WorldWideScience

Sample records for optical spectra recording

  1. Comparison of optical spectra recorded during DPF-1000U plasma experiments with gas-puffing

    Directory of Open Access Journals (Sweden)

    Zaloga Dobromil R.

    2015-06-01

    Full Text Available The results are presented of the optical spectra measurements for free plasma streams generated with the use of the modified DPF-1000U machine. This facility was recently equipped with a gas injection system (the so-called gas-puff placed on the symmetry axis behind the central opening in the inner electrode. The DPF-1000U experimental chamber was filled up with pure deuterium at the initial pressure of 1.6 or 2.4 mbar. Additionally, when the use was made of the gas-puff system about 1 cm3 of pure deuterium was injected at the pressure of 2 bars. The gas injection was initiated 1.5 or 2 ms before the triggering of the main discharge. The investigated plasma discharges were powered from a condenser bank charged initially to 23 kV (corresponding to the energy of 352 kJ, and the maximum discharge current amounted to about 1.8 MA. In order to investigate properties of a dense plasma column formed during DPF-1000U discharges the use was made of the optical emission spectroscopy. The optical spectra were recorded along the line of sight perpendicular to the vacuum chamber, using a Mechelle®900 spectrometer. The recent analysis of all the recorded spectra made it possible to compare the temporal changes in the electron density of a freely propagating plasma stream for discharges without and with the gas-puffing. Using this data an appropriate mode of operation of the DPF-1000U facility could be determined.

  2. Determination of the optical absorption spectra of thin layers from their photoacoustic spectra

    Science.gov (United States)

    Bychto, Leszek; Maliński, Mirosław; Patryn, Aleksy; Tivanov, Mikhail; Gremenok, Valery

    2018-05-01

    This paper presents a new method for computations of the optical absorption coefficient spectra from the normalized photoacoustic amplitude spectra of thin semiconductor samples deposited on the optically transparent and thermally thick substrates. This method was tested on CuIn(Te0.7Se0.3)2 thin films. From the normalized photoacoustic amplitude spectra, the optical absorption coefficient spectra were computed with the new formula as also with the numerical iterative method. From these spectra, the value of the energy gap of the thin film material and the type of the optical transitions were determined. From the experimental optical transmission spectra, the optical absorption coefficient spectra were computed too, and compared with the optical absorption coefficient spectra obtained from photoacoustic spectra.

  3. Optical spectra analysis for breast cancer diagnostics

    Science.gov (United States)

    Belkov, S. A.; Kochemasov, G. G.; Lyubynskaya, T. E.; Maslov, N. V.; Nuzhny, A. S.; da Silva, L. B.; Rubenchik, A.

    2011-11-01

    Minimally invasive probe and optical biopsy system based on optical spectra recording and analysis seem to be a promising tool for early diagnostics of breast cancer. Light scattering and absorption spectra are generated continuously as far as the needle-like probe with one emitting and several collecting optical fibers penetrates through the tissues toward to the suspicious area. That allows analyzing not only the state of local site, but also the structure of tissues along the needle trace. The suggested method has the advantages of automated on-line diagnosing and minimal tissue destruction and in parallel with the conventional diagnostic procedures provides the ground for decision-making. 165 medical trials were completed in Nizhny Novgorod Regional Oncology Centre, Russia. Independent diagnoses were the results of fine biopsy and histology. Application of wavelet expansion and clasterization techniques for spectra analysis revealed several main spectral types for malignant and benign tumors. Automatic classification algorithm demonstrated specificity ˜90% and sensitivity ˜91%. Large amount of information, fuzziness in criteria and data noisiness make neural networks to be an attractive analytic tool. The model based on three-layer perceptron was tested over the sample of 29 `cancer' and 29 `non-cancer' cases and demonstrated total separation.

  4. Optical absorption spectra of Ag-11 isomers

    DEFF Research Database (Denmark)

    Martinez, Jose Ignacio; Fernandez, E. M.

    2009-01-01

    The optical absorption spectra of the three most; stable structural isomers of the Ag-11 cluster were calculated using the time-dependent, density functional theory within the Casida formalism. The slightly different, spectra, of the isomers may permit the identification of the ground-stale confi......The optical absorption spectra of the three most; stable structural isomers of the Ag-11 cluster were calculated using the time-dependent, density functional theory within the Casida formalism. The slightly different, spectra, of the isomers may permit the identification of the ground...

  5. Extracting Optical Fiber Background from Surface-Enhanced Raman Spectroscopy Spectra Based on Bi-Objective Optimization Modeling.

    Science.gov (United States)

    Huang, Jie; Shi, Tielin; Tang, Zirong; Zhu, Wei; Liao, Guanglan; Li, Xiaoping; Gong, Bo; Zhou, Tengyuan

    2017-08-01

    We propose a bi-objective optimization model for extracting optical fiber background from the measured surface-enhanced Raman spectroscopy (SERS) spectrum of the target sample in the application of fiber optic SERS. The model is built using curve fitting to resolve the SERS spectrum into several individual bands, and simultaneously matching some resolved bands with the measured background spectrum. The Pearson correlation coefficient is selected as the similarity index and its maximum value is pursued during the spectral matching process. An algorithm is proposed, programmed, and demonstrated successfully in extracting optical fiber background or fluorescence background from the measured SERS spectra of rhodamine 6G (R6G) and crystal violet (CV). The proposed model not only can be applied to remove optical fiber background or fluorescence background for SERS spectra, but also can be transferred to conventional Raman spectra recorded using fiber optic instrumentation.

  6. INFRARED SPECTRA AND OPTICAL CONSTANTS OF NITRILE ICES RELEVANT TO TITAN's ATMOSPHERE

    International Nuclear Information System (INIS)

    Moore, Marla H.; Hudson, Reggie; Ferrante, Robert F.; James Moore, W.

    2010-01-01

    Spectra and optical constants of nitrile ices known or suspected to be in Titan's atmosphere are presented from 2.0 to 333.3 μm (∼5000-30 cm -1 ). These results are relevant to the ongoing modeling of Cassini CIRS observations of Titan's winter pole. Ices studied are: HCN, hydrogen cyanide; C 2 N 2 , cyanogen; CH 3 CN, acetonitrile; C 2 H 5 CN, propionitrile; and HC 3 N, cyanoacetylene. For each of these molecules, we also report new cryogenic measurements of the real refractive index, n, determined in both the amorphous and crystalline phases at 670 nm. These new values have been incorporated into our optical constant calculations. Spectra were measured and optical constants were calculated for each nitrile at a variety of temperatures, including, but not limited to, 20, 35, 50, 75, 95, and 110 K, in both the amorphous phase and the crystalline phase. This laboratory effort used a dedicated FTIR spectrometer to record transmission spectra of thin-film ice samples. Laser interference was used to measure film thickness during condensation onto a transparent cold window attached to the tail section of a closed-cycle helium cryostat. Optical constants, real (n) and imaginary (k) refractive indices, were determined using Kramers-Kronig analysis. Our calculation reproduces the complete spectrum, including all interference effects.

  7. Thermoluminescence emission spectra and optical bleaching of oligoclase

    International Nuclear Information System (INIS)

    Bos, A.J.J.; Piters, T.M.; Ypma, P.J.

    1994-01-01

    Thermoluminescence (TL) spectra of oligoclase samples have been recorded in the temperature range from 300 to 700 K and the wavelength range from 300 to 850 nm. Like other feldspars, oligoclase produces blue (peaking at 460 nm) and red (peaking at 765 nm) emission bands. The maximum of the red emission occurs 20 K lower than that of the blue band. Optical bleaching was performed at wavelengths varying from 360 to 800 nm. Bleaching of artificially irradiated oligoclase causes a decrease of the TL signal. The bleaching efficiency increases with decreasing wavelength. Bleaching does not only influence the height of the glow curve but also the shape. An interesting observation is that the ratio of the blue and red band intensities is not affected by a bleaching procedure. No evidence has been found that bleaching influences the shape of the emission spectra. The correlation between the blue and red bands is discussed. (Author)

  8. Optical recording medium

    International Nuclear Information System (INIS)

    Andriech, A.; Bivol, V.; Tridukh, G.; Tsiuleanu, D.

    2002-01-01

    The invention relates of the micro- and optoelectronics, computer engineering ,in particular, to tjhe optical information media and may be used in hilography. Summary of the invention consists in that the optical image recording medium, containing a dielectric substrates, onto one surface of which there are placed in series a transparent electricity conducting layer, a photo sensitive recording layer of chalcogenic glass and a thin film electrode of aluminium, is provided with an optically transparent protective layer, applied into the thin film electrode. The result of the invention consists in excluding the dependence of chemical processes course into the medium upon environmental conditions

  9. Accurate Wavelength Measurements and Modeling of Fe XV to Fe XIX Spectra Recorded in High-Density Plasmas between 13.5 and 17 Å

    Science.gov (United States)

    May, M. J.; Beiersdorfer, P.; Dunn, J.; Jordan, N.; Hansen, S. B.; Osterheld, A. L.; Faenov, A. Ya.; Pikuz, T. A.; Skobelev, I. Yu.; Flora, F.; Bollanti, S.; Di Lazzaro, P.; Murra, D.; Reale, A.; Reale, L.; Tomassetti, G.; Ritucci, A.; Francucci, M.; Martellucci, S.; Petrocelli, G.

    2005-06-01

    Iron spectra have been recorded from plasmas created at three different laser plasma facilities: the Tor Vergata University laser in Rome (Italy), the Hercules laser at ENEA in Frascati (Italy), and the Compact Multipulse Terawatt (COMET) laser at LLNL in California (USA). The measurements provide a means of identifying dielectronic satellite lines from Fe XVI and Fe XV in the vicinity of the strong 2p-->3d transitions of Fe XVII. About 80 Δn>=1 lines of Fe XV (Mg-like) to Fe XIX (O-like) were recorded between 13.8 and 17.1 Å with a high spectral resolution (λ/Δλ~4000) about 30 of these lines are from Fe XVI and Fe XV. The laser-produced plasmas had electron temperatures between 100 and 500 eV and electron densities between 1020 and 1022 cm-3. The Hebrew University Lawrence Livermore Atomic Code (HULLAC) was used to calculate the atomic structure and atomic rates for Fe XV-XIX. HULLAC was used to calculate synthetic line intensities at Te=200 eV and ne=1021 cm-3 for three different conditions to illustrate the role of opacity: optically thin plasmas with no excitation-autoionization/dielectronic recombination (EA/DR) contributions to the line intensities, optically thin plasmas that included EA/DR contributions to the line intensities, and optically thick plasmas (optical depth ~200 μm) that included EA/DR contributions to the line intensities. The optically thick simulation best reproduced the recorded spectrum from the Hercules laser. However, some discrepancies between the modeling and the recorded spectra remain.

  10. The Radio-optical Spectra of BL Lacs and Possible Relatives

    Science.gov (United States)

    Dennett-Thorpe, J.

    I consider the suggestion that, in a complete sample of flat-spectrum radio sources with available optical spectra (Marcha et al 1996), the strong emission line objects, or those with passive elliptical spectra are close relatives of the BL Lacs. New observations at four frequencies from 8 to 43GHz are presented, together with evidence for radio variability. Combined with other radio and optical data from the literature, we are able to construct the non-thermal SEDs and use these to address the questions: are the optically passive objects potentially `unrecognised' BL Lacs (either intrinsically weak and/or hidden by starlight)? What is the relationship between the surprising number of strong emission-line objects and the BL Lacs?

  11. Probing molecular chirality by coherent optical absorption spectra

    Energy Technology Data Exchange (ETDEWEB)

    Jia, W. Z. [Quantum Optoelectronics Laboratory, School of Physics and Technology, Southwest Jiaotong University, Chengdu 610031 (China); Wei, L. F. [Quantum Optoelectronics Laboratory, School of Physics and Technology, Southwest Jiaotong University, Chengdu 610031 (China); State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)

    2011-11-15

    We propose an approach to sensitively probe the chirality of molecules by measuring their coherent optical-absorption spectra. It is shown that quantum dynamics of the cyclic three-level chiral molecules driven by appropriately designed external fields is total-phase dependent. This will result in chirality-dependent absorption spectra for the probe field. As a consequence, the charality-dependent information in the spectra (such as the locations and relative heights of the characteristic absorption peaks) can be utilized to identify molecular chirality and determinate enantiomer excess (i.e., the percentages of different enantiomers). The feasibility of the proposal with chiral molecules confined in hollow-core photonic crystal fiber is also discussed.

  12. Isotope effects on the optical spectra of semiconductors

    Science.gov (United States)

    Cardona, Manuel; Thewalt, M. L. W.

    2005-10-01

    Since the end of the cold war, macroscopic amounts of separated stable isotopes of most elements have been available “off the shelf” at affordable prices. Using these materials, single crystals of many semiconductors have been grown and the dependence of their physical properties on isotopic composition has been investigated. The most conspicuous effects observed have to do with the dependence of phonon frequencies and linewidths on isotopic composition. These affect the electronic properties of solids through the mechanism of electron-phonon interaction, in particular, in the corresponding optical excitation spectra and energy gaps. This review contains a brief introduction to the history, availability, and characterization of stable isotopes, including their many applications in science and technology. It is followed by a concise discussion of the effects of isotopic composition on the vibrational spectra, including the influence of average isotopic masses and isotopic disorder on the phonons. The final sections deal with the effects of electron-phonon interaction on energy gaps, the concomitant effects on the luminescence spectra of free and bound excitons, with particular emphasis on silicon, and the effects of isotopic composition of the host material on the optical transitions between the bound states of hydrogenic impurities.

  13. Raman Optical Activity and Raman Spectra of Amphetamine Species

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Shim, Irene; White, Peter Cyril

    2012-01-01

    Theoretical calculations and preliminary measurements of vibrational Raman optical activity (ROA) spectra of different species of amphetamine (amphetamine and amphetamine-H+) are reported for the first time. The quantum chemical calculations were carried out as hybrid ab initio DFT-molecular orbi......Theoretical calculations and preliminary measurements of vibrational Raman optical activity (ROA) spectra of different species of amphetamine (amphetamine and amphetamine-H+) are reported for the first time. The quantum chemical calculations were carried out as hybrid ab initio DFT...... are employed for identification purposes. The DFT calculations show that the most stable conformations are those allowing for close contact between the aromatic ring and the amine hydrogen atoms. The internal rotational barrier within the same amphetamine enanti- omer has a considerable influence on the Raman...

  14. Spectral shaping for non-Gaussian source spectra in optical coherence tomography

    NARCIS (Netherlands)

    Tripathi, R; Nassif, N. A.; Nelson, JS; Park, B.H.; de Boer, JF

    2002-01-01

    We present a digital spectral shaping technique to reduce the sidelobes (ringing) of the axial point-spread function in optical coherence tomography for non-Gaussian-shaped source spectra. The spectra of two superluminescent diodes were combined to generate a spectrum with significant modulation.

  15. Infrared Spectra, Index of Refraction, and Optical Constants of Nitrile Ices Relevant to Titan's Atmosphere

    Science.gov (United States)

    Moore, Marla; Ferrante, Robert; Moore, William; Hudson, Reggie

    2010-01-01

    Spectra and optical constants of nitrite ices known or suspected to be in Titan's atmosphere are presented from 2.5 to 200 microns (4000 to 50 per cm ). These results are relevant to the ongoing modeling of Cassini CIRS observations of Titan's winter pole. Ices studied include: HCN, hydrogen cyanide; C2N2, cyanogen; CH3CN, acetonitrile; C 2H5CN, propionitrile; and HC3N, cyanoacetylene. For each of these molecules we report new measurements of the index of refraction, n, determined in both the amorphous- and crystallinephase at 670 nm. Spectra were measured and optical constants were calculated for each nitrite at a variety of temperatures including 20, 35, 50, 75, 95, and 110 K, in the amorphous- and crystalline-phase. This laboratory effort uses a dedicated FTIR spectrometer to record transmission spectra of thin-film ice samples. Laser interference is used to measure film thickness during condensation onto a transparent cold window attached to the tail section of a closed-cycle helium cryostat. Optical constants, real (n) and imaginary (k) refractive indices, are determined using Kramers-Kronig (K-K) analysis. Our calculation reproduces the complete spectrum, including all interference effects. Index of refraction measurements are made in a separate dedicated FTIR spectrometer where interference deposit fringes are measured using two 670 nm lasers at different angles to the ice substrate. A survey of these new measurements will be presented along with a discussion of their validation, errors, and application to Titan data.

  16. Krypton K-shell X-ray spectra recorded by the HENEX spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Seely, J.F. [Naval Research Laboratory, Space Science Division, Washington DC 20375 (United States)]. E-mail: john.seely@nrl.navy.mil; Back, C.A. [Lawrence Livermore National Laboratory, Livermore CA 94550 (United States); Constantin, C. [Lawrence Livermore National Laboratory, Livermore CA 94550 (United States); Lee, R.W. [Lawrence Livermore National Laboratory, Livermore CA 94550 (United States); Chung, H.-K. [Lawrence Livermore National Laboratory, Livermore CA 94550 (United States); Hudson, L.T. [National Institute of Standards and Technology, Gaithersburg MD 20899 (United States); Szabo, C.I. [National Institute of Standards and Technology, Gaithersburg MD 20899 (United States); Henins, A. [National Institute of Standards and Technology, Gaithersburg MD 20899 (United States); Holland, G.E. [SFA Inc., 9315 Largo Drive West Suite 200, Largo MD 20774 (United States); Atkin, R. [Tiger Innovations, L.L.C., 3610 Vacation Lane, Arlington VA 22207 (United States); Marlin, L. [Naval Research Laboratory, Space Science Division, Washington DC 20375 (United States)

    2006-05-15

    High-resolution X-ray spectra were recorded by the High-Energy Electronic X-ray (HENEX) spectrometer from a variety of targets irradiated by the Omega laser at the Laboratory for Laser Energetics. The HENEX spectrometer utilizes four reflection crystals covering the 1-20keV energy range and one quartz(10-11) transmission crystal (Laue geometry) covering the 11-40keV range. The time-integrated spectral images were recorded on five CMOS X-ray detectors. In the spectra recorded from krypton-filled gasbag and hohlraum targets, the helium-like K-shell transitions n=1-2, 1-3, and 1-4 appeared in the 13-17keV energy range. A number of additional spectral features were observed at energies lower than the helium-like n=1-3 and n=1-4 transitions. Based on computational simulations of the spectra using the FLYCHK/FLYSPEC codes, which included opacity effects, these additional features are identified to be inner-shell transitions from the Li-like through N-like krypton charge states. The comparisons of the calculated and observed spectra indicate that these transitions are characteristic of the plasma conditions immediately after the laser pulse when the krypton density is 2x10{sup 18}cm{sup -3} and the electron temperature is in the range 2.8-3.2keV. These spectral features represent a new diagnostic for the charge state distribution, the density and electron temperature, and the plasma opacity. Laboratory experiments indicate that it is feasible to record K-shell spectra from gold and higher Z targets in the >60keV energy range using a Ge(220) transmission crystal.

  17. Continuous registration of optical absorption spectra of periodically produced solvated electrons

    International Nuclear Information System (INIS)

    Krebs, P.

    1975-01-01

    Absorption spectra of unstable intermediates, such as solvated electrons, were usually taken point by point, recording the time-dependent light absorption after their production by a flash. The experimental arrangement for continuous recording of the spectra consists of a conventional one beam spectral photometer with a stabilized white light source, a monochromator, and a light detector. By periodic production of light absorbing intermediates such as solvated electrons, e.g., by ac uv light, a small ac signal is modulated on the light detector output which after amplification can be continuously recorded as a function of wavelength. This method allows the detection of absorption spectra when disturbances from the outside provide a signal-to-noise ratio smaller than 1

  18. Optical characterization and blu-ray recording properties of metal(II) azo barbituric acid complex films

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.Y. [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)], E-mail: xyli@siom.ac.cn; Wu, Y.Q. [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Key Lab of Functional Inorganic Material Chemistry (Heilongjiang University), Ministry of Education, Haerbin 150080 (China)], E-mail: yqwu@siom.ac.cn; Gu, D.D.; Gan, F.X. [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2009-02-25

    Smooth thin films of nickel(II), cobalt(II) and zinc(II) complexes with azo barbituric acid were prepared by the spin-coating method. Absorption spectra of the thin films on K9 glass substrates in 300-700 nm wavelength region were measured. Optical constants (complex refractive index N = n + ik) of the thin films prepared on single-crystal silicon substrates in 275-695 nm wavelength region were investigated on rotating analyzer-polarizer type of scanning ellipsometer, and dielectric constant {epsilon} ({epsilon} = {epsilon}{sub 1} + i{epsilon}{sub 2}) as well as absorption coefficient {alpha} of thin films were calculated at 405 nm. In addition, static optical recording properties of the cobalt(II) complex thin film with an Ag reflective layer was carried out using a 406.7 nm blue-violet laser and a high numerical aperture (NA) of 0.90. Clear recording marks with high reflectivity contrast (>60%) at proper laser power and pulse width were obtained, and the size of recording mark was as small as 250 nm. The results indicate that these metal(II) complexes are promising organic recording medium for the blu-ray optical storage system.

  19. Optical spectra of phthalocyanines and related compounds a guide for beginners

    CERN Document Server

    Isago, Hiroaki

    2015-01-01

    This book displays how optical (absorption, emission, and magnetic circular dichroism) spectra of phthalocyanines and related macrocyclic dyes can be varied from their prototypical ones depending on conditions. As these compounds can be involved in colorful chemistry (which might be driven by impurities in solvents), their spectra behave like the sea-god Proteus in their mutability. Therefore, those who have been engaged with phthalocyanines for the first time, including even educated professional researchers and engineers, may have been embarrassed by the deceptive behavior of their compounds and could have, in the worst cases, given up their projects. This book is aimed not merely at reviewing the optical spectra, but also at helping such people, particularly beginners, to figure them out by showing some examples of their prototypical spectra and their variations in several situations. For the purpose of better understanding, the book also provides an introduction to their theoretical backgrounds as graphic...

  20. HIGH RESOLUTION OPTICAL AND NIR SPECTRA OF HBC 722

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong-Eun; Park, Sunkyung [School of Space Research, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of); Green, Joel D.; Cochran, William D. [Department of Astronomy, University of Texas at Austin, TX (United States); Kang, Wonseok; Lee, Sang-Gak [National Youth Space Center, 200 Deokheungyangjjok-gil, Dongil-myeon, Goheung-gun, Jeollanam-do 548-951 (Korea, Republic of); Sung, Hyun-Il, E-mail: jeongeun.lee@khu.ac.kr, E-mail: sunkyung@khu.ac.kr, E-mail: joel@astro.as.utexas.edu, E-mail: wdc@astro.as.utexas.edu, E-mail: wskang@kywa.or.kr, E-mail: sanggak@kywa.or.kr, E-mail: hisung@kasi.re.kr [Korea Astronomy and Space Science Institute, 776 Daedeok-daero, Yuseong-gu, Daejeon 305-348 (Korea, Republic of)

    2015-07-01

    We present the results of high resolution (R ≥ 30,000) optical and near-IR spectroscopic monitoring observations of HBC 722, a recent FU Orionis object that underwent an accretion burst in 2010. We observed HBC 722 in the optical/near-IR with the Bohyunsan Optical Echelle Spectrograph, Hobby–Eberly Telescope-HRS, and Immersion Grating Infrared Spectrograph, at various points in the outburst. We found atomic lines with strongly blueshifted absorption features or P Cygni profiles, both evidence of a wind driven by the accretion. Some lines show a broad double-peaked absorption feature, evidence of disk rotation. However, the wind-driven and disk-driven spectroscopic features are anti-correlated in time; the disk features became strong as the wind features disappeared. This anti-correlation might indicate that the rebuilding of the inner disk was interrupted by the wind pressure during the first 2 years. The half-width at half-depth of the double-peaked profiles decreases with wavelength, indicative of the Keplerian rotation; the optical spectra with the disk feature are fitted by a G5 template stellar spectrum convolved with a rotation velocity of 70 km s{sup −1} while the near-IR disk features are fitted by a K5 template stellar spectrum convolved with a rotation velocity of 50 km s{sup −1}. Therefore, the optical and near-IR spectra seem to trace the disk at 39 and 76 R{sub ⊙}, respectively. We fit a power-law temperature distribution in the disk, finding an index of 0.8, comparable to optically thick accretion disk models.

  1. Quasiparticle energies, excitons, and optical spectra of few-layer black phosphorus

    International Nuclear Information System (INIS)

    Tran, Vy; Fei, Ruixiang; Yang, Li

    2015-01-01

    We report first-principles GW–Bethe–Salpeter-equation (BSE) studies of excited-state properties of few-layer black phosphorus (BP) (phosphorene). With improved GW computational methods, we obtained converged quasiparticle band gaps and optical absorption spectra by the single-shot (G 0 W 0 ) procedure. Moreover, we reveal fine structures of anisotropic excitons, including the series of one-dimensional like wave functions, spin singlet–triplet splitting, and electron–hole binding energy spectra by solving BSE. An effective-mass model is employed to describe these electron–hole pairs, shedding light on estimating the exciton binding energy of anisotropic two-dimensional semiconductors without expensive ab initio simulations. Finally, the anisotropic optical response of BP is explained by using optical selection rules based on the projected single-particle density of states at band edges. (paper)

  2. Comparison of optical and electron spectra in an infra-red free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    MacLeod, A.M.; Gillespie, W.A.; Martin, P.F. [Univ. of Abertay, Dundee (United Kingdom)] [and others

    1995-12-31

    Time-resolved electron and optical spectra recently acquired at the FELIX facility are presented, showing the evolution of the respective macropulses. A comparison is made between the optical power output during the macropulse and the measured power extracted from the electron beam using a simple model of the cavity losses. Data are available for a wide range of operating conditions: the wavelength range is from 9 {mu}m to 28 {mu}m and detuning are between 1/4{lambda} and 2{lambda}. The effect of rapid electron beam energy changes on the optical and electron spectra will also be discussed.

  3. Fast optical recording media based on semiconductor nanostructures for image recording and processing

    International Nuclear Information System (INIS)

    Kasherininov, P. G.; Tomasov, A. A.

    2008-01-01

    Fast optical recording media based on semiconductor nanostructures (CdTe, GaAs) for image recording and processing with a speed to 10 6 cycle/s (which exceeds the speed of known recording media based on metal-insulator-semiconductor-(liquid crystal) (MIS-LC) structures by two to three orders of magnitude), a photosensitivity of 10 -2 V/cm 2 , and a spatial resolution of 5-10 (line pairs)/mm are developed. Operating principles of nanostructures as fast optical recording media and methods for reading images recorded in such media are described. Fast optical processors for recording images in incoherent light based on CdTe crystal nanostructures are implemented. The possibility of their application to fabricate image correlators is shown.

  4. Interface phonon effect on optical spectra of quantum nanostructures

    International Nuclear Information System (INIS)

    Maslov, Alexander Yu.; Proshina, Olga V.; Rusina, Anastasia N.

    2009-01-01

    This paper deals with theory of large radius polaron effect in quantum wells, wires and dots. The interaction of charge particles and excitons with both bulk and interface optical phonons is taken into consideration. The analytical expression for polaron binding energy is obtained for different types of nanostructures. It is shown that the contribution of interface phonons to the polaron binding energy may exceed the bulk phonon part. The manifestation of polaron effects in optical spectra of quantum nanostructures is discussed.

  5. High-Density Near-Field Optical Disc Recording

    Science.gov (United States)

    Shinoda, Masataka; Saito, Kimihiro; Ishimoto, Tsutomu; Kondo, Takao; Nakaoki, Ariyoshi; Ide, Naoki; Furuki, Motohiro; Takeda, Minoru; Akiyama, Yuji; Shimouma, Takashi; Yamamoto, Masanobu

    2005-05-01

    We developed a high-density near-field optical recording disc system using a solid immersion lens. The near-field optical pick-up consists of a solid immersion lens with a numerical aperture of 1.84. The laser wavelength for recording is 405 nm. In order to realize the near-field optical recording disc, we used a phase-change recording media and a molded polycarbonate substrate. A clear eye pattern of 112 GB capacity with 160 nm track pitch and 50 nm bit length was observed. The equivalent areal density is 80.6 Gbit/in2. The bottom bit error rate of 3 tracks-write was 4.5× 10-5. The readout power margin and the recording power margin were ± 30.4% and ± 11.2%, respectively.

  6. VizieR Online Data Catalog: BD+46 442 optical spectra (Bollen+, 2017)

    Science.gov (United States)

    Bollen, D.; van Winckel, H.; Kamath, D.

    2017-08-01

    Reduced high-resolution (R~85000) optical spectra of BD+46 442. These 104 spectra were obtained between July 2009 and January 2016 from the HERMES spectrograph, mounted on the 1.2m Flemish Mercator telescope at La Palma, Canary Islands, Spain. The spectra cover a wavelength range from 3770 to 9000 angstrom in logscale. The flux is given in arbitrary units. The spectra are collected as FITS files. The numbering of the spectra corresponds to the numbering in Table B.1 in the article (e.g. spec_15.fits corresponds to N=15). (2 data files).

  7. Meeting the Cool Neighbors. XII. An Optically Anchored Analysis of the Near-infrared Spectra of L Dwarfs

    Science.gov (United States)

    Cruz, Kelle L.; Núñez, Alejandro; Burgasser, Adam J.; Abrahams, Ellianna; Rice, Emily L.; Reid, I. Neill; Looper, Dagny

    2018-01-01

    Discrepancies between competing optical and near-infrared (NIR) spectral typing systems for L dwarfs have motivated us to search for a classification scheme that ties the optical and NIR schemes together, and addresses complexities in the spectral morphology. We use new and extant optical and NIR spectra to compile a sample of 171 L dwarfs, including 27 low-gravity β and γ objects, with spectral coverage from 0.6–2.4 μm. We present 155 new low-resolution NIR spectra and 19 new optical spectra. We utilize a method for analyzing NIR spectra that partially removes the broad-band spectral slope and reveals similarities in the absorption features between objects of the same optical spectral type. Using the optical spectra as an anchor, we generate near-infrared spectral average templates for L0–L8, L0–L4γ, and L0–L1β type dwarfs. These templates reveal that NIR spectral morphologies are correlated with the optical types. They also show the range of spectral morphologies spanned by each spectral type. We compare low-gravity and field-gravity templates to provide recommendations on the minimum required observations for credibly classifying low-gravity spectra using low-resolution NIR data. We use the templates to evaluate the existing NIR spectral standards and propose new ones where appropriate. Finally, we build on the work of Kirkpatrick et al. to provide a spectral typing method that is tied to the optical and can be used when only H or K band data are available. The methods we present here provide resolutions to several long-standing issues with classifying L dwarf spectra and could also be the foundation for a spectral classification scheme for cloudy exoplanets.

  8. Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime.

    Science.gov (United States)

    Guo, Zijian; Favazza, Christopher; Garcia-Uribe, Alejandro; Wang, Lihong V

    2012-06-01

    Photoacoustic (PA) microscopy (PAM) can image optical absorption contrast with ultrasonic spatial resolution in the optical diffusive regime. Conventionally, accurate quantification in PAM requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. With the acoustic spectral method, the absorption coefficients of an oxygenated bovine blood phantom at 560, 565, 570, and 575 nm were quantified with errors of <3%. We also quantified the total hemoglobin concentration and hemoglobin oxygen saturation in a live mouse. Compared with the conventional amplitude method, the acoustic spectral method provides greater quantification accuracy in the optical diffusive regime. The limitations of the acoustic spectral method was also discussed.

  9. Optical emission line spectra of Seyfert galaxies and radio galaxies

    International Nuclear Information System (INIS)

    Osterbrock, D.E.

    1978-01-01

    Many radio galaxies have strong emission lines in their optical spectra, similar to the emission lines in the spectra of Seyfert galaxies. The range of ionization extends from [O I] and [N I] through [Ne V] and [Fe VII] to [Fe X]. The emission-line spectra of radio galaxies divide into two types, narrow-line radio galaxies whose spectra are indistinguishable from Seyfert 2 galaxies, and broad-line radio galaxies whose spectra are similar to Seyfert 1 galaxies. However on the average the broad-line radio galaxies have steeper Balmer decrements, stronger [O III] and weaker Fe II emission than the Seyfert 1 galaxies, though at least one Seyfert 1 galaxy not known to be a radio source has a spectrum very similar to typical broad-line radio galaxies. Intermediate-type Seyfert galaxies exist that show various mixtures of the Seyfert 1 and Seyfert 2 properties, and the narrow-line or Seyfert 2 property seems to be strongly correlated with radio emission. (Auth.)

  10. FT-IR reflection spectra of single crystals: resolving phonons of different symmetry without using polarised radiation

    Directory of Open Access Journals (Sweden)

    METODIJA NAJDOSKI

    2000-07-01

    Full Text Available Fourier-transform infrared (FT-IR reflection spectra, asquired at nearnormal incidence, were recorded from single crystals belonging to six crystal systems: CsCr(SO42.12H2O (alum, cubic, K2CuCl2·2H2O (Mitscherlichite, tetragonal, CaCO3 (calcite, hexagonal, KHSO4 (mercallite, orthorhombic, CaSO4·2H2O (gypsum, monoclinic and CuSO4·5H2O (chalcantite, triclinic. The acquired IR reflection spectra were further transformed into absorption spectra, employing the Kramers-Kronig transformation. Except for the cubic alums, the spectra strongly depend on the crystal face from which they were recorded; this is a consequence of anisotropy. Phonons of a given symmetry (E-species, in tetragonal/hexagonal and B-species, in monoclinic crystals may be resolved without using a polariser. The spectrum may be simplified in the case of an orthorhombic crystal, as well. The longitudinal-optical (LO and transversal-optical (TO mode frequencies were calculated in the case of optically isotropic and the simplified spectra of optically uniaxial crystals.

  11. Infrared Spectra and Optical Constants of Elusive Amorphous Methane

    Science.gov (United States)

    Gerakines, Perry A.; Hudson, Reggie L.

    2015-01-01

    New and accurate laboratory results are reported for amorphous methane (CH4) ice near 10 K for the study of the interstellar medium (ISM) and the outer Solar System. Near- and mid-infrared (IR) data, including spectra, band strengths, absorption coefficients, and optical constants, are presented for the first time for this seldom-studied amorphous solid. The apparent IR band strength near 1300 cm(exp -1) (7.69 micrometer) for amorphous CH4 is found to be about 33% higher than the value long used by IR astronomers to convert spectral observations of interstellar CH4 into CH4 abundances. Although CH4 is most likely to be found in an amorphous phase in the ISM, a comparison of results from various laboratory groups shows that the earlier CH4 band strength at 1300 cm(exp -1) (7.69 micrometer) was derived from IR spectra of ices that were either partially or entirely crystalline CH4 Applications of the new amorphous-CH4 results are discussed, and all optical constants are made available in electronic form.

  12. Laser- and gamma-induced transformations of optical spectra of indium-doped sodium borate glass

    CERN Document Server

    Kopyshinsky, O V; Zelensky, S E; Danilchenko, B A; Shakhov, O P

    2003-01-01

    The optical absorption and luminescence properties of indium-doped sodium borate glass irradiated by gamma-rays and by powerful UV lasers within the impurity-related absorption band are investigated experimentally. It is demonstrated that both the laser- and gamma-irradiation cause similar transformations of optical spectra in the UV and visible regions. The changes of the spectra observed are described with the use of a model which includes three types of impurity centres formed by differently charged indium ions.

  13. Exciton scattering approach for optical spectra calculations in branched conjugated macromolecules

    International Nuclear Information System (INIS)

    Li, Hao; Wu, Chao; Malinin, Sergey V.; Tretiak, Sergei; Chernyak, Vladimir Y.

    2016-01-01

    The exciton scattering (ES) technique is a multiscale approach based on the concept of a particle in a box and developed for efficient calculations of excited-state electronic structure and optical spectra in low-dimensional conjugated macromolecules. Within the ES method, electronic excitations in molecular structure are attributed to standing waves representing quantum quasi-particles (excitons), which reside on the graph whose edges and nodes stand for the molecular linear segments and vertices, respectively. Exciton propagation on the linear segments is characterized by the exciton dispersion, whereas exciton scattering at the branching centers is determined by the energy-dependent scattering matrices. Using these ES energetic parameters, the excitation energies are then found by solving a set of generalized “particle in a box” problems on the graph that represents the molecule. Similarly, unique energy-dependent ES dipolar parameters permit calculations of the corresponding oscillator strengths, thus, completing optical spectra modeling. Both the energetic and dipolar parameters can be extracted from quantum-chemical computations in small molecular fragments and tabulated in the ES library for further applications. Subsequently, spectroscopic modeling for any macrostructure within a considered molecular family could be performed with negligible numerical effort. We demonstrate the ES method application to molecular families of branched conjugated phenylacetylenes and ladder poly-para-phenylenes, as well as structures with electron donor and acceptor chemical substituents. Time-dependent density functional theory (TD-DFT) is used as a reference model for electronic structure. The ES calculations accurately reproduce the optical spectra compared to the reference quantum chemistry results, and make possible to predict spectra of complex macromolecules, where conventional electronic structure calculations are unfeasible.

  14. Exciton scattering approach for optical spectra calculations in branched conjugated macromolecules

    Science.gov (United States)

    Li, Hao; Wu, Chao; Malinin, Sergey V.; Tretiak, Sergei; Chernyak, Vladimir Y.

    2016-12-01

    The exciton scattering (ES) technique is a multiscale approach based on the concept of a particle in a box and developed for efficient calculations of excited-state electronic structure and optical spectra in low-dimensional conjugated macromolecules. Within the ES method, electronic excitations in molecular structure are attributed to standing waves representing quantum quasi-particles (excitons), which reside on the graph whose edges and nodes stand for the molecular linear segments and vertices, respectively. Exciton propagation on the linear segments is characterized by the exciton dispersion, whereas exciton scattering at the branching centers is determined by the energy-dependent scattering matrices. Using these ES energetic parameters, the excitation energies are then found by solving a set of generalized "particle in a box" problems on the graph that represents the molecule. Similarly, unique energy-dependent ES dipolar parameters permit calculations of the corresponding oscillator strengths, thus, completing optical spectra modeling. Both the energetic and dipolar parameters can be extracted from quantum-chemical computations in small molecular fragments and tabulated in the ES library for further applications. Subsequently, spectroscopic modeling for any macrostructure within a considered molecular family could be performed with negligible numerical effort. We demonstrate the ES method application to molecular families of branched conjugated phenylacetylenes and ladder poly-para-phenylenes, as well as structures with electron donor and acceptor chemical substituents. Time-dependent density functional theory (TD-DFT) is used as a reference model for electronic structure. The ES calculations accurately reproduce the optical spectra compared to the reference quantum chemistry results, and make possible to predict spectra of complex macromolecules, where conventional electronic structure calculations are unfeasible.

  15. Exciton scattering approach for optical spectra calculations in branched conjugated macromolecules

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hao [Department of Chemistry, University of Houston, Houston, TX 77204 (United States); Wu, Chao [Electronic Structure Lab, Center of Microscopic Theory and Simulation, Frontier Institute of Science and Technology, Xian Jiaotong University, Xian 710054 (China); Malinin, Sergey V. [Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202 (United States); Tretiak, Sergei, E-mail: serg@lanl.gov [Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Chernyak, Vladimir Y., E-mail: chernyak@chem.wayne.edu [Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202 (United States)

    2016-12-20

    The exciton scattering (ES) technique is a multiscale approach based on the concept of a particle in a box and developed for efficient calculations of excited-state electronic structure and optical spectra in low-dimensional conjugated macromolecules. Within the ES method, electronic excitations in molecular structure are attributed to standing waves representing quantum quasi-particles (excitons), which reside on the graph whose edges and nodes stand for the molecular linear segments and vertices, respectively. Exciton propagation on the linear segments is characterized by the exciton dispersion, whereas exciton scattering at the branching centers is determined by the energy-dependent scattering matrices. Using these ES energetic parameters, the excitation energies are then found by solving a set of generalized “particle in a box” problems on the graph that represents the molecule. Similarly, unique energy-dependent ES dipolar parameters permit calculations of the corresponding oscillator strengths, thus, completing optical spectra modeling. Both the energetic and dipolar parameters can be extracted from quantum-chemical computations in small molecular fragments and tabulated in the ES library for further applications. Subsequently, spectroscopic modeling for any macrostructure within a considered molecular family could be performed with negligible numerical effort. We demonstrate the ES method application to molecular families of branched conjugated phenylacetylenes and ladder poly-para-phenylenes, as well as structures with electron donor and acceptor chemical substituents. Time-dependent density functional theory (TD-DFT) is used as a reference model for electronic structure. The ES calculations accurately reproduce the optical spectra compared to the reference quantum chemistry results, and make possible to predict spectra of complex macromolecules, where conventional electronic structure calculations are unfeasible.

  16. A first-principles investigation of the optical spectra of oxidized graphene

    KAUST Repository

    Singh, Nirpendra

    2013-01-14

    The electronic and optical properties of mono, di, tri, and tetravacancies in graphene are studied in comparison to each other, using density functional theory. In addition, oxidized monovacancies are considered for different oxygen concentrations. Pristine graphene is found to be more absorptive than any defect configuration at low energy. We demonstrate characteristic differences in the optical spectra of the various defects for energies up to 3 eV. This makes it possible to quantify by optical spectroscopy the ratios of the defect species present in a sample.

  17. A first-principles investigation of the optical spectra of oxidized graphene

    KAUST Repository

    Singh, Nirpendra; Kaloni, Thaneshwor P.; Schwingenschlö gl, Udo

    2013-01-01

    The electronic and optical properties of mono, di, tri, and tetravacancies in graphene are studied in comparison to each other, using density functional theory. In addition, oxidized monovacancies are considered for different oxygen concentrations. Pristine graphene is found to be more absorptive than any defect configuration at low energy. We demonstrate characteristic differences in the optical spectra of the various defects for energies up to 3 eV. This makes it possible to quantify by optical spectroscopy the ratios of the defect species present in a sample.

  18. STELLAR POPULATIONS IN MEDIUM REDSHIFT CLUSTERS .2. OPTICAL-INFRARED PHOTOMETRY AND SPECTRA

    NARCIS (Netherlands)

    PICKLES, AJ; VANDERKRUIT, PC

    1991-01-01

    We present optical and infrared photometry (BV RI, J H K) and spectra of galaxies in 6 medium redshift clusters covering the redshift range 0.19 less-than-or-equal-to z less-than-or-equal-to 0.4. The array photometry is used to note the radial distribution of the cluster galaxies with optical and

  19. Late time optical spectra from the 56Ni model for Type I supernovae

    International Nuclear Information System (INIS)

    Axelrod, T.S.

    1980-07-01

    The hypothesis that the optical luminosity of Type I supernovae results from the radioactive decay of 56 Ni synthesized and ejected by the explosion has been investigated by numerical simulation of the optical spectrum resulting from a homologously expanding shell composed initially of pure 56 Ni core. This model, which neglects the effects of material external to the 56 Ni core, is expected to provide a reasonable representation of the supernova at late times when the star is nearly transparent to optical photons. The numerical simulation determines the temperature, ionization state, and non-LTE level populations which result from energy deposition by the radioactive decay products of 56 Ni and 56 Co. The optical spectrum includes the effects of both allowed and forbidden lines. The optical spectra resulting from the simulation are found to be sensitive to the mass and ejection velocity of the 56 Ni shell. A range of these parameters has been found which results in good agreement with the observed spectra of SN1972e over a considerable range of time. In particular, evidence for the expected decaying abundance of 56 Co has been found in the spectra of SN1972e. These results are used to assess the validity of the 56 Ni model and set limits on the mass and explosion mechanism of the Type I progenitor. The possibilities for improvement of the numerical model are discussed and future atomic data requirements defined

  20. Optical spectra of 73 stripped-envelope core-collapse supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Modjaz, M.; Bianco, F. B.; Liu, Y. Q. [Center for Cosmology and Particle Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Blondin, S. [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388, Marseille (France); Kirshner, R. P.; Challis, P.; Hicken, M.; Marion, G. H. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Matheson, T. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Berlind, P.; Calkins, M. L. [F. L. Whipple Observatory, 670 Mt. Hopkins Road, P.O. Box 97, Amado, AZ 85645 (United States); Garnavich, P. [Department of Physics, 225 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556 (United States); Jha, S., E-mail: mmodjaz@nyu.edu [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States)

    2014-05-01

    We present 645 optical spectra of 73 supernovae (SNe) of Types IIb, Ib, Ic, and broad-lined Ic. All of these types are attributed to the core collapse of massive stars, with varying degrees of intact H and He envelopes before explosion. The SNe in our sample have a mean redshift (cz) = 4200 km s{sup –1}. Most of these spectra were gathered at the Harvard-Smithsonian Center for Astrophysics (CfA) between 2004 and 2009. For 53 SNe, these are the first published spectra. The data coverage ranges from mere identification (1-3 spectra) for a few SNe to extensive series of observations (10-30 spectra) that trace the spectral evolution for others, with an average of 9 spectra per SN. For 44 SNe of the 73 SNe presented here, we have well-determined dates of maximum light to determine the phase of each spectrum. Our sample constitutes the most extensive spectral library of stripped-envelope SNe to date. We provide very early coverage (as early as 30 days before V-band max) for photospheric spectra, as well as late-time nebular coverage when the innermost regions of the SN are visible (as late as 2 yr after explosion, while for SN 1993J, we have data as late as 11.6 yr). This data set has homogeneous observations and reductions that allow us to study the spectroscopic diversity of these classes of stripped SNe and to compare these to SNe-gamma-ray bursts. We undertake these matters in follow-up papers.

  1. Studies on Fourier amplitude spectra of accelerograms recorded on rock sites

    International Nuclear Information System (INIS)

    Ghosh, A.K.; Rao, K.S.

    1990-01-01

    Fourier spectra of 54 earthquake accelerograms recorded on rock sites in the U.S.A. have been analysed. These could be used in generation of synthetic accelerogramms for seismic design. (author). 19 figs., 1 tab., 1 appendix, 19 re fs

  2. Linear optical absorption spectra of mesoscopic structures in intense THz fields: Free-particle properties

    DEFF Research Database (Denmark)

    Johnsen, Kristinn; Jauho, Antti-Pekka

    1998-01-01

    We theoretically study the effect of THz radiation on the linear optical absorption spectra of semiconductor structures. A general theoretical framework, based on nonequilibrium Green functions, is formulated and applied to the calculation of linear optical absorption spectrum for several...

  3. FHILs in Seyferts and Liners in the optical spectra

    Science.gov (United States)

    Vera, R. J. C.; Rodriguez, A. M.; Portilla, J. G.

    2014-10-01

    We present the main results from a selection of optical spectra of Seyfert and LINER galaxies taken from the 9^{th} release of the SDSS with detectable emission of forbidden high ionization lines (FHILs), better known as coronal lines. A catalog of 345 Seyfert 1 (Sy1) and Seyfert 2 (Sy2) galaxies with FHILs emission is presented. By analyzing their spectra and utilizing data from the literature we found the following results: (1) The flux ratios between FHILs suggests anisotropy of emission between Sy1 and Sy2 galaxies, which agrees with the results found by Nagao et al. (2002) and Portilla (2012). Sy1 seems to emit more FHILs than Sy2. (2) This anisotropy suggests the idea that an important, but not the majority, of the emission of FHILs comes from the inner part of the obscuring torus. (3) We present diagnostic diagrams between FHILs lines which indicate clear correlations between the flux ratios. (4) It is observed that the ratio of Ne V/Fe VII is of the order of 3 to 10, while the ratios between iron lines (i.e., Fe VII, Fe X, Fe XI) are roughly around the unity. (5) At least in the optical spectra, the present study continues to support the general idea that LINERs are not energetic enough to present FHILs. A complete version of this study including the catalog with the objects of study, and diagnosis diagrams using only this kind of lines can be found in Vera & Portilla (in prep).

  4. Gamma ray spectra recorded from the fallout collected in May 1986

    International Nuclear Information System (INIS)

    Cristu, M.I.

    1987-07-01

    An analysis of the gamma ray spectra recorded from the fallout collective in Bucharest and Brasov in May, 1986 was carried out. Relative activities of the assigned radionuclides were computed and the duration of the 235 U fuel irradiation has been deduced. (author)

  5. X-ray absorption spectra and emission spectra of plasmas

    International Nuclear Information System (INIS)

    Peng Yonglun; Yang Li; Wang Minsheng; Li Jiaming

    2002-01-01

    The author reports a theoretical method to calculate the resolved absorption spectra and emission spectra (optically thin) of hot dense plasmas. Due to its fully relativistic treatment incorporated with the quantum defect theory, it calculates the absorption spectra and emission spectra for single element or multi-element plasmas with little computational efforts. The calculated absorption spectra of LTE gold plasmas agree well with the experimental ones. It also calculates the optical thin emission spectra of LTE gold plasmas, which is helpful to diagnose the plasmas of relevant ICF plasmas. It can also provide the relevant parameters such as population density of various ionic stages, precise radiative properties for ICF studies

  6. CORRELATIONS OF QUASAR OPTICAL SPECTRA WITH RADIO MORPHOLOGY

    International Nuclear Information System (INIS)

    Kimball, Amy E.; Ivezic, Zeljko; Wiita, Paul J.; Schneider, Donald P.

    2011-01-01

    Using the largest homogeneous quasar sample with high-quality optical spectra and robust radio morphology classifications assembled to date, we investigate relationships between radio and optical properties with unprecedented statistical power. The sample consists of 4714 radio quasars from FIRST with S 20 ≥ 2 mJy and with spectra from the Sloan Digital Sky Survey (SDSS). Radio morphology classes include core-only (core), core-lobe (lobe), core-jet (jet), lobe-core-lobe (triple), and double-lobe. Electronic tables of the quasar samples, along with spectral composites for individual morphology classes, are made available. We examine the optical colors of these subsamples and find that radio quasars with core emission unresolved by FIRST (on ∼5'' scale) have a redder color distribution than radio-quiet quasars (S 20 ∼ I ) are correlated, which supports the hypothesis that both parameters are indicative of line-of-sight orientation. We investigate spectral line equivalent widths (EWs) as a function of R and R I , including the O [III] narrow line doublet and the C IV λ1549 and Mg II λ2799 broad lines. We find that the rest EWs of the broad lines correlate positively with R I at the 4σ-8σ level. However, we find no strong dependence of EW on R, in contrast to previously published results. A possible interpretation of these results is that EWs of quasar emission lines increase as the line-of-sight angle to the radio-jet axis decreases. These results are in stark contrast to commonly accepted orientation-based theories, which suggest that continuum emission should increase as the angle to the radio-jet axis decreases, resulting in smaller EWs of emission lines (assumed isotropic). Finally, we observe the Baldwin effect in our sample and find that it does not depend strongly on quasar radio morphology.

  7. Optical Spectra of Hemoglobin Taken from Alcohol Dependent Humans

    OpenAIRE

    Dudok K.; Dudok T.; Vlokh I.; Vlokh R.

    2005-01-01

    Optical spectra of CNMetHb and CNMetHb-Coomassi G-250, taken from the blood of humans with alcohol dependence, are studied in the spectral range of 450–750nm. The shifts in the spectral absorption maxima of CNMetHb-Coomassi G-250 complexes are observed for the diseased persons with alcohol dependence. The obtained results show that the hemoglobin structure of alcohol dependent humans is changed.

  8. Late time optical spectra from the /sup 56/Ni model for Type I supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Axelrod, T.S.

    1980-07-01

    The hypothesis that the optical luminosity of Type I supernovae results from the radioactive decay of /sup 56/Ni synthesized and ejected by the explosion has been investigated by numerical simulation of the optical spectrum resulting from a homologously expanding shell composed initially of pure /sup 56/Ni core. This model, which neglects the effects of material external to the /sup 56/Ni core, is expected to provide a reasonable representation of the supernova at late times when the star is nearly transparent to optical photons. The numerical simulation determines the temperature, ionization state, and non-LTE level populations which result from energy deposition by the radioactive decay products of /sup 56/Ni and /sup 56/Co. The optical spectrum includes the effects of both allowed and forbidden lines. The optical spectra resulting from the simulation are found to be sensitive to the mass and ejection velocity of the /sup 56/Ni shell. A range of these parameters has been found which results in good agreement with the observed spectra of SN1972e over a considerable range of time. In particular, evidence for the expected decaying abundance of /sup 56/Co has been found in the spectra of SN1972e. These results are used to assess the validity of the /sup 56/Ni model and set limits on the mass and explosion mechanism of the Type I progenitor. The possibilities for improvement of the numerical model are discussed and future atomic data requirements defined.

  9. Fine hematite particles of Martian interest: absorption spectra and optical constants

    International Nuclear Information System (INIS)

    Marra, A C; Blanco, A; Fonti, S; Jurewicz, A; Orofino, V

    2005-01-01

    Hematite is an iron oxide very important for the study of climatic evolution of Mars. It can occur in two forms: red and grey, mainly depending on the granulometry of the samples. Spectra of bright regions of Mars suggest the presence of red hematite particles. Moreover the Thermal Emission Spectrometer (TES), on board the Mars Global Surveyor mission, has discovered a deposit of crystalline grey hematite in Sinus Meridiani. TES spectra of that Martian region exhibit features at about 18, 23 and 33 μm that are consistent with hematite. Coarse grey hematite is considered strong evidence for longstanding water, while it is unknown whether the formation of fine-grained red hematite requires abundant water. Studies are needed in order to further characterize the spectral properties of the two kinds of hematite. For this reason we have analyzed a sample of submicron hematite particles in the 6.25-50 μm range in order to study the influence of particles size and shape on the infrared spectra. The optical constants of a particulate sample have been derived and compared with published data concerning bulk samples of hematite. Our results seem to indicate that particle shape is an important factor to take into account for optical constants derivation

  10. Electronic structure, photoemission spectra, and vacuum-ultraviolet optical spectra of CsPbCl3 and CsPbBr3

    Science.gov (United States)

    Heidrich, K.; Schäfer, W.; Schreiber, M.; Söchtig, J.; Trendel, G.; Treusch, J.; Grandke, T.; Stolz, H. J.

    1981-11-01

    Optical spectra of CsPbCl3 and CsPbBr3 have been measured in the range from 2 to 10 eV and have been combined with ultraviolet-photoemission-spectroscopy (UPS)-measurements at 21.1 and 40.8 eV. A quantitative band calculation is presented, which takes into account anion-anion interaction as well as electronic states of the Cs+ ion. The prominent features of earlier band models and measurements are reestablished through our measurements and calculations, namely that the valence band consists of anionic p functions and Pb 6s functions, the lowest conduction band being Pb 6p type, and the lowest gap occuring at the R point of the Brillouin zone. Inclusion of a further (Cs 6s-type) conduction band, however, is necessary to bring the calculated joint density of states into agreement with vacuum-ultraviolet optical spectra. The calculated densities of states of the valence bands are in quantitative agreement with those deduced from our UPS measurements.

  11. The temporal evolution process from fluorescence bleaching to clean Raman spectra of single solid particles optically trapped in air

    Science.gov (United States)

    Gong, Zhiyong; Pan, Yong-Le; Videen, Gorden; Wang, Chuji

    2017-12-01

    We observe the entire temporal evolution process of fluorescence and Raman spectra of single solid particles optically trapped in air. The spectra initially contain strong fluorescence with weak Raman peaks, then the fluorescence was bleached within seconds, and finally only the clean Raman peaks remain. We construct an optical trap using two counter-propagating hollow beams, which is able to stably trap both absorbing and non-absorbing particles in air, for observing such temporal processes. This technique offers a new method to study dynamic changes in the fluorescence and Raman spectra from a single optically trapped particle in air.

  12. OSL, TL and IRSL emission spectra of sedimentary quartz and feldspar samples

    International Nuclear Information System (INIS)

    Lomax, Johanna; Mittelstraß, Dirk; Kreutzer, Sebastian; Fuchs, Markus

    2015-01-01

    This contribution presents a variety of different luminescence emission spectra from sedimentary feldspar and quartz samples under various stimulation modes. These are green stimulated quartz (OSL-) spectra, quartz TL spectra, feldspar IRSL and post-IR IRSL spectra. A focus was set at recording OSL and IRSL spectra at elevated stimulation temperatures such as routinely applied in luminescence dating. This was to test whether optical stimulation at elevated temperatures results in a shift of emission peaks. For OSL emissions of quartz, this has so far not been tested. In case of feldspar emissions, post-IR IRSL conditions, hence IRSL emissions at a low temperature, directly followed by high temperature post-IRSL emissions, are explicitly investigated. All spectra were recorded using a new system incorporated into a Lexsyg luminescence reader. Thus, this study, besides presenting new spectral data, also serves as a feasibility study for this new device. It is shown that (a) the new device is capable of automatically measuring different sorts of spectra, also at elevated temperatures, (b) known thermally and optically stimulated peak emissions of quartz and feldspar are confirmed, (c) obtained IRSL and OSL spectra indicate that there is no significant relation between peak emission and stimulation temperature. - Highlights: • We have measured OSL, IRSL and TL emission spectra of sedimentary quartz and feldspar samples. • Spectral analyses were performed at elevated stimulation temperatures. • Emission spectra show very little variation with stimulation temperatures.

  13. Total quantitative recording of elemental maps and spectra with a scanning microprobe

    International Nuclear Information System (INIS)

    Legge, G.J.F.; Hammond, I.

    1979-01-01

    A system of data recording and analysis has been developed by means of which simultaneously all data from a scanning instrument such as a microprobe can be quantitatively recorded and permanently stored, including spectral outputs from several detectors. Only one scanning operation is required on the specimen. Analysis is then performed on the stored data, which contain quantitative information on distributions of all elements and spectra of all regions

  14. Ionization potential depression and optical spectra in a Debye plasma model

    Science.gov (United States)

    Lin, Chengliang; Röpke, Gerd; Reinholz, Heidi; Kraeft, Wolf-Dietrich

    2017-11-01

    We show how optical spectra in dense plasmas are determined by the shift of energy levels as well as the broadening owing to collisions with the plasma particles. In lowest approximation, the interaction with the plasma particles is described by the RPA dielectric function, leading to the Debye shift of the continuum edge. The bound states remain nearly un-shifted, their broadening is calculated in Born approximation. The role of ionization potential depression as well as the Inglis-Teller effect are shown. The model calculations have to be improved going beyond the lowest (RPA) approximation when applying to WDM spectra.

  15. Analysis of aggregate optical spectra using moments. Application to the purple membrane of halobacterium halobium

    International Nuclear Information System (INIS)

    Hemenger, R.P.

    1978-01-01

    The problem of extracting structural information from the optical spectra of aggregates of molecules interacting through their electronic transitions is studied. One serious difficulty common to all approaches to this problem is that of properly taking into account the effects of molecular vibrations. A series of exact relations derived previously which are correct with regard to molecular vibrations provide a number of independent, explicit connections between aggregate geometrical parameters and moments of experimental spectra. It is shown that, by applying these moment relations to the optical absorption and circular dichroism spectra of simple aggregates, a complete set of equations can be found, i.e., enough equations can be found to solve for all of the geometrical parameters which enter into the expressions for absorption and circular dichroism spectra. This procedure is applied in some detail to the purple membrane of Halobacterium halobium. The results are completely consistent with what is known about its structure

  16. Study of optical and electronic properties of nickel from reflection electron energy loss spectra

    Science.gov (United States)

    Xu, H.; Yang, L. H.; Da, B.; Tóth, J.; Tőkési, K.; Ding, Z. J.

    2017-09-01

    We use the classical Monte Carlo transport model of electrons moving near the surface and inside solids to reproduce the measured reflection electron energy-loss spectroscopy (REELS) spectra. With the combination of the classical transport model and the Markov chain Monte Carlo (MCMC) sampling of oscillator parameters the so-called reverse Monte Carlo (RMC) method was developed, and used to obtain optical constants of Ni in this work. A systematic study of the electronic and optical properties of Ni has been performed in an energy loss range of 0-200 eV from the measured REELS spectra at primary energies of 1000 eV, 2000 eV and 3000 eV. The reliability of our method was tested by comparing our results with the previous data. Moreover, the accuracy of our optical data has been confirmed by applying oscillator strength-sum rule and perfect-screening-sum rule.

  17. Search for the dose-sensitive optically stimulated luminescence response in natural carbonates

    International Nuclear Information System (INIS)

    Jaek, Ivar; Huett, Galina; Rammo, Ilmar; Vasilchenko, Valeri

    2001-01-01

    Carbonates of different origin, such as Iceland spar, calcites, and mollusc shells, used as electron spin resonance and thermoluminescence paleodosimeters, were studied in order to determine their suitability for optically stimulated luminescence dating. The stimulation/excitation spectra of the afterglow of the samples were recorded in the wavelength range of 250-1100 nm. The results of the study show that these spectra present either excitation spectra of Mn 2+ ion fluorescence (samples of calcites and Iceland spar, red emission recorded) or the excitation spectra of primary phosphorescence (samples of carbonates, including molluscs shells; short-wave emission bands recorded). The recorded stimulation spectra revealed no spectral bands sensitive to stimulation by ionizing radiation, which would disappear as a result of heating and could thus be related to deep traps in carbonates, needed dating. The cause of this situation which is unusual in luminescent crystals, including luminescence (paleo)dosimeters, and the ways of overcoming the difficulties in optical dating of natural carbonates are discussed. (author)

  18. Calculation of optical and K pre-edge absorption spectra for ferrous iron of distorted sites in oxide crystals

    Science.gov (United States)

    Vercamer, Vincent; Hunault, Myrtille O. J. Y.; Lelong, Gérald; Haverkort, Maurits W.; Calas, Georges; Arai, Yusuke; Hijiya, Hiroyuki; Paulatto, Lorenzo; Brouder, Christian; Arrio, Marie-Anne; Juhin, Amélie

    2016-12-01

    Advanced semiempirical calculations have been performed to compute simultaneously optical absorption and K pre-edge x-ray absorption spectra of Fe2 + in four distinct site symmetries found in minerals. The four symmetries, i.e., a distorted octahedron, a distorted tetrahedron, a square planar site, and a trigonal bipyramidal site, are representative of the Fe2 + sites found in crystals and glasses. A particular attention has been paid to the definition of the p -d hybridization Hamiltonian which occurs for noncentrosymmetric symmetries in order to account for electric dipole transitions. For the different sites under study, an excellent agreement between calculations and experiments was found for both optical and x-ray absorption spectra, in particular in terms of relative intensities and energy positions of electronic transitions. To our knowledge, these are the first calculations of optical absorption spectra on Fe2 + placed in such diverse site symmetries, including centrosymmetric sites. The proposed theoretical model should help to interpret the features of both the optical absorption and the K pre-edge absorption spectra of 3 d transition metal ions and to go beyond the usual fingerprint interpretation.

  19. Principal component analysis for the forensic discrimination of black inkjet inks based on the Vis-NIR fibre optics reflection spectra.

    Science.gov (United States)

    Gál, Lukáš; Oravec, Michal; Gemeiner, Pavol; Čeppan, Michal

    2015-12-01

    Nineteen black inkjet inks of six different brands were examined by fibre optics reflection spectroscopy in Visible and Near Infrared Region (Vis-NIR FORS) directly on paper with a view to achieving good resolution between them. These different inks were tested on nineteen different inkjet printers from three brands. Samples were obtained from prints by reflection probe. Processed reflection spectra in the range 500-1000 nm were used as samples in principal component analysis. Variability between spectra of the same ink obtained from different prints, as well as between spectra of square areas and lines was examined. For both spectra obtained from square areas and lines reference, Principal Component Analysis (PCA) models were created. According to these models, the inkjet inks were divided into clusters. PCA method is able to separate inks containing carbon black as main colorant from the other inks using other colorants. Some spectra were recorded from another piece of printer and used as validation samples. Spectra of validation samples were projected onto reference PCA models. According to position of validation samples in score plots it can be concluded that PCA based on Vis-NIR FORS can reliably differentiate inkjet inks which are included in the reference database. The presented method appears to be a suitable tool for forensic examination of questioned documents containing inkjet inks. Inkjet inks spectra were obtained without extraction or cutting sample with possibility to measure out of the laboratory. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Alkali-Responsive Absorption Spectra and Third-Order Optical Nonlinearities of Imino Squaramides

    International Nuclear Information System (INIS)

    Li Zhong-Yu; Xu Song; Zhou Xin-Yu; Zhang Fu-Shi

    2012-01-01

    Third-order optical nonlinearities and dynamic responses of two imino squaramides under neutral and base conditions were studied using the femtosecond degenerate four-wave mixing technique at 800 nm. Ultrafast optical responses have been observed and the magnitude of the second-order hyperpolarizabilities of the squaramides has been measured to be as large as 10 −31 esu. The absorption spectra, color of solution, and third-order optical nonlinearities of two imino squaramides change with the addition of sodium hydroxide. The γ value under the base condition for each dye is approximately 1.25 times larger than that under neutral conditions. (fundamental areas of phenomenology(including applications))

  1. Ordering-induced changes in the optical spectra of semiconductor alloys

    International Nuclear Information System (INIS)

    Bernard, J.E.; Wei, S.; Wood, D.M.; Zunger, A.

    1988-01-01

    It is shown how the recently predicted and subsequently observed spontaneous long-range ordering of pseudobinary A/sub 0.5/B/sub 0.5/C isovalent semiconductor alloys into the (AC) 1 (BC) 1 superlattice structure (a CuAuI-type crystal) gives rise to characteristic changes in the optical and photoemission spectra. We predict new direct transitions and substantial splittings of transitions absent in the disordered alloy

  2. Polarization holographic optical recording of a new photochromic diarylethene

    Science.gov (United States)

    Pu, Shouzhi; Miao, Wenjuan; Chen, Anyin; Cui, Shiqiang

    2008-12-01

    A new symmetrical photochromic diarylethene, 1,2-bis[2-methyl-5-(3-methoxylphenyl)-3-thienyl]perfluorocyclopentene (1a), was synthesized, and its photochromic properties were investigated. The compound exhibited good photochromism both in solution and in PMMA film with alternating irradiation by UV/VIS light, and the maxima absorption of its closed-ring isomer 1b are 582 and 599 nm, respectively. Using diarylethene 1b/PMMA film as recording medium and a He-Ne laser (633 nm) for recording and readout, four types of polarization and angular multiplexing holographic optical recording were performed perfectly. For different types of polarization recording including parallel linear polarization recording, parallel circular polarization recording, orthogonal linear polarization recording and orthogonal circular polarization recording,have been accomplished successfully. The results demonstrated that the orthogonal circular polarization recording is the best method for polarization holographic optical recording when this compound was used as recording material. With angular multiplexing recording technology, two high contrast holograms were recorded in the same place on the film with the dimension of 0.78 μm2.

  3. Algorithms for classification of astronomical object spectra

    Science.gov (United States)

    Wasiewicz, P.; Szuppe, J.; Hryniewicz, K.

    2015-09-01

    Obtaining interesting celestial objects from tens of thousands or even millions of recorded optical-ultraviolet spectra depends not only on the data quality but also on the accuracy of spectra decomposition. Additionally rapidly growing data volumes demands higher computing power and/or more efficient algorithms implementations. In this paper we speed up the process of substracting iron transitions and fitting Gaussian functions to emission peaks utilising C++ and OpenCL methods together with the NOSQL database. In this paper we implemented typical astronomical methods of detecting peaks in comparison to our previous hybrid methods implemented with CUDA.

  4. Electronic transient processes and optical spectra in quantum dots for quantum computing

    Czech Academy of Sciences Publication Activity Database

    Král, Karel; Zdeněk, Petr; Khás, Zdeněk

    2004-01-01

    Roč. 3, č. 1 (2004), s. 17-25 ISSN 1536-125X R&D Projects: GA AV ČR IAA1010113 Institutional research plan: CEZ:AV0Z1010914 Keywords : depopulation * electronic relaxation * optical spectra * quantum dots * self-assembled quantum dots * upconversion Subject RIV: BE - Theoretical Physics Impact factor: 3.176, year: 2004

  5. Infrared Spectra and Optical Constants of Nitrile Ices Relevant to Titan's Atmosphere

    Science.gov (United States)

    Anderson, Carrie; Ferrante, Robert F.; Moore, W. James; Hudson, Reggie; Moore, Marla H.

    2011-01-01

    Spectra and optical constants of nitrile ices known or suspected to be in Titan?s atmosphere have been determined from 2.0 to 333.3 microns (approx.5000 to 30/cm). These results are relevant to the ongoing modeling of Cassini CIRS observations of Titan?s winter pole. Ices studied were: HCN, hydrogen cyanide; C2N2, cyanogen; CH3CN, acetonitrile; C2H5CN, propionitrile; and HC3N, cyanoacetylene. Optical constants were calculated, using Kramers-Kronig analysis, for each nitrile ice?s spectrum measured at a variety of temperatures, in both the amorphous- and crystalline phases. Spectra were also measured for many of the nitriles after quenching at the annealing temperature and compared with those of annealed ices. For each of these molecules we also measured the real component, n, of the refractive index for amorphous and crystalline phases at 670 nm. Several examples of the information contained in these new data sets and their usefulness in modeling Titan?s observed features will be presented (e.g., the broad emission feature at 160/cm; Anderson and Samuelson, 2011).

  6. Optical spectra and lattice dynamics of molecular crystals

    CERN Document Server

    Zhizhin, GN

    1995-01-01

    The current volume is a single topic volume on the optical spectra and lattice dynamics of molecular crystals. The book is divided into two parts. Part I covers both the theoretical and experimental investigations of organic crystals. Part II deals with the investigation of the structure, phase transitions and reorientational motion of molecules in organic crystals. In addition appendices are given which provide the parameters for the calculation of the lattice dynamics of molecular crystals, procedures for the calculation of frequency eigenvectors of utilizing computers, and the frequencies and eigenvectors of lattice modes for several organic crystals. Quite a large amount of Russian literature is cited, some of which has previously not been available to scientists in the West.

  7. Optical contrast spectra studies for determining thickness of stage-1 graphene-FeCl{sub 3} intercalation compounds

    Energy Technology Data Exchange (ETDEWEB)

    Han, Wen-Peng, E-mail: han-wenpeng@163.com, E-mail: yunze.long@163.com; Yan, Xu; Zhao, Hui [College of Physics, Qingdao University, Qingdao 266071 (China); Li, Qiao-Qiao; Lu, Yan [State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Long, Yun-Ze, E-mail: han-wenpeng@163.com, E-mail: yunze.long@163.com [College of Physics, Qingdao University, Qingdao 266071 (China); Collaborative Innovation Center for Low-Dimensional Nanomaterials and Optoelectronic Devices, Qingdao University, Qingdao 266071 (China)

    2016-07-15

    Because of novel features in their structural, electronic, magnetic and optical properties, especially potential applications in nanoelectronics, the few-layer graphene intercalation compounds (FLGICs) have been intensively studied recently. In this work, the dielectric constant of the doped graphene of stage-1 FeCl{sub 3}-GIC is obtained by fitting the optical contrast spectra. And fully intercalated stage-1 FeCl{sub 3}-FLGICs were prepared by micromechanical cleavage method from graphite intercalation compounds (GICs) for the first time. Finally, we demonstrated that the thickness of stage-1 FeCl{sub 3}-GICs by micromechanical cleavage can be determined by optical contrast spectra. This method also can be used to other FLGICs, such as SbCl{sub 5}-FLGICs and AuCl{sub 5}-FLGICs, etc.

  8. Near-field optical recording based on solid immersion lens system

    Science.gov (United States)

    Hong, Tao; Wang, Jia; Wu, Yan; Li, Dacheng

    2002-09-01

    Near-field optical recording based on solid immersion lens (SIL) system has attracted great attention in the field of high-density data storage in recent years. The diffraction limited spot size in optical recording and lithography can be decreased by utilizing the SIL. The SIL near-field optical storage has advantages of high density, mass storage capacity and compatibility with many technologies well developed. We have set up a SIL near-field static recording system. The recording medium is placed on a 3-D scanning stage with the scanning range of 70×70×70μm and positioning accuracy of sub-nanometer, which will ensure the rigorous separation control in SIL system and the precision motion of the recording medium. The SIL is mounted on an inverted microscope. The focusing between long working distance objective and SIL can be monitored and observed by the CCD camera and eyes. Readout signal can be collected by a detector. Some experiments have been performed based on the SIL near-field recording system. The attempt of the near-field recording on photochromic medium has been made and the resolution improvement of the SIL has been presented. The influence factors in SIL near-field recording system are also discussed in the paper.

  9. Optical absorption and scattering spectra of pathological stomach tissues

    Science.gov (United States)

    Giraev, K. M.; Ashurbekov, N. A.; Lakhina, M. A.

    2011-03-01

    Diffuse reflection spectra of biotissues in vivo and transmission and reflection coefficients for biotissues in vitro are measured over 300-800 nm. These data are used to determine the spectral absorption and scattering indices and the scattering anisotropy factor for stomach mucous membranes under normal and various pathological conditions (chronic atrophic and ulcerous defects, malignant neoplasms). The most importan tphysiological (hemodynamic and oxygenation levels) and structural-morphological (scatterer size and density) parameters are also determined. The results of a morphofunctional study correlate well with the optical properties and are consistent with data from a histomorphological analysis of the corresponding tissues.

  10. Zn-VI quasiparticle gaps and optical spectra from many-body calculations.

    Science.gov (United States)

    Riefer, A; Weber, N; Mund, J; Yakovlev, D R; Bayer, M; Schindlmayr, Arno; Meier, C; Schmidt, W G

    2017-06-01

    The electronic band structures of hexagonal ZnO and cubic ZnS, ZnSe, and ZnTe compounds are determined within hybrid-density-functional theory and quasiparticle calculations. It is found that the band-edge energies calculated on the [Formula: see text] (Zn chalcogenides) or GW (ZnO) level of theory agree well with experiment, while fully self-consistent QSGW calculations are required for the correct description of the Zn 3d bands. The quasiparticle band structures are used to calculate the linear response and second-harmonic-generation (SHG) spectra of the Zn-VI compounds. Excitonic effects in the optical absorption are accounted for within the Bethe-Salpeter approach. The calculated spectra are discussed in the context of previous experimental data and present SHG measurements for ZnO.

  11. Real-time Fourier transformation of lightwave spectra and application in optical reflectometry.

    Science.gov (United States)

    Malacarne, Antonio; Park, Yongwoo; Li, Ming; LaRochelle, Sophie; Azaña, José

    2015-12-14

    We propose and experimentally demonstrate a fiber-optics scheme for real-time analog Fourier transform (FT) of a lightwave energy spectrum, such that the output signal maps the FT of the spectrum of interest along the time axis. This scheme avoids the need for analog-to-digital conversion and subsequent digital signal post-processing of the photo-detected spectrum, thus being capable of providing the desired FT processing directly in the optical domain at megahertz update rates. The proposed concept is particularly attractive for applications requiring FT analysis of optical spectra, such as in many optical Fourier-domain reflectrometry (OFDR), interferometry, spectroscopy and sensing systems. Examples are reported to illustrate the use of the method for real-time OFDR, where the target axial-line profile is directly observed in a single-shot oscilloscope trace, similarly to a time-of-flight measurement, but with a resolution and depth of range dictated by the underlying interferometry scheme.

  12. Nonlinear optical and electroabsorption spectra of polydiacetylene crystals and films

    Science.gov (United States)

    Mukhopadhyay, D.; Soos, Z. G.

    1996-01-01

    Vibronic structure of nonlinear optical (NLO) coefficients is developed within the Condon approximation, displaced harmonic oscillators, and crude adiabatic states. The displacements of backbone modes of conjugated polymers are taken from vibrational data on the ground and 1B excited state. NLO resonances are modeled by three excitations and transition moments taken from Pariser-Parr-Pople (PPP) theory and optimized to polydiacetylene (PDA) spectra in crystals and films, with blue-shifted 1B exciton. The joint analysis of third-harmonic-generation, two-photon absorption, and nondegenerate four-wave-mixing spectra of PDA crystals and films shows weak two-photon absorption to 2A below 1B, leading to overlapping resonances in the THG spectrum, strong two-photon absorption to an nA state some 35% above 1B, and weak Raman resonances in nondegenerate FWM spectra. The full π-π* spectrum contributes to Stark shifts and field-induced transitions, as shown by PPP results for PDA oligomers. The Stark shift dominates high-resolution electroabsorption (EA) spectra of PDA crystals below 10 K. The close correspondence between EA and the first-derivative I'(ω) of the linear absorption above the 1B exciton in PDA crystals provides an experimental separation of vibrational and electronic contributions that limits any even-parity state in this 0.5 eV interval. An oscillator-strength sum rule is applied to the convergence of PDA oligomers with increasing length, N, and the crystal oscillator strengths are obtained without adjustable parameters. The sum rule for the 1B exciton implies large transition moments to higher-energy Ag states, whose locations in recent models are contrasted to PPP results. Joint analysis of NLO and EA spectra clarifies when a few electronic excitations are sufficient, distinguishes between vibrational and electronic contributions, and supports similar π-electron interactions in conjugated molecules and polymers.

  13. Quantum-dot based nanothermometry in optical plasmonic recording media

    International Nuclear Information System (INIS)

    Maestro, Laura Martinez; Zhang, Qiming; Li, Xiangping; Gu, Min; Jaque, Daniel

    2014-01-01

    We report on the direct experimental determination of the temperature increment caused by laser irradiation in a optical recording media constituted by a polymeric film in which gold nanorods have been incorporated. The incorporation of CdSe quantum dots in the recording media allowed for single beam thermal reading of the on-focus temperature from a simple analysis of the two-photon excited fluorescence of quantum dots. Experimental results have been compared with numerical simulations revealing an excellent agreement and opening a promising avenue for further understanding and optimization of optical writing processes and media

  14. Optical spectra of vanadium (5, 4) compounds during extraction by di-2-ethylhexylphosphoric acid

    International Nuclear Information System (INIS)

    Kurbatova, L.D.; Medvedeva, N.I.

    2000-01-01

    Optical spectra of vanadium (5, 4) complexes with HDEHP are studied using literature data on quantum-chemical calculations of vanadium (5) and vanadium (4) oxides. Extraction of vanadium is conducted by undiluted HDEHP from sulfuric acid solutions. Absorption electron spectra (AES) of vanadium (5), vanadium (4) and vanadium (5, 4) compounds are presented. In AES of vanadium (5, 4) four absorption bands at 24000, 17000, 14500 and 13500 cm -1 appear. Comparison with spectra of vanadium (5) and vanadium (4) shows that band 17000 cm -1 which appears only during mutual extraction of vanadium (5) and vanadium (4) is caused by transitions appearing between filled and empty levels of d-zone broadened by vanadium (5) and vanadium (4) interaction [ru

  15. System and carrier for optical images and holographic information recording

    International Nuclear Information System (INIS)

    Andries, A.; Bivol, V.; Iovu, M

    2002-01-01

    The invention relates to the semiconducting silverless photography, in particular to the technique for optical information recording and may be used in microphotography for manifacture of microfiches, microfilms, storage disks, i the multiplication and copying technique, in holography, in micro- and optoelectronics, cinematography etc. The system for optical images and holographic information recording includes an optical exposure system, an information carrier , containing a dielectric substrate with the first electrode, a photosensitive element and the second electrode, arranged in consecutive order, a constant and impulse voltage source, a means for climbing and movement of the information carrier, a control unit for connection of the voltage source to the electroconducting strate, a personal computer, connected to the control unit of the recording modes ,to the exposure system and the information carrier, an electrooptical transparency, connected to the computer by means of the matching unit. The carrier for optical images and holographic information recording contains a dielectric substrate, a photosensitive element formed of a layer of the vitreous chalcogenic semiconductor and a layer of the crystalline or amorphous semiconductor, forming a heterojunction, the photosensitive element is arranged between two electrodes , one of which is made transparent , in such case rge layer of the vitreous chalcogenic semiconductor comes into contact with the superior transparent electrode, subjected to exposure

  16. Optical and Near-infrared Spectra of σ Orionis Isolated Planetary-mass Objects

    Energy Technology Data Exchange (ETDEWEB)

    Zapatero Osorio, M. R. [Centro de Astrobiología (CSIC-INTA), Crta. Ajalvir km 4, E-28850 Torrejón de Ardoz, Madrid (Spain); Béjar, V. J. S. [Instituto de Astrofísica de Canarias, C/. Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Ramírez, K. Peña, E-mail: mosorio@cab.inta-csic.es, E-mail: vbejar@iac.es, E-mail: karla.pena@uantof.cl [Unidad de Astronomía de la Universidad de Antofagasta, Av. U. de Antofagasta. 02800 Antofagasta (Chile)

    2017-06-10

    We have obtained low-resolution optical (0.7–0.98 μ m) and near-infrared (1.11–1.34 μ m and 0.8–2.5 μ m) spectra of 12 isolated planetary-mass candidates ( J = 18.2–19.9 mag) of the 3 Myr σ Orionis star cluster with the aim of determining the spectroscopic properties of very young, substellar dwarfs and assembling a complete cluster mass function. We have classified our targets by visual comparison with high- and low-gravity standards and by measuring newly defined spectroscopic indices. We derived L0–L4.5 and M9–L2.5 using high- and low-gravity standards, respectively. Our targets reveal clear signposts of youth, thus corroborating their cluster membership and planetary masses (6–13 M {sub Jup}). These observations complete the σ Orionis mass function by spectroscopically confirming the planetary-mass domain to a confidence level of ∼75%. The comparison of our spectra with BT-Settl solar metallicity model atmospheres yields a temperature scale of 2350–1800 K and a low surface gravity of log g ≈ 4.0 [cm s{sup −2}], as would be expected for young planetary-mass objects. We discuss the properties of the cluster’s least-massive population as a function of spectral type. We have also obtained the first optical spectrum of S Ori 70, a T dwarf in the direction of σ Orionis. Our data provide reference optical and near-infrared spectra of very young L dwarfs and a mass function that may be used as templates for future studies of low-mass substellar objects and exoplanets. The extrapolation of the σ Orionis mass function to the solar neighborhood may indicate that isolated planetary-mass objects with temperatures of ∼200–300 K and masses in the interval 6–13 M {sub Jup} may be as numerous as very low-mass stars.

  17. Infrared Spectra and Optical Constants of Astronomical Ices: II. Ethane and Ethylene

    Science.gov (United States)

    Hudson, Reggie L.; Gerakines, Perry A.; Moore, M. H.

    2014-01-01

    Infrared spectroscopic observations have established the presence of hydrocarbon ices on Pluto and other TNOs, but the abundances of such molecules cannot be deduced without accurate optical constants (n, k) and reference spectra. In this paper we present our recent measurements of near- and mid-infrared optical constants for ethane (C2H6) and ethylene (C2H4) in multiple ice phases and at multiple temperatures. As in our recent work on acetylene (C2H2), we also report new measurements of the index of refraction of each ice at 670 nm. Comparisons are made to earlier work where possible, and electronic versions of our new results are made available.

  18. Wavelength-selective bleaching of the optical spectra of trapped electrons in organic glasses. II

    International Nuclear Information System (INIS)

    Paraszczak, J.; Willard, J.E.

    1979-01-01

    Further resolution of the inhomogeneous optical spectra of trapped electrons (e - /sub t/) in organic glasses has been obtained from wavelength selective bleaching and thermal decay studies on 3-methylpentane-d 14 (3MP-d 14 ) and 2-methyltetrahydrofuran (MTHF) following γ irradiation in the temperature region of 20 K, and limits on the degree of resolution achievable have been indicated. Exposure of 3MP-d 14 to light of wavelengths >2100 nm (from a tunable laser) reduces the optical densities at the bleaching wavelength and longer to zero, while ''peeling off'' a portion of the O.D. at all shorter wavelengths but leaving the remainder of the spectrum unaffected. The fraction of the integrated optical spectrum, ∫OD d (eV), removed by bleaching at each wavelength tested, and also by thermal decay, is equivalent to the fraction of the total e - /sub t/ spins removed and measured by ESR. 1064 nm light bleaches the spectrum nearly uniformly, confirming that the spectra of all of the e - /sub t/ have blue tails with similar ease of bleaching. Heretofore unobserved low temperature thermal decay of e - /sub t/ occurs at 20 and 40 K (20% of the spin concentration in 30 min, 35% in 3h). The rate of decay of the optical spectrum decreases with decreasing wavelength of observation (2.5, 2.2, 1.8, and 1.5 μ), but at each wavelength is the same at 40 K as at 20 K, consistent

  19. Use of neural network based auto-associative memory as a data compressor for pre-processing optical emission spectra in gas thermometry with the help of neural network

    International Nuclear Information System (INIS)

    Dolenko, S.A.; Filippov, A.V.; Pal, A.F.; Persiantsev, I.G.; Serov, A.O.

    2003-01-01

    Determination of temperature from optical emission spectra is an inverse problem that is often very difficult to solve, especially when substantial noise is present. One of the means that can be used to solve such a problem is a neural network trained on the results of modeling of spectra at different temperatures (Dolenko, et al., in: I.C. Parmee (Ed.), Adaptive Computing in Design and Manufacture, Springer, London, 1998, p. 345). Reducing the dimensionality of the input data prior to application of neural network can increase the accuracy and stability of temperature determination. In this study, such pre-processing is performed with another neural network working as an auto-associative memory with a narrow bottleneck in the hidden layer. The improvement in the accuracy and stability of temperature determination in presence of noise is demonstrated on model spectra similar to those recorded in a DC-discharge CVD reactor

  20. Optical and EPR spectra of γ-irradiated glasses of the Ba(PO3)2-LiF system

    International Nuclear Information System (INIS)

    Bocharova, T.V.; Karapetyan, G.O.; Khalilev, V.D.; Yashchurzhinskaya, O.A.

    1985-01-01

    EPR and optical absorption spectra of the Be(PO 3 ) 2 -LiF system glasses are obtained. Introduction of LiF up to 60 mol. % doesn't lead to occurrence of an additional absorption band (AAB) and EPR signals connected with F-centers formed under γ-irradiation in the LiF monocrystal. As a result of γ-irradiation of glasses activated by terbium, radiation color centers (RCC) are formed, which are, probably, the centers of electron capture and possess no unambiguous correlation with the known paramagnetic centers (PMC). Parallel investigation into the thermal decolouration kinetics by the EPR and optical spectroscopy method is reliable for establishing correlation between AAB and PMC signals in EPR spectra

  1. Nonlinear optical spectra having characteristics of Fano interferences in coherently coupled lowest exciton biexciton states in semiconductor quantum dots

    Directory of Open Access Journals (Sweden)

    Hideki Gotoh

    2014-10-01

    Full Text Available Optical nonlinear effects are examined using a two-color micro-photoluminescence (micro-PL method in a coherently coupled exciton-biexciton system in a single quantum dot (QD. PL and photoluminescence excitation spectroscopy (PLE are employed to measure the absorption spectra of the exciton and biexciton states. PLE for Stokes and anti-Stokes PL enables us to clarify the nonlinear optical absorption properties in the lowest exciton and biexciton states. The nonlinear absorption spectra for excitons exhibit asymmetric shapes with peak and dip structures, and provide a distinct contrast to the symmetric dip structures of conventional nonlinear spectra. Theoretical analyses with a density matrix method indicate that the nonlinear spectra are caused not by a simple coherent interaction between the exciton and biexciton states but by coupling effects among exciton, biexciton and continuum states. These results indicate that Fano quantum interference effects appear in exciton-biexciton systems at QDs and offer important insights into their physics.

  2. Optical properties of organic semiconductor thin films. Static spectra and real-time growth studies

    Energy Technology Data Exchange (ETDEWEB)

    Heinemeyer, Ute

    2009-07-20

    The aim of this work was to establish the anisotropic dielectric function of organic thin films on silicon covered with native oxide and to study their optical properties during film growth. While the work focuses mainly on the optical properties of Diindenoperylene (DIP) films, also the optical response of Pentacene (PEN) films during growth is studied for comparison. Spectroscopic ellipsometry and differential reflectance spectroscopy are used to determine the dielectric function of the films ex-situ and in-situ, i.e. in air and in ultrahigh vacuum. Additionally, Raman- and fluorescence spectroscopy is utilized to characterize the DIP films serving also as a basis for spatially resolved optical measurements beyond the diffraction limit. Furthermore, X-ray reflectometry and atomic force microscopy are used to determine important structural and morphological film properties. The absorption spectrum of DIP in solution serves as a monomer reference. The observed vibronic progression of the HOMO-LUMO transition allows the determination of the Huang-Rhys parameter experimentally, which is a measure of the electronic vibrational coupling. The corresponding breathing modes are measured by Raman spectroscopy. The optical properties of DIP films on native oxide show significant differences compared to the monomer spectrum due to intermolecular interactions. First of all, the thin film spectra are highly anisotropic due to the structural order of the films. Furthermore the Frenkel exciton transfer is studied and the energy difference between Frenkel and charge transfer excitons is determined. Real-time measurements reveal optical differences between interfacial or surface molecules and bulk molecules that play an important role for device applications. They are not only performed for DIP films but also for PEN films. While for DIP films on glass the appearance of a new mode is visible, the spectra of PEN show a pronounced energy red-shift during growth. It is shown how the

  3. An atlas of optical spectra of DZ white dwarfs and related objects

    International Nuclear Information System (INIS)

    Sion, E.M.; Kenyon, S.J.; Aannestad, P.A.

    1990-01-01

    An atlas of optical spectra and equivalent width measurements for DZ stars and several related objects is described. These data should improve abundance measurements for Ca/He, Mg/He, and Fe/He in these stars and provide tests for calculations of accretion, diffusion, and radiative transfer in white-dwarf atmospheres. Also reported is the possible detection of He I (3888-A) in three DZ white dwarfs, 0246 + 735, 1705 + 030, and 2215 + 388. 25 refs

  4. Optical spectra of radio planetary nebulae in the large Magellanic Cloud

    Directory of Open Access Journals (Sweden)

    Payne J.L.

    2008-01-01

    Full Text Available We present 11 spectra from 12 candidate radio sources co-identified with known planetary nebulae (PNe in the Large Magellanic Cloud (LMC. Originally found in Australia Telescope Compact Array (ATCA LMC surveys at 1.4, 4.8 and 8.64 GHz and confirmed by new high resolution ATCA images at 6 and 3 cm (4' /2' , these complement data recently presented for candidate radio PNe in the Small Magellanic Cloud (SMC. Their spectra were obtained using the Radcliff 1.9-meter telescope in Sutherland (South Africa. All of the optical PNe and radio candidates are within 2' and may represent a population of selected radio bright sample only. Nebular ionized masses of these objects are estimated to be as high as 1.8 Mfi, supporting the idea that massive PNe progenitor central stars lose much of their mass in the asymptotic giant branch (AGB phase or prior. We also identify a sub-population (33% of radio PNe candidates with prominent ionized iron emission lines.

  5. Optical absorption spectra of semiconductors and insulators: ab initio calculation of many-body effects

    International Nuclear Information System (INIS)

    Albrecht, Stefan

    1999-01-01

    A method for the inclusion of self-energy and excitonic effects in first-principle calculations of absorption spectra, within the state-of-the-art plane wave pseudopotential approach, is presented. Starting from a ground state calculation, using density functional theory (DFT) in the local density approximation (LDA), we correct the exchange-correlation potential of DFT-LDA with the self-energy applying Hedin's GW approximation to obtain the physical quasiparticles states. The electron-hole interaction is treated solving an effective two-particle equation, which we derive from Hedin's coupled integral equations, leading to the fundamental Bethe-Salpeter equation in an intermediate step. The interaction kernel contains the screened electron-hole Coulomb interaction and the electron-hole exchange effects, which reflect the microscopic structure of the system and are thus also called local-field effects. We obtain the excitonic eigenstates through diagonalization. This allows us a detailed analysis of the optical properties. The application of symmetry properties enables us to reduce the size of the two-particle Hamiltonian matrix, thus minimizing the computational effort. We apply our method to silicon, diamond, lithium oxide and the sodium tetramer. Good agreement with experiment is obtained for the absorption spectra of Si and diamond, the static dielectric constant of diamond, and for the onset of optical absorption of Li 2 O due to discrete bound excitons. We discuss various approximations of our method and show the strong mixing of independent particle transitions to a bound excitonic state in the Na 4 cluster. The influence of ground state calculations on optical spectra is investigated under particular consideration of the pseudopotential generation and we discuss the use of different Brillouin zone point sampling schemes for spectral calculations. (author) [fr

  6. Quantitative analysis of reflection electron energy loss spectra to determine electronic and optical properties of Fe–Ni alloy thin films

    International Nuclear Information System (INIS)

    Tahir, Dahlang; Oh, Sukh Kun; Kang, Hee Jae; Tougaard, Sven

    2016-01-01

    Highlights: • Electronic and optical properties of Fe-Ni alloy thin films grown on Si (1 0 0) were studied via quantitative analyses of reflection electron energy loss spectra (REELS). • The energy loss functions (ELF) are dominated by a plasmon peak at 23.6 eV for Fe and moves gradually to lower energies in Fe-Ni alloys towards the bulk plasmon energy of Ni at 20.5 eV. • Fe has a strong effect on the dielectric and optical properties of Fe-Ni alloy thin films even for an alloy with 72% Ni. Electronic and optical properties of Fe-Ni alloy thin films grown on Si (1 0 0) were studied via quantitative analyses of reflection electron energy loss spectra (REELS). - Abstract: Electronic and optical properties of Fe–Ni alloy thin films grown on Si (1 0 0) by ion beam sputter deposition were studied via quantitative analyses of reflection electron energy loss spectra (REELS). The analysis was carried out by using the QUASES-XS-REELS and QUEELS-ε(k,ω)-REELS softwares to determine the energy loss function (ELF) and the dielectric functions and optical properties by analyzing the experimental spectra. For Ni, the ELF shows peaks around 3.6, 7.5, 11.7, 20.5, 27.5, 67 and 78 eV. The peak positions of the ELF for Fe_2_8Ni_7_2 are similar to those of Fe_5_1Ni_4_9, even though there is a small peak shift from 18.5 eV for Fe_5_1Ni_4_9 to 18.7 eV for Fe_2_8Ni_7_2. A plot of n, k, ε_1, and ε_2 shows that the QUEELS-ε(k,ω)-REELS software for analysis of REELS spectra is useful for the study of optical properties of transition metal alloys. For Fe–Ni alloy with high Ni concentration (Fe_2_8Ni_7_2), ε_1, and ε_2 have strong similarities with those of Fe. This indicates that the presence of Fe in the Fe–Ni alloy thin films has a strong effect.

  7. The Intrinsically X-Ray-weak Quasar PHL 1811. II. Optical and UV Spectra and Analysis

    Science.gov (United States)

    Leighly, Karen M.; Halpern, Jules P.; Jenkins, Edward B.; Casebeer, Darrin

    2007-11-01

    This is the second of two papers reporting observations and analysis of the unusually bright (mb=14.4), luminous (MB=-25.5), nearby (z=0.192) narrow-line quasar PHL 1811. The first paper reported that PHL 1811 is intrinsically X-ray-weak and presented a spectral energy distribution (SED). Here we present HST STIS optical and UV spectra, and ground-based optical spectra. The optical and UV line emission is very unusual. There is no evidence for forbidden or semiforbidden lines. The near-UV spectrum is dominated by very strong Fe II and Fe III, and unusual low-ionization lines such as Na I D and Ca II H and K are observed. High-ionization lines are very weak; C IV has an equivalent width of 6.6 Å, a factor of ~5 smaller than measured from quasar composite spectra. An unusual feature near 1200 Å can be deblended in terms of Lyα, N V, Si II, and C III* using the blueshifted C IV profile as a template. Photoionization modeling shows that the unusual line emission can be explained qualitatively by the unusually soft SED. Principally, a low gas temperature results in inefficient emission of collisionally excited lines, including the semiforbidden lines generally used as density diagnostics. The emission resembles that of high-density gas; in both cases this is a consequence of inefficient cooling. PHL 1811 is very unusual, but we note that quasar surveys may be biased against finding similar objects. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. These observations are associated with proposal 9181. Based on observations obtained at Kitt Peak National Observatory, a division of the National Optical Astronomy Observatories, which is operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.

  8. OPTICAL SPECTRA OF CANDIDATE INTERNATIONAL CELESTIAL REFERENCE FRAME (ICRF) FLAT-SPECTRUM RADIO SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Titov, O.; Stanford, Laura M. [Geoscience Australia, P.O. Box 378, Canberra, ACT 2601 (Australia); Johnston, Helen M.; Hunstead, Richard W. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Pursimo, T. [Nordic Optical Telescope, Nordic Optical Telescope Apartado 474E-38700 Santa Cruz de La Palma, Santa Cruz de Tenerife (Spain); Jauncey, David L. [CSIRO Astronomy and Space Science, ATNF and Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Maslennikov, K. [Central Astronomical Observatory at Pulkovo, Pulkovskoye Shosse, 65/1, 196140, St. Petersburg (Russian Federation); Boldycheva, A., E-mail: oleg.titov@ga.gov.au [Ioffe Physical Technical Institute, 26 Polytekhnicheskaya, St. Petersburg, 194021 (Russian Federation)

    2013-07-01

    Continuing our program of spectroscopic observations of International Celestial Reference Frame (ICRF) sources, we present redshifts for 120 quasars and radio galaxies. Data were obtained with five telescopes: the 3.58 m European Southern Observatory New Technology Telescope, the two 8.2 m Gemini telescopes, the 2.5 m Nordic Optical Telescope (NOT), and the 6.0 m Big Azimuthal Telescope of the Special Astrophysical Observatory in Russia. The targets were selected from the International VLBI Service for Geodesy and Astrometry candidate International Celestial Reference Catalog which forms part of an observational very long baseline interferometry (VLBI) program to strengthen the celestial reference frame. We obtained spectra of the potential optical counterparts of more than 150 compact flat-spectrum radio sources, and measured redshifts of 120 emission-line objects, together with 19 BL Lac objects. These identifications add significantly to the precise radio-optical frame tie to be undertaken by Gaia, due to be launched in 2013, and to the existing data available for analyzing source proper motions over the celestial sphere. We show that the distribution of redshifts for ICRF sources is consistent with the much larger sample drawn from Faint Images of the Radio Sky at Twenty cm (FIRST) and Sloan Digital Sky Survey, implying that the ultra-compact VLBI sources are not distinguished from the overall radio-loud quasar population. In addition, we obtained NOT spectra for five radio sources from the FIRST and NRAO VLA Sky Survey catalogs, selected on the basis of their red colors, which yielded three quasars with z > 4.

  9. Pulse radiolysis experiments: synthesis and analysis of composite spectra

    Energy Technology Data Exchange (ETDEWEB)

    Schuler, R H; Buzzard, G K [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA). Dept. of Chemistry

    1976-01-01

    Methods are outlined for compiling optical spectra obtained in pulse radiolysis experiments in a form suitable for detailed synthesis and analysis of composite spectra. The experimental data are processed with a programmable calculator having a cassette recorder for the storage of the output data files and a peripheral plotter. The spectra are first smoothed by fitting them parabolically segment by segment. The overall spectrum is then assembled in digital form by interpolating the fitted data on a 1 nm grid and the results are stored on cassette files for further processing. Composite spectra can be readily calculated and plotted from the data on these files or known components can be subtracted from observed spectra to examine underlying contributions. The use of the fairly simple data processing methods described here permits an interactive mode of operation by the investigator which can maximize insight into details of the various contributions to an observed spectrum. Several examples of the use of these methods in conjunction with data obtained with a computer controlled pulse radiolysis data acquisition system are given.

  10. High-density near-field optical disc recording using phase change media and polycarbonate substrate

    Science.gov (United States)

    Shinoda, Masataka; Saito, Kimihiro; Ishimoto, Tsutomu; Kondo, Takao; Nakaoki, Ariyoshi; Furuki, Motohiro; Takeda, Minoru; Akiyama, Yuji; Shimouma, Takashi; Yamamoto, Masanobu

    2004-09-01

    We developed a high density near field optical recording disc system with a solid immersion lens and two laser sources. In order to realize the near field optical recording, we used a phase change recording media and a molded polycarbonate substrate. The near field optical pick-up consists of a solid immersion lens with numerical aperture of 1.84. The clear eye pattern of 90.2 GB capacity (160nm track pitch and 62 nm per bit) was observed. The jitter using a limit equalizer was 10.0 % without cross-talk. The bit error rate using an adaptive PRML with 8 taps was 3.7e-6 without cross-talk. We confirmed that the near field optical disc system is a promising technology for a next generation high density optical disc system.

  11. Analysis of the Vignale-Kohn current functional in the calculation of the optical spectra of semiconductors

    NARCIS (Netherlands)

    Berger, J. A.; de Boeij, P. L.; van Leeuwen, R.

    In this work, we investigate the Vignale-Kohn current functional when applied to the calculation of optical spectra of semiconductors. We discuss our results for silicon. We found qualitatively similar results for other semiconductors. These results show that there are serious limitations to the

  12. Modification of Optical Properties of Seawater Exposed to Oil Contaminants Based on Excitation-Emission Spectra

    Science.gov (United States)

    Baszanowska, E.; Otremba, Z.

    2015-10-01

    The optical behaviour of seawater exposed to a residual amount of oil pollution is presented and a comparison of the fluorescence spectra of oil dissolved in both n-hexane and seawater is discussed based on excitation-emission spectra. Crude oil extracted from the southern part of the Baltic Sea was used to characterise petroleum properties after contact with seawater. The wavelength-independent fluorescence maximum for natural seawater and seawater artificially polluted with oil were determined. Moreover, the specific excitation-emission peaks for natural seawater and polluted water were analysed to identify the natural organic matter composition. It was found that fluorescence spectra identification is a promising method to detect even an extremely low concentration of petroleum residues directly in the seawater. In addition, alien substances disturbing the fluorescence signatures of natural organic substances in a marine environment is also discussed.

  13. Optical Spectra of Radio Planetary Nebulae in the Large Magellanic Cloud

    Directory of Open Access Journals (Sweden)

    Payne, J. L.

    2008-12-01

    Full Text Available We present 11 spectra from 12 candidate radio sources co-identified with known planetary nebulae (PNe in the Large Magellanic Cloud (LMC. Originally found in Australia Telescope Compact Array (ATCA LMC surveys at 1.4, 4.8 and 8.64~GHz and confirmed by new high resolution ATCA images at 6 and 3~cm (4arcsec/2arcsec, these complement data recently presented for candidate radio PNe in the Small Magellanic Cloud (SMC. Their spectra were obtained using the Radcliffe 1.9-meter telescope in Sutherland (South Africa. All of the optical PNe and radio candidates are within 2arcsec and may represent a population of selected radio bright sample only. Nebular ionized masses of these objects are estimated to be as high as 1.8~$M_odot$, supporting the idea that massive PNe progenitor central stars lose much of their mass in the asymptotic giant branch (AGB phase or prior. We also identify a sub-population (33\\% of radio PNe candidates with prominent ionized iron emission lines.

  14. Optical spectra of composite silver-porous silicon (Ag-pSi) nanostructure based periodical lattice

    Science.gov (United States)

    Amedome Min-Dianey, Kossi Aniya; Zhang, Hao-Chun; Brohi, Ali Anwar; Yu, Haiyan; Xia, Xinlin

    2018-03-01

    Numerical finite differential time domain (FDTD) tools were used in this study for predicting the optical characteristics through the nanostructure of composite silver-porous silicon (Ag-pSi) based periodical lattice. This is aimed at providing an interpretation of the optical spectra at known porosity in improvement of the light manipulating efficiency through a proposed structure. With boundary conditions correctly chosen, the numerical simulation was achieved using FDTD Lumerical solutions. This was used to investigate the effect of porosity and the number of layers on the reflection, transmission and absorption characteristics through a proposed structure in a visible wavelength range of 400-750 nm. The results revealed that the higher the number of layers, the lower the reflection. Also, the reflection increases with porosity increase. The transmission characteristics were the inverse to those found in the case of reflection spectra and optimum transmission was attained at high number of layers. Also, increase in porosity results in reduced transmission. Increase in porosity as well as in the number of layers led to an increase in absorption. Therefore, absorption into such structure can be enhanced by elevating the number of layers and the degree of porosity.

  15. Electronic structure and optical spectra of semiconducting carbon nanotubes functionalized by diazonium salts

    Science.gov (United States)

    Ramirez, Jessica; Mayo, Michael L.; Kilina, Svetlana; Tretiak, Sergei

    2013-02-01

    We report density functional (DFT) calculations on finite-length semiconducting carbon nanotubes covalently and non-covalently functionalized by aryl diazonium moieties and their chlorinated derivatives. For these systems, we investigate (i) an accuracy of different functionals and basis sets, (ii) a solvent effect, and (iii) the impact of the chemical functionalization on optical properties of nanotubes. In contrast to B3LYP, only long-range-corrected functionals, such as CAM-B3LYP and wB97XD, properly describe the ground and excited state properties of physisorbed molecules. We found that physisorbed cation insignificantly perturbs the optical spectra of nanotubes. In contrast, covalently bound complexes demonstrate strong redshifts and brightening of the lowest exciton that is optically dark in pristine nanotubes. However, the energy and oscillator strength of the lowest state are dictated by the position of the molecule on the nanotube. Thus, if controllable and selective chemical functionalization is realized, the PL of nanotubes could be improved.

  16. Monte Carlo simulations of channeling spectra recorded for samples containing complex defects

    Energy Technology Data Exchange (ETDEWEB)

    Jagielski, Jacek [Institute for Electronic Materials Technology; Turos, Prof. Andrzej [Institute for Electronic Materials Technology; Nowicki, Lech [Soltan Institute for Nuclear Studies, Swierk, Poland; Jozwik, P. [Institute for Electronic Materials Technology; Shutthanandan, Vaithiyalingam [Pacific Northwest National Laboratory (PNNL); Zhang, Yanwen [ORNL; Sathish, N. [Institute for Electronic Materials Technology; Thome, Lionel [Universite Paris Sud, Orsay, France; Stonert, A. [Soltan Institute for Nuclear Studies, Swierk, Poland; Jozwik-Biala, Iwona [Institute for Electronic Materials Technology

    2012-01-01

    The aim of the present paper is to describe the current status of the development of McChasy, a Monte Carlo simulation code, to make it suitable for the analysis of dislocations and dislocation loops in crystals. Such factors like the shape of the bent channel and geometrical distortions of the crystalline structure in the vicinity of dislocation has been discussed. The results obtained demonstrate that the new procedure applied to the spectra recorded on crystals containing dislocation yields damage profiles which are independent of the energy of the analyzing beam.

  17. Media effects on the optical absorption spectra of silver clusters embedded in rara gas matrices

    International Nuclear Information System (INIS)

    Fedrigo, S.; Harbich, W.; Buttet, J.

    1993-01-01

    The optical absorption of small mass selected Ag n -clusters (n=7, 11, 15, 21) embedded in solid Ar, Kr and Xe has been measured. The absorption spectra show 1 to 3 major peaks between 3 and 4.5 eV, depending on the cluster size. Changing the matrix gas Ar→Kr→Xe induces a redshift which is comparable for all sizes studied and does not affect the main structure of the absorption spectra. We propose a scheme to estimate the gas phase value of the absorption energies which is in fair agreement with an estimation obtained by a simple model based on a Drude metal. (author). 10 refs, 2 figs

  18. LIBS: study of elemental profile of different layers of the optical window of Tokamak

    International Nuclear Information System (INIS)

    Maurya, Gulab Singh; Jyotsna, Aradhana; Rai, Awadhesh Kumar; Ajai Kumar

    2012-01-01

    In the Tokamak, during confinement of plasma, impurities are deposited on optical window, mirror, limiters, etc. of the tokamak. Thus a layer of impurity on the surface of the optical window causes less visibility which creates problem in the study of plasma parameters and other diagnostics of the plasma generated in the tokamak. Laser Induced Breakdown Spectroscopy (LIBS) is a useful atomic spectroscopic technique for analysis of materials in any phase (Solid, Liquid, Gas etc). LIBS spectra of optical window have been recorded in the spectral range of 200-500 nm. In present study we have focused laser on the surface of the window, to study the layer-wise elemental profile of optical window, we have recorded the LIBS spectra with increasing number of laser shots on the same point of the window. In first laser shot, spectral signature of Cr, Fe, and Ni etc. are present in the LIBS spectra, which is related with the impurity but after five to six laser shots at the same point of the optical window spectral signature Si, B are observed which is related to the glass material. Thus our study demonstrates the capability of LIBS as an in-situ monitoring tool for detection of elemental profile in different layers of optical window of the Tokamak. (author)

  19. Theory of optical spectra of solvated electrons

    International Nuclear Information System (INIS)

    Kestner, N.R.

    1975-01-01

    During the last few years better theoretical models of solvated electron have been developed. These models allow one to calculate a priori the observable properties of the trapped electron. One of the most important and most widely determined properties is the optical spectrum. In this paper we consider the predictions of the theories not only as to the band maximum but line shape and width. In addition we will review how the theories predict these will depend on the solvent, pressure, temperature, and solvent density. In all cases extensive comparisons will be made with experimental work. In addition four new areas will be explored and recent results will be presented. These concern electrons in dense polar gases, the time development of the solvated electron spectrum, solvated electrons in mixed solvents, and photoelectron emission spectra (PEE) as it relates to higher excited states. This paper will review all recent theoretical calculations and present a critical review of the present status and future developments which are anticipated. The best theories are quite successful in predicting trends, and qualitative agreement concerning band maximum. The theory is still weak in predicting line shape and line width

  20. Optical properties of samarium doped zinc–tellurite glasses

    Indian Academy of Sciences (India)

    Unknown

    Optical absorption spectra of these glasses were recorded in the range 300–700 nm at room ... cause of their potential as hosts of rare earth elements for ... nature of these glasses was examined by X-ray diffraction ... absorption coefficient).

  1. Noise spectra in balanced optical detectors based on transimpedance amplifiers

    Science.gov (United States)

    Masalov, A. V.; Kuzhamuratov, A.; Lvovsky, A. I.

    2017-11-01

    We present a thorough theoretical analysis and experimental study of the shot and electronic noise spectra of a balanced optical detector based on an operational amplifier connected in a transimpedance scheme. We identify and quantify the primary parameters responsible for the limitations of the circuit, in particular, the bandwidth and shot-to-electronic noise clearance. We find that the shot noise spectrum can be made consistent with the second-order Butterworth filter, while the electronic noise grows linearly with the second power of the frequency. Good agreement between the theory and experiment is observed; however, the capacitances of the operational amplifier input and the photodiodes appear significantly higher than those specified in manufacturers' datasheets. This observation is confirmed by independent tests.

  2. Spectral scalability and optical spectra of fractal multilayer structures: FDTD analysis

    Science.gov (United States)

    Simsek, Sevket; Palaz, Selami; Mamedov, Amirullah M.; Ozbay, Ekmel

    2017-01-01

    An investigation of the optical properties and band structures for the conventional and Fibonacci photonic crystals (PCs) based on SrTiO3 and Sb2Te3 is made in the present research. Here, we use one-dimensional SrTiO3- and Sb2Te3-based layers. We have theoretically calculated the photonic band structure and transmission spectra of SrTiO3- and Sb2Te3-based PC superlattices. The position of minima in the transmission spectrum correlates with the gaps obtained in the calculation. The intensity of the transmission depths is more intense in the case of higher refractive index contrast between the layers.

  3. iSpectra: An Open Source Toolbox For The Analysis of Spectral Images Recorded on Scanning Electron Microscopes.

    Science.gov (United States)

    Liebske, Christian

    2015-08-01

    iSpectra is an open source and system-independent toolbox for the analysis of spectral images (SIs) recorded on energy-dispersive spectroscopy (EDS) systems attached to scanning electron microscopes (SEMs). The aim of iSpectra is to assign pixels with similar spectral content to phases, accompanied by cumulative phase spectra with superior counting statistics for quantification. Pixel-to-phase assignment starts with a threshold-based pre-sorting of spectra to create groups of pixels with identical elemental budgets, similar to a method described by van Hoek (2014). Subsequent merging of groups and re-assignments of pixels using elemental or principle component histogram plots enables the user to generate chemically and texturally plausible phase maps. A variety of standard image processing algorithms can be applied to groups of pixels to optimize pixel-to-phase assignments, such as morphology operations to account for overlapping excitation volumes over pixels located at phase boundaries. iSpectra supports batch processing and allows pixel-to-phase assignments to be applied to an unlimited amount of SIs, thus enabling phase mapping of large area samples like petrographic thin sections.

  4. Optical rectification, circular photogalvanic effect, and five-wave mixing in optically active liquids

    Science.gov (United States)

    Koroteev, Nikolai I.

    1996-05-01

    A phenomenological analysis is carried out of novel nonlinear optical processes taking place in macroscopically noncentrosymmetric isotropic solutions of chiral (lift-ring mirror asymmetric) macromolecules, which are the primary elements of living organisms and their metabolic products. Among the most interesting and potentially useful for spectroscopic purposes are: optical rectification/photogalvanic effects consisting in electrostatic field/direct electrical current generation in such liquids under irradiation with the intense circularly polarized laser beam and the five-wave mixing phase-matched process of BioCARS to selectively record, background-free, vibrational spectra of chiral molecules.

  5. Raman spectra of lithium compounds

    Science.gov (United States)

    Gorelik, V. S.; Bi, Dongxue; Voinov, Y. P.; Vodchits, A. I.; Gorshunov, B. P.; Yurasov, N. I.; Yurasova, I. I.

    2017-11-01

    The paper is devoted to the results of investigating the spontaneous Raman scattering spectra in the lithium compounds crystals in a wide spectral range by the fibre-optic spectroscopy method. We also present the stimulated Raman scattering spectra in the lithium hydroxide and lithium deuteride crystals obtained with the use of powerful laser source. The symmetry properties of the lithium hydroxide, lithium hydroxide monohydrate and lithium deuteride crystals optical modes were analyzed by means of the irreducible representations of the point symmetry groups. We have established the selection rules in the Raman and infrared absorption spectra of LiOH, LiOH·H2O and LiD crystals.

  6. The structural and optical characterizations of tetraphenylporphyrin thin films

    Energy Technology Data Exchange (ETDEWEB)

    Makhlouf, M.M., E-mail: m_makhlof@hotmail.com [Physics Department, Faculty of Applied Medical Science at Turabah branch, Taif University, Turabah, 21995 (Saudi Arabia); Department of Physics, Faculty of Science at New Damietta, Damietta University, New Damietta 34517 (Egypt); El-Denglawey, A. [Physics Department, Faculty of Applied Medical Science at Turabah branch, Taif University, Turabah, 21995 (Saudi Arabia); Physics Department, Faculty of Science, South Valley University, Qena 83523 (Egypt); Zeyada, H.M. [Department of Physics, Faculty of Science at New Damietta, Damietta University, New Damietta 34517 (Egypt); El-Nahass, M.M. [Physics Department, Faculty of Education, Ain Shams University, Cairo (Egypt)

    2014-03-15

    X-rays diffraction and scanning electron microscope were used to investigate the structural properties of tetraphenylporphyrin, TPP, which is polycrystalline in a synthesized condition. It turns to amorphous structure upon thermal deposition. Annealing temperature ranging from 295 to 473 K does not influence the amorphous structure of films. The optical properties of TPP were investigated using spectrophotometric measurements of the transmittance and reflectance at normal incidence in the wavelength range of 200–2200 nm. The absorption spectra were recorded in UV–visible region of spectra for the as-deposited and annealed samples show different absorption bands, namely four bands labeled as Q-band in visible region of spectra and a more intense band termed as the Soret band in near UV region of spectra. The Soret band shows its splitting (Davydov splitting). Two other bands labeled N and M appear in UV region. The film thickness has no influence on optical properties of films while annealing temperatures have a slight influence on optical properties of TPP films. The type of optical transition in as deposited and annealed conditions of films was found to be indirect allowed band-gap. Both fundamental and onset energy gap decreases upon annealing. -- Highlights: • Tetraphenylporphyrin (TPP) is polycrystalline in powder form, while the as-deposited and annealed TPP thin films have amorphous structure. • The absorption spectra of TPP in UV–visible region consists of Q-bands, Soret band and two other bands labeled N and M. • The optical parameters of TPP thin film were measured. • Thermal annealing influences optical properties of TPP thin films.

  7. The structural and optical characterizations of tetraphenylporphyrin thin films

    International Nuclear Information System (INIS)

    Makhlouf, M.M.; El-Denglawey, A.; Zeyada, H.M.; El-Nahass, M.M.

    2014-01-01

    X-rays diffraction and scanning electron microscope were used to investigate the structural properties of tetraphenylporphyrin, TPP, which is polycrystalline in a synthesized condition. It turns to amorphous structure upon thermal deposition. Annealing temperature ranging from 295 to 473 K does not influence the amorphous structure of films. The optical properties of TPP were investigated using spectrophotometric measurements of the transmittance and reflectance at normal incidence in the wavelength range of 200–2200 nm. The absorption spectra were recorded in UV–visible region of spectra for the as-deposited and annealed samples show different absorption bands, namely four bands labeled as Q-band in visible region of spectra and a more intense band termed as the Soret band in near UV region of spectra. The Soret band shows its splitting (Davydov splitting). Two other bands labeled N and M appear in UV region. The film thickness has no influence on optical properties of films while annealing temperatures have a slight influence on optical properties of TPP films. The type of optical transition in as deposited and annealed conditions of films was found to be indirect allowed band-gap. Both fundamental and onset energy gap decreases upon annealing. -- Highlights: • Tetraphenylporphyrin (TPP) is polycrystalline in powder form, while the as-deposited and annealed TPP thin films have amorphous structure. • The absorption spectra of TPP in UV–visible region consists of Q-bands, Soret band and two other bands labeled N and M. • The optical parameters of TPP thin film were measured. • Thermal annealing influences optical properties of TPP thin films

  8. Effect of ladder diagrams on optical absorption spectra in a quasiparticle self-consistent GW framework

    Science.gov (United States)

    Cunningham, Brian; Grüning, Myrta; Azarhoosh, Pooya; Pashov, Dimitar; van Schilfgaarde, Mark

    2018-03-01

    We present an approach to calculate the optical absorption spectra that combines the quasiparticle self-consistent GW method [Phys. Rev. B 76, 165106 (2007), 10.1103/PhysRevB.76.165106] for the electronic structure with the solution of the ladder approximation to the Bethe-Salpeter equation for the macroscopic dielectric function. The solution of the Bethe-Salpeter equation has been implemented within an all-electron framework, using a linear muffin-tin orbital basis set, with the contribution from the nonlocal self-energy to the transition dipole moments (in the optical limit) evaluated explicitly. This approach addresses those systems whose electronic structure is poorly described within the standard perturbative GW approaches with density-functional theory calculations as a starting point. The merits of this approach have been exemplified by calculating optical absorption spectra of a strongly correlated transition metal oxide, NiO, and a narrow gap semiconductor, Ge. In both cases, the calculated spectrum is in good agreement with the experiment. It is also shown that for systems whose electronic structure is well-described within the standard perturbative GW , such as Si, LiF, and h -BN , the performance of the present approach is in general comparable to the standard GW plus Bethe-Salpeter equation. It is argued that both vertex corrections to the electronic screening and the electron-phonon interaction are responsible for the observed systematic overestimation of the fundamental band gap and spectrum onset.

  9. Multiplexing 32,000 spectra onto 8 detectors: the HARMONI field splitting, image slicing, and wavelength selecting optics

    Science.gov (United States)

    Tecza, Matthias; Thatte, Niranjan; Clarke, Fraser; Freeman, David; Kosmalski, Johan

    2012-09-01

    HARMONI, the High Angular Resolution Monolithic Optical & Near-infrared Integral field spectrograph is one of two first-light instruments for the European Extremely Large Telescope. Over a 256x128 pixel field-of-view HARMONI will simultaneously measure approximately 32,000 spectra. Each spectrum is about 4000 spectral pixels long, and covers a selectable part of the 0.47-2.45 μm wavelength range at resolving powers of either R≍4000, 10000, or 20000. All 32,000 spectra are imaged onto eight HAWAII4RG detectors using a multiplexing scheme that divides the input field into four sub-fields, each imaged onto one image slicer that in turn re-arranges a single sub-field into two long exit slits feeding one spectrograph each. In total we require eight spectrographs, each with one HAWAII4RG detector. A system of articulated and exchangeable fold-mirrors and VPH gratings allows one to select different spectral resolving powers and wavelength ranges of interest while keeping a fixed geometry between the spectrograph collimator and camera avoiding the need for an articulated grating and camera. In this paper we describe both the field splitting and image slicing optics as well as the optics that will be used to select both spectral resolving power and wavelength range.

  10. The influence of oxygen and nitrogen doping on GeSbTe phase-change optical recording media properties

    Energy Technology Data Exchange (ETDEWEB)

    Dimitrov, D.; Shieh, H.-P.D

    2004-03-15

    Nitrogen and oxygen doped and co-doped GeSbTe (GST) films for phase-change optical recording are investigated. It is found that the crystallization temperature increased as well as the crystalline microstructure refined by doping. The carrier-to-noise ratio (CNR) and erasability of phase-change optical disks are improved being up to 52 and 35 dB, respectively, by using an appropriate nitrogen doping or co-doping concentration in the recording layer. Optical disks with co-doped recording layer are found to be superior in the recording characteristics then the single doped recording layer disks.

  11. Transmission Spectra of HgTe-Based Quantum Wells and Films in the Far-Infrared Range

    Science.gov (United States)

    Savchenko, M. L.; Vasil'ev, N. N.; Yaroshevich, A. S.; Kozlov, D. A.; Kvon, Z. D.; Mikhailov, N. N.; Dvoretskii, S. A.

    2018-04-01

    Strained 80-nm-thick HgTe films belong to a new class of materials referred to as three-dimensional topological insulators (i.e., they have a bulk band gap and spin-nondegenerate surface states). Though there are a number of studies devoted to analysis of the properties of surface states using both transport and magnetooptical techniques in the THz range, the information about direct optical transitions between bulk and surface bands in these systems has not been reported. This study is devoted to the analysis of transmission and reflection spectra of HgTe films of different thicknesses in the far-infrared range recorded in a wide temperature range in order to detect the above interband transitions. A peculiarity at 15 meV, which is sensitive to a change in the temperature, is observed in spectra of both types. Detailed analysis of the data obtained revealed that this feature is related to absorption by HgTe optical phonons, while the interband optical transitions are suppressed.

  12. Accelerated optical holographic recording using bis-DNO

    DEFF Research Database (Denmark)

    Rasmussen, Palle H.; Ramanujam, P.S.; Hvilsted, Søren

    1999-01-01

    The design, synthesis and optical holographic recording properties of bis-DNO are reported. Bis-DNO is composed of two identical azobenzene oligoornithine segments (DNO) connected via a dipeptide linker. The two segments were assembled in a parallel fashion at the two amino groups of the dipeptid...... linker by Merrifield synthesis. Surprisingly, the response time of films of bis-DNOs was found to be much faster than that of their linear counterparts. (C) 1999 Elsevier Science Ltd. All rights reserved....

  13. Reactively sputtered TeOx optical recording media

    International Nuclear Information System (INIS)

    Di Giulio, M.; Manno, D.; Micocci, G.; Rella, R.; Rizzo, A.; Tepore, A.

    1987-01-01

    Telluriom suboxide (TeO x ) thin films have been obtained by R.F. reactive sputtering deposition by using a Te target and an Ar-O 2 gas mixture. This technique of preparation has been shown to be a valid method because it is possible to easily obtain films with desired characteristics by an appropriate selection of the deposition conditions. Different samples were prepared by changing both the R.F. power (80-300 Watt) and the oxygen concentration in the sputtering gas. The films were analyzed in order to study their optical characteristics and the morphology before and after heat treatment. In particular, transmissivity and reflectivity have been found to change markedly by thermal treatment and critical temperatures in the range 120-150 grades centigrade. This property makes these films suitable for optical recording with a low output power laser diode

  14. Techniques for Handling Channeling in High Resolution Fourier Transform Spectra Recorded with Synchrotron Sources

    International Nuclear Information System (INIS)

    Ibrahim, Amr; PredoiCross, Adriana; Teillet, P. M.

    2010-01-01

    Seven different techniques in dealing the problem of channel spectra in Fourier transform Spectroscopy utilizing synchrotron source were examined and compared. Five of these techniques deal with the artifacts (spikes) in the recorded interferogram which in turn result in channel spectra within the spectral domain. Such interferogram editing method include replacing these spikes with zeros, straight line, fitted polynomial curve, rescaled spike and spike reduced with Gauss Function. Another two techniques try to target this issue in the spectral domain instead by either generating a synthetic background simulating the channels or measuring the channels parameters (amplitude, spacing and phase) to use in the spectral fitting program. Results showed spectral domain techniques produces higher quality results in terms of signal to noise and fitting residual. The effect of each method on the line parameters such as position, intensity are air broadening are also measured and discussed.

  15. Vibronic effects and destruction of exciton coherence in optical spectra of J-aggregates: A variational polaron transformation approach

    Energy Technology Data Exchange (ETDEWEB)

    Bloemsma, E.A.; Silvis, M.H.; Stradomska, A.; Knoester, J., E-mail: j.knoester@rug.nl

    2016-12-20

    Using a symmetry adapted polaron transformation of the Holstein Hamiltonian, we study the interplay of electronic excitation-vibration couplings, resonance excitation transfer interactions, and temperature in the linear absorption spectra of molecular J-aggregates. Semi-analytical expressions for the spectra are derived and compared with results obtained from direct numerical diagonalization of the Hamiltonian in the two-particle basis set representation. At zero temperature, we show that our polaron transformation reproduces both the collective (exciton) and single-molecule (vibrational) optical response associated with the appropriate standard perturbation limits. Specifically, for the molecular dimer excellent agreement with the spectra from the two-particle approach for the entire range of model parameters is obtained. This is in marked contrast to commonly used polaron transformations. Upon increasing the temperature, the spectra show a transition from the collective to the individual molecular features, which results from the thermal destruction of the exciton coherence.

  16. Solvent-free optical recording of structural colours on pre-imprinted photocrosslinkable nanostructures

    Science.gov (United States)

    Jiang, Hao; Rezaei, Mohamad; Abdolahi, Mahssa; Kaminska, Bozena

    2017-09-01

    Optical digital information storage media, despite their ever-increasing storage capacity and data transfer rate, are vulnerable to the potential risk of turning inaccessible. For this reason, long-term eye-readable full-colour optical archival storage is in high demand for preserving valuable information from cultural, intellectual, and scholarly resources. However, the concurrent requirements in recording colours inexpensively and precisely, and preserving colours for the very long term (for at least 100 years), have not yet been met by existing storage techniques. Structural colours hold the promise to overcome such challenges. However, there is still the lack of an inexpensive, rapid, reliable, and solvent-free optical patterning technique for recording structural colours. In this paper, we introduce an enabling technique based on optical and thermal patterning of nanoimprinted SU-8 nanocone arrays. Using photocrosslinking and thermoplastic flow of SU-8, diffractive structural colours of nanocone arrays are recorded using ultra-violet (UV) exposure followed by the thermal development and reshaping of nanocones. Different thermal treatment procedures in reshaping nanocones are investigated and compared, and two-step progressive baking is found to allow the controllable reshaping of nanocones. The height of the nanocones and brightness of diffractive colours are modulated by varying the UV exposure dose to enable grey-scale patterning. An example of recorded full-colour image through half-tone patterning is also demonstrated. The presented technique requires only low-power continuous-wave UV light and is very promising to be adopted for professional and consumer archival storage applications.

  17. Optical properties and energy spectra of donors in Gasub(x)Insub(1-x)P

    International Nuclear Information System (INIS)

    Berndt, V.; Kopylov, A.A.; Pikhtin, A.N.

    1977-01-01

    Impurity optical absorption is studied in n-Gasub(x)Insub(1-x)P for compositions with indirect band structure. For the first time the photoionization bands of shallow donor centers have been observed in semiconductor solid solutions. Analysis of spectra has shown the electron transitions to excited states of donor to contribute considerably to absorption. A simple theoretical model is presented to explain the shift of ionization energy of silicon donor and the variation in shape of the impurity absorption band

  18. Detector Sampling of Optical/IR Spectra: How Many Pixels per FWHM?

    Science.gov (United States)

    Robertson, J. Gordon

    2017-08-01

    Most optical and IR spectra are now acquired using detectors with finite-width pixels in a square array. Each pixel records the received intensity integrated over its own area, and pixels are separated by the array pitch. This paper examines the effects of such pixellation, using computed simulations to illustrate the effects which most concern the astronomer end-user. It is shown that coarse sampling increases the random noise errors in wavelength by typically 10-20 % at 2 pixels per Full Width at Half Maximum, but with wide variation depending on the functional form of the instrumental Line Spread Function (i.e. the instrumental response to a monochromatic input) and on the pixel phase. If line widths are determined, they are even more strongly affected at low sampling frequencies. However, the noise in fitted peak amplitudes is minimally affected by pixellation, with increases less than about 5%. Pixellation has a substantial but complex effect on the ability to see a relative minimum between two closely spaced peaks (or relative maximum between two absorption lines). The consistent scale of resolving power presented by Robertson to overcome the inadequacy of the Full Width at Half Maximum as a resolution measure is here extended to cover pixellated spectra. The systematic bias errors in wavelength introduced by pixellation, independent of signal/noise ratio, are examined. While they may be negligible for smooth well-sampled symmetric Line Spread Functions, they are very sensitive to asymmetry and high spatial frequency sub-structure. The Modulation Transfer Function for sampled data is shown to give a useful indication of the extent of improperly sampled signal in an Line Spread Function. The common maxim that 2 pixels per Full Width at Half Maximum is the Nyquist limit is incorrect and most Line Spread Functions will exhibit some aliasing at this sample frequency. While 2 pixels per Full Width at Half Maximum is nevertheless often an acceptable minimum for

  19. Effect of Er doping on optical transmission and EL spectra of (Zn, Cd)S:Cu phosphors

    International Nuclear Information System (INIS)

    Patil, P.K.; Nandgave, J.K.; Lawangar Pawar, R.D.

    1991-01-01

    Powder phosphors((Znsub(0.4)Cdsub(0.6))S)doped with Cu and Er have been prepared under the inert atmosphere of argon. The optical transmission spectra of Cu doped phosphors have been investigated and explained on the basis of copper associated defect states. The improvement of optical transmission of the phosphors due to Er doping has been reported and explained. The EL emission spectrum of (Znsub(0.4)Cdsub(0.6))S:Cu:Er phosphors exhibits two broad bands characteristic of Cu. The absence of characteristic Er bands has been explained as an effect of thermal quenching of Er donor levels. (author). 9 refs., 2 figs

  20. The role of records management professionals in optical disk-based document imaging systems in the petroleum industry

    International Nuclear Information System (INIS)

    Cisco, S.L.

    1992-01-01

    Analyses of the data indicated that nearly one third of the 83 companies in this study had implemented one or more document imaging systems. Companies with imaging systems mostly were large (more than 1,001 employees), and mostly were international in scope. Although records management professionals traditionally were delegated responsibility for acquiring, designing, implementing, and maintaining paper-based information systems and the records therein, when records were converted to optical disks, responsibility for acquiring, designing, implementing, and maintaining optical disk-based information systems and the records therein, was delegated more frequently to end user departments and IS/MIS/DP professionals than to records professionals. Records management professionals assert that the need of an organization for a comprehensive records management program is not served best when individuals who are not professional records managers are responsible for the records stored in optical disk-based information systems

  1. Built-in electric field effect on optical absorption spectra of strained (In,Ga)N–GaN nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    El Ghazi, Haddou, E-mail: hadghazi@gmail.com [LPS, Faculty of Science, Dhar EL Mehrez, BP 1796 Fes-Atlas (Morocco); Special Mathematics, CPGE Rabat, Rabat (Morocco); John Peter, A. [Department of Physics, Govt. Arts and Science College, Melur, 625106 Madurai (India)

    2015-08-15

    Based on the effective-mass and the one band parabolic approximations, first order linear, third-order nonlinear and total optical properties related to 1s–1p intra-conduction band transition in wurtzite strained (In,Ga)N–GaN spherical QDs are calculated. The built-in electric field effect, due to the spontaneous and piezoelectric components, is investigated variationally under finite confinement potential. The results reveal that size and internal composition of the dot have a great influence on in-built electric field which affects strongly the optical absorption spectra. It is also found that the modulation of the absorption coefficient, which is suitable for the better performance of optical device applications, can be easily obtained by adjusting geometrical size and internal composition.

  2. VizieR Online Data Catalog: A library of high-S/N optical spectra of FGKM stars (Yee+, 2017)

    Science.gov (United States)

    Yee, S. W.; Petigura, E. A.; von Braun, K.

    2017-09-01

    Classification of stars, by comparing their optical spectra to a few dozen spectral standards, has been a workhorse of observational astronomy for more than a century. Here, we extend this technique by compiling a library of optical spectra of 404 touchstone stars observed with Keck/HIRES by the California Planet Search. The spectra have high resolution (R~60000), high signal-to-noise ratio (S/N~150/pixel), and are registered onto a common wavelength scale. The library stars have properties derived from interferometry, asteroseismology, LTE spectral synthesis, and spectrophotometry. To address a lack of well-characterized late-K dwarfs in the literature, we measure stellar radii and temperatures for 23 nearby K dwarfs, using modeling of the spectral energy distribution and Gaia parallaxes. This library represents a uniform data set spanning the spectral types ~M5-F1 (Teff~3000-7000K, R*~0.1-16R{Sun}). We also present "Empirical SpecMatch" (SpecMatch-Emp), a tool for parameterizing unknown spectra by comparing them against our spectral library. For FGKM stars, SpecMatch-Emp achieves accuracies of 100K in effective temperature (Teff), 15% in stellar radius (R*), and 0.09dex in metallicity ([Fe/H]). Because the code relies on empirical spectra it performs particularly well for stars ~K4 and later, which are challenging to model with existing spectral synthesizers, reaching accuracies of 70K in Teff, 10% in R*, and 0.12dex in [Fe/H]. We also validate the performance of SpecMatch-Emp, finding it to be robust at lower spectral resolution and S/N, enabling the characterization of faint late-type stars. Both the library and stellar characterization code are publicly available. (2 data files).

  3. Development of uniform hazard response spectra from accelerograms recorded on rock sites

    International Nuclear Information System (INIS)

    Ghosh, A.K.; Kushwaha, H.S.

    2000-05-01

    Traditionally, the seismic design basis ground motion has been specified by response spectral shapes and the peak ground acceleration (PGA). The mean recurrence interval (MRI) is evaluated for PGA only. The present work has developed response spectra having the same MRI at all frequencies. This report extends the work of Cornell (on PGA) to consider an aerial source model and a general form of the spectral acceleration at various frequencies. The latter has been derived from a number of strong motion earthquake recorded on rock sites. Sensitivity of the results to the changes in various parameters has also been presented. These results will help to determine the seismic hazard at a given site and the associated uncertainties. (author)

  4. Gas-Phase Infrared Spectra of Vinyl Selenol and Vinyl Tellurol

    Science.gov (United States)

    Benidar, Abdessamad; Khater, Brahim; Guillemin, Jean-Claude; Gámez, José A.; Yáñez, Manuel

    2009-10-01

    The infrared spectra (3500-500 cm-1) of gaseous vinyl selenol and vinyl tellurol have been recorded at 0.1 cm-1 resolution. For the latter the spectra were obtained at room temperature, but for the former a temperature of -40 °C was required because of the chemical instability of vinyl selenol at room temperature. To compensate the very weak vapor pressure of vinyl tellurol at room temperature, a long optical path up to 136 m was necessary to record its spectrum. B3LYP density functional theory (DFT) calculations have been performed to assign the different absorption bands. Since an unambiguous assignment of the absorption bands requires a precise knowledge on the relative abundance of the syn and gauche rotamers of these compounds, their relative energies and their anharmonic vibrational frequencies were obtained using a very extended Def2-QZVP basis set. Two rotamers, the syn, which is planar, and a nonplanar gauche, were found to be local minima for both compounds. The gauche rotamer presents two degenerate conformers, which differ by the position of the SeH (TeH) hydrogen atom above or below the molecular plane. Our theoretical results are in good agreement with the main features of the experimental spectra. Fundamental bands and some combination bands of vinyl selenol and vinyl tellurol were assigned and compared with those of vinyl alcohol and vinyl thiol, whose spectra had been reported previously in the literature.

  5. Methylene blue doped polymers: efficient media for optical recording

    Science.gov (United States)

    Ushamani, M.; Sreekumar, K.; Sudha Kartha, C.; Joseph, R.

    2004-05-01

    Polymer materials find application in optical storage technology, namely in the development of high information density and fast access type memories. A new polymer blend of methylene blue sensitized polyvinyl alcohol (PVA) and polyacrylic acid (PAA) in methanol is prepared and characterized and its comparison with methylene blue sensitized PVA in methanol and complexed methylene blue sensitized polyvinyl chloride (CMBPVC) is presented. The optical absorption spectra of the thin films of these polymers showed a strong and broad absorption region at 670-650 nm, matching the wavelength of the laser used. A very slow recovery of the dye on irradiation was observed when a 7:3 blend of polyvinyl alcohol/polyacrylic acid at a pH of 3.8 and a sensitizer concentration of 4.67 · 10-5 g/ml were used. A diffraction efficiency of up to 20% was observed for the MBPVA/alcohol system and an energetic sensitivity of 2000 mJ/cm2 was obtained in the photosensitive films with a spatial frequency of 588 lines/mm.

  6. Temperature dependence of the optical absorption spectra of InP/ZnS quantum dots

    Science.gov (United States)

    Savchenko, S. S.; Vokhmintsev, A. S.; Weinstein, I. A.

    2017-03-01

    The optical-absorption spectra of InP/ZnS (core/shell) quantum dots have been studied in a broad temperature range of T = 6.5-296 K. Using the second-order derivative spectrophotometry technique, the energies of optical transitions at room temperature were found to be E 1 = 2.60 ± 0.02 eV (for the first peak of excitonic absorption in the InP core) and E 2 = 4.70 ± 0.02 eV (for processes in the ZnS shell). The experimental curve of E 1( T) has been approximated for the first time in the framework of a linear model and in terms of the Fan's formula. It is established that the temperature dependence of E 1 is determined by the interaction of excitons and longitudinal acoustic phonons with hω = 15 meV.

  7. Longitudinal correlation properties of an optical field with broad angular and frequency spectra and their manifestation in interference microscopy

    International Nuclear Information System (INIS)

    Lyakin, D V; Ryabukho, V P

    2013-01-01

    The results of theoretical and experimental studies of the longitudinal correlation properties of an optical field with broad angular and frequency spectra and manifestations of these properties in interference microscopy are presented. The joint and competitive influence of the angular and frequency spectra of the object-probing field on the longitudinal resolution and on the amplitude of the interference microscope signals from the interfaces between the media inside a multilayer object is demonstrated. The method of compensating the so-called defocusing effect that arises in the interference microscopy using objectives with a large numerical aperture is experimentally demonstrated, which consists in using as a light source in the interference microscope an illuminating interferometer with a frequency-broadband light source. This method of compensation may be used as the basis of simultaneous determination of geometric thickness and refractive index of media forming a multilayer object. (optical fields)

  8. Electron and nuclear spin interactions in the optical spectra of single GaAs quantum dots.

    Science.gov (United States)

    Gammon, D; Efros, A L; Kennedy, T A; Rosen, M; Katzer, D S; Park, D; Brown, S W; Korenev, V L; Merkulov, I A

    2001-05-28

    Fine and hyperfine splittings arising from electron, hole, and nuclear spin interactions in the magneto-optical spectra of individual localized excitons are studied. We explain the magnetic field dependence of the energy splitting through competition between Zeeman, exchange, and hyperfine interactions. An unexpectedly small hyperfine contribution to the splitting close to zero applied field is described well by the interplay between fluctuations of the hyperfine field experienced by the nuclear spin and nuclear dipole/dipole interactions.

  9. A color display device recording X ray spectra, especially intended for medical radiography

    International Nuclear Information System (INIS)

    Boulch, J.-M.

    1975-01-01

    Said invention relates to a color display recording device for X ray spectra intended for medical radiography. The video signal of the X ray camera receiving the radiation having passed through the patient is amplified and transformed into a color coding according to the energy spectrum received by the camera. In a first version, the energy spectrum from the camera gives directly an image on the color tube. In a second version the energy spectrum, after having been transformed into digital signals, is first sent into a memory, then into a computer used as a spectrum analyzer, and finally into the color display device [fr

  10. Rich magneto-absorption spectra of AAB-stacked trilayer graphene.

    Science.gov (United States)

    Do, Thi-Nga; Shih, Po-Hsin; Chang, Cheng-Peng; Lin, Chiun-Yan; Lin, Ming-Fa

    2016-06-29

    A generalized tight-binding model is developed to investigate the feature-rich magneto-optical properties of AAB-stacked trilayer graphene. Three intragroup and six intergroup inter-Landau-level (inter-LL) optical excitations largely enrich magneto-absorption peaks. In general, the former are much higher than the latter, depending on the phases and amplitudes of LL wavefunctions. The absorption spectra exhibit single- or twin-peak structures which are determined by quantum modes, LL energy spectra and Fermion distribution. The splitting LLs, with different localization centers (2/6 and 4/6 positions in a unit cell), can generate very distinct absorption spectra. There exist extra single peaks because of LL anti-crossings. AAB, AAA, ABA, and ABC stackings considerably differ from one another in terms of the inter-LL category, frequency, intensity, and structure of absorption peaks. The main characteristics of LL wavefunctions and energy spectra and the Fermi-Dirac function are responsible for the configuration-enriched magneto-optical spectra.

  11. Donor-related optical absorption spectra in GaAs-(Ga,Al)As quantum wells: hydrostatic pressure effects

    International Nuclear Information System (INIS)

    Lopez, S.Y.; Duque, C.A.; Porras-Montenegro, N.

    2004-01-01

    Full text: Donor-related optical-absorption spectra for GaAs-(Ga,Al)As quantum wells under hydrostatic pressure are investigated. A variational procedure in the e effective-mass approximation is used in order to obtain binding energies and wave functions. As a general feature, we observe that the binding energy increases with the pressure and with the decreasing of the width of the well. The pressure-related Γ-X crossover has been taken into account in the whole calculation. For the low-pressure regime we observe a linear binding energy behavior, whereas for high pressure the main effect associated with the height of the barrier is the bending of the binding energy curves towards smaller values. Two special structures in the density of impurity states and in the donor-related optical-absorption spectra are observed: an edge associated with transitions involving impurities at the center of the well and a peak associated with transitions related to impurities at the edges of the quantum well. Also, we observe shifts to higher energies of the density of impurity states as a function of the binding energy, as well as changes in the intensity with a red shift of the absorption effect with the hydrostatic pressure. (author)

  12. Optical and magneto-optical characterization of TbFeCo and GdFeCo thin films for high-density recording

    International Nuclear Information System (INIS)

    Hendren, W R; Atkinson, R; Pollard, R J; Salter, I W; Wright, C D; Clegg, W W; Jenkins, D F L

    2003-01-01

    Thin, optically semi-infinite films of amorphous TbFeCo and GdFeCo, suitable for magneto-optical recording, have been deposited by DC magnetron sputtering onto glass. Ellipsometric techniques have been used to determine the complex refractive index and complex magneto-optical parameter of the films in the wavelength range 400-900 nm, thus characterizing the materials. A review of the literature is presented and shows that the results for the TbFeCo films compare favourably with published results obtained from measurements conducted in situ, with the films protected with ZnS barrier layers. It is found that GdFeCo and TbFeCo are optically very similar, but magneto-optically the materials are quite different

  13. Optical and magneto-optical characterization of TbFeCo and GdFeCo thin films for high-density recording

    Energy Technology Data Exchange (ETDEWEB)

    Hendren, W R [Department of Pure and Applied Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Atkinson, R [Department of Pure and Applied Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Pollard, R J [Department of Pure and Applied Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Salter, I W [Department of Pure and Applied Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Wright, C D [School of Engineering and Computer Science, University of Exeter, Exeter EX4 4QF (United Kingdom); Clegg, W W [CRIST, University of Plymouth, Plymouth PL4 8AA (United Kingdom); Jenkins, D F L [CRIST, University of Plymouth, Plymouth PL4 8AA (United Kingdom)

    2003-03-12

    Thin, optically semi-infinite films of amorphous TbFeCo and GdFeCo, suitable for magneto-optical recording, have been deposited by DC magnetron sputtering onto glass. Ellipsometric techniques have been used to determine the complex refractive index and complex magneto-optical parameter of the films in the wavelength range 400-900 nm, thus characterizing the materials. A review of the literature is presented and shows that the results for the TbFeCo films compare favourably with published results obtained from measurements conducted in situ, with the films protected with ZnS barrier layers. It is found that GdFeCo and TbFeCo are optically very similar, but magneto-optically the materials are quite different.

  14. Composite Spectra Paper 1: HR 6902

    Indian Academy of Sciences (India)

    tribpo

    spectra; in many cases we have used the maximum width permitted by the optics of ... 10 mЕ, corresponding to 1 µm the plate, are the norm. ..... an inequality ..... on the spectra of HR 6902, we have thought it appropriate to weight the four ...

  15. A stereo-compound hybrid microscope for combined intracellular and optical recording of invertebrate neural network activity.

    Science.gov (United States)

    Frost, William N; Wang, Jean; Brandon, Christopher J

    2007-05-15

    Optical recording studies of invertebrate neural networks with voltage-sensitive dyes seldom employ conventional intracellular electrodes. This may in part be due to the traditional reliance on compound microscopes for such work. While such microscopes have high light-gathering power, they do not provide depth of field, making working with sharp electrodes difficult. Here we describe a hybrid microscope design, with switchable compound and stereo objectives, that eases the use of conventional intracellular electrodes in optical recording experiments. We use it, in combination with a voltage-sensitive dye and photodiode array, to identify neurons participating in the swim motor program of the marine mollusk Tritonia. This microscope design should be applicable to optical recording studies in many preparations.

  16. Retrieval of vertical concentration profiles from OSIRIS UV-visible limb spectra

    International Nuclear Information System (INIS)

    Strong, K.; Joseph, B.M.; Dosanjh, R.; McDade, I.C.; McLinden, C.A.; McConnell, J.C.; Stegman, J.; Murtagh, D.P.; Llewellyn, E.J.

    2002-01-01

    The OSIRIS instrument, launched on the Odin satellite in February 2001, includes an optical spectrograph that will record UV-visible spectra of sunlight scattered from the limb over a range of tangent heights. These spectra will be used to retrieve vertical profiles of ozone, NO 2 , OC1O, BrO, NO 3 , O 2 , and aerosols, for the investigation of both stratospheric and mesospheric processes, particularly those related to ozone chemistry. In this work, the retrieval of vertical profiles of trace-gas concentrations from OSIRIS limb-radiance spectra is described. A forward model has been developed to simulate these spectra, and it consists of a single-scattering radiative-transfer model with partial spherical geometry, trace-gas absorption, Mic scattering by stratospheric aerosols, a Lambertian surface contribution, and OSIRIS instrument response and noise. Number-density profiles have been retrieved by using optimal estimation (OE) to combine an a priori profile with the information from sets of synthetic 'measurements'. For ozone, OE has been applied both to limb radiances at one or more discrete wavelengths and to effective-column abundances retrieved over a broad spectral range using differential optical absorption spectroscopy (DOAS). The results suggest that, between 15 and 35 km, ozone number densities can be retrieved to 10% accuracy or better on 1 and 2 km grids and to 5% on a 5 km grid. The combined DOAS-OE approach has also been used to retrieve NO 2 number densities, yielding 13% accuracy or better for altitudes from 18 to 36 km (in a 2 km grid. Differential optical absorption spectroscopy - optimal estimation retrievals of BrO and OC1O reproduce the true profiles above 15 km in the noise-free case, but the quality of the retrievals is highly sensitive to noise on the simulated OSIRIS spectra because of the weak absorption of these two gases. The development of inversion methods for the retrieval of trace-gas concentrations from OSIRIS spectra is continuing

  17. Optical efficiency for fission fragment track counting in Muscovite solid state track recorders

    International Nuclear Information System (INIS)

    Roberts, J.H.; Ruddy, F.H.; Gold, R.

    1984-01-01

    In order to determine absolute fission rates from thin actinide deposits placed in direct contact with Muscovite Solid State Track Recorders, it is necessary to know the efficiency with which fission fragment tracks are recorded. In this paper, a redetermination of the 'optical efficiency', i.e. the fraction of fission events recorded and observed in the Muscovite is reported. The value obtained from a well-calibrated thin deposit of 252 Cf and Muscovite etched about 90 min. in 49% HF at room temperature, is 0.9875 +- 0.0085. Manual counting was used. Preliminary results from a deposit of 242 Pu are also reported, along with preliminary comparisons of track counting with an automated system. Reasons for the discrepancy of the optical efficiency reported here with an earlier measurement are also reported. (author)

  18. Investigation of radio objects with continuos optical spectra. The results of four-color electrophotometric observations

    International Nuclear Information System (INIS)

    Beskin, G.M.; Lyutyj, V.M.; Neizvestnyj, S.I.; Pustil'nik, S.I.; Shvartsman, V.F.

    1985-01-01

    The results of UBVR photometry of 30 radio objects with continuous optical spectra (ROCOSes) are reported. The observations were performed using five telescopes during the years 1979-1982; 54 values have been obtained of U, B, V magnitudes and 26 ones of R magnitude. Colours for 16 ROCOSes have been obtained for the first time. The analysis of the data results in the following conclusions. 1) Practically all colours of ROCOSes have proved to be in the region of localization of BL Lac objects' colours on UBV and BVR diagrams. This fact (altogether with the other data) indicates on the proximity of the objects of the two classes. 2) In half of all cases, instantaneous colours of ROCOSes corresponded to purely power-law optical continua F(ν) varies as νsup(α) with α approximately= -(1-2.5). 3) In the remaining cases, optical continua differed significantly from the power-law ones. 4) 6 ROCOSes appeared to be in the phases of deep minimum of brightness at the moment of observations (namely, about 3sup(m)-5sup(m) fainter than in the brightest phase known from the literature). The UBVR colours of none of them give indication on the presence of an elliptical galaxy which, according to conventional concepts, must encompass a variable nonthermal source. 5) Two blue objects, 0548+165 and 0713+199, which are situated at low galactic latitudes (b 2 =-5 deg and +14 deg respectively) have shown colours unusual for lacertids. Appendices contain the results of theoretical calculations of (U-B), (B-V) and (V-R) colours for purely power-law spectra F(ν)=constxνsup(α) with α in the range (-6.5-+2.5) and the results of UBV photometry of the BL Lac object OJ 287 during the years 1976-1982 (24 measurements)

  19. Optical properties of Lactuca and Taraxacum seed and fruit coats: Their role as light filters [phytochrome, photoblasty, fiber optics, transmission, spectra

    International Nuclear Information System (INIS)

    Widell, K.-O.; Vogelmann, T.C.

    1985-01-01

    The optical properties of seed and fruit coats were examined from several varieties of light-sensitive achenes. Taraxacum vulgare L. and Lactuca sativa L. cv. Grand Rapids achenes with dark fruit coats and L. sativa cvs Huvudsallat and Issallat with white fruit coats were examined. Transmission spectra varied among the different achenes: white fruit coats of Lactuca acted as neutral density filters between 450 and 780 nm, whereas Taraxacum transmitted 2–36% in this region. The ribbed fruit coat structure greatly affected transmission so that at different locations in the same coat, transmission varied between 20 to 80% at 660 and 730 nm. Fruit coats of Grand Rapids lettuce and Taraxacum transmitted more far-red than red light with T 660 /T 730 ratios of 0.8 and 0.4, respectively. The relationship between the optical properties of fruit coats and light-stimulated germination is discussed. (author)

  20. New Optical Card for Sneaker’s Network in Place of Electronic Clinical Record

    Science.gov (United States)

    Goto, Kenya; Satsukawa, Takatoshi; Chiba, Seisho; Ohmori, Takaaki

    2006-02-01

    In order to solve problems in electronic medical records, a new optical card of the digital versatile disk (DVD) type with higher capacity and lower cost than conventional compact disc recording (CD-R)-type cards has been developed, which is thinner, stronger and wearable like a credit card.

  1. Observation of Lorentzian lineshapes in the room temperature optical spectra of strongly coupled Jaggregate/metal hybrid nanostructures by linear two-dimensional optical spectroscopy

    International Nuclear Information System (INIS)

    Wang, Wei; Sommer, Ephraim; De Sio, Antonietta; Gross, Petra; Vogelgesang, Ralf; Lienau, Christoph; Vasa, Parinda

    2014-01-01

    We analyze the linear optical reflectivity spectra of a prototypical, strongly coupled metal/molecular hybrid nanostructure by means of a new experimental approach, linear two-dimensional optical spectroscopy. White-light, broadband spectral interferometry is used to measure amplitude and spectral phase of the sample reflectivity or transmission with high precision and to reconstruct the time structure of the electric field emitted by the sample upon impulsive excitation. A numerical analysis of this time-domain signal provides a two-dimensional representation of the coherent optical response of the sample as a function of excitation and detection frequency. The approach is used to study a nanostructure formed by depositing a thin J-aggregated dye layer on a gold grating. In this structure, strong coupling between excitons and surface plasmon polaritons results in the formation of hybrid polariton modes. In the strong coupling regime, Lorentzian lineshape profiles of different polariton modes are observed at room temperature. This is taken as an indication that the investigated strongly coupled polariton excitations are predominantly homogeneously broadened at room temperature. This new approach presents a versatile, simple and highly precise addition to nonlinear optical spectroscopic techniques for the analysis of line broadening phenomena. (paper)

  2. Optical to ultraviolet spectra of sandwiches of benzene and transition metal atoms: Time dependent density functional theory and many-body calculations

    DEFF Research Database (Denmark)

    Martinez, Jose Ignacio; García Lastra, Juan Maria; Lopez, M. J.

    2010-01-01

    The optical spectra of sandwich clusters formed by transition metal atoms (titanium, vanadium, and chromium) intercalated between parallel benzene molecules have been studied by time-dependent density functional theory (TDDFT) and many-body perturbation theory. Sandwiches with different number...

  3. Optical efficiency for fission-fragment track counting in Muscovite Solid-State Track Recorders

    International Nuclear Information System (INIS)

    Roberts, J.H.; Ruddy, F.H.; Gold, R.

    1983-07-01

    In order to determine absolute fission rates from thin actinide deposits placed in direct contact with Muscovite Solid-State Track Recorders, it is necessary to know the efficiency with which fission-fragment tracks are recorded. In this paper, a redetermination of the optical efficiency, i.e., the fraction of fission events recorded and observed in the Muscovite, is reported. The value obtained from a well-calibrated thin deposit of 252 Cf and Muscovite etched about 90 min. in 49% HF at room temperature, is 0.9875 +- 0.0085. Manual counting was used. Preliminary results from a deposit of 242 Pu are also reported, along with preliminary comparisons of track counting with an automated system. Reasons for the discrepancy of the optical efficiency reported here with an earlier measurement are also reported. 5 references, 1 figure, 3 tables

  4. Observed and theoretical spectra in the 10-100 A interval. [of solar spectra

    Science.gov (United States)

    Brown, W. A.; Bruner, M. E.; Acton, L. W.

    1988-01-01

    The soft X-ray spectra recorded in two sounding-rocket flights in 1982 and 1985 are compared with predicted spectra. The processed densitometer trace of the full spectrum is presented, together with the new spectrum from the 1985 experiment. The intensities of the lines are then compared with predictions.

  5. Infrared Spectra and Optical Constants of Astronomical Ices: I. Amorphous and Crystalline Acetylene

    Science.gov (United States)

    Hudson, R. L.; Ferrante, R. F.; Moore, M. H.

    2013-01-01

    Here we report recent measurements on acetylene (C2H2) ices at temperatures applicable to the outer Solar System and the interstellar medium. New near- and mid-infrared data, including optical constants (n, k), absorption coefficients (alpha), and absolute band strengths (A), are presented for both amorphous and crystalline phases of C2H2 that exist below 70 K. Comparisons are made to earlier work. Electronic versions of the data are made available, as is a computer routine to use our reported n and k values to simulate the observed IR spectra. Suggestions are given for the use of the data and a comparison to a spectrum of Makemake is made.

  6. Optical studies on Eu3+ doped boro-tellurite glasses

    Science.gov (United States)

    Maheshvaran, K.; Marimuthu, K.

    2012-06-01

    Eu3+ doped boro-tellurite glasses with the chemical composition (39-x)B2O3+30TeO2+15MgO+15K2O +xEu2O3 (where x = 0.01, 0.1, 1, 2 and 3 wt%) have been prepared by following conventional melt quenching technique. Spectroscopic properties of the Eu3+ doped boro-tellurite glasses have been studied by recording the optical absorption and luminescence measurements. Through the optical absorption spectra, bonding parameters (β¯, δ) have been calculated to identify the ionic/covalent nature of the glasses. Judd-Ofelt (JO) analysis have been carried out using the luminescence spectra. The JO parameters (Ωλ = 2, 4 and 6) were used to calculate the radiative properties for the 5D0 → 7FJ (J = 1, 2, 3 and 4) emission transitions of the Eu3+ ions. The change in optical properties with the variation of Eu3+ ion concentration have been studied and discussed with similar studies.

  7. Fast optical detecting media based on semiconductor nanostructures for recording images obtained using charges of free photocarriers

    International Nuclear Information System (INIS)

    Kasherininov, P. G.; Tomasov, A. A.; Beregulin, E. V.

    2011-01-01

    Available published data on the properties of optical recording media based on semiconductor structures are reviewed. The principles of operation, structure, parameters, and the range of application for optical recording media based on MIS structures formed of photorefractive crystals with a thick layer of insulator and MIS structures with a liquid crystal as the insulator (the MIS LC modulators), as well as the effect of optical bistability in semiconductor structures (semiconductor MIS structures with nanodimensionally thin insulator (TI) layer, M(TI)S nanostructures). Special attention is paid to recording media based on the M(TI)S nanostructures promising for fast processing of highly informative images and to fabrication of optoelectronic correlators of images for noncoherent light.

  8. Microstructures and Recording Mechanism of Mo/Si Bilayer Applied for Write-Once Blue Laser Optical Recording

    Directory of Open Access Journals (Sweden)

    Sin-Liang Ou

    2014-01-01

    Full Text Available Mo/Si bilayer thin films were grown by magnetron sputtering and applied to write-once blu-ray disc (BD-R. The microstructures and optical storage properties of Mo/Si bilayer were investigated. From the temperature dependence of reflectivity measurement, it was revealed that a phase change occurred in the range of 255–425°C. Transmission electron microscopy analysis showed that the as-deposited film possessed Mo polycrystalline phase. The hexagonal MoSi2 and cubic Mo3Si phases appeared after annealing at 300 and 450°C, respectively. By measuring the optical reflectivity at a wavelength of 405 nm, the optical contrast of Mo/Si bilayer between as-deposited and 450°C-annealed states was evaluated to 25.8%. The optimum jitter value of 6.8% was obtained at 10.65 mW for 4× recording speed. The dynamic tests show that the Mo/Si bilayer has high potential in BD-R applications.

  9. Optical-absorption spectra associated with shallow donor impurities in GaAs-(Ga,Al)As quantum-dots

    International Nuclear Information System (INIS)

    Silva Valencia, J.

    1995-08-01

    The binding energy of a hydrogenic donor impurity and the optical-absorption spectra associated with transitions between the n=1 valence level and the donor-impurity band were calculated for infinite barrier-well spherical GaAs-(Ga,Al)As quantum-dots of different radii, using the effective mass approximation within a variational scheme. An absorption peak associated with transitions involving impurities at the center of the well and a peak related with impurities at the edge of the dot were the main features observed for the different radii of the dots considered in the calculations. Also as a result of the higher electronic confinement in a quantum- dot, we found a much wider energy range of the absorption spectra when compared to infinite GaAs-(Ga,Al)As quantum-wells and quantum-well wires of width and diameter comparable to the diameter of the quantum dot. (author). 13 refs, 3 figs

  10. Recent Progress of the Synchrotron Radiation Calculation Code SPECTRA

    International Nuclear Information System (INIS)

    Tanaka, T.; Kitamura, H.

    2007-01-01

    SPECTRA is a computer software to calculate optical properties of synchrotron radiation (SR) emitted by electrons passing through magnetic devices such as bending magnets, wigglers and undulators. It has been used to design various devices in the SR beamline, such as high heat-load components in the front-end section and optical elements in the optics hutch. In addition, the electron beam quality can be estimated by comparison between the measured and calculated properties of SR. Since the first announcement, numerous improvements have been made to SPECTRA to achieve less computation time with higher numerical accuracy. In addition, a number of functions have been added to follow the user's demand. In this paper, recent progress of SPECTRA is presented and details of the new functions are explained together with several examples

  11. Predicting ambient aerosol Thermal Optical Reflectance (TOR) measurements from infrared spectra: organic carbon

    Science.gov (United States)

    Dillner, A. M.; Takahama, S.

    2014-11-01

    Organic carbon (OC) can constitute 50% or more of the mass of atmospheric particulate matter. Typically, the organic carbon concentration is measured using thermal methods such as Thermal-Optical Reflectance (TOR) from quartz fiber filters. Here, methods are presented whereby Fourier Transform Infrared (FT-IR) absorbance spectra from polytetrafluoroethylene (PTFE or Teflon) filters are used to accurately predict TOR OC. Transmittance FT-IR analysis is rapid, inexpensive, and non-destructive to the PTFE filters. To develop and test the method, FT-IR absorbance spectra are obtained from 794 samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites sampled during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to artifact-corrected TOR OC. The FTIR spectra are divided into calibration and test sets by sampling site and date which leads to precise and accurate OC predictions by FT-IR as indicated by high coefficient of determination (R2; 0.96), low bias (0.02 μg m-3, all μg m-3 values based on the nominal IMPROVE sample volume of 32.8 m-3), low error (0.08 μg m-3) and low normalized error (11%). These performance metrics can be achieved with various degrees of spectral pretreatment (e.g., including or excluding substrate contributions to the absorbances) and are comparable in precision and accuracy to collocated TOR measurements. FT-IR spectra are also divided into calibration and test sets by OC mass and by OM / OC which reflects the organic composition of the particulate matter and is obtained from organic functional group composition; this division also leads to precise and accurate OC predictions. Low OC concentrations have higher bias and normalized error due to TOR analytical errors and artifact correction errors, not due to the range of OC mass of the samples in the calibration set. However, samples with low OC mass can be used to predict samples with high OC mass indicating that the

  12. Acoustical holographic recording with coherent optical read-out and image processing

    Science.gov (United States)

    Liu, H. K.

    1980-10-01

    New acoustic holographic wave memory devices have been designed for real-time in-situ recording applications. The basic operating principles of these devices and experimental results through the use of some of the prototypes of the devices are presented. Recording media used in the device include thermoplastic resin, Crisco vegetable oil, and Wilson corn oil. In addition, nonlinear coherent optical image processing techniques including equidensitometry, A-D conversion, and pseudo-color, all based on the new contact screen technique, are discussed with regard to the enhancement of the normally poor-resolved acoustical holographic images.

  13. Single-intensity-recording optical encryption technique based on phase retrieval algorithm and QR code

    Science.gov (United States)

    Wang, Zhi-peng; Zhang, Shuai; Liu, Hong-zhao; Qin, Yi

    2014-12-01

    Based on phase retrieval algorithm and QR code, a new optical encryption technology that only needs to record one intensity distribution is proposed. In this encryption process, firstly, the QR code is generated from the information to be encrypted; and then the generated QR code is placed in the input plane of 4-f system to have a double random phase encryption. For only one intensity distribution in the output plane is recorded as the ciphertext, the encryption process is greatly simplified. In the decryption process, the corresponding QR code is retrieved using phase retrieval algorithm. A priori information about QR code is used as support constraint in the input plane, which helps solve the stagnation problem. The original information can be recovered without distortion by scanning the QR code. The encryption process can be implemented either optically or digitally, and the decryption process uses digital method. In addition, the security of the proposed optical encryption technology is analyzed. Theoretical analysis and computer simulations show that this optical encryption system is invulnerable to various attacks, and suitable for harsh transmission conditions.

  14. Holographic Optical Elements Recorded in Silver Halide Sensitized Gelatin Emulsions. Part I. Transmission Holographic Optical Elements

    Science.gov (United States)

    Kim, Jong Man; Choi, Byung So; Kim, Sun Il; Kim, Jong Min; Bjelkhagen, Hans I.; Phillips, Nicholas J.

    2001-02-01

    Silver halide sensitized gelatin (SHSG) holograms are similar to holograms recorded in dichromated gelatin (DCG), the main recording material for holographic optical elements (HOE s). The drawback of DCG is its low sensitivity and limited spectral response. Silver halide materials can be processed in such a way that the final hologram will have properties like a DCG hologram. Recently this technique has become more interesting since the introduction of new ultra-high-resolution silver halide emulsions. An optimized processing technique for transmission HOE s recorded in these materials is introduced. Diffraction efficiencies over 90% can be obtained for transmissive diffraction gratings. Understanding the importance of the selective hardening process has made it possible to obtain results similar to conventional DCG processing. The main advantage of the SHSG process is that high-sensitivity recording can be performed with laser wavelengths anywhere within the visible spectrum. This simplifies the manufacturing of high-quality, large-format HOE s.

  15. Tensile strain induced changes in the optical spectra of SrTiO.sub.3./sub. epitaxial thin films

    Czech Academy of Sciences Publication Activity Database

    Dejneka, Alexandr; Tyunina, M.; Narkilahti, J.; Levoska, J.; Chvostová, Dagmar; Jastrabík, Lubomír; Trepakov, Vladimír

    2010-01-01

    Roč. 52, č. 10 (2010), 2082-2089 ISSN 1063-7834 R&D Projects: GA ČR GA202/08/1009; GA AV ČR KAN301370701; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : SrTiO 3 epitaxial thin films * effect of biaxial tensile strains on optical spectra Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.727, year: 2010

  16. Predicting ambient aerosol thermal-optical reflectance measurements from infrared spectra: elemental carbon

    Science.gov (United States)

    Dillner, A. M.; Takahama, S.

    2015-10-01

    Elemental carbon (EC) is an important constituent of atmospheric particulate matter because it absorbs solar radiation influencing climate and visibility and it adversely affects human health. The EC measured by thermal methods such as thermal-optical reflectance (TOR) is operationally defined as the carbon that volatilizes from quartz filter samples at elevated temperatures in the presence of oxygen. Here, methods are presented to accurately predict TOR EC using Fourier transform infrared (FT-IR) absorbance spectra from atmospheric particulate matter collected on polytetrafluoroethylene (PTFE or Teflon) filters. This method is similar to the procedure developed for OC in prior work (Dillner and Takahama, 2015). Transmittance FT-IR analysis is rapid, inexpensive and nondestructive to the PTFE filter samples which are routinely collected for mass and elemental analysis in monitoring networks. FT-IR absorbance spectra are obtained from 794 filter samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to collocated TOR EC measurements. The FT-IR spectra are divided into calibration and test sets. Two calibrations are developed: one developed from uniform distribution of samples across the EC mass range (Uniform EC) and one developed from a uniform distribution of Low EC mass samples (EC < 2.4 μg, Low Uniform EC). A hybrid approach which applies the Low EC calibration to Low EC samples and the Uniform EC calibration to all other samples is used to produce predictions for Low EC samples that have mean error on par with parallel TOR EC samples in the same mass range and an estimate of the minimum detection limit (MDL) that is on par with TOR EC MDL. For all samples, this hybrid approach leads to precise and accurate TOR EC predictions by FT-IR as indicated by high coefficient of determination (R2; 0.96), no bias (0.00 μg m-3, a

  17. Optical processing of holographic lateral shear interferograms recorded by displacing an object

    International Nuclear Information System (INIS)

    Lyalikov, A M

    2008-01-01

    A new approach is considered which is used in holographic lateral shear interferometry and allows the combination of the displacement of a phase object under study during the recording of holographic interferograms with the optical processing of displaced and optically conjugate holographic interferograms. Depending on the method of optical processing of such a pair of holographic interferograms, several aberration-free interference patterns are observed, which reflect with different sensitivities variations in the light wave phase caused by the phase object. Due to the lateral shear, which is equal to or exceeds the linear size of the object, the interference patterns of the object are identical to interference patterns obtained in a two-beam, reference-wave interferometer. The possibility of using this method to control optical inhomogeneities in active crystals in solid-state lasers is studied experimentally. (interferometry)

  18. VARIABILITY IN OPTICAL SPECTRA OF ε ORIONIS

    International Nuclear Information System (INIS)

    Thompson, Gregory B.; Morrison, Nancy D.

    2013-01-01

    We present the results of a time series analysis of 130 échelle spectra of ε Ori (B0 Ia), acquired over seven observing seasons between 1998 and 2006 at Ritter Observatory. The equivalent widths of Hα (net) and He I λ5876 were measured and radial velocities were obtained from the central absorption of He I λ5876. Temporal variance spectra (TVS) revealed significant wind variability in both Hα and He I λ5876. The He I TVS have a double-peaked profile consistent with radial velocity oscillations. A periodicity search was carried out on the equivalent width and radial velocity data, as well as on wavelength-binned spectra. This analysis has revealed several periods in the variability with timescales of two to seven days. Many of these periods exhibit sinusoidal modulation in the associated phase diagrams. Several of these periods were present in both Hα and He I, indicating a possible connection between the wind and the photosphere. Due to the harmonic nature of these periods, stellar pulsations may be the origin of some of the observed variability. Periods on the order of the rotational period were also detected in the He I line in the 1998-1999 season and in both lines during the 2004-2005 season. These periods may indicate rotational modulation due to structure in the wind.

  19. Path spectra derived from inversion of source and site spectra for earthquakes in Southern California

    Science.gov (United States)

    Klimasewski, A.; Sahakian, V. J.; Baltay, A.; Boatwright, J.; Fletcher, J. B.; Baker, L. M.

    2017-12-01

    A large source of epistemic uncertainty in Ground Motion Prediction Equations (GMPEs) is derived from the path term, currently represented as a simple geometric spreading and intrinsic attenuation term. Including additional physical relationships between the path properties and predicted ground motions would produce more accurate and precise, region-specific GMPEs by reclassifying some of the random, aleatory uncertainty as epistemic. This study focuses on regions of Southern California, using data from the Anza network and Southern California Seismic network to create a catalog of events magnitude 2.5 and larger from 1998 to 2016. The catalog encompasses regions of varying geology and therefore varying path and site attenuation. Within this catalog of events, we investigate several collections of event region-to-station pairs, each of which share similar origin locations and stations so that all events have similar paths. Compared with a simple regional GMPE, these paths consistently have high or low residuals. By working with events that have the same path, we can isolate source and site effects, and focus on the remaining residual as path effects. We decompose the recordings into source and site spectra for each unique event and site in our greater Southern California regional database using the inversion method of Andrews (1986). This model represents each natural log record spectra as the sum of its natural log event and site spectra, while constraining each record to a reference site or Brune source spectrum. We estimate a regional, path-specific anelastic attenuation (Q) and site attenuation (t*) from the inversion site spectra and corner frequency from the inversion event spectra. We then compute the residuals between the observed record data, and the inversion model prediction (event*site spectra). This residual is representative of path effects, likely anelastic attenuation along the path that varies from the regional median attenuation. We examine the

  20. Optical Observations of X-ray Bright, Optically Normal Galaxies

    Science.gov (United States)

    Sadun, Alberto C.; Aryan, N. S.; Ghosh, K. K.

    2007-05-01

    X-ray bright, optically normal galaxies (XBONGs) are galaxies that seem to have normal spectra and morphology, but are relatively bright x-ray sources. The large ratio of the x-ray to optical emission suggests that some activity, similar to that of active galactic nuclei (AGN), is occurring. Since the galaxies do not show any obvious sign of nuclear activity in their optical spectra, one possible explanation is that these galaxies do not have an optically thick accretion disk at small radii, as previously assumed. Previous data for NGC 7626 classifies it as an XBONG, and so we are studying optical features of this galaxy in order to determine better its features. After confirming an x-ray jet, we are now comparing this to optical features that we have found, including warped dust lanes and a possible optical jet.

  1. Chemically deposited Sb2S3 thin films for optical recording

    International Nuclear Information System (INIS)

    Shaji, S; Arato, A; Castillo, G Alan; Palma, M I Mendivil; Roy, T K Das; Krishnan, B; O'Brien, J J; Liu, J

    2010-01-01

    Laser induced changes in the properties of Sb 2 S 3 thin films prepared by chemical bath deposition are described in this paper. Sb 2 S 3 thin films of thickness 550 nm were deposited from a solution containing SbCl 3 and Na 2 S 2 O 3 at 27 0 C for 5 h. These thin films were irradiated by a 532 nm continuous wave laser beam under different conditions at ambient atmosphere. X-ray diffraction analysis showed amorphous to polycrystalline transformation due to laser exposure of these thin films. Morphology and composition of these films were described. Optical properties of these films before and after laser irradiation were analysed. The optical band gap of the material was decreased due to laser induced crystallization. The results obtained confirm that there is further scope for developing this material as an optical recording media.

  2. Emissive spectra of shock-heated argon

    International Nuclear Information System (INIS)

    Tang Jingyou; Gu Yan; Peng Qixian; Bai Yulin; Li Ping

    2003-01-01

    To study the radiant properties of argon under weak shock compression, an aluminum target filled with gaseous argon at ambient states was impacted by a tungsten alloy projectile which was launched from a two-stage light gun to 2.00 km/s. The radiant signals of single shock-compressed argon were recorded by a six-channel pyrometer and oscilloscopes, which varied with time linearly for the five channels from 405 nm to 700 nm and exponentially for the channel 800 nm, and the corresponding velocity of shock wave was determined to be 4.10 ± 0.09 km/s. By the present experiment, it has been shown that the absorbability of the shock-heated argon is low for visual light and the optical depths of argon gas turn from thin to thick as wavelengths gradually increase. The time-resolved spectra in the rising-front of the radiant signal in the re-shocked argon were recorded by means of an OMA, and strong emissive spectrum bands near 450 nm light-wave length but no linear spectrum were found. The emissive spectrum properties of shock-compression argon were qualitatively explained by the state parameters and ionization degree

  3. Can a one-layer optical skin model including melanin and inhomogeneously distributed blood explain spatially resolved diffuse reflectance spectra?

    Science.gov (United States)

    Karlsson, Hanna; Pettersson, Anders; Larsson, Marcus; Strömberg, Tomas

    2011-02-01

    Model based analysis of calibrated diffuse reflectance spectroscopy can be used for determining oxygenation and concentration of skin chromophores. This study aimed at assessing the effect of including melanin in addition to hemoglobin (Hb) as chromophores and compensating for inhomogeneously distributed blood (vessel packaging), in a single-layer skin model. Spectra from four humans were collected during different provocations using a twochannel fiber optic probe with source-detector separations 0.4 and 1.2 mm. Absolute calibrated spectra using data from either a single distance or both distances were analyzed using inverse Monte Carlo for light transport and Levenberg-Marquardt for non-linear fitting. The model fitting was excellent using a single distance. However, the estimated model failed to explain spectra from the other distance. The two-distance model did not fit the data well at either distance. Model fitting was significantly improved including melanin and vessel packaging. The most prominent effect when fitting data from the larger separation compared to the smaller separation was a different light scattering decay with wavelength, while the tissue fraction of Hb and saturation were similar. For modeling spectra at both distances, we propose using either a multi-layer skin model or a more advanced model for the scattering phase function.

  4. The importance of nuclear quantum effects in spectral line broadening of optical spectra and electrostatic properties in aromatic chromophores

    Science.gov (United States)

    Law, Y. K.; Hassanali, A. A.

    2018-03-01

    In this work, we examine the importance of nuclear quantum effects on capturing the line broadening and vibronic structure of optical spectra. We determine the absorption spectra of three aromatic molecules indole, pyridine, and benzene using time dependent density functional theory with several molecular dynamics sampling protocols: force-field based empirical potentials, ab initio simulations, and finally path-integrals for the inclusion of nuclear quantum effects. We show that the absorption spectrum for all these chromophores are similarly broadened in the presence of nuclear quantum effects regardless of the presence of hydrogen bond donor or acceptor groups. We also show that simulations incorporating nuclear quantum effects are able to reproduce the heterogeneous broadening of the absorption spectra even with empirical force fields. The spectral broadening associated with nuclear quantum effects can be accounted for by the broadened distribution of chromophore size as revealed by a particle in the box model. We also highlight the role that nuclear quantum effects have on the underlying electronic structure of aromatic molecules as probed by various electrostatic properties.

  5. Dynamics of Stability of Orientation Maps Recorded with Optical Imaging.

    Science.gov (United States)

    Shumikhina, S I; Bondar, I V; Svinov, M M

    2018-03-15

    Orientation selectivity is an important feature of visual cortical neurons. Optical imaging of the visual cortex allows for the generation of maps of orientation selectivity that reflect the activity of large populations of neurons. To estimate the statistical significance of effects of experimental manipulations, evaluation of the stability of cortical maps over time is required. Here, we performed optical imaging recordings of the visual cortex of anesthetized adult cats. Monocular stimulation with moving clockwise square-wave gratings that continuously changed orientation and direction was used as the mapping stimulus. Recordings were repeated at various time intervals, from 15 min to 16 h. Quantification of map stability was performed on a pixel-by-pixel basis using several techniques. Map reproducibility showed clear dynamics over time. The highest degree of stability was seen in maps recorded 15-45 min apart. Averaging across all time intervals and all stimulus orientations revealed a mean shift of 2.2 ± 0.1°. There was a significant tendency for larger shifts to occur at longer time intervals. Shifts between 2.8° (mean ± 2SD) and 5° were observed more frequently at oblique orientations, while shifts greater than 5° appeared more frequently at cardinal orientations. Shifts greater than 5° occurred rarely overall (5.4% of cases) and never exceeded 11°. Shifts of 10-10.6° (0.7%) were seen occasionally at time intervals of more than 4 h. Our findings should be considered when evaluating the potential effect of experimental manipulations on orientation selectivity mapping studies. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Optical and ESR spectra of gamma irradiated glasses in the Ba(PO/sub 3/)/sub 2/-LiF system

    Energy Technology Data Exchange (ETDEWEB)

    Bocharova, T.V.; Karapetyan, G.O.; Khalilev, V.D.; Yashchurzhinskaya, O.A.

    1985-11-01

    This study obtains the ESR and optical absorption spectra for glasses in the Ba(PO/sub 3/)/sub 2/-LiF system. Obtaining radiation color centers (RCC) induced by ionizing radiation in alkali halide crystals (AHC), in particular LiF, has been given an enormous practical impetus according to the authors, because of the development of lasers and passive laser gates based on AHC with color centers. The glasses studied were synthesized from reagents of ''exceptionally pure'' and ''chemically pure'' grades in vitreous carbon crucibles in a dry argon atmosphere at 900-1000/sup 0/C for 60 min. followed by an anneal in a muffle at 300-450/sup 0/C. The compositions of the experimental specimens and the spectra of their optical parameters are given. The addition of up to 60 mole% of LiF does not lead to the emergence of additional absorption band (AAB) or ESR signals associated with F centers formed by gamma radiation in an LiF single crystal. As a result of gamma irradiation of glasses activated by terbium, RCC are formed which are probably electron trapping centers and correspond to the paramagnetic center (PMC).

  7. Power spectra of currents off Bombay

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    Current measurements were carried out using a recording current meter across the continental shelf off Bombay, Maharashtra, India at 4 stations from an anchored ship. Power spectra were computed for selected lengths of records. Spectral energy...

  8. Microdosimetric spectra measurements of JANUS neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, I.R.; Williamson, F.S.

    1985-01-01

    Neutron radiation from the JANUS reactor at Argonne National Laboratory is being used with increasing frequency for major biological experiments. The fast neutron spectrum has a Kerma-weighted mean energy of 0.8 MeV and low gamma-ray contamination. In 1984 the JANUS fission converter plate of highly enriched uranium was replaced by one made of low-enriched uranium. We recorded microdosimetric spectra at several different positions in the high-flux irradiation room of JANUS before the change of the converter plate. Each set of measurements consisted of spectra taken at three different site diameters (0.5, 1.0, and 5.0 ..mu..m) and in both ''attenuator up'' and ''attenuator down'' configurations. At two conventional dosimetry reference positions, two sets of measurements were recorded. At three biological reference positions, measurements simulating several biological irradiation conditions, were taken. The dose rate at each position was estimated and compared with dose rates obtained previously by conventional dosimetry. Comparison of the different measurements showed no major change in spectra as a function of position or irradiation condition. First results from similar sets of measurements recorded after the installment of the new converter plate indicate no major change in the spectra. 11 refs., 4 figs., 5 tabs.

  9. Microdosimetric spectra measurements of JANUS neutrons

    International Nuclear Information System (INIS)

    Marshall, I.R.; Williamson, F.S.

    1985-01-01

    Neutron radiation from the JANUS reactor at Argonne National Laboratory is being used with increasing frequency for major biological experiments. The fast neutron spectrum has a Kerma-weighted mean energy of 0.8 MeV and low gamma-ray contamination. In 1984 the JANUS fission converter plate of highly enriched uranium was replaced by one made of low-enriched uranium. We recorded microdosimetric spectra at several different positions in the high-flux irradiation room of JANUS before the change of the converter plate. Each set of measurements consisted of spectra taken at three different site diameters (0.5, 1.0, and 5.0 μm) and in both ''attenuator up'' and ''attenuator down'' configurations. At two conventional dosimetry reference positions, two sets of measurements were recorded. At three biological reference positions, measurements simulating several biological irradiation conditions, were taken. The dose rate at each position was estimated and compared with dose rates obtained previously by conventional dosimetry. Comparison of the different measurements showed no major change in spectra as a function of position or irradiation condition. First results from similar sets of measurements recorded after the installment of the new converter plate indicate no major change in the spectra. 11 refs., 4 figs., 5 tabs

  10. Predicting ambient aerosol thermal-optical reflectance (TOR) measurements from infrared spectra: organic carbon

    Science.gov (United States)

    Dillner, A. M.; Takahama, S.

    2015-03-01

    Organic carbon (OC) can constitute 50% or more of the mass of atmospheric particulate matter. Typically, organic carbon is measured from a quartz fiber filter that has been exposed to a volume of ambient air and analyzed using thermal methods such as thermal-optical reflectance (TOR). Here, methods are presented that show the feasibility of using Fourier transform infrared (FT-IR) absorbance spectra from polytetrafluoroethylene (PTFE or Teflon) filters to accurately predict TOR OC. This work marks an initial step in proposing a method that can reduce the operating costs of large air quality monitoring networks with an inexpensive, non-destructive analysis technique using routinely collected PTFE filter samples which, in addition to OC concentrations, can concurrently provide information regarding the composition of organic aerosol. This feasibility study suggests that the minimum detection limit and errors (or uncertainty) of FT-IR predictions are on par with TOR OC such that evaluation of long-term trends and epidemiological studies would not be significantly impacted. To develop and test the method, FT-IR absorbance spectra are obtained from 794 samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least-squares regression is used to calibrate sample FT-IR absorbance spectra to TOR OC. The FTIR spectra are divided into calibration and test sets by sampling site and date. The calibration produces precise and accurate TOR OC predictions of the test set samples by FT-IR as indicated by high coefficient of variation (R2; 0.96), low bias (0.02 μg m-3, the nominal IMPROVE sample volume is 32.8 m3), low error (0.08 μg m-3) and low normalized error (11%). These performance metrics can be achieved with various degrees of spectral pretreatment (e.g., including or excluding substrate contributions to the absorbances) and are comparable in precision to collocated TOR measurements. FT-IR spectra are also

  11. Predicting ambient aerosol Thermal Optical Reflectance (TOR) measurements from infrared spectra: elemental carbon

    Science.gov (United States)

    Dillner, A. M.; Takahama, S.

    2015-06-01

    Elemental carbon (EC) is an important constituent of atmospheric particulate matter because it absorbs solar radiation influencing climate and visibility and it adversely affects human health. The EC measured by thermal methods such as Thermal-Optical Reflectance (TOR) is operationally defined as the carbon that volatilizes from quartz filter samples at elevated temperatures in the presence of oxygen. Here, methods are presented to accurately predict TOR EC using Fourier Transform Infrared (FT-IR) absorbance spectra from atmospheric particulate matter collected on polytetrafluoroethylene (PTFE or Teflon) filters. This method is similar to the procedure tested and developed for OC in prior work (Dillner and Takahama, 2015). Transmittance FT-IR analysis is rapid, inexpensive, and non-destructive to the PTFE filter samples which are routinely collected for mass and elemental analysis in monitoring networks. FT-IR absorbance spectra are obtained from 794 filter samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to collocated TOR EC measurements. The FTIR spectra are divided into calibration and test sets. Two calibrations are developed, one which is developed from uniform distribution of samples across the EC mass range (Uniform EC) and one developed from a~uniform distribution of low EC mass samples (EC < 2.4 μg, Low Uniform EC). A hybrid approach which applies the low EC calibration to low EC samples and the Uniform EC calibration to all other samples is used to produces predictions for low EC samples that have mean error on par with parallel TOR EC samples in the same mass range and an estimate of the minimum detection limit (MDL) that is on par with TOR EC MDL. For all samples, this hybrid approach leads to precise and accurate TOR EC predictions by FT-IR as indicated by high coefficient of variation (R2; 0.96), no

  12. Faraday effect and λ-modulation absorption spectra of GaP

    International Nuclear Information System (INIS)

    Petkova, P N; Dimov, T N; Iliev, I A

    2007-01-01

    There are presented the absorption optical spectra of GaP measured by λ-modulation method at room temperature in the spectral region from 505 nm to 700 nm. It is not possible even by λ-modulation to be registered at room temperature the wave bands due to the exciton-phonon interaction. The absorption spectra of GaP carried out by a λ-modulation can be separated exactly in the spectral parts as follows: the transmittance region where the absorption is too slightly expressed; the region determined by the phonon-assisted indirect transitions; the region of the interband absorption. The purpose of Faraday rotation measurements is to establish the influence of the exciton-phonon interaction on the magneto-optical effect. The magneto-optical effect has been investigated by a φ-modulation. The spectral dependence of dn/dλ in the transmittance region is determined by the φ-modulated spectra

  13. Optical absorption and fluorescence studies of praseodymium ion in chloroborophosphate glasses

    International Nuclear Information System (INIS)

    Sharma, Y.K.; Tandon, S.P.

    1998-01-01

    Full text: The interest in optical absorption and fluorescence studies of rare earth ions in glassy materials is increasing continuously in connection with laser research and related application. The absorption and fluorescence spectra of praseodymium ion in chloroborophosphate glasses have been recorded at room temperature. The chloroborophosphate glass specimens having composition in mob.% Na 2 0 (26.08), B 2 0 3 (14.57), P 2 0 5 (44.85), ZnCl 2 (14.50), Pr 6 0 11 (R) [R= 0.0,0.1 and 0.2 moi.%] have been prepared by melt quenching technique. The spectra consists of seven absorption bands and three fluorescence bands. The observed optical spectra are discussed in terms of energy state and the intensity of the transitions. The various energy interaction parameters like Slater-Condon, Lande', Racah and bonding parameters have been computed. Judd-Ofeit intensity parameters and laser parameters have also been computed. These results shows that praseodymium doped chloroborophosphate glass specimen can be considered as good hosts for laser applications

  14. Holographic Optical Elements Recorded in Silver Halide Sensitized Gelatin Emulsions. Part 2. Reflection Holographic Optical Elements

    Science.gov (United States)

    Kim, Jong Man; Choi, Byung So; Choi, Yoon Sun; Kim, Jong Min; Bjelkhagen, Hans I.; Phillips, Nicholas J.

    2002-03-01

    Silver halide sensitized gelatin (SHSG) holograms are similar to holograms recorded in dichromated gelatin (DCG), the main recording material for holographic optical elements (HOEs). The drawback of DCG is its low energetic sensitivity and limited spectral response. Silver halide materials can be processed in such a way that the final hologram will have properties like a DCG hologram. Recently this technique has become more interesting since the introduction of new ultra-fine-grain silver halide (AgHal) emulsions. In particular, high spatial-frequency fringes associated with HOEs of the reflection type are difficult to construct when SHSG processing methods are employed. Therefore an optimized processing technique for reflection HOEs recorded in the new AgHal materials is introduced. Diffraction efficiencies over 90% can be obtained repeatably for reflection diffraction gratings. Understanding the importance of a selective hardening process has made it possible to obtain results similar to conventional DCG processing. The main advantage of the SHSG process is that high-sensitivity recording can be performed with laser wavelengths anywhere within the visible spectrum. This simplifies the manufacturing of high-quality, large-format HOEs, also including high-quality display holograms of the reflection type in both monochrome and full color.

  15. Comments on the optical lineshape function: Application to transient hole-burned spectra of bacterial reaction centers

    Energy Technology Data Exchange (ETDEWEB)

    Reppert, Mike; Kell, Adam; Pruitt, Thomas [Department of Chemistry, Kansas State University, Manhattan, Kansas 66506 (United States); Jankowiak, Ryszard, E-mail: ryszard@ksu.edu [Department of Chemistry, Kansas State University, Manhattan, Kansas 66506 (United States); Department of Physics, Kansas State University, Manhattan, Kansas 66506 (United States)

    2015-03-07

    The vibrational spectral density is an important physical parameter needed to describe both linear and non-linear spectra of multi-chromophore systems such as photosynthetic complexes. Low-temperature techniques such as hole burning (HB) and fluorescence line narrowing are commonly used to extract the spectral density for a given electronic transition from experimental data. We report here that the lineshape function formula reported by Hayes et al. [J. Phys. Chem. 98, 7337 (1994)] in the mean-phonon approximation and frequently applied to analyzing HB data contains inconsistencies in notation, leading to essentially incorrect expressions in cases of moderate and strong electron-phonon (el-ph) coupling strengths. A corrected lineshape function L(ω) is given that retains the computational and intuitive advantages of the expression of Hayes et al. [J. Phys. Chem. 98, 7337 (1994)]. Although the corrected lineshape function could be used in modeling studies of various optical spectra, we suggest that it is better to calculate the lineshape function numerically, without introducing the mean-phonon approximation. New theoretical fits of the P870 and P960 absorption bands and frequency-dependent resonant HB spectra of Rb. sphaeroides and Rps. viridis reaction centers are provided as examples to demonstrate the importance of correct lineshape expressions. Comparison with the previously determined el-ph coupling parameters [Johnson et al., J. Phys. Chem. 94, 5849 (1990); Lyle et al., ibid. 97, 6924 (1993); Reddy et al., ibid. 97, 6934 (1993)] is also provided. The new fits lead to modified el-ph coupling strengths and different frequencies of the special pair marker mode, ω{sub sp}, for Rb. sphaeroides that could be used in the future for more advanced calculations of absorption and HB spectra obtained for various bacterial reaction centers.

  16. Comments on the optical lineshape function: Application to transient hole-burned spectra of bacterial reaction centers

    International Nuclear Information System (INIS)

    Reppert, Mike; Kell, Adam; Pruitt, Thomas; Jankowiak, Ryszard

    2015-01-01

    The vibrational spectral density is an important physical parameter needed to describe both linear and non-linear spectra of multi-chromophore systems such as photosynthetic complexes. Low-temperature techniques such as hole burning (HB) and fluorescence line narrowing are commonly used to extract the spectral density for a given electronic transition from experimental data. We report here that the lineshape function formula reported by Hayes et al. [J. Phys. Chem. 98, 7337 (1994)] in the mean-phonon approximation and frequently applied to analyzing HB data contains inconsistencies in notation, leading to essentially incorrect expressions in cases of moderate and strong electron-phonon (el-ph) coupling strengths. A corrected lineshape function L(ω) is given that retains the computational and intuitive advantages of the expression of Hayes et al. [J. Phys. Chem. 98, 7337 (1994)]. Although the corrected lineshape function could be used in modeling studies of various optical spectra, we suggest that it is better to calculate the lineshape function numerically, without introducing the mean-phonon approximation. New theoretical fits of the P870 and P960 absorption bands and frequency-dependent resonant HB spectra of Rb. sphaeroides and Rps. viridis reaction centers are provided as examples to demonstrate the importance of correct lineshape expressions. Comparison with the previously determined el-ph coupling parameters [Johnson et al., J. Phys. Chem. 94, 5849 (1990); Lyle et al., ibid. 97, 6924 (1993); Reddy et al., ibid. 97, 6934 (1993)] is also provided. The new fits lead to modified el-ph coupling strengths and different frequencies of the special pair marker mode, ω sp , for Rb. sphaeroides that could be used in the future for more advanced calculations of absorption and HB spectra obtained for various bacterial reaction centers

  17. Optical spectra of Zn{sub 1-x}Be{sub x}Te mixed crystals determined by IR-VIS-UV ellipsometry and photoluminescence measurements

    Energy Technology Data Exchange (ETDEWEB)

    Wronkowska, A.A., E-mail: aleksandra.wronkowska@utp.edu.p [Institute of Mathematics and Physics, University of Technology and Life Sciences, S. Kaliskiego 7, PL-85796 Bydgoszcz (Poland); Arwin, H. [Department of Physics, Chemistry and Biology, Linkoeping University, SE-58183 Linkoeping (Sweden); Firszt, F.; Legowski, S. [Institute of Physics, Nicholas Copernicus University, Grudziadzka 5, PL-87100 Torun (Poland); Wronkowski, A.; Skowronski, L. [Institute of Mathematics and Physics, University of Technology and Life Sciences, S. Kaliskiego 7, PL-85796 Bydgoszcz (Poland)

    2011-02-28

    Spectroscopic ellipsometry in the photon energy range from 0.04 eV to 6.50 eV is used for investigation of the optical response of Zn{sub 1-x}Be{sub x}Te crystals grown by a high-pressure Bridgman method in the composition range x {<=} 0.12. Infrared spectra display absorption bands centred between 411 cm{sup -1} and 420 cm{sup -1} associated with BeTe-type optical phonon modes. The positions of the transverse-optical and longitudinal-optical phonon modes have been found by modelling the line shape of the complex dielectric functions, {epsilon}-tilde and Im(-{epsilon}-tilde{sup -1}), using a classical damped Lorentzian oscillator approach. Ellipsometric measurements in the VIS-UV range allow determination of the fundamental energy-gap (E{sub 0}) and the higher threshold energies (E{sub 1}, E{sub 1} + {Delta}{sub 1}, E{sub 2}) originating from the band edge and spin-orbit splitting critical points. We have found that the Be content x = 0.12 causes an increase of the fundamental energy gap about 0.15 eV at room temperature when compared to the E{sub 0} = 2.23 eV of ZnTe crystal at the same temperature. Photoluminescence spectra were measured in the temperature range from 30 K to room temperature. Luminescence at temperature T > 200 K is very weak. The peak positions of the exciton emission lines agree well with the E{sub 0} band-gaps derived from ellipsometric data if corrected for their temperature dependence.

  18. Simple procedure for evaluating earthquake response spectra of large-event motions based on site amplification factors derived from smaller-event records

    International Nuclear Information System (INIS)

    Dan, Kazuo; Miyakoshi, Jun-ichi; Yashiro, Kazuhiko.

    1996-01-01

    A primitive procedure was proposed for evaluating earthquake response spectra of large-event motions to make use of records from smaller events. The result of the regression analysis of the response spectra was utilized to obtain the site amplification factors in the proposed procedure, and the formulation of the seismic-source term in the regression analysis was examined. A linear form of the moment magnitude, Mw, is good for scaling the source term of moderate earthquakes with Mw of 5.5 to 7.0, while a quadratic form of Mw and the ω-square source-spectrum model is appropriate for scaling the source term of smaller and greater earthquakes, respectively. (author). 52 refs

  19. Spectral Barcoding of Quantum Dots: Deciphering Structural Motifs from the Excitonic Spectra

    International Nuclear Information System (INIS)

    Mlinar, V.; Zunger, A.

    2009-01-01

    Self-assembled semiconductor quantum dots (QDs) show in high-resolution single-dot spectra a multitude of sharp lines, resembling a barcode, due to various neutral and charged exciton complexes. Here we propose the 'spectral barcoding' method that deciphers structural motifs of dots by using such barcode as input to an artificial-intelligence learning system. Thus, we invert the common practice of deducing spectra from structure by deducing structure from spectra. This approach (i) lays the foundation for building a much needed structure-spectra understanding for large nanostructures and (ii) can guide future design of desired optical features of QDs by controlling during growth only those structural motifs that decide given optical features.

  20. Laboratory-based recording of holographic fine structure in X-ray absorption anisotropy using polycapillary optics

    Energy Technology Data Exchange (ETDEWEB)

    Dabrowski, K.M. [Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland); Korecki, P., E-mail: pawel.korecki@uj.edu.pl [Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Holographic fine structures in X-ray absorption recorded using a tabletop setup. Black-Right-Pointing-Pointer Setup based on polycapillary collimating optics and an HOPG crystal. Black-Right-Pointing-Pointer Demonstration of element sensitivity by detection of X-ray fluorescence. Black-Right-Pointing-Pointer Potential of laboratory-based experiments for heavily doped crystals and thin films. - Abstract: A tabletop setup composed of a collimating polycapillary optics and a highly oriented pyrolytic graphite monochromator (HOPG) was characterized and used for recording two-dimensional maps of X-ray absorption anisotropy (XAA). XAA originates from interference of X-rays directly inside the sample. Depending on experimental conditions, fine structures in XAA can be interpreted in terms of X-ray holograms or X-ray standing waves and can be used for an element selective atomic-resolved structural analysis. The implementation of polycapillary optics resulted in a two-order of magnitude gain in the radiant intensity (photons/s/solid angle) as compared to a system without optics and enabled efficient recording of XAA with a resolution of 0.15 Degree-Sign for Mo K{alpha} radiation. Element sensitivity was demonstrated by acquisition of distinct XAA signals for Ga and As atoms in a GaAs (1 1 1) wafer by using X-ray fluorescence as a secondary signal. These results indicate the possibility of performing laboratory-based XAA experiments for heavily doped single crystals or thin films. So far, because of the weak holographic modulation of XAA, such experiments could be only performed using synchrotron radiation.

  1. Predicting ambient aerosol thermal-optical reflectance (TOR) measurements from infrared spectra: extending the predictions to different years and different sites

    Science.gov (United States)

    Reggente, Matteo; Dillner, Ann M.; Takahama, Satoshi

    2016-02-01

    Organic carbon (OC) and elemental carbon (EC) are major components of atmospheric particulate matter (PM), which has been associated with increased morbidity and mortality, climate change, and reduced visibility. Typically OC and EC concentrations are measured using thermal-optical methods such as thermal-optical reflectance (TOR) from samples collected on quartz filters. In this work, we estimate TOR OC and EC using Fourier transform infrared (FT-IR) absorbance spectra from polytetrafluoroethylene (PTFE Teflon) filters using partial least square regression (PLSR) calibrated to TOR OC and EC measurements for a wide range of samples. The proposed method can be integrated with analysis of routinely collected PTFE filter samples that, in addition to OC and EC concentrations, can concurrently provide information regarding the functional group composition of the organic aerosol. We have used the FT-IR absorbance spectra and TOR OC and EC concentrations collected in the Interagency Monitoring of PROtected Visual Environments (IMPROVE) network (USA). We used 526 samples collected in 2011 at seven sites to calibrate the models, and more than 2000 samples collected in 2013 at 17 sites to test the models. Samples from six sites are present both in the calibration and test sets. The calibrations produce accurate predictions both for samples collected at the same six sites present in the calibration set (R2 = 0.97 and R2 = 0.95 for OC and EC respectively), and for samples from 9 of the 11 sites not included in the calibration set (R2 = 0.96 and R2 = 0.91 for OC and EC respectively). Samples collected at the other two sites require a different calibration model to achieve accurate predictions. We also propose a method to anticipate the prediction error; we calculate the squared Mahalanobis distance in the feature space (scores determined by PLSR) between new spectra and spectra in the calibration set. The squared Mahalanobis distance provides a crude method for assessing the

  2. Spectra of matrix isolated metal atoms and clusters

    International Nuclear Information System (INIS)

    Meyer, B.

    1977-01-01

    The matrix isolation spectra of all of the 40 presently known atomic metal species show strong matrix effects. The transition energies are increased, and the bands are broad and exhibit splitting of sublevels which are degenerate in the gas phase. Several models have been proposed for splitting of levels, but basic effects are not yet understood, and spectra cannot be predicted, yet it is possible to correlate gas phase and matrix in many of the systems. Selective production of diatomics and clusters via thermal and optical annealing of atomic species can be monitored by optical spectra, but yields spectroscopically complex systems which, however, especially in the case of transition metals, can be used as precursors in novel chemical reactions. A combination of absorption, emission, ir, Raman, ESR, and other methods is now quickly yielding data which will help correlate the increasing wealth of existing data. 55 references, 6 figures

  3. Band resolution of optical spectra of solvated electrons in water, alcohols, and tetrahydrofuran

    International Nuclear Information System (INIS)

    Jou, F.-Y.; Freeman, G.R.

    1979-01-01

    The optical absorption spectra of solvated electrons in water, alcohols, and tetrahydrofuran are empirically resolved into two Gaussian bands and a continuum tail. The first Gaussian band covers most of the low energy side of the spectrum. The second Gaussian band lies at an energy slightly above that of the absorption maximum of the total spectrum. With the exception of tert-butyl alcohol, in water and alcohols the following were observed: (a) the first Gaussian bands have the same half-width, but the oscillator strength in water is about double that in an alcohol; (b) the second Gaussian bands have similar half-widths and oscillator strengths; (c) the continuum tails have similar half-widths, yet that in water possesses only about one third as much oscillator strength as the one in alcohol. In tert-butyl alcohol and tetrahydrofuran the first Gaussian band and the continuum tail each carry nearly half of the total oscillator strength. (author)

  4. Analysis of photoluminescence spectra of lead-tungstate single crystals

    International Nuclear Information System (INIS)

    Kim, Do Hyung; Lee, Sang Yun; Lee, Myoung Bok

    2003-01-01

    In addition to the intrinsic blue emission band near 430 nm for an ideal PbWO 4 scheelite structure, the presence of three extra emission bands peaking near blue-green and green-red colors was clearly identified for thermally synthesized bulk crystals with the help of a reliable fitting process applicable for microscopic analysis of recorded PL spectra. The origin, nature, and electro-optical behaviors of the extra emission bands are strongly related to the structural change from an ideal scheelite to modified ones, so now we can more closely track down the nature and the relevant behaviors, which are still in dispute, of the apparent colors of the PbWO 4 scintillating medium by constructing structural models and by considering the energy transfer mechanism between the color centers

  5. General Notes on Processes and Their Spectra

    Directory of Open Access Journals (Sweden)

    Gustav Cepciansky

    2012-01-01

    Full Text Available The frequency spectrum performs one of the main characteristics of a process. The aim of the paper is to show the coherence between the process and its own spectrum and how the behaviour and properties of a process itself can be deduced from its spectrum. Processes are categorized and general principles of their spectra calculation and recognition are given. The main stress is put on power spectra of electric and optic signals, as they also perform a kind of processes. These spectra can be directly measured, observed and examined by means of spectral analyzers and they are very important characteristics which can not be omitted at transmission techniques in telecommunication technologies. Further, the paper also deals with non electric processes, mainly with processes and spectra at mass servicing and how these spectra can be utilised in praxis.

  6. Link between optical spectra, crystal-field parameters, and local environments of Eu3+ ions in Eu2O3-doped sodium disilicate glass

    International Nuclear Information System (INIS)

    Qin, T.; Mountjoy, G.; Afify, N. D.; Reid, M. F.; Yeung, Y. Y.; Speghini, A.; Bettinelli, M.

    2011-01-01

    Rare-earth-doped glasses are key materials for optical technology due to the luminescent properties of 4f n ions. The crystal-field model describes the effect of local environment on transitions between 4f electrons. We present a detailed modeling study of the optical spectra of sodium disilicate glass, 33Na 2 O·67SiO 2 , doped with 0.2% and 1.0 mol%Eu 2 O 3 . This study uses very large molecular dynamics models with up to 100 Eu 3+ ions, the superposition model for covalent and overlap effects on crystal-field parameters, and realistic values for homogeneous linewidth broadening. The simulated spectra are in reasonable agreement with experiment. The trends in 7 F J energy levels across different Eu 3+ ion sites have been examined and a very detailed analysis is presented that looks at how features of the spectra are related to features of the local environment of Eu 3+ ions. Increasing the crystal-field strength S total causes the 7 F 0 energy level to decrease and causes the splitting of 7 F J manifolds to increase, and this is due to increasing mixing of 4f wave functions. To a reasonable approximation the crystal-field strength components S k depend on angular positions of ligands independently of distances to ligands. The former are seen to be more significant in determining S k , which are closely related to the rotationally invariant bond-orientational order parameters Q k . The values of S 2 are approximately linear in Q 2 , and the values of Q 2 are higher for fivefold than sixfold coordinated rare-earth ions. These results can be of importance for efforts to enhance the local environment of rare-earth ions in oxide glasses for optical applications.

  7. OPTICAL CONSTANTS AND LAB SPECTRA OF WATER ICE V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Transmission spectra of amorphous and crystalline H2O-ice at temperatures from 20-150 K for a wavelength range from 1.11 to 2.63 microns. These spectra have not been...

  8. OPTICAL CONSTANTS AND LAB SPECTRA OF WATER ICE V1.1

    Data.gov (United States)

    National Aeronautics and Space Administration — Transmission spectra of amorphous and crystalline H2O-ice at temperatures from 20-150 K for a wavelength range from 1.11 to 2.63 microns. These spectra have not been...

  9. Rest-Frame Optical Spectra of Three Strongly Lensed Galaxies at z ~ 2

    Science.gov (United States)

    Hainline, Kevin N.; Shapley, Alice E.; Kornei, Katherine A.; Pettini, Max; Buckley-Geer, Elizabeth; Allam, Sahar S.; Tucker, Douglas L.

    2009-08-01

    We present Keck II NIRSPEC rest-frame optical spectra for three recently discovered lensed galaxies: the Cosmic Horseshoe (z = 2.38), the Clone (z = 2.00), and SDSS J090122.37+181432.3 (z = 2.26). The boost in signal-to-noise ratio (S/N) from gravitational lensing provides an unusually detailed view of the physical conditions in these objects. A full complement of high S/N rest-frame optical emission lines is measured, spanning from rest frame 3600 to 6800 Å, including robust detections of fainter lines such as Hγ, [S II]λ6717,6732, and in one instance [Ne III]λ3869. SDSS J090122.37+181432.3 shows evidence for active galactic nucleus activity, and therefore we focus our analysis on star-forming regions in the Cosmic Horseshoe and the Clone. For these two objects, we estimate a wide range of physical properties. Current lensing models for the Cosmic Horseshoe and the Clone allow us to correct the measured Hα luminosity and calculated star formation rate. Metallicities have been estimated with a variety of indicators, which span a range of values of 12+ log(O/H) = 8.3-8.8, between ~0.4 and ~1.5 of the solar oxygen abundance. Dynamical masses were computed from the Hα velocity dispersions and measured half-light radii of the reconstructed sources. A comparison of the Balmer lines enabled measurement of dust reddening coefficients. Variations in the line ratios between the different lensed images are also observed, indicating that the spectra are probing different regions of the lensed galaxies. In all respects, the lensed objects appear fairly typical of ultraviolet-selected star-forming galaxies at z ~ 2. The Clone occupies a position on the emission-line diagnostic diagram of [O III]/Hβ versus [N II]/Hα that is offset from the locations of z ~ 0 galaxies. Our new NIRSPEC measurements may provide quantitative insights into why high-redshift objects display such properties. From the [S II] line ratio, high electron densities (~1000 cm-3) are inferred compared

  10. Observational and theoretical spectra of supernovae

    Science.gov (United States)

    Wheeler, J. Craig; Swartz, Douglas A.; Harkness, Robert P.

    1993-05-01

    Progress in nuclear astrophysics by means of quantitative supernova spectroscopy is discussed with special concentration on type Ia, Ib and Ic and on SN 1987A. Spectral calculations continue to support an exploding C/O white dwarf as the best model of a SN Ia. Deflagration model W7 produces good maximum light spectra of SN Ia and seems to have a better composition distribution compared to delayed detonation models, but proper treatment of opacity remains a problem and the physical basis of SN Ia explosions is still not completely understood. All models for SN Ia predict large quantities of 56Co in the ejecta, but it is not clear that observations confirm this. Although the evolutionary origin of SN Ia remains uncertain, there is recent evidence that transfer of hydrogen in a binary system may be involved, as long suspected. There has been progress in comparing dynamical models with the optical/IR spectra of SN 1987A. The evolution of the [OI] λλ6300, 6364 feature and the presence of strong persistent HeI λ10 830 indicate that both the envelope and core material contribute substantially to the formation of emission lines in the nebular phase and that neither the core nor the envelope can be neglected. Blending with nearby hydrogen lines may affect both of these spectral features, thereby complicating the analysis of the lines. The effects of continuum transfer and photoionization have been included and are under study. The discrepancies between theoretical and observed spectra are due primarily to the one-dimensional hydrodynamic models. The spectral data are not consistent with the high density ``spike'' (in radial coordinate) of the core material that is predicted by all such models. Analysis of the light curves of SN Ib and SN Ic supernovae implies that there are significant differences in their physical properties. Some SN Ib have considerably more ejecta mass than SN Ic events. SN Ib require He-rich atmospheres to produce the observed strong optical lines of

  11. General Method for Calculating the Response and Noise Spectra of Active Fabry-Perot Semiconductor Waveguides With External Optical Injection

    DEFF Research Database (Denmark)

    Blaaberg, Søren; Mørk, Jesper

    2009-01-01

    We present a theoretical method for calculating small-signal modulation responses and noise spectra of active Fabry-Perot semiconductor waveguides with external light injection. Small-signal responses due to either a modulation of the pump current or due to an optical amplitude or phase modulatio...... amplifiers and an injection-locked laser. We also demonstrate the applicability of the method to analyze slow and fast light effects in semiconductor waveguides. Finite reflectivities of the facets are found to influence the phase changes of the injected microwave-modulated light....

  12. Fatigue Property of Oxidized Photochromic Dithienylethene Derivative for Permanent Optical Recording

    International Nuclear Information System (INIS)

    Jeong, Yong Chul; Ahn, Kwang Hyun; Yang, Sung Ik; Kim, Eun Kyoung

    2005-01-01

    We have synthesized and characterized the photophysical and fatigue properties of DMTFO4. The results have shown that the photo-stability of DMTFO4 was significantly decreased compared with the unoxidized DMTF6. The possible application of DMTFO4 would be the development of permanent recording material based on a non-reversible photochromic conversion. Photochromic diarylethenes, such as 1,2-bis(2-methyl-1-benzothiophene-3-yl)perfluorocyclopentene (BTF6) and 1,2-bis(2,5-dimethylthien-3-yl)perfluorocyclopentene (DMTF6), have been extensively investigated in recent years in order to develop materials for molecular photonic devices such as optical memory and switch. In the design of photochromic materials, thermal stability and fatigue resistant are important features to be considered. The thiophene analogues undergo photochromic ring closure efficiently but the fatigue property is generally low, resulting irreversible photochromism. If the photochromism is in an irreversible manner it could be applied in the permanent optical recording such as write once read many (WORM) memory. This motivates us to examine the effect of oxidation in the photophysical properties of diarylethenes with thiophene unit. As the thiophene analogues, we chose DMTF6 and its oxidized analogue, 1,2-bis(2,5-dimethylthien-1,1-dioxide-3-yl)perfluorocyclopentene (DMTFO4). Herein we report the synthesis and characterization of the photochromic properties including the fatigue property of DMTFO4

  13. Optical verification tests of the NISP/Euclid grism qualification model

    Science.gov (United States)

    Caillat, Amandine; Costille, Anne; Pascal, Sandrine; Vives, Sébastien; Rossin, Christelle; Sanchez, Patrice; Foulon, Benjamin

    2016-07-01

    The Euclid space mission aims at elucidating dark matter and dark energy mysteries thanks to two scientific instruments: VIS, the visible camera and NISP, the Near Infrared Spectro-Photometer. Millions of galaxies spectra will be recorded thanks to its spectroscopic mode using four grisms developed under LAM (Laboratoire d'Astrophysique de Marseille) responsibility. These dispersive optical components are made of a grating on a prism and include also, specifically for NISP, three other optical functions: spectral filtering, focus adjustment and spectral wavefront correction. Therefore, these optical elements are very challenging to manufacture (four industrial partners work on a single optical component) and to test before integration into NISP. In this paper, first we describe the optical specifications and the manufacturing process. Second, we explain the optical validation tests campaign: optical setups, measurements and data processing procedures used to validate these complex optical components, particularly for transmitted efficiency and wavefront error for which specifications are very stringent. Finally, we present the first results obtained on the grism EQM which manufacturing is on-going and almost finished.

  14. Optical absorption spectra of linear and cyclic thiophenes--selection rules manifestation

    International Nuclear Information System (INIS)

    Bednarz, Mariusz; Reineker, Peter; Mena-Osteritz, Elena; Baeuerle, Peter

    2004-01-01

    We theoretically study the size-dependent relation between absorption spectra of thiophene-based oligomers and the corresponding cyclothiophenes. In our approach based on a Frenkel exciton Hamiltonian, we demonstrate that the geometry and selection rules determine the observed relations between the spectra

  15. Response spectra in alluvial soils

    International Nuclear Information System (INIS)

    Chandrasekharan, A.R.; Paul, D.K.

    1975-01-01

    For aseismic design of structures, the ground motion data is assumed either in the form of ground acceleration as a function of time or indirectly in the form of response spectra. Though the response spectra approach has limitations like not being applicable for nonlinear problems, it is usually used for structures like nuclear power plants. Fifty accelerograms recorded at alluvial sites have been processed. Since different empirical formulas relating acceleration with magnitude and distance give a wide scatter of values, peak ground acceleration alone cannot be the parameter as is assumed by a number of authors. The spectra corresponding to 5% damping have been normalised with respect to three parameters, namely, peak ground acceleration, peak ground velocity and a nondimensional quantity ad/v 2 . Envelopee of maxima and minima as well as average response spectra has been obtained. A comparison with the USAEC spectra has been made. A relation between ground acceleration, ground velocity and ad/v 2 has been obtained which would nearly give the same magnification of the response. A design response spectra for alluvial soils has been recommended. (author)

  16. A novel measuring method for arbitrary optical vortex by three spiral spectra

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Bo [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Guo, Lana [School of Electronics and Information, Guangdong Polytechnic Normal University, Guangzhou 510665 (China); Yue, Chengfeng [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Tang, Zhilie, E-mail: tangzhl@scnu.edu.cn [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China)

    2017-02-26

    In this letter, the topological charge of non-integer vortices determined by three arbitrary spiral spectra is theoretically demonstrated for the first time. Based on the conclusion, a novel method to measure non-integer vortices is presented. This method is applicable not only to arbitrary non-integer vortex but also to arbitrary integer vortex. - Highlights: • Different non-integer vortices cannot have three spiral spectra is demonstrated. • Relationship between the non-integer topological charge and the spiral spectra is presented. • Topological charge of non-integer vortices can be determined by three arbitrary spiral spectra.

  17. Simulations and analysis of the Raman scattering and differential Raman scattering/Raman optical activity (ROA) spectra of amino acids, peptides and proteins in aqueous solution

    DEFF Research Database (Denmark)

    Jalkanen, Karl J.; Nieminen, R. M.; Bohr, Jakob

    2000-01-01

    The Raman and Raman optical activity (ROA) spectra of amino acids and small peptides in aqueous solution have been simulated by density functional theory and restricted Hartree/Fock methods. The treatment of the aqueous environment in treated in two ways. The water molecules in the first hydratio...

  18. Electron energy-loss spectra in molecular fluorine

    Science.gov (United States)

    Nishimura, H.; Cartwright, D. C.; Trajmar, S.

    1979-01-01

    Electron energy-loss spectra in molecular fluorine, for energy losses from 0 to 17.0 eV, have been taken at incident electron energies of 30, 50, and 90 eV and scattering angles from 5 to 140 deg. Features in the spectra above 11.5 eV energy loss agree well with the assignments recently made from optical spectroscopy. Excitations of many of the eleven repulsive valence excited electronic states are observed and their location correlates reasonably well with recent theoretical results. Several of these excitations have been observed for the first time and four features, for which there are no identifications, appear in the spectra.

  19. Intrinsic transmission magnetic circular dichroism spectra of GaMnAs

    Science.gov (United States)

    Terada, Hiroshi; Ohya, Shinobu; Tanaka, Masaaki

    2018-03-01

    Transmission magnetic circular dichroism (MCD) spectroscopy has been widely used to reveal the spin-dependent band structure of ferromagnetic semiconductors. In these previous studies, some band pictures have been proposed from the spectral shapes observed in transmission MCD; however, extrinsic signals originating from optical interference have not been appropriately considered. In this study, we calculate the MCD spectra taking into account the optical interference of the layered structure of samples and show that the spectral shape of MCD is strongly influenced by optical interference. To correctly understand the transmission MCD, we also calculate the intrinsic MCD spectra of GaMnAs that are not influenced by the optical interference. The spectral shape of the intrinsic MCD can be explained by the characteristic band structure of GaMnAs, that is, the spin-polarized valence band and the impurity band existing above the valence band top.

  20. Free-surface velocity measurements using an optically recording velocity interferometer

    International Nuclear Information System (INIS)

    Lu Jianxin; Wang Zhao; Liang Jing; Shan Yusheng; Zhou Chuangzhi; Xiang Yihuai; Lu Ze; Tang Xiuzhang

    2006-01-01

    An optically recording velocity interferometer system (ORVIS) was developed for the free-surface velocity measurements in the equation of state experiments. The time history of free-surface velocity could be recorded by the electronic streak camera. In the experiments, ORVIS got a 179 ps time resolution, and a higher time resolution could be got by minimizing the delay time. The equation of state experiments were carried out on the high power excimer laser system called 'Heaven I' with laser wavelength of 248.4 nm, pulse duration of 25 ns and maximum energy 158 J. Free-surface velocity of 20 μm thick iron got 3.86 km/s with laser intensity of 6.24 x 10 11 W·cm -2 , and free-surface velocity of 100 μm thick aluminum with 100 μm CH foil at the front got 2.87 km/s with laser intensity 7.28 x 10 11 W·cm -2 . (authors)

  1. Properties Of Reflection Holograms Recorded In Polaroid's DMP-128 Photopolymer

    Science.gov (United States)

    Ingwall, R. T.; Troll, M.; Vetterling, W. T.

    1987-06-01

    Optical and microstructural properties of reflection holograms recorded in DMP-128 are reported. The optical properties are determined from transmission spectra of the holograms by ignoring the relatively small effects of light scattering and absorption. Microstructure is revealed by light and electron microscopic examination of hologram sections prepared either by diamond grit abrasion or by freeze fracture. Fringe planes are clearly seen with both sectioning procedures. The spacing between adjacent planes is strongly affected by processing conditions. Standard processing produces reflection holograms with fringe plane spacing that decreases continuously from the film:substrate interface to the film:air interface. These holograms have wide spectral bandwidths (100-200nm) and irregular band shapes. Narrow bandwidth holograms are produced from slightly more complicated processing steps. The optical properties of both types of holograms are compared to a theoretical model developed to account for nonuniform fringe plane spacing. Important experimental features such as spectral bandwidth and diffraction efficiency are readily explained by the theory and the observed microstructure.

  2. The first neural probe integrated with light source (blue laser diode) for optical stimulation and electrical recording.

    Science.gov (United States)

    Park, HyungDal; Shin, Hyun-Joon; Cho, Il-Joo; Yoon, Eui-sung; Suh, Jun-Kyo Francis; Im, Maesoon; Yoon, Euisik; Kim, Yong-Jun; Kim, Jinseok

    2011-01-01

    In this paper, we report a neural probe which can selectively stimulate target neurons optically through Si wet etched mirror surface and record extracellular neural signals in iridium oxide tetrodes. Consequently, the proposed approach provides to improve directional problem and achieve at least 150/m gap distance between stimulation and recording sites by wet etched mirror surface in V-groove. Also, we developed light source, blue laser diode (OSRAM Blue Laser Diode_PL 450), integration through simple jig for one-touch butt-coupling. Furthermore, optical power and impedance of iridium oxide tetrodes were measured as 200 μW on 5 mW from LD and 206.5 k Ω at 1 kHz and we demonstrated insertion test of probe in 0.5% agarose-gel successfully. We have successfully transmitted a light of 450 nm to optical fiber through the integrated LD using by butt-coupling method.

  3. Photoluminescence and optical absorption spectra of {gamma}{sub 1}-(Ga{sub x}In{sub 1-x}){sub 2}Se{sub 3} mixed crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kranjcec, M. [Department of Geotechnics, University of Zagreb, 7 Hallerova Aleja, Varazdin, 42000 (Croatia); Ruder Boskovic Institute, 54 Bijenicka Cesta, Zagreb, 10000 (Croatia); Studenyak, I.P. [Uzhhorod National University, 46 Pidhirna Str., Uzhhorod, 88000 (Ukraine); Azhniuk, Yu. M. [Institute of Electron Physics, Ukr. Nat. Acad. Sci., 21 Universytetska Str., Uzhhorod, 88000 (Ukraine)

    2005-08-01

    Temperature and compositional studies of photoluminescence and optical absorption edge spectra of {gamma}{sub 1}-(Ga{sub x}In{sub 1-x}){sub 2}Se{sub 3} mixed crystals with x=0.1-0.4 are performed. Exciton and impurity-related photoluminescence bands are revealed at low temperatures and Urbach shape of the absorption edge is observed in the temperature range 77-300 K. Temperature and compositional dependences of the photoluminescence band spectral positions and halfwidths as well as optical pseudogap and absorption edge energy width are investigated. Mechanisms of radiative recombination and optical absorption as well as crystal lattice disordering processes in {gamma}{sub 1}-(Ga{sub x}In{sub 1-x}){sub 2}Se{sub 3} solid solutions are studied. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Cancerous tissue mapping from random lasing emission spectra

    International Nuclear Information System (INIS)

    Polson, R C; Vardeny, Z V

    2010-01-01

    Random lasing emission spectra have been collected from both healthy and cancerous tissues. The two types of tissue with optical gain have different light scattering properties as obtained from an average power Fourier transform of their random lasing emission spectra. The difference in the power Fourier transform leads to a contrast between cancerous and benign tissues, which is utilized for tissue mapping of healthy and cancerous regions of patients

  5. Time-Resolved Spectroscopy Diagnostic of Laser-Induced Optical Breakdown

    Directory of Open Access Journals (Sweden)

    Christian G. Parigger

    2010-01-01

    Full Text Available Transient laser plasma is generated in laser-induced optical breakdown (LIOB. Here we report experiments conducted with 10.6-micron CO2 laser radiation, and with 1.064-micron fundamental, 0.532-micron frequency-doubled, 0.355-micron frequency-tripled Nd:YAG laser radiation. Characterization of laser induced plasma utilizes laser-induced breakdown spectroscopy (LIBS techniques. Atomic hydrogen Balmer series emissions show electron number density of 1017 cm−3 measured approximately 10 μs and 1 μs after optical breakdown for CO2 and Nd:YAG laser radiation, respectively. Recorded molecular recombination emission spectra of CN and C2 Swan bands indicate an equilibrium temperature in excess of 7000 Kelvin, inferred for these diatomic molecules. Reported are also graphite ablation experiments where we use unfocused laser radiation that is favorable for observation of neutral C3 emission due to reduced C3 cation formation. Our analysis is based on computation of diatomic molecular spectra that includes accurate determination of rotational line strengths, or Hönl-London factors.

  6. Theoretical investigations of the optical and EPR spectra for trivalent cerium and ytterbium ions in orthorhombic YF{sub 3} crystal

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hong-Gang, E-mail: kezhouliu@163.com; Zheng, Wen-Chen

    2016-09-01

    The optical spectra and electron paramagnetic resonance (EPR) parameters (g factors and hyperfine structure constants A) for trivalent cerium and ytterbium ions in YF{sub 3} crystal with orthorhombic structure are investigated together by the complete diagonalization (of energy matrix) method (CDM). The obtained results are in reasonable agreement with the experimental ones. More importantly, two magnetically nonequivalent centers in YF{sub 3} crystal observed in EPR experiments are confirmed and ascribed to their specific positions in a unit cell by our calculations based on superposition model (SPM) analysis. Such identification of local sites with different magnetic properties would help us to understand not only the EPR spectra and magnetic susceptibility of other lanthanide ions doped in crystals with the same structure as YF{sub 3} but also the energy transfer scheme between two lanthanide ions occupying such two sites. All results are discussed carefully.

  7. Multifocal fluorescence microscope for fast optical recordings of neuronal action potentials.

    Science.gov (United States)

    Shtrahman, Matthew; Aharoni, Daniel B; Hardy, Nicholas F; Buonomano, Dean V; Arisaka, Katsushi; Otis, Thomas S

    2015-02-03

    In recent years, optical sensors for tracking neural activity have been developed and offer great utility. However, developing microscopy techniques that have several kHz bandwidth necessary to reliably capture optically reported action potentials (APs) at multiple locations in parallel remains a significant challenge. To our knowledge, we describe a novel microscope optimized to measure spatially distributed optical signals with submillisecond and near diffraction-limit resolution. Our design uses a spatial light modulator to generate patterned illumination to simultaneously excite multiple user-defined targets. A galvanometer driven mirror in the emission path streaks the fluorescence emanating from each excitation point during the camera exposure, using unused camera pixels to capture time varying fluorescence at rates that are ∼1000 times faster than the camera's native frame rate. We demonstrate that this approach is capable of recording Ca(2+) transients resulting from APs in neurons labeled with the Ca(2+) sensor Oregon Green Bapta-1 (OGB-1), and can localize the timing of these events with millisecond resolution. Furthermore, optically reported APs can be detected with the voltage sensitive dye DiO-DPA in multiple locations within a neuron with a signal/noise ratio up to ∼40, resolving delays in arrival time along dendrites. Thus, the microscope provides a powerful tool for photometric measurements of dynamics requiring submillisecond sampling at multiple locations. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. The design and optimization of disk structures for MAMMOS/MSR magneto-optic recording

    International Nuclear Information System (INIS)

    Hendren, W R; Atkinson, R; Pollard, R J; Salter, I W; Wright, C D; Clegg, W W; Jenkins, D F L

    2005-01-01

    Existing quadrilayer and trilayer techniques for optimizing the magneto-optical effects from magnetic materials have been applied to new generation recording media to investigate the possibility of maximizing the signal-to-noise readout performance. Various methods are reviewed and the designs they produce are compared with each other and with the working media found in the literature. In order to address a number of inadequacies, a new numerical approach to the optimization of a quadrilayer structure is used to find further solutions that are considered more suitable for the practical recording media. The effects on design and performance of medium of incidence, type of storage layer and wavelength are all considered

  9. The design and optimization of disk structures for MAMMOS/MSR magneto-optic recording

    Energy Technology Data Exchange (ETDEWEB)

    Hendren, W R [School of Mathematics and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Atkinson, R [School of Mathematics and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Pollard, R J [School of Mathematics and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Salter, I W [School of Mathematics and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Wright, C D [School of Engineering and Computer Science, University of Exeter, Exeter EX4 4QF (United Kingdom); Clegg, W W [Centre for Research in Information Storage Technology, University of Plymouth, Plymouth PL4 8AA (United Kingdom); Jenkins, D F L [Centre for Research in Information Storage Technology, University of Plymouth, Plymouth PL4 8AA (United Kingdom)

    2005-07-21

    Existing quadrilayer and trilayer techniques for optimizing the magneto-optical effects from magnetic materials have been applied to new generation recording media to investigate the possibility of maximizing the signal-to-noise readout performance. Various methods are reviewed and the designs they produce are compared with each other and with the working media found in the literature. In order to address a number of inadequacies, a new numerical approach to the optimization of a quadrilayer structure is used to find further solutions that are considered more suitable for the practical recording media. The effects on design and performance of medium of incidence, type of storage layer and wavelength are all considered.

  10. Resonance spectra of diabolo optical antenna arrays

    Directory of Open Access Journals (Sweden)

    Hong Guo

    2015-10-01

    Full Text Available A complete set of diabolo optical antenna arrays with different waist widths and periods was fabricated on a sapphire substrate by using a standard e-beam lithography and lift-off process. Fabricated diabolo optical antenna arrays were characterized by measuring the transmittance and reflectance with a microscope-coupled FTIR spectrometer. It was found experimentally that reducing the waist width significantly shifts the resonance to longer wavelength and narrowing the waist of the antennas is more effective than increasing the period of the array for tuning the resonance wavelength. Also it is found that the magnetic field enhancement near the antenna waist is correlated to the shift of the resonance wavelength.

  11. Chemically deposited Sb{sub 2}S{sub 3} thin films for optical recording

    Energy Technology Data Exchange (ETDEWEB)

    Shaji, S; Arato, A; Castillo, G Alan; Palma, M I Mendivil; Roy, T K Das; Krishnan, B [Facultad de IngenierIa Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P- 66450 (Mexico); O' Brien, J J; Liu, J, E-mail: bkrishnan@fime.uanl.m [Center for Nanoscience and Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One Univ. Blvd., St. Louis, MO - 63121 (United States)

    2010-02-24

    Laser induced changes in the properties of Sb{sub 2}S{sub 3} thin films prepared by chemical bath deposition are described in this paper. Sb{sub 2}S{sub 3} thin films of thickness 550 nm were deposited from a solution containing SbCl{sub 3} and Na{sub 2}S{sub 2}O{sub 3} at 27 {sup 0}C for 5 h. These thin films were irradiated by a 532 nm continuous wave laser beam under different conditions at ambient atmosphere. X-ray diffraction analysis showed amorphous to polycrystalline transformation due to laser exposure of these thin films. Morphology and composition of these films were described. Optical properties of these films before and after laser irradiation were analysed. The optical band gap of the material was decreased due to laser induced crystallization. The results obtained confirm that there is further scope for developing this material as an optical recording media.

  12. Principal spectra describing magnetooptic permittivity tensor in cubic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Hamrlová, Jana [Nanotechnology Centre, VSB – Technical University of Ostrava, listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic); IT4Innovations Centre, VSB – Technical University of Ostrava, listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic); Legut, Dominik [IT4Innovations Centre, VSB – Technical University of Ostrava, listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic); Veis, Martin [Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague, 121 16 Czech Republic (Czech Republic); Pištora, Jaromír [Nanotechnology Centre, VSB – Technical University of Ostrava, listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic); Hamrle, Jaroslav, E-mail: jaroslav.hamrle@vsb.cz [IT4Innovations Centre, VSB – Technical University of Ostrava, listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic); Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague, 121 16 Czech Republic (Czech Republic); Department of Physics, VSB – Technical University of Ostrava, 17. listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic)

    2016-12-15

    We provide unified phenomenological description of magnetooptic effects being linear and quadratic in magnetization. The description is based on few principal spectra, describing elements of permittivity tensor up to the second order in magnetization. Each permittivity tensor element for any magnetization direction and any sample surface orientation is simply determined by weighted summation of the principal spectra, where weights are given by crystallographic and magnetization orientations. The number of principal spectra depends on the symmetry of the crystal. In cubic crystals owning point symmetry we need only four principal spectra. Here, the principal spectra are expressed by ab initio calculations for bcc Fe, fcc Co and fcc Ni in optical range as well as in hard and soft x-ray energy range, i.e. at the 2p- and 3p-edges. We also express principal spectra analytically using modified Kubo formula.

  13. Infrared optical constants, dielectric constants, molar polarizabilities, transition moments, dipole moment derivatives and Raman spectrum of liquid cyclohexane

    Science.gov (United States)

    Keefe, C. Dale; Pickup, Janet E.

    2009-06-01

    Previous studies have been done in this laboratory focusing on the optical properties of several liquid aromatic and aliphatic hydrocarbons in the infrared. The current study reports the infrared and absorption Raman spectra of liquid cyclohexane. Infrared spectra were recorded at 25 °C over a wavenumber range of 7400-490 cm -1. Infrared measurements were taken using transmission cells with pathlengths ranging from 3 to 5000 μm. Raman spectra were recorded between 3700 and 100 cm -1 at 25 °C using a 180° reflection geometry. Ab initio calculations of the vibrational wavenumbers at the B3LYP/6311G level of theory were performed and used to help assign the observed IR and Raman spectra. Extensive assignments of the fundamentals and binary combinations observed in the infrared imaginary molar polarizability spectrum are reported. The imaginary molar polarizability spectrum was curve fitted to separate the intensity from the various transitions and used to determine the transition moments and magnitudes of the derivatives of the dipole moment with respect to the normal coordinates for the fundamentals.

  14. Development of procedures for spectrometer brand Spectral Products to capture spectra of incoherent optical radiation for the Laboratorio de Fotonica y Tecnologia Laser Aplicada

    International Nuclear Information System (INIS)

    Arias Avendano, Fabio Andres

    2008-01-01

    The procedure to capture spectra of incoherent optical radiation for the Laboratorio de Fotonica y Tecnologia Laser Aplicada (LAFTLA), of the Escuela de Ingenieria Electrica de la Universidad de Costa Rica is developed through the use of a spectrometer brand Spectral Products. The thorough understanding of manuals spectrometer brand Spectral Products was necessary for the satisfactory development of the project. Spectrometer and the card National Instruments are installed and run both devices with a montage of suitable laboratory. Two catches of spectrum for two different sources of optical radiation are performanced, since damages to the files .ddl precluded that the SM 240 spectrometer worked properly to take more catches to other sources of optical radiation. A final report containing the two catches is produced with the respective analysis. (author) [es

  15. Phonon spectra in SiO2 glasses

    International Nuclear Information System (INIS)

    Perez R, J.F.; Jimenez S, S.; Gonzalez H, J.; Vorobiev, Y.V.; Hernandez L, M.A.; Parga T, J.R.

    1999-01-01

    Phonon spectra in SiO 2 sol-gel made glasses annealed under different conditions are investigated using infrared absorption and Raman scattering. These data are compared with those obtained in commercial optical-quality quartz. All the materials exhibit the same phonon bands, the exact position and the intensity depend on the measuring technique and on the sample preparation method. The phonon spectra in this material are interpreted on the basis of a simple quasi-linear description of elastic waves in an O-Si-O chain. It is shown that the main features observed in the range 400-1400 cm -1 can be predicted using a quasi-linear chain model in which the band at 1070 cm -1 is assigned to the longitudinal optical waves in the O-Si-O chain with the smallest possible wavelength at the Brillouin zone boundary, the band located around 450 cm -1 is assigned to the transversal optical waves and the band at 800 cm -1 to the longitudinal acoustical waves with the same wavelength. The degree of structural disorder can be also deduced within the framework of the proposed model. (Author)

  16. The physics of thin film optical spectra an introduction

    CERN Document Server

    Stenzel, Olaf

    2016-01-01

    The book bridges the gap between fundamental physics courses (such as optics, electrodynamics, quantum mechanics and solid state physics) and highly specialized literature on the spectroscopy, design, and application of optical thin film coatings. Basic knowledge from the above-mentioned courses is therefore presumed. Starting from fundamental physics, the book enables the reader derive the theory of optical coatings and to apply it to practically important spectroscopic problems. Both classical and semiclassical approaches are included. Examples describe the full range of classical optical coatings in various spectral regions as well as highly specialized new topics such as rugate filters and resonant grating waveguide structures.The second edition has been updated and extended with respect to probing matter in different spectral regions, homogenous and inhomogeneous line broadening mechanisms and the Fresnel formula for the effect of planar interfaces.

  17. Investigating the optical modes of InxGa1xN alloy and In0.5Ga0.5N/GaN MQW in far-infrared reflectivity spectra

    International Nuclear Information System (INIS)

    Mirjalili, G.; Amraei, R.

    2006-01-01

    Optical properties of In x Ga 1 x N alloy and In 0 .5Ga 0 .5N/GaN multi quantum wells have been investigated in the region of far infrared. Far-IR reflectivity spectra of In 0 .5Ga 0 .5N/GaN multi quantum wells on GaAs substrate have been obtained by oblique incidence p- and s- polarization light using effective medium approximation. The spectra and the dielectric functions response give a good information about the phonon and plasmon contribution in doped MQW as well as the mole fraction of compounds in the alloys. The changes in position of optical modes are good tools for measurement of the amount of free carrier and the amount of mole fraction in the samples. During study of In x Ga 1 x N reflectivity spectra, two distinct reststrahl bands with frequency near those of pure InN and GaN were observed over entire composition range. Each band shifts to lower frequencies and decreases in amplitude as the concentration of corresponding compound in alloy decreased. Analysis of dielectric function gives the TO-like and LO-like mode frequencies. The changes in LO mode frequencies, due to coupling of phonon-plasmon, have been observed

  18. Raman Spectra from Pesticides on the Surface of Fruits

    International Nuclear Information System (INIS)

    Zhang, P X; Zhou Xiaofang; Cheng, Andrew Y S; Fang Yan

    2006-01-01

    Raman spectra of several vegetables and fruits were studied by micro-Raman spectrometer (514.5 nm) and Near-infrared Fourier Transform Raman spectrometer (FTRaman). It is shown that at 514.5 nm excitation, most of the spectra are from that of carotene with some very strong fluorescence in some cases. While at 1064 nm wavelength excitation, the spectra from the different samples demonstrate different characteristic Raman spectra without fluorescence. We discuss the spectroscopic difference by the two excitation wavelengths, and the application of Raman spectra for detection of pesticides left on the surface of vegetables and fruits. Raman spectra of fruits and pesticides were successfully recorded, and using the FT-Raman spectra the pesticides left on the surface of the fruits can be detected conveniently

  19. Optical properties of cerium oxide (CeO2) nanoparticles synthesized by hydroxide mediated method

    Science.gov (United States)

    Ali, Mawlood Maajal; Mahdi, Hadeel Salih; Parveen, Azra; Azam, Ameer

    2018-05-01

    The nanoparticles of cerium oxide have been successfully synthesized by hydroxide mediated method, using cerium nitrate and sodium hydroxide as precursors. The microstructural properties were analyzed by X-ray diffraction technique (XRD). The X-ray diffraction results show that the cerium oxide nanoparticles were in cubic structure. The optical absorption spectra of cerium oxide were recorded by UV-VIS spectrophotometer in the range of 320 to 600 nm and photoluminescence spectra in the range of 400-540 nm and have been presented. The energy band gap was determined by Tauc relationship. The crystallite size was determined from Debye-Scherer equation and came out to be 6.4 nm.

  20. Optics of colloidal quantum-confined CdSe nanoscrolls

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, R B; Sokolikova, M S [M. V. Lomonosov Moscow State University, Moscow (Russian Federation); Vitukhnovskii, A G; Ambrozevich, S A; Selyukov, A S; Lebedev, V S [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-09-30

    Nanostructures in the form of 1.2-nm-thick colloidal CdSe nanoplatelets rolled into scrolls are investigated. The morphology of these scrolls is analysed and their basic geometric parameters are determined (diameter 29 nm, longitudinal size 100 – 150 nm) by TEM microscopy. Absorption and photoluminescence spectra of these objects are recorded, and the luminescence decay kinetics is studied. It is shown that the optical properties of CdSe nanoscrolls differ significantly from the properties of CdSe quantum dots and that these nanoscrolls are attractive for nanophotonic devices due to large oscillator strengths of the transition, small widths of excitonic peaks and short luminescence decay times. Nanoscrolls can be used to design hybrid organic–inorganic pure-color LEDs with a high luminescence quantum yield and low operating voltages. (optics and technology of nanostructures)

  1. Development of an optical character recognition pipeline for handwritten form fields from an electronic health record.

    Science.gov (United States)

    Rasmussen, Luke V; Peissig, Peggy L; McCarty, Catherine A; Starren, Justin

    2012-06-01

    Although the penetration of electronic health records is increasing rapidly, much of the historical medical record is only available in handwritten notes and forms, which require labor-intensive, human chart abstraction for some clinical research. The few previous studies on automated extraction of data from these handwritten notes have focused on monolithic, custom-developed recognition systems or third-party systems that require proprietary forms. We present an optical character recognition processing pipeline, which leverages the capabilities of existing third-party optical character recognition engines, and provides the flexibility offered by a modular custom-developed system. The system was configured and run on a selected set of form fields extracted from a corpus of handwritten ophthalmology forms. The processing pipeline allowed multiple configurations to be run, with the optimal configuration consisting of the Nuance and LEADTOOLS engines running in parallel with a positive predictive value of 94.6% and a sensitivity of 13.5%. While limitations exist, preliminary experience from this project yielded insights on the generalizability and applicability of integrating multiple, inexpensive general-purpose third-party optical character recognition engines in a modular pipeline.

  2. Electron and phonon spectra in La2-xSrxCuI4+δ

    International Nuclear Information System (INIS)

    Nomerovannaya, L.V.; Makhnev, A.A.; Malyuk, A.N.; Bolotin, G.A.; Shtrapenin, G.L.; Ignatenkov, A.N.

    1995-01-01

    Ellipsometric measurements of optical constants and measurements of reflection spectra of La 2-x Sr x CuI 4+δ monocrystals were carried out. Variation of peculiarities of electron and phonon spectra at strontium doping was followed. Formulae to calculate ε dielectric permittivity tensor component on the ground of ellipsometric measurements for tetragonal and orthorhombic crystals are given. Effect of superstoichiometric oxygen content on anisotropy of La 2 CuO 4+δ optical properties was studied. 18 refs., 5 figs., 1 tab

  3. Novel aluminum near field transducer and highly integrated micro-nano-optics design for heat-assisted ultra-high-density magnetic recording

    International Nuclear Information System (INIS)

    Miao, Lingyun; Hsiang, Thomas Y; Stoddart, Paul R

    2014-01-01

    Heat-assisted magnetic recording (HAMR) has attracted increasing attention as one of the most promising future techniques for ultra-high-density magnetic recording beyond the current limit of 1 Tb in −2 . Localized surface plasmon resonance plays an important role in HAMR by providing a highly focused optical spot for heating the recording medium within a small volume. In this work, we report an aluminum near-field transducer (NFT) based on a novel bow-tie design. At an operating wavelength of 450 nm, the proposed transducer can generate a 35 nm spot size inside the magnetic recording medium, corresponding to a recording density of up to 2 Tb in −2 . A highly integrated micro-nano-optics design is also proposed to ensure process compatibility and corrosion-resistance of the aluminum NFT. Our work has demonstrated the feasibility of using aluminum as a plasmonic material for HAMR, with advantages of reduced cost and improved efficiency compared to traditional noble metals. (paper)

  4. Moessbauer spectrometer based on UNO-4096-90 accumulator and Elektronika D3-28 microcomputer for simultaneous recording of four spectra

    International Nuclear Information System (INIS)

    Romanov, E.S.; Ivoilov, N.G.

    1986-01-01

    A buffer memory unit and an interface for the UNO-4096-90 accumulator with an Elektronika D3-28 microcomputer are described that allow simultaneous recording of four Moessbauer spectra with zero dead time. For complete elimination of dead time, the pulses from each detector are fed to two buffer counters units, which operate alternately in the write and interrogate modes. This organization of the buffer memory also completely eliminates the effect of the sensors on one another. The use of these circuits does not require any modifications of the computer or accumulator

  5. Near-Field Phase-Change Optical Recording of 1.36 Numerical Aperture

    Science.gov (United States)

    Ichimura, Isao; Kishima, Koichiro; Osato, Kiyoshi; Yamamoto, Kenji; Kuroda, Yuji; Saito, Kimihiro

    2000-02-01

    A bit density of 125 nm was demonstrated through near-field phase-change (PC) optical recording at the wavelength of 657 nm by using a supersphere solid immersion lens (SIL). The lens unit consists of a standard objective and a φ2.5 mm SIL@. Since this lens size still prevents the unit from being mounted on an air-bearing slider, we developed a one-axis positioning actuator and an active capacitance servo for precise gap control to thoroughly investigate near-field recording. An electrode was fabricated on the bottom of the SIL, and a capacitor was formed facing a disk material. This setup realized a stable air gap below 50 nm, and a new method of simulating modulation transfer function (MTF) optimized the PC disk structure at this gap height. Obtained jitter of 8.8% and a clear eye-pattern prove that our system successfully attained the designed numerical-aperture (\\mathit{NA}) of 1.36.

  6. LINE FORMATION IN SPECTRA OF X-RAY NOVAE

    OpenAIRE

    Suleimanov, V. F.; Shimansky, V. V.

    2017-01-01

    Results of X-ray Novae (XN) optical spectra computation are presented. The continuum and Balmer line are calculated. The model of XN as a self-irradiated accretion disk is used. Local (for given radius) disk atmospheres as model stellar atmospheres, heated due to external X-ray radiation are treated. Changes of spectra shape and equivalent widths of the Balmer lines depending from the luminosity and some others accretion disk parameters are investigated. The comparison of GRO JO422+32 observe...

  7. Rotational spectroscopy with an optical centrifuge.

    Science.gov (United States)

    Korobenko, Aleksey; Milner, Alexander A; Hepburn, John W; Milner, Valery

    2014-03-07

    We demonstrate a new spectroscopic method for studying electronic transitions in molecules with extremely broad range of angular momentum. We employ an optical centrifuge to create narrow rotational wave packets in the ground electronic state of (16)O2. Using the technique of resonance-enhanced multi-photon ionization, we record the spectrum of multiple ro-vibrational transitions between X(3)Σg(-) and C(3)Πg electronic manifolds of oxygen. Direct control of rotational excitation, extending to rotational quantum numbers as high as N ≳ 120, enables us to interpret the complex structure of rotational spectra of C(3)Πg beyond thermally accessible levels.

  8. Influence of fluctuating strain on exciton reflection spectra

    DEFF Research Database (Denmark)

    Skettrup, Torben

    1982-01-01

    The influence of an internal distribution of strain on the exciton reflection spectra is investigated. The resulting fluctuating optical constants give rise to a fluctuating phase of reflectivity. The standard deviation σ of these phase fluctuations is the quantity which can be observed...... to derive the dependence of the phase of reflectivity on the direction of the fluctuating optical axis. The results obtained for σ are compared with the experimental depolarization spectra of ZnO. The only fitting parameter is the common standard deviation of the strain components. It is found......, for example, between crossed polarizers or from ellipsometric measurements. Assuming the phase fluctuations to obey a Gaussian distribution, σ can be expressed in a simple way in terms of the degree of polarization or the depolarization of the reflected light. σ is then derived in terms of the standard...

  9. Instrumentation for low noise nanopore-based ionic current recording under laser illumination

    Science.gov (United States)

    Roelen, Zachary; Bustamante, José A.; Carlsen, Autumn; Baker-Murray, Aidan; Tabard-Cossa, Vincent

    2018-01-01

    We describe a nanopore-based optofluidic instrument capable of performing low-noise ionic current recordings of individual biomolecules under laser illumination. In such systems, simultaneous optical measurements generally introduce significant parasitic noise in the electrical signal, which can severely reduce the instrument sensitivity, critically hindering the monitoring of single-molecule events in the ionic current traces. Here, we present design rules and describe simple adjustments to the experimental setup to mitigate the different noise sources encountered when integrating optical components to an electrical nanopore system. In particular, we address the contributions to the electrical noise spectra from illuminating the nanopore during ionic current recording and mitigate those effects through control of the illumination source and the use of a PDMS layer on the SiNx membrane. We demonstrate the effectiveness of our noise minimization strategies by showing the detection of DNA translocation events during membrane illumination with a signal-to-noise ratio of ˜10 at 10 kHz bandwidth. The instrumental guidelines for noise minimization that we report are applicable to a wide range of nanopore-based optofluidic systems and offer the possibility of enhancing the quality of synchronous optical and electrical signals obtained during single-molecule nanopore-based analysis.

  10. Enhancement of the measurement sensitivity at large aberrations of an optical system of hologram recording

    International Nuclear Information System (INIS)

    Lyalikov, A.M.

    1994-01-01

    The method of the measurement sensitivity enhancement with compensation of aberrations based on rewriting object and master holograms recorded on one common carrier using the double-exposure method is considered. Experimental studies indicated the proposed technique of the enhancement of the measurement sensitivity to be promising in the case of large aberrations of an optical system for initial hologram recording. The reconstructed interferograms are presented with enhanced sensitivity of measurements by a factor of 16 characterizing the quality of exit windows of a glass cuvette. 16 refs., 3 figs

  11. Depth distributions of light action spectra for skin chromophores

    Science.gov (United States)

    Barun, V. V.; Ivanov, A. P.

    2010-03-01

    Light action spectra over wavelengths of 300-1000 nm are calculated for components of the human cutaneous covering: melanin, basal (bloodless) tissue, and blood oxy- and deoxyhemoglobin. The transformation of the spectra with depth in biological tissue results from two factors. The first is the wavelength dependence of the absorption coefficient corresponding to a particular skin chromophore and the second is the spectral selectivity of the radiation flux in biological tissue. This factor is related to the optical properties of all chromophores. A significant change is found to take place in the spectral distribution of absorbed radiant power with increasing depth. The action spectrum of light for the molecular oxygen contained in all components of biological tissue is also studied in the 625-645 nm range. The spectra are found to change with both the volume fraction of blood vessels and the degree of oxygenation of the blood. These results are useful for analyzing processes associated with optical absorption that are possible mechanisms for the interaction of light with biological tissues: photodissociation of oxyhemoglobin and the light-oxygen effect.

  12. Statistical studies of vertical and horizontal earthquake spectra

    Energy Technology Data Exchange (ETDEWEB)

    Hall, W.J.; Mohraz, B.; Newmark, N.M.

    1976-01-01

    The study reveals that there is no well-defined dependence of normalized seismic design response spectra on the earthquake ground acceleration level. Recommendations for horizontal design response spectra are close to those given in Regulatory Guide 1.60. Recommendations for vertical response spectra are somewhat lower than Regulatory Guide 1.60 provisions in the frequency range 2 to 30 Hz aproximately. The results are based on seismic information recorded along the west coast of the United States and are directly applicable to that region only.

  13. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. III. Optical and UV Spectra of a Blue Kilonova from Fast Polar Ejecta

    Energy Technology Data Exchange (ETDEWEB)

    Nicholl, M.; Berger, E.; Kasen, D.; Metzger, B. D.; Elias, J.; Briceño, C.; Alexander, K. D.; Blanchard, P. K.; Chornock, R.; Cowperthwaite, P. S.; Eftekhari, T.; Fong, W.; Margutti, R.; Villar, V. A.; Williams, P. K. G.; Brown, W.; Annis, J.; Bahramian, A.; Brout, D.; Brown, D. A.; Chen, H. -Y.; Clemens, J. C.; Dennihy, E.; Dunlap, B.; Holz, D. E.; Marchesini, E.; Massaro, F.; Moskowitz, N.; Pelisoli, I.; Rest, A.; Ricci, F.; Sako, M.; Soares-Santos, M.; Strader, J.

    2017-10-16

    We present optical and ultraviolet spectra of the first electromagnetic counterpart to a gravitational wave (GW) source, the binary neutron star merger GW170817. Spectra were obtained nightly between 1.5 and 9.5 days post-merger, using the SOAR and Magellan telescopes; the UV spectrum was obtained with the \\textit{Hubble Space Telescope} at 5.5 days. Our data reveal a rapidly-fading blue component ($T\\approx5500$ K at 1.5 days) that quickly reddens; spectra later than $\\gtrsim 4.5$ days peak beyond the optical regime. The spectra are mostly featureless, although we identify a possible weak emission line at $\\sim 7900$ \\AA\\ at $t\\lesssim 4.5$ days. The colours, rapid evolution and featureless spectrum are consistent with a "blue" kilonova from polar ejecta comprised mainly of light $r$-process nuclei with atomic mass number $A\\lesssim 140$. This indicates a sight-line within $\\theta_{\\rm obs}\\lesssim 45^{\\circ}$ of the orbital axis. Comparison to models suggests $\\sim0.03$ M$_\\odot$ of blue ejecta, with a velocity of $\\sim 0.3c$. The required lanthanide fraction is $\\sim 10^{-4}$, but this drops to $<10^{-5}$ in the outermost ejecta. The large velocities point to a dynamical origin, rather than a disk wind, for this blue component, suggesting that both binary constituents are neutron stars (as opposed to a binary consisting of a neutron star and a black hole). For dynamical ejecta, the high mass favors a small neutron star radius of $\\lesssim 12$ km. This mass also supports the idea that neutron star mergers are a major contributor to $r$-process nucleosynthesis.

  14. Diversity of soft X-ray spectra in quasars

    International Nuclear Information System (INIS)

    Elvis, M.; Wilkes, B.J.; Tananbaum, H.

    1985-01-01

    Soft X-ray spectra for three quasars obtained with the Einstein Imaging Proportional Counter covering the 0.1-4.0 keV band are reported. Power-law fits to these spectra have best-fit energy indices of 1.2 +0.6 or -0.2, for the quasar NAB 0205 + 024, 0.6 +0.3 or -0.2 for the quasar B2 1028 + 313, and 2.2 + or -0.4 for the quasar PG 1211 + 143. None of the quasars shows any evidence for a column density of cold matter in excess of the galactic values. The derived spectra demonstrate that there is no single universal power law slope for quasar X-ray spectra. The implications of these results for the X-ray background, X-ray continuum emission mechanisms, and the production of the optical/UV emission lines are briefly discussed. 46 references

  15. The optical spectra of 24 mu m galaxies in the cosmos field. I. Spitzer MIPS bright sources in the zCOSMOS-bright 10k catalog

    NARCIS (Netherlands)

    Caputi, K. I.; Lilly, S. J.; Aussel, H.; Sanders, D.; Frayer, D.; Le Fevre, O.; Renzini, A.; Zamorani, G.; Scodeggio, M.; Contini, T.; Scoville, N.; Carollo, C. M.; Hasinger, G.; Iovino, A.; Le Brun, V.; Le Floc'h, E.; Maier, C.; Mainieri, V.; Mignoli, M.; Salvato, M.; Schiminovich, D.; Silverman, J.; Surace, J.; Tasca, L.; Abbas, U.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Bottini, D.; Capak, P.; Cappi, A.; Cassata, P.; Cimatti, A.; Cucciati, O.; de la Torre, S.; de Ravel, L.; Franzetti, P.; Fumana, M.; Garilli, B.; Halliday, C.; Ilbert, O.; Kampczyk, P.; Kartaltepe, J.; Kneib, J. -P.; Knobel, C.; Kovac, K.; Lamareille, F.; Leauthaud, A.; Le Borgne, J. F.; Maccagni, D.; Marinoni, C.; McCracken, H.; Meneux, B.; Oesch, P.; Pello, R.; Perez-Montero, E.; Porciani, C.; Ricciardelli, E.; Scaramella, R.; Scarlata, C.; Tresse, L.; Vergani, D.; Walcher, J.; Zamojski, M.; Zucca, E.

    2008-01-01

    We study zCOSMOS-bright optical spectra for 609 Spitzer MIPS 24 mu m-selected galaxies with S-24 (mu m) > 0: 30 mJy and I <22.5 (AB mag) over 1.5 deg(2) of the COSMOS field. From emission-line diagnostics we find the following: (1) SFRs derived from the observed H alpha lambda 6563 and H beta lambda

  16. All-optical recording and stimulation of retinal neurons in vivo in retinal degeneration mice

    Science.gov (United States)

    Strazzeri, Jennifer M.; Williams, David R.; Merigan, William H.

    2018-01-01

    Here we demonstrate the application of a method that could accelerate the development of novel therapies by allowing direct and repeatable visualization of cellular function in the living eye, to study loss of vision in animal models of retinal disease, as well as evaluate the time course of retinal function following therapeutic intervention. We use high-resolution adaptive optics scanning light ophthalmoscopy to image fluorescence from the calcium sensor GCaMP6s. In mice with photoreceptor degeneration (rd10), we measured restored visual responses in ganglion cell layer neurons expressing the red-shifted channelrhodopsin ChrimsonR over a six-week period following significant loss of visual responses. Combining a fluorescent calcium sensor, a channelrhodopsin, and adaptive optics enables all-optical stimulation and recording of retinal neurons in the living eye. Because the retina is an accessible portal to the central nervous system, our method also provides a novel non-invasive method of dissecting neuronal processing in the brain. PMID:29596518

  17. Explanation of earthquake response spectra

    OpenAIRE

    Douglas, John

    2017-01-01

    This is a set of five slides explaining how earthquake response spectra are derived from strong-motion records and simple models of structures and their purpose within seismic design and assessment. It dates from about 2002 and I have used it in various introductory lectures on engineering seismology.

  18. [Micro-Raman and fluorescence spectra of several agrochemicals].

    Science.gov (United States)

    Xiao, Yi-lin; Zhang, Peng-xiang; Qian, Xiao-fan

    2004-05-01

    Raman and fluorescence spectra from several agrochemicals were measured, which are sold for the use in vegetables, fruits and grains. Characteristic vibration Raman peaks from some of the agrochemicals were recorded, hence the spectra can be used for their identification. Other marketed agrochemicals demonstrated strong fluorescence under 514.5 nm excitation. It was found that the fluorescence spectra of the agrochemicals are very different. According to these results one can detect the trace amount of agrochemicals left on the surface of fruits, vegetables and grains in situ and conveniently.

  19. Optical properties of Nd3+ doped barium lithium fluoroborate glasses for near-infrared (NIR) emission

    Science.gov (United States)

    Mariselvam, K.; Arun Kumar, R.; Suresh, K.

    2018-04-01

    The neodymium doped barium lithium fluoroborate (Nd3+: BLFB) glasses with the chemical composition (70-x) H3BO3 - 10 Li2CO3 - 10 BaCO3- 5 CaF2-5 ZnO - x Nd2O3 (where x = 0.05, 0.1, 0.25, 0.5, 1, 2 in wt %) have been prepared by the conventional melt quenching technique and characterised through optical absorption, near infrared emission and decay-time measurements. The x-ray diffraction studies confirm the amorphous nature of the prepared glasses. The optical absorption spectra and emission spectra were recorded in the wavelength ranges of 190-1100 nm. The optical band gap (Eg) and Urbach energy (ΔE) values were calculated from the absorption spectra. The Judd-Ofelt intensity parameters were determined from the systematic analysis of the absorption spectrum of neodymium ions in the prepared glasses. The emission spectra exhibited three prominent peaks at 874, 1057, 1331 nm corresponding to the 4F3/2 → 4I9/2, 11/2, 13/2 transitions levels respectively in the near infrared region. The emission intensity of the 4F3/2 → 4I11/2 transition increases with the increase in neodymium concentration up to 0.5 wt% and the concentration quenching mechanism was observed for 1 wt% and 2 wt% concentrations. The lifetime of the 4F3/2 level was found to decrease with increasing Nd3+ ion concentration. The nature of energy transfer process was a single exponential curve which was studied for all the glasses and analysed.

  20. Reactively sputtered TeO/sub x/ thin films for optical recording systems

    International Nuclear Information System (INIS)

    Di Giulio, M.; Micocci, G.; Rella, R.; Tepore, A.

    1988-01-01

    Tellurium suboxide (TeO/sub x/ ) thin films have been obtained by rf reactive sputtering deposition by using a Te target and an Ar--O 2 gas mixture. Different samples were prepared by changing both the rf power (80--200 W) and the oxygen concentration in the sputtering gas. The transmissivity and the reflectivity of these films change markedly by thermal treatment at critical temperatures in the range 120--150 0 C. This property makes these films suitable for optical disk recording with a low-output power laser diode

  1. Physiological Parameter Monitoring from Optical Recordings with a Mobile Phone

    Science.gov (United States)

    Scully, Christopher G.; Lee, Jinseok; Meyer, Joseph; Gorbach, Alexander M.; Granquist-Fraser, Domhnull; Mendelson, Yitzhak

    2012-01-01

    We show that a mobile phone can serve as an accurate monitor for several physiological variables, based on its ability to record and analyze the varying color signals of a fingertip placed in contact with its optical sensor. We confirm the accuracy of measurements of breathing rate, cardiac R-R intervals, and blood oxygen saturation, by comparisons to standard methods for making such measurements (respiration belts, ECGs, and pulse-oximeters, respectively). Measurement of respiratory rate uses a previously reported algorithm developed for use with a pulse-oximeter, based on amplitude and frequency modulation sequences within the light signal. We note that this technology can also be used with recently developed algorithms for detection of atrial fibrillation or blood loss. PMID:21803676

  2. Optical properties of NbCl5 and ZnMg intercalated graphite compounds

    International Nuclear Information System (INIS)

    Jung, Eilho; Lee, Seokbae; Roh, Seulki; Kang, Jihoon; Park, Tuson; Hwang, Jungseek; Meng, Xiuqing; Tongay, Sefaattin

    2014-01-01

    We studied NbCl 5 and ZnMg alloy intercalated graphite compounds using an optical spectroscopy technique. These intercalated metallic graphite samples were quite challenging to obtain optical reflectance spectra since they were not flat and quite thin. By using both a new method and an in situ gold evaporation technique we were able to obtain reliable reflectance spectra of our samples in the far and mid infrared range (80–7000 cm −1 ). We extracted the optical constants including the optical conductivity and the dielectric function from the measured reflectance spectra using a Kramers–Kronig analysis. We also extracted the dc conductivity and the plasma frequencies from the optical conductivity and dielectric functions. NbCl 5 intercalated graphite samples show similar optical conductivity spectra as bare highly oriented pyrolytic graphite even though there are some differences in detail. ZnMg intercalated samples show significantly different optical conductivity spectra from the bare graphite. Optical spectroscopy is one of the most reliable experimental techniques to obtain the electronic band structures of materials. The obtained optical conductivities support the recent theoretically calculated electronic band structures of NbCl 5 and ZnMg intercalated graphite compounds. Our results also provide important information of electronic structures and charge carrier properties of these two new intercalated materials for applications. (paper)

  3. Understanding reconstructed Dante spectra using high resolution spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    May, M. J., E-mail: may13@llnl.gov; Widmann, K.; Kemp, G. E.; Thorn, D.; Colvin, J. D.; Schneider, M. B.; Moore, A.; Blue, B. E. [L-170 Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94551 (United States); Weaver, J. [Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375 (United States)

    2016-11-15

    The Dante is an 18 channel filtered diode array used at the National Ignition Facility (NIF) to measure the spectrally and temporally resolved radiation flux between 50 eV and 20 keV from various targets. The absolute flux is determined from the radiometric calibration of the x-ray diodes, filters, and mirrors and a reconstruction algorithm applied to the recorded voltages from each channel. The reconstructed spectra are very low resolution with features consistent with the instrument response and are not necessarily consistent with the spectral emission features from the plasma. Errors may exist between the reconstructed spectra and the actual emission features due to assumptions in the algorithm. Recently, a high resolution convex crystal spectrometer, VIRGIL, has been installed at NIF with the same line of sight as the Dante. Spectra from L-shell Ag and Xe have been recorded by both VIRGIL and Dante. Comparisons of these two spectroscopic measurements yield insights into the accuracy of the Dante reconstructions.

  4. FTIR spectra of whey and casein hydrolysates in relation to their functional properties

    NARCIS (Netherlands)

    Ven, van der C.; Muresan, S.; Gruppen, H.; Bont, D.B.A.; Merck, K.B.; Voragen, A.G.J.

    2002-01-01

    Mid-infrared spectra of whey and casein hydrolysates were recorded using Fourier transform infrared (FTIR) spectroscopy. Multivariate data analysis techniques were used to investigate the capacity of FTIR spectra to classify hydrolysates and to study the ability of the spectra to predict bitterness,

  5. Optical Absorption Spectra and Electronic Properties of Symmetric and Asymmetric Squaraine Dyes for Use in DSSC Solar Cells: DFT and TD-DFT Studies

    Directory of Open Access Journals (Sweden)

    Reda M. El-Shishtawy

    2016-04-01

    Full Text Available The electronic absorption spectra, ground-state geometries and electronic structures of symmetric and asymmetric squaraine dyes (SQD1–SQD4 were investigated using density functional theory (DFT and time-dependent (TD-DFT density functional theory at the B3LYP/6-311++G** level. The calculated ground-state geometries reveal pronounced conjugation in these dyes. Long-range corrected time dependent density functionals Perdew, Burke and Ernzerhof (PBE, PBE1PBE (PBE0, and the exchange functional of Tao, Perdew, Staroverov, and Scuseria (TPSSh with 6-311++G** basis set were employed to examine optical absorption properties. In an extensive comparison between the optical data and DFT benchmark calculations, the BEP functional with 6-311++G** basis set was found to be the most appropriate in describing the electronic absorption spectra. The calculated energy values of lowest unoccupied molecular orbitals (LUMO were 3.41, 3.19, 3.38 and 3.23 eV for SQD1, SQD2, SQD3, and SQD4, respectively. These values lie above the LUMO energy (−4.26 eV of the conduction band of TiO2 nanoparticles indicating possible electron injection from the excited dyes to the conduction band of the TiO2 in dye-sensitized solar cells (DSSCs. Also, aromaticity computation for these dyes are in good agreement with the data obtained optically and geometrically with SQD4 as the highest aromatic structure. Based on the optimized molecular geometries, relative positions of the frontier orbitals, and the absorption maxima, we propose that these dyes are suitable components of photovoltaic DSSC devices.

  6. Dynamics in terahertz semiconductor microcavity: quantum noise spectra

    Science.gov (United States)

    Jabri, H.; Eleuch, H.

    2018-05-01

    We investigate the physics of an optical semiconductor microcavity containing a coupled double quantum well interacting with cavity photons. The photon statistics of the transmitted light by the cavity is explored. We show that the nonlinear interactions in the direct and indirect excitonic modes generate an important squeezing despite the weak nonlinearities. When the strong coupling regime is achieved, the noise spectra of the system is dominated by the indirect exciton distribution. At the opposite, in the weak regime, direct excitons contribute much larger in the noise spectra.

  7. Reconstruction of mechanically recorded sound from an edison cylinder using three dimensional non-contact optical surface metrology

    Energy Technology Data Exchange (ETDEWEB)

    Fadeyev, V.; Haber, C.; Maul, C.; McBride, J.W.; Golden, M.

    2004-04-20

    Audio information stored in the undulations of grooves in a medium such as a phonograph disc record or cylinder may be reconstructed, without contact, by measuring the groove shape using precision optical metrology methods and digital image processing. The viability of this approach was recently demonstrated on a 78 rpm shellac disc using two dimensional image acquisition and analysis methods. The present work reports the first three dimensional reconstruction of mechanically recorded sound. The source material, a celluloid cylinder, was scanned using color coded confocal microscopy techniques and resulted in a faithful playback of the recorded information.

  8. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Optical Thickness (COT) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of Cloud Optical Thickness (COT) from the Visible Infrared Imaging Radiometer Suite...

  9. Development of site specific response spectra

    International Nuclear Information System (INIS)

    Bernreuter, D.L.; Chen, J.C.; Savy, J.B.

    1987-03-01

    For a number of years the US Nuclear Regulatory Commission (NRC) has employed site specific spectra (SSSP) in their evaluation of the adequacy of the Safe Shutdown Earthquake (SSE). These spectra were developed only from the spectra of the horizontal components of the ground motion and from a very limited data set. As the data set has considerably increased for Eastern North America (ENA) and as more relevant data has become available from earthquakes occurring in other parts of the world (e.g., Italy), together with the fact that recent data indicated the importance of the vertical component, it became clear that an update of the SSSP's for ENA was desirable. The methodology used in this study is similar to the previous ones in that it used actual earthquake ground motion data with magnitudes within a certain range and recorded at distances and at sites similar to those that would be chosen for the definition of an SSE. An extensive analysis of the origin and size of the uncertainty is an important part of this study. The results of this analysis of the uncertainties is used to develop criteria for selecting the earthquake records to be used in the derivation of the SSSP's. We concluded that the SSSPs were not very sensitive to the distribution of the source to site distance of the earthquake records used in the analysis. That is, the variability (uncertainty) introduced by the range of distances was relatively small compared to the variability introduced by other factors. We also concluded that the SSSP are somewhat sensitive to the distribution of the magnitudes of these earthquakes, particularly at rock sites and, by inference, at shallow soil sites. We found that one important criterion in selecting records to generate SSSP is the depth of soil at the site

  10. Analysis of structural and optical properties of annealed fullerene thin films

    Science.gov (United States)

    El-Nahass, M. M.; Ali, H. A. M.; Gadallah, A.-S.; Atta Khedr, M.; Afify, H. A.

    2015-08-01

    Fullerene thin films were thermally deposited onto different substrates. The films annealed at 523 K for 10 h. X-ray diffraction technique was used to examine the structure of the films. The morphology of films was examined by field emission scanning electron microscopy. Fourier transform infrared spectra were recorded in wavenumber range 400-2000 cm-1. The optical characteristics were analyzed using UV- Vis-NIR spectrophotometric measurements in the spectral range 200-2500 nm. The refractive index and extinction coefficient were determined. Some dispersion parameters were calculated such as single oscillator energy, dispersion energy, dielectric constant at high frequency and lattice dielectric constant. As well as, the nonlinear optical susceptibility χ(3) and nonlinear refractive index n2 were determined.

  11. Interlayer interactions in absorption and reflection spectra of bismuth HTSC crystals

    International Nuclear Information System (INIS)

    Kruchinin, S.P.; Yaremko, A.M.

    1992-01-01

    The HTSC reflection and absorption optic spectra peculiarities are analysed in the paper on the basis of bismuth and thallium. The approach suggested takes into account the complex character of crystals structure, possible localization of excitations in the isolated layers and further excitations exchange due to the interlayer interaction between cuprate (Cu O) and quasi-degenerate bismuth layers (Bi O/3pO). The expressions for the excitation and intensity energies of the corresponding transitions are obtained. It is shown that only part of excitations whose number is determined by the number of layers in the unit cell will be manifest in optical reflection and absorption spectra. The experimental results on spectral dependence of crystal reflection coefficients are analysed

  12. Low resolution infrared spectra of quasars

    International Nuclear Information System (INIS)

    Soifer, B.T.; Neugebauer, G.; Oke, J.B.; Matthews, K.

    1980-01-01

    Low resolution spectra of a significant sample of quasars show that the Paschen α and Balmer line ratios do not agree with the radiative recombination case B result and vary widely within the quasars sampled. The range in Pα:Hβ ratios is a factor of approximately 6, while the range in Lyα:Hα ratios is a factor of approximately 5. For the Pα:Balmer series, the deviations from case B recombination are not consistent with reddening, but appear, within large dispersions, to be consistent with optical depth effects in the Balmer lines affecting the line ratios. The Lyα:Hα ratio is, however, correlated with the continuum spectral index, and can be explained as due to reddening affecting both the lines and continuum. Recent observational results based on a joint infrared/optical survey of the hydrogen line spectra of a significant number of the brightest low and high redshift quasars are summarised. This survey includes 12 quasars in the redshift range 0.07 1.5, where Hα and/or Hβ is redshifted into the 1.65μm or 2.2μm atmospheric windows. (Auth.)

  13. Optical Coherence and Quantum Optics

    CERN Document Server

    Mandel, Leonard

    1995-01-01

    This book presents a systematic account of optical coherence theory within the framework of classical optics, as applied to such topics as radiation from sources of different states of coherence, foundations of radiometry, effects of source coherence on the spectra of radiated fields, coherence theory of laser modes, and scattering of partially coherent light by random media. The book starts with a full mathematical introduction to the subject area and each chapter concludes with a set of exercises. The authors are renowned scientists and have made substantial contributions to many of the topi

  14. Elaboration, structural, vibrational and optical investigation of a two-dimensional self-assembled organic–inorganic hybrid compound

    International Nuclear Information System (INIS)

    Dammak, T.; Boughzala, H.; Mlayah, A.; Abid, Y.

    2016-01-01

    Single crystals of a hybrid organic/inorganic material with the formula (C 4 N 3 H 16 )Cl[CuCl 4 ] were elaborated and studied by X-ray diffraction, and photoluminescence. The crystals consist of a self-assembled multilayer structure with a Pnam space group. The structure is built up from the staking of infinite two-dimensional layers of CuCl 6 corner-sharing octahedra, separated by organic (C 4 N 3 H 16 ) 3+ chains. Such a structure may be regarded as a multi quantum well system, in which CuCl 6 layers act as semiconductor wells and the organic molecules act as insulator barriers Furthermore, the room temperature IR and Raman spectra of the title compound were recorded and analyzed. For optical investigations, thin films have been prepared by spin-coating method from the ethanol solution of the material. Optical absorption spectra shows characteristic absorptions of CuCl-based layered perovskite centered at 300 and 380 nm, whereas the photoluminescence spectra shows a bleu intense emission around 420 nm, associated to radiative recombination of confined excitons in the CuCl 6 Quantum wells.

  15. Impact effects of gamma irradiation on the optical and FT infrared absorption spectra of some Nd3+-doped soda lime phosphate glasses

    Science.gov (United States)

    Marzouk, M. A.; Elkashef, I. M.; Elbatal, H. A.

    2018-04-01

    The main aim of the present work is to study by two collective optical and FTIR spectral measurements some prepared Nd2O3-doped soda lime phosphate glasses before and after gamma irradiation with dose (9 Mrad). The spectral data reveal two strong UV absorption peaks which are correlated with unavoidable trace iron impurities beside extended additional characteristic bands due to Nd3+ ions. Gamma irradiation on the undoped glass produces slight decrease of the intensity of the UV absorption and the generation of an induced visible band and these effects are controlled with two photochemical reduction of some Fe3+ ions to Fe2+ ions together with the formation of nonbridging oxygen hole center (NBOHC) or phosphorous oxygen hole center (POHC). The impact effect of gamma irradiation on the spectra of Nd2O3-doped glasses is limited due to suggested shielding behavior of neodymium ions. FT-infrared spectra show vibrational modes due to main Q2-Q3 phosphate groups and the response of gamma irradiation of the IR spectra is low and the limited variations are related to suggested changes in some bond angles and bond lengths which cause the observed decrease to the intensities of some IR bands.

  16. Combined experimental and theoretical study on the Raman and Raman optical activity signatures of pentamethylundecane diastereoisomers.

    Science.gov (United States)

    Drooghaag, Xavier; Marchand-Brynaert, Jacqueline; Champagne, Benoît; Liégeois, Vincent

    2010-09-16

    The synthesis and the separation of the four stereoisomers of 2,4,6,8,10-pentamethylundecane (PMU) are described together with their characterization by Raman spectroscopy. In parallel, theoretical calculations of the Raman and vibrational Raman optical activity (VROA) spectra are reported and analyzed in relation with the recorded spectra. A very good agreement is found between the experimental and theoretical spectra. The Raman spectra are also shown to be less affected by the change of configuration than the VROA spectra. Nevertheless, by studying the overlap between the theoretical Raman spectra, we show clear relationships between the spectral fingerprints and the structures displaying a mixture of the TGTGTGTG conformation of the (4R,6s,8S)-PMU (isotactic compound) with the TTTTTTTT conformation of the (4R,6r,8S)-PMU (syndiotactic compound). Then, the fingerprints of the VROA spectra of the five conformers of the (4R,8R)-PMU have been related to the fingerprints of the regular (TG)(N) isotactic compound as a function of the torsion angles. Since the (TT)(N) syndiotactic compound has no VROA signatures, the VROA spectroscopy is very sensitive to the helical structures, as demonstrated here.

  17. Variable valence ion spectra in a crystal field

    International Nuclear Information System (INIS)

    Ghiordanescu, V.

    1979-01-01

    Using the Cadmium chloride as a host lattice, the optical spectra and RES of Mnsup(2+) were studied and the following results were obtained: a) By controlled dopings, the absorbtion and excitation spectra of ion Mnsup(2+) in CdCl 2 within the concentration range between 0.01 M and 25 M were plotted. Thus, the band structure for small concentrations was pointed out to differ from the structure observed for high concentrations. In the literature, this effect has not been observed on similar compounds, due to the small intensity values of the absorbtion spectra. b) Considering that for CdCl 2 :Mnsup(2+) 0.1 M, the optical spectra correspond to the isolated ion in the lattice, the energy levels were evaluated using electrostatic and spin-orbit terms in a perturbation calculation of the crystal field approximation. c) The calculation of parameter a which represents the effect of the cubic field in the spjn Hamiltonian of Mnsup(2+), is closer to the experjmental value -0.5.10 -4 cm -1 of the crystal field Dq and zeta parameters are used, respectively, parameters of the spin-orbit interaction obtained under b). d) The coupling effects of spins into more concentrated crystals with Mn 2+ are a function of temperature. The emjssion yield was given a quasi-cantitative evaluation in thjs paper as a function of temperature and concentratjon on the basis of which the isolated centers of Mn 2+ were found to display ectra whose intensity vary with temperature according to the Laporte forbidden transitions and spin rule theory, and the clusters including Mn 2+ - Mn 2+ pairs provide spectra whose intensity vary with the strength of the spin-spin coupling. (author)

  18. Neural network radiative transfer solvers for the generation of high resolution solar irradiance spectra parameterized by cloud and aerosol parameters

    International Nuclear Information System (INIS)

    Taylor, M.; Kosmopoulos, P.G.; Kazadzis, S.; Keramitsoglou, I.; Kiranoudis, C.T.

    2016-01-01

    This paper reports on the development of a neural network (NN) model for instantaneous and accurate estimation of solar radiation spectra and budgets geared toward satellite cloud data using a ≈2.4 M record, high-spectral resolution look up table (LUT) generated with the radiative transfer model libRadtran. Two NN solvers, one for clear sky conditions dominated by aerosol and one for cloudy skies, were trained on a normally-distributed and multiparametric subset of the LUT that spans a very broad class of atmospheric and meteorological conditions as inputs with corresponding high resolution solar irradiance target spectra as outputs. The NN solvers were tested by feeding them with a large (10 K record) “off-grid” random subset of the LUT spanning the training data space, and then comparing simulated outputs with target values provided by the LUT. The NN solvers demonstrated a capability to interpolate accurately over the entire multiparametric space. Once trained, the NN solvers allow for high-speed estimation of solar radiation spectra with high spectral resolution (1 nm) and for a quantification of the effect of aerosol and cloud optical parameters on the solar radiation budget without the need for a massive database. The cloudy sky NN solver was applied to high spatial resolution (54 K pixel) cloud data extracted from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the geostationary Meteosat Second Generation 3 (MSG3) satellite and demonstrated that coherent maps of spectrally-integrated global horizontal irradiance at this resolution can be produced on the order of 1 min. - Highlights: • Neural network radiative transfer solvers for generation of solar irradiance spectra. • Sensitivity analysis of irradiance spectra with respect to aerosol and cloud parameters. • Regional maps of total global horizontal irradiance for cloudy sky conditions. • Regional solar radiation maps produced directly from MSG3/SEVIRI satellite inputs.

  19. Absorption spectra of AA-stacked graphite

    International Nuclear Information System (INIS)

    Chiu, C W; Lee, S H; Chen, S C; Lin, M F; Shyu, F L

    2010-01-01

    AA-stacked graphite shows strong anisotropy in geometric structures and velocity matrix elements. However, the absorption spectra are isotropic for the polarization vector on the graphene plane. The spectra exhibit one prominent plateau at middle energy and one shoulder structure at lower energy. These structures directly reflect the unique geometric and band structures and provide sufficient information for experimental fitting of the intralayer and interlayer atomic interactions. On the other hand, monolayer graphene shows a sharp absorption peak but no shoulder structure; AA-stacked bilayer graphene has two absorption peaks at middle energy and abruptly vanishes at lower energy. Furthermore, the isotropic features are expected to exist in other graphene-related systems. The calculated results and the predicted atomic interactions could be verified by optical measurements.

  20. Polarization-dependent spectra in the photoassociative ionization of cold atoms in a bright sodium beam

    International Nuclear Information System (INIS)

    Ramirez-Serrano, Jaime; DeGraffenreid, William; Weiner, John

    2002-01-01

    We report measurements of cold photoassociative ionization (PAI) spectra obtained from collisions within a slow, bright Na atomic beam. A high-brightness atom flux, obtained by optical cooling and focusing of the atom beam, permits a high degree of alignment and orientation of binary collisions with respect to the laboratory atom-beam axis. The results reveal features of PAI spectra not accessible in conventional magneto-optical trap studies. We take advantage of this high degree of alignment to selectively excite autoionizing doubly excited states of specific symmetry

  1. Single-spin stochastic optical reconstruction microscopy.

    Science.gov (United States)

    Pfender, Matthias; Aslam, Nabeel; Waldherr, Gerald; Neumann, Philipp; Wrachtrup, Jörg

    2014-10-14

    We experimentally demonstrate precision addressing of single-quantum emitters by combined optical microscopy and spin resonance techniques. To this end, we use nitrogen vacancy (NV) color centers in diamond confined within a few ten nanometers as individually resolvable quantum systems. By developing a stochastic optical reconstruction microscopy (STORM) technique for NV centers, we are able to simultaneously perform sub-diffraction-limit imaging and optically detected spin resonance (ODMR) measurements on NV spins. This allows the assignment of spin resonance spectra to individual NV center locations with nanometer-scale resolution and thus further improves spatial discrimination. For example, we resolved formerly indistinguishable emitters by their spectra. Furthermore, ODMR spectra contain metrology information allowing for sub-diffraction-limit sensing of, for instance, magnetic or electric fields with inherently parallel data acquisition. As an example, we have detected nuclear spins with nanometer-scale precision. Finally, we give prospects of how this technique can evolve into a fully parallel quantum sensor for nanometer resolution imaging of delocalized quantum correlations.

  2. Artificial intelligence analysis of paraspinal power spectra.

    Science.gov (United States)

    Oliver, C W; Atsma, W J

    1996-10-01

    OBJECTIVE: As an aid to discrimination of sufferers with back pain an artificial intelligence neural network was constructed to differentiate paraspinal power spectra. DESIGN: Clinical investigation using surface electromyography. METHOD: The surface electromyogram power spectra from 60 subjects, 33 non-back-pain sufferers and 27 chronic back pain sufferers were used to construct a back propagation neural network that was then tested. Subjects were placed on a test frame in 30 degrees of lumbar forward flexion. An isometric load of two-thirds maximum voluntary contraction was held constant for 30 s whilst surface electromyograms were recorded at the level of the L(4-5). Paraspinal power spectra were calculated and loaded into the input layer of a three-layer back propagation network. The neural network classified the spectra into normal or back pain type. RESULTS: The back propagation neural was shown to have satisfactory convergence with a specificity of 79% and a sensitivity of 80%. CONCLUSIONS: Artificial intelligence neural networks appear to be a useful method of differentiating paraspinal power spectra in back-pain sufferers.

  3. Seismic spectra of events at regional distances

    International Nuclear Information System (INIS)

    Springer, D.L.; Denny, M.D.

    1976-01-01

    About 40 underground nuclear explosions detonated at the Nevada Test Site (NTS) were chosen for analysis of their spectra and any relationships they might have to source parameters such as yield, depth of burial, etc. The sample covered a large yield range (less than 20 kt to greater than 1 Mt). Broadband (0.05 to 20 Hz) data recorded by the four-station seismic network operated by Lawrence Livermore Laboratory were analyzed in a search for unusual explosion signatures in their spectra. Long time windows (total wave train) as well as shorter windows (for instance, P/sub n/) were used as input to calculate the spectra. Much variation in the spectra of the long windows is typical although some gross features are similar, such as a dominant peak in the microseismic window. The variation is such that selection of corner frequencies is impractical and yield scaling could not be determined. Spectra for one NTS earthquake showed more energy in the short periods (less than 1 sec) as well as in the long periods (greater than 8 sec) compared to those for NTS explosions

  4. Excited-state Raman spectroscopy with and without actinic excitation: S1 Raman spectra of trans-azobenzene

    International Nuclear Information System (INIS)

    Dobryakov, A. L.; Quick, M.; Ioffe, I. N.; Granovsky, A. A.; Ernsting, N. P.; Kovalenko, S. A.

    2014-01-01

    We show that femtosecond stimulated Raman spectroscopy can record excited-state spectra in the absence of actinic excitation, if the Raman pump is in resonance with an electronic transition. The approach is illustrated by recording S 1 and S 0 spectra of trans-azobenzene in n-hexane. The S 1 spectra were also measured conventionally, upon nπ* (S 0 → S 1 ) actinic excitation. The results are discussed and compared to earlier reports

  5. New organic materials for optics: optical storage and nonlinear optics

    International Nuclear Information System (INIS)

    Gan, F.

    1996-01-01

    New organic materials have received considerable attention recently, due to their easy preparation and different variety. The most application fields in optics are optical storage and nonlinear optics. In optical storage the organic dyes have been used for example, in record able and erasable compact disks (CD-R, CD-E) nonlinear optical effects, such as nonlinear optical absorption, second and third order optical absorption, second and third order optical nonlinearities, can be applied for making optical limiters, optical modulators, as well as laser second and third harmonic generations. Due to high value of optical absorption and optical nonlinearity organic materials are always used as thin films in optical integration. In this paper the new experimental results have been presented, and future development has been also discussed. (author)

  6. Extension and statistical analysis of the GACP aerosol optical thickness record

    Science.gov (United States)

    Geogdzhayev, Igor V.; Mishchenko, Michael I.; Li, Jing; Rossow, William B.; Liu, Li; Cairns, Brian

    2015-10-01

    The primary product of the Global Aerosol Climatology Project (GACP) is a continuous record of the aerosol optical thickness (AOT) over the oceans. It is based on channel-1 and -2 radiance data from the Advanced Very High Resolution Radiometer (AVHRR) instruments flown on successive National Oceanic and Atmospheric Administration (NOAA) platforms. We extend the previous GACP dataset by four years through the end of 2009 using NOAA-17 and -18 AVHRR radiances recalibrated against MODerate resolution Imaging Spectroradiometer (MODIS) radiance data, thereby making the GACP record almost three decades long. The temporal overlap of over three years of the new NOAA-17 and the previous NOAA-16 record reveals an excellent agreement of the corresponding global monthly mean AOT values, thereby confirming the robustness of the vicarious radiance calibration used in the original GACP product. The temporal overlap of the NOAA-17 and -18 instruments is used to introduce a small additive adjustment to the channel-2 calibration of the latter resulting in a consistent record with increased data density. The Principal Component Analysis (PCA) of the newly extended GACP record shows that most of the volcanic AOT variability can be isolated into one mode responsible for ~ 12% of the total variance. This conclusion is confirmed by a combined PCA analysis of the GACP, MODIS, and Multi-angle Imaging SpectroRadiometer (MISR) AOTs during the volcano-free period from February 2000 to December 2009. We show that the modes responsible for the tropospheric AOT variability in the three datasets agree well in terms of correlation and spatial patterns. A previously identified negative AOT trend which started in the late 1980s and continued into the early 2000s is confirmed. Its magnitude and duration indicate that it was caused by changes in tropospheric aerosols. The latest multi-satellite segment of the GACP record shows that this trend tapered off, with no noticeable AOT change after 2002. This

  7. Generate tri-directional spectra-compatible time histories using HHT method

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bo; Xie, Wei-Chau, E-mail: xie@uwaterloo.ca; Pandey, Mahesh D.

    2016-11-15

    Highlights: • Hilbert–Huang Transform are applied to modify real earthquake records. • Generate tri-directional time histories compatible with target spectra. • Both GRS and FRS are considered as target spectra. • Target spectra with multiple damping ratios are considered. - Abstract: This paper proposes two algorithms to generate spectrum-compatible time histories based on two approaches recommended by USNRC Standard Review Plan 3.7.1. Hilbert–Huang Transform technique is used to analyze frequency contents and amplitudes of seed motions. Through adjusting the frequency contents and amplitudes of seed motions, spectrum-compatible time histories are obtained. The first algorithm is to generate tri-directional time histories compatible with multi-damping target design spectra (ground response spectra or floor response spectra). The second algorithm is to generate tri-directional time histories compatible with single-damping target design spectra. Examples are presented to demonstrate versatility of these two proposed algorithms to generate spectra-compatible time histories.

  8. Generate tri-directional spectra-compatible time histories using HHT method

    International Nuclear Information System (INIS)

    Li, Bo; Xie, Wei-Chau; Pandey, Mahesh D.

    2016-01-01

    Highlights: • Hilbert–Huang Transform are applied to modify real earthquake records. • Generate tri-directional time histories compatible with target spectra. • Both GRS and FRS are considered as target spectra. • Target spectra with multiple damping ratios are considered. - Abstract: This paper proposes two algorithms to generate spectrum-compatible time histories based on two approaches recommended by USNRC Standard Review Plan 3.7.1. Hilbert–Huang Transform technique is used to analyze frequency contents and amplitudes of seed motions. Through adjusting the frequency contents and amplitudes of seed motions, spectrum-compatible time histories are obtained. The first algorithm is to generate tri-directional time histories compatible with multi-damping target design spectra (ground response spectra or floor response spectra). The second algorithm is to generate tri-directional time histories compatible with single-damping target design spectra. Examples are presented to demonstrate versatility of these two proposed algorithms to generate spectra-compatible time histories.

  9. Anharmonic effects in IR, Raman, and Raman optical activity spectra of alanine and proline zwitterions.

    Science.gov (United States)

    Danecek, Petr; Kapitán, Josef; Baumruk, Vladimír; Bednárová, Lucie; Kopecký, Vladimír; Bour, Petr

    2007-06-14

    The difference spectroscopy of the Raman optical activity (ROA) provides extended information about molecular structure. However, interpretation of the spectra is based on complex and often inaccurate simulations. Previously, the authors attempted to make the calculations more robust by including the solvent and exploring the role of molecular flexibility for alanine and proline zwitterions. In the current study, they analyze the IR, Raman, and ROA spectra of these molecules with the emphasis on the force field modeling. Vibrational harmonic frequencies obtained with 25 ab initio methods are compared to experimental band positions. The role of anharmonic terms in the potential and intensity tensors is also systematically explored using the vibrational self-consistent field, vibrational configuration interaction (VCI), and degeneracy-corrected perturbation calculations. The harmonic approach appeared satisfactory for most of the lower-wavelength (200-1800 cm(-1)) vibrations. Modern generalized gradient approximation and hybrid density functionals, such as the common B3LYP method, provided a very good statistical agreement with the experiment. Although the inclusion of the anharmonic corrections still did not lead to complete agreement between the simulations and the experiment, occasional enhancements were achieved across the entire region of wave numbers. Not only the transitional frequencies of the C-H stretching modes were significantly improved but also Raman and ROA spectral profiles including N-H and C-H lower-frequency bending modes were more realistic after application of the VCI correction. A limited Boltzmann averaging for the lowest-frequency modes that could not be included directly in the anharmonic calculus provided a realistic inhomogeneous band broadening. The anharmonic parts of the intensity tensors (second dipole and polarizability derivatives) were found less important for the entire spectral profiles than the force field anharmonicities (third

  10. Techniques for Handling and Removal of Spectral Channels in Fourier Transform Synchrotron-Based Spectra

    International Nuclear Information System (INIS)

    Ibrahim, Amr; Predoi-Cross, Adriana; Teillet, Philippe M.

    2010-01-01

    Channel spectra are a big problem for those attempting to use synchrotron-based Fourier transform spectra for spectral lineshape studies. Due to the layout of the optical system at the CLS far-infrared beamline, the synchrotron beam undergoes unavoidable multiple reflections on the steering mirrors, beam splitter, several sets of windows, and filters. We present a method for eliminating channel spectra and compare the results of our technique with other methods available in the literature.

  11. Synthesis, growth, structural, optical and thermal properties of a new organic salt crystal: 3-nitroanilinium trichloroacetate

    Science.gov (United States)

    Selvakumar, E.; Chandramohan, A.; Anandha Babu, G.; Ramasamy, P.

    2014-09-01

    A new organic non-linear optical salt 3-nitroanilinium trichloroacetate has been synthesized and single crystals grown by slow solvent evaporation solution growth technique at room temperature using methanol as the solvent. The 1H and 13C Nuclear magnetic resonance spectra were recorded to establish the molecular structure of the title salt. The crystal structure of the title crystal has been determined by single crystal X-ray diffraction analysis and it belongs to monoclinic crystal system with non-centrosymmetric space group P21. Fourier transform infrared spectral study has been carried out to confirm the presence of various functional groups. The optical transmittance spectrum was recorded in the range 200-2500 nm, to find the optical transmittance window and lower cut off wavelength. The thermo gravimetric and differential thermal analyses were carried out to establish the thermal stability of the title crystal. The second harmonic generation in the title crystal was confirmed by the modified Kurtz-Perry powder test employing the Nd: YAG laser as the source for infrared radiation.

  12. Integration of Curved D-Type Optical Fiber Sensor with Microfluidic Chip.

    Science.gov (United States)

    Sun, Yung-Shin; Li, Chang-Jyun; Hsu, Jin-Cherng

    2016-12-30

    A curved D-type optical fiber sensor (OFS) combined with a microfluidic chip is proposed. This OFS, based on surface plasmon resonance (SPR) of the Kretchmann's configuration, is applied as a biosensor to measure the concentrations of different bio-liquids such as ethanol, methanol, and glucose solutions. The SPR phenomenon is attained by using the optical fiber to guide the light source to reach the side-polished, gold-coated region. Integrating this OFS with a polymethylmethacrylate (PMMA)-based microfluidic chip, the SPR spectra for liquids with different refractive indices are recorded. Experimentally, the sensitivity of the current biosensor was calculated to be in the order of 10 -5 RIU. This microfluidic chip-integrated OFS could be valuable for monitoring subtle changes in biological samples such as blood sugar, allergen, and biomolecular interactions.

  13. Phylogenetic Distribution of Leaf Spectra and Optically Derived Functional Traits in the American Oaks

    Science.gov (United States)

    Cavender-Bares, J.; Meireles, J. E.; Couture, J. J.; Kaproth, M.; Townsend, P. A.

    2015-12-01

    Detecting functional traits of species, genotypes and phylogenetic lineages is critical in monitoring functional biodiversity remotely. We examined the phylogenetic distribution of leaf spectra across the American Oaks for 35 species under greenhouse conditions as well as genetic variation in leaf spectra across Central American populations of a single species grown in common gardens in Honduras. We found significant phylogenetic signal in the leaf spectra (Blomberg's K > 1.0), indicating similarity in spectra among close relatives. Across species, full range leaf spectra were used in a Partial Least Squares Discriminant Analysis (PLS-DA) that allowed species calibration (kappa statistic = 0.55). Validation of the model used to detect species (kappa statistic = 0.4) indicated reasonably good detection of individual species within the same the genus. Among four populations from Belize, Costa Rica, Honduras, and Mexico within a single species (Quercus oleoides), leaf spectra were also able to differentiate populations. Ordination of population-level data using dissimilarities of predicted foliar traits, including leaf mass per area (LMA), lignin content, fiber content, chlorophyll a+b, and C:N ratio in genotypes in either watered or unwatered conditions showed significant differentiation among populations and treatments. These results provide promise for remote detection and differentiation of plant functional traits among plant phylogenetic lineages and genotypes, even among closely related populations and species.

  14. Response spectra for nuclear structures on rock sites considering the near-fault directivity effect

    Institute of Scientific and Technical Information of China (English)

    Xu Longiun; Yang Shengchao; Xie Lili

    2010-01-01

    Near-fault ground motions, potentially with large amplitude and typical velocity pulses, may significantly impact the performance of a wide range of structures. The current study is aimed at evaluating the safety implications of the near-fault effect on nuclear power plant facilities designed according to the Chinese code. To this end, a set of near-fault ground motions at rock sites with typical forward-directivity effect is examined with special emphasis on several key parameters and response spectra. Spectral comparison of the selected records with the Chinese and other code design spectra was conducted. The bi-normalized response spectra in terms of different comer periods are utilized to derive nuclear design spectra. It is concluded that nuclear design spectra on rock sites derived from typical rupture directivity records are significantly influenced both by the earthquake magnitude and the rupture distance. The nuclear design spectra specified in the code needs to be adjusted to reflect the near-fault directivity effect of large earthquakes.

  15. Lowest excited states and optical absorption spectra of donor–acceptor copolymers for organic photovoltaics: a new picture emerging from tuned long-range corrected density functionals

    KAUST Repository

    Pandey, Laxman; Doiron, Curtis; Sears, John S.; Bré das, Jean-Luc

    2012-01-01

    Polymers with low optical gaps are of importance to the organic photovoltaics community due to their potential for harnessing a large portion of the solar energy spectrum. The combination along their backbones of electron-rich and electron-deficient fragments contributes to the presence of low-lying excited states that are expected to display significant charge-transfer character. While conventional hybrid functionals are known to provide unsatisfactory results for charge-transfer excitations at the time-dependent DFT level, long-range corrected (LRC) functionals have been reported to give improved descriptions in a number of systems. Here, we use such LRC functionals, considering both tuned and default range-separation parameters, to characterize the absorption spectra of low-optical-gap systems of interest. Our results indicate that tuned LRC functionals lead to simulated optical-absorption properties in good agreement with experimental data. Importantly, the lowest-lying excited states (excitons) are shown to present a much more localized nature than initially anticipated. © 2012 the Owner Societies.

  16. Integrated optical isolators using magnetic surface plasmon (Presentation Recording)

    Science.gov (United States)

    Shimizu, Hiromasa; Kaihara, Terunori; Umetsu, Saori; Hosoda, Masashi

    2015-09-01

    Optical isolators are one of the essential components to protect semiconductor laser diodes (LDs) from backward reflected light in integrated optics. In order to realize optical isolators, nonreciprocal propagation of light is necessary, which can be realized by magnetic materials. Semiconductor optical isolators have been strongly desired on Si and III/V waveguides. We have developed semiconductor optical isolators based on nonreciprocal loss owing to transverse magneto-optic Kerr effect, where the ferromagnetic metals are deposited on semiconductor optical waveguides1). Use of surface plasmon polariton at the interface of ferromagnetic metal and insulator leads to stronger optical confinement and magneto-optic effect. It is possible to modulate the optical confinement by changing the magnetic field direction, thus optical isolator operation is proposed2, 3). We have investigated surface plasmons at the interfaces between ferrimagnetic garnet/gold film, and applications to waveguide optical isolators. We assumed waveguides composed of Au/Si(38.63nm)/Ce:YIG(1700nm)/Si(220nm)/Si , and calculated the coupling lengths between Au/Si(38.63nm)/Ce:YIG plasmonic waveguide and Ce:YIG/Si(220nm)/Si waveguide for transversely magnetized Ce:YIG with forward and backward directions. The coupling length was calculated to 232.1um for backward propagating light. On the other hand, the coupling was not complete, and the length was calculated to 175.5um. The optical isolation by using the nonreciprocal coupling and propagation loss was calculated to be 43.7dB when the length of plasmonic waveguide is 700um. 1) H. Shimizu et al., J. Lightwave Technol. 24, 38 (2006). 2) V. Zayets et al., Materials, 5, 857-871 (2012). 3) J. Montoya, et al, J. Appl. Phys. 106, 023108, (2009).

  17. COLORED DISSOLVED ORGANIC MATTER (CDOM) CHARACTERIZATION BY ABSORPTION AND FLUORESCENCE SPECTRA

    OpenAIRE

    Goncalves Araujo, Rafael; Ramirez-Perez, Marta; Kraberg, Alexandra; Piera, Jaume; Bracher, Astrid

    2014-01-01

    Colored dissolved organic matter (CDOM) absorption and fluorescence spectra were analyzed from samples collected in the Lena River Delta region (Siberia, Russia; summer-2013) and in the Alfacs Bay (Ebro River Delta, Spain; summer-2013/winter-2014) in order to use optical measurements to infer loading and origin of CDOM. Absorbance spectra and Excitation-Emission matrices (EEMs) were obtained with a HORIBA Aqualog® spectrofluorometer. CDOM absorption at 443nm (a443) and terrestrial absorption ...

  18. Physical and optical property studies on Bi3+ ion containing vanadium sodium borate glasses

    Science.gov (United States)

    Venkatesh, G.; Meera, B. N.; Eraiah, B.

    2018-04-01

    xBi2O3-(15-x)V2O5-45B2O3-40Na2O glasses have been prepared using melt quenching technique. Amorphous nature of the glasses is verified using powder XRD. Densities and molar volume have been determined as a function of bismuth content and interestingly both increases as a function of bismuth content. Further oxygen packing density (OPD) is found to decrease with bismuth content. The increase in the molar volume as a function of bismuth content may be due to structural changes in the glass network. The optical properties performed from the optical absorption spectra were recorded in the wavelength range 200-1100 nm using UV-Visible spectrophotometer. The theoretical optical basicity of the oxides have also been estimated. The calculated energy band gap values increases with increase in Bi2O3 content.

  19. Spitzer mid-infrared spectra of cool-core galaxy clusters

    NARCIS (Netherlands)

    de Messières, G.E.; O'Connell, R.W.; McNamara, B.R.; Donahue, M.; Nulsen, P.E.J.; Voit, G.M.; Wise, M.W.; Smith, B.; Higdon, J.; Higdon, S.; Bastian, N.

    2010-01-01

    We have obtained mid-infrared spectra of nine cool-core galaxy clusters with the Infrared Spectrograph aboard the Spitzer Space Telescope. X-ray, ultraviolet and optical observations have demonstrated that each of these clusters hosts a cooling flow which seems to be fueling vigorous star formation

  20. Library search with regular reflectance IR spectra

    International Nuclear Information System (INIS)

    Staat, H.; Korte, E.H.; Lampen, P.

    1989-01-01

    Characterisation in situ for coatings and other surface layers is generally favourable, but a prerequisite for precious items such as art objects. In infrared spectroscopy only reflection techniques are applicable here. However for attenuated total reflection (ATR) it is difficult to obtain the necessary optical contact of the crystal with the sample, when the latter is not perfectly plane or flexible. The measurement of diffuse reflectance demands a scattering sample and usually the reflectance is very poor. Therefore in most cases one is left with regular reflectance. Such spectra consist of dispersion-like feature instead of bands impeding their interpretation in the way the analyst is used to. Furthermore for computer search in common spectral libraries compiled from transmittance or absorbance spectra a transformation of the reflectance spectra is needed. The correct conversion is based on the Kramers-Kronig transformation. This somewhat time - consuming procedure can be speeded up by using appropriate approximations. A coarser conversion may be obtained from the first derivative of the reflectance spectrum which resembles the second derivative of a transmittance spectrum. The resulting distorted spectra can still be used successfully for the search in peak table libraries. Experiences with both transformations are presented. (author)

  1. Lightning Step Leader and Return Stroke Spectra at 100,000 fps

    Science.gov (United States)

    Harley, J.; McHarg, M.; Stenbaek-Nielsen, H. C.; Haaland, R. K.; Sonnenfeld, R.; Edens, H. E.; Cummer, S.; Lapierre, J. L.; Maddocks, S.

    2017-12-01

    A fundamental understanding of lightning can be inferred from the spectral emissions resulting from the leader and return stroke channels. We examine events recorded at 00:58:07 on 19 July 2015 and 06:44:24 on 23 July 2017, both at Langmuir Laboratory. Analysis of both events is supplemented by data from the Lightning Mapping Array at Langmuir. The 00:58:07 event spectra was recorded using a 100 line per mm grating in front of a Phantom V2010 camera with an 85mm (9o FOV) Nikon lens recording at 100,000 frames per second. Coarse resolution spectra (approximately 5 nm resolution) are produced from approximately 400 nm to 800 nm for each frame. We analyze several nitrogen and oxygen lines to understand step leader temperature behavior between cloud and ground. The 06:44:24 event spectra was recorded using a 300 line per mm grating (approximately 1.5 nm resolution) in front of a Phantom V2010 camera with an 50mm (32o FOV) Nikon lens also recording at 100,000 frames per second. Two ionized atomic nitrogen lines at 502 nm and 569 nm appear upon attachment and disappear as the return stroke travels from ground to cloud in approximately 5 frames. We analyze these lines to understand initial return stroke temperature and species behavior.

  2. Blue laser phase change recording system

    International Nuclear Information System (INIS)

    Hofmann, Holger; Dambach, S.Soeren; Richter, Hartmut

    2002-01-01

    The migration paths from DVD phase change recording with red laser to the next generation optical disk formats with blue laser and high NA optics are discussed with respect to optical aberration margins and disc capacities. A test system for the evaluation of phase change disks with more than 20 GB capacity is presented and first results of the recording performance are shown

  3. Climatology of tropospheric vertical velocity spectra

    Science.gov (United States)

    Ecklund, W. L.; Gage, K. S.; Balsley, B. B.; Carter, D. A.

    1986-01-01

    Vertical velocity power spectra obtained from Poker Flat, Alaska; Platteville, Colorado; Rhone Delta, France; and Ponape, East Caroline Islands using 50-MHz clear-air radars with vertical beams are given. The spectra were obtained by analyzing the quietest periods from the one-minute-resolution time series for each site. The lengths of available vertical records ranged from as long as 6 months at Poker Flat to about 1 month at Platteville. The quiet-time vertical velocity spectra are shown. Spectral period ranging from 2 minutes to 4 hours is shown on the abscissa and power spectral density is given on the ordinate. The Brunt-Vaisala (B-V) periods (determined from nearby sounding balloons) are indicated. All spectra (except the one from Platteville) exhibit a peak at periods slightly longer than the B-V period, are flat at longer periods, and fall rapidly at periods less than the B-V period. This behavior is expected for a spectrum of internal waves and is very similar to what is observed in the ocean (Eriksen, 1978). The spectral amplitudes vary by only a factor of 2 or 3 about the mean, and show that under quiet conditions vertical velocity spectra from the troposphere are very similar at widely different locations.

  4. Electronic and vibrational circular dichroism spectra of (R)-(-)-apomorphine

    Energy Technology Data Exchange (ETDEWEB)

    Abbate, Sergio, E-mail: abbate@med.unibs.it [Dipartimento di Scienze Biomediche e Biotecnologie, Universita di Brescia, Viale Europa 11, 25123 Brescia (Italy); CNISM, Consorzio Interuniversitario Scienze Fisiche della Materia, Via della Vasca Navale 84, 00146 Roma (Italy); Longhi, Giovanna; Lebon, France [Dipartimento di Scienze Biomediche e Biotecnologie, Universita di Brescia, Viale Europa 11, 25123 Brescia (Italy); CNISM, Consorzio Interuniversitario Scienze Fisiche della Materia, Via della Vasca Navale 84, 00146 Roma (Italy); Tommasini, Matteo [Dipartimento di Chimica, Materiali e Ingegneria Chimica ' G. Natta' , Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Consorzio Interuniversitario per la Scienza e Tecnologia dei Materiali (INSTM), Unita di Ricerca del Politecnico di Milano (Dip. CMIC), Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2012-09-11

    Highlights: Black-Right-Pointing-Pointer ECD and VCD Spectra of (R)-(-)-apomorphine measured in various solvents. Black-Right-Pointing-Pointer DFT calculations allow to study the protonation state and conformations. Black-Right-Pointing-Pointer Contributions from catechol OH vibrations to the VCD spectra is studied. -- Abstract: Apomorphine is a chiral drug molecule; notwithstanding its extraordinary importance, little attention has been paid to the characterization of its chiroptical properties. Here we report on its electronic circular dichroism (ECD) spectra, recorded in methanol and water, and vibrational circular dichroism (VCD) in methanol and dimethyl sulfoxide (DMSO) solutions. Density functional theory (DFT) calculations have allowed us to interpret the spectra and to evaluate the role of possible conformations, charge-states and interactions with counter ions.

  5. Spectra in the 60 /angstrom/ to 345 /angstrom/ wavelength region of elements injected into the PLT tokamak

    International Nuclear Information System (INIS)

    Wouters, A.; Schwob, J.L.; Suckewer, S.; Seely, J.F.; Feldman, U.; Dave, J.H.

    1988-03-01

    High resolution spectra of the elements Fe, Ni, Zn, Ge, Se, and Mo injected into the PLT tokamak were recorded by the 2-meter Schwob-Fraenkel soft X-ray multichannel spectrometer (SOXMOS). Spectra were recorded every 50 ms during the time before and after injection. The spectral lines of the injected element were very strong in the spectrum recorded immedately after injection, and the transition in the injected element were easily distinguished from the transitions in te intrinsic elements (C, O, Ti, Cr, Fe, and Ni). An accurate wavelength scale was established using well-known reference transitions in the intrinsic elements. The spectra recorded just prior to injection were substracted from the spectra recorded after injection, and the resulting spectrum was composed almost entirely of transitions from the injected element. A large number of Δn + 0 transitions between the ground and the first excited configurations in the Li I through K I isoelectronic sequences of the injected elements were identified in the wavelength region 60 /angstrom/ to 345 /angstrom/. 33 refs., 5 figs., 1 tab

  6. New Fe i Level Energies and Line Identifications from Stellar Spectra. II. Initial Results from New Ultraviolet Spectra of Metal-poor Stars

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Ruth C. [SETI Institute and Astrophysical Advances, 607 Marion Place, Palo Alto, CA 94301 (United States); Kurucz, Robert L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Ayres, Thomas R., E-mail: peterson@ucolick.org [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309-0389 (United States)

    2017-04-01

    The Fe i spectrum is critical to many areas of astrophysics, yet many of the high-lying levels remain uncharacterized. To remedy this deficiency, Peterson and Kurucz identified Fe i lines in archival ultraviolet and optical spectra of metal-poor stars, whose warm temperatures favor moderate Fe i excitation. Sixty-five new levels were recovered, with 1500 detectable lines, including several bound levels in the ionization continuum of Fe i. Here, we extend the previous work by identifying 59 additional levels, with 1400 detectable lines, by incorporating new high-resolution UV spectra of warm metal-poor stars recently obtained by the Hubble Space Telescope Imaging Spectrograph. We provide gf values for these transitions, both computed as well as adjusted to fit the stellar spectra. We also expand our spectral calculations to the infrared, confirming three levels by matching high-quality spectra of the Sun and two cool stars in the H -band. The predicted gf values suggest that an additional 3700 Fe i lines should be detectable in existing solar infrared spectra. Extending the empirical line identification work to the infrared would help confirm additional Fe i levels, as would new high-resolution UV spectra of metal-poor turnoff stars below 1900 Å.

  7. Non-LTE Stellar Population Synthesis of Globular Clusters Using Synthetic Integrated Light Spectra. I. Constructing the IL Spectra

    Science.gov (United States)

    Young, Mitchell. E.; Short, C. Ian

    2017-02-01

    We present an investigation of the globular cluster population synthesis method of McWilliam & Bernstein, focusing on the impact of non-LTE (NLTE) modeling effects and color-magnitude diagram (CMD) discretization. Johnson-Cousins-Bessel U - B, B-V, V-I, and J-K colors are produced for 96 synthetic integrated light (IL) spectra with two different discretization prescriptions and three degrees of NLTE treatment. These color values are used to compare NLTE- and LTE-derived population ages. Relative contributions of different spectral types to the IL spectra for different wavebands are measured. IL NLTE spectra are shown to be more luminous in the UV and optical than LTE spectra, but show stronger absorption features in the IR. The main features showing discrepancies between NLTE and LTE IL spectra may be attributed to light metals, primarily Fe I, Ca I, and Ti I, as well as TiO molecular bands. Main-sequence stars are shown to have negligible NLTE effects at IR wavelengths compared to more evolved stars. Photometric color values are shown to vary at the millimagnitude level as a function of CMD discretization. Finer CMD sampling for the upper main sequence and turnoff, base of the red giant branch, and the horizontal branch minimizes this variation. Differences in ages derived from LTE and NLTE IL spectra are found to range from 0.55 to 2.54 Gyr, comparable to the uncertainty in GC ages derived from color indices with observational uncertainties of 0.01 mag, the limiting precision of the Harris catalog.

  8. Vibrational spectra study of fluorescent dendrimers built from the cyclotriphosphazene core with terminal dansyl and carbamate groups

    Science.gov (United States)

    Furer, V. L.; Vandyukova, I. I.; Vandyukov, A. E.; Fuchs, S.; Majoral, J. P.; Caminade, A. M.; Kovalenko, V. I.

    2011-08-01

    The FTIR and FT Raman spectra of the "Janus"-type dendrimers, possessing five carbamate groups on one side and five fluorescent dansyl derivatives on the other side, with amide G1 and hydrazone G2 central linkages were studied. These surface-block dendrimers are obtained by the coupling of two different dendrons. The FTIR and FT-Raman spectra of the zero generation dendrons, built from the hexafunctional cyclotriphosphazene core, with five dansyl terminal groups and one carbamate G0 v and one oxybenzaldehyde function G0v have been recorded. The structural optimization and normal mode analysis were performed for dendron G0v on the basis of the density functional theory (DFT). The calculated geometrical parameters and harmonic vibrational frequencies are predicted in a good agreement with the experimental data. It was found that dendron molecule G0v has a concave lens structure with planar -O-C6H4-CHdbnd O fragments and slightly non-planar cyclotriphosphazene core. The experimental IR and Raman spectra of dendron G0v were interpreted by means of potential energy distributions. Relying on DFT calculations a complete vibrational assignment is proposed. The strong band 1597 cm -1 show marked changes of the optical density in dependence of substituents in the aromatic ring. The frequencies of ν(N-H) bands in the IR spectra reveal the presence of the different types of H-bonds in the dendrimers.

  9. Cuprous oxide thin films prepared by thermal oxidation of copper layer. Morphological and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Karapetyan, Artak, E-mail: karapetyan@cinam.univ-mrs.fr [Aix Marseille Université, CINaM, 13288, Marseille (France); Institute for Physical Research of NAS of Armenia, Ashtarak-2 0203 (Armenia); Reymers, Anna [Russian-Armenian (Slavonic) University, H.Emin st.123, Yerevan 375051 (Armenia); Giorgio, Suzanne; Fauquet, Carole [Aix Marseille Université, CINaM, 13288, Marseille (France); Sajti, Laszlo [Laser Zentrum Hannover e.V. Hollerithallee 8, 30419 Hannover (Germany); Nitsche, Serge [Aix Marseille Université, CINaM, 13288, Marseille (France); Nersesyan, Manuk; Gevorgyan, Vladimir [Russian-Armenian (Slavonic) University, H.Emin st.123, Yerevan 375051 (Armenia); Marine, Wladimir [Aix Marseille Université, CINaM, 13288, Marseille (France)

    2015-03-15

    Structural and optical characterization of crystalline Cu{sub 2}O thin films obtained by thermal oxidation of Cu films at two different temperatures 800 °C and 900 °C are investigated in this work. X-ray diffraction measurements indicate that synthesized films consist of single Cu{sub 2}O phase without any interstitial phase and show a nano-grain structure. Scanning Electron Microscopy observations indicate that the Cu{sub 2}O films have a micro-scale roughness whereas High Resolution Transmission Electron Microscopy highlights that the nanocrystalline structure is formed by superposition of nearly spherical nanocrystals smaller than 30 nm. Photoluminescence spectra of these films exhibit at room temperature two well-resolved emission peaks at 1.34 eV due to defects energy levels and at 1.97 eV due to phonon-assisted recombination of the 1s orthoexciton in both film series. Emission characteristics depending on the laser power is deeply investigated to determine the origin of recorded emissions. Time-integrated spectra of the 1s orthoexciton emission reveals the presence of oxygen defects below the conduction band edge under non-resonant two-photon excitation using a wide range of excitations wavelengths. Optical absorption coefficients at room temperature are obtained from an accurate analysis of their transmission and reflection spectra, whereas the optical band gap energy is estimated at about 2.11 eV. Results obtained are of high relevance especially for potential applications in semiconductor devices such as solar cells, optical sources and detectors. - Highlights: • Nanostructured Cu{sub 2}O thin films were synthesized by thermal oxidation of Cu films. • The PL spectra of nanostructured thin films revealed two well-resolved emission peaks. • The PL properties were investigated under a broad range of experimental conditions. • Inter-band transition in the infrared range has been associated to V{sub Cu} and V{sub O} vacancies. • Absorption

  10. Mössbauer spectra linearity improvement by sine velocity waveform followed by linearization process

    Science.gov (United States)

    Kohout, Pavel; Frank, Tomas; Pechousek, Jiri; Kouril, Lukas

    2018-05-01

    This note reports the development of a new method for linearizing the Mössbauer spectra recorded with a sine drive velocity signal. Mössbauer spectra linearity is a critical parameter to determine Mössbauer spectrometer accuracy. Measuring spectra with a sine velocity axis and consecutive linearization increases the linearity of spectra in a wider frequency range of a drive signal, as generally harmonic movement is natural for velocity transducers. The obtained data demonstrate that linearized sine spectra have lower nonlinearity and line width parameters in comparison with those measured using a traditional triangle velocity signal.

  11. Theory of Electro-Optical Properties of Graphene Nanoribbons

    OpenAIRE

    Gundra, Kondayya; Shukla, Alok

    2010-01-01

    We present calculations of the optical absorption and electro-absorption spectra of graphene nanoribbons (GNRs) using a $\\pi-$electron approach, incorporating long-range Coulomb interactions within the Pariser-Parr-Pople (PPP) model Hamiltonian. The approach is carefully bench marked by computing quantities such as the band structure, electric-field driven half metallicity, and linear optical absorption spectra of GNRs of various types, and the results are in good agreement with those obtaine...

  12. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Nighttime Cloud Optical Microphysical Properties (NCOMP) Environmental Data Record (EDR) from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains a high quality Environmental Data Record (EDR) of nighttime cloud optical and microphysical properties (NCOMP) from the Visible Infrared...

  13. [Study on Square Super-Lattice Pattern with Surface Discharge in Dielectric Barrier Discharge by Optical Emission Spectra].

    Science.gov (United States)

    Niu, Xue-jiao; Dong, Li-fang; Liu, Ying; Wang, Qian; Feng, Jian-yu

    2016-02-01

    Square super-lattice pattern with surface discharge consisting of central spots and dim spots is firstly observed in the mixture of argon and air by using a dielectric barrier discharge device with water electrodes. By observing the image, it is found that the central spot is located at the centriod of its surrounding four dim spots. The short-exposure image recorded by a high speed video camera shows that the dim spot results from the surface discharges (SDs). The brightness of the central spot and is quite different from that of the dim spot, which indicates that the plasma states of the central spot and the dim spot may be differentiated. The optical emission spectrum method is used to further study the several plasma parameters of the central spot and the dim spot in different argon content. The emission spectra of the N₂ second positive band (C³IIu --> B³ IIg) are measured, from which the molecule vibration temperatures of the central spot and the dim spot are calculated respectively. The broadening of spectral line 696.57 nm (2P₂-->1S₅) is used to study the electron densities of the central spot and the dim spot. It is found that the molecule vibration temperature and electron density of the dim spot are higher than those of the central spot in the same argon content The molecule vibration temperature and electron density of the central spot and the dim spot increase with the argon content increasing from 90% to 99.9%. The surface discharge induced by the volume discharge (VD) has the determinative effect on the formation of the dim spot The experimental results above play an important role in studying the formation mechanism of surface discharg&of square super-lattice pattern with surface discharge. In addition, the studies exert an influence on the application of surface discharge and volume discharge in different fields.

  14. Microstructural and optical properties of Co doped NiO nanoparticles synthesized by auto combustion using NaOH as fuel

    Science.gov (United States)

    Parveen, Azra; Agrawal, Shraddha; Azam, Ameer

    2018-05-01

    The nanoparticles of 5% Co doped NiO were synthesized by auto-combustion method in aqueous medium using NaOH as a fuel. The obtained particles were characterized using X-ray diffraction studies XRD. The results of structural characterization shows the formation of Co doped Nickel oxide nanoparticles in single phase without any impurity. The optical absorption spectra of Co doped NiO sample recorded by UV-VIS spectrophotometer in the range of 200 to 800 nm have been presented. The variation of dielectric constant and dielectric loss has been studied as function of frequency. Co doping affects the optical properties and band gap. NiO can potentially be used in optical, electronic, catalytic materials, antimicrobial agent and super-paramagnetic devices.

  15. Spectra of Wolf-Rayet stars. I. Optical line strengths and the hydrogen-to-helium ratios in WN type stars

    International Nuclear Information System (INIS)

    Conti, P.S.; Leep, E.M.; Perry, D.N.

    1983-01-01

    We begin a series of systematic studies of spectra of Wolf-Rayet stars by examining the optical line strengths of WN stars in the Galaxy and the Large Magellanic Cloud to see what similarities and differences exist among them. Tables of equivalent widths extracted from spectra are presented and some conclusions are drawn. We have found that there is a wide dispersion, up to a factor of 10 or more, in line strengths for all ions even among stars of the same subtype, with WN 7 stars weaker overall than surrounding types. Type-to-type trends are consistent with changing ionization balance in the stellar wind. Nitrogen line ratios indicate that the WN subtypes represent an ionization sequence, but one with considerable overlap: the classification scheme is not single valued; other physical parameters must play a role. The line strength dispersion does not appear to be primarily due to ionization, or luminosity. The Balmer-Pickering decrement has been used to estimate the H/He ratio for most of the WN stars with available spectra; semiquantitative results are presented. Significant differences in H/He are observed (10 stars may have H/He>2). At a given subclass, the strongest line stars have no detectable H. The abundance of H probably relates to structural differences in the winds that, in part, give rise to a dispersion in observed line strengths. Finally, we have estimated the C/N ratio from the C IV lambda5805/N IV lambda4057 line ratio. In most cases our observations suggest that the C/N ratio is consistent with ''evolved'' models for WN stars. A few stars show strong C IV implying much larger values for C/N, but hydrogen was not detected in them. These stars may be in transition from the WN to WC classes

  16. Theoretical studies of the optical and EPR spectra for VO^{2+} in Na_3C_6H_5O_7·2H_2O single crystal

    Directory of Open Access Journals (Sweden)

    Ch.-Y. Li

    2015-06-01

    Full Text Available On the basis of the perturbation formulas for a d^1 configuration ion in a tetragonal crystal field, the three optical absorption bands and electron paramagnetic resonance (EPR parameters (g factors g_i and hyperfine structure constants A_i for i = || and ⊥, respectively of VO^{2+} in Na_3C_6H_5O_7·2H_2O (TSCD single crystals were studied using the perturbation theory method. By simulating the calculated optical and EPR spectra to the observed values, local structure parameters and negative signs of the hyperfine structure constants A_i of the octahedral (VO_6^{8-} cluster in TSCD single crystal can be obtained.

  17. Optical rotation and electron spin resonance of an electro-optically active polythiophene

    International Nuclear Information System (INIS)

    Goto, Hiromasa

    2010-01-01

    Graphical abstract: The electro-chiroptical polythiophene displays optical rotation at wavelengths corresponding to the doping band observable in the absorption spectra. The formation of polarons on the main-chain is confirmed by electron spin resonance measurements. - Abstract: A chiroptical polythiophene, is synthesized by electrolytic polymerization in a cholesteric liquid crystal electrolyte solution. The polymer displays a fingerprint texture similar to that of the cholesteric electrolyte solution. Upon electrochemical doping, the polymer displays optical rotation at wavelengths corresponding to the doping band observable in the absorption spectra. The formation of polarons on the main-chain is confirmed by electron spin resonance measurements. The results demonstrate the intermolecular chirality of polarons in this π-conjugated polymer, indicating continuum delocalized polarons are in a three-dimensional helical environment.

  18. Electronic and vibrational circular dichroism spectra of (R)-(−)-apomorphine

    International Nuclear Information System (INIS)

    Abbate, Sergio; Longhi, Giovanna; Lebon, France; Tommasini, Matteo

    2012-01-01

    Highlights: ► ECD and VCD Spectra of (R)-(−)-apomorphine measured in various solvents. ► DFT calculations allow to study the protonation state and conformations. ► Contributions from catechol OH vibrations to the VCD spectra is studied. -- Abstract: Apomorphine is a chiral drug molecule; notwithstanding its extraordinary importance, little attention has been paid to the characterization of its chiroptical properties. Here we report on its electronic circular dichroism (ECD) spectra, recorded in methanol and water, and vibrational circular dichroism (VCD) in methanol and dimethyl sulfoxide (DMSO) solutions. Density functional theory (DFT) calculations have allowed us to interpret the spectra and to evaluate the role of possible conformations, charge-states and interactions with counter ions.

  19. The Effect of Phonon Relaxation Process on Absorption Spectra ...

    African Journals Online (AJOL)

    In this work we study the effect of phonon relaxation process on the absorption spectra using the Green's function technique. The Green's function technique which is widely used in many particle problems is used to solve the Kubo formula which describes the optical absorption process. Finally the configurational diagram is ...

  20. Interpretation of the Near-IR Spectra of the Kuiper Belt Object

    Science.gov (United States)

    Eluszkiewicz, Janusz; Cady-Pereira, Karen; Brown, Michael E.; Stansberry, John A.

    2007-01-01

    Visible and near-IR observations of the Kuiper Belt Object (136472) 2005 FY(9) have indicated the presence of unusually long (1 cm or more) optical path lengths in a layer of methane ice. Using microphysical and radiative transfer modeling, we show that even at the frigid temperatures in the outer reaches of the solar system, a slab of low porosity methane ice can indeed form by pressureless sintering of micron-sized grains, and it can qualitatively reproduce the salient features of the measured spectra. A good semiquantitative match with the near-IR spectra can be obtained with a realistic slab model, provided the spectra are scaled to a visible albedo of 0.6, at the low end of the values currently estimated from Spitzer thermal measurements. Consistent with previous modeling studies, matching spectra scaled to higher albedos requires the incorporation of strong backscattering effects. The albedo may become better constrained through an iterative application of the slab model to the analysis of the thermal measurements from Spitzer and the visible/near-IR reflectance spectra. The slab interpretation offers two falsifiable predictions (1) Absence of an opposition surge, which is commonly attributed to the fluffiness of the optical surface. This prediction is best testable with a spacecraft, as Earth-based observations at true opposition will not be possible until early next century. (2) Unlikelihood of the simultaneous occurrence of very long spectroscopic path lengths in both methane and nitrogen ice on the surface of any Kuiper Belt Object, as the more volatile nitrogen would hinder densification in methane ice.

  1. X-ray spectra of PG quasars. I. The continuum from X-rays to infrared

    International Nuclear Information System (INIS)

    Elvis, M.; Green, R.F.; Bechtold, J.; Schmidt, M.; Neugebauer, G.; Kitt Peak National Observatory, Tucson, AZ; Steward Observatory, Tucson, AZ; Palomar Observatory, Pasadena, CA)

    1986-01-01

    Einstein IPC X-ray spectra for a sample of eight optically selected quasars from the Palomar Bright Quasar survey are presented. The quasars have a mean power law energy slope which in five individual cases is inconsistent with the value found in hard X-ray selection criterion rather than luminosity, redshift, or U-B color. New IUE and optical continuum spectra and infrared photometry are presented for these quasars. The data are combined into log vf(v) and log v distributions which support the decomposition of the overall quasar spectrum into a power law plus a superposed optical-UV big bump which may be due to an accretion disk. At least six of the quasars have vf(v)s which are roughly constant between their infrared and X-ray power laws, suggesting a strong link between the two regions. 104 references

  2. Realization of an optical interferometer based on holographic optics ...

    Indian Academy of Sciences (India)

    The paper describes a simple and cost effective method for the realization of an optical interferometer based on holographic optics, which use minimal bulk optical components. The optical arrangement in the proposed method involves a very simple alignment procedure and inexpensive holographic recording material is ...

  3. Excited-state Raman spectroscopy with and without actinic excitation: S{sub 1} Raman spectra of trans-azobenzene

    Energy Technology Data Exchange (ETDEWEB)

    Dobryakov, A. L.; Quick, M.; Ioffe, I. N.; Granovsky, A. A.; Ernsting, N. P.; Kovalenko, S. A. [Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin (Germany)

    2014-05-14

    We show that femtosecond stimulated Raman spectroscopy can record excited-state spectra in the absence of actinic excitation, if the Raman pump is in resonance with an electronic transition. The approach is illustrated by recording S{sub 1} and S{sub 0} spectra of trans-azobenzene in n-hexane. The S{sub 1} spectra were also measured conventionally, upon nπ* (S{sub 0} → S{sub 1}) actinic excitation. The results are discussed and compared to earlier reports.

  4. Optical manifestation of magnetoexcitons in near-surface quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Desirena, B.; Perez-Rodriguez, F

    2003-05-15

    The optical response of excitons in quantum wells, close to the sample boundary and under the action of a strong magnetic field perpendicular to their plane, is investigated theoretically. Solving the system of coupled equations for the coherent electron-hole interband amplitude and the electromagnetic field, reflectivity spectra for such nanostructures are calculated. The effect of the interaction of magnetoexcitons with the sample surface on the resonance structure of reflectivity spectra is analyzed. These optical spectra are also affected by the phase change of the electromagnetic wave as it propagates in the cap layer, overlying the quantum well.

  5. Quantitative real-time monitoring of dryer effluent using fiber optic near-infrared spectroscopy.

    Science.gov (United States)

    Harris, S C; Walker, D S

    2000-09-01

    This paper describes a method for real-time quantitation of the solvents evaporating from a dryer. The vapor stream in the vacuum line of a dryer was monitored in real time using a fiber optic-coupled acousto-optic tunable filter near-infrared (AOTF-NIR) spectrometer. A balance was placed in the dryer, and mass readings were recorded for every scan of the AOTF-NIR. A partial least-squares (PLS) calibration was subsequently built based on change in mass over change in time for solvents typically used in a chemical manufacturing plant. Controlling software for the AOTF-NIR was developed. The software collects spectra, builds the PLS calibration model, and continuously fits subsequently collected spectra to the calibration, allowing the operator to follow the mass loss of solvent from the dryer. The results indicate that solvent loss can be monitored and quantitated in real time using NIR for the optimization of drying times. These time-based mass loss values have also been used to calculate "dynamic" vapor density values for the solvents. The values calculated are in agreement with values determined from the ideal gas law and could prove valuable as tools to measure temperature or pressure indirectly.

  6. Integration of Curved D-Type Optical Fiber Sensor with Microfluidic Chip

    Directory of Open Access Journals (Sweden)

    Yung-Shin Sun

    2016-12-01

    Full Text Available A curved D-type optical fiber sensor (OFS combined with a microfluidic chip is proposed. This OFS, based on surface plasmon resonance (SPR of the Kretchmann’s configuration, is applied as a biosensor to measure the concentrations of different bio-liquids such as ethanol, methanol, and glucose solutions. The SPR phenomenon is attained by using the optical fiber to guide the light source to reach the side-polished, gold-coated region. Integrating this OFS with a polymethylmethacrylate (PMMA-based microfluidic chip, the SPR spectra for liquids with different refractive indices are recorded. Experimentally, the sensitivity of the current biosensor was calculated to be in the order of 10−5 RIU. This microfluidic chip-integrated OFS could be valuable for monitoring subtle changes in biological samples such as blood sugar, allergen, and biomolecular interactions.

  7. Design spectra development considering short time histories

    International Nuclear Information System (INIS)

    Weiner, E.O.

    1983-01-01

    Two separate programs, MODQKE and MDOF, were written to provide a capability of obtaining equipment spectra from design spectra. MODQKE generates or modifies acceleration histories to conform with design spectra pertaining to, say, a foundation. MDOF is a simple linear modal superposition program that solves for equipment support histories using the design spectra conforming histories as input. Equipment spectra, then, are obtained from the support histories using MODQKE. MODQKE was written to modify or provide new histories with special attention paid to short seismic records. A technique from the open literature was borrowed to generate an initial history that approximates a given response spectrum. Further refinement is done with smoothing cycles in which several correction signals are added to the history in a way that produces a least squares fit between actual and prescribed spectra. Provision is made for history shaping, a baseline correction, and final scaling. MODQKE performance has been demonstrated with seven examples having zero to ten percent damping ratios, and 2.5 seconds to 20 seconds durations and a variety of target spectra. The examples show the program is inexpensive to use. MDOF is a simple modal superposition program. It has no eigensolver, and the user supplies mode shapes, frequencies, and participation factors as input. Floor spectra can be generated from design spectra by using a history from MODQKE that conforms to the design spectrum as input to MDOF. Floor motions from MDOF can be fed back to MODQKE without modification to obtain the floor spectra. A simple example is given to show how equipment mass effects can be incorporated into the MDOF solution. Any transient solution capability can be used to replace MDOF. For example, a direct transient approach may be desirable if both the equipment and floor structures are to be included in the model with different damping fractions. (orig./HP)

  8. Type II Supernova Light Curves and Spectra from the CfA

    Science.gov (United States)

    Hicken, Malcolm; Friedman, Andrew S.; Blondin, Stephane; Challis, Peter; Berlind, Perry; Calkins, Mike; Esquerdo, Gil; Matheson, Thomas; Modjaz, Maryam; Rest, Armin; Kirshner, Robert P.

    2017-11-01

    We present multiband photometry of 60 spectroscopically confirmed supernovae (SNe): 39 SNe II/IIP, 19 IIn, 1 IIb, and 1 that was originally classified as a IIn but later as a Ibn. Of these, 46 have only optical photometry, 6 have only near-infrared (NIR) photometry, and 8 have both optical and NIR. The median redshift of the sample is 0.016. We also present 195 optical spectra for 48 of the 60 SN. There are 26 optical and 2 NIR light curves of SNe II/IIP with redshifts z> 0.01, some of which may give rise to useful distances for cosmological applications. All photometry was obtained between 2000 and 2011 at the Fred Lawrence Whipple Observatory (FLWO), via the 1.2 m and 1.3 m PAIRITEL telescopes for the optical and NIR, respectively. Each SN was observed in a subset of the u\\prime {UBVRIr}\\prime I\\prime {{JHK}}s bands. There are a total of 2932 optical and 816 NIR light curve points. Optical spectra were obtained using the FLWO 1.5 m Tillinghast telescope with the FAST spectrograph and the MMT Telescope with the Blue Channel Spectrograph. Our photometry is in reasonable agreement with select samples from the literature: two-thirds of our star sequences have average V offsets within ±0.02 mag and roughly three-quarters of our light curves have average differences within ±0.04 mag. The data from this work and the literature will provide insight into SN II explosions, help with developing methods for photometric SN classification, and contribute to their use as cosmological distance indicators.

  9. Effect of ZnO on the Physical Properties and Optical Band Gap of Soda Lime Silicate Glass

    Science.gov (United States)

    Zaid, Mohd Hafiz Mohd; Matori, Khamirul Amin; Aziz, Sidek Hj. Abdul; Zakaria, Azmi; Ghazali, Mohd Sabri Mohd

    2012-01-01

    This manuscript reports on the physical properties and optical band gap of five samples of soda lime silicate (SLS) glass combined with zinc oxide (ZnO) that were prepared by a melting and quenching process. To understand the role of ZnO in this glass structure, the density, molar volume and optical band gaps were investigated. The density and absorption spectra in the Ultra-Violet-Visible (UV-Visible) region were recorded at room temperature. The results show that the densities of the glass samples increased as the ZnO weight percentage increased. The molar volume of the glasses shows the same trend as the density: the molar volume increased as the ZnO content increased. The optical band gaps were calculated from the absorption edge, and it was found that the optical band gap decreased from 3.20 to 2.32 eV as the ZnO concentration increased. PMID:22837711

  10. Optical properties on thermally evaporated and heat-treated ...

    Indian Academy of Sciences (India)

    Administrator

    of the intra-molecular bonds between the powder compounds and thin films. The optical ... Keywords. Phthalocyanine; thin films; optical properties; absorption spectra. 1. .... Leica Cambridge scanning electron microscope (model. Stereoscan ...

  11. A novel fiber-optic temperature sensor based on high temperature-dependent optical properties of ZnO film on sapphire fiber-ending

    International Nuclear Information System (INIS)

    Cai Pinggen; Zhen Dong; Xu Xiaojun; Liu Yulin; Chen Naibo; Wei Gaorao; Sui Chenghua

    2010-01-01

    We report the growth of high-quality thin films of ZnO via an electron-beam evaporation technique. Studies of the transmittance spectra have revealed a sharp optical absorption edge and a significant redshift. After annealing at 673 K, the ZnO films again demonstrated a sharp absorption edge in a manner similar to the as-deposited samples. This illustrates the excellent thermal stability of the thin films and, as such, demonstrates their potential as fiber-optic temperature sensors. Utilizing the influence of optical absorption spectra at different temperatures, a novel fiber-optic temperature sensor based on this material has been designed and tested. This technique could offer a simple, robust and cost-effective method to be used in high temperature sensing applications.

  12. Optical Spectra of Candidate International Celestial Reference Frame (ICRF) Flat-spectrum Radio Sources. III

    Energy Technology Data Exchange (ETDEWEB)

    Titov, O.; Stanford, Laura M. [Geoscience Australia, P.O. Box 378, Canberra, ACT 2601 (Australia); Pursimo, T. [Nordic Optical Telescope, Nordic Optical Telescope Apartado 474E-38700 Santa Cruz de La Palma, Santa Cruz de Tenerife (Spain); Johnston, Helen M.; Hunstead, Richard W. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Jauncey, David L. [CSIRO Astronomy and Space Science, ATNF and Mount Stromlo Observatory, Cotter Road, Weston, ACT 2611 (Australia); Zenere, Katrina A., E-mail: oleg.titov@ga.gov.au [School of Physics, University of Sydney, NSW 2006 (Australia)

    2017-04-01

    In extending our spectroscopic program, which targets sources drawn from the International Celestial Reference Frame (ICRF) Catalog, we have obtained spectra for ∼160 compact, flat-spectrum radio sources and determined redshifts for 112 quasars and radio galaxies. A further 14 sources with featureless spectra have been classified as BL Lac objects. Spectra were obtained at three telescopes: the 3.58 m European Southern Observatory New Technology Telescope, and the two 8.2 m Gemini telescopes in Hawaii and Chile. While most of the sources are powerful quasars, a significant fraction of radio galaxies is also included from the list of non-defining ICRF radio sources.

  13. Temporal formation of optical anisotropy and surface relief during polarization holographic recording in polymethylmethacrylate with azobenzene side groups

    Science.gov (United States)

    Sasaki, Tomoyuki; Izawa, Masahiro; Noda, Kohei; Nishioka, Emi; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2014-03-01

    The formation of polarization holographic gratings with both optical anisotropy and surface relief (SR) deformation was studied for polymethylmethacrylate with azobenzene side groups. Temporal contributions of isotropic and anisotropic phase gratings were simultaneously determined by observing transitional intensity and polarization states of the diffraction beams and characterizing by means of Jones calculus. To clarify the mechanism of SR deformation, cross sections of SR were characterized based on the optical gradient force model; experimental observations were in good agreement with the theoretical expectation. We clarified that the anisotropic phase change originating in the reorientation of the azobenzene side groups was induced immediately at the beginning of the holographic recording, while the response time of the isotropic phase change originating in the molecular migration due to the optical gradient force was relatively slow.

  14. Magneto-optical Kerr spectroscopy of noble metals

    Science.gov (United States)

    Uba, L.; Uba, S.; Antonov, V. N.

    2017-12-01

    Magneto-optical (MO) response of the noble metals Cu, Ag, and Au in the joint experimental and ab initio theoretical study is reported. The magneto-optical polar Kerr effect (MOKE) spectra of the noble-metal films were measured with the high sensitivity in the applied magnetic field of 1.5 T over the photon energy range 0.74-5.8 eV. Complete set of the optical conductivity tensor elements was determined precisely from the MOKE and the optical spectra measured at the same energy points. The importance of the off-diagonal intraband Drude-type transitions is demonstrated explicitly for each noble metal and found to be a substantial contribution to the observed spectra. It is shown that the first-principles calculations using the spin-polarized fully relativistic Dirac linear-muffin-tin-orbital method with the inclusion of correlation effects by GGA+U approach reproduce well the experimental spectra and allow to explain the microscopic origin of the noble metals' magneto-optical response in terms of interband transitions. Although the energy band structures of Cu, Ag, and Au are very similar, there are some distinctive differences in bandwidths and the energy positions of the bands (especially in X and L symmetry points), mainly due to different spin-orbit splitting and differences in the spatial extent of 3 d , 4 d , and 5 d valence wave functions of noble metals. It was found that the small differences in the band positions lead to significant differences in the MO properties of three noble metals. Although the spin-orbit interaction in Au is about six times larger than in Cu, and approximately two times larger than in Ag, the absolute value of Kerr rotation in Au is of the same magnitude as in Cu and one order of magnitude smaller as compared to Ag. The sharp Kerr effect spectral peak in Ag is not due to the electronic interband transitions, but rather to the plasma-edge splitting. The band-by-band decomposition of the Cu, Ag, and Au MO spectra is presented and the

  15. Flares on dMe stars: IUE and optical observations of At Mic, and comparison of far-ultraviolet stellar and solar flares

    International Nuclear Information System (INIS)

    Bromage, G.E.; Phillips, K.J.H.; Dufton, P.L.; Kingston, A.E.

    1986-01-01

    The paper concerns observations of a large flare event on the dMe star At Mic, detected by the International Ultraviolet Explorer. The far-ultraviolet spectra of the flare is compared with those of other stellar flares, and also with a large solar flare recorded by the Skylab mission in 1973. The quiescent-phase optical and ultraviolet spectrum of the same dMe flare star is discussed. (U.K.)

  16. Theory of optical flashes

    International Nuclear Information System (INIS)

    London, R.A.

    1983-01-01

    The theory of optical flashes created by x- and γ-ray burst heating of stars in binaries is reviewed. Calculations of spectra due to steady-state x-ray reprocessing and estimates of the fundamental time scales for the non-steady case are discussed. The results are applied to the extant optical data from x-ray and γ-ray bursters. Finally, I review predictions of flashes from γ-ray bursters detectable by a state of the art all-sky optical monitor

  17. Program LEPS to addition of gamma spectra from germanium detectors

    International Nuclear Information System (INIS)

    Romero, L.

    1986-01-01

    The LEP program, written in FORTRAN IV, performs the addition of two spectra, collected with different detectors, from the same sample. This application, adds the two gamma spectra obtained from two opposite LEPS Germanium Detectors (Low Energy Photon Spectrometer), correcting the differences (channel/energy) between both two spectra, and fitting them before adding. The total-spectrum is recorded at the computer memory as a single spectrum. The necessary equipment, to run this program is: - Two opposite germanium detectors, with their associate electronics. - Multichannel analyzer (2048 memory channel minimum) - Computer on-line interfacing to multichannel analyzer. (Author) 4 refs

  18. Optical recording of neuronal activity with a genetically-encoded calcium indicator in anesthetized and freely moving mice

    Directory of Open Access Journals (Sweden)

    Henry Lütcke

    2010-04-01

    Full Text Available Fluorescent calcium (Ca2+ indicator proteins (FCIPs are promising tools for functional imaging of cellular activity in living animals. However, they have still not reached their full potential for in vivo imaging of neuronal activity due to limitations in expression levels, dynamic range, and sensitivity for reporting action potentials. Here, we report that viral expression of the ratiometric Ca2+ sensor yellow cameleon 3.60 (YC3.60 in pyramidal neurons of mouse barrel cortex enables in vivo measurement of neuronal activity with high dynamic range and sensitivity across multiple spatial scales. By combining juxtacellular recordings and two-photon imaging in vitro and in vivo, we demonstrate that YC3.60 can resolve single action potential (AP-evoked Ca2+ transients and reliably reports bursts of APs with negligible saturation. Spontaneous and whisker-evoked Ca2+ transients were detected in individual apical dendrites and somata as well as in local neuronal populations. Moreover, bulk measurements using wide-field imaging or fiber-optics revealed sensory-evoked YC3.60 signals in large areas of the barrel field. Fiber-optic recordings in particular enabled measurements in awake, freely moving mice and revealed complex Ca2+ dynamics, possibly reflecting different behavior-related brain states. Viral expression of YC3.60 - in combination with various optical techniques - thus opens a multitude of opportunities for functional studies of the neural basis of animal behavior, from dendrites to the levels of local and large-scale neuronal populations.

  19. Optical phonons in PbTe/CdTe multilayer heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Novikova, N. N.; Yakovlev, V. A. [Russian Academy of Sciences, Institute for Spectroscopy (Russian Federation); Kucherenko, I. V., E-mail: kucheren@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Karczewski, G. [Polish Academy of Sciences, Institute of Physics (Poland); Aleshchenko, Yu. A.; Muratov, A. V.; Zavaritskaya, T. N.; Melnik, N. N. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2015-05-15

    The infrared reflection spectra of PbTe/CdTe multilayer nanostructures grown by molecular-beam epitaxy are measured in the frequency range of 20–5000 cm{sup −1} at room temperature. The thicknesses and high-frequency dielectric constants of the PbTe and CdTe layers and the frequencies of the transverse optical (TO) phonons in these structures are determined from dispersion analysis of the spectra. It is found that the samples under study are characterized by two TO phonon frequencies, equal to 28 and 47 cm{sup −1}. The first frequency is close to that of TO phonons in bulk PbTe, and the second is assigned to the optical mode in structurally distorted interface layers. The Raman-scattering spectra upon excitation with the radiation of an Ar{sup +} laser at 514.5 nm are measured at room and liquid-nitrogen temperatures. The weak line at 106 cm{sup −1} observed in these spectra is attributed to longitudinal optical phonons in the interface layers.

  20. Proposal of energy spectra for earthquake resistant design based on turkish registers

    OpenAIRE

    Yazgan, Ahmet Utku

    2012-01-01

    This work proposes design energy spectra in terms of an equivalent velocity, intended for regions with design peak acceleration 0.3 g or higher. These spectra have been derived through linear and nonlinear dynamic analyses on a number of Turkish selected strong ground motion records. In the long and mid period ranges the analyses are linear, taking profit of the rather insensitivity of the spectra to the structural parameters other than the fundamental period; conversely, in the short period ...

  1. Decoding of digital magnetic recording with longitudinal magnetization of a tape from a magneto-optical image of stray fields

    Science.gov (United States)

    Lisovskii, F. V.; Mansvetova, E. G.

    2017-05-01

    For digital magnetic recording of encoded information with longitudinal magnetization of the tape, the connection between the domain structure of a storage medium and magneto-optical image of its stray fields obtained using a magnetic film with a perpendicular anisotropy and a large Faraday rotation has been studied. For two-frequency binary code without returning to zero, an algorithm is developed, that allows uniquely decoding of the information recorded on the tape based on analysis of an image of stray fields.

  2. The photoluminescence spectra of micropowder of aromatic compounds under ultraviolet laser excitation

    International Nuclear Information System (INIS)

    Rakhmatullaev, I.A.; Kurbonov, A.K. et al.; Gorelik, V.S.

    2016-01-01

    The method of diagnostics of aromatic compounds on the example of novocaine, aspirin and anthracene is presented. The method is based on optical detection of photoluminescence spectra at ultraviolet laser (266 nm) excitation. Employing this method the photoluminescence spectra are obtained which allows one to establish the differences of the composition and structure of compounds. The developed method can be used for analysis the quality of the large class of luminescent bioactive structures under the ultraviolet radiation. (authors)

  3. Resonant Raman and FTIR spectra of carbon doped GaN

    Science.gov (United States)

    Ito, S.; Kobayashi, H.; Araki, K.; Suzuki, K.; Sawaki, N.; Yamashita, K.; Honda, Y.; Amano, H.

    2015-03-01

    Intentionally carbon (C) doped (0 0 0 1)GaN was grown using C2H2 on a sapphire substrate by metalorganic vapor phase epitaxy. Optical spectra of the heavily doped samples were investigated at room temperature. In Raman spectra excited by the 325 nm line of a He-Cd laser, multiple LO phonon scattering signals up to 7th order were observed, and the A1(LO) phonon energy was determined to be 737.5 cm-1 (91.45 meV). In infrared reflectance spectra, on the other hand, a local vibration mode was found at 777.5 cm-1, which is attributed to a Ga-C bond in the GaN matrix suggesting that the C sits on an N site (CN). In spite of the strong suggestion of CN, the samples did not show p-type conduction. Possible origin of the carrier compensation is discussed in relation to the enhancement of defect related yellow luminescence in the photoluminescence spectra.

  4. Study of high-temperature multiplex HCl coherent anti-Stokes Raman spectroscopy spectra.

    Science.gov (United States)

    Singh, J P; Yueh, F Y; Kao, W; Cook, R L

    1993-02-20

    A feasibility study of temperature measurement with multiplex HCl coherent anti-Stokes Raman spectroscopy (CARS) is investigated. The HCl CARS spectra of a 100% HCl gas sample are recorded in a quartz sample cell placed in a furnace at 1 atm pressure and at different temperatures. The nonlinear susceptibility of HCl (chi(nr)(HCl)), which is measured with the present CARS experimental setup, is reported. The experimental spectra are fit by using a library of simulated HCl CARS spectra with a least-squares-fitting program to infer the temperature. The inferred temperatures from HCl CARS spectra are in agreement with thermocouple temperatures.

  5. Quantitative interpretations of Visible-NIR reflectance spectra of blood.

    Science.gov (United States)

    Serebrennikova, Yulia M; Smith, Jennifer M; Huffman, Debra E; Leparc, German F; García-Rubio, Luis H

    2008-10-27

    This paper illustrates the implementation of a new theoretical model for rapid quantitative analysis of the Vis-NIR diffuse reflectance spectra of blood cultures. This new model is based on the photon diffusion theory and Mie scattering theory that have been formulated to account for multiple scattering populations and absorptive components. This study stresses the significance of the thorough solution of the scattering and absorption problem in order to accurately resolve for optically relevant parameters of blood culture components. With advantages of being calibration-free and computationally fast, the new model has two basic requirements. First, wavelength-dependent refractive indices of the basic chemical constituents of blood culture components are needed. Second, multi-wavelength measurements or at least the measurements of characteristic wavelengths equal to the degrees of freedom, i.e. number of optically relevant parameters, of blood culture system are required. The blood culture analysis model was tested with a large number of diffuse reflectance spectra of blood culture samples characterized by an extensive range of the relevant parameters.

  6. Optical and infrared spectroscopic studies of chemical sensing by copper phthalocyanine thin films

    International Nuclear Information System (INIS)

    Singh, Sukhwinder; Tripathi, S.K.; Saini, G.S.S.

    2008-01-01

    Thin films of copper phthalocyanine have been deposited on KBr and glass substrates by thermal evaporation method and characterized by the X-ray diffraction and optical absorption techniques. The observed X-ray pattern suggests the presence of α crystalline phase of copper phthalocyanine in the as-deposited thin films. Infrared spectra of thin films on the KBr pallet before and after exposure to the vapours of ammonia and methanol have been recorded in the wavenumber region of 400-1650 cm -1 . The observed infrared bands also confirm the α crystalline phase. On exposure, change in the intensity of some bands is observed. A new band at 1385 cm -1 , forbidden under ideal D 4h point group symmetry, is also observed in the spectra of exposed thin films. These changes in the spectra are interpreted in terms of the lowering of molecular symmetry from D 4h to C 4v . Axial ligation of the vapour molecules on fifth coordination site of the metal ion is responsible for lowering of the molecular symmetry

  7. Program package for processing energy spectra of gamma radiation

    International Nuclear Information System (INIS)

    Stejskalova, E.

    1985-01-01

    A library of programs for processing energy spectra of nuclear radiation using an ICL 4-72 computer is described. The library is available at the computer centre of the Prague universities and bears the acronym JADSPE. The programs perform the computation of positions, areas and half-widths of lines in the energy spectrum of the radiation, they give a graphic representation of the course of energy spectra on the printer and on the CALCOMP recorder; they also perform the addition or subtraction of energy spectra with possible aligning of the beginnings or ends of the spectra or of maximums of chosen lines. A model function in the form of a symmetric Gaussian function is used for the computation of parameters of spectral lines, and the variation of the background with energy is assumed to be linear. (author)

  8. Effect of polariton propagation on spectra of SRS amplification and CARS from polaritons

    International Nuclear Information System (INIS)

    Orlov, Sergei N; Polivanov, Yurii N

    2001-01-01

    The properties of k spectra of SRS amplification and CARS from polaritons caused by 'running out' of polaritons from the volume of their interaction with incident light beams are theoretically analysed. It is shown that the shape and width of the spectra depend on the relation between the size of the overlap region of exciting waves in a crystal along the direction of polariton propagation and the mean free path of polaritons. The conditions are found under which the widths of SRS amplification and CARS spectra give information on the polariton decay. (nonlinear optical phenomena and devices)

  9. Optical properties of solids

    CERN Document Server

    Wooten, Frederick

    1972-01-01

    Optical Properties of Solids covers the important concepts of intrinsic optical properties and photoelectric emission. The book starts by providing an introduction to the fundamental optical spectra of solids. The text then discusses Maxwell's equations and the dielectric function; absorption and dispersion; and the theory of free-electron metals. The quantum mechanical theory of direct and indirect transitions between bands; the applications of dispersion relations; and the derivation of an expression for the dielectric function in the self-consistent field approximation are also encompassed.

  10. Spectral atlas for amateur astronomers a guide to the spectra of astronomical objects and terrestrial light sources

    CERN Document Server

    Walker, Richard

    2017-01-01

    Featuring detailed commented spectral profiles of more than one hundred astronomical objects, in colour, this spectral guide documents most of the important and spectroscopically observable objects accessible using typical amateur equipment. It allows you to read and interpret the recorded spectra of the main stellar classes, as well as most of the steps from protostars through to the final stages of stellar evolution as planetary nebulae, white dwarfs or the different types of supernovae. It also presents integrated spectra of stellar clusters, galaxies and quasars, and the reference spectra of some terrestrial light sources, for calibration purposes. Whether used as the principal reference for comparing with your recorded spectra or for inspiring independent observing projects, this atlas provides a breathtaking view into our Universe's past. The atlas is accompanied and supplemented by Spectroscopy for Amateur Astronomers, which explains in detail the methods for recording, processing, analysing and interp...

  11. A stereo-compound hybrid microscope for combined intracellular and optical recording of invertebrate neural network activity

    OpenAIRE

    Frost, William N.; Wang, Jean; Brandon, Christopher J.

    2007-01-01

    Optical recording studies of invertebrate neural networks with voltage-sensitive dyes seldom employ conventional intracellular electrodes. This may in part be due to the traditional reliance on compound microscopes for such work. While such microscopes have high light-gathering power, they do not provide depth of field, making working with sharp electrodes difficult. Here we describe a hybrid microscope design, with switchable compound and stereo objectives, that eases the use of conventional...

  12. Theoretical emission line ratios for [Fe III] and [Fe VII] applicable to the optical and infrared spectra of gaseous nebulae.

    Science.gov (United States)

    Keenan, F P; Aller, L H; Ryans, R S; Hyung, S

    2001-08-14

    Recent calculations of electron impact excitation rates and Einstein A-coefficients for transitions among the 3d(6) levels of Fe III and among the 3d(2) levels of Fe VII are used to derive theoretical emission line ratios applicable to the optical and infrared spectra of gaseous nebulae. Results for [Fe III] are generated for electron temperatures T(e) = 7,000-20,000 K and densities N(e) = 10(2)-10(8) cm(-3), whereas those for [Fe VII] are provided for T(e) = 10,000-30,000 K and N(e) = 10(2)-10(8) cm(-3). The theoretical line ratios are significantly different in some instances from earlier calculations and resolve discrepancies between theory and observation found for the planetary nebulae IC 4997 and NGC 7027.

  13. High-density optical data storage based on grey level recording in photobleaching polymers using two-photon excitation under ultrashort pulse and continuous wave illumination

    International Nuclear Information System (INIS)

    Ganic, D.; Day, D.; Gu, M.

    1999-01-01

    Full text: Two-photon excitation has been employed in three-dimensional optical data storage by many researchers in an attempt to increase the storage density of a given material. The probability of two-photon excitation is proportional to the squared intensity of the incident light; this effect produces excitation only within a small region of the focus spot. Another advantage of two-photon excitation is the use of infrared illumination, which results in the reduction of scattering and enables the recording of layers at a deep depth in a thick material. The storage density thus obtained using multi-layered bit optical recording can be as high as Tbit/cm 3 . To increase this storage density even further, grey level recording can be employed. This method utilises variable exposure times of a laser beam focused into a photobleaching sample. As a result, the bleached area possesses a certain pixel value which depends upon the exposure time; this can increase the storage density many times depending upon the number of grey levels used. Our experiment shows that it is possible to attain grey level recording using both ultrashort pulsed and continuous-wave illumination. Although continuous wave illumination requires an average power of approximately 2 orders of magnitude higher than that for ultrashort pulsed illumination, it is a preferred method of recording due to its relatively low system cost and compactness. Copyright (1999) Australian Optical Society

  14. Influence of annealing temperature on Raman and photoluminescence spectra of electron beam evaporated TiO₂ thin films.

    Science.gov (United States)

    Vishwas, M; Narasimha Rao, K; Chakradhar, R P S

    2012-12-01

    Titanium dioxide (TiO(2)) thin films were deposited on fused quartz substrates by electron beam evaporation method at room temperature. The films were annealed at different temperatures in ambient air. The surface morphology/roughness at different annealing temperatures were analyzed by atomic force microscopy (AFM). The crystallinity of the film has improved with the increase of annealing temperature. The effect of annealing temperature on optical, photoluminescence and Raman spectra of TiO(2) films were investigated. The refractive index of TiO(2) films were studied by envelope method and reflectance spectra and it is observed that the refractive index of the films was high. The photoluminescence intensity corresponding to green emission was enhanced with increase of annealing temperature. The peaks in Raman spectra depicts that the TiO(2) film is of anatase phase after annealing at 300°C and higher. The films show high refractive index, good optical quality and photoluminescence characteristics suggest that possible usage in opto-electronic and optical coating applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Comparative optical study of thulium-doped YVO4 , GdVO4 , and LuVO4 single crystals

    Science.gov (United States)

    Lisiecki, R.; Solarz, P.; Dominiak-Dzik, G.; Ryba-Romanowski, W.; Sobczyk, M.; Černý, Pavel; Šulc, Jan; Jelínková, Helena; Urata, Yoshiharu; Higuchi, Mikio

    2006-07-01

    YVO4:Tm3+ crystals grown by the Czochralski technique and GdVO4:Tm3+ and LuVO4:Tm3+ crystals grown by the floating-zone technique were investigated using methods of optical spectroscopy. Polarized absorption and emission spectra were recorded at room temperature and at 6K . The crystal-field analysis was performed assuming the D2d site symmetry for Tm3+ ions. In this way the missing crystal-field components of the H63 ground multiplet were located. Room temperature absorption spectra were analyzed in the framework of the Judd-Ofelt theory. Evaluated radiative lifetimes of luminescent levels of Tm3+ follow a general trend diminishing in agreement with the sequence: YVO4:Tm3+→GdVO4:Tm3+→LuVO4:Tm3+ . Luminescence lifetimes measured for the systems under study are similar except for the F43 lifetime, which appears to be surprisingly short for LuVO4:Tm3+ . Anisotropy of optical spectra is particularly pronounced in LuVO4:Tm3+ . Peak absorption cross section for the band relevant for optical pumping at about 805nm is roughly three times higher for π polarization. Stimulated emission cross sections for the F43-H63 transition near 1800nm were evaluated using the reciprocity method. The diode-pumped continuous wave laser operation in GdVO4:Tm3+ with a slope efficiency of up to 40% is demonstrated. In LuVO4:Tm3+ the diode-pumped laser oscillation in a pulsed mode was observed.

  16. Anisotropy Spectra for Enantiomeric Differentiation of Biomolecular Building Blocks

    DEFF Research Database (Denmark)

    Evans, Amanda C.; Meinert, Cornelia; Bredehoft, Jan H.

    2013-01-01

    All biopolymers are composed of homochiral building blocks, and both D-sugars and L-amino acids uniquely constitute life on Earth. These monomers were originally enantiomerically differentiated under prebiotic conditions. Particular progress has recently been made in support of the photochemical...... light. This chapter will: (1) present the theory and configuration of anisotropy spectroscopy; (2) explain experimentally recorded anisotropy spectra of selected chiral biomolecules such as amino acids; and (3) discuss the relevance of these spectra for the investigation of the origin of the molecular...

  17. Optical storage studies on the trapping states of BaFCl:Eu sup 2 sup +

    CERN Document Server

    Meng Xian Guo; Sun Li; Jin Hui; Zhang Li

    2003-01-01

    The optical absorption spectra of BaF sub 2 sub - sub x Cl sub x :Eu in different states of optical storage were measured to clarify the electron trapping mechanism for its optical storage and photo-stimulated luminescence (PSL). Based on the absorption spectra and difference absorption spectra, the electron transfer processes after ultraviolet (UV) light irradiation were investigated. This demonstrates that (1) Eu sup 3 sup + ions are formed upon UV light irradiation at room temperature; (2) the two absorption bands in the visible region (400-600 nm) should be assigned to two different F centres, both of which contribute to the optical storage and PSL, and (3) a third broad difference absorption band around approx 650 nm, which matches the common laser better, was observed.

  18. Skin and cutaneous melanocytic lesion simulation in biomedical optics with multilayered phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Urso, P [Department of Occupational and Environmental Health, Hospital L. Sacco Unit, University of Milan, Via G B Grassi, 74-20157 Milan (Italy); Lualdi, M [Medical Physics Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, Via Venezian 1-20133 Milan (Italy); Colombo, A [Medical Physics Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, Via Venezian 1-20133 Milan (Italy); Carrara, M [Medical Physics Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, Via Venezian 1-20133 Milan (Italy); Tomatis, S [Medical Physics Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, Via Venezian 1-20133 Milan (Italy); Marchesini, R [Medical Physics Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, Via Venezian 1-20133 Milan (Italy)

    2007-05-21

    The complex inner layered structure of skin influences the photon diffusion inside the cutaneous tissues and determines the reflectance spectra formation. Phantoms are very useful tools to understand the biophysical meaning of parameters involved in light propagation through the skin. To simulate the skin reflectance spectrum, we realized a multilayered skin-like phantom and a multilayered skin phantom with a melanoma-like phantom embedded inside. Materials used were Al{sub 2}O{sub 3} particles, melanin of sepia officinalis and a calibrator for haematology systems dispersed in transparent silicon. Components were optically characterized with indirect techniques. Reflectance phantom spectra were compared with average values of in vivo spectra acquired on a sample of 573 voluntary subjects and 132 pigmented lesions. The phantoms' reflectance spectra agreed with those measured in vivo, mimicking the optical behaviour of the human skin. Further, the phantoms were optically stable and easily manageable, and represented a valid resource in spectra formation comprehension, in diagnostic laser applications and simulation model implementation, such as the Monte Carlo code for non-homogeneous media. (note)

  19. Skin and cutaneous melanocytic lesion simulation in biomedical optics with multilayered phantoms

    International Nuclear Information System (INIS)

    Urso, P; Lualdi, M; Colombo, A; Carrara, M; Tomatis, S; Marchesini, R

    2007-01-01

    The complex inner layered structure of skin influences the photon diffusion inside the cutaneous tissues and determines the reflectance spectra formation. Phantoms are very useful tools to understand the biophysical meaning of parameters involved in light propagation through the skin. To simulate the skin reflectance spectrum, we realized a multilayered skin-like phantom and a multilayered skin phantom with a melanoma-like phantom embedded inside. Materials used were Al 2 O 3 particles, melanin of sepia officinalis and a calibrator for haematology systems dispersed in transparent silicon. Components were optically characterized with indirect techniques. Reflectance phantom spectra were compared with average values of in vivo spectra acquired on a sample of 573 voluntary subjects and 132 pigmented lesions. The phantoms' reflectance spectra agreed with those measured in vivo, mimicking the optical behaviour of the human skin. Further, the phantoms were optically stable and easily manageable, and represented a valid resource in spectra formation comprehension, in diagnostic laser applications and simulation model implementation, such as the Monte Carlo code for non-homogeneous media. (note)

  20. Infrared and Raman Spectra of Magnesium Ammonium Phosphate Hexahydrate (Struvite) and its Isomorphous Analogues. VIII. Spectra of Protiated and Partially Deuterated Magnesium Rubidium Phosphate Hexahydrate and Magnesium Thallium Phosphate Hexahydrate.

    Science.gov (United States)

    Soptrajanov, Bojan; Cahil, Adnan; Najdoski, Metodija; Koleva, Violeta; Stefov, Viktor

    2011-09-01

    The infrared and Raman spectra of magnesium rubidium phosphate hexahydrate MgRbPO4 • 6H2O and magnesium thallium phosphate hexahydrate, MgTlPO4 • 6H2O were recorded at room temperature (RT) and the boiling temperature of liquid nitrogen (LNT). To facilitate their analysis, also recorded were the spectra of partially deuterated analogues with varying content of deuterium. The effects of deuteration and those of lowering the temperature were the basis of the conclusions drawn regarding the origin of the observed bands which were assigned to vibrations which are predominantly localized in the water molecules (four crystallographically different types of such molecules exist in the structures) and those with PO43- character. It was concluded that in some cases coupling of phosphate and water vibrations is likely to take place. The appearance of the infrared spectra in the O-H stretching regions of the infrared spectra is explained as being the result of an extensive overlap of bands due to components of the fundamental stretching modes of the H2O units with a possible participation of bands due to second-order transitions. A broad band reminiscent of the B band of the well-known ABC trio characteristic of spectra of substances containing strong hydrogen bonds in their structure was found around 2400 cm-1 in the infrared spectra of the two studied compounds.

  1. The analysis of time-resolved optically stimulated luminescence: I. Theoretical considerations

    International Nuclear Information System (INIS)

    Chithambo, M L

    2007-01-01

    This is the first of two linked papers on the analysis of time-resolved optically stimulated luminescence. This paper focusses on a theoretical basis of analytical methods and on methods for interpretation of time-resolved luminescence spectra and calculation of luminescence throughput. Using a comparative analysis of the principal features of time-resolved luminescence and relevant analogues from steady state optical stimulation, formulae for configuring a measurement system for optimum performance are presented. We also examine the possible use of stretched-exponential functions for analysis of time-resolved optically stimulated luminescence spectra

  2. Optical properties of ThO2–based nanoparticles

    International Nuclear Information System (INIS)

    Pereira, F.J.; Castro, M.A.; Vázquez, M.D.; Debán, L.; Aller, A.J.

    2017-01-01

    Thoria nanomaterials show great interest in different fields other than nuclear technology. In this work, optical characteristics of four types of thoria-based nanoparticles were evaluated. The ultraviolet-visible (UV–vis) absorption spectrum of the pure (undoped/uncapped) thoria nanoparticles was characterised by an intense peak at 222 nm, while the doped/capped thoria nanoparticles shown maximum absorption peaks at both 195/200 nm and 233 nm. Contrarily to the particle size, the band gap energy of the thoria nanoparticles decreased with the doping/capping process using arsenic (As (III) )/cysteine (Cyst). The room-temperature photoluminescence excitation spectra were featured by two bands located at 268 nm for both pure and As-doped thoria nanoparticles and at 352 nm for all thoria-based nanoparticles studied, recording the photoluminescence emission at 500 nm. The characteristic wavelengths of the photoluminescence emission spectra were at 325 and 385 nm for the pure and As-doped thoria nanoparticles, while only the band at 385/415 nm was noted for the Cyst-capped thoria nanoparticles, with slightly red shift depending on the excitation wavelength.

  3. Predicting transmittance spectra of electrophotographic color prints

    Science.gov (United States)

    Mourad, Safer; Emmel, Patrick; Hersch, Roger D.

    2000-12-01

    For dry toner electrophotographic color printers, we present a numerical simulation model describing the color printer responses based on a physical characterization of the different electrophotographic process steps. The proposed model introduces a Cross Transfer Efficiency designed to predict the color transmittance spectra of multi-color prints by taking into account the transfer influence of each deposited color toner layer upon the other layers. The simulation model leads to a better understanding of the factors that have an impact on printing quality. In order to avoid the additional optical non-linearities produced by light reflection on paper, we have limited the present investigation to transparency prints. The proposed model succeeded to predict the transmittance spectra of printed wedges combining two color toner layers with a mean deviation less than CIE-LAB (Delta) E equals 2.5.

  4. Radio synchrotron spectra of star-forming galaxies

    Science.gov (United States)

    Klein, U.; Lisenfeld, U.; Verley, S.

    2018-03-01

    We investigated the radio continuum spectra of 14 star-forming galaxies by fitting nonthermal (synchrotron) and thermal (free-free) radiation laws. The underlying radio continuum measurements cover a frequency range of 325 MHz to 24.5 GHz (32 GHz in case of M 82). It turns out that most of these synchrotron spectra are not simple power-laws, but are best represented by a low-frequency spectrum with a mean slope αnth = 0.59 ± 0.20 (Sν ∝ ν-α), and by a break or an exponential decline in the frequency range of 1-12 GHz. Simple power-laws or mildly curved synchrotron spectra lead to unrealistically low thermal flux densities, and/or to strong deviations from the expected optically thin free-free spectra with slope αth = 0.10 in the fits. The break or cutoff energies are in the range of 1.5-7 GeV. We briefly discuss the possible origin of such a cutoff or break. If the low-frequency spectra obtained here reflect the injection spectrum of cosmic-ray electrons, they comply with the mean spectral index of Galactic supernova remnants. A comparison of the fitted thermal flux densities with the (foreground-corrected) Hα fluxes yields the extinction, which increases with metallicity. The fraction of thermal emission is higher than believed hitherto, especially at high frequencies, and is highest in the dwarf galaxies of our sample, which we interpret in terms of a lack of containment in these low-mass systems, or a time effect caused by a very young starburst.

  5. Wetting effect on optical sum frequency generation (SFG) spectra of D-glucose, D-fructose, and sucrose

    Science.gov (United States)

    Hieu, Hoang Chi; Li, Hongyan; Miyauchi, Yoshihiro; Mizutani, Goro; Fujita, Naoko; Nakamura, Yasunori

    2015-03-01

    We report a sum frequency generation (SFG) spectroscopy study of D-glucose, D-fructose and sucrose in the Csbnd H stretching vibration regime. Wetting effect on the SFG spectra was investigated. The SFG spectrum of D-glucose changed from that of α-D-glucose into those of α-D-glucose monohydrate by wetting. The SFG spectra showed evidence of a small change of β-D-fructopyranose into other anomers by wetting. SFG spectra of sucrose did not change by wetting. Assignments of the vibrational peaks in the SFG spectra of the three sugars in the dry and wet states were performed in the Csbnd H stretching vibration region near 3000 cm-1.

  6. Refractometry of melanocyte cell nuclei using optical scatter images recorded by digital Fourier microscopy.

    Science.gov (United States)

    Seet, Katrina Y T; Nieminen, Timo A; Zvyagin, Andrei V

    2009-01-01

    The cell nucleus is the dominant optical scatterer in the cell. Neoplastic cells are characterized by cell nucleus polymorphism and polychromism-i.e., the nuclei exhibits an increase in the distribution of both size and refractive index. The relative size parameter, and its distribution, is proportional to the product of the nucleus size and its relative refractive index and is a useful discriminant between normal and abnormal (cancerous) cells. We demonstrate a recently introduced holographic technique, digital Fourier microscopy (DFM), to provide a sensitive measure of this relative size parameter. Fourier holograms were recorded and optical scatter of individual scatterers were extracted and modeled with Mie theory to determine the relative size parameter. The relative size parameter of individual melanocyte cell nuclei were found to be 16.5+/-0.2, which gives a cell nucleus refractive index of 1.38+/-0.01 and is in good agreement with previously reported data. The relative size parameters of individual malignant melanocyte cell nuclei are expected to be greater than 16.5.

  7. Acoustic signature of thunder from seismic records

    Science.gov (United States)

    Kappus, Mary E.; Vernon, Frank L.

    1991-06-01

    Thunder, the sound wave through the air associated with lightning, transfers sufficient energy to the ground to trigger seismometers set to record regional earthquakes. The acoustic signature recorded on seismometers, in the form of ground velocity as a function of time, contains the same type features as pressure variations recorded with microphones in air. At a seismic station in Kislovodsk, USSR, a nearly direct lightning strike caused electronic failure of borehole instruments while leaving a brief impulsive acoustic signature on the surface instruments. The peak frequency of 25-55 Hz is consistent with previously published values for cloud-to-ground lightning strikes, but spectra from this station are contaminated by very strong wind noise in this band. A thunderstorm near a similar station in Karasu triggered more than a dozen records of individual lightning strikes during a 2-hour period. The spectra for these events are fairly broadband, with peaks at low frequencies, varying from 6 to 13 Hz. The spectra were all computed by multitaper analysis, which deals appropriately with the nonstationary thunder signal. These independent measurements of low-frequency peaks corroborate the occasional occurrences in traditional microphone records, but a theory concerning the physical mechanism to account for them is still in question. Examined separately, the individual claps in each record have similar frequency distributions, discounting a need for multiple mechanisms to explain different phases of the thunder sequence. Particle motion, determined from polarization analysis of the three-component records, is predominantly vertical downward, with smaller horizontal components indicative of the direction to the lightning bolt. In three of the records the azimuth to the lightning bolt changes with time, confirming a significant horizontal component to the lightning channel itself.

  8. Achromatic triplet and athermalized lens assembly for both midwave and longwave infrared spectra

    Science.gov (United States)

    Kuo, Chih-Wei

    2014-02-01

    Analytic solutions for finding the achromatic triplet in the midwave and longwave infrared spectra simultaneously are explored. The relationship between the combination of promising refractive materials and the system's optical power is also formulated. The principles for stabilizing the effective focal length of an air-spaced lens group with respect to temperature are explored, and the thermal properties of the optical component and mechanical elements mutually counterbalanced. An optical design based on these achromatic and athermal theories is demonstrated, and the image quality of the lens assembly seems to approach the diffractive limitation.

  9. Optical properties of nanocrystalline potassium lithium niobate in the glass system (100-x) TeO2-x(1.5K2O-Li2O-2.5Nb2O5).

    Science.gov (United States)

    Ahamad, M Niyaz; Varma, K B R

    2009-08-01

    Optically clear glasses of various compositions in the system (100-x) TeO2-x(1.5K2O-Li2O-2.5Nb2O5) (2 glasses comprising potassium lithium niobate (K3Li2Nb5O15) microcrystallites on the surface and nanocrystallites within the glass were obtained by controlled heat-treatment of the as-quenched glasses just above the glass transition temperature (T(g)). The optical transmission spectra of these glasses and glass-crystal composites of various compositions were recorded in the 200-2500 nm wavelength range. Various optical parameters such as optical band gap, Urbach energy, refractive index were determined. Second order optical non-linearity was established in the heat-treated samples by employing the Maker-Fringe method.

  10. Optimized geometry, vibration (IR and Raman spectra and nonlinear optical activity of p-nitroanilinium perchlorate molecule: A theoretical study

    Directory of Open Access Journals (Sweden)

    Tamer Ömer

    2016-03-01

    Full Text Available The molecular modeling of p-nitroanilinium perchlorate molecule was carried out by using B3LYP and HSEH1PBE levels of density functional theory (DFT. The IR and Raman spectra were simulated and the assignments of vibrational modes were performed on the basis of relative contribution of various internal co-ordinates. NBO analysis was performed to demonstrate charge transfer, conjugative interactions and the formation of intramolecular hydrogen bonding interactions within PNAPC. Obtained large dipole moment values showed that PNAPC is a highly polarizable complex, and the charge transfer occurs within PNAPC. Hydrogen bonding and charge transfer interactions were also displayed by small HOMO-LUMO gap and molecular electrostatic potential (MEP surface. The strong evidences that the material can be used as an efficient nonlinear optical (NLO material of PNAPC were demonstrated by considerable polarizability and hyperpolarizability values obtained at DFT levels.

  11. Retrieving the optical parameters of biological tissues using diffuse reflectance spectroscopy and Fourier series expansions. I. theory and application.

    Science.gov (United States)

    Muñoz Morales, Aarón A; Vázquez Y Montiel, Sergio

    2012-10-01

    The determination of optical parameters of biological tissues is essential for the application of optical techniques in the diagnosis and treatment of diseases. Diffuse Reflection Spectroscopy is a widely used technique to analyze the optical characteristics of biological tissues. In this paper we show that by using diffuse reflectance spectra and a new mathematical model we can retrieve the optical parameters by applying an adjustment of the data with nonlinear least squares. In our model we represent the spectra using a Fourier series expansion finding mathematical relations between the polynomial coefficients and the optical parameters. In this first paper we use spectra generated by the Monte Carlo Multilayered Technique to simulate the propagation of photons in turbid media. Using these spectra we determine the behavior of Fourier series coefficients when varying the optical parameters of the medium under study. With this procedure we find mathematical relations between Fourier series coefficients and optical parameters. Finally, the results show that our method can retrieve the optical parameters of biological tissues with accuracy that is adequate for medical applications.

  12. X ray spectra of X Per. [oso-8 observations

    Science.gov (United States)

    Becker, R. H.; Boldt, E. A.; Holt, S. S.; Pravdo, S. H.; Robinson-Saba, J.; Serlemitsos, P. J.; Swank, J. H.

    1978-01-01

    The cosmic X-ray spectroscopy experiment on OSO-8 observed X Per for twenty days during two observations in Feb. 1976 and Feb. 1977. The spectrum of X Per varies in phase with its 13.9 min period, hardening significantly at X-ray minimum. Unlike other X-ray binary pulsar spectra, X Per's spectra do not exhibit iron line emission or strong absorption features. The data show no evidence for a 22 hour periodicity in the X-ray intensity of X Per. These results indicate that the X-ray emission from X Per may be originating from a neutron star in a low density region far from the optically identified Be star.

  13. Density functional theory study of vibrational spectra, and ...

    Indian Academy of Sciences (India)

    The FTIR and FT Raman spectra of dacarbazine were recorded in the regions 4000-400 and 3500-100 cm-1, respectively. The optimized geometry, wavenumber, polarizability and several thermodynamic properties of dacarbazine were studied using ab initio Hartree-Fock, MP2 and DFT methods. A complete vibrational ...

  14. Systematic evaluation of prompt neutron spectra in fission

    International Nuclear Information System (INIS)

    Osawa, Takaaki

    1995-01-01

    To create the nuclear data fail JEND-32, the prompt fission neutron spectra X(E) of 233 U, 235 U, 238 U and 239 Pu were reevaluated and some improvement were added to the calculation models. We tried to extend the calculation method of fission spectra of nuclides with poor measurement data in consideration of increasing the importance of nuclear data of minor actinoids. We improved and extended the following five points. (1) On JENDL-3.1, the fission spectra of principal fissible materials had been calculated by the Modland-Nix model which the neutron emissions of fragments were calculated under the approximation of the constant inverse process cross section. In the paper, the spectra were calculated by the use of the inverse process cross section depend on the energy obtained by the calculation of the optical model. The result showed the increase of low energy components and the softening effect of spectra (2) On JENDL-3.1, the all fission processes were assumed to undergo (n,f) reaction. In the paper, they were calculated by the multi-chance fission such as (n, n'f), (n, 2nf) and (n, 3nf) etc. Softening of the spectra (En > 6 MeV) was obtained by this method. (3) The level density parameter (LDP) has been assumed as a = A/C in either case of light fragment (LF) and heavy fragment (HF) in the original Madland-Nix model. But we used LDP based on the Ignatyuk model under consideration of the shell effects of nuclear fragments, hence the neutron spectra of heavy fragments were hardening. (4) Nuclear temperature of both fragments had been assumed to be the same at original model, but now R T = Tm/TmH was derived to calculate them. The ratio of middle/both side components of spectra was changed. (5) Unknown neutron fission spectra of minor actinide were able to the assumed on the basis of Moriyama-Ohnishi model. (S.Y.)

  15. Electronic polarizability, optical basicity and interaction parameter for Nd2O3 doped lithium-zinc-phosphate glasses

    Science.gov (United States)

    Algradee, M. A.; Sultan, M.; Samir, O. M.; Alwany, A. Elwhab B.

    2017-08-01

    The Nd3+-doped lithium-zinc-phosphate glasses were prepared by means of conventional melt quenching method. X-ray diffraction results confirmed the glassy nature of the studied glasses. The physical parameters such as the density, molar volume, ion concentration, polaron radius, inter-ionic distance, field strength and oxygen packing density were calculated using different formulae. The transmittance and reflectance spectra of glasses were recorded in the wavelength range 190-1200 nm. The values of optical band gap and Urbach energy were determined based on Mott-Davis model. The refractive indices for the studied glasses were evaluated from optical band gap values using different methods. The average electronic polarizability of the oxide ions, optical basicity and an interaction parameter were investigated from the calculated values of the refractive index and the optical band gap for the studied glasses. The variations in the different physical and optical properties of glasses with Nd2O3 content were discussed in terms of different parameters such as non-bridging oxygen and different concentrations of Nd cation in glass system.

  16. Study of optical properties of vacuum evaporated carbon nanotube containing Se80Te16Cu4 thin films

    Science.gov (United States)

    Upadhyay, A. N.; Tiwari, R. S.; Singh, Kedar

    2016-08-01

    Thin films of Se80Te16Cu4 glassy alloy and 3 wt.% of carbon nanotubes (CNTs) containing Se80Te16Cu4 glassy composite were deposited on clean glass substrate by thermal evaporation technique. The scanning electron microscope and energy dispersive x-ray analysis were performed to investigate the surface morphology and elemental composition of as synthesised samples. The reflectance and transmittance spectra of as-deposited thin films were recorded (200-1100 nm) by using UV/VIS/NIR spectrophotometer. The optical band gap and optical constants such as absorption coefficient (α), refractive index (n) and extinction coefficient (k) of Se80Te16Cu4 and 3 wt.% CNTs-Se80Te16Cu4 glassy composite thin films were calculated. It is observed that optical properties alter due to CNTs incorporation in Se80Te16Cu4 glassy alloy. Effect on optical properties due to CNTs incorporation can be explained in terms of concentration of unsaturated bonds/defects in the localised states.

  17. Semiclassical Path Integral Calculation of Nonlinear Optical Spectroscopy.

    Science.gov (United States)

    Provazza, Justin; Segatta, Francesco; Garavelli, Marco; Coker, David F

    2018-02-13

    Computation of nonlinear optical response functions allows for an in-depth connection between theory and experiment. Experimentally recorded spectra provide a high density of information, but to objectively disentangle overlapping signals and to reach a detailed and reliable understanding of the system dynamics, measurements must be integrated with theoretical approaches. Here, we present a new, highly accurate and efficient trajectory-based semiclassical path integral method for computing higher order nonlinear optical response functions for non-Markovian open quantum systems. The approach is, in principle, applicable to general Hamiltonians and does not require any restrictions on the form of the intrasystem or system-bath couplings. This method is systematically improvable and is shown to be valid in parameter regimes where perturbation theory-based methods qualitatively breakdown. As a test of the methodology presented here, we study a system-bath model for a coupled dimer for which we compare against numerically exact results and standard approximate perturbation theory-based calculations. Additionally, we study a monomer with discrete vibronic states that serves as the starting point for future investigation of vibronic signatures in nonlinear electronic spectroscopy.

  18. The effect of pathological processes on absorption and scattering spectra of samples of bile and pancreatic juice

    Science.gov (United States)

    Giraev, K. M.; Ashurbekov, N. A.; Magomedov, M. A.; Murtazaeva, A. A.; Medzhidov, R. T.

    2015-07-01

    Spectra of optical transmission coefficients and optical reflectance for bile and pancreatic juice samples were measured experimentally for different forms of pathologies of the pancreas within the range of 250-2500 nm. The absorption and scattering spectra, as well as the spectrum of the anisotropy factor of scattering, were determined based on the results obtained using the reverse Monte Carlo method. The surface morphology for the corresponding samples of the biological media was studied employing electron microscopy. The dynamics of the optical properties of the biological media was determined depending on the stage of the pathology. It has been demonstrated that the results of the study presented are in a good agreement with pathophysiological data and could supplement and broaden the results of conventional methods for diagnostics of the pancreas.

  19. Assessing sensory versus optogenetic network activation by combining (o)fMRI with optical Ca2+ recordings.

    Science.gov (United States)

    Schmid, Florian; Wachsmuth, Lydia; Schwalm, Miriam; Prouvot, Pierre-Hugues; Jubal, Eduardo Rosales; Fois, Consuelo; Pramanik, Gautam; Zimmer, Claus; Faber, Cornelius; Stroh, Albrecht

    2016-11-01

    Encoding of sensory inputs in the cortex is characterized by sparse neuronal network activation. Optogenetic stimulation has previously been combined with fMRI (ofMRI) to probe functional networks. However, for a quantitative optogenetic probing of sensory-driven sparse network activation, the level of similarity between sensory and optogenetic network activation needs to be explored. Here, we complement ofMRI with optic fiber-based population Ca 2+ recordings for a region-specific readout of neuronal spiking activity in rat brain. Comparing Ca 2+ responses to the blood oxygenation level-dependent signal upon sensory stimulation with increasing frequencies showed adaptation of Ca 2+ transients contrasted by an increase of blood oxygenation level-dependent responses, indicating that the optical recordings convey complementary information on neuronal network activity to the corresponding hemodynamic response. To study the similarity of optogenetic and sensory activation, we quantified the density of cells expressing channelrhodopsin-2 and modeled light propagation in the tissue. We estimated the effectively illuminated volume and numbers of optogenetically stimulated neurons, being indicative of sparse activation. At the functional level, upon either sensory or optogenetic stimulation we detected single-peak short-latency primary Ca 2+ responses with similar amplitudes and found that blood oxygenation level-dependent responses showed similar time courses. These data suggest that ofMRI can serve as a representative model for functional brain mapping. © The Author(s) 2015.

  20. Assessing sensory versus optogenetic network activation by combining (o)fMRI with optical Ca2+ recordings

    Science.gov (United States)

    Schmid, Florian; Wachsmuth, Lydia; Schwalm, Miriam; Prouvot, Pierre-Hugues; Jubal, Eduardo Rosales; Fois, Consuelo; Pramanik, Gautam; Zimmer, Claus; Stroh, Albrecht

    2015-01-01

    Encoding of sensory inputs in the cortex is characterized by sparse neuronal network activation. Optogenetic stimulation has previously been combined with fMRI (ofMRI) to probe functional networks. However, for a quantitative optogenetic probing of sensory-driven sparse network activation, the level of similarity between sensory and optogenetic network activation needs to be explored. Here, we complement ofMRI with optic fiber-based population Ca2+ recordings for a region-specific readout of neuronal spiking activity in rat brain. Comparing Ca2+ responses to the blood oxygenation level-dependent signal upon sensory stimulation with increasing frequencies showed adaptation of Ca2+ transients contrasted by an increase of blood oxygenation level-dependent responses, indicating that the optical recordings convey complementary information on neuronal network activity to the corresponding hemodynamic response. To study the similarity of optogenetic and sensory activation, we quantified the density of cells expressing channelrhodopsin-2 and modeled light propagation in the tissue. We estimated the effectively illuminated volume and numbers of optogenetically stimulated neurons, being indicative of sparse activation. At the functional level, upon either sensory or optogenetic stimulation we detected single-peak short-latency primary Ca2+ responses with similar amplitudes and found that blood oxygenation level-dependent responses showed similar time courses. These data suggest that ofMRI can serve as a representative model for functional brain mapping. PMID:26661247

  1. Postsynaptic potentials recorded in neurons of the cat's lateral geniculate nucleus following electrical stimulation of the optic chiasm.

    Science.gov (United States)

    Bloomfield, S A; Sherman, S M

    1988-12-01

    1. We recorded intracellularly from X and Y cells of the cat's lateral geniculate nucleus and measured the postsynaptic potentials (PSPs) evoked from electrical stimulation of the optic chiasm. We used an in vivo preparation and computer averaged the PSPs to enhance their signal-to-noise ratio. 2. The vast majority (46 of 50) of our sample of X and Y cells responded to stimulation of the optic chiasm with an excitatory postsynaptic potential (EPSP) followed by an inhibitory postsynaptic potential (IPSP); these were tentatively identified as relay cells. We quantified several parameters of these PSPs, including amplitude, latency, time to peak (i.e., rise time), and duration. 3. Among the relay cells, the latencies of both the EPSP and action potential evoked by optic chiasm stimulation were shorter in Y cells than in X cells. Furthermore, the difference between the latencies of the EPSP and action potential was shorter for Y cells than for X cells. This means that the EPSPs generated in Y cells reached threshold for generation of action potentials faster than did those in X cells. The EPSPs of Y cells also displayed larger amplitudes and faster rise times than did those in X cells, but neither of these distinctions was sufficient to explain the shorter latency difference between the EPSP and action potential for Y cells. 4. The EPSPs recorded in relay Y cells had longer durations than did those in relay X cells. Our data suggest that the subsequent IPSP actively terminates the EPSP, which, in turn, suggests that the time interval between EPSP and IPSP onsets is longer in Y cells than in X cells. Furthermore, we found that, for individual Y cells, the latency and duration of the evoked EPSP were inversely related. These observations lead to the conclusion that the latency of IPSPs activated from the optic chiasm is relatively constant among Y cells and thus independent of the EPSP latencies. Thus the excitation and inhibition produced in individual geniculate Y

  2. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Aerosol Optical Depth and Aerosol Particle Size Distribution Environmental Data Record (EDR) from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of aerosol optical depth (AOD) and particle size from the Visible Infrared Imaging...

  3. Synthesis and Optical Properties of Au-Ag Alloy Nanoclusters with Controlled Composition

    Directory of Open Access Journals (Sweden)

    J. F. Sánchez-Ramírez

    2008-01-01

    Full Text Available Colloidal solid-solution-like Au-Ag alloy nanoclusters of different compositions were synthesized through citrate reduction of mixed metal ions of low concentrations, without using any other protective or capping agents. Optical absorption of the alloy nanoclusters was studied both theoretically and experimentally. The position of the surface plasmon resonance (SPR absorption band of the nanoclusters could be tuned from 419 nm to 521 nm through the variation of their composition. Considering effective dielectric constant of the alloy, optical absorption spectra for the nanoclusters were calculated using Mie theory, and compared with the experimentally obtained spectra. Theoretically obtained optical spectra well resembled the experimental spectra when the true size distribution of the nanoparticles was considered. High-resolution transmission electron microscopy (HREM, high-angle annular dark field (HAADF imaging, and energy dispersive spectroscopy (EDS revealed the true alloy nature of the nanoparticles with nominal composition being preserved. The synthesis technique can be extended to other bimetallic alloy nanoclusters containing Ag.

  4. Optical fiber end-facet polymer suspended-mirror devices

    Science.gov (United States)

    Yao, Mian; Wu, Jushuai; Zhang, A. Ping; Tam, Hwa-Yaw; Wai, P. K. A.

    2017-04-01

    This paper presents a novel optical fiber device based on a polymer suspended mirror on the end facet of an optical fiber. With an own-developed optical 3D micro-printing technology, SU-8 suspended-mirror devices (SMDs) were successfully fabricated on the top of a standard single-mode optical fiber. Optical reflection spectra of the fabricated SU- 8 SMDs were measured and compared with theoretical analysis. The proposed technology paves a way towards 3D microengineering of the small end-facet of optical fibers to develop novel fiber-optic sensors.

  5. Optical characterization of agricultural pest insects: a methodological study in the spectral and time domains

    Science.gov (United States)

    Li, Y. Y.; Zhang, H.; Duan, Z.; Lian, M.; Zhao, G. Y.; Sun, X. H.; Hu, J. D.; Gao, L. N.; Feng, H. Q.; Svanberg, S.

    2016-08-01

    Identification of agricultural pest insects is an important aspect in insect research and agricultural monitoring. We have performed a methodological study of how spectroscopic techniques and wing-beat frequency analysis might provide relevant information. An optical system based on the combination of close-range remote sensing and reflectance spectroscopy was developed to study the optical characteristics of different flying insects, collected in Southern China. The results demonstrate that the combination of wing-beat frequency assessment and reflectance spectral analysis has the potential to successfully differentiate between insect species. Further, studies of spectroscopic characteristics of fixed specimen of insects, also from Central China, showed the possibility of refined agricultural pest identification. Here, in addition to reflectance recordings also laser-induced fluorescence spectra were investigated for all the species of insects under study and found to provide complementary information to optically distinguish insects. In order to prove the practicality of the techniques explored, clearly fieldwork aiming at elucidating the variability of parameters, even within species, must be performed.

  6. Non-Hermitian systems of Euclidean Lie algebraic type with real energy spectra

    International Nuclear Information System (INIS)

    Dey, Sanjib; Fring, Andreas; Mathanaranjan, Thilagarajah

    2014-01-01

    We study several classes of non-Hermitian Hamiltonian systems, which can be expressed in terms of bilinear combinations of Euclidean–Lie algebraic generators. The classes are distinguished by different versions of antilinear (PT)-symmetries exhibiting various types of qualitative behaviour. On the basis of explicitly computed non-perturbative Dyson maps we construct metric operators, isospectral Hermitian counterparts for which we solve the corresponding time-independent Schrödinger equation for specific choices of the coupling constants. In these cases general analytical expressions for the solutions are obtained in the form of Mathieu functions, which we analyze numerically to obtain the corresponding energy spectra. We identify regions in the parameter space for which the corresponding spectra are entirely real and also domains where the PT symmetry is spontaneously broken and sometimes also regained at exceptional points. In some cases it is shown explicitly how the threshold region from real to complex spectra is characterized by the breakdown of the Dyson maps or the metric operator. We establish the explicit relationship to models currently under investigation in the context of beam dynamics in optical lattices. -- Highlights: •Different PT-symmetries lead to qualitatively different systems. •Construction of non-perturbative Dyson maps and isospectral Hermitian counterparts. •Numerical discussion of the eigenvalue spectra for one of the E(2)-systems. •Established link to systems studied in the context of optical lattices. •Setup for the E(3)-algebra is provided

  7. High Resolution Spectra of Carbon Monoxide, Propane and Ammonia for Atmospheric Remote Sensing

    Science.gov (United States)

    Beale, Christopher Andrew

    Spectroscopy is a critical tool for analyzing atmospheric data. Identification of atmospheric parameters such as temperature, pressure and the existence and concentrations of constituent gases via remote sensing techniques are only possible with spectroscopic data. These form the basis of model atmospheres which may be compared to observations to determine such parameters. To this end, this dissertation explores the spectroscopy of three molecules: ammonia, propane and carbon monoxide. Infrared spectra have been recorded for ammonia in the region 2400-9000 cm-1. These spectra were recorded at elevated temperatures (from 293-973 K) using a Fourier Transform Spectrometer (FTS). Comparison between the spectra recorded at different temperatures yielded experimental lower state energies. These spectra resulted in the measurement of roughly 30000 lines and about 3000 quantum assignments. In addition spectra of propane were recorded at elevated temperatures (296-700 K) using an FTS. Atmospheres with high temperatures require molecular data at appropriate conditions. This dissertation describes collection of such data and the potential application to atmospheres in our solar system, such as auroral regions in Jupiter, to those of planets orbiting around other stars and cool sub-stellar objects known as brown dwarfs. The spectra of propane and ammonia provide the highest resolution and most complete experimental study of these gases in their respective spectral regions at elevated temperatures. Detection of ammonia in an exoplanet or detection of propane in the atmosphere of Jupiter will most likely rely on the work presented here. The best laboratory that we have to study atmospheres is our own planet. The same techniques that are applied to these alien atmospheres originated on Earth. As such it is appropriate to discuss remote sensing of our own atmosphere. This idea is explored through analysis of spectroscopic data recorded by an FTS on the Atmospheric Chemistry

  8. Configuration interaction in charge exchange spectra of tin and xenon

    Science.gov (United States)

    D'Arcy, R.; Morris, O.; Ohashi, H.; Suda, S.; Tanuma, H.; Fujioka, S.; Nishimura, H.; Nishihara, K.; Suzuki, C.; Kato, T.; Koike, F.; O'Sullivan, G.

    2011-06-01

    Charge-state-specific extreme ultraviolet spectra from both tin ions and xenon ions have been recorded at Tokyo Metropolitan University. The electron cyclotron resonance source spectra were produced from charge exchange collisions between the ions and rare gas target atoms. To identify unknown spectral lines of tin and xenon, atomic structure calculations were performed for Sn14+-Sn17+ and Xe16+-Xe20+ using the Hartree-Fock configuration interaction code of Cowan (1981 The Theory of Atomic Structure and Spectra (Berkeley, CA: University of California Press)). The energies of the capture states involved in the single-electron process that occurs in these slow collisions were estimated using the classical over-barrier model.

  9. Optical and scintillation properties of Ce-doped LuLiF4 with different Ce concentrations

    International Nuclear Information System (INIS)

    Yanagida, Takayuki; Fujimoto, Yutaka; Fukuda, Kentaro; Chani, Valery

    2013-01-01

    The crystals of 0.1, 0.5, and 1 mol% Ce-doped LuLiF 4 (Ce:LLF) grown by the micro-pulling down (μ-PD) method were examined for their optical and scintillation properties. Ce:LLF crystals had ∼80% transparency at wavelengths longer than 300 nm. In photoluminescence spectra, they demonstrated intense emission peaks at 310 and 330 nm with the quantum yield of 60–90%. Ce 3+ 5d–4f emission peaks were also detected at similar wavelengths of 310 and 330 nm in the radioluminescence spectra obtained under X-ray excitation. According to pulse height spectra recorded under γ-ray irradiation, the absolute light yield of Ce 0.1, 0.5, and 1% were 3600±400, 3000±300, and 1700±200 ph/MeV, respectively. Decay time kinetics was also inspected using a pulse X-ray equipped streak camera system. The decay time components of Ce:LLF were ∼70 ns and ∼1 μs for all the samples

  10. Validity of abundances derived from spaxel spectra of the MaNGA survey

    Science.gov (United States)

    Pilyugin, L. S.; Grebel, E. K.; Zinchenko, I. A.; Nefedyev, Y. A.; Shulga, V. M.; Wei, H.; Berczik, P. P.

    2018-05-01

    We measured the emission lines in the spaxel spectra of Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) galaxies in order to determine the abundance distributions therein. It has been suggested that the strength of the low-ionization lines, R2, N2, and S2, may be increased (relative to Balmer lines) in (some) spaxel spectra of the MaNGA survey due to a contribution of the radiation of the diffuse ionized gas. Consequently, the abundances derived from the spaxel spectra through strong-line methods may suffer from large errors. We examined this expectation by comparing the behaviour of the line intensities and the abundances estimated through different calibrations for slit spectra of H II regions in nearby galaxies, for fibre spectra from the Sloan Digital Sky Survey, and for spaxel spectra of the MaNGA survey. We found that the S2 strength is increased significantly in the fibre and spaxel spectra. The mean enhancement changes with metallicity and can be as large as a factor of 2. The mean distortion of R2 and N2 is less than a factor of 1.3. This suggests that Kaufmann et al.'s (2003, MNRAS, 346, 1055) demarcation line between active galactic nuclei and H II regions in the Baldwin, Phillips, & Terlevich (BPT, 1981, PASP, 93, 5) diagram is a useful criterion to reject spectra with significantly distorted strengths of the N2 and R2 lines. We find that the three-dimensional R calibration, which uses the N2 and R2 lines, produces reliable abundances in the MaNGA galaxies. The one-dimensional N2 calibration produces either reliable or wrong abundances depending on whether excitation and N/O abundance ratio in the target region (spaxel) are close to or differ from those parameters in the calibrating points located close to the calibration relation. We then determined abundance distributions within the optical radii in the discs of 47 MaNGA galaxies. The optical radii of the galaxies were estimated from the surface brightness profiles constructed based on the

  11. Evolution of transmission spectra of double cladding fiber during etching

    Science.gov (United States)

    Ivanov, Oleg V.; Tian, Fei; Du, Henry

    2017-11-01

    We investigate the evolution of optical transmission through a double cladding fiber-optic structure during etching. The structure is formed by a section of SM630 fiber with inner depressed cladding between standard SMF-28 fibers. Its transmission spectrum exhibits two resonance dips at wavelengths where two cladding modes have almost equal propagation constants. We measure transmission spectra with decreasing thickness of the cladding and show that the resonance dips shift to shorter wavelengths, while new dips of lower order modes appear from long wavelength side. We calculate propagation constants of cladding modes and resonance wavelengths, which we compare with the experiment.

  12. Beta spectra. II-Positron spectra

    International Nuclear Information System (INIS)

    Grau, A.; Garcia-Torano, E.

    1981-01-01

    Using the Fermi theory of beta decay, the beta spectra for 30 positron emitters have been computed, introducing a correction factor for unique forbidden transitions. The spectra are ploted vs. energy, once normalised, and tabulated with the related Fermi functions. The average and median energies are calculated. (author)

  13. Structural, morphological and optical properties of thermal annealed TiO thin films

    International Nuclear Information System (INIS)

    Zribi, M.; Kanzari, M.; Rezig, B.

    2008-01-01

    Structural, morphological and optical properties of TiO thin films grown by single source thermal evaporation method were studied. The films were annealed from 300 to 520 deg. C in air after evaporation. Qualitative film analysis was performed with X-ray diffraction, atomic force microscopy and optical transmittance and reflectance spectra. A correlation was established between the optical properties, surface roughness and growth morphology of the evaporated TiO thin films. The X-ray diffraction spectra indicated the presence of the TiO 2 phase for the annealing temperature above 400 deg. C

  14. NONLINEAR OPTICAL MOLECULAR CRYSTAL BASED ON 2,6-DIAMINOPYRIDINE: SYNTHESIS AND CHARACTERIZATION

    Directory of Open Access Journals (Sweden)

    I. M. Pavlovetc

    2014-05-01

    Full Text Available The paper deals with investigation of a new nonlinear optical material based on nonlinear optical chromophore (4-Nitrophenol and aminopyridine (2,6-Diaminopyridine. Calculation results are presented for molecular packing in the crystalline compound, based on the given components. According to these results the finite material must have a noncentrosymmetric lattice, which determines the presence of the second order nonlinear optical response. Investigations carried out in this work confirm these calculations. Results of experiments are given describing the co-crystallization of these components and the following re-crystallization of the obtained material. In order to get a monocrystal form, the optimal conditions for the synthesis of molecular crystals based on these components are determined. Sufficiently large homogeneous crystals are obtained, that gave the possibility to record their spectra in the visible and near infrared parts of the spectrum, to determine their nonlinear optical properties and the level of homogeneity. Their optical (optical transmission and optical laser damage threshold and nonlinear optical properties are presented. For observation and measurement of the nonlinear optical properties an installation was built which implements the comparative method for measurements of nonlinear optical properties. A potassium titanyl oxide phosphate crystal was used as a sample for comparison. Results are given for the conversion efficiency of the primary laser radiation in the second optical harmonic relative to the signal obtained on the potassium titanyl oxide phosphate crystal. Obtained results show that the molecular co-crystal based on 2,6-Diaminopyridine is a promising nonlinear optical material for generating the second optical harmonic on the Nd: YAG laser (532 nm.

  15. Optical spectroscopy for food and beverages control

    Science.gov (United States)

    Mignani, Anna Grazia; Ciaccheri, Leonardo; Mencaglia, Andrea Azelio

    2011-08-01

    A selection of spectroscopy-based, fiber optic and micro-optic devices is presented. They have been designed and tested for monitoring the quality and safety of typical foodstuffs. The VIS-NIR spectra, considered as product fingerprints, allowed to discriminating the geographic region of production and to detecting nutritional and nutraceutic indicators.

  16. Optical properties of ThO{sub 2}–based nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, F.J.; Castro, M.A. [Department of Applied Chemistry and Physics, Area of Analytical Chemistry, Faculty of Biological and Environmental Sciences, University of León, Campus de Vegazana, s/n, 24071 León (Spain); Vázquez, M.D.; Debán, L. [Department of Analytical Chemistry, Faculty of Sciences, University of Valladolid, C/Paseo de Belén, no. 7, 47011 Valladolid (Spain); Aller, A.J., E-mail: aj.aller@unileon.es [Department of Applied Chemistry and Physics, Area of Analytical Chemistry, Faculty of Biological and Environmental Sciences, University of León, Campus de Vegazana, s/n, 24071 León (Spain)

    2017-04-15

    Thoria nanomaterials show great interest in different fields other than nuclear technology. In this work, optical characteristics of four types of thoria-based nanoparticles were evaluated. The ultraviolet-visible (UV–vis) absorption spectrum of the pure (undoped/uncapped) thoria nanoparticles was characterised by an intense peak at 222 nm, while the doped/capped thoria nanoparticles shown maximum absorption peaks at both 195/200 nm and 233 nm. Contrarily to the particle size, the band gap energy of the thoria nanoparticles decreased with the doping/capping process using arsenic (As{sup (III)})/cysteine (Cyst). The room-temperature photoluminescence excitation spectra were featured by two bands located at 268 nm for both pure and As-doped thoria nanoparticles and at 352 nm for all thoria-based nanoparticles studied, recording the photoluminescence emission at 500 nm. The characteristic wavelengths of the photoluminescence emission spectra were at 325 and 385 nm for the pure and As-doped thoria nanoparticles, while only the band at 385/415 nm was noted for the Cyst-capped thoria nanoparticles, with slightly red shift depending on the excitation wavelength.

  17. BETA SPECTRA. I. Negatrons spectra

    International Nuclear Information System (INIS)

    Grau Malonda, A.; Garcia-Torano, E.

    1978-01-01

    Using the Fermi theory of beta decay, the beta spectra for 62 negatrons emitters have been computed introducing a correction factor for unique forbidden transitions. These spectra are plotted vs. energy, once normal i sed, and tabulated with the related Fermi functions. The average and median energies are calculated. (Author)

  18. Precise Wavelengths and Energy Levels for the Spectra of Cr I, Mn I, and Mn III, and Branching Fractions for the Spectra of Fe II and Cr II

    Science.gov (United States)

    Nave, Gillian

    University of WisconsinMadison (UW) accurate lifetimes exist for many of the most important levels of the irongroup elements needed for the interpretation of astrophysical spectra. The accuracy of the oscillator strengths is now limited by the accuracy of the branching fractions, particularly when the branches from an upper level span a wide wavelength range that requires multiple calibration lamps. A laser-driven light source as a calibration lamp will reduce the calibration uncertainty in the UV region. Our FT and grating spectrometers will be used to extend the wavelength region of the measurements from 120 nm to 2500 nm. Fe II and Cr II give thousands of lines in the UV stellar spectra but accurate oscillator strengths are available only for a few hundred in each species. Many lines remain unidentified in the laboratory spectra of Fe/Ne and Cr/Ne hollow cathode lamps that correspond to lines in stellar spectra. The proposed atlases and linelists of these lamps will assist astronomers in confirming the species of these spectra lines and help them to identify lines of other elements in stellar spectra that are not blended with iron or chromium lines. These measurements will be of importance in interpreting spectra obtained from many current and future NASA missions including the Hubble Space Telescope, the James Webb Space Telescope and SOFIA. They will be particularly important in the analysis of spectra from the ASTRAL project - a large HST Treasury program that recorded the spectra of 29 bright and characteristic stars at high resolution and high signal-to-noise ratio. They will also be important for the interpretation of spectra from ground-based optical and infrared spectrographs. The proposed work thus supports the NASA Objective to explore the universe to understand its origin, structure, evolution and destiny

  19. Growth and optical properties of Ag clusters deposited on poly(ethylene terephthalate)

    International Nuclear Information System (INIS)

    Flores-Camacho, J M; Weidlinger, G; Sun, L D; Hohage, M; Primetzhofer, D; Bauer, P; Zeppenfeld, P; Schmidegg, K

    2011-01-01

    The growth and concomitant evolution of the optical properties of Ag nano-clusters deposited on biaxially extruded poly(ethylene terephthalate) films is studied by reflectance difference spectroscopy. It is demonstrated by low energy ion scattering and simulated optical spectra that the clusters form a two-dimensional layer buried beneath the surface of the substrate. The experimental spectra are described by simulations in which different configurations of the host such as anisotropy, amorphization, and dilution are considered in an effective medium approach. The contribution of the anisotropic substrate is used to explain the resulting line shapes. We also discuss the role of the rate of change of the filling fraction with Ag coverage in the evolution of the spectra and the detection of the onset of coalescence by optical means.

  20. Band structure and optical properties of diglycine nitrate crystal

    International Nuclear Information System (INIS)

    Andriyevsky, Bohdan; Ciepluch-Trojanek, Wioleta; Romanyuk, Mykola; Patryn, Aleksy; Jaskolski, Marcin

    2005-01-01

    Experimental and theoretical investigations of the electron energy characteristics and optical spectra for diglycine nitrate crystal (DGN) (NH 2 CH 2 COOH) 2 .HNO 3 , in the paraelectric phase (T=295K) are presented. Spectral dispersion of light reflection R(E) have been measured in the range of 3-22eV and the optical functions n(E) and k(E) have been calculated using Kramers-Kronig relations. First principal calculations of the electron energy characteristic and optical spectra of DGN crystal have been performed in the frame of density functional theory using CASTEP code (CAmbridge Serial Total Energy Package). Optical transitions forming the low-energy edge of fundamental absorption are associated with the nitrate groups NO 3 . Peculiarities of the band structure and DOS projected onto glycine and NO 3 groups confirm the molecular character of DGN crystal

  1. Synthesis and study of the optical properties of dielectric Bragg reflectors infiltrated with 6G-Rhodamine

    International Nuclear Information System (INIS)

    Gómez-Barojas, E; Aca-López, V; Luna-López, J A; Sánchez-Mora, E; Silva-González, R

    2014-01-01

    We report the study of the optical properties of 6G-Rhodamine (Rhd) infiltrated porous silicon dielectric Bragg reflectors (DBRs) with 31 constituent periods. The DBRs were obtained by an electrochemical anodizing process of Si in a two electrodes Teflon cell. The porosity was determined by gravimetric measurements on single Porous silicon (PSi) layers. Based on the characterization results of single layers the DBRs were synthesized. After anodizing, the DBRs were silanized with a 3-mercaptopropyltrimethoxysilane solution and functionalized with Rhd solutions at different concentrations. Cross section scanning electron micrographs show that the DBRs synthesis was successful. After each preparation step, Reflectance and Fluorescence (FL) spectra were recorded. These spectra show that as the Rhd concentration in solution is increased the stop band intensity as well as the FL intensity are enhanced due to constructive interference effects

  2. Electrical and optical properties of SnEuTe and SnSrTe films

    Science.gov (United States)

    Ishida, Akihiro; Tsuchiya, Takuro; Yamada, Tomohiro; Cao, Daoshe; Takaoka, Sadao; Rahim, Mohamed; Felder, Ferdinand; Zogg, Hans

    2010-06-01

    The SnTe, Sn1-xEuxTe and Sn1-xSrxTe (x<0.06) films were prepared by hot wall epitaxy. The ternary alloy films prepared in cation rich condition had hole concentration around 1×1019 cm-3 with high mobility exceeding 2000 cm2/V s at room temperature. Optical transmission spectra were also measured in the temperature range from 100 to 400 K and compared with theoretical calculations. Optical transmission spectra of the SnTe were simulated successfully assuming bumped band edge structures. A band inversion model was proposed for the Sn1-xEuxTe and Sn1-xSrxTe systems, and the optical transmission spectra were also simulated successfully assuming the band inversion model.

  3. Evaluation of plasma-wave spectral density from cross-power spectra

    International Nuclear Information System (INIS)

    Ilic, D.B.; Harker, K.J.

    1975-01-01

    The plasma-wave spectral density is evaluated by performing a spatial Fourier transform on experimental cross-power spectra of ion acoustic waves. The cross-power spectra are recorded on analog magnetic tape, converted to digital form, transferred to digital magnetic tape, and Fourier transformed on a digital computer. The important effects of sampling, finite data strings, and data smoothing on the end results are discussed and illustrated. The results indicate the usefulness of the spectral density method for the study of nonlinear wave phenomena. (auth)

  4. Remote spectrometry with optical fibers, ten years of development and prospects for on-line control

    International Nuclear Information System (INIS)

    Boisde, G.; Perez, J.J.

    1984-09-01

    This paper describes, with examples uranium and plutonium spectra, how optical fibers have raised new concepts in spectrometry, such as the internal spectral reference, instantaneous measurements on the sides of the absorption spectra, and the modelling of spectral variations. With optical fibers, original technical solutions are used for remote chemical analysis

  5. Quantum theory and experimental studies of absorption spectra and photoisomerization of azobenzene polymers

    DEFF Research Database (Denmark)

    Pedersen, Thomas Garm; Ramanujam, P.S.; Johansen, P.M.

    1998-01-01

    The microscopic properties of azobenzene chromophores are important for a correct description of optical storage systems based on photoinduced anisotropy in azobenzene polymers. A quantum model of these properties is presented and verified by comparison to experimental absorption spectra for trans...

  6. Diffuse Reflectance Spectroscopy of Human Skin Using a Commercial Fiber Optic Spectrometer

    International Nuclear Information System (INIS)

    Atencio, J. A. Delgado; Rodriguez, M. Cunill; Montiel, S. Vazquez y; Castro, Jorge; Rodriguez, A. Cornejo; Gutierrez, J. L.; Martinez, F.; Gutierrez, B.; Orozco, E.

    2008-01-01

    Diffuse reflectance spectroscopy is a reliable and easy to implement technique in human tissue characterization. In this work we evaluate the performance of the commercial USB4000 miniature fiber optic spectrometer in the in-vivo measurement of the diffuse reflectance spectra of different healthy skin sites and lesions in a population of 54 volunteers. Results show, that this spectrometer reproduces well the typical signatures of skin spectra over the 400-1000 nm region. Remarkable spectral differences exist between lesions and normal surrounding skin. A diffusion-based model was used to simulate reflectance spectra collected by the optical probe of the system

  7. Measurement of high-dynamic range x-ray Thomson scattering spectra for the characterization of nano-plasmas at LCLS

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, M. J., E-mail: macdonm@umich.edu [University of Michigan, Ann Arbor, Michigan 48109 (United States); SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Gorkhover, T. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Technische Universität, 10623 Berlin (Germany); Bachmann, B.; Hau-Riege, S. P.; Pardini, T.; Döppner, T. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Bucher, M. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Argonne National Lab, Lemont, Illinois 60439 (United States); Carron, S. [California Lutheran University, Thousand Oaks, California 91360 (United States); Coffee, R. N.; Fletcher, L. B.; Gamboa, E. J.; Glenzer, S. H.; Göde, S.; Krzywinski, J.; O’Grady, C. P.; Osipov, T.; Swiggers, M. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Drake, R. P. [University of Michigan, Ann Arbor, Michigan 48109 (United States); Ferguson, K. R. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Stanford University, Stanford, California 94305 (United States); Kraus, D. [University of California, Berkeley, California 94720 (United States); and others

    2016-11-15

    Atomic clusters can serve as ideal model systems for exploring ultrafast (∼100 fs) laser-driven ionization dynamics of dense matter on the nanometer scale. Resonant absorption of optical laser pulses enables heating to temperatures on the order of 1 keV at near solid density conditions. To date, direct probing of transient states of such nano-plasmas was limited to coherent x-ray imaging. Here we present the first measurement of spectrally resolved incoherent x-ray scattering from clusters, enabling measurements of transient temperature, densities, and ionization. Single shot x-ray Thomson scattering signals were recorded at 120 Hz using a crystal spectrometer in combination with a single-photon counting and energy-dispersive pnCCD. A precise pump laser collimation scheme enabled recording near background-free scattering spectra from Ar clusters with an unprecedented dynamic range of more than 3 orders of magnitude. Such measurements are important for understanding collective effects in laser-matter interactions on femtosecond time scales, opening new routes for the development of schemes for their ultrafast control.

  8. Progress in optics

    CERN Document Server

    Wolf, Emil

    2015-01-01

    The Progress in Optics series contains more than 300 review articles by distinguished research workers, which have become permanent records for many important developments, helping optical scientists and optical engineers stay abreast of their fields. Comprehensive, in-depth reviewsEdited by the leading authority in the field

  9. Structural, vibrational and theoretical studies of anilinium trichloroacetate: New hydrogen bonded molecular crystal with nonlinear optical properties

    Science.gov (United States)

    Tanak, H.; Pawlus, K.; Marchewka, M. K.; Pietraszko, A.

    2014-01-01

    In this work, we report a combined experimental and theoretical study on molecular structure, vibrational spectra and NBO analysis of the potential nonlinear optical (NLO) material anilinium trichloroacetate. The FT-IR and FT-Raman spectra of the compound have been recorded together between 4000-80 cm-1 and 3600-80 cm-1 regions, respectively. The compound crystallizes in the noncentrosymmetric space group of monoclinic system. The optimized molecular structure, vibrational wavenumbers, IR intensities and Raman activities have been calculated by using density functional method (B3LYP) with 6-311++G(d,p) as higher basis set. The obtained vibrational wavenumbers and optimized geometric parameters were seen to be in good agreement with the experimental data. DSC measurements on powder samples do not indicate clearly on the occurrence of phase transitions in the temperature 113-293 K. The Kurtz and Perry powder reflection technique appeared to be very effective in studies of second-order nonlinear optical properties of the molecule. The non-linear optical properties are also addressed theoretically. The predicted NLO properties of the title compound are much greater than ones of urea. In addition, DFT calculations of the title compound, molecular electrostatic potential, frontier orbitals and thermodynamic properties were also performed at 6-311++G(d,p) level of theory. For title crystal the SHG efficiency was estimated by Kurtz-Perry method to be deff = 0.70 deff (KDP).

  10. Optical features of C, N, Mn implanted MgO films

    International Nuclear Information System (INIS)

    Dorosinets, V.A.; Dobrinets, I.A.; Wieck, A.

    2013-01-01

    Optical absorption and Raman spectra investigations of C/ N/ Mn implanted MgO films have been investigated. The spectra reveal a surface modification and a dependence of the defect formation mechanism on the ion type and the annealing regime. (authors)

  11. Microstructural and optical properties of CdS nanoparticles synthesized by sol gel method

    Science.gov (United States)

    Mahdi, Hadeel Salih; Parveen, Azra; Agrawal, Shraddha; Azam, Ameer

    2018-05-01

    Semiconductor nanoparticles of CdS are of great interest for both fundamental research and industrial development due to their unique size-dependent optical and electronic properties and their exciting utilization in the fields of light-emitting diode, electro-chemical cells, laser, hydrogen producing catalyst, biological label. We present a scheme to measure the optical properties of CdS nanoparticles The peaks were indexed by powder-x software. The XRD pattern analysis showed that CdS composition was found to have hexagonal structure with well crystalline nature. the surface morphology and the composition of the samples were investigated by SEM (JEOL, japan). The image shows the presence of large spherical aggregates of smaller individual nanoparticles of various sizes for pure cds. to check the chemical composition of the material, energy dispersive X-ray (EDX) spectroscopic analysis was also performed which further confirmed the presence of cd and s ions in the matrix. The optical absorption spectra of CdS sample was recorded by uv-vis spectrophotometer in the range of 200 to 800 nm.

  12. Strong crystal field effect in ? - optical absorption study

    Science.gov (United States)

    Gajek, Z.; Krupa, J. C.

    1998-12-01

    =-1 Results of optical absorption measurements in polarized light on tetravalent neptunium diluted in a 0953-8984/10/50/021/img6 single crystal are reported. The recorded spectra are complex, pointing to the presence of an 0953-8984/10/50/021/img7 impurity. The electronic transitions assigned to the 0953-8984/10/50/021/img8 ion are interpreted in terms of the usual model, following the actual understanding of the neptunium electronic structure and independent theoretical predictions. R.m.s. deviations of the order of 0953-8984/10/50/021/img9 have been obtained for 42 levels fitted with 11 free parameters. The crystal field effect resulting from the fitting is considerably larger than that observed for the uranium ion in the same host.

  13. XUV spectra of laser-produced zirconium plasmas

    Czech Academy of Sciences Publication Activity Database

    Li, B.; Higashiguchi, T.; Otsuka, T.; Jiang, W.; Endo, Akira; Dunne, P.; O'Sullivan, G.

    2012-01-01

    Roč. 45, č. 24 (2012), "245004-1"-"245004-6" ISSN 0953-4075 R&D Projects: GA MŠk ED2.1.00/01.0027; GA MŠk EE2.3.20.0143 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 6 k HILASE(XE) CZ.1.07/2.3.00/20.0143 Program:EE Institutional support: RVO:68378271 Keywords : x-ray-spectra * dielectronic recombination * transitions * spectroscopy * microscopy * ions Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.031, year: 2012

  14. Determining thin film properties by fitting optical transmittance

    International Nuclear Information System (INIS)

    Klein, J.D.; Yen, A.; Cogan, S.F.

    1990-01-01

    The optical transmission spectra of rf sputtered tungsten oxide films on glass substrates were modeled to determine absorption edge behavior, film thickness, and index of refraction. Removal of substrate reflection and absorption phenomena from the experimental spectra allowed direct examination of thin film optical characteristics. The interference fringe pattern allows determination of the film thickness and the dependence of the real index of refraction on wavelength. Knowledge of the interference fringe behavior in the vicinity of the absorption edge was found essential to unambiguous determination of the optical band gap. In particular, the apparently random deviations commonly observed in the extrapolation of as-acquired data are eliminated by explicitly considering interference fringe phenomena. The multivariable optimization fitting scheme employed allows air-film-substrate reflection losses to be compensated without making reflectance measurements

  15. Diffused holographic information storage and retrieval using photorefractive optical materials

    Science.gov (United States)

    McMillen, Deanna Kay

    Holography offers a tremendous opportunity for dense information storage, theoretically one bit per cubic wavelength of material volume, with rapid retrieval, of up to thousands of pages of information simultaneously. However, many factors prevent the theoretical storage limit from being reached, including dynamic range problems and imperfections in recording materials. This research explores new ways of moving closer to practical holographic information storage and retrieval by altering the recording materials, in this case, photorefractive crystals, and by increasing the current storage capacity while improving the information retrieved. As an experimental example of the techniques developed, the information retrieved is the correlation peak from an optical recognition architecture, but the materials and methods developed are applicable to many other holographic information storage systems. Optical correlators can potentially solve any signal or image recognition problem. Military surveillance, fingerprint identification for law enforcement or employee identification, and video games are but a few examples of applications. A major obstacle keeping optical correlators from being universally accepted is the lack of a high quality, thick (high capacity) holographic recording material that operates with red or infrared wavelengths which are available from inexpensive diode lasers. This research addresses the problems from two positions: find a better material for use with diode lasers, and reduce the requirements placed on the material while maintaining an efficient and effective system. This research found that the solutions are new dopants introduced into photorefractive lithium niobate to improve wavelength sensitivities and the use of a novel inexpensive diffuser that reduces the dynamic range and optical element quality requirements (which reduces the cost) while improving performance. A uniquely doped set of 12 lithium niobate crystals was specified and

  16. Chemical states and optical properties of thermally evaporated Ge-Te and Ge-Sb-Te amorphous thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S.; Singh, D.; Shandhu, S. [Semiconductor Laboratory, Department of Physics, Guru Nanak Dev University Amritsar (India); Thangaraj, R., E-mail: rthangaraj@rediffmail.com [Semiconductor Laboratory, Department of Physics, Guru Nanak Dev University Amritsar (India)

    2012-07-15

    Thin amorphous films of Ge{sub 22}Sb{sub 22}Te{sub 56} and Ge{sub 50}Te{sub 50} have been prepared from their respective polycrystalline bulk on glass substrates by thermal evaporation technique. The amorphous nature of the films was checked with X-ray diffraction studies. Amorphous-to-crystalline transition of the films has been induced by thermal annealing and the structural phases have been identified by X-ray diffraction. The phase transformation temperature of the films was evaluated by temperature dependent sheet resistance measurement. The chemical structure of the amorphous films has been investigated using X-ray photoelectron spectroscopy and the role of Sb in phase change Ge{sub 22}Sb{sub 22}Te{sub 56} film is discussed. Survey and core level (Ge 3d, Te 3d, Te 4d, Sb 3p, Sb 3d, O 1s, C 1s) band spectra has been recorded and analyzed. For optical studies, the transmittance and the reflectance spectra were measured over the wavelength ranges 400-2500 nm using UV-vis-NIR spectroscopy. The optical band gap, refractive index and extinction coefficient are also presented for thermally evaporated amorphous thin films.

  17. Optical and scintillation properties of Ce-doped LuLiF{sub 4} with different Ce concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, Takayuki, E-mail: yanagida@lsse.kyutech.ac.jp [Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0196 (Japan); Fujimoto, Yutaka [Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0196 (Japan); Fukuda, Kentaro [Tokuyama Corporation, Shibuya 3-chome, Shibuya-ku, Tokyo 150-8383 Japan (Japan); Chani, Valery [Tohoku Univ., 2-1-1 Katahira, Sendai 980-8577 (Japan)

    2013-11-21

    The crystals of 0.1, 0.5, and 1 mol% Ce-doped LuLiF{sub 4} (Ce:LLF) grown by the micro-pulling down (μ-PD) method were examined for their optical and scintillation properties. Ce:LLF crystals had ∼80% transparency at wavelengths longer than 300 nm. In photoluminescence spectra, they demonstrated intense emission peaks at 310 and 330 nm with the quantum yield of 60–90%. Ce{sup 3+} 5d–4f emission peaks were also detected at similar wavelengths of 310 and 330 nm in the radioluminescence spectra obtained under X-ray excitation. According to pulse height spectra recorded under γ-ray irradiation, the absolute light yield of Ce 0.1, 0.5, and 1% were 3600±400, 3000±300, and 1700±200 ph/MeV, respectively. Decay time kinetics was also inspected using a pulse X-ray equipped streak camera system. The decay time components of Ce:LLF were ∼70 ns and ∼1 μs for all the samples.

  18. Optical emission spectrographic analysis of lutetium oxide for rare earth impurities

    International Nuclear Information System (INIS)

    Chandola, L.C.; Dixit, V.S.

    1986-01-01

    An optical emission spectrographic (OES) method has been developed for the analysis of high purity lutetium oxide to determine rare earths Er, Tm, Yb and Y. The spectra are excited by a d.c. arc run at 10 A current after mixing the sample with graphite buffer in the weight ratio 1:1. A 1200 grooves/mm grating blazed at 3300 A is used for dispersion and a Kodak SA-1 plate for recording the spectrum. The detection limit is 0.001 per cent for Tm, Yb and Y while it is 0.005 per cent for Er. The relative standard deviation of the method is ± 13.4 per cent. (author)

  19. Mitigating the effect of optical back-scatter in multispectral underwater imaging

    International Nuclear Information System (INIS)

    Mortazavi, Halleh; Oakley, John P; Barkat, Braham

    2013-01-01

    Multispectral imaging is a very useful technique for extracting information from the underwater world. However, optical back-scatter changes the intensity value in each spectral band and this distorts the estimated spectrum. In this work, a filter is used to detect the level of optical back-scatter in each spectral band from a set of multispectral images. Extraction of underwater object spectra can be done by subtracting the estimated level of optical back-scatter and scaling the remainder in each spectral band from the captured image in the corresponding band. An experiment has been designed to show the performance of the proposed filter for correcting the set of multispectral underwater images and recovering the pixel spectra. The multispectral images are captured by a B/W CCD digital camera with a fast tunable liquid-crystal filter in 33 narrow spectral bands in clear and different levels of turbid water. Reference estimates for the optical back-scatter spectra are found by comparing a clear and a degraded set of multispectral images. The accuracy and consistency of the proposed method, the extended Oakley–Bu cost function, is examined by comparing the estimated values with the reference level of an optical back-scatter spectrum. The same comparison is made for the simple estimation approach. The results show that the simple method is not reliable and fail to estimate the level of optical back-scatter spectrum accurately. The results from processing experimental images in turbid water show that the effect of optical back-scatter can be mitigated in the image of each spectral band and, as a result, the spectra of the object can be recovered. However, for a very high level of turbid water the recovery is limited because of the effect of extinction. (paper)

  20. Optical emission from a small scale model electric arc furnace in 250-600 nm region.

    Science.gov (United States)

    Mäkinen, A; Niskanen, J; Tikkala, H; Aksela, H

    2013-04-01

    Optical emission spectroscopy has been for long proposed for monitoring and studying industrial steel making processes. Whereas the radiative decay of thermal excitations is always taking place in high temperatures needed in steel production, one of the most promising environment for such studies are electric arc furnaces, creating plasma in excited electronic states that relax with intense characteristic emission in the optical regime. Unfortunately, large industrial scale electric arc furnaces also present a challenging environment for optical emission studies and application of the method is not straightforward. To study the usability of optical emission spectroscopy in real electric arc furnaces, we have developed a laboratory scale DC electric arc furnace presented in this paper. With the setup, optical emission spectra of Fe, Cr, Cr2O3, Ni, SiO2, Al2O3, CaO, and MgO were recorded in the wavelength range 250-600 nm and the results were analyzed with the help of reference data. The work demonstrates that using characteristic optical emission, obtaining in situ chemical information from oscillating plasma of electric arc furnaces is indeed possible. In spite of complications, the method could possibly be applied to industrial scale steel making process in order to improve its efficiency.

  1. Electronic polarizability, optical basicity and interaction parameter for Nd{sub 2}O{sub 3} doped lithium-zinc-phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Algradee, M.A.; Sultan, M.; Samir, O.M.; Alwany, A.E.B. [Ibb University, Department of Physics, Faculty of Science, Ibb (Yemen)

    2017-08-15

    The Nd{sup 3+}-doped lithium-zinc-phosphate glasses were prepared by means of conventional melt quenching method. X-ray diffraction results confirmed the glassy nature of the studied glasses. The physical parameters such as the density, molar volume, ion concentration, polaron radius, inter-ionic distance, field strength and oxygen packing density were calculated using different formulae. The transmittance and reflectance spectra of glasses were recorded in the wavelength range 190-1200 nm. The values of optical band gap and Urbach energy were determined based on Mott-Davis model. The refractive indices for the studied glasses were evaluated from optical band gap values using different methods. The average electronic polarizability of the oxide ions, optical basicity and an interaction parameter were investigated from the calculated values of the refractive index and the optical band gap for the studied glasses. The variations in the different physical and optical properties of glasses with Nd{sub 2}O{sub 3} content were discussed in terms of different parameters such as non-bridging oxygen and different concentrations of Nd cation in glass system. (orig.)

  2. FT-IR, FT-Raman spectra, density functional computations of the vibrational spectra and molecular conformational analysis of 2,5-di-tert-butyl-hydroquinone

    Science.gov (United States)

    Subramanian, N.; Sundaraganesan, N.; Dereli, Ö.; Türkkan, E.

    2011-12-01

    The purpose of finding conformer among six different possible conformers of 2,5-di-tert-butyl-hydroquinone (DTBHQ), its equilibrium geometry and harmonic wavenumbers were calculated by the B3LYP/6-31G(d,p) method. The infrared and Raman spectra of DTBHQ were recorded in the region 400-4000 cm -1 and 50-3500 cm -1, respectively. In addition, the IR spectra in CCl 4 at various concentrations of DTBHQ are also recorded. The computed vibrational wavenumbers were compared with the IR and Raman experimental data. Computational calculations at B3LYP level with two different basis sets 6-31G(d,p) and 6-311++G(d,p) are also employed in the study of the possible conformer of DTBHQ. The complete assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes, calculated using VEDA 4 program. The general agreement between the observed and calculated frequencies was established.

  3. Optical properties of armchair (7, 7) single walled carbon nanotubes

    International Nuclear Information System (INIS)

    Gharbavi, K.; Badehian, H.

    2015-01-01

    Full potential linearized augmented plane waves method with the generalized gradient approximation for the exchange-correlation potential was applied to calculate the optical properties of (7, 7) single walled carbon nanotubes. The both x and z directions of the incident photons were applied to estimate optical gaps, dielectric function, electron energy loss spectroscopies, optical conductivity, optical extinction, optical refractive index and optical absorption coefficient. The results predict that dielectric function, ε (ω), is anisotropic since it has higher peaks along z-direction than x-direction. The static optical refractive constant were calculated about 1.4 (z-direction) and 1.1 (x- direction). Moreover, the electron energy loss spectroscopy showed a sharp π electron plasmon peaks at about 6 eV and 5 eV for z and x-directions respectively. The calculated reflection spectra show that directions perpendicular to the tube axis have further optical reflection. Moreover, z-direction indicates higher peaks at absorption spectra in low range energies. Totally, increasing the diameter of armchair carbon nanotubes cause the optical band gap, static optical refractive constant and optical reflectivity to decrease. On the other hand, increasing the diameter cause the optical absorption and the optical conductivity to increase. Moreover, the sharp peaks being illustrated at optical spectrum are related to the 1D structure of CNTs which confirm the accuracy of the calculations

  4. Temperature dependence of absorption spectra of P-type GaP

    International Nuclear Information System (INIS)

    Mounir, M.; Balloomal, L.S.

    1985-10-01

    The theoretical analysis of the optical absorption due to band-impurity (impurity-band) electron transitions involving deep impurity levels in semi-conductors is considered. Also the data of the experimental absorption spectra of GaP were performed at room temperature and the results were found to be in agreement with the theoretical results if the electron-phonon interaction is taken into consideration. (author)

  5. Magneto-optic studies of magnetic oxides

    International Nuclear Information System (INIS)

    Gehring, Gillian A.; Alshammari, Marzook S.; Score, David S.; Neal, James R.; Mokhtari, Abbas; Fox, A. Mark

    2012-01-01

    A brief review of the use of magneto-optic methods to study magnetic oxides is given. A simple method to obtain the magnetic circular dichroism (MCD) of a thin film on a transparent substrate is described. The method takes full account of multiple reflections in the film and substrate. Examples of the magneto-optic spectra of Co-doped ZnO, Fe 3 O 4 , and GdMnO 3 are given. The Maxwell–Garnett method is used to describe the effects of metallic cobalt inclusions in Co:ZnO samples, and the change of the MCD spectra of Fe 3 O 4 at the Verwey temperature is discussed. Data showing different MCD signals at different energies is presented for GdMnO 3 .

  6. Dependence of the thermal influence on luminescence lifetimes from quartz on the duration of optical stimulation

    International Nuclear Information System (INIS)

    Chithambo, M.L.

    2003-01-01

    Time-resolved luminescence spectra may be measured from quartz at various stages of continuous optical stimulation in order to investigate properties of the spectra associated with the 'fast', 'medium', and 'slow' components of continuous optically stimulated luminescence (OSL). In this work, temperature related changes of luminescence lifetimes and luminescence intensity, both evaluated from time-resolved luminescence spectra recorded in the 'fast' 'medium' and 'slow' component regions of quartz OSL, have been investigated. The luminescence, stimulated at 525 nm, and measured at intervals between 20 deg. C and 200 deg. C reaches maximum intensity at 100 deg. C and decreases thereafter up to 200 deg. C, the maximum temperature of the investigations. Luminescence lifetimes, on the other hand, remain constant within 40±3 μs between 20 deg. C and 100 deg. C and then decrease down to about μs at 200 deg. C. The initial increase of luminescence intensity with temperature between 20 deg. C and 100 deg. C is discussed in terms of thermal assistance to luminescence stimulation. Beyond 100 deg. C, radiative recombination is affected by quenching of luminescence and reduction in luminescence lifetimes. The activation energy for thermal quenching was evaluated to be in the range 0.63±0.07 eV at all stimulation times and that of thermal assistance was evaluated to be about 0.06 eV for the 'fast' and 'medium' component regions and about 0.1 eV for the 'slow' component region of the OSL

  7. Electronic and optical properties of Fe, Pd, and Ti studied by reflection electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    Tahir, Dahlang; Kraaer, Jens; Tougaard, Sven

    2014-01-01

    We have studied the electronic and optical properties of Fe, Pd, and Ti by reflection electron energy-loss spectroscopy (REELS). REELS spectra recorded for primary energies in the range from 300 eV to 10 keV were corrected for multiple inelastically scattered electrons to determine the effective inelastic-scattering cross section. The dielectric functions and optical properties were determined by comparing the experimental inelastic-electron scattering cross section with a simulated cross section calculated within the semi-classical dielectric response model in which the only input is Im(−1/ε) by using the QUEELS-ε(k,ω)-REELS software package. The complex dielectric functions ε(k,ω), in the 0–100 eV energy range, for Fe, Pd, and Ti were determined from the derived Im(−1/ε) by Kramers-Kronig transformation and then the refractive index n and extinction coefficient k. The validity of the applied model was previously tested and found to give consistent results when applied to REELS spectra at energies between 300 and 1000 eV taken at widely different experimental geometries. In the present paper, we provide, for the first time, a further test on its validity and find that the model also gives consistent results when applied to REELS spectra in the full range of primary electron energies from 300 eV to 10000 eV. This gives confidence in the validity of the applied method.

  8. [The NIR spectra based variety discrimination for single soybean seed].

    Science.gov (United States)

    Zhu, Da-Zhou; Wang, Kun; Zhou, Guang-Hua; Hou, Rui-Feng; Wang, Cheng

    2010-12-01

    With the development of soybean producing and processing, the quality breeding becomes more and more important for soybean breeders. Traditional sampling detection methods for soybean quality need to destroy the seed, and does not satisfy the requirement of earlier generation materials sieving for breeding. Near infrared (NIR) spectroscopy has been widely used for soybean quality detection. However, all these applications were referred to mass samples, and they were not suitable for little or single seed detection in breeding procedure. In the present study, the acousto--optic tunable filter (AOTF) NIR spectroscopy was used to measure the single soybean seed. Two varieties of soybean were measured, which contained 60 KENJIANDOU43 seeds and 60 ZHONGHUANG13 seeds. The results showed that NIR spectra combined with soft independent modeling of class analogy (SIMCA) could accurately discriminate the soybean varieties. The classification accuracy for KENJIANDOU43 seeds and ZHONGHUANG13 was 100%. The spectra of single soybean seed were measured at different positions, and it showed that the seed shape has significant influence on the measurement of spectra, therefore, the key point for single seed measurement was how to accurately acquire the spectra and keep their representativeness. The spectra for soybeans with glossy surface had high repeatability, while the spectra of seeds with external defects had significant difference for several measurements. For the fast sieving of earlier generation materials in breeding, one could firstly eliminate the seeds with external defects, then apply NIR spectra for internal quality detection, and in this way the influence of seed shape and external defects could be reduced.

  9. VizieR Online Data Catalog: Sulamitis and Clarissa asteroids spectra (Morate+, 2018)

    Science.gov (United States)

    Morate, D.; de, Leon J.; de Pra, M.; Licandro, J.; Cabrera-Lavers, A.; Campins, H.; Pinilla-Alonso, N.

    2017-11-01

    A total of 97 low-resolution visible spectra were obtained for the asteroids in the Sulamitis and Clarissa families (64 and 33 objects, respectively), using the Optical System for Imaging and Low Resolution Integrated Spectroscopy (OSIRIS) camera spectrograph at the 10.4m Gran Telescopio Canarias (GTC), located at the El Roque de los Muchachos Observatory (ORM) in La Palma, Canary Islands, Spain. In addition, we obtained three spectra of (752) Sulamitis using the Intermediate Dispersion Spectrograph (IDS) at the 2.5m Isaac Newton Telescope, also located at the ORM in La Palma, as part of program C97 (2015), on July 22, 2015. All the spectra files included here are named ast_ASTEROIDNUMBER.txt, except for the spectra of (752) taken with the INT (named ast752INT.txt). The first column is the wavelength, expressed in microns, and the second column is the reflectance value (which is normalized at 1 at 0.55 microns). (3 data files).

  10. Optical absorption and photoluminescence properties of chromium in different host glasses

    Energy Technology Data Exchange (ETDEWEB)

    Lachheb, R., E-mail: raouialach66@gmail.com [LaboratoireGéoressources, Matériaux, Environnement et Changements Globaux, Faculty of Sciences of Sfax, Sfax University, 3018 Sfax (Tunisia); Herrmann, A. [Otto-Schott-Institut, Jena University, Fraunhoferstraße 6, 07743 Jena (Germany); Damak, K. [LaboratoireGéoressources, Matériaux, Environnement et Changements Globaux, Faculty of Sciences of Sfax, Sfax University, 3018 Sfax (Tunisia); Rüssel, C. [Otto-Schott-Institut, Jena University, Fraunhoferstraße 6, 07743 Jena (Germany); Maâlej, R. [LaboratoireGéoressources, Matériaux, Environnement et Changements Globaux, Faculty of Sciences of Sfax, Sfax University, 3018 Sfax (Tunisia)

    2017-06-15

    The optical absorption, excitation and fluorescence spectra, and emission lifetimes of chromium (III) were investigated in a wide variety of oxide glasses (aluminosilicate, aluminate and phosphate). For all glasses, weak crystal field strengths were deduced from the absorption spectra. The effect of the glass matrix and the Cr{sup 3+} concentration on the fluorescence properties of Cr{sup 3+} ions were investigated. An increased fluorescence intensity of Cr{sup 3+}was found for glasses of low optical basicity, the spectral position of the Cr{sup 3+} absorption and emission, however, was hardly influenced by the glass composition. The optical absorption spectra of the chromium doped aluminosilicate and aluminate glasses showed the presence of Cr{sup VI}, while in phosphate glasses most chromium occurred as Cr{sup 3+} ions. Furthermore, for the glass with the lowest basicity, the Cr{sup 3+}concentration was optimized in order to achieve maximum fluorescence emission intensity.

  11. Growth and optical spectroscopy of synthetic diamonds

    International Nuclear Information System (INIS)

    Mudryj, A.V.; Larionova, T.P.; Shakin, I.A.; Gysakov, G.A.; Dubrov, G.A.; Tikhonov, V.V.

    2003-01-01

    It is studied the growth and optical properties of synthetic diamonds, which may be used for detection of ionizing radiation, optical windows, heat removal, ultraviolet and thermo sensors, optoelectronic devices. Optical properties of diamonds (grown in different technological conditions) were studied in temperature range 78 - 300 K by means of measuring transmission in spectral band 0.2 - 25 μm, photoluminescence and registration of luminescence excitation spectra in spectral band 0.2 - 2 μm

  12. Soft X-Ray Spectra from High Current Nitrogen Z-Pinch Discharge

    Czech Academy of Sciences Publication Activity Database

    Vrba, Pavel; Vrbová, M.; Nevrkla, M.; Jančárek, A.

    2016-01-01

    Roč. 3, č. 1 (2016), s. 48 ISSN 2336-2626. [SPPT 2016 - 27th Symposium on Plasma Physics and Technology/27./. Prague, 20.06.2016-23.06.2016] Institutional support: RVO:61389021 Keywords : Capillary discharge * recombination pumping * pinch dynamics * evolution of spectra emission * computer modelling Subject RIV: BH - Optics, Masers, Lasers www.plasmaconference.cz

  13. Electronic and optical properties of finite carbon nanotubes in an electric field

    International Nuclear Information System (INIS)

    Chen, R B; Lee, C H; Chang, C P; Lin, M F

    2007-01-01

    The effects, caused by the geometric structure and an electric field (E), on the electronic and optical properties of quasi-zero-dimensional finite carbon nanotubes are explored by employing the tight-binding model coupled with curvature effects. Electronic properties (state energies, symmetry of electronic states, energy spacing and state degeneracy) are significantly affected by the magnitude and the direction of the electric field and the geometric structure (radius, length and chirality). The electric field, by lowering the symmetry of finite carbon nanotubes, modifies the electronic properties. Thus, the optical excitation spectra, excited by electric polarization parallel to the nanotube axis, exhibit rich delta-function-like peaks, which reveal the characteristics of the electronic properties. Therefore it follows that geometric structure and E influence the low-energy absorption spectra, i.e. the change of frequency of the first peak, the alternation of the peak height and the production of the new peaks. There are more absorption peaks when E is oriented closer to the cross-section plane. Moreover, the very complicated optical absorption spectra are characteristic for the individual chiral carbon nanotube due to its specific geometric structure. Above all, the predicted absorption spectra and the associated electronic properties could be verified by optical measurements

  14. An Inverse Modeling Approach to Estimating Phytoplankton Pigment Concentrations from Phytoplankton Absorption Spectra

    Science.gov (United States)

    Moisan, John R.; Moisan, Tiffany A. H.; Linkswiler, Matthew A.

    2011-01-01

    Phytoplankton absorption spectra and High-Performance Liquid Chromatography (HPLC) pigment observations from the Eastern U.S. and global observations from NASA's SeaBASS archive are used in a linear inverse calculation to extract pigment-specific absorption spectra. Using these pigment-specific absorption spectra to reconstruct the phytoplankton absorption spectra results in high correlations at all visible wavelengths (r(sup 2) from 0.83 to 0.98), and linear regressions (slopes ranging from 0.8 to 1.1). Higher correlations (r(sup 2) from 0.75 to 1.00) are obtained in the visible portion of the spectra when the total phytoplankton absorption spectra are unpackaged by multiplying the entire spectra by a factor that sets the total absorption at 675 nm to that expected from absorption spectra reconstruction using measured pigment concentrations and laboratory-derived pigment-specific absorption spectra. The derived pigment-specific absorption spectra were further used with the total phytoplankton absorption spectra in a second linear inverse calculation to estimate the various phytoplankton HPLC pigments. A comparison between the estimated and measured pigment concentrations for the 18 pigment fields showed good correlations (r(sup 2) greater than 0.5) for 7 pigments and very good correlations (r(sup 2) greater than 0.7) for chlorophyll a and fucoxanthin. Higher correlations result when the analysis is carried out at more local geographic scales. The ability to estimate phytoplankton pigments using pigment-specific absorption spectra is critical for using hyperspectral inverse models to retrieve phytoplankton pigment concentrations and other Inherent Optical Properties (IOPs) from passive remote sensing observations.

  15. Resonance Raman Optical Activity and Surface Enhanced Resonance Raman Optical Activity analysis of Cytochrome C

    DEFF Research Database (Denmark)

    Johannessen, Christian; Abdali, Salim; White, Peter C.

    2007-01-01

    High quality Resonance Raman (RR) and resonance Raman Optical Activity (ROA) spectra of cytochrome c were obtained in order to perform full assignment of spectral features of the resonance ROA spectrum. The resonance ROA spectrum of cytochrome c revealed a distinct spectral signature pattern due...... to resonance enhanced skeletal porphyrin vibrations, more pronounced than any contribution from the protein back-bone. Combining the intrinsic resonance enhancement of cytochrome c with surface plasmon enhancement by colloidal silver particles, the Surface Enhanced Resonance Raman Scattering (SERRS) and Chiral...... Enhanced Raman Spectroscopy (ChERS) spectra of the protein were successfully obtained at very low concentration (as low as 1 µM). The assignment of spectral features was based on the information obtained from the RR and resonance ROA spectra. Excellent agreement between RR and SERRS spectra is reported...

  16. Electronic spectra of astrophysically interesting cations

    Energy Technology Data Exchange (ETDEWEB)

    Maier, John P., E-mail: j.p.maier@unibas.ch; Rice, Corey A., E-mail: j.p.maier@unibas.ch; Mazzotti, Fabio J., E-mail: j.p.maier@unibas.ch; Johnson, Anatoly, E-mail: j.p.maier@unibas.ch [Department of Chemistry, University of Basel, Klingelbergstr. 80, CH-4056 Basel (Switzerland)

    2015-01-22

    The electronic spectra of polyacetylene cations were recorded at 20K in the laboratory in an ion trap instrument. These can then be compared with diffuse interstellar band (DIB) absorptions. Examination of recently published data shows that the attribution of a weak DIB at ∼506.9 nm to diacetylene cation is not justified. Study of the higher excited electronic states of polyacetylene cations shows that their widths can still be sufficiently narrow for consideration as DIB carriers.

  17. Photoacoustic spectroscopy applied to the optical characterization of calcium phosphates for biomedical use

    Energy Technology Data Exchange (ETDEWEB)

    Mendez G, M. [ESFM-IPN, 07738 Mexico D.F. (Mexico); Cruz O, A. [CINVESTAV, Dept. of Physics, 07360 Mexico D.F. (Mexico)

    2007-07-01

    Full text: Photoacoustic Spectroscopy (PAS), based on the Rosencwaig and Gersho model, has been used for thermal and optical characterization of diverse materials. The use of PAS has become an important tool because is a nondestructive and no contact analytical technique. Furthermore its use to measure optical absorption spectra has advantages over the usual transmission measurements due to important features as the fact that scattered light does not disturb the measurements significantly and also the sample don't need to be prepared to have good quality surfaces. Then the optical properties of biological samples can be easily investigated with this technique. In the present study PAS is applied to obtain the optical absorption spectra of hydroxyapatite (HAp) [Ca{sub 10} (PO{sub 4} ){sub 6} (OH ){sub 2}] and bioactive calcium phosphates. The spectra of these samples ranged from 300 to 800 nm. All samples were prepared in a power form with particle size < 741m. Complementary studies X-ray diffraction and EDC were performed. (Author)

  18. Theoretical study of the structure and optical properties of rare-earth-doped BeF2 glass

    International Nuclear Information System (INIS)

    Brawer, S.; Weber, M.J.

    1980-01-01

    We investigate the question of whether the local structure of a glass can be deduced directly from its optical spectra by testing such a procedure on a model system. The model system was Eu 3+ -doped BeF 2 glass generated the Monte Carlo technique of statistical mechanics. The optical energy levels of Eu 3+ were calculated from a point charge model. Using the resulting spectra as data, it is shown that details of the structure of the rare-earth ion sites of the simulated glass cannot be reconstructed uniquely from the data. Based on these results, it is concluded that reliable glass structure cannot be deduced from optical spectra

  19. Progress In Optical Memory Technology

    Science.gov (United States)

    Tsunoda, Yoshito

    1987-01-01

    More than 20 years have passed since the concept of optical memory was first proposed in 1966. Since then considerable progress has been made in this area together with the creation of completely new markets of optical memory in consumer and computer application areas. The first generation of optical memory was mainly developed with holographic recording technology in late 1960s and early 1970s. Considerable number of developments have been done in both analog and digital memory applications. Unfortunately, these technologies did not meet a chance to be a commercial product. The second generation of optical memory started at the beginning of 1970s with bit by bit recording technology. Read-only type optical memories such as video disks and compact audio disks have extensively investigated. Since laser diodes were first applied to optical video disk read out in 1976, there have been extensive developments of laser diode pick-ups for optical disk memory systems. The third generation of optical memory started in 1978 with bit by bit read/write technology using laser diodes. Developments of recording materials including both write-once and erasable have been actively pursued at several research institutes. These technologies are mainly focused on the optical memory systems for computer application. Such practical applications of optical memory technology has resulted in the creation of such new products as compact audio disks and computer file memories.

  20. Quantum noise spectra for periodically driven cavity optomechanics

    Science.gov (United States)

    Aranas, E. B.; Akram, M. Javed; Malz, Daniel; Monteiro, T. S.

    2017-12-01

    A growing number of experimental setups in cavity optomechanics exploit periodically driven fields. However, such setups are not amenable to analysis by using simple, yet powerful, closed-form expressions of linearized optomechanics, which have provided so much of our present understanding of experimental optomechanics. In the present paper, we formulate a method to calculate quantum noise spectra in modulated optomechanical systems, which we analyze, compare, and discuss with two other recently proposed solutions: we term these (i) frequency-shifted operators, (ii) Floquet [Phys. Rev. A 94, 023803 (2016), 10.1103/PhysRevA.94.023803], and (iii) iterative analysis [New J. Phys. 18, 113021 (2016), 10.1088/1367-2630/18/11/113021]. We prove that (i) and (ii) yield equivalent noise spectra and find that (iii) is an analytical approximation to (i) for weak modulations. We calculate the noise spectra of a doubly modulated system describing experiments of levitated particles in hybrid electro-optical traps. We show excellent agreement with Langevin stochastic simulations in the thermal regime and predict squeezing in the quantum regime. Finally, we reveal how otherwise-inaccessible spectral components of a modulated system can be measured in heterodyne detection through an appropriate choice of modulation frequencies.

  1. Effect of PbO on optical properties of tellurite glass

    Science.gov (United States)

    Elazoumi, S. H.; Sidek, H. A. A.; Rammah, Y. S.; El-Mallawany, R.; Halimah, M. K.; Matori, K. A.; Zaid, M. H. M.

    2018-03-01

    Binary (1 - x)(TeO2) - x(PbO), x = 0, 0.10, 0.15, 0.20, 0.25, 0.30 mol% glass system was fabricated using melt quenching method. X-ray diffraction (XRD) technique was employed to confirm the amorphous nature. The microanalysis of the major components was performed using energy dispersive EDX and X-ray spectrometry. Both the molar volume and the density were measured. FTIR and UV spectra were recorded at 400-4000 cm-1 and 220-800 nm, respectively. The optical band gap (Eopt), Urbach's energy (Eu), index of refraction (n) were calculated using absorption spectrum fitting (ASF) and derivation of absorption spectrum fitting (DASF) methods. Molar refraction Rm and molecular polarizability αm have been calculated according to (ASF) method.

  2. Optical spectra and radio properties of quasars

    International Nuclear Information System (INIS)

    Wills, B.J.

    1982-01-01

    Using high quality spectrophotometric scans obtained at the McDonald Observatory, and data from the literature the author shows that, for quasars, the relative strength of optical Fe II emission (the broad blended feature lambda4570) may be roughly inversely proportional to line widths (full width at half maximum, FWHM). A similar relation between the relative intensity of the UV Fe II blend between 2300 and 2600 A (the lambda2500 feature) and the widths of Mg II and Hβ is shown. She distinguishes between compact and extended radio sources and includes radio quiet quasars, Seyfert 1 galaxies and BLRG's. The quasars associated with extended radio sources have the broadest emission lines and the weakest Fe II, falling close to the region occupied by BLRG's which also have extended radio structure. Those quasars with strong Fe II and compact radio structure are most similar to the Seyfert 1 galaxies. (Auth.)

  3. Structural, optical and vibrational properties of Cr2O3 with ferromagnetic and antiferromagnetic order: A combined experimental and density functional theory study

    Science.gov (United States)

    Larbi, T.; Ouni, B.; Gantassi, A.; Doll, K.; Amlouk, M.; Manoubi, T.

    2017-12-01

    Chromium oxide (Cr2O3) thin films have been synthesized on glass substrates by the spray pyrolysis technique. The structural, morphological and optical properties of the sample have been studied by X-ray diffraction (XRD), Raman spectroscopy, FTIR spectroscopy, scanning probe microscopy and UV-vis spectroscopy respectively. X-ray diffraction results reveal that as deposited film is polycrystalline with a rhombohedral corundum structure and a preferential orientation of the crystallites along the (1 0 4) direction. IR and Raman spectra were recorded in the 100-900 cm-1 range and the observed modes were analysed and assigned to different normal modes of vibration. The direct optical band gap energy value calculated from the transmittance spectra of as-deposited thin film is about 3.38 eV. We employ first principles calculations based on density functional theory (DFT) with the B3LYP hybrid functional and a coupled perturbed Hartree-Fock/Kohn-Sham approach (CPHF/KS). We study the electronic structure, optimum geometry, and IR and Raman spectra of ferromagnetically and antiferromagnetically ordered Cr2O3. The computed results are consistent with the experimental measurements, and provide complete vibrational assignment, for the characterization of Cr2O3 thin film materials which can be used in photocatalysis and gas sensors.

  4. Study of the noncylindrical Z-pinch during discharges in neon using electro-optical transducer of the AGAT type

    International Nuclear Information System (INIS)

    Lebedev, V.B.; Orlov, M.M.; Saulevich, S.V.; Terent'ev, A.R.; Khrabrov, V.A.

    1986-01-01

    Results of investigation into running away current-plasma sheath (CPS) of noncylindrical Z-pinch are given. Experimental chamber was filled with neon up to 3 torr pressure. Store of energy was equal to 20 kJ. CPS radiation spectrum scanning was recorded in the phase of its convergence to the system axis by means of an electron-optical converter of the AGAT type. Electron temperature in the inflection region on CPS constituted 3 eV. Possibilities of magnetic field diffusion through neon CPS and appearance of CPS running away mode are shown. CPS plasma spectra indicated that radiation can be recorded only from a CPS head near-anode part and its external peripheral regions moving from the axis and emitting considerably less quantity of radiation

  5. High-Quality Medium-Resolution Gamma-Ray Spectra from Certified Reference Uranium and Plutonium Materials

    International Nuclear Information System (INIS)

    Zsigrai, J.; Muehleisen, A.; ); Weber, A.-L.; Funk, P.; Berlizov, A.; Mintcheva, J.

    2015-01-01

    The Institute of Transuranium Elements (ITU) has made an effort to record a collection of medium resolution gamma-ray spectra from well-characterized U and Pu certified reference materials CRM-171 (also known as SRM-969), CBNM-271, and Harwell PIDIE standards. The goal of this exercise was twofold: (i) to complement the international database of reference gamma-ray spectra with high-quality data for medium resolution spectrometers, and (ii) to feed Phase I of the U/Pu isotopic inter-comparison exercise that is being jointly organized by the ESARDA NDA Working Group and IAEA. Phase II of the exercise will be fed by similar spectra recorded by Institute for Radiological Protection and Nuclear Safety (IRSN). These activities are supported through a joint Member State Support Programmes (MSSP) task and aimed at delivering reliable methodologies for the determination of U/Pu isotopic composition using medium resolution gamma-spectrometers. The latter have obvious benefits for in-field applications, amongst which are better usability, portability and maintainability. As the spectra will be made available online for software developers and end users, ultimately this will also contribute to sustainability as well as the improved and validated performance of existing U/Pu isotopic codes. The spectra were recorded using the IAEA's standard Lanthanum Bromide (LaBr3(Ce)) (2.0'' x 0.5'') and Cadmium Zink Telluride (CdZnTe) (500 mm''3) detectors and acquisition electronics. Aiming to acquire the highest quality reference data, the spectra were measured for long acquisition times, ensuring very good counting statistics across potentially useful spectral intervals — up to 1 MeV for the CdZnTe and up to 2.6 MeV for the LaBr3(Ce) detectors. Great attention was also paid to ensure that the measurement geometry was stable and reproducible, and the spectra had minimum influence from background radiation and pile-up effects. The paper will briefly

  6. Optical spectroscopy techniques can accurately distinguish benign and malignant renal tumours.

    Science.gov (United States)

    Couapel, Jean-Philippe; Senhadji, Lotfi; Rioux-Leclercq, Nathalie; Verhoest, Grégory; Lavastre, Olivier; de Crevoisier, Renaud; Bensalah, Karim

    2013-05-01

    WHAT'S KNOWN ON THE SUBJECT? AND WHAT DOES THE STUDY ADD?: There is little known about optical spectroscopy techniques ability to evaluate renal tumours. This study shows for the first time the ability of Raman and optical reflectance spectroscopy to distinguish benign and malignant renal tumours in an ex vivo environment. We plan to develop this optical assistance in the operating room in the near future. To evaluate the ability of Raman spectroscopy (RS) and optical reflectance spectroscopy (ORS) to distinguish benign and malignant renal tumours at surgery. Between March and October 2011, RS and ORS spectra were prospectively acquired on surgical renal specimens removed for suspicion of renal cell carcinoma (RCC). Optical measurements were done immediately after surgery. Optical signals were normalised to ensure comparison between spectra. Initial and final portions of each spectrum were removed to avoid artefacts. A support vector machine (SVM) was built and tested using a leave-one-out cross-validation. Classification scores, including accuracy, sensitivity and specificity were calculated on the entire population and in patients with tumours of 700 optical spectra were obtained and submitted to SVM classification. The SVM could recognise benign and malignant renal tumours with an accuracy of 96% (RS) and 88% (ORS) in the whole population and with an accuracy of 93% (RS) and 95% (ORS) in the present subset of small renal tumours (Benign and malignant renal tumours can be accurately discriminated by a combination of RS and ORS. In vivo experiments are needed to further assess the value of optical spectroscopy techniques. © 2012 BJU International.

  7. High-speed, random-access fluorescence microscopy: I. High-resolution optical recording with voltage-sensitive dyes and ion indicators.

    Science.gov (United States)

    Bullen, A; Patel, S S; Saggau, P

    1997-07-01

    The design and implementation of a high-speed, random-access, laser-scanning fluorescence microscope configured to record fast physiological signals from small neuronal structures with high spatiotemporal resolution is presented. The laser-scanning capability of this nonimaging microscope is provided by two orthogonal acousto-optic deflectors under computer control. Each scanning point can be randomly accessed and has a positioning time of 3-5 microseconds. Sampling time is also computer-controlled and can be varied to maximize the signal-to-noise ratio. Acquisition rates up to 200k samples/s at 16-bit digitizing resolution are possible. The spatial resolution of this instrument is determined by the minimal spot size at the level of the preparation (i.e., 2-7 microns). Scanning points are selected interactively from a reference image collected with differential interference contrast optics and a video camera. Frame rates up to 5 kHz are easily attainable. Intrinsic variations in laser light intensity and scanning spot brightness are overcome by an on-line signal-processing scheme. Representative records obtained with this instrument by using voltage-sensitive dyes and calcium indicators demonstrate the ability to make fast, high-fidelity measurements of membrane potential and intracellular calcium at high spatial resolution (2 microns) without any temporal averaging.

  8. Cascadia Subduction Zone Earthquake Source Spectra from an Array of Arrays

    Science.gov (United States)

    Gomberg, J. S.; Vidale, J. E.

    2011-12-01

    It is generally accepted that spectral characteristics distinguish 'slow' seismic sources from those of 'ordinary' or 'fast' earthquakes. To explore this difference, we measure ordinary earthquake spectra of about 30 seismic events located near the Cascadia plate interface where ETS regularly occurs. We separate the affects of local site response, regional propagation (attenuation and spreading), and processes near or at the source for a dense dataset recorded on an array of eight seismic micro-arrays. The arrays have apertures of 1-2 km with 21-31 seismographs in each, and are separated by 10-20 km. We assume that the spectrum of each recorded signal may be described by the product of 1) frequency-dependent site response, 2) propagation effects that include geometric spreading and an exponential decay that varies with distance, frequency, and 3) a frequency-dependent source spectrum. Using more than1000 seismograms from all events recorded at all sites simultaneously, we solve for frequency-dependent site response and source spectra, as well as a single regional Q value. We interpret only the slope of the source terms because most earthquakes have magnitudes less than 0, so we expect that their corner frequencies are higher frequency than the recorded passband. The amplitude variation in the site response within the same array sometimes exceeds a factor of 3, which is consistent with the variation seen visually. We see variability in the slopes of the source spectra comparable to the difference between 'slow' and 'fast' events observed in other studies, and which show a strong correlation with source location. Spectral slopes of spatially clustered sources are nearly identical but usually differ from those of clusters at a distance of a few tens of km, and spectral content varies systematically with location within the distribution of events. While these differences may reflect varying source processes (e.g., rupture velocity, stress drop), the strong correlation

  9. Measurement and modelization of silica opal optical properties

    Science.gov (United States)

    Avoine, Amaury; Hong, Phan Ngoc; Frederich, Hugo; Aregahegn, Kifle; Bénalloul, Paul; Coolen, Laurent; Schwob, Catherine; Thu Nga, Pham; Gallas, Bruno; Maître, Agnès

    2014-03-01

    We present the synthesis process and optical characterization of artificial silica opals. The specular reflection spectra are analyzed and compared to band structure calculations and finite difference time domain (FDTD) simulations. The silica optical index is a key parameter to correctly describe an opal and is usually not known and treated as a free parameter. Here we propose a method to infer the silica index, as well as the silica spheres diameter, from the reflection spectra and we validate it by comparison with two independent infrared methods for the index and, scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements for the spheres diameter.

  10. Measurement and modelization of silica opal optical properties

    International Nuclear Information System (INIS)

    Avoine, Amaury; Ngoc Hong, Phan; Frederich, Hugo; Aregahegn, Kifle; Bénalloul, Paul; Coolen, Laurent; Schwob, Catherine; Gallas, Bruno; Maître, Agnès; Thu Nga, Pham

    2014-01-01

    We present the synthesis process and optical characterization of artificial silica opals. The specular reflection spectra are analyzed and compared to band structure calculations and finite difference time domain (FDTD) simulations. The silica optical index is a key parameter to correctly describe an opal and is usually not known and treated as a free parameter. Here we propose a method to infer the silica index, as well as the silica spheres diameter, from the reflection spectra and we validate it by comparison with two independent infrared methods for the index and, scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements for the spheres diameter. (paper)

  11. Disentangling Time-series Spectra with Gaussian Processes: Applications to Radial Velocity Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Czekala, Ian [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Mandel, Kaisey S.; Andrews, Sean M.; Dittmann, Jason A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Ghosh, Sujit K. [Department of Statistics, NC State University, 2311 Stinson Drive, Raleigh, NC 27695 (United States); Montet, Benjamin T. [Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Avenue, Chicago, IL 60637 (United States); Newton, Elisabeth R., E-mail: iczekala@stanford.edu [Massachusetts Institute of Technology, Cambridge, MA 02138 (United States)

    2017-05-01

    Measurements of radial velocity variations from the spectroscopic monitoring of stars and their companions are essential for a broad swath of astrophysics; these measurements provide access to the fundamental physical properties that dictate all phases of stellar evolution and facilitate the quantitative study of planetary systems. The conversion of those measurements into both constraints on the orbital architecture and individual component spectra can be a serious challenge, however, especially for extreme flux ratio systems and observations with relatively low sensitivity. Gaussian processes define sampling distributions of flexible, continuous functions that are well-motivated for modeling stellar spectra, enabling proficient searches for companion lines in time-series spectra. We introduce a new technique for spectral disentangling, where the posterior distributions of the orbital parameters and intrinsic, rest-frame stellar spectra are explored simultaneously without needing to invoke cross-correlation templates. To demonstrate its potential, this technique is deployed on red-optical time-series spectra of the mid-M-dwarf binary LP661-13. We report orbital parameters with improved precision compared to traditional radial velocity analysis and successfully reconstruct the primary and secondary spectra. We discuss potential applications for other stellar and exoplanet radial velocity techniques and extensions to time-variable spectra. The code used in this analysis is freely available as an open-source Python package.

  12. A comparative study of the spectra recorded at RRCAT synchrotron ...

    Indian Academy of Sciences (India)

    2013-01-09

    Jan 9, 2013 ... 2Applied Spectroscopy Division, Bhabha Atomic Research Centre, Mumbai 400 085, India. ∗ ... It can be applied not only to crystals, but ... is used and the transmitted beam intensity from the sample is recorded on a position-.

  13. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Aerosol Optical Thickness (AOT) and Aerosol Particle Size Parameter (APSP) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of Aerosol Optical Thickness (AOT) from the Visible Infrared Imaging Radiometer...

  14. Rewritable three-dimensional holographic data storage via optical forces

    Energy Technology Data Exchange (ETDEWEB)

    Yetisen, Ali K., E-mail: ayetisen@mgh.harvard.edu [Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne Street, Cambridge, Massachusetts 02139 (United States); Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Montelongo, Yunuen [Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Butt, Haider [Nanotechnology Laboratory, School of Engineering Sciences, University of Birmingham, Birmingham B15 2TT (United Kingdom)

    2016-08-08

    The development of nanostructures that can be reversibly arranged and assembled into 3D patterns may enable optical tunability. However, current dynamic recording materials such as photorefractive polymers cannot be used to store information permanently while also retaining configurability. Here, we describe the synthesis and optimization of a silver nanoparticle doped poly(2-hydroxyethyl methacrylate-co-methacrylic acid) recording medium for reversibly recording 3D holograms. We theoretically and experimentally demonstrate organizing nanoparticles into 3D assemblies in the recording medium using optical forces produced by the gradients of standing waves. The nanoparticles in the recording medium are organized by multiple nanosecond laser pulses to produce reconfigurable slanted multilayer structures. We demonstrate the capability of producing rewritable optical elements such as multilayer Bragg diffraction gratings, 1D photonic crystals, and 3D multiplexed optical gratings. We also show that 3D virtual holograms can be reversibly recorded. This recording strategy may have applications in reconfigurable optical elements, data storage devices, and dynamic holographic displays.

  15. Optical calorimetry in microfluidic droplets.

    Science.gov (United States)

    Chamoun, Jacob; Pattekar, Ashish; Afshinmanesh, Farzaneh; Martini, Joerg; Recht, Michael I

    2018-05-29

    A novel microfluidic calorimeter that measures the enthalpy change of reactions occurring in 100 μm diameter aqueous droplets in fluoropolymer oil has been developed. The aqueous reactants flow into a microfluidic droplet generation chip in separate fluidic channels, limiting contact between the streams until immediately before they form the droplet. The diffusion-driven mixing of reactants is predominantly restricted to within the droplet. The temperature change in droplets due to the heat of reaction is measured optically by recording the reflectance spectra of encapsulated thermochromic liquid crystals (TLC) that are added to one of the reactant streams. As the droplets travel through the channel, the spectral characteristics of the TLC represent the internal temperature, allowing optical measurement with a precision of ≈6 mK. The microfluidic chip and all fluids are temperature controlled, and the reaction heat within droplets raises their temperature until thermal diffusion dissipates the heat into the surrounding oil and chip walls. Position resolved optical temperature measurement of the droplets allows calculation of the heat of reaction by analyzing the droplet temperature profile over time. Channel dimensions, droplet generation rate, droplet size, reactant stream flows and oil flow rate are carefully balanced to provide rapid diffusional mixing of reactants compared to thermal diffusion, while avoiding thermal "quenching" due to contact between the droplets and the chip walls. Compared to conventional microcalorimetry, which has been used in this work to provide reference measurements, this new continuous flow droplet calorimeter has the potential to perform titrations ≈1000-fold faster while using ≈400-fold less reactants per titration.

  16. Electronic structure and optical properties of prominent phases of T i ...

    Indian Academy of Sciences (India)

    2017-06-19

    Jun 19, 2017 ... ... in excellent agreement with experimental results. Our calculation of optical properties reveals that maximum value of the transmittance in anatase phase of ( T i O 2 ) may be achieved by considering the anisotropic behaviour of the optical spectra in the optical region for transparent conducting application.

  17. EPR and optical absorption studies of Cr3+ ions in potassium sodium dl-tartrate tetrahydrate

    International Nuclear Information System (INIS)

    Kripal, Ram; Singh, Pragya; Shukla, Santwana

    2011-01-01

    EPR spectra of Cr 3+ ions doped in potassium sodium dl-tartrate tetrahydrate single crystals are recorded at 77 K. The spin Hamiltonian and zero field parameters g, |D| and |E| are measured from the resonance lines obtained at various rotations of the magnetic field. The values obtained are: g x =1.9257±0.0002, g y =1.9720±0.0002, g z =2.0102±0.0002, |D|=313±2 (x10 -4 ) cm -1 and |E|=101±2 (x10 -4 ) cm -1 . From the results of EPR study, the site symmetry of Cr 3+ ion in the crystal is discussed. The optical absorption at room temperature is also studied. From the observed band positions, the crystal field splitting parameter (D q ) and the Racah inter-electronic repulsion parameters (B and C) are evaluated. The bonding parameters are obtained by correlating optical and EPR data and the nature of bonding in the crystal is discussed. -- Research Highlights: → EPR spectra of Cr 3+ ions doped in potassium sodium dl-tartrate tetrahydrate single crystals are done at 77 K. → The spin Hamiltonian and zero field parameters g, |D| and |E| are measured. From the results of EPR study, the site symmetry of Cr 3+ ion in the crystal is discussed. → The optical absorption at room temperature is also studied and the crystal field splitting parameter (D q ) as well as the Racah inter-electronic repulsion parameters (B and C) is evaluated. → The bonding parameters are obtained by correlating optical and EPR data and the nature of bonding in the crystal is discussed.

  18. Automatic storage of single gamma spectra on magnetic tape. Programs Longo, Dire

    International Nuclear Information System (INIS)

    Los Arcos Merino, J.M.

    1978-01-01

    The program Longo provides the block size and the black number in a binary file on magnetic tape. It has been applied to analyse the structure of the nine-track magnetic tapes storing single or coincidence gamma spectra files, recorded in octet form by a Multi-8 minicomputer in the Nuclear Spectrometry Laboratory of J.E.N. Then the program Dire has been written to transform the single gamma spectra into a new Fastrand disk file, storing the information in 36 bit words. A copy of this file is obtained on magnetic tape and the single gamma spectra are then availables by standard Fortran V reading sentences. (author)

  19. Automatic storing of single gamma spectra on magnetic tape. Programs LONGO, DIRE

    International Nuclear Information System (INIS)

    Los Arcos Merino, J. M.

    1978-01-01

    The program LONGO provides the block size and the block number in a binary file on magnetic tape. It has been applied to analyse the structure of the nine-track magnetic tapes storing single or coincidence gamma spectra files, recorded in octet form by a MULTI-8 minicomputer in the Nuclear Spectrometry Laboratory of J.E.N. Then the program DIRE has been written to transform the single gamma spectra into a new FASTRAND disk file, storing the information in-36 bit words. A copy of this file is obtained on magnetic tape and the single gamma spectra are then available by standard FORTRAN V reading sentences. (Author) 3 refs

  20. Nonlinear-Optical and Fluorescent Properties of Ag Aqueous Colloid Prepared by Silver Nitrate Reduction

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Zhang

    2010-01-01

    Full Text Available The nonlinear-optical properties of metal Ag colloidal solutions, which were prepared by the reduction of silver nitrate, were investigated using Z-scan method. Under picosecond 532 nm excitation, the Ag colloidal solution exhibited negative nonlinear refractive index (n2=−5.17×10−4 cm2/W and reverse saturable absorption coefficient (β=4.32 cm/GW. The data fitting result of optical limiting (OL response of metal Ag colloidal solution indicated that the nonlinear absorption was attributed to two-photon absorption effect at 532 nm. Moreover, the fluorescence emission spectra of Ag colloidal solution were recorded under excitations at both 280 nm and 350 nm. Two fluorescence peaks, 336 nm and 543 nm for 280 nm excitation, while 544 nm and 694 nm for 350 nm excitation, were observed.

  1. Feature extraction for magnetic domain images of magneto-optical recording films using gradient feature segmentation

    International Nuclear Information System (INIS)

    Quanqing, Zhu.; Xinsai, Wang; Xuecheng, Zou; Haihua, Li; Xiaofei, Yang

    2002-01-01

    In this paper, we present a method to realize feature extraction on low contrast magnetic domain images of magneto-optical recording films. The method is based on the following three steps: first, Lee-filtering method is adopted to realize pre-filtering and noise reduction; this is followed by gradient feature segmentation, which separates the object area from the background area; finally the common linking method is adopted and the characteristic parameters of magnetic domain are calculated. We describe these steps with particular emphasis on the gradient feature segmentation. The results show that this method has advantages over other traditional ones for feature extraction of low contrast images

  2. Using optical spectroscopy to characterize the material of a 16th c. stained glass window

    Science.gov (United States)

    Ceglia, A.; Meulebroeck, W.; Wouters, H.; Baert, K.; Nys, K.; Terryn, H.; Thienpont, H.

    In this paper we studied the transmittance spectra of a collection of several glass samples taken from a 16th century stained window of the Church of Our Lady in Bruges, Belgium. We recorded the optical spectra for all the samples in the region between 350 and 1600 nm. The goal of our research was to reveal information about the composition of the glass artifacts in a fast and non-destructive way. Analysis of the optical spectra allowed us in the first place to identify the type of colorants that were used. It was possible to recognize metal ions, such as Fe2+, Fe3+, Co2+, Mn3+, Cr3+ and Cu2+. Also colors made of metal nanoparticles, such as silver and copper colloids were successfully identified. The recognition of the coloring agents is of particular interest in dating the glass pieces. This is because some colorants were only used in certain periods. Green glass colored by chromium was produced only after the mid 19th century onwards. Our study showed that 3 of the 10 pieces were colored by this element and they originate as such from a later period. A second conclusion refers to the applied fluxing agent. By analyzing the spectral position of the first cobalt absorption band, we were able to classify the glass pieces as potash based (used in medieval times) or soda-based (used in modern times) and therefore to classify them as original or as restoration material. From the 10 blue colored samples, 7 of them were recognized as original material. Finally, for the naturally colored parts the analysis of the spectra allowed us to group them based on cobalt impurities.

  3. Polymer optical fiber with Rhodamine doped cladding for fiber light systems

    Energy Technology Data Exchange (ETDEWEB)

    Narro-García, R., E-mail: roberto.narro@gmail.com [Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230 (Mexico); Quintero-Torres, R. [Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230 (Mexico); Domínguez-Juárez, J.L. [Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230 (Mexico); Cátedras CONACyT, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230 (Mexico); Ocampo, M.A. [Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230 (Mexico)

    2016-01-15

    Both preform and polymer optical fiber with a Poly(methyl methacrylate) core and THV–Rhodamine 6G cladding were characterized. UV–vis absorbance, photoluminescence spectra and lifetime of the preform were measured. Axial and lateral photoluminescence spectra of the polymer optical fiber were studied under 404 nm excitation in order to study the illumination performance of the fiber. It was observed that the peak wavelength from the fiber photoluminescence spectra is higher than the peak wavelength from the fiber preform and that the peak wavelength from the fiber photoluminescence spectra is red shifted with the fiber length in the case of axial emission. The obtained results suggest the influence of self-absorption on the photoluminescence shape. Strong lateral emission along the fiber was observed with the naked eyes in all the cases. The lateral photoluminescence spectra show that the lateral emission is a combination between the pump laser and the Rh6G molecule photoluminescence. The results suggest that this polymer optical fiber could be a potential candidate for the development of fiber lighting systems. - Highlights: • Axial and lateral emission along the fiber was studied. • Self-absorption effect was confirmed in the case of axial photoluminescence. • The lateral emission is a combination between the laser and the RhG6 emission. • This fiber could be a potential candidate for the development of lighting systems.

  4. Ferroelectric and optical properties of `Ba-doped' new double perovskites

    Science.gov (United States)

    Parida, B. N.; Panda, Niranjan; Padhee, R.; Parida, R. K.

    2018-06-01

    Solid solution of Pb1.5Ba0.5BiNbO6 ceramic is explored here to obtain its ferroelectric and optical properties. The polycrystalline sample was prepared by a standard solid state reaction route. Room temperature XRD and FTIR spectra of the compound exhibit an appreciable change in its crystal structure of Pb2BiNbO6 on addition of 'Ba' in A site. The surface morphology of the gold-plated sintered pellet sample recorded by SEM exhibits a uniform distribution of small grains with well-defined grain boundaries. Detailed studies on the nature of polarization and variation of dielectric constant, tangent loss with temperature as well as frequency indicate the existence of Ferro-electricity in the sample. Using UV-Vis spectroscopy, the optical band gap of the studied sample has been estimated as 2.1 eV, which is useful for photo catalytic devices. Photoluminescence analysis of the powder sample shows a strong red photoluminescence with blue excitation, which is basically useful for LED.

  5. X-ray spectra of He-like ions of Ga and Ge, excited in the low-inductance spark plasma

    International Nuclear Information System (INIS)

    Aglitsky, E.V.; Antsiferov, P.S.; Panin, A.M.

    1984-01-01

    The spectra of Ga XXX and Ge XXXI ions in the interval 1.2-1.4 A excited in the low-inductance vacuum spark plasma have been obtained for the first time. The resonance line 1s 2 -1s2p of Ga XXX and Ge XXXI and a group of satellites, corresponding to transitions in Ga XXIX and Ge XXX can be seen distinctly in the spectra. The spectra were obtained by an electronic-optical image-intensifier tube for one discharge. (orig.)

  6. Magneto-optic studies of magnetic oxides

    Energy Technology Data Exchange (ETDEWEB)

    Gehring, Gillian A., E-mail: g.gehring@shef.ac.uk [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Alshammari, Marzook S.; Score, David S.; Neal, James R.; Mokhtari, Abbas; Fox, A. Mark [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom)

    2012-10-15

    A brief review of the use of magneto-optic methods to study magnetic oxides is given. A simple method to obtain the magnetic circular dichroism (MCD) of a thin film on a transparent substrate is described. The method takes full account of multiple reflections in the film and substrate. Examples of the magneto-optic spectra of Co-doped ZnO, Fe{sub 3}O{sub 4}, and GdMnO{sub 3} are given. The Maxwell-Garnett method is used to describe the effects of metallic cobalt inclusions in Co:ZnO samples, and the change of the MCD spectra of Fe{sub 3}O{sub 4} at the Verwey temperature is discussed. Data showing different MCD signals at different energies is presented for GdMnO{sub 3}.

  7. A geological history of reflecting optics.

    Science.gov (United States)

    Parker, Andrew Richard

    2005-03-22

    Optical reflectors in animals are diverse and ancient. The first image-forming eye appeared around 543 million years ago. This introduced vision as a selection pressure in the evolution of animals, and consequently the evolution of adapted optical devices. The earliest known optical reflectors--diffraction gratings--are 515 Myr old. The subsequent fossil record preserves multilayer reflectors, including liquid crystals and mirrors, 'white' and 'blue' scattering structures, antireflective surfaces and the very latest addition to optical physics--photonic crystals. The aim of this article is to reveal the diversity of reflecting optics in nature, introducing the first appearance of some reflector types as they appear in the fossil record as it stands (which includes many new records) and backdating others in geological time through evolutionary analyses. This article also reveals the commercial potential for these optical devices, in terms of lessons from their nano-level designs and the possible emulation of their engineering processes--molecular self-assembly.

  8. NLTE ANALYSIS OF HIGH-RESOLUTION H -BAND SPECTRA. I. NEUTRAL SILICON

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Junbo; Shi, Jianrong; Liu, Chao [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, A20 Datun Road, Chaoyang District, Beijing 100012 (China); Pan, Kaike [Apache Point Observatory and New Mexico State University, P.O. Box 59, Sunspot, NM, 88349-0059 (United States); Prieto, Carlos Allende, E-mail: sjr@bao.ac.cn [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain)

    2016-12-20

    We investigated the reliability of our silicon atomic model and the influence of non-local thermodynamical equilibrium (NLTE) on the formation of neutral silicon (Si i) lines in the near-infrared (near-IR) H -band. We derived the differential Si abundances for 13 sample stars with high-resolution H -band spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE), as well as from optical spectra, both under local thermodynamical equilibrium (LTE) and NLTE conditions. We found that the differences between the Si abundances derived from the H -band and from optical lines for the same stars are less than 0.1 dex when the NLTE effects are included, and that NLTE reduces the line-to-line scatter in the H -band spectra for most sample stars. These results suggest that our Si atomic model is appropriate for studying the formation of H -band Si lines. Our calculations show that the NLTE corrections of the Si i H -band lines are negative, i.e., the final Si abundances will be overestimated in LTE. The corrections for strong lines depend on surface gravity, and tend to be larger for giants, reaching ∼−0.2 dex in our sample, and up to ∼−0.4 dex in extreme cases of APOGEE targets. Thus, the NLTE effects should be included in deriving silicon abundances from H -band Si i lines, especially for the cases where only strong lines are available.

  9. Anomalous optical emission in hot dense oxygen

    Science.gov (United States)

    Santoro, Mario; Gregoryanz, Eugene; Mao, Ho-kwang; Hemley, Russell J.

    2007-11-01

    We report the observation of unusually strong, broad-band optical emission peaked between 590 and 650 nm when solid and fluid oxygen are heated by a near infrared laser at pressures from 3 to 46 GPa. In situ Raman spectra of oxygen were collected and corresponding temperatures were measured from the Stokes/anti-Stokes intensity ratios of vibrational transitions. The intense optical emission overwhelmed the Raman spectrum at temperatures exceeding 750 K. The spectrum was found to be much narrower than Planck-type thermal emission, and the intensity increase with input power was much steeper than expected for the thermal emission. The result places an important general caveat on calculating temperatures based on optical emission spectra in high-pressure laser-heating experiments. The intense emission in oxygen is photo-induced rather than being purely thermal, through multiphoton or multi-step single photon absorption processes related to the interaction with infrared radiation. The results suggest that short lived ionic species are induced by this laser-matter interaction.

  10. Simultaneous in-bore rail and insulator spectra from a railgun plasma armature

    International Nuclear Information System (INIS)

    Keefer, D.; Sedghinasah, A.; Crawford, R.

    1991-01-01

    This paper reports on absolute spectral radiance measurements obtained simultaneously at the rail and insulator surface of the UTSI 1 cm square-bore railgun. The emission spectra were obtained through the use of quartz optical fibers which penetrated both the rail and the insulator walls. The spectral characteristics of the rail and insulator emission are quite similar but differ significantly in magnitude. A detailed plasma radiation model was used to analyze these spectra. In order to obtain reasonable agreement between the model predictions and the experimental spectra, it was necessary to assume that these existed a broadband absorbing layer at the insulator surface. This result suggests a new physical model of the plasma armature in which insulator ablation leads to significant 3-dimensional flow and affects the shape of the current emission pattern on the rail surfaces

  11. A multifunctional setup to record FTIR and UV-vis spectra of organic molecules and their photoproducts in astronomical ices.

    Science.gov (United States)

    Kofman, V; Witlox, M J A; Bouwman, J; Ten Kate, I L; Linnartz, H

    2018-05-01

    This article describes a new, multi-functional, high-vacuum ice setup that allows to record the in situ and real-time spectra of vacuum UV (VUV)-irradiated non-volatile molecules embedded in a low-temperature (10 K) amorphous solid water environment. Three complementary diagnostic tools-UV-visible (UV-vis) and Fourier Transform Infrared (FTIR) spectroscopy and temperature-programmed desorption quadrupole mass spectrometry-can be used to simultaneously study the physical and chemical behavior of the organic molecules in the ice upon VUV irradiation. The setup is equipped with a temperature-controlled sublimation oven that enables the controlled homogeneous deposition of solid species such as amino acids, nucleobases, and polycyclic aromatic hydrocarbons (PAHs) in ice mixtures prepared from precursor gases and/or liquids. The resulting ice is photo-processed with a microwave discharge hydrogen lamp, generating VUV radiation with a spectral energy distribution representative for the interstellar medium. The characteristics, performance, and future potential of the system are discussed by describing three different applications. First, a new method is introduced, which uses broadband interference transmission fringes recorded during ice deposition, to determine the wavelength-dependent refractive index, n λ , of amorphous solid water. This approach is also applicable to other solids, pure and mixed. Second, the UV-vis and FTIR spectroscopy of an VUV-irradiated triphenylene:water ice mixture is discussed, monitoring the ionization efficiency of PAHs in interstellar ice environments. The third and final example investigates the stability of solid glycine upon VUV irradiation by monitoring the formation of dissociation products in real time.

  12. A multifunctional setup to record FTIR and UV-vis spectra of organic molecules and their photoproducts in astronomical ices

    Science.gov (United States)

    Kofman, V.; Witlox, M. J. A.; Bouwman, J.; ten Kate, I. L.; Linnartz, H.

    2018-05-01

    This article describes a new, multi-functional, high-vacuum ice setup that allows to record the in situ and real-time spectra of vacuum UV (VUV)-irradiated non-volatile molecules embedded in a low-temperature (10 K) amorphous solid water environment. Three complementary diagnostic tools—UV-visible (UV-vis) and Fourier Transform Infrared (FTIR) spectroscopy and temperature-programmed desorption quadrupole mass spectrometry—can be used to simultaneously study the physical and chemical behavior of the organic molecules in the ice upon VUV irradiation. The setup is equipped with a temperature-controlled sublimation oven that enables the controlled homogeneous deposition of solid species such as amino acids, nucleobases, and polycyclic aromatic hydrocarbons (PAHs) in ice mixtures prepared from precursor gases and/or liquids. The resulting ice is photo-processed with a microwave discharge hydrogen lamp, generating VUV radiation with a spectral energy distribution representative for the interstellar medium. The characteristics, performance, and future potential of the system are discussed by describing three different applications. First, a new method is introduced, which uses broadband interference transmission fringes recorded during ice deposition, to determine the wavelength-dependent refractive index, nλ, of amorphous solid water. This approach is also applicable to other solids, pure and mixed. Second, the UV-vis and FTIR spectroscopy of an VUV-irradiated triphenylene:water ice mixture is discussed, monitoring the ionization efficiency of PAHs in interstellar ice environments. The third and final example investigates the stability of solid glycine upon VUV irradiation by monitoring the formation of dissociation products in real time.

  13. Statistical identification of stimulus-activated network nodes in multi-neuron voltage-sensitive dye optical recordings.

    Science.gov (United States)

    Fathiazar, Elham; Anemuller, Jorn; Kretzberg, Jutta

    2016-08-01

    Voltage-Sensitive Dye (VSD) imaging is an optical imaging method that allows measuring the graded voltage changes of multiple neurons simultaneously. In neuroscience, this method is used to reveal networks of neurons involved in certain tasks. However, the recorded relative dye fluorescence changes are usually low and signals are superimposed by noise and artifacts. Therefore, establishing a reliable method to identify which cells are activated by specific stimulus conditions is the first step to identify functional networks. In this paper, we present a statistical method to identify stimulus-activated network nodes as cells, whose activities during sensory network stimulation differ significantly from the un-stimulated control condition. This method is demonstrated based on voltage-sensitive dye recordings from up to 100 neurons in a ganglion of the medicinal leech responding to tactile skin stimulation. Without relying on any prior physiological knowledge, the network nodes identified by our statistical analysis were found to match well with published cell types involved in tactile stimulus processing and to be consistent across stimulus conditions and preparations.

  14. Spectral shapes for accelerograms recorded at soil sites

    International Nuclear Information System (INIS)

    Ghosh, A.K.; Sharma, R.D.

    1987-01-01

    Earthquake accelerograms recorded on soil sites have been analysed to develop site-specific response spectra. This report presents the normalised pseudo-absolute acceleration spectra for various values of damping and ground motion parameters viz. v/a, ad/v 2 and the ratios of peak accelerations in the three orthogonal directions. These results will be useful in the earthquake resistant design of structures. 4 tables, 14 figures. (author)

  15. Band Structure and Optical Properties of Ordered AuCu3

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Lengkeek, H. P.

    1979-01-01

    The optical spectra of ordered AuCu3 have been measured at low temperatures by a direct ellipsometric technique. We find several structural elements above the absorption edge as well as in the infrared. The measured spectra are interpreted in terms of the interband absorption calculated from an ab...

  16. A luminescence-optical spectroscopy study of Rb2KTiOF5 single crystals

    Science.gov (United States)

    Pustovarov, V. A.; Ogorodnikov, I. N.; Kozlov, A. V.; Isaenko, L. I.

    2018-06-01

    Large single crystals of Rb2KTiOF5 (RKTF), grown by slow solidification method, were studied (7-400 K) for various types of optical and radiation effects. The optical absorption spectra, the parameters of the Urbach rule at 293 K (σ = 0.24 and EU = 105 meV), the low-temperature reflection spectra (T = 7 K, E = 3.7-22 eV) were determined. The luminescence spectra (1.2-6.2 eV) and luminescence decay kinetics are studied upon excitation by a nanosecond electron beam (PCL), ultraviolet and vacuum ultraviolet light (PL), or X-rays radiation (XRL). PL excitation spectra under selective photoexcitation by synchrotron radiation (E = 3.7-22 eV, T = 7 K), temperature dependences of the intensity of steady-state XRL in different emission bands, as well as thermoluminescence (7-400 K) are studied. In the visible spectral region, we detected three luminescence bands that were attributed to radiative annihilation of intrinsic excitons (2.25 eV), recombination-type luminescence (2.1 eV) and luminescence of higher TiOF5 complexes (1.9 eV). The exponential component with lifetime of about 19 μs was revealed in the PCL decay kinetics at 2.25 eV. The low-energy onset of the intrinsic host absorption Ec = 3.55 eV was determined on the basis of the experimental data obtained. Spectra of optical constants were calculated by the Kramers-Krönig method, the energy of the onset of the interband transitions Eg = 4.2 eV was determined, and the main peaks of the optical spectra were identified.

  17. Second harmonics HOE recording in Bayfol HX

    Science.gov (United States)

    Bruder, Friedrich-Karl; Fäcke, Thomas; Hagen, Rainer; Hönel, Dennis; Orselli, Enrico; Rewitz, Christian; Rölle, Thomas; Walze, Günther; Wewer, Brita

    2015-05-01

    Volume Holographic Optical Elements (vHOEs) provide superior optical properties over DOEs (surface gratings) due to high diffraction efficiencies in the -1st order and their excellent Bragg selectivity. Bayer MaterialScience is offering a variety of customized instant-developing photopolymer films to meet requirements for a specific optics design of a phase hologram. For instance, the photopolymer film thickness is an ideal means to adjust the angular and the spectral selectivity while the index modulation can be adopted with the film thickness to achieve a specific required dynamic range. This is especially helpful for transmission type holograms and in multiplex recordings. The selection of different substrates is helpful to achieve the overall optical properties for a targeted application that we support in B2B-focused developments. To provide further guidance on how to record volume holograms in Bayfol HX, we describe in this paper a new route towards the recording of substrate guided vHOEs by using optimized photopolymer films. Furthermore, we discuss special writing conditions that are suitable to create higher 2nd harmonic intensities and their useful applications. Due to total internal reflection (TIR) at the photopolymer-air interface in substrate guided vHOEs, hologram recording with those large diffraction angles cannot usually be done with two free-space beams. Edge-lit recording setups are used to circumvent this limitation. However, such setups require bulky recording blocks or liquid bathes and are complex and hard to align. A different approach that we present in this paper is to exploit 2nd harmonic grating generation in a freespace recording scheme. Those 2nd harmonic components allow the replay of diffraction angles that are normally only accessible with edge-lit writing configurations. Therefore, this approach significantly simplifies master recordings for vHOEs with edge-lit functionalities, which later can be used in contact copy schemes for

  18. Evaluation of Fourier and Response Spectra at Ichihasama and Koromogawa Seismic Intensity Observation Sites During the Iwate-Miyagi Nairiku Earthquake in 2008

    Science.gov (United States)

    Nishikawa, Hayato; Miyajima, Masakatsu

    In this study, we evaluate an acceleration Fourier and response spectra at Ichihasama and Koromogawa seismic intensity observation sites which observed JMA seismic intensity of 6 upper but seismic waveform records don't exist during the Iwate-Miyagi Nairiku earthquake in 2008. Firstly, formula to evaluate acceleration Fourier and response spectra are developed using peak ground acceleration, JMA seismic intensity and predominant period of earthquake spectra based on records obtained from crustal earthquakes with Magnitude of 6 to 7. Acceleration Fourier and response spectra are evaluated for another local government site which are not chosen for development of the formula. The evaluated values mostly agree with the observed ones. Finally, acceleration Fourier and response spectra are evaluated for Ichihasama and Koromogawa observation sites. It is clarified that short period below 1 second was predominated in the evaluated spectra.

  19. Monte Carlo simulation of reflection spectra of random multilayer media strongly scattering and absorbing light

    International Nuclear Information System (INIS)

    Meglinskii, I V

    2001-01-01

    The reflection spectra of a multilayer random medium - the human skin - strongly scattering and absorbing light are numerically simulated. The propagation of light in the medium and the absorption spectra are simulated by the stochastic Monte Carlo method, which combines schemes for calculations of real photon trajectories and the statistical weight method. The model takes into account the inhomogeneous spatial distribution of blood vessels, water, and melanin, the degree of blood oxygenation, and the hematocrit index. The attenuation of the incident radiation caused by reflection and refraction at Fresnel boundaries of layers inside the medium is also considered. The simulated reflection spectra are compared with the experimental reflection spectra of the human skin. It is shown that a set of parameters that was used to describe the optical properties of skin layers and their possible variations, despite being far from complete, is nevertheless sufficient for the simulation of the reflection spectra of the human skin and their quantitative analysis. (laser applications and other topics in quantum electronics)

  20. The Electronic Structure and Spectra of Triphenylamines Functionalized by Phenylethynyl Groups

    Science.gov (United States)

    Baryshnikov, G. V.; Minaeva, V. A.; Minaev, B. F.; Grigoras, M.

    2018-01-01

    We study the features of the electronic structure and the IR, UV, and visible spectra of a series of triphenylamines substituted with phenylethynyl groups. The analysis is performed at the level of the density functional theory (DFT) and its nonstationary version in comparison with the experimental data of IR and electron spectroscopy. It is shown that, in the excited state, there is a change in the alternation of single, double, and triple bonds in accordance with the character of bonding and antibonding in the lowest vacant molecular orbital. The gradual introduction of additional phenylethynyl groups does not cause frequency shifts in the IR spectra of the molecules under study, but significantly affects the intensity of the corresponding IR bands. A similar effect is also observed in the electronic-absorption spectra of these compounds. This can be used for optical tuning of triphenylamines as promising materials for organic light-emitting diodes and solar cells.

  1. Influence of probe pressure on diffuse reflectance spectra of human skin measured in vivo

    Science.gov (United States)

    Popov, Alexey P.; Bykov, Alexander V.; Meglinski, Igor V.

    2017-11-01

    Mechanical pressure superficially applied on the human skin surface by a fiber-optic probe influences the spatial distribution of blood within the cutaneous tissues. Upon gradual load of weight on the probe, a stepwise increase in the skin reflectance spectra is observed. The decrease in the load follows the similar inverse staircase-like tendency. The observed stepwise reflectance spectra changes are due to, respectively, sequential extrusion of blood from the topical cutaneous vascular beds and their filling afterward. The obtained results are confirmed by Monte Carlo modeling. This implies that pressure-induced influence during the human skin diffuse reflectance spectra measurements in vivo should be taken into consideration, in particular, in the rapidly developing area of wearable gadgets for real-time monitoring of various human body parameters.

  2. Program system for processing of spectra obtained on the multidetector correlation device (MUK)

    International Nuclear Information System (INIS)

    Venos, D.; Adam, J.; Hnatowicz, V.; Honusek, M.

    1988-01-01

    A program system used by evaluation of multidimensional coincidence spectra is described. The spectra recorded on magnetic tapes are obtained by means of multidetector correlation device (MUK). The angular correlation coefficients A 22 and A 44 for the given cascades of gamma transitions are the final result of the calculations. The system operates in DOS/ES system of the EC-1040 computer with the 1024 Kbyte memeory. All the codes are written in fortran language

  3. Comparative study of the endoscope-based bevelled and volume fiber-optic Raman probes for optical diagnosis of gastric dysplasia in vivo at endoscopy.

    Science.gov (United States)

    Wang, Jianfeng; Lin, Kan; Zheng, Wei; Ho, Khek Yu; Teh, Ming; Yeoh, Khay Guan; Huang, Zhiwei

    2015-11-01

    This study aims to compare the diagnostic performance of the two different endoscope-based fiber-optic Raman probe designs (i.e., bevelled and volume Raman probes) for real-time, in vivo detection of gastric dysplasia at endoscopy. To conduct the clinical comparison, a total of 1,050 in vivo tissue Raman spectra (normal: n = 864; dysplasia: n = 186) were acquired from 66 gastric patients (normal: n = 48; dysplasia: n = 18) by using bevelled Raman probe, while a total of 1,913 in vivo tissue Raman spectra (normal: n = 1,786; dysplasia: n = 127) were acquired from 98 gastric patients (normal: n = 87; dysplasia: n = 11) by using volume Raman probe. The bevelled Raman probe provides approximately twofold improvements in tissue Raman-to-autofluorescence intensity ratios as compared to the use of volume Raman probe. Partial least squares discriminant analysis together with leave-one patient-out cross-validation on in vivo tissue Raman spectra acquired yields a diagnostic accuracy of 93.0 % (sensitivity of 92.5 %; specificity of 93.1 %) for differentiating gastric dysplasia from normal gastric tissue by using the bevelled fiber-optic Raman probe, which is superior to the diagnostic performance (accuracy of 88.4 %; sensitivity of 85.8 %; specificity of 88.6 %) by using the volume Raman probe. This work demonstrates that the Raman spectroscopic technique coupled with bevelled fiber-optic Raman probe has great potential to enhance in vivo diagnosis of gastric precancer and early cancer at endoscopy. Graphical Abstract Comparison of in vivo gastric tissue Raman spectra acquired by using bevelled and volume fiber-optic Raman probes.

  4. Monitoring of itaconic acid hydrogenation in a trickle bed reactor using fiber-optic coupled near-infrared spectroscopy.

    Science.gov (United States)

    Wood, Joseph; Turner, Paul H

    2003-03-01

    Near-infrared (NIR) spectroscopy has been applied to determine the conversion of itaconic acid in the effluent stream of a trickle bed reactor. Hydrogenation of itaconic to methyl succinic acid was carried out, with the trickle bed operating in recycle mode. For the first time, NIR spectra of itaconic and methyl succinic acids in aqueous solution, and aqueous mixtures withdrawn from the reactor over a range of reaction times, have been recorded using a fiberoptic sampling probe. The infrared spectra displayed a clear isolated absorption band at a wavenumber of 6186 cm(-1) (wavelength 1.617 microm) resulting from the =C-H bonds of itaconic acid, which was found to decrease in intensity with increasing reaction time. The feature could be more clearly observed from plots of the first derivatives of the spectra. A partial least-squares (PLS) model was developed from the spectra of 13 reference samples and was used successfully to calculate the concentration of the two acids in the reactor effluent solution. Itaconic acid conversions of 23-29% were calculated after 360 min of reaction time. The potential of FT-NIR with fiber-optic sampling for remote monitoring of three-phase catalytic reactors and validation of catalytic reactor models is highlighted in the paper.

  5. High-resolution n = 3 to n = 2 spectra of neonlike silver

    International Nuclear Information System (INIS)

    Beiersdorfer, P.; Bitter, M.; von Goeler, S.

    1986-01-01

    Spectra of the n = 3 to n = 2 transitions in neonlike silver emitted from the Princeton Large Torus have been recorded with a high-resolution Bragg-crystal spectrometer. The measurements cover the wavelength region 3.3--4.1 A-circle and include the forbidden 3p→2p electric quadrupole lines. Transitions in the adjacent sodiumlike, magnesiumlike, and aluminumlike charge states of silver have also been observed and identified. The Ly-α spectra of hydrogenlike argon and iron, the Kα spectra of heliumlike argon, potassium, manganese, and iron, and the Kβ spectrum of heliumlike argon fall in the same wavelength region in first or second order and have been measured concurrently. These spectra provide a coherent set of wavelength reference data obtained with the same spectrometer and from the same tokamak. This set is used as a basis to compare wavelength predictions for one- and two-electron systems to each other and to determine the transition energies of the silver lines with great accuracy

  6. Optical absorption spectra and g factor of MgO: Mn2+explored by ab initio and semi empirical methods

    Science.gov (United States)

    Andreici Eftimie, E.-L.; Avram, C. N.; Brik, M. G.; Avram, N. M.

    2018-02-01

    In this paper we present a methodology for calculations of the optical absorption spectra, ligand field parameters and g factor for the Mn2+ (3d5) ions doped in MgO host crystal. The proposed technique combines two methods: the ab initio multireference (MR) and the semi empirical ligand field (LF) in the framework of the exchange charge model (ECM) respectively. Both methods of calculations are applied to the [MnO6]10-cluster embedded in an extended point charge field of host matrix ligands based on Gellé-Lepetit procedure. The first step of such investigations was the full optimization of the cubic structure of perfect MgO crystal, followed by the structural optimization of the doped of MgO:Mn2+ system, using periodic density functional theory (DFT). The ab initio MR wave functions approaches, such as complete active space self-consistent field (CASSCF), N-electron valence second order perturbation theory (NEVPT2) and spectroscopy oriented configuration interaction (SORCI), are used for the calculations. The scalar relativistic effects have also been taken into account through the second order Douglas-Kroll-Hess (DKH2) procedure. Ab initio ligand field theory (AILFT) allows to extract all LF parameters and spin-orbit coupling constant from such calculations. In addition, the ECM of ligand field theory (LFT) has been used for modelling theoptical absorption spectra. The perturbation theory (PT) was employed for the g factor calculation in the semi empirical LFT. The results of each of the aforementioned types of calculations are discussed and the comparisons between the results obtained and the experimental results show a reasonable agreement, which justifies this new methodology based on the simultaneous use of both methods. This study establishes fundamental principles for the further modelling of larger embedded cluster models of doped metal oxides.

  7. Co-doping as a tool for tuning the optical properties of singlewalled carbon nanotubes: A first principles study

    Science.gov (United States)

    Sharma, Deepa; Jaggi, Neena

    2017-07-01

    This paper presents a first principles study on the effect of co-doping on various optical spectra of a zigzag single-walled carbon nanotube (SWCNT). Optical spectra of a pristine SWCNT, SWCNT co-doped with Aluminum (Al) & Phosphorus (P) and another one co-doped with Al, P and Nitrogen (N) have been calculated using density functional theory (DFT).The theory has been implemented using the Cambridge sequential total energy package (CASTEP) code available as a userfriendly module with the software 'Material Studio'. Polarized and unpolarized light as well as light through polycrystalline media have been considered. The dependence of various spectra on the status of incident light presents a clear evidence of anisotropicity in the optical properties. Analysis of the simulated spectra involves calculation and comparison of different optical properties like dielectric function, reflectivity, refractive index, conductivity and loss function for the pristine and co-doped SWCNTs. Noticeable variations are observed in the optical properties on simultaneously doping the SWCNT with Al and P and then further introducing N atom into the structure so that it can be concluded that co-doping (simultaneous doping with different combinations of dopants) can be evolved as a novel and effective tool for tailoring the optical properties of SWCNTs as per the requirements while designing an optical device. It will prove to be highly significant for effective designing of SWCNT based sensitive optical devices for a variety of technological applications.

  8. Fluorescence spectra of benign and malignant prostate tissues

    International Nuclear Information System (INIS)

    AlSalhi, M S; Masilamani, V; Atif, M; Farhat, K; Rabah, D; Al Turki, M R

    2012-01-01

    In this study, fluorescence emission spectrum (FES), Stokes' shift spectrum (SSS), and reflectance spectrum (RS) of benign (N = 12) and malignant prostate tissues (N = 8) were investigated to discriminate the two types of tissues. The FES was done with the excitation at 325 nm only; SSS with Δλ = 70 and Δλ = 0, the latter being equivalent to reflectance spectra. Of the three modes of spectra, SSS with Δλ = 70 nm showed the best discrimination. There were four important bands, one at 280 nm (due to tryptophan); 320 nm (due to elastin and tryptophan); 355 and 385 (due to NADH) and 440 nm (due to flavin). From the relative intensities of these bands, three ratios were evaluated. Similarly another two ratios were obtained from reflectance spectra and one more from FES. Thus, there are 6 ratio parameters which represent the relative concentration of tryptophan, elastin, nicotinamide adenine dinucleotide (NADH), and flavin. A statistical analysis showed that benign and malignant tissues could be classified with accuracy greater than 90%. This report is only for in vitro analysis; but employing optical fiber, this can be extended to in vivo analysis too, so that benign tumor could be distinguished without surgery

  9. Study of probe-sample distance for biomedical spectra measurement

    Directory of Open Access Journals (Sweden)

    Li Lei

    2011-11-01

    Full Text Available Abstract Background Fiber-based optical spectroscopy has been widely used for biomedical applications. However, the effect of probe-sample distance on the collection efficiency has not been well investigated. Method In this paper, we presented a theoretical model to maximize the illumination and collection efficiency in designing fiber optic probes for biomedical spectra measurement. This model was in general applicable to probes with single or multiple fibers at an arbitrary incident angle. In order to demonstrate the theory, a fluorescence spectrometer was used to measure the fluorescence of human finger skin at various probe-sample distances. The fluorescence spectrum and the total fluorescence intensity were recorded. Results The theoretical results show that for single fiber probes, contact measurement always provides the best results. While for multi-fiber probes, there is an optimal probe distance. When a 400- μm excitation fiber is used to deliver the light to the skin and another six 400- μm fibers surrounding the excitation fiber are used to collect the fluorescence signal, the experimental results show that human finger skin has very strong fluorescence between 475 nm and 700 nm under 450 nm excitation. The fluorescence intensity is heavily dependent on the probe-sample distance and there is an optimal probe distance. Conclusions We investigated a number of probe-sample configurations and found that contact measurement could be the primary choice for single-fiber probes, but was very inefficient for multi-fiber probes. There was an optimal probe-sample distance for multi-fiber probes. By carefully choosing the probe-sample distance, the collection efficiency could be enhanced by 5-10 times. Our experiments demonstrated that the experimental results of the probe-sample distance dependence of collection efficiency in multi-fiber probes were in general agreement with our theory.

  10. FTIR, FT-Raman, UV-Visible spectra and quantum chemical calculations of allantoin molecule and its hydrogen bonded dimers.

    Science.gov (United States)

    Alam, Mohammad Jane; Ahmad, Shabbir

    2015-02-05

    FTIR, FT-Raman and electronic spectra of allantoin molecule are recorded and investigated using DFT and MP2 methods with 6-311++G(d,p) basis set. The molecular structure, anharmonic vibrational spectra, natural atomic charges, non-linear optical properties, etc. have been computed for the ground state of allantoin. The anharmonic vibrational frequencies are calculated using PT2 algorithm (Barone method) as well as VSCF and CC-VSCF methods. These methods yield results that are in remarkable agreement with the experiment. The coupling strengths between pairs of modes are also calculated using coupling integral based on 2MR-QFF approximation. The simulations on allantoin dimers have been also performed at B3LYP/6-311++G(d,p) level of theory to investigate the effect of the intermolecular interactions on the molecular structure and vibrational frequencies of the monomer. Vibrational assignments are made with the great accuracy using PED calculations and animated modes. The combination and overtone bands have been also identified in the FTIR spectrum with the help of anharmonic computations. The electronic spectra are simulated in gas and solution at TD-B3LYP/6-311++G(d,p) level of theory. The important global quantities such as electro-negativity, electronic chemical potential, electrophilicity index, chemical hardness and softness based on HOMO, LUMO energy eigenvalues are also computed. NBO analysis has been performed for monomer and dimers of allantoin at B3LYP/6-311++G(d,p) level of theory. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Multi-Channel Data Recording of Marx switch closures

    International Nuclear Information System (INIS)

    Lockwood, G.J.; Ruggles, L.E.; Ziska, G.R.

    1984-01-01

    The authors have measured the optical signals associated with switch closure on the Demon marx at Sandia National Laboratories. Using the High Speed Multi-Channel Data Recorder(HSMCDR), they have recorded the time histories of the optical signals from the thirty switches in the marx generator. All thirty switches were fiber connected to the HSMCDR. The HSMCDR consists of a high speed streak camera, and a microcomputer-based video digitizing system. Since the thirty signals are recorded on a single streak, the time sequence can be determined with great accuracy. The appearance of a given signal can be determined to within two samples of the 256 samples that make up the time streak. The authors have found that the light intensity and time history of any given switch varied over a large range from shot to shot. Thus, the ability to record the entire optical signal as a function of time for each switch on every shot is necessary if accurate timing results are required

  12. An application of deep learning in the analysis of stellar spectra

    Science.gov (United States)

    Fabbro, S.; Venn, K. A.; O'Briain, T.; Bialek, S.; Kielty, C. L.; Jahandar, F.; Monty, S.

    2018-04-01

    Spectroscopic surveys require fast and efficient analysis methods to maximize their scientific impact. Here, we apply a deep neural network architecture to analyse both SDSS-III APOGEE DR13 and synthetic stellar spectra. When our convolutional neural network model (StarNet) is trained on APOGEE spectra, we show that the stellar parameters (temperature, gravity, and metallicity) are determined with similar precision and accuracy as the APOGEE pipeline. StarNet can also predict stellar parameters when trained on synthetic data, with excellent precision and accuracy for both APOGEE data and synthetic data, over a wide range of signal-to-noise ratios. In addition, the statistical uncertainties in the stellar parameter determinations are comparable to the differences between the APOGEE pipeline results and those determined independently from optical spectra. We compare StarNet to other data-driven methods; for example, StarNet and the Cannon 2 show similar behaviour when trained with the same data sets; however, StarNet performs poorly on small training sets like those used by the original Cannon. The influence of the spectral features on the stellar parameters is examined via partial derivatives of the StarNet model results with respect to the input spectra. While StarNet was developed using the APOGEE observed spectra and corresponding ASSET synthetic data, we suggest that this technique is applicable to other wavelength ranges and other spectral surveys.

  13. MODESTY, Statistical Reaction Cross-Sections and Particle Spectra in Decay Chain

    International Nuclear Information System (INIS)

    Mattes, W.

    1977-01-01

    1 - Nature of the physical problem solved: Code MODESTY calculates all energetically possible reaction cross sections and particle spectra within a nuclear decay chain. 2 - Method of solution: It is based on the statistical nuclear model following the method of Uhl (reference 1) where the optical model is used in the calculation of partial widths and the Blatt-Weisskopf single particle model for gamma rays

  14. New Solid-Phase IR Spectra of Solar-System Molecules: Methanol, Ethanol, and Methanethiol

    Science.gov (United States)

    Hudson, Reggie L.; Gerakines, Perry A.; Ferrante, Robert F.

    2017-10-01

    The presence and abundances of organic molecules in extraterrestrial environments, such as on TNOs, can be determined with infrared (IR) spectroscopy, but significant challenges exist. Reference IR spectra for organics under relevant conditions are vital for such work, yet for many compounds such data either are lacking or fragmentary. In this presentation we describe new laboratory results for methanol (CH3OH), the simplest alcohol, which has been reported to exist in planetary and interstellar ices. Our new results include near- and mid-IR spectra, band strengths, and optical constants at various ice temperatures. Moreover, the influence of H2O-ice is examined. In addition to CH3OH, we also have new results for the related cometary molecules CH3SH and CH3CH2OH. Although IR spectra of such molecules have been reported by many groups over the past 60 years, our work appears to be the first to cover densities, refractive indices, band strengths and optical constants of both the amorphous and crystalline phases. Our results are compared to earlier work, the influence of literature assumptions is explored, and possible revisions to the literature are described. Support from the following is acknowledged: (a) NASA-SSERVI's DREAM2 program, (b) the NASA Astrobiology Institute's Goddard Center for Astrobiology, and (c) a NASA-APRA award.

  15. Pulse radiolysis of LiBr-KBr melts. Optical transient absorption spectra

    International Nuclear Information System (INIS)

    Sawamura, S.; Gebicki, J.L.; Mayer, J.; Kroh, J.

    1990-01-01

    Absorption spectra of the irradiated melts of LiBr and LiBr-KBr mixtures were investigated in the temperature range 673-873 K by nanosecond pulse radiolysis. The visible band ascribed to e s - shows the apparent shift towards longer wavelengths with increasing temperature and increasing content of KBr in the mixture. The UV transient absorption was attributed to superimposed Br 2 - and Br 3 - bands. The relation between the transition energy of visible band and the inverse mean ion distance is given for alkali bromide and chloride systems. (author)

  16. Signal-to-Noise Contribution of Principal Component Loads in Reconstructed Near-Infrared Raman Tissue Spectra

    NARCIS (Netherlands)

    Grimbergen, M. C. M.; van Swol, C. F. P.; Kendall, C.; Verdaasdonk, R. M.; Stone, N.; Bosch, J. L. H. R.

    The overall quality of Raman spectra in the near-infrared region, where biological samples are often studied, has benefited from various improvements to optical instrumentation over the past decade. However, obtaining ample spectral quality for analysis is still challenging due to device

  17. Long-time joint spectra and entanglement of two photoelectrons originating in interacting auto-ionization systems

    Czech Academy of Sciences Publication Activity Database

    Peřina ml., Jan; Lukš, A.; Leoński, W.

    2015-01-01

    Roč. 48, č. 11 (2015), s. 115007 ISSN 0953-4075 Institutional support: RVO:68378271 Keywords : two-electron ionization spectra * auto -ionization * dipole-dipole interaction * Fano model * bipartite entanglement * quadratic negativity Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.833, year: 2015

  18. Progress in optics

    CERN Document Server

    Wolf, Emil

    2009-01-01

    In the fourty-seven years that have gone by since the first volume of Progress in Optics was published, optics has become one of the most dynamic fields of science. The volumes in this series which have appeared up to now contain more than 300 review articles by distinguished research workers, which have become permanent records for many important developments.- Backscattering and Anderson localization of light- Advances in oliton manipulation in optical lattices- Fundamental quantum noise in optical amplification- Invisibility cloaks

  19. CH(3)NH(3)PbI(3) perovskite / silicon tandem solar cells: characterization based optical simulations.

    Science.gov (United States)

    Filipič, Miha; Löper, Philipp; Niesen, Bjoern; De Wolf, Stefaan; Krč, Janez; Ballif, Christophe; Topič, Marko

    2015-04-06

    In this study we analyze and discuss the optical properties of various tandem architectures: mechanically stacked (four-terminal) and monolithically integrated (two-terminal) tandem devices, consisting of a methyl ammonium lead triiodide (CH(3)NH(3)PbI(3)) perovskite top solar cell and a crystalline silicon bottom solar cell. We provide layer thickness optimization guidelines and give estimates of the maximum tandem efficiencies based on state-of-the-art sub cells. We use experimental complex refractive index spectra for all involved materials as input data for an in-house developed optical simulator CROWM. Our characterization based simulations forecast that with optimized layer thicknesses the four-terminal configuration enables efficiencies over 30%, well above the current single-junction crystalline silicon cell record of 25.6%. Efficiencies over 30% can also be achieved with a two-terminal monolithic integration of the sub-cells, combined with proper selection of layer thicknesses.

  20. Quantitative analysis of directional spontaneous emission spectra from light sources in photonic crystals

    International Nuclear Information System (INIS)

    Nikolaev, Ivan S.; Lodahl, Peter; Vos, Willem L.

    2005-01-01

    We have performed angle-resolved measurements of spontaneous-emission spectra from laser dyes and quantum dots in opal and inverse opal photonic crystals. Pronounced directional dependencies of the emission spectra are observed: angular ranges of strongly reduced emission adjoin with angular ranges of enhanced emission. It appears that emission from embedded light sources is affected both by the periodicity and by the structural imperfections of the crystals: the photons are Bragg diffracted by lattice planes and scattered by unavoidable structural disorder. Using a model comprising diffuse light transport and photonic band structure, we quantitatively explain the directional emission spectra. This work provides detailed understanding of the transport of spontaneously emitted light in real photonic crystals, which is essential in the interpretation of quantum optics in photonic-band-gap crystals and for applications wherein directional emission and total emission power are controlled

  1. Optical absorption in gel grown cadmium tartrate single crystals

    International Nuclear Information System (INIS)

    Arora, S K; Kothari, A J; Patel, R G; Chauha, K M; Chudasama, B N

    2006-01-01

    Single crystals of cadmium tartrate pentahydrate (CTP) have been grown by the famous gel technique. The slow and controlled reaction between Cd 2+ and (C 4 H 4 O 6 ) 2- ions in silica hydrogel results in formation of the insoluble product, CdC 4 H 4 O 6 .5H 2 O. Optical absorption spectra have been recorded in the range 200 to 2500 nm. Fundamental absorption edge for electronic transition has been analyzed. The direct allowed transition is found to be present in the region of relatively higher photon energy. Analysis of the segments of α 1/2 versus hν graph has been made to separate individual contribution of phonons. The phonons involved in the indirect transition are found to correspond to 335 and 420 cm -1 . Scattering of charge carriers in the lattice is found due to acoustic phonons

  2. Similarity analysis of spectra obtained via reflectance spectrometry in legal medicine.

    Science.gov (United States)

    Belenki, Liudmila; Sterzik, Vera; Bohnert, Michael

    2014-02-01

    In the present study, a series of reflectance spectra of postmortem lividity, pallor, and putrefaction-affected skin for 195 investigated cases in the course of cooling down the corpse has been collected. The reflectance spectrometric measurements were stored together with their respective metadata in a MySQL database. The latter has been managed via a scientific information repository. We propose similarity measures and a criterion of similarity that capture similar spectra recorded at corpse skin. We systematically clustered reflectance spectra from the database as well as their metadata, such as case number, age, sex, skin temperature, duration of cooling, and postmortem time, with respect to the given criterion of similarity. Altogether, more than 500 reflectance spectra have been pairwisely compared. The measures that have been used to compare a pair of reflectance curve samples include the Euclidean distance between curves and the Euclidean distance between derivatives of the functions represented by the reflectance curves at the same wavelengths in the spectral range of visible light between 380 and 750 nm. For each case, using the recorded reflectance curves and the similarity criterion, the postmortem time interval during which a characteristic change in the shape of reflectance spectrum takes place is estimated. The latter is carried out via a software package composed of Java, Python, and MatLab scripts that query the MySQL database. We show that in legal medicine, matching and clustering of reflectance curves obtained by means of reflectance spectrometry with respect to a given criterion of similarity can be used to estimate the postmortem interval.

  3. Raman spectroscopy of individual monocytes reveals that single-beam optical trapping of mononuclear cells occurs by their nucleus

    International Nuclear Information System (INIS)

    Fore, Samantha; Chan, James; Taylor, Douglas; Huser, Thomas

    2011-01-01

    We show that laser tweezers Raman spectroscopy of eukaryotic cells with a significantly larger diameter than the tight focus of a single-beam laser trap leads to optical trapping of the cell by its optically densest part, i.e. typically the cell's nucleus. Raman spectra of individual optically trapped monocytes are compared with location-specific Raman spectra of monocytes adhered to a substrate. When the cell's nucleus is stained with a fluorescent live cell stain, the Raman spectrum of the DNA-specific stain is observed only in the nucleus of individual monocytes. Optically trapped monocytes display the same behavior. We also show that the Raman spectra of individual monocytes exhibit the characteristic Raman signature of cells that have not yet fully differentiated and that individual primary monocytes can be distinguished from transformed monocytes based on their Raman spectra. This work provides further evidence that laser tweezers Raman spectroscopy of individual cells provides meaningful biochemical information in an entirely non-destructive fashion that permits discerning differences between cell types and cellular activity

  4. Optical studies of CdSe/HgSe and CdSe/Ag2Se core/shell nanoparticles embedded in gelatin

    International Nuclear Information System (INIS)

    Azhniuk, Yu M; Dzhagan, V M; Valakh, M Ya; Raevskaya, A E; Stroyuk, A L; Kuchmiy, S Ya; Zahn, D R T

    2008-01-01

    CdSe/HgSe and CdSe/Ag 2 Se core-shell nanoparticles are obtained by colloidal synthesis from aqueous solutions in the presence of gelatin. Optical absorption, luminescence, and Raman spectra of the nanoparticles obtained are measured. The variation of the optical spectra of CdSe/HgSe and CdSe/Ag 2 Se core-shell nanoparticles with the shell thickness is discussed. Sharp non-monotonous variation of the photoluminescence spectra at low shell coverage is observed.

  5. Photorefractive response and optical damage of LiNbO3 optical waveguides produced by swift heavy ion irradiation

    Science.gov (United States)

    Villarroel, J.; Carrascosa, M.; García-Cabañes, A.; Caballero-Calero, O.; Crespillo, M.; Olivares, J.

    2009-06-01

    The photorefractive behaviour of a novel type of optical waveguides fabricated in LiNbO3 by swift heavy ion irradiation is investigated. First, the electro-optic coefficient r 33 of these guides that is crucial in the photorefractive effect is measured. Second, two complementary aspects of the photorefractive response are studied: (i) recording and light-induced and dark erasure of holographic gratings; (ii) optical beam degradation in single-beam configuration. The main photorefractive parameters, recording and erasing time constants, maximum refractive-index change and optical damage thresholds are determined.

  6. Investigation of the impact of seed record selection on structural response

    International Nuclear Information System (INIS)

    Houston, Thomas W.; Mertz, Greg E.; Costantino, Michael C.; Costantino, Carl J.

    2010-01-01

    Time history records are typically used to define the seismic demand for criteria structures for which soil structure interaction (SSI) analyses are often required. Criteria for the development of time histories is provided in ASCE 43-05. The time histories are based on a close fit of 5% damped target response spectra. Recent experience has demonstrated that for cases where the transfer functions associated with the structural response are narrow, the ASCE 43 criteria can under-predict peak spectral responses in the structure by as much as 70% in some frequency ranges. One potential solution for this issue is to reinstate requirements for matching target response spectra for multiple damping levels to ASCE 43 criteria. However, recent probabilistic seismic hazard analyses (PSHA) do not generally contain spectra for multiple damping levels. This paper proposes an approach to generate target spectra at multiple damping levels, given the 5% damped target spectrum provided by the PSHA, utilizing catalogs of recorded earthquakes. The process of fitting time histories to multiple damped spectra is effective in correcting deficiencies observed in the computed structural response when time histories meeting the ASCE 43 fitting criteria are used.

  7. Explicit versus Implicit Solvent Modeling of Raman Optical Activity Spectra

    Czech Academy of Sciences Publication Activity Database

    Hopmann, K. H.; Ruud, K.; Pecul, M.; Kudelski, A.; Dračínský, Martin; Bouř, Petr

    2011-01-01

    Roč. 115, č. 14 (2011), s. 4128-4137 ISSN 1520-6106 R&D Projects: GA MŠk(CZ) LH11033; GA ČR GAP208/11/0105 Grant - others:AV ČR(CZ) M200550902 Institutional research plan: CEZ:AV0Z40550506 Keywords : raman optical activity * lactamide * solvent models Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.696, year: 2011

  8. Seismic demand evaluation based on actual earthquake records

    International Nuclear Information System (INIS)

    Jhaveri, D.P.; Czarnecki, R.M.; Kassawara, R.P.; Singh, A.

    1990-01-01

    Seismic input in the form of floor response spectra (FRS) are needed in seismic design and evaluation of equipment in nuclear power plants (NPPs). These are typically determined by analytical procedures using mathematical models of NPP structures and are known to be very conservative. Recorded earthquake data, in the form of acceleration response spectra computed from the recorded acceleration time histories, have been collected from NPP structures located in seismically active areas. Statistics of the ratios, or amplification factors, between the FRS at typical floors and the acceleration response spectra at the basemat or in the freefield, are obtained for typical NPP structures. These amplification factors are typically in terms of the peak spectral and zero period values, as well as a function of frequency. The average + 1σ values of these ratios, for those cases where enough data are available, are proposed to be used as limits to analytically calculated FRS, or for construction of simplified FRS for determining seismic input or demand in equipment qualification. (orig.)

  9. Manifestation of Crystal Lattice Distortions in the IR Reflection Spectra of Abrasion-Treated ZnSe Ceramics

    Science.gov (United States)

    Sitnikova, V. E.; Dunaev, A. A.; Mamalimov, R. I.; Pakhomov, P. M.; Khizhnyak, S. D.; Chmel, A. E.

    2017-07-01

    The Fourier IR reflection spectra of ZnSe ceramics prepared by hot pressing (HP), physical vapor deposition (PVD), and PVD combined with hot isostatic pressing (HIP) are presented. The optical constants of polished and dry-ground specimens were used for comparison. The grinding treatment simulated the erosion of the outer surface of optical elements made of zinc selenide under the influence of solid dust particles and deposits. In the polished specimens residual stresses showed up in the IR reflection spectra of the ZnSePVD and ZnSeHIP ceramics, which had well-defined orientation of grains, but were not present in the spectra of the ZnSeHIP ceramics as a result of mutual compensation of the stresses in the randomly oriented grains of the material. The stresses, which appeared as a shift of the absorption bands calculated by the Kramers-Kronig method, increased significantly after abrasive treatment of the specimens. For all the treated ceramics the intensity of the absorption bands resulting from the anharmonicity of the vibrations in the distorted crystal lattice increased by several times. The last effect also depends on the production prehistory of the ceramics.

  10. Study of Gamma spectra by Monte Carlo simulation

    International Nuclear Information System (INIS)

    Cantaragiu, A.; Gheorghies, A.; Borcia, C.

    2008-01-01

    The purpose of this paper is obtaining gamma ray spectra by means of a scintillation detector applying the Monte Carlo statistic simulation method using the EGS4 program. The Monte Carlo algorithm implies that the physical system is described by the probability density function which allows generating random figures and the result is taken as an average of numbers which were observed. The EGS4 program allows the simulation of the following physical processes: the photo-electrical effect, the Compton effect, the electron positron pairs generation and the Rayleigh diffusion. The gamma rays recorded by the detector are converted into electrical pulses and the gamma ray spectra are acquired and processed by means of the Nomad Plus portable spectrometer connected to a computer. As a gamma ray sources 137Cs and 60Co are used whose spectra drawn and used for study the interaction of the gamma radiations with the scintillation detector. The parameters which varied during the acquisition of the gamma ray spectra are the distance between source and detector and the measuring time. Due to the statistical processes in the detector, the peak looks like a Gauss distribution. The identification of the gamma quantum energy value is achieved by the experimental spectra peaks, thus gathering information about the position of the peak, the width and the area of the peak respectively. By means of the EGS4 program a simulation is run using these parameters and an 'ideal' spectrum is obtained, a spectrum which is not influenced by the statistical processes which take place inside the detector. Then, the convolution of the spectra is achieved by means of a normalised Gauss function. There is a close match between the experimental results and those simulated in the EGS4 program because the interactions which occurred during the simulation have a statistical behaviour close to the real one. (authors)

  11. Characterization and optimization of an optical and electronic architecture for photon counting

    Science.gov (United States)

    Correa, M. del M.; Pérez, F. R.

    2018-04-01

    This work shows a time-domain method for the discrimination and digitization of pulses coming from optical detectors, considering the presence of electronic noise and afterpulsing. The developed signal processing scheme is based on a time-to-digital converter (TDC) and a voltage discriminator. After setting appropriate parameters for taking spectra, acquisition data was corrected by wavelength, intensity response function, and noise suppression. The performance of this scheme is discussed by its characterization as well as the comparison of its spectra to those obtained by an Ocean Optics HR4000 commercial reference.

  12. Ultra-weak FBG and its refractive index distribution in the drawing optical fiber.

    Science.gov (United States)

    Guo, Huiyong; Liu, Fang; Yuan, Yinquan; Yu, Haihu; Yang, Minghong

    2015-02-23

    For the online writing of ultra-weak fiber Bragg gratings (FBGs) in the drawing optical fibers, the effects of the intensity profile, pulse fluctuation and pulse width of the excimer laser, as well as the transverse and longitudinal vibrations of the optical fiber have been investigated. Firstly, using Lorentz-Loren equation, Gladstone-Dale mixing rule and continuity equation, we have derived the refractive index (RI) fluctuation along the optical fiber and the RI distribution in the FBG, they are linear with the gradient of longitudinal vibration velocity. Then, we have prepared huge amounts of ultra-weak FBGs in the non-moving optical fiber and obtained their reflection spectra, the measured reflection spectra shows that the intensity profile and pulse fluctuation of the excimer laser, as well as the transverse vibration of the optical fiber are little responsible for the inconsistency of ultra-weak FBGs. Finally, the effect of the longitudinal vibration of the optical fiber on the inconsistency of ultra-weak FBGs has been discussed, and the vibration equations of the drawing optical fiber are given in the appendix.

  13. VUV emission spectra from binary rare gas mixtures near the resonance lines of Xe I and Kr I

    CERN Document Server

    Morozov, A; Gerasimov, G; Arnesen, A; Hallin, R

    2003-01-01

    Emission spectra of Xe-X (X = He, Ne, Ar and Kr) and of Kr-Y (Y = He, Ne and Ar) mixtures with low concentrations of the heavier gases (0.1-1%) and moderate total pressures (50-200 hPa) have been recorded near each of the two resonance lines of Xe and Kr in DC glow capillary discharges. The recorded intense emissions have narrow spectral profiles with FWHM of about 0.1 nm. The profiles are very similar in shape to profiles of known high resolution absorption spectra recorded at comparable gas pressures. A tentative identification of the emission structures is given, which involves transitions in heteronuclear molecules and quasimolecules between weakly-bound states.

  14. Hyperspectral optical imaging of two different species of lepidoptera

    Directory of Open Access Journals (Sweden)

    Vukusic Pete

    2011-01-01

    Full Text Available Abstract In this article, we report a hyperspectral optical imaging application for measurement of the reflectance spectra of photonic structures that produce structural colors with high spatial resolution. The measurement of the spectral reflectance function is exemplified in the butterfly wings of two different species of Lepidoptera: the blue iridescence reflected by the nymphalid Morpho didius and the green iridescence of the papilionid Papilio palinurus. Color coordinates from reflectance spectra were calculated taking into account human spectral sensitivity. For each butterfly wing, the observed color is described by a characteristic color map in the chromaticity diagram and spreads over a limited volume in the color space. The results suggest that variability in the reflectance spectra is correlated with different random arrangements in the spatial distribution of the scales that cover the wing membranes. Hyperspectral optical imaging opens new ways for the non-invasive study and classification of different forms of irregularity in structural colors.

  15. Surface enhanced Raman optical activity (SEROA)

    DEFF Research Database (Denmark)

    Abdali, Salim; Blanch, E.W.

    2008-01-01

    Raman optical activity (ROA) directly monitors the stereochemistry of chiral molecules and is now an incisive probe of biomolecular structure. ROA spectra contain a wealth of information on tertiary folding, secondary structure and even the orientation of individual residues in proteins and nucleic...

  16. Effect of metal nanoparticles on energy spectra and optical properties of peripheral light-harvesting LH2 complexes from photosynthetic bacteria

    International Nuclear Information System (INIS)

    Goliney, I.Yu.; Sugakov, V.I.; Valkunas, L.; Vertsimakha, G.V.

    2012-01-01

    Highlights: ► Excitons of light-harvesting complexes (LH2) hybridize with plasmon modes. ► Light absorption of LH2 is enhanced by a metal nanoparticle. ► Using nanoshells allows reaching resonance between molecular and plasmons. ► Metal nanoparticles introduce additional channel of excitation decay. ► Light-harvesting may gain from the proper positioning of nanoshells. -- Abstract: The paper explores the theoretical possibility of affecting optical spectra and the quantum yield of the energy transfer in the peripheral light-harvesting complexes (LH2) from photosynthetic bacteria by placing a metal nanoparticle or a nanoshell nearby. An increased probability of the excitonic transition in the LH2 arises due to the borrowing of the oscillator strength from surface plasmons of the metal particle or the nanoshell. While both absorption and quenching of the excitations increase in the vicinity to a metal nanoparticle, having opposite effects, the total yield of the excitation transfer to reaction centers is shown to grow in the certain range of parameters.

  17. Effect of metal nanoparticles on energy spectra and optical properties of peripheral light-harvesting LH2 complexes from photosynthetic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Goliney, I.Yu., E-mail: igoliney@kinr.kiev.ua [Institute for Nuclear Research, National Academy of Science of Ukraine, 47 Nauki pr., 03680 Kyiv (Ukraine); Sugakov, V.I. [Institute for Nuclear Research, National Academy of Science of Ukraine, 47 Nauki pr., 03680 Kyiv (Ukraine); Valkunas, L. [Center for Physical Sciences and Technology, Savanoriu Ave. 231, 02300 Vilnius (Lithuania); Department of Theoretical Physics, Vilnius University, Sauletekio 9, Build. 3, 10222 Vilnius (Lithuania); Vertsimakha, G.V. [Institute for Nuclear Research, National Academy of Science of Ukraine, 47 Nauki pr., 03680 Kyiv (Ukraine)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Excitons of light-harvesting complexes (LH2) hybridize with plasmon modes. Black-Right-Pointing-Pointer Light absorption of LH2 is enhanced by a metal nanoparticle. Black-Right-Pointing-Pointer Using nanoshells allows reaching resonance between molecular and plasmons. Black-Right-Pointing-Pointer Metal nanoparticles introduce additional channel of excitation decay. Black-Right-Pointing-Pointer Light-harvesting may gain from the proper positioning of nanoshells. -- Abstract: The paper explores the theoretical possibility of affecting optical spectra and the quantum yield of the energy transfer in the peripheral light-harvesting complexes (LH2) from photosynthetic bacteria by placing a metal nanoparticle or a nanoshell nearby. An increased probability of the excitonic transition in the LH2 arises due to the borrowing of the oscillator strength from surface plasmons of the metal particle or the nanoshell. While both absorption and quenching of the excitations increase in the vicinity to a metal nanoparticle, having opposite effects, the total yield of the excitation transfer to reaction centers is shown to grow in the certain range of parameters.

  18. Structure and optical properties of nanocrystalline NiO thin film synthesized by sol-gel spin-coating method

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ghamdi, A.A. [King Abdulaziz University, Faculty of Science, Physics Department, Jeddah (Saudi Arabia); Mahmoud, Waleed E., E-mail: w_e_mahmoud@yahoo.co [King Abdulaziz University, Faculty of Science, Physics Department, Jeddah (Saudi Arabia); Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Yaghmour, S.J.; Al-Marzouki, F.M. [King Abdulaziz University, Faculty of Science, Physics Department, Jeddah (Saudi Arabia)

    2009-11-03

    NiO thin film was prepared by sol-gel spin-coating method. This thin film annealed at T = 600 deg. C. The structure of NiO thin film was investigated by means of X-ray diffraction (XRD) technique and scanning electron microscopy (SEM). The optical properties of the deposited film were characterized from the analysis of the experimentally recorded transmittance and reflectance data in the spectral wavelength range of 300-800 nm. The values of some important parameters of the studied films are determined, such as refractive index (n), extinction coefficient (k), optical absorption coefficient (alpha) and band energy gap (E{sub g}). According to the analysis of dispersion curves, it has been found that the dispersion data obeyed the single oscillator of the Wemple-DiDomenico model, from which the dispersion parameters and high-frequency dielectric constant were determined. In such work, from the transmission spectra, the dielectric constant (epsilon{sub i}nfinity), the third-order optical nonlinear susceptibility chi{sup (3)}, volume energy loss function (VELF) and surface energy loss function (SELF) were determined.

  19. Fiber Optic Sensors for Health Monitoring of Morphing Airframes. Part 2; Chemical Sensing Using Optical Fibers with Bragg Gratings

    Science.gov (United States)

    Wood, Karen; Brown, Timothy; Rogowski, Robert; Jensen, Brian

    2000-01-01

    Part 1 of this two part series described the fabrication and calibration of Bragg gratings written into a single mode optical fiber for use in strain and temperature monitoring. Part 2 of the series describes the use of identical fibers and additional multimode fibers, both with and without Bragg gratings, to perform near infrared spectroscopy. The demodulation system being developed at NASA Langley Research Center currently requires the use of a single mode optical fiber. Attempts to use this single mode fiber for spectroscopic analysis are problematic given its small core diameter, resulting in low signal intensity. Nonetheless, we have conducted a preliminary investigation using a single mode fiber in conjunction with an infrared spectrometer to obtain spectra of a high-performance epoxy resin system. Spectra were obtained using single mode fibers that contained Bragg gratings; however, the peaks of interest were barely discernible above the noise. The goal of this research is to provide a multipurpose sensor in a single optical fiber capable of measuring a variety of chemical and physical properties.

  20. Pulse Propagation Effects in Optical 2D Fourier-Transform Spectroscopy: Theory.

    Science.gov (United States)

    Spencer, Austin P; Li, Hebin; Cundiff, Steven T; Jonas, David M

    2015-04-30

    A solution to Maxwell's equations in the three-dimensional frequency domain is used to calculate rephasing two-dimensional Fourier transform (2DFT) spectra of the D2 line of atomic rubidium vapor in argon buffer gas. Experimental distortions from the spatial propagation of pulses through the sample are simulated in 2DFT spectra calculated for the homogeneous Bloch line shape model. Spectral features that appear at optical densities of up to 3 are investigated. As optical density increases, absorptive and dispersive distortions start with peak shape broadening, progress to peak splitting, and ultimately result in a previously unexplored coherent transient twisting of the split peaks. In contrast to the low optical density limit, where the 2D peak shape for the Bloch model depends only on the total dephasing time, these distortions of the 2D peak shape at finite optical density vary with the waiting time and the excited state lifetime through coherent transient effects. Experiment-specific conditions are explored, demonstrating the effects of varying beam overlap within the sample and of pseudo-time domain filtering. For beam overlap starting at the sample entrance, decreasing the length of beam overlap reduces the line width along the ωτ axis but also reduces signal intensity. A pseudo-time domain filter, where signal prior to the center of the last excitation pulse is excluded from the FID-referenced 2D signal, reduces propagation distortions along the ωt axis. It is demonstrated that 2DFT rephasing spectra cannot take advantage of an excitation-detection transformation that can eliminate propagation distortions in 2DFT relaxation spectra. Finally, the high optical density experimental 2DFT spectrum of rubidium vapor in argon buffer gas [J. Phys. Chem. A 2013, 117, 6279-6287] is quantitatively compared, in line width, in depth of peak splitting, and in coherent transient peak twisting, to a simulation with optical density higher than that reported.