WorldWideScience

Sample records for optical stiles-crawford effect

  1. Uniaxial flicker analysis of the psychophysical Stiles-Crawford effects

    NARCIS (Netherlands)

    Lochocki, Benjamin; Vohnsen, Brian

    2017-01-01

    Purpose: We report on a semi-automated system for frequency analysis of the Stiles-Crawford effect of the first kind (SCE-I) using flicker methodology designed to gain insight into the temporal dynamics of the perceived visibility for alternating pupil entrance points. We describe the system and its

  2. The Stiles-Crawford Effect: spot-size ratio departure in retinitis pigmentosa

    Science.gov (United States)

    Sharma, Nachieketa K.; Lakshminarayanan, Vasudevan

    2016-04-01

    The Stiles-Crawford effect of the first kind is the retina's compensative response to loss of luminance efficiency for oblique stimulation manifested as the spot-size ratio departure from the perfect power coupling for a normal human eye. In a retinitis pigmentosa eye (RP), the normal cone photoreceptor morphology is affected due to foveal cone loss and disrupted cone mosaic spatial arrangement with reduction in directional sensitivity. We show that the flattened Stiles-Crawford function (SCF) in a RP eye is due to a different spot-size ratio departure profile, that is, for the same loss of luminance efficiency, a RP eye has a smaller departure from perfect power coupling compared to a normal eye. Again, the difference in spot-size ratio departure increases from the centre towards the periphery, having zero value for axial entry and maximum value for maximum peripheral entry indicating dispersal of photoreceptor alignment which prevents the retina to go for a bigger compensative response as it lacks both in number and appropriate cone morphology to tackle the loss of luminance efficiency for oblique stimulation. The slope of departure profile also testifies to the flattened SCF for a RP eye. Moreover, the discrepancy in spot-size ratio departure between a normal and a RP eye is shown to have a direct bearing on the Stiles-Crawford diminution of visibility.

  3. Brightness, hue, and saturation in photopic vision: a result of luminance and wavelength in the cellular phase-grating optical 3D chip of the inverted retina

    Science.gov (United States)

    Lauinger, Norbert

    1994-10-01

    In photopic vision, two physical variables (luminance and wavelength) are transformed into three psychological variables (brightness, hue, and saturation). Following on from 3D grating optical explanations of aperture effects (Stiles-Crawford effects SCE I and II), all three variables can be explained via a single 3D chip effect. The 3D grating optical calculations are carried out using the classical von Laue equation and demonstrated using the example of two experimentally confirmed observations in human vision: saturation effects for monochromatic test lights between 485 and 510 nm in the SCE II and the fact that many test lights reverse their hue shift in the SCE II when changing from moderate to high luminances compared with that on changing from low to medium luminances. At the same time, information is obtained on the transition from the trichromatic color system in the retina to the opponent color system.

  4. Simulating human photoreceptor optics using a liquid-filled photonic crystal fiber.

    Science.gov (United States)

    Rativa, Diego; Vohnsen, Brian

    2011-02-11

    We introduce a liquid-filled photonic crystal fiber to simulate a retinal cone photoreceptor mosaic and the directionality selective mechanism broadly known as the Stiles-Crawford effect. Experimental measurements are realized across the visible spectrum to study waveguide coupling and directionality at different managed waveguide parameters. The crystal fiber method is a hybrid tool between theory and a real biological sample and a valuable addition as a retina model for real eye simulations.

  5. Effect of pupil size on visual acuity in a laboratory model of pseudophakic monovision.

    Science.gov (United States)

    Kawamorita, Takushi; Uozato, Hiroshi; Handa, Tomoya; Ito, Misae; Shimizu, Kimiya

    2010-05-01

    To investigate the effect of pupil size on visual acuity in pseudophakic monovision. For the simulation, a modified Liou-Brennan model eye was used. The model eye was designed to include a centered optical system, corneal asphericity, an iris pupil, a Stiles-Crawford effect, an intraocular lens, and chromatic aberration. Calculation of the modulation transfer function (MTF) was performed with ZEMAX software. Visual acuity was estimated from the MTF and the retinal threshold curve. The sizes of the entrance pupil were 2.0, 2.5, 3.0, and 4.0 mm. Decreasing pupil diameter and increasing myopia progressively improved near visual acuity. For an entrance pupil size of 2.5 mm and a refractive error of -1.50 diopters, the logMAR value (Snellen; metric) in the non-dominant eye at 40 cm was 0.06 (20/23; 6/6.9). Knowledge of the patient's pupil diameter at near fixation can assist surgeons in determining the optimum degree of myopia for successful monovision.

  6. Radiation effects in optical components

    International Nuclear Information System (INIS)

    Friebele, E.J.

    1987-01-01

    This report discusses components of high performance optical devices may be exposed to high energy radiation environments during their lifetime. The effect of these adverse environments depends upon a large number of parameters associated with the radiation (nature, energy, dose, dose rate, etc.) or the system (temperature, optical performance requirements, optical wavelength, optical power, path length, etc.), as well as the intrinsic susceptibility of the optical component itself to degradation

  7. Basic optics of effect materials.

    Science.gov (United States)

    Jones, Steven A

    2010-01-01

    Effect materials derive their color and effect primarily from thin-film interference. Effect materials have evolved over the decades from simple guanine crystals to the complex multilayer optical structures of today. The development of new complex effect materials requires an understanding of the optics of effect materials. Such an understanding would also benefit the cosmetic formulator as these new effect materials are introduced. The root of this understanding begins with basic optics. This paper covers the nature of light, interference of waves, thin-film interference, color from interference, and color travel.

  8. Optical effects of ion implantation

    International Nuclear Information System (INIS)

    Townsend, P.D.

    1987-01-01

    The review concerns the effects of ion implantation that specifically relate to the optical properties of insulators. Topics which are reviewed include: ion implantation, ion range and damage distributions, colour centre production by ion implantation, high dose ion implantation, and applications for integrated optics. Numerous examples are presented of both diagnostic and industrial examples of ion implantation effects in insulators. (U.K.)

  9. Environmental effects on underwater optical transmission

    Science.gov (United States)

    Chu, Peter C.; Breshears, Brian F.; Cullen, Alexander J.; Hammerer, Ross F.; Martinez, Ramon P.; Phung, Thai Q.; Margolina, Tetyana; Fan, Chenwu

    2017-05-01

    Optical communication/detection systems have potential to get around some limitations of current acoustic communications and detection systems especially increased fleet and port security in noisy littoral waters. Identification of environmental effects on underwater optical transmission is the key to the success of using optics for underwater communication and detection. This paper is to answer the question "What are the transfer and correlation functions that relate measurements of hydrographic to optical parameters?" Hydrographic and optical data have been collected from the Naval Oceanographic Office survey ships with the High Intake Defined Excitation (HIDEX) photometer and sea gliders with optical back scattering sensor in various Navy interested areas such as the Arabian Gulf, Gulf of Oman, east Asian marginal seas, and Adriatic Sea. The data include temperature, salinity, bioluminescence, chlorophyll-a fluorescence, transmissivity at two different wavelengths (TRed at 670 nm, TBlue at 490 nm), and back scattering coefficient (bRed at 700 nm, bBlue at 470 nm). Transfer and correlation functions between the hydrographic and optical parameters are obtained. Bioluminescence and fluorescence maxima, transmissivity minimum with their corresponding depths, red and blue laser beam peak attenuation coefficients are identified from the optical profiles. Evident correlations are found between the ocean mixed layer depth and the blue and red laser beam peak attenuation coefficients, bioluminescence and fluorescence maxima in the Adriatic Sea, Arabian Gulf, Gulf of Oman, and Philippine Sea. Based on the observational data, an effective algorithm is recommended for solving the radiative transfer equation (RTE) for predicting underwater laser radiance.

  10. Effective Optical Properties of Plasmonic Nanocomposites

    Directory of Open Access Journals (Sweden)

    Christoph Etrich

    2014-01-01

    Full Text Available Plasmonic nanocomposites find many applications, such as nanometric coatings in emerging fields, such as optotronics, photovoltaics or integrated optics. To make use of their ability to affect light propagation in an unprecedented manner, plasmonic nanocomposites should consist of densely packed metallic nanoparticles. This causes a major challenge for their theoretical description, since the reliable assignment of effective optical properties with established effective medium theories is no longer possible. Established theories, e.g., the Maxwell-Garnett formalism, are only applicable for strongly diluted nanocomposites. This effective description, however, is a prerequisite to consider plasmonic nanocomposites in the design of optical devices. Here, we mitigate this problem and use full wave optical simulations to assign effective properties to plasmonic nanocomposites with filling fractions close to the percolation threshold. We show that these effective properties can be used to properly predict the optical action of functional devices that contain nanocomposites in their design. With this contribution we pave the way to consider plasmonic nanocomposites comparably to ordinary materials in the design of optical elements.

  11. Optical Illusions and Effects on Clothing Design

    Directory of Open Access Journals (Sweden)

    Saliha AĞAÇ

    2015-06-01

    Full Text Available “Visual perception” is in the first ranking between the types of perception. Gestalt Theory of the major psychological theories are used in how visual perception realizes and making sense of what is effective in this process. In perception stage brain tak es into account not only stimulus from eyes but also expectations arising from previous experience and interpreted the stimulus which are not exist in the real world as if they were there. Misperception interpretations that brain revealed are called as “Pe rception Illusion” or “Optical Illusion” in psychology. Optical illusion formats come into existence due to factors such as brightness, contrast, motion, geometry and perspective, interpretation of three - dimensional images, cognitive status and color. Opti cal illusions have impacts of different disciplines within the study area on people. Among the most important types of known optical illusion are Oppel - Kundt, Curvature - Hering, Helzholtz Sqaure, Hermann Grid, Muller - Lyler, Ebbinghaus and Ponzo illusion etc . In fact, all the optical illusions are known to be used in numerous area with various techniques and different product groups like architecture, fine arts, textiles and fashion design from of old. In recent years, optical illusion types are frequently us ed especially within the field of fashion design in the clothing model, in style, silhouette and fabrics. The aim of this study is to examine the clothing design applications where optical illusion is used and works done in this subject. Some research of the design with the changing fashion of clothes of different types of optical illusions is discussed with examples of their effects on visual perception. In the study, optical illusory clothing models are scanned by visual analysis from documents like film , video, picture, web pages. The findings were analyzed in terms of the surface and design and effects of the optical illusion on clothing design has tried to put

  12. Radiation effects on optical data transmission systems

    International Nuclear Information System (INIS)

    Leskovar, B.

    1989-01-01

    The state of the art of optical transmitters, low loss fiber waveguides and receivers in both steady state and pulsed radiation environments is reviewed and summarized. Emphasis is placed on the effects of irradiation on the performance of light emitting and laser diodes, optical fiber waveguides and photodiodes. The influence of radiation-induced attenuation of optical fibers due to total dose, dose rate, time after irradiation, temperature, radiation history, photobleaching, OH and impurity content, dopant type and concentration is described. The performance of candidate components of the transmission system intended for deployment in the Superconducting Super Collider Detector and primary beam tunnel nuclear environment is discussed

  13. Magnus force effect in optical manipulation

    International Nuclear Information System (INIS)

    Cipparrone, Gabriella; Pagliusi, Pasquale; Hernandez, Raul Josue; Provenzano, Clementina

    2011-01-01

    The effect of the Magnus force in optical micromanipulation has been observed. An ad hoc experiment has been designed based on a one-dimensional optical trap that carries angular momentum. The observed particle dynamics reveals the occurrence of this hydrodynamic force, which is neglected in the common approach. Its measured value is larger than the one predicted by the existing theoretical models for micrometric particles and low Reynolds number, showing that the Magnus force can contribute to unconventional optohydrodynamic trapping and manipulation.

  14. Optical spring effect in nanoelectromechanical systems

    International Nuclear Information System (INIS)

    Tian, Feng; Zhou, Guangya; Du, Yu; Chau, Fook Siong; Deng, Jie

    2014-01-01

    In this Letter, we report a hybrid system consisting of nano-optical and nano-mechanical springs, in which the optical spring effect works to adjust the mechanical frequency of a nanoelectromechanical systems resonator. Nano-scale folded beams are fabricated as the mechanical springs and double-coupled one-dimensional photonic crystal cavities are used to pump the “optical spring.” The dynamic characteristics of this hybrid system are measured and analyzed at both low and high input optical powers. This study leads the physical phenomenon of optomechanics in complex nano-opto-electro-mechanical systems (NOEMS) and could benefit the future applications of NOEMS in chip-level communication and sensing

  15. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Ninth Edition Optics: Ninth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommen

  16. Overlapped optics induced perfect coherent effects

    Science.gov (United States)

    Li, Jian Jie; Zang, Xiao Fei; Mao, Jun Fa; Tang, Min; Zhu, Yi Ming; Zhuang, Song Lin

    2013-12-01

    For traditional coherent effects, two separated identical point sources can be interfered with each other only when the optical path difference is integer number of wavelengths, leading to alternate dark and bright fringes for different optical path difference. For hundreds of years, such a perfect coherent condition seems insurmountable. However, in this paper, based on transformation optics, two separated in-phase identical point sources can induce perfect interference with each other without satisfying the traditional coherent condition. This shifting illusion media is realized by inductor-capacitor transmission line network. Theoretical analysis, numerical simulations and experimental results are performed to confirm such a kind of perfect coherent effect and it is found that the total radiation power of multiple elements system can be greatly enhanced. Our investigation may be applicable to National Ignition Facility (NIF), Inertial Confined Fusion (ICF) of China, LED lighting technology, terahertz communication, and so on.

  17. All-Optical Stern-Gerlach Effect

    Science.gov (United States)

    Karnieli, Aviv; Arie, Ady

    2018-01-01

    We introduce a novel formalism in which the paraxial coupled wave equations of the nonlinear optical sum-frequency generation process are shown to be equivalent to the Pauli equation describing the dynamics of a spin-1 /2 particle in a spatially varying magnetic field. This interpretation gives rise to a new classical state of paraxial light, described by a mutual beam comprising of two frequencies. As a straightforward application, we propose the existence of an all-optical Stern-Gerlach effect, where an idler beam is deflected by a gradient in the nonlinear coupling, into two mutual beams of the idler and signal waves (equivalent to oppositely oriented spinors), propagating in two discrete directions. The Stern-Gerlach deflection angle and the intensity pattern in the far field are then obtained analytically, in terms of the parameters of the original optical system, laying the grounds for future experimental realizations.

  18. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Eighth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommended for engineering st

  19. Effect of accelerated matter in neutron optics

    International Nuclear Information System (INIS)

    Frank, A. I.; Geltenbort, P.; Jentschel, M.; Kustov, D. V.; Kulin, G. V.; Nosov, V. G.; Strepetov, A. N.

    2008-01-01

    Results of experiments aimed at observing the change in the energy of a neutron traversing an accelerated refractive sample are reported. The experiments were performed with ultracold neutrons, the energy transfer in these experiments being ±(2-6) x 10 -10 eV. The results suggest the existence of the effect and agree with theoretical predictions to a precision higher than 10%. A similar effect was previously predicted for the change in the frequency of an electromagnetic wave traversing an accelerated dielectric slab. In all probability, the effect has a very general nature, but it is presently observed only in neutron optics.

  20. Revisiting the Effectiveness of Large Optical Telescopes

    Directory of Open Access Journals (Sweden)

    V. V. Sychev

    2015-01-01

    back action of design elements and propagation medium on the transmitted radiation wave-front;- lack of a basic source of radiation on the laser radiation wavelength, which is necessary for the adaptive correction methods to be applied to distorted wave-front;- inherent only in laser systems additional distorting factors available in transmitting systems.Such distorting factors are as follows:• length of optical path because of spacing necessary for a high-power laser source with a large number of the consistent optical elements;• thermal self-influence of powerful laser radiation in the channel of radiation transportation before its input in the forming optical system;• instability of spatiotemporal characteristics of laser radiation source itself, which worsens passing radiation conditions both in an optical path and in the free atmosphere;• thermal heterogeneity and thermal deformations.It is shown that adaptive systems are distinguished from active optics by the fact that correction of the radiation wave-front distortions occurs in real time on the entire set of the distorting factors (not only on influence of the atmosphere with the speed much exceeding action of distortions. Thus, the quality correction is assessed according to criterion of quality of primary image.Thus, correction continuously considers information on the current spatial, temperature, temporary, and justified parameters of the optical system, providing quality maintenance of the image under conditions of distorting factors.The main postulates of adaptive correction are formulated and offered.Postulates represent the set of statements and provisions allowing us to realize effective remedies of adaptive correction of distortions.It is also shown what real opportunities are open by using methods and means of adaptive optics in effective application of laser radiation power and what ways allow us to solve these tasks. First of all, it is:- forming a system of assumptions and minimizing the

  1. Quantum Information Processing using Nonlinear Optical Effects

    DEFF Research Database (Denmark)

    Andersen, Lasse Mejling

    This PhD thesis treats applications of nonlinear optical effects for quantum information processing. The two main applications are four-wave mixing in the form of Bragg scattering (BS) for quantum-state-preserving frequency conversion, and sum-frequency generation (SFG) in second-order nonlinear......-chirping the pumps. In the high-conversion regime without the effects of NPM, exact Green functions for BS are derived. In this limit, separability is possible for conversion efficiencies up to 60 %. However, the system still allows for selective frequency conversion as well as re-shaping of the output. One way...

  2. Thermal limiting effects in optical plasmonic waveguides

    International Nuclear Information System (INIS)

    Ershov, A.E.; Gerasimov, V.S.; Gavrilyuk, A.P.; Karpov, S.V.; Zakomirnyi, V.I.; Rasskazov, I.L.; Polyutov, S.P.

    2017-01-01

    We have studied thermal effects occurring during excitation of optical plasmonic waveguide (OPW) in the form of linear chain of spherical Ag nanoparticles by pulsed laser radiation. It was shown that heating and subsequent melting of the first irradiated particle in a chain can significantly deteriorate the transmission efficiency of OPW that is the crucial and limiting factor and continuous operation of OPW requires cooling devices. This effect is caused by suppression of particle's surface plasmon resonance due to reaching the melting point temperature. We have determined optimal excitation parameters which do not significantly affect the transmission efficiency of OPW. - Highlights: • The thermodynamic model was developed to study thermal effects at nanoscale. • Developed model considers temperature-dependent permittivity of the nanoparticles. • Thermal effects significantly suppress transmission efficiency of plasmonic chains. • Optimal parameters for stable operation of plasmonic chains were defined.

  3. Macroscopic quantum effects in nonlinear optical patterns

    International Nuclear Information System (INIS)

    Gatti, A.; Lugiato, L.A.; Oppo, G.L.; Barnett, S.M.; Marzoli, I.

    1998-01-01

    We display the results of the numerical simulations of a set of Langevin equations, which describe the dynamics of a degenerate optical parametric oscillator in the Wigner representation. The scan of the threshold region shows the gradual transformation of a quantum image into a classical roll pattern. Thus the quantum image behaves as a precursor of the roll pattern which appear above threshold. In the fax field, suitable spatial correlation functions of intensity and field quadratures show unambiguously the quantum nature of fluctuations that generate the image, leading to effects of quantum noise reduction below the shot noise level and to the formulation of an EPR paradox. (author)

  4. Optical model representation of coupled channel effects

    International Nuclear Information System (INIS)

    Wall, N.S.; Cowley, A.A.; Johnson, R.C.; Kobas, A.M.

    1977-01-01

    A modification to the usual 6-parameter Woods-Saxon parameterization of the optical model for the scattering of composite particles is proposed. This additional real term reflects the effect of coupling other channels to the elastic scattering. The analyses favor a repulsive interaction for this term, especially for alpha particles. It is found that the repulsive term when combined with a Woods-Saxon term yields potentials with central values and volume integrals similar to those found by uncoupled elastic scattering calculations. These values are V(r = 0) approximately equal to 125 MeV and J/4A approximately equal to 300 MeV-fm 3

  5. Effective optical constants and effective optical properties of ultrathin trilayer structures

    International Nuclear Information System (INIS)

    Haija, A.J.; Larry Freeman, W.; Umbel, Rachel

    2011-01-01

    This work presents an extension of the characteristic effective medium approximation (CEMA) to ultrathin trilayer systems. The extension has been carried out analytically and is supported by corresponding calculations of the effective optical constants of Cu-Au-Cu and Ag-SiO-Ag trilayer systems using the CEMA approximation. This work is in essence a generalization of the characteristic effective medium approximation introduced earlier for ultrathin bilayer structures. This method is used to derive the effective optical constants of a trilayer system, consisting of three thin layers with each constituent layer of thickness much less than the wavelength of the incident radiation. Within this regime a trilayer system is viewed as one effective layer referred to as an effective stack (ES) with well defined effective optical constants, which can be used to calculate the optical properties of the trilayer stack within a specified wavelength range. The CEMA based calculations of the effective optical constants are applied to two trilayer systems with a total of five stacks. Three are Cu-Au-Cu and two are Ag-SiO-Ag stacks. The thicknesses of the parent layers in the Cu-Au-Cu stack range from 3 to 30 nm for Cu and 4 to 40 nm for Au; in the Ag-SiO-Ag stack the constituent layers are 6 nm for Ag, but range from 5 to 10 nm for SiO. This study is for normal or near normal incidence spectroscopy in a wavelength range that extends from visible to near infrared. The agreement between CEMA based ES stack results and those of the standard CMT technique is very satisfactory.

  6. Optical drift effects in general relativity

    Science.gov (United States)

    Korzyński, Mikołaj; Kopiński, Jarosław

    2018-03-01

    We consider the question of determining the optical drift effects in general relativity, i.e. the rate of change of the apparent position, redshift, Jacobi matrix, angular distance and luminosity distance of a distant object as registered by an observer in an arbitrary spacetime. We present a fully relativistic and covariant approach, in which the problem is reduced to a hierarchy of ODE's solved along the line of sight. The 4-velocities and 4-accelerations of the observer and the emitter and the geometry of the spacetime along the line of sight constitute the input data. We build on the standard relativistic geometric optics formalism and extend it to include the time derivatives of the observables. In the process we obtain two general, non-perturbative relations: the first one between the gravitational lensing, represented by the Jacobi matrix, and the apparent position drift, also called the cosmic parallax, and the second one between the apparent position drift and the redshift drift. The applications of the results include the theoretical study of the drift effects of cosmological origin (so-called real-time cosmology) in numerical or exact Universe models.

  7. Cost Effective, Scalable Optically Pumped Molecular Laser

    National Research Council Canada - National Science Library

    Nicholson, Jeff

    2001-01-01

    An optically pumped, For laser was demonstrated operating at 4.0 micrometers. This is the first demonstration of an HBr laser by direct optical pumping of the 0 right arrow 3 vibrational overtone band at 1.34 micrometers...

  8. Optical and Casimir effects in topological materials

    Science.gov (United States)

    Wilson, Justin H.

    Two major electromagnetic phenomena, magneto-optical effects and the Casimir effect, have seen much theoretical and experimental use for many years. On the other hand, recently there has been an explosion of theoretical and experimental work on so-called topological materials, and a natural question to ask is how such electromagnetic phenomena change with these novel materials. Specifically, we will consider are topological insulators and Weyl semimetals. When Dirac electrons on the surface of a topological insulator are gapped or Weyl fermions in the bulk of a Weyl semimetal appear due to time-reversal symmetry breaking, there is a resulting quantum anomalous Hall effect (2D in one case and bulk 3D in the other, respectively). For topological insulators, we investigate the role of localized in-gap states which can leave their own fingerprints on the magneto-optics and can therefore be probed. We have shown that these states resonantly contribute to the Hall conductivity and are magneto-optically active. For Weyl semimetals we investigate the Casimir force and show that with thickness, chemical potential, and magnetic field, a repulsive and tunable Casimir force can be obtained. Additionally, various values of the parameters can give various combinations of traps and antitraps. We additionally probe the topological transition called a Lifshitz transition in the band structure of a material and show that in a Casimir experiment, one can observe a non-analytic "kink'' in the Casimir force across such a transition. The material we propose is a spin-orbit coupled semiconductor with large g-factor that can be magnetically tuned through such a transition. Additionally, we propose an experiment with a two-dimensional metal where weak localization is tuned with an applied field in order to definitively test the effect of diffusive electrons on the Casimir force---an issue that is surprisingly unresolved to this day. Lastly, we show how the time-continuous coherent state

  9. Lenses and effective spatial resolution in macroscopic optical mapping

    International Nuclear Information System (INIS)

    Bien, Harold; Parikh, Puja; Entcheva, Emilia

    2007-01-01

    Optical mapping of excitation dynamically tracks electrical waves travelling through cardiac or brain tissue by the use of fluorescent dyes. There are several characteristics that set optical mapping apart from other imaging modalities: dynamically changing signals requiring short exposure times, dim fluorescence demanding sensitive sensors and wide fields of view (low magnification) resulting in poor optical performance. These conditions necessitate the use of optics with good light gathering ability, i.e. lenses having high numerical aperture. Previous optical mapping studies often used sensor resolution to estimate the minimum spatial feature resolvable, assuming perfect optics and infinite contrast. We examine here the influence of finite contrast and real optics on the effective spatial resolution in optical mapping under broad-field illumination for both lateral (in-plane) resolution and axial (depth) resolution of collected fluorescence signals

  10. An Investigation of Magneto-Optical Effects

    Science.gov (United States)

    Adams, Mitzi L.; Hagyard, Mona J.; West, Edward A.

    1998-01-01

    We exhibit the effects of Faraday rotation on the direction of the transverse component of the magnetic field in a simple, symmetric sunspot. A set of 35 polarization filtergrams of NOAA active region 4662 (June 9, 1985) were obtained with the Marshall Space Flight Center (MSFC) vector magnetograph. These filtergrams measured the Stokes I, Q, U, and V intensities averaged over the instrument's filter bandpass (0.0125 nm) for wavelengths from 0.017 nm in the red wing to 0.017 nm in the blue wing of the Lambda525.22 nm spectral line in steps of 0.001 nm. These data were used to derive the azimuth phi of the vector field as a function of wavelength over the field of view of the sunspot. We interpret the observed variations of this azimuth with wavelength as the effects of Faraday rotation and verify this interpretation by comparing these variations with those predicted from magneto-optical theory. In the theoretical calculations we use the line-profile parameters and magnetic field strength derived in previous work by Balasubramaniam and West (Astrophys. J 382, p. 699, 1991).

  11. Effect of External Optical Feedback for Nano-laser Structures

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza; Mørk, Jesper; Chung, Il-Sug

    2013-01-01

    We theoretically investigated the effect of optical feedback on a photonic crystal nanolaser, comparing with conventional in-plane and vertical-cavity lasers.......We theoretically investigated the effect of optical feedback on a photonic crystal nanolaser, comparing with conventional in-plane and vertical-cavity lasers....

  12. Proposal for electro-optic multiplier based on dual transverse electro-optic Kerr effect.

    Science.gov (United States)

    Li, Changsheng

    2008-10-20

    A novel electro-optic multiplier is proposed, which can perform voltage multiplication operation by use of the Kerr medium exhibiting dual transverse electro-optic Kerr effect. In this kind of Kerr medium, electro-optic phase retardation is proportional to the square of its applied electric field, and orientations of the field-induced birefringent axes are only related to the direction of the field. Based on this effect, we can design an electro-optic multiplier by selecting the crystals of 6/mmm, 432, and m3m classes and isotropic Kerr media such as glass. Simple calculation demonstrates that a kind of glass-ceramic material with a large Kerr constant can be used for the design of the proposed electro-optic multiplier.

  13. Analytical theory and method for longitudinal magneto-optical Kerr effect of optically anisotropic magnetic film

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiao, E-mail: sps_wangx@ujn.edu.cn [School of Physics and Technology, University of Jinan, Jinan 250022 (China); School of Material Science and Engineering, University of Jinan, Jinan 250022 (China); Lian, Jie [School of Information Science and Engineering, Shandong University, Jinan 250100 (China); Li, Ping; Xu, XiJin [School of Physics and Technology, University of Jinan, Jinan 250022 (China); Li, MengMeng [School of Information Science and Engineering, Shandong University, Jinan 250100 (China)

    2017-01-15

    The Fresnel equations are solved to analyze the reflection and propagation properties of the ordinary and extraordinary light of the optically anisotropic magnetic film. Using the boundary and propagation matrix, the longitudinal magneto-optical Kerr rotation expression is derived. After that, simulations are performed on optically anisotropic and isotropic Co/SiO{sub 2} film. Results show that for Co material in the thin-film limit, the anisotropic Co can provide larger max rotations than the isotropic Co in the visible region. This is because that the refractive index discrepancy of optically anisotropic Co film reduces the Fresnel reflective coefficient r{sub pp,} which improves the Kerr rotation. This makes the optically anisotropic Co film more effective in magneto optical sensor design and device fabrication. - Highlights: • In this work, using the boundary matrix and media propagation matrix developed by Zak and S.D.Bader,we get the analytical solution of the magneto-optical Kerr rotation of the optical anisotropic magnetic film. • Results show that for film in the thin-film limit, the anisotropic Co can provide larger maximum rotations than the isotropic Co. • The improvement of Kerr rotation can be attributed to the refractive index discrepancy of optically anisotropic Co film which reduce the Fresnel reflective coefficient rpp.

  14. Curvature effects in two-dimensional optical devices inspired by transformation optics

    KAUST Repository

    Yuan, Shuhao; Zhang, Yongyou; Zhang, Qingyun; Zou, Bingsuo; Schwingenschlö gl, Udo

    2016-01-01

    Light transport in curved quasi two-dimensional waveguides is considered theoretically. Within transformation optics and tensor theory, a concise description of curvature effects on transverse electric and magnetic waves is derived. We show

  15. Magneto-optical effect in Mn-Sb thin films

    International Nuclear Information System (INIS)

    Attaran, E.; Sadabadi, M.

    2003-01-01

    The magneto-optic Kerr and Faraday effect of Mn-Sb thin films have been studied. The single and multilayer of this film have grown on glass substrate by evaporation. The optical rotation of linear polarized light has been measured by an optical hysteresis plotter in a I/O converter amplifier circuit. Our results indicate a polar Kerr rotation up to 0.5 degree and in a double Mn S b this rotation research to maximum

  16. Proposal to develop techniques using magneto-optic and electro-optic effects in optical fiber for CTR diagnostics

    International Nuclear Information System (INIS)

    Chandler, G.I.; Jahoda, F.C.

    1982-02-01

    We discuss the developing technology of measuring electric and magnetic fields with optical fibers using the Faraday and Kerr effects, magnetostriction, and Sagnac interferometry. We review the measurement of induced birefringence in the presence of natural birefringence. We propose the use of these effects in making measurements in the fusion research program, with ZT-40 as an example

  17. Effects of Deposition Potentialon the Optical Properties of Zinc ...

    African Journals Online (AJOL)

    Thin films of Zinc Sulphide (ZnS) were grown on glass substrate by electrodeposition technique. The optical characterization of the grown films (ZnS) was done by using a Janway 6405 UV-VIS spectrophotometer in the range of 300-900nm using a step size of 20. The effect of deposition potential variationon the films optical ...

  18. Valley-selective optical Stark effect probed by Kerr rotation

    Science.gov (United States)

    LaMountain, Trevor; Bergeron, Hadallia; Balla, Itamar; Stanev, Teodor K.; Hersam, Mark C.; Stern, Nathaniel P.

    2018-01-01

    The ability to monitor and control distinct states is at the heart of emerging quantum technologies. The valley pseudospin in transition metal dichalcogenide (TMDC) monolayers is a promising degree of freedom for such control, with the optical Stark effect allowing for valley-selective manipulation of energy levels in WS2 and WSe2 using ultrafast optical pulses. Despite these advances, understanding of valley-sensitive optical Stark shifts in TMDCs has been limited by reflectance-based detection methods where the signal is small and prone to background effects. More sensitive polarization-based spectroscopy is required to better probe ultrafast Stark shifts for all-optical manipulation of valley energy levels. Here, we show time-resolved Kerr rotation to be a more sensitive probe of the valley-selective optical Stark effect in monolayer TMDCs. Compared to the established time-resolved reflectance methods, Kerr rotation is less sensitive to background effects. Kerr rotation provides a fivefold improvement in the signal-to-noise ratio of the Stark effect optical signal and a more precise estimate of the energy shift. This increased sensitivity allows for observation of an optical Stark shift in monolayer MoS2 that exhibits both valley and energy selectivity, demonstrating the promise of this method for investigating this effect in other layered materials and heterostructures.

  19. Inertial and interference effects in optical spectroscopy

    International Nuclear Information System (INIS)

    Karstens, W; Smith, D Y

    2015-01-01

    Interference between free-space and material components of the displacement current plays a key role in determining optical properties. This is illustrated by an analogy between the Lorentz optical model and a-c circuits. Phase shifts in material-polarization currents, which are inertial, relative to the non-inertial vacuum-polarization current cause interference in the total displacement current and, hence, variation in E-M wave propagation. If the displacement-current is reversed, forward propagation is inhibited yielding the semimetallic reflectivity exhibited by intrinsic silicon. Complete cancellation involves material currents offsetting free-space currents to form current-loops that correspond to plasmons. (paper)

  20. Microstructure-mediated Optical Effects in Southern African Snakes

    Directory of Open Access Journals (Sweden)

    Singh Ishan

    2017-01-01

    Full Text Available The scales of the African Viper Bitis arietans were tested for optical effects. Spectral intensity was recorded at incident angles over the visible spectrum for dark, pale, and ventral scale regions. The lowest spectral intensity recordings were associated with scales which have the greatest level of micro-structuring. Our results indicate that scale appearance in B. arietans is a product of microstructure-mediated optical effects. The optical effect may play a role in improving the ecological performance of the snake in its natural environment.

  1. Optical materials

    International Nuclear Information System (INIS)

    Poker, D.B.; Ortiz, C.

    1989-01-01

    This book reports on: Diamond films, Synthesis of optical materials, Structure related optical properties, Radiation effects in optical materials, Characterization of optical materials, Deposition of optical thin films, and Optical fibers and waveguides

  2. Indicative Surfaces for Crystal Optical Effects

    OpenAIRE

    R.Vlokh,; O.Mys; O.Vlokh

    2005-01-01

    This paper has mainly a pedagogical meaning. Our aim is to demonstrate a correct general approach for constructing indicative surfaces of higher-rank tensors. We reconstruct the surfaces of piezo-optic tensor for beta-BaB2O4 and LiNbO3 crystals, which have been incorrectly presented in our recent papers.

  3. EVALUATION METHOD FOR PARASITIC EFFECTS OF THE ELECTRO-OPTICAL MODULATOR IN A FIBER OPTIC GYROSCOPE

    Directory of Open Access Journals (Sweden)

    S. A. Volkovskiy

    2016-09-01

    Full Text Available Subject of Research.The paper proposes an original method for studying the parasitic effects in the electro-optic modulator of the fiber optic gyroscope. Proposed method is based on the usage of a special waveform phase modulation signal. Method. The essence of the proposed method lies in modification of serrodyne modulation signal, thereby providing a periodic displacement of the phase difference signal to the maximum of the interference curve. In this case, the intensity level reflects the influence of parasitic effects with the degree of manifestation being determined by the sequence of voltage control signals applied to the modulator. Enumeration of combinations of control signals and the corresponding intensity levels gives the possibility to observe an empirical dependence of the parasitic effects and use it later for compensation. Main Results. The efficiency of the proposed method is demonstrated by the program model of the fiber optic gyroscope. The results of the method application on a production sample of the device were obtained. Comparison with the results of direct estimate of the parasitic intensity modulation effect testifies to the effectiveness of the proposed method. Practical Relevance. The method can be used as a diagnostic tool to quantify the influence of parasitic effects in the electro-optic modulator of the fiber optic gyroscope as well as for their subsequent compensation.

  4. Effects of thermal deformation on optical instruments for space application

    Science.gov (United States)

    Segato, E.; Da Deppo, V.; Debei, S.; Cremonese, G.

    2017-11-01

    Optical instruments for space missions work in hostile environment, it's thus necessary to accurately study the effects of ambient parameters variations on the equipment. In particular optical instruments are very sensitive to ambient conditions, especially temperature. This variable can cause dilatations and misalignments of the optical elements, and can also lead to rise of dangerous stresses in the optics. Their displacements and the deformations degrade the quality of the sampled images. In this work a method for studying the effects of the temperature variations on the performance of imaging instrument is presented. The optics and their mountings are modeled and processed by a thermo-mechanical Finite Element Model (FEM) analysis, then the output data, which describe the deformations of the optical element surfaces, are elaborated using an ad hoc MATLAB routine: a non-linear least square optimization algorithm is adopted to determine the surface equations (plane, spherical, nth polynomial) which best fit the data. The obtained mathematical surface representations are then directly imported into ZEMAX for sequential raytracing analysis. The results are the variations of the Spot Diagrams, of the MTF curves and of the Diffraction Ensquared Energy due to simulated thermal loads. This method has been successfully applied to the Stereo Camera for the BepiColombo mission reproducing expected operative conditions. The results help to design and compare different optical housing systems for a feasible solution and show that it is preferable to use kinematic constraints on prisms and lenses to minimize the variation of the optical performance of the Stereo Camera.

  5. Zero-point vibrational effects on optical rotation

    DEFF Research Database (Denmark)

    Ruud, K.; Taylor, P.R.; Åstrand, P.-O.

    2001-01-01

    We investigate the effects of molecular vibrations on the optical rotation in two chiral molecules, methyloxirane and trans-2,3-dimethylthiirane. It is shown that the magnitude of zero-point vibrational corrections increases as the electronic contribution to the optical rotation increases....... Vibrational effects thus appear to be important for an overall estimate of the molecular optical rotation, amounting to about 20-30% of the electronic counterpart. We also investigate the special case of chirality introduced in a molecule through isotopic substitution. In this case, the zero-point vibrational...

  6. Interface phonon effect on optical spectra of quantum nanostructures

    International Nuclear Information System (INIS)

    Maslov, Alexander Yu.; Proshina, Olga V.; Rusina, Anastasia N.

    2009-01-01

    This paper deals with theory of large radius polaron effect in quantum wells, wires and dots. The interaction of charge particles and excitons with both bulk and interface optical phonons is taken into consideration. The analytical expression for polaron binding energy is obtained for different types of nanostructures. It is shown that the contribution of interface phonons to the polaron binding energy may exceed the bulk phonon part. The manifestation of polaron effects in optical spectra of quantum nanostructures is discussed.

  7. OPTICS. Quantum spin Hall effect of light.

    Science.gov (United States)

    Bliokh, Konstantin Y; Smirnova, Daria; Nori, Franco

    2015-06-26

    Maxwell's equations, formulated 150 years ago, ultimately describe properties of light, from classical electromagnetism to quantum and relativistic aspects. The latter ones result in remarkable geometric and topological phenomena related to the spin-1 massless nature of photons. By analyzing fundamental spin properties of Maxwell waves, we show that free-space light exhibits an intrinsic quantum spin Hall effect—surface modes with strong spin-momentum locking. These modes are evanescent waves that form, for example, surface plasmon-polaritons at vacuum-metal interfaces. Our findings illuminate the unusual transverse spin in evanescent waves and explain recent experiments that have demonstrated the transverse spin-direction locking in the excitation of surface optical modes. This deepens our understanding of Maxwell's theory, reveals analogies with topological insulators for electrons, and offers applications for robust spin-directional optical interfaces. Copyright © 2015, American Association for the Advancement of Science.

  8. Enhancement of the transverse magneto-optical Kerr effect via resonant tunneling in trilayers containing magneto-optical metals

    Energy Technology Data Exchange (ETDEWEB)

    Girón-Sedas, J. A. [Departamento de Física, Universidad del Valle, AA 25360, Cali (Colombia); Centro de Investigación e Innovación en Bioinformática y Fotónica - CIBioFI, AA 25360 Cali (Colombia); Mejía-Salazar, J. R., E-mail: jrmejia3146@gmail.com [Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13560-970 São Carlos, SP (Brazil); Moncada-Villa, E.; Porras-Montenegro, N. [Departamento de Física, Universidad del Valle, AA 25360, Cali (Colombia)

    2016-07-18

    We propose a way to enhance the transverse magneto-optical Kerr effect, by the excitation of resonant tunneling modes, in subwavelength trilayer structures featuring a dielectric slab sandwiched between two magneto-optical metallic layers. Depending on the magneto-optical layer widths, the proposed system may exhibit an extraordinary transverse magneto-optical Kerr effect, which makes it very attractive for the design and engineering of thin-film magneto-optical-based devices for future photonic circuits or fiber optical-communication systems.

  9. Quantum optical effective-medium theory and transformation quantum optics for metamaterials

    DEFF Research Database (Denmark)

    Wubs, Martijn; Amooghorban, Ehsan; Zhang, Jingjing

    2016-01-01

    electrodynamics of media with both loss and gain. In the second part of this paper, we present a new application of transformation optics whereby local spontaneous-emission rates of quantum emitters can be designed. This follows from an analysis how electromagnetic Green functions transform under coordinate......While typically designed to manipulate classical light, metamaterials have many potential applications for quantum optics as well. We argue why a quantum optical effective-medium theory is needed. We present such a theory for layered metamaterials that is valid for light propagation in all spatial...... directions, thereby generalizing earlier work for one-dimensional propagation. In contrast to classical effective-medium theory there is an additional effective parameter that describes quantum noise. Our results for metamaterials are based on a rather general Lagrangian theory for the quantum...

  10. Optics

    CERN Document Server

    Mathieu, Jean Paul

    1975-01-01

    Optics, Parts 1 and 2 covers electromagnetic optics and quantum optics. The first part of the book examines the various of the important properties common to all electromagnetic radiation. This part also studies electromagnetic waves; electromagnetic optics of transparent isotropic and anisotropic media; diffraction; and two-wave and multi-wave interference. The polarization states of light, the velocity of light, and the special theory of relativity are also examined in this part. The second part is devoted to quantum optics, specifically discussing the classical molecular theory of optical p

  11. Curvature effects in two-dimensional optical devices inspired by transformation optics

    KAUST Repository

    Yuan, Shuhao

    2016-11-14

    Light transport in curved quasi two-dimensional waveguides is considered theoretically. Within transformation optics and tensor theory, a concise description of curvature effects on transverse electric and magnetic waves is derived. We show that the curvature can induce light focusing and photonic crystal properties, which are confirmed by finite element simulations. Our results indicate that the curvature is an effective parameter for designing quasi two-dimensional optical devices in the fields of micro and nano photonics. © 2016 Author(s).

  12. OPTICAL FIBRES AND FIBREOPTIC SENSORS: Spun microstructured optical fibresfor Faraday effect current sensors

    Science.gov (United States)

    Chamorovsky, Yury K.; Starostin, Nikolay I.; Morshnev, Sergey K.; Gubin, Vladimir P.; Ryabko, Maksim V.; Sazonov, Aleksandr I.; Vorob'ev, Igor'L.

    2009-11-01

    We report a simple design of spun holey fibres and the first experimental study of the magneto-optical response of spun microstructured fibres with high built-in birefringence. Such fibres enable the Faraday-effect-induced phase shift to effectively accumulate in a magnetic field even at very small coiling diameters. For example, the magneto-optical sensitivity of a 5-mm-diameter fibre coil consisting of 100 turns is ~70% that of an ideal fibre, in good agreement with theoretical predictions.

  13. Effects of Coupling Lens on Optical Refrigeration of Semiconductors

    International Nuclear Information System (INIS)

    Kai, Ding; Yi-Ping, Zeng

    2008-01-01

    Optical refrigeration of semiconductors is encountering efficiency difficulties caused by nonradiative recombination and luminescence trapping. A commonly used approach for enhancing luminescence efficiency of a semiconductor device is coupling a lens with the device. We quantitatively study the effects of a coupling lens on optical refrigeration based on rate equations and photon recycling, and calculated cooling efficiencies of different coupling mechanisms and of different lens materials. A GaAs/GaInP heterostructure coupled with a homo-epitaxial GaInP hemispherical lens is recommended. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  14. Pulse patterning effect in optical pulse division multiplexing for flexible single wavelength multiple access optical network

    Science.gov (United States)

    Jung, Sun-Young; Kim, Chang-Hun; Han, Sang-Kook

    2018-05-01

    A demand for high spectral efficiency requires multiple access within a single wavelength, but the uplink signals are significantly degraded because of optical beat interference (OBI) in intensity modulation/direct detection system. An optical pulse division multiplexing (OPDM) technique was proposed that could effectively reduce the OBI via a simple method as long as near-orthogonality is satisfied, but the condition was strict, and thus, the number of multiplexing units was very limited. We propose pulse pattern enhanced OPDM (e-OPDM) to reduce the OBI and improve the flexibility in multiple access within a single wavelength. The performance of the e-OPDM and patterning effect are experimentally verified after 23-km single mode fiber transmission. By employing pulse patterning in OPDM, the tight requirement was relaxed by extending the optical delay dynamic range. This could support more number of access with reduced OBI, which could eventually enhance a multiple access function.

  15. Optical Kerr effect in graphene: Theoretical analysis of the optical heterodyne detection technique

    Science.gov (United States)

    Savostianova, N. A.; Mikhailov, S. A.

    2018-04-01

    Graphene is an atomically thin two-dimensional material demonstrating strong optical nonlinearities, including harmonics generation, four-wave mixing, Kerr, and other nonlinear effects. In this paper we theoretically analyze the optical heterodyne detection (OHD) technique of measuring the optical Kerr effect (OKE) in two-dimensional crystals and show how to relate the quantities measured in such experiments with components of the third-order conductivity tensor σαβ γ δ (3 )(ω1,ω2,ω3) of the two-dimensional crystal. Using results of a recently developed quantum theory of the third-order nonlinear electrodynamic response of graphene, we analyze the frequency, charge carrier density, temperature, and other dependencies of the OHD-OKE response of this material. We compare our results with a recent OHD-OKE experiment in graphene and find good agreement between the theory and experiment.

  16. Temperature effects in an optical limiter using carbon nanotube suspensions

    International Nuclear Information System (INIS)

    Yu, Hyojung; Kim, Sokwon

    2005-01-01

    An optical limiter is an optical component that reduces the laser beam intensity for the protection of eyes and light sensors, and a carbon nanotube is known to be a highly efficient optical limiting material. However, the effects of heat generated by continuous use have not been studied yet. Therefore, in this work, the variation of optical limiting effect of multi-walled carbon-nanotube suspensions in several kinds of solvents such as distilled water, chloroform, ethanol and ethylene glycol, were measured in the temperature range from room temperature to the boiling point of each solvent. A pulsed Nd : YAG laser with a wavelength of 1064 nm and a pulse duration of 6 ns was used as the light source. The experimental result shows that the limiting efficiencies of all the suspensions were reduced as the temperature was increased and that a suspension with a solvent of lower boiling point, viscosity, and surface tension showed a higher efficiency.

  17. Aharonov-Bohm effect in optical activity

    International Nuclear Information System (INIS)

    Tan, C Z

    2010-01-01

    Optically active media have the helical and dissymmetric crystal structure, which constrains the motions of the electrons to a helical path under the influence of the incident electric field. The charge flow along the helices induces a magnetic field in the direction of the axis of helices. The helical structure hence acts as natural micro-solenoids for the electromagnetic waves passing through them. Optical rotation is related to the difference in the accumulative Aharonov-Bohm (AB) phase between the right- and the left-circularly polarized waves. The AB phase is proportional to the angular momentum of an electron moving around the micro-solenoid. Originally the AB phase is shown to be a continuous function of the magnetic flux. However, quantization of the geometrical angular momentum leads to the quantized AB phase. The rotatory power and the Verdet constant are proportional to the refractive index of the medium. The quantized current in the micro-solenoid is proportional to the Bohr magneton and inversely proportional to the area of the helices.

  18. Optically variable threads and polarization effects

    Science.gov (United States)

    Kretschmar, Friedrich; Burchard, Theodor; Heim, Manfred

    2006-02-01

    Based on common criteria for efficient security elements for banknotes the set-up of a state-of-the-art holographic security thread is described - as first representative of window embedded OVD. We continue with new colour-shifting OVD-threads - based on physical vapour deposition thin-film and liquid crystal technology. These three then form the family of optically variable threads following the same set of requirements for efficiency, durability, service to all authentication levels and economics. In addition to this set of OVD threads we introduce how liquid crystal based phase retarding layer can be used to install new authentication channels for the public use up-to machine authentication. Also we show the perspective how those development can be used to install similar sets of OVD families of foil elements on banknotes.

  19. Optical rectification, circular photogalvanic effect, and five-wave mixing in optically active liquids

    Science.gov (United States)

    Koroteev, Nikolai I.

    1996-05-01

    A phenomenological analysis is carried out of novel nonlinear optical processes taking place in macroscopically noncentrosymmetric isotropic solutions of chiral (lift-ring mirror asymmetric) macromolecules, which are the primary elements of living organisms and their metabolic products. Among the most interesting and potentially useful for spectroscopic purposes are: optical rectification/photogalvanic effects consisting in electrostatic field/direct electrical current generation in such liquids under irradiation with the intense circularly polarized laser beam and the five-wave mixing phase-matched process of BioCARS to selectively record, background-free, vibrational spectra of chiral molecules.

  20. All Optical Measurement Proposed for the Photovoltaic Hall Effect

    International Nuclear Information System (INIS)

    Oka, Takashi; Aoki, Hideo

    2011-01-01

    We propose an all optical way to measure the recently proposed p hotovoltaic Hall effect , i.e., a Hall effect induced by a circularly polarized light in the absence of static magnetic fields. This is done in a pump-probe experiment with the Faraday rotation angle being the probe. The Floquet extended Kubo formula for photo-induced optical response is formulated and the ac-Hall conductivity is calculated. We also point out the possibility of observing the effect in two layered graphene, three-dimensional graphite, and more generally in multi-band systems such as materials described by the dp-model.

  1. Enhanced optical limiting effect in fluorine-functionalized graphene oxide

    Science.gov (United States)

    Zhang, Fang; Wang, Zhengping; Wang, Duanliang; Wang, Shenglai; Xu, Xinguang

    2017-09-01

    Nonlinear optical absorption of fluorine-functionalized graphene oxide (F-GO) solution was researched by the open-aperture Z-scan method using 1064 and 532 nm lasers as the excitation sources. The F-GO dispersion exhibited strong optical limiting property and the fitted results demonstrated that the optical limiting behavior was the result of a two-photon absorption process. For F-GO nanosheets, the two-photon absorption coefficients at 1064 nm excitation are 20% larger than the values at 532 nm excitation and four times larger than that of pure GO nanosheets. It indicates that the doping of fluorine can effectively improve the nonlinear optical property of GO especially in infrared waveband, and fluorine-functionalized graphene oxide is an excellent nonlinear absorption material in infrared waveband.

  2. Heavy irradiation effects in radiation-resistant optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Shikama, Tatsuo [Tohoku Univ., Oarai, Ibaraki (Japan). Oarai Branch, Inst. for Materials Research

    1998-07-01

    Development of a system for optical measurements in a nuclear reactor has been progressing to investigate dynamic changes in a material caused by heavy irradiation. In such system, transfer of optical signals to out-pile measuring systems is being attempted by the use of optical fibers. In this report, the characteristics of optical fibers in the heavy irradiation field were summarized. It has been known that amorphous silica might produce radiolysis and structural defects by the exposure to ionizing radiation. The effects of heavy irradiation on molten silica were extremely complicated. A large intensity of visible light absorption occurred from an early time during start-up of the reactor. The absorption range was limited below 700 nm for the radiation associating fast neutron and the absorption was mostly attributed to non-bridging oxygen hole center. The depletion of optical transferring capacity under the radiation might be related to the internal stress. Therefore, it seems desirable to use optical fibers in the conditions without leading too much stress. (M.N.)

  3. Performance Study of optical Modulator based on electrooptic effect

    International Nuclear Information System (INIS)

    Palodiya, V; Raghuwanshi, S K

    2016-01-01

    In this paper, we have studied and derive performance parameter of highly integrated Lithium Niobate optical modulator. This is a chirp free modulator having low switching voltage and large bandwidth. For an external modulator in which travelling-wave electrodes length L imposed the modulating switching voltage, the product of V_π and L is fixed for a given electro optic material Lithium Niobate. We investigate to achieve a low V_π by both magnitude of the electro-optic coefficient for a wide variety of electro-optic materials. A Sellmeier equation for the extraordinary index of congruent lithium niobate is derived. For phase-matching, predictions are accmate for temperature between room temperature 250°C and wavelength ranging from 0.4 to 5µm. The Sellmeier equations predict more accmately refractive indices at long wavelengths. Theoretical result is confirmed by simulated results. We have analysed the various parameters such as switching voltage, device performance index, time constant, transmittance, cut-off frequency, 3-dB bandwidth, power absorption coefficient and transmission bit rate of Lithium Niobate optical Modulator based on electro -optic effect. (paper)

  4. Irradiation Effects of Electron Beam on Optical Fibers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyu; Cho, Gyu Seong [KAIST, Daejeon (Korea, Republic of); Choi, Hong Gu; Oh, Kyung Hwan [Yonsei University, Seoul (Korea, Republic of); Cho, Ho Jin [Nucron Co. Ltd., Seoul (Korea, Republic of)

    2009-10-15

    The surveillance or monitoring systems used in space station, nuclear power plant and nuclear waste repository, are often equipped with optical fibers to remotely locating expensive camera systems so as to protect them from direct irradiation. Especially in nuclear power plant and nuclear waste repository, irradiation by gamma-ray and beta-ray are most concerned. The effective life-time of such surveillance system may depend on the soundness of the optical fiber because it is the component to be exposed the high intensity of radiation field by purpose. Though the degradation of mechanical properties such as hardness and elasticity may occur but the degradation of the optical property such as spectral transmittance is the most possible cause of the effective life-time limitation. Generally 30 % reduction of light signal transmittance is considered as the life-time threshold point of such optical systems. In this paper, we studied irradiation effects on spectral transparency of various commonly-used optical fibers with high energy electron beam to conveniently simulate the both gamma-ray and beta-ray irradiation situation.

  5. Ship Effect Measurements With Fiber Optic Neutron Detector

    International Nuclear Information System (INIS)

    King, Kenneth L.; Dean, Rashe A.; Akbar, Shahzad; Kouzes, Richard T.; Woodring, Mitchell L.

    2010-01-01

    The main objectives of this research project was to assemble, operate, test and characterize an innovatively designed scintillating fiber optic neutron radiation detector manufactured by Innovative American Technology with possible application to the Department of Homeland Security screening for potential radiological and nuclear threats at US borders (Kouzes 2004). One goal of this project was to make measurements of the neutron ship effect for several materials. The Virginia State University DOE FaST/NSF summer student-faculty team made measurements with the fiber optic radiation detector at PNNL above ground to characterize the ship effect from cosmic neutrons, and underground to characterize the muon contribution.

  6. Ionization of deep quantum wells: Optical trampoline effect

    Science.gov (United States)

    Perlin, E. Yu.; Levitskiĭ, R. S.

    2007-02-01

    A new mechanism of transitions of an electronic system from the ground state to states with excitation energies exceeding many times the energy of a light photon initiating the transitions has been considered. This mechanism is based on the so-called optical “trampoline” effect: one of the interacting electrons receives energy from another electron and, simultaneously absorbing a photon ħω, overcomes the energy gap significantly exceeding ħω. Ionization of deep quantum wells by low-frequency light of moderate intensity due to the optical trampoline effect was calculated.

  7. Optically induced Hall effect in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Idrish Miah, M; Gray, E Mac A, E-mail: m.miah@griffith.edu.a [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)

    2009-03-01

    We describe an experiment which investigates the effect of a longitudinal electric field on the spin-polarized carriers generated by a circularly polarized light in semiconductors. Our experiment observes the effect as a Hall voltage resulting from nonequilibrium magnetization induced by the spin-carrier electrons accumulating at the transverse boundaries of the sample as a result of asymmetries in scattering for spin-up and spin-down electrons in the presence of spin-orbit interaction. It is found that the effect depends on the longitudinal electric field and doping density as well as on temperature. The results are presented by discussing the dominant spin relaxation mechanisms in semiconductors.

  8. Optical performance effects of the misalignment of nonimaging optics solar collectors

    Science.gov (United States)

    Ferry, Jonathan; Ricketts, Melissa; Winston, Roland

    2017-09-01

    The use of non-imaging optics in the application of high temperature solar thermal collectors can be extremely advantageous in eliminating the need to track the sun. The stationary nature of non-imaging optics collectors, commonly called compound parabolic concentrators (CPC's), present a unique design challenge when orienting them to collect sunlight. Many facilities throughout the world that adopt CPCs are not situated to orient the collectors in the ideal angle facing the sun. This East-West misalignment can adversely affect the optical and power performance of the CPC collector. To characterize how this misalignment effects CPCs, reverse raytracing simulations are conducted for varying offset angles of the collectors from solar South. Optical performance is analyzed for an ideal East-West oriented CPC with a 40-degree acceptance angle. Direction cosine plots are used to develop a ratio of annual solar collection by the CPC over the total annual solar input. From these simulations, average annual collector performance is given for offset angles ranging from 0 to 90 degrees for different Earth Latitudes in 10 degree increments.

  9. Effects of angular misalignment on optical klystron undulator radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, G., E-mail: gmishra_dauniv@yahoo.co.in; Prakash, Bramh; Gehlot, Mona

    2015-11-21

    In this paper ,we analyze the important effects of optical klystron undulator radiation with an angular offset of the relativistic electron beam in the second undulator section. An anlytical expression for the undulator radiation is obtained through a transparent and simple procedure.It is shown that the effects of the angular offset is more severe for longer undulator lengths and with higher dispersive field strengths.Both these effects are less pronounced for undulators with large K values.

  10. Effects of optical layer impairments on 2.5 Gb/s optical CDMA transmission.

    Science.gov (United States)

    Feng, H; Mendez, A; Heritage, J; Lennon, W

    2000-07-03

    We conducted a computer simulation study to assess the effects of optical layer impairments on optical CDMA (O-CDMA) transmission of 8 asynchronous users at 2.5 Gb/s each user over a 214-km link. It was found that with group velocity dispersion compensation, two other residual effects, namely, the nonzero chromatic dispersion slope of the single mode fiber (which causes skew) and the non-uniform EDFA gain (which causes interference power level to exceed signal power level of some codes) degrade the signal to multi-access interference (MAI) ratio. In contrast, four wave mixing and modulation due to the Kerr and Raman contributions to the fiber nonlinear refractive index are less important. Current wavelength-division multiplexing (WDM) technologies, including dispersion management, EDFA gain flattening, and 3 rd order dispersion compensation, are sufficient to overcome the impairments to the O-CDMA transmission system that we considered.

  11. AB INITIO calculations of magneto-optical effects

    Czech Academy of Sciences Publication Activity Database

    Kuneš, Jan; Oppeneer, P. M.

    2002-01-01

    Roč. 2, - (2002), s. 141-146 ISSN 1346-7948 R&D Projects: GA AV ČR IAA1010214 Institutional research plan: CEZ:AV0Z1010914 Keywords : electronic structure * ab initio calculation * polar magneto-optical Kerr effect * transitiom metal * uranium intermetallics * CrO 2 Subject RIV: BM - Solid Matter Physics ; Magnetism

  12. A beamforming system based on the acousto-optic effect

    DEFF Research Database (Denmark)

    Torras Rosell, Antoni; Barrera Figueroa, Salvador; Jacobsen, Finn

    2012-01-01

    Beamforming techniques are usually based on microphone arrays. The present work uses a beam of light as a sensor element, and describes a beamforming system that locates sound sources based on the acousto-optic effect, this is, the interaction between sound and light. The use of light as a sensin...

  13. Lossy effects in a nonlinear nematic optical fiber

    Science.gov (United States)

    Rodríguez, R. F.; Reyes, J. A.

    2001-09-01

    We use the multiple scales method to derive a generalized nonlinear Schrödinger equation that takes into account the dissipative effects in the reorientation of a nematic confined in a cylindrical waveguide. This equation has soliton-like solutions and predicts a decrease in the penetration length of the optical solitons for each propagating mode with respect to the dissipationless case.

  14. Analysis of multiple scattering effects in optical Doppler tomography

    DEFF Research Database (Denmark)

    Yura, H.T.; Thrane, L.; Andersen, Peter E.

    2005-01-01

    Optical Doppler tomography (ODT) combines Doppler velocimetry and optical coherence tomography (OCT) to obtain high-resolution cross-sectional imaging of particle flow velocity in scattering media such as the human retina and skin. Here, we present the results of a theoretical analysis of ODT where...... multiple scattering effects are included. The purpose of this analysis is to determine how multiple scattering affects the estimation of the depth-resolved localized flow velocity. Depth-resolved velocity estimates are obtained directly from the corresponding mean or standard deviation of the observed...

  15. Effects of simulated nuclear thermal pulses on fiber optic cables

    International Nuclear Information System (INIS)

    Baba, A.J.; Share, S.; Wasilik, J.H.

    1979-01-01

    The effects of pulsed thermal radiation on fiber optic cables with a variety of jackets (polyurethane, PVC, fluorocarbon) are presented. Exposure between 27 and 85 cal/cm 2 did not sever the optical fibers, but the radiation did cause disintegration of the jackets and the Kevlar strength members, which resulted in a significant reduction of the cable's ability to survive mechanical stress. Hardening techniques are discussed. The addition of low absorptance materials (white Teflon tape and aluminum foil) under clear or white Teflon jackets prevented some types of cables from being affected at fluences up to 110 cal/cm 2

  16. Investigations on birefringence effects in polymer optical fiber Bragg gratings

    DEFF Research Database (Denmark)

    Hu, Xiaolian; Saez-Rodriguez, D.; Bang, Ole

    2014-01-01

    Step-index polymer optical fiber Bragg gratings (POFBGs) and microstructured polymer optical fiber Bragg gratings (mPOFBGs) present several attractive features, especially for sensing purposes. In comparison to FBGs written in silica fibers, they are more sensitive to temperature and pressure...... because of the larger thermo-optic coefficient and smaller Young's modulus of polymer materials. (M)POFBGs are most often photowritten in poly(methylmethacrylate) (PMMA) materials using a continuous-wave 325 nm HeCd laser. For the first time to the best of our knowledge, we study photoinduced...... birefringence effects in (m)POFBGs. To achieve this, highly reflective gratings were inscribed with the phase mask technique. They were then monitored in transmission with polarized light. For this, (m)POF sections a few cm in length containing the gratings were glued to angled silica fibers. Polarization...

  17. Microscale fluid transport using optically controlled marangoni effect

    Science.gov (United States)

    Thundat, Thomas G [Knoxville, TN; Passian, Ali [Knoxville, TN; Farahi, Rubye H [Oak Ridge, TN

    2011-05-10

    Low energy light illumination and either a doped semiconductor surface or a surface-plasmon supporting surface are used in combination for manipulating a fluid on the surface in the absence of any applied electric fields or flow channels. Precise control of fluid flow is achieved by applying focused or tightly collimated low energy light to the surface-fluid interface. In the first embodiment, with an appropriate dopant level in the semiconductor substrate, optically excited charge carriers are made to move to the surface when illuminated. In a second embodiment, with a thin-film noble metal surface on a dispersive substrate, optically excited surface plasmons are created for fluid manipulation. This electrode-less optical control of the Marangoni effect provides re-configurable manipulations of fluid flow, thereby paving the way for reprogrammable microfluidic devices.

  18. Effective and efficient optics inspection approach using machine learning algorithms

    International Nuclear Information System (INIS)

    Abdulla, G.; Kegelmeyer, L.; Liao, Z.; Carr, W.

    2010-01-01

    The Final Optics Damage Inspection (FODI) system automatically acquires and utilizes the Optics Inspection (OI) system to analyze images of the final optics at the National Ignition Facility (NIF). During each inspection cycle up to 1000 images acquired by FODI are examined by OI to identify and track damage sites on the optics. The process of tracking growing damage sites on the surface of an optic can be made more effective by identifying and removing signals associated with debris or reflections. The manual process to filter these false sites is daunting and time consuming. In this paper we discuss the use of machine learning tools and data mining techniques to help with this task. We describe the process to prepare a data set that can be used for training and identifying hardware reflections in the image data. In order to collect training data, the images are first automatically acquired and analyzed with existing software and then relevant features such as spatial, physical and luminosity measures are extracted for each site. A subset of these sites is 'truthed' or manually assigned a class to create training data. A supervised classification algorithm is used to test if the features can predict the class membership of new sites. A suite of self-configuring machine learning tools called 'Avatar Tools' is applied to classify all sites. To verify, we used 10-fold cross correlation and found the accuracy was above 99%. This substantially reduces the number of false alarms that would otherwise be sent for more extensive investigation.

  19. Whispering gallery effect in relativistic optics

    Science.gov (United States)

    Abe, Y.; Law, K. F. F.; Korneev, Ph.; Fujioka, S.; Kojima, S.; Lee, S.-H.; Sakata, S.; Matsuo, K.; Oshima, A.; Morace, A.; Arikawa, Y.; Yogo, A.; Nakai, M.; Norimatsu, T.; d'Humières, E.; Santos, J. J.; Kondo, K.; Sunahara, A.; Gus'kov, S.; Tikhonchuk, V.

    2018-03-01

    relativistic laser pulse, confined in a cylindrical-like target, under specific conditions may perform multiple scattering along the internal target surface. This results in the confinement of the laser light, leading to a very efficient interaction. The demonstrated propagation of the laser pulse along the curved surface is just yet another example of the "whispering gallery" effect, although nonideal due to laser-plasma coupling. In the relativistic domain its important feature is a gradual intensity decrease, leading to changes in the interaction conditions. The proccess may pronounce itself in plenty of physical phenomena, including very efficient electron acceleration and generation of relativistic magnetized plasma structures.

  20. Kerr ellipticity effect in a birefringent optical fiber

    International Nuclear Information System (INIS)

    Ishiekwene, G.C.; Mensah, S.Y.; Brown, C.S.

    2004-09-01

    An intensity-dependent change in the ellipticity of an input light beam leads to a characteristic shift in polarization instability. Dichroism gives rise to a self-induced ellipticity effect in the polarization state of an intense input light oriented along the fast axis of a birefringent optical fiber. The critical power at which the fiber effective beat length becomes infinite is reduced considerably in the presence of dichroism. (author)

  1. Generalized effective mode volume for leaky optical cavities

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Van Vlack, C.; Hughes, S.

    2012-01-01

    We show explicitly how the commonly adopted prescription for calculating effective mode volumes is wrong and leads to uncontrolled errors. Instead, we introduce a generalized mode volume that can be easily evaluated based on the mode calculation methods typically applied in the literature, and wh......, and which allows one to compute the Purcell effect and other interesting optical phenomena in a rigorous and unambiguous way....

  2. Experimental demonstration of illusion optics with ``external cloaking'' effects

    Science.gov (United States)

    Li, Chao; Liu, Xiao; Liu, Guochang; Li, Fang; Fang, Guangyou

    2011-08-01

    A metamaterial "illusion optics" with "complementary medium" and "restoring medium" is designed by using inductor-capacitor (L-C) network medium. The unprecedented effects of "external cloaking" and "transforming one object to appear as another" are demonstrated experimentally. We also demonstrate that the non-resonant nature of the L-C network decreases the sensitivity of the "external cloaking" effect to the variation of the frequency and results in an acceptable bandwidth of the whole device.

  3. Optical effects on neutron guide tubes produced by collimation

    International Nuclear Information System (INIS)

    Margaca, F.M.A.; Falcao, A.N.; Sequeira, A.D.; Salgado, J.F.

    1991-01-01

    The collimation of a neutron beam carried by a guide tube is shown to procedure extensive regions of umbra and penumbra on the inner walls of the guide tube whenever a diaphragm is used at the exit. The region of umbra renders useless a certain length of the guide-tube end while in the region of penumbra the guide exhibits a faint luminosity. These optical effects are particularly important for stringent collimation. It is shown that these effects render impossible the implementation of the 'equal-flight-paths' design currently used for small-angle neutron scattering instruments, which use guide segments and a diaphragm in the collimation assembly. As a consequence, these operate most of the time in strongly unmatched configurations. It is shown that the optimized design formerly proposed by the authors, in which, whenever possible, the full luminous source area is used, not only avoids the optical effects mentioned but also guarantees the highest detector count rate. (orig.)

  4. Dynamic nonlinear thermal optical effects in coupled ring resonators

    Directory of Open Access Journals (Sweden)

    Chenguang Huang

    2012-09-01

    Full Text Available We investigate the dynamic nonlinear thermal optical effects in a photonic system of two coupled ring resonators. A bus waveguide is used to couple light in and out of one of the coupled resonators. Based on the coupling from the bus to the resonator, the coupling between the resonators and the intrinsic loss of each individual resonator, the system transmission spectrum can be classified by three different categories: coupled-resonator-induced absorption, coupled-resonator-induced transparency and over coupled resonance splitting. Dynamic thermal optical effects due to linear absorption have been analyzed for each category as a function of the input power. The heat power in each resonator determines the thermal dynamics in this coupled resonator system. Multiple “shark fins” and power competition between resonators can be foreseen. Also, the nonlinear absorption induced thermal effects have been discussed.

  5. Gamma irradiation effects in optical fibres, splitters, and connectors

    Directory of Open Access Journals (Sweden)

    Srećković Milesa Ž.

    2017-01-01

    Full Text Available The paper presents a brief overview of contemporary ELION techniques with stress on their use for material modification and dosimetry. In the attempt to avoid some common misjudges of irradiation effects, special attention is paid to exact definition of irradiation geometry and careful adjustment of dose rates, which enable a proper elaboration of experimental results. In particular, effects of g-rays irradiation on properties of commercial optical fibres, splitters, connectors, and fibre joints are examined, which enables monitoring of irradiation effects in complex configurations made of materials with different radiation hardness (resistance. It has been established that g-rays irradiation of the investigated elements influences, in different ways, the transmission of laser beam signals of various wavelengths, under different modulation regimes. After irradiation, the signal attenuation is noticeably larger, both in optical connectors and optical splitter, than before it, and the effect increases in time. The effects are more pronounced at the 99 % than at the 1 % Y-splitter output at both measured wavelengths, and are more pronounced at 1310 nm than at 1550 nm. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III43009 and Grant no. III45012

  6. Enhanced optical limiting effects of graphene materials in polyimide

    International Nuclear Information System (INIS)

    Gan, Yao; Feng, Miao; Zhan, Hongbing

    2014-01-01

    Three different graphene nanostructure suspensions of graphene oxide nanosheets (GONSs), graphene oxide nanoribbons (GONRs), and graphene oxide quantum dots (GOQDs) are prepared and characterized. Using a typical two-step method, the GONSs, GONRs, and GOQDs are incorporated into a polyimide (PI) matrix to synthesize graphene/PI composite films, whose nonlinear optical (NLO) and optical limiting (OL) properties are investigated at 532 nm in the nanosecond regime. The GONR suspension exhibits superior NLO and OL effects compared with those of GONSs and GOQDs because of its stronger nonlinear scattering and excited-state absorption. The graphene/PI composite films exhibit NLO and OL performance superior to that of their corresponding suspensions, which is attributed primarily to a combination of nonlinear mechanisms, charge transfer between graphene materials and PI, and the matrix effect

  7. Electric-field effects in optically generated spin transport

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2009-01-01

    Transport of spin-polarized electrons in semiconductors is studied experimentally. Spins are generated by optical excitation because of the selection rules governing optical transitions from heavy-hole and light-hole states to conduction-band states. Experiments designed for the control of spins in semiconductors investigate the bias-dependent spin transport process and detect the spin-polarized electrons during transport. A strong bias dependence is observed. The electric-field effects on the spin-polarized electron transport are also found to be depended on the excitation photon energy and temperature. Based on a field-dependent spin relaxation mechanism, the electric-field effects in the transport process are discussed.

  8. Electric-field effects in optically generated spin transport

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish [Nanoscale Science and Technology Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)], E-mail: m.miah@griffith.edu.au

    2009-05-25

    Transport of spin-polarized electrons in semiconductors is studied experimentally. Spins are generated by optical excitation because of the selection rules governing optical transitions from heavy-hole and light-hole states to conduction-band states. Experiments designed for the control of spins in semiconductors investigate the bias-dependent spin transport process and detect the spin-polarized electrons during transport. A strong bias dependence is observed. The electric-field effects on the spin-polarized electron transport are also found to be depended on the excitation photon energy and temperature. Based on a field-dependent spin relaxation mechanism, the electric-field effects in the transport process are discussed.

  9. Cloud-radiation interactions - Effects of cirrus optical thickness feedbacks

    Science.gov (United States)

    Somerville, Richard C. J.; Iacobellis, Sam

    1987-01-01

    The paper is concerned with a cloud-radiation feedback mechanism which may be an important component of the climate changes expected from increased atmospheric concentrations of carbon dioxide and other trace greenhouse gases. A major result of the study is that cirrus cloud optical thickness feedbacks may indeed tend to increase the surface warming due to trace gas increases. However, the positive feedback from cirrus appears to be generally weaker than the negative effects due to lower clouds. The results just confirm those of earlier research indicating that the net effect of cloud optical thickness feedbacks may be a negative feedback which may substantially (by a factor of about 2) reduce the surface warming due to the doubling of CO2, even in the presence of cirrus clouds.

  10. The PIAA Coronagraph: Optical design and Diffraction Effects

    Science.gov (United States)

    Pluzhnik, E. A.; Guyon, O.; Ridgway, S.; Martinache, F.; Woodruff, R.; Blain, C.; Galicher, R.

    2005-12-01

    Properly apodized pupils are suitable for high dynamical range imaging of extrasolar terrestrial planets. Phase-induced amplitude apodization (PIAA) of the telescope pupil (Guyon 2003) combines the advantages of classical pupil apodization with full throughput, no loss of angular resolution and low chromaticity. Diffraction propagation effects can decrease both the achieved contrast and the spectral bandwidth of the coronagraph. We show here how the diffraction effects in the PIAA optics can be corrected by an appropriate optical design. The proposed hybrid coronagraph design preserves the 10-10 PSF contrast at ≈ 1.5 λ /d required for efficient exoplanet imaging over the whole visible spectrum. This work was carried out under JPL contract numbers 1254445 and 1257767 for Development of Technologies for the Terrestrial Planet Finder Mission, with the support and hospitality of the National Astronomical Observatory of Japan.

  11. Optically controlled redshift switching effects in hybrid fishscale metamaterials

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2018-05-01

    Full Text Available We numerically demonstrate optically controlled THz response in a hybrid fishscale metamaterial with embedded photoconductive silicon at oblique incidence of TE wave. The oblique incidence allows excitation of Fano-type trapped mode resonance in a 2-fold rotational symmetric metamaterial. The hybrid fishscale metamaterial exhibits an optically controlled redshift switching effect in the THz range. The switching effect is dominated by the conductivity of the silicon instead of mechanically adjusting angles of incidence. The tuning frequency range is up to 0.3THz with a large modulation depth and high transmission in the “ON” state. The fishscale metamaterial-based switching has been experimentally verified by its microwave counterpart integrated by variable resistors. Our work provides an alternative route to realize tunable Fano-type response in metamaterials and is of importance to active manipulation, sensing and switching of THz waves in practical applications.

  12. Optically controlled redshift switching effects in hybrid fishscale metamaterials

    Science.gov (United States)

    Wang, Yu; Zhu, Jinwei; Zhang, Hao; Zhang, Wenxing; Dong, Guohua; Ye, Peng; Lv, Tingting; Zhu, Zheng; Li, Yuxiang; Guan, Chunying; Shi, Jinhui

    2018-05-01

    We numerically demonstrate optically controlled THz response in a hybrid fishscale metamaterial with embedded photoconductive silicon at oblique incidence of TE wave. The oblique incidence allows excitation of Fano-type trapped mode resonance in a 2-fold rotational symmetric metamaterial. The hybrid fishscale metamaterial exhibits an optically controlled redshift switching effect in the THz range. The switching effect is dominated by the conductivity of the silicon instead of mechanically adjusting angles of incidence. The tuning frequency range is up to 0.3THz with a large modulation depth and high transmission in the "ON" state. The fishscale metamaterial-based switching has been experimentally verified by its microwave counterpart integrated by variable resistors. Our work provides an alternative route to realize tunable Fano-type response in metamaterials and is of importance to active manipulation, sensing and switching of THz waves in practical applications.

  13. [Effectiveness of magnetotherapy in optic nerve atrophy. A preliminary study].

    Science.gov (United States)

    Zobina, L V; Orlovskaia, L S; Sokov, S L; Sabaeva, G F; Kondé, L A; Iakovlev, A A

    1990-01-01

    Magnetotherapy effects on visual functions (vision acuity and field), on retinal bioelectric activity, on conductive vision system, and on intraocular circulation were studied in 88 patients (160 eyes) with optic nerve atrophy. A Soviet Polyus-1 low-frequency magnetotherapy apparatus was employed with magnetic induction of about 10 mT, exposure 7-10 min, 10-15 sessions per course. Vision acuity of patients with its low (below 0.04 diopters) values improved in 50 percent of cases. The number of patients with vision acuity of 0.2 diopters has increased from 46 before treatment to 75. Magnetotherapy improved ocular hemodynamics in patients with optic nerve atrophy, it reduced the time of stimulation conduction along the vision routes and stimulated the retinal ganglia cells. The maximal effect was achieved after 10 magnetotherapy sessions. A repeated course carried out in 6-8 months promoted a stabilization of the process.

  14. Optically Tunable Magnetoresistance Effect: From Mechanism to Novel Device Application.

    Science.gov (United States)

    Liu, Pan; Lin, Xiaoyang; Xu, Yong; Zhang, Boyu; Si, Zhizhong; Cao, Kaihua; Wei, Jiaqi; Zhao, Weisheng

    2017-12-28

    The magnetoresistance effect in sandwiched structure describes the appreciable magnetoresistance effect of a device with a stacking of two ferromagnetic layers separated by a non-magnetic layer (i.e., a sandwiched structure). The development of this effect has led to the revolution of memory applications during the past decades. In this review, we revisited the magnetoresistance effect and the interlayer exchange coupling (IEC) effect in magnetic sandwiched structures with a spacer layer of non-magnetic metal, semiconductor or organic thin film. We then discussed the optical modulation of this effect via different methods. Finally, we discuss various applications of these effects and present a perspective to realize ultralow-power, high-speed data writing and inter-chip connection based on this tunable magnetoresistance effect.

  15. Probabilistic Modeling of Intracranial Pressure Effects on Optic Nerve Biomechanics

    Science.gov (United States)

    Ethier, C. R.; Feola, Andrew J.; Raykin, Julia; Myers, Jerry G.; Nelson, Emily S.; Samuels, Brian C.

    2016-01-01

    Altered intracranial pressure (ICP) is involved/implicated in several ocular conditions: papilledema, glaucoma and Visual Impairment and Intracranial Pressure (VIIP) syndrome. The biomechanical effects of altered ICP on optic nerve head (ONH) tissues in these conditions are uncertain but likely important. We have quantified ICP-induced deformations of ONH tissues, using finite element (FE) and probabilistic modeling (Latin Hypercube Simulations (LHS)) to consider a range of tissue properties and relevant pressures.

  16. Sound field reconstruction based on the acousto-optic effect

    DEFF Research Database (Denmark)

    Torras Rosell, Antoni; Barrera Figueroa, Salvador; Jacobsen, Finn

    2011-01-01

    be measured with a laser Doppler vibrometer; furthermore, it can be exploited to characterize an arbitrary sound field using tomographic techniques. This paper briefly reviews the fundamental principles governing the acousto-optic effect in air, and presents an investigation of the tomographic reconstruction...... within the audible frequency range by means of simulations and experimental results. The good agreement observed between simulations and measurements is further confirmed with representations of the sound field obtained with traditional microphone array measurements....

  17. Radiation Effects on Ytterbium-doped Optical Fibers

    Science.gov (United States)

    2014-06-02

    conducted on Er- doped fiber amplifiers (Lezius, et al., 2012; Ahrens, et al., 1999; Ahrens, Jaques , LuValle, DiGiovanni, & Windeler, 2001; Ott, 2004...Ahrens, R. G., Abate, J. A., Jaques , J. J., Presby, H. M., Fields, A. B., DiGiovanni, D. J., LuValle, M. J. (1999). Radiation reliability of rare... Jaques , J. J., LuValle, M. J., DiGiovanni, D. J., & Windeler, R. S. (2001). Radiation effects on optical fibers and amplifiers. Testing, Reliability

  18. Nonlinear effects in ultralong semiconductor optical amplifiers for optical communications. Physics and applications

    Energy Technology Data Exchange (ETDEWEB)

    Runge, Patrick

    2010-10-19

    The presented work discusses physical properties of ultralong semiconductor optical amplifiers (UL-SOAs) and some of their possible applications in optical communication systems. At the beginning of this thesis the analytical framework for the optical properties of UL-SOAs is presented. Based on this theoretical description, a numerical simulation model is derived used for the investigation of this thesis. To obtain from the simulation model realistic results the important properties of UL-SOAs have to be included, e.g., being the saturation of the main part of the device. In this saturated part of the device, fast intraband effects dominate over the slow interband effects. The intention of UL-SOAs is to make use of these pronounced fast intraband effects in applications. Due to the short relaxation times of the fast intraband effects, they can be used for high-speed signal processing (>20 GBaud). With the help of an additional continuous wave (CW) signal propagating with the data signal in the UL-SOA, the capability for all-optical signal processing with 100 Gbit/s on-off keying RZ-50% pseudo random bit sequence signals has been demonstrated in this thesis. With an optimised device under proper driving conditions, bit pattern effects are negligible compared to the degradation due to amplified spontaneous emission. The suppression of the bit pattern effects can be ascribed to the additional CW signal operating as a holding beam. Investigations of the UL-SOA's driving condition showed that the data signal's extinction ratio (ER) can be regenerated if the two input signals are co-polarised and the data signal has a shorter wavelength than the CW signal. These two and other driving conditions have indicated, that parametric amplification due to four-wave mixing (FWM) (Bogatov-like effect) is the reason for the ER improvement. Moreover, due to the additional CW signal, all-optical wavelength conversion (AOWC) is possible which can be combined with the ER

  19. Optical conductivity and optical effective mass in a high-mobility organic semiconductor: Implications for the nature of charge transport

    KAUST Repository

    Li, Yuan

    2014-12-03

    We present a multiscale modeling of the infrared optical properties of the rubrene crystal. The results are in very good agreement with the experimental data that point to nonmonotonic features in the optical conductivity spectrum and small optical effective masses. We find that, in the static-disorder approximation, the nonlocal electron-phonon interactions stemming from low-frequency lattice vibrations can decrease the optical effective masses and lead to lighter quasiparticles. On the other hand, the charge-transport and infrared optical properties of the rubrene crystal at room temperature are demonstrated to be governed by localized carriers driven by inherent thermal disorders. Our findings underline that the presence of apparently light carriers in high-mobility organic semiconductors does not necessarily imply bandlike transport.

  20. Optical conductivity and optical effective mass in a high-mobility organic semiconductor: Implications for the nature of charge transport

    KAUST Repository

    Li, Yuan; Yi, Yuanping; Coropceanu, Veaceslav; Bredas, Jean-Luc

    2014-01-01

    We present a multiscale modeling of the infrared optical properties of the rubrene crystal. The results are in very good agreement with the experimental data that point to nonmonotonic features in the optical conductivity spectrum and small optical effective masses. We find that, in the static-disorder approximation, the nonlocal electron-phonon interactions stemming from low-frequency lattice vibrations can decrease the optical effective masses and lead to lighter quasiparticles. On the other hand, the charge-transport and infrared optical properties of the rubrene crystal at room temperature are demonstrated to be governed by localized carriers driven by inherent thermal disorders. Our findings underline that the presence of apparently light carriers in high-mobility organic semiconductors does not necessarily imply bandlike transport.

  1. Stable dissipative optical vortex clusters by inhomogeneous effective diffusion.

    Science.gov (United States)

    Li, Huishan; Lai, Shiquan; Qui, Yunli; Zhu, Xing; Xie, Jianing; Mihalache, Dumitru; He, Yingji

    2017-10-30

    We numerically show the generation of robust vortex clusters embedded in a two-dimensional beam propagating in a dissipative medium described by the generic cubic-quintic complex Ginzburg-Landau equation with an inhomogeneous effective diffusion term, which is asymmetrical in the two transverse directions and periodically modulated in the longitudinal direction. We show the generation of stable optical vortex clusters for different values of the winding number (topological charge) of the input optical beam. We have found that the number of individual vortex solitons that form the robust vortex cluster is equal to the winding number of the input beam. We have obtained the relationships between the amplitudes and oscillation periods of the inhomogeneous effective diffusion and the cubic gain and diffusion (viscosity) parameters, which depict the regions of existence and stability of vortex clusters. The obtained results offer a method to form robust vortex clusters embedded in two-dimensional optical beams, and we envisage potential applications in the area of structured light.

  2. Effects of entanglement in an ideal optical amplifier

    Science.gov (United States)

    Franson, J. D.; Brewster, R. A.

    2018-04-01

    In an ideal linear amplifier, the output signal is linearly related to the input signal with an additive noise that is independent of the input. The decoherence of a quantum-mechanical state as a result of optical amplification is usually assumed to be due to the addition of quantum noise. Here we show that entanglement between the input signal and the amplifying medium can produce an exponentially-large amount of decoherence in an ideal optical amplifier even when the gain is arbitrarily close to unity and the added noise is negligible. These effects occur for macroscopic superposition states, where even a small amount of gain can leave a significant amount of which-path information in the environment. Our results show that the usual input/output relation of a linear amplifier does not provide a complete description of the output state when post-selection is used.

  3. Nonlinear polarization effects in a birefringent single mode optical fiber

    International Nuclear Information System (INIS)

    Ishiekwene, G.C.; Mensah, S.Y.; Brown, C.S.

    2001-04-01

    The nonlinear polarization effects in a birefringent single mode optical fiber is studied using Jacobi elliptic functions. We find that the polarization state of the propagating beam depends on the initial polarization as well as the intensity of the input light in a complicated way. The Stokes polarization parameters are either periodic or aperiodic depending on the value of the Jacobian modulus. Our calculations suggest that the effective beat length of the fiber can become infinite at a higher critical value of the input power when polarization dependent losses are considered. (author)

  4. Effective Linewidth of Semiconductor Lasers for Coherent Optical Data Links

    DEFF Research Database (Denmark)

    Iglesias Olmedo, Miguel; Pang, Xiaodan; Schatz, Richard

    2016-01-01

    name “Effective Linewidth”. We derive this figure of merit analytically, explore it by numerical simulations and experimentally validate our results by transmitting a 28 Gbaud DP-16QAM over an optical link. Our investigations cover the use of semiconductor lasers both in the transmitter side...... and as a local oscillator at the receiver. The obtained results show that our proposed “effective linewidth” is easy to measure and accounts for frequency noise more accurately, and hence the penalties associated to phase noise in the received signal....

  5. Non-contact optical sensor for detection of glucose concentration using a magneto-optic effect

    Science.gov (United States)

    Ozana, Nisan; Beiderman, Yevgeny; Anand, Arun; Javidi, Baharam; Polani, Sagi; Schwarz, Ariel; Shemer, Amir; García, Javier; Zalevsky, Zeev

    2016-03-01

    In this paper we aim to experimentally verify a speckle based technique for non-contact measurement of glucose concentration in blood stream while the vision for the final device aims to contain a single wristwatch-style device containing an AC (alternating) electro-magnet generated by a solenoid, a laser and a camera. The experiments presented in work are performed in-vitro in order to verify the effects that are responsible for the operation principle. When a glucose substance is inserted into a solenoid generating an alternating magnetic field it exhibits Faraday rotation which affects the temporal changes of the secondary speckle patterns distribution. The temporal frequency resulting from the AC magnetic field was found to have a lock-in amplification role which increased the observability of the relatively small magneto-optic effect. Experimental results to support the proposed concept are presented.

  6. CUSTOM OPTIMIZATION OF INTRAOCULAR LENS ASPHERICITY

    Science.gov (United States)

    Koch, Douglas D.; Wang, Li

    2007-01-01

    Purpose To investigate the optimal amount of ocular spherical aberration (SA) in an intraocular lens (IOL) to maximize optical quality. Methods In 154 eyes of 94 patients aged 40 to 80 years, implantation of aspheric IOLs was simulated with different amounts of SA to produce residual ocular SA from −0.30 μm to +0.30 μm. Using the VOL-CT program (Sarver & Associates, Carbondale, Illinois), corneal wavefront aberrations up to 6th order were computed from corneal topographic elevation data (Humphrey Atlas, Carl Zeiss Meditec, Inc, Dublin, California). Using the ZernikeTool program (Advanced Medical Optics, Inc, Santa Ana, California), the polychromatic point spread function with Stiles-Crawford effect was calculated for the residual ocular higher-order aberrations (HOAs, 3rd to 6th order, 6-mm pupil), assuming fully corrected 2nd-order aberrations. Five parameters were used to quantify optical image quality, and we determined the residual ocular SA at which the maximal image quality was achieved for each eye. Stepwise multiple regression analysis was performed to assess the predictors for optimal SA of each eye. Results The optimal SA varied widely among eyes. Most eyes had best image quality with low amounts of negative SA. For modulation transfer function volume up to 15 cycles/degree, the amount of optimal SA could be predicted based on other HOAs of the cornea with coefficient of multiple determination (R2) of 79%. Eight Zernike terms significantly contributed to the optimal SA in this model; the order of importance to optimal SA from most to least was: Z60, Z62, Z42, Z53, Z64, Z3−1, Z33, and Z31. For the other 4 measures of visual quality, the coefficients of determination varied from 32% to 63%. Conclusion The amount of ocular SA producing best image quality varied widely among subjects and could be predicted based on corneal HOAs. Selection of an aspheric IOL should be customized according to the full spectrum of corneal HOAs and not 4th-order SA alone

  7. Optical Effects Induced by Bloch Surface Waves in One-Dimensional Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Irina V. Soboleva

    2018-01-01

    Full Text Available The review considers the influence of Bloch surface waves on the optical and magneto-optical effects observed in photonic crystals; for example, the Goos–Hänchen effect, the Faraday effect, optical trapping and so on. Prospects for using Bloch surface waves for spatial light modulation, for controlling the polarization of light, for optical trapping and control of micro-objects are discussed.

  8. Isotope effects on the optical spectra of semiconductors

    Science.gov (United States)

    Cardona, Manuel; Thewalt, M. L. W.

    2005-10-01

    Since the end of the cold war, macroscopic amounts of separated stable isotopes of most elements have been available “off the shelf” at affordable prices. Using these materials, single crystals of many semiconductors have been grown and the dependence of their physical properties on isotopic composition has been investigated. The most conspicuous effects observed have to do with the dependence of phonon frequencies and linewidths on isotopic composition. These affect the electronic properties of solids through the mechanism of electron-phonon interaction, in particular, in the corresponding optical excitation spectra and energy gaps. This review contains a brief introduction to the history, availability, and characterization of stable isotopes, including their many applications in science and technology. It is followed by a concise discussion of the effects of isotopic composition on the vibrational spectra, including the influence of average isotopic masses and isotopic disorder on the phonons. The final sections deal with the effects of electron-phonon interaction on energy gaps, the concomitant effects on the luminescence spectra of free and bound excitons, with particular emphasis on silicon, and the effects of isotopic composition of the host material on the optical transitions between the bound states of hydrogenic impurities.

  9. Transverse effects in nonlinear optics: Toward the photon superfluid

    Science.gov (United States)

    McCormick, Colin Fraser

    Nonlinear optics displays a wealth of transverse effects. These effects are particularly rich in the presence of an optical cavity. Many considerations suggest that in a Kerr nonlinear cavity a new state of light known as a "photon superfluid" can form, with strong analogies to atomic superfluids. The conditions for the formation of the photon superfluid include requirements on the cavity, input light fields and the nonlinear medium as well as various timescales. The most favorable candidate nonlinear medium for observing the photon super-fluid is an atomic vapor. With a strong and fast Kerr effect, atomic vapors also have the advantage of a Kerr coefficient that is tunable in both magnitude and sign. A series of z-scan experiments in far-detuned atomic rubidium vapor is reported, measuring the Kerr coefficient and determining its functional dependence on detuning to be that of a Doppler-broadened two-level model with adiabatic following of the electric field by the atom pseudomoment. Saturation effects are found to be important. Z-scan measurements for detunings within the Doppler profile are shown to agree well with numerical simulations based on the Doppler-broadened model. Agreement between absorptive and refractive non-linear coefficients is evidence of the Kramers-Kronig relations at work, even in this nonlinear system. The formation of the photon superfluid is discussed and the calculation of a new process, nearly collinear four-wave mixing, is presented. This process is essentially an inverse beam filamentation that is likely to be the underlying physical mechanism for transverse cooling and condensation of photons in a nonlinear optical cavity. Nearly collinear four-wave mixing may also be related to phenomena in general nonlinear physics, including modulation instability and Fermi-Pasta-Ulam recurrence.

  10. Effect of radiation on the optical properties of some ferroelectrics

    International Nuclear Information System (INIS)

    Pirogova, G.N.; Kritskaya, V.E.; Malov, N.A.; Ryabov, A.I.; Voronin, Y.V.

    1986-01-01

    This paper studies the effect of gamma-irradiation and impulsive irradiation with electrons on the optical properties of crystals used in nonlinear optics: potassium dihydrophosphate KH 2 PO 4 , and cesium dihydroarsenate CsH 2 AsO 4 . The authors used two types of crystals obtained by extraction of the condensate, lowering of the temperature and recirculation. The content of iron-group impurity atoms (A1, Cu, and Mg) were determined with the help of atomic absorption spectrometry and was less than 1.10 -3 mole %. The samples were irradiated with a Co 60 gamma-ray source and impulsive irradiation with electrons was performed with a U-12 linear accelerator. A comparison of the spectra of gamma-irradiated single crystals and crystals irradiated with electrons shows that they are identical in the UV region. The impulse technique, however, enables observing the absorption bands which under gamma-irradiation are lost owing to the large increment of the optical density in the ultraviolet region and the shift of the absorption edge into the long-wavelength region

  11. Nonlinear optical effects of opening a gap in graphene

    Science.gov (United States)

    Carvalho, David N.; Biancalana, Fabio; Marini, Andrea

    2018-05-01

    Graphene possesses remarkable electronic, optical, and mechanical properties that have taken the research of two-dimensional relativistic condensed matter systems to prolific levels. However, the understanding of how its nonlinear optical properties are affected by relativisticlike effects has been broadly uncharted. It has been recently shown that highly nontrivial currents can be generated in free-standing samples, notably leading to the generation of even harmonics. Since graphene monolayers are centrosymmetric media, for which such harmonic generation at normal incidence is deemed inaccessible, this light-driven phenomenon is both startling and promising. More realistically, graphene samples are often deposited on a dielectric substrate, leading to additional intricate interactions. Here, we present a treatment to study this instance by gapping the spectrum and we show this leads to the appearance of a Berry phase in the carrier dynamics. We analyze the role of such a phase in the generated nonlinear current and conclude that it suppresses odd-harmonic generation. The pump energy can be tuned to the energy gap to yield interference among odd harmonics mediated by interband transitions, allowing even harmonics to be generated. Our results and general methodology pave the way for understanding the role of gap opening in the nonlinear optics of two-dimensional lattices.

  12. Intense laser effects on nonlinear optical absorption and optical rectification in single quantum wells under applied electric and magnetic field

    International Nuclear Information System (INIS)

    Duque, C.A.; Kasapoglu, E.; Sakiroglu, S.; Sari, H.; Soekmen, I.

    2011-01-01

    In this work the effects of intense laser on the electron-related nonlinear optical absorption and nonlinear optical rectification in GaAs-Ga 1-x Al x As quantum wells are studied under, applied electric and magnetic field. The electric field is applied along the growth direction of the quantum well whereas the magnetic field has been considered to be in-plane. The calculations were performed within the density matrix formalism with the use of the effective mass and parabolic band approximations. The intense laser effects are included through the Floquet method, by modifying the confining potential associated to the heterostructure. Results are presented for the nonlinear optical absorption, the nonlinear optical rectification and the resonant peak of these two optical processes. Several configurations of the dimensions of the quantum well, the applied electric and magnetic fields, and the incident intense laser radiation have been considered. The outcome of the calculation suggests that the nonlinear optical absorption and optical rectification are non-monotonic functions of the dimensions of the heterostructure and of the external perturbations considered in this work.

  13. Noncontact speckle-based optical sensor for detection of glucose concentration using magneto-optic effect

    Science.gov (United States)

    Ozana, Nisan; Beiderman, Yevgeny; Anand, Arun; Javidi, Baharam; Polani, Sagi; Schwarz, Ariel; Shemer, Amir; Garcia, Javier; Zalevsky, Zeev

    2016-06-01

    We experimentally verify a speckle-based technique for noncontact measurement of glucose concentration in the bloodstream. The final device is intended to be a single wristwatch-style device containing a laser, a camera, and an alternating current (ac) electromagnet generated by a solenoid. The experiments presented are performed in vitro as proof of the concept. When a glucose substance is inserted into a solenoid generating an ac magnetic field, it exhibits Faraday rotation, which affects the temporal changes of the secondary speckle pattern distributions. The temporal frequency resulting from the ac magnetic field was found to have a lock-in amplification role, which increased the observability of the relatively small magneto-optic effect. Experimental results to support the proposed concept are presented.

  14. The gravitational lens effect and its optical equivalents

    International Nuclear Information System (INIS)

    Freitas, L.R. de.

    1987-01-01

    This work presents the evolution of the use of the so called gravitational lens effect from a simple observational teste of the General Relativity theory to an instrument to measure cosmological parameters. A detailed analysis of how a gravitational ''lens'' deflects light without forming images is shown for the case of the deflector with spherical symmetry. In addition, the exact optical equivalent of a cylindrical gravitational lens, which forms true images, is proposed. Finally the problem of the formation of multiple images and the related astronomical observations is discussed. (author) [pt

  15. Phase control effects in optical diffraction radiation from a slit

    International Nuclear Information System (INIS)

    Castellano, M.; Chiadroni, E.; Cianchi, A.

    2010-01-01

    Optical Diffraction Radiation (ODR) from a slit is becoming a real promising instrument for measuring the transverse beam size, or even the emittance of the very high brightness linacs driving SASE FELs or the future ILC which require non-intercepting diagnostic devices. But to correctly explain experimental data it is necessary to further develop the theory of this radiation emission. In this paper we discuss in particular the effects of a non-perfect coplanarity of the two halves of a slit, that introduces a phase difference in the field produced by the two half-planes. Such non-coplanarity can result from mechanical stress for instance.

  16. Semi-analytical model of filtering effects in microwave phase shifters based on semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Chen, Yaohui; Xue, Weiqi; Öhman, Filip

    2008-01-01

    We present a model to interpret enhanced microwave phase shifts based on filter assisted slow and fast light effects in semiconductor optical amplifiers. The model also demonstrates the spectral phase impact of input optical signals.......We present a model to interpret enhanced microwave phase shifts based on filter assisted slow and fast light effects in semiconductor optical amplifiers. The model also demonstrates the spectral phase impact of input optical signals....

  17. Light-effect transistor (LET with multiple independent gating controls for optical logic gates and optical amplification

    Directory of Open Access Journals (Sweden)

    Jason eMarmon

    2016-03-01

    Full Text Available Modern electronics are developing electronic-optical integrated circuits, while their electronic backbone, e.g. field-effect transistors (FETs, remains the same. However, further FET down scaling is facing physical and technical challenges. A light-effect transistor (LET offers electronic-optical hybridization at the component level, which can continue Moore’s law to quantum region without requiring a FET’s fabrication complexity, e.g. physical gate and doping, by employing optical gating and photoconductivity. Multiple independent gates are therefore readily realized to achieve unique functionalities without increasing chip space. Here we report LET device characteristics and novel digital and analog applications, such as optical logic gates and optical amplification. Prototype CdSe-nanowire-based LETs show output and transfer characteristics resembling advanced FETs, e.g. on/off ratios up to ~1.0x106 with a source-drain voltage of ~1.43 V, gate-power of ~260 nW, and subthreshold swing of ~0.3 nW/decade (excluding losses. Our work offers new electronic-optical integration strategies and electronic and optical computing approaches.

  18. Optical effects in artificial opals infiltrated with gold nanoparticles

    Science.gov (United States)

    Comoretto, Davide; Morandi, Valentina; Marabelli, Franco; Amendola, Vincenzo; Meneghetti, Moreno

    2006-04-01

    Polystyrene artificial opals are directly grown with embedded gold nanoparticles (NpAu) in their interstices. Reflectance spectra of samples having different sphere diameters and nanoparticles load clearly show a red shift of the photonic band gap as well as a reduction of its width without showing direct evidence of NpAu absorption. The case of transmission spectra is instead more complicated: here, overlapped to a broad NpAu absorption, a structure having unusual lineshape is detected. The infiltration of opal with NpAu removes the polarization dependence of the photonic band structure observed in bare opals. The lineshape of the absorption spectra suggest a spatial localization of the electromagnetic field in the volume where NpAu are confined thus enhancing its local intensity. This effect seems to be effective to stimulate optical nonlinearities of NpAu. Nanosecond transient absorption measurements on NpAu infiltrated opals indicate that a variation of transmission of about 10% is observed. Since this effect takes place within the pump pulse and since NpAu photoluminescence has been subtracted to the signal, we attribute it to an optical switching process.

  19. Effect of dielectric confinement on optical properties of colloidal nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Rodina, A. V., E-mail: anna.rodina@mail.ioffe.ru [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation); Efros, Al. L., E-mail: efros@nrl.navy.mil [Naval Research Laboratory (United States)

    2016-03-15

    We review the effects caused by a large difference in the dielectric constants of a semiconductor and its surrounding in colloidal semiconductor nanostructures (NSs) with various shapes, e.g., nanocrystals, nanorods, and nanoplatelets. The difference increases the electron–hole interaction and consequently the exciton binding energy and its oscillator transition strength. On the other hand, this difference reduces the electric field of a photon penetrating the NS (the phenomenon is called the local field effect) and reduces the photon coupling to an exciton. We show that the polarization properties of the individual colloidal NSs as well as of their randomly oriented ensemble are determined both by the anisotropy of the local field effect and by the symmetry of the exciton states participating in optical transitions. The calculations explain the temperature and time dependences of the degree of linear polarization measured in an ensemble of CdSe nanocrystals.

  20. Self-Focusing and the Talbot Effect in Conformal Transformation Optics.

    Science.gov (United States)

    Wang, Xiangyang; Chen, Huanyang; Liu, Hui; Xu, Lin; Sheng, Chong; Zhu, Shining

    2017-07-21

    Transformation optics has been used to propose various novel optical devices. With the help of metamaterials, several intriguing designs, such as invisibility cloaks, have been implemented. However, as the basic units should be much smaller than the working wavelengths to achieve the effective material parameters, and the sizes of devices should be much larger than the wavelengths of illumination to work within the light-ray approximation, it is a big challenge to implement an experimental system that works simultaneously for both geometric optics and wave optics. In this Letter, by using a gradient-index microstructured optical waveguide, we realize a device of conformal transformation optics (CTO) and demonstrate its self-focusing property for geometry optics and the Talbot effect for wave optics. In addition, the Talbot effect in such a system has a potential application to transfer digital information without diffraction. Our findings demonstrate the photon controlling ability of CTO in a feasible experiment system.

  1. Self-Focusing and the Talbot Effect in Conformal Transformation Optics

    Science.gov (United States)

    Wang, Xiangyang; Chen, Huanyang; Liu, Hui; Xu, Lin; Sheng, Chong; Zhu, Shining

    2017-07-01

    Transformation optics has been used to propose various novel optical devices. With the help of metamaterials, several intriguing designs, such as invisibility cloaks, have been implemented. However, as the basic units should be much smaller than the working wavelengths to achieve the effective material parameters, and the sizes of devices should be much larger than the wavelengths of illumination to work within the light-ray approximation, it is a big challenge to implement an experimental system that works simultaneously for both geometric optics and wave optics. In this Letter, by using a gradient-index microstructured optical waveguide, we realize a device of conformal transformation optics (CTO) and demonstrate its self-focusing property for geometry optics and the Talbot effect for wave optics. In addition, the Talbot effect in such a system has a potential application to transfer digital information without diffraction. Our findings demonstrate the photon controlling ability of CTO in a feasible experiment system.

  2. All-optical clocked flip-flops and random access memory cells using the nonlinear polarization rotation effect of low-polarization-dependent semiconductor optical amplifiers

    Science.gov (United States)

    Wang, Yongjun; Liu, Xinyu; Tian, Qinghua; Wang, Lina; Xin, Xiangjun

    2018-03-01

    Basic configurations of various all-optical clocked flip-flops (FFs) and optical random access memory (RAM) based on the nonlinear polarization rotation (NPR) effect of low-polarization-dependent semiconductor optical amplifiers (SOA) are proposed. As the constituent elements, all-optical logic gates and all-optical SR latches are constructed by taking advantage of the SOA's NPR switch. Different all-optical FFs (AOFFs), including SR-, D-, T-, and JK-types as well as an optical RAM cell were obtained by the combination of the proposed all-optical SR latches and logic gates. The effectiveness of the proposed schemes were verified by simulation results and demonstrated by a D-FF and 1-bit RAM cell experimental system. The proposed all-optical clocked FFs and RAM cell are significant to all-optical signal processing.

  3. Cost-Effective Brillouin Optical Time-Domain Analysis Sensor Using a Single Optical Source and Passive Optical Filtering

    Directory of Open Access Journals (Sweden)

    H. Iribas

    2016-01-01

    Full Text Available We present a simplified configuration for distributed Brillouin optical time-domain analysis sensors that aims to reduce the cost of the sensor by reducing the number of components required for the generation of the two optical waves involved in the sensing process. The technique is based on obtaining the pump and probe waves by passive optical filtering of the spectral components generated in a single optical source that is driven by a pulsed RF signal. The optical source is a compact laser with integrated electroabsorption modulator and the optical filters are based on fiber Bragg gratings. Proof-of-concept experiments demonstrate 1 m spatial resolution over a 20 km sensing fiber with a 0.9 MHz precision in the measurement of the Brillouin frequency shift, a performance similar to that of much more complex setups. Furthermore, we discuss the factors limiting the sensor performance, which are basically related to residual spectral components in the filtering process.

  4. Effect of capping agents on optical and antibacterial properties of ...

    Indian Academy of Sciences (India)

    Administrator

    unique optical properties resulting from quantum con- finement ... them suitable in application such as biomedical label- ling,4 solar ... All optical measurements were carried out at ..... QDs with biomolecules and to use them as biosensors,.

  5. Tunable optical frequency comb enabled scalable and cost-effective multiuser orthogonal frequency-division multiple access passive optical network with source-free optical network units.

    Science.gov (United States)

    Chen, Chen; Zhang, Chongfu; Liu, Deming; Qiu, Kun; Liu, Shuang

    2012-10-01

    We propose and experimentally demonstrate a multiuser orthogonal frequency-division multiple access passive optical network (OFDMA-PON) with source-free optical network units (ONUs), enabled by tunable optical frequency comb generation technology. By cascading a phase modulator (PM) and an intensity modulator and dynamically controlling the peak-to-peak voltage of a PM driven signal, a tunable optical frequency comb source can be generated. It is utilized to assist the configuration of a multiple source-free ONUs enhanced OFDMA-PON where simultaneous and interference-free multiuser upstream transmission over a single wavelength can be efficiently supported. The proposed multiuser OFDMA-PON is scalable and cost effective, and its feasibility is successfully verified by experiment.

  6. Optical enhancement effects of plasmonic nanostructures on organic photovoltaic cells

    KAUST Repository

    Park, Hui Joon

    2015-04-01

    © 2015 Hui Joon Park and L. Jay Guo. Published by Elsevier B.V. on behalf of Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. All rights reserved. In this article, the optical enhancement effects of plasmonic nanostructures on OPV cells were reviewed as an effective way to resolve the mismatch problems between the short exciton diffusion length in organic semiconductors (around 10 nm) and the large thickness required to fully absorb sunlight (e.g. hundreds of nanometers). Especially, the performances of OPVs with plasmonic nanoparticles in photoactive and buffer layers and with periodic nanostructures were investigated. Furthermore, nanoimprint lithography-based nanofabrication processes that can easily control the dimension and uniformity of structures for large-area and uniform plasmonic nanostructures were demonstrated.

  7. Central obscuration effects on optical synthetic aperture imaging

    Science.gov (United States)

    Wang, Xue-wen; Luo, Xiao; Zheng, Li-gong; Zhang, Xue-jun

    2014-02-01

    Due to the central obscuration problem exists in most optical synthetic aperture systems, it is necessary to analyze its effects on their image performance. Based on the incoherent diffraction limited imaging theory, a Golay-3 type synthetic aperture system was used to study the central obscuration effects on the point spread function (PSF) and the modulation transfer function (MTF). It was found that the central obscuration does not affect the width of the central peak of the PSF and the cutoff spatial frequency of the MTF, but attenuate the first sidelobe of the PSF and the midfrequency of the MTF. The imaging simulation of a Golay-3 type synthetic aperture system with central obscuration proved this conclusion. At last, a Wiener Filter restoration algorithm was used to restore the image of this system, the images were obviously better.

  8. Superradiance Effects in the Linear and Nonlinear Optical Response of Quantum Dot Molecules

    Science.gov (United States)

    Sitek, A.; Machnikowski, P.

    2008-11-01

    We calculate the linear optical response from a single quantum dot molecule and the nonlinear, four-wave-mixing response from an inhomogeneously broadened ensemble of such molecules. We show that both optical signals are affected by the coupling-dependent superradiance effect and by optical interference between the two polarizations. As a result, the linear and nonlinear responses are not identical.

  9. The effect of irradiation process on the optical fiber coating

    Science.gov (United States)

    Wang, Zeyu; Xiao, Chun; Rong, Liang; Ji, Wei

    2018-03-01

    Protective fiber coating decides the mechanical strength of an optical fiber as well as its resistance against the influence of environment, especially in some special areas like irradiation atmospheres. According to the experiment in this paper, it was found that the tensile force and peeling force of resistant radiation optical fiber was improved because of the special optical fiber coating.

  10. Assessment of laser-induced acceleration effects in optical clearing of in vivo human skin by optical coherence tomography

    International Nuclear Information System (INIS)

    Zhan, Zhigang; Wei, Huajiang; Jin, Ying

    2015-01-01

    Laser irradiation is considered to be a promising innovative technology which has been developed in an attempt to increase transdermal drug delivery. In this study, a near-infrared CW diode laser (785 nm) was applied to increase permeability of glycerol solutions in human skin in vivo and improve the optical clearing efficacy. Results show that for both 15%v/v and 30%v/v glycerol, the permeability coefficient increased significantly if the detected area of the skin tissue was treated with laser irradiation before optical clearing agents (OCAs) were applied. This study based on optical coherence tomography imaging technique and optical clearing effect finds laser irradiation a new approach for enhancing the penetration of OCAs and accelerating the rate of transdermal drug delivery. (paper)

  11. Effects of optical feedback in a birefringence-Zeeman dual frequency laser at high optical feedback levels

    International Nuclear Information System (INIS)

    Mao Wei; Zhang Shulian

    2007-01-01

    Optical feedback effects are studied in a birefringence-Zeeman dual frequency laser at high optical feedback levels. The intensity modulation features of the two orthogonally polarized lights are investigated in both isotropic optical feedback (IOF) and polarized optical feedback (POF). In IOF, the intensities of both beams are modulated simultaneously, and four zones, i.e., the e-light zone, the o-light and e-light zone, the o-light zone, and the no-light zone, are formed in a period corresponding to a half laser wavelength displacement of the feedback mirror. In POF, the two orthogonally polarized lights will oscillate alternately. Strong mode competition can be observed, and it affects the phase difference between the two beams greatly. The theoretical analysis is presented, which is in good agreement with the experimental results. The potential use of the experimental results is also discussed

  12. Assessment of laser-induced acceleration effects in optical clearing of in vivo human skin by optical coherence tomography

    Science.gov (United States)

    Zhan, Zhigang; Wei, Huajiang; Jin, Ying

    2015-02-01

    Laser irradiation is considered to be a promising innovative technology which has been developed in an attempt to increase transdermal drug delivery. In this study, a near-infrared CW diode laser (785 nm) was applied to increase permeability of glycerol solutions in human skin in vivo and improve the optical clearing efficacy. Results show that for both 15%v/v and 30%v/v glycerol, the permeability coefficient increased significantly if the detected area of the skin tissue was treated with laser irradiation before optical clearing agents (OCAs) were applied. This study based on optical coherence tomography imaging technique and optical clearing effect finds laser irradiation a new approach for enhancing the penetration of OCAs and accelerating the rate of transdermal drug delivery.

  13. Cost-Effective Magnetoencephalography Based on Time Encoded Optical Fiber Interferometry for Epilepsy and Tinnitus

    Science.gov (United States)

    2016-09-01

    respectively. A length of dispersive fiber and a computer are used to first “decode” the optical interference signal into dispersed optical wave-packet...AWARD NUMBER: W81XWH-15-1-0008 TITLE: Cost-Effective Magnetoencephalography Based on Time-Encoded Optical Fiber Interferometry for Epilepsy...10 Dec 2014 - 9 Jun 2016 4. TITLE AND SUBTITLE 5a.16 CONTRACT NUMBER Encoded Optical Fiber Interferometry for Epilepsy and Tinnitus Diagnosis 5b

  14. Magneto-optic gradient effect in domain-wall images: at the crossroads of magneto-optics and micromagnetics

    Czech Academy of Sciences Publication Activity Database

    Kamberský, Vladimír; Schäfer, R.

    2011-01-01

    Roč. 84, č. 1 (2011), 013815/1-013815/6 ISSN 1050-2947 Institutional research plan: CEZ:AV0Z10100521 Keywords : edge and boundary effects * reflection and refraction * diffraction and scattering * magneto-optical effects * theory * models * numerical simulation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.878, year: 2011

  15. Depth-of-field effects in wiggler radiation sources: Geometrical versus wave optics

    Directory of Open Access Journals (Sweden)

    Richard P. Walker

    2017-02-01

    Full Text Available A detailed analysis is carried out of the optical properties of synchrotron radiation emitted by multipole wigglers, concentrating on the effective source size and brightness and the so-called “depth of field” effects, concerning which there has been some controversy in the literature. By comparing calculations made with both geometrical optics and wave optics methods we demonstrate that the two approaches are not at variance, and that the wave optics results tend towards those of geometrical optics under well-defined conditions.

  16. Opto-mechanical design of optical window for aero-optics effect simulation instruments

    Science.gov (United States)

    Wang, Guo-ming; Dong, Dengfeng; Zhou, Weihu; Ming, Xing; Zhang, Yan

    2016-10-01

    A complete theory is established for opto-mechanical systems design of the window in this paper, which can make the design more rigorous .There are three steps about the design. First, the universal model of aerodynamic environment is established based on the theory of Computational Fluid Dynamics, and the pneumatic pressure distribution and temperature data of optical window surface is obtained when aircraft flies in 5-30km altitude, 0.5-3Ma speed and 0-30°angle of attack. The temperature and pressure distribution values for the maximum constraint is selected as the initial value of external conditions on the optical window surface. Then, the optical window and mechanical structure are designed, which is also divided into two parts: First, mechanical structure which meet requirements of the security and tightness is designed. Finally, rigorous analysis and evaluation are given about the structure of optics and mechanics we have designed. There are two parts to be analyzed. First, the Fluid-Solid-Heat Coupled Model is given based on finite element analysis. And the deformation of the glass and structure can be obtained by the model, which can assess the feasibility of the designed optical windows and ancillary structure; Second, the new optical surface is fitted by Zernike polynomials according to the deformation of the surface of the optical window, which can evaluate imaging quality impact of spectral camera by the deformation of window.

  17. Role of transverse-momentum currents in the optical Magnus effect in free space

    OpenAIRE

    Luo, Hailu; Wen, Shuangchun; Shu, Weixing; Fan, Dianyuan

    2010-01-01

    We establish a general vector field model to describe the role of transverse-momentum currents in the optical Magnus effect in free space. As an analogy of the mechanical Magnus effect, the circularly polarized wave packet in our model acts as the rotating ball, and its rotation direction depends on the polarization state. Based on this model, we demonstrate the existence of an optical polarization-dependent Magnus effect which is significantly different from the conventional optical Magnus e...

  18. Linear electro-optic effect in cubic silicon carbide

    Science.gov (United States)

    Tang, Xiao; Irvine, Kenneth G.; Zhang, Dongping; Spencer, Michael G.

    1991-01-01

    The first observation is reported of the electrooptic effect of cubic silicon carbide (beta-SiC) grown by a low-pressure chemical vapor deposition reactor using the hydrogen, silane, and propane gas system. At a wavelength of 633 nm, the value of the electrooptic coefficient r41 in beta-SiC is determined to be 2.7 +/- 0.5 x 10 (exp-12) m/V, which is 1.7 times larger than that in gallium arsenide measured at 10.6 microns. Also, a half-wave voltage of 6.4 kV for beta-SiC is obtained. Because of this favorable value of electrooptic coefficient, it is believed that silicon carbide may be a promising candidate in electrooptic applications for high optical intensity in the visible region.

  19. Thermal effects in high average power optical parametric amplifiers.

    Science.gov (United States)

    Rothhardt, Jan; Demmler, Stefan; Hädrich, Steffen; Peschel, Thomas; Limpert, Jens; Tünnermann, Andreas

    2013-03-01

    Optical parametric amplifiers (OPAs) have the reputation of being average power scalable due to the instantaneous nature of the parametric process (zero quantum defect). This Letter reveals serious challenges originating from thermal load in the nonlinear crystal caused by absorption. We investigate these thermal effects in high average power OPAs based on beta barium borate. Absorption of both pump and idler waves is identified to contribute significantly to heating of the nonlinear crystal. A temperature increase of up to 148 K with respect to the environment is observed and mechanical tensile stress up to 40 MPa is found, indicating a high risk of crystal fracture under such conditions. By restricting the idler to a wavelength range far from absorption bands and removing the crystal coating we reduce the peak temperature and the resulting temperature gradient significantly. Guidelines for further power scaling of OPAs and other nonlinear devices are given.

  20. Strong crystal field effect in ? - optical absorption study

    Science.gov (United States)

    Gajek, Z.; Krupa, J. C.

    1998-12-01

    =-1 Results of optical absorption measurements in polarized light on tetravalent neptunium diluted in a 0953-8984/10/50/021/img6 single crystal are reported. The recorded spectra are complex, pointing to the presence of an 0953-8984/10/50/021/img7 impurity. The electronic transitions assigned to the 0953-8984/10/50/021/img8 ion are interpreted in terms of the usual model, following the actual understanding of the neptunium electronic structure and independent theoretical predictions. R.m.s. deviations of the order of 0953-8984/10/50/021/img9 have been obtained for 42 levels fitted with 11 free parameters. The crystal field effect resulting from the fitting is considerably larger than that observed for the uranium ion in the same host.

  1. Dust Effect on The Performance of Optical Wireless Communication System

    Directory of Open Access Journals (Sweden)

    Fadel Abdul-Zahra Murad

    2017-11-01

    Full Text Available In this paper wireless optical communication system (FSO is designed through the use of software (Optisystem . The paper also study  the effect of atmospheric dust on the performance of communication system (FSO, the effect of dust concentration on the visibility by taking a different concentrations of dust (9, 20, 40, 60, 80 100, 120 gm / month / m2 . The effect of the visibility on the attenuation of dust concentration on each of these concentrations , and calculate attenuation of dust for the  wavelengths  (784 nm, 1550 nm. The Paper also deals with effect of the transmitted laser  power on the transmitter range (propagation distance where five different values of transmitted laser power (10mw, 20mw, 30mw, 40mw, 50mw are taken  and the study calculates the maximum transmitter range of  each value of the transmitted power under the influence of attenuation atmospheric dust concentrations for each concentration of dust used and also for the two wavelengths (1550nm, 784nm.

  2. Effects of two-photon absorption on all optical logic operation based on quantum-dot semiconductor optical amplifiers

    Science.gov (United States)

    Zhang, Xiang; Dutta, Niloy K.

    2018-01-01

    We investigate all-optical logic operation in quantum-dot semiconductor optical amplifier (QD-SOA) based Mach-Zehnder interferometer considering the effects of two-photon absorption (TPA). TPA occurs during the propagation of sub-picosecond pulses in QD-SOA, which leads to a change in carrier recovery dynamics in quantum-dots. We utilize a rate equation model to take into account carrier refill through TPA and nonlinear dynamics including carrier heating and spectral hole burning in the QD-SOA. The simulation results show the TPA-induced pumping in the QD-SOA can reduce the pattern effect and increase the output quality of the all-optical logic operation. With TPA, this scheme is suitable for high-speed Boolean logic operation at 320 Gb/s.

  3. Anomalous Faraday effect of a system with extraordinary optical transmittance.

    Science.gov (United States)

    Khanikaev, Alexander B; Baryshev, Alexander V; Fedyanin, Andrey A; Granovsky, Alexander B; Inoue, Mitsuteru

    2007-05-28

    It is shown theoretically that the Faraday rotation becomes anomalously large and exhibits extraordinary behavior near the frequencies of the extraordinary optical transmittance through optically thick perforated metal film with holes filled with a magneto-optically active material. This phenomenon is explained as result of strong confinement of the evanescent electromagnetic field within magnetic material, which occurs due to excitation of the coupled plasmon-polaritons on the opposite surfaces of the film.

  4. Nonarteritic anterior ischemic optic neuropathy: cause, effect, and management.

    Science.gov (United States)

    Berry, Shauna; Lin, Weijie V; Sadaka, Ama; Lee, Andrew G

    2017-01-01

    Nonarteritic anterior ischemic optic neuropathy (NAION) is the most common form of ischemic optic neuropathy and the second most common optic neuropathy. Patients are generally over the age of 50 years with vasculopathic risk factors (eg, diabetes mellitus, hypertension, and obstructive sleep apnea). The exact mechanism of NAION is not fully understood. In addition, several treatment options have been proposed. This article summarizes the current literature on the diagnosis, treatment, and management of NAION.

  5. Electro-optical effects in porous PET films filled with liquid crystal: new possibilities for fiber optics and THZ applications.

    Science.gov (United States)

    Chopik, A; Pasechnik, S; Semerenko, D; Shmeliova, D; Dubtsov, A; Srivastava, A K; Chigrinov, V

    2014-03-15

    The results of investigation of electro-optical properties of porous polyethylene terephthalate films filled with a nematic liquid crystal (5 CB) are presented. It is established that the optical response of the samples on the applied voltage drastically depends on the frequency range. At low frequencies of applied electrical field (foptical response arises as an impulse of light intensity, which decays for the time essentially shorter than the electric pulse duration. At high frequencies (f>fc) electric field induces an overall change in the light intensity, which is typical for an electro-optical response of a liquid crystal (LC) layer in a conventional "sandwich"-like cell. The dependences of critical frequency fc, threshold voltages, and characteristic times on a pore diameter d were established. The peculiarities of electro-optical effects can be explained in the framework of the approach which connects the variations of light intensity with the corresponding changes of the effective refractive index n(eff) of a composite LC media. The unusual behavior of the electro-optical response at low frequencies is assigned to the orienting action of the specific shear flow typical for electrokinetic phenomena in polar liquids.

  6. Modified geometrical optics of a smoothly inhomogeneous isotropic medium: The anisotropy, Berry phase, and the optical Magnus effect

    International Nuclear Information System (INIS)

    Bliokh, K.Yu.; Bliokh, Yu.P.

    2004-01-01

    We present a modification of the geometrical optics method, which allows one to properly separate the complex amplitude and the phase of the wave solution. Applying this modification to a smoothly inhomogeneous isotropic medium, we show that in the first geometrical optics approximation the medium is weakly anisotropic. The refractive index, being dependent on the direction of the wave vector, contains the correction, which is proportional to the Berry geometric phase. Two independent eigenmodes of right-hand and left-hand circular polarizations exist in the medium. Their group velocities and phase velocities differ. The difference in the group velocities results in the shift of the rays of different polarizations (the optical Magnus effect). The difference in the phase velocities causes an increase of the Berry phase along with the interference of two modes leading to the familiar Rytov law about the rotation of the polarization plane of a wave. The theory developed suggests that both the optical Magnus effect and the Berry phase are accompanying nonlocal topological effects. In this paper the Hamilton ray equations giving a unified description for both of these phenomena have been derived and also a novel splitting effect for a ray of noncircular polarization has been predicted. Specific examples are also discussed

  7. Modified geometrical optics of a smoothly inhomogeneous isotropic medium: the anisotropy, Berry phase, and the optical Magnus effect.

    Science.gov (United States)

    Bliokh, K Yu; Bliokh, Yu P

    2004-08-01

    We present a modification of the geometrical optics method, which allows one to properly separate the complex amplitude and the phase of the wave solution. Appling this modification to a smoothly inhomogeneous isotropic medium, we show that in the first geometrical optics approximation the medium is weakly anisotropic. The refractive index, being dependent on the direction of the wave vector, contains the correction, which is proportional to the Berry geometric phase. Two independent eigenmodes of right-hand and left-hand circular polarizations exist in the medium. Their group velocities and phase velocities differ. The difference in the group velocities results in the shift of the rays of different polarizations (the optical Magnus effect). The difference in the phase velocities causes an increase of the Berry phase along with the interference of two modes leading to the familiar Rytov law about the rotation of the polarization plane of a wave. The theory developed suggests that both the optical Magnus effect and the Berry phase are accompanying nonlocal topological effects. In this paper the Hamilton ray equations giving a unified description for both of these phenomena have been derived and also a novel splitting effect for a ray of noncircular polarization has been predicted. Specific examples are also discussed.

  8. Effects of coating on the optical trapping efficiency of microspheres via geometrical optics approximation.

    Science.gov (United States)

    Park, Bum Jun; Furst, Eric M

    2014-09-23

    We present the optical trapping forces that are generated when a single laser beam strongly focuses on a coated dielectric microsphere. On the basis of geometrical optics approximation (GOA), in which a particle intercepts all of the rays that make up a single laser beam, we calculate the trapping forces with varying coating thickness and refractive index values. To increase the optical trapping efficiency, the refractive index (n(b)) of the coating is selected such that n(a) < n(b) < n(c), where na and nc are the refractive indices of the medium and the core material, respectively. The thickness of the coating also increases trapping efficiency. Importantly, we find that trapping forces for the coated particles are predominantly determined by two rays: the incident ray and the first refracted ray to the medium.

  9. ATMOSPHERE PRESSURE EFFECT ON THE FIBER OPTIC GYROSCOPE OUTPUT SYGNAL

    Directory of Open Access Journals (Sweden)

    Ilya A. Sharkov

    2017-05-01

    Full Text Available The paper describes research results of the atmospheric pressure effect on the output signal of a fiber optic gyroscope (FOG. In the course of experiments, FOG was placed into a hermetic chamber. The atmosphere pressure was varying in the range from 0.8 to 1.5 atm. All the data, including the FOG output signal, temperature, and data from the pressure sensor installed inside the FOG, were synchronously registered with the computer software. The separation of scale factor change from zero offset in the experiment was carried out by setting the sensitive FOG axis at 0°, 90° and 270° relative to the East (the FOG was set perpendicular to the horizon. After the data processing it was concluded that the FOG signal error associated with the pressure affects mainly on the additive component. The pressure effect on the multiplicative component appeared to be negligible at rotational velocities used in the experiment (0 - 130 /h. At the same time, the FOG signal has a high linear correlation coefficient with the derivative of pressure over time (in some cases, more than 0.9. The experiment was repeated several times and the high degree of the drift repeatability was shown. That makes it possible to implement the compensation algorithm. Application of the simplest algorithmic compensation based on the polynomial of the first degree (ax + b enabled to reduce the root-mean-square (RMS and drift of the signal by 2-9 times.

  10. Techniques for Effective Optical Noise Rejection in Amplitude-Modulated Laser Optical Radars for Underwater Three-Dimensional Imaging

    Directory of Open Access Journals (Sweden)

    Francucci M

    2010-01-01

    Full Text Available Amplitude-modulated (AM laser imaging is a promising technology for the production of accurate three-dimensional (3D images of submerged scenes. The main challenge is that radiation scattered off water gives rise to a disturbing signal (optical noise that degrades more and more the quality of 3D images for increasing turbidity. In this paper, we summarize a series of theoretical findings, that provide valuable hints for the development of experimental methods enabling a partial rejection of optical noise in underwater imaging systems. In order to assess the effectiveness of these methods, which range from modulation/demodulation to polarimetry, we carried out a series of experiments by using the laboratory prototype of an AM 3D imager ( = 405 nm for marine archaeology surveys, in course of realization at the ENEA Artificial Vision Laboratory (Frascati, Rome. The obtained results confirm the validity of the proposed methods for optical noise rejection.

  11. Techniques for Effective Optical Noise Rejection in Amplitude-Modulated Laser Optical Radars for Underwater Three-Dimensional Imaging

    Directory of Open Access Journals (Sweden)

    R. Ricci

    2010-01-01

    Full Text Available Amplitude-modulated (AM laser imaging is a promising technology for the production of accurate three-dimensional (3D images of submerged scenes. The main challenge is that radiation scattered off water gives rise to a disturbing signal (optical noise that degrades more and more the quality of 3D images for increasing turbidity. In this paper, we summarize a series of theoretical findings, that provide valuable hints for the development of experimental methods enabling a partial rejection of optical noise in underwater imaging systems. In order to assess the effectiveness of these methods, which range from modulation/demodulation to polarimetry, we carried out a series of experiments by using the laboratory prototype of an AM 3D imager (λ = 405 nm for marine archaeology surveys, in course of realization at the ENEA Artificial Vision Laboratory (Frascati, Rome. The obtained results confirm the validity of the proposed methods for optical noise rejection.

  12. Reducing aberration effect of Fourier transform lens by modifying Fourier spectrum of diffractive optical element in beam shaping optical system.

    Science.gov (United States)

    Zhang, Fang; Zhu, Jing; Song, Qiang; Yue, Weirui; Liu, Jingdan; Wang, Jian; Situ, Guohai; Huang, Huijie

    2015-10-20

    In general, Fourier transform lenses are considered as ideal in the design algorithms of diffractive optical elements (DOEs). However, the inherent aberrations of a real Fourier transform lens disturb the far field pattern. The difference between the generated pattern and the expected design will impact the system performance. Therefore, a method for modifying the Fourier spectrum of DOEs without introducing other optical elements to reduce the aberration effect of the Fourier transform lens is proposed. By applying this method, beam shaping performance is improved markedly for the optical system with a real Fourier transform lens. The experiments carried out with a commercial Fourier transform lens give evidence for this method. The method is capable of reducing the system complexity as well as improving its performance.

  13. Neuroprotective effects of gypenosides in experimental autoimmune optic neuritis

    Directory of Open Access Journals (Sweden)

    Hong-Kan Zhang

    2017-04-01

    Full Text Available AIM: To determine whether gypenosides have protective effects in experimental autoimmune optic neuritis (EAON. METHODS: Mice were randomly divided into seven groups: control group, model group, three different density gypenosides monotherapy, methylprednisolone monotherapy, combination of gypenosides and methylprednisolone group. The control group was subcutaneously injected with oil emulsion adjuvant and all other groups were subcutaneously immunized with an emulsified mixture of myelin oligodendrocyte glycoprotein (MOG 35-55 peptide to induce EAON. Mice in the gypenosides groups were administered injections daily with three concentrations (15 mg/kg, 30 mg/kg, 45 mg/kg of gypenosides respectively. Mice in the methylprednisolone group and the combination treatment group were injected daily with methylprednisolone (20 mg/kg or methylprednisolone (20 mg/kg + gypenosides (30 mg/kg, respectively. After MOG immunization, visual evoked potential (VEP, optical coherence tomography (OCT, and histopathologic examination were performed at 14, 20, 30, and 40d post-inoculation (p.i.. All results were expressed as mean±SEM. The data were evaluated by one-way ANOVA followed by Tukey or Games-Howell test. RESULTS: Compared with the control group, p2 latency was prolonged in the model group (P=0.041. Combination treatment can alleviated the change in VEP at 20d p.i. (P=0.012. Average peripapillary retinal nerve fiber layer (RNFL thickness was reduced in the model group (P= 0.000, 30d; P=0.000, 40d and gypenosides treatment remarkably diminished the degree of RNFL degeneration at 30d and 40d p.i (P=0.000, 30d; P=0.000, 40d. The pathomorphological results showed a decrease in demye-lination (P=0.020 and inflammatory reactions in the combination group compared with the model group (20d p.i.. Gypenosides treatment also alleviated the degree of axonal loss (40d p.i. (P=0.003. CONCLUSION: Treatment with gypenosides exerts protective effects on retinal nerve fibers

  14. The effects of thermal annealing in structural and optical properties of RF sputtered amorphous silicon

    International Nuclear Information System (INIS)

    Abdul Fatah Awang Mat

    1988-01-01

    The effect of thermal annealing on structural and optical properties of amorphous silicon are studied on samples prepared by radio-frequency sputtering. The fundamental absorption edge of these films are investigated at room temperature and their respective parameters estimated. Annealing effect on optical properties is interpreted in terms of the removal of voids and a decrease of disorder. (author)

  15. Local nondestructive data reading in three-dimensional memory systems based on the optical Kerr effect

    International Nuclear Information System (INIS)

    Zheltikov, Aleksei M; Koroteev, Nikolai I; Naumov, A N; Fedotov, Andrei B; Magnitskiy, Sergey A; Sidorov-Biryukov, D A

    1998-01-01

    An investigation was made of the characteristics of the optical Kerr effect in a spiropyran solution. It was found that this effect makes it possible to distinguish the coloured and uncoloured forms of spiropyran and that it represents a promising method for nondestructive data reading in three-dimensional optical memory systems based on photochromic materials. (letters to the editor)

  16. Study on the nonlocality effects for generalized optical potentials

    International Nuclear Information System (INIS)

    Gurbanovich, I.S.; Zelenskaya, N.S.

    1981-01-01

    In previous studies the authors have ihown that the generalized optic potential (GOP) of particles interaction is a superposition of local and non local potentials (LP, NLP). On the example of α- particles scattering on the 8 Be nucleus at about 10-15 MeV the GOP nonlocal part is considered. For obtaining NLP the spectral decomposition of the Green function taking into account only contribution of relative motion of two α-particles in S-state is used. The locally-equivalent addition to central potential of α-particles scattering at 8 Be previously calculated is obtained. In a graphical form a total locally-equivalent potential and local GOP part are presented. It is shown that taking into account the nonlocallity effect in a locally energy approximation for precise wave function in S-state widen a potential hole without changing its depth. Such widening corresponds to the general character of behaviour of non local potentials calculated in the microscopic approach [ru

  17. Physical optics

    International Nuclear Information System (INIS)

    Kim Il Gon; Lee, Seong Su; Jang, Gi Wan

    2012-07-01

    This book indicates physical optics with properties and transmission of light, mathematical expression of wave like harmonic wave and cylindrical wave, electromagnetic theory and light, transmission of light with Fermat principle and Fresnel equation, geometrical optics I, geometrical optics II, optical instrument such as stops, glasses and camera, polarized light like double refraction by polarized light, interference, interference by multiple reflections, diffraction, solid optics, crystal optics such as Faraday rotation and Kerr effect and measurement of light. Each chapter has an exercise.

  18. Physical optics

    Energy Technology Data Exchange (ETDEWEB)

    Kim Il Gon; Lee, Seong Su; Jang, Gi Wan

    2012-07-15

    This book indicates physical optics with properties and transmission of light, mathematical expression of wave like harmonic wave and cylindrical wave, electromagnetic theory and light, transmission of light with Fermat principle and Fresnel equation, geometrical optics I, geometrical optics II, optical instrument such as stops, glasses and camera, polarized light like double refraction by polarized light, interference, interference by multiple reflections, diffraction, solid optics, crystal optics such as Faraday rotation and Kerr effect and measurement of light. Each chapter has an exercise.

  19. Effects of Environmental Factors on the Growth, Optical Density and ...

    African Journals Online (AJOL)

    . C. vulgaris was cultivated in sterilized natural seawater enriched with F/2-Si medium. Then grow in bucket, tub and photobioreactor (PBR) in outdoor condition. The daily routine work consisted of culture checkups of optical density, biomass ...

  20. Effect of annealing treatment on optical properties and ...

    Indian Academy of Sciences (India)

    2018-03-28

    Mar 28, 2018 ... Ellipsometry analysis was carried out for measuring optical constant of the films ... the methods is considered [21]. Diverging to existing 2D mod- .... Company [28]. Figure 6. ... The best performance was accom- plished for the ...

  1. Waveguidance by the photonic bandgap effect in optical fibres

    DEFF Research Database (Denmark)

    Broeng, Jes; Søndergaard, Thomas; Barkou, Stig Eigil

    1999-01-01

    Photonic crystals form a new class of intriguing building blocks to be utilized in future optoelectronics and electromagnetics. One of the most exciting possiblilties offered by phtonic crystals is the realization of new types of electromagnetic waveguides. In the optical domain, the most mature...... technology for such photonic bandgap (PBG) waveguides is in optical fibre configurations. These new fibres can be classified in a fundamentally different way to all optical waveguides and possess radically different guiding properties due to PBG guidance, as opposed to guidance by total internal refelction....... In this paper we summarize and review our theoretical work demonstrating the underlying physical principles of PBG guiding optical fibres and discuss some of their unique waveguiding properties....

  2. Optical effects induced by epitaxial tension in lead titanate

    Czech Academy of Sciences Publication Activity Database

    Dejneka, Alexandr; Chvostová, Dagmar; Pacherová, Oliva; Kocourek, Tomáš; Jelínek, Miroslav; Tyunina, Marina

    2018-01-01

    Roč. 112, č. 3 (2018), s. 1-5, č. článku 031111. ISSN 0003-6951 R&D Projects: GA ČR GA15-13778S; GA ČR GA15-15123S Institutional support: RVO:68378271 Keywords : epitaxy * inorganic compounds * optical properties * ferroelectric materials * optical metrology Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics , supercond.) Impact factor: 3.411, year: 2016

  3. Terahertz optical-Hall effect for multiple valley band materials: n-type silicon

    International Nuclear Information System (INIS)

    Kuehne, P.; Hofmann, T.; Herzinger, C.M.; Schubert, M.

    2011-01-01

    The optical-Hall effect comprises generalized ellipsometry at long wavelengths on samples with free-charge carriers placed within external magnetic fields. Measurement of the anisotropic magneto-optic response allows for the determination of the free-charge carrier properties including spatial anisotropy. In this work we employ the optical-Hall effect at terahertz frequencies for analysis of free-charge carrier properties in multiple valley band materials, for which the optical free-charge carrier contributions originate from multiple Brillouin-zone conduction or valence band minima or maxima, respectively. We investigate exemplarily the room temperature optical-Hall effect in low phosphorous-doped n-type silicon where free electrons are located in six equivalent conduction-band minima near the X-point. We simultaneously determine their free-charge carrier concentration, mobility, and longitudinal and transverse effective mass parameters.

  4. Nonarteritic anterior ischemic optic neuropathy: cause, effect, and management

    Directory of Open Access Journals (Sweden)

    Berry S

    2017-09-01

    Full Text Available Shauna Berry,1 Weijie V Lin,2 Ama Sadaka,1 Andrew G Lee1–7 1Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA; 2Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA; 3Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch (UTMB, Galveston, TX, USA; 4Department of Ophthalmology, 5Department of Neurology, 6Department of Neurosurgery, Weill Cornell Medicine, Houston, TX, USA; 7Department of Ophthalmology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA Abstract: Nonarteritic anterior ischemic optic neuropathy (NAION is the most common form of ischemic optic neuropathy and the second most common optic neuropathy. Patients are generally over the age of 50 years with vasculopathic risk factors (eg, diabetes mellitus, hypertension, and obstructive sleep apnea. The exact mechanism of NAION is not fully understood. In addition, several treatment options have been proposed. This article summarizes the current literature on the diagnosis, treatment, and management of NAION. Keywords: anterior ischemic optic neuropathy, nonarteritic anterior ischemic optic neuropathy, ischemic optic neuropathy

  5. SiC Optically Modulated Field-Effect Transistor

    Science.gov (United States)

    Tabib-Azar, Massood

    2009-01-01

    An optically modulated field-effect transistor (OFET) based on a silicon carbide junction field-effect transistor (JFET) is under study as, potentially, a prototype of devices that could be useful for detecting ultraviolet light. The SiC OFET is an experimental device that is one of several devices, including commercial and experimental photodiodes, that were initially evaluated as detectors of ultraviolet light from combustion and that could be incorporated into SiC integrated circuits to be designed to function as combustion sensors. The ultraviolet-detection sensitivity of the photodiodes was found to be less than desired, such that it would be necessary to process their outputs using high-gain amplification circuitry. On the other hand, in principle, the function of the OFET could be characterized as a combination of detection and amplification. In effect, its sensitivity could be considerably greater than that of a photodiode, such that the need for amplification external to the photodetector could be reduced or eliminated. The experimental SiC OFET was made by processes similar to JFET-fabrication processes developed at Glenn Research Center. The gate of the OFET is very long, wide, and thin, relative to the gates of typical prior SiC JFETs. Unlike in prior SiC FETs, the gate is almost completely transparent to near-ultraviolet and visible light. More specifically: The OFET includes a p+ gate layer less than 1/4 m thick, through which photons can be transported efficiently to the p+/p body interface. The gate is relatively long and wide (about 0.5 by 0.5 mm), such that holes generated at the body interface form a depletion layer that modulates the conductivity of the channel between the drain and the source. The exact physical mechanism of modulation of conductivity is a subject of continuing research. It is known that injection of minority charge carriers (in this case, holes) at the interface exerts a strong effect on the channel, resulting in amplification

  6. Mach-Zehnder interferometer implementation for thermo-optical and Kerr effect study

    Science.gov (United States)

    Bundulis, Arturs; Nitiss, Edgars; Busenbergs, Janis; Rutkis, Martins

    2018-04-01

    In this paper, we propose the Mach-Zehnder interferometric method for third-order nonlinear optical and thermo-optical studies. Both effects manifest themselves as refractive index dependence on the incident light intensity and are widely employed for multiple opto-optical and thermo-optical applications. With the implemented method, we have measured the Kerr and thermo-optical coefficients of chloroform under CW, ns and ps laser irradiance. The application of lasers with different light wavelengths, pulse duration and energy allowed us to distinguish the processes responsible for refractive index changes in the investigated solution. Presented setup was also used for demonstration of opto-optical switching. Results from Mach-Zehnder experiment were compared to Z-scan data obtained in our previous studies. Based on this, a quality comparison of both methods was assessed and advantages and disadvantages of each method were analyzed.

  7. Active control of electromagnetic radiation through an enhanced thermo-optic effect

    Science.gov (United States)

    Sheng, Chong; Liu, Hui; Zhu, Shining; Genov, Dentcho A.

    2015-01-01

    The control of electromagnetic radiation in transformation optical metamaterials brings the development of vast variety of optical devices. Of a particular importance is the possibility to control the propagation of light with light. In this work, we use a structured planar cavity to enhance the thermo-optic effect in a transformation optical waveguide. In the process, a control laser produces apparent inhomogeneous refractive index change inside the waveguides. The trajectory of a second probe laser beam is then continuously tuned in the experiment. The experimental results agree well with the developed theory. The reported method can provide a new approach toward development of transformation optical devices where active all-optical control of the impinging light can be achieved. PMID:25746689

  8. Photoconductivity, photoluminescence and optical Kerr nonlinear effects in zinc oxide films containing chromium nanoclusters

    International Nuclear Information System (INIS)

    Torres-Torres, C.; García-Cruz, M.L.; Castañeda, L.; Rangel Rojo, R.; Tamayo-Rivera, L.; Maldonado, A.; Avendaño-Alejo, M.

    2012-01-01

    Chromium doped zinc oxide thin solid films were deposited on soda–lime glass substrates. The photoconductivity of the material and its influence on the optical behavior was evaluated. A non-alkoxide sol–gel synthesis approach was used for the preparation of the samples. An enhancement of the photoluminescence response exhibited by the resulting photoconductive films with embedded chromium nanoclusters is presented. The modification in the photoconduction induced by a 445 nm wavelength was measured and then associated with the participation of the optical absorptive response. In order to investigate the third order optical nonlinearities of the samples, a standard time-resolved Optical Kerr Gate configuration with 80 fs pulses at 830 nm was used and a quasi-instantaneous pure electronic nonlinearity without the contribution of nonlinear optical absorption was observed. We estimate that from the inclusion of Cr nanoclusters into the sample results a strong optical Kerr effect originated by quantum confinement. The large photoluminescence response and the important refractive nonlinearity of the photoconductive samples seem to promise potential applications for the development of multifunctional all-optical nanodevices. - Highlights: ► Enhancement in photoluminescence for chromium doped zinc oxide films is presented. ► A strong and ultrafast optical Kerr effect seems to result from quantum confinement. ► Photoconductive properties for optical and optoelectronic functions were observed.

  9. Photoconductivity, photoluminescence and optical Kerr nonlinear effects in zinc oxide films containing chromium nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Torres, C., E-mail: crstorres@yahoo.com.mx [Seccion de Estudios de Posgrado e Investigacion, ESIME-Z, Instituto Politecnico Nacional, Mexico, DF 07738 (Mexico); Garcia-Cruz, M.L. [Centro de Investigacion en Dispositivos Semiconductores, Benemerita Universidad Autonoma de Puebla, A. P. J-48, Puebla 72570, Mexico (Mexico); Castaneda, L., E-mail: luisca@sirio.ifuap.buap.mx [Instituto de Fisica, Benemerita Universidad Autonoma de Puebla, A. P. J-48, Puebla 72570, Mexico (Mexico); Rangel Rojo, R. [CICESE/Depto. de Optica, A. P. 360, Ensenada, BC 22860 (Mexico); Tamayo-Rivera, L. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico, DF 01000 (Mexico); Maldonado, A. [Depto. de Ing. Electrica, CINVESTAV IPN-SEES, A. P. 14740, Mexico DF 07000 (Mexico); Avendano-Alejo, M., E-mail: imax_aa@yahoo.com.mx [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, A. P. 70-186, 04510, DF (Mexico); and others

    2012-04-15

    Chromium doped zinc oxide thin solid films were deposited on soda-lime glass substrates. The photoconductivity of the material and its influence on the optical behavior was evaluated. A non-alkoxide sol-gel synthesis approach was used for the preparation of the samples. An enhancement of the photoluminescence response exhibited by the resulting photoconductive films with embedded chromium nanoclusters is presented. The modification in the photoconduction induced by a 445 nm wavelength was measured and then associated with the participation of the optical absorptive response. In order to investigate the third order optical nonlinearities of the samples, a standard time-resolved Optical Kerr Gate configuration with 80 fs pulses at 830 nm was used and a quasi-instantaneous pure electronic nonlinearity without the contribution of nonlinear optical absorption was observed. We estimate that from the inclusion of Cr nanoclusters into the sample results a strong optical Kerr effect originated by quantum confinement. The large photoluminescence response and the important refractive nonlinearity of the photoconductive samples seem to promise potential applications for the development of multifunctional all-optical nanodevices. - Highlights: Black-Right-Pointing-Pointer Enhancement in photoluminescence for chromium doped zinc oxide films is presented. Black-Right-Pointing-Pointer A strong and ultrafast optical Kerr effect seems to result from quantum confinement. Black-Right-Pointing-Pointer Photoconductive properties for optical and optoelectronic functions were observed.

  10. Annealing effects on strain and stress sensitivity of polymer optical fibre based sensors

    DEFF Research Database (Denmark)

    Pospori, A.; Marques, C. A. F.; Zubel, M. G.

    2016-01-01

    The annealing effects on strain and stress sensitivity of polymer optical fibre Bragg grating sensors after their photoinscription are investigated. PMMA optical fibre based Bragg grating sensors are first photo-inscribed and then they were placed into hot water for annealing. Strain, stress...... fibre tends to increase the strain, stress and force sensitivity of the photo-inscribed sensor....

  11. Holographic reconstruction of sound fields based on the acousto-optic effect

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Torras Rosell, Antoni; Jacobsen, Finn

    2013-01-01

    Recent studies have shown that it is possible to measure a sound field using acousto-optic tomography. Theacousto-optic effect, i.e., the interaction between sound and light, can be used to measure an arbitrary soundfield by scanning it with a laser Doppler vibrometer (LDV) over an aperture; This...

  12. Simple theory of the inverse Faraday effect with relationship to optical constants N and K

    International Nuclear Information System (INIS)

    Yoshino, Toshihiko

    2011-01-01

    The inverse Faraday effect in general materials is theoretically investigated based on the classical motion of an electron. It is shown that the inverse Faraday effect is simply and explicitly expressed in terms of optical constants N and K, i.e., the real and imaginary parts of complex refractive index of materials. The derived new formula provides a good physical perspective for the inverse Faraday effect and enables its easy quantitative evaluation from familiar optical constants. - Highlights: → The theory of the inverse Faraday effect in general materials is presented based on the classical motion model of electron. → The simple relationship between optical constants of materials and the inverse Faraday effect is given. → The given new formula enables easy quantitative evaluation of the inverse Faraday effect from known optical constants.

  13. Cross-correlation interference effects in multiaccess optical communications

    Science.gov (United States)

    Peterson, G. D.; Gardner, C. S.

    1981-03-01

    An analysis is presented of the cross correlation between user codes in an optical code-division multiple-access communication system. The system model is a multiaccess satellite repeater, where the uplink and downlink channels are direct-detection optical-polarization modulation links. The error probability is obtained in terms of the cross correlation between the intended and interfering user codes. It is demonstrated that the system error rate can be minimized by the use of code sequences in which the normalized second moment of the cross correlation between codes is small.

  14. Polaron effects on nonlinear optical rectification in asymmetrical Gaussian potential quantum wells with applied electric fields

    International Nuclear Information System (INIS)

    Wu, Jinghe; Guo, Kangxian; Liu, Guanghui

    2014-01-01

    Polaron effects on nonlinear optical rectification in asymmetrical Gaussian potential quantum wells are studied by the effective mass approximation and the perturbation theory. The numerical results show that nonlinear optical rectification coefficients are strongly dependent on the barrier hight V 0 of the Gaussian potential quantum wells, the range L of the confinement potential and the electric field F. Besides, the numerical results show that no matter how V 0 , L and F change, taking into consideration polaron effects, the optical rectification coefficients χ 0 (2) get greatly enhanced.

  15. The effect of mechanical drawing on optical and structural properties of nylon 6 fibres

    Science.gov (United States)

    El-Bakary, M. A.

    2007-09-01

    The Pluta polarizing double-refracting interference microscope was attached to a mechanical drawing device to study the effect of cold drawing on the optical and structural properties of nylon 6 fibres. The microscope was used in its two positions for determining the refractive indices and birefringence of fibres. Different applied stresses and strain rates were obtained using the mechanical-drawing device. The effect of the applied stresses on the optical and physical parameters was investigated. The resulting optical parameters were utilized to investigate the polarizability per unit volume, the optical orientation factor, the orientation angle and the average work per chain. The refractive index and birefringence profiles were measured. Relationships between the average work per chain and optical parameters at different strains rates were determined. An empirical formula was deduced for these fibres. Micro-interferograms are given for illustration.

  16. Evaluation of space environmental effects on metals and optical thin films on EOIM-3

    Energy Technology Data Exchange (ETDEWEB)

    Vaughn, J.A.; Linton, R.C.; Finckenor, M.M.; Kamenetzky, R.R.

    1995-02-01

    Metals and optical thin films exposed to the space environment on the Third Flight of the Evaluation of Oxygen Interactions with Materials (EOIM-3) payload, onboard Space Shuttle mission STS-46 were evaluated. The materials effects described in this paper include the effects of space exposure on various pure metals, optical thin films, and optical thin film metals. The changes induced by exposure to the space environment in the material properties were evaluated using bidirectional reflectance distribution function (BRDF), specular reflectance (250 nm to 2500 nm), ESCA, VUV reflectance (120 nm to 200 nm), ellipsometry, FTIR and optical properties. Using these analysis techniques gold optically thin film metal mirrors with nickel undercoats were observed to darken due to nickel diffusion through the gold to the surface. Also, thin film nickel mirrors formed nickel oxide due to exposure to both the atmosphere and space.

  17. Evaluation of space environmental effects on metals and optical thin films on EOIM-3

    Science.gov (United States)

    Vaughn, Jason A.; Linton, Roger C.; Finckenor, Miria M.; Kamenetzky, Rachel R.

    1995-01-01

    Metals and optical thin films exposed to the space environment on the Third Flight of the Evaluation of Oxygen Interactions with Materials (EOIM-3) payload, onboard Space Shuttle mission STS-46 were evaluated. The materials effects described in this paper include the effects of space exposure on various pure metals, optical thin films, and optical thin film metals. The changes induced by exposure to the space environment in the material properties were evaluated using bidirectional reflectance distribution function (BRDF), specular reflectance (250 nm to 2500 nm), ESCA, VUV reflectance (120 nm to 200 nm), ellipsometry, FTIR and optical properties. Using these analysis techniques gold optically thin film metal mirrors with nickel undercoats were observed to darken due to nickel diffusion through the gold to the surface. Also, thin film nickel mirrors formed nickel oxide due to exposure to both the atmosphere and space.

  18. Effect of Zn doping on optical properties and photoconductivity of ...

    Indian Academy of Sciences (India)

    Keywords. Thin film; spray pyrolysis; tin sulfide; optical properties; photoluminescence; photoconductivity. 1. ... ber of compounds with CdI2 structure, has interesting proper- ties such .... STM images of 0, 2·5, 5 and 7·5 at% Zn-doped SnS2 films.

  19. Effect of Zn doping on optical properties and photoconductivity of ...

    Indian Academy of Sciences (India)

    Optical bandgap of the films have been calculated for different dopant concentrations and they lie in the region of 2.3–2.7 eV. Surprisingly, regardless of doping level, the luminescent properties of films are related to the fundamental bandgap energy and deep levels inside the bandgap. Photoconductivity of the films have ...

  20. Effect of conduction band nonparabolicity on the optical properties in ...

    Indian Academy of Sciences (India)

    the bulk conduction band edge, the correction due to nonparabolicity can be important. [9,10]. In a narrow QW under a strong magnetic field, the optical absorption coefficients calculated with the nonparabolicity correction shows remarkable deviation from results obtained using parabolic energy approximation [11].

  1. Effect of gamma radiation on optical and electrical properties of ...

    Indian Academy of Sciences (India)

    Wintec

    Tellurium dioxide; thin films; optical bandgap; gamma radiation dose; dosimeter. 1. Introduction. It is now ... material to ionizing radiations (such as X-rays, gamma rays, beta ..... Mag. 19 19. Mott N F and Davis E 1979 Electronic process in non-.

  2. Optical spacing effect in organic photovoltaic cells incorporating a dilute acceptor layer

    Energy Technology Data Exchange (ETDEWEB)

    Menke, S. Matthew; Lindsay, Christopher D.; Holmes, Russell J. [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2014-06-16

    The addition of spacing layers in organic photovoltaic cells (OPVs) can enhance light absorption by optimizing the spatial distribution of the incident optical field in the multilayer structure. We explore the optical spacing effect in OPVs achieved using a diluted electron acceptor layer of C{sub 60}. While optical spacing is often realized by optimizing buffer layer thickness, we find that optical spacing via dilution leads to cells with similar or enhanced photocurrent. This is observed despite a smaller quantity of absorbing molecules, suggesting a more efficient use of absorbed photons. In fact, dilution is found to concentrate optical absorption near the electron donor-acceptor interface, resulting in a marked increase in the exciton diffusion efficiency. Contrasting the use of changes in thickness to engineer optical absorption, the use of dilution does not significantly alter the overall thickness of the OPV. Optical spacing via dilution is shown to be a viable alternative to more traditional optical spacing techniques and may be especially useful in the continued optimization of next-generation, tandem OPVs where it is important to minimize competition for optical absorption between individual sub-cells.

  3. Optical spacing effect in organic photovoltaic cells incorporating a dilute acceptor layer

    International Nuclear Information System (INIS)

    Menke, S. Matthew; Lindsay, Christopher D.; Holmes, Russell J.

    2014-01-01

    The addition of spacing layers in organic photovoltaic cells (OPVs) can enhance light absorption by optimizing the spatial distribution of the incident optical field in the multilayer structure. We explore the optical spacing effect in OPVs achieved using a diluted electron acceptor layer of C 60 . While optical spacing is often realized by optimizing buffer layer thickness, we find that optical spacing via dilution leads to cells with similar or enhanced photocurrent. This is observed despite a smaller quantity of absorbing molecules, suggesting a more efficient use of absorbed photons. In fact, dilution is found to concentrate optical absorption near the electron donor-acceptor interface, resulting in a marked increase in the exciton diffusion efficiency. Contrasting the use of changes in thickness to engineer optical absorption, the use of dilution does not significantly alter the overall thickness of the OPV. Optical spacing via dilution is shown to be a viable alternative to more traditional optical spacing techniques and may be especially useful in the continued optimization of next-generation, tandem OPVs where it is important to minimize competition for optical absorption between individual sub-cells.

  4. Giant magneto-optical Kerr effect and universal Faraday effect in thin-film topological insulators.

    Science.gov (United States)

    Tse, Wang-Kong; MacDonald, A H

    2010-07-30

    Topological insulators can exhibit strong magneto-electric effects when their time-reversal symmetry is broken. In this Letter we consider the magneto-optical Kerr and Faraday effects of a topological insulator thin film weakly exchange coupled to a ferromagnet. We find that its Faraday rotation has a universal value at low frequencies θF=tan(-1)α, where α is the vacuum fine structure constant, and that it has a giant Kerr rotation θK=π/2. These properties follow from a delicate interplay between thin-film cavity confinement and the surface Hall conductivity of a topological insulator's helical quasiparticles.

  5. Dember effect photodetectors and the effects of turbulence on free-space optical communication systems

    Science.gov (United States)

    Dikmelik, Yamac

    High-speed free-space optical communication systems have recently utilized components that have been developed for fiber-optic communication systems. The received laser beam in such a system must be coupled into a single-mode fiber at the input of a commercially available receiver module or a wavelength division demultiplexer. However, one effect of propagation through atmospheric turbulence is that the spatial coherence of a laser beam is degraded and the percentage of the available power that can be coupled into the single-mode fiber is limited. This dissertation presents a numerical evaluation of fiber coupling efficiency for laser light distorted by atmospheric turbulence. The results for weak fluctuation conditions provide the level of coupling efficiency that can be expected for a given turbulence strength. In addition, the results show that the link distance must be limited to 400 m under moderate turbulence conditions if the link budget requires a coupling efficiency of 0.1. We also investigate the use of a coherent fiber array as a receiver structure to improve the fiber coupling efficiency of a free-space optical communication system. Our numerical results show that a coherent fiber array that consists of seven subapertures would increase fiber coupling efficiency by a significant amount for representative turbulence conditions and link distances. The use of photo-emf detectors as elements of a wavefront sensor for an adaptive optics system is also considered as an alternative method of reducing the effects of turbulence on a free-space optical communication system. Dember and photo-emf currents are investigated in silicon photoconductive detectors both theoretically and experimentally. Our results show that Dember photocurrents dominate the response of high-purity silicon samples with top surface electrodes to a moving interference pattern. The use of surface electrodes leads to shadowed regions beneath the electrodes and Dember photocurrents appear

  6. Design and assessment of compact optical systems towards special effects imaging

    Science.gov (United States)

    Shaoulov, Vesselin Iossifov

    A main challenge in the field of special effects is to create special effects in real time in a way that the user can preview the effect before taking the actual picture or movie sequence. There are many techniques currently used to create computer-simulated special effects, however current techniques in computer graphics do not provide the option for the creation of real-time texture synthesis. Thus, while computer graphics is a powerful tool in the field of special effects, it is neither portable nor does it provide work in real-time capabilities. Real-time special effects may, however, be created optically. Such approach will provide not only real-time image processing at the speed of light but also a preview option, allowing the user or the artist to preview the effect on various parts of the object in order to optimize the outcome. The work presented in this dissertation was inspired by the idea of optically created special effects, such as painterly effects, encoded in images captured by photographic or motion picture cameras. As part of the presented work, compact relay optics was assessed, developed, and a working prototype was built. It was concluded that even though compact relay optics can be achieved, further push for compactness and cost-effectiveness was impossible in the paradigm of bulk macro-optics systems. Thus, a paradigm for imaging with multi-aperture micro-optics was proposed and demonstrated for the first time, which constitutes one of the key contributions of this work. This new paradigm was further extended to the most general case of magnifying multi-aperture micro-optical systems. Such paradigm allows an extreme reduction in size of the imaging optics by a factor of about 10 and a reduction in weight by a factor of about 500. Furthermore, an experimental quantification of the feasibility of optically created special effects was completed, and consequently raytracing software was developed, which was later commercialized by Sm

  7. Radiation Pressure in a Rubidium Optical Lattice: An Atomic Analog to the Photorefractive Effect

    International Nuclear Information System (INIS)

    Guibal, S.; Mennerat-Robilliard, C.; Larousserie, D.; Triche, C.; Courtois, J.; Grynberg, G.

    1997-01-01

    Probe gain in a rubidium optical lattice is observed when the probe and lattice beams have identical frequencies. This effect is shown to arise from the radiation pressure that shifts the atomic density distribution with respect to the optical potential. This effect is compared with two-beam coupling in photorefractive materials. The experimental results obtained by changing the parameters of the optical lattice (intensity, detuning, periodicity) are in reasonable agreement with numerical simulations based on the model case of a 1/2→3/2 atomic transition. copyright 1997 The American Physical Society

  8. Optical coefficients in a semiconductor quantum ring: Electric field and donor impurity effects

    Science.gov (United States)

    Duque, C. M.; Acosta, Ruben E.; Morales, A. L.; Mora-Ramos, M. E.; Restrepo, R. L.; Ojeda, J. H.; Kasapoglu, E.; Duque, C. A.

    2016-10-01

    The electron states in a two-dimensional quantum dot ring are calculated in the presence of a donor impurity atom under the effective mass and parabolic band approximations. The effect of an externally applied electric field is also taken into account. The wavefunctions are obtained via the exact diagonalization of the problem Hamiltonian using a 2D expansion within the adiabatic approximation. The impurity-related optical response is analyzed via the optical absorption, relative refractive index change and the second harmonics generation. The dependencies of the electron states and these optical coefficients with the changes in the configuration of the quantum ring system are discussed in detail.

  9. Applicability of Effective Medium Approximations to Modelling of Mesocrystal Optical Properties

    Directory of Open Access Journals (Sweden)

    Oleksandr Zhuromskyy

    2016-12-01

    Full Text Available Rigorous superposition T-matrix method is used to compute light interaction with mesocrystalline structures. The results are used to validate the applicability of effective medium theories for computing the effective optical constants of mesocrystal structures composed of optically isotropic materials. It is demonstrated that the Maxwell-Garnett theory can fit the rigorous simulation results with an average accuracy of 2%. The thus obtained refractive indexes can be used with any electromagnetic simulation software to represent the response of mesocrystals composed of optically small primary particles arranged into a cubic type lattice structures.

  10. Nonlinear optical effects in pure and N-doped semiconductors

    International Nuclear Information System (INIS)

    Donlagic, N.S.

    2000-01-01

    Over the last decades, the nonlinear optical properties of condensed matter systems have been an attractive and fruitful field of research. While the linear response functions of solids provide information about the elementary excitations of the systems, nonlinear optical experiments give insight into the dynamics of the fundamental many-body processes which are initiated by the external excitations. Stimulated by the experimental results, new theoretical concepts and methods have been developed in order to relate the observed phenomena to the microscopic properties of the investigated materials. The present work deals with the study of the nonlinear dynamics of the optical interband polarization in pure and n-doped semiconductors.In the first part of the thesis, the relaxation behavior of optically excited electron-hole pairs in a one-dimensional semiconductor, which are coupled to longitudinal optical phonons with an initial lattice temperature T>0, is studied with the help of quantum kinetic equations. Apart from Hartree-Fock-like Coulomb contributions, these equations contain additional Coulomb terms, the so-called vertex corrections, by which the influence of the electron-electron interaction on the electron-phonon scattering processes is taken into account. The numerical studies indicate that the vertex corrections are essential for a correct description of the excitonic dynamics.In the second part of the thesis, the attention is shifted to the characteristics of the optical response of a one-dimensional n-doped two-band semiconductor whose conduction band has been linearized with respect to the two Fermi points. Due to the linearization it is possible to calculate the linear and nonlinear response functions of the interacting electron system exactly. These response functions are then used in order to determine the linear absorption spectrum and the time-integrated signal of a degenerated four-wave-mixing experiment. It is shown that the well-known features

  11. Effect of gamma radiation on the optical properties of intraocular lenses

    International Nuclear Information System (INIS)

    Naguib, N.I.

    2006-01-01

    The effect of gamma rays in the range of doses up to 150 gray on optical and thermal properties of the intraocular lenses (IOL) made of polymethyl methacrylate (PMMA) was studied. Thermogravimetric analysis (TGA) and differential scanning colorimetry (DSC) have been performed to study the effect of gamma irradiation on the IOL. The results indicate that irradiation up to 150 Gy did not affect greatly the optical and thermal properties of the investigated IOL

  12. Bidirectional soliton spectral tunneling effects in the regime of optical event horizon

    DEFF Research Database (Denmark)

    Gu, Jie; Guo, Hairun; Wang, Shaofei

    2015-01-01

    We study the cross-phase-modulation-induced soliton spectral shifting in the regime of the optical event horizon. The perturbed soliton to either red-shifting or blue-shifting is controllable, which could evoke bidirectional soliton spectral tunneling effects.......We study the cross-phase-modulation-induced soliton spectral shifting in the regime of the optical event horizon. The perturbed soliton to either red-shifting or blue-shifting is controllable, which could evoke bidirectional soliton spectral tunneling effects....

  13. Vibration sensing in flexible structures using a distributed-effect modal domain optical fiber sensor

    Science.gov (United States)

    Reichard, Karl M.; Lindner, Douglas K.; Claus, Richard O.

    1991-01-01

    Modal domain optical fiber sensors have recently been employed in the implementation of system identification algorithms and the closed-loop control of vibrations in flexible structures. The mathematical model of the modal domain optical fiber sensor used in these applications, however, only accounted for the effects of strain in the direction of the fiber's longitudinal axis. In this paper, we extend this model to include the effects of arbitrary stress. Using this sensor model, we characterize the sensor's sensitivity and dynamic range.

  14. Design of smart optical sensor using polyvinyl alcohol/Fluorescein sodium salt: Laser filters and optical limiting effect

    Science.gov (United States)

    Yahia, I. S.; Bouzidi, A.; Zahran, H. Y.; Jilani, W.; AlFaify, S.; Algarni, H.; Guermazi, H.

    2018-03-01

    Pure poly (vinyl alcohol) (PVA) and PVA doped Fluorescein-Sodium salt (FSS/PVA composite films) have synthesized on wide scale laser optical filters. The investigated polymeric composite films have been characterized using several methods. The XRD patterns exhibit a decrease of the average crystalline size and an increase of the internal strain, which explained the imperfection and distortion in the prepared films. The optical characterizations showed a decrease in the transmission of the incident light for different samples, which may be explained to the layer formed by intermolecular hydrogen bonding between the PVA matrix and the FSS particles. The FSS/PVA polymeric composite films are being a completely blocking in the UV-Vis light at the range between 190 and 560 nm, agreement with the optical limiting effect, which makes the composite films suitable for CUT-OFF laser filters applications. The decrease in its, directly and indirectly, allowed transition band gaps were controlled by the added FSS dyes molecules. The variation of the exponent frequency (s) of the power law for FSS/PVA polymeric composite films has been characterized to improve the hopping conduction mechanism in the materials. The dielectric permittivity (e‧) and dielectric loss (e'') have been decreased with increasing the applied frequency, and the incorporated FSS molecules due to the DC electric conductivity can cause the decreases of the polarization of the as-prepared films over the studied ranges.

  15. Application of nanostructural materials in electro optical measuring sets of big powers based on usage of optical effects

    Science.gov (United States)

    Salihov, Aidar I.; Tljavlin, Anfar Z.; Kusimov, Salavat M.

    2005-06-01

    Optically transparent nanostructural materials show to themselves a heightened interest owing to display in them the new physic mechanical properties. Variation of structure of the materials received by methods of intensive plastic deformation, results in variation of many fundamental parameters. Among them special interest was caused with variations of fundamental magnetic characteristics. One of them is the magnetization of saturation, which is usually structurally tolerant, but reflects changes in an atomic-crystal structure of solids. Even in the first probing of the transparent nanostructures, received by intensive deformation by torsion of samples, was found that the magnetization of saturation was revealed at room temperature in comparison with coarse-grained samples. High-power measuring devices are based on Faraday effect, representing itself rotation of a plane of polarization of linearly polarized light in optical active substances under action of a magnetic field. Application of nanostructural materials in the optical insulator, which is the main part of the measuring device, allows improving the measuring characteristics of instruments qualitatively. Brought losses in Faraday cell make 0,35 -0,89 dB instead of 0,7 - I,2 dB, and value of the backward losses makes not less than 62 dB instead of 55 dB. Undoubtedly, improvement of the given parameters allows making the measuring operations with the greater accuracy, reducing both absolute, and relative errors.

  16. Effect of oxidation and annealing temperature on optical and ...

    Indian Academy of Sciences (India)

    Administrator

    Tin oxide thin films were deposited on glass substrate with 100 nm thickness of Sn, which was coated by magnetron sputtering followed by thermal oxidation at different temperatures. ... Annealing of the samples at 500–650 °C caused the transmittance and optical ..... (αhν)1/2 and (αhν)1/3 to determine the Eg. (b) They used.

  17. Effect of idler absorption in pulsed optical parametric oscillators.

    Science.gov (United States)

    Rustad, Gunnar; Arisholm, Gunnar; Farsund, Øystein

    2011-01-31

    Absorption at the idler wavelength in an optical parametric oscillator (OPO) is often considered detrimental. We show through simulations that pulsed OPOs with significant idler absorption can perform better than OPOs with low idler absorption both in terms of conversion efficiency and beam quality. The main reason for this is reduced back conversion. We also show how the beam quality depends on the beam width and pump pulse length, and present scaling relations to use the example simulations for other pulsed nanosecond OPOs.

  18. Effect of 200 keV Ar+ implantation on optical and electrical properties of polyethyleneterepthalate (PET)

    International Nuclear Information System (INIS)

    Kumar, Rajiv; Goyal, Meetika; Sharma, Ambika; Aggarwal, Sanjeev; Sharma, Annu; Kanjilal, D.

    2015-01-01

    In the present paper we have discussed the effect of 200 keV Ar + ions on the electrical and optical properties of PET samples. PET samples were implanted with 200 keV Ar + ions to various doses ranging from 1×10 15 to 1×10 17 Ar + cm 2 . The changes in the electrical and optical properties of pristine and implanted PET specimens have been studied by using Keithley electrometer and UV-Visible absorption spectroscopy. The electrical conductivity has found to be increased with increasing ion dose. The optical studies have revealed the drastic alterations in optical band gap from 3.63 eV to 1.48 eV and also increase in number of carbon atoms per cluster from 215 to 537. Further, the change in the electrical conductivity and optical band gap has also been correlated with the formation of conductive islands in the implanted layers of PET

  19. Effect of 200 keV Ar+ implantation on optical & electrical properties of polyethyleneterepthalate (PET)

    Science.gov (United States)

    Kumar, Rajiv; Goyal, Meetika; Sharma, Ambika; Aggarwal, Sanjeev; Sharma, Annu; Kanjilal, D.

    2015-05-01

    In the present paper we have discussed the effect of 200 keV Ar+ ions on the electrical and optical properties of PET samples. PET samples were implanted with 200 keV Ar+ ions to various doses ranging from 1×1015 to 1×1017 Ar+ cm2. The changes in the electrical and optical properties of pristine and implanted PET specimens have been studied by using Keithley electrometer and UV-Visible absorption spectroscopy. The electrical conductivity has found to be increased with increasing ion dose. The optical studies have revealed the drastic alterations in optical band gap from 3.63 eV to 1.48 eV and also increase in number of carbon atoms per cluster from 215 to 537. Further, the change in the electrical conductivity and optical band gap has also been correlated with the formation of conductive islands in the implanted layers of PET.

  20. Optical manipulation and catalytic activity enhanced by surface plasmon effect

    Science.gov (United States)

    Zou, Ningmu; Min, Jiang; Jiao, Wenxiang; Wang, Guanghui

    2017-02-01

    For optical manipulation, a nano-optical conveyor belt consisting of an array of gold plasmonic non-concentric nano-rings (PNNRs) is demonstrated for the realization of trapping and unidirectional transportation of nanoparticles by polarization rotation of excitation beam. These hot spots of an asymmetric plasmonic nanostructure are polarization dependent, therefore, one can use the incident polarization state to manipulate the trapped targets. Trapped particles could be transferred between adjacent PNNRs in a given direction just by rotating the polarization of incident beam due to unbalanced potential. The angular dependent distribution of electric field around PNNR has been solved using the three- dimensional finite-difference time-domain (FDTD) technique. For optical enhanced catalytic activity, the spectral properties of dimers of Au nanorod-Au nanorod nanostructures under the excitation of 532nm photons have been investigated. With a super-resolution catalytic mapping technique, we identified the existence of "hot spot" in terms of catalytic reactivity at the gap region within the twined plasmonic nanostructure. Also, FDTD calculation has revealed an intrinsic correlation between hot electron transfer.

  1. Misconceptions about optics: An effect of misleading explanations?

    Science.gov (United States)

    Favale, Fabrizio; Bondani, Maria

    2014-07-01

    During our activities of physics dissemination with High School students especially concerning optics, we are used to distribute a questionnaire about colors and image formation by mirrors and lenses. The answers to some questions clearly show misconceptions and naïve ideas about colors, ray tracing, image formation in reflection and refraction. These misconceptions are widespread and do not depend on the gender, the level, and the age of the students: they seem to depend on some wrong ideas and explanatory models that are not changed by the curricular studies at school. In fact, the same errors are present in groups of students before and after taking optics courses at High School. On the other hand we have also found some misleading explanations of the phenomena both in textbooks and websites. Most of the time, errors occur in the explanatory drawings accompanying the text, which are based on some hybrid description of the optical processes: sometimes the description of the path of the ray light is confused with the image reconstruction by the lenses. We think that to partially avoid some errors it is important to use a teaching path centered on the actual path of the rays and not on what eyes see (the vision). Here we present the results of data collected from more than 200 students and some considerations about figures and explanations found in textbooks.

  2. Gigantic optical magnetoelectric effect in CuB2O4

    International Nuclear Information System (INIS)

    Saito, Mitsuru; Taniguchi, Kouji; Arima, Taka-hisa

    2008-01-01

    Although it has been well known that materials in which both space inversion and time reversal symmetries are broken can host optical magneto-electric effect, i.e., change in optical constants with the reversal of propagating direction of light, the largest change in absorption ever reported on this effect was 0.2%. Here we show that optical absorption in noncentrosymmetric weak ferromagnetic material CuB 2 O 4 changes by more than 100% with reversal of a low magnetic field of 300 Oe. The gigantic optical magneto-electric effect is ascribed to the canted antiferromagnetic spin ordering of square-coordinated Cu 2+ sites, where the local inversion is slightly broken. (author)

  3. Effect of multiple circular holes Fraunhofer diffraction for the infrared optical imaging

    Science.gov (United States)

    Lu, Chunlian; Lv, He; Cao, Yang; Cai, Zhisong; Tan, Xiaojun

    2014-11-01

    With the development of infrared optics, infrared optical imaging systems play an increasingly important role in modern optical imaging systems. Infrared optical imaging is used in industry, agriculture, medical, military and transportation. But in terms of infrared optical imaging systems which are exposed for a long time, some contaminations will affect the infrared optical imaging. When the contamination contaminate on the lens surface of the optical system, it would affect diffraction. The lens can be seen as complementary multiple circular holes screen happen Fraunhofer diffraction. According to Babinet principle, you can get the diffraction of the imaging system. Therefore, by studying the multiple circular holes Fraunhofer diffraction, conclusions can be drawn about the effect of infrared imaging. This paper mainly studies the effect of multiple circular holes Fraunhofer diffraction for the optical imaging. Firstly, we introduce the theory of Fraunhofer diffraction and Point Spread Function. Point Spread Function is a basic tool to evaluate the image quality of the optical system. Fraunhofer diffraction will affect Point Spread Function. Then, the results of multiple circular holes Fraunhofer diffraction are given for different hole size and hole spacing. We choose the hole size from 0.1mm to 1mm and hole spacing from 0.3mm to 0.8mm. The infrared wavebands of optical imaging are chosen from 1μm to 5μm. We use the MATLAB to simulate light intensity distribution of multiple circular holes Fraunhofer diffraction. Finally, three-dimensional diffraction maps of light intensity are given to contrast.

  4. Simulation studies on the effect of positioning tolerances on optical coupling efficiency

    Science.gov (United States)

    Pamidighantam, Ramana V.; Yeo, Yongkee; Sudharsanam, Krishnamachari; Lee, Sik Pong; Iyer, Mahadevan K.

    2002-08-01

    The development of Optoelectronic components for communications is converging towards access networks where device cost makes a significant impact on the market acceptance. Thus, the device design engineer needs to input assembly, fabrication and process constraints into the design at an early stage. The present study is part of a Project on Packaging of Optical Components that IME, Singapore has initiated as part of an ongoing Electronics Packaging Research Consortium with industry partnership. In the present study, the coupling of optical radiation from a laser diode to optical fiber is simulated for a fiber optic transmitter component development project. Different optical configurations based on direct coupling, spherical ball lenses, integral lensed fibers and thermally expanded fibers are created within the commercially available transmitter package space. The effect of optical element variables on the placement tolerance is analyzed and will be reported. The effect of alignment tolerances on the optical coupling is analyzed. Simulation results are presented recommending realizable alignment and placement tolerances to develop a low cost short range link distance transmitter.

  5. Direct electro-optic effect in langasites and α-quartz

    Science.gov (United States)

    Ivanov, Vadim

    2018-05-01

    Strain-constant (clamped) electro-optic coefficients r11S of langasite La3Ga5SiO14 (LGS), langatate La3Ga5.5Ta0.5O14 (LGT), catangasite Ca3TaGa3Si2O14 (CTGS) and α-quartz are measured at 1540 nm in the frequency range of 3-25 MHz. Experimental ratio of clamped and unclamped electro-optic coefficients r11S/r11T is 0.97 for LGS, 0.91 for LGT, 0.31 for CTGS, and 0.49 for quartz. Most of direct electro-optic effect in LGS and LGT is associated with lanthanum ions: clamped electro-optic coefficient r11S in lanthanum-free CTGS is 14 times less than in LGS. Low piezoelectric contribution to unclamped electro-optic coefficient r11T makes LGS and LGT promising materials for electro-optic devices, whose performance can be deteriorated by piezoelectric effect, especially, for high-voltage optical voltage sensors.

  6. Role of transverse-momentum currents in the optical Magnus effect in free space

    International Nuclear Information System (INIS)

    Luo Hailu; Wen Shuangchun; Shu Weixing; Fan Dianyuan

    2010-01-01

    We establish a general vector field model to describe the role of transverse-momentum currents in the optical Magnus effect in free space. As an analogy of the mechanical Magnus effect, the circularly polarized wave packet in our model acts as the rotating ball, and its rotation direction depends on the polarization state. Based on this model, we demonstrate the existence of an optical polarization-dependent Magnus effect which is significantly different from the conventional optical Magnus effect in that light-matter interaction is not required. Further, we reveal the relation between transverse-momentum currents and the optical Magnus effect, and find that such a polarization-dependent rotation is unavoidable when the wave packet possesses transverse-momentum currents. The physics underlying this intriguing effect is the combined contributions of transverse spin and orbital currents. We predict that this effect may be observed experimentally even in the propagation direction. These findings provide further evidence for the optical Magnus effect in free space and can be extrapolated to other physical systems.

  7. Optical bistabilities of higher harmonics: Inhomogeneous and transverse effects

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, S.S., E-mail: Shoukryhassan@hotmail.com [Department of Mathematics, College of Science, University of Bahrain, P.O. Box 32038 (Bahrain); Manchester Metropolitan University, Dept. of Computing, Maths. and Digital Technology, Manchester M1 5GD (United Kingdom); Sharaby, Y.A., E-mail: Yasser_Sharaby@hotmail.com [Department of Physics, Faculty of Science, Suez Canal University, Suez (Egypt); Ali, M.F.M., E-mail: dr.mona.fathy@hotmail.com [Department of Mathematics: Faculty of Science, Ain Shams University, Cairo (Egypt); Joshi, A., E-mail: ajoshi@eiu.edu [Department of Physics, Eastern Illinois University, Charleston, IL 61920 (United States)

    2012-10-15

    The steady state behavior of optical bistable system in a ring cavity with transverse field variations and inhomogeneousely broadened two-level atoms is investigated outside the rotating wave approximation (RWA). Analytical and numerical investigation is presented for different cases of transverse field variations with Lorentzian or Gaussian line widths. When both (transverse and inhomogeneous) features taken into account, the first harmonic output field component outside the RWA exhibits a one-way switching down processes (butterfly OB) or reversed (clockwise) OB behavior, depending on the atomic linewidth shape.

  8. Optical bistabilities of higher harmonics: Inhomogeneous and transverse effects

    International Nuclear Information System (INIS)

    Hassan, S.S.; Sharaby, Y.A.; Ali, M.F.M.; Joshi, A.

    2012-01-01

    The steady state behavior of optical bistable system in a ring cavity with transverse field variations and inhomogeneousely broadened two-level atoms is investigated outside the rotating wave approximation (RWA). Analytical and numerical investigation is presented for different cases of transverse field variations with Lorentzian or Gaussian line widths. When both (transverse and inhomogeneous) features taken into account, the first harmonic output field component outside the RWA exhibits a one-way switching down processes (butterfly OB) or reversed (clockwise) OB behavior, depending on the atomic linewidth shape.

  9. Instabilities of line-driven stellar winds. V. Effect of an optically thick continuum

    International Nuclear Information System (INIS)

    Owocki, S.P.; Rybicki, G.B.

    1991-01-01

    Earlier analyses of the linear instability of line-driven stellar winds are extended to the case, relevant to Wolf-Rayet stars, in which the continuum remains optically thick well above the sonic point. It is found that an optically thick flow driven by pure scattering lines is stabilized by the drag effect of the diffuse, scattered radiation. However, even a relatively small photon destruction probability can cause a flow with continuum optical thickness much greater than 1 to remain unstable, with a given growth rate. The implications of these results for the variability characteristics of winds from Wolf-Rayet stars are briefly discussed. 16 refs

  10. Radiation effects on optical components of a laser radar sensor designed for remote metrology in ITER

    International Nuclear Information System (INIS)

    Menon, M.M.; Grann, E.B.; Slotwinski, A.

    1997-09-01

    A frequency modulated laser radar is being developed for in-vessel metrology and viewing of plasma-facing surfaces. Some optical components of this sensor must withstand intense gamma radiation (3 x 10 6 rad/h) during operation. The authors have tested the effect of radiation on a silica core polarization maintaining optical fiber and on TeO 2 crystals at doses up to ∼ 10 9 rad. Additional tests are planned for evaluating the performance of a complete acousto-optic (AO) scanning device. The progress made in these tests is also described

  11. Anodisation of sputter deposited aluminium–titanium coatings: Effect of microstructure on optical characteristics

    DEFF Research Database (Denmark)

    Aggerbeck, Martin; Junker-Holst, Andreas; Vestergaard Nielsen, Daniel

    2014-01-01

    Magnetron sputtered coatings of aluminium containing up to 18 wt.% titanium were deposited on aluminium substrates to study the effect of microstructure on the optical appearance of the anodised layer. The microstructure and morphology were studied using transmission electron microscopy (TEM), X......-ray diffraction (XRD), and glow discharge optical emission spectroscopy (GDOES), while the optical appearance was investigated using photospectrometry. The microstructure of the coatings was varied by heat treatment, resulting in the precipitation of Al3Ti phases. The reflectance of the anodised surfaces...

  12. Effective-medium theory for nonlinear magneto-optics in magnetic granular alloys: cubic nonlinearity

    International Nuclear Information System (INIS)

    Granovsky, Alexander B.; Kuzmichov, Michail V.; Clerc, J.-P.; Inoue, Mitsuteru

    2003-01-01

    We propose a simple effective-medium approach for calculating the effective dielectric function of a magnetic metal-insulator granular alloy in which there is a weakly nonlinear relation between electric displacement D and electric field E for both constituent materials of the form D i =ε i (0) E i +χ i (3) |E i | 2 E i . We assume that linear ε i (0) and cubic nonlinear χ i (3) dielectric functions are diagonal and linear with magnetization non-diagonal components. For such metal-insulator composite magneto-optical effects depend on a light intensity and the effective cubic dielectric function χ eff (3) can be significantly greater (up to 10 3 times) than that for constituent materials. The calculation scheme is based on the Bergman and Stroud-Hui theory of nonlinear optical properties of granular matter. The giant cubic magneto-optical nonlinearity is found for composites with metallic volume fraction close to the percolation threshold and at a resonance of optical conductivity. It is shown that a composite may exhibit nonlinear magneto-optics even when both constituent materials have no cubic magneto-optical nonlinearity

  13. Effective-medium theory for nonlinear magneto-optics in magnetic granular alloys: cubic nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Granovsky, Alexander B. E-mail: granov@magn.ru; Kuzmichov, Michail V.; Clerc, J.-P.; Inoue, Mitsuteru

    2003-03-01

    We propose a simple effective-medium approach for calculating the effective dielectric function of a magnetic metal-insulator granular alloy in which there is a weakly nonlinear relation between electric displacement D and electric field E for both constituent materials of the form D{sub i}={epsilon}{sub i}{sup (0)}E{sub i} +{chi}{sub i}{sup (3)}|E{sub i}|{sup 2}E{sub i}. We assume that linear {epsilon}{sub i}{sup (0)} and cubic nonlinear {chi}{sub i}{sup (3)} dielectric functions are diagonal and linear with magnetization non-diagonal components. For such metal-insulator composite magneto-optical effects depend on a light intensity and the effective cubic dielectric function {chi}{sub eff}{sup (3)} can be significantly greater (up to 10{sup 3} times) than that for constituent materials. The calculation scheme is based on the Bergman and Stroud-Hui theory of nonlinear optical properties of granular matter. The giant cubic magneto-optical nonlinearity is found for composites with metallic volume fraction close to the percolation threshold and at a resonance of optical conductivity. It is shown that a composite may exhibit nonlinear magneto-optics even when both constituent materials have no cubic magneto-optical nonlinearity.

  14. The effects of scattering on the relative LPI performance of optical and mm-wave systems

    Science.gov (United States)

    Oetting, John; Hampton, Jerry

    1988-01-01

    Previous results comparing the LPI performance of optical and millimeter-wave satellite systems is extended to include the effects of scattering on optical LPI performance. The LPI figure of merit used to compare the two media is the circular equivalent vulnerability radius (CEVR). The CEVR is calculated for typical optical and spread spectrum millimeter-wave systems, and the LPI performance tradeoffs available with each medium are compared. Attention is given to the possibility that light will be scattered into the interceptor's FOV and thereby enable detection in geometries in which interception of the main beam is impossible. The effects of daytime vs. nighttime operation of the optical LPI system are also considered. Some illustrative results for the case of a ground-to-space uplink to a low earth orbit satellite are presented, along with some conclusions and unresolved issues for further study.

  15. The effects of atmospheric optical conditions on perceived scenic beauty

    Science.gov (United States)

    Latimer, Douglas A.; Hogo, Henry; Daniel, Terry C.

    This paper describes the results from the first year of a currently on-going study, the objective of which is to investigate the relationships between atmospheric optical conditions and human perceptions of scenic beauty. Color photographs and atmospheric optical measurements, using telephotometers and nephelometers, were taken in the western U.S.A. (Grand Canyon National Park and Mt. Lemmon near Tucson, Arizona) and in the eastern United States (Great Smoky Mountains and Shenandoah national parks). Over 1300 individual observers rated color slides for either visual air quality or scenic beauty using a 10-point rating scale. Ratings were transformed to indices using standard psychophysical techniques. Relationships between these perceptual indices and physical parameters characteristic of the given landscape represented in the color slides were investigated using scatter plots, correlation analysis, and multiple linear regression. Physical parameters included visual range, horizon sky chromaticity and luminance, solar zenith and scattering angles, and cloud conditions. Results show that observers' ratings of visual air quality and scenic beauty are sensitive to visual range, sky color, and scattering angle. However, in some of the areas investigated, scenic beauty ratings were not affected by changes in visual range. The sensitivity of the scenic beauty of a vista to changes in the extinction coefficient may be useful for establishing visibility goals and priorities.

  16. Optical bleaching of bismuth implanted silica glass: A threshold effect

    International Nuclear Information System (INIS)

    Park, S.Y.; Magruder, R.H. III; Weeks, R.A.

    1992-01-01

    The near surface regions of high purity silica glass discs, Spectrosil A, were modified by implantation with bismuth ions at 160 key and room temperature. The glasses implanted with a nominal dose of 6x10 16 Bi/cm 2 at ∼5 μA/cm 2 were subsequently bleached with a 5.0 eV KrF pulsed excimer laser. The laser had an average pulse duration of ∼20 ns and repetition rate of 10 Hz. It was found that the bleaching was dependent upon the power density of the laser for a constant total integrated energy. Ion backscattering and optical absorption measurements were made before and after laser irradiation. Large changes in optical density and depth distribution of the implanted ions were observed at power densities of ≥45 mJ/cm 2 -pulse. Onset of threshold for bleaching of silica glass implanted with 6x10 16 Bi/cm 2 at 160 key and at room temperature is between 30 and 45 mJ/cm 2 -pulse

  17. Aperture scaling effects with monolithic periodically poled lithium niobate optical parametric oscillators and generators.

    Science.gov (United States)

    Missey, M; Dominic, V; Powers, P; Schepler, K L

    2000-02-15

    We used elliptical beams to demonstrate aperture scaling effects in nanosecond single-grating and multigrating periodically poled lithium niobate (PPLN) monolithic optical parametric oscillators and generators. Increasing the cavity Fresnel number in single-grating crystals broadened both the beam divergence and the spectral bandwidth. Both effects are explained in terms of the phase-matching geometry. These effects are suppressed when a multigrating PPLN crystal is used because the individual gratings provide small effective subapertures. A flood-pumped multigrating optical parametric generator displayed a low output beam divergence and contained 19 pairs of signal and idler frequencies.

  18. The effects of wallerian degeneration of the optic radiations demonstrated by MRI

    Energy Technology Data Exchange (ETDEWEB)

    Savoiardo, M.; Grisoli, M.; Forester, M.; D' Incerti, L.; Farina, L. (Dept. of Neuroradiology, Ist. Nazionale Neurologico C. Besta, Milan (Italy)); Pareyson, D. (Dept. of Neurology, Ist. Nazionale Neurologico C. Besta, Milan (Italy))

    1992-08-01

    The effects of wallerian degeneration can be demonstrated by MRI as abnormal signal along the course of the degenerate fibres; they have previously been reported in the corticospinal tract. We report two cases of wallerian degeneration of the right optic radiations due to lesions of the right lateral geniculate body. The anatomy and the MRI visibility of the normal optic radiations are briefly discussed. (orig.).

  19. Transfer map approach to an optical effects of energy degraders on the performance of fragment separators

    International Nuclear Information System (INIS)

    Erdelyi, B.; Bandura, L.; Nolen, J.

    2009-01-01

    A second order analytical and an arbitrary order numerical procedure is developed for the computation of transfer maps of energy degraders. The incorporation of the wedges into the optics of fragment separators for next-generation exotic beam facilities, their optical effects, and the optimization of their performance is studied in detail. It is shown how to place and shape the degraders in the system such that aberrations are minimized and resolving powers are maximized

  20. Transfer map approach to and optical effects of energy degraders in fragment separators

    Directory of Open Access Journals (Sweden)

    B. Erdelyi

    2009-01-01

    Full Text Available A second order analytical and an arbitrary order numerical procedure is developed for the computation of transfer maps of energy degraders. The incorporation of the wedges into the optics of fragment separators for next-generation exotic beam facilities, their optical effects, and the optimization of their performance is studied in detail. It is shown how to place and shape the degraders in the system such that aberrations are minimized and resolving powers are maximized.

  1. Ultrashort pulse-propagation effects in a semiconductor optical amplifier: Microscopic theory and experiment

    DEFF Research Database (Denmark)

    Hughes, S.; Borri, P.; Knorr, A.

    2001-01-01

    We present microscopic modeling and experimental measurements of femtosecond-pulse interactions in a semiconductor optical amplifier. Two novel nonlinear propagation effects are demonstrated: pulse breakup in the gain regime and pulse compression in the transparency regime. These propagation phen...... phenomena highlight the microscopic origin and important role of adiabatic following in semiconductor optical amplifiers. Fundamental light-matter interactions are discussed in detail and possible applications are highlighted....

  2. Optical phase plates as a creative medium for special effects in images

    Science.gov (United States)

    Shaoulov, Vesselin I.; Meyer, Catherine; Argotti, Yann; Rolland, Jannick P.

    2001-12-01

    A new paradigm and methods for special effects in images were recently proposed by artist and movie producer Steven Hylen. Based on these methods, images resembling painting may be formed using optical phase plates. The role of the mathematical and optical properties of the phase plates is studied in the development of these new art forms. Results of custom software as well as ASAP simulations are presented.

  3. Optical pulling force and conveyor belt effect in resonator-waveguide system.

    Science.gov (United States)

    Intaraprasonk, Varat; Fan, Shanhui

    2013-09-01

    We present the theoretical condition and actual numerical design that achieves an optical pulling force in resonator-waveguide systems, where the direction of the force on the resonator is in the opposite direction to the input light in the waveguide. We also show that this pulling force can occur in conjunction with the lateral optical equilibrium effect, such that the resonator is maintained at the fixed distance from the waveguide while experiencing the pulling force.

  4. Effective-mass model and magneto-optical properties in hybrid perovskites

    OpenAIRE

    Yu, Z. G.

    2016-01-01

    Hybrid inorganic-organic perovskites have proven to be a revolutionary material for low-cost photovoltaic applications. They also exhibit many other interesting properties, including giant Rashba splitting, large-radius Wannier excitons, and novel magneto-optical effects. Understanding these properties as well as the detailed mechanism of photovoltaics requires a reliable and accessible electronic structure, on which models of transport, excitonic, and magneto-optical properties can be effici...

  5. Magnetic Field Effect on Ultrashort Two-dimensional Optical Pulse Propagation in Silicon Nanotubes

    Science.gov (United States)

    Konobeeva, N. N.; Evdokimov, R. A.; Belonenko, M. B.

    2018-05-01

    The paper deals with the magnetic field effect which provides a stable propagation of ultrashort pulses in silicon nanotubes from the viewpoint of their waveform. The equation is derived for the electromagnetic field observed in silicon nanotubes with a glance to the magnetic field for two-dimensional optical pulses. The analysis is given to the dependence between the waveform of ultrashort optical pulses and the magnetic flux passing through the cross-sectional area of the nanotube.

  6. The effects of wallerian degeneration of the optic radiations demonstrated by MRI

    International Nuclear Information System (INIS)

    Savoiardo, M.; Grisoli, M.; Forester, M.; D'Incerti, L.; Farina, L.; Pareyson, D.

    1992-01-01

    The effects of wallerian degeneration can be demonstrated by MRI as abnormal signal along the course of the degenerate fibres; they have previously been reported in the corticospinal tract. We report two cases of wallerian degeneration of the right optic radiations due to lesions of the right lateral geniculate body. The anatomy and the MRI visibility of the normal optic radiations are briefly discussed. (orig.)

  7. Investigation of optical and magneto-optical constants and their surface-oxide-layer effects of single-crystalline GdCo2

    International Nuclear Information System (INIS)

    Lee, S.J.; Kim, K.J.; Canfield, P.C.; Lynch, D.W.

    2000-01-01

    We investigated the optical and magneto-optical properties of single-crystalline GdCo 2 by spectroscopic ellipsometry (SE) and magneto-optical Kerr spectrometry (MOKS). The diagonal component of the optical conductivity tensor of the compound was obtained by SE in the 1.5-5.5 eV region and the off-diagonal component by using the measured magneto-optical parameters (Kerr rotation and ellipticity) by MOKS and the SE data. The measured spectra were corrected for the surface oxide layer by employing a three-phase model treating the oxide layer as nonmagnetic with constant refractive index. The magnitude of the diagonal component becomes enhanced and the optical transition structures of the off-diagonal component become more pronounced by the oxide correction. The overall optical and magneto-optical data are discussed in terms of the calculated spin-polarized band structure and optical absorption of the compound and the effect of the surface oxide layer

  8. Effects of the bleaching sequence on the optical brighteners action in eucalyptus kraft pulp

    Directory of Open Access Journals (Sweden)

    Mauro Manfredi

    2014-06-01

    Full Text Available During the bleaching process the pulp is treated with chemical reagents that can be retained in the pulp and interfere in the action of the optical brighteners. Different bleaching sequences can produce pulps at the same brightness but with different potential to whiteness increase when treated with optical brighteners. The objective of this study was to evaluate the influence of the bleaching sequence on the efficiency of disulphonated and tetrasulphonated optical brighteners. Eucalyptus kraft pulp was bleached using four different bleaching sequences. For each pulp three brightness targets were aimeds. For each bleaching sequence mathematical model was generated for predicting the final pulp whiteness according to the initial brightness and the optical brightener charge applied. The presence of organochlorine residues in the pulp reduced the effectiveness of the optical brighteners. Therefore, bleaching sequences that use low chlorine dioxide charge favors for greater gains in whiteness with the application of optical brighteners. The replacement of the final chlorine dioxide bleaching stage with a hydrogen peroxide one in the sequence increased the efficiency of the optical brightening agents.

  9. Optically controlled polarizer using a ladder transition for high speed Stokesmetric Imaging and Quantum Zeno Effect based optical logic.

    Science.gov (United States)

    Krishnamurthy, Subramanian; Wang, Y; Tu, Y; Tseng, S; Shahriar, M S

    2013-10-21

    We demonstrate an optically controlled polarizer at ~1323 nm using a ladder transition in a Rb vapor cell. The lower leg of the 5S(1/2),F = 1->5P(1/2),F = 1,2->6S(1/2),F = 1,2 transitions is excited by a Ti:Sapphire laser locked to a saturated absorption signal, representing the control beam. A tunable fiber laser at ~1323 nm is used to excite the upper leg of the transitions, representing the signal beam. When the control beam is linearly polarized, it produces an excitation of the intermediate level with a particular orientation of the angular momentum. Under ideal conditions, this orientation is transparent to the signal beam if it has the same polarization as the control beam and is absorbed when it is polarized orthogonally. We also present numerical simulations of the system using a comprehensive model which incorporates all the relevant Zeeman sub-levels in the system, and identify means to improve the performance of the polarizer. A novel algorithm to compute the evolution of large scale quantum system enabled us to perform this computation, which may have been considered too cumbersome to carry out previously. We describe how such a polarizer may serve as a key component for high-speed Stokesmetric imaging. We also show how such a polarizer, combined with an optically controlled waveplate, recently demonstrated by us, can be used to realize a high speed optical logic gate by making use of the Quantum Zeno Effect. Finally, we describe how such a logic gate can be realized at an ultra-low power level using a tapered nanofiber embedded in a vapor cell.

  10. Optical solitons in nematic liquid crystals: model with saturation effects

    Science.gov (United States)

    Borgna, Juan Pablo; Panayotaros, Panayotis; Rial, Diego; de la Vega, Constanza Sánchez F.

    2018-04-01

    We study a 2D system that couples a Schrödinger evolution equation to a nonlinear elliptic equation and models the propagation of a laser beam in a nematic liquid crystal. The nonlinear elliptic equation describes the response of the director angle to the laser beam electric field. We obtain results on well-posedness and solitary wave solutions of this system, generalizing results for a well-studied simpler system with a linear elliptic equation for the director field. The analysis of the nonlinear elliptic problem shows the existence of an isolated global branch of solutions with director angles that remain bounded for arbitrary electric field. The results on the director equation are also used to show local and global existence, as well as decay for initial conditions with sufficiently small L 2-norm. For sufficiently large L 2-norm we show the existence of energy minimizing optical solitons with radial, positive and monotone profiles.

  11. The effect of laser ablation parameters on optical limiting properties of silver nanoparticles

    Science.gov (United States)

    Gursoy, Irmak; Yaglioglu, Halime Gul

    2017-09-01

    This paper presents the effect of laser ablation parameters on optical limiting properties of silver nanoparticles. The current applications of lasers such as range finding, guidance, detection, illumination and designation have increased the potential of damaging optical imaging systems or eyes temporary or permanently. The applications of lasers introduce risks for sensors or eyes, when laser power is higher than damage threshold of the detection system. There are some ways to protect these systems such as neutral density (nd) filters, shutters, etc. However, these limiters reduce the total amount of light that gets into the system. Also, response time of these limiters may not be fast enough to prevent damage and cause precipitation in performance due to deprivation of transmission or contrast. Therefore, optical limiting filters are needed that is transparent for low laser intensities and limit or block the high laser intensities. Metal nanoparticles are good candidates for such optical limiting filters for ns pulsed lasers or CW lasers due to their high damage thresholds. In this study we investigated the optical limiting performances of silver nanoparticles produced by laser ablation technique. A high purity silver target immersed in pure water was ablated with a Nd:YAG nanosecond laser at 532 nm. The effect of altering laser power and ablation time on laser ablation efficiency of nanoparticles was investigated experimentally and optimum values were specified. Open aperture Zscan experiment was used to investigate the effect of laser ablation parameters on the optical limiting performances of silver nanoparticles in pure water. It was found that longer ablation time decreases the optical limiting threshold. These results are useful for silver nanoparticles solutions to obtain high performance optical limiters.

  12. Combined effects of nonparaxiality, optical activity, and walk-off on rogue wave propagation in optical fibers filled with chiral materials

    Science.gov (United States)

    Temgoua, D. D. Estelle; Tchokonte, M. B. Tchoula; Kofane, T. C.

    2018-04-01

    The generalized nonparaxial nonlinear Schrödinger (NLS) equation in optical fibers filled with chiral materials is reduced to the higher-order integrable Hirota equation. Based on the modified Darboux transformation method, the nonparaxial chiral optical rogue waves are constructed from the scalar model with modulated coefficients. We show that the parameters of nonparaxiality, third-order dispersion, and differential gain or loss term are the main keys to control the amplitude, linear, and nonlinear effects in the model. Moreover, the influence of nonparaxiality, optical activity, and walk-off effect are also evidenced under the defocusing and focusing regimes of the vector nonparaxial NLS equations with constant and modulated coefficients. Through an algorithm scheme of wider applicability on nonparaxial beam propagation methods, the most influential effect and the simultaneous controllability of combined effects are underlined, showing their properties and their potential applications in optical fibers and in a variety of complex dynamical systems.

  13. Coulomb effect in the tri nucleon system in an optical potential model

    International Nuclear Information System (INIS)

    Adhikari, S.K.; Delfino, A.; Maryland Univ., College Park, MD

    1993-02-01

    A Saxon-Woods type nucleon-deuteron optical potential in suggested and applied numerically to the study of the static Coulomb effect in the low-energy tri nucleon system. In particular, the observed correlations between the static Coulomb energy of 3 He and the triton binding energy, and that between the neutron-deuteron and the proton-deuteron scattering lengths are simulated with this optical potential. In view of this study and a previous one employing two other effective potentials its is unlikely that a a study of the usual static Coulomb effect in the tri nucleon system will reveal new and meaningful physics. (author). 12 refs, 2 figs

  14. All-optical control of microfiber resonator by graphene's photothermal effect

    International Nuclear Information System (INIS)

    Wang, Yadong; Gan, Xuetao; Zhao, Chenyang; Fang, Liang; Mao, Dong; Zhang, Fanlu; Xi, Teli; Zhao, Jianlin; Xu, Yiping; Ren, Liyong

    2016-01-01

    We demonstrate an efficient all-optical control of microfiber resonator assisted by graphene's photothermal effect. Wrapping graphene onto a microfiber resonator, the light-graphene interaction can be strongly enhanced via the resonantly circulating light, which enables a significant modulation of the resonance with a resonant wavelength shift rate of 71 pm/mW when pumped by a 1540 nm laser. The optically controlled resonator enables the implementation of low threshold optical bistability and switching with an extinction ratio exceeding 13 dB. The thin and compact structure promises a fast response speed of the control, with a rise (fall) time of 294.7 μs (212.2 μs) following the 10%–90% rule. The proposed device, with the advantages of compact structure, all-optical control, and low power acquirement, offers great potential in the miniaturization of active in-fiber photonic devices.

  15. All-optical control of microfiber resonator by graphene's photothermal effect

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yadong; Gan, Xuetao; Zhao, Chenyang; Fang, Liang; Mao, Dong; Zhang, Fanlu; Xi, Teli; Zhao, Jianlin, E-mail: jlzhao@nwpu.edu.cn [Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, and Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi' an 710072 (China); Xu, Yiping; Ren, Liyong [State Key Laboratory of Transient Optics and Photonics, Xi' an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi' an 710119 (China)

    2016-04-25

    We demonstrate an efficient all-optical control of microfiber resonator assisted by graphene's photothermal effect. Wrapping graphene onto a microfiber resonator, the light-graphene interaction can be strongly enhanced via the resonantly circulating light, which enables a significant modulation of the resonance with a resonant wavelength shift rate of 71 pm/mW when pumped by a 1540 nm laser. The optically controlled resonator enables the implementation of low threshold optical bistability and switching with an extinction ratio exceeding 13 dB. The thin and compact structure promises a fast response speed of the control, with a rise (fall) time of 294.7 μs (212.2 μs) following the 10%–90% rule. The proposed device, with the advantages of compact structure, all-optical control, and low power acquirement, offers great potential in the miniaturization of active in-fiber photonic devices.

  16. Optical super-resolution effect induced by nonlinear characteristics of graphene oxide films

    Science.gov (United States)

    Zhao, Yong-chuang; Nie, Zhong-quan; Zhai, Ai-ping; Tian, Yan-ting; Liu, Chao; Shi, Chang-kun; Jia, Bao-hua

    2018-01-01

    In this work, we focus on the optical super-resolution effect induced by strong nonlinear saturation absorption (NSA) of graphene oxide (GO) membranes. The third-order optical nonlinearities are characterized by the canonical Z-scan technique under femtosecond laser (wavelength: 800 nm, pulse width: 100 fs) excitation. Through controlling the applied femtosecond laser energy, NSA of the GO films can be tuned continuously. The GO film is placed at the focal plane as a unique amplitude filter to improve the resolution of the focused field. A multi-layer system model is proposed to present the generation of a deep sub-wavelength spot associated with the nonlinearity of GO films. Moreover, the parameter conditions to achieve the best resolution (˜λ/6) are determined entirely. The demonstrated results here are useful for high density optical recoding and storage, nanolithography, and super-resolution optical imaging.

  17. Measurement of Temperature and Relative Humidity with Polymer Optical Fiber Sensors Based on the Induced Stress-Optic Effect

    Science.gov (United States)

    Pontes, Maria José

    2018-01-01

    This paper presents a system capable of measuring temperature and relative humidity with polymer optical fiber (POF) sensors. The sensors are based on variations of the Young’s and shear moduli of the POF with variations in temperature and relative humidity. The system comprises two POFs, each with a predefined torsion stress that resulted in a variation in the fiber refractive index due to the stress-optic effect. Because there is a correlation between stress and material properties, the variation in temperature and humidity causes a variation in the fiber’s stress, which leads to variations in the fiber refractive index. Only two photodiodes comprise the sensor interrogation, resulting in a simple and low-cost system capable of measuring humidity in the range of 5–97% and temperature in the range of 21–46 °C. The root mean squared errors (RMSEs) between the proposed sensors and the reference were 1.12 °C and 1.36% for the measurements of temperature and relative humidity, respectively. In addition, fiber etching resulted in a sensor with a 2 s response time for a relative humidity variation of 10%, which is one of the lowest recorded response times for intrinsic POF humidity sensors. PMID:29558387

  18. Effective-mass analysis of Bose-Einstein condensates in optical lattices: Stabilization and levitation

    International Nuclear Information System (INIS)

    Pu, H.; Zhang, W.; Meystre, P.; Baksmaty, L.O.; Bigelow, N.P.

    2003-01-01

    We investigate the time evolution of a Bose-Einstein condensate in a periodic optical potential. Using an effective mass formalism, we study the equation of motion for the envelope function modulating the Bloch states of the lattice potential. In particular, we show how the negative effective-mass affects the dynamics of the condensate

  19. Optical effects related to Keplerian discs orbiting Kehagias-Sfetsos naked singularities

    Science.gov (United States)

    Stuchlík, Zdeněk; Schee, Jan

    2014-10-01

    We demonstrate possible optical signatures of the Kehagias-Sfetsos (KS) naked singularity spacetimes representing a spherically symmetric vacuum solution of the modified Hořava gravity. In such spacetimes, accretion structures significantly different from those present in standard black hole spacetimes occur due to the ‘antigravity’ effect, which causes an internal static sphere surrounded by Keplerian discs. We focus our attention on the optical effects related to the Keplerian accretion discs, constructing the optical appearance of the Keplerian discs, the spectral continuum due to their thermal radiation, and the spectral profiled lines generated in the innermost parts of such discs. The KS naked singularity signature is strongly encoded in the characteristics of predicted optical effects, especially in cases where the spectral continuum and spectral lines are profiled by the strong gravity of the spacetimes due to the vanishing region of the angular velocity gradient influencing the effectiveness of the viscosity mechanism. We can conclude that optical signatures of KS naked singularities can be well distinguished from the signatures of standard black holes.

  20. Optical effects related to Keplerian discs orbiting Kehagias–Sfetsos naked singularities

    International Nuclear Information System (INIS)

    Stuchlík, Zdeněk; Schee, Jan

    2014-01-01

    We demonstrate possible optical signatures of the Kehagias–Sfetsos (KS) naked singularity spacetimes representing a spherically symmetric vacuum solution of the modified Hořava gravity. In such spacetimes, accretion structures significantly different from those present in standard black hole spacetimes occur due to the ‘antigravity’ effect, which causes an internal static sphere surrounded by Keplerian discs. We focus our attention on the optical effects related to the Keplerian accretion discs, constructing the optical appearance of the Keplerian discs, the spectral continuum due to their thermal radiation, and the spectral profiled lines generated in the innermost parts of such discs. The KS naked singularity signature is strongly encoded in the characteristics of predicted optical effects, especially in cases where the spectral continuum and spectral lines are profiled by the strong gravity of the spacetimes due to the vanishing region of the angular velocity gradient influencing the effectiveness of the viscosity mechanism. We can conclude that optical signatures of KS naked singularities can be well distinguished from the signatures of standard black holes. (paper)

  1. Effect of metal salts in the optical properties of polydiacetylenes

    International Nuclear Information System (INIS)

    Diaz-Ponce, J.A.; Morales-Saavedra, O.G.; Beristain-Manterola, M.F.; Hernandez-Alcantara, J.M.; Ogawa, T.

    2008-01-01

    Films of polydiacetylene (PDA)-containing polyesters with metal salts of Zn, Eu and Gd were prepared. Ultraviolet-visible (UV-VIS) absorption and photoluminescent (PL) spectra indicated that the presence of the metal salts induced a small shift of their maxima to higher and lower energies, respectively. PDAs films with an ester group in allylic position to the conjugated system presented two emission bands. The higher energy emission band was assigned to carbonyl emission and the lower energy emission band to self-trapped excitons (STE). Indeed, the inclusion of metal salts incremented the intensity relation between the higher and lower emission energy bands. On the other hand, Raman spectroscopy measurements performed in PDAs films derived of pentyn-1-ol indicated that the metal salts induced a slight statistical shift in the triple and double bond signals to higher energies. In this way, the intensity variations and band shifts detected by Raman, UV-VIS and PL spectroscopies showed that the presence of metal salts could have a remarkable influence on the energy levels of these PDAs. Nonlinear optical (NLO) third harmonic generation (THG) measurements were performed in order to verify this affirmation as well as the cubic NLO performance of these materials

  2. Effects of Temperature and X-rays on Plastic Scintillating Fiber and Infrared Optical Fiber.

    Science.gov (United States)

    Lee, Bongsoo; Shin, Sang Hun; Jang, Kyoung Won; Yoo, Wook Jae

    2015-05-11

    In this study, we have studied the effects of temperature and X-ray energy variations on the light output signals from two different fiber-optic sensors, a fiber-optic dosimeter (FOD) based on a BCF-12 as a plastic scintillating fiber (PSF) and a fiber-optic thermometer (FOT) using a silver halide optical fiber as an infrared optical fiber (IR fiber). During X-ray beam irradiation, the scintillating light and IR signals were measured simultaneously using a dosimeter probe of the FOD and a thermometer probe of the FOT. The probes were placed in a beaker with water on the center of a hotplate, under variation of the tube potential of a digital radiography system or the temperature of the water in the beaker. From the experimental results, in the case of the PSF, the scintillator light output at the given tube potential decreased as the temperature increased in the temperature range from 25 to 60 °C. We demonstrated that commonly used BCF-12 has a significant temperature dependence of -0.263 ± 0.028%/°C in the clinical temperature range. Next, in the case of the IR fiber, the intensity of the IR signal was almost uniform at each temperature regardless of the tube potential range from 50 to 150 kVp. Therefore, we also demonstrated that the X-ray beam with an energy range used in diagnostic radiology does not affect the IR signals transmitted via a silver halide optical fiber.

  3. Embodied memory: effective and stable perception by combining optic flow and image structure.

    Science.gov (United States)

    Pan, Jing Samantha; Bingham, Ned; Bingham, Geoffrey P

    2013-12-01

    Visual perception studies typically focus either on optic flow structure or image structure, but not on the combination and interaction of these two sources of information. Each offers unique strengths in contrast to the other's weaknesses. Optic flow yields intrinsically powerful information about 3D structure, but is ephemeral. It ceases when motion stops. Image structure is less powerful in specifying 3D structure, but is stable. It remains when motion stops. Optic flow and image structure are intrinsically related in vision because the optic flow carries one image to the next. This relation is especially important in the context of progressive occlusion, in which optic flow provides information about the location of targets hidden in subsequent image structure. In four experiments, we investigated the role of image structure in "embodied memory" in contrast to memory that is only in the head. We found that either optic flow (Experiment 1) or image structure (Experiment 2) alone were relatively ineffective, whereas the combination was effective and, in contrast to conditions requiring reliance on memory-in-the-head, much more stable over extended time (Experiments 2 through 4). Limits well documented for visual short memory (that is, memory-in-the-head) were strongly exceeded by embodied memory. The findings support J. J. Gibson's (1979/1986, The Ecological Approach to Visual Perception, Boston, MA, Houghton Mifflin) insights about progressive occlusion and the embodied nature of perception and memory.

  4. Effect of carrier doping and external electric field on the optical properties of graphene quantum dots

    Science.gov (United States)

    Basak, Tista; Basak, Tushima

    2018-02-01

    In this paper, we demonstrate that the optical properties of finite-sized graphene quantum dots can be effectively controlled by doping it with different types of charge carriers (electron/hole). In addition, the role played by a suitably directed external electric field on the optical absorption of charge-doped graphene quantum dots have also been elucidated. The computations have been performed on diamond-shaped graphene quantum dot (DQD) within the framework of the Pariser-Parr-Pople (PPP) model Hamiltonian, which takes into account long-range Coulomb interactions. Our results reveal that the energy band-gap increases when the DQD is doped with holes while it decreases on doping it with electrons. Further, the optical absorption spectra of DQD exhibits red/blue-shift on doping with electrons/holes. Our computations also indicate that the application of external transverse electric field results in a substantial blue-shift of the optical spectrum for charge-doped DQD. However, it is observed that the influence of charge-doping is more prominent in tuning the optical properties of finite-sized graphene quantum dots as compared to externally applied electric field. Thus, tailoring the optical properties of finite-sized graphene quantum dots by manipulative doping with charge carriers and suitably aligned external electric field can greatly enhance its potential application in designing nano-photonic devices.

  5. Gamma-irradiation effects on optical properties of lexan film. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Abd-Elrehim, N; El-Samahy, A E; Kassem, M E [Physics Department, Faculty of Science, Alexandria University. (Egypt); Abou-Taleb, W M [Physics and Chemistry Department, Faculty of Education, Alexandria University. (Egypt)

    1996-03-01

    The optical absorption method is a powerful tool for studying the optically induced transitions and for determining the energy gap in crystalline and non-crystalline materials. The absorption spectra in the lower energy part sheds light on the atomic vibrations. While the higher energy parts of the spectrum manifest the electronic states in the atoms. Effect of gamma-irradiation on the optical properties of plastic detector (Lexan film) has been studied. These investigations were carried out for gamma-doses from 10 kGy -2 mGy to determine the optical parameters; optical energy gap E{sub op}, absorption coefficient {alpha} , absorption index K, mobility energy gap E{sub g}, absorption band edge {lambda}{sub g} and the absorbance at wavelength 340 nm. The results showed that both direct and indirect transitions existed in lexan detector, and because highly sensitive to gamma-irradiation doses. The variations of optical energy gap with gamma-irradiation doses can be explained as the change in the degree of disorder and the phonon energy E{sub p}, is dose dependent. 7 figs.

  6. Gamma-irradiation effects on optical properties of lexan film. Vol. 2

    International Nuclear Information System (INIS)

    Abd-Elrehim, N.; El-Samahy, A.E.; Kassem, M.E.; Abou-Taleb, W.M.

    1996-01-01

    The optical absorption method is a powerful tool for studying the optically induced transitions and for determining the energy gap in crystalline and non-crystalline materials. The absorption spectra in the lower energy part sheds light on the atomic vibrations. While the higher energy parts of the spectrum manifest the electronic states in the atoms. Effect of gamma-irradiation on the optical properties of plastic detector (Lexan film) has been studied. These investigations were carried out for gamma-doses from 10 kGy -2 mGy to determine the optical parameters; optical energy gap E op , absorption coefficient α , absorption index K, mobility energy gap E g , absorption band edge λ g and the absorbance at wavelength 340 nm. The results showed that both direct and indirect transitions existed in lexan detector, and because highly sensitive to gamma-irradiation doses. The variations of optical energy gap with gamma-irradiation doses can be explained as the change in the degree of disorder and the phonon energy E p , is dose dependent. 7 figs

  7. The effect of jitter on the performance of space coherent optical communication system with Costas loop

    Science.gov (United States)

    Li, Xin; Hong, Yifeng; Wang, Jinfang; Liu, Yang; Sun, Xun; Li, Mi

    2018-01-01

    Numerous communication techniques and optical devices successfully applied in space optical communication system indicates a good portability of it. With this good portability, typical coherent demodulation technique of Costas loop can be easily adopted in space optical communication system. As one of the components of pointing error, the effect of jitter plays an important role in the communication quality of such system. Here, we obtain the probability density functions (PDF) of different jitter degrees and explain their essential effect on the bit error rate (BER) space optical communication system. Also, under the effect of jitter, we research the bit error rate of space coherent optical communication system using Costas loop with different system parameters of transmission power, divergence angle, receiving diameter, avalanche photodiode (APD) gain, and phase deviation caused by Costas loop. Through a numerical simulation of this kind of communication system, we demonstrate the relationship between the BER and these system parameters, and some corresponding methods of system optimization are presented to enhance the communication quality.

  8. Effect of gamma irradiation on the structural, mechanical and optical properties of polytetrafluoroethylene sheet

    Science.gov (United States)

    Mohammadian-Kohol, M.; Asgari, M.; Shakur, H. R.

    2018-04-01

    In this study, the effects of gamma radiation on the chemical structure, mechanical and optical properties of polytetrafluoroethylene (PTFE) sheet were investigated with various doses up to 12 kGy. The chemical changes in the structure were studied by FTIR spectroscopy. Also, effects of radiation on the different mechanical parameters such as Young's modulus, toughness, strain, and stress were studied at the maximum tolerable force and the fracture points. Furthermore, changing the various optical parameters such as absorption coefficient, Urbach energy, optical band gaps, refractive index, optical dispersion parameters and plasma resonance frequency were studied by UV-visible spectroscopy. Formation of a band at 1594 cm-1, which was belonged to double carbon bonds, indicated that chain-scission was occurred at 12 kGy gamma irradiation dose. As well, the mechanical results showed an increase in the elastic behavior of PTFE sheets and a decrease in the plastic behavior of it with absorbed dose increasing. Moreover, the results showed that gamma irradiation can effectively change the various optical properties of PTFE sheets due to different phenomena such as degradation of the main chains, occurring chain-scission, formation of free radicals and cross-linking in the polymer structure.

  9. Optical spectroscopic characteristics of lactate and mitochondrion as new biomarkers in cancer diagnosis: understanding Warburg effect

    Science.gov (United States)

    Liu, C.-H.; Ni, X. H.; Pu, Yang; Yang, Y. L.; Zhou, F.; Zuzolo, R.; Wang, W. B.; Masilamani, V.; Rizwan, A.; Alfano, R. R.

    2012-01-01

    Cancer cells display high rates of glycolysis even under normoxia and mostly under hypoxia. Warburg proposed this effect of altered metabolism in cells more than 80 years ago. It is considered as a hallmark of cancer. Optical spectroscopy can be used to explore this effect. Pathophysiological studies indicate that mitochondria of cancer cells are enlarged and increased in number. Warburg observed that cancer cells tend to convert most glucose to lactate regardless of the presence of oxygen. Previous observations show increased lactate in breast cancer lines. The focus of this study is to investigate the relative content changes of lactate and mitochondria in human cancerous and normal breast tissue samples using optical spectroscopic techniques. The optical spectra were obtained from 30 cancerous and 25 normal breast tissue samples and five model components (Tryptophan, fat, collagen, lactate and mitochondrion) using fluorescence, Stokes shift and Raman spectroscopy. The basic biochemical component analysis model (BBCA) and a set of algorithm were used to analyze the spectra. Our analyses of fluorescence spectra showed a 14 percent increase in lactate content and 2.5 times increase in mitochondria number in cancerous breast tissue as compared with normal tissue. Our findings indicate that optical spectroscopic techniques may be used to understand Warburg effect. Lactate and mitochondrion content changes in tumors examined using optical spectroscopy may be used as a prognostic molecular marker in clinic applications.

  10. Realization of a free-space 2 × 4 90° optical hybrid based on the birefringence and electro-optic effects of crystals

    International Nuclear Information System (INIS)

    Wan, Lingyu; Zhou, Yu; Liu, Liren; Sun, Jianfeng

    2013-01-01

    A free-space 2 × 4 90° optical hybrid with electro-optic modulation is presented. The hybrid principally consists of two pairs of electro-optic crystal plates coated with gold electrodes and a polarization analyzer. The optical hybrid uses the birefringence effect of a crystal to split and combine a signal beam and a local oscillator beam, uses the electro-optic effect to introduce a phase modulation and produce a phase shift, and outputs four-channel signal/local oscillator mixed beams whose phase difference can be adjusted continuously. A LiNbO 3 crystal is used to design and manufacture the space optical hybrid, and an experimental system is used to verify its performance. The results show that the output phase of the hybrid is continuously adjustable, enabling the hybrid to function perfectly as a 2 × 4 90° space optical hybrid under an appropriate electric field, and that the phase error can be compensated for by an electric field adjustment. (paper)

  11. Optical waveguides with memory effect using photochromic material for neural network

    Science.gov (United States)

    Tanimoto, Keisuke; Amemiya, Yoshiteru; Yokoyama, Shin

    2018-04-01

    An optical neural network using a waveguide with a memory effect, a photodiode, CMOS circuits and LEDs was proposed. To realize the neural network, optical waveguides with a memory effect were fabricated using a cladding layer containing the photochromic material “diarylethene”. The transmittance of green light was decreased by UV light irradiation and recovered by the passage of green light through the waveguide. It was confirmed that the transmittance versus total energy of the green light that passed through the waveguide well fit the universal exponential curve.

  12. Study of the epidermis ablation effect on the efficiency of optical clearing of skin in vivo

    Science.gov (United States)

    Genina, E. A.; Ksenofontova, N. S.; Bashkatov, A. N.; Terentyuk, G. S.; Tuchin, V. V.

    2017-06-01

    We present the results of a comparative analysis of optical immersion clearing of skin in laboratory animals in vivo with and without preliminary ablation of epidermis. Laser ablation is implemented using a setup based on a pulsed erbium laser (λ = 2940 nm). The size of the damaged region amounted to 6 × 6 mm, the depth being smaller than 50 μm. As an optical clearing agent (OCA), use is made of polyethylene glycol (PEG-300). Based on optical coherence tomography, we use the single scattering model to estimate the scattering coefficient in the process of optical clearing in 2 regions at depths of 50-170 μm and 150-400 μm. The results show that skin surface ablation leads to the local oedema of the affected region that increases the scattering coefficient. However, the intense evaporation of water from the ablation zone facilitates the optical clearing at the expense of tissue dehydration, particularly in the upper layers. The assessment of the optical clearing efficiency shows that the efficiency exceeding 30% can be achieved at a depth from 50 to 170 μm in 120 min after ablation, as well as after the same ablation with subsequent application of PEG-300, which increases the efficiency of the immersion method by almost 1.8 times. At a depth from 150 to 400 μm, dehydration of upper layers cannot completely compensate for an increase in light scattering by dermis after epidermis ablation. The additional effect of OCA enhances the optical clearing of skin at the expense of improving the refractive index matching between dermis components, but the maximal efficiency of optical clearing in 120 min does not exceed 6%.

  13. Effect of mechanical optical clearing on near-infrared spectroscopy.

    Science.gov (United States)

    Idelson, Christopher R; Vogt, William C; King-Casas, Brooks; LaConte, Stephen M; Rylander, Christopher G

    2015-08-01

    Near-infrared Spectroscopy (NIRS) is a broadly utilized technology with many emerging applications including clinical diagnostics, sports medicine, and functional neuroimaging, to name a few. For functional brain imaging NIR light is delivered at multiple wavelengths through the scalp and skull to the brain to enable spatial oximetry measurements. Dynamic changes in brain oxygenation are highly correlated with neural stimulation, activation, and function. Unfortunately, NIRS is currently limited by its low spatial resolution, shallow penetration depth, and, perhaps most importantly, signal corruption due to light interactions with superficial non-target tissues such as scalp and skull. In response to these issues, we have combined the non-invasive and rapidly reversible method of mechanical tissue optical clearing (MOC) with a commercially available NIRS system. MOC utilizes a compressive loading force on tissue, causing the lateral displacement of blood and water, while simultaneously thinning the tissue. A MOC-NIRS Breath Hold Test displayed a ∼3.5-fold decrease in the time-averaged standard deviation between channels, consequentially promoting greater channel agreement. A Skin Pinch Test was implemented to negate brain and muscle activity from affecting the recorded signal. These results displayed a 2.5-3.0 fold increase in raw signal amplitude. Existing NIRS instrumentation has been further integrated within a custom helmet device to provide a uniform force distribution across the NIRS sensor array. These results showed a gradual decrease in time-averaged standard deviation among channels with an increase in applied pressure. Through these experiments, and the development of the MOC-NIRS helmet device, MOC appears to provide enhancement of NIRS technology beyond its current limitations. © 2015 Wiley Periodicals, Inc.

  14. Noticeable positive Doppler effect on optical bistability in an N-type active Raman gain atomic system

    International Nuclear Information System (INIS)

    Chang Zeng-Guang; Zhang Jing-Tao; Niu Yue-Ping; Gong Shang-Qing

    2012-01-01

    We theoretically investigate the Doppler effect on optical bistability in an N-type active Raman gain atomic system inside an optical ring cavity. It is shown that the Doppler effect can greatly enhance the dispersion and thus create the bistable behaviour or greatly increase the bistable region, which has been known as the positive Doppler effect on optical bistability. In addition, we find that a positive Doppler effect can change optical bistability from the hybrid dispersion-gain type to a dispersive type

  15. Waveguide-Plasmon Polaritons Enhance Transverse Magneto-Optical Kerr Effect

    Directory of Open Access Journals (Sweden)

    Lars E. Kreilkamp

    2013-11-01

    Full Text Available Magneto-optical effects in ferrimagnetic or ferromagnetic materials are usually too weak for potential applications. The transverse magneto-optical Kerr effect (TMOKE in ferromagnetic films is typically on the order of 0.1%. Here, we demonstrate experimentally the enhancement of TMOKE due to the interaction of particle plasmons in gold nanowires with a photonic waveguide consisting of magneto-optical material, where hybrid waveguide-plasmon polaritons are excited. We achieve a large TMOKE that modulates the transmitted light intensity by 1.5%, accompanied by high transparency of the system. Our concept may lead to novel devices of miniaturized photonic circuits and switches, which are controllable by an external magnetic field.

  16. Investigating the use of the acousto-optic effect for acoustic holography

    DEFF Research Database (Denmark)

    Torras Rosell, Antoni; Fernandez Grande, Efren; Jacobsen, Finn

    2012-01-01

    Recent studies have demonstrated that the acousto-optic effect, that is, the interaction between sound and light, can be used as a means to visualize acoustic fields in the audible frequency range. The changes of density caused by sound waves propagating in air induce phase shifts to a laser beam...... that travels through the acoustic field. This phenomenon can in practice be captured with a laser Doppler vibrometer (LDV), and the pressure distribution of the acoustic field can be reconstructed using tomography. The present work investigates the potential of the acousto-optic effect in acoustic holography....... Two different holographic methods are examined for this purpose. One method first reconstructs the hologram plane using acousto-optic tomography and then propagates it using conventional near-field acoustic holography (NAH). The other method exploits the so-called Fourier Slice Theorem and bases all...

  17. Cooperative effects between color centers in diamond: applications to optical tweezers and optomechanics

    Science.gov (United States)

    Bradac, Carlo; Prasanna Venkatesh, B.; Besga, Benjamin; Johnsson, Mattias; Brennen, Gavin; Molina-Terriza, Gabriel; Volz, Thomas; Juan, Mathieu L.

    2017-08-01

    Since the early work by Ashkin in 1970,1 optical trapping has become one of the most powerful tools for manipulating small particles, such as micron sized beads2 or single atoms.3 Interestingly, both an atom and a lump of dielectric material can be manipulated through the same mechanism: the interaction energy of a dipole and the electric field of the laser light. In the case of atom trapping, the dominant contribution typically comes from the allowed optical transition closest to the laser wavelength while it is given by the bulk polarisability for mesoscopic particles. This difference lead to two very different contexts of applications: one being the trapping of small objects mainly in biological settings,4 the other one being dipole traps for individual neutral atoms5 in the field of quantum optics. In this context, solid state artificial atoms present the interesting opportunity to combine these two aspects of optical manipulation. We are particularly interested in nanodiamonds as they constitute a bulk dielectric object by themselves, but also contain artificial atoms such as nitrogen-vacancy (NV) or silicon-vacancy (SiV) colour centers. With this system, both regimes of optical trapping can be observed at the same time even at room temperature. In this work, we demonstrate that the resonant force from the optical transition of NV centres at 637 nm can be measured in a nanodiamond trapped in water. This additional contribution to the total force is significant, reaching up to 10%. In addition, due to the very large density of NV centres in a sub-wavelength crystal, collective effects between centres have an important effect on the magnitude of the resonant force.6 The possibility to observe such cooperatively enhanced optical force at room temperature is also theoretically confirmed.7 This approach may enable the study of cooperativity in various nanoscale solid-state systems and the use of atomic physics techniques in the field of nano-manipulation and opto-mechanics.

  18. Mitigating the effect of optical back-scatter in multispectral underwater imaging

    International Nuclear Information System (INIS)

    Mortazavi, Halleh; Oakley, John P; Barkat, Braham

    2013-01-01

    Multispectral imaging is a very useful technique for extracting information from the underwater world. However, optical back-scatter changes the intensity value in each spectral band and this distorts the estimated spectrum. In this work, a filter is used to detect the level of optical back-scatter in each spectral band from a set of multispectral images. Extraction of underwater object spectra can be done by subtracting the estimated level of optical back-scatter and scaling the remainder in each spectral band from the captured image in the corresponding band. An experiment has been designed to show the performance of the proposed filter for correcting the set of multispectral underwater images and recovering the pixel spectra. The multispectral images are captured by a B/W CCD digital camera with a fast tunable liquid-crystal filter in 33 narrow spectral bands in clear and different levels of turbid water. Reference estimates for the optical back-scatter spectra are found by comparing a clear and a degraded set of multispectral images. The accuracy and consistency of the proposed method, the extended Oakley–Bu cost function, is examined by comparing the estimated values with the reference level of an optical back-scatter spectrum. The same comparison is made for the simple estimation approach. The results show that the simple method is not reliable and fail to estimate the level of optical back-scatter spectrum accurately. The results from processing experimental images in turbid water show that the effect of optical back-scatter can be mitigated in the image of each spectral band and, as a result, the spectra of the object can be recovered. However, for a very high level of turbid water the recovery is limited because of the effect of extinction. (paper)

  19. The effect of optical substrates on micro-FTIR analysis of single mammalian cells.

    Science.gov (United States)

    Wehbe, Katia; Filik, Jacob; Frogley, Mark D; Cinque, Gianfelice

    2013-02-01

    The study of individual cells with infrared (IR) microspectroscopy often requires living cells to be cultured directly onto a suitable substrate. The surface effect of the specific substrates on the cell growth-viability and associated biochemistry-as well as on the IR analysis-spectral interference and optical artifacts-is all too often ignored. Using the IR beamline, MIRIAM (Diamond Light Source, UK), we show the importance of the substrate used for IR absorption spectroscopy by analyzing two different cell lines cultured on a range of seven optical substrates in both transmission and reflection modes. First, cell viability measurements are made to determine the preferable substrates for normal cell growth. Successively, synchrotron radiation IR microspectroscopy is performed on the two cell lines to determine any genuine biochemically induced changes or optical effect in the spectra due to the different substrates. Multivariate analysis of spectral data is applied on each cell line to visualize the spectral changes. The results confirm the advantage of transmission measurements over reflection due to the absence of a strong optical standing wave artifact which amplifies the absorbance spectrum in the high wavenumber regions with respect to low wavenumbers in the mid-IR range. The transmission spectra reveal interference from a more subtle but significant optical artifact related to the reflection losses of the different substrate materials. This means that, for comparative studies of cell biochemistry by IR microspectroscopy, it is crucial that all samples are measured on the same substrate type.

  20. [Effects of visual optical stimuli for accommodation-convergence system on asthenopia].

    Science.gov (United States)

    Iwasaki, Tsuneto; Tawara, Akihiko; Miyake, Nobuyuki

    2006-01-01

    We investigated the effect on eyestrain of optical stimuli that we designed for accommodation and convergence systems. Eight female students were given optical stimuli for accommodation and convergence systems for 1.5 min immediately after 20 min of a sustained task on a 3-D display. Before and after the trial, their ocular functions were measured and their symptoms were assessed. The optical stimuli were applied by moving targets of scenery images far and near around the far point position of both eyes on a horizonal place, which induced divergence in the direction of the eye position of rest. In a control group, subjects rested with closed eyes for 1.5 min instead of applying the optical stimuli. There were significant changes in the accommodative contraction time (from far to near) and the accommodative relaxation time (from near to far) and the lag of accommodation at near target, from 1.26 s to 1.62 s and from 1.49 s to 1.63 s and from 0.5 D to 0.65 D, respectively, and in the symptoms in the control group after the duration of closed-eye rest. In the stimulus group, however, the changes of those functions were smaller than in the control group. From these results, we suggest that our designed optical stimuli for accommodation and convergence systems are effective on asthenopia following accommodative dysfunction.

  1. Effect of the geometrical parameters of an optical integrator on the unformity of the radiation flux distribution

    International Nuclear Information System (INIS)

    Vishnyakova, T.P.; Klychev, Sh.I.

    1992-01-01

    The use of optical mixers in the optical irradiators of simulators of direct and concentrated solar radiation has been proposed. In this paper, the parameters of an optical mixer are calculated geometrically, and the effect of the parameters of the optical mixer on the unformity of the irradiance distribution η of the radiation flux on the detector is investigated. These investigations show that the light distribution from an optical mixer is close to the characteristics of an ideal uniform emitter within the region from 0 to the limit of α. 5 refs., 4 figs

  2. Sculpted-multilayer optical effects in two species of Papilio butterfly

    International Nuclear Information System (INIS)

    Vukusic, Peter; Sambles, Roy; Lawrence, Christopher; Wakely, Gavin

    2001-01-01

    The wing-scale microstructures associated with two species of Papilio butterfly are described and characterized. Despite close similarities in their structures, they do not exhibit analogous optical effects. With Papilio palinurus, deep modulations in its multilayering create bicolor reflectivity with strong polarization effects, and this leads to additive color mixing in certain visual systems. In contrast to this, Papilio ulysses features shallow multilayer modulation that produces monocolor reflectivity without significant polarization effects

  3. Symmetry consideration in zero loop-area Sagnac interferometry at oblique incidence for detecting magneto-optic Kerr effects.

    Science.gov (United States)

    Zhu, X D

    2017-08-01

    I present a detailed account of a zero loop-area Sagnac interferometer operated at oblique incidence for detecting magneto-optic Kerr effects arising from a magnetized sample. In particular, I describe the symmetry consideration and various optical arrangements available to such an interferometer that enables measurements of magneto-optic effects due to both in-plane and out-of-plane magnetization of the sample with optimizable signal-to-noise ratios.

  4. New organic materials for optics: optical storage and nonlinear optics

    International Nuclear Information System (INIS)

    Gan, F.

    1996-01-01

    New organic materials have received considerable attention recently, due to their easy preparation and different variety. The most application fields in optics are optical storage and nonlinear optics. In optical storage the organic dyes have been used for example, in record able and erasable compact disks (CD-R, CD-E) nonlinear optical effects, such as nonlinear optical absorption, second and third order optical absorption, second and third order optical nonlinearities, can be applied for making optical limiters, optical modulators, as well as laser second and third harmonic generations. Due to high value of optical absorption and optical nonlinearity organic materials are always used as thin films in optical integration. In this paper the new experimental results have been presented, and future development has been also discussed. (author)

  5. Polarization effects in silicon-clad optical waveguides

    Science.gov (United States)

    Carson, R. F.; Batchman, T. E.

    1984-01-01

    By changing the thickness of a semiconductor cladding layer deposited on a planar dielectric waveguide, the TE or TM propagating modes may be selectively attenuated. This polarization effect is due to the periodic coupling between the lossless propagating modes of the dielectric slab waveguide and the lossy modes of the cladding layer. Experimental tests involving silicon claddings show high selectivity for either polarization.

  6. Low-Budget, Cost-Effective OCR: Optical Character Recognition for MS-DOS Micros.

    Science.gov (United States)

    Perez, Ernest

    1990-01-01

    Discusses optical character recognition (OCR) for use with MS-DOS microcomputers. Cost effectiveness is considered, three types of software approaches to character recognition are explained, hardware and operation requirements are described, possible library applications are discussed, future OCR developments are suggested, and a list of OCR…

  7. Effect of pH on the morphology, mechanical and optical properties of ...

    Indian Academy of Sciences (India)

    Administrator

    Indian Academy of Sciences. 1419. Effect of pH on the morphology, mechanical and optical properties of .... 1 mm and the focal length ( f ) of the convex lens used to focus the laser beam was 300 mm. In the present work,. 20 laser shots ...

  8. Proton radiation effects on the optical properties of vertically aligned carbon nanotubes

    Science.gov (United States)

    Kuhnhenn, J.; Khavrus, V.; Leonhardt, A.; Eversheim, D.; Noll, C.; Hinderlich, S.; Dahl, A.

    2017-11-01

    This paper discusses proton-induced radiation effects in vertically aligned carbon nanotubes (VA-CNT). VACNTs exhibit extremely low optical reflectivity which makes them interesting candidates for use in spacecraft stray light suppression. Investigating their behavior in space environment is a precondition for the implementation on a satellite.

  9. Electro-optical effect of a magnetically biased ferronematic liquid crystal.

    Science.gov (United States)

    Chen, S H; Liang, B J

    1988-09-01

    The electro-optical effect of a magnetically biased ferronematic liquid-crystal film is investigated by using birefringence measurements. When a magnetic field is applied, the threshold voltage of the Freedericksz transition no longer exists. The dependence of the birefringence on the magnetic field strength in the low field regime is presented. A theory that accounts for the results is given.

  10. Observation of the X-ray magneto-optical voigt effect

    Czech Academy of Sciences Publication Activity Database

    Mertins, H. Ch.; Oppeneer, P. M.; Kuneš, Jan; Gaupp, A.; Abramsohn, D.; Schäfers, F.

    2001-01-01

    Roč. 87, č. 4 (2001), s. 047401-1-047401-4 ISSN 0031-9007 Grant - others:-(DE) ERB FMG ECT /980105 Institutional research plan: CEZ:A02/98:Z1-010-914 Keywords : x-ray magneto-optical Voigt effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 6.668, year: 2001

  11. Giant quadratic electro-optical effect during polarization switching in ultrathin ferroelectric polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Blinov, L. M., E-mail: lev39blinov@gmail.com; Lazarev, V V; Palto, S P; Yudin, S G [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2012-04-15

    The low-frequency quadratic electro-optical effect with a maximum electro-optical coefficient of g = 8 Multiplication-Sign 10{sup -19} m{sup 2}/V{sup 2} (i.e., four orders of magnitude greater than the standard high-frequency value) has been studied in thin films of ferroelectric polymer PVDF(70%)-TrFE(30%). The observed effect is related to the process of spontaneous polarization switching, during which the electron oscillators of C-F and C-H dipole groups rotate to become parallel to the applied field. As a result, the ellipsoid of the refractive index exhibits narrowing in the direction perpendicular to the field. The field dependence of the electro-optical coefficient g correlates with that of the apparent dielectric permittivity, which can be introduced under the condition of ferroelectric polarization switching. The observed electro-optical effect strongly decreases when the frequency increases up to several hundred hertz. The temperature dependence of the effect exhibits clearly pronounced hysteresis in the region of the ferroelectric phase transition.

  12. Effect of Ar bombardment on the electrical and optical properties of ...

    Indian Academy of Sciences (India)

    The influence of low-energy Ar ion beam irradiation on both electrical and optical properties of low-density polyethylene (LDPE) films is presented. The polymer films were bombarded with 320 keV Ar ions with fuences up to 1 × 10 15 cm − 2 . Electrical properties of LDPE films were measured and the effect of ion ...

  13. Laser-induced optical effects in triglycine-zinc chloride single crystals

    International Nuclear Information System (INIS)

    Wojciechowski, A.; Kityk, I.V.; Lakshminarayana, G.; Fuks-Janczarek, I.; Berdowski, J.; Berdowska, E.; Tylczynski, Z.

    2010-01-01

    The influence of irradiation by a cw 532 nm laser on the behavior of the absorption and optical second harmonic generation of triglicyne-zinc chloride crystal has been studied. Additional absorption bands correlate well with the time of the cw laser exposure. These lines occur at 260 nm, 305 nm, and, with small intensity, at 355 nm. The remaining part of the spectra shows substantially less changes. According to the performed quantum chemical simulations, one may expect that the observed dependences and the stability of the observed photoinduced changes are caused by formation of polarized electron-phonon states and the principal role should belong here to the electron-phonon anharmonicities, which cause the effects described by the non-polar third rank polar tensor like optical second harmonic generation. The increasing optical SHG signal shows a clear correlation with the behavior of the green laser-532 nm. It is important principal that for the blue laser-405 nm, the SHG effect is substantially less. This may reflect that the additional absorption maxima may be responsible for the non-linear optical effects. The effect demonstrates a slow time decay.

  14. Spin-to-orbital momentum conversion via electro-optic Pockels effect in crystals

    Energy Technology Data Exchange (ETDEWEB)

    Skab, Ihor; Vasylkiv, Yurij; Smaga, Ihor; Vlokh, Rostyslav [Institute of Physical Optics, 23 Dragomanov Street, 79005 Lviv (Ukraine)

    2011-10-15

    In the present work we have demonstrated a possibility for operation by orbital angular momentum (OAM) of optical beams via the Pockels effect in solid-crystalline materials. Based on the analysis of an optical Fresnel ellipsoid perturbed by a conically shaped electric field, we have shown that the point groups of crystals convenient for the conversion of spin angular momentum (SAM) to OAM should contain a threefold symmetry axis or a sixfold inversion axis. The results of our experimental studies and theoretical simulations of the SAM-to-OAM conversion efficiency carried out for LiNbO{sub 3} crystals agree well with each other.

  15. Spin-to-orbital momentum conversion via electro-optic Pockels effect in crystals

    International Nuclear Information System (INIS)

    Skab, Ihor; Vasylkiv, Yurij; Smaga, Ihor; Vlokh, Rostyslav

    2011-01-01

    In the present work we have demonstrated a possibility for operation by orbital angular momentum (OAM) of optical beams via the Pockels effect in solid-crystalline materials. Based on the analysis of an optical Fresnel ellipsoid perturbed by a conically shaped electric field, we have shown that the point groups of crystals convenient for the conversion of spin angular momentum (SAM) to OAM should contain a threefold symmetry axis or a sixfold inversion axis. The results of our experimental studies and theoretical simulations of the SAM-to-OAM conversion efficiency carried out for LiNbO 3 crystals agree well with each other.

  16. Annealing and etching effects on strain and stress sensitivity of polymer optical fibre Bragg grating sensors

    DEFF Research Database (Denmark)

    Pospori, A.; Marques, C. A.F.; Sáez-Rodríguez, D.

    2017-01-01

    Thermal annealing and chemical etching effects on the strain and stress sensitivity of polymer optical fibre based sensors are investigated. Bragg grating sensors have been photo-inscribed in PMMA optical fibre and their strain and stress sensitivity has been characterised before and after any...... annealing or etching process. The annealing and etching processes have been tried in different sequence in order to investigate their impact on the sensor's performance. Results show with high confidence that fibre annealing can improve both strain and stress sensitivities. The fibre etching can also...... provide stress sensitivity enhancement, however the strain sensitivity changes seems to be random....

  17. The effect of humidity on annealing of polymer optical fibre bragg gratings

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Nielsen, Kristian; Bang, Ole

    2015-01-01

    The effect of humidity on annealing of PMMA based microstructured polymer optical fiber (mPOF) Bragg gratings is studied. Polymer optical fibers (POFs) are annealed in order to release stress formed during the fabrication process. Un-annealed fibers will have high hysteresis and low sensitivity...... to humidity, particularly when operated at high temperature. Typically annealing of PMMA POFs is done at 80oC in an oven with no humidity control and therefor at low humidity. The response to humidity of PMMA FBGs annealed at different levels of humidity at the same temperature has also been studied. PMMA...

  18. Hyperbaric oxygenation was effective in a case of radiation-induced optic neuropathy

    International Nuclear Information System (INIS)

    Saitoh, Ayumi; Dake, Yoshinori; Amemiya, Tsugio

    1995-01-01

    A 68-year-old female underwent radiation treatment followed by surgical extirpation for olfactory neuroblastoma in the left ethmoidal sinus. Acute optic neuropathy developed 16 months later in her left eye. The visual acuity was reduced to finger counting at 30 cm. Treatment with systemic corticosteroid and hyperbaric oxygenation for 2 months resulted in improvement in fundus findings and improvement of visual acuity to 0.5. The findings show the potential effectiveness of hyperbaric oxygen therapy for radiation-induced optic neuropathy. (author)

  19. Hyperbaric oxygenation was effective in a case of radiation-induced optic neuropathy

    Energy Technology Data Exchange (ETDEWEB)

    Saitoh, Ayumi; Dake, Yoshinori; Amemiya, Tsugio [Nagasaki Univ. (Japan). School of Medicine

    1995-03-01

    A 68-year-old female underwent radiation treatment followed by surgical extirpation for olfactory neuroblastoma in the left ethmoidal sinus. Acute optic neuropathy developed 16 months later in her left eye. The visual acuity was reduced to finger counting at 30 cm. Treatment with systemic corticosteroid and hyperbaric oxygenation for 2 months resulted in improvement in fundus findings and improvement of visual acuity to 0.5. The findings show the potential effectiveness of hyperbaric oxygen therapy for radiation-induced optic neuropathy. (author).

  20. Fiber break location technique utilizing stimulated Brillouin scattering effects in optical fiber

    International Nuclear Information System (INIS)

    Bakar, A A A; Al-Mansoori, M H; Mahdi, M A; Mohd Azau, M A; Zainal Abidin, M S

    2009-01-01

    A new technique of fiber break detection system in optical communication networks is proposed and experimentally demonstrated in this paper. This technique is based-on continuous wave light source rather than pulsed source that is commonly deployed in existing techniques. The nonlinear effect of stimulated Brillouin scattering is manipulated to locate the fiber-break position in optical communication networks. This technique enables the utilization of a less-sensitive photodetector to detect the Brillouin Stokes line since its intensity increases with the fiber length in the detectable region. The fiber break location can be determined with accuracy of more than 98% for fiber length less than 50 km using this technique

  1. Effect of γ-ray irradiation on optical properties of erbium doped bismuth-tellurite glasses

    Science.gov (United States)

    Keshavamurthy, K.; Eraiah, B.

    2018-05-01

    Heavy metal oxide contained glasses are very promising candidates in shielding and photonic materials. In this paper, we studied the effect of γ-ray irradiation on optical properties of Er2O3-Bi2O3-TeO2 glasses through UV-Visible spectrophotometer. After γ-ray exposure, the optical band gap decreases and Urbach energy increases, which is due to creation of defects within the glass network as a result increases the number of non-bridging oxygens.

  2. High sensitivity optical biosensor based on polymer materials and using the Vernier effect.

    Science.gov (United States)

    Azuelos, Paul; Girault, Pauline; Lorrain, Nathalie; Poffo, Luiz; Guendouz, Mohammed; Thual, Monique; Lemaître, Jonathan; Pirasteh, Parastesh; Hardy, Isabelle; Charrier, Joël

    2017-11-27

    We demonstrate the fabrication of a Vernier effect SU8/PMATRIFE polymer optical biosensor with high homogeneous sensitivity using a standard photolithography process. The sensor is based on one micro-resonator embedded on each arm of a Mach-Zehnder interferometer. Measurements are based on the refractive index variation of the optical waveguide superstrate with different concentrations of glucose solutions. The sensitivity of the sensor has been measured as 17558 nm/RIU and the limit of detection has been estimated to 1.1.10 -6 RIU.

  3. BER estimation for all-optical regenerators influenced by pattern effects

    DEFF Research Database (Denmark)

    Bischoff, Svend; Lading, B.; Mørk, Jesper

    2002-01-01

    An efficient method is presented for the estimation of the bit-error rate (BER) of a system employing all-optical regenerators influenced by pattern effects. We theoretically study noise accumulation and noise redistribution in long distance transmission systems employing a delayed interference...... signal wavelength converter for all-optical regeneration. The BER is studied for return-to-zero signals at bit rates of 2.5 Gb/s (no patterning) up to 40 Gb/s (strong patterning). The calculation of the BER is based on pattern dependent transfer functions, which may be obtained numerically or measured....

  4. Ab initio studies on the optical effects in the deep ultraviolet nonlinear optical crystals of the KBe2BO3F2 family

    International Nuclear Information System (INIS)

    Kang Lei; Luo Siyang; Huang Hongwei; Lin, Z S; Chen, C T; Zheng Tao

    2012-01-01

    Electronic structures of the deep ultraviolet nonlinear optical crystals of the KBe 2 BO 3 F 2 (KBBF) family, including KBBF, RbBe 2 BO 3 F 2 and CsBe 2 BO 3 F 2 , have been investigated based on a plane-wave pseudopotential method. Their linear and nonlinear optical coefficients are also calculated, and are in good agreement with the experimental results. A real-space atom-cutting method is adopted to analyze the respective contributions of the alkali metal cations and anionic groups to optical response. The results show that the contributions of anionic groups to the nonlinear optical anisotropic responses are dominant, but the influence of the A-site alkali metal cations becomes slightly more pronounced with the increase of their radius. Moreover, the birefringence difference among these crystals strongly depends on the volume effect, i.e., the spatial density of the (BO 3 ) 3- anionic groups. (paper)

  5. In vitro study of the effects of ultrasound-mediated glycerol on optical attenuation of human normal and cancerous esophageal tissues with optical coherence tomography

    International Nuclear Information System (INIS)

    Zhang, Y Q; Wei, H J; Guo, Z Y; Gu, H M; Guo, X; Zhu, Z G; Yang, H Q; Xie, S S

    2013-01-01

    Previous studies from our group have demonstrated that glucose solution can induce optical clearing enhancement of esophageal tissues with optical coherence tomography (OCT). The aims of this study were to evaluate the optical clearing effects of ultrasound-mediated optical clearing agents (OCAs) and to find more effective methods to distinguish human normal esophageal tissues (NE) and cancerous esophageal tissues (CE). Here we used the OCT technique to investigate the optical attenuation of NE and CE in vitro after treatment with 30% glycerol alone and glycerol combined with ultrasound, respectively. Experimental results showed that the averaged attenuation coefficient of CE was significantly larger than that of NE. The maximal decreases of averaged attenuation coefficients of NE and CE were approximately 48.7% and 36.2% after treatment with 30% glycerol alone, and they were significantly lower than those treated with 30% glycerol and ultrasound (57.5% in NE and 44.8% in CE). Moreover, after treatment with 30% glycerol alone, the averaged attenuation coefficients of NE and CE reached their minima in about 80 min and 65 min, respectively. The times were much shorter in NE and CE after treatment with glycerol with ultrasound, being about 62 min and 50 min, respectively. The results suggest that there is a significant difference in the optical properties of NE and CE, and that OCT with an ultrasound–OCAs combination has the ability to distinguish CE from NE. (paper)

  6. Broadband optically controlled switching effect in a microfluid-filled photonic bandgap fiber

    International Nuclear Information System (INIS)

    Guo, Junqi; Liu, Yan-ge; Wang, Zhi; Luo, Mingming; Huang, Wei; Liu, Xiaoqi; Han, Tingting

    2016-01-01

    Broadband optically controlled switching in a microfluid-filled photonic bandgap fiber (MF-PBGF) was observed and investigated. The MF-PBGF was formed by infusing a temperature-sensitive high-index fluid into all of the cladding holes of a microstructured optical fiber (MOF). The fiber was then side pumped with a 532 nm continuous wave laser. An extinction ratio of greater than 20 dB at most of the bandgap wavelengths (more than 200 nm) was obtained with a switching power of ∼147 mW. Theoretical and experimental investigations revealed that the effect originated from changes in the temperature gradient induced by heat absorption of the fiber coating with laser illumination. These investigations offer a new and simple approach to achieve wideband and flexible all-optical fiber switching devices without using any photosensitive materials. (paper)

  7. Post Deposition Annealing Effects on Optical, Electrical and Morphological Studies of ZnTTBPc Thin Films

    Directory of Open Access Journals (Sweden)

    B. R. Rejitha

    2012-01-01

    Full Text Available Phthalocyanines (Pcs act as efficient absorbants of photons in the visible region, specifically between 600 and 700 nm. It will produce an excited triplet state. In this paper we report the annealing effects of optical, electrical and surface morphological properties of thermal evaporated Zinc-tetra-tert-butyl-29H, 31H phthalocyanine (ZnTTBPc thin films. The optical transmittance measurements were done in the visible region (400-800 nm and, films were found to be absorbing in nature. From spectral data the absorption coefficient α, dielectric constant ε and the extinction coefficient k were evaluated and, results discussed. Also the optical band gap of the material was estimated. The activation energies were measured. Scanning electron microscopic studies was carried out to determine surface uniformity of films.

  8. Nonlinear effects in optical pumping of a cold and slow atomic beam

    KAUST Repository

    Porfido, N.

    2015-10-12

    By photoionizing hyperfine (HF) levels of the Cs state 62P3/2 in a slow and cold atom beam, we find how their population depends on the excitation laser power. The long time (around 180μs) spent by the slow atoms inside the resonant laser beam is large enough to enable exploration of a unique atom-light interaction regime heavily affected by time-dependent optical pumping. We demonstrate that, under such conditions, the onset of nonlinear effects in the population dynamics and optical pumping occurs at excitation laser intensities much smaller than the conventional respective saturation values. The evolution of population within the HF structure is calculated by numerical integration of the multilevel optical Bloch equations. The agreement between numerical results and experiment outcomes is excellent. All main features in the experimental findings are explained by the occurrence of “dark” and “bright” resonances leading to power-dependent branching coefficients.

  9. Effective star tracking method based on optical flow analysis for star trackers.

    Science.gov (United States)

    Sun, Ting; Xing, Fei; Wang, Xiaochu; Li, Jin; Wei, Minsong; You, Zheng

    2016-12-20

    Benefiting from rapid development of imaging sensor technology, modern optical technology, and a high-speed computing chip, the star tracker's accuracy, dynamic performance, and update rate have been greatly improved with low power consumption and miniature size. The star tracker is currently one of the most competitive attitude measurement sensors. However, due to restrictions of the optical imaging system, difficulties still exist in moving star spot detection and star tracking when in special motion conditions. An effective star tracking method based on optical flow analysis for star trackers is proposed in this paper. Spot-based optical flow, based on a gray gradient between two adjacent star images, is analyzed to distinguish the star spot region and obtain an accurate star spot position so that the star tracking can keep continuous under high dynamic conditions. The obtained star vectors and extended Kalman filter (EKF) are then combined to conduct an angular velocity estimation to ensure region prediction of the star spot; this can be combined with the optical flow analysis result. Experiment results show that the method proposed in this paper has advantages in conditions of large angular velocity and large angular acceleration, despite the presence of noise. Higher functional density and better performance can be achieved; thus, the star tracker can be more widely applied in small satellites, remote sensing, and other complex space missions.

  10. Effects of fixture rotation on coating uniformity for high-performance optical filter fabrication

    Science.gov (United States)

    Rubin, Binyamin; George, Jason; Singhal, Riju

    2018-04-01

    Coating uniformity is critical in fabricating high-performance optical filters by various vacuum deposition methods. Simple and planetary rotation systems with shadow masks are used to achieve the required uniformity [J. B. Oliver and D. Talbot, Appl. Optics 45, 13, 3097 (2006); O. Lyngnes, K. Kraus, A. Ode and T. Erguder, in `Method for Designing Coating Thickness Uniformity Shadow Masks for Deposition Systems with a Planetary Fixture', 2014 Technical Conference Proceedings, Optical Coatings, August 13, 2014, DOI: 10.14332/svc14.proc.1817.]. In this work, we discuss the effect of rotation pattern and speed on thickness uniformity in an ion beam sputter deposition system. Numerical modeling is used to determine statistical distribution of random thickness errors in coating layers. The relationship between thickness tolerance and production yield are simulated theoretically and demonstrated experimentally. Production yields for different optical filters produced in an ion beam deposition system with planetary rotation are presented. Single-wavelength and broadband optical monitoring systems were used for endpoint monitoring during filter deposition. Limitations of thickness tolerances that can be achieved in systems with planetary rotation are shown. Paths for improving production yield in an ion beam deposition system are described.

  11. Measuring the effects of topically applied skin optical clearing agents and modeling the effects and consequences for laser therapies

    Science.gov (United States)

    Verkruysse, Wim; Khan, Misbah; Choi, Bernard; Svaasand, Lars O.; Nelson, J. Stuart

    2005-04-01

    Human skin prepared with an optical clearing agent manifests reduced scattering as a result of de-hydration and refractive index matching. This has potentially large effects for laser therapies of several skin lesions such as port wine stain, hair removal and tattoo removal. With most topically applied clearing agents the clearing effect is limited because they penetrate poorly through the intact superficial skin layer (stratum corneum). Agent application modi other than topical are impractical and have limited the success of optical clearing in laser dermatology. In recent reports, however, a mixture of lipofylic and hydrofylic agents was shown to successfully penetrate through the intact stratum corneum layer which has raised new interest in this field. Immediately after application, the optical clearing effect is superficial and, as the agent diffuses through the skin, reduced scattering is manifested in deeper skin layers. For practical purposes as well as to maximize therapeutic success, it is important to quantify the reduced scattering as well as the trans-cutaneous transport dynamics of the agent. We determined the time and tissue depth resolved effects of optically cleared skin by inserting a microscopic reflector array in the skin. Depth dependent light intensity was measured by quantifying the signal of the reflector array with optical coherence tomography. A 1-dimensional mass diffusion model was used to estimate a trans-cutaneous transport diffusion constant for the clearing agent mixture. The results are used in Monte Carlo modeling to determine the optimal time of laser treatment after topical application of the optical clearing agent.

  12. Pulse Propagation Effects in Optical 2D Fourier-Transform Spectroscopy: Theory.

    Science.gov (United States)

    Spencer, Austin P; Li, Hebin; Cundiff, Steven T; Jonas, David M

    2015-04-30

    A solution to Maxwell's equations in the three-dimensional frequency domain is used to calculate rephasing two-dimensional Fourier transform (2DFT) spectra of the D2 line of atomic rubidium vapor in argon buffer gas. Experimental distortions from the spatial propagation of pulses through the sample are simulated in 2DFT spectra calculated for the homogeneous Bloch line shape model. Spectral features that appear at optical densities of up to 3 are investigated. As optical density increases, absorptive and dispersive distortions start with peak shape broadening, progress to peak splitting, and ultimately result in a previously unexplored coherent transient twisting of the split peaks. In contrast to the low optical density limit, where the 2D peak shape for the Bloch model depends only on the total dephasing time, these distortions of the 2D peak shape at finite optical density vary with the waiting time and the excited state lifetime through coherent transient effects. Experiment-specific conditions are explored, demonstrating the effects of varying beam overlap within the sample and of pseudo-time domain filtering. For beam overlap starting at the sample entrance, decreasing the length of beam overlap reduces the line width along the ωτ axis but also reduces signal intensity. A pseudo-time domain filter, where signal prior to the center of the last excitation pulse is excluded from the FID-referenced 2D signal, reduces propagation distortions along the ωt axis. It is demonstrated that 2DFT rephasing spectra cannot take advantage of an excitation-detection transformation that can eliminate propagation distortions in 2DFT relaxation spectra. Finally, the high optical density experimental 2DFT spectrum of rubidium vapor in argon buffer gas [J. Phys. Chem. A 2013, 117, 6279-6287] is quantitatively compared, in line width, in depth of peak splitting, and in coherent transient peak twisting, to a simulation with optical density higher than that reported.

  13. Stark effect of optical properties of excitons in a quantum nanorod with parabolic confinement

    Energy Technology Data Exchange (ETDEWEB)

    Lyo, S.K., E-mail: sklyo@uci.edu

    2014-01-15

    We study the quantum Stark effect of optical properties of a quasi-one-dimensional quantum rod with parabolic confinement. Interplays between the competing/cooperative forces from confinement, electron–hole (e–h) attraction, and an external field are examined by studying the binding energy, the oscillator strength, and the root-mean-square (RMS) average of the e–h separation in a nonlinear electric field. In a long rod with weak confinement, the e–h interaction dominates over the confinement effect, yielding an abrupt drop of the exciton binding energy, oscillator strength, and a sudden increase of the RMS average e–h separation as the excitons are dissociated at the threshold field as the field increases. The exciton-dissociation transition is gradual in a short rod, where the confinement force dominates over the e–h attraction. We show that a DC field can induce an optically active excited exciton state in a narrow field range, causing a sharp peak in the oscillator strength and a dip in the RMS average of the e–h separation as the field increases. The Stark effects are also investigated as a function of the linear confinement length (i.e., rod length) at fixed fields. -- Highlights: • Study the dependence of optical properties of nanorods on the rod size and field. • Study the interplay between forces of confinement, Coulomb attraction, and field. • A strong field induces an optically active excited state observed in quantum dots.

  14. γ - irradiation induced effect on the optical parameters of Cu10 Se90 thin films

    International Nuclear Information System (INIS)

    Abu EL-Fadl, A.; Hafiz, M. M.; Aashour, A.S.; Wakaad, M.M.

    2007-01-01

    The optical constants of Cu 10 SE 90 Chalcogenide films successfully deposited by evaporation coating technique have been measured. The absorption coefficient (a) for the as-deposited or after being γ-irradiation at various doses have been computed in the spectral wavelength range 400-900 nm from the transmittance (T) and reflectance (R) measurements of normally-incident light. Both irradiated and as-prepared films showed direct transition. The direct optical band gaps of the films were found to decrease from 2.017 for as prepared to 1.941 eV for γ-irradiation at 190 kGy doses. The width of the tails of localized states E e were calculated and found to be increasing after γ-irradiation. The effects of the γ-irradiation on the refractive index n and extinction coefficient k were studied. Other optical parameters (ε I , ε 2 were calculated at different γ-irradiation doses the obtained values of both ε 1 and ε 2 were found to be incident light and γ-doses dependent. The effect of γ-irradiation on the high-frequency dielectric constant (ε ∞ ) and carrier concentration (N/m * ) is also studied. The change on the degree of disorder as will as the radiation-induced defect changes applied to explain the radiation effects on nature of optical properties Cu 10 SE 90 glasses

  15. Method of determining effects of heat-induced irregular refractive index on an optical system.

    Science.gov (United States)

    Song, Xifa; Li, Lin; Huang, Yifan

    2015-09-01

    The effects of an irregular refractive index on optical performance are examined. A method was developed to express a lens's irregular refractive index distribution. An optical system and its mountings were modeled by a thermomechanical finite element (FE) program in the predicted operating temperature range, -45°C-50°C. FE outputs were elaborated using a MATLAB optimization routine; a nonlinear least squares algorithm was adopted to determine which gradient equation best fit each lens's refractive index distribution. The obtained gradient data were imported into Zemax for sequential ray-tracing analysis. The root mean square spot diameter, modulation transfer function, and diffraction ensquared energy were computed for an optical system under an irregular refractive index and under thermoelastic deformation. These properties are greatly reduced by the irregular refractive index effect, which is one-third to five-sevenths the size of the thermoelastic deformation effect. Thus, thermal analyses of optical systems should consider not only thermoelastic deformation but also refractive index irregularities caused by inhomogeneous temperature.

  16. SPIDER OPTIMIZATION. II. OPTICAL, MAGNETIC, AND FOREGROUND EFFECTS

    International Nuclear Information System (INIS)

    O'Dea, D. T.; Clark, C. N.; Contaldi, C. R.; Ade, P. A. R.; Amiri, M.; Burger, B.; Davis, G.; Benton, S. J.; Bock, J. J.; Crill, B. P.; Dore, O.; Filippini, J. P.; Bond, J. R.; Farhang, M.; Bonetti, J. A.; Bryan, S.; Chiang, H. C.; Fraisse, A. A.; Fissel, L. M.; Gandilo, N. N.

    2011-01-01

    SPIDER is a balloon-borne instrument designed to map the polarization of the cosmic microwave background (CMB) with degree-scale resolution over a large fraction of the sky. SPIDER's main goal is to measure the amplitude of primordial gravitational waves through their imprint on the polarization of the CMB if the tensor-to-scalar ratio, r, is greater than 0.03. To achieve this goal, instrumental systematic errors must be controlled with unprecedented accuracy. Here, we build on previous work to use simulations of SPIDER observations to examine the impact of several systematic effects that have been characterized through testing and modeling of various instrument components. In particular, we investigate the impact of the non-ideal spectral response of the half-wave plates, coupling between focal-plane components and Earth's magnetic field, and beam mismatches and asymmetries. We also present a model of diffuse polarized foreground emission based on a three-dimensional model of the Galactic magnetic field and dust, and study the interaction of this foreground emission with our observation strategy and instrumental effects. We find that the expected level of foreground and systematic contamination is sufficiently low for SPIDER to achieve its science goals.

  17. Rapid assessment of nonlinear optical propagation effects in dielectrics

    Science.gov (United States)

    Hoyo, J. Del; de La Cruz, A. Ruiz; Grace, E.; Ferrer, A.; Siegel, J.; Pasquazi, A.; Assanto, G.; Solis, J.

    2015-01-01

    Ultrafast laser processing applications need fast approaches to assess the nonlinear propagation of the laser beam in order to predict the optimal range of processing parameters in a wide variety of cases. We develop here a method based on the simple monitoring of the nonlinear beam shaping against numerical prediction. The numerical code solves the nonlinear Schrödinger equation with nonlinear absorption under simplified conditions by employing a state-of-the art computationally efficient approach. By comparing with experimental results we can rapidly estimate the nonlinear refractive index and nonlinear absorption coefficients of the material. The validity of this approach has been tested in a variety of experiments where nonlinearities play a key role, like spatial soliton shaping or fs-laser waveguide writing. The approach provides excellent results for propagated power densities for which free carrier generation effects can be neglected. Above such a threshold, the peculiarities of the nonlinear propagation of elliptical beams enable acquiring an instantaneous picture of the deposition of energy inside the material realistic enough to estimate the effective nonlinear refractive index and nonlinear absorption coefficients that can be used for predicting the spatial distribution of energy deposition inside the material and controlling the beam in the writing process.

  18. Nonlocal modification and quantum optical generalization of effective-medium theory for metamaterials

    DEFF Research Database (Denmark)

    Wubs, Martijn; Yan, Wei; Amooghorban, Ehsan

    2013-01-01

    A well-known challenge for fabricating metamaterials is to make unit cells significantly smaller than the operating wavelength of light, so one can be sure that effective-medium theories apply. But do they apply? Here we show that nonlocal response in the metal constituents of the metamaterial...... leads to modified effective parameters for strongly subwavelength unit cells. For infinite hyperbolic metamaterials, nonlocal response gives a very large finite upper bound to the optical density of states that otherwise would diverge. Moreover, for finite hyperbolic metamaterials we show that nonlocal...... response affects their operation as superlenses, and interestingly that sometimes nonlocal theory predicts the better imaging. Finally, we discuss how to describe metamaterials effectively in quantum optics. Media with loss or gain have associated quantum noise, and the question is whether the effective...

  19. Temperature Dependence of Faraday Effect-Induced Bias Error in a Fiber Optic Gyroscope.

    Science.gov (United States)

    Li, Xuyou; Liu, Pan; Guang, Xingxing; Xu, Zhenlong; Guan, Lianwu; Li, Guangchun

    2017-09-07

    Improving the performance of interferometric fiber optic gyroscope (IFOG) in harsh environments, such as magnetic field and temperature field variation, is necessary for its practical applications. This paper presents an investigation of Faraday effect-induced bias error of IFOG under varying temperature. Jones matrix method is utilized to formulize the temperature dependence of Faraday effect-induced bias error. Theoretical results show that the Faraday effect-induced bias error changes with the temperature in the non-skeleton polarization maintaining (PM) fiber coil. This phenomenon is caused by the temperature dependence of linear birefringence and Verdet constant of PM fiber. Particularly, Faraday effect-induced bias errors of two polarizations always have opposite signs that can be compensated optically regardless of the changes of the temperature. Two experiments with a 1000 m non-skeleton PM fiber coil are performed, and the experimental results support these theoretical predictions. This study is promising for improving the bias stability of IFOG.

  20. Nuclear spin optical rotation and Faraday effect in gaseous and liquid water.

    Science.gov (United States)

    Pennanen, Teemu S; Ikäläinen, Suvi; Lantto, Perttu; Vaara, Juha

    2012-05-14

    Nuclear spin optical rotation (NSOR) of linearly polarized light, due to the nuclear spins through the Faraday effect, provides a novel probe of molecular structure and could pave the way to optical detection of nuclear magnetization. We determine computationally the effects of the liquid medium on NSOR and the Verdet constant of Faraday rotation (arising from an external magnetic field) in water, using the recently developed theory applied on a first-principles molecular dynamics trajectory. The gas-to-liquid shifts of the relevant antisymmetric polarizability and, hence, NSOR magnitude are found to be -14% and -29% for (1)H and (17)O nuclei, respectively. On the other hand, medium effects both enhance the local electric field in water and, via bulk magnetization, the local magnetic field. Together these two effects partially cancel the solvation influence on the single-molecular property. We find a good agreement for the hydrogen NSOR with a recent pioneering experiment on H(2)O(l).

  1. Gamma radiation effect study in polycarbonate optical and mechanics properties

    International Nuclear Information System (INIS)

    Araujo, E.S. de.

    1991-02-01

    Polycarbonates (PC) are used in different industrial applications due to their excellent dielectric characteristics, impact resistance, and high temperature resistance. In some of these applications, the polycarbonates are exposed to gamma radiation which produces molecular scissions, causing changes in the polycarbonate properties. To estimate the radiation effects in the Durolon polycarbonate, samples were irradiated with 60 Co gamma rays with doses between 0,2 kGy and 300 kGy. The results obtained showed that the PC mechanical properties are not changed due to the gamma radiation. However the results showed an expressive variation in the yellowness index for doses above 1 kGy. The results showed that it is possible to use the gamma sterilization of PC in applications where the coloration of PC is not critical. (author). 21 refs, 25 figs, 3 tabs

  2. Optical phase conjugation for time-domain undoing of dispersive self-phase-modulation effects

    International Nuclear Information System (INIS)

    Fisher, R.A.; Suydam, B.R.; Yevick, D.

    1983-01-01

    We show that the temporal distortion and spectral broadening of a pulse generated by the combined effects of group-velocity dispersion and self-phase modulation is removed by reflection of a cw-pumped, broadband, unity-reflecting Kerr-like optical phase conjugator followed by retraversal of the nonlinear medium. We also examine numerically the effects of finite linear loss in the material, of nonunity conjugate reflectivity, and of finite conjugator thickness

  3. Experimental Study of Electronic Quantum Interference, Photonic Crystal Cavity, Photonic Band Edge Effects for Optical Amplification

    Science.gov (United States)

    2016-01-26

    AFRL-RV-PS- AFRL-RV-PS- TR-2016-0003 TR-2016-0003 EXPERIMENTAL STUDY OF ELECTRONIC QUANTUM INTERFERENCE , PHOTONIC CRYSTAL CAVITY, PHOTONIC BAND...EDGE EFFECTS FOR OPTICAL AMPLIFICATION Shawn-Yu Lin Rensselaer Polytechnic Institute 110 8th Street Troy, New York 12180 26 Jan 2016 Final Report...2014 – 11 Jan 2016 4. TITLE AND SUBTITLE Experimental Study of Electronic Quantum Interference , Photonic Crystal Cavity, Photonic Band Edge Effects

  4. Effect of the phosphor screen optics on the Swank noise performance in indirect-conversion x-ray imaging detectors

    International Nuclear Information System (INIS)

    Lim, C H; Moon, M-K; Kam, S; Han, J C; Yun, S; Youn, H; Kim, H K; Jeon, H

    2014-01-01

    The optics between the scintillators and photodiode arrays of indirect-conversion x-ray imaging systems requires careful design because it can be a cause of secondary quantum sink, which reduces the detective quantum efficiency at high spatial frequencies. The aim of this study was the investigation of the effect of the optical properties of granular phosphor screens — including optical coupling materials and passivation layers in photodiode arrays — on the imaging performance of indirect-conversion x-ray imaging detectors using the Monte Carlo technique. In the Monte Carlo simulations, various design parameters were considered, such as the refractive index of the optical coupler and the passivation layer, the reflection coefficient at the screen backing, and the thickness of the optical coupler. We developed a model that describes the optical pulse-height distributions based on the depth-dependent collection efficiency obtained from the simulations. We used the model to calculate the optical Swank noise. A loss in the number of collected optical photons was inevitable owing to the introduction of intermediate optics and mismatches in the optical design parameters. However, the collection efficiency marginally affected the optical Swank factor performance. The results and methodology of this study will facilitate better designs and optimization of indirect-conversion x-ray detectors

  5. Transient optical and electrical effects in polymeric semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bange, Sebastian

    2009-05-28

    Classical semiconductor physics has been continuously improving electronic components such as diodes, light-emitting diodes, solar cells and transistors based on highly purified inorganic crystals over the past decades. Organic semiconductors, notably polymeric, are a comparatively young field of research, the first light-emitting diode based on conjugated polymers having been demonstrated in 1990. Polymeric semiconductors are of tremendous interest for high-volume, low-cost manufacturing (''printed electronics''). Due to their rather simple device structure mostly comprising only one or two functional layers, polymeric diodes are much more difficult to optimize compared to small-molecular organic devices. Usually, functions such as charge injection and transport are handled by the same material which thus needs to be highly optimized. The present work contributes to expanding the knowledge on the physical mechanisms determining device performance by analyzing the role of charge injection and transport on device efficiency for blue and white-emitting devices, based on commercially relevant spiro-linked polyfluorene derivatives. It is shown that such polymers can act as very efficient electron conductors and that interface effects such as charge trapping play the key role in determining the overall device efficiency. This work contributes to the knowledge of how charges drift through the polymer layer to finally find neutral emissive trap states and thus allows a quantitative prediction of the emission color of multichromophoric systems, compatible with the observed color shifts upon driving voltage and temperature variation as well as with electrical conditioning effects. In a more methodically oriented part, it is demonstrated that the transient device emission observed upon terminating the driving voltage can be used to monitor the decay of geminately-bound species as well as to determine trapped charge densities. This enables direct comparisons with numerical

  6. Transient optical and electrical effects in polymeric semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bange, Sebastian

    2009-05-28

    Classical semiconductor physics has been continuously improving electronic components such as diodes, light-emitting diodes, solar cells and transistors based on highly purified inorganic crystals over the past decades. Organic semiconductors, notably polymeric, are a comparatively young field of research, the first light-emitting diode based on conjugated polymers having been demonstrated in 1990. Polymeric semiconductors are of tremendous interest for high-volume, low-cost manufacturing (''printed electronics''). Due to their rather simple device structure mostly comprising only one or two functional layers, polymeric diodes are much more difficult to optimize compared to small-molecular organic devices. Usually, functions such as charge injection and transport are handled by the same material which thus needs to be highly optimized. The present work contributes to expanding the knowledge on the physical mechanisms determining device performance by analyzing the role of charge injection and transport on device efficiency for blue and white-emitting devices, based on commercially relevant spiro-linked polyfluorene derivatives. It is shown that such polymers can act as very efficient electron conductors and that interface effects such as charge trapping play the key role in determining the overall device efficiency. This work contributes to the knowledge of how charges drift through the polymer layer to finally find neutral emissive trap states and thus allows a quantitative prediction of the emission color of multichromophoric systems, compatible with the observed color shifts upon driving voltage and temperature variation as well as with electrical conditioning effects. In a more methodically oriented part, it is demonstrated that the transient device emission observed upon terminating the driving voltage can be used to monitor the decay of geminately-bound species as well as to determine trapped charge densities. This enables direct

  7. Two-photon induced fluorescence and other optical effects in irradiated and doped fused silica

    International Nuclear Information System (INIS)

    Kramer, S.D.

    1986-07-01

    The objective of this program was to assess and identify irradiation techniques which could be used to modify the optical charactistics of doped fused silica. Primary emphasis was placed on determining if gamma ray or neutron bombardment of the glass would enhance certain Raman and nonlinear optical effects. In particular, the effect of irradiation on optical two photon induced fluorescence was studied in detail. The maximum radiation exposures used were 10 6 rads (Si) of gamma rays and neutron fluences of 1 x 10 14 neutrons/cm 2 . The optical measurements were made at room temperature between one and four months after irradiation. The maximum input light intensity was 10 9 watts/cm 2 at a near infrared (1.06 μ) input wavelength which was chosen to lie in a transparent spectral region of the glass. Under these experimental conditions a careful search revealed no detectable two-photon induced fluorescence in the region from 550 to 900 nm. The upper limit for the photon efficiency of this process was determined to be less than 1 x 10 -10 %. 89 refs., 12 figs

  8. Isotope effect of optical activity measurements on L-α-alanine

    International Nuclear Information System (INIS)

    Darge, W.; Laczko, I.; Thiemann, W.

    1976-01-01

    If an optically active organic substance is labelled in the chirality center with another isotopic species (such as 15 N for 14 N) a pronounced variation of rotatory power is predicted. It was tried to varify this idea experimentally on L-α-alanine and found an isotope effect in ORD (optical rotatory dispersion). The magnitude of the rotation is mainly dependent on the pH of the solvent. The ratio of the optical activity alanine- 14 N/alanine- 15 N is about 1.02. It can be seen that the ratios of the molecular rotations are consistently lower than the corresponding ratios of the specific rotations. This is of course due to the fact that the molecular mass 15 M is larger than 14 M. This means tthat the mass difference is already taken into account so that the ratio of the molecular rotations could be defined as the ''net'' isotope effect in the ORDs of 15 N-substitued alanine. From the fact the ORD is different for the isotope-substitued alanine, one can reasonably assume that the absorption coefficient is also different. This leads to speculations about certain problems in the chemical evolution of the biosphere, such as the origin of optical activity. (T.G.)

  9. Electronic band structures and optical properties of type-II superlattice photodetectors with interfacial effect.

    Science.gov (United States)

    Qiao, Peng-Fei; Mou, Shin; Chuang, Shun Lien

    2012-01-30

    The electronic band structures and optical properties of type-II superlattice (T2SL) photodetectors in the mid-infrared (IR) range are investigated. We formulate a rigorous band structure model using the 8-band k · p method to include the conduction and valence band mixing. After solving the 8 × 8 Hamiltonian and deriving explicitly the new momentum matrix elements in terms of envelope functions, optical transition rates are obtained through the Fermi's golden rule under various doping and injection conditions. Optical measurements on T2SL photodetectors are compared with our model and show good agreement. Our modeling results of quantum structures connect directly to the device-level design and simulation. The predicted doping effect is readily applicable to the optimization of photodetectors. We further include interfacial (IF) layers to study the significance of their effect. Optical properties of T2SLs are expected to have a large tunable range by controlling the thickness and material composition of the IF layers. Our model provides an efficient tool for the designs of novel photodetectors.

  10. Effect of substrate temperature and deposition rate on the morphology and optical properties of Ti films

    Energy Technology Data Exchange (ETDEWEB)

    Einollahzadeh-Samadi, M.; Dariani, R.S., E-mail: dariani@alzahra.ac.ir

    2013-09-01

    Titanium films are deposited on transparent fluorine-doped tin oxide (FTO) glass substrates by DC magnetron sputtering process. Influences imposed by sputtering rate and substrate temperature on surface morphology and optical properties of the deposited Ti films are investigated. We observed that all the sputtered films exhibit uniform and compact surface morphology without peeling and cracking. Morphology of the films is studied using atomic force microscopy (AFM) and X-ray diffraction (XRD). The optical properties of the films are investigated using UV–vis spectroscopy. The morphological studies indicate that by increasing the substrate temperature from room temperature to 250 °C and/or decreasing sputtering rate from 660 Å/min to 540 Å/min the surface roughness decreased from 73.4 to 31.0 nm and the grain size increases from 50.76 nm to 163.93 nm. An important effect of the root mean square (RMS) surface roughness and grain size is modification of the films optical properties. In fact, an enhancement of refractive index n for the Ti films deposited at high substrate temperature and/or high deposition rate is observed, that is attributed to reduction of RMS roughness. This effect is attributed to increment of fractional volume which leads to an increase in density of deposited film. Thus, by controlling the sputtering conditions one can reach to the desired morphological and optical properties.

  11. The effect of annealing temperature on the optical properties of a ruthenium complex thin film

    Energy Technology Data Exchange (ETDEWEB)

    Ocakoglu, Kasim, E-mail: kasim.ocakoglu@mersin.edu.tr [Advanced Technology Research & Application Center, Mersin University, TR-33343, Yenisehir, Mersin (Turkey); Department of Energy Systems Engineering, Faculty of Technology, Mersin University, TR-33480 Mersin (Turkey); Okur, Salih, E-mail: salih.okur@ikc.edu.tr [Department of Materials Science and Engineering, Faculty of Engineering and Architecture, Izmir Katip Celebi University, Izmir (Turkey); Aydin, Hasan [Izmir Institute of Technology, Department of Material Science and Engineering, Gulbahce Campus, 35430, Urla, Izmir (Turkey); Emen, Fatih Mehmet [Faculty of Arts and Sciences, Department of Chemistry, Mehmet Akif Ersoy University, TR-15030 Burdur (Turkey)

    2016-08-01

    The stability of the optical parameters of a ruthenium polypyridyl complex (Ru-PC K314) film under varying annealing temperatures between 278 K and 673 K was investigated. The ruthenium polypyridyl complex thin film was prepared on a quartz substrate by drop casting technique. The transmission of the film was recorded by using Ultraviolet/Visible/Near Infrared spectrophotometer and the optical band gap energy of the as-deposited film was determined around 2.20 eV. The optical parameters such as refractive index, extinction coefficient, and dielectric constant of the film were determined and the annealing effect on these parameters was investigated. The results show that Ru PC K314 film is quite stable up to 595 K, and the rate of the optical band gap energy change was found to be 5.23 × 10{sup −5} eV/K. Furthermore, the thermal analysis studies were carried out in the range 298–673 K. The Differential Thermal Analysis/Thermal Gravimmetry/Differantial Thermal Gravimmetry curves show that the decomposition is incomplete in the temperature range 298–673 K. Ru-PC K314 is thermally stable up to 387 K. The decomposition starts at 387 K with elimination of functional groups such as CO{sub 2}, CO molecules and SO{sub 3}H group was eliminated between 614 K and 666 K. - Highlights: • Optical parameters of a ruthenium polypyridyl complex film under varying annealing temperatures • The film is quite stable up to 573 K. • The rate of change of optical energy gap was obtained as 5.23 × 10{sup −5} eV/K.

  12. Calculation of the Huang-Rhys parameter in spherical quantum dots: the optical deformation potential effect

    International Nuclear Information System (INIS)

    Hamma, M; Miranda, R P; Vasilevskiy, M I; Zorkani, I

    2007-01-01

    An accurate calculation of the exciton-phonon interaction matrix elements and Huang-Rhys parameter for nearly spherical nanocrystals (NCs) of polar semiconductor materials is presented. The theoretical approach is based on a continuum lattice dynamics model and the effective mass approximation for electronic states in the NCs. A strong confinement regime is considered for both excitons and optical phonons, taking into account both the Froehlich-type and optical deformation potential (ODP) mechanisms of the exciton-phonon interaction. The effects of exchange electron-hole interaction and possible hexagonal crystal structure of the underlying material are also taken into account. The theory is applied to CdSe and InP quantum dots. It is shown that the ODP mechanism, almost unimportant for CdSe, dominates the exciton-phonon coupling in small InP dots. The effect of the non-diagonal interaction, not included in the Huang-Rhys parameter, is briefly discussed

  13. Phosphorus doping and deposition pressure effects on optical and electrical properties of polysilicon

    International Nuclear Information System (INIS)

    Zaghdoudi, M.; Abdelkrim, M.M.; Fathallah, M.; Mohammed-Brahim, T.; Rogel, R.

    2006-01-01

    The optical and electrical properties of amorphously deposited and then post-crystallized silicon films are studied as a function of the deposition pressure and the phosphorus doping. Amorphous silicon films are deposited in a high pressure regime by SAPCVD (Sub-Atmospheric Pressure Chemical Vapour Deposition) to study the effect of the deposition pressure. They are also deposited in a low pressure regime by LPCVD (Low Pressure Chemical Vapour Deposition) to study the effect of a low phosphorus doping. Both types of amorphous films are then crystallized in the solid phase at 600 deg. C. Using different optical and electrical characterization techniques, the beneficial effect of a high pressure as well as of a weak phosphorus doping on the decrease of the defect density is highlighted. These results give some ways to improve the quality of polysilicon enough to be used in photovoltaic or in thin film electronic devices

  14. Magneto-optical properties in inhomogeneous quantum dot: The Aharonov-Bohm oscillations effect

    Energy Technology Data Exchange (ETDEWEB)

    Nasri, Djillali, E-mail: nasri_dj@yahoo.fr [Faculté des Sciences Appliquées, Département de Génie Electrique, Université Ibn-Khaldoun de Tiaret, Zaaroura BP No. 78, Tiaret 14000 (Algeria); Laboratoirede Microphysique et de Nanophysique (LaMiN), Ecole Nationale Polytechnique d' Oran, BP 1523EL M' Naouer, Oran 31000 (Algeria); Bettahar, N. [Faculté des Sciences de la matière, Département de Physique, Université Ibn-Khaldoun de Tiaret, Zaaroura BP No. 78, Tiaret 14000 (Algeria)

    2016-11-15

    In this study, we investigated theoretically the effect of a magnetic field B on the linear, nonlinear, and total absorption coefficients (ACs) and the refractive index changes (RICs) associated with intersubband transitions in the HgS quantum shell. In the calculations, a diagonalization method was employed within the effective-mass approximation. We find that a three kinds of optical transitions (S–P, P–D and D–F) between the ground state and the first excited state appear, resulting from the oscillation of the ground state with B (Aharonov-Bohm effect). In the other hand, the magnetic field enhances and diminishes their related RICs and ACs intensities respectively for the three kinds of optical transitions, and shifts their peaks towards low energy (blue shift).

  15. Optical authentication based on moiré effect of nonlinear gratings in phase space

    International Nuclear Information System (INIS)

    Liao, Meihua; He, Wenqi; Wu, Jiachen; Lu, Dajiang; Liu, Xiaoli; Peng, Xiang

    2015-01-01

    An optical authentication scheme based on the moiré effect of nonlinear gratings in phase space is proposed. According to the phase function relationship of the moiré effect in phase space, an arbitrary authentication image can be encoded into two nonlinear gratings which serve as the authentication lock (AL) and the authentication key (AK). The AL is stored in the authentication system while the AK is assigned to the authorized user. The authentication procedure can be performed using an optoelectronic approach, while the design process is accomplished by a digital approach. Furthermore, this optical authentication scheme can be extended for multiple users with different security levels. The proposed scheme can not only verify the legality of a user identity, but can also discriminate and control the security levels of legal users. Theoretical analysis and simulation experiments are provided to verify the feasibility and effectiveness of the proposed scheme. (paper)

  16. Light-effect transistor (LET) with multiple independent gating controls for optical logic gates and optical amplification

    Science.gov (United States)

    Marmon, Jason; Rai, Satish; Wang, Kai; Zhou, Weilie; Zhang, Yong

    The pathway for CMOS technology beyond the 5-nm technology node remains unclear for both physical and technological reasons. A new transistor paradigm is required. A LET (Marmon et. al., Front. Phys. 2016, 4, No. 8) offers electronic-optical hybridization at the component level, and is capable of continuing Moore's law to the quantum scale. A LET overcomes a FET's fabrication complexity, e.g., physical gate and doping, by employing optical gating and photoconductivity, while multiple independent, optical gates readily realize unique functionalities. We report LET device characteristics and novel digital and analog applications, such as optical logic gates and optical amplification. Prototype CdSe-nanowire-based LETs, incorporating an M-S-M structure, show output and transfer characteristics resembling advanced FETs, e.g., on/off ratios up to 106 with a source-drain voltage of 1.43V, gate-power of 260nW, and a subthreshold swing of 0.3nW/decade (excluding losses). A LET has potential for high-switching (THz) speeds and extremely low-switching energies (aJ) in the ballistic transport region. Our work offers new electronic-optical integration strategies for high speed and low energy computing approaches, which could potentially be extended to other materials and devices.

  17. Optics/Optical Diagnostics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optics/Optical Diagnostics Laboratory supports graduate instruction in optics, optical and laser diagnostics and electro-optics. The optics laboratory provides...

  18. Quantum optical effective-medium theory for loss-compensated metamaterials

    DEFF Research Database (Denmark)

    Amooghorban, Ehsan; Mortensen, N. Asger; Wubs, Martijn

    2013-01-01

    A central aim in metamaterial research is to engineer subwavelength unit cells that give rise to desired effective-medium properties and parameters, such as a negative refractive index. Ideally one can disregard the details of the unit cell and employ the effective description instead. A popular...... effective parameters are insufficient to describe the propagation of quantum states of light. Furthermore, we propose a quantum optical effective-medium theory instead and show that it correctly predicts the properties of the light emerging from loss-compensated metamaterials. © 2013 American Physical...

  19. Optical Spring Effect in Micro-Bubble Resonators and Its Application for the Effective Mass Measurement of Optomechanical Resonant Mode

    OpenAIRE

    Zhenmin Chen; Xiang Wu; Liying Liu; Lei Xu

    2017-01-01

    In this work, we present a novel approach for obtaining the effective mass of mechanical vibration mode in micro-bubble resonators (MBRs). To be specific, the effective mass is deduced from the measurement of optical spring effect (OSE) in MBRs. This approach is demonstrated and applied to analyze the effective mass of hollow MBRs and liquid-filled MBRs, respectively. It is found that the liquid-filled MBRs has significantly stronger OSE and a less effective mass than hollow MBRs, both of the...

  20. Analysis of the Performance of a PAM/PPM/OOK System Operating with OCDMA, under Nonlinear Optical Effects in Optical Fiber Propagation

    Science.gov (United States)

    Correia, D. G.; Sales, J. C.; Pinto, P. V. F.; Moura, L. P.; Ferreira, A. C.; Menezes, J. W. M.; Guimarães, G. F.; Sombra, A. S. B.

    2016-06-01

    In this article, we present a numerical simulation study of encoding, decoding and propagation performance of short optical pulses and words with modulations OOK, PAM and PPM in OCDMA systems (Optical Code Division Multiple Access). The encoding and decoding of short pulses are obtained through fiber Bragg grating(FBG - FBG optical) devices, where the codes are inserted through discrete jumps in the optical phase (±π) where Gold codes were used. A figure of merit (SNR - Signal to Noise Ratio) was obtained to quantify the interference in propagation of short optical pulses. An increase in the temporal width was observed. For decoded pulses due to the nonlinearity effect, we observed an increase of 1.3 ps considering the propagation with γ=3 W-1 km-1 and γ=24 W-1 km-1. Analysis of coding and decoding words "a" and "w" was done. Considering the propagation (with γ=9 W-1 km-1) of a word "w", an error occurred in all modulations except for simultaneous PPM/PAM modulation, which is associated to the better autocorrelation characteristics obtained with the OOK, PAM and PPM modulations alone, and could double the transmission rate. The nonlinear effects directly affect the process of the autocorrelation codes due to interference from adjacent chip components of the code.

  1. The effects of optical sensor-tissue separation in endocavitary photoplethysmography.

    Science.gov (United States)

    Patel, Zaibaa; Thaha, Mohamed A; Kyriacou, Panayiotis A

    2018-06-12

    Objective: Intestinal anastomotic failure that occurs mainly due to ischaemia is a serious risk in colorectal cancer patients undergoing surgery. Surgeons continue to rely on subjective methods such as visual inspection to assess intestinal viability during surgery and there are no clinical tools to directly monitor viability postoperatively. A dual wavelength, reflectance optical sensor has been developed for continuous and dynamic monitoring of intestinal viability via the intestinal lumen. Maintaining direct contact between the sensor and the inner intestinal wall can be difficult in an intraluminal design, therefore impacting on signal acquisition and quality. This paper investigates the effect of direct contact versus variable distances between the sensor and the tissue surface of the buccal mucosa as a surrogate. Approach: The in-vivo study involved 20 healthy volunteers to measure the effect of optical sensor-tissue distances on the ability to acquire photoplethysmography signals and their quality. Signals were acquired from the buccal mucosa at five optical sensor-tissue distances. Main results: Distances between 0 mm (contact) to 5 mm were the most optimal, producing signals of high quality and signal-to-noise ratio, resulting in reliable estimations of the blood oxygen saturation. Distances exceeding 5 mm compromised the acquired signals, and were of poor quality, thereby unreliably estimating the blood oxygen saturation. Significance: The developed optical sensor proved to be reliable for acquiring photoplethysmography signals for cases where distances between the optical sensor-tissue may arise during the assessment of intraluminal intestinal viability. © 2018 Institute of Physics and Engineering in Medicine.

  2. Effect of thickness on optical properties of thermally evaporated SnS films

    International Nuclear Information System (INIS)

    Selim, M.S.; Gouda, M.E.; El-Shaarawy, M.G.; Salem, A.M.; Abd El-Ghany, W.A.

    2013-01-01

    The effect of film thickness on the structure and optical properties of thermally evaporated SnS film has been studied. SnS films with different thicknesses in the range 152–585 nm were deposited onto clean glass substrates at room temperature. X-ray diffraction study revealed that SnS films of thickness ≥ 283 nm are crystalline, whereas films of lower thickness exhibit poor crystalline with more amorphous background. The crystalline nature of the lower film thickness has been confirmed using transmission electron microscope and the corresponding electron diffraction pattern. The thicker film samples showed nearly stoichiometric chemical composition; however, thinner samples are deficient in S and rich in Sn. The optical property of the deposited films has been investigated in the wavelength range 350–2500 nm. The refractive index increases notably with increasing film thickness. The refractive index for the investigated film thicknesses are adequately described by the effective-single-oscillator model. The static refractive index and the static dielectric constant have been calculated. Analysis of the optical absorption coefficient revealed the presence of direct optical transition and the corresponding band gap values were found to decrease as the film thickness increases. - Highlights: ► X-ray diffraction was used to study the structure of SnS films. ► Transmission electron microscope confirms the crystalline state of SnS films. ► The refractive index increases notably with increasing the film thickness. ► The optical band gap of SnS films decreases with increasing film thickness

  3. The effective Schroedinger equation of the optical model of composite nuclei elastic collisions

    International Nuclear Information System (INIS)

    Mondragon, A.; Hernandez, E.

    1980-01-01

    An effective hamiltonian for elastic collisions between composite nuclei is obtained from the Schroedinger equation of the complete many-body system and its fully antisymmetric wave functions by means of a projection operator technique. This effective hamiltonian, defined in such a way that it has to reproduce the scattering amplitude in full detail, including exchange effects, is explicitly Galilean invariant. The effective interaction operator is a function of the relative distance between the centers of mass of the colliding nuclei and the constants of the motion of the whole system. The interaction operator of the optical model is obtained next, requiring as usual, that it reproduces the average over the energy of the scattering amplitude and keeping the Galilean invariance. The resulting optical potential operator has some terms identical to those obtained in the Resonating Group Method, and others coming from the elimination of all non elastic channels and the delayed elastic scattering. This result makes the relation existing among the projection operator method to the Feshbach and the cluster model equations of motion for positive energies (RGM) explicit. The additional interaction terms due to the flux loss in the elastic channel are non-local, and non-hermitean operators expressed in terms of the transition amplitudes and the density of states of the compound nucleus in such a way that an approximate evaluation, in a systematic fashion, seems possible. Theangular momentum dependence of the optical potential operator is discussed in some detail. (author)

  4. Digital nonlinearity compensation in high-capacity optical communication systems considering signal spectral broadening effect.

    Science.gov (United States)

    Xu, Tianhua; Karanov, Boris; Shevchenko, Nikita A; Lavery, Domaniç; Liga, Gabriele; Killey, Robert I; Bayvel, Polina

    2017-10-11

    Nyquist-spaced transmission and digital signal processing have proved effective in maximising the spectral efficiency and reach of optical communication systems. In these systems, Kerr nonlinearity determines the performance limits, and leads to spectral broadening of the signals propagating in the fibre. Although digital nonlinearity compensation was validated to be promising for mitigating Kerr nonlinearities, the impact of spectral broadening on nonlinearity compensation has never been quantified. In this paper, the performance of multi-channel digital back-propagation (MC-DBP) for compensating fibre nonlinearities in Nyquist-spaced optical communication systems is investigated, when the effect of signal spectral broadening is considered. It is found that accounting for the spectral broadening effect is crucial for achieving the best performance of DBP in both single-channel and multi-channel communication systems, independent of modulation formats used. For multi-channel systems, the degradation of DBP performance due to neglecting the spectral broadening effect in the compensation is more significant for outer channels. Our work also quantified the minimum bandwidths of optical receivers and signal processing devices to ensure the optimal compensation of deterministic nonlinear distortions.

  5. Photoinduced nonlinear optical effects in Nd-doped δ-BiB3O6 crystals

    International Nuclear Information System (INIS)

    Majchrowski, A.; Wojciechowski, A.; Kityk, I.V.; Chrunik, M.; Jaroszewicz, L.R.; Michalski, E.

    2014-01-01

    Highlights: • New type of optically operated rare earth doped borates is proposed. • Principal role of the phonon subsystem in photoinduced electrooptics, SHG and piezooptics is shown. • The possibility to create the laser operated materials is shown for the such kind of sold state alloys. - Abstract: The studies of the second harmonic generation, Pockels effect and piezoelectricity were performed for the new synthesized δ-BiB 3 O 6 single crystals. The incorporation of Nd 3+ ions into these crystals plays an important role for the increasing of the photoinduced nonlinear optical properties. Temperature dependences of the optical and piezoelectric features showed existence of some anomalies in the vicinity of 160 K and 220 K. This may confirm a principal role of the photopolarization and of the localized impurity states which give additional contribution into the observed effect. It is crucial that the effect is dependent on the number of the photoinducing pulses. The effect is completely reversible after switching off of the photoinducing laser beam

  6. Mathematical Model of the One-stage Magneto-optical Sensor Based on Faraday Effect

    Science.gov (United States)

    Babaev, O. G.; Paranin, V. D.; Sinitsin, L. I.

    2018-01-01

    The aim of this work is to refine a model of magneto-optical sensors based on Faraday’s longitudinal magneto-optical effect. The tasks of the study include computer modeling and analysis of the transfer characteristic of a single-stage magneto-optical sensor for various polarization of the input beam and non-ideal optical components. The proposed mathematical model and software make it possible to take into account the non-ideal characteristics of film polaroids observed in operation in the near infrared region and at increased temperatures. On the basis of the results of the model analysis it was found that the dependence of normalized transmission T(γ2) has periodic nature. Choosing the angle (γ 2-γ 1) makes it possible to shift the initial operation point and change the sensitivity dT/dγ 2. The influence of the input beam polarization increases with the increase of polaroid parameter deviation from ideal and shows itself as reduction of modulation depth and angular shift of the sensor conversion response.

  7. Effects of high light intensities on the optical Kerr nonlinearity of semiconducting polymers

    International Nuclear Information System (INIS)

    Charra, Fabrice

    1990-01-01

    Experimental investigations, in the picosecond time scale, of the Kerr type optical nonlinearity (or pump and probe) are presented. The nonlinear molecules semiconducting polymers of the type poly-diacetylene. The degenerate case (pump and probe at the same frequency) has been studied by four wave mixing at 1064 nm, in the configuration of phase conjugation. It is shown that the response is dominated by high orders of nonlinearity. The results are analysed in terms of two photon resonance. The non-degenerate case is studied by two wave mixing or in the optical Kerr gate experiment. The optical Stark effect and the differential spectra of photoinduced species are analysed. Two photon excitations at 1064 nm and one photon excitations at 532 nm are compared. A consequence of the mechanism of the nonlinearity is the possibility of generating phase conjugate waves at double frequency. The theoretical analysis and the experimental demonstration of this process are presented. The experiment is only sensitive to nonlinearities of the fifth order or more and thus allows to clarify its origins and dynamics. Finally, quantum modelling and calculations of the nonlinear optical responses, developed for the interpretations of the above experiments, are presented. (author) [fr

  8. Effect of hemolysis and free hemoglobin on optical hematocrit measurements in the extracorporeal circulation.

    Science.gov (United States)

    Paluszkiewicz, Aleksandra; Kellner, Josef; Elshehabi, Morad; Schneditz, Daniel

    2008-01-01

    Clinically significant hemolysis is a rare but serious problem in dialysis. Because hemolysis affects red blood cell count and optical density of plasma it has been speculated whether techniques used for online blood volume monitoring would be useful to detect hemolysis. In this study the influence of free hemoglobin on hematocrit and relative blood volume changes measured by optical means (CritLine, HemaMetrics, Kaysville, UT) were examined using an in vitro model with bovine blood. Free hemoglobin solutions were added in steps to circulating whole blood at baseline hematocrits covering a range from 30% to 60% and at blood flows of approximately 200 and 400 ml/min. The free hemoglobin concentration reached was in the range of 2 to 3 g/dl. The presence of free hemoglobin led to a relative increase in hematocrit in the range of 0.3% per 0.1 g of free hemoglobin per dl (+3% dl/g). As an increase in hematocrit is interpreted as a decrease in blood volume, this change referred to an apparent decrease in relative blood volume in the same order of magnitude (-3% dl/g). Effects were more pronounced at low baseline hematocrit. Thus, although optical hematocrit readings are affected by the presence of free hemoglobin the changes at levels associated with clinical symptoms appear to be too small to be accurately detected in the in vivo situation where the hematocrit and the resulting optical signal is affected by various physiological processes and therefore much noisier.

  9. VO{sub 2}-like thermo-optical switching effect in one-dimensional nonlinear defective photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Juan, E-mail: juanzhang@staff.shu.edu.cn, E-mail: ywang@siom.ac.cn; Zhang, Rongjun [Key Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information Engineering, Shanghai University, Shanghai 200072 (China); Wang, Yang, E-mail: juanzhang@staff.shu.edu.cn, E-mail: ywang@siom.ac.cn [Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2015-06-07

    A new approach to achieve VO{sub 2}-like thermo-optical switching in a one-dimensional photonic crystal by the combination of thermo-optical and optical Kerr effects was proposed and numerically demonstrated in this study. The switching temperature and the hysteresis width can be tuned in a wide temperature range. Steep transition, high optical contrast, and low pumping power can be achieved at the same time. This kind of one-dimensional photonic crystal-based bistable switch will be low-cost, easy-to-fabricate, and versatile in practical applications compared with traditional VO{sub 2}-type one.

  10. The role of input chirp on phase shifters based on slow and fast light effects in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Chen, Yaohui; Öhman, Filip

    2009-01-01

    We experimentally investigate the initial chirp dependence of slow and fast light effects in a semiconductor optical amplifier followed by an optical filter. It is shown that the enhancement of the phase shift due to optical filtering strongly depends on the chirp of the input optical signal. We...... demonstrate ~120º phase delay as well as ~170º phase advance at a microwave frequency of 19 GHz for different optimum values of the input chirp. The experimental results are shown to be in good agreement with numerical results based on a four-wave mixing model. Finally, a simple physical explanation based...

  11. Analysis of adjusting effects of mounting force on frequency conversion of mounted nonlinear optics.

    Science.gov (United States)

    Su, Ruifeng; Liu, Haitao; Liang, Yingchun; Lu, Lihua

    2014-01-10

    Motivated by the need to increase the second harmonic generation (SHG) efficiency of nonlinear optics with large apertures, a novel mounting configuration with active adjusting function on the SHG efficiency is proposed and mechanically and optically studied. The adjusting effects of the mounting force on the distortion and stress are analyzed by the finite element methods (FEM), as well as the contribution of the distortion and stress to the change in phase mismatch, and the SHG efficiency are theoretically stated. Further on, the SHG efficiency is calculated as a function of the mounting force. The changing trends of the distortion, stress, and the SHG efficiency with the varying mounting force are obtained, and the optimal ones are figured out. Moreover, the mechanism of the occurrence of the optimal values is studied and the adjusting strategy is put forward. Numerical results show the robust adjustment of the mounting force, as well as the effectiveness of the mounting configuration, in increasing the SHG efficiency.

  12. Topological spin transport of photons: the optical Magnus effect and Berry phase

    International Nuclear Information System (INIS)

    Bliokh, K.Yu.; Bliokh, Yu.P.

    2004-01-01

    The Letter develops a modified geometrical optics (GO) of smoothly inhomogeneous isotropic medium, which takes into account two topological phenomena: Berry phase and the optical Magnus effect. Taking into account the correspondence between a quasi-classical motion of a quantum particle with a spin and GO of an electromagnetic wave in smoothly inhomogeneous media, we have introduced the standard gauge potential associated with the degeneracy in the wave momentum space. This potential corresponds to the magnetic-monopole-like field (Berry curvature), which causes the topological spin (polarization) transport of photons. The deviations of waves of right-hand and left-hand polarization occur in the opposite directions and orthogonally to the principal direction of motion. This produces a spin current directed across the principal motion. The situation is similar to the anomalous Hall effect for electrons. In addition, a simple scheme of the experiment allowing one to observe the topological spin splitting of photons has been suggested

  13. Vanadium impurity effects on optical properties of Ti3N2 mono-layer: An ab-initio study

    Directory of Open Access Journals (Sweden)

    Manuchehr Babaeipour

    2018-06-01

    Full Text Available The present work is investigated the effect of vanadium impurity on electronic and optical properties of Ti3N2 monolayer by using density function theory (DFT implemented in Wien2k code. In order to study optical properties in two polarization directions of photons, namely E||x and E||z, dielectric function, absorption coefficient, optical conductivity, refraction index, extinction index, reflectivity, and energy loss function of Ti3N2 and Ti3N2-V monolayer have been evaluated within GGA (PBE approximation. Although, Ti3N2 monolayer is a good infrared reflector and can be used as an infrared mirror, introducing V atom in the infrared area will decrease optical conductivity because optical conductivity of a pure form of a material is higher than its doped form. Keywords: Dielectric function, Optical conductivity, DFT, Ti3N2: V mono-layer

  14. The effect of the optical system on the electrical performance of III–V concentrator triple junction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, R.D., E-mail: S206029578@nmmu.ac.za; Dyk, E.E. van; Vorster, F.J.

    2016-01-01

    High Concentrated Photovoltaic (H-CPV) technologies utilize relatively inexpensive reflective and refractive optical components for concentration to achieve high energy yield. The electrical performance of H-CPV systems is, however, dependent on the properties and configuration of the optical components. The focus of this paper is to summarize the effect of the properties of the optical system on the electrical performance of a Concentrator Triple Junction (CTJ) InGaP/InGaAs/Ge cell. Utilizing carefully designed experiments that include spectral measurements and intensity profiles in the optical plane of the CTJ cell, the influence of photon absorption, Fresnel lens properties and chromatic aberration created by the optical system on the electrical performance of a CTJ cell is shown. From the results obtained, it is concluded that good characterization and understanding of the optical system’s properties may add to improved design of future multi-junction devices.

  15. PROCEDURE ENABLING SIMULATION AND IN-DEPTH ANALYSIS OF OPTICAL EFFECTS IN CAMERA-BASED TIME-OF-FLIGHT SENSORS

    Directory of Open Access Journals (Sweden)

    M. Baumgart

    2018-05-01

    Full Text Available This paper presents a simulation approach for Time-of-Flight cameras to estimate sensor performance and accuracy, as well as to help understanding experimentally discovered effects. The main scope is the detailed simulation of the optical signals. We use a raytracing-based approach and use the optical path length as the master parameter for depth calculations. The procedure is described in detail with references to our implementation in Zemax OpticStudio and Python. Our simulation approach supports multiple and extended light sources and allows accounting for all effects within the geometrical optics model. Especially multi-object reflection/scattering ray-paths, translucent objects, and aberration effects (e.g. distortion caused by the ToF lens are supported. The optical path length approach also enables the implementation of different ToF senor types and transient imaging evaluations. The main features are demonstrated on a simple 3D test scene.

  16. Study of the effect of doping on the temperature stability of the optical properties of germanium single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Podkopaev, O. I. [Joint-Stock Company “Germanium” (Russian Federation); Shimanskiy, A. F., E-mail: shimanaf@mail.ru [Siberian Federal University (Russian Federation); Kopytkova, S. A.; Filatov, R. A. [Joint-Stock Company “Germanium” (Russian Federation); Golubovskaya, N. O. [Siberian Federal University (Russian Federation)

    2016-10-15

    The effect of doping on the optical transmittance of germanium single crystals is studied by infrared Fourier spectroscopy. It is established that the introduction of silicon and tellurium additives into germanium doped with antimony provides a means for improving the temperature stability of the optical properties of the crystals.

  17. Study of the effect of doping on the temperature stability of the optical properties of germanium single crystals

    International Nuclear Information System (INIS)

    Podkopaev, O. I.; Shimanskiy, A. F.; Kopytkova, S. A.; Filatov, R. A.; Golubovskaya, N. O.

    2016-01-01

    The effect of doping on the optical transmittance of germanium single crystals is studied by infrared Fourier spectroscopy. It is established that the introduction of silicon and tellurium additives into germanium doped with antimony provides a means for improving the temperature stability of the optical properties of the crystals.

  18. Nonlinear Effects in Transformation Optics-Based Metamaterial Shields for Counter Directed Energy Weapon Defense

    Science.gov (United States)

    2016-06-01

    employs the in- variance of the Maxwell equations under coordinate transformations to convert the free- space wave solutions in a coordinate... ENERGY WEAPON DEFENSE by Jacob D. Thompson June 2016 Thesis Co-Advisors: James Luscombe Brett Borden Approved for public release; distribution is...2014 to 06-17-2016 4. TITLE AND SUBTITLE NONLINEAR EFFECTS IN TRANSFORMATION OPTICS-BASED METAMATE- RIAL SHIELDS FOR COUNTER DIRECTED ENERGY WEAPON

  19. The effects of ,, - irradiation on the optical and electrical properties of ...

    African Journals Online (AJOL)

    Pure and aluminum doped (0.001 wt %Al) CdS thin films were deposited on microscope glass slides using buffer solution growth technique based on CdSO4 as the cadmium source, thiourea as the sulphur source, and (NH4)2 SO4 as a buffer. The effects of gamma radiation on the optical and electrical properties of the ...

  20. Effect of temperature on the active properties of erbium-doped optical fibres

    Energy Technology Data Exchange (ETDEWEB)

    Kotov, L V [Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow Region (Russian Federation); Ignat' ev, A D [FORC - Photonics group, Moscow (Russian Federation); Bubnov, M M; Likhachev, M E [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation)

    2016-03-31

    We have studied the effect of heating on the performance of erbium-doped fibre based devices and determined temperaturedependent absorption and emission cross sections of the erbium ion in silica glass. The results demonstrate that heating of fibres in claddingpumped high-power (∼100 W) erbium-doped fibre lasers causes no significant decrease in their efficiency. In contrast, superluminescent sources operating in the long-wavelength region (1565 – 1610 nm) are extremely sensitive to temperature changes. (fiber optics)

  1. A cost-effective LED and photodetector based fast direct 3D diffuse optical imaging system

    Science.gov (United States)

    Saikia, Manob Jyoti; Manjappa, Rakesh; Kanhirodan, Rajan

    2017-07-01

    A cost-effective and high-speed 3D diffuse optical tomography system using high power LED light sources and silicon photodetectors has been designed and built, that can continuously scan and reconstruct spectroscopic images at a frame rate of 2 fps. The system is experimentally validated with tissue mimicking cylindrical resin phantom having light absorbing inhomogeneities of different size, shape and contrast, and at different locations.

  2. Photon Sieve Bandwidth Broadening by Reduction of Chromatic Aberration Effects Using Second-Stage Diffractive Optics

    Science.gov (United States)

    2015-03-26

    to copyright protection in the United States. AFIT-ENP-MS-15-M-086 PHOTON SIEVE BANDWIDTH BROADENING BY REDUCTION OF CHROMATIC ABERRATION...RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENP-MS-15-M-086 PHOTON SIEVE BANDWIDTH BROADENING BY REDUCTION OF CHROMATIC ABERRATION EFFECTS USING...A photon sieve is a lightweight diffractive optic which can be useful for space- based imaging applications. It is limited by chromatic

  3. The effect of broadened linewidth induced by dispersion on the performance of resonant optical gyroscope

    Science.gov (United States)

    Zhang, Hao; Li, Wenxiu; Han, Peng; Chang, Xiaoyang; Liu, Jiaming; Lin, Jian; Xue, Xia; Zhu, Fang; Yang, Yang; Liu, Xiaojing; Zhang, Xiaofu; Huang, Anping; Xiao, Zhisong; Fang, Jiancheng

    2018-01-01

    Anomalous dispersion enhancement physical mechanism for Sagnac effect is described by special relativity derivation, and three kinds of definitions of minimum detectable angular rate of resonance optical gyroscope (ROG) are compared and the relations among them are investigated. The effect of linewidth broadening induced by anomalous dispersion on the sensitivity of ROG is discussed in this paper. Material dispersion-broadened resonance linewidth deteriorates the performance of a passive ROG and dispersion enhancement effect, while the sensitivity of a structural dispersion ROG is enhanced by two orders of magnitude even considering the dispersion-broadened resonance linewidth.

  4. Optical effects of exposing intact human lenses to ultraviolet radiation and visible light

    DEFF Research Database (Denmark)

    Kessel, Line; Eskildsen, Lars; Lundeman, Jesper Holm

    2011-01-01

    region of incoming visible light. The aim of the present study was to examine the optical effects on human lenses of short wavelength visible light and ultraviolet radiation. METHODS: Naturally aged human donor lenses were irradiated with UVA (355 nm), violet (400 and 405 nm) and green (532 nm) lasers......: Irradiation with high intensity lasers caused scattering lesions in the human lenses. These effects were more likely to be seen when using pulsed lasers because of the high pulse intensity. Prolonged irradiation with UVA led to photodarkening whereas no detrimental effects were observed after irradiation...

  5. Optical effects of exposing intact human lenses to ultraviolet radiation and visible light

    DEFF Research Database (Denmark)

    Kessel, Line; Eskildsen, Lars Baunsgaard; Lundeman, Jesper Holm

    2011-01-01

    wavelength region of incoming visible light. The aim of the present study was to examine the optical effects on human lenses of short wavelength visible light and ultraviolet radiation. METHODS: Naturally aged human donor lenses were irradiated with UVA (355 nm), violet (400 and 405 nm) and green (532 nm....... RESULTS: Irradiation with high intensity lasers caused scattering lesions in the human lenses. These effects were more likely to be seen when using pulsed lasers because of the high pulse intensity. Prolonged irradiation with UVA led to photodarkening whereas no detrimental effects were observed after...

  6. Resonant optical tunneling-induced enhancement of the photonic spin Hall effect

    Science.gov (United States)

    Jiang, Xing; Wang, Qingkai; Guo, Jun; Zhang, Jin; Chen, Shuqing; Dai, Xiaoyu; Xiang, Yuanjiang

    2018-04-01

    Due to the quantum analogy with optics, the resonant optical tunneling effect (ROTE) has been proposed to investigate both the fundamental physics and the practical applications of optical switches and liquid refractive index sensors. In this paper, the ROTE is used to enhance the spin Hall effect (SHE) of transmitted light. It is demonstrated that sandwiching a layer of a high-refractive-index medium (boron nitride crystal) between two low-refractive-index layers (silica) can effectively enhance the photonic SHE due to the increased refractive index gradient and an enhanced evanescent field near the interface between silica and boron nitride. A maximum transverse shift of the horizontal polarization state in the ROTE structure of about 22.25 µm has been obtained, which is at least three orders of magnitude greater than the transverse shift in the frustrated total internal reflection structure. Moreover, the SHE can be manipulated by controlling the component materials and the thickness of the ROTE structure. These findings open the possibility for future applications of photonic SHE in precision metrology and spin-based photonics.

  7. MORTICIA, a statistical analysis software package for determining optical surveillance system effectiveness.

    Science.gov (United States)

    Ramkilowan, A.; Griffith, D. J.

    2017-10-01

    Surveillance modelling in terms of the standard Detect, Recognise and Identify (DRI) thresholds remains a key requirement for determining the effectiveness of surveillance sensors. With readily available computational resources it has become feasible to perform statistically representative evaluations of the effectiveness of these sensors. A new capability for performing this Monte-Carlo type analysis is demonstrated in the MORTICIA (Monte- Carlo Optical Rendering for Theatre Investigations of Capability under the Influence of the Atmosphere) software package developed at the Council for Scientific and Industrial Research (CSIR). This first generation, python-based open-source integrated software package, currently in the alpha stage of development aims to provide all the functionality required to perform statistical investigations of the effectiveness of optical surveillance systems in specific or generic deployment theatres. This includes modelling of the mathematical and physical processes that govern amongst other components of a surveillance system; a sensor's detector and optical components, a target and its background as well as the intervening atmospheric influences. In this paper we discuss integral aspects of the bespoke framework that are critical to the longevity of all subsequent modelling efforts. Additionally, some preliminary results are presented.

  8. Optical properties of an elliptic quantum ring: Eccentricity and electric field effects

    Science.gov (United States)

    Bejan, Doina; Stan, Cristina; Niculescu, Ecaterina C.

    2018-04-01

    We have theoretically studied the electronic and optical properties of a GaAs/AlGaAs elliptic quantum ring under in-plane electric field. The effects of an eccentric internal barrier -placed along the electric field direction, chosen as x-axis- and incident light polarization are particularly taken into account. The one-electron energy spectrum and wave functions are found using the adiabatic approximation and the finite element method within the effective-mass model. We show that it is possible to repair the structural distortion by applying an appropriate in-plane electric field, and the compensation is almost complete for all electronic states under study. For both concentric and eccentric quantum ring the intraband optical properties are very sensitive to the electric field and probe laser polarization. As expected, in the systems with eccentricity distortions the energy spectrum, as well as the optical response, strongly depends on the direction of the externally applied electric field, an effect that can be used as a signature of ring eccentricity. We demonstrated the possibility of generating second harmonic response at double resonance condition for incident light polarized along the x-axis if the electric field or/and eccentric barrier break the inversion symmetry. Also, strong third harmonic signal can be generated at triple resonance condition for a specific interval of electric field values when using y-polarized light.

  9. Optical effects of shadow masks on short circuit current of organic photovoltaic devices.

    Science.gov (United States)

    Lin, Chi-Feng; Lin, Bing-Hong; Liu, Shun-Wei; Hsu, Wei-Feng; Zhang, Mi; Chiu, Tien-Lung; Wei, Mau-Kuo; Lee, Jiun-Haw

    2012-03-21

    In this paper, we have employed different shadow masks attached on top of organic photovoltaic (OPV) devices to study the optical effects of the former on the short circuit current (J(SC)). To rule out possible lateral electrical conduction and simplify the optical effects inside the device, a small-molecular heterojunction OPV device with a clear donor/acceptor interface was employed with a hole extraction layer exhibiting high resistance intentionally. Careful calibration with a shadow mask was employed. By attaching two layers of opaque masks in combination with a suitable holder design to shield the light from the edges and backside, the value of J(SC) approached that of the dark current, even under 1-sun radiation. With different illumination areas, we found that the photons illuminating the non-active region of the device contributed to 40% of the J(SC) by optical effect within the width of about 1 mm around the active region. When illuminating the non-active area with 12 mm to the active area, a 5.6 times improvement in the J(SC) was observed when the incident angle was 75°. With the introduction of a microstructured film onto the OPV device and an increase in the reflection from the non-active region, a 15% enhancement of the J(SC) compared to the control device was achieved.

  10. Effect of optical fiber type and absorption medium on the endovenous laser ablation mechanism

    Science.gov (United States)

    Ignatieva, N. Yu; Zakharkina, O. L.; Mazayshvili, C. V.; Bagratashvili, V. N.; Lunin, V. V.

    2017-10-01

    Our experimental investigation was aimed at revealing the mechanism behind the action of laser radiation on venous wall under endovenous laser ablation conditions. We determined the critical laser power P cr at which the objective effect of complete denaturation of the vascular tissue collagen was attained for two types of optical fiber in the presence and absence of blood cells. We demonstrated that for the radial optical fiber the presence of blood cells had no effect on the magnitude of P cr, which came to 4.3  ±  0.1 and 5.6  ±  01 W for 1.56 and 1.47 µm lasers, respectively. For the bare fiber and 1.56 µm laser, P cr increased up to 5.2  ±  0.2 W in a blood-filled vessel and up to 7.1  ±  0.2 W when the blood was replaced by a sodium chloride solution. Our data show that the heating and degradation of insufficient veins go on more effectively when the tissue is heated by laser radiation directly absorbed therein, rather than the red-hot carbonized optical fiber tip.

  11. Effects of optical pumping in the photo-excitation of organic triplet states

    International Nuclear Information System (INIS)

    Lin, Tien-Sung; Yang, Tran-Chin; Sloop, David J.

    2013-01-01

    Highlights: • High electron spin polarization (ESP) was observed in pentacene triplets at room temperature. • The high ESP is transfer to the surrounding nuclear spin by optical pumping in zero-field (ZF). • The ZF transition frequencies and their line width depend on the laser pumping rate. • The spin–lattice relaxation times of the nuclear system are evaluated. - Abstract: Upon the application of laser and microwave pulses, non-zero magnetic moment of a photo-excited triplet state of organic molecules is generated in zero-field (ZF). The time evolution of the transient magnetic moments can be measured by free induction decay (FID) in ZF. The observed ZF spectra become broadened and ZF transition shifted to lower frequencies when the repetition rate of laser excitation is increased, which are attributed to the optical pumping of nuclear polarization (ONP) effect and the associated nuclear spin lattice relaxation processes. The observed ONP effect is discussed in terms of the local field effect and spin diffusion processes in optical pumping

  12. Effects of optical attenuation, heat diffusion, and acoustic coherence in photoacoustic signals produced by nanoparticles

    Science.gov (United States)

    Alba-Rosales, J. E.; Ramos-Ortiz, G.; Escamilla-Herrera, L. F.; Reyes-Ramírez, B.; Polo-Parada, L.; Gutiérrez-Juárez, G.

    2018-04-01

    The behavior of the photoacoustic signal produced by nanoparticles as a function of their concentration was studied in detail. As the concentration of nanoparticles is increased in a sample, the peak-to-peak photoacoustic amplitude increases linearly up to a certain value, after which an asymptotic saturated behavior is observed. To elucidate the mechanisms responsible for these observations, we evaluate the effects of nanoparticles concentration, the optical attenuation, and the effects of heat propagation from nano-sources to their surroundings. We found that the saturation effect of the photoacoustic signal as a function of the concentration of nanoparticles is explained by a combination of two different mechanisms. As has been suggested previously, but not modeled correctly, the most important mechanism is attributed to optical attenuation. The second mechanism is due to an interference destructive process attributed to the superimposition of the photoacoustic amplitudes generated for each nanoparticle, and this explanation is reinforced through our experimental and simulations results; based on this, it is found that the linear behavior of the photoacoustic amplitude could be restricted to optical densities ≤0.5.

  13. Effects of optical pumping in the photo-excitation of organic triplet states

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tien-Sung, E-mail: lin@wustl.edu; Yang, Tran-Chin; Sloop, David J.

    2013-08-30

    Highlights: • High electron spin polarization (ESP) was observed in pentacene triplets at room temperature. • The high ESP is transfer to the surrounding nuclear spin by optical pumping in zero-field (ZF). • The ZF transition frequencies and their line width depend on the laser pumping rate. • The spin–lattice relaxation times of the nuclear system are evaluated. - Abstract: Upon the application of laser and microwave pulses, non-zero magnetic moment of a photo-excited triplet state of organic molecules is generated in zero-field (ZF). The time evolution of the transient magnetic moments can be measured by free induction decay (FID) in ZF. The observed ZF spectra become broadened and ZF transition shifted to lower frequencies when the repetition rate of laser excitation is increased, which are attributed to the optical pumping of nuclear polarization (ONP) effect and the associated nuclear spin lattice relaxation processes. The observed ONP effect is discussed in terms of the local field effect and spin diffusion processes in optical pumping.

  14. Strain effects on the optical parameters of quantum dots nanocrystals employed in biomedical applications

    International Nuclear Information System (INIS)

    Liaparinos, P.F.

    2014-01-01

    The purpose of this study was to perform the influence of the strain (lattice and radius) effects on the optical parameters of nanocrystals for use in medical imaging instrumentation technology. The present manuscript involved (a) quantum dots (QD) based nanophosphors with particle size 3–5 nm in diameter, (b) dielectric constants (core) of nanophosphors in the range 2–4, and (c) the whole portion of the electromagnetic spectrum visible to the human eye, 400–700 nm. Lattice strain effects on the optical properties were evaluated by the modification of the bulk dielectric function using a Drude–Sommerfeld model for the free or conduction electrons, and a core term representing the bound electrons. The Mie scattering theory, was used to predict the shifted optical parameters. Results showed that (i) lattice stain reduces the real part (n) of refractive index, (ii) the reduction of n becomes higher with the increase of ε core (ω) and (iii) no significant variations on n were observed under the variability of incident light wavelength (400–700 nm). Light wavelength was found to affect significantly the imaginary part (k) of the complex refractive index. In addition, the radius strain (i) decreases the light extinction coefficient, m ext , (ii) increases the anisotropy factor, g and (iii) increases the light absorption probability, p. However, in cases of ε core (ω)=2, radius strain of 5% seems to present slightly higher p values than the cases of radius strain 10%. The present investigation found that the modification on the optical parameters enhances the utilization of quantom-dots luminescent nanomaterial in optical diffusion studies with requirements of high sensitivity (such as nuclear medical imaging modalities) rather than of high light spatial resolution (such as X-ray projection medical imaging systems). -- Highlights: • The strain effects on the optical parameters of quantum dots were examined. • Light wavelength affects significantly the

  15. Effect of ionizing radiation on in situ Raman scattering and photoluminescence of silica optical fibers

    International Nuclear Information System (INIS)

    Bilodeau, T.G.; Ewing, K.J.; Nau, G.M.; Aggarwal, I.D.

    1995-01-01

    Raman fiber optic chemical sensors provide remote situ characterization capability. One application of Raman fiber optic chemical sensors is the characterization of the contents of nuclear waste tanks. In these tanks it is expected that approximately 20 meters of optical fiber will be exposed to radiation levels between 100 and 1,000 rads/hour. In support of this work two silica optical fiber types (one a communications grade fiber and the other nominally radiation resistant) have been tested at the radiation levels expected in the tanks. Luminescence and Raman scattering measurements have been performed in situ with 488-nm excitation on two types of silica optical fiber exposed to a constant low to moderate dose rate of gamma radiation of 880 rads(Si)/hour from a 60 Co source for a total dose of greater than 45 krads. The nominally radiation-resistant fiber was also excited with 514.5-nm and near-infrared 830-nm laser radiation. The rate of the silica Raman signal decrease is more than three times greater for the visible excitation wavelengths than for the 830-nm excitation for the radiation resistant fiber. The behavior of the 650-nm photoluminescence line upon irradiation was different for the two fibers studied, both in terms of the shift of the 650-nm line and rate of increase of the normalized photoluminescence intensity. In all cases the photoluminescence from the fibers was less than the Raman intensity. No radioluminescence was observed in either fiber. The radiation resistant fiber exhibited photo bleaching effects on the Raman transmission when photoannealed with 488-nm laser light

  16. Effect of the internal optics on the outcome of custom-LASIK in an eye model

    Science.gov (United States)

    Manns, Fabrice; Ho, Arthur; Parel, Jean-Marie

    2004-07-01

    Purpose. The purpose of this study was to evaluate if changes in the aberration-contribution of the internal optics of the eye have a significant effect on the outcome of wavefront-guided corneal reshaping. Methods. The Navarro-Escudero eye model was simulated using optical analysis software. The eye was rendered myopic by shifting the plane of the retina. Custom-LASIK was simulated by changing the radius of curvature and asphericity of the anterior corneal surface of the eye model. The radius of curvature was adjusted to provide a retinal conjugate at infinity. Three approaches were used to determine the postoperative corneal asphericity: minimizing third-order spherical aberration, minimizing third-order coma, and maximizing the Strehl ratio. The aberration contribution of the anterior corneal surface and internal optics was calculated before and after each simulated customized correction. Results. For a 5.2mm diameter pupil, the contribution of the anterior corneal surface to third-order spherical aberration and coma (in micrometers) was 2.22 and 2.49 preop, -0.36 and 2.83 postop when spherical aberration is minimized, 5.88 and 1.10 postop when coma is minimized, and -0.63 and 2.91 postop when Strehl ratio is maximized. The contribution of the internal optics of the eye to spherical aberration and coma for the same four conditions was: 0.43 and -1.13, 0.37 and -1.10, 0.37 and -1.10 and 0.37 and -1.10, respectively. Conclusion. In the model eye, the contribution of the internal optics of the eye to the change in the ocular aberration state is negligible.

  17. Effect of ionizing radiation on in situ Raman scattering and photoluminescence of silica optical fibers

    Science.gov (United States)

    Bilodeau, T. G.; Ewing, K. J.; Nau, G. M.; Aggarwai, I. D.

    1995-02-01

    Raman fiber optic chemical sensors provide remote in situ characterization capability. One application of Raman fiber optic chemical sensors is the characterization of the contents of nuclear waste tanks. In these tanks it is expected that approximately 20 meters of optical fiber will be exposed to radiation levels between 100 and 1000 rads/hour. In support of this work two silica optical fiber types (one a communications grade fiber and the other nominally radiation resistant) have been tested at the radiation levels expected in the tanks. Luminescence and Raman scattering measurements have been performed in situ with 488-nm excitation on two types of silica optical fiber exposed to a constant low to moderate dose rate of gamma radiation of 880 rads(Si)/hour from a /sup 60/Co source for a total dose of greater than 45 krads. The nominally radiation-resistant fiber was also excited with 514.5-nm and near-infrared 830-nm laser radiation. The rate of the silica Raman signal decrease is more than three times greater for the visible excitation wavelengths than for the 830-nm excitation for the radiation resistant fiber. The behavior of the 650-nm photoluminescence line upon irradiation was different for the two fibers studied, both in terms of the shift of the 650-nm line and rate of increase of the normalized photoluminescence intensity. In all cases the photoluminescence from the fibers was less than the Raman intensity. No radioluminescence was observed in either fiber. The radiation resistant fiber exhibited photobleaching effects on the Raman transmission when photoannealed with 488-nm laser light.

  18. Enhancement of magneto-optical Faraday effects and extraordinary optical transmission in a tri-layer structure with rectangular annular arrays.

    Science.gov (United States)

    Lei, Chengxin; Chen, Leyi; Tang, Zhixiong; Li, Daoyong; Cheng, Zhenzhi; Tang, Shaolong; Du, Youwei

    2016-02-15

    The properties of optics and magneto-optical Faraday effects in a metal-dielectric tri-layer structure with subwavelength rectangular annular arrays are investigated. It is noteworthy that we obtained the strongly enhanced Faraday rotation of the desired sign along with high transmittance by optimizing the parameters of the nanostructure in the visible spectral ranges. In this system, we obtained two extraordinary optical transmission (EOT) resonant peaks with enhanced Faraday rotations, whose signs are opposite, which may provide the possibility of designing multi-channel magneto-optical devices. Study results show that the maximum of the figure of merit (FOM) of the structure can be obtained between two EOT resonant peaks accompanied by an enhanced Faraday rotation. The positions of the maximum value of the FOM and resonant peaks of transmission along with a large Faraday rotation can be tailored by simply adjusting the geometric parameters of our models. These research findings are of great importance for future applications of magneto-optical devices.

  19. The transformation of optical bistability effect and of generated pulses in operation of a DFB laser with two sections

    International Nuclear Information System (INIS)

    Nguyen Van Phu; Dinh Van Hoang

    2005-01-01

    In this paper is presented the transformation of characteristics of optical bistability effect and of generated pulses in operation of a DFB laser with two sections. By solving the rate equations describing the operation of this laser the appearance of optical bistability effect in stationary regime and of short pulses in transient regime is obtained. With the variation of dynamical laser parameter we can evaluate the transformation indicated above. The method of examination used here is simple for determining the influence of any dynamical laser parameter on characteristics of optical bistability effect and generated pulses. (author)

  20. Investigation of radiative effects of the optically thick dust layer over the Indian tropical region

    Directory of Open Access Journals (Sweden)

    S. K. Das

    2013-04-01

    Full Text Available Optical and physical properties of aerosols derived from multi-satellite observations (MODIS-Aqua, OMI-Aura, MISR-Terra, CALIOP-CALIPSO have been used to estimate radiative effects of the dust layer over southern India. The vertical distribution of aerosol radiative forcing and heating rates are calculated with 100 m resolution in the lower atmosphere, using temperature and relative humidity data from balloon-borne radiosonde observations. The present study investigates the optically thick dust layer of optical thickness 0.18 ± 0.06 at an altitude of 2.5 ± 0.7 km over Gadanki, transported from the Thar Desert, producing radiative forcing and heating rate of 11.5 ± 3.3 W m−2 and 0.6 ± 0.26 K day−1, respectively, with a forcing efficiency of 43 W m−2 and an effective heating rate of 4 K day−1 per unit dust optical depth. Presence of the dust layer increases radiative forcing by 60% and heating rate by 60 times at that altitude compared to non-dusty cloud-free days. Calculation shows that the radiative effects of the dust layer strongly depend on the boundary layer aerosol type and mass loading. An increase of 25% of heating by the dust layer is found over relatively cleaner regions than urban regions in southern India and further 15% of heating increases over the marine region. Such heating differences in free troposphere may have significant consequences in the atmospheric circulation and hydrological cycle over the tropical Indian region.

  1. Optimizing magneto-optical effects in the ferromagnetic semiconductor GaMnAs

    Energy Technology Data Exchange (ETDEWEB)

    Riahi, H., E-mail: hassenriahi1987@gmail.com [Laboratoire Matériaux Molécules et Applications, IPEST, Université de Carthage, La Marsa (Tunisia); Thevenard, L. [CNRS, UMR7588, Institut des Nanosciences de Paris, 4 place Jussieu, 75005 Paris (France); Sorbonne Universités, UPMC Université Paris 06, UMR7588, 4 place Jussieu, 75005 Paris (France); Maaref, M.A. [Laboratoire Matériaux Molécules et Applications, IPEST, Université de Carthage, La Marsa (Tunisia); Gallas, B. [CNRS, UMR7588, Institut des Nanosciences de Paris, 4 place Jussieu, 75005 Paris (France); Sorbonne Universités, UPMC Université Paris 06, UMR7588, 4 place Jussieu, 75005 Paris (France); Lemaître, A. [Laboratoire de Photonique et de Nanostructures – CNRS, Route de Nozay, 91460 Marcoussis (France); Gourdon, C [CNRS, UMR7588, Institut des Nanosciences de Paris, 4 place Jussieu, 75005 Paris (France); Sorbonne Universités, UPMC Université Paris 06, UMR7588, 4 place Jussieu, 75005 Paris (France)

    2015-12-01

    A trilayer of the ferromagnetic semiconductor GaMnAs, a SiO{sub 2} buffer layer and a piezoelectric ZnO layer, is investigated in view of its use in device implementation to study surface acoustic wave-assisted magnetization switching. The magneto-optical properties: Kerr rotation and ellipticity and magnetic contrast in Kerr microscopy images are investigated as a function of temperature. While the ZnO layer prevents any good quality imaging of magnetic domains, we show that with the SiO{sub 2} layer only the polar Kerr rotation and the magnetic contrast are increased by a factor of 2. This result is in good quantitative agreement with calculations using an optical interference model and could be further improved. The detrimental effects of the dielectric layers capping on the Curie temperature and coercive field of the GaMnAs layer can be kept to a reasonable level. - Highlights: • GaMnAs/SiO{sub 2}/ZnO studied for surface acoustic wave assisted magnetization switching. • The Kerr rotation and magneticcontrast increase by a factor 2 with SiO{sub 2} on GaMnAs. • Good quantitative agreement with an optical interference model. • Little detrimental effect of SiO{sub 2} and ZnO on the ferromagnetic properties of GaMnAs.

  2. Relative humidity and its effect on aerosol optical depth in the vicinity of convective clouds

    International Nuclear Information System (INIS)

    Altaratz, O; Bar-Or, R Z; Wollner, U; Koren, I

    2013-01-01

    The hygroscopic growth of aerosols is controlled by the relative humidity (RH) and changes the aerosols’ physical and hence optical properties. Observational studies of aerosol–cloud interactions evaluate the aerosol concentration using optical parameters, such as the aerosol optical depth (AOD), which can be affected by aerosol humidification. In this study we evaluate the RH background and variance values, in the lower cloudy atmosphere, an additional source of variance in AOD values beside the natural changes in aerosol concentration. In addition, we estimate the bias in RH and AOD, related to cloud thickness. This provides the much needed range of RH-related biases in studies of aerosol–cloud interaction. Twelve years of radiosonde measurements (June–August) in thirteen globally distributed stations are analyzed. The estimated non-biased AOD variance due to day-to-day changes in RH is found to be around 20% and the biases linked to cloud development around 10%. Such an effect is important and should be considered in direct and indirect aerosol effect estimations but it is inadequate to account for most of the AOD trend found in observational studies of aerosol–cloud interactions. (letter)

  3. Gamma irradiation effects on the thermal, optical and structural properties of Cr-39 nuclear track detector

    International Nuclear Information System (INIS)

    Nouh, S.A.; Said, A.F.; Atta, M.R.; EL-Mellegy, W.M.; EL-Meniawi, S.

    2006-01-01

    A study of the effect of gamma irradiation on the thermal, optical and structural properties of CR-39 diglycol carbonate solid state nuclear track detector (SSNTD) has been carried out. Samples from CR-39 polymer were irradiated with gamma doses at levels between 20 and 300 KGy. Non-isothermal studies were carried out using thermo-gravimetry (TG), differential thermo-gravimetry (DTG) and differential thermal analysis (DTA) to obtain the activation energy of decomposition and the transition temperatures for the non-irradiated and irradiated CR-39 samples. In addition, optical and structural property studies were performed on non-irradiated and irradiated CR-39 samples using refractive index and X-ray diffraction measurements. The variation of onset temperature of decomposition (To) thermal activation energy of decomposition (Ea) melting temperature (Tm) refractive index (n) and the mass fraction of the amorphous phase with the gamma dose were studied. It was found that many changes in the thermal, optical and structural properties of the CR-39 polymer could be produced by gamma irradiation via the degradation and cross linking mechanisms. Also, the gamma dose gave an advantage for increasing the correlation between the thermal stability of CR-39 polymer and the bond formation created by the ionizing effect of gamma radiation

  4. Optimizing magneto-optical effects in the ferromagnetic semiconductor GaMnAs

    International Nuclear Information System (INIS)

    Riahi, H.; Thevenard, L.; Maaref, M.A.; Gallas, B.; Lemaître, A.; Gourdon, C

    2015-01-01

    A trilayer of the ferromagnetic semiconductor GaMnAs, a SiO 2 buffer layer and a piezoelectric ZnO layer, is investigated in view of its use in device implementation to study surface acoustic wave-assisted magnetization switching. The magneto-optical properties: Kerr rotation and ellipticity and magnetic contrast in Kerr microscopy images are investigated as a function of temperature. While the ZnO layer prevents any good quality imaging of magnetic domains, we show that with the SiO 2 layer only the polar Kerr rotation and the magnetic contrast are increased by a factor of 2. This result is in good quantitative agreement with calculations using an optical interference model and could be further improved. The detrimental effects of the dielectric layers capping on the Curie temperature and coercive field of the GaMnAs layer can be kept to a reasonable level. - Highlights: • GaMnAs/SiO 2 /ZnO studied for surface acoustic wave assisted magnetization switching. • The Kerr rotation and magneticcontrast increase by a factor 2 with SiO 2 on GaMnAs. • Good quantitative agreement with an optical interference model. • Little detrimental effect of SiO 2 and ZnO on the ferromagnetic properties of GaMnAs

  5. Optical excitations of transition-metal oxides under the orbital multiplicity effects

    International Nuclear Information System (INIS)

    Lee, J S; Kim, M W; Noh, T W

    2005-01-01

    We investigated optical excitations of transition-metal (TM) oxides with metal oxygen octahedra taking account of the orbital multiplicity effects. We predicted excitation energies of intersite d-d transitions and p-d transitions of TM oxides. We compared the evaluated excitation energies with reported experimental data, and found that they are in good agreement with each other. Moreover, we could demonstrate possible answers for a few long-standing problems of the low-frequency spectral features in some early 3d TM oxides: (i) the broad and multi-peak structures of the d-d transitions (ii) the low values (around 2 eV) of the d-d transition energies for some t 2g 1 and t 2g 2 systems, and (iii) the lack of the d-d transition below 4.0 eV region for LaCrO 3 , one of the t 2g 3 systems. These indicate that our approach considering the orbital multiplicity effects could provide good explanations of intriguing features in the optical spectra of some early TM oxides. In addition, we showed that optical spectroscopy can be useful as a powerful tool to investigate spin and/or orbital correlations in the TM ions. Finally, we discussed the implications of the orbital multiplicity in the Zannen-Sawatzky-Allen scheme, which has been used successfully to classify correlated electron systems

  6. X-ray magneto-optic KERR effect studies of spring magnet heterostructures.

    Energy Technology Data Exchange (ETDEWEB)

    Kortright, J. B.; Kim, S.-K.; Fullerton, E. E.; Jiang, J. S.; Bader, S. D.

    2000-11-01

    The complex 3-dimensional magnetization reversal behavior of Sin-Co/Fe exchange spring films is used to test the sensitivity of different resonant soft x-ray magneto-optical Kerr effect (MOKE) measurements to changes in longitudinal and transverse moments within the SOIIFe layer and to changes in these moments in depth within the Fe layer. As in the visible MOKE, changes in longitudinal and net transverse moments are resolved by measuring both Kerr rotation and intensity loops in the near the Fe 2p core resonance. These x-ray MOKE signals measured using linear incident polarization are more directly interpreted in terms of longitudinal and transverse moments than are the same signals measured using elliptical polarization. Varying photon energy near the Fe L3line is shown to be an effective means of resolving distinctly different reversal behavior at the top and bottom of the 20 nm thick Fe layer resulting from the strong exchange coupling at the Sin-Co/Fe interface. Measured x-ray MOKE spectra and signals are in qualitative agreement with those calculated using standard magneto-optical formalisms incorporating interference between different layers and measured helicity-dependent magneto-optical constants for Fe.

  7. THEORETICAL EVALUATION OF NONLINEAR EFFECTS ON OPTICAL WDM NETWORKS WITH VARIOUS FIBER TYPES

    Directory of Open Access Journals (Sweden)

    YASIN M. KARFAA

    2010-09-01

    Full Text Available A theoretical study is carried out to evaluate the performance of an opticalwavelength division multiplexing (WDM network transmission system in the presenceof crosstalk due to optical fiber nonlinearities. The most significant nonlinear effects inthe optical fiber which are Cross-Phase Modulation (XPM, Four-Wave Mixing (FWM,and Stimulated Raman Scattering (SRS are investigated. Four types of optical fiber areincluded in the analysis; these are: single-mode fiber (SMF, dispersion compensationfiber (DCF, non-zero dispersion fiber (NZDF, and non-zero dispersion shifted fiber(NZDSF. The results represent the standard deviation of nonlinearity induced crosstalknoise power due to FWM and SRS, XPM power penalty for SMF, DCF, NZDF, andNZDSF types of fiber, besides the Bit Error Rate (BER for the three nonlinear effectsusing standard fiber type (SMF. It is concluded that three significant fiber nonlinearitiesare making huge limitations against increasing the launched power which is desired,otherwise, lower values of launched power limit network expansion including length,distance, covered areas, and number of users accessing the WDM network, unlesssuitable precautions are taken to neutralize the nonlinear effects. Besides, various fibertypes are not behaving similarly towards network parameters.

  8. Genetic optimization of magneto-optic Kerr effect in lossy cavity-type magnetophotonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ghanaatshoar, M., E-mail: m-ghanaat@cc.sbu.ac.i [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Evin 1983963113, Tehran (Iran, Islamic Republic of); Alisafaee, H. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Evin 1983963113, Tehran (Iran, Islamic Republic of)

    2011-07-15

    We have demonstrated an optimization approach in order to obtain desired magnetophotonic crystals (MPCs) composed of a lossy magnetic layer (TbFeCo) placed within a multilayer structure. The approach is an amalgamation between a 4x4 transfer matrix method and a genetic algorithm. Our objective is to enhance the magneto-optic Kerr effect of TbFeCo at short visible wavelength of 405 nm. Through the optimization approach, MPC structures are found meeting definite criteria on the amount of reflectivity and Kerr rotation. The resulting structures are fitted more than 99.9% to optimization criteria. Computation of the internal electric field distribution shows energy localization in the vicinity of the magnetic layer, which is responsible for increased light-matter interaction and consequent enhanced magneto-optic Kerr effect. Versatility of our approach is also exhibited by examining and optimizing several MPC structures. - Research highlights: Structures comprising a highly absorptive TbFeCo layer are designed to work for data storage applications at 405 nm. Optimization algorithm resulted in structures fitted 99.9% to design criteria. More than 10 structures are found exhibiting magneto-optical response of about 1{sup o} rotation and 20% reflection. The ratio of the Kerr rotation to the Kerr ellipticity is enhanced by a factor of 30.

  9. Identification of second harmonic optical effects from vaccine coated gold microparticles

    International Nuclear Information System (INIS)

    Jumah, N A; Ameer-Beg, S M; White, N S; Prasad, K V R; Bellhouse, B J

    2004-01-01

    This study investigates the optical effects observed from uncoated and protein vaccine coated gold microparticles while imaging with two-photon excitation in the Mie scattering regime. When observed with time correlated single photon counting fluorescence lifetime microscopy, the emission from the gold microparticles appeared as an intense instrument-limited temporal response. The intensity of the emission showed a second-order dependence on the laser power and frequency doubling of the emitted light was observed for fundamental light between 890 and 970 nm. The optical effect was attributed to two-photon induced second harmonic generation. The vaccine coated gold microparticles had a much weaker second harmonic signal than the uncoated gold microparticles. Chemical analysis of the surface of the gold microparticles revealed that the vaccine coating decreases the surface charge thereby diminishing the observed second harmonic signal. These optical properties can be exploited to identify both the location of the protein vaccine coating as well as the gold microparticles in vitro and potentially to investigate the vaccine delivery kinetics in vivo

  10. Performance of wireless optical communication systems under polarization effects over atmospheric turbulence

    Science.gov (United States)

    Zhang, Jiankun; Li, Ziyang; Dang, Anhong

    2018-06-01

    It has been recntly shown that polarization state of propagation beam would suffer from polarization fluctuations due to the detrimental effects of atmospheric turbulence. This paper studies the performance of wireless optical communication (WOC) systems in the presence of polarization effect of atmosphere. We categorize the atmospheric polarization effect into polarization rotation, polarization-dependent power loss, and phase shift effect, with each effect described and modeled with the help of polarization-coherence theory and the extended Huygens-Fresnelprinciple. The channel matrices are derived to measure the cross-polarization interference of the system. Signal-to-noise ratio and bit error rate for polarization multiplexing system and polarization modulation system are obtained to assess the viability using the approach of M turbulence model. Monte Carlo simulation results show the performance of polarization based WOC systems to be degraded by atmospheric polarization effect, which could be evaluated precisely using the proposed model with given turbulent strengths.

  11. Transient radiation effects in D.O.I. optical materials: Schott filter glass

    International Nuclear Information System (INIS)

    Simmons-Potter, K.

    1998-07-01

    Department of Energy and Defense Programs systems are becoming increasingly reliant on the use of optical technologies that must perform under a range of ionizing radiation environments. In particular, the radiation response of materials under consideration for applications in direct optical initiation (D.O.I.) schemes must be well characterized. In this report, transient radiation effects observed in Schott filter glass S-7010 are characterized. Under gamma exposure with 2 MeV photons in a 20--30 nsec pulse, the authors observe strong initial induced fluorescence in the red region of the spectrum followed by significant induced absorption over the same spectral region. Peak induced absorption coefficients of 0.113 cm -1 and 0.088 cm -1 were calculated at 800 nm and 660 nm respectively

  12. Acousto-optical phonon excitation in cubic piezoelectric slabs and crystal growth orientation effects

    DEFF Research Database (Denmark)

    Willatzen, Morten; Duggen, Lars

    2017-01-01

    In this paper we investigate theoretically the influence of piezoelectric coupling on phonon dispersion relations. Specifically we solve dispersion relations for a fully coupled zinc-blende freestanding quantum well for different orientations of the crystal unit cell. It is shown that the phonon...... mode density in GaAs can change by a factor of approximately 2–3 at qx a = 1 for different crystal-growth directions relative to the slab thickness direction. In particular, it is found that optical and acoustic phonon modes are always piezoelectrically coupled, independent of the crystal...... that the piezoelectric effect leads to a drastically enhanced coupling of acoustic and optical phonon modes and increase in the local phonon density of states near the plasma frequency where the permittivity approaches zero....

  13. Local-field enhancement effect on the nonlinear optical response of gold-silver nanoplanets.

    Science.gov (United States)

    Cesca, T; Calvelli, P; Battaglin, G; Mazzoldi, P; Mattei, G

    2012-02-13

    We report on the nonlinear optical properties of Au-Ag nanoplanets produced by ion implantation and irradiation in silica, experimentally investigated by means of the single beam z-scan technique. The measurements provided experimental evidence of the intense local-field enhancement effect theoretically demonstrated for these plasmonic nanosystems. In particular, this has a dramatic impact on their nonlinear absorption behavior and results in a tunable changeover from reverse saturable absorption to saturable absorption by slightly varying the pump intensity and in the possibility to activate and observe nonlinear phenomena of the electron dynamics otherwise unaccessible in the intensity range that can be employed to study these materials. Finally, for the nanoplanet configuration we found a dramatic decrease of the intensity-dependent absorption coefficient, which could be very promising for obtaining optical gain materials.

  14. Improved longitudinal magneto-optic Kerr effect signal contrast from nanomagnets with dielectric coatings

    Science.gov (United States)

    Holiday, L. F.; Gibson, U. J.

    2006-12-01

    We report on the use of dielectric coatings to improve the contrast of longitudinal magneto-optic Kerr effect signals from submicron magnetic structures. Electron-beam lithography was used to define disks in 22 nm thick Ni films deposited on Si substrates. The structures were measured in four configurations: as-deposited, through a fused silica prism using index-matching fluid, coated with ZnS, and using a prism on top of the ZnS layer. The modified samples show up to 20 times improvement in the MOKE contrast due to admittance matching to the magnetic material and suppression of the substrate reflectance. The behavior is successfully predicted by a model that includes the magneto-optic response of the nickel layer and accounts for the fraction of the beam intercepted by the magnetic structure.

  15. Impurity-related nonlinear optical properties in delta-doped quantum rings: Electric field effects

    Energy Technology Data Exchange (ETDEWEB)

    Restrepo, R.L., E-mail: rrestre@gmail.com [Escuela de Ingeniería de Antioquia-EIA, Medellín (Colombia); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Morales, A.L. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Martínez-Orozco, J.C. [Unidad Académica de Física, Universidad Autónoma de Zacatecas, CP 98060, Zacatecas (Mexico); Baghramyan, H.M.; Barseghyan, M.G. [Department of Solid State Physics, Yerevan State University, Al. Manookian 1, 0025 Yerevan (Armenia); Mora-Ramos, M.E. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2014-11-15

    Using a variational procedure within the effective mass approximation, we have calculated the donor impurity binding energy for the ground (1s-like) and the excited (2p{sub z}-like) states as well as the impurity-related nonlinear optical absorption and relative changes in the refraction index in a GaAs single quantum ring with axial n-type delta-doping. The delta-like potential along the z-direction is an approximate model analytically described using a Lorentzian function with two parameters. Additionally we consider the application of an electric field along the z-direction. It is found that the changes in the geometry of the quantum ring, the change in the 2D impurity density of the delta-like doping, and different values of the electric field lead to a shifting of the resonant peaks of the optical responses spectrum.

  16. Optical Observation of Plasnionic Nonlocal Effects in a 2D Superlattice of Ultrasmall Gold Nanoparticles

    DEFF Research Database (Denmark)

    Shen, Hao; Chen, Li; Ferrari, Lorenzo

    2017-01-01

    in single ultrasmall silver nanopartides have been experimentally observed in single-particle spectroscopy enabled by the unprecedented high spatial resolution of electron energy loss spectroscopy (EELS). However, the unambig-optical observation of such new effects in gold nanopartides has yet not been...... reported, due to the extremely weak scattering and the obscuring fingerprint of strong interband transitions. Here we present a nanosystem, a superlattice monolayer formed by sub-10 nm gold nanopartides. Plasmon resonances are spectrally well-separated from interband transitions, while exhibiting clearly...... distinguishable blue-shifts compared to predictions by the classical local-response model. Our far-field spectroscopy was performed by a standard optical transmission and reflection setup, and the results agreed excellently with the hydrodynamic nonlocal model, opening a simple and Widely accessible way...

  17. Effect of the depolarization field on coherent optical properties in semiconductor quantum dots

    Science.gov (United States)

    Mitsumori, Yasuyoshi; Watanabe, Shunta; Asakura, Kenta; Seki, Keisuke; Edamatsu, Keiichi; Akahane, Kouichi; Yamamoto, Naokatsu

    2018-06-01

    We study the photon echo spectrum of self-assembled semiconductor quantum dots using femtosecond light pulses. The spectrum shape changes from a single-peaked to a double-peaked structure as the time delay between the two excitation pulses is increased. The spectrum change is reproduced by numerical calculations, which include the depolarization field induced by the biexciton-exciton transition as well as the conventional local-field effect for the exciton-ground-state transition in a quantum dot. Our findings suggest that various optical transitions in tightly localized systems generate a depolarization field, which renormalizes the resonant frequency with a change in the polarization itself, leading to unique optical properties.

  18. Transient radiation effects in D.O.I. optical materials: KD*P

    International Nuclear Information System (INIS)

    Simmons-Potter, K.

    1998-07-01

    Department of Energy and Defense Programs systems are becoming increasingly reliant on the use of optical technologies that must perform under a range of ionizing radiation environments. In particular, the radiation response of materials under consideration for applications in direct optical initiation (D.O.I.) schemes must be well characterized. In this report, transient radiation effects observed in a KD*P crystal are characterized. Under gamma exposure with 2 MeV photons in a 20--30 nsec pulse, the authors observe induced absorption at 1.06 microm that causes a peak decrease in overall sample transmittance of only 10%. This induced loss is seen to recover fully within the first 30 microsec

  19. Effect of Dangling Bonds on De-Poling Time for Polymeric Electric Field Optical Sensors

    Directory of Open Access Journals (Sweden)

    Amir R. Ali

    2018-01-01

    Full Text Available This paper investigates the possible chemical changes in polydimethylsiloxane (PDMS caused by two different techniques of fabrication for ultra-sensitive electric field optical sensors. The sensing element is a micro-sphere made from 60:1 PDMS (60 parts base silicon elastomer to one part polymer curing agent by volume. The measurement principle is based on the morphology dependent resonances (MDR shifts of the micro-sphere. We present the effects of curing and poling of polymer micro-spheres used as optical sensors. The degree of curing leads to changes in the de-poling time which results from dangling bonds in the polymeric chains. Consequently, the longevity of the sensitivity of the sensor can extended by two orders of magnitude. An analysis is carried out along with preliminary experiments to investigate that behavior.

  20. Impurity-related nonlinear optical properties in delta-doped quantum rings: Electric field effects

    International Nuclear Information System (INIS)

    Restrepo, R.L.; Morales, A.L.; Martínez-Orozco, J.C.; Baghramyan, H.M.; Barseghyan, M.G.; Mora-Ramos, M.E.; Duque, C.A.

    2014-01-01

    Using a variational procedure within the effective mass approximation, we have calculated the donor impurity binding energy for the ground (1s-like) and the excited (2p z -like) states as well as the impurity-related nonlinear optical absorption and relative changes in the refraction index in a GaAs single quantum ring with axial n-type delta-doping. The delta-like potential along the z-direction is an approximate model analytically described using a Lorentzian function with two parameters. Additionally we consider the application of an electric field along the z-direction. It is found that the changes in the geometry of the quantum ring, the change in the 2D impurity density of the delta-like doping, and different values of the electric field lead to a shifting of the resonant peaks of the optical responses spectrum

  1. Measurement of the current in water discharge using magneto-optical Faraday effect

    International Nuclear Information System (INIS)

    Sarkisov, G.S.; Woodworth, J.R.

    2006-01-01

    The observation of magnetooptical Faraday effects in water in experiments with electrical breakdown is presented. After high-voltage breakdown, the ionized channel with ∼4 kA current was generated. The magnetic field from the current channel induces a circular birefringence which results in rotation of the polarization plane of a probing laser (200 ps, 532 nm). In spite of fast opposite radius drop of the magnetic field in radial direction, the Faraday rotation effect drops very slowly. The rotation of the polarization plane was ∼0.65 deg. ±5%. The optical measurements are in good agreement within ∼7% with the electrical measurements of the current

  2. Active Figure Control Effects on Mounting Strategy for X-Ray Optics

    Science.gov (United States)

    Kolodziejczak, Jeffery J.; Atkins, Carolyn; Roche, Jacqueline M.; ODell, Stephen L.; Ramsey, Brian D.; Elsner, Ronald F.; Weisskopf, Martin C.; Gubarev, Mikhail V.

    2014-01-01

    As part of ongoing development efforts at MSFC, we have begun to investigate mounting strategies for highly nested xray optics in both full-shell and segmented configurations. The analytical infrastructure for this effort also lends itself to investigation of active strategies. We expect that a consequence of active figure control on relatively thin substrates is that errors are propagated to the edges, where they might affect the effective precision of the mounting points. Based upon modeling, we describe parametrically, the conditions under which active mounts are preferred over fixed ones, and the effect of active figure corrections on the required number, locations, and kinematic characteristics of mounting points.

  3. The optical interface of a photonic crystal: Modeling an opal with a stratified effective index

    OpenAIRE

    Maurin, Isabelle; Moufarej, Elias; Laliotis, Athanasios; Bloch, Daniel

    2014-01-01

    An artificial opal is a compact arrangement of transparent spheres, and is an archetype of a three-dimensional photonic crystal. Here, we describe the optics of an opal using a flexible model based upon a stratified medium whose (effective) index is governed by the opal density in a small planar slice of the opal. We take into account the effect of the substrate and assume a well- controlled number of layers, as it occurs for an opal fabricated by Langmuir-Blodgett deposition. The calculation...

  4. Coupling of reciprocal vectors and corresponding degeneracy effect in a dual-periodic optical superlattice

    International Nuclear Information System (INIS)

    Qin Yiqiang

    2006-01-01

    A dual-periodic structure for quasi-phase matching cascaded optical parametric interactions is proposed. Due to the coupling of reciprocal vectors between the original and imposed periodic sequence, the reciprocal vectors and the corresponding effective nonlinear coefficients is no longer the simple combination of two periodic structures. The new analytical expression of the effective nonlinear coefficients is deduced and given. The degeneracy phenomena and the novel extinction rule resulting from the coupling of reciprocal vectors are found and investigated. The corresponding physical nature is also discussed

  5. Optical investigation of effective permeability of dilute magnetic dielectrics with magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Ananya, E-mail: banerjee.ananya2008@gmail.com; Sarkar, A. [Dept. of Physics, Bijoy Krishna Girls’ College, 5/3 M.G. Road, Howrah 711101, W.B. (India)

    2016-05-06

    The prime objective of this paper is to investigate the magnetic nature of dilute magnetic dielectrics (DMD) under variation of external magnetic field. The said variation is studied over developed nano-sized Gadolinium Oxide as a DMD system. The observed experimental field variation of the effective magnetic permeability is analyzed results of optical experiment. The experiment records the variation of Brewster angle of incident polarized LASER beam from the surface of developed DMD specimen with applied out of plane external magnetic field. The effective refractive index and hence relative magnetic permeability were estimated following electro-magnetic theory. The overall results obtained and agreement between theory and experiment are good.

  6. Optical investigation of effective permeability of dilute magnetic dielectrics with magnetic field

    Science.gov (United States)

    Banerjee, Ananya; Sarkar, A.

    2016-05-01

    The prime objective of this paper is to investigate the magnetic nature of dilute magnetic dielectrics (DMD) under variation of external magnetic field. The said variation is studied over developed nano-sized Gadolinium Oxide as a DMD system. The observed experimental field variation of the effective magnetic permeability is analyzed results of optical experiment. The experiment records the variation of Brewster angle of incident polarized LASER beam from the surface of developed DMD specimen with applied out of plane external magnetic field. The effective refractive index and hence relative magnetic permeability were estimated following electro-magnetic theory. The overall results obtained and agreement between theory and experiment are good.

  7. Gas-dynamic effects in the interaction of a motionless optical pulsating discharge with gas

    International Nuclear Information System (INIS)

    Tishchenko, V N; Grachev, G N; Smirnov, A L; Pavlov, A A; Pavlov, A A; Golubev, M P

    2008-01-01

    The effect of energy removal from the combustion zone of a motionless optical pulsating discharge in the horizontal direction along the axis of a repetitively pulsed laser beam producing the discharge is discovered. The directivity diagram of a hot gas flow is formed during the action of hundreds of pulses. The effect is observed for short pulse durations, when the discharge efficiently generates shock waves. For long pulse durations, the heated gas propagates upward, as in a thermal source. (laser applications and other topics in quantum electronics)

  8. Effect of Spherical Aberration on the Optical Quality after Implantation of Two Different Aspherical Intraocular Lenses

    Directory of Open Access Journals (Sweden)

    Michael Lasta

    2017-01-01

    Full Text Available Purpose. To compare the effect of spherical aberration on optical quality in eyes with two different aspherical intraocular lenses. Methods. 120 eyes of 60 patients underwent phacoemulsification. In patients’ eyes, an aberration-free IOL (Aspira-aA; Human Optics or an aberration-correcting aspherical IOL (Tecnis ZCB00; Abott Medical Optics was randomly implanted. After surgery, contrast sensitivity and wavefront measurements as well as tilt and decentration measurements were performed. Results. Contrast sensitivity was significantly higher in eyes with Aspira lens under mesopic conditions with 12 cycles per degree (CPD and under photopic conditions with 18 CPD (p=0.02. Wavefront measurements showed a higher total spherical aberration with a minimal pupil size of 4 mm in the Aspira group (0.05 ± 0.03 than in the Tecnis group (0.03 ± 0.02 (p=0.001. Strehl ratio was higher in eyes with Tecnis (0.28 ± 0.17 with a minimal pupil size larger than 5 mm than that with Aspira (0.16 ± 0.14 (p=0.04. In pupils with a minimum diameter of 4 mm spherical aberration had a significant effect on Strehl ratio, but not in pupils with a diameter less than 4 mm. Conclusions. Optical quality was better in eyes with the aberration-correcting Tecnis IOL when pupils were large. In contrast, this could not be shown in eyes with pupils under 4 mm or larger. This trial is registered with Clinicaltrials.gov NCT03224728.

  9. The effect of extended aging on the optical properties of different zirconia materials.

    Science.gov (United States)

    Alghazzawi, Tariq F

    2017-07-01

    The purpose of this study was to determine if the optical properties of zirconia and glass-ceramic (e.max) were affected by low-temperature degradation (aging). Experiment samples were fabricated with seven zirconia brands (n=10): Zenostar, Zirlux, Katana, Bruxzir, DD-BioZX 2 , DD-cubeX 2 , NexxZr; and e.max were used as a control. This resulted in a total of 80 samples in the experiment. The L*, a* and b* were measured for each sample, and then the optical properties including translucency parameter (TP), contrast ratio (CR), and opalescence parameter (OP) were calculated. The samples were aged (20, 40, 60, 80, 100h), and the optical properties were calculated after each interval. Most zirconia brands had lower L*, higher a*, higher b* with increased aging, which visually corresponds to darker, redder, and more yellow. Aging also increased CR, lowered TP, and lowered OP. e.max was also affected by aging but still had the highest TP (23.9±2.8), L* (81.7±3.4), and lowest CR (0.41±0.05) compared to any zirconia. The Zenostar had the closest TP (24.1±0.4), and L* (90.2±0.5) values to e.max before aging. However, after 100h of aging, the DD-cubeX 2 was least effected and had the highest TP (22.2±0.6) and lowest CR (0.43±0.01) compared with other zirconia samples and highest OP (11.3±0.2) of all ceramic samples. The optical properties of zirconia and e.max materials were affected by aging with the effects increasing with time. The magnitude of change was affected by seven brands of dental zirconia. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  10. Size-resolved chemical composition, effective density, and optical properties of biomass burning particles

    Science.gov (United States)

    Zhai, Jinghao; Lu, Xiaohui; Li, Ling; Zhang, Qi; Zhang, Ci; Chen, Hong; Yang, Xin; Chen, Jianmin

    2017-06-01

    Biomass burning aerosol has an important impact on the global radiative budget. A better understanding of the correlations between the mixing states of biomass burning particles and their optical properties is the goal of a number of current studies. In this work, the effective density, chemical composition, and optical properties of rice straw burning particles in the size range of 50-400 nm were measured using a suite of online methods. We found that the major components of particles produced by burning rice straw included black carbon (BC), organic carbon (OC), and potassium salts, but the mixing states of particles were strongly size dependent. Particles of 50 nm had the smallest effective density (1.16 g cm-3) due to a relatively large proportion of aggregate BC. The average effective densities of 100-400 nm particles ranged from 1.35 to 1.51 g cm-3 with OC and inorganic salts as dominant components. Both density distribution and single-particle mass spectrometry showed more complex mixing states in larger particles. Upon heating, the separation of the effective density distribution modes confirmed the external mixing state of less-volatile BC or soot and potassium salts. The size-resolved optical properties of biomass burning particles were investigated at two wavelengths (λ = 450 and 530 nm). The single-scattering albedo (SSA) showed the lowest value for 50 nm particles (0.741 ± 0.007 and 0.889 ± 0.006) because of the larger proportion of BC content. Brown carbon played an important role for the SSA of 100-400 nm particles. The Ångström absorption exponent (AAE) values for all particles were above 1.6, indicating the significant presence of brown carbon in all sizes. Concurrent measurements in our work provide a basis for discussing the physicochemical properties of biomass burning aerosol and its effects on the global climate and atmospheric environment.

  11. Demonstration of tunable microwave photonic notch filters using slow and fast light effects in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Sales, Salvador; Mørk, Jesper

    2009-01-01

    We introduce a novel scheme based on slow and fast light effects in semiconductor optical amplifiers, to implement a microwave photonic notch filter with ~100% fractional tuning range at a microwave frequency of 30 GHz....

  12. Linear and nonlinear optical properties of multilayered spherical quantum dots: Effects of geometrical size, hydrogenic impurity, hydrostatic pressure and temperature

    International Nuclear Information System (INIS)

    Karimi, M.J.; Rezaei, G.; Nazari, M.

    2014-01-01

    Based on the effective mass and parabolic one band approximations, simultaneous effects of the geometrical size, hydrogenic impurity, hydrostatic pressure, and temperature on the intersubband optical absorption coefficients and refractive index changes in multilayered spherical quantum dots are studied. Energy eigenvalues and eigenvectors are calculated using the fourth-order Runge–Kutta method and optical properties are obtained using the compact density matrix approach. The results indicate that the hydrogenic impurity, hydrostatic pressure, temperature and geometrical parameters such as the well and barrier widths have a great influence on the linear, the third-order nonlinear and the total optical absorption coefficients and refractive index changes. -- Highlights: • Hydrogenic impurity effects on the optical properties of a MSQD are investigated. • Hydrostatic pressure and temperature effects are also studied. • Hydrogenic impurity has a great influence on the linear and nonlinear ACs and RICs. • Hydrostatic pressure and temperature change the linear and nonlinear ACs and RICs

  13. Low-power laser therapy for carpal tunnel syndrome: effective optical power

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2016-01-01

    Full Text Available Low-power laser therapy has been used for the non-surgical treatment of mild to moderate carpal tunnel syndrome, although its efficacy has been a long-standing controversy. The laser parameters in low-power laser therapy are closely related to the laser effect on human tissue. To evaluate the efficacy of low-power laser therapy, laser parameters should be accurately measured and controlled, which has been ignored in previous clinical trials. Here, we report the measurement of the effective optical power of low-power laser therapy for carpal tunnel syndrome. By monitoring the backside reflection and scattering laser power from human skin at the wrist, the effective laser power can be inferred. Using clinical measurements from 30 cases, we found that the effective laser power differed significantly among cases, with the measured laser reflection coefficient ranging from 1.8% to 54%. The reflection coefficient for 36.7% of these 30 cases was in the range of 10–20%, but for 16.7% of cases, it was higher than 40%. Consequently, monitoring the effective optical power during laser irradiation is necessary for the laser therapy of carpal tunnel syndrome.

  14. Effective-mass model and magneto-optical properties in hybrid perovskites

    Science.gov (United States)

    Yu, Z. G.

    2016-06-01

    Hybrid inorganic-organic perovskites have proven to be a revolutionary material for low-cost photovoltaic applications. They also exhibit many other interesting properties, including giant Rashba splitting, large-radius Wannier excitons, and novel magneto-optical effects. Understanding these properties as well as the detailed mechanism of photovoltaics requires a reliable and accessible electronic structure, on which models of transport, excitonic, and magneto-optical properties can be efficiently developed. Here we construct an effective-mass model for the hybrid perovskites based on the group theory, experiment, and first-principles calculations. Using this model, we relate the Rashba splitting with the inversion-asymmetry parameter in the tetragonal perovskites, evaluate anisotropic g-factors for both conduction and valence bands, and elucidate the magnetic-field effect on photoluminescence and its dependence on the intensity of photoexcitation. The diamagnetic effect of exciton is calculated for an arbitrarily strong magnetic field. The pronounced excitonic peak emerged at intermediate magnetic fields in cyclotron resonance is assigned to the 3D±2 states, whose splitting can be used to estimate the difference in the effective masses of electron and hole.

  15. Magneto-optic and converse magnetoelectric effects in a ferromagnetic liquid crystal.

    Science.gov (United States)

    Mertelj, Alenka; Osterman, Natan; Lisjak, Darja; Copič, Martin

    2014-12-07

    We have studied the response of ferromagnetic liquid crystals to external magnetic and electric fields, and compared it to the usual response of nematic liquid crystals (NLCs). We have observed effects, which are not present in a pure NLC and are a consequence of the coupling between the nematic director and the magnetization. The electro-optic effect, which is in the ferromagnetic phase the same as in the pure NLC, is accompanied by a converse magnetoelectric effect. The magneto-optic effect differs completely from the one observed in the pure NLC, where it is a quadratic effect and it only appears when a magnetic field larger than a critical field is applied perpendicular to the director. In the ferromagnetic NLC in addition to the response to the perpendicular field, there is also a qualitatively different response to the parallel field. Contrary to the pure NLC no critical field needs to be exceeded for the system to respond to a perpendicular field, but a critical field needs to be exceeded to observe a response to the field parallel to the director and antiparallel to the magnetization. The critical field is in this case two orders of magnitude smaller than the critical field of the magnetic Frederiks transition in the pure NLC. The experimental observations are well described by a simple macroscopic theory.

  16. Hydrostatic pressure effects on the state density and optical transitions in quantum dots

    International Nuclear Information System (INIS)

    Galindez-Ramirez, G; Perez-Merchancano, S T; Paredes Gutierrez, H; Gonzalez, J D

    2010-01-01

    Using the effective mass approximation and variational method we have computed the effects of hydrostatic pressure on the absorption and photoluminescence spectra in spherical quantum dot GaAs-(Ga, Al) As, considering a finite confinement potential of this particular work we show the optical transitions in quantum of various sizes in the presence of hydrogenic impurities and hydrostatic pressure effects. Our first result describes the spectrum of optical absorption of 500 A QD for different values of hydrostatic pressure P = 0, 20 and 40 Kbar. The absorption peaks are sensitive to the displacement of the impurity center to the edge of the quantum dot and even more when the hydrostatic pressure changes in both cases showing that to the extent that these two effects are stronger quantum dots respond more efficiently. Also this result can be seen in the study of the photoluminescence spectrum as in the case of acceptor impurities consider them more efficiently capture carriers or electrons that pass from the conduction band to the valence band. Density states with randomly distributed impurity show that the additional peaks in the curves of the density of impurity states appear due to the presence of the additional hydrostatic pressure effects.

  17. Surgical decompression in endocrine orbitopathy. Visual evoked potential evaluation and effect on the optic nerve.

    Science.gov (United States)

    Clauser, Luigi C; Tieghi, Riccardo; Galie', Manlio; Franco, Filippo; Carinci, Francesco

    2012-10-01

    Endocrine orbitopathy (EO) represents the most frequent and important extrathyroidal stigma of Graves disease. This chronic autoimmune condition involves the orbital contents, including extraocular muscles, periorbital connective-fatty tissue and lacrimal gland. The increase of fat tissue and the enlargement of extraocular muscles within the bony confines of the orbit leads to proptosis, and in the most severe cases optic neuropathy, caused by compression and stretching of the optic nerve. The congestion and the pressure of the enlarged muscles, constrict the nerve and can lead to reduced sight or loss of vision with the so called "orbital apex syndrome". Generally surgical treatment of EO, based on fat and/or orbital wall expansion, is possible and effective in improving exophthalmos and diplopia. Since there are limited reports focussing on optic neuropathy recovery after fat and/or orbital walls decompression the Authors decided to perform a retrospective analysis on a series of patients affected by EO. The study population was composed of 10 patients affected by EO and presenting to the Unit of Cranio Maxillofacial Surgery, Center for Craniofacial Deformities & Orbital Surgery St. Anna Hospital and University, Ferrara, Italy, for evaluation and treatment. A complete Visual Evoked Potentials (VEP) evaluation was performed. There were seven women and three men with a median age of 55 years. Optic nerve VEP amplitude and latency were recorded as normal or pathological. Abnormal results were scored as moderate, mild and severe. Differences in VEP pre and post-operatively were recorded as present or absent (i.e. VEP Delta). Pearson chi square test was applied. There were 20 operated orbits. The first VEP evaluation was performed 3.2 months before surgery and post-operative VEP control was done after a mean of 18.7 months. Fat decompression was performed in all cases and eight patients had also bony decompression. VEP amplitude and latency were affected in 10 and 15

  18. Magneto-optical effects induced in a magnetic-fluid layer by thermally released supermassive magnetic monopoles

    International Nuclear Information System (INIS)

    Sofonea, V.; Vekas, L.; Hegedues, E.

    1993-01-01

    The number of photons in the optical pulse induced via magneto-optical effects by a thermally released (e.g., from old iron ores) supermassive magnetic monopole traversing a thin magnetic-fluid layer is evaluated on the basis of phenomenological models. In certain monopole search experiments, these effects could give a detectable signal of the order of tens of photons and thus it may serve as a basis for a new magnetic-monopole detection method. (orig.)

  19. Optical absorption spectra of semiconductors and insulators: ab initio calculation of many-body effects

    International Nuclear Information System (INIS)

    Albrecht, Stefan

    1999-01-01

    A method for the inclusion of self-energy and excitonic effects in first-principle calculations of absorption spectra, within the state-of-the-art plane wave pseudopotential approach, is presented. Starting from a ground state calculation, using density functional theory (DFT) in the local density approximation (LDA), we correct the exchange-correlation potential of DFT-LDA with the self-energy applying Hedin's GW approximation to obtain the physical quasiparticles states. The electron-hole interaction is treated solving an effective two-particle equation, which we derive from Hedin's coupled integral equations, leading to the fundamental Bethe-Salpeter equation in an intermediate step. The interaction kernel contains the screened electron-hole Coulomb interaction and the electron-hole exchange effects, which reflect the microscopic structure of the system and are thus also called local-field effects. We obtain the excitonic eigenstates through diagonalization. This allows us a detailed analysis of the optical properties. The application of symmetry properties enables us to reduce the size of the two-particle Hamiltonian matrix, thus minimizing the computational effort. We apply our method to silicon, diamond, lithium oxide and the sodium tetramer. Good agreement with experiment is obtained for the absorption spectra of Si and diamond, the static dielectric constant of diamond, and for the onset of optical absorption of Li 2 O due to discrete bound excitons. We discuss various approximations of our method and show the strong mixing of independent particle transitions to a bound excitonic state in the Na 4 cluster. The influence of ground state calculations on optical spectra is investigated under particular consideration of the pseudopotential generation and we discuss the use of different Brillouin zone point sampling schemes for spectral calculations. (author) [fr

  20. Design of a New Optical System for Alcator C-Mod Motional Stark Effect Diagnostic

    International Nuclear Information System (INIS)

    Ko, Jinseok; Scott, Steve; Bitter, Manfred; Lerner, Scott

    2009-01-01

    The motional Stark effect (MSE) diagnostic on Alcator C-Mod uses an in-vessel optical system (five lenses and three mirrors) to relay polarized light to an external polarimeter because port access limitations on Alcator C-Mod preclude a direct view of the diagnostic beam. The system experiences unacceptable, spurious drifts of order several degrees in measured pitch angle over the course of a run day. Recent experiments illuminated the MSE diagnostic with polarized light of fixed orientation as heat was applied to various optical elements. A large change in measured angle was observed as two particular lenses were heated, indicating that thermal-stress-induced birefringence is a likely cause of the spurious variability. Several new optical designs have been evaluated to eliminate the affected in-vessel lenses and to replace the focusing they provide with curved mirrors; however, ray tracing calculations imply that this method is not feasible. A new approach is under consideration that utilizes in situ calibrations with in-vessel reference polarized light sources. 2008 American Institute of Physics.

  1. The effect of the menstrual cycle on optic nerve head analysis in healthy women.

    Science.gov (United States)

    Akar, Munire Erman; Taskin, Omur; Yucel, Iclal; Akar, Yusuf

    2004-12-01

    To determine the effect of the menstrual cycle on optic nerve head topographic analysis in normally menstruating, healthy women. The study included single eyes selected randomly from each of 52 healthy women with regular menstrual cycles. All subjects underwent a complete ocular examination. Optic nerve head topographic analyses were performed using a confocal scanning laser ophthalmoscope, the Heidelberg Retinal Tomograph II (HRT II, software version 1.6). The analyses were repeated three times during the menstrual cycle: in the follicular phase (days 7-10 of the cycle), at ovulation, and in the late luteal phase (days 1-3 before menstrual bleeding). Serum oestradiol, progesterone and luteinizing hormone levels were measured at each menstrual phase. Fourteen subjects were excluded from the study. The mean age of the subjects (n = 38) was 25.6 +/- 3.7 years (range 21-34 years). Blood oestradiol levels were significantly lower in the late luteal phase (35.8 pg/ml) (p cup : disc ratio, cup : disc area ratio and the cup area were significantly higher during the luteal phase (p menstrual cycle in healthy women significantly alter neuroretinal rim area and cup variables of the optic nerve head. These findings should be taken into consideration in the clinical follow-up of young women with glaucoma.

  2. The effect of the menstrual cycle on the optic nerve head analysis of migrainous women.

    Science.gov (United States)

    Yucel, Iclal; Akar, Munire; Durukan, A; Akar, Yusuf; Taskin, Omur; Dora, Babur; Yilmaz, Nurgul

    2005-03-01

    To determine the effect of the menstrual cycle on the optic nerve head topographic analysis of normally menstruating migrainous women. Randomly selected one eye of 44 migrainous and 49 healthy control women with regular menstrual cycles were included in the study. All subjects underwent complete ocular examination. Optic nervehead topographic analysis were performed using a confocal scanning laser ophthalmoscope, HRT II (Heidelberg Retinal Tomograph II, software version 1.6;Heidelberg Engineering, Heidelberg, Germany). They were repeated for two times during the menstrual cycle: in follicular phase (7th to 10th day of the cycle) and in the luteal phase (days 3 to 4 before the menstrual bleeding). Serum estradiol, progesterone, and luteinizing hormone measurements were repeated at each menstrual phase. The mean age of migrainous and control subjects were 31.5 + 5.1 years and 33.4 +/- 3.7 years, respectively (P > 0.05). Their mean disc areas were 2.26 +/- 0.46 mm(2) and 1.95 +/- 0.39 mm(2), respectively(P 0.05). The parameter rim volume decreased, while the parameters cup volume and cup shape measure increased significantly in the luteal phase of the migrainous women (all P values cup parameters during the menstrual cycle of the migrainous women. Further clinical trials on ocular blood flow changes during the menstrual cycle of the migrainous women may highlight the role of sex steroids in the optic nerve head of the migrainous women.

  3. Theory of plasmonic effects in nonlinear optics: the case of graphene

    Science.gov (United States)

    Rostami, Habib; Katsnelson, Mikhail I.; Polini, Marco; Mikhail I. Katsnelson Collaboration; Habib Rostami; Marco Polini Collaboration

    The nonlinear optical properties of two-dimensional electronic systems are beginning to attract considerable interest both in the theoretical and experimental sectors. Recent experiments on the nonlinear optical properties of graphene reveal considerably strong third harmonic generation and four-wave mixing of this single-atomic-layer electronic system. We develop a large-N theory of electron-electron interaction corrections to multi-legged Feynman diagrams describing second- and third-order nonlinear response functions. Our theory is completely general and is useful to understand all second- and third-order nonlinear effects, including harmonic generation, wave mixing, and photon drag. We apply our theoretical framework to the case of graphene, by carrying out microscopic calculations of the second- and third-order nonlinear response functions of an interacting two-dimensional gas of massless Dirac fermions. We compare our results with recent measurements, where all-optical launching of graphene plasmons has been achieved. This work was supported by Fondazione Istituto Italiano di Tecnologia, the European Union's Horizon 2020 research and innovation programme under Grant agreement No. 696656 GrapheneCore, and the ERC Advanced Grant 338957 FEMTO/NANO (M.I.K.).

  4. Customizable Optical Force Sensor for Fast Prototyping and Cost-Effective Applications.

    Science.gov (United States)

    Díez, Jorge A; Catalán, José M; Blanco, Andrea; García-Perez, José V; Badesa, Francisco J; Gacía-Aracil, Nicolás

    2018-02-07

    This paper presents the development of an optical force sensor architecture directed to prototyping and cost-effective applications, where the actual force requirements are still not well defined or the most suitable commercial technologies would highly increase the cost of the device. The working principle of this sensor consists of determining the displacement of a lens by measuring the distortion of a refracted light beam. This lens is attached to an elastic interface whose elastic constant is known, allowing the estimation of the force that disturbs the optical system. In order to satisfy the requirements of the design process in an inexpensive way, this sensor can be built by fast prototyping technologies and using non-optical grade elements. To deal with the imperfections of this kind of manufacturing procedures and materials, four fitting models are proposed to calibrate the implemented sensor. In order to validate the system, two different sensor implementations with measurement ranges of ±45 N and ±10 N are tested with the proposed models, comparing the resulting force estimation with respect to an industrial-grade load cell. Results show that all models can estimate the loads with an error of about 6% of the measurement range.

  5. Effect of disorders on topological phases in one-dimensional optical superlattices

    International Nuclear Information System (INIS)

    Wang Zhizhou; Wu Yidong; Du Huijing; Jing Xili

    2016-01-01

    In a recent paper, Lang et al. proposed that edge states and topological phases can be observed in one-dimensional optical superlattices. They showed that the topological phases can be revealed by observing the density profile of a trapped fermion system, which displays plateaus with their positions. However, disorders are not considered in their model. To study the effect of disorders on the topological phases, we introduce random potentials to the model for optical superlattcies. Our calculations show that edge states are robust against the disorders. We find the edge states are very sensitive to the number of the sites in the optical superlattice and we propose a simple rule to describe the relationship between the edge states and the number of sites. The density plateaus are also robust against weak disorders provided that the average density is calculated over a long interval. The widths of the plateaus are proportional to the widths of the bulk energy gaps when there are disorders. The disorders can diminish the bulk energy gaps. So the widths of the plateaus decrease with the increase of disorders and the density plateaus disappear when disorders are too strong. The results in our paper can be used to guide the experimental detection of topological phases in one-dimensional systems. (paper)

  6. Effect of gamma radiation on the structural and optical properties of Polyethyleneterephthalate (PET) polymer

    International Nuclear Information System (INIS)

    Siddhartha; Aarya, Suveda; Dev, Kapil; Raghuvanshi, Suresh Kumar; Krishna, J.B.M.; Wahab, M.A.

    2012-01-01

    Effect of 1.25 MeV gamma radiation on the structural and optical properties of virgin and gamma irradiated (0–2000 kGy) Polyethyleneterephthalate (PET) polymer samples are analyzed using powder X-ray diffractometer and UV–vis spectrophotometer. Diffraction pattern of PET polymer indicates the semi-crystalline in nature whereas the crystallinity increases with increasing dose of irradiation. The remarkable variation in crystallite size is also observed. The absorption and activation energy increase and the optical band gap (E g ) decreases with increasing dose in UV–vis studies. The existence of the maximum absorption, their shifting and broadening due to gamma irradiation in PET polymer are also discussed. - Highlights: ► PET is the transparent polymer and semi- crystalline. ► Crystallinity increases with increasing dose of irradiation of polymer. ► The remarkable variation in crystallite sizes was also observed in polymer. ► The absorption and activation energy increase and where as the optical band gap (E g ) decrease with increasing dose.

  7. Thermal oxidation effect on structural and optical properties of heavily doped phosphorus polycrystalline silicon films

    Energy Technology Data Exchange (ETDEWEB)

    Birouk, B.; Madi, D. [Universite de Jijel, Laboratoire d' Etudes et de Modelisation en Electrotechnique (LAMEL), Cite Ouled Aissa, BP 98, Jijel (Algeria)

    2011-08-15

    The study reported in this paper contributes to better understanding the thermal oxidation effect on structural and optical properties of polycrystalline silicon heavily in situ P-LPCVD films. The deposits, doped at levels 3 x 10{sup 19} and 1.6 x 10{sup 20} cm{sup -3}, have been elaborated from silane decomposition (400 mTorrs, 605 C) on monosilicon substrate oriented left angle 111 right angle. The thermal oxidation was performed at temperatures: 850 C during 1 hour, 1000, 1050, and 1100 C during 15 minutes. The XRD spectra analysis pointed out significant left angle 111 right angle texture evolution, while in the case of left angle 220 right angle and left angle 311 right angle textures, the intensities are practically invariant (variations fall in the uncertainty intervals). The optical characterizations showed that refractive index and absorption coefficient are very sensitive to the oxidation treatment, mainly when the doping level is not very high. We think that atomic oxygen acts as defects passivating agent leading to carriers' concentration increasing. Besides, the optical behavior is modeled in visible and near infrared, by a seven-term polynomial function n {sup 2}=f({lambda} {sup 2}), with alternate signs, instead of theoretically unlimited terms number from Drude's model. It has been shown that fitting parameters fall on Gaussian curves like they do in the theoretical model. (orig.)

  8. Soft-x-ray magneto-optical Kerr effect and element-specific hysteresis measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kortright, J.B.; Rice, M. [Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Interest in the utilization of x-ray magneto-optical properties to provide element-specific magnetic information, combined with recent development of tunable linear polarizers for spectroscopic polarization measurement, have led the authors to the study of magneto-optical rotation (MOR) near core levels of magnetic atoms in magnetic multilayer and alloy films. Their initial observation of Faraday rotation (in transmission) demonstrated that for Fe MOR is easily measured and is larger at its L{sub 3} resonance than in the near-visible spectral regions. This work also demonstrated that the spectroscopic behavior of the MOR signal in transmission, resulting from the differential reaction of left- and right-circular components of a linearly polarized beam, is related to the magnetic circular dichroism (MCD), or differential absorption, as expected by a Kramers-Kronig transformation. Thus MCD measurements using circular polarization and MOR measurements using linear polarization can provide complementary, and in some cases equivalent, information. On beamline 6.3.2 the authors have begun to investigate soft x-ray MOR in the reflection geometry, the x-ray magneto-optic Kerr effect (XMOKE). Early measurements have demonstrated the ability to measure element-specific hysteresis loops and large rotations compared to analogous near-visible measurements. The authors are investigating the spectral dependence of the XMOKE signal, and have initiated systematic materials studies of sputter-deposited films of Fe, Fe{sub x}Cr{sub 1{minus}x} alloys, and Fe/Cr multilayers.

  9. The reform of the teaching mode of Applied Optics curriculum and analysis of teaching effect

    Science.gov (United States)

    Ning, Yu; Xu, Zhongjie; Li, Dun; Chen, Zilun; Cheng, Xiangai; Zhong, Hairong

    2017-08-01

    Military academies have two distinctive characteristics on talent training: Firstly, we must teach facing actual combat and connecting with academic frontier. Secondly, the bachelor's degree education and the military education should be balanced. The teaching mode of basic curriculum in military academies must be reformed and optimized on the basis of the traditional teaching mode, so as to ensure the high quality of teaching and provide enough guidance and help for students to support their academic burden. In this paper, our main work on "Applied Optics" teaching mode reform is introduced: First of all, we research extensively and learn fully from advanced teaching modes of the well-known universities at home and abroad, a whole design is made for the teaching mode of the core curriculum of optical engineering in our school "Applied Optics", building a new teaching mode which takes the methods of teaching basic parts as details, teaching application parts as emphases, teaching frontier parts as topics and teaching actual combat parts on site. Then combining with the questionnaire survey of students and opinions proposed by relevant experts in the teaching seminar, teaching effect and generalizability of the new teaching mode are analyzed and evaluated.

  10. Atmospheric effects of nuclar war aerosols in general circulation model simulations: Influence of smoke optical properties

    International Nuclear Information System (INIS)

    Thompson, S.L.; Ramaswamy, V.; Covey, C.

    1987-01-01

    A global atmospheric general circulation model (GCM) is modified to include radiative transfer parameterizations for the absorption and scattering of solar radiation and the absorption of thermal infrared (IR) radiation by smoke aerosols. The solar scattering modifications include a parameterization for diagnosing smoke optical properties as a function of the time- and space-dependent smoke particle radii. The aerosol IR modifications allow for both the ''grey'' absorber approximation and a broadband approximation that resolves the aerosol absorption in four spectral intervals. We examine the sensitivity of some GCM-simulated atmospheric and climatic effects to the optical properties and radiative transfer parameterizations used in studies of massive injections of smoke. Specifically, we test the model response to solar scattering versus nonscattering smoke, variations in prescribed smoke single scattering albedo and IR specific absorption, and interactive versus fixed smoke optical properties. Hypothetical nuclear war created smoke scenarios assume the July injection of 60 or 180 Tg of smoke over portions of the mid-latitude land areas of the northern hemisphere. Atmospheric transport and scavenging of the smoke are included. Nonscattering smoke cases produce roughly 40 Wm/sup -2/ more Earth-atmosphere solar irradiance absorption over the northern hemisphere, when compared to scattering smoke cases having equivalent specific absorption efficiencies. Varying the elemental carbon content of smoke over a plausible range produces a 4 0 --6 0 C change in average mid-latitude land surface temperature, and a variation of about 0.1 in zonally averaged planetary albedo in the northern hemisphere

  11. Customizable Optical Force Sensor for Fast Prototyping and Cost-Effective Applications

    Directory of Open Access Journals (Sweden)

    Jorge A. Díez

    2018-02-01

    Full Text Available This paper presents the development of an optical force sensor architecture directed to prototyping and cost-effective applications, where the actual force requirements are still not well defined or the most suitable commercial technologies would highly increase the cost of the device. The working principle of this sensor consists of determining the displacement of a lens by measuring the distortion of a refracted light beam. This lens is attached to an elastic interface whose elastic constant is known, allowing the estimation of the force that disturbs the optical system. In order to satisfy the requirements of the design process in an inexpensive way, this sensor can be built by fast prototyping technologies and using non-optical grade elements. To deal with the imperfections of this kind of manufacturing procedures and materials, four fitting models are proposed to calibrate the implemented sensor. In order to validate the system, two different sensor implementations with measurement ranges of ±45 N and ±10 N are tested with the proposed models, comparing the resulting force estimation with respect to an industrial-grade load cell. Results show that all models can estimate the loads with an error of about 6% of the measurement range.

  12. Optical potentials derived from microscopic separable interactions including binding and recoil effects

    International Nuclear Information System (INIS)

    Siciliano, E.R.; Walker, G.E.

    1976-01-01

    We first consider a projectile scattering from a nucleon bound in a fixed potential. A separable Galilean invariant projectile-nucleon interaction is adopted. Without using the fixed scatterer approximation or using closure on the intermediate target nucleon states we obtain various forms for the projectile-bound nucleon t matrix. Effects due to intermediate target excitation and nucleon recoil are discussed. By making the further approximations of closure and fixed scatterers we make connection with the work of previous authors. By generalizing to projectile interaction with several bound nucleons and examining the appropriate multiple scattering series we identify the optical potential for projectile elastic scattering from the many-body system. Different optical potentials are obtained for different projectile-bound nucleon t matrices, and we study the differences predicted by these dissimilar optical potentials for elastic scattering. In a model problem, we study pion-nucleus elastic scattering and compare the predictions obtained by adopting procedures used by (1) Landau, Phatak, and Tabakin and (2) Piepho-Walker to the predictions obtained in a less restrictive, but computationally difficult treatment

  13. Fiber optics in adverse environments

    International Nuclear Information System (INIS)

    Lyous, P.B.

    1982-01-01

    Radiation effects in optical fibers are considered, taking into account recent progress in the investigation of radiation resistant optical fibers, radiation damage in optical fibers, radiation-induced transient absorption in optical fibers, X-ray-induced transient attenuation at low temperatures in polymer clad silica (PCS) fibers, optical fiber composition and radiation hardness, the response of irradiated optical waveguides at low temperatures, and the effect of ionizing radiation on fiber-optic waveguides. Other topics explored are related to environmental effects on components of fiber optic systems, and radiation detection systems using optical fibers. Fiber optic systems in adverse environments are also discussed, giving attention to the survivability of Army fiber optics systems, space application of fiber optics systems, fiber optic wavelength multiplexing for civil aviation applications, a new fiber optic data bus topology, fiber optics for aircraft engine/inlet control, and application of fiber optics in high voltage substations

  14. Vanadium impurity effects on optical properties of Ti3N2 mono-layer: An ab-initio study

    Science.gov (United States)

    Babaeipour, Manuchehr; Eslam, Farzaneh Ghafari; Boochani, Arash; Nezafat, Negin Beryani

    2018-06-01

    The present work is investigated the effect of vanadium impurity on electronic and optical properties of Ti3N2 monolayer by using density function theory (DFT) implemented in Wien2k code. In order to study optical properties in two polarization directions of photons, namely E||x and E||z, dielectric function, absorption coefficient, optical conductivity, refraction index, extinction index, reflectivity, and energy loss function of Ti3N2 and Ti3N2-V monolayer have been evaluated within GGA (PBE) approximation. Although, Ti3N2 monolayer is a good infrared reflector and can be used as an infrared mirror, introducing V atom in the infrared area will decrease optical conductivity because optical conductivity of a pure form of a material is higher than its doped form.

  15. Non-local effect in Brillouin optical time-domain analyzer based on Raman amplification

    International Nuclear Information System (INIS)

    Jia Xinhong; Rao Yunjiang; Wang Zinan; Zhang Weili; Ran Zengling; Deng Kun; Yang Zixin

    2012-01-01

    Compared with conventional Brillouin optical time-domain analyzer (BOTDA), the BOTDA based on Raman amplification allows longer sensing range, higher signal-to-noise ratio and higher measurement accuracy. However, the non-local effect induced by pump depletion significantly restricts the probe optical power injected to sensing fiber, thereby limiting the further extension for sensing distance. In this paper, the coupled equations including the interaction of probe light, Brillouin and Raman pumps are applied to the study on the non-local characteristics of BOTDA based on Raman amplification. The results show that, the system error induced by non-local effect worsens with increased powers of probe wave and Raman pump. The frequency-division-multiplexing (cascading the fibers with various Brillouin frequency shifts) and time-division-multiplexing (modulating both of the Brillouin pump and probe lights) technologies are efficient approaches to suppress the non-local effect, through shortening the effective interaction range between Brillouin pump and probe lights. (authors)

  16. Magneto-optical fingerprints of distinct graphene multilayers using the giant infrared Kerr effect

    Science.gov (United States)

    Ellis, Chase T.; Stier, Andreas V.; Kim, Myoung-Hwan; Tischler, Joseph G.; Glaser, Evan R.; Myers-Ward, Rachael L.; Tedesco, Joseph L.; Eddy, Charles R.; Gaskill, D. Kurt; Cerne, John

    2013-11-01

    The remarkable electronic properties of graphene strongly depend on the thickness and geometry of graphene stacks. This wide range of electronic tunability is of fundamental interest and has many applications in newly proposed devices. Using the mid-infrared, magneto-optical Kerr effect, we detect and identify over 18 interband cyclotron resonances (CR) that are associated with ABA and ABC stacked multilayers as well as monolayers that coexist in graphene that is epitaxially grown on 4H-SiC. Moreover, the magnetic field and photon energy dependence of these features enable us to explore the band structure, electron-hole band asymmetries, and mechanisms that activate a CR response in the Kerr effect for various multilayers that coexist in a single sample. Surprisingly, we find that the magnitude of monolayer Kerr effect CRs is not temperature dependent. This unexpected result reveals new questions about the underlying physics that makes such an effect possible.

  17. Effects of surface polishing and annealing on the optical conductivity of intermetallic compounds

    CERN Document Server

    Rhee, J Y

    1999-01-01

    The optical conductivity spectra of several intermetallic compounds were measured by spectroscopic ellipsometry. Three spectra were measured for each compound; just after the sample was mechanically polished, at high temperature, and after the sample was annealed at 110 .deg. C for at least one day and cooled to room temperature. An equiatomic FeTi alloy showed the typical effects of annealing after mechanical polishing of surface. The spectrum after annealing had a larger magnitude and sharper structures than the spectrum before annealing. We also observed shifts of peaks in the spectrum. A relatively low-temperature annealing gave rise to unexpectedly substantial effects, and the effects were explained by recrystallization and/or a disorder -> order transition of the surface of the sample which was damaged and, hence, became highly disordered by mechanical polishing. Similar effects were also observed when the sample temperature was lowered. The observed changes upon annealing could partly be explained by p...

  18. Nonlocality and particle-clustering effects on the optical response of composite materials with metallic nanoparticles

    Science.gov (United States)

    Chen, C. W.; Chung, H. Y.; Chiang, H.-P.; Lu, J. Y.; Chang, R.; Tsai, D. P.; Leung, P. T.

    2010-10-01

    The optical properties of composites with metallic nanoparticles are studied, taking into account the effects due to the nonlocal dielectric response of the metal and the coalescing of the particles to form clusters. An approach based on various effective medium theories is followed, and the modeling results are compared with those from the cases with local response and particles randomly distributed through the host medium. Possible observations of our modeling results are illustrated via a calculation of the transmission of light through a thin film made of these materials. It is found that the nonlocal effects are particularly significant when the particles coalesce, leading to blue-shifted resonances and slightly lower values in the dielectric functions. The dependence of these effects on the volume fraction and fractal dimension of the metal clusters is studied in detail.

  19. Laser parameters, focusing optics, and side effects in femtosecond laser corneal surgery

    Science.gov (United States)

    Plamann, Karsten; Nuzzo, Valeria; Peyrot, Donald A.; Deloison, Florent; Savoldelli, Michèle; Legeais, Jean-Marc

    2008-02-01

    Nowadays, femtosecond lasers are routinely used in refractive eye surgery. Until recently, commercialised clinical systems were exclusively based on ytterbium or neodymium-doped solid state lasers emitting sub-picosecond pulses at a wavelength of about 1 μm and repetition rates of a few 10 kHz. These systems use pulse energies in the μJ range and focussing optics of NA = 0.3 to 0.5. Recent developments have provided a variety of alternative and equally viable approaches: systems are now available using nJ pulses at high numerical apertures and MHz repetition rates - an approach so far only used for femtosecond cell surgery - and fibre laser technology is now being used for femtosecond laser corneal surgery. Recent research has also provided more insight in side effects occurring in present systems: self focusing phenomena and so far unexplained periodical structures have been observed even at high numerical apertures (NA >> 0.5) and moderate pulse energies. The interaction of femtosecond laser pulses with strongly scattering tissue has been studied in view of extending the application of femtosecond lasers to keratoplasty for opaque corneas and to glaucoma surgery. The use of new laser wavelengths and adaptive optics has been proposed. Despite the reputation of femtosecond surgical systems for their precision, repeatability and the absence of secondary effects or complications, a closer examination reveals the presence of subtle phenomena which merit further investigation. We present three of these phenomena: the influence of optical aberration on the quality of the incision, the occurrence of filamentation effects, and the deposit of microscopic glass fragments when performing penetrating incisions.

  20. The Impact of Subsampling on MODIS Level-3 Statistics of Cloud Optical Thickness and Effective Radius

    Science.gov (United States)

    Oreopoulos, Lazaros

    2004-01-01

    The MODIS Level-3 optical thickness and effective radius cloud product is a gridded l deg. x 1 deg. dataset that is derived from aggregation and subsampling at 5 km of 1 km, resolution Level-2 orbital swath data (Level-2 granules). This study examines the impact of the 5 km subsampling on the mean, standard deviation and inhomogeneity parameter statistics of optical thickness and effective radius. The methodology is simple and consists of estimating mean errors for a large collection of Terra and Aqua Level-2 granules by taking the difference of the statistics at the original and subsampled resolutions. It is shown that the Level-3 sampling does not affect the various quantities investigated to the same degree, with second order moments suffering greater subsampling errors, as expected. Mean errors drop dramatically when averages over a sufficient number of regions (e.g., monthly and/or latitudinal averages) are taken, pointing to a dominance of errors that are of random nature. When histograms built from subsampled data with the same binning rules as in the Level-3 dataset are used to reconstruct the quantities of interest, the mean errors do not deteriorate significantly. The results in this paper provide guidance to users of MODIS Level-3 optical thickness and effective radius cloud products on the range of errors due to subsampling they should expect and perhaps account for, in scientific work with this dataset. In general, subsampling errors should not be a serious concern when moderate temporal and/or spatial averaging is performed.

  1. Effects of time-temperature profiles on glow curves of germanium-doped optical fibre

    Science.gov (United States)

    Lam, S. E.; Alawiah, A.; Bradley, D. A.; Mohd Noor, N.

    2017-08-01

    The Germanium (Ge) doped silica optical fibres have demonstrated the great potential to be developed as a thermoluminescent (TL) dosimeter that can be used in various applications in radiotherapy, diagnostic radiology, UV dosimetry system and food irradiation industry. Different time-temperature profile (TTP) parameters of the TL reader have been employed by many researchers in various of TL studies. Nevertheless, none of those studies adequately addressed the effects of the reader's preheat temperature and heating rate on the kinetic parameters of the TL glow curve specifically, the Ge-doped silica optical fibres. This research addresses the issue of TTP parameters with special attention to the determination of the kinetic parameters of the glow curve. The glow curve responses were explored and the kinetic parameters were analyzed by the WinGCF software, to show the effect of the preheat temperature and heating rate of the reader on Ge-doped fibre irradiated with 18 Gy of 6 MV photons radiation. The effect of TTP parameters was discussed and compared against the commercial fibre and tailored made fibre of 6 mol% Ge-doped of flat and cylindrical shape. The deconvolution of glow peaks and the kinetic parameters were obtained by the WinGCF software. This enables to fit accurately (1.5%optical fibres.

  2. Research on measurement method of optical camouflage effect of moving object

    Science.gov (United States)

    Wang, Juntang; Xu, Weidong; Qu, Yang; Cui, Guangzhen

    2016-10-01

    Camouflage effectiveness measurement as an important part of the camouflage technology, which testing and measuring the camouflage effect of the target and the performance of the camouflage equipment according to the tactical and technical requirements. The camouflage effectiveness measurement of current optical band is mainly aimed at the static target which could not objectively reflect the dynamic camouflage effect of the moving target. This paper synthetical used technology of dynamic object detection and camouflage effect detection, the digital camouflage of the moving object as the research object, the adaptive background update algorithm of Surendra was improved, a method of optical camouflage effect detection using Lab-color space in the detection of moving-object was presented. The binary image of moving object is extracted by this measurement technology, in the sequence diagram, the characteristic parameters such as the degree of dispersion, eccentricity, complexity and moment invariants are constructed to construct the feature vector space. The Euclidean distance of moving target which through digital camouflage was calculated, the results show that the average Euclidean distance of 375 frames was 189.45, which indicated that the degree of dispersion, eccentricity, complexity and moment invariants of the digital camouflage graphics has a great difference with the moving target which not spray digital camouflage. The measurement results showed that the camouflage effect was good. Meanwhile with the performance evaluation module, the correlation coefficient of the dynamic target image range 0.1275 from 0.0035, and presented some ups and down. Under the dynamic condition, the adaptability of target and background was reflected. In view of the existing infrared camouflage technology, the next step, we want to carry out the camouflage effect measurement technology of the moving target based on infrared band.

  3. Effect of Target Density on Microstructural, Electrical, and Optical Properties of Indium Tin Oxide Thin Films

    Science.gov (United States)

    Zhu, Guisheng; Zhi, Li; Yang, Huijuan; Xu, Huarui; Yu, Aibing

    2012-09-01

    In this paper, indium tin oxide (ITO) targets with different densities were used to deposit ITO thin films. The thin films were deposited from these targets at room temperature and annealed at 750°C. Microstructural, electrical, and optical properties of the as-prepared films were studied. It was found that the target density had no effect on the properties or deposition rate of radiofrequency (RF)-sputtered ITO thin films, different from the findings for direct current (DC)-sputtered films. Therefore, when using RF sputtering, the target does not require a high density and may be reused.

  4. Coherent population trapping magnetometer by differential detecting magneto–optic rotation effect

    International Nuclear Information System (INIS)

    Zhang Fan; Tian Yuan; Zhang Yi; Gu Si-Hong

    2016-01-01

    A pocket coherent population trapping (CPT) atomic magnetometer scheme that uses a vertical cavity surface emitting laser as a light source is proposed and experimentally investigated. Using the differential detecting magneto–optic rotation effect, a CPT spectrum with the background canceled and a high signal-to-noise ratio is obtained. The experimental results reveal that the sensitivity of the proposed scheme can be improved by half an order, and the ability to detect weak magnetic fields is extended one-fold. Therefore, the proposed scheme is suited to realize a pocket-size CPT magnetometer. (paper)

  5. Ultrashort-pulse measurement using noninstantaneous nonlinearities: Raman effects in frequency-resolved optical gating

    International Nuclear Information System (INIS)

    DeLong, K.W.; Ladera, C.L.; Trebino, R.; Kohler, B.; Wilson, K.R.

    1995-01-01

    Ultrashort-pulse-characterization techniques generally require instantaneously responding media. We show that this is not the case for frequency-resolved optical gating (FROG). We include, as an example, the noninstantaneous Raman response of fused silica, which can cause errors in the retrieved pulse width of as much as 8% for a 25-fs pulse in polarization-gate FROG. We present a modified pulse-retrieval algorithm that deconvolves such slow effects and use it to retrieve pulses of any width. In experiments with 45-fs pulses this algorithm achieved better convergence and yielded a shorter pulse than previous FROG algorithms

  6. Effect of imaginary part of an optical potential on reaction total cross sections

    International Nuclear Information System (INIS)

    Afanas'ev, G.N.; Dobromyslov, M.B.; Kim Yng Pkhung; Shilov, V.M.

    1977-01-01

    The effect of the imaginary part of optical potential on the total cross sections of reactions is explained. The complex rectangular well model is used, i.e. the real rectangular well at r 16 O + 27 Al reactions and the partial permeabilities are presented. It is demonstrated that the S-matrix has proved to be unitary. Oscillations of the partial permeabilities and cross-sections are observed for small potential values in the Wsub(o) imaginary part, which no longer occur at larger Wsub(o). This corresponds to the overlapping and nonoverlapping quasistationary levels in complex rectangular well

  7. BDK-doped core microstructured PMMA optical fiber for effective Bragg grating photo-inscription

    DEFF Research Database (Denmark)

    Hu, Xuehao; Woyessa, Getinet; Kinet, Damien

    2017-01-01

    An endlessly single-mode doped microstructured poly(methyl methacrylate) (PMMA) optical fiber is produced for effective fiber Bragg grating (FBG) photo-inscription by means of a 400 nm femtosecond pulsed laser and the phase mask technique. The fiber presents a uniform benzyl dimethyl ketal (BDK......) distribution in its core without drastic loss increase. It was produced using the selected center hole doping technique, and the BDK dopant acts as a photoinitiator. In this Letter, we report a rapidly growing process of the grating reflection band. For an 11 mW mean laser power, the FBG reflectivity reaches...

  8. Effect of annealing atmosphere on optic-electric properties of Zn O thin films

    International Nuclear Information System (INIS)

    Bueno, C.; Pacio, M.; Juarez, H.; Osorio, E.; Perez, R.

    2017-01-01

    In this work the study of structural, morphologic characteristics, optical and electrical properties of the thin films of Zn O in temperatures and annealing atmospheres different was realized. The films were obtained by the sol-gel method, utilizing zinc acetate dihydrate as the precursor, monoethanolamine (Mea) as a stabilizing agent and 2-methoxyethanol as a solvent and deposited by spin-coating. The films were crystallized at 600, 800 and 1000 degrees Celsius in oxygen and nitrogen atmospheres. The results obtained by XRD, Sem, photoluminescence and Hall effects of the Zn O films were related and depend strongly on the temperature and atmosphere annealing. (Author)

  9. Transmutation of skyrmions to half-solitons driven by the nonlinear optical spin Hall effect.

    Science.gov (United States)

    Flayac, H; Solnyshkov, D D; Shelykh, I A; Malpuech, G

    2013-01-04

    We show that the spin domains, generated in the linear optical spin Hall effect by the analog of spin-orbit interaction for exciton polaritons, are associated with the formation of a Skyrmion lattice. In the nonlinear regime, the spin anisotropy of the polariton-polariton interactions results in a spatial compression of the domains and in a transmutation of the Skyrmions into oblique half-solitons. This phase transition is associated with both the focusing of the spin currents and the emergence of a strongly anisotropic emission pattern.

  10. Slow and fast light effects in semiconductor optical amplifiers for applications in microwave photonics

    DEFF Research Database (Denmark)

    Xue, Weiqi

    This thesis analyzes semiconductor optical amplifiers based slow and fast light effects with particular focus on the applications in microwave photonics. We conceive novel ideas and demonstrate a great enhancement of light slow down. Furthermore, by cascading several slow light stages, >360 degree...... microwave phase shifts over a bandwidth of several tens of gigahertz are achieved. These also satisfy the basic requirements of microwave photonic systems. As an application demonstration, a tunable microwave notch filter is realized, where slow light based phase shifters provide 100% fractional tuning over...

  11. Effect of annealing atmosphere on optic-electric properties of Zn O thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bueno, C. [Benemerita Universidad Autonoma de Puebla, Facultad de Ingenieria, Blvd. Valsequillo y Av. San Claudio s/n, 72570 Puebla (Mexico); Pacio, M.; Juarez, H. [Benemerita Universidad Autonoma de Puebla, Posgrado en Dispositivos Semiconductores, Av. San Claudio y 14 Sur, 72450 Puebla (Mexico); Osorio, E. [Universidad de Quinta Roo, Blvd. Bahia s/n, esquina Ignacio Comonfort, El Bosque, 77019 Chetumal, Quintana Roo (Mexico); Perez, R., E-mail: cba3009@gmail.com [Benemerita Universidad Autonoma de Puebla, Facultad de Ingenieria Quimica, Av. San Claudio y 18 Sur, 72570 Puebla (Mexico)

    2017-11-01

    In this work the study of structural, morphologic characteristics, optical and electrical properties of the thin films of Zn O in temperatures and annealing atmospheres different was realized. The films were obtained by the sol-gel method, utilizing zinc acetate dihydrate as the precursor, monoethanolamine (Mea) as a stabilizing agent and 2-methoxyethanol as a solvent and deposited by spin-coating. The films were crystallized at 600, 800 and 1000 degrees Celsius in oxygen and nitrogen atmospheres. The results obtained by XRD, Sem, photoluminescence and Hall effects of the Zn O films were related and depend strongly on the temperature and atmosphere annealing. (Author)

  12. Structural colouration and optical effects in the wings of Papilio peranthus

    International Nuclear Information System (INIS)

    Liu, Feng; Wang, Guobing; Jiang, Liping; Dong, Biqin

    2010-01-01

    The butterfly Papilio peranthus displays an iridescent green colour. Through optical measurements, structural characterizations and theoretical analyses, we reveal that the colour is actually a mixing effect of green and blue which originates from the interior multilayer structures of scales imbricated in the wings. The chromatic difference between the produced green and blue colour is attributed to the modulations in the butterfly wings. Reflected light by the inclined sides of pits changes its polarization to a perpendicular direction. Besides, elongated pits lead to anisotropic polarization conversion. A wider angle spread reflection caused by the morphology of pits and the nearly 'ideal' multilayer structures in scales may be advantageous to conspecific recognition

  13. Space radiation effects in high performance fiber optic data links for satellite data management

    International Nuclear Information System (INIS)

    Marshall, P.W.; Dale, C.J.; LaBel, K.A.

    1996-01-01

    Fiber optic based technologies are relatively new to satellite applications, and are receiving considerable attention for planned applications in NASA, DOD, and commercial space sectors. The authors review various activities in recent years aimed at understanding and mitigating radiation related risk in deploying fiber based data handling systems on orbit. Before concluding that there are no critical barriers to designing survivable and reliable systems, the authors analyze several possible types of radiation effects. Particular attention is given to the subject of particle-induced bit errors in InGaAs p-i-n photodiodes, including a discussion of error mitigation and upset rate prediction methods

  14. Effects of γ-irradiation upon the optical behavior of spinel

    International Nuclear Information System (INIS)

    White, G.S.; Lee, K.H.; Crawford, J.H.Jr.

    1977-01-01

    The effect of 137 Cs gamma irradiation (0.67 MeV photons) upon the optical absorption and thermoluminescence of spinel (MgAl 2 O 4 ) is studied. Exposure to gamma radiation provides electrons which are captured at Fesup(3+) in octahedral sites, thereby producing Fesup(2+) and destroying the 4.8 and 6.4 eV absorption bands. Isochronal annealing curves of the 3.1 and 4.8 eV peaks are given. A reciprocal relationship between the recovery of the 4.8 eV band and the thermoluminescence immediately after irradiation and after sitting over night has been measured

  15. An investigation of sound fields based on the acousto-optic effect

    DEFF Research Database (Denmark)

    Torras Rosell, Antoni; Barrera Figueroa, Salvador; Jacobsen, Finn

    2011-01-01

    Various types of transducers are nowadays capable of translating different properties of sound waves into mechanical/electrical quantities, which can afterwards be reinterpreted into acoustical ones. However, in certain applications, for example when using microphone arrays, the presence of bulk...... range, and in two different measurement scenarios where the sound field is well-known: in a rectangular duct and in an anechoic room. Models for predicting the acousto-optic effect in such scenarios are derived and measurements are carried out with a laser Doppler vibrometer. The results show a fairly...

  16. Direct laser writing of polymeric nanostructures via optically induced local thermal effect

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Quang Cong [Laboratoire de Photonique Quantique et Moléculaire, UMR 8537, École Normale Supérieure de Cachan, CentraleSupélec, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan (France); Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, 10000 Hanoi (Viet Nam); Nguyen, Dam Thuy Trang; Do, Minh Thanh; Luong, Mai Hoang; Journet, Bernard; Ledoux-Rak, Isabelle; Lai, Ngoc Diep, E-mail: nlai@lpqm.ens-cachan.fr [Laboratoire de Photonique Quantique et Moléculaire, UMR 8537, École Normale Supérieure de Cachan, CentraleSupélec, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan (France)

    2016-05-02

    We demonstrate the fabrication of desired structures with feature size below the diffraction limit by use of a positive photoresist. The direct laser writing technique employing a continuous-wave laser was used to optically induce a local thermal effect in a positive photoresist, which then allowed the formation of solid nanostructures. This technique enabled us to realize multi-dimensional sub-microstructures by use of a positive photoresist, with a feature size down to 57 nm. This mechanism acting on positive photoresists opens a simple and low-cost way for nanofabrication.

  17. BDK-doped core microstructured PMMA optical fiber for effective Bragg grating photo-inscription.

    Science.gov (United States)

    Hu, Xuehao; Woyessa, Getinet; Kinet, Damien; Janting, Jakob; Nielsen, Kristian; Bang, Ole; Caucheteur, Christophe

    2017-06-01

    An endlessly single-mode doped microstructured poly(methyl methacrylate) (PMMA) optical fiber is produced for effective fiber Bragg grating (FBG) photo-inscription by means of a 400 nm femtosecond pulsed laser and the phase mask technique. The fiber presents a uniform benzyl dimethyl ketal (BDK) distribution in its core without drastic loss increase. It was produced using the selected center hole doping technique, and the BDK dopant acts as a photoinitiator. In this Letter, we report a rapidly growing process of the grating reflection band. For an 11 mW mean laser power, the FBG reflectivity reaches 83% in only 40 s.

  18. Interference Effects in the Optical Second Harmonic Generation from Ultrathin Alkali Films

    DEFF Research Database (Denmark)

    Balzer, F.; Rubahn, Horst-Günter

    2000-01-01

    Interference effects are shown to strongly modulate the transmission second harmonic signal (fundamental wavelength 1067 nm) from rough alkali island films grown on insulating substrates if one varies the angle of incidence. Depending on growth conditions and substrate thickness, the measured...... second harmonic dependencies can be interpreted in terms of interference between frontside and rearside adsorbed islands or by taking into account the morphology of the adsorbed alkali islands. By the use of different polarization combinations of both pump and reflected second harmonic wave we obtain...... accurate values of the ratios of the relevant nonlinear optical coefficients....

  19. Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer

    International Nuclear Information System (INIS)

    Riehle, F.; Kisters, T.; Witte, A.; Helmcke, J.; Borde, C.J.

    1991-01-01

    A calcium atomic beam excited in an optical Ramsey geometry was rotated about an axis perpendicular to the plane defined by the laser beams and the atomic beam. A frequency shift of the Ramsey fringes of several kHz has been measured which is proportional to the rotation frequency of the apparatus and to the distance between the laser beams. The results can be interpreted in three equivalent ways as the Sagnac effect in a calcium-atomic-beam interferometer: in the rotating frame of the laser beams either along straight paths or along the curved trajectories of the atoms, or in the inertial atomic frame

  20. Optical Spring Effect in Micro-Bubble Resonators and Its Application for the Effective Mass Measurement of Optomechanical Resonant Mode

    Directory of Open Access Journals (Sweden)

    Zhenmin Chen

    2017-09-01

    Full Text Available In this work, we present a novel approach for obtaining the effective mass of mechanical vibration mode in micro-bubble resonators (MBRs. To be specific, the effective mass is deduced from the measurement of optical spring effect (OSE in MBRs. This approach is demonstrated and applied to analyze the effective mass of hollow MBRs and liquid-filled MBRs, respectively. It is found that the liquid-filled MBRs has significantly stronger OSE and a less effective mass than hollow MBRs, both of the extraordinary behaviors can be beneficial for applications such as mass sensing. Larger OSE from higher order harmonics of the mechanical modes is also observed. Our work paves a way towards the developing of OSE-based high sensitive mass sensor in MBRs.

  1. Optical Spring Effect in Micro-Bubble Resonators and Its Application for the Effective Mass Measurement of Optomechanical Resonant Mode.

    Science.gov (United States)

    Chen, Zhenmin; Wu, Xiang; Liu, Liying; Xu, Lei

    2017-09-30

    In this work, we present a novel approach for obtaining the effective mass of mechanical vibration mode in micro-bubble resonators (MBRs). To be specific, the effective mass is deduced from the measurement of optical spring effect (OSE) in MBRs. This approach is demonstrated and applied to analyze the effective mass of hollow MBRs and liquid-filled MBRs, respectively. It is found that the liquid-filled MBRs has significantly stronger OSE and a less effective mass than hollow MBRs, both of the extraordinary behaviors can be beneficial for applications such as mass sensing. Larger OSE from higher order harmonics of the mechanical modes is also observed. Our work paves a way towards the developing of OSE-based high sensitive mass sensor in MBRs.

  2. Lagrangian optics

    CERN Document Server

    Lakshminarayanan, Vasudevan; Thyagarajan, K

    2002-01-01

    Ingeometrical optics, light propagation is analyzed in terms of light rays which define the path of propagation of light energy in the limitofthe optical wavelength tending to zero. Many features oflight propagation can be analyzed in terms ofrays,ofcourse, subtle effects near foci, caustics or turning points would need an analysis based on the wave natureoflight. Allofgeometric optics can be derived from Fermat's principle which is an extremum principle. The counterpart in classical mechanics is of course Hamilton's principle. There is a very close analogy between mechanics ofparticles and optics oflight rays. Much insight (and useful results) can be obtained by analyzing these analogies. Asnoted by H. Goldstein in his book Classical Mechanics (Addison Wesley, Cambridge, MA, 1956), classical mechanics is only a geometrical optics approximation to a wave theory! In this book we begin with Fermat's principle and obtain the Lagrangian and Hamiltonian pictures of ray propagation through various media. Given the ...

  3. An effective implementation scheme of just-in-time protocol for optical burst switching networks

    Science.gov (United States)

    Wu, Guiling; Li, Xinwan; Chen, Jian-Ping; Wang, Hui

    2005-02-01

    Optical burst switching (OBS) has been emerging as a promising technology that can effectively support the next generation IP-oriented transportation networks. JIT signaling protocol for OBS is relatively simple and easy to be implemented by hardware. This paper presented an effective scheme to implement the JIT protocol, which not only can effectively implement reservation and release of optical channels based on JIT, but also can process the failure of channel reservation and release due to loss of burst control packets. The scheme includes: (1) a BHP (burst head packet) path table is designed and built at each OBS node. It is used to guarantee the corresponding burst control packet, i.e. BHP, BEP (burst end packet) and BEP_ACK (BEP acknowledgement), to be transmitted in the same path. (2) The timed retransmission of BEP and the reversed deletion of the item in BHP path tables triggered by the corresponding BEP_ACK are combined to solve the problems caused by the loss of the signaling messages in channel reservation and release process. (3) Burst head packets and BEP_ACK are transmitted using "best-effort" method. Related signaling messages and their formats for the proposed scheme are also given.

  4. New radiation-induced effects in optical fibres feasible for dosimetry

    International Nuclear Information System (INIS)

    Tomashuk, A.L.; Golant, K.M.; Dianov, E.M.; Nikolin, I.V.; Zakharkin, I.I.; Stepanov, V.A.

    1999-01-01

    Three new radiation-induced effects in silica optical fibres suitable for dosimetry are proposed: 1) in fibres with a high-OH cladding and a low-OH core, ionizing radiation disrupts the O-H bonds to let hydrogen diffuse into the core. This results in an increase in the OH-group absorption band amplitude, 2) the polymers used to coat optical fibres consist of hydrogen to the extent of about 50 %. Energetic neutrons produce recoil protons in the fibre coating, which can ''stick'' in the core, turn into hydrogen, and enter the glass network in the form of OH-group, and 3) in N-doped silica fibres irradiated with thermal neutrons, the following reaction 7 N 14 ( 0 n 1 , 1 p 1 ) 6 C 14 occurs and produces protons with energy 620 keV. With this energy, propagation length of protons in silica is 7 μm which means that the escape of protons from a 50 μm core is very weak. In fact all 3 effects lead to the irreversible increase in the OH-group absorption bands, which is proportional to the absorbed dose. With the help of these effects, temperature and dose-rate independent measurements of high doses become possible

  5. Effects of Optical Combiner and IPD Change for Convergence on Near-Field Depth Perception in an Optical See-Through HMD.

    Science.gov (United States)

    Lee, Sangyoon; Hu, Xinda; Hua, Hong

    2016-05-01

    Many error sources have been explored in regards to the depth perception problem in augmented reality environments using optical see-through head-mounted displays (OST-HMDs). Nonetheless, two error sources are commonly neglected: the ray-shift phenomenon and the change in interpupillary distance (IPD). The first source of error arises from the difference in refraction for virtual and see-through optical paths caused by an optical combiner, which is required of OST-HMDs. The second occurs from the change in the viewer's IPD due to eye convergence. In this paper, we analyze the effects of these two error sources on near-field depth perception and propose methods to compensate for these two types of errors. Furthermore, we investigate their effectiveness through an experiment comparing the conditions with and without our error compensation methods applied. In our experiment, participants estimated the egocentric depth of a virtual and a physical object located at seven different near-field distances (40∼200 cm) using a perceptual matching task. Although the experimental results showed different patterns depending on the target distance, the results demonstrated that the near-field depth perception error can be effectively reduced to a very small level (at most 1 percent error) by compensating for the two mentioned error sources.

  6. Effect of dextran-induced changes in refractive index and aggregation on optical properties of whole blood

    International Nuclear Information System (INIS)

    Xu Xiangqun; Wang, Ruikang K; Elder, James B; Tuchin, Valery V

    2003-01-01

    The purpose of the present study is to investigate systematically the mechanisms of alterations in the optical properties of whole blood immersed in the biocompatible agent dextran, and to define the optimal concentration of dextrans required for blood optical clearing in order to enhance the capability of light penetration depth for optical imaging applications. In the experiments, dextrans with different molecular weights and various concentrations were employed and investigated by the use of the optical coherence tomography technique. Changes in light attenuation, refractive index and aggregation properties of blood immersed in dextrans were studied. It was concluded from the results that the mechanisms for blood optical clearing are characteristic of the types of dextrans employed, their concentrations and the application stages. Among the substances applied, Dx500 at a concentration at 0.5 g dl -1 gives the best result in improving light penetration depth through the blood. The increase of light transmission at the beginning of the addition of dextrans is mainly attributed to refractive index matching between the scattering centres and the ground matter. Thereafter, the transmission change is probably due to a dextran-induced aggregation-disaggregation effect. Overall, light scattering in the blood could be effectively reduced by the application of dextrans. It represents a promising approach to increasing the imaging depth for in vivo optical imaging of biological tissue, for example optical coherence tomography

  7. New nonlinear optical effect: self-reflection phenomenon due to exciton-biexciton-light interaction in semiconductors

    Science.gov (United States)

    Khadzhi, P. I.; Lyakhomskaya, K. D.; Nadkin, L. Y.; Markov, D. A.

    2002-05-01

    The characteristic peculiarities of the self-reflection of a strong electromagnetic wave in a system of coherent excitons and biexcitons due to the exciton-photon interaction and optical exciton-biexciton conversion in semiconductors were investigated as one of the manifestations of nonlinear optical Stark-effect. It was found that a monotonously decreasing standing wave with an exponential decreasing spatial tail is formed in the semiconductor. Under the action of the field of a strong pulse, an optically homogeneous medium is converted, into the medium with distributed feedback. The appearance of the spatially separated narrow pears of the reflective index, extinction and reflection coefficients is predicted.

  8. Investigating the effects of Co magnetic impurity on optical properties of Zn1-xCoxO

    International Nuclear Information System (INIS)

    Taghavi mendi, R. A.; Majidiyan, M.; Bouchani, A.; Elahi, M.

    2012-01-01

    In this paper the effect of Co magnetic impurity on Zn 1-x Co x O in the Wurtzite structure has been studied, and some optical properties such as dielectric function, energy loss function, optical transition, plasmonic energy and refractive index have been calculated with Ab Initio calculations. The results show that adding Co to the compound strongly changes the isotropic features; so that dielectric function and refraction index at low energies are extremely increased. Also, Co has significantly affected the optical transitions . The results of refraction index for pure Zn O are in a good agreement with experimental data.

  9. Influence of gamma-ray irradiation on Faraday effect of Cu-doped germano-silicate optical fiber

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youngwoong; Ju, Seongmin; Jeong, Seongmook; Jang, Myoung-Jin [Department of Physics and Photon Science, School of Information and Communications, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro, Buk-Gu, Gwangju 500-712 (Korea, Republic of); Kim, Jong-Yeol; Lee, Nam-Ho; Jung, Hyun-Kyu [Nuclear Convergence Technology Development Department, Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon (Korea, Republic of); Han, Won-Taek, E-mail: wthan@gist.ac.kr [Department of Physics and Photon Science, School of Information and Communications, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro, Buk-Gu, Gwangju 500-712 (Korea, Republic of)

    2015-02-01

    Influence of gamma-ray irradiation on the Faraday effect of the Cu-doped germano-silicate optical fiber was investigated. The Verdet constant of the gamma-ray irradiated optical fiber at 660 nm was measured to be 3.07 rad T{sup −1} m{sup −1}, 1.46 times larger than that of before the irradiation at total dose of 1200 Gy. Cu-related radiation-induced defect centers and Cu metal particles which were reduced from Cu{sup 2+} ions by the irradiation are thought to be responsible for the increase in the Verdet constant of the optical fiber.

  10. Geometrical Optics of Beams with Vortices: Berry Phase and Orbital Angular Momentum Hall Effect

    International Nuclear Information System (INIS)

    Bliokh, Konstantin Yu.

    2006-01-01

    We consider propagation of a paraxial beam carrying the spin angular momentum (polarization) and intrinsic orbital angular momentum (IOAM) in a smoothly inhomogeneous isotropic medium. It is shown that the presence of IOAM can dramatically enhance and rearrange the topological phenomena that previously were considered solely in connection to the polarization of transverse waves. In particular, the appearance of a new type of Berry phase that describes the parallel transport of the beam structure along a curved ray is predicted. We derive the ray equations demonstrating the splitting of beams with different values of IOAM. This is the orbital angular momentum Hall effect, which resembles the Magnus effect for optical vortices. Unlike the spin Hall effect of photons, it can be much larger in magnitude and is inherent to waves of any nature. Experimental means to detect the phenomena are discussed

  11. Far-field high resolution effects and manipulating of electromagnetic waves based on transformation optics

    Science.gov (United States)

    Ji, XueBin; Zang, XiaoFei; Li, Zhou; Shi, Cheng; Chen, Lin; Cai, Bin; Zhu, YiMing

    2015-05-01

    Based on the transformation optics (TO) and the effective medium theory (EMT), a new illusion media with homogeneous and isotropic materials is proposed to realize the far-field high resolution effects. When two point sources with the separation distance of λ0 / 4 are covered with the illusion media (λ0 is the free-space wavelength), the corresponding far-field pattern is equivalent to the case of two point sources with the separation distance larger than λ0 / 2 in free space, leading to the far-field high resolution effects (in free space, the separation distance of λ0 / 4 is less than half-wavelength, and thus the two point sources cannot be distinguished from each other). Furthermore, such illusion media can be applied to design tunable high-directivity antenna and an angle-dependent floating carpet cloak. Full wave simulations are carried out to verify the performance of our device.

  12. Geometrical optics of beams with vortices: Berry phase and orbital angular momentum Hall effect.

    Science.gov (United States)

    Bliokh, Konstantin Yu

    2006-07-28

    We consider propagation of a paraxial beam carrying the spin angular momentum (polarization) and intrinsic orbital angular momentum (IOAM) in a smoothly inhomogeneous isotropic medium. It is shown that the presence of IOAM can dramatically enhance and rearrange the topological phenomena that previously were considered solely in connection to the polarization of transverse waves. In particular, the appearance of a new type of Berry phase that describes the parallel transport of the beam structure along a curved ray is predicted. We derive the ray equations demonstrating the splitting of beams with different values of IOAM. This is the orbital angular momentum Hall effect, which resembles the Magnus effect for optical vortices. Unlike the spin Hall effect of photons, it can be much larger in magnitude and is inherent to waves of any nature. Experimental means to detect the phenomena are discussed.

  13. Loss of laminin alpha 1 results in multiple structural defects and divergent effects on adhesion during vertebrate optic cup morphogenesis

    Science.gov (United States)

    Bryan, Chase D.; Chien, Chi-Bin; Kwan, Kristen M.

    2016-01-01

    The vertebrate eye forms via a complex set of morphogenetic events. The optic vesicle evaginates and undergoes transformative shape changes to form the optic cup, in which neural retina and retinal pigmented epithelium enwrap the lens. It has long been known that a complex, glycoprotein-rich extracellular matrix layer surrounds the developing optic cup throughout the process, yet the functions of the matrix and its specific molecular components have remained unclear. Previous work established a role for laminin extracellular matrix in particular steps of eye development, including optic vesicle evagination, lens differentiation, and retinal ganglion cell polarization, yet it is unknown what role laminin might play in the early process of optic cup formation subsequent to the initial step of optic vesicle evagination. Here, we use the zebrafish lama1 mutant (lama1UW1) to determine the function of laminin during optic cup morphogenesis. Using live imaging, we find, surprisingly, that loss of laminin leads to divergent effects on focal adhesion assembly in a spatiotemporally-specific manner, and that laminin is required for multiple steps of optic cup morphogenesis, including optic stalk constriction, invagination, and formation of a spherical lens. Laminin is not required for single cell behaviors and changes in cell shape. Rather, in lama1UW1 mutants, loss of epithelial polarity and altered adhesion lead to defective tissue architecture and formation of a disorganized retina. These results demonstrate that the laminin extracellular matrix plays multiple critical roles regulating adhesion and polarity to establish and maintain tissue structure during optic cup morphogenesis. PMID:27339294

  14. Effects of network node consolidation in optical access and aggregation networks on costs and power consumption

    Science.gov (United States)

    Lange, Christoph; Hülsermann, Ralf; Kosiankowski, Dirk; Geilhardt, Frank; Gladisch, Andreas

    2010-01-01

    The increasing demand for higher bit rates in access networks requires fiber deployment closer to the subscriber resulting in fiber-to-the-home (FTTH) access networks. Besides higher access bit rates optical access network infrastructure and related technologies enable the network operator to establish larger service areas resulting in a simplified network structure with a lower number of network nodes. By changing the network structure network operators want to benefit from a changed network cost structure by decreasing in short and mid term the upfront investments for network equipment due to concentration effects as well as by reducing the energy costs due to a higher energy efficiency of large network sites housing a high amount of network equipment. In long term also savings in operational expenditures (OpEx) due to the closing of central office (CO) sites are expected. In this paper different architectures for optical access networks basing on state-of-the-art technology are analyzed with respect to network installation costs and power consumption in the context of access node consolidation. Network planning and dimensioning results are calculated for a realistic network scenario of Germany. All node consolidation scenarios are compared against a gigabit capable passive optical network (GPON) based FTTH access network operated from the conventional CO sites. The results show that a moderate reduction of the number of access nodes may be beneficial since in that case the capital expenditures (CapEx) do not rise extraordinarily and savings in OpEx related to the access nodes are expected. The total power consumption does not change significantly with decreasing number of access nodes but clustering effects enable a more energyefficient network operation and optimized power purchase order quantities leading to benefits in energy costs.

  15. Effect of γ-irradiation on the optical and electrical properties of fiber reinforced composites

    International Nuclear Information System (INIS)

    Anwar, Ahmad; Elfiky, Dalia; Ramadan, Ahmed M.; Hassan, G.M.

    2017-01-01

    The effect of gamma irradiation on the optical and electrical properties of the reinforced fiber polymeric based materials became an important issue. Fiberglass/epoxy and Kevlar fiber/epoxy were selected as investigated samples manufactured with hand lay-up without autoclave curing technique. The selected technique is simple and low cost while being rarely used in space materials production. The electric conductivity and dielectric constant for those samples were measured with increasing the gamma radiation dose. Moreover, the absorptivity, band gap and color change were determined. Fourier transform infrared (FTIR) was performed to each of the material's constituent to evaluate the change in the investigated materials due to radiation exposure dose. In this study, the change of electrical properties for both investigated materials showed a slight variation of the test parameters with respect to the gamma dose increase; this variation is placed in the insulators rang. The tested samples showed an insulator stable behavior during the test period. The change of optical properties for both composite specimens showed the maximum absorptivity at the gamma dose 750 kGy. These materials are suitable for structure materials and thermal control for orbital life less than 7 years. In addition, the transparency of epoxy matrix was degraded. However, there is no color change for either Kevlar fiber or fiberglass. - Highlights: • Space qualification for the reinforced fiber polymeric based materials which will be used for satellite structure. • Change of optical and electrical properties for selected material under the effect of gamma radiation. • Using a simple and low cost manufacturing method for space materials.

  16. Scanning microscopy of magnetic domains using the Fe 3p core level transverse magneto-optical Kerr effect

    Science.gov (United States)

    Friedrich, J.; Rozhko, I.; Voss, J.; Hillebrecht, F. U.; Kisker, E.; Wedemeier, V.

    1999-04-01

    We demonstrate the feasibility of the vacuum ultraviolet analog to visible-light magneto-optical imaging of magnetic structures using the resonantly enhanced transverse magneto-optical Kerr effect at core level thresholds with incident p-polarized radiation. The advantages are element specificity and a variable information depth. We used the scanning x-ray microscope at HASYLAB capable of obtaining about 1 μm resolution by means of its focusing ellipsoidal ring mirror. The p-polarized component of the reflected light was selected using multilayer reflection at an additional plane mirror downstream to the sample. Micrographs of the optical reflectivity were taken in the vicinity of the Fe 3p core level threshold at 53.7 and 56.5 eV photon energy where the magneto-optical effect is of opposite sign. Magnetic domains are visible in the difference of both recorded images.

  17. Effects of high neutron doses and duration of the chemical etching on the optical properties of CR-39

    International Nuclear Information System (INIS)

    Sahoo, G.S.; Tripathy, S.P.; Paul, S.; Sharma, S.C.; Joshi, D.S.; Gupta, A.K.; Bandyopadhyay, T.

    2015-01-01

    Effects of the duration of chemical etching on the transmittance, absorbance and optical band gap width of the CR-39 (Polyallyl diglycol carbonate) detectors irradiated to high neutron doses (12.7, 22.1, 36.0 and 43.5 Sv) were studied. The neutrons were produced by bombardment of a thick Be target with 12 MeV protons of different fluences. The unirradiated and neutron-irradiated CR-39 detectors were subjected to a stepwise chemical etching at 1 h intervals. After each step, the transmission spectra of the detectors were recorded in the range from 200 to 900 nm, and the absorbances and optical band gap widths were determined. The effect of the etching on the light transmittance of unirradiated detectors was insignificant, whereas it was very significant in the case of the irradiated detectors. The dependence of the optical absorbance on the neutron dose is linear at short etching periods, but exponential at longer ones. The optical band gap narrows with increasing etching time. It is more significant for the irradiated dosimeters than for the unirradiated ones. The rate of the narrowing of the optical band gap with increasing neutron dose increases with increasing duration of the etching. - Highlights: • The variation of optical properties of CR-39 at very high neutron dose is analyzed. Etching process is found to play a crucial role for change in optical properties of neutron-irradiated CR-39. • The optical absorbance varies linearly at lower dose, at very high dose absorbance saturation occurs. The dose at which saturation absorbance is observed shifts towards lower neutron dose with increase in etching time. • The rate of decrease in optical band gap with respect to neutron dose is found to be more at higher etching durations

  18. Indomethacin lowers optic nerve oxygen tension and reduces the effect of carbonic anhydrase inhibition and carbon dioxide breathing

    DEFF Research Database (Denmark)

    Pedersen, D B; Eysteinsson, T; Stefánsson, E

    2004-01-01

    Prostaglandins are important in blood flow regulation. Carbon dioxide (CO(2)) breathing and carbonic anhydrase inhibition increase the oxygen tension in the retina and optic nerve. To study the mechanism of this effect and the role of cyclo-oxygenase in the regulation of optic nerve oxygen tension...... (ONPO(2)), the authors investigated how indomethacin affects ONPO(2) and the ONPO(2) increases caused by CO(2) breathing and carbonic anhydrase inhibition in the pig....

  19. Effect of sputtering parameters on optical and electrical properties of ITO films on PET substrates

    International Nuclear Information System (INIS)

    Tseng, Kun-San; Lo, Yu-Lung

    2013-01-01

    The optical and electrical properties of indium tin oxide (ITO) thin films deposited on flexible polyethylene terephthalate (PET) substrates using a DC magnetron sputtering technique are investigated as a function of the deposition time, the argon flow rate and the target–substrate distance. It is found that all of the ITO films contain a high fraction of amorphous phase. The volume fraction of crystallite precipitates in the amorphous host increases with an increasing deposition time or a reducing argon flow rate. The deposition time and argon flow rate have higher effects on the optical transparency of the ITO films than the target–substrate distance has. Increasing film thickness is not the only reason for the transmittance reduced. It is found that an increase of the extinction coefficient by increasing deposition time or an increase of the refractive index by decreasing argon flow rate also reduces the transmittance of thin film. For a constant deposition time, the resistivity of the ITO films reduces with a reducing argon flow rate or a reducing target–substrate distance. For a constant argon flow rate, a critical value of the deposition time exists at which both the resistivity and the effect of the target–substrate distance are minimized. Finally, it is concluded that the film resistivity has low sensitivity to the target–substrate distance if the best deposition conditions which mostly attain the lowest resistivity are matched.

  20. Effect of sputtering parameters on optical and electrical properties of ITO films on PET substrates

    Science.gov (United States)

    Tseng, Kun-San; Lo, Yu-Lung

    2013-11-01

    The optical and electrical properties of indium tin oxide (ITO) thin films deposited on flexible polyethylene terephthalate (PET) substrates using a DC magnetron sputtering technique are investigated as a function of the deposition time, the argon flow rate and the target-substrate distance. It is found that all of the ITO films contain a high fraction of amorphous phase. The volume fraction of crystallite precipitates in the amorphous host increases with an increasing deposition time or a reducing argon flow rate. The deposition time and argon flow rate have higher effects on the optical transparency of the ITO films than the target-substrate distance has. Increasing film thickness is not the only reason for the transmittance reduced. It is found that an increase of the extinction coefficient by increasing deposition time or an increase of the refractive index by decreasing argon flow rate also reduces the transmittance of thin film. For a constant deposition time, the resistivity of the ITO films reduces with a reducing argon flow rate or a reducing target-substrate distance. For a constant argon flow rate, a critical value of the deposition time exists at which both the resistivity and the effect of the target-substrate distance are minimized. Finally, it is concluded that the film resistivity has low sensitivity to the target-substrate distance if the best deposition conditions which mostly attain the lowest resistivity are matched.

  1. Effect of sputtering parameters on optical and electrical properties of ITO films on PET substrates

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Kun-San [Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan (China); Lo, Yu-Lung, E-mail: loyl@mail.ncku.edu.tw [Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan, Taiwan (China)

    2013-11-15

    The optical and electrical properties of indium tin oxide (ITO) thin films deposited on flexible polyethylene terephthalate (PET) substrates using a DC magnetron sputtering technique are investigated as a function of the deposition time, the argon flow rate and the target–substrate distance. It is found that all of the ITO films contain a high fraction of amorphous phase. The volume fraction of crystallite precipitates in the amorphous host increases with an increasing deposition time or a reducing argon flow rate. The deposition time and argon flow rate have higher effects on the optical transparency of the ITO films than the target–substrate distance has. Increasing film thickness is not the only reason for the transmittance reduced. It is found that an increase of the extinction coefficient by increasing deposition time or an increase of the refractive index by decreasing argon flow rate also reduces the transmittance of thin film. For a constant deposition time, the resistivity of the ITO films reduces with a reducing argon flow rate or a reducing target–substrate distance. For a constant argon flow rate, a critical value of the deposition time exists at which both the resistivity and the effect of the target–substrate distance are minimized. Finally, it is concluded that the film resistivity has low sensitivity to the target–substrate distance if the best deposition conditions which mostly attain the lowest resistivity are matched.

  2. Effect of phosphorus on the electronic and optical properties of naphthoxaphospholes: theoretical investigation

    Science.gov (United States)

    Moon, Jiwon; Kim, Minbi; Lim, Jeong Sik; Kim, Joonghan

    2018-06-01

    Density functional theory (DFT) and time-dependent DFT calculations were performed to elucidate the electronic and optical properties of 2-R-naphthol[2,3-d]oxaphospholes (R-NOPs). On the basis of the calculated results, the poor π overlap between the 3pz orbital of P atom and the 2pz orbitals of other atoms and increasing polarity of P atom result in a reduced energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital. When these two effects are considered simultaneously, the absorption energies obtained for the S1 state can be below 3.00 eV according to replace the P atom of oxaphosphole ring by As atom (increasing the poor π overlap) and change the functional groups (increasing polarity). The origin of these two effects is the inherent size of the 3p orbital of P atom. The role of P atom in the control of the electronic and optical properties of R-NOPs is clearly elucidated.

  3. Annealing effect on structural and optical properties of chemical bath deposited MnS thin film

    Energy Technology Data Exchange (ETDEWEB)

    Ulutas, Cemal, E-mail: cemalulutas@hakkari.edu.tr [Faculty of Education, Hakkari Universty, 30000, Hakkari (Turkey); Gumus, Cebrail [Faculty of Science and Letters, Cukurova University, 01330, Adana (Turkey)

    2016-03-25

    MnS thin film was prepared by the chemical bath deposition (CBD) method on commercial microscope glass substrate deposited at 30 °C. The as-deposited film was given thermal annealing treatment in air atmosphere at various temperatures (150, 300 and 450 °C) for 1 h. The MnS thin film was characterized by using X-ray diffraction (XRD), UV-vis spectrophotometer and Hall effect measurement system. The effect of annealing temperature on the structural, electrical and optical properties such as optical constants of refractive index (n) and energy band gap (E{sub g}) of the film was determined. XRD measurements reveal that the film is crystallized in the wurtzite phase and changed to tetragonal Mn{sub 3}O{sub 4} phase after being annealed at 300 °C. The energy band gap of film decreased from 3.69 eV to 3.21 eV based on the annealing temperature.

  4. Investigation of optical effects in silicon quantum dots by using an empirical pseudopotential method

    Energy Technology Data Exchange (ETDEWEB)

    Ghoshal, S. K.; Sahar, M. R.; Rohani, M. S. [Universiti Teknologi Malaysia, Johor (Malaysia)

    2011-02-15

    A computer simulation using a pseudopotential approach has been carried out to investigate the band gap as a function of the size and the shape of small silicon (Si) dots having 3 to 44 atoms per dot with and without surface passivation. We used an empirical pseudo-potential Hamiltonian, a plane-wave basis expansion and a basic tetrahedral structure with undistorted local bonding configurations. In our simulation, the structures of the quantum dots were relaxed and optimized before and after passivation. We found that the gap increased more for an oxygenated surface than a hydrogenated one. Thus, both quantum confinement and surface passivation determined the optical and the electronic properties of Si quantum dots. Visible luminescence was probably due to radiative recombination of electrons and holes in the quantum-confined nanostructures. The effect of passivation of the surface dangling bonds by hydrogen and oxygen atoms and the role of surface states on the gap energy was also examined. We investigated the entire energy spectrum starting from the very low-lying ground state to the very high-lying excited states. The results for the sizes of the gap, the density of states, the oscillator strength and the absorption coefficient as functions of the size are presented. The importance of the confinement and the role of surface passivation on the optical effects are also discussed.

  5. Thermal effects on light emission in Yb3+ -sensitized rare-earth doped optical glasses

    International Nuclear Information System (INIS)

    Gouveia, E.A.; Araujo, M.T. de; Gouveia-Neto, A.S.

    2001-01-01

    The temperature effect upon infrared-to-visible frequency upconversion fluorescence emission in off-resonance infrared excited Yb 3+ -sensitized rare-earth doped optical glasses is theoretically and experimentally investigated. We have examined samples of Er3+/Yb 3+ -codoped Ga 2 S 3 :La 2 O 3 chalcogenide glasses and germanosilicate optical fibers, and Ga2O3:La 2 O 3 chalcogenide and fluoroindate glasses codoped with Pr 3+ /Yb 3+ , excited off-resonance at 1.064μm. The experimental results revealed thermal induced enhancement in the visible upconversion emission intensity as the samples temperatures were increased within the range of 20 deg C to 260 deg C. The fluorescence emission enhancement is attributed to the temperature dependent multiphonon-assisted anti-Stokes excitation process of the ytterbium-sensitizer. A theoretical approach that takes into account a sensitizer temperature dependent effective absorption cross section, which depends upon the phonon occupation number in the host matrices, has proven to agree very well with the experimental data. As beneficial applications of the thermal enhancement, a temperature tunable amplifier and a fiber laser with improved power performance are presented. (author)

  6. Effective distance adaptation traffic dispatching in software defined IP over optical network

    Science.gov (United States)

    Duan, Zhiwei; Li, Hui; Liu, Yuze; Ji, Yuefeng; Li, Hongfa; Lin, Yi

    2017-10-01

    The rapid growth of IP traffic has contributed to the wide deployment of optical devices (ROADM/OXC, etc.). Meanwhile, with the emergence and application of high-performance network services such as ultra-high video transmission, people are increasingly becoming more and more particular about the quality of service (QoS) of network. However, the pass-band shape of WSSs which is utilized in the ROADM/OXC is not ideal, causing narrowing of spectrum. Spectral narrowing can lead to signal impairment. Therefore, guard-bands need to be inserted between adjacent paths. In order to minimize the bandwidth waste due to guard bands, we propose an effective distance-adaptation traffic dispatching algorithm in IP over optical network based on SDON architecture. We use virtualization technology to set up virtual resources direct links by extracting part of the resources on paths which meet certain specific constraints. We also assign different bandwidth to each IP request based on path length. There is no need for guard-bands between the adjacent paths on the virtual link, which can effectively reduce the number of guard-bands and save the spectrum.

  7. The Atacama Cosmology Telescope: Relation Between Galaxy Cluster Optical Richness and Sunyaev-Zel'dovich Effect

    Science.gov (United States)

    Sehgal, Neelima; Addison, Graeme; Battaglia, Nick; Battistelli, Elia S.; Bond, J. Richard; Das, Sudeep; Devlin, Mark J.; Dunkley, Joanna; Duenner, Rolando; Gralla, Megan; hide

    2012-01-01

    We present the measured Sunyaev-Zel'dovich (SZ) flux from 474 optically-selected MaxBCG clusters that fall within the Atacama Cosmology Telescope (ACT) Equatorial survey region. The ACT Equatorial region used in this analysis covers 510 square degrees and overlaps Stripe 82 of the Sloan Digital Sky Survey. We also present the measured SZ flux stacked on 52 X-ray-selected MCXC clusters that fall within the ACT Equatorial region and an ACT Southern survey region covering 455 square degrees. We find that the measured SZ flux from the X-ray-selected clusters is consistent with expectations. However, we find that the measured SZ flux from the optically-selected clusters is both significantly lower than expectations and lower than the recovered SZ flux measured by the Planck satellite. Since we find a lower recovered SZ signal than Planck, we investigate the possibility that there is a significant offset between the optically-selected brightest cluster galaxies (BCGs) and the SZ centers, to which ACT is more sensitive due to its finer resolution. Such offsets can arise due to either an intrinsic physical separation between the BCG and the center of the gas concentration or from misidentification of the cluster BCG. We find that the entire discrepancy for both ACT and Planck can be explained by assuming that the BCGs are offset from the SZ maxima with a uniform random distribution between 0 and 1.5 Mpc. In contrast, the physical separation between BCGs and X-ray peaks for an X-ray-selected subsample of MaxBCG clusters shows a much narrower distribution that peaks within 0.2 Mpc. We conclude that while offsets between BCGs and SZ peaks may be an important component in explaining the discrepancy, it is likely that a combination of factors is responsible for the ACT and Planck measurements. Several effects that can lower the SZ signal equally for both ACT and Planck, but not explain the difference in measured signals, include a larger percentage of false detections in the

  8. Effect of systemic nitric oxide synthase inhibition on optic disc oxygen partial pressure in normoxia and in hypercapnia.

    Science.gov (United States)

    Petropoulos, Ioannis K; Pournaras, Jean-Antoine C; Stangos, Alexandros N; Pournaras, Constantin J

    2009-01-01

    To investigate the effect of systemic nitric oxide synthase (NOS) inhibition on optic disc oxygen partial pressure (PO(2)) in normoxia and hypercapnia. Intervascular optic disc PO(2) was measured in 12 anesthetized minipigs by using oxygen-sensitive microelectrodes placed 0.1), despite a 21% increase of mean arterial pressure. Optic disc PO(2) increase under hypercapnia was blunted after L-NAME injection (DeltaPO(2) = 0.6 +/- 1.1 mm Hg; 3%; P > 0.1), and this effect was reversible by L-arginine. Moreover, L-NAME reduced the response to carbogen by 29% (DeltaPO(2) = 9.1 +/- 4.4 mm Hg; 49%; P = 0.01 versus before L-NAME). The response to hyperoxia was not affected. Whereas systemic NOS inhibition did not affect optic disc PO(2) in normoxia, a blunting effect was noted on the CO(2)-induced optic disc PO(2) increase. Nitric oxide appears to mediate the hypercapnic optic disc PO(2) increase.

  9. The effect of optically thin cirrus clouds on solar radiation in Camagüey, Cuba

    Directory of Open Access Journals (Sweden)

    B. Barja

    2011-08-01

    Full Text Available The effect of optically thin cirrus clouds on solar radiation is analyzed by numerical simulation, using lidar measurements of cirrus conducted at Camagüey, Cuba. Sign and amplitude of the cirrus clouds effect on solar radiation is evaluated. There is a relation between the solar zenith angle and solar cirrus cloud radiative forcing (SCRF present in the diurnal cycle of the SCRF. Maximums of SCRF out of noon located at the cirrus cloud base height are found for the thin and opaque cirrus clouds. The cirrus clouds optical depth (COD threshold for having double SCRF maximum out of noon instead of a single one at noon was 0.083. In contrast, the heating rate shows a maximum at noon in the location of cirrus clouds maximum extinction values. Cirrus clouds have a cooling effect in the solar spectrum at the Top of the Atmosphere (TOA and at the surface (SFC. The daily mean value of SCRF has an average value of −9.1 W m−2 at TOA and −5.6 W m−2 at SFC. The cirrus clouds also have a local heating effect on the atmospheric layer where they are located. Cirrus clouds have mean daily values of heating rates of 0.63 K day−1 with a range between 0.35 K day−1 and 1.24 K day−1. The principal effect is in the near-infrared spectral band of the solar spectrum. There is a linear relation between SCRF and COD, with −30 W m−2 COD−1 and −26 W m−2 COD−1, values for the slopes of the fits at the TOA and SFC, respectively, in the broadband solar spectrum.

  10. Perceiving collision impacts in Alzheimer’s disease: The effect of retinal eccentricity on optic flow deficits

    Directory of Open Access Journals (Sweden)

    Nam-Gyoon eKim

    2015-11-01

    Full Text Available The present study explored whether the optic flow deficit in Alzheimer’s disease (AD reported in the literature transfers to different types of optic flow, in particular, one that specifies collision impacts with upcoming surfaces, with a special focus on the effect of retinal eccentricity. Displays simulated observer movement over a ground plane toward obstacles lying in the observer’s path. Optical expansion was modulated by varying tau-dot. The visual field was masked either centrally (peripheral vision or peripherally (central vision using masks ranging from 10° to 30° in diameter in steps of 10°. Participants were asked to indicate whether their approach would result in collision or no collision with the obstacles. Results showed that AD patients’ sensitivity to tau-dot was severely compromised, not only for central vision but also for peripheral vision, compared to age- and education-matched elderly controls. The results demonstrated that AD patients’ optic flow deficit is not limited to radial optic flow but includes also the optical pattern engendered by tau-dot. Further deterioration in the capacity to extract tau-dot to determine potential collisions in conjunction with the inability to extract heading information from radial optic flow would exacerbate AD patients’ difficulties in navigation and visuospatial orientation.

  11. Effect of thallium doping on the electrical and optical properties of CdO thin films

    International Nuclear Information System (INIS)

    Dakhel, A.A.

    2008-01-01

    A series of lightly Tl-doped CdO thin films (1%,1.5%,2%,2.5%, and 3%) have been prepared by a vacuum evaporation method on glass and Si wafer substrates. The prepared films were subjected to structural study by X-ray diffraction, optical characterisation by UV-VIS-NIR absorption spectroscopy, and dc-electrical measurements. Experimental data indicate that Tl 3+ doping slightly stretching stresses the CdO crystalline structure and changes the optical and electrical properties. It was observed that Tl doping widens the energy gap of CdO from 2.22 eV to 2.83 eV via a Burstein-Moss energy level shift. The band gap shrinkage was also observed for carrier concentrations N el >1.13 x 10 20 cm -3 , which was explained by merging of the impurity band with the conduction band. The optical properties were explained by using Hamberg et al.'s band-to-band transitions and classical Drude theory. The electrical behaviour of the samples shows that they are degenerate semiconductors. The 2% Tl-doped CdO sample shows an increase in its mobility by about 1.4 times, conductivity by 5 times, and carrier concentration by 3.6 times relative to the undoped CdO film. From the transparent-conducting-oxide point of view, Tl is sufficiently effective for CdO doping but does not emulate other dopants like In,Sn,Sc, and Y. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Visualization of Radial Peripapillary Capillaries Using Optical Coherence Tomography Angiography: The Effect of Image Averaging.

    Directory of Open Access Journals (Sweden)

    Shelley Mo

    Full Text Available To assess the effect of image registration and averaging on the visualization and quantification of the radial peripapillary capillary (RPC network on optical coherence tomography angiography (OCTA.Twenty-two healthy controls were imaged with a commercial OCTA system (AngioVue, Optovue, Inc.. Ten 10x10° scans of the optic disc were obtained, and the most superficial layer (50-μm slab extending from the inner limiting membrane was extracted for analysis. Rigid registration was achieved using ImageJ, and averaging of each 2 to 10 frames was performed in five ~2x2° regions of interest (ROI located 1° from the optic disc margin. The ROI were automatically skeletonized. Signal-to-noise ratio (SNR, number of endpoints and mean capillary length from the skeleton, capillary density, and mean intercapillary distance (ICD were measured for the reference and each averaged ROI. Repeated measures analysis of variance was used to assess statistical significance. Three patients with primary open angle glaucoma were also imaged to compare RPC density to controls.Qualitatively, vessels appeared smoother and closer to histologic descriptions with increasing number of averaged frames. Quantitatively, number of endpoints decreased by 51%, and SNR, mean capillary length, capillary density, and ICD increased by 44%, 91%, 11%, and 4.5% from single frame to 10-frame averaged, respectively. The 10-frame averaged images from the glaucomatous eyes revealed decreased density correlating to visual field defects and retinal nerve fiber layer thinning.OCTA image registration and averaging is a viable and accessible method to enhance the visualization of RPCs, with significant improvements in image quality and RPC quantitative parameters. With this technique, we will be able to non-invasively and reliably study RPC involvement in diseases such as glaucoma.

  13. Effect of optically modified polyethylene terephthalate fiber socks on chronic foot pain

    Directory of Open Access Journals (Sweden)

    Gordon Ian L

    2009-04-01

    Full Text Available Abstract Background Increasing experimental and clinical evidence suggests that illumination of the skin with relatively low intensity light may lead to therapeutic results such as reduced pain or improved wound healing. The goal of this study was to evaluate prospectively whether socks made from polyethylene terephthalate (PET incorporating optically active particles (Celliant™ ameliorates chronic foot pain resulting from diabetic neuropathy or other disorders. Such optically modified fiber is thought to modify the illumination of the skin in the visible and infrared portions of the spectrum, and consequently reduce pain. Methods A double-blind, randomized trial with 55 subjects (38 men, 17 women enrolled (average age 59.7 ± 11.9 years, 26 with diabetic neuropathy and 29 with other pain etiologies. Subjects twice completed the Visual Analogue Scale (VAS, Brief Pain Inventory (BPI, McGill Pain Questionnaire (MPQ, and SF-36 a week apart (W1+2 before receiving either control or Celliant™ socks. The same questionnaires were answered again one and two weeks (W3+4 later. The questionnaires provided nine scores for analyzing pain reduction: one VAS score, two BPI scores, five MPQ scores, and the bodily pain score on the SF-36. Mean W1+2 and W3+4 scores were compared to measure pain reduction. Results More pain reduction was reported by Celliant™ subjects for 8 of the 9 pain questions employed, with a significant (p = 0.043 difference between controls and Celliant™ for McGill question III. In neuropathic subjects, Celliant™ caused more pain reduction in 6 of the 9 questions, but not significantly. In non-neuropathic subjects 8 of 9 questions showed more pain reduction with the Celliant™ socks. Conclusion Socks with optically modified PET (Celliant™ appear to have a beneficial impact on chronic foot pain. The mechanism could be related to the effects seen with illumination of tissues with visible and infrared light. Trial Registration

  14. A reconfigurable all-optical VPN based on XGM effect of SOA in WDM PON

    Science.gov (United States)

    Hu, Xiaofeng; Zhang, Liang; Cao, Pan; Wang, Tao; Su, Yikai

    2010-12-01

    We propose and experimentally demonstrate a reconfigurable all-optical VPN scheme enabling intercommunications among different ONUs in a WDM PON. Reconfiguration is realized by dynamically setting wavelength conversion of optical VPN signal using a SOA in the OLT.

  15. Nonlocal optical effects on the Goos–Hänchen shifts at multilayered hyperbolic metamaterials

    International Nuclear Information System (INIS)

    Chen, Chih-Wei; Bian, Tingting; Chiang, Hai-Pang; Leung, P T

    2016-01-01

    The lateral beam shift of light incident on a multilayered hyperbolic metamaterial (HMM) is investigated using a theoretical model which emphasizes the nonlocal optical response of the indefinite material. By applying an effective local response theory formulated recently in the literature, it is found that nonlocal effects only affect p polarized light in this Goos–Hänchen (GH) shift of the incident beam; leading to a blue-shifted peak for positive shifts at high frequencies and red-shifted dip for negative shifts at low frequencies in the GH shift spectrum. An account for the observed phenomenon is given by referring to the ‘Brewster condition’ for the reflected wave from the HMM. This observation thus provides a relatively direct probe for the nonlocal response of the HMM. (paper)

  16. Simulation of radiation effects on three-dimensional computer optical memories

    International Nuclear Information System (INIS)

    Moscovitch, M.; Emfietzoglou, D.

    1997-01-01

    A model was developed to simulate the effects of heavy charged-particle (HCP) radiation on the information stored in three-dimensional computer optical memories. The model is based on (i) the HCP track radial dose distribution, (ii) the spatial and temporal distribution of temperature in the track, (iii) the matrix-specific radiation-induced changes that will affect the response, and (iv) the kinetics of transition of photochromic molecules from the colored to the colorless isomeric form (bit flip). It is shown that information stored in a volume of several nanometers radius around the particle close-quote s track axis may be lost. The magnitude of the effect is dependent on the particle close-quote s track structure. copyright 1997 American Institute of Physics

  17. Effect of very high magnetic field on the optical properties of firefly light emitter oxyluciferin

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Weihang; Nakamura, Daisuke [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Wang, Yu [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences (China); Mochizuki, Toshimitsu [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Fukushima Renewable Energy Institute, National Institute of Advanced Industrial Science and Technology, 2-2-9 Machiike-dai, Koriyama, Fukushima 963-0215 (Japan); Akiyama, Hidefumi [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Takeyama, Shojiro, E-mail: takeyama@issp.u-tokyo.ac.jp [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan)

    2015-09-15

    Magnetic field effect on enzymatic reactions is under intensive study in the past decades. Recently, it was reported that firefly bioluminescence was suppressed and red-shifted significantly when exposed to external magnetic field. However in this work, by means of selective excitation, we confirmed that emission properties of firefly light emitter “oxyluciferin” are completely immune to external magnetic field of up to 53 T. These findings pose strong contrast to existing relevant results. Potential reasons for the discrepancies found and the underlying physics towards the understanding of firefly bioluminescence were discussed. - Highlights: • Effect of ultra-high magnetic field on the optical properties of firefly light emitter oxyluciferin was reported. • Emission properties of oxyluciferin were confirmed to be immune to external high magnetic fields up to 53 T. • .Potential reasons for the discrepancies between our results and previous reports and the underlying physics were discussed.

  18. Group-velocity dispersion effects on quantum noise of a fiber optical soliton in phase space

    International Nuclear Information System (INIS)

    Ju, Heongkyu; Lee, Euncheol

    2010-01-01

    Group-velocity dispersion (GVD) effects on quantum noise of ultrashort pulsed light are theoretically investigated at the soliton energy level, using Gaussian-weighted pseudo-random distribution of phasors in phase space for the modeling of quantum noise properties including phase noise, photon number noise, and quantum noise shape in phase space. We present the effects of GVD that mixes the different spectral components in time, on the self-phase modulation(SPM)-induced quantum noise properties in phase space such as quadrature squeezing, photon-number noise, and tilting/distortion of quantum noise shape in phase space, for the soliton that propagates a distance of the nonlinear length η NL = 1/( γP 0 ) (P 0 is the pulse peak power and γ is the SPM parameter). The propagation dependence of phase space quantum noise properties for an optical soliton is also provided.

  19. Dipole field measurement technique utilizing the Faraday rotation effect in polarization preserving optical fibers

    International Nuclear Information System (INIS)

    Haddock, C.; Tong, M.Y.M.

    1989-10-01

    TRIUMF is presently in the project definition stage of its proposed KAON factory. The facility will require approximately 300 dipole magnets. The rapid measurement of representative parameters of these magnets, in particular effective length, is one of the challenges to be met. As well as the commissioning of a.c magnetic field measurement systems based on established techniques a project is underway to investigate an alternative method utilizing the Faraday Rotation effect in polarization preserving optical fibers. It is shown that a fiber equivalent to a Faraday cell can be constructed by winding a fiber in a such a way that the induced beat length L p is equal to (2n+1) times the bending circumference, with n integer. Background to the subject and preliminary results of the measurements are reported in this paper

  20. Optical cascaded Fabry-Perot interferometer hydrogen sensor based on vernier effect

    Science.gov (United States)

    Li, Yina; Zhao, Chunliu; Xu, Ben; Wang, Dongning; Yang, Minghong

    2018-05-01

    An optical cascaded Fabry-Perot interferometer hydrogen sensor based on vernier effect has been proposed and achieved. The proposed sensor, which total length is ∼594 μm, is composed of a segment of large mode area fiber (LMAF) and a segment of hollow-core fiber (HCF). The proposed sensor is coated with the Pt-loaded WO3/SiO2 powder which will result in the increase of local temperature of the sensor head when exposed to hydrogen atmosphere. Thus the hydrogen sensor can be achieved by monitoring the change of resonant envelope wavelength. The hydrogen sensitivity is -1.04 nm/% within the range of 0 % -2.4 % which is greatly improved because of the vernier effect. The response time is ∼80 s. Due to its compact configuration, the proposed sensor provides a feasible and miniature structure to achieve detection of hydrogen.

  1. Effects of Salts and Metal Oxides on Electrochemical and Optical Properties of Streptococcus mutans

    Science.gov (United States)

    Kawai, Tsuyoshi; Nagame, Seigo; Kambara, Masaki; Yoshino, Katsumi

    1994-10-01

    The effects of calcium salts and metal oxide powders on electrochemical, optical and biological properties of Streptococcus mutans have been studied as a novel method to determine the strain. Electrochemical signals of Streptococcus mutans show remarkable decrease in the presence of saturated calcium salts such as CaHPO4, Ca3(PO4)2, and Ca5(PO4)3OH depending on the strains of Streptococcus mutans: Ingbritt, NCTC-10449, or GS-5. The number of viable cells also decreases upon addition of these powders. The effects of metal oxides such as ZnO and BaTiO3 on the electrochemical characteristics and photoluminescence of Streptococcus mutans have also been studied.

  2. Simulation of radiation effects on three-dimensional computer optical memories

    Science.gov (United States)

    Moscovitch, M.; Emfietzoglou, D.

    1997-01-01

    A model was developed to simulate the effects of heavy charged-particle (HCP) radiation on the information stored in three-dimensional computer optical memories. The model is based on (i) the HCP track radial dose distribution, (ii) the spatial and temporal distribution of temperature in the track, (iii) the matrix-specific radiation-induced changes that will affect the response, and (iv) the kinetics of transition of photochromic molecules from the colored to the colorless isomeric form (bit flip). It is shown that information stored in a volume of several nanometers radius around the particle's track axis may be lost. The magnitude of the effect is dependent on the particle's track structure.

  3. Effects of plasticizers on sorption and optical properties of gum cordia based edible film.

    Science.gov (United States)

    Haq, Muhammad Abdul; Jafri, Feroz Alam; Hasnain, Abid

    2016-06-01

    The present study aimed to characterize a biodegradable film produced from the polysaccharide of an indigenous plant Cordia myxa. Effect of plasticizer type (Glycerol, Sorbitol, PEG200 and PEG 400) and concentration (0-30 %) was studied on sorption and optical properties of the casted film. Increase in plasticizer concentration resulted in increase in equilibrium moisture content of the film and was supported by GAB model of sorption indicating that isotherms were of Type II. The monolayer value increased with the increase in plasticizer concentration with a peak of 0.93 g.g-1 for glycerol. Addition of plasticizers improved the total color (ΔE) with glycerol showing the highest effects. All films showed resistance to UV light in the range of 280-200 nm. The polysaccharide of the fruit of C.myxa can be used to prepare an edible film with improved properties as compared to other available edible coatings.

  4. Effects of source shape on the numerical aperture factor with a geometrical-optics model.

    Science.gov (United States)

    Wan, Der-Shen; Schmit, Joanna; Novak, Erik

    2004-04-01

    We study the effects of an extended light source on the calibration of an interference microscope, also referred to as an optical profiler. Theoretical and experimental numerical aperture (NA) factors for circular and linear light sources along with collimated laser illumination demonstrate that the shape of the light source or effective aperture cone is critical for a correct NA factor calculation. In practice, more-accurate results for the NA factor are obtained when a linear approximation to the filament light source shape is used in a geometric model. We show that previously measured and derived NA factors show some discrepancies because a circular rather than linear approximation to the filament source was used in the modeling.

  5. Theory of Pulse Train Amplification Without Patterning Effects in Quantum Dot Semiconductor Optical Amplifiers

    DEFF Research Database (Denmark)

    Uskov, Alexander V.; Berg, Tommy Winther; Mørk, Jesper

    2004-01-01

    A theory for pulse amplification and saturation in quantum dot (QD) semiconductor optical amplifiers (SOAs) is developed. In particular, the maximum bit rate at which a data stream of pulses can be amplified without significant patterning effects is investigated. Simple expressions are derived th...... energies of 0.2–0.4 pJ. The superiority of QD SOAs is based on: 1) the faster achievement of the regime of maximum gain in QD SOAs compared to QW and bulk SOAs and 2) the lower effective cross section of photon-carrier interaction in QDs....... that clearly show the dependence of the maximum bit rate on material and device parameters. A comparative analysis of QD, quantum well (QW), and bulk SOAs shows that QD SOAs may have superior properties; calculations predict patterning-free amplification up to bit rates of 150–200 Gb/s with pulse output...

  6. Correcting Effect of Therapeutic Doses of Optical Radiation on Hematological Parameters of Blood Irradiated In Vivo

    Science.gov (United States)

    Zalesskaya, G. A.; Laskina, O. V.

    2017-07-01

    We studied the effect of therapeutic doses of optical radiation on the hematological parameters of blood irradiated in vivo: hemoglobin concentration, hematocrit, and the number of erythrocytes in the peripheral blood of patients during courses of extracorporeal, overvein, and intravenous blood irradiation and after treatment. The reversible changes during the procedures were found to differ from the changes obtained after treatment completion. At the end of the treatment course, the hematological parameters had changed in different directions and became higher, the same, or lower than the initial parameters depending on the initial parameters and photoinduced changes in blood oxygenation. A compensatory effect was found for photohemotherapy on oxygen-dependent processes altering the oxygen inflow into cells as well as the generation of active oxygen species and their inhibition by antioxidant systems.

  7. Anisotropic electro-optic effect on InGaAs quantum dot chain modulators.

    Science.gov (United States)

    Liu, Wei; Liang, Baolai; Huffaker, Diana; Fetterman, Harold

    2013-10-15

    We investigated the anisotropic electro-optic (EO) effect on InGaAs quantum dot (QD) chain modulators. The linear EO coefficients were determined as 24.3 pm/V (33.8 pm/V) along the [011] direction and 30.6 pm/V (40.3 pm/V) along the [011¯] direction at 1.55 μm (1.32 μm) operational wavelength. The corresponding half-wave voltages (Vπs) were measured to be 5.35 V (4.35 V) and 4.65 V (3.86 V) at 1.55 μm (1.32 μm) wavelength. This is the first report on the anisotropic EO effect on QD chain structures. These modulators have 3 dB bandwidths larger than 10 GHz.

  8. Effects of applied electromagnetic fields on the linear and nonlinear optical properties in an inverse parabolic quantum well

    International Nuclear Information System (INIS)

    Ungan, F.; Yesilgul, U.; Kasapoglu, E.; Sari, H.; Sökmen, I.

    2012-01-01

    In this present work, we have investigated theoretically the effects of applied electric and magnetic fields on the linear and nonlinear optical properties in a GaAs/Al x Ga 1−x As inverse parabolic quantum well for different Al concentrations at the well center. The Al concentration at the barriers was always x max =0.3. The energy levels and wave functions are calculated within the effective mass approximation and the envelope function approach. The analytical expressions of optical properties are obtained by using the compact density-matrix approach. The linear, third-order nonlinear and total absorption and refractive index changes depending on the Al concentration at the well center are investigated as a function of the incident photon energy for the different values of the applied electric and magnetic fields. The results show that the applied electric and magnetic fields have a great effect on these optical quantities. - Highlights: ► The x c concentration has a great effect on the optical characteristics of these structures. ► The EM fields have a great effect on the optical properties of these structures. ► The total absorption coefficients increased as the electric and magnetic field increases. ► The RICs reduced as the electric and magnetic field increases.

  9. Effect of sample thickness on the extracted near-infrared bulk optical properties of Bacillus subtilis in liquid culture.

    Science.gov (United States)

    Dzhongova, Elitsa; Harwood, Colin R; Thennadil, Suresh N

    2011-11-01

    In order to determine the bulk optical properties of a Bacillus subtilis culture during growth phase we investigated the effect of sample thickness on measurements taken with different measurement configurations, namely total diffuse reflectance and total diffuse transmittance. The bulk optical properties were extracted by inverting the measurements using the radiative transfer theory. While the relationship between reflectance and biomass changes with sample thickness and the intensity (absorbance) levels vary significantly for both reflectance and transmittance measurements, the extracted optical properties show consistent behavior in terms of both the relationship with biomass and magnitude. This observation indicates the potential of bulk optical properties for building models that could be more easily transferable compared to those built using raw measurements.

  10. Hydrostatic pressure and temperature effects on nonlinear optical rectification in a lens shape InAs/GaAs quantum dot

    International Nuclear Information System (INIS)

    Bouzaïene, L.; Ben Mahrsia, R.; Baira, M.; Sfaxi, L.; Maaref, H.

    2013-01-01

    We have performed theoretical calculation of the nonlinear optical rectification in a lens shape InAs/GaAs quantum dot (0D). The combined effects of hydrostatic pressure and temperature on the nonlinear optical rectification in lens-shaped InAs QDs are studied under the compact density matrix formalism and the effective mass approximation. From our calculation, it is found that the subband energies and optical rectification susceptibility are quite sensitive to the applied hydrostatic pressure and temperature. The results show that the resonant peak of the optical rectification can be red-shifted or blue-shifted and their intensity also varied by external probes such as hydrostatic pressure and temperature. In addition, the oscillator strength is strongly affected by these parameters. - Highlights: ► Theoretical calculation of the nonlinear optical rectification in a lens shape InAs/GaAs quantum dot was performed. ► Optical rectification susceptibility is quite sensitive to the applied hydrostatic pressure and temperature. ► The oscillator strength is strongly affected by the applied hydrostatic pressure and temperature.

  11. Electro-optic studies of the flexoelectric effect in chiral nematic liquid crystals

    International Nuclear Information System (INIS)

    Musgrave, B.

    2000-01-01

    With the advent of global telecommunications networks and the Internet, the development of portable display technology has gained a new impetus. Liquid crystal devices have played a major role in this area, most conspicuously as displays in laptop computers. To date, these liquid crystalline devices have been generally based on the rather slow (∼ 30 ms) dielectric response of the achiral nematic liquid crystal phase, although more expensive devices based on the faster ( -1 m -1 , and are the highest measured to date: the highest value previously published is 0.12 C N -1 m -1 , measured for the commercial mixture TM216. In order to interpret the effect of the bimesogens' molecular structure, achiral nematic monomesogens and bimesogens have been doped with chiral additives and the resultant mixtures' flexoelectro-optic properties have been analysed. From this work it has been possible to determine that the polar cyanobiphenyl group is the key to the strong response in the estradiol-cyanobiphenyl materials. In conclusion, a recommendation is made, for the first time, for a general molecular structure likely to exhibit a strong flexoelectro-optic response: namely, bimesogenic materials composed of highly polar end groups separated by a flexible spacer. (author)

  12. Doping effect on the optical properties of ZnO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Stoehr, M. [Frederick Seitz Materials Research Laboratory, University of Illinois,104 South Goodwin Avenue, Urbana, IL 61801 (United States); Institut Universitaire de Technologie, Universite de Haute Alsace, 61 rue Albert Camus, 68093 Mulhouse Cedex (France); Juillaguet, S. [Groupe d' Etude des Semi-conducteurs, Universite Montpellier II, Place Eugene Bataillon, 34095 Montpellier Cedex 5 (France); Kyaw, T.M.; Wen, J.G. [Institut Universitaire de Technologie, Universite de Haute Alsace, 61 rue Albert Camus, 68093 Mulhouse Cedex (France)

    2007-04-15

    High quality undoped and Ga{sub 2}O{sub 3} or In{sub 2}O{sub 3} doped ZnO nanostructures are grown by chemical vapor transport and condensation. The doping effect on the optical properties is investigated by photoluminescence. At room temperature, photoluminescence on Ga{sub 2}O{sub 3} doped ZnO nanostructures reveals an enhancement of the ultraviolet near band edge emission at 390 nm, while the intensity of the deep level emission at 530 nm weakens. At 5 K, an intense neutral-donor-bound exciton (D{sup 0}X) line dominates the undoped and doped ZnO photoluminescence spectra. The presence of well resolved two-electron satellite lines allow to determine the type of donors. At 5 K, the results indicate that ZnO nanostructures grown with 10% of Ga{sub 2}O{sub 3} display an excellent optical quality, proved by an intense D{sup 0}X line, a high intensity ratio between the D{sup 0}X line and the deep level emission as well as the presence of numerous phonon replicas of the main lines. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. The effect of optical system design for laser micro-hole drilling process

    Science.gov (United States)

    Ding, Chien-Fang; Lan, Yin-Te; Chien, Yu-Lun; Young, Hong-Tsu

    2017-08-01

    Lasers are a promising high accuracy tool to make small holes in composite or hard material. They offer advantages over the conventional machining process, which is time consuming and has scaling limitations. However, the major downfall in laser material processing is the relatively large heat affect zone or number of molten burrs it generates, even when using nanosecond lasers over high-cost ultrafast lasers. In this paper, we constructed a nanosecond laser processing system with a 532 nm wavelength laser source. In order to enhance precision and minimize the effect of heat generation with the laser drilling process, we investigated the geometric shape of optical elements and analyzed the images using the modulation transfer function (MTF) and encircled energy (EE) by using optical software Zemax. We discuss commercial spherical lenses, including plano-convex lenses, bi-convex lenses, plano-concave lenses, bi-concave lenses, best-form lenses, and meniscus lenses. Furthermore, we determined the best lens configuration by image evaluation, and then verified the results experimentally by carrying out the laser drilling process on multilayer flexible copper clad laminate (FCCL). The paper presents the drilling results obtained with different lens configurations and found the best configuration had a small heat affect zone and a clean edge along laser-drilled holes.

  14. SiPM optical crosstalk amplification due to scintillator crystal: effects on timing performance

    International Nuclear Information System (INIS)

    Gola, Alberto; Ferri, Alessandro; Tarolli, Alessandro; Zorzi, Nicola; Piemonte, Claudio

    2014-01-01

    For a given photon detection efficiency (PDE), the primary, Poisson distributed, dark count rate of the detector (DCR 0 ) is one of the most limiting factors affecting the timing resolution of a silicon photomultiplier (SiPM) in the scintillation light readout. If the effects of DCR 0  are removed through a suitable baseline compensation algorithm or by cooling, it is possible to clearly observe another phenomenon that limits the PDE, and thus the timing resolution of the detector. It is caused by the optical crosstalk of the SiPM, which is significantly increased by the presence of the scintillator. In this paper, we describe this phenomenon, which is also easily observed from the reverse I–V curve of the device, and we relate it to the measured coincidence resolving time in 511 keV γ-ray measurements. We discuss its consequences on the SiPM design and, in particular, we observe that there is an optimal cell size, dependent on both SiPM and crystal parameters, that maximizes the PDE in presence of optical crosstalk. Finally, we report on a crosstalk simulator developed to study the phenomenon and we compare the simulation results obtained for different SiPM technologies, featuring different approaches to the reduction of the crosstalk. (paper)

  15. Triple modifier effect on physical, optical and structural properties of boro tellurite zinc lithium glasses

    Science.gov (United States)

    Naresh, P.; Srinivasu, D.; Narsimlu, N.; Ch. Srinivas, Kavitha, B.; Deshpandhe, Uday; Kumar, K. Siva

    2018-05-01

    To investigate physical, optical and structural properties of glass samples of the Quaternary system (60-x)B2O3-xTeO2-10ZnO-30Li2O with x=0,5,10,15, and 20 mol% were prepared by conventional melt quenching technique. XRD confirmed the amorphous nature of all samples. Physical parameters like density, molar volume, Oxygen packing density and etc. calculated. Density of glass samples increased with the increase of TeO2 concentration due to the replacement of lighter B2O3 with heavier TeO2. Optical properties has studied with the help of UV-Visible spectra. Cut off wavelength is increases whereas Eopt and Urbache energies is decreased except intermediate mole fraction of TeO2 at which the triple modifier effect can be observed. Fourier Transform Infrared spectroscopy reveals that the network consists of TeO3 and TeO6 structural units along with BO3 and BO4 units.

  16. Effective Waterline Detection of Unmanned Surface Vehicles Based on Optical Images

    Directory of Open Access Journals (Sweden)

    Yangjie Wei

    2016-09-01

    Full Text Available Real-time and accurate detection of the sailing or water area will help realize unmanned surface vehicle (USV systems. Although there are some methods for using optical images in USV-oriented environmental modeling, both the robustness and precision of these published waterline detection methods are comparatively low for a real USV system moving in a complicated environment. This paper proposes an efficient waterline detection method based on structure extraction and texture analysis with respect to optical images and presents a practical application to a USV system for validation. First, the basic principles of local binary patterns (LBPs and gray level co-occurrence matrix (GLCM were analyzed, and their advantages were integrated to calculate the texture information of river images. Then, structure extraction was introduced to preprocess the original river images so that the textures resulting from USV motion, wind, and illumination are removed. In the practical application, the waterlines of many images captured by the USV system moving along an inland river were detected with the proposed method, and the results were compared with those of edge detection and super pixel segmentation. The experimental results showed that the proposed algorithm is effective and robust. The average error of the proposed method was 1.84 pixels, and the mean square deviation was 4.57 pixels.

  17. Alternating stacking of ferromagnetic nanosheet and nanoparticle films: heteroassembly and magneto-optical Kerr effect

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Baoping, E-mail: baoping.jia@cczu.edu.cn [Changzhou University, School of Materials Science and Engineering (China); Zhang, Wei, E-mail: wei.zhang@unisa.edu.au [University of Tokyo, Department of Urban Engineering (Japan); Liu, Hui [Central South University, School of Metallurgy and Environment, National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (China); Lin, Bencai; Ding, Jianning [Changzhou University, School of Materials Science and Engineering (China)

    2016-09-15

    Heterostructured multilayer films of two different nanocrystals have been successfully fabricated by layer-by-layer stacking of Ti{sub 0.8}Co{sub 0.2}O{sub 2} nanosheet and Fe{sub 3}O{sub 4} nanoparticle films. UV–Vis spectroscopy and AFM observation confirmed the successful alternating deposition in the multilayer buildup process. The average thickness of both Ti{sub 0.8}Co{sub 0.2}O{sub 2} nanosheet and Fe{sub 3}O{sub 4} nanoparticle layers was determined to be about 1.4–1.7 and 5 nm, which was in good agreement with TEM results. Magneto-optical Kerr effect measurements demonstrated that the heteroassemblies exhibit gigantic magnetic circular dichroism (MCD) (2 × 10{sup 4} deg/cm) at 320–360 nm, deriving from strong interlayer [Co{sup 2+}]t{sub 2g}–[Fe{sup 3+}]e{sub g} d–d charge transfer which was further confirmed by X-ray photoelectron spectroscopy. Their structure-dependent MCD showed high potential in rational design and construction of high-efficiency magneto-optical devices.

  18. Anisotropic Effective Mass, Optical Property, and Enhanced Band Gap in BN/Phosphorene/BN Heterostructures.

    Science.gov (United States)

    Hu, Tao; Hong, Jisang

    2015-10-28

    Phosphorene is receiving great research interests because of its peculiar physical properties. Nonetheless, the phosphorus has a trouble of degradation due to oxidation. Hereby, we propose that the electrical and optical anisotropic properties can be preserved by encapsulating into hexagonal boron nitride (h-BN). We found that the h-BN contributed to enhancing the band gap of the phosphorene layer. Comparing the band gap of the pristine phosphorene layer, the band gap of the phosphorene/BN(1ML) system was enhanced by 0.15 eV. It was further enhanced by 0.31 eV in the BN(1ML)/phosphorene/BN(1ML) trilayer structure. However, the band gap was not further enhanced when we increased the thickness of the h-BN layers even up to 4 MLs. Interestingly, the anisotropic effective mass and optical property were still preserved in BN/phosphorene/BN heterostructures. Overall, we predict that the capping of phosphorene by the h-BN layers can be an excellent solution to protect the intrinsic properties of the phosphorene.

  19. Effect of UV-irradiation on sol-gel optical films

    International Nuclear Information System (INIS)

    Yang Fan; Shen Jun; Zhou Bin; Wu Guangming; Luo Aiyun; Sun Qi

    2005-01-01

    Sol-gel optical films were deposited on K9 glass and silicon wafer substrates by spin-coating method and a high-pressure mercury lamp was used to perform ultraviolet treating to solidify these films and improve their performance. SEM, AFM, IR and ellipsometer were used to characterize the structure and optical properties of the films. Mechanical property of films was measured by pencil hardness-testing device. Laser damage threshold of films was measured by a Q-switched Nd:YAG high power laser with the wave length of 1064 nm and the pulse width of 15 ns. The results show that UV-irradiation can improve the mechanical property and increase the refractive index of the films. Besides, the nodules on the surface of the films can be changed into pits by UV-irradiation process, so the laser damage threshold of sol-gel thin films will be increased. After UV-irradiation the laser damage threshold of single-layer ZrO 2 film reached 50.6 J/cm 2 (1064 nm, 1 ns). It is found that UV-irradiation is an effective method to avoid the infiltrating between the layers, and the degree of homogeneity of the multilayer films can be improved by this way. (authors)

  20. X-ray Pulse Length Characterization using the Surface Magneto Optic Kerr Effect

    International Nuclear Information System (INIS)

    Krejcik, P.; SLAC

    2006-01-01

    It will be challenging to measure the temporal profile of the hard X-ray SASE beam independently from the electron beam in the LCLS and other 4th generation light sources. A fast interaction mechanism is needed that can be probed by an ultrafast laser pulse in a pump-probe experiment. It is proposed to exploit the rotation in polarization of light reflected from a thin magnetized film, known as the surface magneto optic Kerr effect (SMOKE), to witness the absorption of the x-ray pulse in the thin film. The change in spin orbit coupling induced by the x-ray pulse occurs on the subfemtosecond time scale and changes the polarization of the probe beam. The limitation to the technique lies with the bandwidth of the probe laser pulse and how short the optical pulse can be made. The SMOKE mechanism will be described and the choices of materials for use with 1.5 (angstrom) x-rays. A schematic description of the pump-probe geometry for x-ray diagnosis is also described