WorldWideScience

Sample records for optical vectorial vortex

  1. Vectorial rotating vortex Hankel laser beams

    Science.gov (United States)

    Kotlyar, Victor V.; Kovalev, Alexey A.; Soifer, Victor A.

    2016-09-01

    We propose a generalization of spherical waves in the form of linearly polarized beams with embedded optical vortices. The source of these beams is an infinitely narrow light ring with an infinitely small radius. These vectorial beams are obtained based on scalar Hankel beams discovered by the authors recently. We have derived explicit relations for complex amplitudes of all six components of vectorial vortex Hankel beams. A closed analytical expression for the axial projection of the orbital angular momentum density in far field has been obtained. We also showed that the intensity distribution of the electric vector rotates by 90 degrees upon the beam propagation in near field.

  2. Vectorial optical fields fundamentals and applications

    CERN Document Server

    2014-01-01

    Polarization is a vector nature of light that plays an important role in optical science and engineering. While existing textbook treatments of light assume beams with spatially homogeneous polarization, there is an increasing interest in vectorial optical fields with spatially engineered states of polarization. New effects and phenomena have been predicted and observed for light beams with these unconventional polarization states. This edited review volume aims to provide a comprehensive overview and summarize the latest developments in this important emerging field of optics. This book will cover the fundamentals including mathematical and physical descriptions, experimental generation, manipulation, focusing, propagation, and the applications of the engineered vectorial optical fields in focal field engineering, plasmonic focusing and optical antenna, single molecular imaging, optical tweezers/trapping, as well as optical measurements and instrumentations. Readership: Students, professionals, post-graduat...

  3. Stable vortex solitons in a vectorial cubic-quintic model

    Energy Technology Data Exchange (ETDEWEB)

    Mihalache, D [Department of Theoretical Physics, Institute of Atomic Physics, PO Box MG-6, Bucharest (Romania); Mazilu, D [Department of Theoretical Physics, Institute of Atomic Physics, PO Box MG-6, Bucharest (Romania); Malomed, B A [Department of Interdisciplinary Studies, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Lederer, F [Institute of Solid State Theory and Theoretical Optics, Friedrich-Schiller Universitaet Jena, Max-Wien-Platz 1, D-07743, Jena (Germany)

    2004-05-01

    We investigate the stability of vectorial (two-component) vortex solitons of two types. Their stationary shapes are identical, but their stability (which is the most important issue for spinning solitons) is drastically different. These are solitons with vorticities (S,S) and (S,-S) in the two components. The analysis is performed in a vectorial cubic-quintic model, with the two components nonlinearly coupled by the incoherent cross-phase-modulation interaction, but we expect that the results are quite generic. The stability was investigated by means of computing eigenvalues of perturbations around the stationary solitons, as well as in direct simulations. We also report new analytical results for the well-known problem of the description of the stationary form of scalar solitons in media of this type. The analytical results explain the shape of the spinning solitons, and the strong dependence of their norm (power) on the vorticity, in both the 2D and 3D cases. In this paper we also give the first estimate of the physical characteristics (power and radius) of the stable solitons with different values of S, making use of recently measured values of the necessary nonlinear parameters. All the two-component solitons of type (S,-S) are unstable. In contrast, those of type (S,S) have their stability regions, the size of which strongly depends on S. An unstable soliton always splits into a set of separating zero-spin ones, in precise compliance with the azimuthal index of the most unstable perturbation eigenmode. Direct simulations demonstrate that stable solitons readily self-trap from arbitrary initial pulses which belong to their topological class.

  4. An optical vortex coronagraph

    Science.gov (United States)

    Palacios, David M.

    2005-08-01

    An optical vortex may be characterized as a dark core of destructive interference in a beam of spatially coherent light. This dark core may be used as a filter to attenuate a coherent beam of light so an incoherent background signal may be detected. Applications of such a filter include: eye and sensor protection, forward-scattered light measurement, and the detection of extra-solar planets. Optical vortices may be created by passing a beam of light through a vortex diffractive optical element, which is a plate of glass etched with a spiral pattern, such that the thickness of the glass increases in the azimuthal direction. An optical vortex coronagraph may be constructed by placing a vortex diffractive optical element near the image plane of a telescope. An optical vortex coronagraph opens a dark window in the glare of a distant star so nearby terrestrial sized planets and exo-zodiacal dust may be detected. An optical vortex coronagraph may hold several advantages over other techniques presently being developed for high contrast imaging, such as lower aberration sensitivity and multi-wavelength operation. In this manuscript, I will discuss the aberration sensitivity of an optical vortex coronagraph and the key advantages it may hold over other coronagraph architectures. I will also provide numerical simulations demonstrating high contrast imaging in the presence of low-order static aberrations.

  5. Application of an approximate vectorial diffraction model to analysing diffractive micro-optical elements

    Institute of Scientific and Technical Information of China (English)

    Niu Chun-Hui; Li Zhi-Yuan; Ye Jia-Sheng; Gu Ben-Yuan

    2005-01-01

    Scalar diffraction theory, although simple and efficient, is too rough for analysing diffractive micro-optical elements.Rigorous vectorial diffraction theory requires extensive numerical efforts, and is not a convenient design tool. In this paper we employ a simple approximate vectorial diffraction model which combines the principle of the scalar diffraction theory with an approximate local field model to analyse the diffraction of optical waves by some typical two-dimensional diffractive micro-optical elements. The TE and TM polarization modes are both considered. We have found that the approximate vectorial diffraction model can agree much better with the rigorous electromagnetic simulation results than the scalar diffraction theory for these micro-optical elements.

  6. Divergence of optical vortex beams

    CERN Document Server

    Reddy, Salla Gangi; Prabhakar, Shashi; Anwar, Ali; Banerji, J; Singh, R P

    2015-01-01

    We show, both theoretically and experimentally, that the propagation of optical vortices in free space can be analysed by using the width ($w(z)$) of the host Gaussian beam and the inner and outer radii of the vortex beam at the source plane ($z=0$) as defined in \\textit{Optics Letters \\textbf{39,} 4364-4367 (2014)}. We also studied the divergence of vortex beams, considered as the rate of change of inner or outer radius with the propagation distance, and found that it varies with the order in the same way as that of the inner and outer radii at zero propagation distance. These results may be useful in designing optical fibers for orbital angular momentum modes that play a crucial role in quantum communication.

  7. Optical Vortex Solitons in Parametric Wave Mixing

    CERN Document Server

    Alexander, T J; Buryak, A V; Sammut, R A; Alexander, Tristram J.; Kivshar, Yuri S.; Buryak, Alexander V.; Sammut, Rowland A.

    2000-01-01

    We analyze two-component spatial optical vortex solitons supported by degenerate three- or four-wave mixing in a nonlinear bulk medium. We study two distinct cases of such solitons, namely, parametric vortex solitons due to phase-matched second-harmonic generation in a optical medium with competing quadratic and cubic nonlinear response, and vortex solitons in the presence of third-harmonic generation in a cubic medium. We find, analytically and numerically, the structure of two-component vortex solitons, and also investigate modulational instability of their plane-wave background. In particular, we predict and analyze in detail novel types of vortex solitons, a `halo-vortex', consisting of a two-component vortex core surrounded by a bright ring of its harmonic field, and a `ring-vortex' soliton which is a vortex in a harmonic field that guides a bright localized ring-like mode of a fundamental frequency field.

  8. Evolution of optical vortex distributions in stochastic vortex fields

    CSIR Research Space (South Africa)

    Roux, FS

    2011-01-01

    Full Text Available dipole,? Opt. Commun. 236, 433?440 (2004). [23] Dana, I. and Freund, I., ?Vortex-lattice wave fields,? Opt. Commun. . [24] Jenkins, R., Banerji, J., and Davies, A., ?The generation of optical vortices and shape preserving vortex arrays in hollow...

  9. Astronomical demonstration of an optical vortex coronagraph.

    Science.gov (United States)

    Swartzlander, Grover A; Ford, Erin L; Abdul-Malik, Rukiah S; Close, Laird M; Peters, Mary A; Palacios, David M; Wilson, Daniel W

    2008-07-07

    Using an optical vortex coronagraph and simple adaptive optics techniques, we have made the first convincing demonstration of an optical vortex coronagraph that is coupled to a star gazing telescope. We suppressed by 97% the primary star of a resolvable binary system, Cor Caroli. The stars had an angular separation of 1.9lambda/D at our imaging camera. The secondary star suffered no suppression from the vortex lens.

  10. Full-vectorial analysis of optical waveguides by the finite difference method based on polynomial interpolation

    Institute of Scientific and Technical Information of China (English)

    Xiao Jin-Biao; Zhang Ming-De; Sun Xiao-Han

    2006-01-01

    Based on the polynomial interpolation, a new finite difference (FD) method in solving the full-vectorial guidedmodes for step-index optical waveguides is proposed. The discontinuities of the normal components of the electric field across abrupt dielectric interfaces are considered in the absence of the limitations of scalar and semivectorial approximation, and the present FD scheme can be applied to both uniform and non-uniform mesh grids. The modal propagation constants and field distributions for buried rectangular waveguides and optical rib waveguides are presented. The hybrid nature of the vectorial modes is demonstrated and the singular behaviours of the minor field components in the corners are observed. Moreover, solutions are in good agreement with those published early, which tests the validity of the present approach.

  11. Birth and evolution of an optical vortex

    CERN Document Server

    Vallone, Giuseppe; D'Ambrosio, Vincenzo; Marrucci, Lorenzo; Sciarrino, Fabio; Villoresi, Paolo

    2016-01-01

    When a phase singularity is suddenly imprinted on the axis of an ordinary Gaussian beam, an optical vortex appears and starts to grow radially, by effect of diffraction. This radial growth and the subsequent evolution of the optical vortex under focusing or imaging can be well described in general within the recently introduced theory of circular beams, which generalize the hypergeometric-Gaussian beams and which obey novel kinds of ABCD rules. Here, we investigate experimentally these vortex propagation phenomena and test the validity of circular-beam theory. Moreover, we analyze the difference in radial structure between the newly generated optical vortex and the vortex obtained in the image plane, where perfect imaging would lead to complete closure of the vortex core.

  12. Optical vortex array in spatially varying lattice

    CERN Document Server

    Kapoor, Amit; Senthilkumaran, P; Joseph, Joby

    2015-01-01

    We present an experimental method based on a modified multiple beam interference approach to generate an optical vortex array arranged in a spatially varying lattice. This method involves two steps which are: numerical synthesis of a consistent phase mask by using two-dimensional integrated phase gradient calculations and experimental implementation of produced phase mask by utilizing a phase only spatial light modulator in an optical 4f Fourier filtering setup. This method enables an independent variation of the orientation and period of the vortex lattice. As working examples, we provide the experimental demonstration of various spatially variant optical vortex lattices. We further confirm the existence of optical vortices by formation of fork fringes. Such lattices may find applications in size dependent trapping, sorting, manipulation and photonic crystals.

  13. Vortex-based line beam optical tweezers

    Science.gov (United States)

    Cheng, Shubo; Tao, Shaohua

    2016-10-01

    A vortex-based line beam, which has a straight-line shape of intensity and possesses phase gradient along the line trajectory is developed and applied for optical manipulation in this paper. The intensity and phase distributions of the beam in the imaging plane of the Fourier transform are analytically studied. Simulation results show that the length of the line and phase gradient possessed by a vortex-based line beam are dependent on the topological charge and the azimuthal proportional constant. A superposition of multiple phase-only holograms with elliptical azimuthal phases can be used to generate an array of vortex-based line beams. Optical trapping with the vortex-based line beams has been implemented. Furthermore, the automatic transportation of microparticles along the line trajectory perpendicular to the optical axis is realized with an array of the beams. The generation method for the vortex-based line beam is simple. The beam would have potential applications in fields such as optical trapping, laser machining, and so on.

  14. Optical vortex beam generator at nanoscale level

    Science.gov (United States)

    Garoli, Denis; Zilio, Pierfrancesco; Gorodetski, Yuri; Tantussi, Francesco; De Angelis, Francesco

    2016-01-01

    Optical beams carrying orbital angular momentum (OAM) can find tremendous applications in several fields. In order to apply these particular beams in photonic integrated devices innovative optical elements have been proposed. Here we are interested in the generation of OAM-carrying beams at the nanoscale level. We design and experimentally demonstrate a plasmonic optical vortex emitter, based on a metal-insulator-metal holey plasmonic vortex lens. Our plasmonic element is shown to convert impinging circularly polarized light to an orbital angular momentum state capable of propagating to the far-field. Moreover, the emerging OAM can be externally adjusted by switching the handedness of the incident light polarization. The device has a radius of few micrometers and the OAM beam is generated from subwavelength aperture. The fabrication of integrated arrays of PVLs and the possible simultaneous emission of multiple optical vortices provide an easy way to the large-scale integration of optical vortex emitters for wide-ranging applications. PMID:27404659

  15. Vectorial nanoscale mapping of optical antenna fields by single molecule dipoles.

    Science.gov (United States)

    Singh, Anshuman; Calbris, Gaëtan; van Hulst, Niek F

    2014-08-13

    Optical nanoantennas confine light on the nanoscale, enabling strong light-matter interactions and ultracompact optical devices. Such confined nanovolumes of light have nonzero field components in all directions (x, y, and z). Unfortunately mapping of the actual nanoscale field vectors has so far remained elusive, though antenna hotspots have been explored by several techniques. In this paper, we present a novel method to probe all three components of the local antenna field. To this end a resonant nanoantenna is fabricated at the vertex of a scanning tip. Next, the nanoantenna is deterministically scanned in close proximity to single fluorescent molecules, whose fixed excitation dipole moment reads out the local field vector. With nanometer molecular resolution, we distinctly map x-, y-, and z-field components of the dipole antenna, i.e. a full vectorial mode map, and show good agreement with full 3D FDTD simulations. Moreover, the fluorescence polarization maps the localized coupling, with emission through the longitudinal antenna mode. Finally, the resonant antenna probe is used for single molecule imaging with 40 nm fwhm response function. The total fluorescence enhancement is 7.6 times, while out-of-plane molecules, almost undetectable in far-field, are made visible by the strong antenna z-field with a fluorescence enhancement up to 100 times. Interestingly, the apparent position of molecules shifts up to 20 nm depending on their orientation. The capability to resolve orientational information on the single molecule level makes the scanning resonant antenna an ideal tool for extreme resolution bioimaging.

  16. Plasma spectroscopy using optical vortex laser

    Science.gov (United States)

    Yoshimura, Shinji; Aramaki, Mitsutoshi; Terasaka, Kenichiro; Toda, Yasunori; Czarnetzki, Uwe; Shikano, Yutaka

    2014-10-01

    Laser spectroscopy is a useful tool for nonintrusive plasma diagnostics; it can provide many important quantities in a plasma such as temperature, density, and flow velocity of ions and neutrals from the spectrum obtained by scanning the frequency of narrow bandwidth laser. Obtainable information is, however, limited in principle to the direction parallel to the laser path. The aim of this study is to introduce a Laguerre-Gaussian beam, which is called as optical vortex, in place of a widely used Hermite-Gaussian beam. One of the remarkable properties of the Laguerre-Gaussian beam is that it carries an angular momentum in contrast to the Hermite-Gaussian beam. It follows that particles in the laser beam feel the Doppler effect even in the transverse direction of the laser path. Therefore it is expected that the limitation imposed by the laser path can be overcome by using an optical vortex laser. The concept of optical vortex spectroscopy, the development of the laser system, and some preliminary results of a proof-of-principle experiment will be presented. This work is performed with the support and under the auspices of NINS young scientists collaboration program for cross-disciplinary study, NIFS collaboration research program (NIFS13KOAP026), and JSPS KAKENHI Grant Number 25287152.

  17. Entangled vector vortex beams

    Science.gov (United States)

    D'Ambrosio, Vincenzo; Carvacho, Gonzalo; Graffitti, Francesco; Vitelli, Chiara; Piccirillo, Bruno; Marrucci, Lorenzo; Sciarrino, Fabio

    2016-09-01

    Light beams having a vectorial field structure, or polarization, that varies over the transverse profile and a central optical singularity are called vector vortex (VV) beams and may exhibit specific properties such as focusing into "light needles" or rotation invariance. VV beams have already found applications in areas ranging from microscopy to metrology, optical trapping, nano-optics, and quantum communication. Individual photons in such beams exhibit a form of single-particle quantum entanglement between different degrees of freedom. On the other hand, the quantum states of two photons can be also entangled with each other. Here, we combine these two concepts and demonstrate the generation of quantum entanglement between two photons that are both in VV states: a form of entanglement between two complex vectorial fields. This result may lead to quantum-enhanced applications of VV beams as well as to quantum information protocols fully exploiting the vectorial features of light.

  18. Optical vortex coronagraphy from soft spin-orbit masks

    CERN Document Server

    Aleksanyan, Artur

    2016-01-01

    We report on a soft route towards optical vortex coronagraphy based on self-engineered electrically tunable vortex masks based on liquid crystal topological defects. These results suggest that a Nature-assisted technological approach to the fabrication of complex phase masks could be useful in optical imaging whenever optical phase singularities are at play.

  19. Azimuthal Doppler Effect in Optical Vortex Spectroscopy

    Science.gov (United States)

    Aramaki, Mitsutoshi; Yoshimura, Shinji; Toda, Yasunori; Morisaki, Tomohiro; Terasaka, Kenichiro; Tanaka, Masayoshi

    2015-11-01

    Optical vortices (OV) are a set of solutions of the paraxial Helmholtz equation in the cylindrical coordinates, and its wave front has a spiral shape. Since the Doppler shift is caused by the phase change by the movement in a wave field, the observer in the OV, which has the three-dimensional structured wave front, feels a three-dimensional Doppler effect. Since the multi-dimensional Doppler components are mixed into a single Doppler spectrum, development of a decomposition method is required. We performed a modified saturated absorption spectroscopy to separate the components. The OV and plane wave are used as a probe beam and pump beam, respectively. Although the plane-wave pump laser cancels the z-direction Doppler shift, the azimuthal Doppler shift remains in the saturated dip. The spatial variation of the dip width gives the information of the azimuthal Doppler shift. The some results of optical vortex spectroscopy will be presented.

  20. Optical vortex metrology for non-destructive testing

    DEFF Research Database (Denmark)

    Wang, W.; Hanson, Steen Grüner

    2009-01-01

    Based on the phase singularities in optical fields, we introduce a new technique, referred to as Optical Vortex Metrology, and demonstrate its application to nano- displacement, flow measurements and biological kinematic analysis.......Based on the phase singularities in optical fields, we introduce a new technique, referred to as Optical Vortex Metrology, and demonstrate its application to nano- displacement, flow measurements and biological kinematic analysis....

  1. Intense harmonics generation with customized photon frequency and optical vortex

    Science.gov (United States)

    Zhang, Xiaomei; Shen, Baifei; Shi, Yin; Zhang, Lingang; Ji, Liangliang; Wang, Xiaofeng; Xu, Zhizhan; Tajima, Toshiki

    2016-08-01

    An optical vortex with orbital angular momentum (OAM) enriches the light and matter interaction process, and helps reveal unexpected information in relativistic nonlinear optics. A scheme is proposed for the first time to explore the origin of photons in the generated harmonics, and produce relativistic intense harmonics with expected frequency and an optical vortex. When two counter-propagating Laguerre-Gaussian laser pulses impinge on a solid thin foil and interact with each other, the contribution of each input pulse in producing harmonics can be distinguished with the help of angular momentum conservation of photons, which is almost impossible for harmonic generation without an optical vortex. The generation of tunable, intense vortex harmonics with different photon topological charge is predicted based on the theoretical analysis and three-dimensional particle-in-cell simulations. Inheriting the properties of OAM and harmonics, the obtained intense vortex beam can be applied in a wide range of fields, including atom or molecule control and manipulation.

  2. Statistical behaviour of optical vortex fields

    CSIR Research Space (South Africa)

    Roux, FS

    2009-09-01

    Full Text Available Phase screens Least squares phase removersScintillated beam Observation plane Initial number of optical vortices is reduced asymptotically until equilibrium is reached. 0 20 40 60 80 100 120 140 160 180 200 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1... ? complex coefficients 6 6 overall amplitude and phase 6 morphology parameters 6 6 0 + axx+ ayy + ... = A exp(iΩ) [ξ(x+ iy) + ζ(x− iy)] where |ξ|2 + |ζ|2 = 1 . – p.5/37 Vortex shape For isotropic (canonical) vortices: ξ = 1 and ζ = 0 → ν = +1 ξ = 0 and ζ = 1...

  3. Scanning metallic nanosphere microscopy for vectorial profiling of optical focal spots.

    Science.gov (United States)

    Yi, Hui; Long, Jing; Li, Hongquan; He, Xiaolong; Yang, Tian

    2015-04-06

    Recent years have witnessed fast progress in the development of spatially variant states of polarization under high numerical aperture focusing, and intensive exploration of their applications. We report a vectorial, broadband, high contrast and subwavelength resolution method for focal spot profiling. In this experiment, a 100 nm diameter gold nanosphere on a silica aerogel substrate is raster scanned across the focal spots, and the orthogonal polarization components can be obtained simultaneously by measuring the scattering far field in a confocal manner. The metallic-nanosphere-on-aerogel structure ensures negligible distortion to the focal spots, low crosstalk between orthogonal polarization components (1/39 in experiment), and a low level background noise (1/80 of peak intensity in experiment), while high contrast imaging is not limited by the resonance bandwidth.

  4. Optical vortex conversion in the elliptic vortex-beam propagating orthogonally to the crystal optical axis: the experiment

    Science.gov (United States)

    Sokolenko, Bogdan; Kudryavtseva, Maria; Zinovyev, Alexey; Konovalenko, Victor; Rubass, Alex

    2012-01-01

    We have experimentally analyzed the topological reactions occurred in the elliptic vortex-beam transmitting orthogonally to the optical axis of the SiO2 crystal. We have revealed that the oscillations of the polarization state when propagating the beam are accompanied by reconstruction of the polarization singularities at the beam cross-section that, in turn, entails the reconstruction of the wavefront in each circularly polarized beam component. Both synchronic oscillations of the spin angular momentum and the sign of the vortex topological charge are expressing in a field structure as birth and annihilation of topological dipoles. Also periodical conversion of the vortex ellipticity along the crystal length z and huge splash of spin angular momentum were analysed. The run of the dislocation reactions in the beam component results in converting the sign of the topological charge in the centered optical vortex, the distance of the vortex conversion being about 0.05 of the wavelength.

  5. Optical-domain Compensation for Coupling between Optical Fiber Conjugate Vortex Modes

    DEFF Research Database (Denmark)

    Lyubopytov, Vladimir S.; Tatarczak, Anna; Lu, Xiaofeng

    2016-01-01

    We demonstrate for the first time optical-domain compensation for coupling between conjugate vortex modes in optical fibers. We introduce a novel method for reconstructing the complex propagation matrix of the optical fiber with straightforward implementation....

  6. Optical vortex discrimination with a transmission volume hologram

    Energy Technology Data Exchange (ETDEWEB)

    Gruneisen, Mark T [Air Force Research Laboratory, Directed Energy Directorate, Kirtland AFB, NM 87117 (United States); Dymale, Raymond C; Stoltenberg, Kurt E [Boeing Company, PO Box 5670, Albuquerque, NM 87185 (United States); Steinhoff, Nicholas [Optical Sciences Company, 1341 S Sunkist St., Anaheim, CA 92806 (United States)

    2011-08-15

    Transmissive volume holograms are considered as mode-selective optical elements for the de-multiplexing and detecting of optical vortex modes according to the topological charge or mode number. Diffraction of vortex modes by a fundamental mode hologram is modeled using a physical optics model that treats the volume hologram as an angle-dependent transfer function. Diffracted irradiance profiles and diffraction efficiencies are calculated numerically as a function of the incident mode number. The results of the model are compared with experimental results obtained with volume holograms of fundamental and higher-order vortex modes. When considered as a function of detuning between the incident and recorded mode numbers, the measured diffraction efficiencies are found to be invariant with respect to the recorded mode number, provided that the order difference remains unchanged, and in close agreement with the predictions of the model. Measurements are made with a 1.3 mm thick permanent photo-thermo-refractive glass hologram and a 9 mm thick re-writable photorefractive lithium niobate hologram. A liquid-crystal spatial light modulator generates the vortex modes used to record and read the holograms. The results indicate that a simple volume hologram can discriminate between vortex modes; however, adjacent mode discrimination with low crosstalk would require a very thick hologram. Furthermore, broadening of the vortex angular spectrum, due to diffraction at a finite aperture, can adversely affect diffraction efficiencies.

  7. Fully-vectorial simulation and tolerancing of optical systems for wafer inspection by field tracing

    Science.gov (United States)

    Asoubar, Daniel; Schweitzer, Hagen; Hellmann, Christian; Kuhn, Michael; Wyrowski, Frank

    2015-06-01

    The simulation, design and tolerancing of optical systems for wafer inspection is a challenging task due to the different feature sizes, which are involved in these systems. On the one hand light is propagated through macroscopic lens systems and on the other hand light is diffracted at microscopic structures with features in the range of the wavelength of light. Due to this variety of scale plenty of different physical effects like refraction, diffraction, interference and polarization have to be taken into account for a realistic analysis of such inspection systems. We show that all of these effects can be included in a system simulation by field tracing, which combines physical and geometrical optics. The main idea is the decomposition of the complex optical setup in a sequence of subdomains. Per subdomain a different approximative or rigorous solution of Maxwell's equations is applied to propagate the light. In this work the different modeling techniques for the analysis of an exemplary wafer inspection system are discussed in detail. These techniques are mainly geometrical optics for the light propagation through macroscopic lenses, a rigorous Fourier Modal Method (FMM) for the modeling of light diffraction at the wafer microstructure and different free-space diffraction integrals. In combination with a numerically efficient algorithm for the coordinate transformation of electromagnetic fields, field tracing enables position and fabrication tolerancing. As an example different tilt tolerance effects on the polarization state and image contrast of a simple wafer inspection system are shown.

  8. Non-conservative optical forces and Brownian vortexes

    Science.gov (United States)

    Sun, Bo

    Optical manipulation using optical tweezers has been widely adopted in physics, chemical engineering and biology. While most applications and fundamental studies of optical trapping have focused on optical forces resulting from intensity gradients, we have also explored the role of radiation pressure, which is directed by phase gradients in beams of light. Interestingly, radiation pressure turns out to be a non-conservative force and drives trapped objects out of thermodynamic equilibrium with their surrounding media. We have demonstrated the resulting nonequilibrium effects experimentally by tracking the thermally driven motions of optically trapped colloidal spheres using holographic video microscopy. Rather than undergoing equilibrium thermal fluctuations, as has been assumed for more than a quarter century, a sphere in an optical tweezer enters into a stochastic steady-state characterized by closed loops in its probability current density. These toroidal vortexes constitute a bias in the particle's otherwise random thermal fluctuations arising at least indirectly from a solenoidal component in the optical force. This surprising effect is a particular manifestation of a more general class of noise-driven machines that we call Brownian vortexes. This previously unrecognized class of stochastic heat engines operates on qualitatively different principles from such extensively studied nonequilibrium systems as thermal ratchets and Brownian motors. Among its interesting properties, a Brownian vortex can reverse its direction with changes in temperature or equivalent control parameters.

  9. Structured caustic vector vortex optical field: manipulating optical angular momentum flux and polarization rotation.

    Science.gov (United States)

    Chen, Rui-Pin; Chen, Zhaozhong; Chew, Khian-Hooi; Li, Pei-Gang; Yu, Zhongliang; Ding, Jianping; He, Sailing

    2015-05-29

    A caustic vector vortex optical field is experimentally generated and demonstrated by a caustic-based approach. The desired caustic with arbitrary acceleration trajectories, as well as the structured states of polarization (SoP) and vortex orders located in different positions in the field cross-section, is generated by imposing the corresponding spatial phase function in a vector vortex optical field. Our study reveals that different spin and orbital angular momentum flux distributions (including opposite directions) in different positions in the cross-section of a caustic vector vortex optical field can be dynamically managed during propagation by intentionally choosing the initial polarization and vortex topological charges, as a result of the modulation of the caustic phase. We find that the SoP in the field cross-section rotates during propagation due to the existence of the vortex. The unique structured feature of the caustic vector vortex optical field opens the possibility of multi-manipulation of optical angular momentum fluxes and SoP, leading to more complex manipulation of the optical field scenarios. Thus this approach further expands the functionality of an optical system.

  10. Optical Rogue Waves in Vortex Turbulence

    CERN Document Server

    Gibson, Christopher J; Oppo, Gian-Luca

    2015-01-01

    We present a spatio-temporal mechanism for producing 2D optical rogue waves in the presence of a turbulent state with creation, interaction and annihilation of optical vortices. Spatially periodic structures with bound phase lose stability to phase unbound turbulent states in complex Ginzburg- Landau and Swift-Hohenberg models with external driving. When the pumping is high and the external driving is low, synchronized oscillations are unstable and lead to spatio-temporal turbulence with high excursions in amplitude. Nonlinear amplification leads to rogue waves close to turbulent optical vortices, where the amplitude tends to zero, and to probability distribution functions with long tails typical of extreme optical events.

  11. Stable spatial and spatiotemporal optical soliton in the core of an optical vortex

    CERN Document Server

    Adhikari, S K

    2015-01-01

    We demonstrate a robust, stable, mobile, two-dimensional (2D) spatial and three-dimensional (3D) spatiotemporal optical soliton in the core of an optical vortex, while all nonlinearities are of the cubic (Kerr) type. The 3D soliton can propagate with a constant velocity along the vortex core without any deformation. Stability of the soliton under a small perturbation is established numerically. Two such solitons moving along the vortex core can undergo a quasi-elastic collision at medium velocities. Possibilities of forming such a 2D spatial soliton in the core of a vortical beam are discussed.

  12. Optical vortex coronagraphs on ground-based telescopes

    CERN Document Server

    Jenkins, Charles

    2007-01-01

    The optical vortex coronagraph is potentially a remarkably effective device, at least for an ideal unobstructed telescope. Most ground-based telescopes however suffer from central obscuration and also have to operate through the aberrations of the turbulent atmosphere. This note analyzes the performance of the optical vortex in these circumstances and compares to some other designs, showing that it performs similarly in this situation. There is a large class of coronagraphs of this general type, and choosing between them in particular applications depends on details of performance at small off-axis distances and uniformity of response in the focal plane. Issues of manufacturability to the necessary tolerances are also likely to be important.

  13. Experimental observation of polarization-dependent optical vortex beams

    CERN Document Server

    Srisuphaphon, S; Photia, T; Temnuch, W; Chiangga, S; Deachapunya, S

    2016-01-01

    We report the experimental demonstration of the induced polarization-dependent optical vortex beams. We use the Talbot configuration as a method to probe this effect. In particular, our simple experiment shows the direct measurement of this observation. Our experiment can exhibit clearly the combination between the polarization and orbital angular momentum (OAM) states of light. This implementation might be useful for further studies in the quantum system or quantum information.

  14. Analysis for the axial force exerted on a micro-particle in the optical vortex

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The axial force exerting to a micro-particle in the TEM01* doughnut mode is calculated by using the ray-optic model. The calculated results show that the optical vortex possesses two advantages in trapping the high-index micro-particles compared with that of the conventional optical tweezers,of which one is the axial force induced by the optical vortex and is three times as great as that of the optical tweezers under the same power level, and the other is of two equilibrium positions in the optical vortex, which indicates that optical vortex is more suitable in trapping particles. Furthermore, the optical vortex can trap the low-index micro-particles, which can not by the conventional optical tweezers.

  15. Magnetic field induced optical vortex beam rotation

    CERN Document Server

    Shi, Shuai; Zhou, Zhi-Yuan; Li, Yan; Zhang, Wei; Shi, Bao-Sen

    2015-01-01

    Light with orbital angular momentum (OAM) has drawn a great deal of attention for its important applications in the fields of precise optical measurements and high capacity optical communications. Here we adopt a method to study the rotation of a light beam, which is based on magnetic field induced circular birefringence in warm 87Rb atomic vapor. The dependence of the rotation angle to the intensity of the magnetic field makes it appropriate for weak magnetic field measurement. We derive a detail theoretical description that is in well agreement with the experimental observations. The experiment shows here provides a new method for precise measurement of magnetic field intensity and expands the application of OAM-carrying light.

  16. Bitter decoration and magneto-optical observations of vortex chains in high temperature superconductors

    Indian Academy of Sciences (India)

    T Tamegai; H Aoki; M Matsui; M Tokunaga

    2006-01-01

    In tilted magnetic fields, vortices in anisotropic superconductors form one-dimensional arrangements, called vortex chains. We have visualized vortex chains by Bitter decoration and magneto-optical technique. The fundamental energy scale for the attractive interaction between pancake and Josephson vortices is evaluated by observing vortex chains under various conditions. We also explore how the vortex chains evolve when the large in-plane field is applied or when the anisotropy parameter of the system is changed.

  17. Optical vortex metrology: Are phase singularities foes or friends in optical metrology?

    DEFF Research Database (Denmark)

    Takeda, M.; Wang, W.; Hanson, Steen Grüner;

    2008-01-01

    We raise an issue whether phase singularities are foes or friends in optical metrology, and give an answer by introducing the principle and applications of a new technique which we recently proposed for displacement and flow measurements. The technique is called optical vortex metrology because...

  18. Controlling multiple filaments by relativistic optical vortex beams in plasmas

    Science.gov (United States)

    Ju, L. B.; Huang, T. W.; Xiao, K. D.; Wu, G. Z.; Yang, S. L.; Li, R.; Yang, Y. C.; Long, T. Y.; Zhang, H.; Wu, S. Z.; Qiao, B.; Ruan, S. C.; Zhou, C. T.

    2016-09-01

    Filamentation dynamics of relativistic optical vortex beams (OVBs) propagating in underdense plasma is investigated. It is shown that OVBs with finite orbital angular momentum (OAM) exhibit much more robust propagation behavior than the standard Gaussian beam. In fact, the growth rate of the azimuthal modulational instability decreases rapidly with increase of the OVB topological charge. Thus, relativistic OVBs can maintain their profiles for significantly longer distances in an underdense plasma before filamentation occurs. It is also found that an OVB would then break up into regular filament patterns due to conservation of the OAM, in contrast to a Gaussian laser beam, which in general experiences random filamentation.

  19. Optical phased array radiating optical vortex with manipulated topological charges.

    Science.gov (United States)

    Ma, Xiaoliang; Pu, Mingbo; Li, Xiong; Huang, Cheng; Pan, Wenbo; Zhao, Bo; Cui, Jianhua; Luo, Xiangang

    2015-02-23

    Optical antennas are key elements in quantum optics emitting and sensing, and behave wide range applications in optical domain. However, integration of optical antenna radiating orbital angular momentum is still a challenge in nano-scale. We theoretically demonstrate a sub-wavelength phased optical antenna array, which manipulates the distribution of the orbital angular momentum in the near field. Orbital angular momentum with topological charge of 4 can be obtained by controlling the phase distribution of the fundamental mode orbital angular momentum in each antenna element. Our results indicate this phased array may be utilized in high integrated optical communication systems.

  20. Theory of vortex-lattice melting in a one-dimensional optical lattice

    NARCIS (Netherlands)

    Snoek, M.; Stoof, H.T.C.

    2006-01-01

    We investigate quantum and temperature fluctuations of a vortex lattice in a one-dimensional optical lattice. We discuss in particular the Bloch bands of the Tkachenko modes and calculate the correlation function of the vortex positions along the direction of the optical lattice. Because of the

  1. Free-space optical communication link using perfect vortex beams carrying orbital angular momentum (OAM)

    Science.gov (United States)

    Zhu, Fuquan; Huang, Sujuan; Shao, Wei; Zhang, Jie; Chen, Musheng; Zhang, Weibing; Zeng, Junzhang

    2017-08-01

    We experimentally demonstrate a free-space optical communication link using perfect vortex beams. Perfect vortex beams with different topological charges are generated using a phase-modulation-type spatial light modulator (SLM) loaded with novel phase holograms based on the Bessel function. With the help of a microscope objective and simple lens, perfect vortex beams are transmitted effectively for a certain distance. After completing the demodulation of perfect vortex beams carrying OFDM 16-QAM signals and a series of offline processing on the Gaussian bright spot demodulated from the perfect vortex beams, we also achieve a communication link. The constellations and mean bit error rates (BER) of subcarriers are shown.

  2. Fundamental and vortex solitons in a two-dimensional optical lattice

    CERN Document Server

    Yang, J; Yang, Jianke; Musslimani, Ziad

    2003-01-01

    Fundamental and vortex solitons in a two-dimensional optically induced waveguide array are reported. In the strong localization regime, the fundamental soliton is largely confined to one lattice site, while the vortex state comprises of four fundamental modes superimposed in a square configuration with a phase structure that is topologically equivalent to the conventional vortex. However, in the weak localization regime, both the fundamental and vortex solitons spread over many lattice sites. We further show that fundamental and vortex solitons are stable against small perturbations in the strong localization regime.

  3. Q-switched Nd:YAG optical vortex lasers.

    Science.gov (United States)

    Kim, D J; Kim, J W; Clarkson, W A

    2013-12-02

    Q-switched operation of a high-quality Nd:YAG optical vortex laser with the first order Laguerre-Gaussian mode and well-determined helical wavefronts using a fiber-based pump beam conditioning scheme is reported. A simple two-mirror resonator incorporating an acousto-optic Q-switch was employed, along with an etalon and a Brewster plate to enforce the particular helicity of the output. The laser yielded Q-switched pulses with ~250 μJ pulse energy and ~33 ns pulse duration (FWHM) at a 0.1 kHz repetition rate for 5.1 W of absorbed pump power. The handedness of the helical wavefronts was preserved regardless of the repetition rates. The prospects of further power scaling and improved laser performance are discussed.

  4. Observation of an optical vortex beam from a helical undulator in the XUV region.

    Science.gov (United States)

    Kaneyasu, Tatsuo; Hikosaka, Yasumasa; Fujimoto, Masaki; Iwayama, Hiroshi; Hosaka, Masahito; Shigemasa, Eiji; Katoh, Masahiro

    2017-09-01

    The observation of an optical vortex beam at 60 nm wavelength, produced as the second-harmonic radiation from a helical undulator, is reported. The helical wavefront of the optical vortex beam was verified by measuring the interference pattern between the vortex beam from a helical undulator and a normal beam from another undulator. Although the interference patterns were slightly blurred owing to the relatively large electron beam emittance, it was possible to observe the interference features thanks to the helical wavefront of the vortex beam. The experimental results were well reproduced by simulation.

  5. Numerical study of the properties of optical vortex array laser tweezers.

    Science.gov (United States)

    Kuo, Chun-Fu; Chu, Shu-Chun

    2013-11-01

    Chu et al. constructed a kind of Ince-Gaussian modes (IGM)-based vortex array laser beams consisting of p x p embedded optical vortexes from Ince-Gaussian modes, IG(e)(p,p) modes [Opt. Express 16, 19934 (2008)]. Such an IGM-based vortex array laser beams maintains its vortex array profile during both propagation and focusing, and is applicable to optical tweezers. This study uses the discrete dipole approximation (DDA) method to study the properties of the IGM-based vortex array laser tweezers while it traps dielectric particles. This study calculates the resultant force exerted on the spherical dielectric particles of different sizes situated at the IGM-based vortex array laser beam waist. Numerical results show that the number of trapping spots of a structure light (i.e. IGM-based vortex laser beam), is depended on the relation between the trapped particle size and the structure light beam size. While the trapped particle is small comparing to the beam size of the IGM-based vortex array laser beams, the IGM-based vortex array laser beams tweezers are suitable for multiple traps. Conversely, the tweezers is suitable for single traps. The results of this study is useful to the future development of the vortex array laser tweezers applications.

  6. Analysis of Optical Fiber Complex Propagation Matrix on the Basis of Vortex Modes

    DEFF Research Database (Denmark)

    Lyubopytov, Vladimir S.; Tatarczak, Anna; Lu, Xiaofeng;

    2016-01-01

    We propose and experimentally demonstrate a novel method for reconstruction of the complex propagation matrix of optical fibers supporting propagation of multiple vortex modes. This method is based on the azimuthal decomposition approach and allows the complex matrix elements to be determined...... by direct calculations. We apply the proposed method to demonstrate the feasibility of optical compensation for coupling between vortex modes in optical fiber....

  7. Vortex-lattice melting in a one-dimensional optical lattice

    NARCIS (Netherlands)

    Snoek, M.; Stoof, H.T.C.

    2006-01-01

    We investigate quantum fluctuations of a vortex lattice in a one-dimensional optical lattice. Our method gives full access to all the modes of the vortex lattice and we discuss in particular the Bloch bands of the Tkachenko modes. Because of the small number of particles in the pancake

  8. Vortex-lattice melting in a one-dimensional optical lattice

    NARCIS (Netherlands)

    Snoek, M.; Stoof, H.T.C.

    2006-01-01

    We investigate quantum fluctuations of a vortex lattice in a one-dimensional optical lattice for realistic numbers of particles and vortices. Our method gives full access to all the modes of the vortex lattice and we discuss in particular the Bloch bands of the Tkachenko modes. Because of the

  9. Time-dependent evolution of an optical vortex in photorefractive media

    DEFF Research Database (Denmark)

    Mamaev, A.V.; Saffman, M.; Zozulya, A.A.

    1997-01-01

    We study the transient decay and rotation of a singly charged optical vortex in media with a photorefractive nonlinearity under conditions where the light intensity is high compared to the saturation intensity. Transient decay of an initially circular vortex is characterized by charge...

  10. Optical vortex knots – one photon at a time

    Science.gov (United States)

    Tempone-Wiltshire, Sebastien J.; Johnstone, Shaun P.; Helmerson, Kristian

    2016-01-01

    Feynman described the double slit experiment as “a phenomenon which is impossible, absolutely impossible, to explain in any classical way and which has in it the heart of quantum mechanics”. The double-slit experiment, performed one photon at a time, dramatically demonstrates the particle-wave duality of quantum objects by generating a fringe pattern corresponding to the interference of light (a wave phenomenon) from two slits, even when there is only one photon (a particle) at a time passing through the apparatus. The particle-wave duality of light should also apply to complex three dimensional optical fields formed by multi-path interference, however, this has not been demonstrated. Here we observe particle-wave duality of a three dimensional field by generating a trefoil optical vortex knot – one photon at a time. This result demonstrates a fundamental physical principle, that particle-wave duality implies interference in both space (between spatially distinct modes) and time (through the complex evolution of the superposition of modes), and has implications for topologically entangled single photon states, orbital angular momentum multiplexing and topological quantum computing. PMID:27087642

  11. Optical vortex knots - one photon at a time

    Science.gov (United States)

    Tempone-Wiltshire, Sebastien J.; Johnstone, Shaun P.; Helmerson, Kristian

    2016-04-01

    Feynman described the double slit experiment as “a phenomenon which is impossible, absolutely impossible, to explain in any classical way and which has in it the heart of quantum mechanics”. The double-slit experiment, performed one photon at a time, dramatically demonstrates the particle-wave duality of quantum objects by generating a fringe pattern corresponding to the interference of light (a wave phenomenon) from two slits, even when there is only one photon (a particle) at a time passing through the apparatus. The particle-wave duality of light should also apply to complex three dimensional optical fields formed by multi-path interference, however, this has not been demonstrated. Here we observe particle-wave duality of a three dimensional field by generating a trefoil optical vortex knot - one photon at a time. This result demonstrates a fundamental physical principle, that particle-wave duality implies interference in both space (between spatially distinct modes) and time (through the complex evolution of the superposition of modes), and has implications for topologically entangled single photon states, orbital angular momentum multiplexing and topological quantum computing.

  12. An Optical Wake Vortex Detection System for Super-Density Airport Operation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — OSI proposes to develop a wake vortex detection system including a group of double-ended and single-ended optical scintillometers properly deployed in the airfield...

  13. Experimental demonstration of free-space optical vortex transmutation with polygonal lenses.

    Science.gov (United States)

    Gao, Nan; Xie, Changqing

    2012-08-01

    Vortex transmutation was predicted to take place when vortices interact with systems possessing discrete rotational symmetries of finite order [Phys. Rev. Lett.95, 123901 (2005)]. Here we report what is believed to be the first experimental demonstration of vortex transmutation. We show that in free space, by simply inserting polygonal lenses into the optical path, the central vorticity of a coaxially incident optical vortex can be changed following the modular transmutation rule. We generate the wavefront at the exit face of the lenses with computer generated holograms and measure the output vorticity using the interference patterns at the focal plane. The results agree well with theoretical predictions.

  14. Nonparaxial Propagation of Vectorial Elliptical Gaussian Beams

    Directory of Open Access Journals (Sweden)

    Wang Xun

    2016-01-01

    Full Text Available Based on the vectorial Rayleigh-Sommerfeld diffraction integral formulae, analytical expressions for a vectorial elliptical Gaussian beam’s nonparaxial propagating in free space are derived and used to investigate target beam’s propagation properties. As a special case of nonparaxial propagation, the target beam’s paraxial propagation has also been examined. The relationship of vectorial elliptical Gaussian beam’s intensity distribution and nonparaxial effect with elliptic coefficient α and waist width related parameter fω has been analyzed. Results show that no matter what value of elliptic coefficient α is, when parameter fω is large, nonparaxial conclusions of elliptical Gaussian beam should be adopted; while parameter fω is small, the paraxial approximation of elliptical Gaussian beam is effective. In addition, the peak intensity value of elliptical Gaussian beam decreases with increasing the propagation distance whether parameter fω is large or small, and the larger the elliptic coefficient α is, the faster the peak intensity value decreases. These characteristics of vectorial elliptical Gaussian beam might find applications in modern optics.

  15. Vortex algebra by multiply cascaded four-wave mixing of femtosecond optical beams.

    Science.gov (United States)

    Hansinger, Peter; Maleshkov, Georgi; Garanovich, Ivan L; Skryabin, Dmitry V; Neshev, Dragomir N; Dreischuh, Alexander; Paulus, Gerhard G

    2014-05-05

    Experiments performed with different vortex pump beams show for the first time the algebra of the vortex topological charge cascade, that evolves in the process of nonlinear wave mixing of optical vortex beams in Kerr media due to competition of four-wave mixing with self-and cross-phase modulation. This leads to the coherent generation of complex singular beams within a spectral bandwidth larger than 200nm. Our experimental results are in good agreement with frequency-domain numerical calculations that describe the newly generated spectral satellites.

  16. Generation of optical vortex dipole from superposition of two transversely scaled Gaussian beams.

    Science.gov (United States)

    Naik, Dinesh N; Pradeep Chakravarthy, T; Viswanathan, Nirmal K

    2016-04-20

    We propose a distinct concept on the generation of optical vortex through coupling between the amplitude and phase differences of the superposing beams. For the proof-of-concept demonstration, we propose a simple free-space optics recipe for the controlled synthesis of an optical beam with a vortex dipole by superposing two transversely scaled Gaussian beams. The experimental demonstration using a Sagnac interferometer introduces the desired amount of radial shear and linear phase difference between the two out-of-phase Gaussian beams to create a vortex pair of opposite topological charge in the superposed beam. Flexibility to tune their location and separation using the choice of direction of the linear phase difference and the amount of amplitude difference between the superposing beams has potential applications in optical tweezers and traps utilizing the local variation in angular momentum across the beam cross section.

  17. Optical orbital angular momentum conservation during the transfer process from plasmonic vortex lens to light.

    Science.gov (United States)

    Yu, Haohai; Zhang, Huaijin; Wang, Yicheng; Han, Shuo; Yang, Haifang; Xu, Xiangang; Wang, Zhengping; Petrov, V; Wang, Jiyang

    2013-11-12

    We demonstrate the optical orbital angular momentum conservation during the transfer process from subwavelength plasmonic vortex lens (PVLs) to light and the generating process of surface plasmon polaritons (SPPs). Illuminating plasmonic vortex lenses with beams carrying optical orbital angular momentum, the SP vortices with orbital angular momentum were generated and inherit the optical angular momentum of light beams and PVLs. The angular momentum of twisting SP electromagnetic field is tunable by the twisted metal/dielectric interfaces of PVLs and angular momentum of illuminating singular light. This work may open the door for several possible applications of SP vortices in subwavelength region.

  18. Numerical simulation of optical vortex propagation and reflection by the methods of scalar diffraction theory

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Nikolay V; Pavlov, Pavel V; Malov, A N

    2013-06-30

    Using the equations of scalar diffraction theory we consider the formation of an optical vortex on a diffractive optical element. The algorithms are proposed for simulating the processes of propagation of spiral wavefronts in free space and their reflections from surfaces with different roughness parameters. The given approach is illustrated by the results of numerical simulations. (propagation of wave fronts)

  19. Driven optical matter: Dynamics of electrodynamically coupled nanoparticles in an optical ring vortex

    Science.gov (United States)

    Figliozzi, Patrick; Sule, Nishant; Yan, Zijie; Bao, Ying; Burov, Stanislav; Gray, Stephen K.; Rice, Stuart A.; Vaikuntanathan, Suriyanarayanan; Scherer, Norbert F.

    2017-02-01

    To date investigations of the dynamics of driven colloidal systems have focused on hydrodynamic interactions and often employ optical (laser) tweezers for manipulation. However, the optical fields that provide confinement and drive also result in electrodynamic interactions that are generally neglected. We address this issue with a detailed study of interparticle dynamics in an optical ring vortex trap using 150-nm diameter Ag nanoparticles. We term the resultant electrodynamically interacting nanoparticles a driven optical matter system. We also show that a superior trap is created by using a Au nanoplate mirror in a retroreflection geometry, which increases the electric field intensity, the optical drive force, and spatial confinement. Using nanoparticles versus micron sized colloids significantly reduces the surface hydrodynamic friction allowing us to access small values of optical topological charge and drive force. We quantify a further 50% reduction of hydrodynamic friction when the nanoparticles are driven over the Au nanoplate mirrors versus over a mildly electrostatically repulsive glass surface. Further, we demonstrate through experiments and electrodynamics-Langevin dynamics simulations that the optical drive force and the interparticle interactions are not constant around the ring for linearly polarized light, resulting in a strong position-dependent variation in the nanoparticle velocity. The nonuniformity in the optical drive force is also manifest as an increase in fluctuations of interparticle separation, or effective temperature, as the optical driving force is increased. Finally, we resolve an open issue in the literature on periodic modulation of interparticle separation with comparative measurements of driven 300-nm-diameter polystyrene beads that also clearly reveal the significance of electrodynamic forces and interactions in optically driven colloidal systems. Therefore, the modulations in the optical forces and electrodynamic interactions

  20. Evolution of the phase singularities in edge-diffracted optical-vortex beams

    CERN Document Server

    Bekshaev, Aleksandr; Chernykh, Aleksey; Khoroshun, Anna

    2016-01-01

    We study, both theoretically and by experiment, migration of the amplitude zeros within a fixed cross section of the edge-diffracted optical-vortex beam, when the screen edge performs permanent translation in the transverse plane from the beam periphery towards the axis. Generally, the amplitude zeros (optical-vortex cores) describe spiral-like trajectories. When the screen edge advances uniformly, the motion of the amplitude zeros is not smooth and sometimes shows anomalously high rates, which make an impression of instantaneous "jumps" from one position to another. We analyze the nature, conditions and mechanism of these jumps and show that they are associated with the "birth - annihilation" topological reactions involving the optical vortex dipoles.

  1. Shaping perfect optical vortex with amplitude modulated using a digital micro-mirror device

    Science.gov (United States)

    Zhang, Chonglei; Min, Changjun; Yuan, X.-C.

    2016-12-01

    We propose a technique to generate of perfect optical vortex (POV) via Fourier transformation of Bessel-Gauss (BG) beams through encoding of the amplitude of the optical field with binary amplitude digital micro-mirrors device (DMD). Furthermore, we confirm the correct phase patterns of the POV with the method of Mach-Zehnder interferometer. Our approach to generate the POV has the advantages that rapidly switch among the different modes, wide spectral regions and high energy tolerance. Since the POV possess propagation properties that not shape-invariant, we therefore suppose that our proposed approach will find potential applications in optical microscopy, optical fabrication, and optical communication.

  2. All-optical Data Vortex node using an MZI-SOA switch array

    DEFF Research Database (Denmark)

    Jung, H.D.; Tafur Monroy, Idelfonso; Koonen, A.M.J.;

    2007-01-01

    We propose and demonstrate a new structure of a Data Vortex switch node for all-optical routing of wavelength-division-multiplexing (WDM) 10-Gb/s optical packets. The proposed node consists of two Mach-Zehnder interferometers with integrated semiconductor optical amplifier: an optical AND gate...... and a high-speed optical switch. In the experiment, WDM 10-Gb/s data packets are successfully routed with 1-dB power penalty at a bit-error rate of 10(-9)....

  3. Quantised vortex line visualisation in superfluid helium using low-temperature optics

    Energy Technology Data Exchange (ETDEWEB)

    Seddon, J.R.T.James R.T.; Thurlow, M.S.Michael S.; Lees, M.J.Matthew J.; Lucas, P.G.J.Peter G.J

    2003-05-01

    An optical probe based on the technique of shadowgraphy is proposed that would enable visualisation of the surface depressions (dimples) above quantised vortex lines in a sample of rotating superfluid liquid helium. An analysis based on the dimple profile calculated by Sonin and Manninen shows that the technique is feasible from the known sensitivity of our shadowgraphy system used to visualise thermal convection rolls. Such a probe could be used to investigate vortex arrays in the presence of appreciable normal component, would provide information on the profile of the dimples, and could be adapted to visualise quantum turbulence.

  4. Fully vectorial accelerating diffraction-free Helmholtz beams.

    Science.gov (United States)

    Aleahmad, Parinaz; Miri, Mohammad-Ali; Mills, Matthew S; Kaminer, Ido; Segev, Mordechai; Christodoulides, Demetrios N

    2012-11-16

    We show that new families of diffraction-free nonparaxial accelerating optical beams can be generated by considering the symmetries of the underlying vectorial Helmholtz equation. Both two-dimensional transverse electric and magnetic accelerating wave fronts are possible, capable of moving along elliptic trajectories. Experimental results corroborate these predictions when these waves are launched from either the major or minor axis of the ellipse. In addition, three-dimensional spherical nondiffracting field configurations are presented along with their evolution dynamics. Finally, fully vectorial self-similar accelerating optical wave solutions are obtained via oblate-prolate spheroidal wave functions. In all occasions, these effects are illustrated via pertinent examples.

  5. Vortex matter and ultracold superstrings in optical lattices

    NARCIS (Netherlands)

    Snoek, M.

    2006-01-01

    The combination of a rotating cigar-shaped Bose-Einstein condensate with a one-dimensional optical lattice gives rise to very interesting physics. The one-dimensional optical lattice splits the Bose-Einstein condensate into two-dimensional pancake-condensates, each containing a small number of

  6. Optical torque on a magneto-dielectric Rayleigh absorptive sphere by a vector Bessel (vortex) beam

    Science.gov (United States)

    Li, Renxian; Yang, Ruiping; Ding, Chunying; Mitri, F. G.

    2017-04-01

    The optical torque exerted on an absorptive megneto-dielectric sphere by an axicon-generated vector Bessel (vortex) beam with selected polarizations is investigated in the framework of the dipole approximation. The total optical torque is expressed as the sum of orbital and spin torques. The axial orbital torque component is calculated from the z-component of the cross-product of the vector position r and the optical force exerted on the sphere F. Depending on the beam characteristics (such as the half-cone angle and polarization type) and the physical properties of the sphere, it is shown here that the axial orbital torque vanishes before reversing sign, indicating a counter-intuitive orbital motion in opposite handedness of the angular momentum carried by the incident waves. Moreover, analytical formulas for the spin torque, which is divided into spin torques induced by electric and magnetic dipoles, are derived. The corresponding components of both the optical spin and orbital torques are numerically calculated, and the effects of polarization, the order of the beam, and half-cone angle are discussed in detail. The left-handed (i.e., negative) optical torque is discussed, and the conditions for generating optical spin and orbital torque sign reversal are numerically investigated. The transverse optical spin torque has a vortex-like character, whose direction depends on the polarization, the half-cone angle, and the order of the beam. Numerical results also show that the vortex direction depends on the radial position of the particle in the transverse plane. This means that a sphere may rotate with different directions when it moves radially. Potential applications are in particle manipulation and rotation, single beam optical tweezers, and other emergent technologies using vector Bessel beams on a small magneto-dielectric (nano) particle.

  7. Vectorial approach of determining the wave propagation at metasurfaces

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Daniel, E-mail: D.Smith1966@outlook.com [Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Campbell, Michael, E-mail: mhl.campbell@gmail.com [School of Mathematics and Physics, Queens University, Belfast BT7 1NN (United Kingdom); Bergmann, Andreas, E-mail: a.bergmann@hotmail.com [Department of Physics, University of Hamburg, 20355 Hamburg (Germany)

    2015-10-15

    Vector approach often benefits optical engineers and physicists, and a vector formulation of the laws of reflection and refraction has been studied (Tkaczyk, 2012). However, the conventional reflection and refraction laws may be violated in the presence of a metasurface, and reflection and refraction at the metasurface obey generalized laws of reflection and refraction (Yu et al., 2011). In this letter, the vectorial laws of reflection and refraction at the metasurface were derived, and the matrix formulation of these vectorial laws are also obtained. These results enable highly efficient and unambiguous computations in ray-tracing problems that involve a metasurface.

  8. Single beam optical vortex tweezers with tunable orbital angular momentum

    Energy Technology Data Exchange (ETDEWEB)

    Gecevičius, Mindaugas; Drevinskas, Rokas, E-mail: rd1c12@orc.soton.ac.uk; Beresna, Martynas; Kazansky, Peter G. [Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2014-06-09

    We propose a single beam method for generating optical vortices with tunable optical angular momentum without altering the intensity distribution. With the initial polarization state varying from linear to circular, we gradually control the torque transferred to the trapped non-absorbing and non-birefringent silica beads. The continuous transition from the maximum rotation speed to zero without changing the trapping potential gives a way to study the complex tribological interactions.

  9. Vectorial diffraction of extreme ultraviolet light and ultrashort light pulses

    NARCIS (Netherlands)

    Nugrowati, A.M.

    2008-01-01

    In this thesis, we present applications in optics involving the diffraction theory of light for two advanced technologies. We have used a rigorous vectorial diffraction method to model: (i) the imaging of mask structures in extreme ultraviolet lithography, and (ii) ultrashort pulse propagation thro

  10. Negative optical spin torque wrench of a nondiffracting non-paraxial fractional Bessel vortex beam

    CERN Document Server

    Mitri, F G

    2016-01-01

    An absorptive Rayleigh dielectric sphere in a non-diffracting non-paraxial fractional Bessel vortex beam experiences a spin torque. The axial and transverse radiation spin torque components are evaluated in the dipole approximation using the radiative correction of the electric field. Particular emphasis is given on the polarization as well as changing the topological charge and the beam's half-cone angle. When the beam order is zero, the axial spin torque component vanishes. However, when the beam order becomes a real positive number, the vortex beam induces left-handed (negative) axial spin torque as the sphere shifts off-axially from the center of the beam. The results show that a non-diffracting non-paraxial fractional Bessel vortex beam is capable to induce a spin reversal of an absorptive Rayleigh sphere placed arbitrarily in its path. Potential applications are yet to be explored in particle manipulation, rotation in optical tweezers, optical tractor beams, the design of optically-engineered metamateri...

  11. Laboratory demonstration of an optical vortex mask coronagraph using photonic crystal

    Science.gov (United States)

    Murakami, N.; Baba, N.; Ise, A.; Sakamoto, M.; Oka, K.

    2010-10-01

    Photonic crystal, artificial periodic nanostructure, is an attractive device for constructing focal-plane phase-mask coronagraphs such as segmented phase masks (four-quadrant, eight-octant, and 4N-segmented ones) and an optical vortex mask (OVM), because of its extremely small manufacturing defect. Recently, speckle-noise limited contrast has been demonstrated for two monochromatic lasers by using the eight-octant phase-mask made of the photonic crystal (Murakami et al. 2010, ApJ, 714, 772). We applied the photonic-crystal device to the OVM coronagraph. The OVM is more advantageous over the segmented phase masks because it does not have discontinuities other than a central singular point and provides a full on-sky field of view. For generating an achromatic optical vortex, we manufactured an axially-symmetric half-wave plate (ASHWP). It is expected that a size of the manufacturing defect due to the central singularity is an order of several hundreds nanometers. The ASHWP is placed between two circular polarizers for modulating a Pancharatnam phase. A continuous spiral phase modulation is then implemented achromatically. We carried out preliminary laboratory demonstration of the OVM coronagraph using two monochromatic lasers as a model star (wavelengths of 532 nm and 633 nm). We report a principle of the achromatic optical-vortex generation, and results of the laboratory demonstration of the OVM coronagraph.

  12. Initial Results of Optical Vortex Laser Absorption Spectroscopy in the HYPER-I Device

    Science.gov (United States)

    Yoshimura, Shinji; Asai, Shoma; Aramaki, Mitsutoshi; Terasaka, Kenichiro; Ozawa, Naoya; Tanaka, Masayoshi; Morisaki, Tomohiro

    2015-11-01

    Optical vortex beams have a potential to make a new Doppler measurement, because not only parallel but perpendicular movement of atoms against the beam axis causes the Doppler shift of their resonant absorption frequency. As the first step of a proof-of-principle experiment, we have performed the optical vortex laser absorption spectroscopy for metastable argon neutrals in an ECR plasma produced in the HYPER-I device at the National Institute for Fusion Science, Japan. An external cavity diode laser (TOPTICA, DL100) of which center wavelength was 696.735 nm in vacuum was used for the light source. The Hermite-Gaussian (HG) beam was converted into the Laguerre-Gaussian (LG) beam (optical vortex) by a computer-generated hologram displayed on the spatial light modulator (Hamamatsu, LCOS-SLM X10468-07). In order to make fast neutral flow across the LG beam, a high speed solenoid valve system was installed on the HYPER-I device. Initial results including the comparison of absorption spectra for HG and LG beams will be presented. This study was supported by NINS young scientists collaboration program for cross-disciplinary study, NIFS collaboration research program (NIFS13KOAP026), and JSPS KAKENHI grant number 15K05365.

  13. Control of diffusion of nanoparticles in an optical vortex lattice.

    Science.gov (United States)

    Zapata, Ivar; Delgado-Buscalioni, Rafael; Sáenz, Juan José

    2016-06-01

    A two-dimensional periodic optical force field, which combines conservative dipolar forces with vortices from radiation pressure, is proposed in order to influence the diffusion properties of optically susceptible nanoparticles. The different deterministic flow patterns are identified. In the low-noise limit, the diffusion coefficient is computed from a mean first passage time and the most probable escape paths are identified for those flow patterns which possess a stable stationary point. Numerical simulations of the associated Langevin equations show remarkable agreement with the analytically deduced expressions. Modifications of the force field are proposed so that a wider range of phenomena could be tested.

  14. Perfect optical vortex enhanced surface plasmon excitation for plasmonic structured illumination microscopy imaging

    Science.gov (United States)

    Zhang, Chonglei; Min, Changjun; Du, Luping; Yuan, X.-C.

    2016-05-01

    We propose an all-optical technique for plasmonic structured illumination microscopy (PSIM) with perfect optical vortex (POV). POV can improve the efficiency of the excitation of surface plasma and reduce the background noise of the excited fluorescence. The plasmonic standing wave patterns are excited by POV with fractional topological charges for accurate phase shift of {-2π/3, 0, and 2π/3}. The imaging resolution of less than 200 nm was produced. This PSIM technique is expected to be used as a wide field, super resolution imaging technique in dynamic biological imaging.

  15. Manifestation of the rotational Doppler effect by use of an off-axis optical vortex beam.

    Science.gov (United States)

    Basistiy, I V; Slyusar, V V; Soskin, M S; Vasnetsov, M V; Bekshaev, A Ya

    2003-07-15

    We report what is to our knowledge the first all-optical detection of the frequency beats between Gaussian and Laguerre-Gaussian LG0(1) modes in their axial superposition, caused by the rotational Doppler effect. The relation between the observable off-axis optical vortex rotation and the rotational frequency shift of the Laguerre-Gaussian component is ascertained. The results can be used as a physical basis for recognition of Laguerre-Gaussian mode spectra along their orbital angular momenta.

  16. Propagation of an optical vortex in fiber arrays with triangular lattices

    Science.gov (United States)

    Mushref, Muhammad Abdulrahman Abdulghani

    The propagation of optical vortices (OVs) in linear and nonlinear media is an important field of research in science and engineering. The most important goal is to explore the properties of guiding dynamics for potential applications such as sensing, all-optical switching, frequency mixing and modulation. In this dissertation, we present analytical methods and numerical techniques to investigate the propagation of an optical vortex in fiber array waveguides. Analytically, we model wave propagation in a waveguide by coupled mode Equations as a simplified approximation. The beam propagation method (BPM) is also employed to numerically solve the paraxial wave Equation by finite difference (FD) techniques. We will investigate the propagation of fields in a 2D triangular lattice with different core arrangements in the optical waveguide. In order to eliminate wave reflections at the boundaries of the computational area, the transparent boundary condition (TBC) is applied. In our explorations for the propagation properties of an optical vortex in a linear and a non-linear triangular lattice medium, images are numerically generated for the field phase and intensity in addition to the interferogram of the vortex field with a reference plane or Gaussian field. The finite difference beam propagation method (FD-BPM) with transparent boundary condition (TBC) is a robust approach to numerically deal with optical field propagations in waveguides. In a fiber array arranged in triangular lattices, new vortices vary with respect to the propagation distance and the number of cores in the fiber array for both linear and nonlinear regimes. With more cores and longer propagation distances, more vortices are created. However, they do not always survive and may disappear while other new vortices are formed at other points. In a linear triangular lattice, the results demonstrated that the number of vortices may increase or decrease with respect to the number of cores in the array lattice

  17. An optical tweezer in asymmetrical vortex Bessel-Gaussian beams

    Energy Technology Data Exchange (ETDEWEB)

    Kotlyar, V. V.; Kovalev, A. A., E-mail: alexeysmr@mail.ru; Porfirev, A. P. [Image Processing Systems Institute, 151 Molodogvardeiskaya St., 443001 Samara (Russian Federation); Department of Technical cybernetics, Samara State Aerospace University, Samara 443086 (Russian Federation)

    2016-07-14

    We study an optical micromanipulation that comprises trapping, rotating, and transporting 5-μm polystyrene microbeads in asymmetric Bessel-Gaussian (BG) laser beams. The beams that carry orbital angular momentum are generated by means of a liquid crystal microdisplay and focused by a microobjective with a numerical aperture of NA = 0.85. We experimentally show that given a constant topological charge, the rate of microparticle motion increases near linearly with increasing asymmetry of the BG beam. Asymmetric BG beams can be used instead of conventional Gaussian beam for trapping and transferring live cells without thermal damage.

  18. 3D micro-optical elements for generation of tightly focused vortex beams

    Directory of Open Access Journals (Sweden)

    Balčytis Armandas

    2015-01-01

    Full Text Available Orbital angular momentum carrying light beams are usedfor optical trapping and manipulation. This emerging trend provides new challenges involving device miniaturization for improved performance and enhanced functionality at the microscale. Here we discus a new fabrication method based on combining the additive 3D structuring capability laser photopolymerization and the substractive sub-wavelength resolution patterning of focused ion beam lithography to produce micro-optical elements capable of compound functionality. As a case in point of this approach binary spiral zone pattern based high numerical aperture micro-lenses capable of generating topological charge carrying tightly focused vortex beams in a single wavefront transformation step are presented. The devices were modelled using finite-difference time-domain simulations, and the theoretical predictions were verified by optically characterizing the propagation properties of light transmitted through the fabricated structures. The resulting devices had focal lengths close to the predicted values of f = 18 µm and f = 13 µm as well as topological charge ℓ dependent vortex focal spot sizes of ~ 1:3 µm and ~ 2:0 µm for ℓ = 1 and ℓ = 2 respectively.

  19. Evidence of vectorial photoelectric effect on Copper

    Science.gov (United States)

    Pedersoli, E.; Banfi, F.; Ressel, B.; Pagliara, S.; Giannetti, C.; Galimberti, G.; Lidia, S.; Corlett, J.; Ferrini, G.; Parmigiani, F.

    2005-08-01

    Quantum efficiency (QE) measurements of single photon photoemission from a Cu(111) single crystal and a Cu polycrystal photocathodes, irradiated by 150fs-6.28eV laser pulses, are reported over a broad range of incidence angle, both in s and p polarizations. The maximum QE (≃4×10-4) for polycrystalline Cu is obtained in p polarization at an angle of incidence θ =65°. We observe a QE enhancement in p polarization which cannot be explained in terms of optical absorption, a phenomenon known as vectorial photoelectric effect. Issues concerning surface roughness and symmetry considerations are addressed. An explanation in terms of nonlocal conductivity tensor is proposed.

  20. Evidence of vectorial photoelectric effect on copper

    Energy Technology Data Exchange (ETDEWEB)

    Pedersoli, E.; Banfi, F.; Ressel, B.; Pagliara, S.; Giannetti,C.; Galimberti, G.; Lidia, S.; Corlett, J.; Ferrini, G.; Parmigiani, F.

    2005-05-27

    Quantum Efficiency (QE) measurements of single photon photoemission from a Cu(111) single crystal and a Cu polycrystal photocathodes, irradiated by 150 fs-6.28 eV laser pulses, are reported over a broad range of incidence angle, both in s and p polarizations. The maximum QE (approx. = 4x10-4) for polycrystalline Cu is obtained in p polarization at an angle of incidence theta = 65 deg. We observe a QE enhancement in p polarization which can not be explained in terms of optical absorption, a phenomenon known as vectorial photoelectric effect. Issues concerning surface roughness and symmetry considerations are addressed. An explanation in terms of non local conductivity tensor is proposed.

  1. Generation of femtosecond optical vortex beams in all-fiber mode-locked fiber laser using mode selective coupler

    CERN Document Server

    Wang, Teng; Shi, Fan; Pang, Fufei; Huang, Sujuan; Wang, Tingyun; Zeng, Xianglong

    2016-01-01

    We experimentally demonstrated a high-order optical vortex pulsed laser based on a mode selective all-fiber fused coupler composed of a single-mode fiber (SMF) and a few-mode fiber (FMF). The fused SMF-FMF coupler inserted in the cavity not only acts as mode converter from LP01 mode to LP11 or LP21 modes with a broadband width over 100 nm, but also directly delivers femtosecond vortex pulses out of the mode locked cavity. To the best of our knowledge, this is the first report on the generation of high-order pulse vortex beams in mode-locked fiber laser. The generated 140 femtosecond vortex beam has a spectral width of 67 nm centered at 1544 nm.

  2. Vectorial coupled-mode solitons in one-dimensional photonic crystals

    Institute of Scientific and Technical Information of China (English)

    朱善华; 黄国翔; 崔维娜

    2002-01-01

    We study the dynamics of vectorial coupled-mode solitons in one-dimensional photonic crystals with quadraticand cubic nonlinearities. Starting from Maxwell's equations, the vectorial coupled-mode equations for the envelopesof two fundamental-frequency optical mode and one low-frequency mode components due to optical rectification arederived by means of the method of multiple scales. A set of coupled soliton solutions of the vectorial coupled-modeequations is provided. The results show that a modulation of the fundamental-frequency optical modes occurs due tothe optical rectification field resulting from the quadratic nonlinearity. The optical rectification field disappears whenthe frequency of the fundamental-frequency optical fields approaches the edge of the photonic bands.

  3. Investigating the vortex melting phenomenon in BSCCO crystals using magneto-optical imaging technique

    Indian Academy of Sciences (India)

    A Soibel; S S Banerjee; Y Myasoedov; M L Rappaport; E Zeldov; S Ooi; T Tamegai

    2002-05-01

    Using a novel differential magneto-optical imaging technique we investigate the phenomenon of vortex lattice melting in crystals of Bi2Sr2CaCu2O8 (BSCCO). The images of melting reveal complex patterns in the formation and evolution of the vortex solid–liquid interface with varying field ()/temperature (). We believe that the complex melting patterns are due to a random distribution of material disorder/inhomogeneities across the sample, which create fluctuations in the local melting temperature or field value. To study the fluctuations in the local melting temperature/field, we have constructed maps of the melting landscape m(, ), viz., the melting temperature (m) at a given location () in the sample at a given field (). A study of these melting landscapes reveals an unexpected feature: the melting landscape is not fixed, but changes rather dramatically with varying field and temperature along the melting line. It is concluded that the changes in both the scale and shape of the landscape result from the competing contributions of different types of quenched disorder which have opposite effects on the local melting transition.

  4. Reverse propagation and negative angular momentum density flux of an optical nondiffracting nonparaxial fractional Bessel vortex beam of progressive waves.

    Science.gov (United States)

    Mitri, F G

    2016-09-01

    Energy and angular momentum flux density characteristics of an optical nondiffracting nonparaxial vector Bessel vortex beam of fractional order are examined based on the dual-field method for the generation of symmetric electric and magnetic fields. Should some conditions determined by the polarization state, the half-cone angle as well as the beam-order (or topological charge) be met, the axial energy and angular momentum flux densities vanish (representing Poynting singularities), before they become negative. These negative counterintuitive properties suggest retrograde (negative) propagation as well as a rotation reversal of the angular momentum with respect to the beam handedness. These characteristics of nondiffracting nonparaxial Bessel fractional vortex beams of progressive waves open new capabilities in optical tractor beam tweezers, optical spanners, invisibility cloaks, optically engineered metamaterials, and other applications.

  5. Vectorial stimulated Raman scattering resolution on the semi-line

    Energy Technology Data Exchange (ETDEWEB)

    Ginovart, Frédéric, E-mail: Frederic.Ginovart@enssat.fr [UEB, Université Européenne de Bretagne, Université de Rennes I (France); CNRS, UMR 6082 FOTON, Enssat, 6 rue de Kerampont, BP 80518, 22305 Lannion cédex (France)

    2012-07-09

    Stimulated Raman scattering between a laser pump pulse and a Stokes pulse is considered in a two-level medium with vectorial optical fields. The model on the semi-line is proved to be solvable by inverse scattering transform scheme. Among solutions, soliton generation is discussed. Then, it is shown how rotation of the Stokes wave leads to a spike of pump radiation in the time domain. -- Highlights: ► Vectorial stimulated Raman scattering is shown to be solvable on the semi-line by the inverse scattering transform scheme. ► Solitons can be created by pairs like in the scalar stimulated Raman scattering. ► Raman spike and multi-spike can occur in the time domain when considering rotating Stokes polarization.

  6. Vortex magnetic structure in circularly magnetized microwires as deduced from magneto-optical Kerr measurements

    KAUST Repository

    Ivanov, Yurii P.

    2014-02-14

    The magneto-optic Kerr effect has been employed to determine the magnetization process and estimate the domain structure of microwires with circular magnetic anisotropy. The diameter of microwires was 8 μm, and pieces 2 cm long were selected for measurements. The analysis of the local surface longitudinal and transverse hysteresis loops has allowed us to deduce a vortex magnetic structure with axial core and circular external shell. Moreover, a bamboo-like surface domain structure is confirmed with wave length of around 10 to 15 μm and alternating chirality in adjacent circular domains. The width of the domain wall is estimated to be less than 3 μm. Finally, closure domain structures with significant helical magnetization component are observed extending up to around 1000 μm from the end of the microwire.

  7. Optical Tracking Measurement on Vortex Induced Vibration of Flexible Riser with Short-Length Buoyance Module

    Science.gov (United States)

    Fan, Dixia; Du, Honglin; Triantafyllou, Michael

    2016-11-01

    We address experimentally the vortex induced vibrations (VIV) of long flexible cylinders. We employ optical tracking, using an array of high speed cameras. Compared to strain gauges and accelerometers, this non-intrusive approach, allows direct measurement of the flexible cylinder displacement with far denser spatial distribution. The measurements reveal essential features of flexible cylinder VIV, including complex geometries such as cylinders containing short-length buoyancy modules, with module to cylinder diameter ratio of 1:3.2 and module to bare cylinder length ratio of 1:1. The experiments are conducted with aspect ratio of 170 and 3 different coverage ratios, of 100%, 50% and 20%. The measurements demonstrate bi-frequency response due to excitation from both buoyancy module and bare cylinder, at low Strouhal number, down to values of 0.08, and the generation of traveling wave patterns.

  8. Gaussian laser beam transformation into an optical vortex beam by helical lens

    CERN Document Server

    Janicijevic, Ljiljana

    2015-01-01

    In this article we investigate the Fresnel diffraction characteristics of the hybrid optical element which is a combination of a spiral phase plate (SPP) with topological charge p and a thin lens with focal length f, named the helical lens (HL). As incident a Gaussian laser beam is treated, having its waist a distance from the HL plane and its axis passing through the centre of the HL. It is shown that the SPP introduces a phase singularity of p-th order to the incident beam, while the lens transforms the beam characteristic parameters. The output light beam is analyzed in detail: its characteristic parameters and focusing properties, amplitude and intensity distributions and the vortex rings profiles and radii, at any z distance behind the HL plane, as well as in the near and far field.

  9. The evolution of microphysical and optical properties of an A380 contrail in the vortex phase

    Directory of Open Access Journals (Sweden)

    J.-F. Gayet

    2011-09-01

    Full Text Available The contrail from a large-body A380 aircraft has extensively been probed in the vortex and early dispersion regime with in situ instruments to measure microphysical and optical properties of contrail ice particles on the DLR research aircraft Falcon. Concentrations up to 340 cm−3 of ice particles with diameters d >0.9 μm and extinction coefficients up to 7.0 km−1 were measured inside the plume. Initially the primary vortices were sampled about 270 m below the A380 flight altitude at contrail ages of 70 to 120 s in ice subsaturated conditions, followed by measurements in the secondary wake with contrail ages of 120 to 220 s at conditions near ice saturation. In the primary vortices the mean effective diameter was 3.5 μm and the maximum ice water content (IWC was 7.0 mg m−3 increasing with altitude and ice saturation in the secondary wake to 4.8 μm and 10.0 mg m−3. The asymmetry parameter was found to decrease systematically with contrail age (and altitude from 0.87 to 0.80 indicating that ice crystals become more and more aspherical during ice crystal growth. In addition, an inversion approach was used to retrieve the ice particle size distribution and the partitioning between spherical and aspherical particles. In the young primary vortex 100% of the ice particles were of spherical shape, whereas partitioning coefficients of 68% and 44% were found in the more aged secondary wake. The extrapolation of our results to older contrails under similar meteorological conditions suggests that contrails with ages over 5 min may be dominated by aspherically-shaped ice particles typical for natural mid latitude cirrus.

  10. Energy flux density and angular momentum density of Pearcey-Gauss vortex beams in the far field

    Science.gov (United States)

    Cheng, K.; Lu, G.; Zhong, X.

    2017-02-01

    The longitudinal and transverse energy flux density (EFD) and angular momentum density (AMD) of a Pearcey-Gauss vortex beam in the far field are studied using the vector angular spectrum representation and stationary phase method, where the influence of topological charge, noncanonical strength and off-axis distance of the embedded optical vortex on far-field vectorial structures of the corresponding beam is emphasized. For comparison, the EFD and AMD of the Pearcey-Gauss beam with non-vortex in the far field are also discussed. The results show that the longitudinal EFDs of the Pearcey-Gauss vortex beam exhibit parabolic patterns, and the number of parabolic dark zones equals the absolute value of topological charge of the embedded optical vortex in the input plane. While for the Pearcey-Gauss beam, the dark zones are not found owing to the non-vortex in the input plane. The motion of zero-intensity spot of whole beam appears by varying the off-axis distance. Noncanonical strength and off-axis distance both can adjust the magnitudes and directions of transverse EFD and control the spatial energy distributions of longitudinal EFD, but not change the net AMD.

  11. Ranque-Hilsch vortex tube thermocycler for fast DNA amplification and real-time optical detection

    Science.gov (United States)

    Ebmeier, Ryan J.; Whitney, Scott E.; Sarkar, Amitabha; Nelson, Michael; Padhye, Nisha V.; Gogos, George; Viljoen, Hendrik J.

    2004-12-01

    An innovative polymerase chain reaction (PCR) thermocycler capable of performing real-time optical detection is described below. This device utilizes the Ranque-Hilsch vortex tube in a system to efficiently and rapidly cycle three 20 μL samples between the denaturation, annealing, and elongation temperatures. The reaction progress is displayed real-time by measuring the size of a fluorescent signal emitted by SYBR green/double-stranded DNA complexes. This device can produce significant reaction yields with very small amounts of initial DNA, for example, it can amplify 0.25 fg (˜5 copies) of a 96 bp bacteriophage λ-DNA fragment 2.7×1011-fold by performing 45 cycles in less than 12 min. The optical threshold (150% of the baseline intensity) was passed 8 min into the reaction at cycle 34. Besides direct applications, the speed and sensitivity of this device enables it to be used as a scientific instrument for basic studies such as PCR assembly and polymerase kinetics.

  12. Negative optical spin torque wrench of a non-diffracting non-paraxial fractional Bessel vortex beam

    Science.gov (United States)

    Mitri, F. G.

    2016-10-01

    An absorptive Rayleigh dielectric sphere in a non-diffracting non-paraxial fractional Bessel vortex beam experiences a spin torque. The axial and transverse radiation spin torque components are evaluated in the dipole approximation using the radiative correction of the electric field. Particular emphasis is given on the polarization as well as changing the topological charge α and the half-cone angle of the beam. When α is zero, the axial spin torque component vanishes. However, when α becomes a real positive number, the vortex beam induces left-handed (negative) axial spin torque as the sphere shifts off-axially from the center of the beam. The results show that a non-diffracting non-paraxial fractional Bessel vortex beam is capable of inducing a spin reversal of an absorptive Rayleigh sphere placed arbitrarily in its path. Potential applications are yet to be explored in particle manipulation, rotation in optical tweezers, optical tractor beams, and the design of optically-engineered metamaterials to name a few areas.

  13. A novel measuring method for arbitrary optical vortex by three spiral spectra

    Science.gov (United States)

    Ni, Bo; Guo, Lana; Yue, Chengfeng; Tang, Zhilie

    2017-02-01

    In this letter, the topological charge of non-integer vortices determined by three arbitrary spiral spectra is theoretically demonstrated for the first time. Based on the conclusion, a novel method to measure non-integer vortices is presented. This method is applicable not only to arbitrary non-integer vortex but also to arbitrary integer vortex.

  14. Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination

    Energy Technology Data Exchange (ETDEWEB)

    Barada, Daisuke [Graduate School of Engineering, Utsunomiya University, Utsunomiya 321-8585 (Japan); Center for Optical Research and Education (CORE), Utsunomiya University, Utsunomiya 321-8585 (Japan); Juman, Guzhaliayi; Yoshida, Itsuki [Graduate School of Advanced Integration Science, Chiba University, Chiba 263-8522 (Japan); Miyamoto, Katsuhiko; Omatsu, Takashige, E-mail: omatsu@faculty.chiba-u.jp [Graduate School of Advanced Integration Science, Chiba University, Chiba 263-8522 (Japan); Molecular Chirality Research Center, Chiba University, Chiba 263-8522 (Japan); Kawata, Shigeo [Graduate School of Engineering, Utsunomiya University, Utsunomiya 321-8585 (Japan); Ohno, Seigo [Graduate School of Science, Tohoku University, Sendai 980-8578 (Japan)

    2016-02-01

    It was discovered that optical vortices twist isotropic and homogenous materials, e.g., azo-polymer films to form spiral structures on a nano- or micro-scale. However, the formation mechanism has not yet been established theoretically. To understand the mechanism of the spiral surface relief formation in the azo-polymer film, we theoretically investigate the optical radiation force induced in an isotropic and homogeneous material under irradiation using a continuous-wave optical vortex with arbitrary topological charge and polarization. It is revealed that the spiral surface relief formation in azo-polymer films requires the irradiation of optical vortices with a positive (negative) spin angular momentum and a positive (negative) orbital angular momentum (constructive spin-orbital angular momentum coupling), i.e., the degeneracy among the optical vortices with the same total angular momentum is resolved.

  15. Brownian vortexes

    Science.gov (United States)

    Sun, Bo; Lin, Jiayi; Darby, Ellis; Grosberg, Alexander Y.; Grier, David G.

    2009-07-01

    Mechanical equilibrium at zero temperature does not necessarily imply thermodynamic equilibrium at finite temperature for a particle confined by a static but nonconservative force field. Instead, the diffusing particle can enter into a steady state characterized by toroidal circulation in the probability flux, which we call a Brownian vortex. The circulatory bias in the particle’s thermally driven trajectory is not simply a deterministic response to the solenoidal component of the force but rather reflects interplay between advection and diffusion in which thermal fluctuations extract work from the nonconservative force field. As an example of this previously unrecognized class of stochastic heat engines, we consider a colloidal sphere diffusing in a conventional optical tweezer. We demonstrate both theoretically and experimentally that nonconservative optical forces bias the particle’s fluctuations into toroidal vortexes whose circulation can reverse direction with temperature or laser power.

  16. Vortex transmutation.

    Science.gov (United States)

    Ferrando, Albert; Zacarés, Mario; García-March, Miguel-Angel; Monsoriu, Juan A; de Córdoba, Pedro Fernández

    2005-09-16

    Using group theory arguments and numerical simulations, we demonstrate the possibility of changing the vorticity or topological charge of an individual vortex by means of the action of a system possessing a discrete rotational symmetry of finite order. We establish on theoretical grounds a "transmutation pass" determining the conditions for this phenomenon to occur and numerically analyze it in the context of two-dimensional optical lattices. An analogous approach is applicable to the problems of Bose-Einstein condensates in periodic potentials.

  17. Evolution of the optical vortex density in phase corrected speckle fields

    CSIR Research Space (South Africa)

    Roux, FS

    2010-09-01

    Full Text Available to determine the characteristics scales associated with these processes. Here the authors report the initial results and show how one can represent the evolution of the vortex density in the paraxial limit....

  18. Reflection type metasurface designed for high efficiency vectorial field generation

    Science.gov (United States)

    Wang, Shiyi; Zhan, Qiwen

    2016-07-01

    We propose a reflection type metal-insulator-metal (MIM) metasurface composed of hybrid nano-antennas for comprehensive spatial engineering of the properties of optical fields. The capability of such structure is illustrated in the design of a device that can be used to produce a radially polarized vectorial beam for optical needle field generation. This device consists of uniformly segmented sectors of high efficiency MIM metasurface. With each of the segment sector functioning as a local quarter-wave-plate (QWP), the device is designed to convert circularly polarized incidence into local linear polarization to create an overall radial polarization with corresponding binary phases and extremely high dynamic range amplitude modulation. The capability of such devices enables the generation of nearly arbitrarily complex optical fields that may find broad applications that transcend disciplinary boundaries.

  19. Reconstructing the Poynting vector skew angle and wave-front of optical vortex beams via two-channel moir\\'e deflectometery

    CERN Document Server

    Yeganeh, Mohammad; Dashti, Mohsen; Slussarenko, Sergei; Santamato, Enrico; Karimi, Ebrahim

    2013-01-01

    A novel approach based on the two-channel moir\\'e deflectometry has been used to measure both wave-front and transverse component of the Poynting vector of an optical vortex beam. Generated vortex beam by the q-plate, an inhomogeneous liquid crystal cell, has been analyzed with such technique. The measured topological charge of generated beams are in an excellent agreement with theoretical prediction.

  20. Vectorial Hermite-Laguerre-Gaussian beams beyond the paraxial approximation

    Institute of Scientific and Technical Information of China (English)

    Wang Bei-Zhan; Zhao Zhi-Guo; Lü Bai-Da; Duan Kai-Liang

    2007-01-01

    Starting from the vectorial Rayleigh-Sommerfeld integrals, the free-space propagation expressions for vectorial Hermite-Laguerre-Gaussian (HLG) beams beyond the paraxial approximation are derived. The far-field expressions and the scalar paraxial results are given as special cases of our general expressions. The intensity distributions of vectorial nonparaxial HLG beams are studied and illustrated with numerical examples.

  1. A novel measuring method for arbitrary optical vortex by three spiral spectra

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Bo [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Guo, Lana [School of Electronics and Information, Guangdong Polytechnic Normal University, Guangzhou 510665 (China); Yue, Chengfeng [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Tang, Zhilie, E-mail: tangzhl@scnu.edu.cn [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China)

    2017-02-26

    In this letter, the topological charge of non-integer vortices determined by three arbitrary spiral spectra is theoretically demonstrated for the first time. Based on the conclusion, a novel method to measure non-integer vortices is presented. This method is applicable not only to arbitrary non-integer vortex but also to arbitrary integer vortex. - Highlights: • Different non-integer vortices cannot have three spiral spectra is demonstrated. • Relationship between the non-integer topological charge and the spiral spectra is presented. • Topological charge of non-integer vortices can be determined by three arbitrary spiral spectra.

  2. Generation of radially polarized high energy mid-infrared optical vortex by use of a passive axially symmetric ZnSe waveplate

    Energy Technology Data Exchange (ETDEWEB)

    Wakayama, Toshitaka, E-mail: wakayama@saitama-med.ac.jp; Yonemura, Motoki [School of Biomedical Engineering, Saitama Medical University, Yamane 1397-1, Hidaka, Saitama 350-1241 (Japan); Oikawa, Hiroki; Sasanuma, Atsushi; Arai, Goki; Fujii, Yusuke [Department of Electrical and Electronic Engineering, Faculty of Engineering, Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585 (Japan); Dinh, Thanh-Hung; Otani, Yukitoshi [Center for Optical Research & Education (CORE), Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585 (Japan); Higashiguchi, Takeshi, E-mail: higashi@cc.utsunomiya-u.ac.jp [Department of Electrical and Electronic Engineering, Faculty of Engineering, Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585 (Japan); Center for Optical Research & Education (CORE), Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585 (Japan); Sakaue, Kazuyuki, E-mail: kazuyuki.sakaue@aoni.waseda.jp [Waseda Institute for Advanced Study, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555 (Japan); Washio, Masakazu [Research Institute for Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555 (Japan); Miura, Taisuke, E-mail: miura@fzu.cz [HiLASE Centre, Institute of Physics CAS, Za radnicí 828, 252 41, Dolní Břežany (Czech Republic); Takahashi, Akihiko [Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582 (Japan); Nakamura, Daisuke; Okada, Tatsuo [Graduate School of Information Sciences and Electrical Engineering, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan)

    2015-08-24

    We demonstrated the generation of the intense radially polarized mid-infrared optical vortex at a wavelength of 10.6 μm by use of a passive axially symmetric zinc selenide (ZnSe) waveplate with high energy pulse throughput. The phase of the radially polarized optical vortex with the degree of polarization of 0.95 was spirally distributed in regard to the angle. The converted laser beam energy of about 2.6 mJ per pulse was obtained at the input pulse energy of 4.9 mJ, corresponding to the energy conversion efficiency of 56%.

  3. Generation of Optical Vortex Using a Spiral Phase Plate Fabricated in Quartz by Direct Laser Writing and Inductively Coupled Plasma Etching

    Institute of Scientific and Technical Information of China (English)

    CHEN Jun; KUANG Deng-Feng; GUI Min; FANG Zhi-Liang

    2009-01-01

    A simple, economical and reliable technique is proposed for fabricating a spiral phase plate (SPP) in a quartz substrate to generate optical vortex with a unit topological charge at the wavelengths of 632.8nm. The spiral phase plate is first formed in the photoresist by direct laser writing lithography and then transferred into the quartz substrate by inductively coupled plasma etching. The performance of the fabricated SPP is verified by using beam intensity distribution, which is in agreement with the theoretical calculation result. The interference measurement suggests that we have succeeded to generate opticM vortex with a unit topological charge with the fabricated SPP.

  4. Commissioning and first light results of an L'-band vortex coronagraph with the Keck II adaptive optics NIRC2 science instrument

    Science.gov (United States)

    Femenía Castellá, Bruno; Serabyn, Eugene; Mawet, Dimitri; Absil, Olivier; Wizinowich, Peter; Matthews, Keith; Huby, Elsa; Bottom, Michael; Campbell, Randy; Chan, Dwight; Carlomagno, Brunella; Cetre, Sylvain; Defrère, Denis; Delacroix, Christian; Gomez Gonzalez, Carlos; Jolivet, Aïssa; Karlsson, Mikael; Lanclos, Kyle; Lilley, Scott; Milner, Steven; Ngo, Henry; Reggiani, Maddalena; Simmons, Julia; Tran, Hien; Vargas Catalan, Ernesto; Wertz, Olivier

    2016-07-01

    On March 2015 an L'-band vortex coronagraph based on an Annular Groove Phase Mask made up of a diamond sub-wavelength grating was installed on NIRC2 as a demonstration project. This vortex coronagraph operates in the L' band not only in order to take advantage from the favorable star/planet contrast ratio when observing beyond the K band, but also to exploit the fact that the Keck II Adaptive Optics (AO) system delivers nearly extreme adaptive optics image quality (Strehl ratios values near 90%) at 3.7μm. We describe the hardware installation of the vortex phase mask during a routine NIRC2 service mission. The success of the project depends on extensive software development which has allowed the achievement of exquisite real-time pointing control as well as further contrast improvements by using speckle nulling to mitigate the effect of static speckles. First light of the new coronagraphic mode was on June 2015 with already very good initial results. Subsequent commissioning nights were interlaced with science nights by members of the VORTEX team with their respective scientific programs. The new capability and excellent results so far have motivated the VORTEX team and the Keck Science Steering Committee (KSSC) to offer the new mode in shared risk mode for 2016B.

  5. Vectorial FDBPM 3D waveguide structures

    Science.gov (United States)

    Li, Daoping; van Brug, Hedser H.; Frankena, Hans J.

    1994-08-01

    A fully vectorial finite difference beam propagation method for 3D waveguide structures, including longitudinally variant structures is presented. The transparent boundary conditions are utilized in the edges of the computational window. Both Gaussian beams and exact fields of the guided modes are launched as the starting field. Propagating fields are calculated and the power attenuation is evaluated. The choice of step size, finite difference scheme parameter and reference propagation constant is discussed. The applicability and accuracy are demonstrated for two particular waveguide structures.

  6. Optical vortex beam transmission with different OAM in scattering beads and brain tissue media

    Science.gov (United States)

    Wang, W. B.; Shi, Lingyan; Lindwasser, Lukas; Marque, Paulo; Lavery, M. P. J.; Alfano, R. R.

    2016-03-01

    Light transmission of Laguerre Gaussian (LG) vortex beams with different orbital angular momentum (OAM) values (L) in scattering beads and mouse brain tissue media were experimentally investigated for the first time in comparison with Gaussian (G) beams. The LG beams with different OAM were generated using a spatial light modulator (SLM) in reflection mode. The scattering beads media consist of various sizes and concentrations of latex beads in water solutions. The transmissions of LG and G beams through scattering beads and brain tissue media were measured with different ratios of sample thicknesses (z) to scattering mean free path (ls) of the turbid media, z/ls. The results indicate that within the ballistic region where z/ls is small, the LG and G beams show no significant difference, while in the diffusive region where z/ls is higher, the vortex beams show higher transmission than G beams. In the diffusive region, the LG beams with higher L values show higher transmission than the beams with lower L values due to the eigen channels in the media. The transition points from the ballistic to diffusive regions for different scattering beads and brain tissue media were studied.

  7. Vector Lattice Vortex Solitons

    Institute of Scientific and Technical Information of China (English)

    WANG Jian-Dong; YE Fang-Wei; DONG Liang-Wei; LI Yong-Ping

    2005-01-01

    @@ Two-dimensional vector vortex solitons in harmonic optical lattices are investigated. The stability properties of such solitons are closely connected to the lattice depth Vo. For small Vo, vector vortex solitons with the total zero-angular momentum are more stable than those with the total nonzero-angular momentum, while for large Vo, this case is inversed. If Vo is large enough, both the types of such solitons are stable.

  8. On the Resilience of Scalar and Vector Vortex Modes in Turbulence

    CERN Document Server

    Cox, Mitchell A; Lavery, Martin P J; Versfeld, Daniel J; Forbes, Andrew

    2016-01-01

    Free-space optical communication with spatial modes of light has become topical due to the possibility of dramatically increasing communication bandwidth via Mode Division Multiplexing (MDM). While both scalar and vector vortex modes have been used as transmission bases, it has been suggested that the latter is more robust in turbulence. Using orbital angular momentum as an example, we demonstrate theoretically and experimentally that the crosstalk due to turbulence is the same in the scalar and vector basis sets of such modes. This work brings new insights about the behaviour of vector and scalar modes in turbulence, but more importantly it demonstrates that when considering optimal modes for MDM, the choice should not necessarily be based on their vectorial nature.

  9. Optical spin torque induced by vector Bessel (vortex) beams with selective polarizations on a light-absorptive sphere of arbitrary size

    Science.gov (United States)

    Li, Renxian; Ding, Chunying; Mitri, F. G.

    2017-07-01

    The optical spin torque (OST) induced by vector Bessel (vortex) beams can cause a particle to rotate around its center of mass. Previous works have considered the OST on a Rayleigh absorptive dielectric sphere by a vector Bessel (vortex) beam, however, it is of some importance to analyze the OST components for a sphere of arbitrary size. In this work, the generalized Lorenz-Mie theory (GLMT) is used to compute the OST induced by vector Bessel (vortex) beams on an absorptive dielectric sphere of arbitrary size, with particular emphasis on the beam order, the polarization of the plane wave component forming the beam, and the half-cone angle. The OST is expressed as the integration of the moment of the time-averaged Maxwell stress tensor, and the beam shape coefficients (BSCs) are calculated using the angular spectrum decomposition method (ASDM). Using this theory, the OST exerted on the light-absorptive dielectric sphere in the Rayleigh, Mie or the geometrical optics regimes can be considered. The axial and transverse OSTs are numerically calculated with particular emphasis on the sign reversal of the axial OST and the vortex-like character of the transverse OST, and the effects of polarization, beam order, and half-cone angle are discussed in detail. Numerical results show that by choosing an appropriate polarization, order and half-cone angle, the sign of the axial OST can be reversed, meaning that the sphere would spin in opposite handedness of the angular momentum carried by the incident beam. The vortex-like structure of the total transverse OSTs can be observed for all cases. When the sphere moves radially away from the beam axis, it may rotate around its center of mass in either the counter-clockwise or the clockwise direction. Conditions are also predicted where the absorptive sphere experiences no spinning. Potential applications in particle manipulation and rotation in optical tweezers and tractor beams would benefit from the results.

  10. Vortex rings

    Energy Technology Data Exchange (ETDEWEB)

    Akhmetov, D.G. [Lavrentiev Institute of Hydrodynamics, Novosibirsk (Russian Federation)

    2009-07-01

    This book presents a comprehensive coverage of the wide field of vortex rings. The book presents the results of systematic experimental investigations, theoretical foundation, as well as the practical applications of vortex rings, such as the extinction of fires at gushing gas and oil wells. All the basic properties of vortex rings as well as their hydrodynamic structures are presented. Special attention is paid to the formation and motion of turbulent vortex rings. (orig.)

  11. Vulcanized Vortex

    CERN Document Server

    Cho, Inyong

    2008-01-01

    We investigate vortex configurations with the "vulcanization" term introduced for renormalization of $\\phi_\\star^4$ theory in canonical $\\theta$-deformed noncommutativity. In the small-$\\theta$ limit, we perform numerical calculations and find that nontopological vortex solutions exist as well as Q-ball type solutions, but topological vortex solutions are not admitted.

  12. Adaptive on-chip control of nano-optical fields with optoplasmonic vortex nanogates

    CERN Document Server

    Boriskina, Svetlana V

    2011-01-01

    A major challenge for plasmonics as an enabling technology for quantum information processing is the realization of active spatio-temporal control of light on the nanoscale. The use of phase-shaped pulses or beams enforces specific requirements for on-chip integration and imposes strict design limitations. We introduce here an alternative approach, which is based on exploiting the strong sub-wavelength spatial phase modulation in the near-field of resonantly-excited high-Q optical microcavities integrated into plasmonic nanocircuits. Our theoretical analysis reveals the formation of areas of circulating powerflow (optical vortices) in the near-fields of optical microcavities, whose positions and mutual coupling can be controlled by tuning the microcavities parameters and the excitation wavelength. We show that optical powerflow though nanoscale plasmonic structures can be dynamically molded by engineering interactions of microcavity-induced optical vortices with noble-metal nanoparticles. The proposed strateg...

  13. Vectorial laws of refraction and reflection using the cross product and dot product.

    Science.gov (United States)

    Tkaczyk, Eric R

    2012-03-01

    We demonstrate that published vectorial laws of reflection and refraction of light based solely on the cross product do not, in general, uniquely determine the direction of the reflected and refracted waves without additional information. This is because the cross product does not have a unique inverse operation, which is explained in this Letter in linear algebra terms. However, a vector is in fact uniquely determined if both the cross product (vector product) and dot product (scalar product) with a known vector are specified, which can be written as a single equation with a left-invertible matrix. It is thus possible to amend the vectorial laws of reflection and refraction to incorporate both the cross and dot products for a complete specification with unique solution. This enables highly efficient, unambiguous computation of reflected and refracted wave vectors from the incident wave and surface normal. © 2012 Optical Society of America

  14. Vectorial Radio Interferometry with LOPES 3D

    CERN Document Server

    Huber, D; Arteaga, J C; Bähren, L; Bekk, K; Bertaina, M; Biermann, P L; Blümer, J; Bozdog, H; Brancus, I M; Chiavassa, A; Daumiller, K; de Souza, V; Di Pierro, F; Doll, P; Engel, R; Falcke, H; Fuchs, B; Fuhrmann, D; Gemmeke, H; Grupen, C; Haungs, A; Heck, D; Hörandel, J R; Horneffer, A; Huege, T; Isar, P G; Kampert, K H; Kang, D; Krömer, O; Kuijpers, J; Link, K; Łuczak, P; Ludwig, M; Mathes, H J; Melissas, M; Morello, C; Oehlschläger, J; Palmieri, N; Pierog, T; Rautenberg, J; Rebel, H; Roth, M; Rühle, C; Saftoiu, A; Schieler, H; Schmid, A; Schröder, F G; Sima, O; Toma, G; Trinchero, G C; Weindl, A; Wochele, J; Wommer, M; Zabierowski, J; Zensus, J A

    2013-01-01

    One successful detection technique for high-energy cosmic rays is based on the radio signal emitted by the charged particles in an air shower. The LOPES experiment at Karlsruhe Institute of Technology, Germany, has made major contributions to the evolution of this technique. LOPES was reconfigured several times to improve and further develop the radio detection technique. In the latest setup LOPES consisted of 10 tripole antennas. With this, LOPES 3D was the first cosmic ray experiment measuring all three vectorial field components at once and thereby gaining the full information about the electric field vector. We present an analysis based on the data taken with special focus on the benefits of a direct measurement of the vertical polarization component. We demonstrate that by measuring all polarization components the detection and reconstruction efficiency is increased and noisy single channel data can be reconstructed by utilising the information from the other two channels of one antenna station.

  15. An Optical Wake Vortex Detection System for Super-Density Airport Operation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Feasibility study including analysis and experiment performed in Phase I indicated that several singled-ended optical scintillometer and retro-reflector pairs...

  16. High-resolution fully vectorial scanning Kerr magnetometer.

    Science.gov (United States)

    Flajšman, Lukáš; Urbánek, Michal; Křižáková, Viola; Vaňatka, Marek; Turčan, Igor; Šikola, Tomáš

    2016-05-01

    We report on the development of a high-resolution scanning magnetometer, which fully exploits the vectorial nature of the magneto-optical Kerr effect. The three-dimensional nature of magnetization is at the basis of many micromagnetic phenomena and from these data, we can fully characterize magnetization processes of nanostructures in static and dynamic regimes. Our scanning Kerr magnetometer uses a high numerical aperture microscope objective where the incident light beam can be deterministically deviated from the objective symmetry axis, therefore, both in-plane (via the longitudinal Kerr effect) and out-of-plane (via the polar Kerr effect) components of the magnetization vector may be detected. These components are then separated by exploiting the symmetries of the polar and longitudinal Kerr effects. From four consecutive measurements, we are able to directly obtain the three orthogonal components of the magnetization vector with a resolution of 600 nm. Performance of the apparatus is demonstrated by a measurement of 3D magnetization vector maps showing out-of-plane domains and in-plane domain walls in an yttrium-iron-garnet film and on a study of magnetization reversal in a 4-μm-wide magnetic disk.

  17. A vectorial semantics approach to personality assessment.

    Science.gov (United States)

    Neuman, Yair; Cohen, Yochai

    2014-04-23

    Personality assessment and, specifically, the assessment of personality disorders have traditionally been indifferent to computational models. Computational personality is a new field that involves the automatic classification of individuals' personality traits that can be compared against gold-standard labels. In this context, we introduce a new vectorial semantics approach to personality assessment, which involves the construction of vectors representing personality dimensions and disorders, and the automatic measurements of the similarity between these vectors and texts written by human subjects. We evaluated our approach by using a corpus of 2468 essays written by students who were also assessed through the five-factor personality model. To validate our approach, we measured the similarity between the essays and the personality vectors to produce personality disorder scores. These scores and their correspondence with the subjects' classification of the five personality factors reproduce patterns well-documented in the psychological literature. In addition, we show that, based on the personality vectors, we can predict each of the five personality factors with high accuracy.

  18. A Vectorial Semantics Approach to Personality Assessment

    Science.gov (United States)

    Neuman, Yair; Cohen, Yochai

    2014-04-01

    Personality assessment and, specifically, the assessment of personality disorders have traditionally been indifferent to computational models. Computational personality is a new field that involves the automatic classification of individuals' personality traits that can be compared against gold-standard labels. In this context, we introduce a new vectorial semantics approach to personality assessment, which involves the construction of vectors representing personality dimensions and disorders, and the automatic measurements of the similarity between these vectors and texts written by human subjects. We evaluated our approach by using a corpus of 2468 essays written by students who were also assessed through the five-factor personality model. To validate our approach, we measured the similarity between the essays and the personality vectors to produce personality disorder scores. These scores and their correspondence with the subjects' classification of the five personality factors reproduce patterns well-documented in the psychological literature. In addition, we show that, based on the personality vectors, we can predict each of the five personality factors with high accuracy.

  19. Optical multiple-image encryption based on the chaotic structured phase masks under the illumination of a vortex beam in the gyrator domain.

    Science.gov (United States)

    Liansheng, Sui; Bei, Zhou; Xiaojuan, Ning; Ailing, Tian

    2016-01-11

    A novel multiple-image encryption scheme using the nonlinear iterative phase retrieval algorithm in the gyrator transform domain under the illumination of an optical vortex beam is proposed. In order to increase the randomness, the chaotic structured phase mask based on the logistic map, Fresnel zone plate and radial Hilbert mask is proposed. With the help of two chaotic phase masks, each plain image is encoded into two phase-only masks that are considered as the private keys by using the iterative phase retrieval process in the gyrator domain. Then, the second keys of all plain images are modulated into the ciphertext, which has the stationary white noise distribution. Due to the use of the chaotic structured phase masks, the problem of axis alignment in the optical setup can easily be solved. Two private keys are directly relative to the plain images, which makes that the scheme has high resistance against various potential attacks. Moreover, the use of the vortex beam that can integrates more system parameters as the additional keys into one phase mask can improve the security level of the cryptosystem, which makes the key space enlarged widely. Simulation results are given to verify the feasibility and robustness of the proposed encryption scheme.

  20. Vortex methods

    Energy Technology Data Exchange (ETDEWEB)

    Chorin, A.J. [California Univ., Berkeley, CA (United States). Dept. of Mathematics]|[Lawrence Berkeley Lab., CA (United States)

    1993-06-01

    Vortex methods originated from the observation that in incompressible inviscid flow vorticity (or, more accurately, circulation) is a conserved quantity, as can be readily deduced from the absence of tangential stresses. Thus, if the vorticity is known at time t=0, one can find the flow at a later time by simply following the vorticity. In this narrow context, a vortex method is a numerical method that follows vorticity. The author restricts himself in these lectures to a special class of numerical vortex methods, those that are based on a Lagrangian transport of vorticity in hydrodynamics by smoothed particles (blobs) and those whose analysis contributes to the understanding of blob methods. Blob methods started in the 1930`s.

  1. Versatile, high sensitivity, and automatized angular dependent vectorial Kerr magnetometer for the analysis of nanostructured materials.

    Science.gov (United States)

    Teixeira, J M; Lusche, R; Ventura, J; Fermento, R; Carpinteiro, F; Araujo, J P; Sousa, J B; Cardoso, S; Freitas, P P

    2011-04-01

    Magneto-optical Kerr effect (MOKE) magnetometry is an indispensable, reliable, and one of the most widely used techniques for the characterization of nanostructured magnetic materials. Information, such as the magnitude of coercive fields or anisotropy strengths, can be readily obtained from MOKE measurements. We present a description of our state-of-the-art vectorial MOKE magnetometer, being an extremely versatile, accurate, and sensitivity unit with a low cost and comparatively simple setup. The unit includes focusing lenses and an automatized stepper motor stage for angular dependent measurements. The performance of the magnetometer is demonstrated by hysteresis loops of Co thin films displaying uniaxial anisotropy induced on growth, MnIr/CoFe structures exhibiting the so called exchange bias effect, spin valves, and microfabricated flux guides produced by optical lithography.

  2. Vortex beam generation and other advanced optics experiments reproduced with a twisted-nematic liquid-crystal display with limited phase modulation

    Science.gov (United States)

    Cofré, Aaron; García-Martínez, Pascuala; Vargas, Asticio; Moreno, Ignacio

    2017-01-01

    In this work we propose the use of twisted-nematic liquid-crystal spatial light modulators (TN-LC-SLM) as a useful tool for training students in the manipulation of light beams with phase-only masks. In particular, we focus the work on the realization of phase-only gratings and phase-only spiral phases for the generation of vortex beams, beams carrying orbital angular momentum (OAM). Despite the extensive activity in this field, its experimental implementation for educational purposes is limited because it requires the use of very expensive high-resolution liquid-crystal on silicon (LCOS) SLMs. Here, we show that a low-cost experimental implementation can be done with older TNLC technology. However, these devices, intended for display applications, exhibit rather limited optical phase modulation properties in comparison with modern LCOS devices, such as a very low range of phase modulation and a general coupled intensity modulation. However, we show that a precise characterization of their retardance parameters permits their operation in useful modulation configurations. As examples, we include one continuous phase-only configuration useful for reproducing the optimal triplicator phase grating, and a binary π-phase modulation. We include experiments with the realization of different phase diffraction gratings, and their combination with spiral phase patterns and lens functions to generate a variety of vortex beams.

  3. Vectorial Control of Magnetization by Light

    CERN Document Server

    Kanda, Natsuki; Shimizu, Hirokatsu; Konishi, Kuniaki; Kuwata-Gonokami, Kosuke Yoshioka And Makoto

    2011-01-01

    Coherent light-matter interactions have recently extended their applications to the ultrafast control of magnetization in solids. An important but unrealized technique is the manipulation of magnetization vector motion to make it follow an arbitrarily designed multi-dimensional trajectory. Furthermore, for its realization, the phase and amplitude of degenerate modes need to be steered independently. A promising method is to employ Raman-type nonlinear optical processes induced by femtosecond laser pulses, where magnetic oscillations are induced impulsively with a controlled initial phase and an azimuthal angle that follows well defined selection rules determined by the materials' symmetries. Here, we emphasize the fact that temporal variation of the polarization angle of the laser pulses enables us to distinguish between the two degenerate modes. A full manipulation of two-dimensional magnetic oscillations is demonstrated in antiferromagnetic NiO by employing a pair of polarization-twisted optical pulses. The...

  4. Tight focusing of femtosecond elliptically polarised vortex light pulses

    Institute of Scientific and Technical Information of China (English)

    Hua Li-Min; Chen Bao-Suan; Chen Zi-Yang; Pu Ji-Xiong

    2011-01-01

    This paper studies the tight focusing properties of femtosecond elliptically polarised vortex light pulses. Based on Richards-Wolf vectorial diffraction integral, the expressions for the electric field, the velocity of the femtosecond light pulse and the total angular momentum of focused pluses are derived. The numerical calculations are also given to illustrate the intensity distribution, phase contour, the group velocity variation and the total angular momentum near the focus. It finds that near the focus the femtosecond elliptically polarised vortex light pulse can travel at various group speeds, that is, slower or faster than light speed in vacuum, depending on the numerical aperture of the focusing objective system. Moreover, it also studies the influence of the numerical aperture of the focusing objective and the time duration of the elliptically polarised vortex light pulse on the total angular momentum distribution in the focused field.

  5. 2D Poisson sigma models with gauged vectorial supersymmetry

    Science.gov (United States)

    Bonezzi, Roberto; Sundell, Per; Torres-Gomez, Alexander

    2015-08-01

    In this note, we gauge the rigid vectorial supersymmetry of the two-dimensional Poisson sigma model presented in arXiv:1503.05625. We show that the consistency of the construction does not impose any further constraints on the differential Poisson algebra geometry than those required for the ungauged model. We conclude by proposing that the gauged model provides a first-quantized framework for higher spin gravity.

  6. 2D Poisson sigma models with gauged vectorial supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Bonezzi, Roberto [Dipartimento di Fisica ed Astronomia, Università di Bologna and INFN, Sezione di Bologna,via Irnerio 46, I-40126 Bologna (Italy); Departamento de Ciencias Físicas, Universidad Andres Bello,Republica 220, Santiago (Chile); Sundell, Per [Departamento de Ciencias Físicas, Universidad Andres Bello,Republica 220, Santiago (Chile); Torres-Gomez, Alexander [Departamento de Ciencias Físicas, Universidad Andres Bello,Republica 220, Santiago (Chile); Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile-UACh,Valdivia (Chile)

    2015-08-12

    In this note, we gauge the rigid vectorial supersymmetry of the two-dimensional Poisson sigma model presented in arXiv:1503.05625. We show that the consistency of the construction does not impose any further constraints on the differential Poisson algebra geometry than those required for the ungauged model. We conclude by proposing that the gauged model provides a first-quantized framework for higher spin gravity.

  7. 2D Poisson sigma models with gauged vectorial supersymmetry

    OpenAIRE

    2015-01-01

    In this note, we gauge the rigid vectorial supersymmetry of the two-dimensional Poisson sigma model presented in arXiv:1503.05625. We show that the consistency of the construction does not impose any further constraints on the differential Poisson algebra geometry than those required for the ungauged model. We conclude by proposing that the gauged model provides a first-quantized framework for higher spin gravity.

  8. 2D Poisson Sigma Models with Gauged Vectorial Supersymmetry

    CERN Document Server

    Bonezzi, Roberto; Torres-Gomez, Alexander

    2015-01-01

    In this note, we gauge the rigid vectorial supersymmetry of the two-dimensional Poisson sigma model presented in arXiv:1503.05625. We show that the consistency of the construction does not impose any further constraints on the differential Poisson algebra geometry than those required for the ungauged model. We conclude by proposing that the gauged model provides a first-quantized framework for higher spin gravity.

  9. An age-structured extension to the vectorial capacity model.

    Directory of Open Access Journals (Sweden)

    Vasiliy N Novoseltsev

    Full Text Available BACKGROUND: Vectorial capacity and the basic reproductive number (R(0 have been instrumental in structuring thinking about vector-borne pathogen transmission and how best to prevent the diseases they cause. One of the more important simplifying assumptions of these models is age-independent vector mortality. A growing body of evidence indicates that insect vectors exhibit age-dependent mortality, which can have strong and varied affects on pathogen transmission dynamics and strategies for disease prevention. METHODOLOGY/PRINCIPAL FINDINGS: Based on survival analysis we derived new equations for vectorial capacity and R(0 that are valid for any pattern of age-dependent (or age-independent vector mortality and explore the behavior of the models across various mortality patterns. The framework we present (1 lays the groundwork for an extension and refinement of the vectorial capacity paradigm by introducing an age-structured extension to the model, (2 encourages further research on the actuarial dynamics of vectors in particular and the relationship of vector mortality to pathogen transmission in general, and (3 provides a detailed quantitative basis for understanding the relative impact of reductions in vector longevity compared to other vector-borne disease prevention strategies. CONCLUSIONS/SIGNIFICANCE: Accounting for age-dependent vector mortality in estimates of vectorial capacity and R(0 was most important when (1 vector densities are relatively low and the pattern of mortality can determine whether pathogen transmission will persist; i.e., determines whether R(0 is above or below 1, (2 vector population growth rate is relatively low and there are complex interactions between birth and death that differ fundamentally from birth-death relationships with age-independent mortality, and (3 the vector exhibits complex patterns of age-dependent mortality and R(0 ∼ 1. A limiting factor in the construction and evaluation of new age

  10. A computational definition of the notion of vectorial space

    CERN Document Server

    Arrighi, Pablo

    2009-01-01

    We usually define an algebraic structure by a set, some operations defined on this set and some propositions that the algebraic structure must validate. In some cases, we can replace these propositions by an algorithm on terms constructed upon these operations that the algebraic structure must validate. We show in this note that this is the case for the notions of vectorial space and bilinear operation. KEYWORDS: Rewrite system, vector space, bilinear operation, tensorial product, semantics, quantum programming languages, probabilistic programming languages.

  11. Advanced vectorial simulation of VCSELs with nano structures invited paper

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2009-01-01

    The single-mode properties and design issues of three vertical-cavity surface-emitting laser (VCSEL) structures incorporating nano structures are rigorously investigated. Nano structuring enables to deliver selective pumping or loss to the fundamental mode as well as stabilizing the output...... polarization state. Comparison of three vectorial simulation methods reveals that the modal expansion method is suitable for treating the nano structured VCSEL designs....

  12. Vectorial Preisach-type model designed for parallel computing

    Energy Technology Data Exchange (ETDEWEB)

    Stancu, Alexandru [Department of Solid State and Theoretical Physics, Al. I. Cuza University, Blvd. Carol I, 11, 700506 Iasi (Romania)]. E-mail: alstancu@uaic.ro; Stoleriu, Laurentiu [Department of Solid State and Theoretical Physics, Al. I. Cuza University, Blvd. Carol I, 11, 700506 Iasi (Romania); Andrei, Petru [Electrical and Computer Engineering, Florida State University, Tallahassee, FL (United States); Electrical and Computer Engineering, Florida A and M University, Tallahassee, FL (United States)

    2007-09-15

    Most of the hysteresis phenomenological models are scalar, while all the magnetization processes are vectorial. The vector models-phenomenological or micromagnetic (physical)-are time consuming and sometimes difficult to implement. In this paper, we introduce a new vector Preisach-type model that uses micromagnetic results to simulate the magnetic response of a system of several tens of thousands of pseudo-particles. The model has a modular structure that allows easy implementation for parallel computing.

  13. Vectorial spatial solitons in bulk periodic quadratically nonlinear media

    Energy Technology Data Exchange (ETDEWEB)

    Panoiu, N-C [Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027 (United States); Mihalache, D [Department of Theoretical Physics, Institute of Atomic Physics, PO Box MG-6, Bucharest (Romania); Mazilu, D [Department of Theoretical Physics, Institute of Atomic Physics, PO Box MG-6, Bucharest (Romania); Lederer, F [Institute of Solid State Theory and Theoretical Optics, Friedrich Schiller University Jena, Max-Wien-Platz 1, Jena, D-07743 (Germany); Osgood, R M Jr [Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027 (United States)

    2004-05-01

    We present a comprehensive analysis of the generation, propagation and characteristic properties of two-dimensional spatial solitons formed in quasi-phase-matched gratings through type-II vectorial interaction. By employing an averaging approach based on asymptotic expansion theory, we show that the dynamics of soliton propagation in the grating and their stability properties are strongly influenced by induced Kerr-like nonlinearities. Finally, through extensive numerical simulations, we verify the validity of our theoretical predictions.

  14. Vectorial role of some dermanyssoid mites (Acari, Mesostigmata, Dermanyssoidea

    Directory of Open Access Journals (Sweden)

    Valiente Moro C.

    2005-06-01

    Full Text Available Among transmissible diseases, vectorial diseases represent a major problem for public health. In the group of acarina, while ticks are the most commonly implicated vectors, other arthropods and notably Dermanyssoidea are also involved in the transmission of pathogenic agents. Since the role of this superfamily is at present largely unknown, we have reviewed the vectorial role of these mites in the appearance, survival and propagation of pathogens. Various authors have shown that Dermanyssoidea are implicated in the transmission of both bacteria (Salmonella, Spirocheta, Rickettsia or Pasteurella and viruses (equine encephalitis viruses, West Nile virus, Fowl pox virus, the virus causing Newcastle disease and tick borne encephalitis viruses or hantaviruses. Finally, some authors have also shown their role in the transmission of some protozoa and filaria. As the vectorial character of such mites has been more clearly demonstrated (Dermanyssus gallinae, Ornithonyssus bacoti and Allodermanyssus sanguineus, it would be interesting to continue studies to better understand the role of this superfamily in the epidemiology of certain zoonoses.

  15. Vectorial platform for manipulating the polarization mode train realized with Jones vectors in Mathematica

    Science.gov (United States)

    Kim, Tae Wan; Yun, Hee-Joong

    2016-09-01

    A fundamental concept in physics of polarization propagation of electromagnetic waves is newly understood as a cardinal keyword in quantum cryptography transport technology and cosmology. Recently, interactive visualization of the propagation mechanism of polarized electromagnetism in a medium with helicity has received attention from scientists in the age of information and communication. This study presents a new dynamic polarization platform that manipulates the polarization mode train of a transverse electromagnetic wave by using calculations with Jones vectors in the symbolic program Mathematica. The train of polarization modes is converted continuously through a desirable lineup of optical elements in the platform. The platform simulates a propagation process that satisfies Maxwell's two vector equations precisely with helicity in the vectorial nature of the electromagnetic wave.

  16. Generation of nonlinear vortex precursors

    CERN Document Server

    Chen, Yue-Yue; Liu, Chengpu

    2016-01-01

    We numerically study the propagation of a few-cycle pulse carrying orbital angular momentum (OAM) through a dense atomic system. Nonlinear precursors consisting of high-order vortex har- monics are generated in the transmitted field due to ultrafast Bloch oscillation. The nonlinear precursors survive to propagation effects and are well separated with the main pulse, which provide a straightforward way of measuring precursors. By the virtue of carrying high-order OAM, the obtained vortex precursors as information carriers have potential applications in optical informa- tion and communication fields where controllable loss, large information-carrying capacity and high speed communication are required.

  17. Spatial technologies to evaluate vectorial samples quality in maps production

    Directory of Open Access Journals (Sweden)

    Abraham Cárdenas Tristán

    2013-01-01

    Full Text Available A pesar de importantes progresos realizados en la materia en los últimos años, la conceptualización de la metodología para evaluar la calidad de vectores que integran la cartografía digital es aún una tarea complicada, no existiendo un esquema oficial de evaluación de la calidad de la producción cartográfica vectorial en el país. Se propone una metodología para evaluar la calidad de la producción cartográfica a través del análisis de muestras aplicadas a las diversas escalas vectoriales de la cobertura del territorio de la República Mexicana. Las pruebas realizadas con el uso de diversas tecnologías espaciales, se encuentran dentro la norma TC/211 (ISO19113 e ISO19114, éstas han sido desarrolladas con el apoyo de compañías productoras de nuevas tecnologías espaciales así como del organismo oficial, productor de información vectorial en el país. Se tiene como objetivo buscar justificaciones pertinentes e indicadores potenciales, para determinar normas o modelos específicos de evaluación de la calidad, beneficiando el potencial de la producción cartográfica en el aprovechamiento de los recursos naturales y las frecuentes aplicaciones potenciales de la misma. La metodología utilizada va a la par de los avances en la investigación para establecer una mejora en las políticas de evaluación y de edición de cartografía vectorial, llevada a cabo por organismos internacionales, universidades y centros de investigación.

  18. Álgebra vectorial y geometría euclidiana

    OpenAIRE

    Salazar Caicedo, José Alonso

    1992-01-01

    Las leyes del álgebra vectorial asociadas al conjunto de los segmentos dirigidos del plano (o del espacio), en conexión con un producto interior, permiten demostrar una gran variedad de proposiciones y teoremas de la geometría clásica euclidiana, utilizando procedimientos y técnicas relativamente simples. Desde un punto de vista didáctico y pedagógico, surge el problema de examinar hasta qué punto es posible recuperar gran parte del arsenal de ideas fructíferas que proporcionaban a otras g...

  19. Vortex Laser at Exceptional Point

    CERN Document Server

    Wang, Xing-Yuan; Li, Ying; Li, Bo; Ma, Ren-Min

    2016-01-01

    The optical vortices carrying orbital angular momentum (OAM) are commonly generated by modulating the available conventional light beam. This article shows that a micro-laser operates at the exceptional point (EP) of the non-Hermitian quantum system can directly emit vortex laser with well-defined OAM at will. Two gratings (the refractive index modulation and along azimuthal direction and the grating protruding from the micro-ring cavity) modulate the eigenmode of a micro-ring cavity to be a vortex laser mode. The phase-matching condition ensures that we can tune the OAM of the vortex beam to be arbitrary orders by changing the grating protruding from the micro-ring cavity while the system is kept at EP. The results are obtained by analytical analysis and confirmed by 3D full wave simulations.

  20. Hybrid tenso-vectorial compressive sensing for hyperspectral imaging

    Science.gov (United States)

    Li, Qun; Bernal, Edgar A.

    2016-05-01

    Hyperspectral imaging has a wide range of applications relying on remote material identification, including astronomy, mineralogy, and agriculture; however, due to the large volume of data involved, the complexity and cost of hyperspectral imagers can be prohibitive. The exploitation of redundancies along the spatial and spectral dimensions of a hyperspectral image of a scene has created new paradigms that overcome the limitations of traditional imaging systems. While compressive sensing (CS) approaches have been proposed and simulated with success on already acquired hyperspectral imagery, most of the existing work relies on the capability to simultaneously measure the spatial and spectral dimensions of the hyperspectral cube. Most real-life devices, however, are limited to sampling one or two dimensions at a time, which renders a significant portion of the existing work unfeasible. We propose a new variant of the recently proposed serial hybrid vectorial and tensorial compressive sensing (HCS-S) algorithm that, like its predecessor, is compatible with real-life devices both in terms of the acquisition and reconstruction requirements. The newly introduced approach is parallelizable, and we abbreviate it as HCS-P. Together, HCS-S and HCS-P comprise a generalized framework for hybrid tenso-vectorial compressive sensing, or HCS for short. We perform a detailed analysis that demonstrates the uniqueness of the signal reconstructed by both the original HCS-S and the proposed HCS-P algorithms. Last, we analyze the behavior of the HCS reconstruction algorithms in the presence of measurement noise, both theoretically and experimentally.

  1. Generation of intense femtosecond optical vortex pulses with blazed-phase grating in chirped-pulse amplification system of Ti:sapphire laser

    Science.gov (United States)

    Lin, Yu-Chieh; Nabekawa, Yasuo; Midorikawa, Katsumi

    2016-11-01

    We demonstrate the generation of an intense femtosecond optical vortex (OV) pulse by employing an OV converter set between two laser amplifiers in a chirped-pulse amplification (CPA) system of a Ti:sapphire laser. The OV converter is composed of a liquid-crystal spatial light modulator (LC-SLM) exhibiting a blazed-phase computer-generated hologram, a concave mirror, and a flat mirror in the 4f setup. Owing to the intrinsic nature of the 4f setup, the OV converter is free from chromatic and topological-charge dispersions, which are always induced in a spiral phase plate conventionally used to convert an intense Gaussian laser pulse to an OV pulse, while we can avoid damage to the LC-SLM by the irradiation of a low-energy pulse before the second amplifier. We have increased the throughput of the OV converter to 42% by systematically investigating the diffraction efficiency of the blazed-phase hologram on the LC-SLM, which relaxes the gain condition required for the second amplifier. The combination of the high-throughput OV converter and the two-stage amplification enables us to generate OV pulses with an energy of 1.63 mJ and a pulse duration of 60 fs at a wavelength of 720 nm, at which the gain of the Ti:sapphire laser is only 60% of the peak gain around 800 nm.

  2. Evolution of an optical vortex dipole diffracted by a half screen%光涡旋偶极子经半屏衍射后的演化

    Institute of Scientific and Technical Information of China (English)

    高曾辉; 何德; 吕百达

    2011-01-01

    The analytical expression for the propagation of an optical vortex dipole (OVD) nested in a Gaussian beam diffracted by a half screen is derived and used to study the evolution of the diffracted OVD. It is shown that Compared with the case of the OVD evolution in free space, multi-pairs of the OVD may take place in the diffracted field, and the annihilation fashion depends on the off-axis displacement. A variety of the evolution behaviors of OVDs appear by varying the off-axis parameter, but the topological charge is conserved in the evolution process.%推导出寄居于高斯光束中的光涡旋偶极子经过半屏衍射后的解析传输公式.利用所得公式对光涡旋偶极子经半屏衍射后的演化做了详细研究.结果表明,与自由空间中光涡旋偶极子演化相比较,衍射场中会出现多对光涡旋偶极子,湮没方式与离轴量有关.随离轴参数的变化,偶极子出现不同的演化特性,但在演化过程中,拓扑电荷守恒.

  3. Vectorial nature of redox Bohr effects in bovine heart cytochrome c oxidase.

    Science.gov (United States)

    Capitanio, N; Capitanio, G; De Nitto, E; Papa, S

    1997-09-08

    The vectorial nature of redox Bohr effects (redox-linked pK shifts) in cytochrome c oxidase from bovine heart incorporated in liposomes has been analyzed. The Bohr effects linked to oxido-reduction of heme a and CuB display membrane vectorial asymmetry. This provides evidence for involvement of redox Bohr effects in the proton pump of the oxidase.

  4. Quantum Efficiency Measurements of Femtosecond Vectorial Photoemission on Cu Photocathodes

    CERN Document Server

    Banfi, F; Galimberti, P G; Giannetti, C; Pagliara, S; Parmigiani, F; Pedersoli, E

    2005-01-01

    Quantum Efficiency (QE) measurements of single photon photoemission from a Cu(111) single crystal and a Cu polycrystal photocathodes, irradiated by 150~fs-6.28~eV laser pulses, are reported over a broad range of incidence angle in both s and p polarizations. The maximum value of QE for the Cu polycrystal sample is Y~4*10(-4), obtained with p polarization at an angle of incidence theta=65°. Our data confirm the vectorial photoemission model. Issues concerning surface roughness and symmetry considerations are addressed. An explanation in terms of non local conductivity tensor is proposed. Advantages of a 6.28~eV photon as compared to the standard 4.71~eV photon in use with Cu photocathodes are discussed.

  5. Vectorial representation of spatial goals in the hippocampus of bats.

    Science.gov (United States)

    Sarel, Ayelet; Finkelstein, Arseny; Las, Liora; Ulanovsky, Nachum

    2017-01-13

    To navigate, animals need to represent not only their own position and orientation, but also the location of their goal. Neural representations of an animal's own position and orientation have been extensively studied. However, it is unknown how navigational goals are encoded in the brain. We recorded from hippocampal CA1 neurons of bats flying in complex trajectories toward a spatial goal. We discovered a subpopulation of neurons with angular tuning to the goal direction. Many of these neurons were tuned to an occluded goal, suggesting that goal-direction representation is memory-based. We also found cells that encoded the distance to the goal, often in conjunction with goal direction. The goal-direction and goal-distance signals make up a vectorial representation of spatial goals, suggesting a previously unrecognized neuronal mechanism for goal-directed navigation.

  6. Evolution of sexual traits influencing vectorial capacity in anopheline mosquitoes

    Science.gov (United States)

    Mitchell, Sara N.; Kakani, Evdoxia G.; South, Adam; Howell, Paul I.; Waterhouse, Robert M.; Catteruccia, Flaminia

    2015-01-01

    The availability of genome sequences from 16 anopheline species provides unprecedented opportunities to study the evolution of reproductive traits relevant for malaria transmission. In Anopheles gambiae, a likely candidate for sexual selection is male 20-hydroxyecdysone (20E). Sexual transfer of this steroid hormone as part of a mating plug dramatically changes female physiological processes intimately tied to vectorial capacity. By combining phenotypic studies with ancestral state reconstructions and phylogenetic analyses, we show that mating plug transfer and male 20E synthesis are both derived characters that have coevolved in anophelines, driving the adaptation of a female 20E-interacting protein that promotes oogenesis via mechanisms also favoring Plasmodium survival. Our data reveal coevolutionary dynamics of reproductive traits between the sexes likely to have shaped the ability of anophelines to transmit malaria. PMID:25722409

  7. Spatial technologies to evaluate vectorial samples quality in maps production

    OpenAIRE

    Abraham Cárdenas Tristán; Eduardo Javier Treviño Garza; Oscar Alberto Aguirre Calderón; Javier Jiménez Pérez; Marco Aurelio González Tagle; Xanat Antonio Némiga

    2013-01-01

    A pesar de importantes progresos realizados en la materia en los últimos años, la conceptualización de la metodología para evaluar la calidad de vectores que integran la cartografía digital es aún una tarea complicada, no existiendo un esquema oficial de evaluación de la calidad de la producción cartográfica vectorial en el país. Se propone una metodología para evaluar la calidad de la producción cartográfica a través del análisis de muestras aplicadas a las diversas escalas vectoriales de la...

  8. Melting of heterogeneous vortex matter: The vortex `nanoliquid'

    Indian Academy of Sciences (India)

    S S Banerjee; S Goldberg; Y Myasoedov; M Rappaport; E Zeldov; A Soibel; F de la Cruz; C J van der Beek; M Konczykowski; T Tamegai; V Vinokur

    2006-01-01

    Disorder and porosity are parameters that strongly influence the physical behavior of materials, including their mechanical, electrical, magnetic and optical properties. Vortices in superconductors can provide important insight into the effects of disorder because their size is comparable to characteristic sizes of nanofabricated structures. Here we present experimental evidence for a novel form of vortex matter that consists of inter-connected nanodroplets of vortex liquid caged in the pores of a solid vortex structure, like a liquid permeated into a nanoporous solid skeleton. Our nanoporous skeleton is formed by vortices pinned by correlated disorder created by high-energy heavy ion irradiation. By sweeping the applied magnetic field, the number of vortices in the nanodroplets is varied continuously from a few to several hundred. Upon cooling, the caged nanodroplets freeze into ordered nanocrystals through either a first-order or a continuous transition, whereas at high temperatures a uniform liquid phase is formed upon delocalization-induced melt- ing of the solid skeleton. This new vortex nanoliquid displays unique properties and symmetries that are distinct from both solid and liquid phases.

  9. Fractional vortex Hilbert's Hotel

    CERN Document Server

    Gbur, Greg

    2015-01-01

    We demonstrate how the unusual mathematics of transfinite numbers, in particular a nearly perfect realization of Hilbert's famous hotel paradox, manifests in the propagation of light through fractional vortex plates. It is shown how a fractional vortex plate can be used, in principle, to create any number of "open rooms," i.e. topological charges, simultaneously. Fractional vortex plates are therefore demonstrated to create a singularity of topological charge, in which the vortex state is completely undefined and in fact arbitrary.

  10. Sadovskii vortex in strain

    Science.gov (United States)

    Freilich, Daniel; Llewellyn Smith, Stefan

    2014-11-01

    A Sadovskii vortex is a patch of fluid with uniform vorticity surrounded by a vortex sheet. Using a boundary element type method, we investigate the steady states of this flow in an incompressible, inviscid straining flow. Outside the vortex, the fluid is irrotational. In the limiting case where the entire circulation is due to the vortex patch, this is a patch vortex (Moore & Saffman, Aircraft wake turbulence and its detection 1971). In the other limiting case, where all the circulation is due to the vortex sheet, this is a hollow vortex (Llewellyn Smith and Crowdy, J. Fluid Mech. 691, 2012). This flow has two governing nondimensional parameters, relating the strengths of the straining field, vortex sheet, and patch vorticity. We study the relationship between these two parameters, and examine the shape of the resulting vortices. We also work towards a bifurcation diagram of the steady states of the Sadovskii vortex in an attempt to understand the connection between vortex sheet and vortex patch desingularizations of the point vortex. Support from NSF-CMMI-0970113.

  11. Streamwise Vortex Interaction with a Horseshoe Vortex

    Institute of Scientific and Technical Information of China (English)

    Piotr Doerffer; Pawel Flaszynski; Franco Magagnato

    2003-01-01

    Flow control in turbomachinery is very difficult because of the complexity of its fully 3-D flow structure. The authors propose to introduce streamwise vortices into the control of internal flows. A simple configuration of vortices was investigated in order to better understand the flow control methods by means of streamwise vortices.The research presented here concerns streamwise vortex interaction with a horseshoe vortex. The effects of such an interaction are significantly dependent on the relative location of the streamwise vortex in respect to the leading edge of the profile. The streamwise vortex is induced by an air jet. The horseshoe vortex is generated by the leading edge of a symmetric profile. Such a configuration gives possibility to investigate the interaction of these two vortices alone. The presented analysis is based on numerical simulations by means of N-S compressible solver with a two-equation turbulence model.

  12. Microscale vortex laser with controlled topological charge

    Science.gov (United States)

    Wang, Xing-Yuan; Chen, Hua-Zhou; Li, Ying; Li, Bo; Ma, Ren-Min

    2016-12-01

    A microscale vortex laser is a new type of coherent light source with small footprint that can directly generate vector vortex beams. However, a microscale laser with controlled topological charge, which is crucial for virtually any of its application, is still unrevealed. Here we present a microscale vortex laser with controlled topological charge. The vortex laser eigenmode was synthesized in a metamaterial engineered non-Hermitian micro-ring cavity system at exceptional point. We also show that the vortex laser cavity can operate at exceptional point stably to lase under optical pumping. The microscale vortex laser with controlled topological charge can serve as a unique and general building block for next-generation photonic integrated circuits and coherent vortex beam sources. The method we used here can be employed to generate lasing eigenmode with other complex functionalities. Project supported by the “Youth 1000 Talent Plan” Fund, Ministry of Education of China (Grant No. 201421) and the National Natural Science Foundation of China (Grant Nos. 11574012 and 61521004).

  13. Vortex mechanism in hydrocyclones

    Institute of Scientific and Technical Information of China (English)

    徐继润; 刘正宁; 邢军; 李新跃; 黄慧; 徐海燕; 罗茜

    2001-01-01

    On the basis of analyzing the vortex characteristics, a new mechanism of the vortex formation in hydrocyclones is developed. The main concept of the mechanism is that the vortex flow in a hydrocyclone is resulted from the overlapping of container rotation and hole leakage. The model is then used to explain the compound distribution of free vortex and forced vortex, predict the similarity of tangential velocity at different input pressures, and make count of the principle of small hydrocyclone with lower cut-size than large one. Meanwhile a new possible approach to a large hydro-cyclone with lower cut-size by minimizing or eliminating the air core is discussed briefly.

  14. Compact planetary systems perturbed by an inclined companion: I. Vectorial representation of the secular model

    CERN Document Server

    Boué, Gwenaël

    2014-01-01

    The non-resonant secular dynamics of compact planetary systems are modeled by a perturbing function which is usually expanded in eccentricity and absolute inclination with respect to the invariant plane. Here, the expressions are given in a vectorial form which naturally leads to an expansion in eccentricity and mutual inclination. The two approaches are equivalent in most cases, but the vectorial one is specially designed for those where a quasi-coplanar system tilts as a whole by a large amount. Moreover, the vectorial expressions of the Hamiltonian and of the equations of motion are slightly simpler than those given in terms of the usual elliptical elements. We also provide the secular perturbing function in vectorial form expanded in semimajor axis ratio allowing for arbitrary eccentricities and inclinations. The interaction between the equatorial bulge of a central star and its planets is also provided, as is the relativistic periapse precession of any planet induced by the central star. We illustrate th...

  15. Resonance scattering of a dielectric sphere illuminated by electromagnetic Bessel non-diffracting (vortex) beams with arbitrary incidence and selective polarizations

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F.G., E-mail: F.G.Mitri@ieee.org [Chevron, Area 52 Technology–ETC, 5 Bisbee Ct., Santa Fe, NM 87508 (United States); Li, R.X., E-mail: rxli@mail.xidian.edu.cn [School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071 (China); Collaborative Innovation Center of Information Sensing and Understanding, Xidian University, Xi’an 710071 (China); Guo, L.X. [School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071 (China); Collaborative Innovation Center of Information Sensing and Understanding, Xidian University, Xi’an 710071 (China); Ding, C.Y. [School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071 (China)

    2015-10-15

    A complete description of vector Bessel (vortex) beams in the context of the generalized Lorenz–Mie theory (GLMT) for the electromagnetic (EM) resonance scattering by a dielectric sphere is presented, using the method of separation of variables and the subtraction of a non-resonant background (corresponding to a perfectly conducting sphere of the same size) from the standard Mie scattering coefficients. Unlike the conventional results of standard optical radiation, the resonance scattering of a dielectric sphere in air in the field of EM Bessel beams is examined and demonstrated with particular emphasis on the EM field’s polarization and beam order (or topological charge). Linear, circular, radial, azimuthal polarizations as well as unpolarized Bessel vortex beams are considered. The conditions required for the resonance scattering are analyzed, stemming from the vectorial description of the EM field using the angular spectrum decomposition, the derivation of the beam-shape coefficients (BSCs) using the integral localized approximation (ILA) and Neumann–Graf’s addition theorem, and the determination of the scattering coefficients of the sphere using Debye series. In contrast with the standard scattering theory, the resonance method presented here allows the quantitative description of the scattering using Debye series by separating diffraction effects from the external and internal reflections from the sphere. Furthermore, the analysis is extended to include rainbow formation in Bessel beams and the derivation of a generalized formula for the deviation angle of high-order rainbows. Potential applications for this analysis include Bessel beam-based laser imaging spectroscopy, atom cooling and quantum optics, electromagnetic instrumentation and profilometry, optical tweezers and tractor beams, to name a few emerging areas of research.

  16. Depicting Vortex Stretching and Vortex Relaxing Mechanisms

    Institute of Scientific and Technical Information of China (English)

    符松; 李启兵; 王明皓

    2003-01-01

    Different from many existing studies on the paranetrization of vortices, we investigate the effectiveness of two new parameters for identifying the vortex stretching and vortex relaxing mechanisms. These parameters are invariants and identify three-dimensional flow structures only, i.e. they diminish in two-dimensional flows. This is also unlike the existing vortex identification approaches which deliver information in two-dimensional flows. The present proposals have been successfully applied to identify the stretching and relaxing vortices in compressible mixing layers and natural convection flows.

  17. Optimal focusing of a beam in a ring vortex

    Science.gov (United States)

    Arrizón, Victor; Ruiz, Ulises; Aguirre-Olivas, Dilia; Mellado-Villaseñor, Gabriel

    2015-12-01

    Conventional light focusing, i.e. concentration of an extended optical field within a small area around a point, is a frequently used process in Optics. An important extension to conventional focusing is the generation of the annular focal field of an optical beam. We discuss a simple optical setup that achieves this kind of focusing employing a phase plate as unique optical component. It is assumed that the annular focal field is modulated by an azimuthal phase of integer order q that converts the field in a ring vortex. We first establish the class of beams that being transmitted through the phase plate can be focused into a ring vortex. Then, for each beam in this class we determine the plate transmittance that generates the vortex with the maximum possible intensity, which is referred to as optimal ring vortex.

  18. A vectorial approach to determine frozen orbital conditions

    Science.gov (United States)

    Circi, Christian; Condoleo, Ennio; Ortore, Emiliano

    2017-02-01

    Taking into consideration a probe moving in an elliptical orbit around a celestial body, the possibility of determining conditions which lead to constant values on average of all the orbit elements has been investigated here, considering the influence of the planetary oblateness and the long-term effects deriving from the attraction of several perturbing bodies. To this end, three equations describing the variation of orbit eccentricity, apsidal line and angular momentum unit vector have been first retrieved, starting from a vectorial expression of the Lagrange planetary equations and considering for the third-body perturbation the gravity-gradient approximation, and then exploited to demonstrate the feasibility of achieving the above-mentioned goal. The study has led to the determination of two families of solutions at constant mean orbit elements, both characterised by a co-planarity condition between the eccentricity vector, the angular momentum and a vector resulting from the combination of the orbital poles of the perturbing bodies. As a practical case, the problem of a probe orbiting the Moon has been faced, taking into account the temporal evolution of the perturbing poles of the Sun and Earth, and frozen solutions at argument of pericentre 0° or 180° have been found.

  19. Dynamically controlled energy dissipation for fast magnetic vortex switching

    Science.gov (United States)

    Badea, R.; Berezovsky, J.

    2017-09-01

    Manipulation of vortex states in magnetic media provides new routes towards information storage and processing technology. The typical slow relaxation times (˜100 ns) of magnetic vortex dynamics may present an obstacle to the realization of these applications. Here, we investigate how a vortex state in a ferromagnetic microdisk can be manipulated in a way that translates the vortex core while enhancing energy dissipation to rapidly damp the vortex dynamics. We use time-resolved differential magneto-optical Kerr effect microscopy to measure the motion of the vortex core in response to applied magnetic fields. We first map out how the vortex core becomes sequentially trapped by pinning sites as it translates across the disk. After applying a fast magnetic field step to translate the vortex from one pinning site to another, we observe long-lived dynamics of the vortex as it settles to the new equilibrium. We then demonstrate how the addition of a short (magnetic field pulse can induce additional energy dissipation, strongly damping the long-lived dynamics. A model of the vortex dynamics using the Thiele equation of motion explains the mechanism behind this effect.

  20. Gaussian beam reflection and refraction by a spherical or parabolic surface: comparison of vectorial-law calculation with lens approximation.

    Science.gov (United States)

    Tkaczyk, Eric R; Mauring, Koit; Tkaczyk, Alan H

    2012-10-01

    A ray-tracing approach is used to demonstrate efficient application of the vectorial laws of reflection and refraction to computational optics problems. Both the full width at half-maximum (fwhm) and offset of Gaussian beams resulting from off-center reflection and refraction are calculated for spherical and paraboloidal surfaces of revolution. It is found that the magnification and displacement depend nonlinearly on the miscentering. For these geometries, the limits of accuracy of the lens approximation are examined quantitatively. In contrast to the ray-tracing solution, this paraxial approximation would predict a magnification of a beam's fwhm that is independent of miscentering, and an offset linearly proportional to the miscentering. The focusing property of paraboloidal surfaces of revolution is also derived in setting up the calculation.

  1. Modelling polarization dependent absorption: The vectorial Lambert-Beer law

    Science.gov (United States)

    Franssens, G.

    2014-07-01

    The scalar Lambert-Beer law, describing the absorption of unpolarized light travelling through a linear non-scattering medium, is simple, well-known, and mathematically trivial. However, when we take the polarization of light into account and consider a medium with polarization dependent absorption, we now need a Vectorial Lambert-Beer Law (VLBL) to quantify this interaction. Such a generalization of the scalar Lambert-Beer law appears not to be readily available. A careful study of this topic reveals that it is not a trivial problem. We will see that the VLBL is not and cannot be a straightforward vectorized version of its scalar counterpart. The aim of the work is to present the general form of the VLBL and to explain how it arises. A reasonable starting point to derive the VLBL is the Vectorial Radiative Transfer Equation (VRTE), which models the absorption and scattering of (partially) polarized light travelling through a linear medium. When we turn off scattering, the VRTE becomes an infinitesimal model for the VLBL holding in the medium. By integrating this equation, we expect to find the VLBL. Surprisingly, this is not the end of the story. It turns out that light propagation through a medium with polarization-dependent absorption is mathematically not that trivial. The trickiness behind the VLBL can be understood in the following terms. The matrix in the VLBL, relating any input Stokes vector to the corresponding output Stokes vector, must necessarily be a Mueller matrix. The subset of invertible Mueller matrices forms a Lie group. It is known that this Lie group contains the ortho-chronous Lorentz group as a subgroup. The group manifold of this subgroup has a (well-known) non-trivial topology. Consequently, the manifold of the Lie group of Mueller matrices also has (at least the same, but likely a more general) non-trivial topology (the full extent of which is not yet known). The type of non-trivial topology, possessed by the manifold of (invertible

  2. Cryptanalysis of Vortex

    DEFF Research Database (Denmark)

    Aumasson, Jean-Philippe; Dunkelman, Orr; Mendel, Florian;

    2009-01-01

    Vortex is a hash function that was first presented at ISC'2008, then submitted to the NIST SHA-3 competition after some modifications. This paper describes several attacks on both versions of Vortex, including collisions, second preimages, preimages, and distinguishers. Our attacks exploit flaws ...

  3. Aerodynamically shaped vortex generators

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Velte, Clara Marika; Øye, Stig;

    2016-01-01

    An aerodynamically shaped vortex generator has been proposed, manufactured and tested in a wind tunnel. The effect on the overall performance when applied on a thick airfoil is an increased lift to drag ratio compared with standard vortex generators. Copyright © 2015 John Wiley & Sons, Ltd....

  4. Vortex cutting in superconductors

    Science.gov (United States)

    Glatz, A.; Vlasko-Vlasov, V. K.; Kwok, W. K.; Crabtree, G. W.

    2016-08-01

    Vortex cutting and reconnection is an intriguing and still-unsolved problem central to many areas of classical and quantum physics, including hydrodynamics, astrophysics, and superconductivity. Here, we describe a comprehensive investigation of the crossing of magnetic vortices in superconductors using time dependent Ginsburg-Landau modeling. Within a macroscopic volume, we simulate initial magnetization of an anisotropic high temperature superconductor followed by subsequent remagnetization with perpendicular magnetic fields, creating the crossing of the initial and newly generated vortices. The time resolved evolution of vortex lines as they approach each other, contort, locally conjoin, and detach, elucidates the fine details of the vortex-crossing scenario under practical situations with many interacting vortices in the presence of weak pinning. Our simulations also reveal left-handed helical vortex instabilities that accompany the remagnetization process and participate in the vortex crossing events.

  5. [Vectorial transmission of Chagas' disease in Mulungu do Morro, Northeastern of Brazil].

    Science.gov (United States)

    Aras, Roque; Gomes, Irênio; Veiga, Marielza; Melo, Ailton

    2003-01-01

    A serological survey was carried out to determine the prevalence of Chagas' disease in municipality. The following variables were analyzed to identify the form of transmission of this disease: age, sex, clinical and transfusional history, degree of kinship and serology. Within the 863 municipalities we studied, we identified 265 individuals, with serology testing done on them and on their respective mothers. Of these, 232 tested negative serology for Chagas'disease and 33 (14.2%) positive. We found 9 (3.9%) patients, of 14.3 years. average age with vectorial transmission and 24 (10.3%), of 26.6 years. average age with probable, vertical and vectorial transmission. When we compare the two groups in regard to age averages and manner of transmission of Trypanosoma cruzi, we encounter a statistical significance. Our results suggest the existence of an active, vectorial transmission of Trypanosoma cruzi in Mulungu do Morro.

  6. On-chip generation and control of the vortex beam

    CERN Document Server

    Liu, Aiping; Ren, Xifeng; Wang, Qin; Guo, Guang-Can

    2015-01-01

    A new method to generate and control the amplitude and phase distributions of a optical vortex beam is proposed. By introducing a holographic grating on top of the dielectric waveguide, the free space vortex beam and the in-plane guiding wave can be converted to each other. This microscale holographic grating is very robust against the variation of geometry parameters. The designed vortex beam generator can produce the target beam with a fidelity up to 0.93, and the working bandwidth is about 175 nm with the fidelity larger than 0.80. In addition, a multiple generator composed of two holographic gratings on two parallel waveguides are studied, which can perform an effective and flexible modulation on the vortex beam by controlling the phase of the input light. Our work opens a new avenue towards the integrated OAM devices with multiple degrees of optical freedom, which can be used for optical tweezers, micronano imaging, information processing, and so on.

  7. CINVEC : Una herramienta multimedial para el análisis vectorial del movimiento

    OpenAIRE

    2005-01-01

    Se presenta el CINVEC, una herramienta multimedia, que facilita la asimilación de los elementos de álgebra vectorial necesarios para comprender y ejercitar contenidos de cinemática correspondientes a la asignatura física de un programa de ingreso de nivel universitario. El alumno reconoce el carácter escalar o vectorial de las distintas magnitudes: posición, desplazamiento, trayectoria, tiempo, velocidad, rapidez, aceleración para finalmente aplicarlas en la descripción de los distintos tipos...

  8. Vectorial Resilient PC(l) of Order k Boolean Functions from AG-Codes

    Institute of Scientific and Technical Information of China (English)

    Hao CHEN; Liang MA; Jianhua LI

    2011-01-01

    Propagation criteria and resiliency of vectorial Boolean functions are important for cryptographic purpose (see [1- 4, 7, 8, 10, 11, 16]). Kurosawa, Stoh [8] and Carlet [1]gave a construction of Boolean functions satisfying PC(l) of order k from binary linear or nonlinear codes. In this paper, the algebraic-geometric codes over GF(2m) are used to modify the Carlet and Kurosawa-Satoh's construction for giving vectorial resilient Boolean functions satisfying PC(l) of order k criterion. This new construction is compared with previously known results.

  9. CINVEC : Una herramienta multimedial para el análisis vectorial del movimiento

    OpenAIRE

    Amato, Marcelo Alejandro; Sosa, María Isabel

    2005-01-01

    Se presenta el CINVEC, una herramienta multimedia, que facilita la asimilación de los elementos de álgebra vectorial necesarios para comprender y ejercitar contenidos de cinemática correspondientes a la asignatura física de un programa de ingreso de nivel universitario. El alumno reconoce el carácter escalar o vectorial de las distintas magnitudes: posición, desplazamiento, trayectoria, tiempo, velocidad, rapidez, aceleración para finalmente aplicarlas en la descripción de los distintos tipos...

  10. Vectorial Nonparaxial Four-Petal Gaussian Beams and Their Propagation in Free Space

    Institute of Scientific and Technical Information of China (English)

    GAO Zeng-Hui; L(U) Bai-Da

    2006-01-01

    @@ The vectorial nonparaxial four-petal Gaussian beam (FPGB) is introduced. The closed-form propagation expressions for the free-space propagation of FPGBs are derived and their more general applicable advantages are illustrated analytically and numerically. Some special interesting cases, in particular the paraxial one, are discussed. It is found that the parameter f = 1/kw0 with the k being the wave number and w0 being the waist width plays a crucial role in determining the nonparaxiallity of FPGBs. For small values of the f parameter the paraxial approximation is allowable. In the nonparaxial regime the beam order n additionally affects the vectorial and nonparaxial behaviour of FPGBs.

  11. Fast Josephson vortex

    Energy Technology Data Exchange (ETDEWEB)

    Malishevskii, A.S.; Silin, V.P.; Uryupin, S.A

    2002-12-30

    For the magnetically coupled waveguide and long Josephson junction we gave the analytic description of two separate velocity domains where the free motion of traveling vortex (2{pi}-kink) exists. The role of the mutual influence of waveguide and long Josephson junction is discussed. It is shown the possibility of the fast vortex motion with the velocity much larger than Swihart velocity of Josephson junction and close to the speed of light in the waveguide. The excitation of motion of such fast Josephson vortex is described.

  12. Superposition of nonparaxial vectorial complex-source spherically focused beams: Axial Poynting singularity and reverse propagation

    Science.gov (United States)

    Mitri, F. G.

    2016-08-01

    In this work, counterintuitive effects such as the generation of an axial (i.e., long the direction of wave motion) zero-energy flux density (i.e., axial Poynting singularity) and reverse (i.e., negative) propagation of nonparaxial quasi-Gaussian electromagnetic (EM) beams are examined. Generalized analytical expressions for the EM field's components of a coherent superposition of two high-order quasi-Gaussian vortex beams of opposite handedness and different amplitudes are derived based on the complex-source-point method, stemming from Maxwell's vector equations and the Lorenz gauge condition. The general solutions exhibiting unusual effects satisfy the Helmholtz and Maxwell's equations. The EM beam components are characterized by nonzero integer degree and order (n ,m ) , respectively, an arbitrary waist w0, a diffraction convergence length known as the Rayleigh range zR, and a weighting (real) factor 0 ≤α ≤1 that describes the transition of the beam from a purely vortex (α =0 ) to a nonvortex (α =1 ) type. An attractive feature for this superposition is the description of strongly focused (or strongly divergent) wave fields. Computations of the EM power density as well as the linear and angular momentum density fluxes illustrate the analysis with particular emphasis on the polarization states of the vector potentials forming the beams and the weight of the coherent beam superposition causing the transition from the vortex to the nonvortex type. Should some conditions determined by the polarization state of the vector potentials and the beam parameters be met, an axial zero-energy flux density is predicted in addition to a negative retrograde propagation effect. Moreover, rotation reversal of the angular momentum flux density with respect to the beam handedness is anticipated, suggesting the possible generation of negative (left-handed) torques. The results are particularly useful in applications involving the design of strongly focused optical laser

  13. Vortex flow hysteresis

    Science.gov (United States)

    Cunningham, A. M., Jr.

    1986-01-01

    An experimental study was conducted to quantify the hysteresis associated with various vortex flow transition points and to determine the effect of planform geometry. The transition points observed consisted of the appearance (or disappearance) of trailing edge vortex burst and the transition to (or from) flat plate or totally separated flows. Flow visualization with smoke injected into the vortices was used to identify the transitions on a series of semi-span models tested in a low speed tunnel. The planforms tested included simple deltas (55 deg to 80 deg sweep), cranked wings with varying tip panel sweep and dihedral, and a straked wing. High speed movies at 1000 frames per second were made of the vortex flow visualization in order to better understand the dynamics of vortex flow, burst and transition.

  14. Modeling gasodynamic vortex cooling

    Science.gov (United States)

    Allahverdyan, A. E.; Fauve, S.

    2017-08-01

    We aim at studying gasodynamic vortex cooling in an analytically solvable, thermodynamically consistent model that can explain limitations on the cooling efficiency. To this end, we study an angular plus radial flow between two (coaxial) rotating permeable cylinders. Full account is taken of compressibility, viscosity, and heat conductivity. For a weak inward radial flow the model qualitatively describes the vortex cooling effect, in terms of both temperature and the decrease of the stagnation enthalpy, seen in short uniflow vortex (Ranque) tubes. The cooling does not result from external work and its efficiency is defined as the ratio of the lowest temperature reached adiabatically (for the given pressure gradient) to the lowest temperature actually reached. We show that for the vortex cooling the efficiency is strictly smaller than 1, but in another configuration with an outward radial flow, we find that the efficiency can be larger than 1. This is related to both the geometry and the finite heat conductivity.

  15. Vectorial beam propagation simulation of a novel polarization conversion waveguide structure

    Science.gov (United States)

    Li, Daoping; van Brug, Hedser H.; Frankena, Hans J.; van der Tol, Jos J.; Pedersen, Jorgen W.

    1995-02-01

    The vectorial beam propagation method has successfully been applied to a passive polarization converting waveguide structure. A complete polarization conversion has been simulated. The propagating fields are calculated and the power attenuation is evaluated. The influence of structural changes of the device on the polarization conversion is investigated.

  16. Assessment of vectorial total variation penalties on realistic dual-energy CT data.

    Science.gov (United States)

    Rigie, David S; Sanchez, Adrian A; La Rivière, Patrick J

    2017-04-21

    Vectorial extensions of total variation have recently been developed for regularizing the reconstruction and denoising of multi-channel images, such as those arising in spectral computed tomography. Early studies have focused mainly on simulated, piecewise-constant images whose structure may favor total-variation penalties. In the current manuscript, we apply vectorial total variation to real dual-energy CT data of a whole turkey in order to determine if the same benefits can be observed in more complex images with anatomically realistic textures. We consider the total nuclear variation ([Formula: see text]) as well as another vectorial total variation based on the Frobenius norm ([Formula: see text]) and standard channel-by-channel total variation ([Formula: see text]). We performed a series of 3D TV denoising experiments comparing the three TV variants across a wide range of smoothness parameter settings, optimizing each regularizer according to a very-high-dose 'ground truth' image. Consistent with the simulation studies, we find that both vectorial TV variants achieve a lower error than the channel-by-channel TV and are better able to suppress noise while preserving actual image features. In this real data study, the advantages are subtler than in the previous simulation study, although the [Formula: see text] penalty is found to have clear advantages over either [Formula: see text] or [Formula: see text] when comparing material images formed from linear combinations of the denoised energy images.

  17. Buoyant Norbury's vortex rings

    Science.gov (United States)

    Blyth, Mark; Rodriguez-Rodriguez, Javier; Salman, Hayder

    2014-11-01

    Norbury's vortices are a one-parameter family of axisymmetric vortex rings that are exact solutions to the Euler equations. Due to their relative simplicity, they are extensively used to model the behavior of real vortex rings found in experiments and in Nature. In this work, we extend the original formulation of the problem to include buoyancy effects for the case where the fluid that lies within the vortex has a different density to that of the ambient. In this modified formulation, buoyancy effects enter the problem through the baroclinic term of the vorticity equation. This permits an efficient numerical solution of the governing equation of motion in terms of a vortex contour method that tracks the evolution of the boundary of the vortex. Finally, we compare our numerical results with the theoretical analysis of the short-time evolution of a buoyant vortex. Funded by the Spanish Ministry of Economy and Competitiveness through grant DPI2011-28356-C03-02 and by the London Mathematical Society.

  18. Three-wave electron vortex lattices for measuring nanofields

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, C., E-mail: c.dwyer@fz-juelich.de; Boothroyd, C.B.; Chang, S.L.Y.; Dunin-Borkowski, R.E.

    2015-01-15

    It is demonstrated how an electron-optical arrangement consisting of two electron biprisms can be used to generate three-wave vortex lattices with effective lattice spacings between 0.1 and 1 nm. The presence of vortices in these lattices was verified by using a third biprism to perform direct phase measurements via off-axis electron holography. The use of three-wave lattices for nanoscale electromagnetic field measurements via vortex interferometry is discussed, including the accuracy of vortex position measurements and the interpretation of three-wave vortex lattices in the presence of partial spatial coherence. - Highlights: • We demonstrate how three-wave electron vortex lattices can be generated using two electron biprisms in the TEM. • The optical setup can be used to measure nanoscale electromagnetic fields via vortex interferometry. • The presence of vortices is verified explicitly by using a third biprism to perform phase measurements. • The accuracy of vortex position measurements and the requirements of spatial coherence are discussed.

  19. Geometric Metasurface Fork Gratings for Vortex Beam Generation and Manipulation

    CERN Document Server

    Chen, Shumei; Li, Guixin; Zhang, Shuang; Cheah, Kok Wai

    2016-01-01

    In recent years, optical vortex beams possessing orbital angular momentum have caught much attention due to their potential for high capacity optical communications. This capability arises from the unbounded topological charges of orbital angular momentum (OAM) that provides infinite freedoms for encoding information. The two most common approaches for generating vortex beams are through fork diffraction gratings and spiral phase plates. While realization of conventional spiral phase plate requires complicated 3D fabrication, the emerging field of metasurfaces has provided a planar and facile solution for generating vortex beams of arbitrary orbit angular momentum. Here we realize a novel type of geometric metasurface fork grating that seamlessly combine the functionality of a metasurface phase plate for vortex beam generation, and that of a linear phase gradient metasurface for controlling the wave propagation direction. The metasurface fork grating is therefore capable of simultaneously controlling both the...

  20. 探测涡旋光束轨道角动量的新方法%Novel Method to Detect the Orbital Angular Momentum in Optical Vortex Beams

    Institute of Scientific and Technical Information of China (English)

    刘曼

    2013-01-01

    The intensity and phase distributions of speckle fields on the near-field plane generated by the scattering of Laguerre-Gaussian beam from the weak random scattering screen are simulated. It is found that the spot profiles are similar to the peacock feather in intensity distributions of speckle fields, and those spots are uniformly distributed around the central dark spots. The number of spots is related to the orbital angular momentum quantum number of the vortex beams. The orbital angular momentum quantum number is an integer or fractional, while whether it is integer or fractional, the number spots is four times of the orbital angular momentum quantum number. In the case of fractional vortex beam, there is a spot along the horizontal direction uniformly split into two petals. This method can be used to detect the orbital angular momentum quantum number of vortex beams.%模拟了拉盖尔-高斯光束照射弱随机散射屏散射后在近场形成的光强和相位的分布,发现散射光场的光强分布图中有轮廓类似于孔雀羽毛状的光斑.这些光斑均匀分布在中心黑暗区域周围,且光斑的个数与涡旋光束的轨道角动量量子数有关,无论涡旋光束的轨道角动量量子数是整数还是分数,光斑的个数恰好是涡旋光束轨道角动量量子数的4倍.只是在分数轨道角动量量子数的光强分布图中,有一条狭缝沿水平方向将光斑均匀分裂成两瓣.该方法可用于探测涡旋光束的轨道角动量量子数.

  1. Vortex metrology using Fourier analysis techniques: vortex networks correlation fringes.

    Science.gov (United States)

    Angel-Toro, Luciano; Sierra-Sosa, Daniel; Tebaldi, Myrian; Bolognini, Néstor

    2012-10-20

    In this work, we introduce an alternative method of analysis in vortex metrology based on the application of the Fourier optics techniques. The first part of the procedure is conducted as is usual in vortex metrology for uniform in-plane displacement determination. On the basis of two recorded intensity speckled distributions, corresponding to two states of a diffuser coherently illuminated, we numerically generate an analytical signal from each recorded intensity pattern by using a version of the Riesz integral transform. Then, from each analytical signal, a two-dimensional pseudophase map is generated in which the vortices are located and characterized in terms of their topological charges and their core's structural properties. The second part of the procedure allows obtaining Young's interference fringes when Fourier transforming the light passing through a diffracting mask with multiple apertures at the locations of the homologous vortices. In fact, we use the Fourier transform as a mathematical operation to compute the far-field diffraction intensity pattern corresponding to the multiaperture set. Each aperture from the set is associated with a rectangular hole that coincides both in shape and size with a pixel from recorded images. We show that the fringe analysis can be conducted as in speckle photography in an extended range of displacement measurements. Effects related with speckled decorrelation are also considered. Our experimental results agree with those of speckle photography in the range in which both techniques are applicable.

  2. Controlling vortex motion and vortex kinetic friction

    Science.gov (United States)

    Nori, Franco; Savel'ev, Sergey

    2006-05-01

    We summarize some recent results of vortex motion control and vortex kinetic friction. (1) We describe a device [J.E. Villegas, S. Savel'ev, F. Nori, E.M. Gonzalez, J.V. Anguita, R. Garcìa, J.L. Vicent, Science 302 (2003) 1188] that can easily control the motion of flux quanta in a Niobium superconducting film on an array of nanoscale triangular magnets. Even though the input ac current has zero average, the resulting net motion of the vortices can be directed along either one direction, the opposite direction, or producing zero net motion. We also consider layered strongly anisotropic superconductors, with no fixed spatial asymmetry, and show [S. Savel'ev, F. Nori, Nature Materials 1 (2002) 179] how, with asymmetric drives, the ac motion of Josephson and/or pancake vortices can provide a net dc vortex current. (2) In analogy with the standard macroscopic friction, we present [A. Maeda, Y. Inoue, H. Kitano, S. Savel'ev, S. Okayasu, I. Tsukada, F. Nori , Phys. Rev. Lett. 94 (2005) 077001] a comparative study of the friction force felt by vortices in superconductors and charge density waves.

  3. The VORTEX coronagraphic test bench

    CERN Document Server

    Jolivet, Aissa; Huby, Elsa; Absil, Olivier; Delacroix, Christian; Mawet, Dimitri; Surdej, Jean; Habraken, Serge

    2016-01-01

    In this paper, we present the infrared coronagraphic test bench of the University of Li\\`ege named VODCA (Vortex Optical Demonstrator for Coronagraphic Applications). The goal of the bench is to assess the performances of the Annular Groove Phase Masks (AGPMs) at near- to mid-infrared wavelengths. The AGPM is a subwavelength grating vortex coronagraph of charge two (SGVC2) made out of diamond. The bench is designed to be completely achromatic and will be composed of a super continuum laser source emitting in the near to mid-infrared, several parabolas, diaphragms and an infrared camera. This way, we will be able to test the different AGPMs in the M, L, K and H bands. Eventually, the bench will also allow the computation of the incident wavefront aberrations on the coronagraph. A reflective Lyot stop will send most of the stellar light to a second camera to perform low-order wavefront sensing. This second system coupled with a deformable mirror will allow the correction of the wavefront aberrations. We also ai...

  4. Las funciones de Cobb-Douglas como base del espacio vectorial de funciones homogéneas.

    OpenAIRE

    Díaz Martínez, Zuleyka; Núñez del Prado, José Antonio; García Pineda Mª Pilar

    2003-01-01

    Dado que el conjunto de funciones homogéneas de grado r forma un espacio vectorial real, el objetivo de este trabajo es mostrar que el conjunto de funciones de Cobb- Douglas de grado r, XαYr-α, forma una base de dicho espacio vectorial, lo que puede resultar de interés dada la importancia que las funciones de Cobb- Douglas tienen en Economía.Dado que el conjunto de funciones homogéneas de grado r forma un espacio vectorial real, el objetivo de este trabajo es mostrar que el conjunto de f...

  5. Fully vectorial laser resonator modeling of continuous-wave solid-state lasers including rate equations, thermal lensing and stress-induced birefringence.

    Science.gov (United States)

    Asoubar, Daniel; Wyrowski, Frank

    2015-07-27

    The computer-aided design of high quality mono-mode, continuous-wave solid-state lasers requires fast, flexible and accurate simulation algorithms. Therefore in this work a model for the calculation of the transversal dominant mode structure is introduced. It is based on the generalization of the scalar Fox and Li algorithm to a fully-vectorial light representation. To provide a flexible modeling concept of different resonator geometries containing various optical elements, rigorous and approximative solutions of Maxwell's equations are combined in different subdomains of the resonator. This approach allows the simulation of plenty of different passive intracavity components as well as active media. For the numerically efficient simulation of nonlinear gain, thermal lensing and stress-induced birefringence effects in solid-state active crystals a semi-analytical vectorial beam propagation method is discussed in detail. As a numerical example the beam quality and output power of a flash-lamp-pumped Nd:YAG laser are improved. To that end we compensate the influence of stress-induced birefringence and thermal lensing by an aspherical mirror and a 90° quartz polarization rotator.

  6. 3D Vectorial Time Domain Computational Integrated Photonics

    Energy Technology Data Exchange (ETDEWEB)

    Kallman, J S; Bond, T C; Koning, J M; Stowell, M L

    2007-02-16

    The design of integrated photonic structures poses considerable challenges. 3D-Time-Domain design tools are fundamental in enabling technologies such as all-optical logic, photonic bandgap sensors, THz imaging, and fast radiation diagnostics. Such technologies are essential to LLNL and WFO sponsors for a broad range of applications: encryption for communications and surveillance sensors (NSA, NAI and IDIV/PAT); high density optical interconnects for high-performance computing (ASCI); high-bandwidth instrumentation for NIF diagnostics; micro-sensor development for weapon miniaturization within the Stockpile Stewardship and DNT programs; and applications within HSO for CBNP detection devices. While there exist a number of photonics simulation tools on the market, they primarily model devices of interest to the communications industry. We saw the need to extend our previous software to match the Laboratory's unique emerging needs. These include modeling novel material effects (such as those of radiation induced carrier concentrations on refractive index) and device configurations (RadTracker bulk optics with radiation induced details, Optical Logic edge emitting lasers with lateral optical inputs). In addition we foresaw significant advantages to expanding our own internal simulation codes: parallel supercomputing could be incorporated from the start, and the simulation source code would be accessible for modification and extension. This work addressed Engineering's Simulation Technology Focus Area, specifically photonics. Problems addressed from the Engineering roadmap of the time included modeling the Auston switch (an important THz source/receiver), modeling Vertical Cavity Surface Emitting Lasers (VCSELs, which had been envisioned as part of fast radiation sensors), and multi-scale modeling of optical systems (for a variety of applications). We proposed to develop novel techniques to numerically solve the 3D multi-scale propagation problem for both the

  7. Reconnection of superfluid vortex bundles.

    Science.gov (United States)

    Alamri, Sultan Z; Youd, Anthony J; Barenghi, Carlo F

    2008-11-21

    Using the vortex filament model and the Gross-Pitaevskii nonlinear Schroedinger equation, we show that bundles of quantized vortex lines in He II are structurally robust and can reconnect with each other maintaining their identity. We discuss vortex stretching in superfluid turbulence and show that, during the bundle reconnection process, kelvin waves of large amplitude are generated, in agreement with the finding that helicity is produced by nearly singular vortex interactions in classical Euler flows.

  8. Nano magnetic vortex wall guide

    Directory of Open Access Journals (Sweden)

    H. Y. Yuan

    2015-11-01

    Full Text Available A concept of nano magnetic vortex wall guide is introduced. Two architectures are proposed. The first one is properly designed superlattices while the other one is bilayer nanostrips. The concept is verified by micromagnetic simulations. Both guides can prevent the vortex core in a magnetic vortex wall from colliding with sample surface so that the information stored in the vortex core can be preserved during its transportation from one location to another one through the guides.

  9. Vortex Characterization for Engineering Applications

    Energy Technology Data Exchange (ETDEWEB)

    Jankun-Kelly, M; Thompson, D S; Jiang, M; Shannahan, B; Machiraju, R

    2008-01-30

    Realistic engineering simulation data often have features that are not optimally resolved due to practical limitations on mesh resolution. To be useful to application engineers, vortex characterization techniques must be sufficiently robust to handle realistic data with complex vortex topologies. In this paper, we present enhancements to the vortex topology identification component of an existing vortex characterization algorithm. The modified techniques are demonstrated by application to three realistic data sets that illustrate the strengths and weaknesses of our approach.

  10. Jet vortex methods

    CERN Document Server

    Holm, Darryl D

    2015-01-01

    Vortex blob methods are typically characterized by a regularization length scale, below which the the dynamics are trivial for isolated blobs. In this article we will find that the dynamics need not be trivial if one is willing to consider distributional derivatives of Dirac delta functionals as valid vorticity distributions. More specifically, a new singular vortex theory is presented for regularised Euler fluid equations of ideal incompressible flow in the plane. We determine the conditions under which such regularised Euler fluid equations may admit vorticity singularities which are stronger than delta functions, e.g., derivatives of delta functions. We also characterise the Hamiltonian dynamics of the higher-order singular vortices. Applications to the design of numerical meth- ods similar to vortex blob methods are also discussed. Such findings shed light onto the rich dynamics which occur below the regularization length scale and enlighten our perspective on the multiscale aspects of regularized fluid m...

  11. Vortex tube optimization theory

    Energy Technology Data Exchange (ETDEWEB)

    Lewins, Jeffery [Cambridge Univ., Magdalene Coll., Cambridge (United Kingdom); Bejan, Adrian [Duke Univ., Dept. of Mechanical Engineering and Materials Science, Durham, NC (United States)

    1999-11-01

    The Ranque-Hilsch vortex tube splits a single high pressure stream of gas into cold and warm streams. Simple models for the vortex tube combined with regenerative precooling are given from which an optimisation can be undertaken. Two such optimisations are needed: the first shows that at any given cut or fraction of the cold stream, the best refrigerative load, allowing for the temperature lift, is nearly half the maximum loading that would result in no lift. The second optimisation shows that the optimum cut is an equal division of the vortex streams between hot and cold. Bounds are obtainable within this theory for the performance of the system for a given gas and pressure ratio. (Author)

  12. Magnetic vortex racetrack memory

    Science.gov (United States)

    Geng, Liwei D.; Jin, Yongmei M.

    2017-02-01

    We report a new type of racetrack memory based on current-controlled movement of magnetic vortices in magnetic nanowires with rectangular cross-section and weak perpendicular anisotropy. Data are stored through the core polarity of vortices and each vortex carries a data bit. Besides high density, non-volatility, fast data access, and low power as offered by domain wall racetrack memory, magnetic vortex racetrack memory has additional advantages of no need for constrictions to define data bits, changeable information density, adjustable current magnitude for data propagation, and versatile means of ultrafast vortex core switching. By using micromagnetic simulations, current-controlled motion of magnetic vortices in cobalt nanowire is demonstrated for racetrack memory applications.

  13. Las funciones de Cobb-Douglas como base del espacio vectorial de funciones homogéneas.

    Directory of Open Access Journals (Sweden)

    Díaz Martínez, Zuleyka.

    2003-01-01

    Full Text Available Dado que el conjunto de funciones homogéneas de grado r forma un espacio vectorial real, el objetivo de este trabajo es mostrar que el conjunto de funciones de Cobb- Douglas de grado r, XαYr-α, forma una base de dicho espacio vectorial, lo que puede resultar de interés dada la importancia que las funciones de Cobb- Douglas tienen en Economía.Dado que el conjunto de funciones homogéneas de grado r forma un espacio vectorial real, el objetivo de este trabajo es mostrar que el conjunto de funciones de Cobb- Douglas de grado r, XαYr-α, forma una base de dicho espacio vectorial, lo que puede resultar de interés dada la importancia que las funciones de Cobb- Douglas tienen en Economía.

  14. Demodulation for multi vortex beams based on composite diffraction hologram

    Science.gov (United States)

    Zhang, Weibin; Li, Yingchun; Sun, Tengfen; Shao, Wei; Zhu, Fuquan; Wang, YingYing

    2016-12-01

    While projecting a Gaussian beam onto the spatial light modulator (SLM) which has loaded a composite hologram, several vortex beams can be generated at one time. On the contrary, while projecting the corresponding vortex beam onto the hologram, the Gaussian beam can be restored, realizing the demodulation of vortex beam. In traditional optical communication systems, a hologram can only demodulate one incident vortex beam. In this paper, a vortex beam demodulation method based on composite diffraction hologram is proposed, which can demodulate several incident vortex beams with only one hologram. An experimental system is set up in this paper which achieves the generation, transmission and demodulation experiments of vortex beams with 64QAM-OFDM signals. After a series of offline processing on the demodulated Gaussian beam, constellation and bit error rates (BER) of each subcarrier for OFDM signals are acquired. The experimental results show that good system performance can be achieved with this method as the BERs of all subcarriers are under the FEC threshold.

  15. Evolution of the scintillation index and the optical vortex density in speckle fields after removal of the least-squares phase

    CSIR Research Space (South Africa)

    Chen, M

    2010-10-01

    Full Text Available Knowledge of the behavior of stochastic optical fields can aid the understanding of the scintillation of light propagating through a turbulent medium. For this purpose, the authors perform a numerical investigation of the evolution...

  16. The vectorial photoelectric effect under solar irradiance and its application to sun sensing

    CERN Document Server

    Hechenblaikner, Gerald

    2014-01-01

    Sun sensors are an integral part of the attitude and orbit control system onboard almost any spacecraft. While the majority of standard analogue sun sensors is based on photo-detectors which produce photo-currents proportional to the cosine of the incidence angle (cosine detectors), we propose an alternative scheme where the vectorial photoelectric effect is exploited to achieve a higher sensitivity of the sensed photo-current to the incidence angle. The vectorial photo-effect is investigated in detail for metal cathode detectors in a space environment. Besides long operational lifetimes without significant degradation, metal cathode detectors are insensitive to earth albedo, which may significantly reduce the errors affecting attitude measurements in low earth orbits. Sensitivity curves are calculated and trade-offs performed with the aim of optimizing the sensitivity whilst also providing currents sufficient for detection. Simple applications and detector configurations are also discussed and compared to ex...

  17. Uniqueness of the potential function for the vectorial Sturm-Liouville equation on a finite interval

    Directory of Open Access Journals (Sweden)

    Chang Tsorng-Hwa

    2011-01-01

    Full Text Available Abstract In this paper, the vectorial Sturm-Liouville operator L Q = - d 2 d x 2 + Q ( x is considered, where Q(x is an integrable m × m matrix-valued function defined on the interval [0,π] The authors prove that m 2+1 characteristic functions can determine the potential function of a vectorial Sturm-Liouville operator uniquely. In particular, if Q(x is real symmetric, then m ( m + 1 2 + 1 characteristic functions can determine the potential function uniquely. Moreover, if only the spectral data of self-adjoint problems are considered, then m 2 + 1 spectral data can determine Q(x uniquely.

  18. Ecological aspects of the vectorial control of Chagas' disease in Brazil

    Directory of Open Access Journals (Sweden)

    Dias João Carlos P.

    1994-01-01

    Full Text Available The feasibility and most important ecological aspects of vectorial Chagas' disease control are discussed. The spread and maintenance of this disease involve multiple ecological and sociopolitical factors that must be taken into account when control programs are planned, executed and evaluated. In spite of its complexity, Chagas disease can be controlled using methods that target specific mechanisms of transmission, the most important being vectorial and transfusional. Major ecological problems in Chagas' disease control do not exist, even in the case of the chemical control of triatomine vectors. The main challenges for the Brazilian Control Program at this moment are: its maintenance as a political priority; the threat of peridomestic vectors; and the consolidation of permanent horizontal and participative epidemiological surveillance systems against the vector.

  19. Intermodal Raman Scattering between Full Vectorial Modes in Few Moded Fiber

    DEFF Research Database (Denmark)

    Rishøj, Lars Søgaard; Ramachandran, Siddharth; Rottwitt, Karsten

    2013-01-01

    We experimentally investigate intermodal Raman interaction. The pump is in the fundamental mode, HE11, and the signal is in either of two full vectorial modes, TM01 or TE01. The on-off gain is approximately 3 dB for both modes, using 4 km of few-moded fiber and 400 mW of pump power.......We experimentally investigate intermodal Raman interaction. The pump is in the fundamental mode, HE11, and the signal is in either of two full vectorial modes, TM01 or TE01. The on-off gain is approximately 3 dB for both modes, using 4 km of few-moded fiber and 400 mW of pump power....

  20. Improved near-field calculations using vectorial diffraction integrals in the finite-difference time-domain method.

    Science.gov (United States)

    Coe, Ryan L; Sebiel, Eric J

    2011-08-01

    We present an alternative mixed-surface implementation of the Stratton-Chu vectorial diffraction integrals as a means to improve near-field calculations outside the computational domain of the finite-difference time-domain method. This approach, originally derived for far-field calculations, reduces the effect of phase errors and reduces storage costs compared to standard single-surface implementations performed using arithmetic and geometric means. All three methods are applied to a strongly forward-scattering sphere, which is the gold standard for similar simulations with a corresponding analytical Mie series solution. Additionally, the mixed surface is applied to an ensemble of theoretical flow cytometry calibration standards in optical gel. The near-field electromagnetic scattering produced by these or any arbitrary object, such as a cell, could be used to simulate images in a high-numerical-aperture microscope. The results show the mixed-surface implementation outperforms the standard techniques for calculating the near-field electromagnetic fields.

  1. Evaluation of the vectorial capacity of Rhipicephalus sanguineus (Acari: Ixodidae) in the transmission of canine visceral leishmaniasis.

    Science.gov (United States)

    Paz, Gustavo Fontes; Ribeiro, Múcio Flávio Barbosa; Michalsky, Erika Monteiro; da Rocha Lima, Ana Cristina Vianna Mariano; França-Silva, João Carlos; Barata, Ricardo Andrade; Fortes-Dias, Consuelo Latorre; Dias, Edelberto Santos

    2010-01-01

    The vectorial capacity of Rhipicephalus sanguineus in the transmission of canine visceral leishmaniasis has been evaluated through a laboratory-controlled experiment. One healthy Leishmania-free dog and two dogs naturally infected with Leishmania were infested with R. sanguineus in various stages of development. Engorged larvae, unfed nymphs, engorged nymphs, unfed adults, engorged female adults and fed male adults were collected from the experimental animals and examined for Leishmania infection by optical microscopy, polymerase chain reaction (PCR) and parasite culture. Leishmania forms were not detected in any of the 433 smears prepared from engorged colonies nor in any of the 118 smears prepared from unfed colonies. However, one flagellate structure was identified in one of the smears. All pools of R. sanguineus that had fed on the infected dogs tested PCR-positive for Leishmania DNA, with the single exception of the pool of engorged larvae. In contrast, all pools of ticks that had fed on the Leishmania-free dog were PCR-negative. Leishmania growth was not observed in any of the tick colonies following incubation on culture medium. Considering that no Leishmania forms were identified in any of the meticulously analysed smears derived from engorged colonies of R. sanguineus, it appears somewhat unlikely that the maintenance and multiplication of Leishmania occurs within the tick.

  2. LOPES 3D - vectorial measurements of radio emission from cosmic ray induced air showers

    CERN Document Server

    Apel, W D; Bähren, L; Bekk, K; Bertaina, M; Biermann, P L; Blümer, J; Bozdog, H; Brancus, I M; Chiavassa, A; Daumiller, K; de Souza, V; Di Pierro, F; Doll, P; Engel, R; Falcke, H; Fuchs, B; Fuhrmann, D; Gemmeke, H; Grupen, C; Haungs, A; Heck, D; Hörandel, J R; Horneffer, A; Huber, D; Huege, T; Isar, P G; Kampert, K -H; Kang, D; Krömer, O; Kuijpers, J; Link, K; Luczak, P; Ludwig, M; Mathes, H J; Melissas, M; Morello, C; Oehlschläger, J; Palmieri, N; Pierog, T; Rautenberg, J; Rebel, H; Roth, M; Rühle, C; Saftoiu, A; Schieler, H; Schmidt, A; Schröder, F G; Sima, O; Toma, G; Trinchero, G C; Weindl, A; Wochele, J; Zabierowski, J; Zensus, J A

    2013-01-01

    LOPES 3D is able to measure all three components of the electric field vector of the radio emission from air showers. This allows a better comparison with emission models. The measurement of the vertical component increases the sensitivity to inclined showers. By measuring all three components of the electric field vector LOPES 3D demonstrates by how much the reconstruction accuracy of primary cosmic ray parameters increases. Thus LOPES 3D evaluates the usefulness of vectorial measurements for large scale applications.

  3. Vectorially oriented monolayers of the cytochrome c/cytochrome oxidase bimolecular complex.

    OpenAIRE

    Edwards, A M; Blasie, J. K.; Bean, J. C.

    1998-01-01

    Vectorially oriented monolayers of yeast cytochrome c and its bimolecular complex with bovine heart cytochrome c oxidase have been formed by self-assembly from solution. Both quartz and Ge/Si multilayer substrates were chemical vapor deposited with an amine-terminated alkylsiloxane monolayer that was then reacted with a hetero-bifunctional cross-linking reagent, and the resulting maleimide endgroup surface then provided for covalent interactions with the naturally occurring single surface cys...

  4. Quantitative global studies of reactomes and metabolomes using a vectorial representation of reactions and chemical compounds

    Directory of Open Access Journals (Sweden)

    Triviño Juan C

    2010-04-01

    Full Text Available Abstract Background Global studies of the protein repertories of organisms are providing important information on the characteristics of the protein space. Many of these studies entail classification of the protein repertory on the basis of structure and/or sequence similarities. The situation is different for metabolism. Because there is no good way of measuring similarities between chemical reactions, there is a barrier to the development of global classifications of "metabolic space" and subsequent studies comparable to those done for protein sequences and structures. Results In this work, we propose a vectorial representation of chemical reactions, which allows them to be compared and classified. In this representation, chemical compounds, reactions and pathways may be represented in the same vectorial space. We show that the representation of chemical compounds reflects their physicochemical properties and can be used for predictive purposes. We use the vectorial representations of reactions to perform a global classification of the reactome of the model organism E. coli. Conclusions We show that this unsupervised clustering results in groups of enzymes more coherent in biological terms than equivalent groupings obtained from the EC hierarchy. This hierarchical clustering produces an optimal set of 21 groups which we analyzed for their biological meaning.

  5. Interaction of light with the polarization devices: a vectorial Pauli algebraic approach

    Energy Technology Data Exchange (ETDEWEB)

    Tudor, Tiberiu [Faculty of Physics, University of Bucharest, PO Box MG-11, 0771253, Bucharest-Magurele (Romania)], E-mail: ttudor@ifin.nipne.ro

    2008-10-17

    A theoretical approach to the interaction between polarized light and polarization devices, based on the vectorial and pure operatorial form of the Pauli algebra, is presented. Unlike the standard (Jones and Mueller) approaches, this formalism is coordinate-free, i.e. it does not appeal to any matrix representation of the involved operators. This vectorial approach establishes a mathematical bridge between the Hilbert space of the density operators of the polarization states and the Poincare space of their geometric representations and gives a rigorous justification of the handling of the interactions between the polarization states and polarization systems on the Poincare sphere (in the Poincare ball). In such an approach, unlike the standard ones, the three relevant quantities that characterize the interaction-the gain, the Poincare vector of the outgoing light and its degree of polarization-result straightforwardly, in block, in the Pauli vectorial expressions of the density operator of the output state. The final equations are symmetric, compact and physically expressive. A generalized form of Malus' law, for any dichroic device and partially polarized light is obtained this way.

  6. Time evolution of dimethyl carbinol in water vortex rings

    Science.gov (United States)

    Omocea, Ioana-Laura; Damian, Iulia-Rodica; Simionescu, Štefan-Mugur; Bǎlan, Corneliu; Mihǎilescu, Mona

    2015-02-01

    The paper is concerned with the experimental study of the time evolution of a single laminar vortex ring generated at the interface between water and dimethyl carbinol. The experiments were performed by the submerged injection with a constant rate of dimethyl carbinol (isopropyl alcohol) in a water tank. The dynamics of the vortex formation was recorded at 1000 fps with a Photron Fastcam SA1 camera, equipped with a microscopic Edmund Optics objective. A symmetrical buoyant vortex ring with an elongated topology was observed at the interface between the two immiscible liquids. The analyses of the time dependence of the vortex rings disclosed three regions for the evolution of the interface: one dominated by inertia force, a transition region and a third region, dominated by buoyancy force.

  7. Mean intensity of vortex Bessel beams propagating in turbulent atmosphere.

    Science.gov (United States)

    Lukin, Igor P

    2014-05-20

    Transformation of vortex Bessel beams during propagation in turbulent atmosphere is theoretically analyzed. Deforming influence of the random inhomogeneity of the turbulent medium on propagation of diffraction-free beams leads to disappearance of their invariant properties. In the given research, features of evolution of the spatial structure of distribution of mean intensity of vortex Bessel beams in turbulent atmosphere are analyzed. A quantitative criterion of possibility of carrying over of a dark central domain by vortex Bessel beams in a turbulent atmosphere is derived. The analysis of the behavior of several physical parameters of mean-level optical radiation shows that the shape stability of a vortex Bessel beam increases with the topological charge of this beam during its propagation in a turbulent atmosphere.

  8. Stereo particle image velocimetry applied to a vortex pipe flow

    Science.gov (United States)

    Zhang, Zherui; Hugo, Ronald J.

    2006-03-01

    Stereo particle image velocimetry (PIV) has been employed to study a vortex generated via tangential injection of water in a 2.25 inch (57 mm) diameter pipe for Reynolds numbers ranging from 1,118 to 63,367. Methods of decreasing pipe-induced optical distortion and the PIV calibration technique are addressed. The mean velocity field analyses have shown spatial similarity and revealed four distinct flow regions starting from the central axis of rotation to the pipe wall in the vortex flows. Turbulence statistical data and vortex core location data suggest that velocity fluctuations are due to the axis of the in-line vortex distorting in the shape of a spiral.

  9. Propagation of Vortex Electron Wave Functions in a Magnetic Field

    CERN Document Server

    Gallatin, Gregg M

    2012-01-01

    The physics of coherent beams of photons carrying axial orbital angular momentum (OAM) is well understood and such beams, sometimes known as vortex beams, have found applications in optics and microscopy. Recently electron beams carrying very large values of axial OAM have been generated. In the absence of coupling to an external electromagnetic field the propagation of such vortex electron beams is virtually identical mathematically to that of vortex photon beams propagating in a medium with a homogeneous index of refraction. But when coupled to an external electromagnetic field the propagation of vortex electron beams is distinctly different from photons. Here we use the exact path integral solution to Schrodingers equation to examine the time evolution of an electron wave function carrying axial OAM. Interestingly we find that the nonzero OAM wave function can be obtained from the zero OAM wave function, in the case considered here, simply by multipling it by an appropriate time and position dependent pref...

  10. Dynamics of Vortex Cavitation

    NARCIS (Netherlands)

    Pennings, P.C.

    2016-01-01

    This thesis describes the mechanisms with which tip vortex cavitation is responsible for broadband pressure fluctuations on ship propellers. Hypotheses for these are described in detail by Bosschers (2009). Validation is provided by three main cavitation-tunnel experiments, one on a model propeller

  11. Passive Wake Vortex Control

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, J M

    2001-10-18

    The collapse of the Soviet Union and ending of the Cold War brought about many significant changes in military submarine operations. The enemies that the US Navy faces today and in the future will not likely be superpowers armed with nuclear submarines, but rather smaller, rogue nations employing cheaper diesel/electric submarines with advanced air-independent propulsion systems. Unlike Cold War submarine operations, which occurred in deep-water environments, future submarine conflicts are anticipated to occur in shallow, littoral regions that are complex and noisy. Consequently, non-acoustic signatures will become increasingly important and the submarine stealth technology designed for deep-water operations may not be effective in these environments. One such non-acoustic signature is the surface detection of a submarine's trailing vortex wake. If a submarine runs in a slightly buoyant condition, its diving planes must be inclined at a negative angle of attack to generate sufficient downforce, which keeps the submarine from rising to the surface. As a result, the diving planes produce a pair of counter-rotating trailing vortices that propagate to the water surface. In previous deep-water operations, this was not an issue since the submarines could dive deep enough so that the vortex pair became incoherent before it reached the water surface. However, in shallow, littoral environments, submarines do not have the option of diving deep and, hence, the vortex pair can rise to the surface and leave a distinct signature that might be detectable by synthetic aperture radar. Such detection would jeopardize not only the mission of the submarine, but also the lives of military personnel on board. There has been another attempt to solve this problem and reduce the intensity of trailing vortices in the wakes of military submarines. The research of Quackenbush et al. over the past few years has been directed towards an idea called ''vortex leveraging

  12. Revealing the radial characteristics of Q-plate generated vortex beams

    CSIR Research Space (South Africa)

    Sephton, Bereneice

    2016-07-01

    Full Text Available Q-plates (QP) have become ubiquitous in experiments requiring the generation of vortex beams since its development in 2006. It consequently follows that it is important to characterize the vortex beams created by this geometric-phase optical element...

  13. The shock-vortex interaction patterns affected by vortex flow regime and vortex models

    Science.gov (United States)

    Chang, Keun-Shik; Barik, Hrushikesh; Chang, Se-Myong

    2009-08-01

    We have used a third-order essentially non-oscillatory method to obtain numerical shadowgraphs for investigation of shock-vortex interaction patterns. To search different interaction patterns, we have tested two vortex models (the composite vortex model and the Taylor vortex model) and as many as 47 parametric data sets. By shock-vortex interaction, the impinging shock is deformed to a S-shape with leading and lagging parts of the shock. The vortex flow is locally accelerated by the leading shock and locally decelerated by the lagging shock, having a severely elongated vortex core with two vertices. When the leading shock escapes the vortex, implosion effect creates a high pressure in the vertex area where the flow had been most expanded. This compressed region spreads in time with two frontal waves, an induced expansion wave and an induced compression wave. They are subsonic waves when the shock-vortex interaction is weak but become supersonic waves for strong interactions. Under a intermediate interaction, however, an induced shock wave is first developed where flow speed is supersonic but is dissipated where the incoming flow is subsonic. We have identified three different interaction patterns that depend on the vortex flow regime characterized by the shock-vortex interaction.

  14. Normal modes and mode transformation of pure electron vortex beams

    Science.gov (United States)

    Thirunavukkarasu, G.; Mousley, M.; Babiker, M.; Yuan, J.

    2017-02-01

    Electron vortex beams constitute the first class of matter vortex beams which are currently routinely produced in the laboratory. Here, we briefly review the progress of this nascent field and put forward a natural quantum basis set which we show is suitable for the description of electron vortex beams. The normal modes are truncated Bessel beams (TBBs) defined in the aperture plane or the Fourier transform of the transverse structure of the TBBs (FT-TBBs) in the focal plane of a lens with the said aperture. As these modes are eigenfunctions of the axial orbital angular momentum operator, they can provide a complete description of the two-dimensional transverse distribution of the wave function of any electron vortex beam in such a system, in analogy with the prominent role Laguerre-Gaussian (LG) beams played in the description of optical vortex beams. The characteristics of the normal modes of TBBs and FT-TBBs are described, including the quantized orbital angular momentum (in terms of the winding number l) and the radial index p>0. We present the experimental realization of such beams using computer-generated holograms. The mode analysis can be carried out using astigmatic transformation optics, demonstrating close analogy with the astigmatic mode transformation between LG and Hermite-Gaussian beams. This article is part of the themed issue 'Optical orbital angular momentum'.

  15. Vortex array laser beam generation from a Dove prism-embedded unbalanced Mach-Zehnder interferometer.

    Science.gov (United States)

    Chu, Shu-Chun; Yang, Chao-Shun; Otsuka, Kenju

    2008-11-24

    This paper proposes a new scheme for generating vortex laser beams from a laser. The proposed system consists of a Dove prism embedded in an unbalanced Mach-Zehnder interferometer configuration. This configuration allows controlled construction of p x p vortex array beams from Ince-Gaussian modes, IG(e) (p,p) modes. An incident IG(e)(p,p) laser beam of variety order p can easily be generated from an end-pumped solid-state laser system with an off-axis pumping mechanism. This study simulates this type of vortex array laser beam generation, analytically derives the vortex positions of the resulting vortex array laser beams, and discusses beam propagation effects. The resulting vortex array laser beam can be applied to optical tweezers and atom traps in the form of two-dimensional arrays, or used to study the transfer of angular momentum to micro particles or atoms (Bose-Einstein condensate).

  16. Desarrollar el pensamiento científico de las ciencias naturales en Física para el análisis vectorial de fuerza.

    OpenAIRE

    Campus Lemus, Diana Ivonne; Díaz Moreno, Gabriela Fabiola; Espinosa Moya, Wendy Sofía; Guerrero Barajas, Marcela Margarita; Leal Leyva, Milagros Berenice

    2012-01-01

    1)Información general 2)Evaluación diagnóstica 3) Temario: Tema 1. ¿Cómo se conceptualiza la competencia de análisis vectorial? Tema 2. ¿Por qué es relevante la competencia de análisis vectorial de fuerzas? Tema 3. ¿Cómo aprendo la competencia para el análisis vectorial de fuerzas? Tema 4. ¿Cómo aplico la competencia de análisis vectorial de fuerzas? Tema...

  17. Simulations of vortex generators

    Science.gov (United States)

    Koumoutsakos, P.

    1995-01-01

    We are interested in the study, via direct numerical simulations, of active vortex generators. Vortex generators may be used to modify the inner part of the boundary layer or to control separation thus enhancing the performance and maneuverability of aerodynamic configurations. We consider generators that consist of a surface cavity elongated in the stream direction and partially covered with a moving lid that at rest lies flush with the boundary. Streamwise vorticity is generated and ejected due to the oscillatory motion of the lid. The present simulations complement relevant experimental investigations of active vortex generators at NASA Ames and Stanford University (Saddoughi, 1994, and Jacobson and Reynolds, 1993). Jacobson and Reynolds (1993) used a piezoelectric device in water, allowing for small amplitude high frequency oscillations. They placed the lid asymmetrically on the cavity and observed a strong outward velocity at the small gap of the cavity. Saddoughi used a larger mechanically driven device in air to investigate this flow and he observed a jet emerging from the wide gap of the configuration, contrary to the findings of Jacobson and Reynolds. Our task is to simulate the flows generated by these devices and to conduct a parametric study that would help us elucidate the physical mechanisms present in the flow. Conventional computational schemes encounter difficulties when simulating flows around complex configurations undergoing arbitrary motions. Here we present a formulation that achieves this task on a purely Lagrangian frame by extending the formulation presented by Koumoutsakos, Leonard and Pepin (1994). The viscous effects are taken into account by modifying the strength of the particles, whereas fast multipole schemes employing hundreds of thousands of particles allow for high resolution simulations. The results of the present simulations would help us assess some of the effects of three-dimensionality in experiments and investigate the role

  18. Stabilization of vortex beams in Kerr media by nonlinear absorption

    Science.gov (United States)

    Porras, Miguel A.; Carvalho, Márcio; Leblond, Hervé; Malomed, Boris A.

    2016-11-01

    We elaborate a solution for the problem of stable propagation of transversely localized vortex beams in homogeneous optical media with self-focusing Kerr nonlinearity. Stationary nonlinear Bessel-vortex states are stabilized against azimuthal breakup and collapse by multiphoton absorption, while the respective power loss is offset by the radial influx of the power from an intrinsic reservoir. A linear stability analysis and direct numerical simulations reveal a region of stability of these vortices. Beams with multiple vorticities have their stability regions too. These beams can then form robust tubular filaments in transparent dielectrics as common as air, water, and optical glasses at sufficiently high intensities. We also show that the tubular, rotating, and specklelike filamentation regimes, previously observed in experiments with axicon-generated Bessel beams, can be explained as manifestations of the stability or instability of a specific nonlinear Bessel-vortex state, which is fully identified.

  19. Stabilization of vortex beams in Kerr media by nonlinear absorption

    CERN Document Server

    Porras, Miguel A; Leblond, Hervé; Malomed, Boris A

    2016-01-01

    We elaborate a new solution for the problem of stable propagation of transversely localized vortex beams in homogeneous optical media with self-focusing Kerr nonlinearity. Stationary nonlinear Bessel-vortex states are stabilized against azimuthal breakup and collapse by multiphoton absorption, while the respective power loss is offset by the radial influx of the power from an intrinsic reservoir. A linear stability analysis and direct numerical simulations reveal a region of stability of these vortices. Beams with multiple vorticities have their stability regions too. These beams can then form robust tubular filaments in transparent dielectrics as common as air, water and optical glasses at sufficiently high intensities. We also show that the tubular, rotating and speckle-like filamentation regimes, previously observed in experiments with axicon-generated Bessel beams, can be explained as manifestations of the stability or instability of a specific nonlinear Bessel-vortex state, which is fully identified.

  20. Multiply Phased Traveling BPS Vortex

    CERN Document Server

    Kimm, Kyoungtae; Cho, Y M

    2016-01-01

    We present the multiply phased current carrying vortex solutions in the U(1) gauge theory coupled to an $(N+1)$-component SU(N+1) scalar multiplet in the Bogomolny limit. Our vortex solutions correspond to the static vortex dressed with traveling waves along the axis of symmetry. What is notable in our vortex solutions is that the frequencies of traveling waves in each component of the scalar field can have different values. The energy of the static vortex is proportional to the topological charge of $CP^N$ model in the BPS limit, and the multiple phase of the vortex supplies additional energy contribution which is proportional to the Noether charge associated to the remaining symmetry.

  1. Vortex cores and vortex motion in superconductors with anisotropic Fermi surfaces

    Science.gov (United States)

    Galvis, J. A.; Herrera, E.; Guillamón, I.; Vieira, S.; Suderow, H.

    2017-02-01

    Explaning static and dynamic properties of the vortex lattice in anisotropic superconductors requires a careful characterization of vortex cores. The vortex core contains Andreev bound states whose spatial extension depends on the anisotropy of the electronic band-structure and superconducting gap. This might have an impact on the anisotropy of the superconducting properties and on vortex dynamics. Here we briefly summarize basic concepts to understand anisotropic vortex cores and review vortex core imaging experiments. We further discuss moving vortex lattices and the influence of vortex core shape in vortex motion. We find vortex motion in highly tilted magnetic fields. We associate vortex motion to the vortex entry barrier and the screening currents at the surface. We find preferential vortex motion along the main axis of the vortex lattice. After travelling integers of the intervortex distance, we find that vortices move more slowly due to the washboard potential of the vortex lattice.

  2. Counterdiabatic vortex pump in spinor Bose-Einstein condensates

    Science.gov (United States)

    Ollikainen, T.; Masuda, S.; Möttönen, M.; Nakahara, M.

    2017-01-01

    Topological phase imprinting is a well-established technique for deterministic vortex creation in spinor Bose-Einstein condensates of alkali-metal atoms. It was recently shown that counterdiabatic quantum control may accelerate vortex creation in comparison to the standard adiabatic protocol and suppress the atom loss due to nonadiabatic transitions. Here we apply this technique, assisted by an optical plug, for vortex pumping to theoretically show that sequential phase imprinting up to 20 cycles generates a vortex with a very large winding number. Our method significantly increases the fidelity of the pump for rapid pumping compared to the case without the counterdiabatic control, leading to the highest angular momentum per particle reported to date for the vortex pump. Our studies are based on numerical integration of the three-dimensional multicomponent Gross-Pitaevskii equation, which conveniently yields the density profiles, phase profiles, angular momentum, and other physically important quantities of the spin-1 system. Our results motivate the experimental realization of the vortex pump and studies of the rich physics it involves.

  3. Experimental verification on tightly focused radially polarized vortex beams

    Institute of Scientific and Technical Information of China (English)

    Du Fu-Rong; Zhou Zhe-Hai; Tan Qiao-Feng; Yang Chang-Xi; Zhang Xiao-Qing; Zhu Lian-Qing

    2013-01-01

    The theoretical and experimental results of tightly focused radially polarized vortex beams are demonstrated.An auto-focus technology is introduced into the measurement system in order to enhance the measurement precision,and the radially polarized vortex beams are generated by a liquid-crystal polarization converter and a vortex phase plate.The focused fields of radially polarized vortex beams with different topological charges at numerical apertures (NAs) of 0.65 and 0.85 are measured respectively,and the results indicate that the total intensity distribution at focus is dependent not only on the NA of the focusing objective lens and polarization pattem of the beam but also on the topological charge l of the beam.Some unique focusing properties of radially polarized vortex beams with fractional topological charges are presented based on numerical calculations.The experimental verification paves the way for some practical applications of radially polarized vortex beams,such as in optical trapping,near-field microscopy,and material processing.

  4. Effect of Larval Competition on Extrinsic Incubation Period and Vectorial Capacity of Aedes albopictus for Dengue Virus.

    Science.gov (United States)

    Bara, Jeffrey; Rapti, Zoi; Cáceres, Carla E; Muturi, Ephantus J

    2015-01-01

    Despite the growing awareness that larval competition can influence adult mosquito life history traits including susceptibility to pathogens, the net effect of larval competition on human risk of exposure to mosquito-borne pathogens remains poorly understood. We examined how intraspecific larval competition affects dengue-2 virus (DENV-2) extrinsic incubation period and vectorial capacity of its natural vector Aedes albopictus. Adult Ae. albopictus from low and high-larval density conditions were orally challenged with DENV-2 and then assayed for virus infection and dissemination rates following a 6, 9, or 12-day incubation period using real-time quantitative reverse transcription PCR. We then modeled the effect of larval competition on vectorial capacity using parameter estimates obtained from peer-reviewed field and laboratory studies. Larval competition resulted in significantly longer development times, lower emergence rates, and smaller adults, but did not significantly affect the extrinsic incubation period of DENV-2 in Ae. albopictus. Our vectorial capacity models suggest that the effect of larval competition on adult mosquito longevity likely has a greater influence on vectorial capacity relative to any competition-induced changes in vector competence. Furthermore, we found that large increases in the viral dissemination rate may be necessary to compensate for small competition-induced reductions in daily survivorship. Our results indicate that mosquito populations that experience stress from larval competition are likely to have a reduced vectorial capacity, even when susceptibility to pathogens is enhanced.

  5. A generalization of vortex lines

    CERN Document Server

    Fecko, Marian

    2016-01-01

    Helmholtz theorem states that, in ideal fluid, vortex lines move with the fluid. Another Helmholtz theorem adds that strength of a vortex tube is constant along the tube. The lines may be regarded as integral surfaces of an 1-dimensional integrable distribution (given by the vorticity 2-form). In general setting of theory of integral invariants, due to Poincare and Cartan, one can find $d$-dimensional integrable distribution whose integral surfaces show both properties of vortex lines: they move with (abstract) fluid and, for appropriate generalization of vortex tube, strength of the latter is constant along the tube.

  6. Spatial and optical parameters of contrails in the vortex and dispersion regime determined by means of a ground-based scanning lidar

    Energy Technology Data Exchange (ETDEWEB)

    Freudenthaler, V.; Homburg, F.; Jaeger, H. [Fraunhofer-Inst. fuer Atmosphaerische Umweltforschung (IFU), Garmisch-Partenkirchen (Germany)

    1997-12-31

    The spatial growth of individual condensation trails (contrails) of commercial aircrafts in the time range from 15 s to 60 min behind the aircraft is investigated by means of a ground-based scanning backscatter lidar. The growth in width is mainly governed by wind shear and varies between 18 m/min and 140 m/min. The growth of the cross-section varies between 3500 m{sup 2}/min and 25000 m{sup 2}/min. These values are in agreement with results of model calculations and former field measurements. The vertical growth is often limited by boundaries of the humid layer at flight level, but values up to 18 m/min were observed. Optical parameters like depolarization, optical depth and lidar ratio, i.e. the extinction-to-backscatter ratio, have been retrieved from the measurements at a wavelength of 532 nm. The linear depolarization rises from values as low as 0.06 for a young contrail (10 s old) to values around 0.5, typical for aged contrails. The latter indicates the transition from non-crystalline to crystalline particles in persistent contrails within a few minutes. The scatter of depolarization values measured in individual contrails is narrow, independent of the contrails age, and suggests a rather uniform growth of the particles inside a contrail. (author) 18 refs.

  7. Fiber Laser Coherent Lidar for Wake-Vortex Hazard Detection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a 1.5um fiber-optic pulsed coherent lidar as a highly effective sensor sub-system for airborne wake-vortex hazard detection. The proposed design is based...

  8. Fiber Laser Coherent Lidar for Wake-Vortex Hazard Detection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a 1.5um fiber-optic pulsed coherent lidar as a highly effective sensor sub-system for airborne wake-vortex hazard detection. The proposed design is based...

  9. Next Generation Fiber Coherent Lidar System for Wake Vortex Detection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SibellOptics proposes to develop an eye-safe, long-range, compact, versatile, all-fiber wind LIDAR system for wake vortex measurement and other wind measurement...

  10. Derivada parcial de un campo vectorial respecto de una variable escalar

    OpenAIRE

    Macho Ortiz, Andrés

    2014-01-01

    Derivar un campo vectorial respecto una variable escalar (por ejemplo el tiempo o la frecuencia) no es nada evidente. Hay un momento en que nos encontramos con la necesidad de derivar los vectores unitarios de la base del sistema de coordenadas respecto de esa variable escalar. Si trabajamos con coordenadas cilíndricas o esféricas dicha derivada no tiene por qué ser nula y hay que calcularla, que es lo difícil del asunto. Para poder calcularla habrá que hacer un cálculo tedioso qu...

  11. Derivada parcial de un campo vectorial respecto de una variable escalar

    OpenAIRE

    Macho Ortiz, Andrés

    2014-01-01

    Derivar un campo vectorial respecto una variable escalar (por ejemplo el tiempo o la frecuencia) no es nada evidente. Hay un momento en que nos encontramos con la necesidad de derivar los vectores unitarios de la base del sistema de coordenadas respecto de esa variable escalar. Si trabajamos con coordenadas cilíndricas o esféricas dicha derivada no tiene por qué ser nula y hay que calcularla, que es lo difícil del asunto. Para poder calcularla habrá que hacer un cálculo tedioso qu...

  12. Biological cycle and preliminary data on vectorial competence of Triatoma boliviana in laboratory conditions.

    Science.gov (United States)

    Durán, Pamela; Siñani, Edda; Depickère, Stéphanie

    2014-12-01

    With more than 140 potential vectors of Chagas disease, it is important to better know the biology and especially the vectorial capacity of the triatomine species which live in the surroundings of human dwellings. In Bolivia where 17 triatomine species are reported, the principal vector is Triatoma infestans. In some valleys of the department of La Paz where T. infestans is not present, a new species (Triatoma boliviana) was described in 2007. This species lives in a sylvatic environment not far away from the dwellings, and occasionally some individuals are found inside the houses. This study was carried out to describe the biological cycle of T. boliviana and to determine its vectorial competence. The development of a cohort of 95 nymphs of first instar (N1) was followed through nymphal instars and adult stage until death in laboratory (22°C). They were fed twice a week on an immobilized mouse. The median egg-to-adult development time was 8.4 months. The mortality by nymphal instar was lower than 7% except for N1 (67%) and N5 (18%). All nymph instars needed at least two feedings to molt (until six feedings for N5). The differentiation of a nymph into a female or a male could not be detected until the fifth instar for which the food intake was greater for a nymph developing into a female. Adults fed about once a week. The adult life span was around 400 days. The fecundity was 4.2 eggs/female/week, with a hatching rate of 50% and a hatching time of 39 days. In the same conditions, T. infestans showed a similar fecundity but a greater hatching rate and hatching time. A trial for rearing the adults at a higher temperature (26°C) showed a drastic fall in the fecundity and in the hatching rate. The vectorial competence was analyzed for fifth instars and adults by three parameters: the ability to feed on human beings, the capacity to be infected by T. cruzi and the postfeeding defecation delay. Results showed a relatively high vectorial competence: (1) insects fed

  13. Transfer Scheme Evaluation Model for a Transportation Hub based on Vectorial Angle Cosine

    Directory of Open Access Journals (Sweden)

    Li-Ya Yao

    2014-07-01

    Full Text Available As the most important node in public transport network, efficiency of a transport hub determines the entire efficiency of the whole transport network. In order to put forward effective transfer schemes, a comprehensive evaluation index system of urban transport hubs’ transfer efficiency was built, evaluation indexes were quantified, and an evaluation model of a multi-objective decision hub transfer scheme was established based on vectorial angle cosine. Qualitative and quantitative analysis on factors affecting transfer efficiency is conducted, which discusses the passenger satisfaction, transfer coordination, transfer efficiency, smoothness, economy, etc. Thus, a new solution to transfer scheme utilization was proposed.

  14. Aircraft Wake Vortex Deformation in Turbulent Atmosphere

    OpenAIRE

    Hennemann, Ingo; Holzaepfel, Frank

    2007-01-01

    Large-scale distortion of aircraft wake vortices appears to play a crucial role for aircraft safety during approach and landing. Vortex distortion is investigated based on large eddy simulations of wake vortex evolution in a turbulent atmosphere. A vortex identification method is developed that can be adapted to the vortex scales of interest. Based on the identified vortex center tracks, a statistics of vortex curvature radii is established. This statistics constitutes the basis for understan...

  15. Vortex stabilization by means of spatial solitons in nonlocal media

    Science.gov (United States)

    Izdebskaya, Yana; Krolikowski, Wieslaw; Smyth, Noel F.; Assanto, Gaetano

    2016-05-01

    We investigate how optical vortices, which tend to be azimuthally unstable in local nonlinear materials, can be stabilized by a copropagating coaxial spatial solitary wave in nonlocal, nonlinear media. We focus on the formation of nonlinear vortex-soliton vector beams in reorientational soft matter, namely nematic liquid crystals, and report on experimental results, as well as numerical simulations.

  16. Vortex-Surface Interactions: Vortex Dynamics and Instabilities

    Science.gov (United States)

    2015-10-16

    a) Main vortex structures developing on a typical submarine hull; (b) Schematic illustrating a horseshoe vortex at a wing-body junction of a " Rood ...secondary vortices. Firstly, looking at Figure 7, showing only the secondary vortices being visualized by our technique , we see that a tongue of secondary

  17. Subwave spikes of the orbital angular momentum of the vortex-beams in a uniaxial crystal

    CERN Document Server

    Fadeyeva, T; Rubass, A; Zinov'ev, A; Konovalenko, V; Volyar, A

    2011-01-01

    We have theoretically predicted the gigantic spikes of the orbital angular momentum caused by the conversion processes of the centered optical vortex in the circularly polarized components of the elliptic vortex beam propagating perpendicular to the crystal optical axis. We have experimentally observed the conversion process inside the subwave deviations of the crystal length. We have found that the total orbital angular momentum of the wave beam is conserved.

  18. Simulation of vortex laser beams propagation in parabolic index media based on fractional Fourier transform

    Science.gov (United States)

    Mossoulina, O. A.; Kirilenko, M. S.; Khonina, S. N.

    2016-08-01

    We use radial Fractional Fourier transform to model vortex laser beams propagation in optical waveguides with parabolic dependence of the refractive index. To overcome calculation difficulties at distances proportional to a quarter of the period we use varied calculation step. Numerical results for vortex modes superposition propagation in a parabolic optical fiber show that the transverse beam structure can be changed significantly during the propagation. To provide stable transverse distribution input scale modes should be in accordance with fiber parameters.

  19. Subwave spikes of the orbital angular momentum of the vortex beams in a uniaxial crystal

    Science.gov (United States)

    Fadeyeva, T.; Alexeyev, C.; Rubass, A.; Zinov'Ev, A.; Konovalenko, V.; Volyar, A.

    2011-11-01

    We have theoretically predicted the gigantic spikes of the orbital angular momentum caused by the conversion processes of the centered optical vortex in the circularly polarized components of the elliptic vortex beam propagating perpendicular to the crystal optical axis. We have experimentally observed the conversion process inside the subwave deviations of the crystal length. We have found that the total orbital angular momentum of the wave beam is conserved.

  20. Solitary vortexes in magnetohydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Vainshtein, S.I.

    1985-12-01

    Stationary configurations in magnetohydrodynamics are investigated for the following two particular cases: (1) there is no motion, which corresponds to a state of magnetostatic equilibrium; and (2) the magnetic field intensity becomes zero, i.e., hydrodynamic vortexes are involved. It is shown that in certain cases the line-of-force topology must be sufficiently simple in order before a stationary or equilibrium state can be achieved. It is also shown that in the two-dimensional case, the magnetic surfaces of an equilibrium configuration represent coaxial cylindrical surfaces. 12 references.

  1. Vortex Flow Correlation

    Science.gov (United States)

    1981-01-01

    j . 1978. 93. Grabowski , W.J.; "Solutions of the Navier-Stokes Equations for Vortex Breakdown," NASA CR...including foreign nations. This technical report has been reviewed and is approved for publication. LAWRENCE W. ROGERS Q LOWELL C. KEEL, Major, USAF Project...or’ a w U - a LU LU U- LU C - J ’di 2 2 C LU I- 4 S Ua * - w x 2 40 20 I- 2 LU W S ~ 00 * U. 4 I- 𔃾 LU a 4 U 4 2 C C LU 4 a 4a 2 I- 4 a 3 9

  2. Robustness of a coherence vortex.

    Science.gov (United States)

    Alves, Cleberson R; Jesus-Silva, Alcenisio J; Fonseca, Eduardo J S

    2016-09-20

    We study, experimentally and theoretically, the behavior of a coherence vortex after its transmission through obstacles. Notably, we find that such a vortex survives and preserves its effective topological charge. Despite suffering changes on the modulus of the coherence function, these changes disappear during propagation.

  3. Vortex duality in higher dimensions

    NARCIS (Netherlands)

    Beekman, Aron Jonathan

    2011-01-01

    A dynamic vortex line traces out a world sheet in spacetime. This thesis shows that the information of all its dynamic behaviour is completely contained in the world sheet. Furthermore a mathematical framework for order–disorder phase transitions in terms of the proliferation of such vortex world sh

  4. A Vectorial Capacity Product to Monitor Changing Malaria Transmission Potential in Epidemic Regions of Africa

    Directory of Open Access Journals (Sweden)

    Pietro Ceccato

    2012-01-01

    Full Text Available Rainfall and temperature are two of the major factors triggering malaria epidemics in warm semi-arid (desert-fringe and high altitude (highland-fringe epidemic risk areas. The ability of the mosquitoes to transmit Plasmodium spp. is dependent upon a series of biological features generally referred to as vectorial capacity. In this study, the vectorial capacity model (VCAP was expanded to include the influence of rainfall and temperature variables on malaria transmission potential. Data from two remote sensing products were used to monitor rainfall and temperature and were integrated into the VCAP model. The expanded model was tested in Eritrea and Madagascar to check the viability of the approach. The analysis of VCAP in relation to rainfall, temperature and malaria incidence data in these regions shows that the expanded VCAP correctly tracks the risk of malaria both in regions where rainfall is the limiting factor and in regions where temperature is the limiting factor. The VCAP maps are currently offered as an experimental resource for testing within Malaria Early Warning applications in epidemic prone regions of sub-Saharan Africa. User feedback is currently being collected in preparation for further evaluation and refinement of the VCAP model.

  5. Aplicaciones del dibujo vectorial a la creación gráfica contemporánea

    OpenAIRE

    Villagrán Arroyal, Inmaculada Lucía

    2016-01-01

    La tesis “Aplicaciones del dibujo vectorial a la creación gráfica contemporánea” es el resultado de una minuciosa investigación que agrupa los referentes históricos, descriptivos y técnicos, así como algunos de los medios y aplicaciones prácticas que definen, en todo su conjunto, la técnica digital para el dibujo conocida como vectorial. Esta investigación transcurre desde los primeros gráficos reconocidos como vectoriales, recorriendo el camino de la revolución digital que justifica el orige...

  6. A polyphonic acoustic vortex and its complementary chords

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, C; Padgett, M J [SUPA, Department of Physics and Astronomy, University of Glasgow (United Kingdom)], E-mail: c.wilson@physics.gla.ac.uk

    2010-02-15

    Using an annular phased array of eight loudspeakers, we generate sound beams that simultaneously contain phase singularities at a number of different frequencies. These frequencies correspond to different musical notes and the singularities can be set to overlap along the beam axis, creating a polyphonic acoustic vortex. Perturbing the drive amplitudes of the speakers means that the singularities no longer overlap, each note being nulled at a slightly different lateral position, where the volume of the other notes is now nonzero. The remaining notes form a tri-note chord. We contrast this acoustic phenomenon to the optical case where the perturbation of a white light vortex leads to a spectral spatial distribution.

  7. Lift enhancement by trapped vortex

    Science.gov (United States)

    Rossow, Vernon J.

    1992-01-01

    The viewgraphs and discussion of lift enhancement by trapped vortex are provided. Efforts are continuously being made to find simple ways to convert wings of aircraft from an efficient cruise configuration to one that develops the high lift needed during landing and takeoff. The high-lift configurations studied here consist of conventional airfoils with a trapped vortex over the upper surface. The vortex is trapped by one or two vertical fences that serve as barriers to the oncoming stream and as reflection planes for the vortex and the sink that form a separation bubble on top of the airfoil. Since the full three-dimensional unsteady flow problem over the wing of an aircraft is so complicated that it is hard to get an understanding of the principles that govern the vortex trapping process, the analysis is restricted here to the flow field illustrated in the first slide. It is assumed that the flow field between the two end plates approximates a streamwise strip of the flow over a wing. The flow between the endplates and about the airfoil consists of a spanwise vortex located between the suction orifices in the endplates. The spanwise fence or spoiler located near the nose of the airfoil serves to form a separated flow region and a shear layer. The vorticity in the shear layer is concentrated into the vortex by withdrawal of fluid at the suction orifices. As the strength of the vortex increases with time, it eventually dominates the flow in the separated region so that a shear or vertical layer is no longer shed from the tip of the fence. At that point, the vortex strength is fixed and its location is such that all of the velocity contributions at its center sum to zero thereby making it an equilibrium point for the vortex. The results of a theoretical analysis of such an idealized flow field are described.

  8. Superfluid Vortex Cooler

    Science.gov (United States)

    Tanaeva, I. A.; Lindemann, U.; Jiang, N.; de Waele, A. T. A. M.; Thummes, G.

    2004-06-01

    A superfluid vortex cooler (SVC) is a combination of a fountain pump and a vortex cooler. The working fluid in the SVC is 4He at a temperature below the lambda line. The cooler has no moving parts, is gravity independent, and hardly requires any additional infrastructure. At saturated vapour pressure the SVC is capable of reaching a temperature as low as 0.75 K. At pressures close to the melting pressure the temperature can be brought down to 0.65 K. As the SVC operates only below the lambda line, it has to be precooled e.g. by a liquid-helium bath or a cryocooler. As a first step of our research we have carried out a number of experiments, using a liquid-helium bath as a precooler for the SVC. In this arrangement we have reached temperatures below 1 K with 3.5 mW heating power supplied to the fountain part of the SVC at 1.4 K. The next step was combining the SVC with a pulse tube refrigerator (PTR), developed at the University of Giessen. It is a two-stage G-M type refrigerator with 3He as a working fluid that reached a lowest temperature of 1.27 K. In this contribution we report on the results of the SVC tests in liquid helium and the progress in the integration of the SVC with the PTR.

  9. On-chip generation and control of the vortex beam

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Aiping; Wang, Qin [College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210000, China and Key Lab of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Ministry of Education, Nanjing 210003 (China); Zou, Chang-Ling, E-mail: clzou321@ustc.edu.cn [Key Laboratory of Quantum Information, University of Science and Technology of China, CAS, Hefei, Anhui 230026, China and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Department of Electric Engineering, Yale University, New Haven, Connecticut 06511 (United States); Ren, Xifeng, E-mail: renxf@ustc.edu.cn; Guo, Guang-Can [Key Laboratory of Quantum Information, University of Science and Technology of China, CAS, Hefei, Anhui 230026, China and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2016-05-02

    A method to generate and control the amplitude and phase distributions of an optical vortex beam is proposed. By introducing a holographic grating on the top of a dielectric waveguide, the free space vortex beam and the in-plane guiding wave can be converted to each other. This microscale holographic grating is very robust against the variation of geometry parameters. The designed vortex beam generator can produce the target beam with a fidelity up to 0.93, and the working bandwidth is about 175 nm with the fidelity larger than 0.80. In addition, a multiple generator composed of two holographic gratings on two parallel waveguides is studied, which can perform an effective and flexible modulation on the vortex beam by controlling the phase of the input light. Our work opens an available avenue towards the integrated orbital angular momentum devices with multiple degrees of optical freedom, which can be used for optical tweezers, micronano imaging, information processing, and so on.

  10. Regimes of flow past a vortex generator

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Okulov, V.L.; Naumov, I.V.

    2012-01-01

    A complete parametric investigation of the development of multi-vortex regimes in a wake past simple vortex generator has been carried out. It is established that the vortex structure in the wake is much more complicated than a simple monopole tip vortex. The vortices were studied by stereoscopic...

  11. Some discussions on Arctic vortex

    Institute of Scientific and Technical Information of China (English)

    Li Hai; Sun Lantao; Wu Huiding; Li Xiang

    2006-01-01

    The Arctic vortex is a persistent large-scale cyclonic circulation in the middle and upper troposphere and the stratosphere. Its activity and variation control the semi-permanent active centers of Pan-Arctic and the short-time cyclone activity in the subarctic areas. Its strength variation, which directly relates to the atmosphere, ocean, sea ice and ecosystem of the Arctic, can affect the lower atmospheric circulation, the weather of subarctic area and even the weather of middle latitude areas. The 2003 Chinese Second Arctic Research Expedition experienced the transition of the stratosphereic circulation from a warm anticyclone to a cold cyclone during the ending period of Arctic summertime, a typical establishing process of the polar vortex circulation. The impact of the polar vortex variation on the low-level circulation has been investigated by some scientists through studying the coupling mechanisms of the stratosphere and troposphere. The impact of the Stratospheric Sudden Warming (SFW) events on the polar vortex variation was drawing people's great attention in the fifties of the last century. The Arctic Oscillation (AO) , relating to the variation of the Arctic vortex, has been used to study the impact of the Arctic vortex on climate change. The recent Arctic vortex studies are simply reviewed and some discussions on the Arctic vertex are given in the paper. Some different views and questions are also discussed.

  12. Motion of a helical vortex

    CERN Document Server

    Fuentes, Oscar Velasco

    2015-01-01

    We study the motion of a single helical vortex in an unbounded, inviscid, incompressible fluid. The vortex is an infinite tube whose centerline is a helix and whose cross section is a circle of small radius (compared to the radius of curvature) where the vorticity is uniform and parallel to the centerline. Ever since Joukowsky (1912) deduced that this vortex translates and rotates steadily without change of form, numerous attempts have been made to compute these self-induced velocities. Here we use Hardin's (1982) solution for the velocity field to find new expressions for the vortex's linear and angular velocities. Our results, verified by numerically computing the Helmholtz integral and the Rosenhead-Moore approximation to the Biot-Savart law, are more accurate than previous results over the whole range of values of the vortex pitch and cross-section. We then use the new formulas to study the advection of passive particles near the vortex; we find that the vortex's motion and capacity to transport fluid dep...

  13. Ionospheric current system accompanied by auroral vortex streets

    CERN Document Server

    Hiraki, Yasutaka

    2016-01-01

    High resolution optical measurements have revealed that a sudden brightening of aurora and its deformation from an arc-like to a vortex street structure appear just at the onset of substorm. The instability of Alfv$\\acute{\\rm e}$n waves reflected from the ionosphere has been studied by means of magnetohydrodynamic simulations in order to comprehend the formation of auroral vortex streets. Our previous work reported that an initially placed arc intensifies, splits, and deforms into a vortex street during a couple of minutes, and the prime key is an enhancement of the convection electric field. This study elaborated physics of the ionospheric horizontal currents related to the vortex street in the context of so-called Cowling polarization. One component is due to the perturbed electric field by Alfv$\\acute{\\rm e}$n waves, and the other is due to the perturbed electron density (or polarization) in the ionosphere. It was found that, when a vortex street develops, upward/downward pair currents in its leading/trail...

  14. Bathtub vortex induced by instability

    Science.gov (United States)

    Mizushima, Jiro; Abe, Kazuki; Yokoyama, Naoto

    2014-10-01

    The driving mechanism and the swirl direction of the bathtub vortex are investigated by the linear stability analysis of the no-vortex flow as well as numerical simulations. We find that only systems having plane symmetries with respect to vertical planes deserve research for the swirl direction. The bathtub vortex appearing in a vessel with a rectangular cross section having a drain hole at the center of the bottom is proved to be induced by instability when the flow rate exceeds a threshold. The Coriolis force is capable of determining the swirl direction to be cyclonic.

  15. A Scanning laser-velocimeter technique for measuring two-dimensional wake-vortex velocity distributions. [Langley Vortex Research Facility

    Science.gov (United States)

    Gartrell, L. R.; Rhodes, D. B.

    1980-01-01

    A rapid scanning two dimensional laser velocimeter (LV) has been used to measure simultaneously the vortex vertical and axial velocity distributions in the Langley Vortex Research Facility. This system utilized a two dimensional Bragg cell for removing flow direction ambiguity by translating the optical frequency for each velocity component, which was separated by band-pass filters. A rotational scan mechanism provided an incremental rapid scan to compensate for the large displacement of the vortex with time. The data were processed with a digital counter and an on-line minicomputer. Vaporized kerosene (0.5 micron to 5 micron particle sizes) was used for flow visualization and LV scattering centers. The overall measured mean-velocity uncertainity is less than 2 percent. These measurements were obtained from ensemble averaging of individual realizations.

  16. Design of the multiplexing communication system with non-coherent vortex beams

    Science.gov (United States)

    Zhao, Hongdong; Peng, Xiaocan; Ma, Li; Sun, Mei

    2016-11-01

    In order to enlarge the communication capability, a model of the multiplexing communication system with non-coherent vortex beams is established. One detector for measurement the signal of the vortex beam with topological charge of 0, which is a Gaussian beam, is located in the center of the cross sectional plane of vortex beam. The other three detectors are set around the first detector in the same plane to receive the power of the vortex beam with topological charge of 1. The principle of determining the emitting power of vortex beams, the radii and the positions of the detectors are suggested to increase the signals and reduce the interchannel crosstalk noise at the detectors. The signal powers as well as the interchannel crosstalk noise in a receiver channel are identical to that in another channel, respectively. This research may have applications in free space optical communications.

  17. Faraday Rotation for Electron Beams Composed of Vortex Modes

    CERN Document Server

    Greenshields, Colin; Franke-Arnold, Sonja

    2012-01-01

    Propagating vortex states, which carry orbital angular momentum (OAM), are well known in optics and have recently been demonstrated for electrons. While many analogies exist between photonic and electron vortex states, electron vortices in addition possess an orbital magnetic moment. We show here that propagation of electrons in a superposition of OAM states through a longitudinal magnetic field produces an analogue to optical Faraday rotation. In the optical domain, Faraday rotation is observed for polarisation, but not for superpositions of OAM states. The rotation we predict arises from the additional phase accumulated by the electron as it propagates in the presence of an external magnetic field. We propose an experiment in which this rotation can be measured directly in a transmission electron microscope, and discuss its relation to the well known classical image rotation associated with the Lorentz force.

  18. Vortex-antivortex wavefunction of a degenerate quantum gas

    CERN Document Server

    Okulov, A Yu

    2010-01-01

    A mechanism of a pinning of the quantized matter wave vortices by optical vortices in a specially arranged optical dipole traps is discussed. The vortex-antivortex optical arrays of rectangular symmetry are shown to transfer angular orbital momentum and form the "antiferromagnet"-like matter waves. The separable Hamiltonian for matter waves in pancake trapping geometry is proposed and 3D-wavefunction is factorized in a product of wavefunctions of the 1D harmonic oscillator and 2D vortex-antivortex quantum state. The 2D wavefunction's phase gradient field associated via Madelung transform with the field of classical velocities forms labyrinth-like structure. The macroscopic quantum state composed of periodically spaced counter-rotating BEC superfluid vortices has zero angular momentum and nonzero rotational energy.

  19. Dynamic signatures of driven vortex motion.

    Energy Technology Data Exchange (ETDEWEB)

    Crabtree, G. W.; Kwok, W. K.; Lopez, D.; Olsson, R. J.; Paulius, L. M.; Petrean, A. M.; Safar, H.

    1999-09-16

    We probe the dynamic nature of driven vortex motion in superconductors with a new type of transport experiment. An inhomogeneous Lorentz driving force is applied to the sample, inducing vortex velocity gradients that distinguish the hydrodynamic motion of the vortex liquid from the elastic and-plastic motion of the vortex solid. We observe elastic depinning of the vortex lattice at the critical current, and shear induced plastic slip of the lattice at high Lorentz force gradients.

  20. Vortex electronis and squids

    CERN Document Server

    2003-01-01

    Understanding the nature of vortices in high-Tc superconductors is a crucial subject for research on superconductive electronics, especially for superconducting interference devices (SQUIDs), it is also a fundamental problem in condensed-matter physics. Recent technological progress in methods for both direct and indirect observation of vortices, e.g. scanning SQUID, terahertz imaging, and microwave excitation, has led to new insights into vortex physics, the dynamic behavior of vortices in junctions and related questions of noise. This book presents the current status of research activity and provides new information on the applications of SQUIDs, including magnetocardiography, immunoassays, and laser-SQUID microscopes, all of which are close to being commercially available.

  1. Vortex loops and Majoranas

    Energy Technology Data Exchange (ETDEWEB)

    Chesi, Stefano [Department of Physics, McGill University, Montreal, Quebec H3A 2T8 (Canada); CEMS, RIKEN, Wako, Saitama 351-0198 (Japan); Jaffe, Arthur [Harvard University, Cambridge, Massachusetts 02138 (United States); Department of Physics, University of Basel, Basel (Switzerland); Institute for Theoretical Physics, ETH Zürich, Zürich (Switzerland); Loss, Daniel [CEMS, RIKEN, Wako, Saitama 351-0198 (Japan); Department of Physics, University of Basel, Basel (Switzerland); Pedrocchi, Fabio L. [Department of Physics, University of Basel, Basel (Switzerland)

    2013-11-15

    We investigate the role that vortex loops play in characterizing eigenstates of interacting Majoranas. We give some general results and then focus on ladder Hamiltonian examples as a test of further ideas. Two methods yield exact results: (i) A mapping of certain spin Hamiltonians to quartic interactions of Majoranas shows that the spectra of these two examples coincide. (ii) In cases with reflection-symmetric Hamiltonians, we use reflection positivity for Majoranas to characterize vortices in the ground states. Two additional methods suggest wider applicability of these results: (iii) Numerical evidence suggests similar behavior for certain systems without reflection symmetry. (iv) A perturbative analysis also suggests similar behavior without the assumption of reflection symmetry.

  2. Vortex cores and vortex motion in superconductors with anisotropic Fermi surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Galvis, J.A. [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Departamento de Ciencias Naturales, Facultad de ingeniería y Ciencias Básicas, Universidad Central, Bogotá (Colombia); National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310 (United States); Herrera, E.; Guillamón, I.; Vieira, S. [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Unidad Asociada de Altos Campos Magnéticos y Bajas Temperaturas, UAM, CSIC, Madrid (Spain); Suderow, H., E-mail: hermann.suderow@uam.es [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Unidad Asociada de Altos Campos Magnéticos y Bajas Temperaturas, UAM, CSIC, Madrid (Spain)

    2017-02-15

    Highlights: • The observation of vortex cores is reviewed, with emphasis in new experiments. • Vortex cores are follow superconducting gap and Fermi surface shapes. • The vortex core shape influences vortex dynamics. - Abstract: Explaning static and dynamic properties of the vortex lattice in anisotropic superconductors requires a careful characterization of vortex cores. The vortex core contains Andreev bound states whose spatial extension depends on the anisotropy of the electronic band-structure and superconducting gap. This might have an impact on the anisotropy of the superconducting properties and on vortex dynamics. Here we briefly summarize basic concepts to understand anisotropic vortex cores and review vortex core imaging experiments. We further discuss moving vortex lattices and the influence of vortex core shape in vortex motion. We find vortex motion in highly tilted magnetic fields. We associate vortex motion to the vortex entry barrier and the screening currents at the surface. We find preferential vortex motion along the main axis of the vortex lattice. After travelling integers of the intervortex distance, we find that vortices move more slowly due to the washboard potential of the vortex lattice.

  3. Optical vortex solitons in self-defocusing Kerr-type nonlocal medium∗%自散焦非局域非线性材料中的光学涡旋孤子

    Institute of Scientific and Technical Information of China (English)

    欧阳世根

    2013-01-01

      通过数值模拟的方法对非局域非线性自散焦材料中的光学涡旋孤子的传输特性以及相互作用特性进行了研究。研究表明,拓扑荷|m|=1的非局域涡旋孤子是稳定的,而拓扑荷|m|>1的非局域涡旋孤子均具有拓扑不稳定性。在微扰存在的情况下以及在近距离相互作用的过程中,|m|>1的涡旋孤子会分裂成一系列的|m|=1的涡旋孤子。非局域涡旋孤子与局域涡旋孤子具有相同的长距离相互作用模式,即点涡旋相互作用模式。但两者的短距离相互作用存在一些差别,在相同的距离下,两涡旋间的相互绕转的周期随着材料的非局域响应长度增大而增大。%The propagation and interaction properties of optical vortex solitons in a self-defocusing Kerr-type nonlocal medium are investi-gated by the numerical simulation method. It is indicated that the singly charged vortices are stable and the multicharged vortices are topologically unstable in both the nonlocal and local cases. And in the nonlocal and local cases the point vortices model is applicable for describing the interactions of vortices provided that the interval distances between vortices are much larger than the size of the core of the vortices. However, vortices interact differently in short distance, depending on the nonlocality, and the larger the characteristic nonlocal respond length, the larger the rotating period of two singly charged vortices.

  4. A note on vectorial AdS5/CFT4 duality for spin- j boundary theory

    Science.gov (United States)

    Bae, Jin-Beom; Joung, Euihun; Lal, Shailesh

    2016-12-01

    The vectorial holographic correspondences between higher-spin theories in AdS5 and free vector models on the boundary are extended to the cases where the latter is described by free massless spin- j field. The dual higher-spin theory in the bulk does not include gravity and can only be defined on rigid AdS5 background with S 4 boundary. We discuss various properties of these rather special higher-spin theories and calculate their one-loop free energies. We show that the result is proportional to the same quantity for spin- j doubleton treated as if it is a AdS5 field. Finally, we consider even more special case where the boundary theory itself is given by an infinite tower of massless higher-spin fields.

  5. Three-dimensional polarization marked multiple-QR code encryption by optimizing a single vectorial beam

    Science.gov (United States)

    Lin, Chao; Shen, Xueju; Hua, Binbin; Wang, Zhisong

    2015-10-01

    We demonstrate the feasibility of three dimensional (3D) polarization multiplexing by optimizing a single vectorial beam using a multiple-signal window multiple-plane (MSW-MP) phase retrieval algorithm. Original messages represented with multiple quick response (QR) codes are first partitioned into a series of subblocks. Then, each subblock is marked with a specific polarization state and randomly distributed in 3D space with both longitudinal and transversal adjustable freedoms. A generalized 3D polarization mapping protocol is established to generate a 3D polarization key. Finally, multiple-QR code is encrypted into one phase only mask and one polarization only mask based on the modified Gerchberg-Saxton (GS) algorithm. We take the polarization mask as the cyphertext and the phase only mask as additional dimension of key. Only when both the phase key and 3D polarization key are correct, original messages can be recovered. We verify our proposal with both simulation and experiment evidences.

  6. Stoichiometry of vectorial H+ movements coupled to electron transport and to ATP synthesis in mitochondria.

    Science.gov (United States)

    Alexandre, A; Reynafarje, B; Lehninger, A L

    1978-11-01

    In order to verify more directly our earlier measurements showing that, on the average, close to four vectorial H(+) are rejected per pair of electrons passing each of the three energy-conserving sites of the mitochondrial electron transport chain, direct tests of the H(+)/2e(-) ratio for sites 2 and 3 were carried out in the presence of permeant charge-compensating cations. Site 2 was examined by utilizing succinate as electron donor and ferricyanide as electron acceptor from mitochondrial cytochrome c; the directly measured H(+)/2e(-) ratio was close to 4. Energy-conserving site 3 was isolated for study with ferrocyanide or ascorbate plus tetramethylphenylenediamine as electron donors to cytochrome c and with oxygen as electron acceptor. The directly measured H(+)/2e(-) ratio for site 3 was close to 4. The H(+)/ATP ratio (number of vectorial H(+) ejected per ATP hydrolyzed) was determined with a new method in which the steady-state rates of both H(+) ejection and ATP hydrolysis were measured in the presence of K(+) + valinomycin. The H(+)/ATP ratio was found to approach 3.0. A proton cycle for oxidative phosphorylation is proposed, in which four electrochemical H(+) equivalents are ejected per pair of electrons passing each energy-conserving site; three of the H(+) equivalents pass inward to derive ATP synthesis from ADP and phosphate and the fourth H(+) is used to bring about the energy-requiring electrogenic expulsion of ATP(4-) in exchange for extramitochondrial ADP(3-), via the H(+)/H(2)PO(4) (-) symporter.

  7. Vortex state in ferromagnetic nanoparticles

    Science.gov (United States)

    Betto, Davide; Coey, J. M. D.

    2014-05-01

    The evolution of the magnetic state of a soft ferromagnetic nanoparticle with its size is usually thought to be from superparamagnetic single domain to blocked single domain to a blocked multidomain structure. Néel pointed out that a vortex configuration produces practically no stray field at the cost of an increase in the exchange energy, of the order of RJS2lnR /c, where JS2 is the bond energy, R is the particle radius, and c is of the order of the exchange length. A vortex structure is energetically cheaper than single domain when the radius is greater than a certain value. The correct sequence should include a vortex configuration between the single domain and the multidomain states. The critical size is calculated for spherical particles of four important materials (nickel, magnetite, permalloy, and iron) both numerically and analytically. A vortex state is favored in materials with high magnetisation.

  8. Particle-vortex symmetric liquid

    CERN Document Server

    Mulligan, Michael

    2016-01-01

    We introduce an effective theory with manifest particle-vortex symmetry for disordered thin films undergoing a magnetic field-tuned superconductor-insulator transition. The theory may enable one to access both the critical properties of the strong-disorder limit, which has recently been confirmed [Breznay et al., PNAS 113, 280 (2016)] to exhibit particle-vortex symmetric electrical response, and the metallic phase discovered earlier [Mason and Kapitulnik, Phys. Rev. Lett. 82, 5341 (1999)] in less disordered samples. Within the effective theory, the Cooper-pair and field-induced vortex degrees of freedom are simultaneously incorporated into an electrically-neutral Dirac fermion minimally coupled to an (emergent) Chern-Simons gauge field. A derivation of the theory follows upon mapping the superconductor-insulator transition to the integer quantum Hall plateau transition and the subsequent use of Son's particle-hole symmetric composite Fermi liquid. Remarkably, particle-vortex symmetric response does not requir...

  9. Vortex migration in protoplanetary discs

    Directory of Open Access Journals (Sweden)

    Papaloizou John C. B.

    2013-04-01

    Full Text Available Vortices embedded in protoplanetary discs can act as obstacles to the unperturbed disc flow. The resulting velocity perturbations propagate away from the vortex in the form of density waves that transport angular momentum. Any asymmetry between the inner and the outer density wave means that the region around the vortex has to change its angular momentum. We find that this leads to orbital migration of the vortex. Asymmetric waves always arise except in the case of a disc with constant pressure, for isothermal as well as non-isothermal discs. Depending on the size and strength of the vortex, the resulting migration time scales can be as short as a few thousand orbits.

  10. Introduction to modern optics

    CERN Document Server

    Fowles, Grant R

    1989-01-01

    This incisive text provides a basic undergraduate-level course in modern optics for students in physics, technology and engineering. The first half of the book deals with classical physical optics; the second principally with the quantum nature of light. Chapters 1 and 2 treat the propagation of light waves, including the concepts of phase and group velocities, and the vectorial nature of light. Chapter 3 applies the concepts of partial coherence and coherence length to the study of interference, and Chapter 4 takes up multiple-beam interference and includes Fabry-Perot interferometry and mul

  11. Integral momenta of vortex Bessel-Gaussian beams in turbulent atmosphere.

    Science.gov (United States)

    Lukin, Igor P

    2016-04-20

    The orbital angular momentum of vortex Bessel-Gaussian beams propagating in turbulent atmosphere is studied theoretically. The field of an optical beam is determined through the solution of the paraxial wave equation for a randomly inhomogeneous medium with fluctuations of the refraction index of the turbulent atmosphere. Peculiarities in the behavior of the total power of the vortex Bessel-Gaussian beam at the receiver (or transmitter) are examined. The dependence of the total power of the vortex Bessel-Gaussian beam on optical beam parameters, namely, the transverse wave number of optical radiation, amplitude factor radius, and, especially, topological charge of the optical beam, is analyzed in detail. It turns out that the mean value of the orbital angular momentum of the vortex Bessel-Gaussian beam remains constant during propagation in the turbulent atmosphere. It is shown that the variance of fluctuations of the orbital angular momentum of the vortex Bessel-Gaussian beam propagating in turbulent atmosphere calculated with the "mean-intensity" approximation is equal to zero identically. Thus, it is possible to declare confidently that the variance of fluctuations of the orbital angular momentum of the vortex Bessel-Gaussian beam in turbulent atmosphere is not very large.

  12. Optical theorem for Aharonov-Bohm scattering

    CERN Document Server

    Sitenko, Yu A

    2011-01-01

    Quantum-mechanical scattering off an impermeable magnetic vortex is considered and the optical theorem is derived. The nonvanishing transverse size of the vortex is taken into account, and the Robin boundary condition is imposed on the particle wave function at the edge of the vortex. The persistence of the Fraunhofer diffraction in the short-wavelength limit is shown to be crucial for maintaining the optical theorem in the quasiclassical limit.

  13. All-optical switching in optically induced nonlinear waveguide couplers

    Energy Technology Data Exchange (ETDEWEB)

    Diebel, Falko, E-mail: falko.diebel@uni-muenster.de; Boguslawski, Martin; Rose, Patrick; Denz, Cornelia [Institut für Angewandte Physik and Center for Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität Münster, 48149 Münster (Germany); Leykam, Daniel; Desyatnikov, Anton S. [Nonlinear Physics Centre, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200 (Australia)

    2014-06-30

    We experimentally demonstrate all-optical vortex switching in nonlinear coupled waveguide arrays optically induced in photorefractive media. Our technique is based on multiplexing of nondiffracting Bessel beams to induce various types of waveguide configurations. Using double- and quadruple-well potentials, we demonstrate precise control over the coupling strength between waveguides, the linear and nonlinear dynamics and symmetry-breaking bifurcations of guided light, and a power-controlled optical vortex switch.

  14. New omega vortex identification method

    Science.gov (United States)

    Liu, ChaoQun; Wang, YiQian; Yang, Yong; Duan, ZhiWei

    2016-08-01

    A new vortex identification criterion called Ω-method is proposed based on the ideas that vorticity overtakes deformation in vortex. The comparison with other vortex identification methods like Q-criterion and λ 2-method is conducted and the advantages of the new method can be summarized as follows: (1) the method is able to capture vortex well and very easy to perform; (2) the physical meaning of Ω is clear while the interpretations of iso-surface values of Q and λ 2 chosen to visualize vortices are obscure; (3) being different from Q and λ 2 iso-surface visualization which requires wildly various thresholds to capture the vortex structure properly, Ω is pretty universal and does not need much adjustment in different cases and the iso-surfaces of Ω=0.52 can always capture the vortices properly in all the cases at different time steps, which we investigated; (4) both strong and weak vortices can be captured well simultaneously while improper Q and λ 2 threshold may lead to strong vortex capture while weak vortices are lost or weak vortices are captured but strong vortices are smeared; (5) Ω=0.52 is a quantity to approximately define the vortex boundary. Note that, to calculate Ω, the length and velocity must be used in the non-dimensional form. From our direct numerical simulation, it is found that the vorticity direction is very different from the vortex rotation direction in general 3-D vortical flow, the Helmholtz velocity decomposition is reviewed and vorticity is proposed to be further decomposed to vortical vorticity and non-vortical vorticity.

  15. Exploiting bistable pinning of a ferromagnetic vortex for nitrogen-vacancy spin control

    Science.gov (United States)

    Badea, R.; Wolf, M. S.; Berezovsky, J.

    2016-09-01

    The strong, localized magnetic field produced by the core of a ferromagnetic vortex provides a platform for addressing and controlling individual nitrogen-vacancy (NV) center spins in diamond. Translation of a vortex state in a thin ferromagnetic disk or wire can be understood as motion through an effective pinning potential, arising from the defects in the material. Coupling an NV spin to a vortex state in a proximal ferromagnet imprints the pinning landscape onto the spin transitions. Quantitative characterization of the pinning potential is necessary to control the spin-vortex system. First, we map the effective pinning potential by raster scanning the vortex core through a permalloy disk and measuring the hysteretic vortex displacement vs. magnetic field using differential magneto-optical microscopy. Second, we demonstrate that the interaction between the vortex and a nearby NV spin can be characterized using the pinning map and the path taken by the vortex core through the landscape. Finally, we identify locations of bistability in the pinning landscape, and use them to manipulate the nitrogen vacancy spin in a controlled bimodal fashion by switching the spin on and off resonance with a driving field on a ˜ 10 ns timescale at room temperature.

  16. Formation number for vortex dipoles

    Science.gov (United States)

    Sadri, Vahid; Krueger, Paul S.

    2016-11-01

    This investigation considers the axisymmetric formation of two opposite sign concentric vortex rings from jet ejection between concentric cylinders. This arrangement is similar to planar flow in that the vortex rings will travel together when the gap between the cylinders is small, similar to a vortex dipole, but it has the advantage that the vortex motion is less constrained than the planar case (vortex stretching and vortex line curvature is allowed). The flow was simulated numerically at a jet Reynolds number of 1,000 (based on ΔR and the jet velocity), jet pulse length-to-gap ratio (L / ΔR) in the range 10-20, and gap-to-outer radius ratio (ΔR /Ro) in the range 0.01-0.1. Small gap ratios were chosen for comparison with 2D results. In contrast with 2D results, the closely paired vortices in this study exhibited pinch-off from the generating flow and finite formation numbers. The more complex flow evolution afforded by the axisymmetric model and its influence on the pinch-off process will be discussed. This material is based on work supported by the National Science Foundation under Grant No. 1133876 and SMU. This supports are gratefully acknowledged.

  17. Vortex migration in protoplanetary disks

    CERN Document Server

    Paardekooper, S -J; Papaloizou, J C B

    2010-01-01

    We consider the radial migration of vortices in two-dimensional isothermal gaseous disks. We find that a vortex core, orbiting at the local gas velocity, induces velocity perturbations that propagate away from the vortex as density waves. The resulting spiral wave pattern is reminiscent of an embedded planet. There are two main causes for asymmetries in these wakes: geometrical effects tend to favor the outer wave, while a radial vortensity gradient leads to an asymmetric vortex core, which favors the wave at the side that has the lowest density. In the case of asymmetric waves, which we always find except for a disk of constant pressure, there is a net exchange of angular momentum between the vortex and the surrounding disk, which leads to orbital migration of the vortex. Numerical hydrodynamical simulations show that this migration can be very rapid, on a time scale of a few thousand orbits, for vortices with a size comparable to the scale height of the disk. We discuss the possible effects of vortex migrat...

  18. Longitudinal Plasmoid in High-Speed Vortex Gas Flow Created by Capacity HF Discharge

    Science.gov (United States)

    2010-10-28

    instrumentation will be used in this Project to study plasma and gas flow parameters, including new shadow device with excimer KrF laser, MW...vortex decay (attenuation) by HF plasma. The additional experiments with small helium jet injection prove the conclusion about vortex attenuation by a...equilibrium HF plasma. Plasma and airflow parameters are measured by different diagnostic instrumentation including shadow optical device with excimer

  19. General aspects of optical vortices

    CSIR Research Space (South Africa)

    Roux, FS

    2009-01-01

    Full Text Available . Stef Roux CSIR National Laser Centre PO Box 395, Pretoria 0001, South Africa CSIR National Laser Centre – p.1/32 Contents . Definition of an optical vortex . Topological charge and vortex morphology . How to detect a vortex — interferometry . How... to generate optical vortices CSIR National Laser Centre – p.2/32 Persistent dark spots Optical vortices CSIR National Laser Centre – p.3/32 Speckle field Amplitude Phase CSIR National Laser Centre – p.4/32 Singular phase function CSIR National Laser Centre – p...

  20. Far-field properties and beam quality of vectorial Hermite-Laguerre-Gaussian beams beyond the paraxial approximation

    Science.gov (United States)

    Kang, Xiaoping; He, Zhong; Lü, Baida

    2007-07-01

    The far-field properties and beam quality of vectorial nonparaxial Hermite-Laguerre-Gaussian (HLG) beams are studied in detail, where, instead of the second-order-moments-based M2 factor, the extended power in the bucket (PIB) and βparameter are used to characterize the beam quality in the far field and the intensity in the formulae is replaced by the z component of the time-averaged Poynting vector . It is found that the PIB and βparameter of vectorial nonparaxial HLG beams depend on the mode indices n, m, αparameter and waist-width-to-wavelength ratio w0/ λ and the PIB and βparameter are additionally dependent on the bucket's size taken.

  1. Vectorial diffusion for facile solution-processed self-assembly of insoluble semiconductors: a case study on metal phthalocyanines.

    Science.gov (United States)

    Wang, Chengliang; Fang, Yaoguo; Wen, Liaoyong; Zhou, Min; Xu, Yang; Zhao, Huaping; De Cola, Luisa; Hu, Wenping; Lei, Yong

    2014-08-25

    Solution processibility is one of the most intriguing properties of organic semiconductors. However, it is difficult to find a suitable solvent and solution process for most semiconductors. For example, metal phthalocyanines (MPcs) are only soluble in non-volatile solvents, which prevent their applications from solution process. For the first time, vectorial diffusion is utilized for solution processing of MPcs. The obtained large F16CuPc and α-phase CuPc crystals and the efficient phase separation of them suggest the vectorial diffusion process is as slow as a self-assembly process, which is helpful to yield large crystals and purify the semiconductors. This method, which only uses common commercial solvents without any complex and expensive instruments and high-temperature operation, provides a facile approach for purification of organic semiconductors and growth of their crystals in large quantities.

  2. Aedes Taeniorhynchus Vectorial Capacity Informs A Pre-Emptive Assessment Of West Nile Virus Establishment In Galápagos

    OpenAIRE

    Gillian Eastwood; Goodman, Simon J.; Cunningham, Andrew A.; Kramer, Laura D.

    2013-01-01

    Increased connectivity with the mainland has led to the arrival of many invasive species to the Galápagos Islands, including novel pathogens, threatening the archipelago's unique fauna. Here we consider the potential role of the mosquito Aedes taeniorhynchus in maintaining the flavivirus West Nile virus [WNV] should it reach the islands. We report on three components of vectorial capacity - vector competency, distributional abundance and host-feeding. In contrast to USA strains, Galápagos A. ...

  3. Integrated multi vector vortex beam generator

    CERN Document Server

    Schulz, Sebastian A; Karimi, Ebrahim; Boyd, Robert W

    2013-01-01

    A novel method to generate and manipulate vector vortex beams in an integrated, ring resonator based geometry is proposed. We show numerically that a ring resonator, with an appropriate grating, addressed by a vertically displaced access waveguide emits a complex optical field. The emitted beam possesses a specific polarization topology, and consequently a transverse intensity profile and orbital angular momentum. We propose a combination of several concentric ring resonators, addressed with different bus guides, to generate arbitrary orbital angular momentum qudit states, which could potentially be used for classical and quantum communications. Finally, we demonstrate numerically that this device works as an orbital angular momentum sorter with an average cross-talk of -10 dB between different orbital angular momentum channels.

  4. The membrane-topogenic vectorial behaviour of Nrf1 controls its post-translational modification and transactivation activity.

    Science.gov (United States)

    Zhang, Yiguo; Hayes, John D

    2013-01-01

    The integral membrane-bound Nrf1 transcription factor fulfils important functions in maintaining cellular homeostasis and organ integrity, but how it is controlled vectorially is unknown. Herein, creative use of Gal4-based reporter assays with protease protection assays (GRAPPA), and double fluorescence protease protection (dFPP), reveals that the membrane-topogenic vectorial behaviour of Nrf1 dictates its post-translational modification and transactivation activity. Nrf1 is integrated within endoplasmic reticulum (ER) membranes through its NHB1-associated TM1 in cooperation with other semihydrophobic amphipathic regions. The transactivation domains (TADs) of Nrf1, including its Asn/Ser/Thr-rich (NST) glycodomain, are transiently translocated into the ER lumen, where it is glycosylated in the presence of glucose to become a 120-kDa isoform. Thereafter, the NST-adjoining TADs are partially repartitioned out of membranes into the cyto/nucleoplasmic side, where Nrf1 is subject to deglycosylation and/or proteolysis to generate 95-kDa and 85-kDa isoforms. Therefore, the vectorial process of Nrf1 controls its target gene expression.

  5. A Experimental Study of Viscous Vortex Rings.

    Science.gov (United States)

    Dziedzic, Mauricio

    Motivated by the role played by vortex rings in the process of turbulent mixing, the work is focused on the problem of stability and viscous decay of a single vortex ring. A new classification is proposed for vortex rings which is based on extensive hot-wire measurements of velocity in the ring core and wake and flow visualization. Vortex rings can be classified as laminar, wavy, turbulence-producing, and turbulent. Prediction of vortex ring type is shown to be possible based on the vortex ring Reynolds number. Linear growth rates of ring diameter with time are observed for all types of vortex rings, with different growth rates occurring for laminar and turbulent vortex rings. Data on the viscous decay of vortex rings are used to provide experimental confirmation of the accuracy of Saffman's equation for the velocity of propagation of a vortex ring. Experimental data indicate that instability of the vortex ring strongly depends on the mode of generation and can be delayed by properly adjusting the generation parameters. A systematic review of the literature on vortex-ring interactions is presented in the form of an appendix, which helps identify areas in which further research may be fruitful.

  6. Fractional vortex dipole phase filter

    Science.gov (United States)

    Sharma, Manoj Kumar; Joseph, Joby; Senthilkumaran, Paramasivam

    2014-10-01

    In spatial filtering experiments, the use of vortex phase filters plays an important role in realizing isotropic edge enhancement. In this paper, we report the use of a vortex dipole phase filter in spatial filtering. A dipole made of fractional vortices is used, and its filtering characteristics are studied. It is observed that the filter performance can be tuned by varying the distance of separation between the vortices of the dipole to achieve better contrast and output noise suppression, and when this distance tends to infinity, the filter performs like a 1-D Hilbert mask. Experimental and simulation results are presented.

  7. Vortex ice in nanostructured superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Reichhardt, Charles [Los Alamos National Laboratory; Reichhardt, Cynthia J [Los Alamos National Laboratory; Libal, Andras J [Los Alamos National Laboratory

    2008-01-01

    We demonstrate using numerical simulations of nanostructured superconductors that it is possible to realize vortex ice states that are analogous to square and kagome ice. The system can be brought into a state that obeys either global or local ice rules by applying an external current according to an annealing protocol. We explore the breakdown of the ice rules due to disorder in the nanostructure array and show that in square ice, topological defects appear along grain boundaries, while in kagome ice, individual defects appear. We argue that the vortex system offers significant advantages over other artificial ice systems.

  8. Complex network structure of flocks in the Vicsek Model with Vectorial Noise

    Science.gov (United States)

    Baglietto, Gabriel; Albano, Ezequiel V.; Candia, Julián

    2014-09-01

    In the Vicsek Model (VM), self-driven individuals try to adopt the direction of movement of their neighbors under the influence of noise, thus leading to a noise-driven order-disorder phase transition. By implementing the so-called Vectorial Noise (VN) variant of the VM (i.e. the VM-VN model), this phase transition has been shown to be discontinuous (first-order). In this paper, we perform an extensive complex network study of VM-VN flocks and show that their topology can be described as highly clustered, assortative, and nonhierarchical. We also study the behavior of the VM-VN model in the case of "frozen flocks" in which, after the flocks are formed using the full dynamics, particle displacements are suppressed (i.e. only rotations are allowed). Under this kind of restricted dynamics, we show that VM-VN flocks are unable to support the ordered phase. Therefore, we conclude that the particle displacements at every time-step in the VM-VN dynamics are a key element needed to sustain long-range ordering throughout.

  9. Data Structure for Porgressive Visualisation and Edition of Vectorial Geospatial Data

    Science.gov (United States)

    Gaillard, J.; Peytavie, A.; Gesquière, G.

    2016-10-01

    3D mock-ups of cities are becoming an increasingly common tool for urban planning. Sharing the mock-up is still a challenge since the volume of data is so high. Furthermore, the recent surge in low-end, mobile devices requires developers to carefully control the amount of data they process. In this paper, we present a hierarchical data structure that allows the streaming of vectorial data. Loosely based on a quadtree, the structure stores the data in tiles and is organised following a weight function which allows the most relevant data to be displayed first. The relevance of a feature can be measured by its geometry and semantic attributes, and can vary depending on the application or client type. Tiles can be limited in size (number of features or triangles) for the client to be able to control resource consumption. The article also presents algorithms for the addition or removal of features in the data structure, opening the path for the interactive edition of city data stored in a database.

  10. Intraflagellar transport is required for the vectorial movement of TRPV channels in the ciliary membrane.

    Science.gov (United States)

    Qin, Hongmin; Burnette, Dylan T; Bae, Young-Kyung; Forscher, Paul; Barr, Maureen M; Rosenbaum, Joel L

    2005-09-20

    The membranes of all eukaryotic motile (9 + 2) and immotile primary (9 + 0) cilia harbor channels and receptors involved in sensory transduction (reviewed by). These membrane proteins are transported from the cytoplasm onto the ciliary membrane by vesicles targeted for exocytosis at a point adjacent to the ciliary basal body. Here, we use time-lapse fluorescence microscopy to demonstrate that select GFP-tagged sensory receptors undergo rapid vectorial transport along the entire length of the cilia of Caenorhabditis elegans sensory neurons. Transient receptor potential vanilloid (TRPV) channels OSM-9 and OCR-2 move in ciliary membranes at rates comparable to the intraflagellar transport (IFT) machinery located between the membrane and the underlying axonemal microtubules. OSM-9 motility is disrupted in certain IFT mutant backgrounds. Surprisingly, motility of transient receptor potential polycystin (TRPP) channel PKD-2 (polycystic kidney disease-2), a mechano-receptor, was not detected. Our study demonstrates that IFT, previously shown to be necessary for transport of axonemal components, is also involved in the motility of TRPV membrane protein movement along cilia of C. elegans sensory cells.

  11. Invasiveness of Aedes aegypti and Aedes albopictus and Vectorial Capacity for Chikungunya Virus.

    Science.gov (United States)

    Lounibos, Leon Philip; Kramer, Laura D

    2016-12-15

    In this review, we highlight biological characteristics of Aedes aegypti and Aedes albopictus, 2 invasive mosquito species and primary vectors of chikungunya virus (CHIKV), that set the tone of these species' invasiveness, vector competence, and vectorial capacity (VC). The invasiveness of both species, as well as their public health threats as vectors, is enhanced by preference for human blood. Vector competence, characterized by the efficiency of an ingested arbovirus to replicate and become infectious in the mosquito, depends largely on vector and virus genetics, and most A. aegypti and A. albopictus populations thus far tested confer vector competence for CHIKV. VC, an entomological analog of the pathogen's basic reproductive rate (R0), is epidemiologically more important than vector competence but less frequently measured, owing to challenges in obtaining valid estimates of parameters such as vector survivorship and host feeding rates. Understanding the complexities of these factors will be pivotal in curbing CHIKV transmission. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  12. Vectorial Structure of Non-Paraxial Linearly Polarized Gaussian Beam in Far Field

    Institute of Scientific and Technical Information of China (English)

    ZHOU Guo-Quan; CHEN Liang; NI Yong-Zhou

    2006-01-01

    @@ According to the vectorial structure of non-paraxial electromagnetic beams and the method of stationary phase,the analytical TE and TM terms of non-paraxial linearly polarized Gaussian beam are presented in the far field.The influence of linearly polarized angle on the relative energy flux distributions of the whole beam and its TE and TM terms is studied. The beam spot of the TE term is perpendicular to the direction of linearly polarized angle, while that of the TM term coincides with the direction of linearly polarized angle. The whole beam spot is elliptical, and the long axis is located at the direction of linearly polarized angle. The relative energy flux distribution of the TE term is relatively centralized in the direction perpendicular to the linearly polarized angle.While that of the TM term is relatively centralized in the direction of linearly polarized angle. To obtain the isolated TM and TE terms, a polarizer should be put at the long and the short axis of the whole beam. spot,respectively.

  13. Vectorial Command of Induction Motor Pumping System Supplied by a Photovoltaic Generator

    Science.gov (United States)

    Makhlouf, Messaoud; Messai, Feyrouz; Benalla, Hocine

    2011-01-01

    With the continuous decrease of the cost of solar cells, there is an increasing interest and needs in photovoltaic (PV) system applications following standard of living improvements. Water pumping system powered by solar-cell generators are one of the most important applications. The fluctuation of solar energy on one hand, and the necessity to optimise available solar energy on the other, it is useful to develop new efficient and flexible modes to control motors that entrain the pump. A vectorial control of an asynchronous motor fed by a photovoltaic system is proposed. This paper investigates a photovoltaic-electro mechanic chain, composed of a PV generator, DC-AC converter, a vector controlled induction motor and centrifugal pump. The PV generator is forced to operate at its maximum power point by using an appropriate search algorithm integrated in the vector control. The optimization is realized without need to adding a DC-DC converter to the chain. The motor supply is also ensured in all insolation conditions. Simulation results show the effectiveness and feasibility of such an approach.

  14. A Fast Alternating Minimization Algorithm for Nonlocal Vectorial Total Variational Multichannel Image Denoising

    Directory of Open Access Journals (Sweden)

    Rubing Xi

    2014-01-01

    Full Text Available The variational models with nonlocal regularization offer superior image restoration quality over traditional method. But the processing speed remains a bottleneck due to the calculation quantity brought by the recent iterative algorithms. In this paper, a fast algorithm is proposed to restore the multichannel image in the presence of additive Gaussian noise by minimizing an energy function consisting of an l2-norm fidelity term and a nonlocal vectorial total variational regularization term. This algorithm is based on the variable splitting and penalty techniques in optimization. Following our previous work on the proof of the existence and the uniqueness of the solution of the model, we establish and prove the convergence properties of this algorithm, which are the finite convergence for some variables and the q-linear convergence for the rest. Experiments show that this model has a fabulous texture-preserving property in restoring color images. Both the theoretical derivation of the computation complexity analysis and the experimental results show that the proposed algorithm performs favorably in comparison to the widely used fixed point algorithm.

  15. Propagation of an Airy-Gaussian-Vortex beam in a chiral medium

    Science.gov (United States)

    Hua, Sen; Liu, Youwen; Zhang, Huijie; Tang, Liangzun; Feng, Yunxcai

    2017-04-01

    Based on the Huygens diffraction integral, the analytical expressions of electric field distribution of the Airy-Gaussian-Vortex (AiGV) beam in a chiral medium are derived, and its propagation properties are investigated. With increasing the value of chiral parameter γ, the parabolic deflection of the LCP light increases and the RCP light decreases respectively. For the first-order AiGV beam with only one positive or negative optical vortex (OV), a half-moon-shaped intensity profile can be observed because of overlap of the OV and the Airy main lobe, and then the main lobe will be reconstructed and the vortex could be recovered after the overlap position. The intensity distribution of AiGV beam, the deflection trajectories of central positions of Airy beam and OV under different competing parameters between Gaussian and Airy terms have been studied. Furthermore, for the second-order counterrotating AiGV beam with positive and negative vortexes, it could be considered the superposition of two first-order AiGV beams with respective positive and negative vortexes. Two vortexes can regenerate during propagation and the intensity distribution the AiGV beam in the far zone can be controlled by adjusting the coordinates of two vortexes.

  16. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Ninth Edition Optics: Ninth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommen

  17. Backreaction of excitations on a vortex

    CERN Document Server

    Arodz, H; Arodz, Henryk; Hadasz, Leszek

    1997-01-01

    Excitations of a vortex are usually considered in a linear approximation neglecting their backreaction on the vortex. In the present paper we investigate backreaction of Proca type excitations on a straightlinear vortex in the Abelian Higgs model. We propose exact Ansatz for fields of the excited vortex. From initial set of six nonlinear field equations we obtain (in a limit of weak excitations) two linear wave equations for the backreaction corrections. Their approximate solutions are found in the cases of plane wave and wave packet type excitations. We find that the excited vortex radiates vector field and that the Higgs field has a very broad oscillating component.

  18. Nonlinear fiber optics

    CERN Document Server

    Agrawal, Govind

    2012-01-01

    Since the 4e appeared, a fast evolution of the field has occurred. The 5e of this classic work provides an up-to-date account of the nonlinear phenomena occurring inside optical fibers, the basis of all our telecommunications infastructure as well as being used in the medical field. Reflecting the big developments in research, this new edition includes major new content: slow light effects, which offers a reduction in noise and power consumption and more ordered network traffic-stimulated Brillouin scattering; vectorial treatment of highly nonlinear fibers; and a brand new chapter o

  19. Manipulation of magnetic vortex parameters in disk-on-disk nanostructures with various geometry

    Directory of Open Access Journals (Sweden)

    Maxim E. Stebliy

    2015-03-01

    Full Text Available Magnetic nanostructures in the form of a sandwich consisting of two permalloy (Py disks with diameters of 600 and 200 nm separated by a nonmagnetic interlayer are studied. Magnetization reversal of the disk-on-disk nanostructures depends on the distance between centers of the small and big disks and on orientation of an external magnetic field applied during measurements. It is found that manipulation of the magnetic vortex chirality and the trajectory of the vortex core in the big disk is only possible in asymmetric nanostructures. Experimentally studied peculiarities of a motion path of the vortex core and vortex parameters by the magneto-optical Kerr effect (MOKE magnetometer are supported by the magnetic force microscopy imaging and micromagnetic simulations.

  20. Superresolution through the topological shaping of sound with an acoustic vortex wave antenna

    CERN Document Server

    Guild, Matthew D; Martin, Theodore P; Rohde, Charles A; Orris, Gregory J

    2016-01-01

    In this paper, we demonstrate far-field acoustic superresolution using shaped acoustic vortices. Compared with previously proposed near-field methods of acoustic superresolution, in this work we describe how far-field superresolution can be obtained using an acoustic vortex wave antenna. This is accomplished by leveraging the recent advances in optical vortices in conjunction with the topological diversity of a leaky wave antenna design. In particular, the use of an acoustic vortex wave antenna eliminates the need for a complicated phased array consisting of multiple active elements, and enables a superresolving aperture to be achieved with a single simple acoustic source and total aperture size less than a wavelength in diameter. A theoretical formulation is presented for the design of an acoustic vortex wave antenna with arbitrary planar arrangement, and explicit expressions are developed for the radiated acoustic pressure field. This geometric versatility enables variously-shaped acoustic vortex patterns t...

  1. Vortex beam generation based on a fiber array combining and propagation through a turbulent atmosphere

    Science.gov (United States)

    Aksenov, V. P.; Dudorov, V. V.; Kolosov, V. V.

    2016-09-01

    We suggest a technique for generation of optical vortex beams with a variable orbital angular momentum based on a fiber laser array. The technique uses the phase control of each single subbeam. Requirements for the number of subbeams and the spatial arrangement for the vortex beam generation are determined. The propagation dynamics of a vortex beam synthesized is compared with that of a continuous Laguerre-Gaussian beam in free space and in a turbulent atmosphere. Spectral properties of a beam synthesized, which is represented as a superposition of different azimuth modes, are determined during its free-space propagation. It is shown that energy and statistical parameters coincide for synthesized and continuous vortex beams when propagating through a turbulent medium. Probability density functions of the beam intensity fluctuations are well approximated to a gamma distribution in the cases where the scintillation index is lower than unity independently of the beam type and observation point position relative to the propagation axis.

  2. Particle-vortex symmetric liquid

    Science.gov (United States)

    Mulligan, Michael

    2017-01-01

    We introduce an effective theory with manifest particle-vortex symmetry for disordered thin films undergoing a magnetic field-tuned superconductor-insulator transition. The theory may enable one to access both the critical properties of the strong-disorder limit, which has recently been confirmed by Breznay et al. [Proc. Natl. Acad. Sci. USA 113, 280 (2016), 10.1073/pnas.1522435113] to exhibit particle-vortex symmetric electrical response, and the nearby metallic phase discovered earlier by Mason and Kapitulnik [Phys. Rev. Lett. 82, 5341 (1999), 10.1103/PhysRevLett.82.5341] in less disordered samples. Within the effective theory, the Cooper-pair and field-induced vortex degrees of freedom are simultaneously incorporated into an electrically neutral Dirac fermion minimally coupled to a (emergent) Chern-Simons gauge field. A derivation of the theory follows upon mapping the superconductor-insulator transition to the integer quantum Hall plateau transition and the subsequent use of Son's particle-hole symmetric composite Fermi liquid. Remarkably, particle-vortex symmetric response does not require the introduction of disorder; rather, it results when the Dirac fermions exhibit vanishing Hall effect. The theory predicts approximately equal (diagonal) thermopower and Nernst signal with a deviation parameterized by the measured electrical Hall response at the symmetric point.

  3. Anatomy of a Bathtub Vortex

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Bohr, Tomas; Stenum, Bjarne

    2003-01-01

    We present experiments and theory for the "bathtub vortex," which forms when a fluid drains out of a rotating cylindrical container through a small drain hole. The fast down-flow is found to be confined to a narrow and rapidly rotating "drainpipe" from the free surface down to the drain hole. Sur...

  4. Merger of Long Vortex Filaments

    CERN Document Server

    Khandekar, Akshay

    2012-01-01

    This fluid dynamics video demonstrates the merger of long vortex filaments is shown experimentally. Two counter-rotating vortices are generated using in a tank with very high aspect ratio. PIV demonstrates the merger of the vortices within a single orbit.

  5. Thermal inhomogeneities in vortex tubes

    Science.gov (United States)

    Lemesh, N. I.; Senchuk, L. A.

    An experimental study of the effect of the temperature of the inlet gas on the temperature difference between the hot and cold streams discharged from a Ranque-Hilsch vortex tube is described. The experimental results are presented in graphical form. It is that the temperature difference increases with the temperature of the entering gas.

  6. Instability of vortex pair leapfrogging

    DEFF Research Database (Denmark)

    Tophøj, Laust; Aref, Hassan

    2013-01-01

    pairs fly off to infinity, and a "walkabout" mode, where the vortices depart from leapfrogging but still remain within a finite distance of one another. We show numerically that this transition is more gradual, a result that we relate to earlier investigations of chaotic scattering of vortex pairs [L...

  7. 150 Years of vortex dynamics

    DEFF Research Database (Denmark)

    Aref, Hassan

    2010-01-01

    An IUTAM symposium with the title of this paper was held on October 12-16, 2008, in Lyngby and Copenhagen, Denmark, to mark the sesquicentennial of publication of Helmholtz's seminal paper on vortex dynamics. This volume contains the proceedings of the Symposium. The present paper provides...

  8. Giant optical manipulation.

    Science.gov (United States)

    Shvedov, Vladlen G; Rode, Andrei V; Izdebskaya, Yana V; Desyatnikov, Anton S; Krolikowski, Wieslaw; Kivshar, Yuri S

    2010-09-10

    We demonstrate a new principle of optical trapping and manipulation increasing more than 1000 times the manipulation distance by harnessing strong thermal forces while suppressing their stochastic nature with optical vortex beams. Our approach expands optical manipulation of particles into a gas media and provides a full control over trapped particles, including the optical transport and pinpoint positioning of ∼100  μm objects over a meter-scale distance with ±10  μm accuracy.

  9. Chaos in body-vortex interactions

    DEFF Research Database (Denmark)

    Pedersen, Johan Rønby; Aref, Hassan

    2010-01-01

    The model of body–vortex interactions, where the fluid flow is planar, ideal and unbounded, and the vortex is a point vortex, is studied. The body may have a constant circulation around it. The governing equations for the general case of a freely moving body of arbitrary shape and mass density...... of a circle is integrable. As the body is made slightly elliptic, a chaotic region grows from an unstable relative equilibrium of the circle-vortex case. The case of a cylindrical body of any shape moving in fluid otherwise at rest is also integrable. A second transition to chaos arises from the limit between...... and an arbitrary number of point vortices are presented. The case of a body and a single vortex is then investigated numerically in detail. In this paper, the body is a homogeneous, elliptical cylinder. For large body–vortex separations, the system behaves much like a vortex pair regardless of body shape. The case...

  10. Small disturbance diagnostic inside the vortex tube with a square cross-section

    Science.gov (United States)

    Kabardin, I. K.; Meledin, V. G.; Yavorskiy, N. I.; Pavlov, V. A.; Pravdina, M. H.; Kulikov, D. V.; Rahmanov, V. V.

    2016-10-01

    The vortex effect in Ranque-Hilch vortex tube was investigated. Being discovered by G.J. Ranque[1] in l928, the effect still has no adequate generally accepted physical explanation. One of the reasons is connected with the lack of reliable experimental data describing velocity and temperature distributions inside the vortex tube. The sensors mounted inside the vortex tube contribute conspicuous perturbation in the flow. Therefore, the new measuring methods should be searched that do not or slightly disturb the flow. For this purpose, optical techniques are the most suitable. In order to use optical methods the vortex tube with square section was applied. The flow kinematics investigation inside the Ranque-Hilsch tube was carried out using a laser Doppler anemometer (LDA) with an adaptive temporal selection of the velocity vector (LAD-056). The measurements of vector components of the swirling flow velocity were carried out in close to the hot output section of the Ranque-Hilsch tube at a working pressure of 4 bar, at which twisted spiral vortex patterns have been recorded. Also the temperature diagnostics has been carried out. It was based on the flow scanning with the small-sized special temperature sensor. The temperature distribution at several points along the vortex tube was recorded. Also the temperature distribution was measured in the swirler chamber surrounding the cold exit. The difference in temperature at cold and hot outputs was about 50 o C. For each point several series of measurements were carried out which show that the temperature distribution in the vortex tube is significantly nonstationary.

  11. Numerical simulation of broadband vortex terahertz beams propagation

    Science.gov (United States)

    Semenova, V. A.; Kulya, M. S.; Bespalov, V. G.

    2016-08-01

    Orbital angular momentum (OAM) represents new informational degree of freedom for data encoding and multiplexing in fiber and free-space communications. OAM-carrying beams (also called vortex beams) were successfully used to increase the capacity of optical, millimetre-wave and radio frequency communication systems. However, the investigation of the OAM potential for the new generation high-speed terahertz communications is also of interest due to the unlimited demand of higher capacity in telecommunications. Here we present a simulation-based study of the propagating in non-dispersive medium broadband terahertz vortex beams generated by a spiral phase plate (SPP). The algorithm based on scalar diffraction theory was used to obtain the spatial amplitude and phase distributions of the vortex beam in the frequency range from 0.1 to 3 THz at the distances 20-80 mm from the SPP. The simulation results show that the amplitude and phase distributions without unwanted modulation are presented in the wavelengths ranges with centres on the wavelengths which are multiple to the SPP optical thickness. This fact may allow to create the high-capacity near-field communication link which combines OAM and wavelength-division multiplexing.

  12. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Eighth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommended for engineering st

  13. Modelo Vectorial para la Inferencia del Estado Cognitivo de Pacientes en Estados Derivados del Coma

    Directory of Open Access Journals (Sweden)

    Esteban Velásquez R.

    2014-06-01

    Full Text Available La forma tradicional de evaluar el estado de conciencia de un individuo, ha sido mediante la aplicación de estímulos y el análisis de sus respuestas, sin embargo, esta técnica se ve limitada cuando el individuo es incapaz de responder evidentemente ante un estímulo, como es el caso de los pacientes en estados derivados del coma. En estos casos, se requiere de una conexión directa con el cerebro del paciente para detectar una respuesta. Por consiguiente, en este artículo se desarrolla y analiza un modelo computacional basado en los principios de las máquinas de soporte vectorial (MSV, para inferir el estado cognitivo de pacientes en estados derivados del coma, mediante la utilización de un equipo de electroencefalografía comercial. Los resultados obtenidos, mostraron que el modelo logró clasificar correctamente una tarea cognitiva en al menos cuatro de cada cinco pruebas en pacientes de control, lo que se traduce en la obtención de un sistema de bajo costo para el análisis del estado de conciencia y para la posible comunicación con algunos pacientes en estados derivados del coma mediante protocolos médicos definidos. De esta manera, este sistema se presenta como un gran aporte para las clínicas y centros hospitalarios, como herramienta potencial de diagnóstico para este tipo de pacientes.

  14. Ukraine’s Multi-Vectorial Foreign Policy: Looking West while not Overlooking its Eastern Neighbour

    Directory of Open Access Journals (Sweden)

    María Raquel Freire

    2009-05-01

    Full Text Available La Ucrania post-soviética ha perseguido un curso independiente en su política exterior desde que lograse la independencia en 1991. Sin embargo su posición geográfica condicionó mucho el contorno de su política exterior. De hecho, mientras que un acercamiento al Oeste ha sido valorado grandemente, las relaciones con Rusia han seguido siendo el pilar central de Ucrania, intentándose por tanto, mirar hacia el Oeste sin perder de vista a su vecino oriental. En tal contexto, ¿cómo podrían conciliar las autoridades ucranianas los diferentes vectores de la política exterior de su país?¿En qué medida podrían pervivir los principios de la Revolución Naranja entre un contexto interior tan difícil y un contexto exterior complejo?¿En qué medida pueden afectar a las opciones en política exterior de Kiev la influencia occidental y las interferencias rusas? Intentando encontrar respuestas a tales preguntas, este artículo tiene como objetivo la deconstrucción de los varios círculos en la política exterior multi-vectorial de Kiev que se encargan de atender a la política exterior de una manera integrada y donde las formulaciones interiores se ven condicionadas por las opciones externas, echando luz de esta manera sobre cómo las interrelaciones e interconexiones se desarrollan en el proceso de toma de decisiones y en el curso elegido.

  15. Dynamic and thermodynamic properties of porous vortex matter in Bi(2)Sr(2)CaCu(2)O(8) in an oblique magnetic field.

    Science.gov (United States)

    Avraham, Nurit; Goldschmidt, Y Y; Liu, J T; Myasoedov, Y; Rappaport, M; Zeldov, E; van der Beek, C J; Konczykowski, M; Tamegai, T

    2007-08-24

    Vortex matter in Bi(2)Sr(2)CaCu(2)O(8) with a low concentration of tilted columnar defects (CDs) was studied using magneto-optical measurements and molecular dynamics simulations. It is found that while the dynamic properties are significantly affected by tilting the magnetic field away from the CDs, the thermodynamic transitions are angle independent. The simulations indicate that vortex pancakes remain localized on the CDs even at large tilting angles. This preserves the vortex thermodynamics, while vortex pinning is considerably weakened due to kink sliding.

  16. Ballistic rectification of vortex domain wall chirality at nanowire corners

    Energy Technology Data Exchange (ETDEWEB)

    Omari, K.; Bradley, R. C.; Broomhall, T. J.; Hodges, M. P. P.; Hayward, T. J. [Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); Rosamond, M. C.; Linfield, E. H. [School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Im, M.-Y. [Center for X-Ray Optics, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873 (Korea, Republic of); Fischer, P. [Materials Sciences Division, Lawrence Berkley National Laboratory, Berkeley, California 94720 (United States); Department of Physics, University of California, Santa Cruz, California 94056 (United States)

    2015-11-30

    The interactions of vortex domain walls with corners in planar magnetic nanowires are probed using magnetic soft X-ray transmission microscopy. We show that when the domain walls are propagated into sharp corners using applied magnetic fields above a critical value, their chiralities are rectified to either clockwise or anticlockwise circulation depending on whether the corners turn left or right. Single-shot focused magneto-optic Kerr effect measurements are then used to demonstrate how, when combined with modes of domain propagation that conserve vortex chirality, this allows us to dramatically reduce the stochasticity of domain pinning at artificial defect sites. Our results provide a tool for controlling domain wall chirality and pinning behavior both in further experimental studies and in future domain wall-based memory, logic and sensor technologies.

  17. Vortex beam based more stable annular laser guide star

    Science.gov (United States)

    Luo, Ruiyao; Cui, Wenda; Li, Lei; Sun, Quan; He, Yulong; Wang, Hongyan; Ning, Yu; Xu, Xiaojun

    2016-11-01

    We present an annular laser guide star (LGS) concept for large ground-based telescopes in this paper. The more stable annular LGS is generated by turbulence-resisted vortex beam. In the uplink, a vortex beam tends to wander more slightly than a Gaussian beam does in atmospheric turbulence. This may enable an annular LGS to wander more slightly than a traditional Gaussian beam generated LGS does, which would ease the burden of uplink tip-tilt mirror and benefit a dynamical closed-loop adaptive optics system. We conducted numerical simulation to validate the feasibility of this concept. And we have gotten 31% reduced variance of spot wandering of annular LGS. Besides, we set up a spatial light modulator based laser guide star simulator for beam propagation in turbulent atmosphere to experimentally test the annular LGS concept. Preliminary experimental results are given. To the best of our knowledge, it is the first time this concept is formulated.

  18. Propagation of Airy Gaussian vortex beams in uniaxial crystals

    Science.gov (United States)

    Weihao, Yu; Ruihuang, Zhao; Fu, Deng; Jiayao, Huang; Chidao, Chen; Xiangbo, Yang; Yanping, Zhao; Dongmei, Deng

    2016-04-01

    The propagation dynamics of the Airy Gaussian vortex beams in uniaxial crystals orthogonal to the optical axis has been investigated analytically and numerically. The propagation expression of the beams has been obtained. The propagation features of the Airy Gaussian vortex beams are shown with changes of the distribution factor and the ratio of the extraordinary refractive index to the ordinary refractive index. The correlations between the ratio and the maximum intensity value during the propagation, and its appearing distance have been investigated. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374108, 11374107, 10904041, and 11547212), the Foundation of Cultivating Outstanding Young Scholars of Guangdong Province, China, the CAS Key Laboratory of Geospace Environment, University of Science and Technology of China, the National Training Program of Innovation and Entrepreneurship for Undergraduates (Grant No. 2015093), and the Science and Technology Projects of Guangdong Province, China (Grant No. 2013B031800011).

  19. Highly intense monocycle terahertz vortex generation by utilizing a Tsurupica spiral phase plate

    Science.gov (United States)

    Miyamoto, Katsuhiko; Kang, Bong Joo; Kim, Won Tae; Sasaki, Yuta; Niinomi, Hiromasa; Suizu, Koji; Rotermund, Fabian; Omatsu, Takashige

    2016-12-01

    Optical vortex, possessing an annular intensity profile and an orbital angular momentum (characterized by an integer termed a topological charge) associated with a helical wavefront, has attracted great attention for diverse applications due to its unique properties. In particular for terahertz (THz) frequency range, several approaches for THz vortex generation, including molded phase plates consisting of metal slit antennas, achromatic polarization elements and binary-diffractive optical elements, have been recently proposed, however, they are typically designed for a specific frequency. Here, we demonstrate highly intense broadband monocycle vortex generation near 0.6 THz by utilizing a polymeric Tsurupica spiral phase plate in combination with tilted-pulse-front optical rectification in a prism-cut LiNbO3 crystal. A maximum peak power of 2.3 MW was obtained for THz vortex output with an expected topological charge of 1.15. Furthermore, we applied the highly intense THz vortex beam for studying unique nonlinear behaviors in bilayer graphene towards the development of nonlinear super-resolution THz microscopy and imaging system.

  20. Two vortex-blob regularization models for vortex sheet motion

    Science.gov (United States)

    Sohn, Sung-Ik

    2014-04-01

    Evolving vortex sheets generally form singularities in finite time. The vortex blob model is an approach to regularize the vortex sheet motion and evolve past singularity formation. In this paper, we thoroughly compare two such regularizations: the Krasny-type model and the Beale-Majda model. It is found from a linear stability analysis that both models have exponentially decaying growth rates for high wavenumbers, but the Beale-Majda model has a faster decaying rate than the Krasny model. The Beale-Majda model thus gives a stronger regularization to the solution. We apply the blob models to the two example problems: a periodic vortex sheet and an elliptically loaded wing. The numerical results show that the solutions of the two models are similar in large and small scales, but are fairly different in intermediate scales. The sheet of the Beale-Majda model has more spiral turns than the Krasny-type model for the same value of the regularization parameter δ. We give numerical evidences that the solutions of the two models agree for an increasing amount of spiral turns and tend to converge to the same limit as δ is decreased. The inner spiral turns of the blob models behave differently with the outer turns and satisfy a self-similar form. We also examine irregular motions of the sheet at late times and find that the irregular motions shrink as δ is decreased. This fact suggests a convergence of the blob solution to the weak solution of infinite regular spiral turns.

  1. Vortex tube reconnection at Re = 104

    Science.gov (United States)

    van Rees, Wim M.; Hussain, Fazle; Koumoutsakos, Petros

    2012-07-01

    We present simulations of the long-time dynamics of two anti-parallel vortex tubes with and without initial axial flow, at Reynolds number Re = Γ/ν = 104. Simulations were performed in a periodic domain with a remeshed vortex method using 785 × 106 particles. We quantify the vortex dynamics of the primary vortex reconnection that leads to the formation of elliptical rings with axial flow and report for the first time a subsequent collision of these rings. In the absence of initial axial flow, a -5/3 slope of the energy spectrum is observed during the first reconnection of the tubes. The resulting elliptical vortex rings experience a coiling of their vortex lines imparting an axial flow inside their cores. These rings eventually collide, exhibiting a -7/3 slope of the energy spectrum. Studies of vortex reconnection with an initial axial flow exhibit also the -7/3 slope during the initial collision as well as in the subsequent collision of the ensuing elliptical vortex rings. We quantify the detailed vortex dynamics of these collisions and examine the role of axial flow in the breakup of vortex structures.

  2. Influence of mesoscale topography on vortex intensity

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The effect of mesoscale topography on multi-vortex self-organization is investigated numerically in this paper using a barotropic primitive equation model with topographic term. In the initial field there are one DeMaria major vortex with the maximum wind radius rm of 80 km at the center of the computational domain, and four meso-β vortices in the vicinity of rm to the east of the major vortex center.When there is no topography present, the initial vortices self-organize into a quasi-final state flow pattern, I.e. A quasi-axisymmetric vortex whose intensity is close to that of the initial major vortex. However, when a mesoscale topography is incorporated, the spatial scale of the quasi-final state vortex reduces, and the relative vorticity at the center of the vortex and the local maximum wind speed remarkably increase. The possible mechanism for the enhancement of the quasi-final state vortex might be that the negative relative vorticity lump,generated above the mesoscale topography because of the constraint of absolute vorticity conservation, squeezes the center of positive vorticity towards the mountain slope area, and thus reduces the spatial range of the major vortex. Meanwhile, because the total kinetic energy is basically conservative, the squeezing directly leads to the concentration of the energy in a smaller area, I.e. The strengthening of the vortex.

  3. Analytical expressions for group delay in the far field from an optical fiber having an arbitrary index profile

    DEFF Research Database (Denmark)

    Danielsen, Per Lander

    1981-01-01

    A general and efficient model for optical fibers with a few modes and arbitrary index profiles is established. The model yields a solution of the vectorial wave equation and analytical expressions for the group delay and the far field. Convergence tests have shown that the dispersion can be calcu......A general and efficient model for optical fibers with a few modes and arbitrary index profiles is established. The model yields a solution of the vectorial wave equation and analytical expressions for the group delay and the far field. Convergence tests have shown that the dispersion can...

  4. A pointwise constrained version of the Liapunov convexity theorem for vectorial linear first-order control systems

    Science.gov (United States)

    Carlota, Clara; Chá, Sílvia; Ornelas, António

    2016-07-01

    We generalize the Liapunov convexity theorem's version for vectorial control systems driven by linear ODEs of first-order p = 1, in any dimension d ∈ N, by including a pointwise state-constraint. More precisely, given a x ‾ (ṡ) ∈W p , 1 ([ a , b ] ,Rd) solving the convexified p-th order differential inclusion Lp x ‾ (t) ∈ co {u0 (t) ,u1 (t) , … ,um (t) } a.e., consider the general problem consisting in finding bang-bang solutions (i.e. Lp x ˆ (t) ∈ {u0 (t) ,u1 (t) , … ,um (t) } a.e.) under the same boundary-data, x ˆ (k) (a) =x ‾ (k) (a) &x ˆ (k) (b) =x ‾ (k) (b) (k = 0 , 1 , … , p - 1); but restricted, moreover, by a pointwise state constraint of the type ≤ ∀ t ∈ [ a , b ] (e.g. ω = (1 , 0 , … , 0) yielding xˆ1 (t) ≤x‾1 (t)). Previous results in the scalar d = 1 case were the pioneering Amar & Cellina paper (dealing with Lp x (ṡ) =x‧ (ṡ)), followed by Cerf & Mariconda results, who solved the general case of linear differential operators Lp of order p ≥ 2 with C0 ([ a , b ]) -coefficients. This paper is dedicated to: focus on the missing case p = 1, i.e. using Lp x (ṡ) =x‧ (ṡ) + A (ṡ) x (ṡ) ; generalize the dimension of x (ṡ) , from the scalar case d = 1 to the vectorial d ∈ N case; weaken the coefficients, from continuous to integrable, so that A (ṡ) now becomes a d × d-integrable matrix; and allow the directional vector ω to become a moving AC function ω (ṡ) . Previous vectorial results had constant ω, no matrix (i.e. A (ṡ) ≡ 0) and considered: constant control-vertices (Amar & Mariconda) and, more recently, integrable control-vertices (ourselves).

  5. Vortex scattering by step topography

    Science.gov (United States)

    Hinds, A. K.; Johnson, E. R.; McDonald, N. R.

    The scattering at a rectilinear step change in depth of a shallow-water vortex pair consisting of two patches of equal but opposite-signed vorticity is studied. Using the constants of motion, an explicit relationship is derived relating the angle of incidence to the refracted angle after crossing. A pair colliding with a step from deep water crosses the escarpment and subsequently propagates in shallow water refracted towards the normal to the escarpment. A pair colliding with a step from shallow water either crosses and propagates in deep water refracted away from the normal or, does not cross the step and is instead totally internally reflected by the escarpment. For large depth changes, numerical computations show that the coherence of the vortex pair is lost on encountering the escarpment.

  6. Perturbations of vortex ring pairs

    CERN Document Server

    Gubser, Steven S; Parikh, Sarthak

    2015-01-01

    We study pairs of co-axial vortex rings starting from the action for a classical bosonic string in a three-form background. We complete earlier work on the phase diagram of classical orbits by explicitly considering the case where the circulations of the two vortex rings are equal and opposite. We then go on to study perturbations, focusing on cases where the relevant four-dimensional transfer matrix splits into two-dimensional blocks. When the circulations of the rings have the same sign, instabilities are mostly limited to wavelengths smaller than a dynamically generated length scale at which single-ring instabilities occur. When the circulations have the opposite sign, larger wavelength instabilities can occur.

  7. Collisions of Vortex Filament Pairs

    Science.gov (United States)

    Banica, Valeria; Faou, Erwan; Miot, Evelyne

    2014-12-01

    We consider the problem of collisions of vortex filaments for a model introduced by Klein et al. (J Fluid Mech 288:201-248, 1995) and Zakharov (Sov Phys Usp 31(7):672-674, 1988, Lect. Notes Phys 536:369-385, 1999) to describe the interaction of almost parallel vortex filaments in three-dimensional fluids. Since the results of Crow (AIAA J 8:2172-2179, 1970) examples of collisions are searched as perturbations of antiparallel translating pairs of filaments, with initial perturbations related to the unstable mode of the linearized problem; most results are numerical calculations. In this article, we first consider a related model for the evolution of pairs of filaments, and we display another type of initial perturbation leading to collision in finite time. Moreover, we give numerical evidence that it also leads to collision through the initial model. We finally study the self-similar solutions of the model.

  8. Evolution of the vortex state in the BCS-BEC crossover of a quasi two-dimensional superfluid Fermi gas

    Science.gov (United States)

    Luo, Xuebing; Zhou, Kezhao; Zhang, Zhidong

    2016-11-01

    We use the path-integral formalism to investigate the vortex properties of a quasi-two dimensional (2D) Fermi superfluid system trapped in an optical lattice potential. Within the framework of mean-field theory, the cooper pair density, the atom number density, and the vortex core size are calculated from weakly interacting BCS regime to strongly coupled while weakly interacting BEC regime. Numerical results show that the atoms gradually penetrate into the vortex core as the system evolves from BEC to BCS regime. Meanwhile, the presence of the optical lattice allows us to analyze the vortex properties in the crossover from three-dimensional (3D) to 2D case. Furthermore, using a simple re-normalization procedure, we find that the two-body bound state exists only when the interaction is stronger than a critical one denoted by G c which is obtained as a function of the lattice potential’s parameter. Finally, we investigate the vortex core size and find that it grows with increasing interaction strength. In particular, by analyzing the behavior of the vortex core size in both BCS and BEC regimes, we find that the vortex core size behaves quite differently for positive and negative chemical potentials. Project supported by the National Natural Science Foundation of China (Grant Nos. 51331006, 51590883, and 11204321) and the Project of Chinese Academy of Sciences (Grant No. KJZD-EW-M05-3).

  9. Dust vortex flows in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, P.K

    2002-12-30

    Coherent nonlinear structures in the form of dust vortex flows have been observed in unmagnetized laboratory dusty plasmas. Our objective here is show that the dynamics of such dust vortices is governed by a modified Navier-Stokes equation (MNSE) and that the stationary solutions of the MNSE can be represented as monopolar as well as a row of identical Stuart and a row of counter-rotating vortices.

  10. Experimental characteristics of vortex heaters

    Science.gov (United States)

    Piralishvili, Sh. A.; Novikov, N. N.

    The performance of a Ranque-Hilsch vortex tube is investigated experimentally for the case where the tube operates as a heater, with the mass of the heated gas remaining constant. The results obtained indicate that energy separation zones with sufficiently high (50 percent) relative heating effects can be achieved for a gas flow ratio of unity. A nomogram is presented for calculating the relative and absolute heating effects as a function of the tube geometry.

  11. Prediction and Control of Vortex Dominated and Vortex-wake Flows

    Science.gov (United States)

    Kandil, Osama

    1996-01-01

    This report describes the activities and accomplishments under this research grant, including a list of publications and dissertations, produced in the field of prediction and control of vortex dominated and vortex wake flows.

  12. DSP and FPGA based system to control a wind turbine generator implementing a variable speed vectorial control method

    OpenAIRE

    Perales Esteve, Manuel Ángel; Barrero, Federico; Mora Jiménez, José Luis; Galván Díez, Eduardo; Carrasco Solís, Juan Manuel; García Franquelo, Leopoldo

    1997-01-01

    The purpose of this paper is to describe a DSP and FPGA control system to implement a variable speed vectorial control. Two semi-systems, both of them consisting on a DSP, a FPGA and A/D, D/A & digital I/O’s are used. Each one will control an inverter: The first inverter implements a variable speed vector control of the induction generator and the second one handle the power injected into the utility grid. Experimental results will be shown to confirm the validity of the proposed controller.

  13. Cálculo vectorial discreto para problemas elípticos sobre retículas uniformes

    OpenAIRE

    Santos Gutiérrez, Roberto

    2004-01-01

    Esta tesina se enmarca dentro de los trabajos en el campo del análisis numérico denominados genéricamente como "discretizaciones miméticas de la mecánica del medio continuo". La idea consiste en establecer un cálculo vectorial sobre retículas uniformes siguiendo el modelo del caso continuo, de forma que se plantean los problemas elípticos directamente en medios discretos. Esto conduce a obtener operadores discretos análogos al gradiente, divergencia y laplaciano, y se demuestra que estos oper...

  14. Generation of cylindrically polarized vector vortex beams with digital micromirror device

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Lei; Liu, Weiwei; Wang, Meng; Zhong, Mincheng; Wang, Ziqiang; Li, Yinmei, E-mail: liyinmei@ustc.edu.cn [Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026 (China); Ren, Yuxuan [National Center for Protein Sciences Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, CAS, Shanghai 201210 (China)

    2014-11-14

    We propose a novel technique to directly transform a linearly polarized Gaussian beam into vector-vortex beams with various spatial patterns. Full high-quality control of amplitude and phase is implemented via a Digital Micro-mirror Device (DMD) binary holography for generating Laguerre-Gaussian, Bessel-Gaussian, and helical Mathieu–Gaussian modes, while a radial polarization converter (S-waveplate) is employed to effectively convert the optical vortices into cylindrically polarized vortex beams. Additionally, the generated vector-vortex beams maintain their polarization symmetry after arbitrary polarization manipulation. Due to the high frame rates of DMD, rapid switching among a series of vector modes carrying different orbital angular momenta paves the way for optical microscopy, trapping, and communication.

  15. Low-noise III-V metasurface based semiconductor vortex laser and rotational Doppler velocimetry

    Science.gov (United States)

    Seghilani, Mohamed; Chomet, Baptiste; Myara, Mikhael; Sellahi, Mohamed; Legratiet, Luc; Beaudoin, Gregoire; Sagnes, Isabelle; Lalanne, Philippe; Garnache, Arnaud

    2017-03-01

    We demonstrate a surface-emitting laser, based on III-V semiconductor technology with an integrated metasurface, generating vortex-like coherent state in the Laguerre-Gauss basis.24 We use a first order phase perturbation to introduce a weak orbital anisotropy, based on a dielectric metasurface and non-linear laser dynamics, allowing selecting vortex handedness. Moreover, similarly to linear Doppler Shift, light carrying orbital angular momentum L, scattered by a rotating object at angular velocity, experiences a rotational Doppler shift L. We show that this fundamental light matter interaction can be detected exploiting self-mixing in a vortex laser under Doppler-shifted optical feedback, with quantum noise-limited light detection.25 This will allow us to combine a velocity sensor with optical tweezers for micro-manipulation applications, with high performances, simplicity and compactness. Such high performance laser opens the path to widespread new photonic applications.

  16. Topology of Vortex-Wing Interaction

    Science.gov (United States)

    McKenna, Chris; Rockwell, Donald

    2016-11-01

    Aircraft flying together in an echelon or V formation experience aerodynamic advantages. Impingement of the tip vortex from the leader (upstream) wing on the follower wing can yield an increase of lift to drag ratio. This enhancement is known to depend on the location of vortex impingement on the follower wing. Particle image velocimetry is employed to determine streamline topology in successive crossflow planes, which characterize the streamwise evolution of the vortex structure along the chord of the follower wing and into its wake. Different modes of vortex-follower wing interaction are created by varying both the spanwise and vertical locations of the leader wing. These modes are defined by differences in the number and locations of critical points of the flow topology, and involve bifurcation, attenuation, and mutual induction. The bifurcation and attenuation modes decrease the strength of the tip vortex from the follower wing. In contrast, the mutual induction mode increases the strength of the follower tip vortex. AFOSR.

  17. Vortex rings impinging on permeable boundaries

    Science.gov (United States)

    Mujal-Colilles, Anna; Dalziel, Stuart B.; Bateman, Allen

    2015-01-01

    Experiments with vortex rings impinging permeable and solid boundaries are presented in order to investigate the influence of permeability. Utilizing Particle Image Velocimetry, we compared the behaviour of a vortex ring impinging four different reticulated foams (with permeability k ˜ 26 - 85 × 10-8 m2) and a solid boundary. Results show how permeability affects the stretching phenomena of the vortex ring and the formation and evolution of the secondary vortex ring with opposite sign. Moreover, permeability also affects the macroscopic no-slip boundary condition found on the solid boundary, turning it into an apparent slip boundary condition for the most permeable boundary. The apparent slip-boundary condition and the flux exchange between the ambient fluid and the foam are jointly responsible for both the modified formation of the secondary vortex and changes on the vortex ring diameter increase.

  18. Vortex dynamics in nonrelativistic Abelian Higgs model

    Directory of Open Access Journals (Sweden)

    A.A. Kozhevnikov

    2015-11-01

    Full Text Available The dynamics of the gauge vortex with arbitrary form of a contour is considered in the framework of the nonrelativistic Abelian Higgs model, including the possibility of the gauge field interaction with the fermion asymmetric background. The equations for the time derivatives of the curvature and the torsion of the vortex contour generalizing the Betchov–Da Rios equations in hydrodynamics, are obtained. They are applied to study the conservation of helicity of the gauge field forming the vortex, twist, and writhe numbers of the vortex contour. It is shown that the conservation of helicity is broken when both terms in the equation of the vortex motion are present, the first due to the exchange of excitations of the phase and modulus of the scalar field and the second one due to the coupling of the gauge field forming the vortex, with the fermion asymmetric background.

  19. An axisymmetric steady state vortex ring model

    CERN Document Server

    Wang, Ruo-Qian

    2016-01-01

    Based on the solution of Atanasiu et al. (2004), a theoretical model for axisymmetric vortex flows is derived in the present study by solving the vorticity transport equation for an inviscid, incompressible fluid in cylindrical coordinates. The model can describe a variety of axisymmetric flows with particular boundary conditions at a moderately high Reynolds number. This paper shows one example: a high Reynolds number laminar vortex ring. The model can represent a family of vortex rings by specifying the modulus function using a Rayleigh distribution function. The characteristics of this vortex ring family are illustrated by numerical methods. For verification, the model results compare well with the recent direct numerical simulations (DNS) in terms of the vorticity distribution and streamline patterns, cross-sectional areas of the vortex core and bubble, and radial vorticity distribution through the vortex center. Most importantly, the asymmetry and elliptical outline of the vorticity profile are well capt...

  20. Magnetism near Vortex Cores of Cuprate Superconductors

    Science.gov (United States)

    Lee, J. C.; Prudchenko, K.; Launspach, B.; Ruiz, E. J.; Boekema, C.

    2005-03-01

    We examined muon-spin-resonance (μSR) vortex data of Bi2212, Tl2223, and YBCO to search for antiferromagnetism (AF) near the vortex cores. [1] Field distributions were obtained from μSR data using Maximum-Entropy analysis. The grainboundary and vortex signals were fitted by Gaussian and Lorentzian curves, the latter suggestive of extra AF ordering. Narrow Gaussians fit the grainboundary signals well, independent of temperature. For T B17 (2003) 3436.

  1. Stochastic singular optics (Conference paper)

    CSIR Research Space (South Africa)

    Roux, FS

    2014-09-01

    Full Text Available optics, stochastic optical field, optical vortex density, topological charge density 1. INTRODUCTION Speckle patterns are a typical phenomenon in random optical fields, resulting from coherent light being scattered from a random rough surface. It has been... and their topological charges are mixed such that neighbouring vortices tend to have opposite topological charge.11 As a result, the topological charge density of a speckle field is on average zero.14, 16 On the other hand, the vortex density is not zero, it is given...

  2. The quasi-vortex-lattice method for wings with edge vortex separation

    Science.gov (United States)

    Pao, J. L.; Lan, E.

    1980-01-01

    The aerodynamic characteristics of wings with leading-edge vortex separation were predicted using a method based on a flow model with free vortex elements which are allowed to merge into a concentrated core. The calculated pressure distribution is more accurate than that predicted by methods with discrete vortex filaments alone. In addition, the computer time is reduced approximately by half.

  3. Recent Advances in Study of Oceanic Vortex

    Institute of Scientific and Technical Information of China (English)

    FU Gang; LI Li; LIU Qinyu

    2002-01-01

    In this paper, the recent advances in the study of oceanic vortex are outlined. Firstly, the previous studies on oceanic vortex are reviewed. Secondly, some prominent features of oceanic vortex in the Gulf Stream, the Kuroshio, the South China Sea and the Japan Sea regions are depicted based upon the observations and numerical modeling results. Generally, the lifetime of these oceanic vortices ranges from several weeks to several months, and their horizontal scales vary from tens of kilometers to hundreds of kilometers. Their vertical scales are on the order of thousands of meters. Finally, some theoretical studies, mainly on the splitting of a cyclonic vortex and the merging of anticyclonic vortices, are introduced.

  4. A Method for Measuring Orientation within a Magnetic Resonance Imaging Scanner using Gravity and the Static Magnetic Field (VectOrient).

    Science.gov (United States)

    van Niekerk, Adam; van der Kouwe, Andre; Meintjes, Ernesta

    2017-01-25

    In MRI brain imaging, subject motion limits obtainable image clarity. Due to the hardware layout of an MRI scanner, gradient excitations can be used to rapidly detect position. Orientation, however, is more difficult to detect and is commonly calculated by comparing the position measurements of multiple spatially constrained points to a reference dataset. The result is increased size of the apparatus the subject must wear, which can influence the imaging workflow. In optical based methods marker attachment sites are limited due to the line of sight requirement between the camera and marker, and an external reference frame is introduced. To address these challenges a method called VectOrient is proposed for orientation measurement that is based on vector observations of gravity and the MRI scanner's static magnetic field. A prototype device comprising of an accelerometer, magnetometer and angular rate sensor shows good MRI compatibility. Phantom scans of a pineapple with zero scanner specific calibration achieve comparable results to a rigid body registration algorithm with deviations less than 0.8 degrees over 28 degree changes in orientation. Dynamic performance shows potential for prospective motion correction as rapid changes in orientation (peak 20 degrees per second) can be corrected. The pulse sequence implemented achieves orientation updates with a latency estimated to be less than 12.7 ms, of which only a small fraction (<1 ms) is used for computing orientation from the raw sensor signals. The device is capable of quantifying subject respiration and heart rates. The proposed approach for orientation estimation could help address some limitations of existing methods such as orientation measurement range, temporal resolution, ease of use and marker placement.

  5. 4pi聚焦系统中振幅和相位调制的径向偏振涡旋光束聚焦特性的研究*%Study of the focusing features of spatial amplitude and phase modulated radially polarized vortex beams in a 4pi focusing system∗

    Institute of Scientific and Technical Information of China (English)

    常强; 杨艳芳†; 何英; 刘海港; 刘键

    2013-01-01

      基于Richards-Wolf矢量衍射积分公式,研究了径向偏振涡旋光束在振幅和相位调制下的4pi聚焦特性。振幅调制是通过振幅滤波实现,即改变入射光束起始积分值达到调节,相位调制是通过添加相位延迟角δ的液晶相位延迟器来改变入射光束的偏振态。模拟结果显示,随着振幅的减小,4pi聚焦系统焦点附近的光轴上呈现出多光球结构;而相位调制对焦点附近的光强分布产生拉伸作用,即调节入射光束的拓扑核m和相位延迟器的延迟角δ,可以得到特殊的光强分布。随着相位δ增大, m=0产生的多光球结构慢慢向光链结构转变,最终变成暗通道;而m=1产生的光链结构慢慢变成光球结构;m=2产生的暗通道变成光球和光链叠加的结构,这种特殊聚焦光束在光学微操纵领域具有潜在的应用价值。%The focusing properties of phase and amplitude modulated radially polarized vortex beams in a 4pi focusing system are theoreti-cally investigated near the focal plane by using Richards-Wolf vectorial diffraction method. The amplitude modulation of vortex beams can be adjusted by changing the start integration value. The phase modulation of vortex beams can be realized by adding liquid crystal variable retarder with the phase delay angleδ. The simulated results show that multiple spherical spots can be obtained near the focus of the 4pi focusing system with the decrease of amplitude. The phase delay angleδ of the input beams can generate extruding effect for the electrical field distribution near the focus of the 4pi focusing system. Some special intensity distributions can be obtained by changing topological charge m and phase delay angleδ. Optical chain can be generated in the case of m=1. Dark channel can be ob-tained in the case of m=2. These special focusing beams can also transform with phase modulation. With the increase of phaseδ, the multiple spherical spots at m=0 change slowly

  6. Vectorial magnetometry using magnetooptic Kerr effect including first- and second-order contributions for thin ferromagnetic films

    Energy Technology Data Exchange (ETDEWEB)

    Kuschel, T; Wilkens, H; Schubert, R; Wollschlaeger, J [Fachbereich Physik, Universitaet Osnabrueck, Barbarastrasse 7, D-49069 Osnabrueck (Germany); Bardenhagen, H [Physikalisches Institut, Universitaet Wuerzburg, Am Hubland, D-97074 Wuerzburg (Germany); Hamrle, J; Pistora, J, E-mail: joachim.wollschlaeger@uos.de [Department of Physics and Nanotechnology Centre, VSB - Technical University of Ostrava, 17. listopadu 15, 70833 Ostrava-Poruba (Czech Republic)

    2011-07-06

    A new combination of different vectorial magnetometry techniques using magnetooptic Kerr effect is described. The processing of the experimental data contains the separation of linear and quadratic parts of the magnetization curves and determination of all three components of the magnetization vector in units of Kerr rotation without any normalization to the saturation values. The experimental procedure includes measurements with parallel and perpendicular polarized incident light and an external magnetic field parallel and perpendicular to the plane of incidence of light. The determination of the complex Kerr amplitude and the theoretic description of the data processing in assumption of small angles of incidence and also for larger angles of incidence using adequate scaling to the mean saturation value validate this vectorial magnetometry method. In the case of an absent out-of-plane component of the magnetization vector, the complete reversal process can easily be reconstructed and interpreted by monodomain states and domain splitting. The measurement procedure and the processing of the data are demonstrated for an ultra-thin epitaxial Fe film on MgO(0 0 1).

  7. Generation of Intense High-Order Vortex Harmonics

    CERN Document Server

    Zhang, Xiaomei; Shi, Yin; Wang, Xiaofeng; Zhang, Lingang; Wang, Wenpeng; Xu, Jiancai; Yi, Longqiong; Xu, Zhizhan

    2014-01-01

    This paper presents the method for the first time to generate intense high-order optical vortices that carry orbital angular momentum in the extreme ultraviolet region. In three-dimensional particle-in-cell simulation, both the reflected and transmitted light beams include high-order harmonics of the Laguerre-Gaussian (LG) mode when a linearly polarized LG laser pulse impinges on a solid foil. The mode of the generated LG harmonic scales with its order, in good agreement with our theoretical analysis. The intensity of the generated high-order vortex harmonics is close to the relativistic region, and the pulse duration can be in attosecond scale. The obtained intense vortex beam possesses the combined properties of fine transversal structure due to the high-order mode and the fine longitudinal structure due to the short wavelength of the high-order harmonics. Thus, the obtained intense vortex beam may have extraordinarily promising applications for high-capacity quantum information and for high-resolution dete...

  8. Experimental study of the intraventricular filling vortex in diastolic dysfunction

    Science.gov (United States)

    Santhanakrishnan, Arvind; Samaee, Milad; Nelsen, Nicholas

    2016-11-01

    Heart failure with normal ejection fraction (HFNEF) is a clinical syndrome that is prevalent in over half of heart failure patients. HFNEF patients typically show diastolic dysfunction, caused by a decrease in relaxation capability of the left ventricular (LV) muscle tissue and/or an increase in LV chamber stiffness. Numerous studies using non-invasive medical imaging have shown that an intraventricular filling vortex is formed in the LV during diastole. We conducted 2D particle image velocimetry and hemodynamics measurements on a left heart simulator to investigate diastolic flow under increasing LV wall stiffness, LV wall thickness and heart rate (HR) conditions. Flexible-walled, optically clear LV physical models cast from silicone were fitted within a fluid-filled acrylic chamber. Pulsatile flow within the LV model was generated using a piston pump and 2-component Windkessel elements were used to tune the least stiff (baseline) LV model to physiological conditions. The results show that peak circulation of the intraventricular filling vortex is diminished in conditions of diastolic dysfunction as compared to the baseline case. Increasing HR exacerbated the circulation of the filling vortex across all cases.

  9. Optimization of an integrated-optical ring-resonator slow-light-based sensor

    NARCIS (Netherlands)

    Uranus, H.P.; Hoekman, M.; Dijkstra, M.; Hoekstra, H.J.W.M.; stoffer, R.

    2008-01-01

    A 3-D, vectorial, and multimodal model that incorporates realistic losses was developed to study the performance of Si3N4 based integrated-optical ring-resonator slow-light-based refractometric sensor. Efficient optimization of the coupler gap and tolerance analysis were also performed using the mod

  10. High power picosecond vortex laser based on a large-mode-area fiber amplifier.

    Science.gov (United States)

    Tanaka, Yuichi; Okida, Masahito; Miyamoto, Katsuhiko; Omatsu, Takashige

    2009-08-03

    We present the production of picosecond vortex pulses from a stressed large-mode-area fiber amplifier for the first time. 8.5 W picosecond output with a peak power of approximately 12.5 kW was obtained at a pump power of 29 W. 2009 Optical Society of America.

  11. Vortex Nucleation in a Dissipative Variant of the Nonlinear Schroedinger Equation Under Rotation

    Science.gov (United States)

    2014-12-01

    Vortices in Nonlinear Fields (Clarendon, UK, 1999). [2] Yu.S. Kivshar and B. Luther -Davies, Physics Reports 298, 81–197 (1998). [3] Y.S. Kivshar, J...Christou, V. Tikhonenko, B. Luther -Davies and L. Pismen, Optics Comm. 152, 198–206 (1998). [4] H.J. Lugt, Vortex Flow in Nature and Technology (John

  12. Rotating hot-wire investigation of the vortex responsible for blade-vortex interaction noise

    Science.gov (United States)

    Fontana, Richard Remo

    1988-01-01

    This distribution of the circumferential velocity of the vortex responsible for blade-vortex interaction noise was measured using a rotating hot-wire rake synchronously meshed with a model helicopter rotor at the blade passage frequency. Simultaneous far-field acoustic data and blade differential pressure measurements were obtained. Results show that the shape of the measured far-field acoustic blade-vortex interaction signature depends on the blade-vortex interaction geometry. The experimental results are compared with the Widnall-Wolf model for blade-vortex interaction noise.

  13. Vortex diffusion and vortex-line hysteresis in radial quantum turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Saluto, L., E-mail: lidia.saluto@unipa.it [DEIM, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Jou, D., E-mail: david.jou@uab.es [Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Mongiovi, M.S., E-mail: m.stella.mongiovi@unipa.it [DEIM, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo (Italy)

    2014-05-01

    We study the influence of vortex diffusion on the evolution of inhomogeneous quantized vortex tangles. A simple hydrodynamical model to describe inhomogeneous counterflow superfluid turbulence is used. As an illustration, we obtain solutions for these effects in radial counterflow of helium II between two concentric cylinders at different temperatures. The vortex diffusion from the inner hotter cylinder to the outer colder cylinder increases the vortex length density everywhere as compared with the non-diffusive situation. The possibility of hysteresis in the vortex line density under cyclical variations of the heat flow is explored.

  14. Vortex beam characterization in terms of Hypergeometric- Gaussian modes

    CSIR Research Space (South Africa)

    Sephton, Bereneice C

    2016-10-01

    Full Text Available stream_source_info Sephton_18560_2016.pdf.txt stream_content_type text/plain stream_size 580 Content-Encoding ISO-8859-1 stream_name Sephton_18560_2016.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Frontiers... in Optics: The 100th OSA Annual Meeting and Exhibit/Laser Science XXXII , 17-21 October 2016, Rochester Riverside Convention Center, Rochester, New York United States Vortex beam characterization in terms of Hypergeometric- Gaussian modes Sephton...

  15. Scalar and vector vortex beams from the source

    CSIR Research Space (South Africa)

    Naidoo, Darryl

    2016-10-01

    Full Text Available stream_source_info Naidoo_18563_2016.pdf.txt stream_content_type text/plain stream_size 587 Content-Encoding UTF-8 stream_name Naidoo_18563_2016.pdf.txt Content-Type text/plain; charset=UTF-8 OSA Laser Congress 2016.... Advanced Solid State Lasers 2016 (ASSL, LSC, LAC), OSA Technical Digest (online) (Optical Society of America, 2016), 30 October–3 November 2016, Boston, Massachusetts United States Scalar and vector vortex beams from the source Naidoo, Darryl Roux...

  16. Materials processing with a tightly focused femtosecond laser vortex pulse.

    Science.gov (United States)

    Hnatovsky, Cyril; Shvedov, Vladlen G; Krolikowski, Wieslaw; Rode, Andrei V

    2010-10-15

    In this Letter we present the first (to our knowledge) demonstration of material modification using tightly focused single femtosecond laser vortex pulses. Double-charge femtosecond vortices were synthesized with a polarization-singularity beam converter based on light propagation in a uniaxial anisotropic medium and then focused using moderate- and high-NA optics (viz., NA=0.45 and 0.9) to ablate fused silica and soda-lime glass. By controlling the pulse energy, we consistently machine micrometer-size ring-shaped structures with <100nm uniform groove thickness.

  17. Non-diffracting speckles of a perfect vortex beam

    Science.gov (United States)

    Gangi Reddy, Salla; P, Chithrabhanu; Vaity, Pravin; Aadhi, A.; Prabhakar, Shashi; Singh, R. P.

    2016-05-01

    We generate perfect optical vortex (POV) beams, whose intensity distribution is independent of the order, and scatter them through a rough surface. We show that the size of produced speckles is independent of the order of the POV and their Fourier transform gives the random non-diffracting fields. The invariant size of speckles over the free space propagation verifies their non-diffracting or non-diverging nature. The size of speckles can be easily controlled by changing the axicon parameter, used to generate the Bessel-Gauss beams whose Fourier transform provides the POV. These results may be useful in applications of POV for authentication in cryptography.

  18. Pinch-off of axisymmetric vortex pairs in the limit of vanishing vortex line curvature

    Science.gov (United States)

    Sadri, V.; Krueger, P. S.

    2016-07-01

    Pinch-off of axisymmetric vortex pairs generated by flow between concentric cylinders with radial separation ΔR was studied numerically and compared with planar vortex dipole behavior. The axisymmetric case approaches planar vortex dipole behavior in the limit of vanishing ΔR. The flow was simulated at a jet Reynolds number of 1000 (based on ΔR and the jet velocity), jet pulse length-to-gap ratio ( /L Δ R ) in the range 10-20, and gap-to-outer radius ratio ( /Δ R R o ) in the range 0.01-0.1. Contrary to investigations of strictly planar flows, vortex pinch-off was observed for all gap sizes investigated. This difference was attributed to the less constrained geometry considered, suggesting that even very small amounts of vortex line curvature and/or vortex stretching may disrupt the absence of pinch-off observed in strictly planar vortex dipoles.

  19. Simulations of Active Vortex Generators

    Science.gov (United States)

    Mansour, N. N.; Koumoutsakos, P.; Merriam, Marshal (Technical Monitor)

    1996-01-01

    We are interested in the study, via numerical simulations, of active vortex generators. Vortex generators may be used to modify the inner part of the boundary layer or to control separation thus enhancing the performance and maneuverability of aerodynamic configurations. We consider generators that consist of a surface cavity elongated in the streamwise direction and partially covered with a moving lid that at rest lies flush with the boundary. Streamwise voracity is generated and ejected due to the oscillatory motion of the lid. The present simulations c Implement relevant experimental investigations of active vortex generators that have been conducted at NASA Ames Research Center and Stanford University. Jacobson and Reynolds used a piezoelectric device in water, allowing for small amplitude high frequency oscillations. They placed the lid asymmetrically on the cavity and observed a strong outward velocity at the small gap of the cavity. Saddoughi used a larger mechanically driven device in air to investigate this flow and observed a jet emerging from the wide gap of the configuration, contrary to the findings of Jacobson and Reynolds. More recently, Lachowiez and Wlezien are investigating the flow generated by an electro-mechanically driven lid to be used for assertion control in aerodynamic applications. We are simulating the flows generated by these devices and we are conducting a parametric study that would help us elucidate the physical mechanisms present in the flow. Conventional computational schemes encounter difficulties when simulating flows around complex configurations undergoing arbitrary motions. Here we present a formulation that achieves this task on a purely Lagrangian frame by extending the formulation presented by Koumoutsakos, Leonard and Pepin. The viscous effects are taken into account by modifying the strength of the particles, whereas fast multipole schemes employing hundreds of thousands ol'particle's allow for high resolution simulations

  20. Delaying vortex breakdown by waves

    Science.gov (United States)

    Yao, M. F.; Jiang, L. B.; Wu, J. Z.; Ma, H. Y.; Pan, J. Y.

    1989-03-01

    The effect of spiral waves on delaying vortex breakdown in a tube is studied experimentally and theoretically. When a harmonic oscillation was imposed on one of guiding vanes in the tube, the breakdown was observed to be postponed appreciately. According to the generalized Lagrangian mean theory, proper forcing spiral waves may produce an additional streaming momentum, of which the effect is favorable and similar to an axial suction at downstream end. The delayed breakdown position is further predicted by using nonlinear wave theory. Qualitative agreement between theory and experiment is obtained, and experimental comparison of the effects due to forcing spiral wave and axial suction is made.

  1. Anatomy of a bathtub vortex.

    Science.gov (United States)

    Andersen, A; Bohr, T; Stenum, B; Rasmussen, J Juul; Lautrup, B

    2003-09-05

    We present experiments and theory for the "bathtub vortex," which forms when a fluid drains out of a rotating cylindrical container through a small drain hole. The fast down-flow is found to be confined to a narrow and rapidly rotating "drainpipe" from the free surface down to the drain hole. Surrounding this drainpipe is a region with slow upward flow generated by the Ekman layer at the bottom of the container. This flow structure leads us to a theoretical model similar to one obtained earlier by Lundgren [J. Fluid Mech. 155, 381 (1985)

  2. Formation of Ion Phase-Space Vortexes

    DEFF Research Database (Denmark)

    Pécseli, Hans; Trulsen, J.; Armstrong, R. J.

    1984-01-01

    The formation of ion phase space vortexes in the ion two stream region behind electrostatic ion acoustic shocks are observed in a laboratory experiment. A detailed analysis demonstrates that the evolution of such vortexes is associated with ion-ion beam instabilities and a nonlinear equation for ...

  3. Tight Focusing of Partially Coherent Vortex Beams

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar Singh

    2012-01-01

    Full Text Available Tight focusing of partially polarized vortex beams has been studied. Compact form of the coherence matrix has been derived for polarized vortex beams. Effects of topological charge and polarization distribution of the incident beam on intensity distribution, degree of polarization, and coherence have been investigated.

  4. The linear stability of swirling vortex rings

    Science.gov (United States)

    Gargan-Shingles, C.; Rudman, M.; Ryan, K.

    2016-11-01

    The stability of vortex rings with an azimuthal component of velocity is investigated numerically for various combinations of ring wavenumber and swirl magnitude. The vortex rings are equilibrated from an initially Gaussian distribution of azimuthal vorticity and azimuthal velocity, at a circulation-based Reynolds number of 10 000, to a state in which the vortex core is qualitatively identical to that of the piston generated vortex rings. The instability modes of these rings can be characterised as Kelvin instability modes, analogous to instability modes observed for Gaussian and Batchelor vortex pairs. The shape of an amplified mode typically depends only on the azimuthal wavenumber at the centre of the vortex core and the magnitude of the corresponding velocity component. The wavenumber of a particular sinuous instability varies with radius from the vortex ring centre for rings of finite aspect ratio. Thicker rings spread the amplification over a wider range of wavenumbers for a particular resonant mode pair, while the growth rate and the azimuthal wavenumber corresponding to the peak growth both vary as a function of the wavenumber variation. Normalisation of the wavenumber and the growth rate by a measure of the wavenumber variation allows a coherent description of stability modes to be proposed, across the parameter space. These results provide a framework for predicting the development of resonant Kelvin instabilities on vortex rings with an induced component of swirling velocity.

  5. Ring vortex solitons in nonlocal nonlinear media

    DEFF Research Database (Denmark)

    Briedis, D.; Petersen, D.E.; Edmundson, D.;

    2005-01-01

    or higher charge fundamental vortices as well as higher order (multiple ring) vortex solitons. Our results pave the way for experimental observation of stable vortex rings in other nonlocal nonlinear systems including Bose-Einstein condensates with pronounced long-range interparticle interaction....

  6. An investigation of the vortex method

    Energy Technology Data Exchange (ETDEWEB)

    Pryor, Jr., Duaine Wright [Univ. of California, Berkeley, CA (United States)

    1994-05-01

    The vortex method is a numerical scheme for solving the vorticity transport equation. Chorin introduced modern vortex methods. The vortex method is a Lagrangian, grid free method which has less intrinsic diffusion than many grid schemes. It is adaptive in the sense that elements are needed only where the vorticity is non-zero. Our description of vortex methods begins with the point vortex method of Rosenhead for two dimensional inviscid flow, and builds upon it to eventually cover the case of three dimensional slightly viscous flow with boundaries. This section gives an introduction to the fundamentals of the vortex method. This is done in order to give a basic impression of the previous work and its line of development, as well as develop some notation and concepts which will be used later. The purpose here is not to give a full review of vortex methods or the contributions made by all the researchers in the field. Please refer to the excellent review papers in Sethian and Gustafson, chapters 1 Sethian, 2 Hald, 3 Sethian, 8 Chorin provide a solid introduction to vortex methods, including convergence theory, application in two dimensions and connection to statistical mechanics and polymers. Much of the information in this review is taken from those chapters, Chorin and Marsden and Batchelor, the chapters are also useful for their extensive bibliographies.

  7. Vortex attraction and the formation of sunspots

    Science.gov (United States)

    Parker, E. N.

    1992-01-01

    A downdraft vortex ring in a stratified atmosphere exhibits universal attraction for nearby vertical magnetic flux bundles. It is speculated that the magnetic fields emerging through the surface of the sun are individually encircled by one or more subsurface vortex rings, providing an important part of the observed clustering of magnetic fibrils to form pores and sunspots.

  8. Investigation of Wake-Vortex Aircraft Encounters

    Science.gov (United States)

    Smith, Sonya T.

    1999-01-01

    The National Aeronautics and Space Administration is addressing airport capacity enhancements during instrument meteorological conditions though the Terminal Area Productivity (TAP) program. The major goal of the TAP program is to develop the technology that will allow air traffic levels during instrument meteorological condition to approach those achieved during visual operations. The Reduced Spacing Operations (RSO) subelement of TAP at the NASA Langley Research Center (LaRC) will develop the Aircraft Vortex Spacing System (AVOSS). The purpose of the AVOSS is to integrate current and predicted weather conditions, wake vortex transport and decay knowledge, wake vortex sensor data, and operational definitions of acceptable strengths for vortex encounters to produce dynamic wake vortex separation criteria. The proposed research is in support of the wake vortex hazard definition component of the LaRC AVOSS development research. The research program described in the next section provided an analysis of the static test data and uses this data to evaluate the accuracy vortex/wake-encounter models. The accuracy of these models has not before been evaluated using experimental data. The research results also presented the first analysis of the forces and moments imparted on an airplane during a wake vortex encounter using actual flight test data.

  9. On a few Aspects of Vortex Motion

    Directory of Open Access Journals (Sweden)

    Prantik Sinha

    2013-08-01

    Full Text Available Intricacies of vortex motion have been drawing the attention of scientists for many years. A number of works both experimental and numerical have been conducted to understand the various features of vortex motion and its effects on drag, etc. In the present experimental work we have made an attempt to visualize the patterns of both Forced and Free vortex motion. Here colored die has been used to understand the profiles and an arrow shaped strip marks the difference between irrotational and rotational flow. In the Forced vortex motion it has been observed that the parabolic profile remains invariant with the flow rate (speed of paddle, height of the lowest point of the profile decreases with the increase in flow rate (paddle speed. In the Free Vortex motion observations, the hyperbolic profile doesn’t change with the change in flow rate. In this case, suction is created towards the centre where as in the case of Force vortex no such suction arises. With the reduction in the size of the orifice diameter, the profile becomes less steep for Free vortex. In this case the velocity profile in the core region is straight, as the radius increases the profile becomes rectangular hyperbola where as in the case of Forced vortex the velocity profile maintains its linear nature for the entire range of radii.

  10. The bathtub vortex in a rotating container

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Bohr, Tomas; Stenum, B.

    2006-01-01

    We study the time-independent free-surface flow which forms when a fluid drains out of a container, a so-called bathtub vortex. We focus on the bathtub vortex in a rotating container and describe the free-surface shape and the complex flow structure using photographs of the free surface, flow...

  11. EXPERIMENTAL AND NUMERICAL INVESTIGATION OF FREE SURFACE VORTEX

    Institute of Scientific and Technical Information of China (English)

    LI Hai-feng; CHEN Hong-xun; MA Zheng; ZHOU Yi

    2008-01-01

    An experimental model was set up to investigate the formation and evolution of the free surface vortex. A Particle Image Velocimetry (PIV) was used to measure the free surface vortex flow field at different development stages. Flow visualization was used to locate the vortex position and find its structure. Empirical formulas about the critical submergence and the whole field structure were obtained. It is found that the tangential velocity distribution is similar to that of the Rankine vortex and the radial velocity changes little in the vortex functional scope. Vortex starts from the free surface and gradually intensifies to air entrainment vortex. The vortex core moves during the formation and evolution of the free surface vortex. Based on the experimental model, the vortex position and structure were predicted by numerical simulation combined with a vortex model and compared with that of the experiments, which shows satisfactory agreement.

  12. Incoherent imaging in the presence of unwanted laser radiation: vortex and axicon wavefront coding

    Science.gov (United States)

    Watnik, Abbie T.; Ruane, Garreth J.; Swartzlander, Grover A.

    2016-12-01

    Vortex and axicon phase masks are introduced to the pupil plane of an imaging system, altering both the point spread function and optical transfer function for monochromatic and broadband coherent and incoherent light. Each phase mask results in the reduction of the maximum irradiance of a localized coherent laser source, while simultaneously allowing for the recovery of the incoherent background scene. We describe the optical system, image processing, and resulting recovered images obtained through this wavefront encoding approach for laser suppression.

  13. Bifurcation and instability problems in vortex wakes

    Energy Technology Data Exchange (ETDEWEB)

    Aref, H [Center for Fluid Dynamics and Department of Physics, Technical University of Denmark, Kgs. Lyngby, DK-2800 (Denmark); Broens, M [Center for Fluid Dynamics and Department of Mathematics, Technical University of Denmark, Kgs. Lyngby, DK-2800 (Denmark); Stremler, M A [Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States)

    2007-04-15

    A number of instability and bifurcation problems related to the dynamics of vortex wake flows are addressed using various analytical tools and approaches. We discuss the bifurcations of the streamline pattern behind a bluff body as a vortex wake is produced, a theory of the universal Strouhal-Reynolds number relation for vortex wakes, the bifurcation diagram for 'exotic' wake patterns behind an oscillating cylinder first determined experimentally by Williamson and Roshko, and the bifurcations in topology of the streamlines pattern in point vortex streets. The Hamiltonian dynamics of point vortices in a periodic strip is considered. The classical results of von Karman concerning the structure of the vortex street follow from the two-vortices-in-a-strip problem, while the stability results follow largely from a four-vortices-in-a-strip analysis. The three-vortices-in-a-strip problem is argued to be relevant to the wake behind an oscillating body.

  14. Bifurcation and instability problems in vortex wakes

    DEFF Research Database (Denmark)

    Aref, Hassan; Brøns, Morten; Stremler, Mark A.

    2007-01-01

    A number of instability and bifurcation problems related to the dynamics of vortex wake flows are addressed using various analytical tools and approaches. We discuss the bifurcations of the streamline pattern behind a bluff body as a vortex wake is produced, a theory of the universal Strouhal......-Reynolds number relation for vortex wakes, the bifurcation diagram for "exotic" wake patterns behind an oscillating cylinder first determined experimentally by Williamson & Roshko, and the bifurcations in topology of the streamlines pattern in point vortex streets. The Hamiltonian dynamics of point vortices...... in a periodic strip is considered. The classical results of von Kármán concerning the structure of the vortex street follow from the two-vortices-in-a-strip problem, while the stability results follow largely from a four-vortices-in-a-strip analysis. The three-vortices-in-a-strip problem is argued...

  15. Fast vortex-assisted self-assembly of carbon nanoparticles on an air-water interface.

    Science.gov (United States)

    Rodrigues, Marco-Tulio F; Ajayan, Pulickel M; Silva, Glaura G

    2013-05-30

    In this work a self-assembly technique is presented, allowing the fast formation of carbon black thin films. It consists in the controlled addition of a stable carbon material's dispersion over the water surface, disturbed by a vortex. The vortex, although not essential for the film formation, was found to drastically improve film homogeneity. A physical chemical study concerning how several parameters could be used to tune film properties was also conducted. The self-assembled films, which can be picked up in any hydrophilic substrate, showed a good electrical conductivity and a high optical transparency. As an application example, films about 200 nm thick were employed as supercapacitor electrodes.

  16. Vortex-MEMS filters for wavelength-selective orbital-angular-momentum beam generation

    DEFF Research Database (Denmark)

    Paul, Sujoy; Lyubopytov, Vladimir; Schumann, Martin F.

    2017-01-01

    In this paper an on-chip device capable of wavelength-selective generation of vortex beams is demonstrated. The device is realized by integrating a spiral phase-plate onto a MEMS tunable Fabry-Perot filter. This vortex-MEMS filter, being capable of functioning simultaneously in wavelength...... and orbital angular momentum (OAM) domains at around 1550 nm, is considered as a compact, robust and cost-effective solution for simultaneous OAM- and WDM optical communications. Experimental spectra for azimuthal orders 1, 2 and 3 show OAM state purity >92% across 30 nm wavelength range. A demonstration...

  17. Orbital Angular Momentum in Noncollinear Second Harmonic Generation by off-axis vortex beams

    CERN Document Server

    Bovino, Fabio Antonio; Giardina, Maurizio; Sibilia, Concita

    2011-01-01

    We experimentally study the behavior of orbital angular momentum (OAM) of light in a noncollinear second harmonic generation (SHG) process. The experiment is performed by using a type I BBO crystal under phase matching conditions with femtosecond pumping fields at 830 nm. Two specular off-axis vortex beams carrying fractional orbital angular momentum at the fundamental frequency (FF) are used. We analyze the behavior of the OAM of the SH signal when the optical vortex of each input field at the FF is displaced from the beam's axis. We obtain different spatial configurations of the SH field, always carrying the same zero angular momentum.

  18. Theoretical and numerical investigations of sub-wavelength diffractive optical structures

    DEFF Research Database (Denmark)

    Dridi, Kim

    2000-01-01

    The work in this thesis concerns theoretical and numerical investigations of sub-wavelength diffractive optical structures, relying on advanced two-dimensional vectorial numerical models that have applications in Optics and Electromagnetics. Integrated Optics is predicted to play a major role...... in future technologies. For this to come true, more advanced optical signal processing must be achieved in miniaturized multifunctional components which should enable optimal light control and light localization. These components have complex subwavelength geometries and material distributions......, such as in dielectric waveguides with gratings and periodic media or photonic crystal structures. The vectorial electromagnetic nature of light is therefore taken into account in the modeling of these diffractive structures. An electromagnetic vector-field model for optical components design based on the classical...

  19. A Mach-Zehnder interferometer based on orbital angular momentum for improved vortex coronagraph efficiency

    CERN Document Server

    Piron, P; Huby, E; Mawet, D; Ruane, M Karlsson ad G; Habraken, S; Absil, O; Surdej, J

    2016-01-01

    The Annular Groove Phase Mask (AGPM) is a vectorial vortex phase mask. It acts as a half-wave plate with a radial fast axis orientation operating in the mid infrared domain. When placed at the focus of a telescope element provides a continuous helical phase ramp for an on axis sources, which creates the orbital angular momentum. Thanks to that phase, the intensity of the central source is canceled by a down-stream pupil stop, while the off axis sources are not affected. However due to experimental conditions the nulling is hardly perfect. To improve the null, a Mach-Zehnder interferometer containing Dove prisms differently oriented can be proposed to sort out light based on its orbital angular momentum (OAM). Thanks to the differential rotation of the beam, a {\\pi} phase shift is achieved for the on axis light affected by a non zero OAM. Therefore the contrast between the star and its faint companion is enhanced. Nevertheless, due the Dove prisms birefringence, the performance of the interferometer is relativ...

  20. Introduction to Vortex Lattice Theory

    Directory of Open Access Journals (Sweden)

    Santiago Pinzón

    2015-10-01

    Full Text Available Panel methods have been widely used in industry and are well established since the 1970s for aerodynamic analysis and computation. The Vortex Lattice Panel Method presented in this study comes across a sophisticated method that provides a quick solution time, allows rapid changes in geometry and suits well for aerodynamic analysis. The aerospace industry is highly competitive in design efficiency, and perhaps one of the most important factors on airplane design and engineering today is multidisciplinary optimization.  Any cost reduction method in the design cycle of a product becomes vital in the success of its outcome. The subsequent sections of this article will further explain in depth the theory behind the vortex lattice method, and the reason behind its selection as the method for aerodynamic analysis during preliminary design work and computation within the aerospace industry. This article is analytic in nature, and its main objective is to present a mathematical summary of this widely used computational method in aerodynamics.

  1. Vortex dynamics in $R^4$

    CERN Document Server

    Shashikanth, Banavara N

    2011-01-01

    The vortex dynamics of Euler's equations for a constant density fluid flow in $R^4$ is studied. Most of the paper focuses on singular Dirac delta distributions of the vorticity two-form $\\omega$ in $R^4$. These distributions are supported on two-dimensional surfaces termed {\\it membranes} and are the analogs of vortex filaments in $R^3$ and point vortices in $R^2$. The self-induced velocity field of a membrane is shown to be unbounded and is regularized using a local induction approximation (LIA). The regularized self-induced velocity field is then shown to be proportional to the mean curvature vector field of the membrane but rotated by 90 degrees in the plane of normals. Next, the Hamiltonian membrane model is presented. The symplectic structure for this model is derived from a general formula for vorticity distributions due to Marsden and Weinstein (1983). Finally, the dynamics of the four-form $\\omega \\wedge \\omega$ is examined. It is shown that Ertel's vorticity theorem in $R^3$, for the constant density...

  2. Vectorial acylation in Saccharomyces cerevisiae. Fat1p and fatty acyl-CoA synthetase are interacting components of a fatty acid import complex

    DEFF Research Database (Denmark)

    Zou, Zhiying; Tong, Fumin; Færgeman, Nils J.

    2003-01-01

    In Saccharomyces cerevisiae Fat1p and fatty acyl-CoA synthetase (FACS) are hypothesized to couple import and activation of exogenous fatty acids by a process called vectorial acylation. Molecular genetic and biochemical studies were used to define further the functional and physical interactions ...

  3. Vortex bursting and tracer transport of a counter-rotating vortex pair

    Science.gov (United States)

    Misaka, T.; Holzäpfel, F.; Hennemann, I.; Gerz, T.; Manhart, M.; Schwertfirm, F.

    2012-02-01

    Large-eddy simulations of a coherent counter-rotating vortex pair in different environments are performed. The environmental background is characterized by varying turbulence intensities and stable temperature stratifications. Turbulent exchange processes between the vortices, the vortex oval, and the environment, as well as the material redistribution processes along the vortex tubes are investigated employing passive tracers that are superimposed to the initial vortex flow field. It is revealed that the vortex bursting phenomenon, known from photos of aircraft contrails or smoke visualization, is caused by collisions of secondary vortical structures traveling along the vortex tube which expel material from the vortex but do not result in a sudden decay of circulation or an abrupt change of vortex core structure. In neutrally stratified and weakly turbulent conditions, vortex reconnection triggers traveling helical vorticity structures which is followed by their collision. A long-lived vortex ring links once again establishing stable double rings. Key phenomena observed in the simulations are supported by photographs of contrails. The vertical and lateral extents of the detrained passive tracer strongly depend on environmental conditions where the sensitivity of detrainment rates on initial tracer distributions appears to be low.

  4. Rotor Wake Vortex Definition Using 3C-PIV Measurements: Corrected for Vortex Orientation

    Science.gov (United States)

    Burley, Casey L.; Brooks, Thomas F.; vanderWall, Berend; Richard, Hughues Richard; Raffel, Markus; Beaumier, Philippe; Delrieux, Yves; Lim, Joon W.; Yu, Yung H.; Tung, Chee

    2003-01-01

    Three-component (3-C) particle image velocimetry (PIV) measurements, within the wake across a rotor disk plane, are used to determine wake vortex definitions important for BVI (Blade Vortex Interaction) and broadband noise prediction. This study is part of the HART II test program conducted using a 40 percent scale BO-105 helicopter main rotor in the German-Dutch Wind Tunnel (DNW). In this paper, measurements are presented of the wake vortex field over the advancing side of the rotor operating at a typical descent landing condition. The orientations of the vortex (tube) axes are found to have non-zero tilt angles with respect to the chosen PIV measurement cut planes, often on the order of 45 degrees. Methods for determining the orientation of the vortex axis and reorienting the measured PIV velocity maps (by rotation/projection) are presented. One method utilizes the vortex core axial velocity component, the other utilizes the swirl velocity components. Key vortex parameters such as vortex core size, strength, and core velocity distribution characteristics are determined from the reoriented PIV velocity maps. The results are compared with those determined from velocity maps that are not corrected for orientation. Knowledge of magnitudes and directions of the vortex axial and swirl velocity components as a function of streamwise location provide a basis for insight into the vortex evolution.

  5. The method to control the submarine horseshoe vortex by breaking the vortex core

    Institute of Scientific and Technical Information of China (English)

    LIU Zhi-hua; XIONG Ying; TU Cheng-xu

    2014-01-01

    The quality of the inflow across the propeller is closely related with the hydrodynamic performance and the noise characteristics of the propeller. For a submarine, with a horseshoe vortex generated at the junction of the main body and the appendages, the submarine wake is dominated by a kind of highly non-uniform flow field, which has an adverse effect on the performance of the submarine propeller. In order to control the horseshoe vortex and improve the quality of the submarine wake, the flow field around a submarine model is simulated by the detached eddies simulation (DES) method, and the vortex configuration is displayed using the second invariant of the velocity derivative tensor. The state and the transition process of the horseshoe vortex are analyzed, then a modified method to break the vortex core by a vortex baffle is proposed. The flow numerical simulation is carried out to study the effect of this method. Numerical simulations show that, with the breakdown of the vortex core, many unstable vortices are shed and the energy of the horseshoe vortex is dissipated quickly, and the uniformity of the submarine wake is improved. The submarine wake test in a wind tunnel has verified the effect of the method to control the horseshoe vortex. The vortex baffle can improve the wake uniformity in cases of high Reynolds numbers as well, and it does not have adverse effects on the maneuverability and the speed ability of the submarine.

  6. Observation of the Gouy and Larmor rotations in electron vortex beams

    CERN Document Server

    Guzzinati, Giulio; Bliokh, Konstantin; Nori, Franco; Verbeeck, Jo

    2012-01-01

    The Gouy phase anomaly has attracted considerable interest in optics and describes an extra phase shift of a beam going through a focal point compared to a plane wave. Here we directly observe the Gouy phase with electron vortex waves making use of a transmission electron microscope. The image rotation of a superposition of free electron vortex states when focused in a magnetic lens exposes the effect of the Gouy phase in the observed image intensity, dependent on the OAM possessed by the superposition. These observations confirm our previously proposed theoretical predictions on how electron vortex beams behave in a constant magnetic field. Both theory and observations expand the common phenomenon of Larmor rotation in an electron microscope with an OAM dependent Gouy effect.

  7. In-plane displacement measurement in vortex metrology by synthetic network correlation fringes.

    Science.gov (United States)

    Angel-Toro, Luciano; Sierra-Sosa, Daniel; Tebaldi, Myrian; Bolognini, Néstor

    2013-03-01

    Recently we proposed an alternative method of displacement analysis in vortex metrology, based on the application of the Fourier optics techniques, that is suitable for an intermediate range of displacement measurements ranging below the resolution of speckle photography and above that of the conventional vortex metrology. However, for smaller displacements, we introduce an approach to perform the Fourier analysis from vortex networks. In this work, we present an enhanced method for measuring uniform in-plane displacements, taking advantage of the capability of determining the subpixel locations of vortices and having the ability to track the homologous vortices onto a plane. It is shown that high-quality fringe systems can be synthesized and analyzed to accurately measure in an extended range of displacements and for highly decorrelated speckle patterns. Experimental results supporting the validity of the method are presented and discussed.

  8. Propagation of electromagnetic fields between non-parallel planes: a fully vectorial formulation and an efficient implementation.

    Science.gov (United States)

    Zhang, Site; Asoubar, Daniel; Hellmann, Christian; Wyrowski, Frank

    2016-01-20

    The propagation of electromagnetic fields between non-parallel planes based on a spectrum-of-plane-wave analysis is discussed and formulations for an efficient numerical implementation are presented in detail. It is shown that with the help of interpolation techniques, the numerical implementation can be done with the standard uniform fast Fourier transform (FFT) of easy access. Different interpolation techniques are numerically examined, and it turns out that the use of cubic interpolation, together with the uniform FFT, brings both significantly increased computational efficiency and high simulation accuracy. Apart from the aspect of computational efficiency, all formulations in this work are generalized in a fully vectorial manner in comparison to previous works.

  9. A Note on Vectorial AdS$_5$/CFT$_4$ Duality for Spin-$j$ Boundary Theory

    CERN Document Server

    Bae, Jin-Beom; Lal, Shailesh

    2016-01-01

    The vectorial holographic correspondences between higher-spin theories in AdS$_5$ and free vector models on the boundary are extended to the cases where the latter is described by free massless spin-$j$ field. The dual higher-spin theory in the bulk does not include gravity and can only be defined on rigid AdS$_5$ background with $S^4$ boundary. We discuss various properties of these rather special higher-spin theories and calculate their one-loop free energies. We show that the result is proportional to the same quantity for spin-$j$ doubleton treated as if it is a AdS$_5$ field. Finally, we consider even more special case where the boundary theory itself is given by an infinite tower of massless higher-spin fields.

  10. 矢量波场弹性波Kirchhoff偏移%Elastic Kirchhoff migration of vectorial wave-fields

    Institute of Scientific and Technical Information of China (English)

    杜启振; 侯波

    2008-01-01

    Based on Kuo and Dai's vectorial wave-field extrapolation equations, we derive new Kirchhoff migration equations by introducing unit vectors which represent the ray directions at the imaging points of the reflected P- and PS converted-waves. Furthermore, using the slope of the events on shot records and a ray racing procedure, mirror-image reflection points are found and the reflection data are smeared along the Fresnel zone. The migration method proposed in this paper solves two troublesome imaging problems caused by limited receiving aperture and migration artifacts resulting from wave propagation at the velocities of non original wave type. The migration method is applied successfully with model data, demonstrating that the new method is effective and correct.

  11. Nonlinear ion acoustic waves scattered by vortexes

    Science.gov (United States)

    Ohno, Yuji; Yoshida, Zensho

    2016-09-01

    The Kadomtsev-Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here, we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes 'scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are 'ambient' because they do not receive reciprocal reactions from the waves (i.e., the vortex equation is independent of the wave fields). This model describes a minimal departure from the integrable KP system. By the Painlevé test, we delineate how the vorticity term violates integrability, bringing about an essential three-dimensionality to the solutions. By numerical simulation, we show how the solitons are scattered by vortexes and become chaotic.

  12. A VORTEX MODEL OF A HELICOPTER ROTOR

    Directory of Open Access Journals (Sweden)

    Valentin BUTOESCU

    2009-06-01

    Full Text Available A vortex model of a helicopter rotor is presented. Each blade of the rotor has three degrees of freedom: flapping, lagging and feathering. The motions after each degree of freedom are also known for all blades. The blade is modelled as a thin vortex surface. The wakes are free fluid surfaces. A system of five equations are obtained: the first one is the integral equation of the lifting surface (rotor, the next three describe the wakes motion, and the last one relates the vortex strength on the wakes and the variation of vorticity on the rotor. A numerical solution of this system is presented. To avoid the singularities that can occur due to the complexity of vortex system, a desingularized model of the vortex core was adopted. A Mathcad worksheet containing the method has been written.The original contribution of the work. The calculation method of the motion of the wakes free vortex system, the development of the vortex cores in time and a new method to approximate the aerodynamic influence of remoted wake regions.

  13. Vectorial capacity of Aedes aegypti for dengue virus type 2 is reduced with co-infection of Metarhizium anisopliae.

    Directory of Open Access Journals (Sweden)

    Javier A Garza-Hernández

    Full Text Available BACKGROUND: Aedes aegypti, is the major dengue vector and a worldwide public health threat combated basically by chemical insecticides. In this study, the vectorial competence of Ae. aegypti co-infected with a mildly virulent Metarhizium anisopliae and fed with blood infected with the DENV-2 virus, was examined. METHODOLOGY/PRINCIPAL FINDINGS: The study encompassed three bioassays (B. In B1 the median lethal time (LT50 of Ae. aegypti exposed to M. anisopliae was determined in four treatments: co-infected (CI, single-fungus infection (SF, single-virus infection (SV and control (C. In B2, the mortality and viral infection rate in midgut and in head were registered in fifty females of CI and in SV. In B3, the same treatments as in B1 but with females separated individually were tested to evaluate the effect on fecundity and gonotrophic cycle length. Survival in CI and SF females was 70% shorter than the one of those in SV and control. Overall viral infection rate in CI and SV were 76 and 84% but the mortality at day six post-infection was 78% (54% infected and 6% respectively. Survivors with virus in head at day seven post-infection were 12 and 64% in both CI and SV mosquitoes. Fecundity and gonotrophic cycle length were reduced in 52 and 40% in CI compared to the ones in control. CONCLUSION/SIGNIFICANCE: Fungus-induced mortality for the CI group was 78%. Of the survivors, 12% (6/50 could potentially transmit DENV-2, as opposed to 64% (32/50 of the SV group, meaning a 5-fold reduction in the number of infective mosquitoes. This is the first report on a fungus that reduces the vectorial capacity of Ae. aegypti infected with the DENV-2 virus.

  14. An improved three-dimensional full-vectorial finite-difference imaginary-distance beam propagation method

    Institute of Scientific and Technical Information of China (English)

    XIAO Jinbiao; LIU Xu; CAI Chun; FAN Hehong; SUN Xiaohan

    2006-01-01

    A modified alternating direction implicit approach is proposed to discretize the three-dimensional full-vectorial beam propagation method (3D-FV-BPM) formulation along the longitudinal direction. The cross-coupling terms (CCTs) are neglected at the first substep, and then double used at the second substep. The order of two substeps is reversed for each transverse electric field component so that the CCTs are always expressed in an implicit form, thus the calculation is efficient and stable. Based on the multinomial interpolation, a universal finite difference scheme with a high accuracy is developed to approximate the 3D-FV-BPM formulation along the transverse directions, in which the discontinuities of the normal components of the electric field across the abrupt dielectric interfaces are taken into account and can be applied to both uniform and non-uniform grids. The corresponding imaginary-distance procedure is first applied to a buried rectangular and a GaAs-based deeply-etched rib waveguide. The field patterns and the normalized propagation constants of the fundamental and the first order modes are presented and the hybrid nature of the full-vectorial guided-modes is demonstrated, which shows the validity and utility of the present approach. Then the modal characteristics of the deeply- and shallow-etched rib waveguides based on the InGaAsp/InGaAsP strained multiple quantum wells in InP substrate are investigated in detail. The results are necessary for modeling and the design of the planar lightwave circuits or photonic integrated circuits based on these waveguides.

  15. Vitality of optical vortices

    CSIR Research Space (South Africa)

    Roux, FS

    2014-02-01

    Full Text Available Optical vortices are always created or annihilated in pairs with opposite topological charges. However, the presence of such a vortex dipole does not directly indicate whether they are associated with a creation or an annihilation event. Here we...

  16. Single Cavity Trapped Vortex Combustor Dynamics – Part-1: Experiments

    Directory of Open Access Journals (Sweden)

    Atul Singhal

    2011-03-01

    Full Text Available In the present work, a water-cooled, modular, atmospheric pressure Trapped Vortex Combustor (TVC test rig is designed and fabricated for reacting and non-reacting flow experiments. The unique features of this rig consist of a continuously variable length-to-depth ratio (L/D of the cavity and optical access through quartz plates provided on three sides for visualization. Flame stabilization in the single cavity TVC was successfully achieved with methane as fuel and the range of flow conditions for stable operation were identified. From these, a few cases were selected for detailed experimentation. Reacting flow experiments for the selected cases indicated that reducing L/D ratio and increasing cavity-air velocity favour stable combustion. The pressure drop across the single cavity TVC is observed to be lower as compared to conventional combustors. Temperatures are measured at the exit using thermocouples and corrected for radiative losses. Species concentrations are measured at the exit using an exhaust gas analyzer. The combustion efficiency is observed to be around 97-99 % and the pattern factor is observed to be in the range of 0.08 to 0.13. High-speed imaging made possible by the optical access indicates that the overall combustion is fairly steady, and there is no vortex shedding downstream.

  17. Contrasting vortex-gyration dispersions for different lattice bases in one-dimensional magnetic vortex arrays

    Science.gov (United States)

    Han, Dong-Soo; Jeong, Han-Byeol; Kim, Sang-Koog

    2013-09-01

    We performed micromagnetic numerical and analytical calculations in studying the effects of change in the primitive unit cells of one-dimensional (1D) vortex arrays on collective vortex-gyration dispersion. As the primitive basis, we consider alternating constituent materials (NiMnSb vs. Permalloy) and alternating dimensions including constituent disk diameter and thickness. In the simplest case, that of one vortex-state disk of given dimensions and single material in the primitive cell, only a single branch of collective vortex-gyration dispersion appears. By contrast, two constituent disks' different alternating materials, thicknesses, and diameters yield characteristic two-branch dispersions, the band widths and gaps of which differ in each case. This work offers not only an efficient means of manipulating collective vortex-gyration band structures but also a foundation for the development of a rich variety of 1D or 2D magnonic crystals and their band structures based on dipolar-coupled-vortex arrays.

  18. Evaluation of travelling vortex speed by means of vortex tracking and dynamic mode decomposition

    Science.gov (United States)

    Hyhlík, Tomáš

    2016-06-01

    The article deals with the analysis of unsteady periodic flow field related to synthetic jet creation. The analyses are based on the data obtained using ANSYS Fluent solver. Numerical results are validated by hot wire anemometry data measured along the jet centerline. The speed of travelling vortex ring is evaluated by using vortex tracking method and by using dynamic mode decomposition method. Vortex identification is based on residual vorticity which allows identifying regions in the flow field where fluid particles perform the rotational motion. The regime of the synthetic jet with Re = 329 and S = 19.7 is chosen. Both the vortex tracking and the dynamic mode decomposition based vortex speed evaluation indicate an increase in the vortex speed close to the orifice and then decrease with maximum reaching almost one and half of orifice centerline velocity. The article contains extended version the article presented at the conference AEaNMiFMaE 2016.

  19. Phase diagrams of vortex matter with multi-scale inter-vortex interactions in layered superconductors

    Science.gov (United States)

    Meng, Qingyou; Varney, Christopher N.; Fangohr, Hans; Babaev, Egor

    2017-01-01

    It was recently proposed to use the stray magnetic fields of superconducting vortex lattices to trap ultracold atoms for building quantum emulators. This calls for new methods for engineering and manipulating of the vortex states. One of the possible routes utilizes type-1.5 superconducting layered systems with multi-scale inter-vortex interactions. In order to explore the possible vortex states that can be engineered, we present two phase diagrams of phenomenological vortex matter models with multi-scale inter-vortex interactions featuring several attractive and repulsive length scales. The phase diagrams exhibit a plethora of phases, including conventional 2D lattice phases, five stripe phases, dimer, trimer, and tetramer phases, void phases, and stable low-temperature disordered phases. The transitions between these states can be controlled by the value of an applied external field.

  20. Symmetry-constrained electron vortex propagation

    CERN Document Server

    Clark, L; Béché, A; Lubk, A; Verbeeck, J

    2016-01-01

    Electron vortex beams hold great promise for development in transmission electron microscopy, but have yet to be widely adopted. This is partly due to the complex set of interactions that occur between a beam carrying orbital angular momentum (OAM) and a sample. Herein, the system is simplified to focus on the interaction between geometrical symmetries, OAM and topology. We present multiple simulations, alongside experimental data to study the behaviour of a variety of electron vortex beams after interacting with apertures of different symmetries, and investigate the effect on their OAM and vortex structure, both in the far-field and under free-space propagation.

  1. Dynamic Optimization for Vortex Shedding Suppression

    Directory of Open Access Journals (Sweden)

    Bonis Ioannis

    2016-01-01

    Full Text Available Flows around structures exhibiting vortex shedding induce vibrations that can potentially damage the structure. A way to avoid it is to suppress vortex shedding by controlling the wake. Wake control of laminar flow behind a rotating cylinder is formulated herein as a dynamic optimization problem. Angular cylinder speed is the manipulated variable that is adjusted to suppress vortex shedding by minimizing lift coefficient variation. The optimal angular speed is assumed to be periodic like wake formation. The control problem is solved for different time horizons tH. The impact of tH to control is evaluated and the need for feedback is assessed.

  2. Vortex dynamics in ferromagnetic/superconducting bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Cieplak, M.Z.; Adamus, Z. [Polish Acad Sci, Inst Phys, PL-02668 Warsaw, (Poland); Konczykowski, M. [CEA, DSM, DRECAM, Lab Solides Irradies, Ecole Polytechnique, CNRS-UMR 7642, F-91128 Palaiseau (France); Zhu, L.Y.; Chien, C.L. [Johns Hopkins Univ, Dept Phys and Astron, Baltimore, MD 21218 (United States)

    2008-07-01

    The dependence of vortex dynamics on the geometry of magnetic domain pattern is studied in the superconducting/ferromagnetic bilayers, in which niobium is a superconductor, and Co/Pt multilayer with perpendicular magnetic anisotropy serves as a ferromagnetic layer. Magnetic domain patterns with different density of domains per surface area and different domain size, w, are obtained for Co/Pt with different thickness of Pt. The dense patterns of domains with the size comparable to the magnetic penetration depth (w {>=} {lambda}) produce large vortex pinning and smooth vortex penetration, while less dense patterns with larger domains (w {>=}{>=} {lambda}) enhance pinning less effectively and result in flux jumps during flux motion. (authors)

  3. Superconducting Josephson vortex flow transistors

    CERN Document Server

    Tavares, P A C

    2002-01-01

    The work reported in this thesis focuses on the development of high-temperature superconducting Josephson vortex-flow transistors (JVFTs). The JVFT is a particular type of superconducting transistor, i.e. an electromagnetic device capable of delivering gain while keeping the control and output circuits electrically isolated. Devices were fabricated from (100) YBa sub 2 Cu sub 3 O sub 7 sub - subdelta thin films grown by Pulsed Laser Deposition on 24 deg magnesium oxide and strontium titanate bicrystals. The design of the JVFTs was guided by numerical simulations and the devices were optimised for current gain. Improvements were made to the fabrication process in order to accurately pattern the small structures required. The devices exhibited current gains higher than 60 in liquid nitrogen. Gains measured at lower temperatures were significantly higher. As part of the work a data acquisition suite was developed for the characterisation of three-terminal devices and, in particular, of JVFTs.

  4. Vortex disruption by magnetohydrodynamic feedback

    CERN Document Server

    Mak, Julian; Hughes, D W

    2016-01-01

    In an electrically conducting fluid, vortices stretch out a weak, large-scale magnetic field to form strong current sheets on their edges. Associated with these current sheets are magnetic stresses, which are subsequently released through reconnection, leading to vortex disruption, and possibly even destruction. This disruption phenomenon is investigated here in the context of two-dimensional, homogeneous, incompressible magnetohydrodynamics. We derive a simple order of magnitude estimate for the magnetic stresses --- and thus the degree of disruption --- that depends on the strength of the background magnetic field (measured by the parameter $M$, a ratio between the Alfv\\'en speed and a typical flow speed) and on the magnetic diffusivity (measured by the magnetic Reynolds number $\\mbox{Rm}$). The resulting estimate suggests that significant disruption occurs when $M^{2}\\mbox{Rm} = O(1)$. To test our prediction, we analyse direct numerical simulations of vortices generated by the breakup of unstable shear flo...

  5. Spontaneous natural optical activity in disordered media

    CERN Document Server

    Pinheiro, F A; Papasimakis, N; Zheludev, N I

    2016-01-01

    We demonstrate natural optical activity in disordered ensembles of non-chiral plasmonic resonators. We show that the statistical distributions of rotatory power and spatial dichroism are strongly dependent on the scattering mean free path in diffusive random media. This result is explained in terms of the intrinsic geometric chirality of disordered media, as they lack mirror symmetry. We argue that chirality and natural optical activity of disordered systems can be quantified by the standard deviation of both rotatory power and spatial dichroism. Our results are based on microscopic electromagnetic wave transport theory coupled to vectorial Green's matrix method for pointlike scatterers, and are independently confirmed by full-wave simulations.

  6. Vortex Dynamics in Anisotropic Superconductors

    Science.gov (United States)

    Steel, David Gordon

    Measurements of the ac screening response and resistance of superconducting Bi_2Sr _2CaCu_2O _8 (BSCCO) crystals have been used to probe the dynamics of the magnetic flux lines within the mixed state as a function of frequency, temperature, and applied dc field. For the particular range of temperature and magnetic field in which measurements were made, the systematic behavior of the observed dissipation peak in the screening response is consistent with electromagnetic skin size effects rather than a phase transition. According to microscopic theories of the interaction between the flux lines and a driving ac field, such a skin size effect is expected for the case when the vortex motion is diffusive in nature. However, diffusive motion is inconsistent with simple activation models that use a single value for the pinning energy (derived from direct measurement of the dc resistance). This contradiction suggests a distribution of pinning energies within the sample. Interlayer vortex decoupling has been directly observed as a function of temperature and applied magnetic field using electronic transport perpendicular to the layers in synthetic amorphous MoGe/Ge multilayer samples. Perpendicular transport has been shown to be a far more sensitive measure of the phase coupling between layers than in-plane properties. Below the decoupling temperature T_{D} the resistivity anisotropy collapses and striking nonlinearities appear in the perpendicular current-voltage behavior, which are not observed in parallel transport. A crossover in behavior is also observed at a field H _{x}, in accordance with theory. The data suggest the presence of a phase transition into a state with finite in-plane resistivity. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).

  7. Prediction and control of vortex-dominated and vortex-wake flows

    Science.gov (United States)

    Kandil, Osama

    1993-01-01

    This progress report documents the accomplishments achieved in the period from December 1, 1992 until November 30, 1993. These accomplishments include publications, national and international presentations, NASA presentations, and the research group supported under this grant. Topics covered by documents incorporated into this progress report include: active control of asymmetric conical flow using spinning and rotary oscillation; supersonic vortex breakdown over a delta wing in transonic flow; shock-vortex interaction over a 65-degree delta wing in transonic flow; three dimensional supersonic vortex breakdown; numerical simulation and physical aspects of supersonic vortex breakdown; and prediction of asymmetric vortical flows around slender bodies using Navier-Stokes equations.

  8. Scattering of a vortex pair by a single quantum vortex in a Bose-Einstein condensate

    Science.gov (United States)

    Smirnov, L. A.; Smirnov, A. I.; Mironov, V. A.

    2016-01-01

    We analyze the scattering of vortex pairs (the particular case of 2D dark solitons) by a single quantum vortex in a Bose-Einstein condensate with repulsive interaction between atoms. For this purpose, an asymptotic theory describing the dynamics of such 2D soliton-like formations in an arbitrary smoothly nonuniform flow of a ultracold Bose gas is developed. Disregarding the radiation loss associated with acoustic wave emission, we demonstrate that vortex-antivortex pairs can be put in correspondence with quasiparticles, and their behavior can be described by canonical Hamilton equations. For these equations, we determine the integrals of motion that can be used to classify various regimes of scattering of vortex pairs by a single quantum vortex. Theoretical constructions are confirmed by numerical calculations performed directly in terms of the Gross-Pitaevskii equation. We propose a method for estimating the radiation loss in a collision of a soliton-like formation with a phase singularity. It is shown by direct numerical simulation that under certain conditions, the interaction of vortex pairs with a core of a single quantum vortex is accompanied by quite intense acoustic wave emission; as a result, the conditions for applicability of the asymptotic theory developed here are violated. In particular, it is visually demonstrated by a specific example how radiation losses lead to a transformation of a vortex-antivortex pair into a vortex-free 2D dark soliton (i.e., to the annihilation of phase singularities).

  9. One-dimensional photonic band gaps in optical lattices

    CERN Document Server

    Samoylova, Marina; Holynski, Michael; Courteille, Philippe Wilhelm; Bachelard, Romain

    2013-01-01

    The phenomenon of photonic band gaps in one-dimensional optical lattices is reviewed using a microscopic approach. Formally equivalent to the transfer matrix approach in the thermodynamic limit, a microscopic model is required to study finite-size effects, such as deviations from the Bragg condition. Microscopic models describing both scalar and vectorial light are proposed, as well as for two- and three-level atoms. Several analytical results are compared to experimental data, showing a good agreement.

  10. The Life of a Vortex Knot

    CERN Document Server

    Kleckner, Dustin; Irvine, William T M

    2013-01-01

    The idea that the knottedness (hydrodynamic Helicity) of a fluid flow is conserved has a long history in fluid mechanics. The quintessential example of a knotted flow is a knotted vortex filament, however, owing to experimental difficulties, it has not been possible until recently to directly generate knotted vortices in real fluids. Using 3D printed hydrofoils and high-speed laser scanning tomography, we generate vortex knots and links and measure their subsequent evolution. In both cases, we find that the vortices deform and stretch until a series of vortex reconnections occurs, eventually resulting several disjoint vortex rings. This article accompanies a fluid dynamics video entered into the Gallery of Fluid Motion at the 66th Annual Meeting of the APS Division of Fluid Dynamics.

  11. Vortex Shedding From a Flexible Hydrofoil

    OpenAIRE

    Dreyer, Matthieu; Farhat, Mohamed

    2011-01-01

    Video of vortex shedding in the wake of a Naca0009 hydrofoil made of polyoxymethylene type C (POM C). This video was submitted as part of the Gallery of Fluid Motion 2011 which is showcase of fluid dynamics videos.

  12. Advanced Vortex Hybrid Rocket Engine (AVHRE) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Orbital Technologies Corporation (ORBITEC) proposes to develop a unique Advanced Vortex Hybrid Rocket Engine (AVHRE) to achieve a highly-reliable, low-cost and...

  13. Advanced Vortex Hybrid Rocket Engine (AVHRE) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop a unique Advanced Vortex Hybrid Rocket Engine (AVHRE) to achieve a safe, highly-reliable, low-cost and uniquely versatile propulsion...

  14. Free wake models for vortex methods

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, K. [Technical Univ. Berlin, Aerospace Inst. (Germany)

    1997-08-01

    The blade element method works fast and good. For some problems (rotor shapes or flow conditions) it could be better to use vortex methods. Different methods for calculating a wake geometry will be presented. (au)

  15. 'Optimal' vortex rings and aquatic propulsion mechanisms

    Science.gov (United States)

    Linden, Paul; Turner, Stewart

    2004-11-01

    Fish swim by flapping their tail and other fins. Other sea creatures, such as squid and salps, eject fluid intermittently as a jet. We discuss the fluid mechanics behind these propulsion mechanisms, and show that these animals produce optimal vortex rings, which give the maximum thrust for a given energy input. We show fish optimise both their steady swimming and their ability to accelerate and turn by producing an individual optimal ring with each flap of the tail or fin. Salps produce vortex rings directly by ejecting a volume of fluid through a rear orifice, and these are also optimal. An important implication of this paper is that the repetition of vortex production is not necessary for an individual vortex to have the `optimal' characteristics.

  16. Experiments with vortex rings in air

    Science.gov (United States)

    Hernández, R. H.; Cibert, B.; Béchet, C.

    2006-09-01

    We report quantitative experimental measurements of the instability of vortex rings generated in air. Vortex rings are created by pushing air through the circular orifice of a cylindrical cavity with a flat piston driven by a loudspeaker. Hot-wire anemometry provides accurate measurements of the velocity profile at all stages of the ring formation including stable and unstable rings. Flow visualization using a laser light sheet shows that the initially undisturbed vortex ring is progressively deformed in the azimuthal direction giving rise to a wavy azimuthal and periodic pattern in the circumference of the ring. The wavy pattern is steady, i.e., it does not rotate or translate during the ring's motion. However as the vortex motion progresses in the axial direction, the displaced portions of the ring are convected away from the initial undisturbed position and the wavy pattern grows with local Reynolds number.

  17. Cockpit-based Wake Vortex Visualization Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To prevent aircraft accidents due to wake vortex hazards, FAA procedures specify the minimum separation required between different categories of aircraft. However, a...

  18. Development of gas pressure vortex regulator

    Science.gov (United States)

    Uss, A. Yu.; Chernyshyov, A. V.; Krylov, V. I.

    2017-08-01

    The present paper describes the applications of vortex regulators and the current state of the issue on the use and development of such devices. A patent review has been carried out. Automatic control systems using a vortex regulator are considered. Based on the analysis and preliminary numerical calculation of gas flow in the working cavity of the regulator, a new design of a vortex gas pressure regulator has been developed. An experimental sample of the device was made using additive technologies and a number of tests were carried out. The results of experimental studies confirmed the adequacy of the created mathematical model. Based on further numerical studies a new design of a vortex regulator with a distributed feed of the process control flow as well as with the regulated swirl of the supply and control process flows has been developed.

  19. Investigation of aircraft vortex wake structure

    Science.gov (United States)

    Baranov, N. A.; Turchak, L. I.

    2014-11-01

    In this work we analyze the mechanisms of formation of the vortex wake structure of aircraft with different wing shape in the plan flying close to or away from the underlying surface cleaned or released mechanization wing.

  20. Interaction and merging of vortex filaments

    Science.gov (United States)

    Liu, C. H.; Weston, R. P.; Ishii, K.; Ting, L.; Visintainer, J. A.

    1988-01-01

    The asymptotic solutions of Navier-Stokes equations for vortex filaments of finite strength with small effective vortical cores are summarized with special emphasis placed on the physical meaning and the practical limit to the applicability of the asymptotic solution. Finite-difference solutions of Navier-Stokes equations for the marging of the filament(s) are described with a focus on the development of the approximate boundary conditions for the computational domain. An efficiency study employing a model problem is used to assess the advantages of the present approximate boundary condition method over previously used techniques. Applications of the present method are presented for the motion and decay of a 3:1 elliptic vortex ring, and for the merging process of a pair of coaxial vortex rings. A numerical procedure for the problem of local merging of vortex filaments, which requires the asymptotic analysis as well as the numerical Navier-Stokes solver, is also presented.

  1. Generation and propagation of optical vortices

    Science.gov (United States)

    Rozas, David

    Optical vortices are singularities in phase fronts of laser beams. They are characterized by a dark core whose size (relative to the size of the background beam) may dramatically affect their behavior upon propagation. Previously, only large-core vortices have been extensively studied. The object of the research presented in this dissertation was to explore ways of generating small-core optical vortices (also called optical vortex filaments ), and to examine their propagation using analytical, numerical and experimental methods. Computer-generated holography enabled us to create arbitrary distributions of optical vortex filaments for experimental exploration. Hydrodynamic analogies were used to develop an heuristic model which described the dependence of vortex motion on other vortices and the background beam, both qualitatively and quantitatively. We predicted that pair of optical vortex filaments will rotate with angular rates inversely proportional to their separation distance (just like vortices in a fluid). We also reported the first experimental observation of this novel fluid-like effect. It was found, however, that upon propagation in linear media, the fluid-like rotation was not sustained owing to the overlap of diffracting vortex cores. Further numerical studies and experiments showed that rotation angle may be enhanced in nonlinear self-defocusing media. The results presented in this thesis offer us a better understanding of dynamics of propagating vortices which may result in applications in optical switching, optical data storage, manipulation of micro-particles and optical limiting for eye protection.

  2. Applications of 2D helical vortex dynamics

    DEFF Research Database (Denmark)

    Okulov, Valery; Sørensen, Jens Nørkær

    2010-01-01

    In the paper, we show how the assumption of helical symmetry in the context of 2D helical vortices can be exploited to analyse and to model various cases of rotating flows. From theory, examples of three basic applications of 2D dynamics of helical vortices embedded in flows with helical symmetry...... of the vorticity field are addressed. These included some of the problems related to vortex breakdown, instability of far wakes behind rotors and vortex theory of ideal rotors....

  3. Beam propagation factors and kurtosis parameters of a Lorentz-Gauss vortex beam.

    Science.gov (United States)

    Zhou, Guoquan

    2014-06-01

    Based on the second-order and the higher-order moments, analytical expressions for the beam propagation factors of a Lorentz-Gauss vortex beam with l=1 have been derived, and analytical propagation expressions for the kurtosis parameters of a Lorentz-Gauss vortex beam with l=1 through a paraxial and real ABCD optical system have also been presented. The M² factor is determined by the parameters a and b and decreases with increasing the parameter a or b. The M² factor is validated to be larger than 2. The kurtosis parameters depend on the diffraction-free ranges of the Lorentz part, the parameters a and b, and the ratio A/B. The kurtosis parameters of a Lorentz-Gauss vortex beam propagating in free space are demonstrated in different reference planes. In the far field, the kurtosis parameter K decreases with increasing one of the parameters a and b. Upon propagation, the kurtosis parameter K first decreases, then increases, and finally tends to a saturated value. In any case, the kurtosis parameter K is larger than 2. This research is beneficial to optical trapping, guiding, and manipulation of microscopic particles and atoms using Lorentz-Gauss vortex beams.

  4. Structure of a Steady Bathtub Vortex

    Science.gov (United States)

    Andersen, Anders; Bøhling, Lasse; Fabre, David

    2010-11-01

    Bathtub vortex flows constitute an important class of concentrated vortex flows which are characterised by intense axial down-flow and stress free surface. We use direct numerical simulations to explore the flow structure of a steady bathtub vortex in a cylindrical tank with a central drain-hole. We find that the qualitative structure of the meridional flow does not depend on the radial Reynolds number, whereas we observe a weak overall rotation at low radial Reynolds number and a concentrated vortex above the drain-hole at high radial Reynolds number. We present a simple analytical model which shows the same qualitative dependence on the radial Reynolds number as the simulations and which compares favourably with the results for the radial velocity and the azimuthal velocity at the surface. Finally, we describe the height dependence of the radius of the vortex core and the maximum of the azimuthal velocity at high radial Reynolds number, and we show that the data on the radius of the vortex core and the maximum of the azimuthal velocity as functions of height collapse on single curves by appropriate scaling.

  5. Application of vortex method; Uzuho no tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Tsukiji, T. [Ashikaga Inst. of Technology, Tochigi (Japan); Shimizu, S. [Hiroshima Univ., Hiroshima (Japan). Faculty of Engineering

    1995-07-15

    Basic jets such as two dimensional free jet, impact jet, axisymmetric circular free jet, and jet flowing out from a nozzle equipped with a collar at the outlet, as well as flow in such valves as disc valves, spool valves, and poppet valves are taken up to discuss their applications using the vortex method, and the results of studies made using vortex method on the analysis of jet and conditions inside valves are reported. The state of the development of large scale vortex structure in the shear layer can be simulated comparatively simply by using the vortex method. The effects of the radius and the lift of a valve on the fluid outlet angle of jet and on the discharge coefficient of orifice are analyzed. Although the shape of the spool valve near the throttle is very complicated, simplified models are used for numerical analysis. An example of calculated result in the case where the spool reciprocates is introduced. Actual vibrating phenomena can be simulated well by the vortex method for minute vibration of the poppet caused by the discharge of lump vortex. 17 refs., 16 figs., 1 tab.

  6. Boundary Layers in Laminar Vortex Flows.

    Science.gov (United States)

    Baker, Glenn Leslie

    A detailed experimental study of the flow in an intense, laminar, axisymmetric vortex has been conducted in the Purdue Tornado Vortex Simulator. The complicated nature of the flow in the boundary layer of laboratory vortices and presumably on that encountered in full-scale tornadoes has been examined. After completing a number of modifications to the existing facility to improve the quality of the flow in the simulator, hot-film anemometry was employed for making velocity-component and turbulence-intensity measurements of both the free-stream and boundary layer portions of the flow. The measurements represent the first experimental boundary layer investigation of a well-defined vortex flow to appear in the literature. These results were compared with recent theoretical work by Burggraf, Stewartson and Belcher (1971) and with an exact similarity solution for line-sink boundary layers developed by the author. A comparison is also made with the numerical simulation of Wilson (1981) in which the boundary conditions were matched to those of the present experimental investigation. Expressions for the vortex core radius, the maximum tangential velocity and the maximum pressure drop are given in terms of dimensionless modeling parameters. References. Burggraf, O. R., K. Stewartson and R. Belcher, Boundary layer. induced by a potential vortex. Phys. Fluids 14, 1821-1833 (1971). Wilson, T., M. S. thesis, Vortex Boundary Layer Dynamics, Univ. Calif. Davis (1981).

  7. Numerical Study of Mechanism of U-shaped Vortex Formation

    CERN Document Server

    Lu, Ping; Liu, Chaoqun

    2014-01-01

    This paper illustrates the mechanism of U-shaped vortex formation which is found both by experiment and DNS. The main goal of this paper is to explain how the U-shaped vortex is formed and further develops. According to the results obtained by our direct numerical simulation with high order accuracy, the U-shaped vortex is part of the coherent vortex structure and is actually the tertiary streamwise vortices induced by the secondary vortices. The new finding is quite different from existing theories which describe that the U-shaped vortex is newly formed as the head of young turbulence spot and finally break down to small pieces. In addition, we find that the U-shaped vortex has the same vorticity sign as the original {\\lambda}-shaped vortex tube legs and serves as a second neck to supply vorticity to the ringlike vortex when the original vortex tube is stretched and multiple rings are generated.

  8. Experimental Investigation of wing-tip vortex evolution in turbulence

    Science.gov (United States)

    Bailey, Sean; Ghimire, Hari

    2016-11-01

    Towing tank experiments were conducted to examine the evolution of a wing-tip vortex in grid-generated turbulence. Measurements using particle image velocimetry (PIV) were conducted of the velocity field generated by towing a semi-span symmetric wing oriented at 8 degree angle of attack. Turbulence of different kinetic energy and length scales was produced by simultaneously towing grids of different mesh sizes upstream of the wing. Results showed that wing-tip vortex wandering increased with the increase in turbulence kinetic energy, ultimately leading to spontaneous collapse of the vortex. During this process, a measurable diffusion of overall vortex circulation was observed, with the rate of diffusion leading to the collapse of the vortex dependent on the turbulence intensity. Interestingly, the radius of the vortex core remained largely unchanged during the diffusion process, Evidence suggests that the breakdown of vortex was enhanced by entrainment of fluid inside vortex core due to vortex stripping in presence of turbulence.

  9. Vortex formation in magnetic narrow rings

    Science.gov (United States)

    Bland, J. A. C.

    2002-03-01

    film thickness, using magneto-optic Kerr effect (MOKE) magnetometry. The data indicates that the outer diameter of the ring only plays a minor role in determining the value of the switching field. As a general trend, the switching field decreases with increasing ring width and with decreasing film thickness. In particular, the dependence of the switching field on ring width becomes more pronounced for smaller ring widths. This stems from the fact that the vortex state becomes more stable for the narrower rings due to the exchange energy contribution to the barrier for reversal to the onion state. Thicker films also favour the vortex state over the onion state, since the magnetostatic energy associated with the latter state increases with film thickness [3]. Using micromagnetic simulations we show also that the magnetisation reversal in narrow rings can take place via a nucleation-free domain wall motion process when a field pulse is applied in the plane of the film and perpendicular to the net magnetisation. Switching times of the order of 400 ps can be achieved with this approach. A lower bound for the depinning time of the domain walls and a weak dependence of the domain wall velocity with the applied field are described [4]. The magnetic nanostructure of epitaxial fcc Co/Cu(001) circular elements has been imaged with scanning electron microscopy with polarisation analysis (SEMPA) [5]. The elements vary from disks to rings according to the dimensions of the inner diameter of the ring structure and have a nominal composition 4 nm Au/2 nm Cu/34 nm Co/100 nm Cu. In this study the outer diameter was fixed at 1.7 μm while the smallest ring width varies in the range 0.3-0.5 μm. A closed flux quadrant configuration is observed for some of the disks, characteristic of systems with cubic anisotropy (i.e., near vortex structure), besides other more complex configurations at remanence. The width of the 90^o domain wall in the disks is around 0.20 ± 0.05 μm. This value is

  10. Vortex sound in confined flows

    Science.gov (United States)

    Hofmans, Gerardus Carolus Johannus

    The interaction of vortex structures with the acoustic velocity field is prerequisite for the production or absorption of acoustic energy. When the source region in which this interaction occurs is much smaller than the wavelength of the acoustic wave, it is possible to neglect wave propagation in the source region itself. Such a source region is called 'compact' and it results in a simplified description of the acoustic source. We have restricted ourselves to compact source regions. Three relevant applications have been studied: speech modelling, damping of acoustic waves by means of diaphragms, and the prediction of flow-induced resonances in bifurcated pipe systems with T-shaped junctions. Experimental as well as numerical work has been carried out for rigid in vitro models of the vocal folds. It was found that it is possible to use a simplified quasi- steady model, which describes the boundary-layer flow in the glottis, to reasonably predict the separation point during a part of one cycle of the vocal-fold movement. This results in a reasonable prediction of the source of sound in voiced speech. Furthermore, it was found that the instability of the jet, that is formed downstream of the glottis, can be a significant source of broad-band sound. A diaphragm used as a constriction in a pipe is a common element in mufflers. This configuration is investigated theoretically, numerically, and experimentally. Results of the quasi-steady flow model and of the numerical calculations are in good agreement with results of experiments. Theory also correctly describes the limit of high frequencies. For the intermediate frequencies we found some deviation between theory and experiments, which is not yet fully understood. The flow through T-joints, with sharp edges, has been numerically investigated as a function of the acoustic amplitude, the Strouhal number, and the flow configuration. In the limit of low frequencies the acoustic source in a T-joint can be described by means

  11. Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery.

    Science.gov (United States)

    Boriskina, Svetlana V; Reinhard, Björn M

    2012-01-01

    Efficient delivery of light into nanoscale volumes by converting free photons into localized charge-density oscillations (surface plasmons) enables technological innovation in various fields from biosensing to photovoltaics and quantum computing. Conventional plasmonic nanostructures are designed as nanoscale analogs of radioantennas and waveguides. Here, we discuss an alternative approach for plasmonic nanocircuit engineering that is based on molding the optical powerflow through 'vortex nanogears' around a landscape of local phase singularities 'pinned' to plasmonic nanostructures. We show that coupling of several vortex nanogears into transmission-like structures results in dramatic optical effects, which can be explained by invoking a hydrodynamic analogy of the 'photon fluid'. The new concept of vortex nanogear transmissions (VNTs) provides new design principles for the development of complex multi-functional phase-operated photonics machinery and, therefore, generates unique opportunities for light generation, harvesting and processing on the nanoscale.

  12. Predicción de la estructura secundaria de proteínas usando Máquinas de soporte Vectorial

    Directory of Open Access Journals (Sweden)

    Darío José Delgado

    2012-04-01

    Full Text Available Normal 0 21 false false false ES-CO X-NONE X-NONE MicrosoftInternetExplorer4 Título en ingles: Protein secondary structure prediction    using  support vector machines Abstract : Among the computational methods used for predicting secondary structure proteins highlights the use of support vector machines. This research shows the predicted secondary structure of protein from its primary amino acid sequence using Support Vector Machines. As inputs, in the proposed methodology, features are used from different structural motifs or text strings associated with the primary structure which represents the secondary structure, such as R-group and the probability that the amino acid at position adopts a central particular secondary structure. For feature extraction method is used coding of sequences in which each symbol in the primary structure is associated with each symbol in the secondary structure. The use of this encoding method reduces the dimensionality of the data of thousands of characteristics only 220 of these. The results obtained are comparable to those reported in the literature, taking about 70% accuracy. Furthermore, it is possible to reduce computational cost in the construction of classifiers because this work models the problem of multi classification as a group of binary classifiers. Key words: coding methodology; support vector machines; prediction of protein secondary structure. Resumen: Entre los métodos computacionales utilizados para la predicción de la estructura secundaria de proteínas, se destaca el uso de máquinas de soporte vectorial. Este trabajo de investigación presenta la predicción de la estructura secundaria de proteínas desde su secuencia primaria de aminoácidos usando Máquinas de Soporte Vectorial. Como entradas, en la metodología propuesta, se utilizan características de los diferentes motivos estructurales o cadenas de texto asociadas a la estructura primaria que representa la estructura secundaria

  13. Investigation of Polarization-Dependent Optical Force in Optical Tweezers using Generalized Lorenz-Mie Theory

    CERN Document Server

    Choi, Jai-Min

    2015-01-01

    In vectorial diffraction theory, tight focusing of a linearly polarized laser beam produces an anisotropic field distribution around the focal plane. We present a numerical investigation of the electromagnetic field distribution of a focused beam in terms of the input beam polarization state and the associated effects on the trap stiffness asymmetry of optical tweezers. We also explore the symmetry change of a polarization-dependent optical force due to the electromagnetic field redistribution by the presence of dielectric spheres of selected diameters ranging from the Rayleigh scattering regime to the Mie scattering regime.

  14. Effects of surface anisotropy on magnetic vortex core

    Energy Technology Data Exchange (ETDEWEB)

    Pylypovskyi, Oleksandr V., E-mail: engraver@univ.net.ua [Taras Shevchenko National University of Kiev, 01601 Kiev (Ukraine); Sheka, Denis D. [Taras Shevchenko National University of Kiev, 01601 Kiev (Ukraine); Kravchuk, Volodymyr P.; Gaididei, Yuri [Institute for Theoretical Physics, 03143 Kiev (Ukraine)

    2014-06-01

    The vortex core shape in the three dimensional Heisenberg magnet is essentially influenced by a surface anisotropy. We predict that depending of the surface anisotropy type there appears barrel- or pillow-shaped deformation of the vortex core along the magnet thickness. Our theoretical study is well confirmed by spin–lattice simulations. - Highlights: • The shape of magnetic vortex core is essentially influenced by SA (surface anisotropy). • We predict barrel- or pillow-shaped deformation of the vortex depending on SA. • The variational approach fully describes the vortex core deformation. • We performed spin–lattice simulations to detect SA influence on the vortex core.

  15. Effect of Dzyaloshinskii–Moriya interaction on magnetic vortex

    Directory of Open Access Journals (Sweden)

    Y. M. Luo

    2014-04-01

    Full Text Available The effect of the Dzyaloshinskii–Moriya (DM interaction on the vortex in magnetic microdisk was investigated by micro-magnetic simulation based on the Landau–Lifshitz–Gilbert equation. Our results show that the DM interaction modifies the size of the vortex core, and also induces an out-of-plane magnetization component at the edge and inside the disk. The DM interaction can destabilizes one vortex handedness, generate a bias field to the vortex core and couple the vortex polarity and chirality. This DM-interaction-induced coupling can therefore provide a new way to control vortex polarity and chirality.

  16. Sculptured 3D twister superlattices embedded with tunable vortex spirals.

    Science.gov (United States)

    Xavier, Jolly; Vyas, Sunil; Senthilkumaran, Paramasivam; Denz, Cornelia; Joseph, Joby

    2011-09-01

    We present diverse reconfigurable complex 3D twister vortex superlattice structures in a large area embedded with tunable vortex spirals as well as dark rings, threaded by vortex helices. We demonstrate these tunable complex chiral vortex superlattices by the superposition of relatively phase engineered plane waves. The generated complex 3D twister lattice vortex structures are computationally as well as experimentally analyzed using various tools to verify the presence of phase singularities. Our observation indicates the application-specific flexibility of our approach to tailor the transverse superlattice spatial irradiance profile of these longitudinally whirling vortex-cluster units and dark rings.

  17. Vortex loops entry into type-II superconductors

    CERN Document Server

    Samokhvalov, A V

    1996-01-01

    The magnetic field distribution, the magnetic flux, and the free energy of an Abrikosov vortex loop near a flat surface of type--II superconductors are calculated in the London approximation. The shape of such a vortex line is a semicircle of arbitrary radius. The interaction of the vortex half--ring and an external homogeneous magnetic field applied along the surface is studied. The magnitude of the energy barrier against the vortex expansion into superconductor is found. The possibilities of formation of an equilibrium vortex line determined by the structure of the applied magnetic field by creating the expanding vortex loops near the surface of type--II superconductor are discussed.

  18. Lateral phase drift of the topological charge density in stochastic optical fields

    CSIR Research Space (South Africa)

    Roux, FS

    2012-03-01

    Full Text Available The statistical distributions of optical vortices or topological charge in stochastic optical fields can be inhomogeneous in both transverse directions. Such two-dimensional inhomogeneous vortex or topological charge distributions evolve in a...

  19. Multiply-interacting Vortex Streets

    CERN Document Server

    Oskouei, Babak G; Newton, Paul K

    2010-01-01

    We investigate the behavior of an infinite array of (reverse) von K'arm'an streets. Our primary motivation is to model the wake dynamics in large fish schools. We ignore the fish and focus on the dynamic interaction of multiple wakes where each wake is modeled as a reverse von K'arm'an street. There exist configurations where the infinite array of vortex streets is in relative equilibrium, that is, the streets move together with the same translational velocity. We examine the topology of the streamline patterns in a frame moving with the same translational velocity as the streets which lends insight into fluid transport through the mid-wake region. Fluid is advected along different paths depending on the distance separating two adjacent streets. Generally, when the distance between the streets is large enough, each street behaves as a single von K'arm'an street and fluid moves globally between two adjacent streets. When the streets get closer to each other, the number of streets that enter into partnership in...

  20. Imprinting superconducting vortex footsteps in a magnetic layer.

    Science.gov (United States)

    Brisbois, Jérémy; Motta, Maycon; Avila, Jonathan I; Shaw, Gorky; Devillers, Thibaut; Dempsey, Nora M; Veerapandian, Savita K P; Colson, Pierre; Vanderheyden, Benoît; Vanderbemden, Philippe; Ortiz, Wilson A; Nguyen, Ngoc Duy; Kramer, Roman B G; Silhanek, Alejandro V

    2016-06-06

    Local polarization of a magnetic layer, a well-known method for storing information, has found its place in numerous applications such as the popular magnetic drawing board toy or the widespread credit cards and computer hard drives. Here we experimentally show that a similar principle can be applied for imprinting the trajectory of quantum units of flux (vortices), travelling in a superconducting film (Nb), into a soft magnetic layer of permalloy (Py). In full analogy with the magnetic drawing board, vortices act as tiny magnetic scribers leaving a wake of polarized magnetic media in the Py board. The mutual interaction between superconducting vortices and ferromagnetic domains has been investigated by the magneto-optical imaging technique. For thick Py layers, the stripe magnetic domain pattern guides both the smooth magnetic flux penetration as well as the abrupt vortex avalanches in the Nb film. It is however in thin Py layers without stripe domains where superconducting vortices leave the clearest imprints of locally polarized magnetic moment along their paths. In all cases, we observe that the flux is delayed at the border of the magnetic layer. Our findings open the quest for optimizing magnetic recording of superconducting vortex trajectories.

  1. Lyot-plane phase masks for improved high-contrast imaging with a vortex coronagraph

    CERN Document Server

    Ruane, Garreth J; Absil, Olivier; Mawet, Dimitri; Delacroix, Christian; Carlomagno, Brunella; Swartzlander, Grover A

    2015-01-01

    The vortex coronagraph is an optical instrument that precisely removes on-axis starlight allowing for high contrast imaging at small angular separation from the star, thereby providing a crucial capability for direct detection and characterization of exoplanets and circumstellar disks. Telescopes with aperture obstructions, such as secondary mirrors and spider support structures, require advanced coronagraph designs to provide adequate starlight suppression. We introduce a phase-only Lyot-plane optic to the vortex coronagraph that offers improved contrast performance on telescopes with complicated apertures. Potential solutions for the European Extremely Large Telescope (E-ELT) are described and compared. Adding a Lyot-plane phase mask relocates residual starlight away from a region of the image plane thereby reducing stellar noise and improving sensitivity to off-axis companions. The phase mask is calculated using an iterative phase retrieval algorithm. Numerically, we achieve a contrast on the order of $10^...

  2. Ultrafast generation of skyrmionic defects with vortex beams: Printing laser profiles on magnets

    Science.gov (United States)

    Fujita, Hiroyuki; Sato, Masahiro

    2017-02-01

    Controlling electric and magnetic properties of matter by laser beams is actively explored in the broad region of condensed matter physics, including spintronics and magneto-optics. Here we theoretically propose an application of optical and electron vortex beams carrying intrinsic orbital angular momentum to chiral ferro- and antiferromagnets. We analyze the time evolution of spins in chiral magnets under irradiation of vortex beams by using the stochastic Landau-Lifshitz-Gilbert equation. We show that beam-driven nonuniform temperature leads to a class of ring-shaped magnetic defects, what we call skyrmion multiplex, as well as conventional skyrmions. We discuss the proper beam parameters and the optimal way of applying the beams for the creation of these topological defects. Our findings provide an ultrafast scheme of generating topological magnetic defects in a way applicable to both metallic and insulating chiral (anti-) ferromagnets.

  3. Analysis of Vortex Line Cutting and Reconnection by a Blade

    Science.gov (United States)

    Saunders, Curtis; Marshall, Jeffrey

    2015-11-01

    The essence of vortex reconnection involves the cutting of vortex lines originating from one region and reconnecting to vortex lines originating from another region via the diffusion-regulated annihilation of vorticity. Vortex cutting by a blade is a special case of the more general class of vortex reconnection problems, with an important difference being that vorticity is generated at the reconnection site. In this study, a series of Navier-Stokes simulations of orthogonal vortex cutting by a blade with different values of vortex strength are reported. The three phases of vortex reconnection identified in the literature are found to have counterparts for the vortex cutting problem. However numerous differences between the mechanics of vortex cutting and reconnection within each phase are discussed. In addition, comparisons are made between the temporal changes of the maximum and minimum components of vorticity for vortices of differing strength but still within the vortex cutting regime. The vortex cutting results are also compared with predictions of a simple analytical model that incorporates the key elements of a stretched vorticity field interacting with a solid surface, which is representative of the vortex cutting mechanism near the blade leading edge. Funded by National Science Foundation project DGE-1144388.

  4. Research on Algebraic Immunity of Vectorial Boolean Functions%向量布尔函数代数免疫性质研究

    Institute of Scientific and Technical Information of China (English)

    王永娟; 孙宇

    2013-01-01

    By discussing the algebraic degree of the annihilators of vectorial Boolean functions, it is found that the algebraic immunity of vectorial Boolean functions remains invariant after affine transformation of the input variables. And after permutation of the output variables, the algebraic immunity also remains invariant. The relations between the Hamming weight of Component functions, the algebraic immunity, Walsh spectrum and the nonlinearity of vectorial Boolean functions were also investigated.%通过讨论向量布尔函数零化子的代数次数,对向量布尔函数的代数免疫性质进行研究,得出其置换不变性,即在输入变量作仿射变换和输出变量作置换之后仍然保持不变,并得出向量布尔函数代数免疫与线性组合函数重量、Walsh谱以及非线性度之间的关系.

  5. Vortex-Based Aero- and Hydrodynamic Estimation

    Science.gov (United States)

    Hemati, Maziar Sam

    Flow control strategies often require knowledge of unmeasurable quantities, thus presenting a need to reconstruct flow states from measurable ones. In this thesis, the modeling, simulation, and estimator design aspects of flow reconstruction are considered. First, a vortex-based aero- and hydrodynamic estimation paradigm is developed to design a wake sensing algorithm for aircraft formation flight missions. The method assimilates wing distributed pressure measurements with a vortex-based wake model to better predict the state of the flow. The study compares Kalman-type algorithms with particle filtering algorithms, demonstrating that the vortex nonlinearities require particle filters to yield adequate performance. Furthermore, the observability structure of the wake is shown to have a negative impact on filter performance regardless of the algorithm applied. It is demonstrated that relative motions can alleviate the filter divergence issues associated with this observability structure. In addition to estimator development, the dissertation addresses the need for an efficient unsteady multi-body aerodynamics testbed for estimator and controller validation studies. A pure vortex particle implementation of a vortex panel-particle method is developed to satisfy this need. The numerical method is demonstrated on the impulsive startup of a flat plate as well as the impulsive startup of a multi-wing formation. It is clear, from these validation studies, that the method is able to accommodate the unsteady wake effects that arise in formation flight missions. Lastly, successful vortex-based estimation is highly dependent on the reliability of the low-order vortex model used in representing the flow of interest. The present treatise establishes a systematic framework for vortex model improvement, grounded in optimal control theory and the calculus of variations. By minimizing model predicted errors with respect to empirical data, the shortcomings of the baseline vortex model

  6. Vortices and vortex lattices in quantum ferrofluids

    Science.gov (United States)

    Martin, A. M.; Marchant, N. G.; O’Dell, D. H. J.; Parker, N. G.

    2017-03-01

    The experimental realization of quantum-degenerate Bose gases made of atoms with sizeable magnetic dipole moments has created a new type of fluid, known as a quantum ferrofluid, which combines the extraordinary properties of superfluidity and ferrofluidity. A hallmark of superfluids is that they are constrained to rotate through vortices with quantized circulation. In quantum ferrofluids the long-range dipolar interactions add new ingredients by inducing magnetostriction and instabilities, and also affect the structural properties of vortices and vortex lattices. Here we give a review of the theory of vortices in dipolar Bose–Einstein condensates, exploring the interplay of magnetism with vorticity and contrasting this with the established behaviour in non-dipolar condensates. We cover single vortex solutions, including structure, energy and stability, vortex pairs, including interactions and dynamics, and also vortex lattices. Our discussion is founded on the mean-field theory provided by the dipolar Gross–Pitaevskii equation, ranging from analytic treatments based on the Thomas–Fermi (hydrodynamic) and variational approaches to full numerical simulations. Routes for generating vortices in dipolar condensates are discussed, with particular attention paid to rotating condensates, where surface instabilities drive the nucleation of vortices, and lead to the emergence of rich and varied vortex lattice structures. We also present an outlook, including potential extensions to degenerate Fermi gases, quantum Hall physics, toroidal systems and the Berezinskii–Kosterlitz–Thouless transition.

  7. Nonlinear ion acoustic waves scattered by vortexes

    CERN Document Server

    Ohno, Yuji

    2015-01-01

    The Kadomtsev--Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes `scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are `ambient' because they do not receive reciprocal reactions from the waves (i.e.,...

  8. Physical features of atmospheric pressure microdischarge system with vortex gas flows

    Directory of Open Access Journals (Sweden)

    Prysiazhnevych Iryna

    2014-11-01

    Full Text Available The parameters for microdischarges of plasma medicine in air and argon vortex flows at atmospheric pressure for different shapes of electrodes (outlet nozzle and axis electrode diameters ratio set have been investigated. The current-voltage characteristics of the designed systems have been analyzed, the parameters of the generated jets plasma have been investigated by means of the optical emission spectroscopy, and the form of plasma jets has been studied by using video camera.

  9. Full-vectorial finite-difference beam propagation method based on the modified alternating direction implicit method

    Institute of Scientific and Technical Information of China (English)

    Xiao Jin-Biao; Sun Xiao-Han

    2006-01-01

    A modified alternating direction implicit algorithm is proposed to solve the full-vectorial finite-difference beam propagation method formulation based on H fields. The cross-coupling terms are neglected in the first sub-step, but evaluated and doubly used in the second sub-step. The order of two sub-steps is reversed for each transverse magnetic field component so that the cross-coupling terms are always expressed in implicit form, thus the calculation is very efficient and stable. Moreover, an improved six-point finite-difference scheme with high accuracy independent of specific structures of waveguide is also constructed to approximate the cross-coupling terms along the transverse directions. The imaginary-distance procedure is used to assess the validity and utility of the present method. The field patterns and the normalized propagation constants of the fundamental mode for a buried rectangular waveguide and a rib waveguide are presented. Solutions are in excellent agreement with the benchmark results from the modal transverse resonance method.

  10. Linealización de sistemas VSC-HVDC para el diseño de un controlador PI vectorial

    Directory of Open Access Journals (Sweden)

    Nelson Díaz Aldana

    2014-01-01

    Full Text Available Los sistemas VSC-HVDC son muy utilizados para la transmisión de energía en redes de interconexión eléctrica. Uno de los principales problemas que poseen estos sistemas es la complejidad de su modelo matemático, lo que conlleva grandes dificultades para el diseño de controladores que permitan la regulación de parámetros como la tensión DC de transmisión, así como la potencia activa y reactiva del sistema VSC-HVDC. En este artículo se presenta la linealización de un sistema VSC-HVDC y el posterior diseño de un controlador lineal PI vectorial a partir del modelo linealizado. Adicionalmente, se proponen dos estrategias para la validación de este tipo de controladores, la primera consiste en un único controlador PI para regular los estados del sistema para cada VSC, la segunda consiste en el diseño de controladores PI vectoriales independientes para la regulación de cada estado del VSC.

  11. An entomological and seroepidemiological study of the vectorial-transmission risk of Chagas disease in the coast of northern Chile.

    Science.gov (United States)

    González, C R; Reyes, C; Canals, A; Parra, A; Muñoz, X; Rodríguez, K

    2015-12-01

    Four species of triatomines are known from Chile: Triatoma infestans Klug, Mepraia spinolai Porter, M. gajardoi Frías, Henry & González, and M. parapatrica Frías (Hemiptera: Reduviidae), the last three are endemic. The geographical distribution of M. gajardoi includes the coastal areas in the north of Chile between 18° and 21°S, an area with both a resident workforce and summer-season visitors. A study was developed to assess the risk of vectorial transmission of Chagas disease by M. gajardoi in hut settlements on the coast of the Tarapacá Region, in particular in Caleta San Marcos and Caleta Río Seco. The study comprised fingerstick sampling of 95 persons, venous samples from 29 domestic dogs and capture of 52 triatomines, from both fishing coves. The samples were analysed by enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) techniques. The results show that, of the total number of persons studied, 100% were negative for Trypanosoma cruzi Chagas (Trypanosomatida: Trypanosomatidae) antibodies, 10.34% of canids were positive for the antibody and 5.8% of M. gajardoi were infected to the PCR technique. The presence of this species in areas close to human settlements constitutes a risk to human populations established on the coast of northern Chile.

  12. Assessing the vulnerability of Brazilian municipalities to the vectorial transmission of Trypanosoma cruzi using multi-criteria decision analysis.

    Science.gov (United States)

    Vinhaes, Márcio Costa; de Oliveira, Stefan Vilges; Reis, Priscilleyne Ouverney; de Lacerda Sousa, Ana Carolina; Silva, Rafaella Albuquerque E; Obara, Marcos Takashi; Bezerra, Cláudia Mendonça; da Costa, Veruska Maia; Alves, Renato Vieira; Gurgel-Gonçalves, Rodrigo

    2014-09-01

    Despite the dramatic reduction in Trypanosoma cruzi vectorial transmission in Brazil, acute cases of Chagas disease (CD) continue to be recorded. The identification of areas with greater vulnerability to the occurrence of vector-borne CD is essential to prevention, control, and surveillance activities. In the current study, data on the occurrence of domiciliated triatomines in Brazil (non-Amazonian regions) between 2007 and 2011 were analyzed. Municipalities' vulnerability was assessed based on socioeconomic, demographic, entomological, and environmental indicators using multi-criteria decision analysis (MCDA). Overall, 2275 municipalities were positive for at least one of the six triatomine species analyzed (Panstrongylus megistus, Triatoma infestans, Triatoma brasiliensis, Triatoma pseudomaculata, Triatoma rubrovaria, and Triatoma sordida). The municipalities that were most vulnerable to vector-borne CD were mainly in the northeast region and exhibited a higher occurrence of domiciliated triatomines, lower socioeconomic levels, and more extensive anthropized areas. Most of the 39 new vector-borne CD cases confirmed between 2001 and 2012 in non-Amazonian regions occurred within the more vulnerable municipalities. Thus, MCDA can help to identify the states and municipalities that are most vulnerable to the transmission of T. cruzi by domiciliated triatomines, which is critical for directing adequate surveillance, prevention, and control activities. The methodological approach and results presented here can be used to enhance CD surveillance in Brazil.

  13. Sobre el estado electro-tónico y su interpretación: el potencial vectorial

    Directory of Open Access Journals (Sweden)

    Mauricio Rozo Clavijo

    2015-10-01

    Full Text Available Se presenta un análisis acerca de las perspectivas que surgieron sobre el potencial vectorial a partir de los escritos originales de Faraday y Maxwell. Se muestran las primeras ideas sobre los experimentos y las explicaciones que Faraday desarrolló en torno a la inducción magnética, y la influencia que tuvo su concepto de estado electro-tónico en la primera explicación que formuló Maxwell, quien lo definió como el estado mediante el cual se ejecutan las acciones magnéticas a través de líneas de fuerza. Señala que ese concepto es la base para explicar el fenómeno de la inducción magnética en términos no newtonianos y lo formaliza mediante la variación temporal de la circulación del potencial vectorial a lo largo de una trayectoria cerrada. Este tipo de análisis muestra la manera en que estos pensadores representan el fenómeno, la cual no se evidencia en la literatura, sino que se muestra como una formalización alrededor del campo magnético. On the Electro-Tonic State and its Interpretation: The Vector Potential An analysis is presented on the emerging perspectives about the vector potential from Faraday and Maxwell’s original writings. This paper presents the initial observations about the experiments and explanations developed by Faraday on Magnetic Induction and the influence that his concept of Electrotonic State had on Maxwell’s first explanation. He defined it as the state by which magnetic actions are executed through lines of force. He pointed out that this concept is critical to explain the phenomenon of Magnetic Induction in non-Newtonian terms. Therefore, he formalized it by the circulation of vector potential throughout a closed trajectory. This kind of analysis shows how these researchers represented the phenomenon which is not evident in literature. It’s presented as a formalization around magnetic field instead. Sobre o estado electro-tônica e sua interpretação: o potencial vetor Mostra-se uma an

  14. Vectorial magnetometry and anisotropy studies on thin Co{sub 50}Fe{sub 50} films using MOKE

    Energy Technology Data Exchange (ETDEWEB)

    Kuschel, Timo; Wollschlaeger, Joachim [Fachbereich Physik, Universitaet Osnabrueck, Barbarastr. 7, 49069 Osnabrueck (Germany); Hamrle, Jaroslav; Pistora, Jaromir [Department of Physics, VSB - Technical University of Ostrava, 17. listopadu 15, 70833 Ostrava-Poruba (Czech Republic); Bosu, Subrojati; Sakuraba, Yuya; Takanashi, Koki [Institute for Materials Research (IMR), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577 (Japan)

    2011-07-01

    Magnetooptical Kerr effect (MOKE) is a powerful tool to determine magnetic properties of thin magnetic films. In some cases this technique is only applied to detect magnetization curves qualitatively. In order to perform a quantitative analysis we present MOKE measurements with s- and p-polarized incident light, using an external magnetic field either parallel or perpendicular to the plane of incidence of light and different orientations of the crystalline substrate. The processing of the data includes vectorial magnetometry as well as studies of the anisotropy constants and magnetic axes. The investigated Co{sub 50}Fe{sub 50} films o f 50 nm thickness on MgO(001) are prepared with different annealing temperatures (RT up to 400 C). On the one hand the films with lower annealing tempe ratures show typical magnetic reversal processes of samples with four-fold symmetry as expected for cubic crystal structures. On the other hand the film annealed at 400 C presents an additional strong in-plane anisotropy, which is discussed in context of a classical free energy approach.

  15. Vectorial competence of Phlebotomus papatasi (Diptera: Psychodidae) to transmit two old world Leishmania species: Leishmania major and L. Tropica.

    Science.gov (United States)

    Darwish, A B; Tewfick, M K; Doha, S A; Abo-Ghalia, A H; Soliman, B A

    2011-12-01

    The vectorial competence of Phlebotomus papatasi for two old world Leishmania species, L. major & L. tropica was investigated. Phlebotomus papatasi originally collected from Suez Governorate, were membrane fed on homogenized hamster's lesion infected with L. major, MHOM/EG/06/RTC-63, and L. tropica, MGER/EG/06/RTC-74 identified from patients with suspected CL in Northern Sinai, Egypt. Fed flies were dissected at different time intervals and examined microscopically to determine the infection rate and parasite intensity. The feeding rate of P. papatasi on L. major (58.69%) was found higher than on L. tropica (45.99%). Infection rate with L. major (60.19%) was significantly higher than that with L. tropica (39.73%). Transmission by bites in case of P. papatasi/L. tropica failed. A characteristic L. major lesion was developed on the foot pads region 120 days post infective bites on healthy hamster. It is therefore concluded that P. papatasi is a much more effective vector for L. major than for L. tropica.

  16. Scattering by a draining bathtub vortex

    Science.gov (United States)

    Dolan, Sam R.; Oliveira, Ednilton S.

    2013-06-01

    We present an analysis of scattering by a fluid-mechanical “black hole analogue,” known as the draining bathtub vortex: a two-dimensional flow that possesses both a sonic horizon and an ergoregion. We consider the scattering of a plane wave of fixed frequency impinging upon the vortex. At low frequency, we encounter a modified Aharonov-Bohm effect. At high frequencies, we observe regular “orbiting” oscillations in the scattering length, due to interference between contra-orbiting rays. We present approximate formulas for both effects and a selection of numerical results obtained by summing partial-wave series. Finally, we examine interference patterns in the vicinity of the vortex and highlight the prospects for experimental investigation.

  17. Scattering by a draining bathtub vortex

    CERN Document Server

    Dolan, Sam R

    2013-01-01

    We present an analysis of scattering by a fluid-mechanical `black hole analogue', known as the draining bathtub (DBT) vortex: a two-dimensional flow which possesses both a sonic horizon and an ergoregion. We consider the scattering of a plane wave of fixed frequency impinging upon the vortex. At low frequency, we encounter a modified Aharonov-Bohm effect. At high frequencies, we observe regular `orbiting' oscillations in the scattering length, due to interference between contra-orbiting rays. We present approximate formulae for both effects, and a selection of numerical results obtained by summing partial-wave series. Finally, we examine interference patterns in the vicinity of the vortex, and highlight the prospects for experimental investigation.

  18. Alternate powers in Serrin's swirling vortex solutions

    CERN Document Server

    Bělík, Pavel; Scholz, Kurt; Shvartsman, Mikhail M

    2012-01-01

    We consider a modification of the fluid flow model for a swirling vortex developed by J. Serrin, where velocity decreases as the reciprocal of the distance from the vortex axis. Recent studies, based on radar data of selected severe weather events, indicate that the angular momentum in a tornado may not be constant with the radius, and thus suggest a different scaling of the velocity/radial distance dependence. Motivated by this suggestion, we consider Serrin's approach with the assumption that the velocity decreases as the reciprocal of the distance from the vortex axis to the power b with a general b>0. This leads to a boundary-value problem for a system of nonlinear differential equations. We analyze this problem for particular cases, both with nonzero and zero viscosity, discuss the question of existence of solutions, and use numerical techniques to describe those solutions that we cannot obtain analytically.

  19. Holographic Vortex Pair Annihilation in Superfluid Turbulence

    CERN Document Server

    Du, Yiqiang; Tian, Yu; Zhang, Hongbao

    2014-01-01

    We make a first principles investigation of the dynamical evolution of vortex number in a two-dimensional (2D) turbulent superfluid by holography through numerically solving its highly non-trivial gravity dual. With the randomly placed vortices and antivortices prepared as initial states, we find that the temporal evolution of the vortex number can be well fit statistically by two-body decay due to the vortex pair annihilation featured relaxation process remarkably from a very early time on. In particular, subtracted by the universal offset, the power law fit indicates that our holographic turbulent superfluid exhibits an apparently different decay pattern from the superfluid recently experimented in highly oblate Bose-Einstein condensates.

  20. Vortex knots in tangled quantum eigenfunctions

    CERN Document Server

    Taylor, Alexander J

    2016-01-01

    Tangles of string typically become knotted, from macroscopic twine down to long-chain macromolecules such as DNA. Here we demonstrate that knotting also occurs in quantum wavefunctions, where the tangled filaments are vortices (nodal lines/phase singularities). The probability that a vortex loop is knotted is found to increase with its length, and a wide gamut of knots from standard tabulations occur. The results follow from computer simulations of random superpositions of degenerate eigenstates of three simple quantum systems: a cube with periodic boundaries, the isotropic 3-dimensional harmonic oscillator and the 3-sphere. In the latter two cases, vortex knots occur frequently, even in random eigenfunctions at relatively low energy, and are constrained by the spatial symmetries of the modes. The results suggest that knotted vortex structures are generic in complex 3-dimensional wave systems, establishing a topological commonality between wave chaos, polymers and turbulent Bose-Einstein condensates.

  1. Vortex noise from nonrotating cylinders and airfoils

    Science.gov (United States)

    Schlinker, R. H.; Amiet, R. K.; Fink, M. R.

    1976-01-01

    An experimental study of vortex-shedding noise was conducted in an acoustic research tunnel over a Reynolds-number range applicable to full-scale helicopter tail-rotor blades. Two-dimensional tapered-chord nonrotating models were tested to simulate the effect of spanwise frequency variation on the vortex-shedding mechanism. Both a tapered circular cylinder and tapered airfoils were investigated. The results were compared with data for constant-diameter cylinder and constant-chord airfoil models also tested during this study. Far-field noise, surface pressure fluctuations, and spanwise correlation lengths were measured for each configuration. Vortex-shedding noise for tapered cylinders and airfoils was found to contain many narrowband-random peaks which occurred within a range of frequencies corresponding to a predictable Strouhal number referenced to the maximum and minimum chord. The noise was observed to depend on surface roughness and Reynolds number.

  2. Convectively driven vortex flows in the Sun

    CERN Document Server

    Bonet, J A; Almeida, J Sanchez; Cabello, I; Domingo, V

    2008-01-01

    We have discovered small whirlpools in the Sun, with a size similar to the terrestrial hurricanes (<~0.5 Mm). The theory of solar convection predicts them, but they had remained elusive so far. The vortex flows are created at the downdrafts where the plasma returns to the solar interior after cooling down, and we detect them because some magnetic bright points (BPs) follow a logarithmic spiral in their way to be engulfed by a downdraft. Our disk center observations show 0.009 vortexes per Mm^2, with a lifetime of the order of 5 min, and with no preferred sense of rotation. They are not evenly spread out over the surface, but they seem to trace the supergranulation and the mesogranulation. These observed properties are strongly biased by our type of measurement, unable to detect vortexes except when they are engulfing magnetic BPs.

  3. Downstream Thermal Evolution of Vortex Cores

    Science.gov (United States)

    Gómez-Barea, A.; Herrada, M. A.; Pérez-Saborid, M.; Barrero, A.

    1999-11-01

    The downstream evolution of the total temperature field in a quasi-incompressible axisymmetric vortex core has been computed. Starting at an initial station (z=0) with velocity profiles of the Burgers type and given temperature distributions, the numerical results of the evolution show that, according to experimental results, the total temperature in the near-axis region decreases substantially due to the work done by pressure and viscous forces together with the effect of both convection and conduction of heat. Depending on the values of the parameters characterizing the initial profiles and on the value of the Prandtl number, the vortex either breaks down or eventually reaches a self-similar regime. The results obtained shed light on the basic physics involved in the thermal separation phenomenon which appears inside Ranque-Hilsch vortex tubes.

  4. Chiral specific electron vortex beam spectroscopy

    CERN Document Server

    Yuan, J; Babiker, M

    2013-01-01

    Electron vortex beams carry well-defined orbital angular momentum (OAM) about the propagation axis. Such beams are thus characterised by chirality features which make them potentially useful as probes of magnetic and other chiral materials. An analysis of the inelastic processes in which electron vortex beams interact with atoms and which involve OAM exchange is outlined, leading to the multipolar selection rules governing this chiral specific electron vortex beam spectroscopy. Our results show clearly that the selection rules are dependent on the dynamical state and location of the atoms involved. In the most favorable scenario, this form of electron spectroscopy can induce magnetic sublevel transitions which are commonly probed using circularly polarized photon beams.

  5. Introduction to vortex filaments in equilibrium

    CERN Document Server

    Andersen, Timothy D

    2014-01-01

    This book presents fundamental concepts and seminal results to the study of vortex filaments in equilibrium. It also presents new discoveries in quasi-2D vortex structures with applications to geophysical fluid dynamics and magnetohydrodynamics in plasmas.  It fills a gap in the vortex statistics literature by simplifying the mathematical introduction to this complex topic, covering numerical methods, and exploring a wide range of applications with numerous examples. The authors have produced an introduction that is clear and easy to read, leading the reader step-by-step into this topical area. Alongside the theoretical concepts and mathematical formulations, interesting applications are discussed. This combination makes the text useful for students and researchers in mathematics and physics.

  6. Larval food quantity affects development time, survival and adult biological traits that influence the vectorial capacity of Anopheles darlingi under laboratory conditions

    Directory of Open Access Journals (Sweden)

    Araújo Maisa

    2012-08-01

    Full Text Available Abstract Background The incidence of malaria in the Amazon is seasonal and mosquito vectorial capacity parameters, including abundance and longevity, depend on quantitative and qualitative aspects of the larval diet. Anopheles darlingi is a major malaria vector in the Amazon, representing >95% of total Anopheles population present in the Porto Velho region. Despite its importance in the transmission of the Plasmodium parasite, knowledge of the larval biology and ecology is limited. Studies regarding aspects of adult population ecology are more common than studies on larval ecology. However, in order develop effective control strategies and laboratory breeding conditions for this species, more data on the factors affecting vector biology is needed. The aim of the present study is to assess the effects of larval food quantity on the vectorial capacity of An. darling under laboratory conditions. Methods Anopheles darlingi was maintained at 28°C, 80% humidity and exposed to a daily photoperiod of 12 h. Larvae were divided into three experimental groups that were fed either a low, medium, or high food supply (based on the food amounts consumed by other species of culicids. Each experiment was replicated for six times. A cohort of adults were also exposed to each type of diet and assessed for several biological characteristics (e.g. longevity, bite frequency and survivorship, which were used to estimate the vectorial capacity of each experimental group. Results The group supplied with higher food amounts observed a reduction in development time while larval survival increased. In addition to enhanced longevity, increasing larval food quantity was positively correlated with increasing frequency of bites, longer blood meal duration and wing length, resulting in greater vectorial capacity. However, females had greater longevity than males despite having smaller wings. Conclusions Overall, several larval and adult biological traits were significantly

  7. Creating superfluid vortex rings in artificial magnetic fields

    CERN Document Server

    Sachdeva, Rashi

    2016-01-01

    Artificial gauge fields are versatile tools that allow to influence the dynamics of ultracold atoms in Bose-Einstein condensates. Here we discuss a method of artificial gauge field generation stemming from the evanescent fields of the curved surface of an optical nanofibre. The exponential decay of the evanescent fields leads to large gradients in the generalized Rabi frequency and therefore to the presence of geometric vector and scalar potentials. By solving the Gross-Pitaevskii equation in the presence of the artificial gauge fields originating from the fundamental HE$_{11}$ mode of the fibre, we show that vortex rings can be created in a controlled manner. We also calculate the magnetic fields resulting from the higher order HE$_{21}$, TE$_{01}$, and TM$_{01}$ modes and compare them to the fundamental HE$_{11}$ mode.

  8. Apodized vortex coronagraph designs for segmented aperture telescopes

    CERN Document Server

    Ruane, Garreth; Mawet, Dimitri; Pueyo, Laurent; Shaklan, Stuart

    2016-01-01

    Current state-of-the-art high contrast imaging instruments take advantage of a number of elegant coronagraph designs to suppress starlight and image nearby faint objects, such as exoplanets and circumstellar disks. The ideal performance and complexity of the optical systems depends strongly on the shape of the telescope aperture. Unfortunately, large primary mirrors tend to be segmented and have various obstructions, which limit the performance of most conventional coronagraph designs. We present a new family of vortex coronagraphs with numerically-optimized gray-scale apodizers that provide the sensitivity needed to directly image faint exoplanets with large, segmented aperture telescopes, including the Thirty Meter Telescope (TMT) as well as potential next-generation space telescopes.

  9. Pattern formation due to non-linear vortex diffusion

    Science.gov (United States)

    Wijngaarden, Rinke J.; Surdeanu, R.; Huijbregtse, J. M.; Rector, J. H.; Dam, B.; Einfeld, J.; Wördenweber, R.; Griessen, R.

    Penetration of magnetic flux in YBa 2Cu 3O 7 superconducting thin films in an external magnetic field is visualized using a magneto-optic technique. A variety of flux patterns due to non-linear vortex diffusion is observed: (1) Roughening of the flux front with scaling exponents identical to those observed in burning paper including two distinct regimes where respectively spatial disorder and temporal disorder dominate. In the latter regime Kardar-Parisi-Zhang behavior is found. (2) Fractal penetration of flux with Hausdorff dimension depending on the critical current anisotropy. (3) Penetration as ‘flux-rivers’. (4) The occurrence of commensurate and incommensurate channels in films with anti-dots as predicted in numerical simulations by Reichhardt, Olson and Nori. It is shown that most of the observed behavior is related to the non-linear diffusion of vortices by comparison with simulations of the non-linear diffusion equation appropriate for vortices.

  10. Stabilization of three-wave vortex beams in the waveguide

    CERN Document Server

    Gammal, Arnaldo

    2015-01-01

    We consider two-dimensional (2D) localized vortical modes in the three-wave system with the quadratic ($\\chi ^{(2)}$) nonlinearity, alias nondegenerate second-harmonic-generating system, guided by the isotropic harmonic-oscillator (HO) (alias parabolic) confining potential. In addition to the straightforward realization in optics, the system models mixed atomic-molecular Bose-Einstein condensates (BECs). The main issue is stability of the vortex modes, which is investigated through computation of instability growth rates for eigenmodes of small perturbations, and by means of direct simulations. The threshold of parametric instability for single-color beams, represented solely by the second harmonic (SH) with zero vorticity, is found in an analytical form with the help of the variational approximation (VA). Trapped states with vorticities $\\left( +1,-1,0\\right) $ in the two fundamental-frequency (FF) components and the SH one [the so-called \\textit{hidden-vorticity} (HV) modes] are completely unstable. Also un...

  11. Creating superfluid vortex rings in artificial magnetic fields

    Science.gov (United States)

    Sachdeva, Rashi; Busch, Thomas

    2017-03-01

    Artificial gauge fields are versatile tools that allow the dynamics of ultracold atoms in Bose-Einstein condensates to be influenced. Here we discuss a method of artificial gauge field generation stemming from the evanescent fields of the curved surface of an optical nanofiber. The exponential decay of the evanescent fields leads to large gradients in the generalized Rabi frequency and therefore to the presence of geometric vector and scalar potentials. By solving the Gross-Pitaevskii equation in the presence of the artificial gauge fields originating from the fundamental Hybrid mode (HE11) mode of the fiber, we show that vortex rings can be created in a controlled manner. We also calculate the magnetic fields resulting from the higher order HE21, Transverse electric mode (TE01), and Transverse magnetic mode (TM01) and compare them to the fundamental HE11 mode.

  12. Vortex ventilation in the laboratory environment.

    Science.gov (United States)

    Meisenzahl, Lawrence R

    2014-01-01

    Assured containment at low airflow has long eluded the users of ventilated enclosures including chemical fume hoods used throughout industry. It is proposed that containment will be enhanced in a hood that has a particular interior shape that causes a natural vortex to occur. The sustained vortex improves the containment of contaminants within the enclosure at low airflow. This hypothesis was tested using the ASHRAE 110 tracer gas test. A known volume of tracer gas was emitted in the hood. A MIRAN SapphIRe infrared spectrometer was used to measure the concentration of tracer gas that escapes the enclosure. The design of the experiment included a written operating procedure, data collection plan, and statistical analysis of the data. A chemical fume hood of traditional design was tested. The hood interior was then reconstructed to enhance the development of a vortex inside the enclosure. The hood was retested using the same method to compare the performance of the traditional interior shape with the enhanced vortex shape. In every aspect, the vortex hood showed significant improvement over the traditional hood design. Use of the Hood Index characterizing the dilution of gas in an air stream as a logarithmic function indicates a causal relationship between containment and volumetric airflow through an enclosure. Use of the vortex effect for ventilated enclosures can provide better protection for the user and lower operating cost for the owner. [Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Occupational and Environmental Hygiene for the following free supplemental resource: a data collection spreadsheet, data analysis, and data collection procedure.].

  13. Vortex lattice theory: A linear algebra approach

    Science.gov (United States)

    Chamoun, George C.

    Vortex lattices are prevalent in a large class of physical settings that are characterized by different mathematical models. We present a coherent and generalized Hamiltonian fluid mechanics-based formulation that reduces all vortex lattices into a classic problem in linear algebra for a non-normal matrix A. Via Singular Value Decomposition (SVD), the solution lies in the null space of the matrix (i.e., we require nullity( A) > 0) as well as the distribution of its singular values. We demonstrate that this approach provides a good model for various types of vortex lattices, and makes it possible to extract a rich amount of information on them. The contributions of this thesis can be classified into four main points. The first is asymmetric equilibria. A 'Brownian ratchet' construct was used which converged to asymmetric equilibria via a random walk scheme that utilized the smallest singular value of A. Distances between configurations and equilibria were measured using the Frobenius norm ||·||F and 2-norm ||·||2, and conclusions were made on the density of equilibria within the general configuration space. The second contribution used Shannon Entropy, which we interpret as a scalar measure of the robustness, or likelihood of lattices to occur in a physical setting. Third, an analytic model was produced for vortex street patterns on the sphere by using SVD in conjunction with expressions for the center of vorticity vector and angular velocity. Equilibrium curves within the configuration space were presented as a function of the geometry, and pole vortices were shown to have a critical role in the formation and destruction of vortex streets. The fourth contribution entailed a more complete perspective of the streamline topology of vortex streets, linking the bifurcations to critical points on the equilibrium curves.

  14. Reactive Flow Control of Delta Wing Vortex (Postprint)

    Science.gov (United States)

    2006-08-01

    Passive vortex control devices such as vortex generators and winglets attach to the wing and require no energy input. Passive vortex control...width. The dynamic test parameters are summarized in Table 2. The composite duty cycle input signal is denoted ( ) ( )ou t u u tδ= + in which ou

  15. Angular momentum flux of nonparaxial acoustic vortex beams and torques on axisymmetric objects.

    Science.gov (United States)

    Zhang, Likun; Marston, Philip L

    2011-12-01

    An acoustic vortex in an inviscid fluid and its radiation torque on an axisymmetric absorbing object are analyzed beyond the paraxial approximation to clarify an analogy with an optical vortex. The angular momentum flux density tensor from the conservation of angular momentum is used as an efficient description of the transport of angular momentum. Analysis of a monochromatic nonparaxial acoustic vortex beam indicates that the local ratio of the axial (or radial) flux density of axial angular momentum to the axial (or radial) flux density of energy is exactly equal to the ratio of the beam's topological charge l to the acoustic frequency ω. The axial radiation torque exerted by the beam on an axisymmetric object centered on the beam's axis due to the transfer of angular momentum is proportional to the power absorbed by the object with a factor l/ω, which can be understood as a result of phonon absorption from the beam. Depending on the vortex's helicity, the torque is parallel or antiparallel to the beam's axis.

  16. Detection of vortex tubes in solar granulation from observations with Sunrise

    CERN Document Server

    Steiner, O; Gonzalez, N Bello; Nutto, Ch; Rezaei, R; Pillet, V Martinez; Navarro, J A Bonet; Iniesta, J C del Toro; Domingo, V; Solanki, S K; Knolker, M; Schmidt, W; Barthol, P; Gandorfer, A

    2010-01-01

    We have investigated a time series of continuum intensity maps and corresponding Dopplergrams of granulation in a very quiet solar region at the disk center, recorded with the Imaging Magnetograph eXperiment (IMaX) on board the balloon-borne solar observatory Sunrise. We find that granules frequently show substructure in the form of lanes composed of a leading bright rim and a trailing dark edge, which move together from the boundary of a granule into the granule itself. We find strikingly similar events in synthesized intensity maps from an ab initio numerical simulation of solar surface convection. From cross sections through the computational domain of the simulation, we conclude that these `granular lanes' are the visible signature of (horizontally oriented) vortex tubes. The characteristic optical appearance of vortex tubes at the solar surface is explained. We propose that the observed vortex tubes may represent only the large-scale end of a hierarchy of vortex tubes existing near the solar surface.

  17. Acoustics of finite-aperture vortex beams

    CERN Document Server

    Mitri, F G

    2014-01-01

    A method based on the Rayleigh-Sommerfeld surface integral is provided, which makes it feasible to rigorously model, evaluate and compute the acoustic scattering and other mechanical effects of finite-aperture vortex beams such as the acoustic radiation force and torque on a viscoelastic sphere in various applications in acoustic tweezers and microfluidics, particle entrapment, manipulation and rotation. Partial-wave series expansions are derived for the incident field of acoustic spiraling (vortex) beams, comprising high-order Bessel and Bessel-Gauss beams.

  18. Characterization of Vortex Generator Induced Flow

    DEFF Research Database (Denmark)

    Velte, Clara Marika

    The aim of this thesis is the characterization and modeling of the longitudinal structures actuated by vortex generators. Results from generic studies performed at low Reynolds numbers have shown that the device induced vortices possess helical structure of the vortex core. Further, their ability...... to control separation and downstream evolution across the chord of a circular sector have been studied. Similar flow structures to the ones found in the generic experiments have been found in a higher Reynolds number setting, more applicable to realistic cases common to, e.g., aeronautical applications...

  19. Paramagnetic excited vortex states in superconductors

    Science.gov (United States)

    Gomes, Rodolpho Ribeiro; Doria, Mauro M.; Romaguera, Antonio R. de C.

    2016-06-01

    We consider excited vortex states, which are vortex states left inside a superconductor once the external applied magnetic field is switched off and whose energy is lower than of the normal state. We show that this state is paramagnetic and develop here a general method to obtain its Gibbs free energy through conformal mapping. The solution for any number of vortices in any cross-section geometry can be read off from the Schwarz-Christoffel mapping. The method is based on the first-order equations used by Abrikosov to discover vortices.

  20. Center-vortex loops with one selfintersection

    CERN Document Server

    Moosmann, Julain

    2008-01-01

    We investigate the 2D behavior of one-fold selfintersecting, topologically stabilized center-vortex loops in the confining phase of an SU(2) Yang-Mills theory. This coarse-graining is described by curve-shrinking evolution of center-vortex loops immersed in a flat 2D plane driving the renormalization-group flow of an effective `action'. We observe that the system evolves into a highly ordered state at finite noise level, and we speculate that this feature is connected with 2D planar high $T_c$ superconductivity in $FeAs$ systems.

  1. On Stratified Vortex Motions under Gravity.

    Science.gov (United States)

    2014-09-26

    AD-A156 930 ON STRATIFIED VORTEX MOTIONS UNDER GRAVITY (U) NAVAL i/i RESEARCH LAB WASHINGTON DC Y T FUNG 20 JUN 85 NRL-MIR-5564 UNCLASSIFIED F/G 20/4...Under Gravity LCn * Y. T. Fung Fluid Dynamics Branch - Marine Technologyv Division June 20, 1985 SO Cyk. NAVAL RESEARCH LABORATORY Washington, D.C...DN880-019 TITLE (Include Security Classification) On Stratified Vortex Motions Under Gravity 12 PERSONAL AUTHOR(S) Funa, Y.T. 13a. TYPE OF REPORT 13b

  2. Intra-cavity vortex beam generation

    CSIR Research Space (South Africa)

    Naidoo, Darryl

    2011-08-01

    Full Text Available ? per photon, and may be found as beams expressed in several basis functions, including Laguerre-Gaussian (LGpl) beams1, Bessel-Gaussian beams3 and Airy beams4 to name but a few. LG0l are otherwise known as vortex beams and LG0l beams are routinely... are represented by ?petals? and we show that through a full modal decomposition, the ?petal? fields are a superposition of two LG0l modes. Keywords: Vortex beams, SLM, Laguerre-Gaussian beams, Porro-prism resonator, Petals. 1. INTRODUCTION It is well...

  3. Vortex gyroscope imaging of planar superfluids.

    Science.gov (United States)

    Powis, A T; Sammut, S J; Simula, T P

    2014-10-17

    We propose a robust imaging technique that makes it possible to distinguish vortices from antivortices in quasi-two-dimensional Bose-Einstein condensates from a single image of the density of the atoms. Tilting the planar condensate prior to standard absorption imaging excites a generalized gyroscopic mode of the condensate, revealing the sign and location of each vortex. This technique is anticipated to enable experimental measurement of the incompressible kinetic energy spectrum of the condensate and the observation of a negative-temperature phase transition of the vortex gas, driven by two-dimensional superfluid turbulence.

  4. AC current driven dynamic vortex state in YBa{sub 2}Cu{sub 3}O{sub 7-x}

    Energy Technology Data Exchange (ETDEWEB)

    Lucarelli, A.; Frey, A.; Yang, R.; Luepke, G. [The College of William and Mary, Department of Applied Science, Williamsburg, VA (United States); Grilli, F. [Los Alamos National Laboratory, Superconductivity Technology Center, Los Alamos, NM (United States); Haugan, T.; Levin, G.; Barnes, P. [Air Force Research Laboratory, Wright-Patterson AFB, OH (United States)

    2007-09-15

    Time-resolved magneto-optical imaging measurements show that an ac current enables the vortex matter in YBa{sub 2}Cu{sub 3}O{sub 7-x} thin films to reorganize into two coexisting steady states of driven vortex motion with different characteristics: a quasi-static disordered glassy state in the sample interior and a dynamic state of plastic motion near the edges. Finite-element calculations consistent with the critical state model show good agreement with the measured field profiles in the quasi-static state but predict a larger hysteretic behavior in the dynamic state. (orig.)

  5. Some interactions of a vortex with a seamount

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, N.R.; Dunn, D.C. [London University College, London (United Kingdom). Dept. of Mathematics

    1999-12-01

    The initial value problem for the motion of an equivalent-barotropic vortex which is initially circular and of uniform potential vorticity near a circular seamount of constant dynamics. Counter surgery experiments are used to investigate qualitative changes in behaviour of the vortex-seamount system as these parameters are varied. Of particular note is the generation of additional vortex features by the original vortex as it sweeps fluid from the seamount. Moreover, when the origin vortex is an anticyclone, dipoles are frequently formed over a wide range of parameter values, which subsequently propagate away from the seamount.

  6. A mathematical consideration of vortex thinning in 2D turbulence

    CERN Document Server

    Yoneda, Tsuyoshi

    2016-01-01

    In two dimensional turbulence, vortex thinning process is one of the attractive mechanism to explain inverse energy cascade in terms of vortex dynamics. By direct numerical simulation to the two-dimensional Navier-Stokes equations with small-scale forcing and large-scale damping, Xiao-Wan-Chen-Eyink (2009) found an evidence that inverse energy cascade may proceed with the vortex thinning mechanism. The aim of this paper is to analyze the vortex-thinning mechanism mathematically (using the incompressible Euler equations), and give a mathematical evidence that large-scale vorticity gains energy from small-scale vorticity due to the vortex-thinning process.

  7. Hybrid Vortex Method for the Aerodynamic Analysis of Wind Turbine

    Directory of Open Access Journals (Sweden)

    Hao Hu

    2015-01-01

    Full Text Available The hybrid vortex method, in which vortex panel method is combined with the viscous-vortex particle method (HPVP, was established to model the wind turbine aerodynamic and relevant numerical procedure program was developed to solve flow equations. The panel method was used to calculate the blade surface vortex sheets and the vortex particle method was employed to simulate the blade wake vortices. As a result of numerical calculations on the flow over a wind turbine, the HPVP method shows significant advantages in accuracy and less computation resource consuming. The validation of the aerodynamic parameters against Phase VI wind turbine experimental data is performed, which shows reasonable agreement.

  8. Shaping the focal field of radially/azimuthally polarized phase vortex with Zernike polynomials

    CERN Document Server

    Wei, Lei

    2016-01-01

    The focal field properties of radially/azimuthally polarized Zernike polynomials are studied. A method to design the pupil field in order to shape the focal field of radially or azimuthally polarized phase vortex is introduced. With this method, we are able to obtain a pupil field to achieve a longitudinally polarized hollow spot with a depth of focus up to $12\\lambda$ and $0.14\\lambda$ lateral resolution for a optical system with numerical aperture 0.99; A pupil field to generate 8 circularly polarized focal spots along the optical axis is also obtained with this method.

  9. Numerical simulation of secondary vortex chamber effect on the cooling capacity enhancement of vortex tube

    Science.gov (United States)

    Pourmahmoud, Nader; Azar, Farid Sepehrian; Hassanzadeh, Amir

    2014-09-01

    A vortex tube with additional chamber is investigated by computational fluid mechanics techniques to realize the effects of additional chamber in Ranque-Hilsch vortex tube and to understand optimal length for placing the second chamber in order to have maximum cooling effect. Results show that by increasing the distance between two chambers, both minimum cold and maximum hot temperatures increase and maximum cooling effect occurs at Z/ L = 0.047 (dimensionless distance).

  10. Flow regimes in a trapped vortex cell

    Science.gov (United States)

    Lasagna, D.; Iuso, G.

    2016-03-01

    This paper presents results of an experimental investigation on the flow in a trapped vortex cell, embedded into a flat plate, and interacting with a zero-pressure-gradient boundary layer. The objective of the work is to describe the flow features and elucidate some of the governing physical mechanisms, in the light of recent investigations on flow separation control using vortex cells. Hot-wire velocity measurements of the shear layer bounding the cell and of the boundary layers upstream and downstream are reported, together with spectral and correlation analyses of wall-pressure fluctuation measurements. Smoke flow visualisations provide qualitative insight into some relevant features of the internal flow, namely a large-scale flow unsteadiness and possible mechanisms driving the rotation of the vortex core. Results are presented for two very different regimes: a low-Reynolds-number case where the incoming boundary layer is laminar and its momentum thickness is small compared to the cell opening, and a moderately high-Reynolds-number case, where the incoming boundary layer is turbulent and the ratio between the momentum thickness and the opening length is significantly larger than in the first case. Implications of the present findings to flow control applications of trapped vortex cells are also discussed.

  11. Vortex ring breakdown induced by topographic forcing

    Energy Technology Data Exchange (ETDEWEB)

    Geiser, J; Kiger, K T, E-mail: kkiger@umd.edu [Department of Mechanical Engineering, University of Maryland, College Park, MD 20910 (United States)

    2011-12-22

    Detailed measurements of the vortex breakdown within a strongly forced impinging jet are presented, with the goal of studying the effects of a small topographic disturbance on the breakdown and turbulence structure. This work is related to an ongoing effort to understand the dynamics of sediment suspension within a landing rotorcraft where a mobile boundary is subject to rapid erosion and deposition. The current work compares the results of a uniform surface to that of a small radial fence placed upstream of the vortex impingement location. The result is a dramatic increase in the coherence of the three-dimensional looping exhibited by the secondary vortex, leading to a more organized and strongly perturbed mean flow. Specifically, a triple decomposition of the velocity fluctuations indicates a very intense periodic stress in the vicinity of the impingement site, followed by a significant decay. Conversely, the random component of the fluctuating stresses gradually increases to modest levels as the coherent contributions decrease, eventually becoming greater than the coherent stress. The fence produces a bifurcation in the flow through the perturbation of the secondary vortex, which in turn creates a high-and low-speed streak on either side of the fence. The subsequent dynamics leads to increased fluctuating stress in the high-speed region, and a dramatically lower stress in the low-speed region, favoring preferential erosion on either side of the topographic disturbance.

  12. Iterative Brinkman penalization for remeshed vortex methods

    DEFF Research Database (Denmark)

    Hejlesen, Mads Mølholm; Koumoutsakos, Petros; Leonard, Anthony;

    2015-01-01

    We introduce an iterative Brinkman penalization method for the enforcement of the no-slip boundary condition in remeshed vortex methods. In the proposed method, the Brinkman penalization is applied iteratively only in the neighborhood of the body. This allows for using significantly larger time s...

  13. Vortex wakes of a flapping foil

    DEFF Research Database (Denmark)

    Schnipper, Teis; Andersen, Anders Peter; Bohr, Tomas

    2009-01-01

    and the shedding process at the sharp trailing edge in detail. This allows us to identify the origins of the vortices in the 2P wake, to understand that two distinct 2P regions are present in the phase diagram due to the timing of the vortex shedding at the leading edge and the trailing edge and to propose......We present an experimental study of a symmetric foil performing pitching oscillations in a vertically flowing soap film. By varying the frequency and amplitude of the oscillation we visualize a variety of wakes with up to 46 vortices per oscillation period, including von Karman vortex street......, inverted von Karman vortex street, 2P wake, 2P+2S wake and novel wakes ranging from 4P to 8P. We map out the wake types in a phase diagram spanned by the width-based Strouhal number and the dimensionless amplitude. We follow the time evolution of the vortex formation near the round leading edge...

  14. Chemical Observations of a Polar Vortex Intrusion

    Science.gov (United States)

    Schoeberl, M. R.; Kawa, S. R.; Douglass, A. R.; McGee, T. J.; Browell, E.; Waters, J.; Livesey, N.; Read, W.; Froidevaux, L.

    2006-01-01

    An intrusion of vortex edge air in D the interior of the Arctic polar vortex was observed on the January 31,2005 flight of the NASA DC-8 aircraft. This intrusion was identified as anomalously high values of ozone by the AROTAL and DIAL lidars. Our analysis shows that this intrusion formed when a blocking feature near Iceland collapsed, allowing edge air to sweep into the vortex interior. along the DC-8 flight track also shows the intrusion in both ozone and HNO3. Polar Stratospheric Clouds (PSCs) were observed by the DIAL lidar on the DC-8. The spatial variability of the PSCs can be explained using MLS HNO3 and H2O observations and meteorological analysis temperatures. We also estimate vortex denitrification using the relationship between N2O and HNO3. Reverse domain fill back trajectory calculations are used to focus on the features in the MLS data. The trajectory results improve the agreement between lidar measured ozone and MLS ozone and also improve the agreement between the HNO3 measurements PSC locations. The back trajectory calculations allow us to compute the local denitrification rate and reduction of HCl within the filament. We estimate a denitrification rate of about lO%/day after exposure to below PSC formation temperature. Analysis of Aura MLS observations made

  15. Soliton algebra by vortex-beam splitting.

    Science.gov (United States)

    Minardi, S; Molina-Terriza, G; Di Trapani, P; Torres, J P; Torner, L

    2001-07-01

    We experimentally demonstrate the possibility of breaking up intense vortex light beams into stable and controllable sets of parametric solitons. We report observations performed in seeded second-harmonic generation, but the scheme can be extended to all parametric processes. The number of generated solitons is shown to be determined by a robust arithmetic rule.

  16. Vortex wakes of a flapping foil

    DEFF Research Database (Denmark)

    Schnipper, Teis; Andersen, Anders Peter; Bohr, Tomas

    2009-01-01

    We present an experimental study of a symmetric foil performing pitching oscillations in a vertically flowing soap film. By varying the frequency and amplitude of the oscillation we visualize a variety of wakes with up to 46 vortices per oscillation period, including von Karman vortex street...

  17. Superconducting vortex pinning with artificial magnetic nanostructures.

    Energy Technology Data Exchange (ETDEWEB)

    Velez, M.; Martin, J. I.; Villegas, J. E.; Hoffmann, A.; Gonzalez, E. M.; Vicent, J. L.; Schuller, I. K.; Univ. de Oviedo-CINN; Unite Mixte de Physique CNRS/Thales; Univ. Paris-Sud; Univ.Complutense de Madrid; Univ. California at San Diego

    2008-11-01

    This review is dedicated to summarizing the recent research on vortex dynamics and pinning effects in superconducting films with artificial magnetic structures. The fabrication of hybrid superconducting/magnetic systems is presented together with the wide variety of properties that arise from the interaction between the superconducting vortex lattice and the artificial magnetic nanostructures. Specifically, we review the role that the most important parameters in the vortex dynamics of films with regular array of dots play. In particular, we discuss the phenomena that appear when the symmetry of a regular dot array is distorted from regularity towards complete disorder including rectangular, asymmetric, and aperiodic arrays. The interesting phenomena that appear include vortex-lattice reconfigurations, anisotropic dynamics, channeling, and guided motion as well as ratchet effects. The different regimes are summarized in a phase diagram indicating the transitions that take place as the characteristic distances of the array are modified respect to the superconducting coherence length. Future directions are sketched out indicating the vast open area of research in this field.

  18. Vortex formation with a snapping shrimp claw.

    Directory of Open Access Journals (Sweden)

    David Hess

    Full Text Available Snapping shrimp use one oversized claw to generate a cavitating high speed water jet for hunting, defence and communication. This work is an experimental investigation about the jet generation. Snapping shrimp (Alpheus-bellulus were investigated by using an enlarged transparent model reproducing the closure of the snapper claw. Flow inside the model was studied using both High-Speed Particle Image Velocimetry (HS-PIV and flow visualization. During claw closure a channel-like cavity was formed between the plunger and the socket featuring a nozzle-type contour at the orifice. Closing the mechanism led to the formation of a leading vortex ring with a dimensionless formation number of approximate ΔT*≈4. This indicates that the claw might work at maximum efficiency, i.e. maximum vortex strength was achieved by a minimum of fluid volume ejected. The subsequent vortex cavitation with the formation of an axial reentrant jet is a reasonable explanation for the large penetration depth of the water jet. That snapping shrimp can reach with their claw-induced flow. Within such a cavitation process, an axial reentrant jet is generated in the hollow cylindrical core of the cavitated vortex that pushes the front further downstream and whose length can exceed the initial jet penetration depth by several times.

  19. Axisymmetric Vortex Simulations with Various Turbulence Models

    Directory of Open Access Journals (Sweden)

    Brian Howard Fiedler

    2010-10-01

    Full Text Available The CFD code FLUENTTM has been applied to a vortex within an updraft above a frictional lower boundary. The sensitivity of vortex intensity and structure to the choice of turbulent model is explored. A high Reynolds number of 108 is employed to make the investigation relevant to the atmospheric vortex known as a tornado. The simulations are axisymmetric and are integrated forward in time to equilibrium.  In a variety of turbulence models tested, the Reynolds Stress Model allows for the greatest intensification of the vortex, with the azimuthal wind speed near the surface being 2.4 times the speed of the updraft, consistent with the destructive nature of tornadoes.  The Standard k-e Model, which is simpler than the Reynolds Stress Model but still more detailed than what is commonly available in numerical weather prediction models, produces an azimuthal wind speed near the surface of at most 0.6 times the updraft speed.        

  20. Vortex properties of mesoscopic superconducting samples

    Energy Technology Data Exchange (ETDEWEB)

    Cabral, Leonardo R.E. [Laboratorio de Supercondutividade e Materiais Avancados, Departamento de Fisica, Universidade Federal de Pernambuco, Recife 50670-901 (Brazil); Barba-Ortega, J. [Grupo de Fi' sica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, Bogota (Colombia); Souza Silva, C.C. de [Laboratorio de Supercondutividade e Materiais Avancados, Departamento de Fisica, Universidade Federal de Pernambuco, Recife 50670-901 (Brazil); Albino Aguiar, J., E-mail: albino@df.ufpe.b [Laboratorio de Supercondutividade e Materiais Avancados, Departamento de Fisica, Universidade Federal de Pernambuco, Recife 50670-901 (Brazil)

    2010-10-01

    In this work we investigated theoretically the vortex properties of mesoscopic samples of different geometries, submitted to an external magnetic field. We use both London and Ginzburg-Landau theories and also solve the non-linear Time Dependent Ginzburg-Landau equations to obtain vortex configurations, equilibrium states and the spatial distribution of the superconducting electron density in a mesoscopic superconducting triangle and long prisms with square cross-section. For a mesoscopic triangle with the magnetic field applied perpendicularly to sample plane the vortex configurations were obtained by using Langevin dynamics simulations. In most of the configurations the vortices sit close to the corners, presenting twofold or three-fold symmetry. A study of different meta-stable configurations with same number of vortices is also presented. Next, by taking into account de Gennes boundary conditions via the extrapolation length, b, we study the properties of a mesoscopic superconducting square surrounded by different metallic materials and in the presence of an external magnetic field applied perpendicularly to the square surface. It is determined the b-limit for the occurrence of a single vortex in a mesoscopic square of area d{sup 2}, for 4{xi}(0){<=}d{<=}10{xi}(0).