinear Rayleigh scattering of delayed probing pulses from induced population gratings. The periodic population changes are generated by two synchronized pumping pulses of the same frequency. Model calculations are presented, which carefully evaluate the orientational distribution and give quantitative information on the scattering signal for various polarization conditions. The scattering mechanism for the coherence peak is explained as a two step process with one photon absorption and emission process; it depends on the vibronic relaxation of the terminating level in the excited electronic state. Experimental results are reported for the vibrational and orientational relaxation times. For example values of tausub(v)=0.2+-0.2 ps and tausub(v)=0.8+-0.3 ps are measured respectively for Rhodamine 6G in ethanol and phenoxazone 9 in dioxane. Our three-beam transient grating technique under general polarization conditions can be used for the study of a variety of dynamic processes of molecules in the excited electronic or ground state. An important advantage compared to nonlinear absorption or induced dichroism techniques is that the scattering method avoids undesirable background signals. (author)

  8. Optics

    CERN Document Server

    Mathieu, Jean Paul

    1975-01-01

    Optics, Parts 1 and 2 covers electromagnetic optics and quantum optics. The first part of the book examines the various of the important properties common to all electromagnetic radiation. This part also studies electromagnetic waves; electromagnetic optics of transparent isotropic and anisotropic media; diffraction; and two-wave and multi-wave interference. The polarization states of light, the velocity of light, and the special theory of relativity are also examined in this part. The second part is devoted to quantum optics, specifically discussing the classical molecular theory of optical p

  9. [Study on Hexagonal Super-Lattice Pattern with Light Spot and Dim Spot in Dielectric Barrier Discharge by Optical Emission Spectra].

    Science.gov (United States)

    Liu, Ying; Dong, Li-fang; Niu, Xue-jiao; Zhang, Chao

    2016-02-01

    The hexagonal super-lattice pattern composed of the light spot and the dim spot is firstly observed and investigated in the discharge of gas mixture of air and argon by using the dielectric barrier discharge device with double water electrodes. It is found that the dim spot is located at the center of its surrounding three light spots by observing the discharge image. Obviously, the brightness of the light spot and the dim spot are different, which indicates that the plasma states of the light spot and the dim spot may be different. The optical emission spectrum method is used to further study the several plasma parameters of the light spot and the dim spot in different argon content. The emission spectra of the N₂ second positive band (C³IIu --> B³IIg) are measured, from which the molecule vibration temperatures of the light spot and the dim spot are calculated. Based on the relative intensity ratio of the line at 391.4 nm and the N₂ line at 394.1 nm, the average electron energies of the light spot and the dim spot are investigated. The broadening of spectral line 696.57 nm (2P₂-1S₅) is used to study the electron densities of the light spot and the dim spot. The experiment shows that the molecule vibration temperature, average electron energy and the electron density of the dim spot are higher than those of the light spot in the same argon content. The molecule vibration temperature and electron density of the light spot and dim spot increase with the argon content increasing from 70% to 95%, while average electron energies of the light spot and dim spot decrease gradually. The short-exposure image recorded by a high speed video camera shows that the dim spot results from the surface discharges (SDs). The surface discharge induced by the volume discharge (VD) has the decisive effect on the formation of the dim spot. The experiment above plays an important role in studying the formation mechanism of the hexagonal super-lattice pattern with light spot and

  10. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Ninth Edition Optics: Ninth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommen

  11. Investigating the optical modes of InxGa1xN alloy and In0.5Ga0.5N/GaN MQW in far-infrared reflectivity spectra

    International Nuclear Information System (INIS)

    Mirjalili, G.; Amraei, R.

    2006-01-01

    Optical properties of In x Ga 1 x N alloy and In 0 .5Ga 0 .5N/GaN multi quantum wells have been investigated in the region of far infrared. Far-IR reflectivity spectra of In 0 .5Ga 0 .5N/GaN multi quantum wells on GaAs substrate have been obtained by oblique incidence p- and s- polarization light using effective medium approximation. The spectra and the dielectric functions response give a good information about the phonon and plasmon contribution in doped MQW as well as the mole fraction of compounds in the alloys. The changes in position of optical modes are good tools for measurement of the amount of free carrier and the amount of mole fraction in the samples. During study of In x Ga 1 x N reflectivity spectra, two distinct reststrahl bands with frequency near those of pure InN and GaN were observed over entire composition range. Each band shifts to lower frequencies and decreases in amplitude as the concentration of corresponding compound in alloy decreased. Analysis of dielectric function gives the TO-like and LO-like mode frequencies. The changes in LO mode frequencies, due to coupling of phonon-plasmon, have been observed

  12. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Eighth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommended for engineering st

  13. Vibrational analysis of various irotopes of L-alanyl-L-alanine in aqueous solution: Vibrational Absorption (VA), Vibrational Circular Dichroism (VCD), Raman and Raman Optical Activity (ROA) Spectra

    DEFF Research Database (Denmark)

    Jalkanen, Karl J.; Nieminen, R.M.; Knapp-Mohammady, M.

    2003-01-01

    . DFT Becke3LYP/6-31G* theory has been used to determine the geometry, Hessian, atomic polar tensors (APT), and atomic axial tensors (AAT), and the electric dipole-electric dipole polarizability derivatives (EDEDPD), which are required for us to simulate the VA, VCD, and Raman spectra. The electric...

  14. Rapid, nondestructive estimation of surface polymer layer thickness using attenuated total reflection fourier transform infrared (ATR FT-IR) spectroscopy and synthetic spectra derived from optical principles.

    Science.gov (United States)

    Weinstock, B André; Guiney, Linda M; Loose, Christopher

    2012-11-01

    We have developed a rapid, nondestructive analytical method that estimates the thickness of a surface polymer layer with high precision but unknown accuracy using a single attenuated total reflection Fourier transform infrared (ATR FT-IR) measurement. Because the method is rapid, nondestructive, and requires no sample preparation, it is ideal as a process analytical technique. Prior to implementation, the ATR FT-IR spectrum of the substrate layer pure component and the ATR FT-IR and real refractive index spectra of the surface layer pure component must be known. From these three input spectra a synthetic mid-infrared spectral matrix of surface layers 0 nm to 10,000 nm thick on substrate is created de novo. A minimum statistical distance match between a process sample's ATR FT-IR spectrum and the synthetic spectral matrix provides the thickness of that sample. We show that this method can be used to successfully estimate the thickness of polysulfobetaine surface modification, a hydrated polymeric surface layer covalently bonded onto a polyetherurethane substrate. A database of 1850 sample spectra was examined. Spectrochemical matrix-effect unknowns, such as the nonuniform and molecularly novel polysulfobetaine-polyetherurethane interface, were found to be minimal. A partial least squares regression analysis of the database spectra versus their thicknesses as calculated by the method described yielded an estimate of precision of ±52 nm.

  15. Spectra from 2.5-15 μm of tissue phantom materials, optical clearing agents and ex vivo human skin: implications for depth profiling of human skin

    International Nuclear Information System (INIS)

    Viator, John A; Choi, Bernard; Peavy, George M; Kimel, Sol; Nelson, J Stuart

    2003-01-01

    Infrared measurements have been used to profile or image biological tissue, including human skin. Usually, analysis of such measurements has assumed that infrared absorption is due to water and collagen. Such an assumption may be reasonable for soft tissue, but introduction of exogenous agents into skin or the measurement of tissue phantoms has raised the question of their infrared absorption spectrum. We used Fourier transform infrared spectroscopy in attenuated total reflection mode to measure the infrared absorption spectra, in the range of 2-15 μm, of water, polyacrylamide, Intralipid, collagen gels, four hyperosmotic clearing agents (glycerol, 1,3-butylene glycol, trimethylolpropane, Topicare TM ), and ex vivo human stratum corneum and dermis. The absorption spectra of the phantom materials were similar to that of water, although additional structure was noted in the range of 6-10 μm. The absorption spectra of the clearing agents were more complex, with molecular absorption bands dominating between 6 and 12 μm. Dermis was similar to water, with collagen structure evident in the 6-10 μm range. Stratum corneum had a significantly lower absorption than dermis due to a lower content of water. These results suggest that the assumption of water-dominated absorption in the 2.5-6 μm range is valid. At longer wavelengths, clearing agent absorption spectra differ significantly from the water spectrum. This spectral information can be used in pulsed photothermal radiometry or utilized in the interpretation of reconstructions in which a constant μ ir is used. In such cases, overestimating μ ir will underestimate chromophore depth and vice versa, although the effect is dependent on actual chromophore depth. (note)

  16. IDEN2-A program for visual identification of spectral lines and energy levels in optical spectra of atoms and simple molecules

    Science.gov (United States)

    Azarov, V. I.; Kramida, A.; Vokhmentsev, M. Ya.

    2018-04-01

    The article describes a Java program that can be used in a user-friendly way to visually identify spectral lines observed in complex spectra with theoretically predicted transitions between atomic or molecular energy levels. The program arranges various information about spectral lines and energy levels in such a way that line identification and determination of positions of experimentally observed energy levels become much easier tasks that can be solved fast and efficiently.

  17. Unified explanation for optical and electron paramagnetic resonance spectra of Cr sup 3 sup + ions in LiNbO sub 3 crystals

    CERN Document Server

    Zhao, M G

    1997-01-01

    An approximately microscopic model is developed for the Cr sup 3 sup + -6O sup 2 sup - cluster and applied to study the optical data and electron paramagnetic resonance (EPR) g-factors and the zero-field splitting D-value in LiNbO sub 3 :Cr sup 3 sup +. Analysis of the optical and EPR data indicate that Cr sup 3 sup + ions substitute at Nb sites and Nb-vacancy (Li) sites simultaneously. The results are in good agreement with the experimental findings. This means that the optical and EPR data and the substitution site of Cr sup 3 sup + ions in LiNbO sub 3 can be interpreted uniformly. (author)

  18. An investigation on the effect of gamma-irradiation on the optical absorption spectra in Cu(II) doped ammonium Tetrachlorozincate (ATZC) single crystals

    International Nuclear Information System (INIS)

    Abu El-Fadl, A.; Mohamad, G.A.; Abd El-Sttar, M.

    2003-01-01

    Optical transmittance measurements were carried out on Ammonium tetrachlorozincate (ATZC) crystals doped with small concentrations of Cu 2+ ions and irradiated with different doses of gamma-radiation. The absorption coefficient (alpha) and the extinction coefficient (K) of unirradiated and irradiated ATZC crystals were calculated. Valued of the allowed indirect optical energy gap (E g ) of ATZC were calculated as a function of gamma-dose. The effect of gamma irradiation is to increase in the absorption coefficient value and to decrease in E g value. The results could be explained in the fact that gamma irradiation produces defects of ionizing type because of internal irradiation with photon or Compton electrons

  19. Mixed-valence molecular four-dot unit for quantum cellular automata: Vibronic self-trapping and cell-cell response.

    Science.gov (United States)

    Tsukerblat, Boris; Palii, Andrew; Clemente-Juan, Juan Modesto; Coronado, Eugenio

    2015-10-07

    Our interest in this article is prompted by the vibronic problem of charge polarized states in the four-dot molecular quantum cellular automata (mQCA), a paradigm for nanoelectronics, in which binary information is encoded in charge configuration of the mQCA cell. Here, we report the evaluation of the electronic levels and adiabatic potentials of mixed-valence (MV) tetra-ruthenium (2Ru(ii) + 2Ru(iii)) derivatives (assembled as two coupled Creutz-Taube complexes) for which molecular implementations of quantum cellular automata (QCA) was proposed. The cell based on this molecule includes two holes shared among four spinless sites and correspondingly we employ the model which takes into account the two relevant electron transfer processes (through the side and through the diagonal of the square) as well as the difference in Coulomb energies for different instant positions of localization of the hole pair. The combined Jahn-Teller (JT) and pseudo JT vibronic coupling is treated within the conventional Piepho-Krauzs-Schatz model adapted to a bi-electronic MV species with the square-planar topology. The adiabatic potentials are evaluated for the low lying Coulomb levels in which the antipodal sites are occupied, the case just actual for utilization in mQCA. The conditions for the vibronic self-trapping in spin-singlet and spin-triplet states are revealed in terms of the two actual transfer pathways parameters and the strength of the vibronic coupling. Spin related effects in degrees of the localization which are found for spin-singlet and spin-triplet states are discussed. The polarization of the cell is evaluated and we demonstrate how the partial delocalization caused by the joint action of the vibronic coupling and electron transfer processes influences polarization of a four-dot cell. The results obtained within the adiabatic approach are compared with those based on the numerical solution of the dynamic vibronic problem. Finally, the Coulomb interaction between

  20. The comparison of the optical spectra of carbon coatings prepared by magnetron sputtering and microwave plasma enhanced chemical vapor deposition measured by the photothermal deflection spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Remeš, Zdeněk; Pham, T.T.; Varga, Marián; Kromka, Alexander; Mao, H.B.

    2015-01-01

    Roč. 7, č. 4 (2015), s. 321-324 ISSN 2164-6627 R&D Projects: GA MŠk LH12186 Institutional support: RVO:68378271 Keywords : nanocrystalline diamond * amorphous carbon * magnetron sputtering * CVD * optical spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism

  1. Electronic structure optical spectra and contact hyperfine parameters of CoF64- complex in LiF and KMgF3

    International Nuclear Information System (INIS)

    Albuquerque, E.L. de.

    1975-12-01

    The electronic structure, the optical absorption bands and the magnetic hyperfine contact terms have been calculated for CoF 6 4- cluster in LiF and KMgF 3 using the Self-Consistent-Field Multiple-Scattering Xα Method. The results obtained are compared with experiment and indicate that this scheme is convenient to treat such complex problems. (Author) [pt

  2. Optical band gap and Raman spectra in AxB0.2-x(TeO2)0.8 glasses

    Czech Academy of Sciences Publication Activity Database

    Ožďanová, J.; Tichá, H.; Tichý, Ladislav

    2010-01-01

    Roč. 12, č. 5 (2010), s. 1024-1029 ISSN 1454-4164 Institutional research plan: CEZ:AV0Z40500505 Keywords : telluride glasses * optical band gap * Raman scattering Subject RIV: CA - Inorganic Chemistry Impact factor: 0.412, year: 2010 http://joam.inoe.ro/index.php?option=magazine&op=view&idu=2453&catid=50

  3. Composite Spectra Paper 1: HR 6902

    Indian Academy of Sciences (India)

    tribpo

    spectra; in many cases we have used the maximum width permitted by the optics of ... 10 mЕ, corresponding to 1 µm the plate, are the norm. ..... an inequality ..... on the spectra of HR 6902, we have thought it appropriate to weight the four ...

  4. Vibronic interactions proceeding from combined analytical and numerical considerations: Covalent functionalization of graphene by benzene, distortions, electronic transitions

    Energy Technology Data Exchange (ETDEWEB)

    Krasnenko, V.; Boltrushko, V.; Hizhnyakov, V. [Institute of Physics, University of Tartu, W. Ostwaldi Str 1, 50411 Tartu (Estonia)

    2016-04-07

    Chemically bound states of benzene molecules with graphene are studied both analytically and numerically. The states are formed by switching off intrabonds of π-electrons in C{sub 6} rings to interbonds. A number of different undistorted and distorted structures are established both with aligned and with transversal mutual orientation of benzene and graphene. The vibronic interactions causing distortions of bound states are found, by using a combination of analytical and numerical considerations. This allows one to determine all electronic transitions of π-electrons without explicit numerical calculations of excited states, to find the conical intersections of potentials, and to show that the mechanism of distortions is the pseudo-Jahn-Teller effect. It is found that the aligned distorted benzene molecule placed between two graphene sheets makes a chemical bond with both of them, which may be used for fastening of graphene sheets together.

  5. THE DISCOVERY OF PERIODIC MODULATIONS IN THE OPTICAL SPECTRA OF GALAXIES, POSSIBLY DUE TO ULTRARAPID LIGHT BURSTS FROM THEIR MASSIVE CENTRAL BLACK HOLES

    Energy Technology Data Exchange (ETDEWEB)

    Borra, Ermanno F., E-mail: borra@phy.ulaval.ca [Centre d' Optique, Photonique et Laser, Departement de Physique, Universite Laval, Quebec, G1K 7P4 Quebec (Canada)

    2013-09-10

    A Fourier transform analysis of 2.5 million spectra in the SDSS survey was carried out to detect periodic modulations contained in the intensity versus frequency spectrum. A statistically significant signal was found for 223 galaxies, while the spectra of 0.9 million galaxies were observed. A plot of the periods as a function of redshift clearly shows that the effect is real without any doubt, because the modulations are quantized at two base periods that increase with redshift in two very tight parallel linear relations. We suggest that this result could be caused by light bursts separated by times on the order of 10{sup -13} s, but other causes may be possible. We investigate the hypothesis that the modulation is generated by the Fourier transform of spectral lines, but conclude that this hypothesis is not valid. Although the light burst suggestion implies absurdly high temperatures, it is supported by the fact that the Crab pulsar also has extremely short unresolved pulses (<0.5 ns) that imply similarly high temperatures. Furthermore, the radio spectrum of the Crab pulsar also has spectral bands similar to those that have been detected. Finally, decreasing the signal-to-noise threshold of detection gives results consistent with beamed signals having a small beam divergence, as expected from non-thermal sources that send a jet, like those seen in pulsars. Considering that galaxy centers contain massive black holes, exotic black hole physics may be responsible for the spectral modulation. However, at this stage, this idea is only a hypothesis to be confirmed with further work.

  6. Investigation of glutathione-derived electrostatic and hydrogen-bonding interactions and their role in defining Grx5 [2Fe-2S] cluster optical spectra and transfer chemistry.

    Science.gov (United States)

    Sen, Sambuddha; Bonfio, Claudia; Mansy, Sheref S; Cowan, J A

    2018-03-01

    Human glutaredoxin 5 (Grx5) is one of the core components of the Isc (iron-sulfur cluster) assembly and trafficking machinery, and serves as an intermediary cluster carrier, putatively delivering cluster from the Isu scaffold protein to target proteins. The tripeptide glutathione is intimately involved in this role, providing cysteinyl coordination to the iron center of the Grx5-bound [2Fe-2S] cluster. Grx5 has a well-defined glutathione-binding pocket with protein amino acid residues providing many ionic and hydrogen binding contacts to the bound glutathione. In this report, we investigated the importance of these interactions in cluster chirality and exchange reactivity by systematically perturbing the crucial contacts by use of natural and non-natural amino acid substitutions to disrupt the binding contacts from both the protein and glutathione. Native Grx5 could be reconstituted with all of the glutathione analogs used, as well as other thiol ligands, such as DTT or L-cysteine, by in vitro chemical reconstitution, and the holo proteins were found to transfer [2Fe-2S] cluster to apo ferredoxin 1 at comparable rates. However, the circular dichroism spectra of these derivatives displayed prominent differences that reflect perturbations in local cluster chirality. These studies provided a detailed molecular understanding of glutathione-protein interactions in holo Grx5 that define both cluster spectroscopy and exchange chemistry.

  7. Comparison of linear and nonlinear optical spectra of various ZnO epitaxial layers and of bulk material obtained by different experimental techniques

    Energy Technology Data Exchange (ETDEWEB)

    Priller, H.; Brueckner, J.; Klingshirn, C.; Kalt, H. [Institut fuer Angewandte Physik, Universitaet Karlsruhe, Wolfgang-Gaede-Str. 1, 76131 Karlsruhe (Germany); Gruber, Th.; Waag, A. [Abteilung Halbleiterphysik, Universitaet Ulm, Albert Einstein Allee 45, 89081 Ulm (Germany); Ko, H.J.; Yao, T. [Institute for Material Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan)

    2004-03-01

    We investigate ZnO epitaxial layers grown by MBE (Molecular Beam Epitaxy) and MOVPE (Metal Organic Vapor Phase Epitaxy) techniques. The samples show similar optical behavior in temperature dependent photoluminescence measurements, reflection and photoluminescence excitation spectroscopy in the low density regime. High excitation measurements show different behavior. While the MBE sample leads to stimulated emission from the exciton-exciton-scattering, an electron hole plasma is formed in the MOVPE sample which leads to stimulated emission at higher excitation intensities. The gain value measured by the variable stripe length method is much higher for the MBE grown sample. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Thermal characteristics, Raman spectra, optical and structural properties of TiO2-Bi2O3-B2O3-TeO2 glasses

    Science.gov (United States)

    Gupta, Nupur; Khanna, Atul; Gonzàlez, Fernando; Iordanova, Reni

    2017-05-01

    Tellurite and borotellurite glasses containing Bi2O3 and TiO2 were prepared and structure-property correlations were carried out by density measurements, X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Raman and UV-visible spectroscopy. Titanium tellurite glasses require high melt-cooling rates and were fabricated by splat quenching. On adding B2O3, the glass forming ability (GFA) enhances, and glasses could be synthesized at lower quenching rates. The density of glasses shows a direct correlation with molecular mass of the constituents. UV-visible studies were used to determine the optical band gap and refractive index. Raman studies found that the co-ordination number of tellurium ions with oxygen (NTe-O) decreases with the increase in B2O3 as well as Bi2O3 content while, TiO2 produce only a small decrease in NTe-O, which explains the lower GFA of titanium tellurite glasses that do not contain Bi2O3 and B2O3. DSC studies show that the glass transition temperature (Tg) increases with B2O3 and TiO2 concentrations and that Tg correlates well with bond enthalpy of the metal oxides.

  9. Raman scattering signatures of the unusual vibronic interaction of molecules in liquid helium-3

    Energy Technology Data Exchange (ETDEWEB)

    Tehver, I., E-mail: imbi.tehver@ut.ee [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Benedek, G. [Donostia International Physics Center (DIPC) and University of the Basque Country (EHU), Paseo de Lardizabal 4, 20018 Donostia/San Sebastian (Spain); Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, Via Cozzi 53, 20125 Milano (Italy); Hizhnyakov, V. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia)

    2015-10-16

    Highlights: • Theory of resonance Raman scattering (RRS) of molecules in {sup 3}He liquid is proposed. • Fermi excitations give essential contribution to RRS. • RRS spectra of glyoxal molecule in {sup 3}He droplets are calculated. - Abstract: Light scattering in quantum liquid helium-3 may involve a unique mechanism – the creation and annihilation of atom excitations across the Fermi level. The density of states of particle–hole excitations in the low-energy limit is strongly enhanced as compared to that of collective excitations of phonons in helium-3. This makes possible to directly observe Fermi excitations in the resonant Raman scattering (RRS) by {sup 3}He droplets doped by impurity molecules. The RRS spectra essentially depend on the excitation frequency. In case of excitation in the anti-Stokes side of absorption the first order RRS is directly determined by the particle–hole excitations in the vicinity of the impurity molecule and the contribution of phonons mainly given by the localized spherical vibration. The calculations are made for a {sup 3}He droplet doped by a glyoxal molecule.

  10. Contrasts between the vibronic contributions in the tris-(2,2'-bipyridyl)osmium(II) emission spectrum and the implications of resonance-Raman parameters.

    Science.gov (United States)

    Ondongo, Onduru S; Endicott, John F

    2009-04-06

    The emission spectrum of the tris-(2,2'-bipyridine)osmium(II) metal-to-ligand charge transfer (MLCT) excited-state frozen solution at 77 K differs qualitatively from that expected based on its reported resonance-Raman (rR) parameters in that (1) the dominant vibronic contributions to the emission spectrum are in the low frequency regime (corresponding to nuclear displacements in largely to metal-ligand vibrational modes) and these contributions are negligible in the rR; and (2) the amplitude of the emission sideband components that correspond to envelopes of largely bpy centered vibrational modes is about 40% of that expected (relative to the amplitude observed for the band origin) for a simple vibronic progression in these modes. The distortions in low frequency vibrational modes are attributable to configurational mixing between metal centered (LF) and MLCT excited states, and the small amplitudes of the bpy-mode vibronic components may be a consequence of some intrinsic differences of the distortions of the (3)MLCT and (1)MLCT excited states such as the zero-field splitting of the (3)MLCT excited state and the different distortions of these excited-state components.

  11. Anomaly in the P- and R- branches in the spectra of hydrogen Fulcher band emission

    International Nuclear Information System (INIS)

    Kado, Shinichiro; Yamasaki, Daisuke; Iida, Yohei; Xiao Bingjia

    2004-01-01

    Anomalies in the Fulcher-band (d 3 Π u -a 3 Σ g + ) spectra, which are widely used for the purpose of measuring ro-vibronic structure of the hydrogen molecule, are investigated using the hollow cathode glow discharge of 230 V-70 mA at 30 Pa. By making use of the recently developed analyzing scheme and experimentally determined life-time of the state involved, the historical data in the Ginsburg and Dieke's publication are reanalyzed and compared with our present data. Populations of the vibronic state v' ≥ 4 in the Q branch can be corrected to a considerable extend by taking into account the lifetime of the states, while those of any v' in the P and R branches cannot. However, the average values of the upper-Fulcher populations deduced from the P and R branches coincide with those from Q branch by taking into consideration the difference in the excitation from the ground electronic state. (author)

  12. Beta spectra. II-Positron spectra

    International Nuclear Information System (INIS)

    Grau, A.; Garcia-Torano, E.

    1981-01-01

    Using the Fermi theory of beta decay, the beta spectra for 30 positron emitters have been computed, introducing a correction factor for unique forbidden transitions. The spectra are ploted vs. energy, once normalised, and tabulated with the related Fermi functions. The average and median energies are calculated. (author)

  13. The CaO orange system in meteor spectra

    Science.gov (United States)

    Berezhnoy, A. A.; Borovička, J.; Santos, J.; Rivas-Silva, J. F.; Sandoval, L.; Stolyarov, A. V.; Palma, A.

    2018-02-01

    The CaO orange band system was simulated in the region 5900-6300 Å and compared with the experimentally observed spectra of Benešov bolide wake. The required vibronic Einstein emission coefficients were estimated by means of the experimental radiative lifetimes under the simplest Franck-Condon approximation. A moderate agreement was achieved, and the largest uncertainties come from modeling shape of FeO orange bands. Using a simple model the CaO column density in the wake of the Benešov bolide at the height of 29 km was estimated as (5 ± 2) × 1014 cm-2 by a comparison of the present CaO spectra with the AlO bands nicely observed at 4600-5200 Å in the same spectrum. The obtained CaO content is in a good agreement with the quenching model developed for the impact-produced cloud, although future theoretical and experimental studies of both CaO and FeO orange systems contribution would be needed to confirm these results.

  14. Vibrational assignments for the Raman and the phosphorescence spectra of 9,10-anthraquinone and 9,10-anthraquinone-d81

    International Nuclear Information System (INIS)

    Lehmann, K.K.; Smolarek, J.; Khalil, O.S.; Goodman, L.

    1979-01-01

    The Raman spectra of 9,10-anthraquinone (AQ) and 9,10-anthraquinone-d/sub 8/ are examined. Raman band assignments are made from this data and from a published normal coordinate analysis. The Raman spectra of AQ at 5K is reported and vibrational assignments for the phosphorescence spectra of AQ in n-hexane at 4.2 K are reexamined in light of new 3 B 1 /sub g/ → 1 A/sub g/ phosphorescence data. Contrary to previous work from this laboratory, it is concluded that although higher order vibronic interactions may be operative between the two closely spaced 3 A/sub u/- 3 B 1 /sub g/ electronic states, these interactions are not manifested in the phosphorescence spectra of AQ in n-hexane at 4.2 K

  15. Geometric phase effects in low-energy dynamics near conical intersections: A study of the multidimensional linear vibronic coupling model

    International Nuclear Information System (INIS)

    Joubert-Doriol, Loïc; Ryabinkin, Ilya G.; Izmaylov, Artur F.

    2013-01-01

    In molecular systems containing conical intersections (CIs), a nontrivial geometric phase (GP) appears in the nuclear and electronic wave functions in the adiabatic representation. We study GP effects in nuclear dynamics of an N-dimensional linear vibronic coupling (LVC) model. The main impact of GP on low-energy nuclear dynamics is reduction of population transfer between the local minima of the LVC lower energy surface. For the LVC model, we proposed an isometric coordinate transformation that confines non-adiabatic effects within a two-dimensional subsystem interacting with an N − 2 dimensional environment. Since environmental modes do not couple electronic states, all GP effects originate from nuclear dynamics within the subsystem. We explored when the GP affects nuclear dynamics of the isolated subsystem, and how the subsystem-environment interaction can interfere with GP effects. Comparing quantum dynamics with and without GP allowed us to devise simple rules to determine significance of the GP for nuclear dynamics in this model

  16. Enhanced vibronic interaction caused by local lattice symmetry lowering in the (Fe, Mg)As2 ternary system

    Science.gov (United States)

    Pishtshev, A.; Rubin, P.

    2018-04-01

    By means of periodic density functional theory (DFT) electronic structure calculations, we investigate iron-site doping effects in a structural model of bulk FeAs2. Simulations performed within the projector augmented-wave method-Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) functional scheme reveal that the impacts of the two stoichiometric substitutions Fe → Mg and Fe → Ni are radically different with respect to the structural and electronic behavior of the dopants. In particular, unlike the Ni dopant, the Mg dopant incorporated in FeAs2 occupies a noncentral equilibrium position characterized by an off-center displacement from the reference higher-symmetry position. Analysis of the respective electron and vibrational factors allows us to explain this result in terms of the local pseudo Jahn-Teller effect (pJTE). On the basis of DFT calculations, we deduce which electron orbitals and lattice vibrational modes are appropriate for promoting the local instability at the origin of the pJTE. Quantitative evaluations of the pJTE parameters performed within the polyatomic formalism of an effective tight-binding model show that it is just the enhanced vibronic interaction in the Mg-[FeAs6] cluster that is responsible for the local lattice symmetry breaking.

  17. General Notes on Processes and Their Spectra

    Directory of Open Access Journals (Sweden)

    Gustav Cepciansky

    2012-01-01

    Full Text Available The frequency spectrum performs one of the main characteristics of a process. The aim of the paper is to show the coherence between the process and its own spectrum and how the behaviour and properties of a process itself can be deduced from its spectrum. Processes are categorized and general principles of their spectra calculation and recognition are given. The main stress is put on power spectra of electric and optic signals, as they also perform a kind of processes. These spectra can be directly measured, observed and examined by means of spectral analyzers and they are very important characteristics which can not be omitted at transmission techniques in telecommunication technologies. Further, the paper also deals with non electric processes, mainly with processes and spectra at mass servicing and how these spectra can be utilised in praxis.

  18. The Production of Polycyclic Aromatic Hydrocarbon Anions in Inert Gas Matrices Doped with Alkali Metals. Electronic Absorption Spectra of the Pentacene Anion (C22H14(-))

    Science.gov (United States)

    Halasinski, Thomas M.; Hudgins, Douglas M.; Salama, Farid; Allamandola, Louis J.; Mead, Susan (Technical Monitor)

    1999-01-01

    The absorption spectra of pentacene (C22H14) and its radical cation (C22H14(+)) and anion (C22H14(-)) isolated in inert-gas matrices of Ne, Ar, and Kr are reported from the ultraviolet to the near-infrared. The associated vibronic band systems and their spectroscopic assignments are discussed together with the physical and chemical conditions governing ion (and counterion) production in the solid matrix. In particular, the formation of isolated pentacene anions is found to be optimized in matrices doped with alkali metal (Na and K).

  19. Renner-Teller modelling of recent experimental spectra of H{sub 2}S{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Duxbury, Geoffrey [Department of Physics, SUPA, University of Strathclyde, John Anderson Building, 107 Rottenrow, Glagow G4 0NG, Scotland (United Kingdom)

    2015-01-22

    Recently there has been a renewal of interest in the spectroscopy and dynamics of the formation and fragmentation of the hydrogen sulphide ion, including. rotationally resolved spectra of higher vibrational states of the ∼A{sup 2}A{sub 1}−∼X{sup 2}B{sub 1} system than were obtained previously, and a comprehensive imaging study of the photo-fragmentation routes of highly excited H{sub 2}S{sup +}. In collaboration with Ch. Jungen and A. Alijah I have extended our previous l basis approach to the calculation of the effects of orbital angular momentum in H{sub 2}S{sup +} to include the stretch - bender extensions, with the options of using either the K- or l basis. This new code is being used to calculate the complicated orbital angular momentum and spin-orbit coupling effects responsible for the ro-vibronic pattern measured in some of the new experimental results.

  20. Raman dispersion spectroscopy on the highly saddled nickel(II)-octaethyltetraphenylporphyrin reveals the symmetry of nonplanar distortions and the vibronic coupling strength of normal modes

    International Nuclear Information System (INIS)

    Schweitzer-Stenner, R.; Stichternath, A.; Dreybrodt, W.; Jentzen, W.; Song, X.; Shelnutt, J.A.; Nielsen, O.F.; Medforth, C.J.; Smith, K.M.

    1997-01-01

    We have measured the polarized Raman cross sections and depolarization ratios of 16 fundamental modes of nickel octaethyltetraphenylporphyrin in a CS 2 solution for 16 fundamental modes, i.e., the A 1g -type vibrations ν 1 , ν 2 , ν 3 , ν 4 , ν 5 , and φ 8 , the B 1g vibrations ν 11 and ν 14 , the B 2g vibrations ν 28 , ν 29 , and ν 30 and the antisymmetric A 2g modes ν 19 , ν 20 , ν 22 , and ν 23 as function of the excitation wavelength. The data cover the entire resonant regions of the Q- and B-bands. They were analyzed by use of a theory which describes intra- and intermolecular coupling in terms of a time-independent nonadiabatic perturbation theory [E. Unger, U. Bobinger, W. Dreybrodt, and R. Schweitzer-Stenner, J. Phys. Chem. 97, 9956 (1993)]. This approach explicitly accounts in a self-consistent way for multimode mixing with all Raman modes investigated. The vibronic coupling parameters obtained from this procedure were then used to successfully fit the vibronic side bands of the absorption spectrum and to calculate the resonance excitation profiles in absolute units. Our results show that the porphyrin macrocycle is subject to B 2u -(saddling) and B 1u -(ruffling) distortions which lower its symmetry to S 4 . Thus, evidence is provided that the porphyrin molecule maintains the nonplanar structure of its crystal phase in an organic solvent. The vibronic coupling parameters indicate a breakdown of the four-orbital model. This notion is corroborated by (ZINDO/S) calculations which reveal that significant configurational interaction occurs between the electronic transitions into |Q right-angle- and |1B right-angle-states and various porphyrin→porphyrin, metal→porphyrin, and porphyrin→metal transitions. (Abstract Truncated)

  1. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion.

    Science.gov (United States)

    Soudackov, Alexander V; Hammes-Schiffer, Sharon

    2015-11-21

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at high temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton

  2. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion

    International Nuclear Information System (INIS)

    Soudackov, Alexander V.; Hammes-Schiffer, Sharon

    2015-01-01

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at high temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton

  3. Electronic energy transfer through non-adiabatic vibrational-electronic resonance. II. 1D spectra for a dimer

    Science.gov (United States)

    Tiwari, Vivek; Jonas, David M.

    2018-02-01

    Vibrational-electronic resonance in photosynthetic pigment-protein complexes invalidates Förster's adiabatic framework for interpreting spectra and energy transfer, thus complicating determination of how the surrounding protein affects pigment properties. This paper considers the combined effects of vibrational-electronic resonance and inhomogeneous variations in the electronic excitation energies of pigments at different sites on absorption, emission, circular dichroism, and hole-burning spectra for a non-degenerate homodimer. The non-degenerate homodimer has identical pigments in different sites that generate differences in electronic energies, with parameters loosely based on bacteriochlorophyll a pigments in the Fenna-Matthews-Olson antenna protein. To explain the intensity borrowing, the excited state vibrational-electronic eigenvectors are discussed in terms of the vibrational basis localized on the individual pigments, as well as the correlated/anti-correlated vibrational basis delocalized over both pigments. Compared to those in the isolated pigment, vibrational satellites for the correlated vibration have the same frequency and precisely a factor of 2 intensity reduction through vibrational delocalization in both absorption and emission. Vibrational satellites for anti-correlated vibrations have their relaxed emission intensity reduced by over a factor 2 through vibrational and excitonic delocalization. In absorption, anti-correlated vibrational satellites borrow excitonic intensity but can be broadened away by the combination of vibronic resonance and site inhomogeneity; in parallel, their vibronically resonant excitonic partners are also broadened away. These considerations are consistent with photosynthetic antenna hole-burning spectra, where sharp vibrational and excitonic satellites are absent. Vibrational-excitonic resonance barely alters the inhomogeneously broadened linear absorption, emission, and circular dichroism spectra from those for a

  4. Recent progress in diode-pumped mid-infrared vibronic solid-state lasers

    International Nuclear Information System (INIS)

    Sorokina, I.T.; Sorokin, E.; Mirov, S.; Schaffers, K.

    2002-01-01

    Full text: The last few years were marked by the increased interest of researchers towards the new class of transition-metal doped zinc chalcogenides. In particular Cr:ZnSe attracts a lot of attention as broadly tunable continuous-wave (cw), mode-locked and diode-pumped lasers operating around 2.5 mm. This interest is explained by the absence of other comparable tunable room-temperature laser sources in this spectral region. However, another member of the II-VI compounds family Cr:ZnS, has yet remained barely studied as a laser medium. Recently we demonstrated the first continuous-wave room-temperature tunable over more than 280 nm around 2.3 μm Cr 2+ :ZnS laser, pumped with a Co:MgF2 laser and yielding over 100 mW of output power. The most recent result is the development of a compact tunable over 700 nm continuous-wave room-temperature Cr 2+ :ZnS laser, pumped by the diode-pumped Er-fiber laser at 1.6 μm and generating 0.7 W of the linearly polarized radiation. We also demonstrated direct diode-pumping at 1.6 μm of the Cr 2+ :ZnS. Although the Cr:ZnS exhibited lower (relatively to the Cr:ZnSe) efficiency and output power due to the higher passive losses of the available Cr:ZnS samples, the analysis of the spectroscopic and laser data indicates the high potential of Cr:ZnS for compact broadly tunable mid-infrared systems, as well as for high power applications. The physics of the novel diode-pumped laser systems is highly interesting. It comprises the features of the ion-doped dielectric crystalline lasers and semiconductors. For example, we observe in these media, for the first time to our knowledge, a new nonlinear phenomenon, which is analogous to the opto-optical switching process, where the laser output of the diode-pumped continuous-wave Cr:ZnSe and Cr:ZnS lasers around 2.5 μm is modulated by only a few milliwatt of the visible (470-500 nm) and near-infrared radiation (740-770 nm). We present a physical explanation of the observed effect. Refs. 4 (author)

  5. Spectra of Graphs

    NARCIS (Netherlands)

    Brouwer, A.E.; Haemers, W.H.

    2012-01-01

    This book gives an elementary treatment of the basic material about graph spectra, both for ordinary, and Laplace and Seidel spectra. The text progresses systematically, by covering standard topics before presenting some new material on trees, strongly regular graphs, two-graphs, association

  6. Spectra of alkali atoms

    International Nuclear Information System (INIS)

    Santoso, Budi; Arumbinang, Haryono.

    1981-01-01

    Emission spectra of alkali atoms has been determined by using spectrometer at the ultraviolet to infra red waves range. The spectra emission can be obtained by absorption spectrophotometric analysis. Comparative evaluations between experimental data and data handbook obtained by spark method were also presented. (author tr.)

  7. Algorithms for classification of astronomical object spectra

    Science.gov (United States)

    Wasiewicz, P.; Szuppe, J.; Hryniewicz, K.

    2015-09-01

    Obtaining interesting celestial objects from tens of thousands or even millions of recorded optical-ultraviolet spectra depends not only on the data quality but also on the accuracy of spectra decomposition. Additionally rapidly growing data volumes demands higher computing power and/or more efficient algorithms implementations. In this paper we speed up the process of substracting iron transitions and fitting Gaussian functions to emission peaks utilising C++ and OpenCL methods together with the NOSQL database. In this paper we implemented typical astronomical methods of detecting peaks in comparison to our previous hybrid methods implemented with CUDA.

  8. Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra

    Energy Technology Data Exchange (ETDEWEB)

    Fujihashi, Yuta; Ishizaki, Akihito, E-mail: ishizaki@ims.ac.jp [Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585 (Japan); Fleming, Graham R. [Department of Chemistry, University of California, Berkeley and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-06-07

    Recently, nuclear vibrational contribution signatures in two-dimensional (2D) electronic spectroscopy have attracted considerable interest, in particular as regards interpretation of the oscillatory transients observed in light-harvesting complexes. These transients have dephasing times that persist for much longer than theoretically predicted electronic coherence lifetime. As a plausible explanation for this long-lived spectral beating in 2D electronic spectra, quantum-mechanically mixed electronic and vibrational states (vibronic excitons) were proposed by Christensson et al. [J. Phys. Chem. B 116, 7449 (2012)] and have since been explored. In this work, we address a dimer which produces little beating of electronic origin in the absence of vibronic contributions, and examine the impact of protein-induced fluctuations upon electronic-vibrational quantum mixtures by calculating the electronic energy transfer dynamics and 2D electronic spectra in a numerically accurate manner. It is found that, at cryogenic temperatures, the electronic-vibrational quantum mixtures are rather robust, even under the influence of the fluctuations and despite the small Huang-Rhys factors of the Franck-Condon active vibrational modes. This results in long-lasting beating behavior of vibrational origin in the 2D electronic spectra. At physiological temperatures, however, the fluctuations eradicate the mixing, and hence, the beating in the 2D spectra disappears. Further, it is demonstrated that such electronic-vibrational quantum mixtures do not necessarily play a significant role in electronic energy transfer dynamics, despite contributing to the enhancement of long-lived quantum beating in 2D electronic spectra, contrary to speculations in recent publications.

  9. Helium induced fine structure in the electronic spectra of anthracene derivatives doped into superfluid helium nanodroplets

    International Nuclear Information System (INIS)

    Pentlehner, D.; Slenczka, A.

    2015-01-01

    Electronic spectra of organic molecules doped into superfluid helium nanodroplets show characteristic features induced by the helium environment. Besides a solvent induced shift of the electronic transition frequency, in many cases, a spectral fine structure can be resolved for electronic and vibronic transitions which goes beyond the expected feature of a zero phonon line accompanied by a phonon wing as known from matrix isolation spectroscopy. The spectral shape of the zero phonon line and the helium induced phonon wing depends strongly on the dopant species. Phonon wings, for example, are reported ranging from single or multiple sharp transitions to broad (Δν > 100 cm −1 ) diffuse signals. Despite the large number of example spectra in the literature, a quantitative understanding of the helium induced fine structure of the zero phonon line and the phonon wing is missing. Our approach is a systematic investigation of related molecular compounds, which may help to shed light on this key feature of microsolvation in superfluid helium droplets. This paper is part of a comparative study of the helium induced fine structure observed in electronic spectra of anthracene derivatives with particular emphasis on a spectrally sharp multiplet splitting at the electronic origin. In addition to previously discussed species, 9-cyanoanthracene and 9-chloroanthracene will be presented in this study for the first time

  10. Solar Energetic Particle Spectra

    Science.gov (United States)

    Ryan, J. M.; Boezio, M.; Bravar, U.; Bruno, A.; Christian, E. R.; de Nolfo, G. A.; Martucci, M.; Mergè, M.; Munini, R.; Ricci, M.; Sparvoli, R.; Stochaj, S.

    2017-12-01

    We report updated event-integrated spectra from several SEP events measured with PAMELA. The measurements were made from 2006 to 2014 in the energy range starting at 80 MeV and extending well above the neutron monitor threshold. The PAMELA instrument is in a high inclination, low Earth orbit and has access to SEPs when at high latitudes. Spectra have been assembled from these high-latitude measurements. The field of view of PAMELA is small and during the high-latitude passes it scans a wide range of asymptotic directions as the spacecraft orbits. Correcting for data gaps, solid angle effects and improved background corrections, we have compiled event-integrated intensity spectra for twenty-eight SEP events. Where statistics permit, the spectra exhibit power law shapes in energy with a high-energy exponential roll over. The events analyzed include two genuine ground level enhancements (GLE). In those cases the roll-over energy lies above the neutron monitor threshold ( 1 GV) while the others are lower. We see no qualitative difference between the spectra of GLE vs. non-GLE events, i.e., all roll over in an exponential fashion with rapidly decreasing intensity at high energies.

  11. Geometric phase effects in excited state dynamics through a conical intersection in large molecules: N-dimensional linear vibronic coupling model study

    Science.gov (United States)

    Li, Jiaru; Joubert-Doriol, Loïc; Izmaylov, Artur F.

    2017-08-01

    We investigate geometric phase (GP) effects in nonadiabatic transitions through a conical intersection (CI) in an N-dimensional linear vibronic coupling (ND-LVC) model. This model allows for the coordinate transformation encompassing all nonadiabatic effects within a two-dimensional (2D) subsystem, while the other N - 2 dimensions form a system of uncoupled harmonic oscillators identical for both electronic states and coupled bi-linearly with the subsystem coordinates. The 2D subsystem governs ultra-fast nonadiabatic dynamics through the CI and provides a convenient model for studying GP effects. Parameters of the original ND-LVC model define the Hamiltonian of the transformed 2D subsystem and thus influence GP effects directly. Our analysis reveals what values of ND-LVC parameters can introduce symmetry breaking in the 2D subsystem that diminishes GP effects.

  12. Room-Temperature Coherent Optical Phonon in 2D Electronic Spectra of CH3NH3PbI3 Perovskite as a Possible Cooling Bottleneck

    Energy Technology Data Exchange (ETDEWEB)

    Monahan, Daniele M. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kavli Energy NanoSciences Inst. at Berkeley, Berkeley, CA (United States); Guo, Liang [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kavli Energy NanoSciences Inst. at Berkeley, Berkeley, CA (United States); Lin, Jia [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kavli Energy NanoSciences Inst. at Berkeley, Berkeley, CA (United States); Dou, Letian [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kavli Energy NanoSciences Inst. at Berkeley, Berkeley, CA (United States); Yang, Peidong [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kavli Energy NanoSciences Inst. at Berkeley, Berkeley, CA (United States); Fleming, Graham R. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kavli Energy NanoSciences Inst. at Berkeley, Berkeley, CA (United States)

    2017-06-29

    A hot phonon bottleneck may be responsible for slow hot carrier cooling in methylammonium lead iodide hybrid perovskite, creating the potential for more efficient hot carrier photovoltaics. In room-temperature 2D electronic spectra near the band edge, we observe in this paper amplitude oscillations due to a remarkably long lived 0.9 THz coherent phonon population at room temperature. This phonon (or set of phonons) is assigned to angular distortions of the Pb–I lattice, not coupled to cation rotations. The strong coupling between the electronic transition and the 0.9 THz mode(s), together with relative isolation from other phonon modes, makes it likely to cause a phonon bottleneck. Finally, the pump frequency resolution of the 2D spectra also enables independent observation of photoinduced absorptions and bleaches independently and confirms that features due to band gap renormalization are longer-lived than in transient absorption spectra.

  13. Parameterization of rotational spectra

    International Nuclear Information System (INIS)

    Zhou Chunmei; Liu Tong

    1992-01-01

    The rotational spectra of the strongly deformed nuclei with low rotational frequencies and weak band mixture are analyzed. The strongly deformed nuclei are commonly encountered in the rare-earth region (e. g., 150 220). A lot of rotational band knowledge are presented

  14. Atomic Spectra Database (ASD)

    Science.gov (United States)

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  15. Principal spectra describing magnetooptic permittivity tensor in cubic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Hamrlová, Jana [Nanotechnology Centre, VSB – Technical University of Ostrava, listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic); IT4Innovations Centre, VSB – Technical University of Ostrava, listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic); Legut, Dominik [IT4Innovations Centre, VSB – Technical University of Ostrava, listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic); Veis, Martin [Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague, 121 16 Czech Republic (Czech Republic); Pištora, Jaromír [Nanotechnology Centre, VSB – Technical University of Ostrava, listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic); Hamrle, Jaroslav, E-mail: jaroslav.hamrle@vsb.cz [IT4Innovations Centre, VSB – Technical University of Ostrava, listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic); Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague, 121 16 Czech Republic (Czech Republic); Department of Physics, VSB – Technical University of Ostrava, 17. listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic)

    2016-12-15

    We provide unified phenomenological description of magnetooptic effects being linear and quadratic in magnetization. The description is based on few principal spectra, describing elements of permittivity tensor up to the second order in magnetization. Each permittivity tensor element for any magnetization direction and any sample surface orientation is simply determined by weighted summation of the principal spectra, where weights are given by crystallographic and magnetization orientations. The number of principal spectra depends on the symmetry of the crystal. In cubic crystals owning point symmetry we need only four principal spectra. Here, the principal spectra are expressed by ab initio calculations for bcc Fe, fcc Co and fcc Ni in optical range as well as in hard and soft x-ray energy range, i.e. at the 2p- and 3p-edges. We also express principal spectra analytically using modified Kubo formula.

  16. Optical Coherence and Quantum Optics

    CERN Document Server

    Mandel, Leonard

    1995-01-01

    This book presents a systematic account of optical coherence theory within the framework of classical optics, as applied to such topics as radiation from sources of different states of coherence, foundations of radiometry, effects of source coherence on the spectra of radiated fields, coherence theory of laser modes, and scattering of partially coherent light by random media. The book starts with a full mathematical introduction to the subject area and each chapter concludes with a set of exercises. The authors are renowned scientists and have made substantial contributions to many of the topi

  17. Observational and theoretical spectra of supernovae

    Science.gov (United States)

    Wheeler, J. Craig; Swartz, Douglas A.; Harkness, Robert P.

    1993-05-01

    Progress in nuclear astrophysics by means of quantitative supernova spectroscopy is discussed with special concentration on type Ia, Ib and Ic and on SN 1987A. Spectral calculations continue to support an exploding C/O white dwarf as the best model of a SN Ia. Deflagration model W7 produces good maximum light spectra of SN Ia and seems to have a better composition distribution compared to delayed detonation models, but proper treatment of opacity remains a problem and the physical basis of SN Ia explosions is still not completely understood. All models for SN Ia predict large quantities of 56Co in the ejecta, but it is not clear that observations confirm this. Although the evolutionary origin of SN Ia remains uncertain, there is recent evidence that transfer of hydrogen in a binary system may be involved, as long suspected. There has been progress in comparing dynamical models with the optical/IR spectra of SN 1987A. The evolution of the [OI] λλ6300, 6364 feature and the presence of strong persistent HeI λ10 830 indicate that both the envelope and core material contribute substantially to the formation of emission lines in the nebular phase and that neither the core nor the envelope can be neglected. Blending with nearby hydrogen lines may affect both of these spectral features, thereby complicating the analysis of the lines. The effects of continuum transfer and photoionization have been included and are under study. The discrepancies between theoretical and observed spectra are due primarily to the one-dimensional hydrodynamic models. The spectral data are not consistent with the high density ``spike'' (in radial coordinate) of the core material that is predicted by all such models. Analysis of the light curves of SN Ib and SN Ic supernovae implies that there are significant differences in their physical properties. Some SN Ib have considerably more ejecta mass than SN Ic events. SN Ib require He-rich atmospheres to produce the observed strong optical lines of

  18. Influence of vibronic contribution on light harvesting efficiency of NKX-2587 derivatives with oligothiophene as π-conjugated linker

    Science.gov (United States)

    Yang, Pan; Zhang, Yang; Li, Ming; Shen, Wei; He, Rongxing

    2018-01-01

    Based on the NKX-2587 molecule we designed ten sensitizers with 1-10 thiophene moieties to investigate how the number of thiophene unit in the spacer influences the absorption spectra of sensitizer in dye sensitized solar cells (DSSCs). The parameters of short-circuit current density (Jsc), open circuit voltage (Voc), the light harvesting efficiency (LHE), injection driving force (Δ Ginject), and transferred electron number (nc), were calculated and discussed in detail. Results indicated that the increasing of thiophene units makes for the enhancement of oscillator strengths (f), although the red shift of vertical electronic absorption spectra is small. For the designed sensitizers with 1-5 thiophene units, their ΔGinject and nc raise gradually with the increasing of thiophene number. However, for those sensitizers with 6-10 thiophene units, the ΔGinject and nc decrease continuously with the increasing of thiophene units. In order to study how the oligothiophene as π-conjugated linker affects light harvesting efficiency of DSSCs, the vibrationally resolved electronic spectra of five metal-free NKX-2587 derivatives with 1-5 thiophene units were simulated within the Franck-Condon approximation including the Herzberg-Teller and Duschinsky effects. The present theoretical results provided helpful guidance for understanding the sources of spectral intensities of dye molecules, and a valuable method for rational design of new molecules to improve the energy conversion efficiency (η) of DSSCs.

  19. Lattice vibration spectra. 16

    International Nuclear Information System (INIS)

    Lutz, H.D.; Willich, P.

    1977-01-01

    The FIR absorption spectra of pyrite type compounds RuS 2 , RuSsub(2-x)Sesub(x), RuSe 2 , RuTe 2 , OsS 2 , OsSe 2 , and PtP 2 as well as loellingite type phosphides FeP 2 , RuP 2 , and OsP 2 are reported. For RuS 2 , RuSe 2 , RuTe 2 , OsS 2 , and PtP 2 all of the five infrared allowed modes (k = 0) are observed. As a first result of a numerical normal coordinate treatment vibration forms of pyrite structure are communicated. The spectra show that lattice forces of corresponding sulfides, tellurides, and phosphides are about the same strength, but increase strongly by substitution of iron by ruthenium and especially of ruthenium by osmium. The lattice constants of the RuSsub(2-x)Sesub(x) solid solution obey Vegard's rule. (author)

  20. Deconvoluting double Doppler spectra

    International Nuclear Information System (INIS)

    Ho, K.F.; Beling, C.D.; Fung, S.; Chan, K.L.; Tang, H.W.

    2001-01-01

    The successful deconvolution of data from double Doppler broadening of annihilation radiation (D-DBAR) spectroscopy is a promising area of endeavour aimed at producing momentum distributions of a quality comparable to those of the angular correlation technique. The deconvolution procedure we test in the present study is the constrained generalized least square method. Trials with computer simulated DDBAR spectra are generated and deconvoluted in order to find the best form of regularizer and the regularization parameter. For these trials the Neumann (reflective) boundary condition is used to give a single matrix operation in Fourier space. Experimental D-DBAR spectra are also subject to the same type of deconvolution after having carried out a background subtraction and using a symmetrize resolution function obtained from an 85 Sr source with wide coincidence windows. (orig.)

  1. Spectra, Winter 2014

    Science.gov (United States)

    2014-01-01

    additional copies or more information, please email spectra@nrl.navy.mil. LEADINGEDGE 1 Contents 30 Navy Launches UAV from Submerged Submarine 31... multitasking have become mainstream concerns. For example, the New York Times in 2005 and Time magazine in 2006 both reported stories about...interruptions and multitasking , and how they affect performance by increasing human er- ror. In 2005, the information technol- ogy research firm Basex

  2. Thermoluminescence spectra of amethyst

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Q. [Suzhou Railway Teachers College (China). Dept. of Physics; Yang, B. [Beijing Normal University (China). Dept. of Physics; Wood, R.A.; White, D.R.R.; Townsend, P.D.; Luff, B.J. [Sussex Univ., Brighton (United Kingdom). School of Mathematical and Physical Sciences

    1994-04-01

    Thermoluminescence and cathodoluminescence data from natural and synthetic amethyst and synthetic quartz samples are compared. The spectra include features from the quartz host lattice and from impurity-generated recombination sites. Emission features exist throughout the wavelength range studied, 250-800 nm. The near infrared emission at 740-750 nm appears to be characteristic of the amethyst and is proposed to be due to Fe ion impurity. (Author).

  3. Auger spectra of alkanes

    International Nuclear Information System (INIS)

    Rye, R.R.; Jennison, D.R.; Houston, J.E.

    1980-01-01

    The gas-phase Auger line shapes of the linear alkanes C 1 through C 6 and of neopentane are presented and analyzed. The general shape of the spectra are characteristic of carbon in a tetrahedral environment with the major feature in all cases occurring at approx.249 eV. The relatively large spectral changes found between methane and ethane results from the direct interaction of the terminal methyl groups in ethane, and the spectra of the higher alkanes are shown to be a composite of contributions from terminal methyl and interior methylene group carbon atoms. Theoretical analysis based on a one-electron approximation is shown to be capable of making a molecular orbital assignment by comparing calculated vertical transitions to features in the Auger spectra of ethane and propane, and, in the case of ethane, of differentiating between the 2 E/sub g/ and 2 A/sub 1g/ assignment of the ground state of (C 2 H 6 ) + . A one-electron based molecular orbital treatment, however, is shown to partially break down in propane and neopentane. Analysis of neopentane and the observed absence of any noticeable major peak energy shift with increasing molecular size (as predicted by the one-electron treatment) suggests that some Auger final states occur in which both valence holes are localized on the same subunit of the molecule

  4. Pattern recognition in spectra

    International Nuclear Information System (INIS)

    Gebran, M; Paletou, F

    2017-01-01

    We present a new automated procedure that simultaneously derives the effective temperature T eff , surface gravity log g , metallicity [ Fe/H ], and equatorial projected rotational velocity v e sin i for stars. The procedure is inspired by the well-known PCA-based inversion of spectropolarimetric full-Stokes solar data, which was used both for Zeeman and Hanle effects. The efficiency and accuracy of this procedure have been proven for FGK, A, and late type dwarf stars of K and M spectral types. Learning databases are generated from the Elodie stellar spectra library using observed spectra for which fundamental parameters were already evaluated or with synthetic data. The synthetic spectra are calculated using ATLAS9 model atmospheres. This technique helped us to detect many peculiar stars such as Am, Ap, HgMn, SiEuCr and binaries. This fast and efficient technique could be used every time a pattern recognition is needed. One important application is the understanding of the physical properties of planetary surfaces by comparing aboard instrument data to synthetic ones. (paper)

  5. Recent Progress of the Synchrotron Radiation Calculation Code SPECTRA

    International Nuclear Information System (INIS)

    Tanaka, T.; Kitamura, H.

    2007-01-01

    SPECTRA is a computer software to calculate optical properties of synchrotron radiation (SR) emitted by electrons passing through magnetic devices such as bending magnets, wigglers and undulators. It has been used to design various devices in the SR beamline, such as high heat-load components in the front-end section and optical elements in the optics hutch. In addition, the electron beam quality can be estimated by comparison between the measured and calculated properties of SR. Since the first announcement, numerous improvements have been made to SPECTRA to achieve less computation time with higher numerical accuracy. In addition, a number of functions have been added to follow the user's demand. In this paper, recent progress of SPECTRA is presented and details of the new functions are explained together with several examples

  6. Cancerous tissue mapping from random lasing emission spectra

    International Nuclear Information System (INIS)

    Polson, R C; Vardeny, Z V

    2010-01-01

    Random lasing emission spectra have been collected from both healthy and cancerous tissues. The two types of tissue with optical gain have different light scattering properties as obtained from an average power Fourier transform of their random lasing emission spectra. The difference in the power Fourier transform leads to a contrast between cancerous and benign tissues, which is utilized for tissue mapping of healthy and cancerous regions of patients

  7. Deconvolution of Positrons' Lifetime spectra

    International Nuclear Information System (INIS)

    Calderin Hidalgo, L.; Ortega Villafuerte, Y.

    1996-01-01

    In this paper, we explain the iterative method previously develop for the deconvolution of Doppler broadening spectra using the mathematical optimization theory. Also, we start the adaptation and application of this method to the deconvolution of positrons' lifetime annihilation spectra

  8. Vibrational spectra of aminoacetonitrile

    International Nuclear Information System (INIS)

    Bak, B.; Hansen, E.L.; Nicolaisen, F.M.; Nielsen, O.F.

    1975-01-01

    The preparation of pure, stable aminoacetonitrile(1-amino, 1'-cyanomethane)CH 2 NH 2 CN (1) is described. The Raman spectrum, now complete, and a novel infrared spectrum extending over the 50-3600 cm -1 region are reported. A tentative normal vibration analysis is presented and supported by Raman and infrared data from the spectra of CH 2 NHDCN (2) and CH 2 ND 2 CN (3). The predominance of the trans rotamer may be attributed to intramolecular hydrogen bonding but this is too unimportant to influence the vibrational frequencies of gaseous 1, 2, and 3. However, large gas/liquid frequency shifts occur. (author)

  9. Energy spectra of quantum rings.

    Science.gov (United States)

    Fuhrer, A; Lüscher, S; Ihn, T; Heinzel, T; Ensslin, K; Wegscheider, W; Bichler, M

    2001-10-25

    Quantum mechanical experiments in ring geometries have long fascinated physicists. Open rings connected to leads, for example, allow the observation of the Aharonov-Bohm effect, one of the best examples of quantum mechanical phase coherence. The phase coherence of electrons travelling through a quantum dot embedded in one arm of an open ring has also been demonstrated. The energy spectra of closed rings have only recently been studied by optical spectroscopy. The prediction that they allow persistent current has been explored in various experiments. Here we report magnetotransport experiments on closed rings in the Coulomb blockade regime. Our experiments show that a microscopic understanding of energy levels, so far limited to few-electron quantum dots, can be extended to a many-electron system. A semiclassical interpretation of our results indicates that electron motion in the rings is governed by regular rather than chaotic motion, an unexplored regime in many-electron quantum dots. This opens a way to experiments where even more complex structures can be investigated at a quantum mechanical level.

  10. Ultraviolet spectra of planetary nebulae

    International Nuclear Information System (INIS)

    Harrington, J.P.; Seaton, M.J.; Adams, S.; Lutz, J.H.

    1982-01-01

    A detailed study of NGC 7662 is based on UV results obtained from 15 IUE spectra and on observations of other workers at optical, IR and radio wavelengths. Improved techniques are used to extract IUE data for an extended source. Relative fluxes in the different apertures which have been used are obtained using the brightness contours of Coleman, Reay and Worswick. There is close agreement between the reddening deduced from the ratios He II (lambda 1640)/(lambda 4686) and (radio)/(Hβ) and the nebular continuum emission observed with the IUE large slots agrees closely with that predicted using absolute radio and Hβ fluxes. The fluxes in nebular emission lines observed with the small slots are smaller than expected from brightness distributions; it is concluded that, for an extended source, the small slots have aperture transmission factors of 0.85 for SWP and 0.46 for LWR. The central star is fainter than has been previously supposed (by more than two magnitudes). The blackbody He II Zanstra temperature of 113 000 K is consistent with the UV colour temperature. Previous work on colour temperatures of central stars is discussed critically. Two models are discussed. (author)

  11. Library search with regular reflectance IR spectra

    International Nuclear Information System (INIS)

    Staat, H.; Korte, E.H.; Lampen, P.

    1989-01-01

    Characterisation in situ for coatings and other surface layers is generally favourable, but a prerequisite for precious items such as art objects. In infrared spectroscopy only reflection techniques are applicable here. However for attenuated total reflection (ATR) it is difficult to obtain the necessary optical contact of the crystal with the sample, when the latter is not perfectly plane or flexible. The measurement of diffuse reflectance demands a scattering sample and usually the reflectance is very poor. Therefore in most cases one is left with regular reflectance. Such spectra consist of dispersion-like feature instead of bands impeding their interpretation in the way the analyst is used to. Furthermore for computer search in common spectral libraries compiled from transmittance or absorbance spectra a transformation of the reflectance spectra is needed. The correct conversion is based on the Kramers-Kronig transformation. This somewhat time - consuming procedure can be speeded up by using appropriate approximations. A coarser conversion may be obtained from the first derivative of the reflectance spectrum which resembles the second derivative of a transmittance spectrum. The resulting distorted spectra can still be used successfully for the search in peak table libraries. Experiences with both transformations are presented. (author)

  12. Electron energy-loss spectra in molecular fluorine

    Science.gov (United States)

    Nishimura, H.; Cartwright, D. C.; Trajmar, S.

    1979-01-01

    Electron energy-loss spectra in molecular fluorine, for energy losses from 0 to 17.0 eV, have been taken at incident electron energies of 30, 50, and 90 eV and scattering angles from 5 to 140 deg. Features in the spectra above 11.5 eV energy loss agree well with the assignments recently made from optical spectroscopy. Excitations of many of the eleven repulsive valence excited electronic states are observed and their location correlates reasonably well with recent theoretical results. Several of these excitations have been observed for the first time and four features, for which there are no identifications, appear in the spectra.

  13. Predicting transmittance spectra of electrophotographic color prints

    Science.gov (United States)

    Mourad, Safer; Emmel, Patrick; Hersch, Roger D.

    2000-12-01

    For dry toner electrophotographic color printers, we present a numerical simulation model describing the color printer responses based on a physical characterization of the different electrophotographic process steps. The proposed model introduces a Cross Transfer Efficiency designed to predict the color transmittance spectra of multi-color prints by taking into account the transfer influence of each deposited color toner layer upon the other layers. The simulation model leads to a better understanding of the factors that have an impact on printing quality. In order to avoid the additional optical non-linearities produced by light reflection on paper, we have limited the present investigation to transparency prints. The proposed model succeeded to predict the transmittance spectra of printed wedges combining two color toner layers with a mean deviation less than CIE-LAB (Delta) E equals 2.5.

  14. Absorption spectra of AA-stacked graphite

    International Nuclear Information System (INIS)

    Chiu, C W; Lee, S H; Chen, S C; Lin, M F; Shyu, F L

    2010-01-01

    AA-stacked graphite shows strong anisotropy in geometric structures and velocity matrix elements. However, the absorption spectra are isotropic for the polarization vector on the graphene plane. The spectra exhibit one prominent plateau at middle energy and one shoulder structure at lower energy. These structures directly reflect the unique geometric and band structures and provide sufficient information for experimental fitting of the intralayer and interlayer atomic interactions. On the other hand, monolayer graphene shows a sharp absorption peak but no shoulder structure; AA-stacked bilayer graphene has two absorption peaks at middle energy and abruptly vanishes at lower energy. Furthermore, the isotropic features are expected to exist in other graphene-related systems. The calculated results and the predicted atomic interactions could be verified by optical measurements.

  15. Franck-Condon factors perturbed by damped harmonic oscillators: Solvent enhanced X 1Ag ↔ A1B1u absorption and fluorescence spectra of perylene

    International Nuclear Information System (INIS)

    Wang, Chen-Wen; Zhu, Chaoyuan; Lin, Sheng-Hsien; Yang, Ling; Yu, Jian-Guo

    2014-01-01

    Damped harmonic oscillators are utilized to calculate Franck-Condon factors within displaced harmonic oscillator approximation. This is practically done by scaling unperturbed Hessian matrix that represents local modes of force constants for molecule in gaseous phase, and then by diagonalizing perturbed Hessian matrix it results in direct modification of Huang–Rhys factors which represent normal modes of solute molecule perturbed by solvent environment. Scaling parameters are empirically introduced for simulating absorption and fluorescence spectra of an isolated solute molecule in solution. The present method is especially useful for simulating vibronic spectra of polycyclic aromatic hydrocarbon molecules in which hydrogen atom vibrations in solution can be scaled equally, namely the same scaling factor being applied to all hydrogen atoms in polycyclic aromatic hydrocarbons. The present method is demonstrated in simulating solvent enhanced X 1 A g ↔ A 1 B 1u absorption and fluorescence spectra of perylene (medium-sized polycyclic aromatic hydrocarbon) in benzene solution. It is found that one of six active normal modes v 10 is actually responsible to the solvent enhancement of spectra observed in experiment. Simulations from all functionals (TD) B3LYP, (TD) B3LYP35, (TD) B3LYP50, and (TD) B3LYP100 draw the same conclusion. Hence, the present method is able to adequately reproduce experimental absorption and fluorescence spectra in both gas and solution phases

  16. Optics/Optical Diagnostics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optics/Optical Diagnostics Laboratory supports graduate instruction in optics, optical and laser diagnostics and electro-optics. The optics laboratory provides...

  17. Optical vortex generation from a diode-pumped alexandrite laser

    Science.gov (United States)

    Thomas, G. M.; Minassian, A.; Damzen, M. J.

    2018-04-01

    We present the demonstration of an optical vortex mode directly generated from a diode-pumped alexandrite slab laser, operating in the bounce geometry. This is the first demonstration of an optical vortex mode generated from an alexandrite laser or from any other vibronic laser. An output power of 2 W for a vortex mode with a ‘topological charge’ of 1 was achieved and the laser was made to oscillate with both left- and right-handed vorticity. The laser operated at two distinct wavelengths simultaneously, 755 and 759 nm, due to birefringent filtering in the alexandrite gain medium. The result offers the prospect of broadly wavelength tunable vortex generation directly from a laser.

  18. Catalogue of neutron spectra

    International Nuclear Information System (INIS)

    Buxerolle, M.; Massoutie, M.; Kurdjian, J.

    1987-09-01

    Neutron dosimetry problems have arisen as a result of developments in the applications of nuclear energy. The largest number of possible irradiation situations has been collected: they are presented in the form of a compilation of 44 neutron spectra. Diagrams show the variations of energy fluence and energy fluence weighted by the dose equivalent/fluence conversion factor, with the logarithm of the corresponding energy. The equivalent dose distributions are presented as percentages for the following energy bins: 0.01 eV/0.5 eV/50 keV/1 MeV/5 MeV/15 MeV. The dose equivalent, the mean energy and the effective energy for the dose equivalent for 1 neutron cm -2 are also given [fr

  19. Assignment of the photoelectron spectrum of the nitrate anion NO3- and vibronic interactions in the nitrate free radical

    Science.gov (United States)

    Hirota, Eizi

    2018-01-01

    The unpaired electron orbital of NO3 is of a2‧ symmetry in the ground electronic state, and thus its motion about the symmetry axis of the molecule is free rotation. When a degenerate vibration is excited, however, the free azimuthal rotation of the unpaired electron is perturbed much by nuclear motions of the degenerate mode, as evidenced by high-resolution spectroscopic studies. Thus the ν4 fundamental state, for example, bears some characters of the B ˜ excited electronic state through the Herzberg-Teller (H-T) interaction, and Neumark et al. explained anomalous ν4 progression in the photoelectron spectra of the NO3- anion by the H-T mechanism. However, the interaction parameter Neumark required was too large to reproduce the ν4 molecular parameters in the ground electronic state precisely determined by high-resolution IR spectroscopy. This discrepancy was resolved by the fact that the upper ν4 overtone/combination states of Neumark's photoelectron transitions were primarily of vibrational in nature. The present study thus showed that NO3 bears both vibrational and H-T induced electronic characters in excited states of degenerate modes in the ground electronic state.

  20. Donor impurity-related optical absorption spectra in GaAs-Ga{sub 1-x}Al{sub x}As quantum wells: hydrostatic pressure and {gamma}-X conduction band mixing effects

    Energy Technology Data Exchange (ETDEWEB)

    Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, C.P. 62209, Cuernavaca, MOR (Mexico); Inst. de Ciencia de Materiales de Madrid, CSIC, Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain); Lopez, S.Y. [Fac. de Educacion, Universidad de Antioquia, AA 1226, Medellin (Colombia); Duque, C.A. [Inst. de Fisica, Universidad de Antioquia, AA 1226, Medellin (Colombia); Velasco, V.R. [Inst. de Ciencia de Materiales de Madrid, CSIC, Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain)

    2007-07-01

    Using a variational procedure within the effective mass approximation, the mixing between the {gamma} and X conduction band valleys in GaAs-Ga{sub 1-x}Al{sub x}As quantum wells is investigated by taking into account the effect of applied hydrostatic pressure. Some optical properties such as donor and/or acceptor binding energy and impurity-related transition energies are calculated and comparisons with available experimental data are presented. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Design energy spectra for Turkey

    OpenAIRE

    López Almansa, Francisco; Yazgan, Ahmet Utku; Benavent Climent, Amadeo

    2012-01-01

    This work proposes design energy spectra in terms of velocity, derived through linear dynamic analyses on Turkish registers and intended for regions with design peak acceleration 0.3 g or higher. In the long and mid period ranges the analyses are linear, taking profit of the rather insensitivity of the spectra to the structural parameters other than the fundamental period; in the short period range, the spectra are more sensitive to the structural parameters and nonlinear analyses would be re...

  2. Spectra of chemical trees

    International Nuclear Information System (INIS)

    Balasubramanian, K.

    1982-01-01

    A method is developed for obtaining the spectra of trees of NMR and chemical interests. The characteristic polynomials of branched trees can be obtained in terms of the characteristic polynomials of unbranched trees and branches by pruning the tree at the joints. The unbranched trees can also be broken down further until a tree containing just two vertices is obtained. The effectively reduces the order of the secular determinant of the tree used at the beginning to determinants of orders atmost equal to the number of vertices in the branch containing the largest number of vertices. An illustrative example of a NMR graph is given for which the 22 x 22 secular determinant is reduced to determinants of orders atmost 4 x 4 in just the second step of the algorithm. The tree pruning algorithm can be applied even to trees with no symmetry elements and such a factoring can be achieved. Methods developed here can be elegantly used to find if two trees are cospectral and to construct cospectral trees

  3. Sequencing BPS spectra

    Energy Technology Data Exchange (ETDEWEB)

    Gukov, Sergei [Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E California Blvd, Pasadena, CA 91125 (United States); Max-Planck-Institut für Mathematik,Vivatsgasse 7, D-53111 Bonn (Germany); Nawata, Satoshi [Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E California Blvd, Pasadena, CA 91125 (United States); Centre for Quantum Geometry of Moduli Spaces, University of Aarhus,Nordre Ringgade 1, DK-8000 (Denmark); Saberi, Ingmar [Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E California Blvd, Pasadena, CA 91125 (United States); Stošić, Marko [CAMGSD, Departamento de Matemática, Instituto Superior Técnico,Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Mathematical Institute SANU,Knez Mihajlova 36, 11000 Belgrade (Serbia); Sułkowski, Piotr [Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E California Blvd, Pasadena, CA 91125 (United States); Faculty of Physics, University of Warsaw,ul. Pasteura 5, 02-093 Warsaw (Poland)

    2016-03-02

    This paper provides both a detailed study of color-dependence of link homologies, as realized in physics as certain spaces of BPS states, and a broad study of the behavior of BPS states in general. We consider how the spectrum of BPS states varies as continuous parameters of a theory are perturbed. This question can be posed in a wide variety of physical contexts, and we answer it by proposing that the relationship between unperturbed and perturbed BPS spectra is described by a spectral sequence. These general considerations unify previous applications of spectral sequence techniques to physics, and explain from a physical standpoint the appearance of many spectral sequences relating various link homology theories to one another. We also study structural properties of colored HOMFLY homology for links and evaluate Poincaré polynomials in numerous examples. Among these structural properties is a novel “sliding” property, which can be explained by using (refined) modular S-matrix. This leads to the identification of modular transformations in Chern-Simons theory and 3d N=2 theory via the 3d/3d correspondence. Lastly, we introduce the notion of associated varieties as classical limits of recursion relations of colored superpolynomials of links, and study their properties.

  4. Sequencing BPS spectra

    International Nuclear Information System (INIS)

    Gukov, Sergei; Nawata, Satoshi; Saberi, Ingmar; Stošić, Marko; Sułkowski, Piotr

    2016-01-01

    This paper provides both a detailed study of color-dependence of link homologies, as realized in physics as certain spaces of BPS states, and a broad study of the behavior of BPS states in general. We consider how the spectrum of BPS states varies as continuous parameters of a theory are perturbed. This question can be posed in a wide variety of physical contexts, and we answer it by proposing that the relationship between unperturbed and perturbed BPS spectra is described by a spectral sequence. These general considerations unify previous applications of spectral sequence techniques to physics, and explain from a physical standpoint the appearance of many spectral sequences relating various link homology theories to one another. We also study structural properties of colored HOMFLY homology for links and evaluate Poincaré polynomials in numerous examples. Among these structural properties is a novel “sliding” property, which can be explained by using (refined) modular S-matrix. This leads to the identification of modular transformations in Chern-Simons theory and 3d N=2 theory via the 3d/3d correspondence. Lastly, we introduce the notion of associated varieties as classical limits of recursion relations of colored superpolynomials of links, and study their properties.

  5. The Effect of Phonon Relaxation Process on Absorption Spectra ...

    African Journals Online (AJOL)

    In this work we study the effect of phonon relaxation process on the absorption spectra using the Green's function technique. The Green's function technique which is widely used in many particle problems is used to solve the Kubo formula which describes the optical absorption process. Finally the configurational diagram is ...

  6. Spectra of matrix isolated metal atoms and clusters

    International Nuclear Information System (INIS)

    Meyer, B.

    1977-01-01

    The matrix isolation spectra of all of the 40 presently known atomic metal species show strong matrix effects. The transition energies are increased, and the bands are broad and exhibit splitting of sublevels which are degenerate in the gas phase. Several models have been proposed for splitting of levels, but basic effects are not yet understood, and spectra cannot be predicted, yet it is possible to correlate gas phase and matrix in many of the systems. Selective production of diatomics and clusters via thermal and optical annealing of atomic species can be monitored by optical spectra, but yields spectroscopically complex systems which, however, especially in the case of transition metals, can be used as precursors in novel chemical reactions. A combination of absorption, emission, ir, Raman, ESR, and other methods is now quickly yielding data which will help correlate the increasing wealth of existing data. 55 references, 6 figures

  7. CO-SPATIAL LONG-SLIT UV/OPTICAL SPECTRA OF TEN GALACTIC PLANETARY NEBULAE WITH HST/STIS. II. NEBULAR MODELS, CENTRAL STAR PROPERTIES, AND He+CNO SYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    Henry, R. B. C.; Miller, T. R. [Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States); Balick, B. [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Dufour, R. J. [Department of Space Physics and Astronomy, Rice University, Houston, TX 77251 (United States); Kwitter, K. B. [Department of Astronomy, Williams College, Williamstown, MA 01267 (United States); Shaw, R. A. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Buell, J. F. [SUNY College of Technology at Alfred, Alfred, NY 14843 (United States); Corradi, R. L. M. [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain)

    2015-11-10

    The goal of the present study is twofold. First, we employ new HST/STIS spectra and photoionization modeling techniques to determine the progenitor masses of eight planetary nebulae (IC 2165, IC 3568, NGC 2440, NGC 3242, NGC 5315, NGC 5882, NGC 7662, and PB 6). Second, for the first time we are able to compare each object’s observed nebular abundances of helium, carbon, and nitrogen with abundance predictions of these same elements by a stellar model that is consistent with each object’s progenitor mass. Important results include the following: (1) the mass range of our objects’ central stars matches well with the mass distribution of other central stars of planetary nebulae and white dwarfs; (2) He/H is above solar in all of our objects, in most cases likely due to the predicted effects of first dredge-up; (3) most of our objects show negligible C enrichment, probably because their low masses preclude third dredge-up; (4) C/O versus O/H for our objects appears to be inversely correlated, which is perhaps consistent with the conclusion of theorists that the extent of atmospheric carbon enrichment from first dredge-up is sensitive to a parameter whose value increases as metallicity declines; (5) stellar model predictions of nebular C and N enrichment are consistent with observed abundances for progenitor star masses ≤1.5 M{sub ⊙}. Finally, we present the first published photoionization models of NGC 5315 and NGC 5882.

  8. Low resolution infrared spectra of quasars

    International Nuclear Information System (INIS)

    Soifer, B.T.; Neugebauer, G.; Oke, J.B.; Matthews, K.

    1980-01-01

    Low resolution spectra of a significant sample of quasars show that the Paschen α and Balmer line ratios do not agree with the radiative recombination case B result and vary widely within the quasars sampled. The range in Pα:Hβ ratios is a factor of approximately 6, while the range in Lyα:Hα ratios is a factor of approximately 5. For the Pα:Balmer series, the deviations from case B recombination are not consistent with reddening, but appear, within large dispersions, to be consistent with optical depth effects in the Balmer lines affecting the line ratios. The Lyα:Hα ratio is, however, correlated with the continuum spectral index, and can be explained as due to reddening affecting both the lines and continuum. Recent observational results based on a joint infrared/optical survey of the hydrogen line spectra of a significant number of the brightest low and high redshift quasars are summarised. This survey includes 12 quasars in the redshift range 0.07 1.5, where Hα and/or Hβ is redshifted into the 1.65μm or 2.2μm atmospheric windows. (Auth.)

  9. Optical Observations of X-ray Bright, Optically Normal Galaxies

    Science.gov (United States)

    Sadun, Alberto C.; Aryan, N. S.; Ghosh, K. K.

    2007-05-01

    X-ray bright, optically normal galaxies (XBONGs) are galaxies that seem to have normal spectra and morphology, but are relatively bright x-ray sources. The large ratio of the x-ray to optical emission suggests that some activity, similar to that of active galactic nuclei (AGN), is occurring. Since the galaxies do not show any obvious sign of nuclear activity in their optical spectra, one possible explanation is that these galaxies do not have an optically thick accretion disk at small radii, as previously assumed. Previous data for NGC 7626 classifies it as an XBONG, and so we are studying optical features of this galaxy in order to determine better its features. After confirming an x-ray jet, we are now comparing this to optical features that we have found, including warped dust lanes and a possible optical jet.

  10. Crystal structure and optical absorption spectra of Ga0.5Fe0.5InS3 and Ga0.5Fe0.25In1.25S3 crystals

    International Nuclear Information System (INIS)

    Gusejnov, G.G.; Musaeva, N.N.; Kyazumov, M.G.; Asadova, I.B.; Aliev, O.M.

    2003-01-01

    Single crystals of Ga 0.5 Fe 0.5 InS 3 are grown by the method of chemical gas-transport reactions and those of Ga 0.5 Fe 0.25 In 1.25 S 3 - by Bridgman method. X-ray diffraction studies reveal that they crystallize in trigonal and rhombohedral systems with lattice parameters of a = 3.796 x 2 A, c = 12.210 A, P3m1; a = 3.786 x 2 A, c = 36.606 A, R3m, respectively. An optical absorption edge in a wide range of photon energy and an energy gap width are determined: E g = 1.885 eV for Ga 0.5 Fe 0.5 InS 3 and E g 1.843 eV for Ga 0.5 Fe 0.25 In 1.25 S 3 [ru

  11. Diversity of soft X-ray spectra in quasars

    International Nuclear Information System (INIS)

    Elvis, M.; Wilkes, B.J.; Tananbaum, H.

    1985-01-01

    Soft X-ray spectra for three quasars obtained with the Einstein Imaging Proportional Counter covering the 0.1-4.0 keV band are reported. Power-law fits to these spectra have best-fit energy indices of 1.2 +0.6 or -0.2, for the quasar NAB 0205 + 024, 0.6 +0.3 or -0.2 for the quasar B2 1028 + 313, and 2.2 + or -0.4 for the quasar PG 1211 + 143. None of the quasars shows any evidence for a column density of cold matter in excess of the galactic values. The derived spectra demonstrate that there is no single universal power law slope for quasar X-ray spectra. The implications of these results for the X-ray background, X-ray continuum emission mechanisms, and the production of the optical/UV emission lines are briefly discussed. 46 references

  12. Optical properties of a single-colour centre in diamond with a green zero-phonon line

    International Nuclear Information System (INIS)

    Smith, Jason M; Grazioso, Fabio; Patton, Brian R; Dolan, Philip R; Markham, Matthew L; Twitchen, Daniel J

    2011-01-01

    We report the photoluminescence characteristics of a colour centre in diamond grown by plasma-assisted chemical vapour deposition. The colour centre emits with a sharp zero-phonon line at 2.330 eV (λ=532 nm) and a lifetime of 3.3 ns, thus offering potential for a high-speed single-photon source with green emission. It displays a vibronic emission spectrum with a Huang-Rhys parameter of 2.48 at 77 K. Hanbury-Brown and Twiss measurements reveal that the electronic level structure of the defect includes a metastable state that can be populated from the optically excited state.

  13. Crystal structure, vibrational spectra, optical and DFT studies of bis (3-azaniumylpropyl) azanium pentachloroantimonate (III) chloride monohydrate (C6H20N3)SbCl5·Cl·H2O

    Science.gov (United States)

    Ahmed, Houssem Eddine; Kamoun, Slaheddine

    2017-09-01

    The crystal structure of (C6H20N3)SbCl5·Cl·H2O is built up of [NH3(CH2)3NH2(CH2)3NH3]3 + cations, [SbCl5]2 - anions, free Cl- anions and neutral water molecules connected together by Nsbnd H ⋯ Cl, Nsbnd H ⋯ O and Osbnd H ⋯ Cl hydrogen bonds. The optical band gap determined by diffuse reflection spectroscopy (DRS) is 3.78 eV for a direct allowed transition. Optimized molecular geometry, atomic Mulliken charges, harmonic vibrational frequencies, HOMO-LUMO and related molecular properties of the (C6H20N3)SbCl5·Cl·H2O compound were calculated by Density functional theory (DFT) using B3LYP method with GenECP sets. The calculated structural parameters (bond lengths and angles) are in good agreement with the experimental XRD data. The vibrational unscaled wavenumbers were calculated and scaled by a proper scaling factor of 0.984. Acceptable consistency was observed between calculated and experimental results. The assignments of wavenumbers were made on the basis of potential energy distribution (PED) using Vibrational Energy Distribution Analysis (VEDA) software. The HOMO-LUMO study was extended to calculate various molecular parameters like ionization potential, electron affinity, global hardness, electro-chemical potential, electronegativity and global electrophilicity of the given molecule.

  14. Techniques for Handling and Removal of Spectral Channels in Fourier Transform Synchrotron-Based Spectra

    International Nuclear Information System (INIS)

    Ibrahim, Amr; Predoi-Cross, Adriana; Teillet, Philippe M.

    2010-01-01

    Channel spectra are a big problem for those attempting to use synchrotron-based Fourier transform spectra for spectral lineshape studies. Due to the layout of the optical system at the CLS far-infrared beamline, the synchrotron beam undergoes unavoidable multiple reflections on the steering mirrors, beam splitter, several sets of windows, and filters. We present a method for eliminating channel spectra and compare the results of our technique with other methods available in the literature.

  15. FSFE: Fake Spectra Flux Extractor

    Science.gov (United States)

    Bird, Simeon

    2017-10-01

    The fake spectra flux extractor generates simulated quasar absorption spectra from a particle or adaptive mesh-based hydrodynamic simulation. It is implemented as a python module. It can produce both hydrogen and metal line spectra, if the simulation includes metals. The cloudy table for metal ionization fractions is included. Unlike earlier spectral generation codes, it produces absorption from each particle close to the sight-line individually, rather than first producing an average density in each spectral pixel, thus substantially preserving more of the small-scale velocity structure of the gas. The code supports both Gadget (ascl:0003.001) and AREPO.

  16. Optical materials

    International Nuclear Information System (INIS)

    Poker, D.B.; Ortiz, C.

    1989-01-01

    This book reports on: Diamond films, Synthesis of optical materials, Structure related optical properties, Radiation effects in optical materials, Characterization of optical materials, Deposition of optical thin films, and Optical fibers and waveguides

  17. Infrared spectra of mineral species

    CERN Document Server

    Chukanov, Nikita V

    2014-01-01

    This book details more than 3,000 IR spectra of more than 2,000 mineral species collected during last 30 years. It features full descriptions and analytical data of each sample for which IR spectrum was obtained.

  18. Correlation Functions and Power Spectra

    DEFF Research Database (Denmark)

    Larsen, Jan

    2006-01-01

    The present lecture note is a supplement to the textbook Digital Signal Processing by J. Proakis and D.G. Manolakis used in the IMM/DTU course 02451 Digital Signal Processing and provides an extended discussion of correlation functions and power spectra. The definitions of correlation functions...... and spectra for discrete-time and continuous-time (analog) signals are pretty similar. Consequently, we confine the discussion mainly to real discrete-time signals. The Appendix contains detailed definitions and properties of correlation functions and spectra for analog as well as discrete-time signals....... It is possible to define correlation functions and associated spectra for aperiodic, periodic and random signals although the interpretation is different. Moreover, we will discuss correlation functions when mixing these basic signal types. In addition, the note include several examples for the purpose...

  19. Dynamics in terahertz semiconductor microcavity: quantum noise spectra

    Science.gov (United States)

    Jabri, H.; Eleuch, H.

    2018-05-01

    We investigate the physics of an optical semiconductor microcavity containing a coupled double quantum well interacting with cavity photons. The photon statistics of the transmitted light by the cavity is explored. We show that the nonlinear interactions in the direct and indirect excitonic modes generate an important squeezing despite the weak nonlinearities. When the strong coupling regime is achieved, the noise spectra of the system is dominated by the indirect exciton distribution. At the opposite, in the weak regime, direct excitons contribute much larger in the noise spectra.

  20. LINE FORMATION IN SPECTRA OF X-RAY NOVAE

    OpenAIRE

    Suleimanov, V. F.; Shimansky, V. V.

    2017-01-01

    Results of X-ray Novae (XN) optical spectra computation are presented. The continuum and Balmer line are calculated. The model of XN as a self-irradiated accretion disk is used. Local (for given radius) disk atmospheres as model stellar atmospheres, heated due to external X-ray radiation are treated. Changes of spectra shape and equivalent widths of the Balmer lines depending from the luminosity and some others accretion disk parameters are investigated. The comparison of GRO JO422+32 observe...

  1. Multifractal spectra in shear flows

    Science.gov (United States)

    Keefe, L. R.; Deane, Anil E.

    1989-01-01

    Numerical simulations of three-dimensional homogeneous shear flow and fully developed channel flow, are used to calculate the associated multifractal spectra of the energy dissipation field. Only weak parameterization of the results with the nondimensional shear is found, and this only if the flow has reached its asymptotic development state. Multifractal spectra of these flows coincide with those from experiments only at the range alpha less than 1.

  2. Sequential Analysis of Gamma Spectra

    International Nuclear Information System (INIS)

    Fayez-Hassan, M.; Hella, Kh.M.

    2009-01-01

    This work shows how easy one can deal with a huge number of gamma spectra. The method can be used for radiation monitoring. It is based on the macro feature of the windows XP connected to QBASIC software. The routine was used usefully in generating accurate results free from human errors. One hundred measured gamma spectra were fully analyzed in 10 minutes using our fast and automated method controlling the Genie 2000 gamma acquisition analysis software.

  3. Response spectra in alluvial soils

    International Nuclear Information System (INIS)

    Chandrasekharan, A.R.; Paul, D.K.

    1975-01-01

    For aseismic design of structures, the ground motion data is assumed either in the form of ground acceleration as a function of time or indirectly in the form of response spectra. Though the response spectra approach has limitations like not being applicable for nonlinear problems, it is usually used for structures like nuclear power plants. Fifty accelerograms recorded at alluvial sites have been processed. Since different empirical formulas relating acceleration with magnitude and distance give a wide scatter of values, peak ground acceleration alone cannot be the parameter as is assumed by a number of authors. The spectra corresponding to 5% damping have been normalised with respect to three parameters, namely, peak ground acceleration, peak ground velocity and a nondimensional quantity ad/v 2 . Envelopee of maxima and minima as well as average response spectra has been obtained. A comparison with the USAEC spectra has been made. A relation between ground acceleration, ground velocity and ad/v 2 has been obtained which would nearly give the same magnification of the response. A design response spectra for alluvial soils has been recommended. (author)

  4. Theory of optical flashes

    International Nuclear Information System (INIS)

    London, R.A.

    1983-01-01

    The theory of optical flashes created by x- and γ-ray burst heating of stars in binaries is reviewed. Calculations of spectra due to steady-state x-ray reprocessing and estimates of the fundamental time scales for the non-steady case are discussed. The results are applied to the extant optical data from x-ray and γ-ray bursters. Finally, I review predictions of flashes from γ-ray bursters detectable by a state of the art all-sky optical monitor

  5. Optical properties of solids

    CERN Document Server

    Wooten, Frederick

    1972-01-01

    Optical Properties of Solids covers the important concepts of intrinsic optical properties and photoelectric emission. The book starts by providing an introduction to the fundamental optical spectra of solids. The text then discusses Maxwell's equations and the dielectric function; absorption and dispersion; and the theory of free-electron metals. The quantum mechanical theory of direct and indirect transitions between bands; the applications of dispersion relations; and the derivation of an expression for the dielectric function in the self-consistent field approximation are also encompassed.

  6. OSL, TL and IRSL emission spectra of sedimentary quartz and feldspar samples

    International Nuclear Information System (INIS)

    Lomax, Johanna; Mittelstraß, Dirk; Kreutzer, Sebastian; Fuchs, Markus

    2015-01-01

    This contribution presents a variety of different luminescence emission spectra from sedimentary feldspar and quartz samples under various stimulation modes. These are green stimulated quartz (OSL-) spectra, quartz TL spectra, feldspar IRSL and post-IR IRSL spectra. A focus was set at recording OSL and IRSL spectra at elevated stimulation temperatures such as routinely applied in luminescence dating. This was to test whether optical stimulation at elevated temperatures results in a shift of emission peaks. For OSL emissions of quartz, this has so far not been tested. In case of feldspar emissions, post-IR IRSL conditions, hence IRSL emissions at a low temperature, directly followed by high temperature post-IRSL emissions, are explicitly investigated. All spectra were recorded using a new system incorporated into a Lexsyg luminescence reader. Thus, this study, besides presenting new spectral data, also serves as a feasibility study for this new device. It is shown that (a) the new device is capable of automatically measuring different sorts of spectra, also at elevated temperatures, (b) known thermally and optically stimulated peak emissions of quartz and feldspar are confirmed, (c) obtained IRSL and OSL spectra indicate that there is no significant relation between peak emission and stimulation temperature. - Highlights: • We have measured OSL, IRSL and TL emission spectra of sedimentary quartz and feldspar samples. • Spectral analyses were performed at elevated stimulation temperatures. • Emission spectra show very little variation with stimulation temperatures.

  7. Infrared Model Spectra for Evolving Red Supergiants

    Directory of Open Access Journals (Sweden)

    Kyung-Won Suh

    1993-06-01

    Full Text Available The space and ground based infrared spectra of red supergiants are modeled and arranged in order of their evolutionary status with their theoretical model parameters. The chemical compositions of the dust shells around red supergiants are affected by the nuclear reaction and dredge-up processes of the cental stars. The processes are sensitively dependent on the initial mass, the initial chemical composition, and the evolutionary status. Miras, infrared carbon stars, and OH/IR stars have close link in their evolution in manu aspects, i,e., the chemical composition, the optical depths and the mass loss rates. The evolutionary tracks for the three classes of red supergiants on infrared two-color diagrams have been made from model calculations and IRAS observational data.

  8. Characterizing Sky Spectra Using SDSS BOSS Data

    Science.gov (United States)

    Florez, Lina Maria; Strauss, Michael A.

    2018-01-01

    In the optical/near-infrared spectra gathered by a ground-based telescope observing very faint sources, the strengths of the emission lines due to the Earth’s atmosphere can be many times larger than the fluxes of the sources we are interested in. Thus the limiting factor in faint-object spectroscopy is the degree to which systematics in the sky subtraction can be minimized. Longwards of 6000 Angstroms, the night-sky spectrum is dominated by multiple vibrational/rotational transitions of the OH radical from our upper atmosphere. While the wavelengths of these lines are the same in each sky spectrum, their relative strengths vary considerably as a function of time and position on the sky. The better we can model their strengths, the better we can hope to subtract them off. We expect that the strength of lines from common upper energy levels will be correlated with one another. We used flux-calibrated sky spectra from the Sloan Digital Sky Survey Baryon Oscillation Spectroscopic Survey (SDSS BOSS) to explore these correlations. Our aim is to use these correlations for creating improved sky subtraction algorithms for the Prime Focus Spectrograph (PFS) on the 8.2-meter Subaru Telescope. When PFS starts gathering data in 2019, it will be the most powerful multi-object spectrograph in the world. Since PFS will be gathering data on sources as faint as 24th magnitude and fainter, it's of upmost importance to be able to accurately measure and subtract sky spectra from the data that we receive.

  9. Reviews Book: SEP Communications: Transmitting and Receiving Signals Book: Gliding for Gold Book: Radioactivity: A History of a Mysterious Science Book: The New Quantum Age Books: The Art of Science and The Oxford Book of Modern Science Writing Equipment: SEP Analogue/digital transmission unit Equipment: SEP Optical signal transmission set Book: Stars and their Spectra Book: Voicebox: The Physics and Evolution of Speech Web Watch

    Science.gov (United States)

    2012-03-01

    WE RECOMMEND Transmitting and Receiving Signals SEP booklet transmits knowledge The New Quantum Age Understanding modern quantum theory The Art of Science and The Oxford Book of Modern Science Writing Anthologies bring science to life SEP Analogue/digital transmission unit Kit transmits signal between two points SEP Optical signal transmission set Optical kit shows light transmission Stars and their Spectra New book for teaching astrophysics WORTH A LOOK Gliding for Gold Take a journey through the physics of winter sports Radioactivity: A History of a Mysterious Science Book looks at history of radioactivity Voicebox: The Physics and Evolution of Speech TExploring the evolution of the voice WEB WATCH An interactive program with promise?

  10. Optical properties on thermally evaporated and heat-treated ...

    Indian Academy of Sciences (India)

    Administrator

    of the intra-molecular bonds between the powder compounds and thin films. The optical ... Keywords. Phthalocyanine; thin films; optical properties; absorption spectra. 1. .... Leica Cambridge scanning electron microscope (model. Stereoscan ...

  11. Influence of fluctuating strain on exciton reflection spectra

    DEFF Research Database (Denmark)

    Skettrup, Torben

    1982-01-01

    The influence of an internal distribution of strain on the exciton reflection spectra is investigated. The resulting fluctuating optical constants give rise to a fluctuating phase of reflectivity. The standard deviation σ of these phase fluctuations is the quantity which can be observed...... to derive the dependence of the phase of reflectivity on the direction of the fluctuating optical axis. The results obtained for σ are compared with the experimental depolarization spectra of ZnO. The only fitting parameter is the common standard deviation of the strain components. It is found......, for example, between crossed polarizers or from ellipsometric measurements. Assuming the phase fluctuations to obey a Gaussian distribution, σ can be expressed in a simple way in terms of the degree of polarization or the depolarization of the reflected light. σ is then derived in terms of the standard...

  12. Evolution of transmission spectra of double cladding fiber during etching

    Science.gov (United States)

    Ivanov, Oleg V.; Tian, Fei; Du, Henry

    2017-11-01

    We investigate the evolution of optical transmission through a double cladding fiber-optic structure during etching. The structure is formed by a section of SM630 fiber with inner depressed cladding between standard SMF-28 fibers. Its transmission spectrum exhibits two resonance dips at wavelengths where two cladding modes have almost equal propagation constants. We measure transmission spectra with decreasing thickness of the cladding and show that the resonance dips shift to shorter wavelengths, while new dips of lower order modes appear from long wavelength side. We calculate propagation constants of cladding modes and resonance wavelengths, which we compare with the experiment.

  13. Biological Action Spectra (invited paper)

    International Nuclear Information System (INIS)

    Gruijl, F.R. de

    2000-01-01

    Ultraviolet (UV) radiation induces a wide variety of biological responses: ranging in humans from well-known short-term effects like sunburn to long-term effects like skin cancer. The wavelength dependencies ('action spectra') of the responses can differ significantly, depending on the UV-targeted molecules (their absorption spectra), their localisation (transmission to the target depth) and the photochemical reactions involved (e.g. quantum yields, competing reaction). An action spectrum (e.g. of sunburn) is usually determined in a wavelength by wavelength analysis of the response. This is not always possible (e.g. in case of skin cancer), and an action spectrum may then be extracted mathematically from differences in responses to broadband UV sources of various spectral compositions (yielding 'biological spectral weights'). However, relative spectral weights may shift with exposure levels and contributions from different wavelengths may not always add up. Under these circumstances conventional analyses will yield different action spectra for different experimental conditions. (author)

  14. Double photoionisation spectra of molecules

    CERN Document Server

    Eland, John

    2017-01-01

    This book contains spectra of the doubly charged positive ions (dications) of some 75 molecules, including the major constituents of terrestrial and planetary atmospheres and prototypes of major chemical groups. It is intended to be a new resource for research in all areas of molecular spectroscopy involving high energy environments, both terrestrial and extra-terrestrial. All the spectra have been produced by photoionisation using laboratory lamps or synchrotron radiation and have been measured using the magnetic bottle time-of-flight technique by coincidence detection of correlated electron pairs. Full references to published work on the same species are given, though for several molecules these are the first published spectra. Double ionisation energies are listed and discussed in relation to the molecular electronic structure of the molecules. A full introduction to the field of molecular double ionisation is included and the mechanisms by which double photoionisation can occur are examined in detail. A p...

  15. QUALITATIVE INTERPRETATION OF GALAXY SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Almeida, J.; Morales-Luis, A. B. [Instituto de Astrofisica de Canarias, E-38205 La Laguna, Tenerife (Spain); Terlevich, R.; Terlevich, E. [Instituto Nacional de Astrofisica, Optica y Electronica, Tonantzintla, Puebla (Mexico); Cid Fernandes, R., E-mail: jos@iac.es, E-mail: abml@iac.es, E-mail: rjt@ast.cam.ac.uk, E-mail: eterlevi@inaoep.mx, E-mail: cid@astro.ufsc.br [Departamento de Fisica-CFM, Universidade Federal de Santa Catarina, P.O. Box 476, 88040-900 Florianopolis, SC (Brazil)

    2012-09-10

    We describe a simple step-by-step guide to qualitative interpretation of galaxy spectra. Rather than an alternative to existing automated tools, it is put forward as an instrument for quick-look analysis and for gaining physical insight when interpreting the outputs provided by automated tools. Though the recipe is for general application, it was developed for understanding the nature of the Automatic Spectroscopic K-means-based (ASK) template spectra. They resulted from the classification of all the galaxy spectra in the Sloan Digital Sky Survey data release 7, thus being a comprehensive representation of the galaxy spectra in the local universe. Using the recipe, we give a description of the properties of the gas and the stars that characterize the ASK classes, from those corresponding to passively evolving galaxies, to H II galaxies undergoing a galaxy-wide starburst. The qualitative analysis is found to be in excellent agreement with quantitative analyses of the same spectra. We compare the mean ages of the stellar populations with those inferred using the code STARLIGHT. We also examine the estimated gas-phase metallicity with the metallicities obtained using electron-temperature-based methods. A number of byproducts follow from the analysis. There is a tight correlation between the age of the stellar population and the metallicity of the gas, which is stronger than the correlations between galaxy mass and stellar age, and galaxy mass and gas metallicity. The galaxy spectra are known to follow a one-dimensional sequence, and we identify the luminosity-weighted mean stellar age as the affine parameter that describes the sequence. All ASK classes happen to have a significant fraction of old stars, although spectrum-wise they are outshined by the youngest populations. Old stars are metal-rich or metal-poor depending on whether they reside in passive galaxies or in star-forming galaxies.

  16. Optic neuritis

    Science.gov (United States)

    Retro-bulbar neuritis; Multiple sclerosis - optic neuritis; Optic nerve - optic neuritis ... The exact cause of optic neuritis is unknown. The optic nerve carries visual information from your eye to the brain. The nerve can swell when ...

  17. Absorption Spectra of Gold Nanoparticle Suspensions

    Science.gov (United States)

    Anan'eva, M. V.; Nurmukhametov, D. R.; Zverev, A. S.; Nelyubina, N. V.; Zvekov, A. A.; Russakov, D. M.; Kalenskii, A. V.; Eremenko, A. N.

    2018-02-01

    Three gold nanoparticle suspensions are obtained, and mean radii in distributions - (6.1 ± 0.2), (11.9 ± 0.3), and (17.3 ± 0.7) nm - are determined by the transmission electron microscopy method. The optical absorption spectra of suspensions are obtained and studied. Calculation of spectral dependences of the absorption index of suspensions at values of the gold complex refractive index taken from the literature showed a significant deviation of experimental and calculated data in the region of 450-800 nm. Spectral dependences of the absorption of suspensions are simulated within the framework of the Mie-Drude theory taking into account the interband absorption in the form of an additional term in the imaginary part of the dielectric permittivity of the Gaussian type. It is shown that to quantify the spectral dependences in the region of the plasmon absorption band of nanoparticles, correction of the parameters of the interband absorption is necessary in addition to the increase of the relaxation parameter of the Drude theory. Spectral dependences of the dielectric permittivity of gold in nanodimensional state are refined from the solution of the inverse problem. The results of the present work are important for predicting the special features of operation of photonic devices and optical detonators based on gold nanoparticles.

  18. The structure of BPS spectra

    Science.gov (United States)

    Longhi, Pietro

    In this thesis we develop and apply novel techniques for analyzing BPS spectra of supersymmetric quantum field theories of class S. By a combination of wall-crossing, spectral networks and quiver methods we explore the BPS spectra of higher rank four-dimensional N = 2 super Yang-Mills, uncovering surprising new phenomena. Focusing on the SU(3) case, we prove the existence of wild BPS spectra in field theory, featuring BPS states of higher spin whose degeneracies grow exponentially with the energy. The occurrence of wild BPS states is surprising because it appears to be in tension with physical expectations on the behavior of the entropy as a function of the energy scale. The solution to this puzzle comes from realizing that the size of wild BPS states grows rapidly with their mass, and carefully analyzing the volume-dependence of the entropy of BPS states. We also find some interesting structures underlying wild BPS spectra, such as a Regge-like relation between the maximal spin of a BPS multiplet and the square of its mass, and the existence of a universal asymptotic distribution of spin-j irreps within a multiplet of given charge. We also extend the spectral networks construction by introducing a refinement in the topological classification of 2d-4d BPS states, and identifying their spin with a topological invariant known as the "writhe of soliton paths". A careful analysis of the 2d-4d wall-crossing behavior of this refined data reveals that it is described by motivic Kontsevich-Soibelman transformations, controlled by the Protected Spin Character, a protected deformation of the BPS index encoding the spin of BPS states. Our construction opens the way for the systematic study of refined BPS spectra in class S theories. We apply it to several examples, including ones featuring wild BPS spectra, where we find an interesting relation between spectral networks and certain functional equations. For class S theories of A 1 type, we derive an alternative technique for

  19. Automatic identification of mass spectra

    International Nuclear Information System (INIS)

    Drabloes, F.

    1992-01-01

    Several approaches to preprocessing and comparison of low resolution mass spectra have been evaluated by various test methods related to library search. It is shown that there is a clear correlation between the nature of any contamination of a spectrum, the basic principle of the transformation or distance measure, and the performance of the identification system. The identification of functionality from low resolution spectra has also been evaluated using several classification methods. It is shown that there is an upper limit to the success of this approach, but also that this can be improved significantly by using a very limited amount of additional information. 10 refs

  20. Investigation of gamma spectra analysis

    International Nuclear Information System (INIS)

    Wu Huailong; Liu Suping; Hao Fanhua; Gong Jian; Liu Xiaoya

    2006-01-01

    In the investigation of radiation fingerprint comparison, it is found out that some of the popular gamma spectra analysis software have shortcomings, which decrease the radiation fingerprint comparison precision. So a new analysis software is developed for solving the problems. In order to display the advantage of developed program, some typical simulative warhead gamma spectra are analyzed respectively by present software and GAMMAVISION and GENNIE2000. Present software can be applied not only in nuclear warheads deep-cuts verification, but also in any radiation measurement field. (authors)

  1. Ultraviolet spectra of planetary nebulae

    International Nuclear Information System (INIS)

    Adams, S.; Seaton, M.J.

    1982-01-01

    Features observed in infrared spectra suggest that certain very low excitation (VLE) nebulae have low C/O abundance ratios (Cohen and Barlow 1980; Aitken and Roche 1982). Fluxes in the multiplets [O II] lambda 2470 and C II] lambda 2326 have been measured for the VLE nebula He He 2-131 = HD 138403 using IUE high-dispersion spectra. An analysis similar to that of Harrington et al. (1980) for IC 418 gives C/O = 0.3 for He 2-131, compared with C/O = 1.3 for IC 418 and 0.6 for the Sun. (author)

  2. Investigation of gamma spectra analysis

    International Nuclear Information System (INIS)

    Wu Huailong; Liu Suping; Hao Fanhua

    2006-12-01

    During the investigation of radiation fingerprint comparison, it is found out that the popular gamma spectra analysis softwares are faultful, which decrease the precision of radiation fingerprint comparison. So a new analysis software is development for solving the problems. In order to display the advantage of new program, some typical simulative gamma spectra of radiation source are analyzed respectively by our software and GAMMAVISION and GENNIE2000. The software can be applied not only in nuclear warheads deep-cuts verification, but also in any radiation measurement field. (authors)

  3. Raman spectra studies of dipeptides

    International Nuclear Information System (INIS)

    Blanchard, Simone.

    1977-10-01

    This work deals with the homogenous and heterogeneous dipeptides derived from alanine and glycine, in the solid state or in aqueous solutions, in the zwitterions or chlorhydrates form. The Raman spectra comparative study of these various forms of hydrogenated or deuterated compounds allows to specify some of the attributions which are necessary in the conformational study of the like tripeptides. These compounds contain only one peptidic group; therefore there is no possibility of intramolecular hydrogen bond which caracterise vibrations of non bonded peptidic groups and end groups. Infrared spectra of solid dipeptides will be presented and discussed in the near future [fr

  4. Classical Trajectories and Quantum Spectra

    Science.gov (United States)

    Mielnik, Bogdan; Reyes, Marco A.

    1996-01-01

    A classical model of the Schrodinger's wave packet is considered. The problem of finding the energy levels corresponds to a classical manipulation game. It leads to an approximate but non-perturbative method of finding the eigenvalues, exploring the bifurcations of classical trajectories. The role of squeezing turns out decisive in the generation of the discrete spectra.

  5. Vibrational spectra of ordered perovskites

    NARCIS (Netherlands)

    Corsmit, A.F.; Hoefdraad, H.E.; Blasse, G.

    1972-01-01

    The vibrational spectra of the molecular M6+O6 (M = Mo, Te, W) group in ordered perovskites of the type Ba2M2+M6+O6 are reported. These groups have symmetry Oh, whereas their site symmetry is also Oh. An assignment of the internal vibrations is presented.

  6. Raman spectra of graphene ribbons

    International Nuclear Information System (INIS)

    Saito, R; Furukawa, M; Dresselhaus, G; Dresselhaus, M S

    2010-01-01

    Raman spectra of graphene nanoribbons with zigzag and armchair edges are calculated within non-resonant Raman theory. Depending on the edge structure and polarization direction of the incident and scattered photon beam relative to the edge direction, a symmetry selection rule for the phonon type appears. These Raman selection rules will be useful for the identification of the edge structure of graphene nanoribbons.

  7. Explanation of earthquake response spectra

    OpenAIRE

    Douglas, John

    2017-01-01

    This is a set of five slides explaining how earthquake response spectra are derived from strong-motion records and simple models of structures and their purpose within seismic design and assessment. It dates from about 2002 and I have used it in various introductory lectures on engineering seismology.

  8. Correlation between optical emission spectra and the process ...

    Indian Academy of Sciences (India)

    and disadvantages, but, good quality diamond can be deposited mainly using ... increase in the CH4 concentration up to 0.8% of the total gas mixture, and then ... the effect of microwave reactor parameters on thermal management of silicon.

  9. Pulse radiolysis experiments: synthesis and analysis of composite spectra

    Energy Technology Data Exchange (ETDEWEB)

    Schuler, R H; Buzzard, G K [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA). Dept. of Chemistry

    1976-01-01

    Methods are outlined for compiling optical spectra obtained in pulse radiolysis experiments in a form suitable for detailed synthesis and analysis of composite spectra. The experimental data are processed with a programmable calculator having a cassette recorder for the storage of the output data files and a peripheral plotter. The spectra are first smoothed by fitting them parabolically segment by segment. The overall spectrum is then assembled in digital form by interpolating the fitted data on a 1 nm grid and the results are stored on cassette files for further processing. Composite spectra can be readily calculated and plotted from the data on these files or known components can be subtracted from observed spectra to examine underlying contributions. The use of the fairly simple data processing methods described here permits an interactive mode of operation by the investigator which can maximize insight into details of the various contributions to an observed spectrum. Several examples of the use of these methods in conjunction with data obtained with a computer controlled pulse radiolysis data acquisition system are given.

  10. Skyshine spectra of gamma rays

    International Nuclear Information System (INIS)

    Swarup, Janardan

    1980-01-01

    A study of the spectra of gamma photons back-scattered in vertical direction by infinite air above ground (skyshine) is presented. The source for these measurements is a 650 Ci Cobalt-60 point-source and the skyshine spectra are reported for distances from 150 m to 325 m from the source, measured with a 5 cm x 5 cm NaI(Tl) detector collimated with collimators of 12 mm and 20 mm diameter and 5 cm length. These continuous spectra are unfolded with Gold's iterative technique. The photon-spectra so obtained have a distinct line at 72 keV due to multiply-scattered photons. This is an energy where photoelectric and Compton cross-sections for multiply-scattered photons balance each other. The intensity of the line(I) decreases exponentially with distance (d) from the source obeying a relation of the type I = Isub(o)esup(-μd) where μ is called as ''Multiply-Scatter Coefficient'', a constant of the medium which is air in these measurements. This relationship is explained in terms of a halo around the source comprising of multiply-scattered gamma photons, Isub(0) being the intensity of these scattered photons at the location of cobalt-source. A fraction called as ''Back-scattered Fraction'', the ratio of Isub(0) to the number of original photons from the cobalt-source entering the infinite air, is also calculated. It is shown that with a properly calibrated detector system, this fraction can be used to determine the strength of a large gamma source, viz. a nuclear explosion in air, and for mineral prospecting. These conclusions are general and can be applied to any other infinite medium. Some forward-scatter (transmission) spectra of cobalt-60 source through 10 cm of Pb and 2.5 cm of Al are also reported. (auth.)

  11. [The NIR spectra based variety discrimination for single soybean seed].

    Science.gov (United States)

    Zhu, Da-Zhou; Wang, Kun; Zhou, Guang-Hua; Hou, Rui-Feng; Wang, Cheng

    2010-12-01

    With the development of soybean producing and processing, the quality breeding becomes more and more important for soybean breeders. Traditional sampling detection methods for soybean quality need to destroy the seed, and does not satisfy the requirement of earlier generation materials sieving for breeding. Near infrared (NIR) spectroscopy has been widely used for soybean quality detection. However, all these applications were referred to mass samples, and they were not suitable for little or single seed detection in breeding procedure. In the present study, the acousto--optic tunable filter (AOTF) NIR spectroscopy was used to measure the single soybean seed. Two varieties of soybean were measured, which contained 60 KENJIANDOU43 seeds and 60 ZHONGHUANG13 seeds. The results showed that NIR spectra combined with soft independent modeling of class analogy (SIMCA) could accurately discriminate the soybean varieties. The classification accuracy for KENJIANDOU43 seeds and ZHONGHUANG13 was 100%. The spectra of single soybean seed were measured at different positions, and it showed that the seed shape has significant influence on the measurement of spectra, therefore, the key point for single seed measurement was how to accurately acquire the spectra and keep their representativeness. The spectra for soybeans with glossy surface had high repeatability, while the spectra of seeds with external defects had significant difference for several measurements. For the fast sieving of earlier generation materials in breeding, one could firstly eliminate the seeds with external defects, then apply NIR spectra for internal quality detection, and in this way the influence of seed shape and external defects could be reduced.

  12. Ab initio calculations on the X (2)B1 and A (2)A1 states of AsH2, and Franck-Condon simulation, including anharmonicity, of the A(0,0,0)-X single vibronic level emission spectrum of AsH2.

    Science.gov (United States)

    Lee, Edmond P F; Mok, Daniel K W; Chau, Foo-Tim; Dyke, John M

    2010-06-21

    Restricted-spin coupled-cluster single-double plus perturbative triple excitation {RCCSD(T)} calculations were carried out on the X (2)B(1) and A (2)A(1) states of AsH(2) employing the fully relativistic small-core effective core potential (ECP10MDF) for As and basis sets of up to the augmented correlation-consistent polarized valence quintuple-zeta (aug-cc-pV5Z) quality. Minimum-energy geometrical parameters and relative electronic energies were evaluated, including contributions from extrapolation to the complete basis set limit and from outer core correlation of the As 3d(10) electrons employing additional tight 4d3f2g2h functions designed for As. In addition, simplified, explicitly correlated CCSD(T)-F12 calculations were also performed employing different atomic orbital basis sets of up to aug-cc-pVQZ quality, and associated complementary auxiliary and density-fitting basis sets. The best theoretical estimate of the relative electronic energy of the A (2)A(1) state of AsH(2) relative to the X (2)B(1) state including zero-point energy correction (T(0)) is 19,954(32) cm(-1), which agrees very well with available experimental T(0) values of 19,909.4531(18) and 19,909.4910(17) cm(-1) obtained from recent laser induced fluorescence and cavity ringdown absorption spectroscopic studies. In addition, potential energy functions (PEFs) of the X (2)B(1) and A (2)A(1) states of AsH(2) were computed at different RCCSD(T) and CCSD(T)-F12 levels. These PEFs were used in variational calculations of anharmonic vibrational wave functions, which were then utilized to calculate Franck-Condon factors (FCFs) between these two states, using a method which includes allowance for anharmonicity and Duschinsky rotation. The A(0,0,0)-X single vibronic level (SVL) emission spectrum of AsH(2) was simulated using these computed FCFs. Comparison between simulated and available experimental vibrationally resolved spectra of the A(0,0,0)-X SVL emission of AsH(2), which consist essentially of

  13. Time resolved resonance Raman spectra of anilino radical and aniline radical cation

    International Nuclear Information System (INIS)

    Tripathi, G.N.R.; Schuler, R.H.

    1987-01-01

    We report, in this paper, submicrosecond time resolved resonance Raman spectra of anilino radical and its radical cation as observed in pulse radiolytic studies of the oxidation of aniline in aqueous solution. By excitation in resonance with the broad and weak electronic transition of anilino radical at 400 nm (ε--1250 M -1 cm -1 ) we have observed, for the first time, the vibrational features of this radical. The Wilson ν 8 /sub a/ ring stretching mode at 1560 cm -1 is most strongly resonance enhanced. The ν 7 /sub a/ CN stretching band at 1505 cm -1 , which is shifted to higher frequency by 231 cm -1 with respect to aniline, is also prominent. The frequency of this latter mode indicates that the CN bond in the radical has considerable double bond character. The Raman spectrum of aniline radical cation, excited in resonance with the --425 nm electronic absorption (ε--4000 M -1 cm -1 ), shows features which are similar to phenoxyl radical. Most of the observed frequencies of this radical in solution are in good agreement with vibrational energies determined by recent laser photoelectron spectroscopic studies in the vapor phase. The bands most strongly enhanced in the resonance Raman spectrum are, however, weak in the photoelectron spectrum. While the vibrational frequencies observed for anilino radical and its isoelectronic cation are quite similar, the resonance enhancement patterns are very different. In particular the ν 14 b 2 mode of anilino radical observed at 1324 cm -1 is highly resonance enhanced because of strong vibronic coupling between the 400 nm 2 A 2 -- 2 B 1 and the higher 2 B 1 -- 2 B 1 electronic transitions

  14. Variable valence ion spectra in a crystal field

    International Nuclear Information System (INIS)

    Ghiordanescu, V.

    1979-01-01

    Using the Cadmium chloride as a host lattice, the optical spectra and RES of Mnsup(2+) were studied and the following results were obtained: a) By controlled dopings, the absorbtion and excitation spectra of ion Mnsup(2+) in CdCl 2 within the concentration range between 0.01 M and 25 M were plotted. Thus, the band structure for small concentrations was pointed out to differ from the structure observed for high concentrations. In the literature, this effect has not been observed on similar compounds, due to the small intensity values of the absorbtion spectra. b) Considering that for CdCl 2 :Mnsup(2+) 0.1 M, the optical spectra correspond to the isolated ion in the lattice, the energy levels were evaluated using electrostatic and spin-orbit terms in a perturbation calculation of the crystal field approximation. c) The calculation of parameter a which represents the effect of the cubic field in the spjn Hamiltonian of Mnsup(2+), is closer to the experjmental value -0.5.10 -4 cm -1 of the crystal field Dq and zeta parameters are used, respectively, parameters of the spin-orbit interaction obtained under b). d) The coupling effects of spins into more concentrated crystals with Mn 2+ are a function of temperature. The emjssion yield was given a quasi-cantitative evaluation in thjs paper as a function of temperature and concentratjon on the basis of which the isolated centers of Mn 2+ were found to display ectra whose intensity vary with temperature according to the Laporte forbidden transitions and spin rule theory, and the clusters including Mn 2+ - Mn 2+ pairs provide spectra whose intensity vary with the strength of the spin-spin coupling. (author)

  15. ACCELERATED FITTING OF STELLAR SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Ting, Yuan-Sen; Conroy, Charlie [Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Rix, Hans-Walter [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany)

    2016-07-20

    Stellar spectra are often modeled and fitted by interpolating within a rectilinear grid of synthetic spectra to derive the stars’ labels: stellar parameters and elemental abundances. However, the number of synthetic spectra needed for a rectilinear grid grows exponentially with the label space dimensions, precluding the simultaneous and self-consistent fitting of more than a few elemental abundances. Shortcuts such as fitting subsets of labels separately can introduce unknown systematics and do not produce correct error covariances in the derived labels. In this paper we present a new approach—Convex Hull Adaptive Tessellation (chat)—which includes several new ideas for inexpensively generating a sufficient stellar synthetic library, using linear algebra and the concept of an adaptive, data-driven grid. A convex hull approximates the region where the data lie in the label space. A variety of tests with mock data sets demonstrate that chat can reduce the number of required synthetic model calculations by three orders of magnitude in an eight-dimensional label space. The reduction will be even larger for higher dimensional label spaces. In chat the computational effort increases only linearly with the number of labels that are fit simultaneously. Around each of these grid points in the label space an approximate synthetic spectrum can be generated through linear expansion using a set of “gradient spectra” that represent flux derivatives at every wavelength point with respect to all labels. These techniques provide new opportunities to fit the full stellar spectra from large surveys with 15–30 labels simultaneously.

  16. Reconstruction of neutron spectra through neural networks

    International Nuclear Information System (INIS)

    Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.

    2003-01-01

    A neural network has been used to reconstruct the neutron spectra starting from the counting rates of the detectors of the Bonner sphere spectrophotometric system. A group of 56 neutron spectra was selected to calculate the counting rates that would produce in a Bonner sphere system, with these data and the spectra it was trained the neural network. To prove the performance of the net, 12 spectra were used, 6 were taken of the group used for the training, 3 were obtained of mathematical functions and those other 3 correspond to real spectra. When comparing the original spectra of those reconstructed by the net we find that our net has a poor performance when reconstructing monoenergetic spectra, this attributes it to those characteristic of the spectra used for the training of the neural network, however for the other groups of spectra the results of the net are appropriate with the prospective ones. (Author)

  17. Biological Action Spectra (invited paper)

    Energy Technology Data Exchange (ETDEWEB)

    Gruijl, F.R. de

    2000-07-01

    Ultraviolet (UV) radiation induces a wide variety of biological responses: ranging in humans from well-known short-term effects like sunburn to long-term effects like skin cancer. The wavelength dependencies ('action spectra') of the responses can differ significantly, depending on the UV-targeted molecules (their absorption spectra), their localisation (transmission to the target depth) and the photochemical reactions involved (e.g. quantum yields, competing reaction). An action spectrum (e.g. of sunburn) is usually determined in a wavelength by wavelength analysis of the response. This is not always possible (e.g. in case of skin cancer), and an action spectrum may then be extracted mathematically from differences in responses to broadband UV sources of various spectral compositions (yielding 'biological spectral weights'). However, relative spectral weights may shift with exposure levels and contributions from different wavelengths may not always add up. Under these circumstances conventional analyses will yield different action spectra for different experimental conditions. (author)

  18. Spectral Barcoding of Quantum Dots: Deciphering Structural Motifs from the Excitonic Spectra

    International Nuclear Information System (INIS)

    Mlinar, V.; Zunger, A.

    2009-01-01

    Self-assembled semiconductor quantum dots (QDs) show in high-resolution single-dot spectra a multitude of sharp lines, resembling a barcode, due to various neutral and charged exciton complexes. Here we propose the 'spectral barcoding' method that deciphers structural motifs of dots by using such barcode as input to an artificial-intelligence learning system. Thus, we invert the common practice of deducing spectra from structure by deducing structure from spectra. This approach (i) lays the foundation for building a much needed structure-spectra understanding for large nanostructures and (ii) can guide future design of desired optical features of QDs by controlling during growth only those structural motifs that decide given optical features.

  19. Systematic evaluation of prompt neutron spectra in fission

    International Nuclear Information System (INIS)

    Osawa, Takaaki

    1995-01-01

    To create the nuclear data fail JEND-32, the prompt fission neutron spectra X(E) of 233 U, 235 U, 238 U and 239 Pu were reevaluated and some improvement were added to the calculation models. We tried to extend the calculation method of fission spectra of nuclides with poor measurement data in consideration of increasing the importance of nuclear data of minor actinoids. We improved and extended the following five points. (1) On JENDL-3.1, the fission spectra of principal fissible materials had been calculated by the Modland-Nix model which the neutron emissions of fragments were calculated under the approximation of the constant inverse process cross section. In the paper, the spectra were calculated by the use of the inverse process cross section depend on the energy obtained by the calculation of the optical model. The result showed the increase of low energy components and the softening effect of spectra (2) On JENDL-3.1, the all fission processes were assumed to undergo (n,f) reaction. In the paper, they were calculated by the multi-chance fission such as (n, n'f), (n, 2nf) and (n, 3nf) etc. Softening of the spectra (En > 6 MeV) was obtained by this method. (3) The level density parameter (LDP) has been assumed as a = A/C in either case of light fragment (LF) and heavy fragment (HF) in the original Madland-Nix model. But we used LDP based on the Ignatyuk model under consideration of the shell effects of nuclear fragments, hence the neutron spectra of heavy fragments were hardening. (4) Nuclear temperature of both fragments had been assumed to be the same at original model, but now R T = Tm/TmH was derived to calculate them. The ratio of middle/both side components of spectra was changed. (5) Unknown neutron fission spectra of minor actinide were able to the assumed on the basis of Moriyama-Ohnishi model. (S.Y.)

  20. Depth distributions of light action spectra for skin chromophores

    Science.gov (United States)

    Barun, V. V.; Ivanov, A. P.

    2010-03-01

    Light action spectra over wavelengths of 300-1000 nm are calculated for components of the human cutaneous covering: melanin, basal (bloodless) tissue, and blood oxy- and deoxyhemoglobin. The transformation of the spectra with depth in biological tissue results from two factors. The first is the wavelength dependence of the absorption coefficient corresponding to a particular skin chromophore and the second is the spectral selectivity of the radiation flux in biological tissue. This factor is related to the optical properties of all chromophores. A significant change is found to take place in the spectral distribution of absorbed radiant power with increasing depth. The action spectrum of light for the molecular oxygen contained in all components of biological tissue is also studied in the 625-645 nm range. The spectra are found to change with both the volume fraction of blood vessels and the degree of oxygenation of the blood. These results are useful for analyzing processes associated with optical absorption that are possible mechanisms for the interaction of light with biological tissues: photodissociation of oxyhemoglobin and the light-oxygen effect.

  1. Faraday effect and λ-modulation absorption spectra of GaP

    International Nuclear Information System (INIS)

    Petkova, P N; Dimov, T N; Iliev, I A

    2007-01-01

    There are presented the absorption optical spectra of GaP measured by λ-modulation method at room temperature in the spectral region from 505 nm to 700 nm. It is not possible even by λ-modulation to be registered at room temperature the wave bands due to the exciton-phonon interaction. The absorption spectra of GaP carried out by a λ-modulation can be separated exactly in the spectral parts as follows: the transmittance region where the absorption is too slightly expressed; the region determined by the phonon-assisted indirect transitions; the region of the interband absorption. The purpose of Faraday rotation measurements is to establish the influence of the exciton-phonon interaction on the magneto-optical effect. The magneto-optical effect has been investigated by a φ-modulation. The spectral dependence of dn/dλ in the transmittance region is determined by the φ-modulated spectra

  2. The photoluminescence spectra of micropowder of aromatic compounds under ultraviolet laser excitation

    International Nuclear Information System (INIS)

    Rakhmatullaev, I.A.; Kurbonov, A.K. et al.; Gorelik, V.S.

    2016-01-01

    The method of diagnostics of aromatic compounds on the example of novocaine, aspirin and anthracene is presented. The method is based on optical detection of photoluminescence spectra at ultraviolet laser (266 nm) excitation. Employing this method the photoluminescence spectra are obtained which allows one to establish the differences of the composition and structure of compounds. The developed method can be used for analysis the quality of the large class of luminescent bioactive structures under the ultraviolet radiation. (authors)

  3. COLORED DISSOLVED ORGANIC MATTER (CDOM) CHARACTERIZATION BY ABSORPTION AND FLUORESCENCE SPECTRA

    OpenAIRE

    Goncalves Araujo, Rafael; Ramirez-Perez, Marta; Kraberg, Alexandra; Piera, Jaume; Bracher, Astrid

    2014-01-01

    Colored dissolved organic matter (CDOM) absorption and fluorescence spectra were analyzed from samples collected in the Lena River Delta region (Siberia, Russia; summer-2013) and in the Alfacs Bay (Ebro River Delta, Spain; summer-2013/winter-2014) in order to use optical measurements to infer loading and origin of CDOM. Absorbance spectra and Excitation-Emission matrices (EEMs) were obtained with a HORIBA Aqualog® spectrofluorometer. CDOM absorption at 443nm (a443) and terrestrial absorption ...

  4. Design spectra development considering short time histories

    International Nuclear Information System (INIS)

    Weiner, E.O.

    1983-01-01

    The need for generation of seismic acceleration histories to prescribed response spectra arises several ways in structural dynamics. For example, one way of obtaining floor spectra is to generate a history from a foundation spectra and then solve for the floor motion from which a floor spectrum can be obtained. Two separate programs, MODQKE and MDOF, were written to provide a capability of obtaining equipment spectra from design spectra. MODQKE generates or modifies acceleration histories to conform with design spectra pertaining to, say, a foundation. MDOF is a simple linear modal superposition program that solves for equipment support histories using the design spectra conforming histories as input. Equipment spectra, then, are obtained from the support histories using MODQKE

  5. Gamma-ray burst spectra

    International Nuclear Information System (INIS)

    Teegarden, B.J.

    1982-01-01

    A review of recent results in gamma-ray burst spectroscopy is given. Particular attention is paid to the recent discovery of emission and absorption features in the burst spectra. These lines represent the strongest evidence to date that gamma-ray bursts originate on or near neutron stars. Line parameters give information on the temperature, magnetic field and possibly the gravitational potential of the neutron star. The behavior of the continuum spectrum is also discussed. A remarkably good fit to nearly all bursts is obtained with a thermal-bremsstrahlung-like continuum. Significant evolution is observed of both the continuum and line features within most events

  6. Wavelet spectra of JACEE events

    International Nuclear Information System (INIS)

    Suzuki, Naomichi; Biyajima, Minoru; Ohsawa, Akinori.

    1995-01-01

    Pseudo-rapidity distributions of two high multiplicity events Ca-C and Si-AgBr observed by the JACEE are analyzed by a wavelet transform. Wavelet spectra of those events are calculated and compared with the simulation calculations. The wavelet spectrum of the Ca-C event somewhat resembles that simulated with the uniform random numbers. That of Si-AgBr event, however, is not reproduced by simulation calculations with Poisson random numbers, uniform random numbers, or a p-model. (author)

  7. Uranium spectra in the ICP

    Energy Technology Data Exchange (ETDEWEB)

    Ghazi, A.A.; Qamar, S.; Atta, M.A. (Khan (A.Q.) Research Labs., Rawalpindi (Pakistan))

    1994-05-01

    Uranium spectra have been studied by inductively coupled plasma atomic emission spectroscopy (ICP-AES). In total, 8361 uranium lines were observed in the wavelength range of 235-500 nm. This article is an electronic publication in Spectrochimica Acta Electronica (SAE), the electronic section of Spectrochimica Acta Part B (SAB). The hard copy text is accompanied by a disk with data files and test files for an IBM-compatible computer. The main article discusses the scientific aspects of the subject and explains the purpose of the data files. (Author).

  8. Identified hadron spectra from PHOBOS

    Science.gov (United States)

    Veres, Gábor I.; the PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wysłouch, B.; Zhang, J.

    2004-08-01

    Transverse momentum spectra of pions, kaons and protons, as well as antiparticle to particle ratios near mid-rapidity from d+Au collisions at \\sqrt{sNN} = 200 GeV have been measured by the PHOBOS experiment at RHIC. The transverse momentum range of particle identification was extended to beyond 3 GeV/c using the TOF detector and a new trigger system. The pseudorapidity dependence of the nuclear modification factor for charged hadrons in d+Au collisions is presented.

  9. Uranium spectra in the ICP

    International Nuclear Information System (INIS)

    Ghazi, A.A.; Qamar, S.; Atta, M.A.

    1994-01-01

    Uranium spectra have been studied by inductively coupled plasma atomic emission spectroscopy (ICP-AES). In total, 8361 uranium lines were observed in the wavelength range of 235-500 nm. This article is an electronic publication in Spectrochimica Acta Electronica (SAE), the electronic section of Spectrochimica Acta Part B (SAB). The hard copy text is accompanied by a disk with data files and test files for an IBM-compatible computer. The main article discusses the scientific aspects of the subject and explains the purpose of the data files. (Author)

  10. Emissive spectra of shock-heated argon

    International Nuclear Information System (INIS)

    Tang Jingyou; Gu Yan; Peng Qixian; Bai Yulin; Li Ping

    2003-01-01

    To study the radiant properties of argon under weak shock compression, an aluminum target filled with gaseous argon at ambient states was impacted by a tungsten alloy projectile which was launched from a two-stage light gun to 2.00 km/s. The radiant signals of single shock-compressed argon were recorded by a six-channel pyrometer and oscilloscopes, which varied with time linearly for the five channels from 405 nm to 700 nm and exponentially for the channel 800 nm, and the corresponding velocity of shock wave was determined to be 4.10 ± 0.09 km/s. By the present experiment, it has been shown that the absorbability of the shock-heated argon is low for visual light and the optical depths of argon gas turn from thin to thick as wavelengths gradually increase. The time-resolved spectra in the rising-front of the radiant signal in the re-shocked argon were recorded by means of an OMA, and strong emissive spectrum bands near 450 nm light-wave length but no linear spectrum were found. The emissive spectrum properties of shock-compression argon were qualitatively explained by the state parameters and ionization degree

  11. Operator functions and localization of spectra

    CERN Document Server

    Gil’, Michael I

    2003-01-01

    "Operator Functions and Localization of Spectra" is the first book that presents a systematic exposition of bounds for the spectra of various linear nonself-adjoint operators in a Hilbert space, having discrete and continuous spectra. In particular bounds for the spectra of integral, differential and integro-differential operators, as well as finite and infinite matrices are established. The volume also presents a systematic exposition of estimates for norms of operator-valued functions and their applications.

  12. Non-LTE Stellar Population Synthesis of Globular Clusters Using Synthetic Integrated Light Spectra. I. Constructing the IL Spectra

    Science.gov (United States)

    Young, Mitchell. E.; Short, C. Ian

    2017-02-01

    We present an investigation of the globular cluster population synthesis method of McWilliam & Bernstein, focusing on the impact of non-LTE (NLTE) modeling effects and color-magnitude diagram (CMD) discretization. Johnson-Cousins-Bessel U - B, B-V, V-I, and J-K colors are produced for 96 synthetic integrated light (IL) spectra with two different discretization prescriptions and three degrees of NLTE treatment. These color values are used to compare NLTE- and LTE-derived population ages. Relative contributions of different spectral types to the IL spectra for different wavebands are measured. IL NLTE spectra are shown to be more luminous in the UV and optical than LTE spectra, but show stronger absorption features in the IR. The main features showing discrepancies between NLTE and LTE IL spectra may be attributed to light metals, primarily Fe I, Ca I, and Ti I, as well as TiO molecular bands. Main-sequence stars are shown to have negligible NLTE effects at IR wavelengths compared to more evolved stars. Photometric color values are shown to vary at the millimagnitude level as a function of CMD discretization. Finer CMD sampling for the upper main sequence and turnoff, base of the red giant branch, and the horizontal branch minimizes this variation. Differences in ages derived from LTE and NLTE IL spectra are found to range from 0.55 to 2.54 Gyr, comparable to the uncertainty in GC ages derived from color indices with observational uncertainties of 0.01 mag, the limiting precision of the Harris catalog.

  13. Effect of polariton propagation on spectra of SRS amplification and CARS from polaritons

    International Nuclear Information System (INIS)

    Orlov, Sergei N; Polivanov, Yurii N

    2001-01-01

    The properties of k spectra of SRS amplification and CARS from polaritons caused by 'running out' of polaritons from the volume of their interaction with incident light beams are theoretically analysed. It is shown that the shape and width of the spectra depend on the relation between the size of the overlap region of exciting waves in a crystal along the direction of polariton propagation and the mean free path of polaritons. The conditions are found under which the widths of SRS amplification and CARS spectra give information on the polariton decay. (nonlinear optical phenomena and devices)

  14. Phonon spectra in SiO2 glasses

    International Nuclear Information System (INIS)

    Perez R, J.F.; Jimenez S, S.; Gonzalez H, J.; Vorobiev, Y.V.; Hernandez L, M.A.; Parga T, J.R.

    1999-01-01

    Phonon spectra in SiO 2 sol-gel made glasses annealed under different conditions are investigated using infrared absorption and Raman scattering. These data are compared with those obtained in commercial optical-quality quartz. All the materials exhibit the same phonon bands, the exact position and the intensity depend on the measuring technique and on the sample preparation method. The phonon spectra in this material are interpreted on the basis of a simple quasi-linear description of elastic waves in an O-Si-O chain. It is shown that the main features observed in the range 400-1400 cm -1 can be predicted using a quasi-linear chain model in which the band at 1070 cm -1 is assigned to the longitudinal optical waves in the O-Si-O chain with the smallest possible wavelength at the Brillouin zone boundary, the band located around 450 cm -1 is assigned to the transversal optical waves and the band at 800 cm -1 to the longitudinal acoustical waves with the same wavelength. The degree of structural disorder can be also deduced within the framework of the proposed model. (Author)

  15. Electron and phonon spectra in La2-xSrxCuI4+δ

    International Nuclear Information System (INIS)

    Nomerovannaya, L.V.; Makhnev, A.A.; Malyuk, A.N.; Bolotin, G.A.; Shtrapenin, G.L.; Ignatenkov, A.N.

    1995-01-01

    Ellipsometric measurements of optical constants and measurements of reflection spectra of La 2-x Sr x CuI 4+δ monocrystals were carried out. Variation of peculiarities of electron and phonon spectra at strontium doping was followed. Formulae to calculate ε dielectric permittivity tensor component on the ground of ellipsometric measurements for tetragonal and orthorhombic crystals are given. Effect of superstoichiometric oxygen content on anisotropy of La 2 CuO 4+δ optical properties was studied. 18 refs., 5 figs., 1 tab

  16. Polarization-dependent spectra in the photoassociative ionization of cold atoms in a bright sodium beam

    International Nuclear Information System (INIS)

    Ramirez-Serrano, Jaime; DeGraffenreid, William; Weiner, John

    2002-01-01

    We report measurements of cold photoassociative ionization (PAI) spectra obtained from collisions within a slow, bright Na atomic beam. A high-brightness atom flux, obtained by optical cooling and focusing of the atom beam, permits a high degree of alignment and orientation of binary collisions with respect to the laboratory atom-beam axis. The results reveal features of PAI spectra not accessible in conventional magneto-optical trap studies. We take advantage of this high degree of alignment to selectively excite autoionizing doubly excited states of specific symmetry

  17. Raman spectra of SDW superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Rout, G.C. [Condensed Matter Physics Group, Department of Physics, Government Science College, Chatrapur, Orissa 761 020 (India)]. E-mail: gcr@iopb.res.in; Bishoyi, K.C. [P.G. Department of Physics, F.M. College (Autonomous), Balasore, Orissa 756 001 (India); Behera, S.N. [Institute of Physics, Bhubaneswar 751 005 (India)

    2005-03-15

    We report the calculation of the phonon response of the coexistent spin density wave (SDW) and superconducting (SC) state and predict the observation of SC gap in the Raman spectra of rare-earth nickel borocarbide superconductors. The SDW state normally does not couple to the lattice and hence, the phonons in the system are not expected to be affected by the SDW state. But there is a possibility of observing SC gap mode in the Raman spectra of a SDW superconductor due to the coupling of the SC gap excitation to the Raman active phonons in the system via the electron-phonon (e-p) interaction. A theoretical model is used for the coexistent phase and electron-phonon interaction. Phonon Green's function is calculated by Zubarev's technique and the phonon self-energy due to e-p interaction which is given by electron density response function in the coexistent state corresponding to the SDW wave vector q = Q is evaluated. The results so obtained exhibit agreement with the experimental observations.

  18. Raman spectra of SDW superconductors

    International Nuclear Information System (INIS)

    Rout, G.C.; Bishoyi, K.C.; Behera, S.N.

    2005-01-01

    We report the calculation of the phonon response of the coexistent spin density wave (SDW) and superconducting (SC) state and predict the observation of SC gap in the Raman spectra of rare-earth nickel borocarbide superconductors. The SDW state normally does not couple to the lattice and hence, the phonons in the system are not expected to be affected by the SDW state. But there is a possibility of observing SC gap mode in the Raman spectra of a SDW superconductor due to the coupling of the SC gap excitation to the Raman active phonons in the system via the electron-phonon (e-p) interaction. A theoretical model is used for the coexistent phase and electron-phonon interaction. Phonon Green's function is calculated by Zubarev's technique and the phonon self-energy due to e-p interaction which is given by electron density response function in the coexistent state corresponding to the SDW wave vector q = Q is evaluated. The results so obtained exhibit agreement with the experimental observations

  19. X ray spectra of X Per. [oso-8 observations

    Science.gov (United States)

    Becker, R. H.; Boldt, E. A.; Holt, S. S.; Pravdo, S. H.; Robinson-Saba, J.; Serlemitsos, P. J.; Swank, J. H.

    1978-01-01

    The cosmic X-ray spectroscopy experiment on OSO-8 observed X Per for twenty days during two observations in Feb. 1976 and Feb. 1977. The spectrum of X Per varies in phase with its 13.9 min period, hardening significantly at X-ray minimum. Unlike other X-ray binary pulsar spectra, X Per's spectra do not exhibit iron line emission or strong absorption features. The data show no evidence for a 22 hour periodicity in the X-ray intensity of X Per. These results indicate that the X-ray emission from X Per may be originating from a neutron star in a low density region far from the optically identified Be star.

  20. Optical spectroscopy for food and beverages control

    Science.gov (United States)

    Mignani, Anna Grazia; Ciaccheri, Leonardo; Mencaglia, Andrea Azelio

    2011-08-01

    A selection of spectroscopy-based, fiber optic and micro-optic devices is presented. They have been designed and tested for monitoring the quality and safety of typical foodstuffs. The VIS-NIR spectra, considered as product fingerprints, allowed to discriminating the geographic region of production and to detecting nutritional and nutraceutic indicators.

  1. Multiscale climate emulator of multimodal wave spectra: MUSCLE-spectra

    Science.gov (United States)

    Rueda, Ana; Hegermiller, Christie A.; Antolinez, Jose A. A.; Camus, Paula; Vitousek, Sean; Ruggiero, Peter; Barnard, Patrick L.; Erikson, Li H.; Tomás, Antonio; Mendez, Fernando J.

    2017-02-01

    Characterization of multimodal directional wave spectra is important for many offshore and coastal applications, such as marine forecasting, coastal hazard assessment, and design of offshore wave energy farms and coastal structures. However, the multivariate and multiscale nature of wave climate variability makes this complex problem tractable using computationally expensive numerical models. So far, the skill of statistical-downscaling model-based parametric (unimodal) wave conditions is limited in large ocean basins such as the Pacific. The recent availability of long-term directional spectral data from buoys and wave hindcast models allows for development of stochastic models that include multimodal sea-state parameters. This work introduces a statistical downscaling framework based on weather types to predict multimodal wave spectra (e.g., significant wave height, mean wave period, and mean wave direction from different storm systems, including sea and swells) from large-scale atmospheric pressure fields. For each weather type, variables of interest are modeled using the categorical distribution for the sea-state type, the Generalized Extreme Value (GEV) distribution for wave height and wave period, a multivariate Gaussian copula for the interdependence between variables, and a Markov chain model for the chronology of daily weather types. We apply the model to the southern California coast, where local seas and swells from both the Northern and Southern Hemispheres contribute to the multimodal wave spectrum. This work allows attribution of particular extreme multimodal wave events to specific atmospheric conditions, expanding knowledge of time-dependent, climate-driven offshore and coastal sea-state conditions that have a significant influence on local nearshore processes, coastal morphology, and flood hazards.

  2. An Inverse Modeling Approach to Estimating Phytoplankton Pigment Concentrations from Phytoplankton Absorption Spectra

    Science.gov (United States)

    Moisan, John R.; Moisan, Tiffany A. H.; Linkswiler, Matthew A.

    2011-01-01

    Phytoplankton absorption spectra and High-Performance Liquid Chromatography (HPLC) pigment observations from the Eastern U.S. and global observations from NASA's SeaBASS archive are used in a linear inverse calculation to extract pigment-specific absorption spectra. Using these pigment-specific absorption spectra to reconstruct the phytoplankton absorption spectra results in high correlations at all visible wavelengths (r(sup 2) from 0.83 to 0.98), and linear regressions (slopes ranging from 0.8 to 1.1). Higher correlations (r(sup 2) from 0.75 to 1.00) are obtained in the visible portion of the spectra when the total phytoplankton absorption spectra are unpackaged by multiplying the entire spectra by a factor that sets the total absorption at 675 nm to that expected from absorption spectra reconstruction using measured pigment concentrations and laboratory-derived pigment-specific absorption spectra. The derived pigment-specific absorption spectra were further used with the total phytoplankton absorption spectra in a second linear inverse calculation to estimate the various phytoplankton HPLC pigments. A comparison between the estimated and measured pigment concentrations for the 18 pigment fields showed good correlations (r(sup 2) greater than 0.5) for 7 pigments and very good correlations (r(sup 2) greater than 0.7) for chlorophyll a and fucoxanthin. Higher correlations result when the analysis is carried out at more local geographic scales. The ability to estimate phytoplankton pigments using pigment-specific absorption spectra is critical for using hyperspectral inverse models to retrieve phytoplankton pigment concentrations and other Inherent Optical Properties (IOPs) from passive remote sensing observations.

  3. Scikit-spectra: Explorative Spectroscopy in Python

    Directory of Open Access Journals (Sweden)

    Adam Hughes

    2015-06-01

    Full Text Available Scikit-spectra is an intuitive framework for explorative spectroscopy in Python. Scikit-spectra leverages the Pandas library for powerful data processing to provide datastructures and an API designed for spectroscopy. Utilizing the new IPython Notebook widget system, scikit-spectra is headed towards a GUI when you want it, API when you need it approach to spectral analysis. As an application, analysis is presented of the surface-plasmon resonance shift in a solution of gold nanoparticles induced by proteins binding to the gold’s surface. Please refer to the scikit-spectra website for full documentation and support: http://hugadams.github.io/scikit-spectra/

  4. An RGB approach to extraordinary spectra

    Science.gov (United States)

    Grusche, Sascha; Theilmann, Florian

    2015-09-01

    After Newton had explained a series of ordinary spectra and Goethe had pointed out its complementary counterpart, Nussbaumer discovered a series of extraordinary spectra which are geometrically identical and colourwise analogous to Newton’s and Goethe’s spectra. To understand the geometry and colours of extraordinary spectra, the wavelength composition is explored with filters and spectroscopic setups. Visualized in a dispersion diagram, the wavelength composition is interpreted in terms of additive colour mixing. Finally, all spectra are simulated as the superposition of red, green, and blue images that are shifted apart. This RGB approach makes it easy to understand the complex relationship between wavelengths and colours.

  5. Optical absorption of irradiated carbohydrates

    International Nuclear Information System (INIS)

    Supe, A.A.; Tiliks, Yu.E.

    1994-01-01

    The optical absorption spectra of γ-irradiated carbohydrates (glucose, lactose, sucrose, maltose, and starch) and their aqueous solutions were studied. The comparison of the data obtained with the determination of the concentrations of molecular and radical products of radiolysis allows the absorption bands with maxima at 250 and 310 nm to be assigned to the radicals trapped in the irradiated carbohydrates

  6. Self-cavity lasing in optically pumped single crystals of p-sexiphenyl

    International Nuclear Information System (INIS)

    Yanagi, Hisao; Tamura, Kenji; Sasaki, Fumio

    2016-01-01

    Organic single-crystal self-cavities are prepared by solution growth of p-sexiphenyl (p-6P). Based on Fabry-Pérot feedback inside a quasi-lozenge-shaped platelet crystal, edge-emitting laser is obtained under optical pumping. The multimode lasing band appears at the 0-1 or 0-2 vibronic progressions depending on the excitation conditions which affect the self-absorption effect. Cavity-size dependence of amplified spontaneous emission (ASE) is investigated with laser-etched single crystals of p-6P. As the cavity length of square-shaped crystal is reduced from 100 to 10 μm, ASE threshold fluence is decreased probably due to size-dependent light confinement in the crystal cavity.

  7. Different spectra with the same neutron source

    International Nuclear Information System (INIS)

    Vega C, H. R.; Ortiz R, J. M.; Hernandez D, V. M.; Martinez B, M. R.; Hernandez A, B.; Ortiz H, A. A.; Mercado, G. A.

    2010-01-01

    Using as source term the spectrum of a 239 Pu-Be source several neutron spectra have been calculated using Monte Carlo methods. The source term was located in the centre of spherical moderators made of light water, heavy water and polyethylene of different diameters. Also a 239 Pu-Be source was used to measure its neutron spectrum, bare and moderated by water. The neutron spectra were measured at 100 cm with a Bonner spheres spectrometer. Monte Carlo calculations were used to calculate the neutron spectra of bare and water-moderated spectra that were compared with those measured with the spectrometer. Resulting spectra are similar to those found in power plants with PWR, BWR and Candu nuclear reactors. Beside the spectra the dosimetric features were determined. Using moderators and a single neutron source can be produced neutron spectra alike those found in workplaces, this neutron fields can be utilized to calibrate neutron dosimeters and area monitors. (Author)

  8. Intrinsic transmission magnetic circular dichroism spectra of GaMnAs

    Science.gov (United States)

    Terada, Hiroshi; Ohya, Shinobu; Tanaka, Masaaki

    2018-03-01

    Transmission magnetic circular dichroism (MCD) spectroscopy has been widely used to reveal the spin-dependent band structure of ferromagnetic semiconductors. In these previous studies, some band pictures have been proposed from the spectral shapes observed in transmission MCD; however, extrinsic signals originating from optical interference have not been appropriately considered. In this study, we calculate the MCD spectra taking into account the optical interference of the layered structure of samples and show that the spectral shape of MCD is strongly influenced by optical interference. To correctly understand the transmission MCD, we also calculate the intrinsic MCD spectra of GaMnAs that are not influenced by the optical interference. The spectral shape of the intrinsic MCD can be explained by the characteristic band structure of GaMnAs, that is, the spin-polarized valence band and the impurity band existing above the valence band top.

  9. Schottky spectra and crystalline beams

    International Nuclear Information System (INIS)

    Pestrikov, D.V.

    1996-01-01

    In this paper we revise the current dependence of the Schottky noise power of a cooled proton beam previously measured at NAP-M. More careful study of experimental data indicates a linear decrease in the inverse Schottky noise power with an increase in the beam intensity (N). The root of this function determines a threshold current which occurs at N = N th ≅1.2 x 10 8 particles. The inspection of measured Schottky spectra shows that this threshold does not correspond to some collective instability of the measured harmonic of the linear beam density. The found value of N th does not depend on the longitudinal beam temperature. For the case of NAP-M lattice, the study of the spectral properties of the Schottky noise in the crystalline string predicts the current dependence of the equilibrium momentum spread of the beam, which qualitatively agrees with that, recalculated from the NAP-M data. (orig.)

  10. Fractal analysis of power spectra

    International Nuclear Information System (INIS)

    Johnston, S.

    1982-01-01

    A general argument is presented concerning the Hausdorff dimension D of the power spectrum curve for a system of N weakly-coupled oscillators. Explicit upper and lower bounds for D are derived in terms of the number N of interacting modes. The mathematical reasoning relies upon the celebrated KAM theorem concerning the perturbation of Hamiltonian systems and the finite measure of the set of destroyed tori in phase space; this set can be related to Hausdorff dimension by certain mathematical theorems. An important consequence of these results is a simple empirical test for the applicability of Hamiltonian perturbation theory in the analysis of an experimentally observed spectrum. As an illustration, the theory is applied to the interpretation of a recent numerical analysis of both the power spectrum of the Sun and certain laboratory spectra of hydrodynamic turbulence. (Auth.)

  11. Spectra processing with computer graphics

    International Nuclear Information System (INIS)

    Kruse, H.

    1979-01-01

    A program of processng gamma-ray spectra in rock analysis is described. The peak search was performed by applying a cross-correlation function. The experimental data were approximated by an analytical function represented by the sum of a polynomial and a multiple peak function. The latter is Gaussian, joined with the low-energy side by an exponential. A modified Gauss-Newton algorithm is applied for the purpose of fitting the data to the function. The processing of the values derived from a lunar sample demonstrates the effect of different choices of polynomial orders for approximating the background for various fitting intervals. Observations on applications of interactive graphics are presented. 3 figures, 1 table

  12. XUV spectra of laser-produced zirconium plasmas

    Czech Academy of Sciences Publication Activity Database

    Li, B.; Higashiguchi, T.; Otsuka, T.; Jiang, W.; Endo, Akira; Dunne, P.; O'Sullivan, G.

    2012-01-01

    Roč. 45, č. 24 (2012), "245004-1"-"245004-6" ISSN 0953-4075 R&D Projects: GA MŠk ED2.1.00/01.0027; GA MŠk EE2.3.20.0143 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 6 k HILASE(XE) CZ.1.07/2.3.00/20.0143 Program:EE Institutional support: RVO:68378271 Keywords : x-ray-spectra * dielectronic recombination * transitions * spectroscopy * microscopy * ions Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.031, year: 2012

  13. Radio synchrotron spectra of star-forming galaxies

    Science.gov (United States)

    Klein, U.; Lisenfeld, U.; Verley, S.

    2018-03-01

    We investigated the radio continuum spectra of 14 star-forming galaxies by fitting nonthermal (synchrotron) and thermal (free-free) radiation laws. The underlying radio continuum measurements cover a frequency range of 325 MHz to 24.5 GHz (32 GHz in case of M 82). It turns out that most of these synchrotron spectra are not simple power-laws, but are best represented by a low-frequency spectrum with a mean slope αnth = 0.59 ± 0.20 (Sν ∝ ν-α), and by a break or an exponential decline in the frequency range of 1-12 GHz. Simple power-laws or mildly curved synchrotron spectra lead to unrealistically low thermal flux densities, and/or to strong deviations from the expected optically thin free-free spectra with slope αth = 0.10 in the fits. The break or cutoff energies are in the range of 1.5-7 GeV. We briefly discuss the possible origin of such a cutoff or break. If the low-frequency spectra obtained here reflect the injection spectrum of cosmic-ray electrons, they comply with the mean spectral index of Galactic supernova remnants. A comparison of the fitted thermal flux densities with the (foreground-corrected) Hα fluxes yields the extinction, which increases with metallicity. The fraction of thermal emission is higher than believed hitherto, especially at high frequencies, and is highest in the dwarf galaxies of our sample, which we interpret in terms of a lack of containment in these low-mass systems, or a time effect caused by a very young starburst.

  14. Growth and optical spectroscopy of synthetic diamonds

    International Nuclear Information System (INIS)

    Mudryj, A.V.; Larionova, T.P.; Shakin, I.A.; Gysakov, G.A.; Dubrov, G.A.; Tikhonov, V.V.

    2003-01-01

    It is studied the growth and optical properties of synthetic diamonds, which may be used for detection of ionizing radiation, optical windows, heat removal, ultraviolet and thermo sensors, optoelectronic devices. Optical properties of diamonds (grown in different technological conditions) were studied in temperature range 78 - 300 K by means of measuring transmission in spectral band 0.2 - 25 μm, photoluminescence and registration of luminescence excitation spectra in spectral band 0.2 - 2 μm

  15. Nonlinear optics

    International Nuclear Information System (INIS)

    Boyd, R.W.

    1992-01-01

    Nonlinear optics is the study of the interaction of intense laser light with matter. This book is a textbook on nonlinear optics at the level of a beginning graduate student. The intent of the book is to provide an introduction to the field of nonlinear optics that stresses fundamental concepts and that enables the student to go on to perform independent research in this field. This book covers the areas of nonlinear optics, quantum optics, quantum electronics, laser physics, electrooptics, and modern optics

  16. Physical optics

    International Nuclear Information System (INIS)

    Kim Il Gon; Lee, Seong Su; Jang, Gi Wan

    2012-07-01

    This book indicates physical optics with properties and transmission of light, mathematical expression of wave like harmonic wave and cylindrical wave, electromagnetic theory and light, transmission of light with Fermat principle and Fresnel equation, geometrical optics I, geometrical optics II, optical instrument such as stops, glasses and camera, polarized light like double refraction by polarized light, interference, interference by multiple reflections, diffraction, solid optics, crystal optics such as Faraday rotation and Kerr effect and measurement of light. Each chapter has an exercise.

  17. Physical optics

    Energy Technology Data Exchange (ETDEWEB)

    Kim Il Gon; Lee, Seong Su; Jang, Gi Wan

    2012-07-15

    This book indicates physical optics with properties and transmission of light, mathematical expression of wave like harmonic wave and cylindrical wave, electromagnetic theory and light, transmission of light with Fermat principle and Fresnel equation, geometrical optics I, geometrical optics II, optical instrument such as stops, glasses and camera, polarized light like double refraction by polarized light, interference, interference by multiple reflections, diffraction, solid optics, crystal optics such as Faraday rotation and Kerr effect and measurement of light. Each chapter has an exercise.

  18. EDITORIAL: Optical orientation Optical orientation

    Science.gov (United States)

    SAME ADDRESS *, Yuri; Landwehr, Gottfried

    2008-11-01

    Boris Petrovitch Zakharchenya (1928-2005) This issue is dedicated to the memory of Boris Petrovich Zakharchenya, who died at the age of 77 in April 2005. He was an eminent scientist and a remarkable man. After studying physics at Leningrad University he joined the Physico-Technical Institute (now the A F Ioffe Institute) in 1952 and became the co-worker of Evgeny Feodorovich Gross, shortly after the exciton was discovered in his laboratory. The experiments on cuprous oxide crystals in the visible spectral range showed a hydrogen-like spectrum, which was interpreted as excitonic absorption. The concept of the exciton had been conceived some years earlier by Jacov Frenkel at the Physico-Technical Institute. Immediately after joining Gross, Zakharchenya succeeded in producing spectra of unprecedented quality. Subsequently the heavy and the light hole series were found. Also, Landau splitting was discovered when a magnetic field was applied. The interpretation of the discovery was thrown into doubt by Russian colleagues and it took some time, before the correct interpretation prevailed. Shortly before his death, Boris wrote the history of the discovery of the exciton, which has recently been published in Russian in a book celebrating the 80th anniversary of his birth [1]. The book also contains essays by Boris on various themes, not only on physics, but also on literature. Boris was a man of unusually wide interests, he was not only fascinated by physics, but also loved literature, art and music. This can be seen in the first article of this issue The Play of Light in Crystals which is an abbreviated version of his more complete history of the discovery of the exciton. It also gives a good impression of the personality of Boris. One of us (GL) had the privilege to become closely acquainted with him, while he was a guest professor at the University of Würzburg. During that time we had many discussions, and I recall his continuing rage on the wrong attribution of the

  19. Quantum optics

    National Research Council Canada - National Science Library

    Agarwal, G. S

    2013-01-01

    .... Focusing on applications of quantum optics, the textbook covers recent developments such as engineering of quantum states, quantum optics on a chip, nano-mechanical mirrors, quantum entanglement...

  20. Rich magneto-absorption spectra of AAB-stacked trilayer graphene.

    Science.gov (United States)

    Do, Thi-Nga; Shih, Po-Hsin; Chang, Cheng-Peng; Lin, Chiun-Yan; Lin, Ming-Fa

    2016-06-29

    A generalized tight-binding model is developed to investigate the feature-rich magneto-optical properties of AAB-stacked trilayer graphene. Three intragroup and six intergroup inter-Landau-level (inter-LL) optical excitations largely enrich magneto-absorption peaks. In general, the former are much higher than the latter, depending on the phases and amplitudes of LL wavefunctions. The absorption spectra exhibit single- or twin-peak structures which are determined by quantum modes, LL energy spectra and Fermion distribution. The splitting LLs, with different localization centers (2/6 and 4/6 positions in a unit cell), can generate very distinct absorption spectra. There exist extra single peaks because of LL anti-crossings. AAB, AAA, ABA, and ABC stackings considerably differ from one another in terms of the inter-LL category, frequency, intensity, and structure of absorption peaks. The main characteristics of LL wavefunctions and energy spectra and the Fermi-Dirac function are responsible for the configuration-enriched magneto-optical spectra.

  1. Structure of high-resolution NMR spectra

    CERN Document Server

    Corio, PL

    2012-01-01

    Structure of High-Resolution NMR Spectra provides the principles, theories, and mathematical and physical concepts of high-resolution nuclear magnetic resonance spectra.The book presents the elementary theory of magnetic resonance; the quantum mechanical theory of angular momentum; the general theory of steady state spectra; and multiple quantum transitions, double resonance and spin echo experiments.Physicists, chemists, and researchers will find the book a valuable reference text.

  2. Reflectance spectra of subarctic lichens

    International Nuclear Information System (INIS)

    Petzold, D.E.; Goward, S.N.

    1988-01-01

    Lichens constitute a major portion of the ground cover of high latitude environments, but little has been reported concerning their in situ solar spectral reflectance properties. Knowledge of these properties is important for the interpretation of remotely sensed observations from high latitude regions, as well as in studies of high latitude ecology and energy balance climatology. The spectral reflectance of common boreal vascular plants is similar to that of vascular plants of the mid latitudes. The dominant lichens, in contrast, display variable reflectance patterns in visible wavelengths. The relative reflectance peak at 0.55 μm, common to green vegetation, is absent or indistinct in spectra of pervasive boreal forest and tundra lichens, despite the presence of chlorophyll in the inner algal cells. Lichens of the dominant genus, Cladina, display strong absorption of ultraviolet energy and short-wavelength blue light relative to their absorption in other visible wavelengths. Since the Cladinae dominate both the surface vegetation in open woodlands of the boreal forest and the low arctic tundra, their unusual spectral reflectance patterns will enable accurate monitoring of the boreal forest-tundra ecotone and detection of its vigor and movement in the future. (author)

  3. Reflectance spectra of subarctic lichens

    Science.gov (United States)

    Petzold, Donald E.; Goward, Samuel N.

    1988-01-01

    Lichens constitute a major portion of the ground cover of high latitude environments, but little has been reported concerning their in situ solar spectral reflectance properties. Knowledge of these properties is important for the interpretation of remotely sensed observations from high latitude regions, as well as in studies of high latitude ecology and energy balance climatology. The spectral reflectance of common boreal vascular plants is similar to that of vascular plants of the midlatitudes. The dominant lichens, in contrast, display variable reflectance patterns in visible wavelengths. The relative reflectance peak at 0.55 microns, common to green vegetation, is absent or indistinct in spectra of pervasive boreal forest and tundra lichens, despite the presence of chlorophyll in the inner algal cells. Lichens of the dominant genus, Cladina, display strong absorption of ultraviolet energy and short-wavelength blue light relative to their absorption in other visible wavelengths. Since the Cladinae dominate both the surface vegetation in open woodlands of the boreal forest and the low arctic tundra, their unusual spectral reflectance patterns will enable accurate monitoring of the boreal forest-tundra ecotone and detection of its vigor and movement in the future.

  4. Methodology for analyzing weak spectra

    International Nuclear Information System (INIS)

    Yankovich, T.L.; Swainson, I.P.

    2000-02-01

    There is considerable interest in quantifying radionuclide transfer between environmental compartments. However, in many cases, it can be a challenge to detect concentrations of gamma-emitting radionuclides due to their low levels in environmental samples. As a result, it is valuable to develop analytical protocols to ensure consistent analysis of the areas under weak peaks. The current study has focused on testing how reproducibly peak areas and baselines can be determined using two analytical approaches. The first approach, which can be carried out using Maestro software, involves extracting net counts under a curve without fitting a functional form to the peak, whereas the second approach, which is used by most other peak fitting programs, determines net counts from spectra by fitting a Gaussian form to the data. It was found that the second approach produces more consistent peak area and baseline measurements, with the ability to de-convolute multiple, overlapping peaks. In addition, programs, such as Peak Fit, which can be used to fit a form to spectral data, often provide goodness of fit analyses, since the Gaussian form can be described using a characteristic equation against which peak data can be tested for their statistical significance. (author)

  5. Neutron and photon spectra in LINACs

    International Nuclear Information System (INIS)

    Vega-Carrillo, H.R.; Martínez-Ovalle, S.A.; Lallena, A.M.; Mercado, G.A.; Benites-Rengifo, J.L.

    2012-01-01

    A Monte Carlo calculation, using the MCNPX code, was carried out in order to estimate the photon and neutron spectra in two locations of two linacs operating at 15 and 18 MV. Detailed models of both linac heads were used in the calculations. Spectra were estimated below the flattening filter and at the isocenter. Neutron spectra show two components due to evaporation and knock-on neutrons. Lethargy spectra under the filter were compared to the spectra calculated from the function quoted by Tosi et al. that describes reasonably well neutron spectra beyond 1 MeV, though tends to underestimate the energy region between 10 –6 and 1 MeV. Neutron and the Bremsstrahlung spectra show the same features regardless of the linac voltage. - Highlights: ► With MCNPX code realistic models of two LINACs were built. ► Photon and neutron spectra below the flattening filter and at the isocenter were calculated. ► Neutron spectrum at the flattening filter was compared against the Tosi et al. source-term model. ► Tosi et al. model underestimates the neutron contribution below 1 MeV. ► Photon spectra look alike to those published in literature.

  6. Spitzer mid-infrared spectra of cool-core galaxy clusters

    NARCIS (Netherlands)

    de Messières, G.E.; O'Connell, R.W.; McNamara, B.R.; Donahue, M.; Nulsen, P.E.J.; Voit, G.M.; Wise, M.W.; Smith, B.; Higdon, J.; Higdon, S.; Bastian, N.

    2010-01-01

    We have obtained mid-infrared spectra of nine cool-core galaxy clusters with the Infrared Spectrograph aboard the Spitzer Space Telescope. X-ray, ultraviolet and optical observations have demonstrated that each of these clusters hosts a cooling flow which seems to be fueling vigorous star formation

  7. The physical basis for estimating wave-energy spectra with the radar ocean-wave spectrometer

    Science.gov (United States)

    Jackson, Frederick C.

    1987-01-01

    The derivation of the reflectivity modulation spectrum of the sea surface for near-nadir-viewing microwave radars using geometrical optics is described. The equations required for the derivation are presented. The derived reflectivity modulation spectrum provides data on the physical basis of the radar ocean-wave spectrometer measurements of ocean-wave directional spectra.

  8. Soft X-Ray Spectra from High Current Nitrogen Z-Pinch Discharge

    Czech Academy of Sciences Publication Activity Database

    Vrba, Pavel; Vrbová, M.; Nevrkla, M.; Jančárek, A.

    2016-01-01

    Roč. 3, č. 1 (2016), s. 48 ISSN 2336-2626. [SPPT 2016 - 27th Symposium on Plasma Physics and Technology/27./. Prague, 20.06.2016-23.06.2016] Institutional support: RVO:61389021 Keywords : Capillary discharge * recombination pumping * pinch dynamics * evolution of spectra emission * computer modelling Subject RIV: BH - Optics, Masers, Lasers www.plasmaconference.cz

  9. Quantum theory and experimental studies of absorption spectra and photoisomerization of azobenzene polymers

    DEFF Research Database (Denmark)

    Pedersen, Thomas Garm; Ramanujam, P.S.; Johansen, P.M.

    1998-01-01

    The microscopic properties of azobenzene chromophores are important for a correct description of optical storage systems based on photoinduced anisotropy in azobenzene polymers. A quantum model of these properties is presented and verified by comparison to experimental absorption spectra for trans...

  10. Fluorescence spectra of benign and malignant prostate tissues

    International Nuclear Information System (INIS)

    AlSalhi, M S; Masilamani, V; Atif, M; Farhat, K; Rabah, D; Al Turki, M R

    2012-01-01

    In this study, fluorescence emission spectrum (FES), Stokes' shift spectrum (SSS), and reflectance spectrum (RS) of benign (N = 12) and malignant prostate tissues (N = 8) were investigated to discriminate the two types of tissues. The FES was done with the excitation at 325 nm only; SSS with Δλ = 70 and Δλ = 0, the latter being equivalent to reflectance spectra. Of the three modes of spectra, SSS with Δλ = 70 nm showed the best discrimination. There were four important bands, one at 280 nm (due to tryptophan); 320 nm (due to elastin and tryptophan); 355 and 385 (due to NADH) and 440 nm (due to flavin). From the relative intensities of these bands, three ratios were evaluated. Similarly another two ratios were obtained from reflectance spectra and one more from FES. Thus, there are 6 ratio parameters which represent the relative concentration of tryptophan, elastin, nicotinamide adenine dinucleotide (NADH), and flavin. A statistical analysis showed that benign and malignant tissues could be classified with accuracy greater than 90%. This report is only for in vitro analysis; but employing optical fiber, this can be extended to in vivo analysis too, so that benign tumor could be distinguished without surgery

  11. Quantum noise spectra for periodically driven cavity optomechanics

    Science.gov (United States)

    Aranas, E. B.; Akram, M. Javed; Malz, Daniel; Monteiro, T. S.

    2017-12-01

    A growing number of experimental setups in cavity optomechanics exploit periodically driven fields. However, such setups are not amenable to analysis by using simple, yet powerful, closed-form expressions of linearized optomechanics, which have provided so much of our present understanding of experimental optomechanics. In the present paper, we formulate a method to calculate quantum noise spectra in modulated optomechanical systems, which we analyze, compare, and discuss with two other recently proposed solutions: we term these (i) frequency-shifted operators, (ii) Floquet [Phys. Rev. A 94, 023803 (2016), 10.1103/PhysRevA.94.023803], and (iii) iterative analysis [New J. Phys. 18, 113021 (2016), 10.1088/1367-2630/18/11/113021]. We prove that (i) and (ii) yield equivalent noise spectra and find that (iii) is an analytical approximation to (i) for weak modulations. We calculate the noise spectra of a doubly modulated system describing experiments of levitated particles in hybrid electro-optical traps. We show excellent agreement with Langevin stochastic simulations in the thermal regime and predict squeezing in the quantum regime. Finally, we reveal how otherwise-inaccessible spectral components of a modulated system can be measured in heterodyne detection through an appropriate choice of modulation frequencies.

  12. Quantitative interpretations of Visible-NIR reflectance spectra of blood.

    Science.gov (United States)

    Serebrennikova, Yulia M; Smith, Jennifer M; Huffman, Debra E; Leparc, German F; García-Rubio, Luis H

    2008-10-27

    This paper illustrates the implementation of a new theoretical model for rapid quantitative analysis of the Vis-NIR diffuse reflectance spectra of blood cultures. This new model is based on the photon diffusion theory and Mie scattering theory that have been formulated to account for multiple scattering populations and absorptive components. This study stresses the significance of the thorough solution of the scattering and absorption problem in order to accurately resolve for optically relevant parameters of blood culture components. With advantages of being calibration-free and computationally fast, the new model has two basic requirements. First, wavelength-dependent refractive indices of the basic chemical constituents of blood culture components are needed. Second, multi-wavelength measurements or at least the measurements of characteristic wavelengths equal to the degrees of freedom, i.e. number of optically relevant parameters, of blood culture system are required. The blood culture analysis model was tested with a large number of diffuse reflectance spectra of blood culture samples characterized by an extensive range of the relevant parameters.

  13. Complexes of uranyl with N-oxides of heterocyclic amines. Electron-vibrational absorption spectra

    International Nuclear Information System (INIS)

    Jezowska-Trzebiatowska, B.; Wieczorek, M.

    1977-01-01

    A number of coordination compounds formed by uranyl chloride and nitrate with N-oxides of heterocyclic amines have been prepared and characterized by spectral measurements in the absorption region 20000-50000 cm -1 . The electrons and vibronic transitions have been determined and discussed. (author)

  14. Optical fiber end-facet polymer suspended-mirror devices

    Science.gov (United States)

    Yao, Mian; Wu, Jushuai; Zhang, A. Ping; Tam, Hwa-Yaw; Wai, P. K. A.

    2017-04-01

    This paper presents a novel optical fiber device based on a polymer suspended mirror on the end facet of an optical fiber. With an own-developed optical 3D micro-printing technology, SU-8 suspended-mirror devices (SMDs) were successfully fabricated on the top of a standard single-mode optical fiber. Optical reflection spectra of the fabricated SU- 8 SMDs were measured and compared with theoretical analysis. The proposed technology paves a way towards 3D microengineering of the small end-facet of optical fibers to develop novel fiber-optic sensors.

  15. Achromatic triplet and athermalized lens assembly for both midwave and longwave infrared spectra

    Science.gov (United States)

    Kuo, Chih-Wei

    2014-02-01

    Analytic solutions for finding the achromatic triplet in the midwave and longwave infrared spectra simultaneously are explored. The relationship between the combination of promising refractive materials and the system's optical power is also formulated. The principles for stabilizing the effective focal length of an air-spaced lens group with respect to temperature are explored, and the thermal properties of the optical component and mechanical elements mutually counterbalanced. An optical design based on these achromatic and athermal theories is demonstrated, and the image quality of the lens assembly seems to approach the diffractive limitation.

  16. Fluctuation analysis of rotational spectra

    International Nuclear Information System (INIS)

    Doessing, T.; Bracco, A.; Broglia, R.A.; Matsuo, M.

    1996-01-01

    The compound state rotational degree of freedom is ''damped'' in the sense that the electric quadrupole decay of a single quantum state with angular momentum I exhibits a spectrum of final states all having spin I-2. In actual experiments, the cascade of γ-rays associated with each of the members of the ensemble of compound nuclei uses each of the ''discrete'' transitions many more times than the ''continuum'' transitions. Relatively large and small fluctuations in the recorded coincidence spectrum ensue, respectively. The analysis of the fluctuations will be shown to be instrumental to gain insight into the phenomenon of rotational damping. For this purpose, two- and higher-fold coincidence spectra emitted from rotating nuclei are analyzed with respect to the count fluctuations. The coincidences from consecutive γ-rays emitted from discrete rotational bands generate ridges in the E γ1 .E γ2 spectrum, and the fluctuation analysis of the ridges is based upon the ansatz of a random selection of transition energies from band to band. This ansatz is supported by a cranked mean-field calculation for the nucleus 168 Yb, as well as by analyzing resolved bands in 168 Yb and its neighbors. The fluctuation analysis of the central valley (E γ1 =E γ2 ) is based upon the ansatz of fluctuations in the intensity of the transitions of Porter-Thomas type superposed on a smooth spectrum of transition energies. This ansatz is again supported by a mixed-band calculation. The mathematical treatment of count fluctuations is formulated in general (orig.)

  17. New Fe i Level Energies and Line Identifications from Stellar Spectra. II. Initial Results from New Ultraviolet Spectra of Metal-poor Stars

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Ruth C. [SETI Institute and Astrophysical Advances, 607 Marion Place, Palo Alto, CA 94301 (United States); Kurucz, Robert L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Ayres, Thomas R., E-mail: peterson@ucolick.org [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309-0389 (United States)

    2017-04-01

    The Fe i spectrum is critical to many areas of astrophysics, yet many of the high-lying levels remain uncharacterized. To remedy this deficiency, Peterson and Kurucz identified Fe i lines in archival ultraviolet and optical spectra of metal-poor stars, whose warm temperatures favor moderate Fe i excitation. Sixty-five new levels were recovered, with 1500 detectable lines, including several bound levels in the ionization continuum of Fe i. Here, we extend the previous work by identifying 59 additional levels, with 1400 detectable lines, by incorporating new high-resolution UV spectra of warm metal-poor stars recently obtained by the Hubble Space Telescope Imaging Spectrograph. We provide gf values for these transitions, both computed as well as adjusted to fit the stellar spectra. We also expand our spectral calculations to the infrared, confirming three levels by matching high-quality spectra of the Sun and two cool stars in the H -band. The predicted gf values suggest that an additional 3700 Fe i lines should be detectable in existing solar infrared spectra. Extending the empirical line identification work to the infrared would help confirm additional Fe i levels, as would new high-resolution UV spectra of metal-poor turnoff stars below 1900 Å.

  18. Optical Computing

    OpenAIRE

    Woods, Damien; Naughton, Thomas J.

    2008-01-01

    We consider optical computers that encode data using images and compute by transforming such images. We give an overview of a number of such optical computing architectures, including descriptions of the type of hardware commonly used in optical computing, as well as some of the computational efficiencies of optical devices. We go on to discuss optical computing from the point of view of computational complexity theory, with the aim of putting some old, and some very recent, re...

  19. Excited state electron and energy relays in supramolecular dinuclear complexes revealed by ultrafast optical and X-ray transient absorption spectroscopy† †Electronic supplementary information (ESI) available: Synthesis schemes, experimental methods, NMR spectra, X-ray crystallographic information, emission spectra, cyclic voltammetry, electronic structure calculations, data analysis and numerical methods, and other additional figures. CCDC 1561879. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc04055e

    Science.gov (United States)

    Kohler, Lars; Hadt, Ryan G.; Zhang, Xiaoyi; Liu, Cunming

    2017-01-01

    The kinetics of photoinduced electron and energy transfer in a family of tetrapyridophenazine-bridged heteroleptic homo- and heterodinuclear copper(i) bis(phenanthroline)/ruthenium(ii) polypyridyl complexes were studied using ultrafast optical and multi-edge X-ray transient absorption spectroscopies. This work combines the synthesis of heterodinuclear Cu(i)–Ru(ii) analogs of the homodinuclear Cu(i)–Cu(i) targets with spectroscopic analysis and electronic structure calculations to first disentangle the dynamics at individual metal sites by taking advantage of the element and site specificity of X-ray absorption and theoretical methods. The excited state dynamical models developed for the heterodinuclear complexes are then applied to model the more challenging homodinuclear complexes. These results suggest that both intermetallic charge and energy transfer can be observed in an asymmetric dinuclear copper complex in which the ground state redox potentials of the copper sites are offset by only 310 meV. We also demonstrate the ability of several of these complexes to effectively and unidirectionally shuttle energy between different metal centers, a property that could be of great use in the design of broadly absorbing and multifunctional multimetallic photocatalysts. This work provides an important step toward developing both a fundamental conceptual picture and a practical experimental handle with which synthetic chemists, spectroscopists, and theoreticians may collaborate to engineer cheap and efficient photocatalytic materials capable of performing coulombically demanding chemical transformations. PMID:29629153

  20. Area spectra of near extremal black holes

    International Nuclear Information System (INIS)

    Chen, Deyou; Yang, Haitang; Zu, Xiaotao

    2010-01-01

    Motivated by Maggiore's new interpretation of quasinormal modes, we investigate area spectra of a near extremal Schwarzschild-de Sitter black hole and a higher-dimensional near extremal Reissner-Nordstrom-de Sitter black hole. The result shows that the area spectra are equally spaced and irrelevant to the parameters of the black holes. (orig.)

  1. Thermoluminescence spectra measured with a Michelson interferometer

    International Nuclear Information System (INIS)

    Haschberger, P.

    1991-01-01

    A Michelson interferometer was redesigned to prove its capabilities in the measurement of short-lived, low-intensity thermoluminescence spectra. Interferograms are collected during heating up the thermoluminescent probe in a heater plate. A personal computer controls the data acquisition and processes the Fourier transform. As the results show, even a comparatively simple and limited setup leads to relevant and reproducible spectra. (author)

  2. Near IR spectra of symbiotic stars

    International Nuclear Information System (INIS)

    Andrillat, Y.

    1982-01-01

    The author reports on recent observations from the near IR spectra of symbiotic stars. The helium and oxygen lines useful for the construction of theoretical models are identified. Observations for cool stars and novae (nebular phase) are outlined and the spectra of specific symbiotic stars between lambdalambda 8000-11000 are presented and discussed. (Auth./C.F.)

  3. Aircraft Measurements of Atmospheric Kinetic Energy Spectra

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Lilly, D. K.

    1983-01-01

    Wind velocity data obtained from a jet airliner are used to construct kinetic energy spectra over the range of wavelengths from 2.5 to 2500 km. The spectra exhibit an approximate -5/3 slope for wavelengths of less than about 150 km, steepening to about -2.2 at larger scales. These results support...

  4. Electronic structure and spectroscopy of nucleic acid bases: Ionization energies, ionization-induced structural changes, and photoelectron spectra

    Energy Technology Data Exchange (ETDEWEB)

    Bravaya, Ksenia B.; Kostko, Oleg; Dolgikh, Stanislav; Landau, Arie; Ahmed, Musahid; Krylov, Anna I.

    2010-08-02

    We report high-level ab initio calculations and single-photon ionization mass spectrometry study of ionization of adenine (A), thymine (T), cytosine (C) and guanine (G). For thymine and adenine, only the lowest-energy tautomers were considered, whereas for cytosine and guanine we characterized five lowest-energy tautomeric forms. The first adiabatic and several vertical ionization energies were computed using equation-of-motion coupled-cluster method for ionization potentials with single and double substitutions. Equilibrium structures of the cationic ground states were characterized by DFT with the {omega}B97X-D functional. The ionization-induced geometry changes of the bases are consistent with the shapes of the corresponding molecular orbitals. For the lowest-energy tautomers, the magnitude of the structural relaxation decreases in the following series G > C > A > T, the respective relaxation energies being 0.41, 0.32, 0.25 and 0.20 eV. The computed adiabatic ionization energies (8.13, 8.89, 8.51-8.67 and 7.75-7.87 eV for A,T,C and G, respectively) agree well with the onsets of the photoionization efficiency (PIE) curves (8.20 {+-} 0.05, 8.95 {+-} 0.05, 8.60 {+-} 0.05 and 7.75 {+-} 0.05 eV). Vibrational progressions for the S{sub 0}-D{sub 0} vibronic bands computed within double-harmonic approximation with Duschinsky rotations are compared with previously reported experimental photoelectron spectra.

  5. TRANSMISSION SPECTRA OF THREE-DIMENSIONAL HOT JUPITER MODEL ATMOSPHERES

    International Nuclear Information System (INIS)

    Fortney, J. J.; Shabram, M.; Showman, A. P.; Lian, Y.; Lewis, N. K.; Freedman, R. S.; Marley, M. S.

    2010-01-01

    We compute models of the transmission spectra of planets HD 209458b, HD 189733b, and generic hot Jupiters. We examine the effects of temperature, surface gravity, and metallicity for the generic planets as a guide to understanding transmission spectra in general. We find that carbon dioxide absorption at 4.4 and 15 μm is prominent at high metallicity, and is a clear metallicity indicator. For HD 209458b and HD 189733b, we compute spectra for both one-dimensional and three-dimensional model atmospheres and examine the differences between them. The differences are usually small, but can be large if atmospheric temperatures are near important chemical abundance boundaries. The calculations for the three-dimensional atmospheres, and their comparison with data, serve as constraints on these dynamical models that complement the secondary eclipse and light curve data sets. For HD 209458b, even if TiO and VO gases are abundant on the dayside, their abundances can be considerably reduced on the cooler planetary limb. However, given the predicted limb temperatures and TiO abundances, the model's optical opacity is too high. For HD 189733b we find a good match with some infrared data sets and constrain the altitude of a postulated haze layer. For this planet, substantial differences can exist between the transmission spectra of the leading and trailing hemispheres, which are an excellent probe of carbon chemistry. In thermochemical equilibrium, the cooler leading hemisphere is methane-dominated, and the hotter trailing hemisphere is CO-dominated, but these differences may be eliminated by non-equilibrium chemistry due to vertical mixing. It may be possible to constrain the carbon chemistry of this planet, and its spatial variation, with James Webb Space Telescope.

  6. PCA: Principal Component Analysis for spectra modeling

    Science.gov (United States)

    Hurley, Peter D.; Oliver, Seb; Farrah, Duncan; Wang, Lingyu; Efstathiou, Andreas

    2012-07-01

    The mid-infrared spectra of ultraluminous infrared galaxies (ULIRGs) contain a variety of spectral features that can be used as diagnostics to characterize the spectra. However, such diagnostics are biased by our prior prejudices on the origin of the features. Moreover, by using only part of the spectrum they do not utilize the full information content of the spectra. Blind statistical techniques such as principal component analysis (PCA) consider the whole spectrum, find correlated features and separate them out into distinct components. This code, written in IDL, classifies principal components of IRS spectra to define a new classification scheme using 5D Gaussian mixtures modelling. The five PCs and average spectra for the four classifications to classify objects are made available with the code.

  7. X-ray spectra of PG quasars. I. The continuum from X-rays to infrared

    International Nuclear Information System (INIS)

    Elvis, M.; Green, R.F.; Bechtold, J.; Schmidt, M.; Neugebauer, G.; Kitt Peak National Observatory, Tucson, AZ; Steward Observatory, Tucson, AZ; Palomar Observatory, Pasadena, CA)

    1986-01-01

    Einstein IPC X-ray spectra for a sample of eight optically selected quasars from the Palomar Bright Quasar survey are presented. The quasars have a mean power law energy slope which in five individual cases is inconsistent with the value found in hard X-ray selection criterion rather than luminosity, redshift, or U-B color. New IUE and optical continuum spectra and infrared photometry are presented for these quasars. The data are combined into log vf(v) and log v distributions which support the decomposition of the overall quasar spectrum into a power law plus a superposed optical-UV big bump which may be due to an accretion disk. At least six of the quasars have vf(v)s which are roughly constant between their infrared and X-ray power laws, suggesting a strong link between the two regions. 104 references

  8. Disentangling Time-series Spectra with Gaussian Processes: Applications to Radial Velocity Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Czekala, Ian [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Mandel, Kaisey S.; Andrews, Sean M.; Dittmann, Jason A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Ghosh, Sujit K. [Department of Statistics, NC State University, 2311 Stinson Drive, Raleigh, NC 27695 (United States); Montet, Benjamin T. [Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Avenue, Chicago, IL 60637 (United States); Newton, Elisabeth R., E-mail: iczekala@stanford.edu [Massachusetts Institute of Technology, Cambridge, MA 02138 (United States)

    2017-05-01

    Measurements of radial velocity variations from the spectroscopic monitoring of stars and their companions are essential for a broad swath of astrophysics; these measurements provide access to the fundamental physical properties that dictate all phases of stellar evolution and facilitate the quantitative study of planetary systems. The conversion of those measurements into both constraints on the orbital architecture and individual component spectra can be a serious challenge, however, especially for extreme flux ratio systems and observations with relatively low sensitivity. Gaussian processes define sampling distributions of flexible, continuous functions that are well-motivated for modeling stellar spectra, enabling proficient searches for companion lines in time-series spectra. We introduce a new technique for spectral disentangling, where the posterior distributions of the orbital parameters and intrinsic, rest-frame stellar spectra are explored simultaneously without needing to invoke cross-correlation templates. To demonstrate its potential, this technique is deployed on red-optical time-series spectra of the mid-M-dwarf binary LP661-13. We report orbital parameters with improved precision compared to traditional radial velocity analysis and successfully reconstruct the primary and secondary spectra. We discuss potential applications for other stellar and exoplanet radial velocity techniques and extensions to time-variable spectra. The code used in this analysis is freely available as an open-source Python package.

  9. Design spectra development considering short time histories

    International Nuclear Information System (INIS)

    Weiner, E.O.

    1983-01-01

    Two separate programs, MODQKE and MDOF, were written to provide a capability of obtaining equipment spectra from design spectra. MODQKE generates or modifies acceleration histories to conform with design spectra pertaining to, say, a foundation. MDOF is a simple linear modal superposition program that solves for equipment support histories using the design spectra conforming histories as input. Equipment spectra, then, are obtained from the support histories using MODQKE. MODQKE was written to modify or provide new histories with special attention paid to short seismic records. A technique from the open literature was borrowed to generate an initial history that approximates a given response spectrum. Further refinement is done with smoothing cycles in which several correction signals are added to the history in a way that produces a least squares fit between actual and prescribed spectra. Provision is made for history shaping, a baseline correction, and final scaling. MODQKE performance has been demonstrated with seven examples having zero to ten percent damping ratios, and 2.5 seconds to 20 seconds durations and a variety of target spectra. The examples show the program is inexpensive to use. MDOF is a simple modal superposition program. It has no eigensolver, and the user supplies mode shapes, frequencies, and participation factors as input. Floor spectra can be generated from design spectra by using a history from MODQKE that conforms to the design spectrum as input to MDOF. Floor motions from MDOF can be fed back to MODQKE without modification to obtain the floor spectra. A simple example is given to show how equipment mass effects can be incorporated into the MDOF solution. Any transient solution capability can be used to replace MDOF. For example, a direct transient approach may be desirable if both the equipment and floor structures are to be included in the model with different damping fractions. (orig./HP)

  10. Engineering Optics

    CERN Document Server

    Iizuka, Keigo

    2008-01-01

    Engineering Optics is a book for students who want to apply their knowledge of optics to engineering problems, as well as for engineering students who want to acquire the basic principles of optics. It covers such important topics as optical signal processing, holography, tomography, holographic radars, fiber optical communication, electro- and acousto-optic devices, and integrated optics (including optical bistability). As a basis for understanding these topics, the first few chapters give easy-to-follow explanations of diffraction theory, Fourier transforms, and geometrical optics. Practical examples, such as the video disk, the Fresnel zone plate, and many more, appear throughout the text, together with numerous solved exercises. There is an entirely new section in this updated edition on 3-D imaging.

  11. Characterization and optical properties of Pr2O3-doped ...

    Indian Academy of Sciences (India)

    2017-06-09

    Jun 9, 2017 ... Pr3+ doped molybdenum lead-borate glasses with the chemical ... Thermal, optical and structural analyses are carried out using DSC, UV and FTIR spectra. ... energy band gap (Egopt), of these glasses have been determined.

  12. Electron optics

    CERN Document Server

    Grivet, Pierre; Bertein, F; Castaing, R; Gauzit, M; Septier, Albert L

    1972-01-01

    Electron Optics, Second English Edition, Part I: Optics is a 10-chapter book that begins by elucidating the fundamental features and basic techniques of electron optics, as well as the distribution of potential and field in electrostatic lenses. This book then explains the field distribution in magnetic lenses; the optical properties of electrostatic and magnetic lenses; and the similarities and differences between glass optics and electron optics. Subsequent chapters focus on lens defects; some electrostatic lenses and triode guns; and magnetic lens models. The strong focusing lenses and pris

  13. Remote spectrometry with optical fibers, ten years of development and prospects for on-line control

    International Nuclear Information System (INIS)

    Boisde, G.; Perez, J.J.

    1984-09-01

    This paper describes, with examples uranium and plutonium spectra, how optical fibers have raised new concepts in spectrometry, such as the internal spectral reference, instantaneous measurements on the sides of the absorption spectra, and the modelling of spectral variations. With optical fibers, original technical solutions are used for remote chemical analysis

  14. Spectra of conformal sigma models

    International Nuclear Information System (INIS)

    Tlapak, Vaclav

    2015-04-01

    In this thesis the spectra of conformal sigma models defined on (generalized) symmetric spaces are analysed. The spaces where sigma models are conformal without the addition of a Wess-Zumino term are supermanifolds, in other words spaces that include fermionic directions. After a brief review of the general construction of vertex operators and the background field expansion, we compute the diagonal terms of the one-loop anomalous dimensions of sigma models on semi-symmetric spaces. We find that the results are formally identical to the symmetric case. However, unlike for sigma models on symmetric spaces, off diagonal terms that lead to operator mixing are also present. These are not computed here. We then present a detailed analysis of the one-loop spectrum of the supersphere S 3 vertical stroke 2 sigma model as one of the simplest examples. The analysis illustrates the power and simplicity of the construction. We use this data to revisit a duality with the OSP(4 vertical stroke 2) Gross-Neveu model that was proposed by Candu and Saleur. With the help of a recent all-loop result for the anomalous dimension of (1)/(2)BPS operators of Gross-Neveu models, we are able to recover the entire zero-mode spectrum of the supersphere model. We also argue that the sigma model constraints and its equations of motion are implemented correctly in the Gross-Neveu model, including the one-loop data. The duality is further supported by a new all-loop result for the anomalous dimension of the ground states of the sigma model. However, higher-gradient operators cannot be completely recovered. It is possible that this discrepancy is related to a known instability of the sigma model. The instability of sigma models is due to symmetry preserving high-gradient operators that become relevant at arbitrarily small values of the coupling. This feature has been observed long ago in one-loop calculations of the O(N)-vector model and soon been realized to be a generic property of sigma models

  15. Statistical properties of Fermi GBM GRBs' spectra

    Science.gov (United States)

    Rácz, István I.; Balázs, Lajos G.; Horvath, Istvan; Tóth, L. Viktor; Bagoly, Zsolt

    2018-03-01

    Statistical studies of gamma-ray burst (GRB) spectra may result in important information on the physics of GRBs. The Fermi GBM catalogue contains GRB parameters (peak energy, spectral indices, and intensity) estimated fitting the gamma-ray spectral energy distribution of the total emission (fluence, flnc), and during the time of the peak flux (pflx). Using contingency tables, we studied the relationship of the models best-fitting pflx and flnc time intervals. Our analysis revealed an ordering of the spectra into a power law - Comptonized - smoothly broken power law - Band series. This result was further supported by a correspondence analysis of the pflx and flnc spectra categorical variables. We performed a linear discriminant analysis (LDA) to find a relationship between categorical (spectral) and model independent physical data. LDA resulted in highly significant physical differences among the spectral types, that is more pronounced in the case of the pflx spectra, than for the flnc spectra. We interpreted this difference as caused by the temporal variation of the spectrum during the outburst. This spectral variability is confirmed by the differences in the low-energy spectral index and peak energy, between the pflx and flnc spectra. We found that the synchrotron radiation is significant in GBM spectra. The mean low-energy spectral index is close to the canonical value of α = -2/3 during the peak flux. However, α is ˜ -0.9 for the spectra of the fluences. We interpret this difference as showing that the effect of cooling is important only for the fluence spectra.

  16. Theory of Electro-Optical Properties of Graphene Nanoribbons

    OpenAIRE

    Gundra, Kondayya; Shukla, Alok

    2010-01-01

    We present calculations of the optical absorption and electro-absorption spectra of graphene nanoribbons (GNRs) using a $\\pi-$electron approach, incorporating long-range Coulomb interactions within the Pariser-Parr-Pople (PPP) model Hamiltonian. The approach is carefully bench marked by computing quantities such as the band structure, electric-field driven half metallicity, and linear optical absorption spectra of GNRs of various types, and the results are in good agreement with those obtaine...

  17. Scaling properties of the transverse mass spectra

    International Nuclear Information System (INIS)

    Schaffner-Bielich, J.

    2002-01-01

    Motivated from the formation of an initial state of gluon-saturated matter, we discuss scaling relations for the transverse mass spectra at BNL's relativistic heavy-ion collider (RHIC). We show on linear plots, that the transverse mass spectra for various hadrons can be described by an universal function in m t . The transverse mass spectra for different centralities can be rescaled into each other. Finally, we demonstrate that m t -scaling is also present in proton-antiproton collider data and compare it to m t -scaling at RHIC. (orig.)

  18. IRAS low-resolution spectra of galaxies

    International Nuclear Information System (INIS)

    Cohen, M.; Volk, K.

    1989-01-01

    The spectra of external galaxies are selected and extracted from the IRAS LRS database. Twenty-one objects present viable spectra. One is a peculiar star-forming E-S0 galaxy. The remainder are all starburst or H II region galaxies. Their average spectrum demonstrates the importance of the PAH emission bands in the 8-23-micron region and reinforces the conclusion reached from ground-based spectra, that there is a strong correlation between the PAH bands and the starburst or H II region character of a galaxy. 32 refs

  19. Parametrization relating the fermionic mass spectra

    International Nuclear Information System (INIS)

    Kleppe, A.

    1993-01-01

    When parametrizing the fermionic mass spectra in terms of the unit matrix and a recursive matrix scrR 0 , which corresponds to an underlying scaling pattern in the mass spectra, each fermionic sector is characterized by three parameters: k, α, and R. Using the set of relations displayed by the parameters of the different sectors, it is possible to formulate a ''family Lagrangian'' which for each sector encompasses all the families. Relations between quark masses are furthermore deduced from these ''family Lagrangians.'' Using the relations between the parameters of the different charge sectors, it is also possible to ''derive'' the quark mass spectra from the (charged) leptonic mass spectrum

  20. Precise Wavelengths and Energy Levels for the Spectra of Cr I, Mn I, and Mn III, and Branching Fractions for the Spectra of Fe II and Cr II

    Science.gov (United States)

    Nave, Gillian

    University of WisconsinMadison (UW) accurate lifetimes exist for many of the most important levels of the irongroup elements needed for the interpretation of astrophysical spectra. The accuracy of the oscillator strengths is now limited by the accuracy of the branching fractions, particularly when the branches from an upper level span a wide wavelength range that requires multiple calibration lamps. A laser-driven light source as a calibration lamp will reduce the calibration uncertainty in the UV region. Our FT and grating spectrometers will be used to extend the wavelength region of the measurements from 120 nm to 2500 nm. Fe II and Cr II give thousands of lines in the UV stellar spectra but accurate oscillator strengths are available only for a few hundred in each species. Many lines remain unidentified in the laboratory spectra of Fe/Ne and Cr/Ne hollow cathode lamps that correspond to lines in stellar spectra. The proposed atlases and linelists of these lamps will assist astronomers in confirming the species of these spectra lines and help them to identify lines of other elements in stellar spectra that are not blended with iron or chromium lines. These measurements will be of importance in interpreting spectra obtained from many current and future NASA missions including the Hubble Space Telescope, the James Webb Space Telescope and SOFIA. They will be particularly important in the analysis of spectra from the ASTRAL project - a large HST Treasury program that recorded the spectra of 29 bright and characteristic stars at high resolution and high signal-to-noise ratio. They will also be important for the interpretation of spectra from ground-based optical and infrared spectrographs. The proposed work thus supports the NASA Objective to explore the universe to understand its origin, structure, evolution and destiny