WorldWideScience

Sample records for optical spectra crystal-field

  1. Link between optical spectra, crystal-field parameters, and local environments of Eu3+ ions in Eu2O3-doped sodium disilicate glass

    International Nuclear Information System (INIS)

    Qin, T.; Mountjoy, G.; Afify, N. D.; Reid, M. F.; Yeung, Y. Y.; Speghini, A.; Bettinelli, M.

    2011-01-01

    Rare-earth-doped glasses are key materials for optical technology due to the luminescent properties of 4f n ions. The crystal-field model describes the effect of local environment on transitions between 4f electrons. We present a detailed modeling study of the optical spectra of sodium disilicate glass, 33Na 2 O·67SiO 2 , doped with 0.2% and 1.0 mol%Eu 2 O 3 . This study uses very large molecular dynamics models with up to 100 Eu 3+ ions, the superposition model for covalent and overlap effects on crystal-field parameters, and realistic values for homogeneous linewidth broadening. The simulated spectra are in reasonable agreement with experiment. The trends in 7 F J energy levels across different Eu 3+ ion sites have been examined and a very detailed analysis is presented that looks at how features of the spectra are related to features of the local environment of Eu 3+ ions. Increasing the crystal-field strength S total causes the 7 F 0 energy level to decrease and causes the splitting of 7 F J manifolds to increase, and this is due to increasing mixing of 4f wave functions. To a reasonable approximation the crystal-field strength components S k depend on angular positions of ligands independently of distances to ligands. The former are seen to be more significant in determining S k , which are closely related to the rotationally invariant bond-orientational order parameters Q k . The values of S 2 are approximately linear in Q 2 , and the values of Q 2 are higher for fivefold than sixfold coordinated rare-earth ions. These results can be of importance for efforts to enhance the local environment of rare-earth ions in oxide glasses for optical applications.

  2. Variable valence ion spectra in a crystal field

    International Nuclear Information System (INIS)

    Ghiordanescu, V.

    1979-01-01

    Using the Cadmium chloride as a host lattice, the optical spectra and RES of Mnsup(2+) were studied and the following results were obtained: a) By controlled dopings, the absorbtion and excitation spectra of ion Mnsup(2+) in CdCl 2 within the concentration range between 0.01 M and 25 M were plotted. Thus, the band structure for small concentrations was pointed out to differ from the structure observed for high concentrations. In the literature, this effect has not been observed on similar compounds, due to the small intensity values of the absorbtion spectra. b) Considering that for CdCl 2 :Mnsup(2+) 0.1 M, the optical spectra correspond to the isolated ion in the lattice, the energy levels were evaluated using electrostatic and spin-orbit terms in a perturbation calculation of the crystal field approximation. c) The calculation of parameter a which represents the effect of the cubic field in the spjn Hamiltonian of Mnsup(2+), is closer to the experjmental value -0.5.10 -4 cm -1 of the crystal field Dq and zeta parameters are used, respectively, parameters of the spin-orbit interaction obtained under b). d) The coupling effects of spins into more concentrated crystals with Mn 2+ are a function of temperature. The emjssion yield was given a quasi-cantitative evaluation in thjs paper as a function of temperature and concentratjon on the basis of which the isolated centers of Mn 2+ were found to display ectra whose intensity vary with temperature according to the Laporte forbidden transitions and spin rule theory, and the clusters including Mn 2+ - Mn 2+ pairs provide spectra whose intensity vary with the strength of the spin-spin coupling. (author)

  3. Integral parameters of crystal field for RE spectra

    International Nuclear Information System (INIS)

    Kustov, E.F.; Maketov, T.K.; Prgevudsky, A.K.; Steczko, G.

    1980-01-01

    The integral parameters of the crystal field are introduced for the interpretation of the spectra of RE ions in various crystals. The main formula of the method, the expression of the parameters for various states of Ce, Pr, Nd, Eu, Tb, Er, Tu, and Yb are determined. Integral parameters of A 2 , A 4 , A 6 and parameter of the spin-orbit interaction xi are calculated for 40 laser crystals with Nd, Er. An interpretation of the symmetry of the Eu 3+ centres of the NaBaZn silicate glass is given using integral parameters A 2 , A 4 . (author)

  4. Strong crystal field effect in ? - optical absorption study

    Science.gov (United States)

    Gajek, Z.; Krupa, J. C.

    1998-12-01

    =-1 Results of optical absorption measurements in polarized light on tetravalent neptunium diluted in a 0953-8984/10/50/021/img6 single crystal are reported. The recorded spectra are complex, pointing to the presence of an 0953-8984/10/50/021/img7 impurity. The electronic transitions assigned to the 0953-8984/10/50/021/img8 ion are interpreted in terms of the usual model, following the actual understanding of the neptunium electronic structure and independent theoretical predictions. R.m.s. deviations of the order of 0953-8984/10/50/021/img9 have been obtained for 42 levels fitted with 11 free parameters. The crystal field effect resulting from the fitting is considerably larger than that observed for the uranium ion in the same host.

  5. Crystal field influence on vibration spectra: anhydrous uranyl chloride and dihydroxodiuranyl chloride tetrahydrate

    International Nuclear Information System (INIS)

    Perrin, Andre; Caillet, Paul

    1976-01-01

    Vibrational spectra of anhydrous uranyl chloride UO 2 Cl 2 and so called basic uranyl chloride: dihydroxodiuranyl chloride tetrahydrate /UO 2 (OH) 2 UO 2 /Cl 2 (H 2 O) 4 are reported. Factor group method analysis leads for the first time to complete and comprehensive interpretation of their spectra. Two extreme examples of crystal field influence on vibrational spectra are pointed out: for UO 2 Cl 2 , one is unable to explain spectra without taking into account all the elements of primitive crystalline cell, whilst for dihydroxodiuranyl dichloride tetrahydrate the crystal packing has very little effect on vibrational spectra [fr

  6. Optical spectroscopy and crystal-field analysis of U3+: Ba2YCl7

    International Nuclear Information System (INIS)

    Karbowiak, M.; Mech, A.; Drozdzyndki, J.; Gajek, Z.; Edelstein, N.M.

    2002-01-01

    High resolution absorption spectra of a U 3+ (0.3%): Ba 2 YCl 7 single crystal were recorded in the 4000-50 000 cm -1 range at 7 K. The observed crystal-field levels were assigned and fit to the parameters of the simplified angular overlap model (AOM) as well as a semi-empirical Hamiltonian representing the combined atomic and one-electron crystal-field interactions. The starting values of the AOM parameters were obtained from ab initio calculations. The analysis of the spectra allowed the assignment of 65 crystal-field levels with a relatively small rms deviation of 25 cm -1 and has shown that the AOM approach can predict quite well the B q k crystal-field parameters. The value determined for the crystal-field strength parameter, N v , corresponds well with those determined for U 3+ in other chloride single crystals. (authors)

  7. Exchange and crystal field effects in the ESR spectra of Eu2+ in LaB6

    Science.gov (United States)

    Duque, J. G. S.; Urbano, R. R.; Venegas, P. A.; Pagliuso, P. G.; Rettori, C.; Fisk, Z.; Oseroff, S. B.

    2007-09-01

    Electron spin resonance of Eu2+ ( 4f7 , S=7/2 ) in a La hexaboride (LaB6) single crystal shows a single anisotropic Dysonian resonance. From the observed negative g shift of the resonance, it is inferred that the Eu2+ ions are covalent exchange coupled to the B2p -like host conduction electrons. From the anisotropy of the spectra (linewidth and field for resonance), we found that the S ground state of Eu2+ ions experience a cubic crystal field of a negative fourth order crystal field parameter (CFP), b4=-11.5(2.0)Oe , in agreement with the negative fourth order CFP, A4 , found for the non- S ground state R hexaborides. These results support covalency as the dominant contribution to the fourth order CFP for the whole R hexaboride family.

  8. Strong crystal field effect in Np{sup 4+}:ThCl{sub 4} - optical absorption study

    Energy Technology Data Exchange (ETDEWEB)

    Gajek, Z. [Instytut Niskich Temperatur i Badan Strukturalnych, Polska Akademia Nauk, 50-950 Wroclaw 2, Skr. Poczt. 1410 (Poland); Krupa, J.C. [Laboratoire de Radiochimie, Institut de Physique Nucleaire, BP 1, 91406 Orsay Cedex (France)

    1998-12-21

    Results of optical absorption measurements in polarized light on tetravalent neptunium diluted in a ThCl{sub 4} single crystal are reported. The recorded spectra are complex, pointing to the presence of an Np{sup 3+} impurity. The electronic transitions assigned to the Np{sup 4+} ion are interpreted in terms of the usual model, following the actual understanding of the neptunium electronic structure and independent theoretical predictions. R.m.s. deviations of the order of 36 cm{sup -1} have been obtained for 42 levels fitted with 11 free parameters. The crystal field effect resulting from the fitting is considerably larger than that observed for the uranium ion in the same host. (author)

  9. Crystal-field spectra of fassaite from the Angra dos Reis meteorite

    Energy Technology Data Exchange (ETDEWEB)

    Mao, H K; Bell, P M; Virgo, D [Carnegie Institution of Washington, D.C. (USA)

    1977-06-01

    Fassaitic pyroxene from the Angra dos Reis meteorite has striking spectral properties. The /sup 57/Fe Moessbauer spectra show no Fe/sup 3 +/, and thus the absorption is thought to originate from a complex charge-transfer process. Intense absorption at 480 nm dominates the spectrum of the meteorite and may be important in the interpretation of telescope spectra of objects in space.

  10. Optical spectroscopy and crystal-field analysis of U{sup 3+}: Ba{sub 2}YCl{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Karbowiak, M.; Mech, A.; Drozdzyndki, J. [Wroclaw Univ., Faculty of Chemistry (Poland); Gajek, Z. [Polish Academy of Sciences, W. Trzebiatowski Institute of Low Temperature and Structure Research, Wroclaw (Poland); Edelstein, N.M. [Lawrence Berkeley National Lab., Chemical Sciences Div., CA (United States)

    2002-11-01

    High resolution absorption spectra of a U{sup 3+}(0.3%): Ba{sub 2}YCl{sub 7} single crystal were recorded in the 4000-50 000 cm{sup -1} range at 7 K. The observed crystal-field levels were assigned and fit to the parameters of the simplified angular overlap model (AOM) as well as a semi-empirical Hamiltonian representing the combined atomic and one-electron crystal-field interactions. The starting values of the AOM parameters were obtained from ab initio calculations. The analysis of the spectra allowed the assignment of 65 crystal-field levels with a relatively small rms deviation of 25 cm{sup -1} and has shown that the AOM approach can predict quite well the B{sub q}{sup k} crystal-field parameters. The value determined for the crystal-field strength parameter, N{sub v}, corresponds well with those determined for U{sup 3+} in other chloride single crystals. (authors)

  11. Crystal field effects in the ESR spectra of Dysup(3+), Ersup(3+) and Ybsup(3+) in YPd3

    International Nuclear Information System (INIS)

    Rettori, C.; Weber, E.; Donoso, J.P.; Gandra, F.C.G.; Barberis, G.E.

    1981-01-01

    Low temperature ESR experiments of diluted Dy, Er and Yb in YPd 3 are reported. The host cubic crystal field leaves a GAMMA 7 ground state in the case of Yb 3+ , a GAMMA 7 excited state for Er 3+ and a broad and undefined resonance for Dy 3+ . A comparison with Inelastic Neutron Scattering and Magnetic Susceptibility data is given. (orig.)

  12. EPR spectroscopy of MRI-related Gd(III) complexes: simultaneous analysis of multiple frequency and temperature spectra, including static and transient crystal field effects.

    Science.gov (United States)

    Rast, S; Borel, A; Helm, L; Belorizky, E; Fries, P H; Merbach, A E

    2001-03-21

    For the first time, a very general theoretical method is proposed to interpret the full electron paramagnetic resonance (EPR) spectra at multiple temperatures and frequencies in the important case of S-state metal ions complexed in liquid solution. This method is illustrated by a careful analysis of the measured spectra of two Gd3+ (S = 7/2) complexes. It is shown that the electronic relaxation mechanisms at the origin of the EPR line shape arise from the combined effects of the modulation of the static crystal field by the random Brownian rotation of the complex and of the transient zero-field splitting. A detailed study of the static crystal field mechanism shows that, contrarily to the usual global models involving only second-order terms, the fourth and sixth order terms can play a non-negligible role. The obtained parameters are well interpreted in the framework of the physics of the various underlying relaxation processes. A better understanding of these mechanisms is highly valuable since they partly control the efficiency of paramagnetic metal ions in contrast agents for medical magnetic resonance imaging (MRI).

  13. Quanty4RIXS: a program for crystal field multiplet calculations of RIXS and RIXS-MCD spectra using Quanty.

    Science.gov (United States)

    Zimmermann, Patric; Green, Robert J; Haverkort, Maurits W; de Groot, Frank M F

    2018-05-01

    Some initial instructions for the Quanty4RIXS program written in MATLAB ® are provided. The program assists in the calculation of 1s 2p RIXS and 1s 2p RIXS-MCD spectra using Quanty. Furthermore, 1s XAS and 2p 3d RIXS calculations in different symmetries can also be performed. It includes the Hartree-Fock values for the Slater integrals and spin-orbit interactions for several 3d transition metal ions that are required to create the .lua scripts containing all necessary parameters and quantum mechanical definitions for the calculations. The program can be used free of charge and is designed to allow for further adjustments of the scripts. open access.

  14. AOM reconciling of crystal field parameters for UCl 3, UBr 3, UI 3 series

    Science.gov (United States)

    Gajek, Z.; Mulak, J.

    1990-07-01

    Available inelastic neutron scattering interpretations of crystal field effect in the uranium trihalides have been verified in terms of Angular Overlap Model. For UCl 3 a good reconciling of both INS and optical interpretations of crystal field effect has been obtained. On the contrary, the parameterizations for UBr 3 and UI 3 were found to be highly artificial and suggestion is given to experimentalists to reinterpret their INS spectra.

  15. AOM reconciling of crystal field parameters for UCl3, UBr3, Ul3 series

    International Nuclear Information System (INIS)

    Gajek, Z.; Mulak, J.

    1990-01-01

    Available inelastic neutron scattering interpretations of crystal field effect in the uranium trihalides have been verified in terms of Angular Overlap Model. For UCl 3 a good reconciling of both INS and optical interpretations of crystal field effect has been obtained. On the contrary, the parameterizations for UBr 3 and UI 3 were found to be highly artificial and suggestion is given to experimentalists to reinterpret their INS spectra

  16. Giant optical anisotropy in M-plane GaN/AlGaN quantum wells due to crystal-field effect

    International Nuclear Information System (INIS)

    Chen, C.-N.; Su, W.-L.; Chang, K.-C.; Chang, S.-H.; Chiang, J.-C.; Lo Ikai; Wang, W.-T.; Kao, H.-F.; Lee, M.-E.

    2008-01-01

    The optical polarization of GaN/AlGaN wurtzite quantum wells in various orientations is studied using an arbitrarily-oriented [hkil] Hamiltonian potential matrix. The optical matrix elements in the wurtzite quantum wells are calculated using the k.p finite difference scheme. The results reveal the presence of giant in-plane optical anisotropy (polarized normal to [0001]) in the M-plane (i.e., the (101-bar0)-oriented layer plane) GaN/Al 0.2 Ga 0.8 N quantum well, due to the positive crystal-field split energy effect (Δ CR >0). The present theoretical results are consistent with the photoluminescence measurements presented in the literature [B. Rau, et al., Appl. Phys. Lett. 77 (2000) 3343

  17. Optical absorption spectra of Ag-11 isomers

    DEFF Research Database (Denmark)

    Martinez, Jose Ignacio; Fernandez, E. M.

    2009-01-01

    The optical absorption spectra of the three most; stable structural isomers of the Ag-11 cluster were calculated using the time-dependent, density functional theory within the Casida formalism. The slightly different, spectra, of the isomers may permit the identification of the ground-stale confi......The optical absorption spectra of the three most; stable structural isomers of the Ag-11 cluster were calculated using the time-dependent, density functional theory within the Casida formalism. The slightly different, spectra, of the isomers may permit the identification of the ground...

  18. Crystal-field analysis for RE3+ ions in laser materials: II. Absorption spectra and energy levels calculations for Nd3+ ions doped into SrLaGa3O7 and BaLaGa3O7 crystals and Tm3+ ions in SrGdGa3O7

    International Nuclear Information System (INIS)

    Karbowiak, M.; Gnutek, P.; Rudowicz, C.; Ryba-Romanowski, W.

    2011-01-01

    Graphical abstract: In this paper we report a detailed analysis of spectroscopic data obtained from low temperature absorption spectra, which enabled assignment of energy levels, and subsequently their analysis in terms of the free-ion and crystal field (CF) parameters. Highlights: → Polarized absorption spectra measured for Nd 3+ and Tm 3+ ions in ABC 3 O 7 crystals. → Energy levels analyzed in terms of the free-ion and crystal-field (CF) parameters. → The combined ADS/SPM procedure have been successfully applied. → The B-bar k parameters and the power law exponents t k of SPM model are determined. → The energies of levels are important for evaluation of the emission cross-section. - Abstract: Low temperature polarized absorption spectra are analyzed to achieve assignments of energy levels for Nd 3+ and Tm 3+ ions at monoclinic C s site symmetry in ABC 3 O 7 crystals. Based on the concept of average optical center, the experimental energy levels for single crystals of SrLaGa 3 O 7 :Nd 3+ (SLG:Nd), BaLaGa 3 O 7 :Nd 3+ (BLG:Nd), and SrGdGa 3 O 7 :Tm 3+ (SGG:Tm) were analyzed in terms of the free-ion parameters and the crystal field (CF) ones, B kq . Assignments of the energy levels resolved in the spectra were done in stages applying the ascent/descent in symmetry method in CF analysis. The actual monoclinic C s site symmetry at the metal centers in ABC 3 O 7 crystals and the approximated orthorhombic C 2v and tetragonal C 4v symmetry were considered. The starting values of B kq 's for SLG:Nd and BLG:Nd crystals were obtained from superposition model (SPM) analysis. The final fitted crystal field parameters show high compatibility with the existing data for structurally similar ion-host systems. The obtained values of the intrinsic parameters provide basis for SPM analysis of CF parameters for rare earth ions in other similar systems, especially those exhibiting low-symmetry sites. The SPM parameters derived for SLG:Nd are used for simulation and

  19. Crystal-field investigations of rare-earth-doped wide band gap semiconductors

    CERN Multimedia

    Muller, S; Wahl, U

    Crystal field investigations play a central role in the studies of rare earth doped semiconductors. Optical stark level spectroscopy and lattice location studies of radioactive rare earth isotopes implanted at ISOLDE have provided important insight into these systems during the last years. It has been shown that despite a major site preference of the probe atoms in the lattice, several defect configurations do exist. These sites are visible in the optical spectra but their origin and nature aren't deducible from these spectra alone. Hyperfine measurements on the other hand should reveal these defect configurations and yield the parameters necessary for a description of the optical properties at the atomic scale. In order to study the crystal field with this alternative approach, we propose a new concept for perturbed $\\gamma\\gamma$-angular correlation (PAC) experiments at ISOLDE based on digital signal processing in contrast to earlier analog setups. The general functionality of the spectrometer is explained ...

  20. Determination of the optical absorption spectra of thin layers from their photoacoustic spectra

    Science.gov (United States)

    Bychto, Leszek; Maliński, Mirosław; Patryn, Aleksy; Tivanov, Mikhail; Gremenok, Valery

    2018-05-01

    This paper presents a new method for computations of the optical absorption coefficient spectra from the normalized photoacoustic amplitude spectra of thin semiconductor samples deposited on the optically transparent and thermally thick substrates. This method was tested on CuIn(Te0.7Se0.3)2 thin films. From the normalized photoacoustic amplitude spectra, the optical absorption coefficient spectra were computed with the new formula as also with the numerical iterative method. From these spectra, the value of the energy gap of the thin film material and the type of the optical transitions were determined. From the experimental optical transmission spectra, the optical absorption coefficient spectra were computed too, and compared with the optical absorption coefficient spectra obtained from photoacoustic spectra.

  1. Optical spectra analysis for breast cancer diagnostics

    Science.gov (United States)

    Belkov, S. A.; Kochemasov, G. G.; Lyubynskaya, T. E.; Maslov, N. V.; Nuzhny, A. S.; da Silva, L. B.; Rubenchik, A.

    2011-11-01

    Minimally invasive probe and optical biopsy system based on optical spectra recording and analysis seem to be a promising tool for early diagnostics of breast cancer. Light scattering and absorption spectra are generated continuously as far as the needle-like probe with one emitting and several collecting optical fibers penetrates through the tissues toward to the suspicious area. That allows analyzing not only the state of local site, but also the structure of tissues along the needle trace. The suggested method has the advantages of automated on-line diagnosing and minimal tissue destruction and in parallel with the conventional diagnostic procedures provides the ground for decision-making. 165 medical trials were completed in Nizhny Novgorod Regional Oncology Centre, Russia. Independent diagnoses were the results of fine biopsy and histology. Application of wavelet expansion and clasterization techniques for spectra analysis revealed several main spectral types for malignant and benign tumors. Automatic classification algorithm demonstrated specificity ˜90% and sensitivity ˜91%. Large amount of information, fuzziness in criteria and data noisiness make neural networks to be an attractive analytic tool. The model based on three-layer perceptron was tested over the sample of 29 `cancer' and 29 `non-cancer' cases and demonstrated total separation.

  2. Theory of optical spectra of solvated electrons

    International Nuclear Information System (INIS)

    Kestner, N.R.

    1975-01-01

    During the last few years better theoretical models of solvated electron have been developed. These models allow one to calculate a priori the observable properties of the trapped electron. One of the most important and most widely determined properties is the optical spectrum. In this paper we consider the predictions of the theories not only as to the band maximum but line shape and width. In addition we will review how the theories predict these will depend on the solvent, pressure, temperature, and solvent density. In all cases extensive comparisons will be made with experimental work. In addition four new areas will be explored and recent results will be presented. These concern electrons in dense polar gases, the time development of the solvated electron spectrum, solvated electrons in mixed solvents, and photoelectron emission spectra (PEE) as it relates to higher excited states. This paper will review all recent theoretical calculations and present a critical review of the present status and future developments which are anticipated. The best theories are quite successful in predicting trends, and qualitative agreement concerning band maximum. The theory is still weak in predicting line shape and line width

  3. Interaction of phonons with intraband electronic excitations and crystal field transitions in Raman spectra of (Nd,Eu,Gd)Ba.sub.2./sub.Cu.sub.3./sub.O.sub.y./sub. crystals

    Czech Academy of Sciences Publication Activity Database

    Rameš, Michal; Železný, Vladimír; Gregora, Ivan; Wolf, T.; Jirsa, Miloš

    2015-01-01

    Roč. 197, Jul (2015), 10-17 ISSN 0921-5107 R&D Projects: GA MŠk(CZ) ME10069 Institutional support: RVO:68378271 Keywords : cuprate superconductors * phonons * crystal field * vortex pinning Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.331, year: 2015

  4. VARIABILITY IN OPTICAL SPECTRA OF ε ORIONIS

    International Nuclear Information System (INIS)

    Thompson, Gregory B.; Morrison, Nancy D.

    2013-01-01

    We present the results of a time series analysis of 130 échelle spectra of ε Ori (B0 Ia), acquired over seven observing seasons between 1998 and 2006 at Ritter Observatory. The equivalent widths of Hα (net) and He I λ5876 were measured and radial velocities were obtained from the central absorption of He I λ5876. Temporal variance spectra (TVS) revealed significant wind variability in both Hα and He I λ5876. The He I TVS have a double-peaked profile consistent with radial velocity oscillations. A periodicity search was carried out on the equivalent width and radial velocity data, as well as on wavelength-binned spectra. This analysis has revealed several periods in the variability with timescales of two to seven days. Many of these periods exhibit sinusoidal modulation in the associated phase diagrams. Several of these periods were present in both Hα and He I, indicating a possible connection between the wind and the photosphere. Due to the harmonic nature of these periods, stellar pulsations may be the origin of some of the observed variability. Periods on the order of the rotational period were also detected in the He I line in the 1998-1999 season and in both lines during the 2004-2005 season. These periods may indicate rotational modulation due to structure in the wind.

  5. Study on the influence of optical electronegativity of fluoride host structures on the crystal field components' position of the [Xe]4f15d1-configuration of trivalent praseodymium

    International Nuclear Information System (INIS)

    Herden, Benjamin

    2014-03-01

    As alternative radiation sources for mercury containing lamps LEDs cover the normal range, but efficient alternatives for UV radiations are still not available. Xenon excimer discharge lamps could be candidate as alternatives to mercury low-pressure discharge lamps. The discharge wavelength of these lamps is 172 nm that has to be converted in other spectral ranges. The theses deals with trivalent praseodymium as activator ion in binary and ternary fluoride host structures. The host structure and the crystallographic position of the praseodymium ion influence the development of emissions line and bands and the energetic position of the emission. The results are explained by the interaction of the nephelauxetic effect and the crystal field splitting of 5d orbitals, called optical electronegativity.

  6. Resonance spectra of diabolo optical antenna arrays

    Directory of Open Access Journals (Sweden)

    Hong Guo

    2015-10-01

    Full Text Available A complete set of diabolo optical antenna arrays with different waist widths and periods was fabricated on a sapphire substrate by using a standard e-beam lithography and lift-off process. Fabricated diabolo optical antenna arrays were characterized by measuring the transmittance and reflectance with a microscope-coupled FTIR spectrometer. It was found experimentally that reducing the waist width significantly shifts the resonance to longer wavelength and narrowing the waist of the antennas is more effective than increasing the period of the array for tuning the resonance wavelength. Also it is found that the magnetic field enhancement near the antenna waist is correlated to the shift of the resonance wavelength.

  7. The effective crystal field potential

    CERN Document Server

    Mulak, J

    2000-01-01

    As it results from the very nature of things, the spherical symmetry of the surrounding of a site in a crystal lattice or an atom in a molecule can never occur. Therefore, the eigenfunctions and eigenvalues of any bound ion or atom have to differ from those of spherically symmetric respective free ions. In this way, the most simplified concept of the crystal field effect or ligand field effect in the case of individual molecules can be introduced. The conventional notion of the crystal field potential is narrowed to its non-spherical part only through ignoring the dominating spherical part which produces only a uniform energy shift of gravity centres of the free ion terms. It is well understood that the non-spherical part of the effective potential "seen" by open-shell electrons localized on a metal ion plays an essential role in most observed properties. Light adsorption, electron paramagnetic resonance, inelastic neutron scattering and basic characteristics derived from magnetic and thermal measurements, ar...

  8. Optical spectra and radio properties of quasars

    International Nuclear Information System (INIS)

    Wills, B.J.

    1982-01-01

    Using high quality spectrophotometric scans obtained at the McDonald Observatory, and data from the literature the author shows that, for quasars, the relative strength of optical Fe II emission (the broad blended feature lambda4570) may be roughly inversely proportional to line widths (full width at half maximum, FWHM). A similar relation between the relative intensity of the UV Fe II blend between 2300 and 2600 A (the lambda2500 feature) and the widths of Mg II and Hβ is shown. She distinguishes between compact and extended radio sources and includes radio quiet quasars, Seyfert 1 galaxies and BLRG's. The quasars associated with extended radio sources have the broadest emission lines and the weakest Fe II, falling close to the region occupied by BLRG's which also have extended radio structure. Those quasars with strong Fe II and compact radio structure are most similar to the Seyfert 1 galaxies. (Auth.)

  9. Interface phonon effect on optical spectra of quantum nanostructures

    International Nuclear Information System (INIS)

    Maslov, Alexander Yu.; Proshina, Olga V.; Rusina, Anastasia N.

    2009-01-01

    This paper deals with theory of large radius polaron effect in quantum wells, wires and dots. The interaction of charge particles and excitons with both bulk and interface optical phonons is taken into consideration. The analytical expression for polaron binding energy is obtained for different types of nanostructures. It is shown that the contribution of interface phonons to the polaron binding energy may exceed the bulk phonon part. The manifestation of polaron effects in optical spectra of quantum nanostructures is discussed.

  10. Probing molecular chirality by coherent optical absorption spectra

    Energy Technology Data Exchange (ETDEWEB)

    Jia, W. Z. [Quantum Optoelectronics Laboratory, School of Physics and Technology, Southwest Jiaotong University, Chengdu 610031 (China); Wei, L. F. [Quantum Optoelectronics Laboratory, School of Physics and Technology, Southwest Jiaotong University, Chengdu 610031 (China); State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)

    2011-11-15

    We propose an approach to sensitively probe the chirality of molecules by measuring their coherent optical-absorption spectra. It is shown that quantum dynamics of the cyclic three-level chiral molecules driven by appropriately designed external fields is total-phase dependent. This will result in chirality-dependent absorption spectra for the probe field. As a consequence, the charality-dependent information in the spectra (such as the locations and relative heights of the characteristic absorption peaks) can be utilized to identify molecular chirality and determinate enantiomer excess (i.e., the percentages of different enantiomers). The feasibility of the proposal with chiral molecules confined in hollow-core photonic crystal fiber is also discussed.

  11. Raman Optical Activity and Raman Spectra of Amphetamine Species

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Shim, Irene; White, Peter Cyril

    2012-01-01

    Theoretical calculations and preliminary measurements of vibrational Raman optical activity (ROA) spectra of different species of amphetamine (amphetamine and amphetamine-H+) are reported for the first time. The quantum chemical calculations were carried out as hybrid ab initio DFT-molecular orbi......Theoretical calculations and preliminary measurements of vibrational Raman optical activity (ROA) spectra of different species of amphetamine (amphetamine and amphetamine-H+) are reported for the first time. The quantum chemical calculations were carried out as hybrid ab initio DFT...... are employed for identification purposes. The DFT calculations show that the most stable conformations are those allowing for close contact between the aromatic ring and the amine hydrogen atoms. The internal rotational barrier within the same amphetamine enanti- omer has a considerable influence on the Raman...

  12. Optical Spectra of Hemoglobin Taken from Alcohol Dependent Humans

    OpenAIRE

    Dudok K.; Dudok T.; Vlokh I.; Vlokh R.

    2005-01-01

    Optical spectra of CNMetHb and CNMetHb-Coomassi G-250, taken from the blood of humans with alcohol dependence, are studied in the spectral range of 450–750nm. The shifts in the spectral absorption maxima of CNMetHb-Coomassi G-250 complexes are observed for the diseased persons with alcohol dependence. The obtained results show that the hemoglobin structure of alcohol dependent humans is changed.

  13. Optical emission line spectra of Seyfert galaxies and radio galaxies

    International Nuclear Information System (INIS)

    Osterbrock, D.E.

    1978-01-01

    Many radio galaxies have strong emission lines in their optical spectra, similar to the emission lines in the spectra of Seyfert galaxies. The range of ionization extends from [O I] and [N I] through [Ne V] and [Fe VII] to [Fe X]. The emission-line spectra of radio galaxies divide into two types, narrow-line radio galaxies whose spectra are indistinguishable from Seyfert 2 galaxies, and broad-line radio galaxies whose spectra are similar to Seyfert 1 galaxies. However on the average the broad-line radio galaxies have steeper Balmer decrements, stronger [O III] and weaker Fe II emission than the Seyfert 1 galaxies, though at least one Seyfert 1 galaxy not known to be a radio source has a spectrum very similar to typical broad-line radio galaxies. Intermediate-type Seyfert galaxies exist that show various mixtures of the Seyfert 1 and Seyfert 2 properties, and the narrow-line or Seyfert 2 property seems to be strongly correlated with radio emission. (Auth.)

  14. HIGH RESOLUTION OPTICAL AND NIR SPECTRA OF HBC 722

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong-Eun; Park, Sunkyung [School of Space Research, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of); Green, Joel D.; Cochran, William D. [Department of Astronomy, University of Texas at Austin, TX (United States); Kang, Wonseok; Lee, Sang-Gak [National Youth Space Center, 200 Deokheungyangjjok-gil, Dongil-myeon, Goheung-gun, Jeollanam-do 548-951 (Korea, Republic of); Sung, Hyun-Il, E-mail: jeongeun.lee@khu.ac.kr, E-mail: sunkyung@khu.ac.kr, E-mail: joel@astro.as.utexas.edu, E-mail: wdc@astro.as.utexas.edu, E-mail: wskang@kywa.or.kr, E-mail: sanggak@kywa.or.kr, E-mail: hisung@kasi.re.kr [Korea Astronomy and Space Science Institute, 776 Daedeok-daero, Yuseong-gu, Daejeon 305-348 (Korea, Republic of)

    2015-07-01

    We present the results of high resolution (R ≥ 30,000) optical and near-IR spectroscopic monitoring observations of HBC 722, a recent FU Orionis object that underwent an accretion burst in 2010. We observed HBC 722 in the optical/near-IR with the Bohyunsan Optical Echelle Spectrograph, Hobby–Eberly Telescope-HRS, and Immersion Grating Infrared Spectrograph, at various points in the outburst. We found atomic lines with strongly blueshifted absorption features or P Cygni profiles, both evidence of a wind driven by the accretion. Some lines show a broad double-peaked absorption feature, evidence of disk rotation. However, the wind-driven and disk-driven spectroscopic features are anti-correlated in time; the disk features became strong as the wind features disappeared. This anti-correlation might indicate that the rebuilding of the inner disk was interrupted by the wind pressure during the first 2 years. The half-width at half-depth of the double-peaked profiles decreases with wavelength, indicative of the Keplerian rotation; the optical spectra with the disk feature are fitted by a G5 template stellar spectrum convolved with a rotation velocity of 70 km s{sup −1} while the near-IR disk features are fitted by a K5 template stellar spectrum convolved with a rotation velocity of 50 km s{sup −1}. Therefore, the optical and near-IR spectra seem to trace the disk at 39 and 76 R{sub ⊙}, respectively. We fit a power-law temperature distribution in the disk, finding an index of 0.8, comparable to optically thick accretion disk models.

  15. Isotope effects on the optical spectra of semiconductors

    Science.gov (United States)

    Cardona, Manuel; Thewalt, M. L. W.

    2005-10-01

    Since the end of the cold war, macroscopic amounts of separated stable isotopes of most elements have been available “off the shelf” at affordable prices. Using these materials, single crystals of many semiconductors have been grown and the dependence of their physical properties on isotopic composition has been investigated. The most conspicuous effects observed have to do with the dependence of phonon frequencies and linewidths on isotopic composition. These affect the electronic properties of solids through the mechanism of electron-phonon interaction, in particular, in the corresponding optical excitation spectra and energy gaps. This review contains a brief introduction to the history, availability, and characterization of stable isotopes, including their many applications in science and technology. It is followed by a concise discussion of the effects of isotopic composition on the vibrational spectra, including the influence of average isotopic masses and isotopic disorder on the phonons. The final sections deal with the effects of electron-phonon interaction on energy gaps, the concomitant effects on the luminescence spectra of free and bound excitons, with particular emphasis on silicon, and the effects of isotopic composition of the host material on the optical transitions between the bound states of hydrogenic impurities.

  16. FHILs in Seyferts and Liners in the optical spectra

    Science.gov (United States)

    Vera, R. J. C.; Rodriguez, A. M.; Portilla, J. G.

    2014-10-01

    We present the main results from a selection of optical spectra of Seyfert and LINER galaxies taken from the 9^{th} release of the SDSS with detectable emission of forbidden high ionization lines (FHILs), better known as coronal lines. A catalog of 345 Seyfert 1 (Sy1) and Seyfert 2 (Sy2) galaxies with FHILs emission is presented. By analyzing their spectra and utilizing data from the literature we found the following results: (1) The flux ratios between FHILs suggests anisotropy of emission between Sy1 and Sy2 galaxies, which agrees with the results found by Nagao et al. (2002) and Portilla (2012). Sy1 seems to emit more FHILs than Sy2. (2) This anisotropy suggests the idea that an important, but not the majority, of the emission of FHILs comes from the inner part of the obscuring torus. (3) We present diagnostic diagrams between FHILs lines which indicate clear correlations between the flux ratios. (4) It is observed that the ratio of Ne V/Fe VII is of the order of 3 to 10, while the ratios between iron lines (i.e., Fe VII, Fe X, Fe XI) are roughly around the unity. (5) At least in the optical spectra, the present study continues to support the general idea that LINERs are not energetic enough to present FHILs. A complete version of this study including the catalog with the objects of study, and diagnosis diagrams using only this kind of lines can be found in Vera & Portilla (in prep).

  17. Thermoluminescence emission spectra and optical bleaching of oligoclase

    International Nuclear Information System (INIS)

    Bos, A.J.J.; Piters, T.M.; Ypma, P.J.

    1994-01-01

    Thermoluminescence (TL) spectra of oligoclase samples have been recorded in the temperature range from 300 to 700 K and the wavelength range from 300 to 850 nm. Like other feldspars, oligoclase produces blue (peaking at 460 nm) and red (peaking at 765 nm) emission bands. The maximum of the red emission occurs 20 K lower than that of the blue band. Optical bleaching was performed at wavelengths varying from 360 to 800 nm. Bleaching of artificially irradiated oligoclase causes a decrease of the TL signal. The bleaching efficiency increases with decreasing wavelength. Bleaching does not only influence the height of the glow curve but also the shape. An interesting observation is that the ratio of the blue and red band intensities is not affected by a bleaching procedure. No evidence has been found that bleaching influences the shape of the emission spectra. The correlation between the blue and red bands is discussed. (Author)

  18. Optical absorption and scattering spectra of pathological stomach tissues

    Science.gov (United States)

    Giraev, K. M.; Ashurbekov, N. A.; Lakhina, M. A.

    2011-03-01

    Diffuse reflection spectra of biotissues in vivo and transmission and reflection coefficients for biotissues in vitro are measured over 300-800 nm. These data are used to determine the spectral absorption and scattering indices and the scattering anisotropy factor for stomach mucous membranes under normal and various pathological conditions (chronic atrophic and ulcerous defects, malignant neoplasms). The most importan tphysiological (hemodynamic and oxygenation levels) and structural-morphological (scatterer size and density) parameters are also determined. The results of a morphofunctional study correlate well with the optical properties and are consistent with data from a histomorphological analysis of the corresponding tissues.

  19. Nonlinear optical and electroabsorption spectra of polydiacetylene crystals and films

    Science.gov (United States)

    Mukhopadhyay, D.; Soos, Z. G.

    1996-01-01

    Vibronic structure of nonlinear optical (NLO) coefficients is developed within the Condon approximation, displaced harmonic oscillators, and crude adiabatic states. The displacements of backbone modes of conjugated polymers are taken from vibrational data on the ground and 1B excited state. NLO resonances are modeled by three excitations and transition moments taken from Pariser-Parr-Pople (PPP) theory and optimized to polydiacetylene (PDA) spectra in crystals and films, with blue-shifted 1B exciton. The joint analysis of third-harmonic-generation, two-photon absorption, and nondegenerate four-wave-mixing spectra of PDA crystals and films shows weak two-photon absorption to 2A below 1B, leading to overlapping resonances in the THG spectrum, strong two-photon absorption to an nA state some 35% above 1B, and weak Raman resonances in nondegenerate FWM spectra. The full π-π* spectrum contributes to Stark shifts and field-induced transitions, as shown by PPP results for PDA oligomers. The Stark shift dominates high-resolution electroabsorption (EA) spectra of PDA crystals below 10 K. The close correspondence between EA and the first-derivative I'(ω) of the linear absorption above the 1B exciton in PDA crystals provides an experimental separation of vibrational and electronic contributions that limits any even-parity state in this 0.5 eV interval. An oscillator-strength sum rule is applied to the convergence of PDA oligomers with increasing length, N, and the crystal oscillator strengths are obtained without adjustable parameters. The sum rule for the 1B exciton implies large transition moments to higher-energy Ag states, whose locations in recent models are contrasted to PPP results. Joint analysis of NLO and EA spectra clarifies when a few electronic excitations are sufficient, distinguishes between vibrational and electronic contributions, and supports similar π-electron interactions in conjugated molecules and polymers.

  20. Crystal-field effect in UO2

    International Nuclear Information System (INIS)

    Gajek, Z.; Lahalle, M.P.; Krupa, J.C.; Mulak, J.

    1988-01-01

    Simple ab initio model perturbation calculations of the crystal-field parameters for the U 4+ ion in UO 2 crystals are reported. The crystal-field parameters obtained, B 0 4 = -7130 cm -1 and B 0 6 = 2890 cm -1 , turn out to be much lower in value, particularly the first one, than those usually assumed for this compound. They are found, however, to agree with new spectroscopic data and recent inelastic neutron scattering measurements. (orig.)

  1. Theoretical studies of the optical and EPR spectra for VO^{2+} in Na_3C_6H_5O_7·2H_2O single crystal

    Directory of Open Access Journals (Sweden)

    Ch.-Y. Li

    2015-06-01

    Full Text Available On the basis of the perturbation formulas for a d^1 configuration ion in a tetragonal crystal field, the three optical absorption bands and electron paramagnetic resonance (EPR parameters (g factors g_i and hyperfine structure constants A_i for i = || and ⊥, respectively of VO^{2+} in Na_3C_6H_5O_7·2H_2O (TSCD single crystals were studied using the perturbation theory method. By simulating the calculated optical and EPR spectra to the observed values, local structure parameters and negative signs of the hyperfine structure constants A_i of the octahedral (VO_6^{8-} cluster in TSCD single crystal can be obtained.

  2. Infrared Spectra and Optical Constants of Elusive Amorphous Methane

    Science.gov (United States)

    Gerakines, Perry A.; Hudson, Reggie L.

    2015-01-01

    New and accurate laboratory results are reported for amorphous methane (CH4) ice near 10 K for the study of the interstellar medium (ISM) and the outer Solar System. Near- and mid-infrared (IR) data, including spectra, band strengths, absorption coefficients, and optical constants, are presented for the first time for this seldom-studied amorphous solid. The apparent IR band strength near 1300 cm(exp -1) (7.69 micrometer) for amorphous CH4 is found to be about 33% higher than the value long used by IR astronomers to convert spectral observations of interstellar CH4 into CH4 abundances. Although CH4 is most likely to be found in an amorphous phase in the ISM, a comparison of results from various laboratory groups shows that the earlier CH4 band strength at 1300 cm(exp -1) (7.69 micrometer) was derived from IR spectra of ices that were either partially or entirely crystalline CH4 Applications of the new amorphous-CH4 results are discussed, and all optical constants are made available in electronic form.

  3. CORRELATIONS OF QUASAR OPTICAL SPECTRA WITH RADIO MORPHOLOGY

    International Nuclear Information System (INIS)

    Kimball, Amy E.; Ivezic, Zeljko; Wiita, Paul J.; Schneider, Donald P.

    2011-01-01

    Using the largest homogeneous quasar sample with high-quality optical spectra and robust radio morphology classifications assembled to date, we investigate relationships between radio and optical properties with unprecedented statistical power. The sample consists of 4714 radio quasars from FIRST with S 20 ≥ 2 mJy and with spectra from the Sloan Digital Sky Survey (SDSS). Radio morphology classes include core-only (core), core-lobe (lobe), core-jet (jet), lobe-core-lobe (triple), and double-lobe. Electronic tables of the quasar samples, along with spectral composites for individual morphology classes, are made available. We examine the optical colors of these subsamples and find that radio quasars with core emission unresolved by FIRST (on ∼5'' scale) have a redder color distribution than radio-quiet quasars (S 20 ∼ I ) are correlated, which supports the hypothesis that both parameters are indicative of line-of-sight orientation. We investigate spectral line equivalent widths (EWs) as a function of R and R I , including the O [III] narrow line doublet and the C IV λ1549 and Mg II λ2799 broad lines. We find that the rest EWs of the broad lines correlate positively with R I at the 4σ-8σ level. However, we find no strong dependence of EW on R, in contrast to previously published results. A possible interpretation of these results is that EWs of quasar emission lines increase as the line-of-sight angle to the radio-jet axis decreases. These results are in stark contrast to commonly accepted orientation-based theories, which suggest that continuum emission should increase as the angle to the radio-jet axis decreases, resulting in smaller EWs of emission lines (assumed isotropic). Finally, we observe the Baldwin effect in our sample and find that it does not depend strongly on quasar radio morphology.

  4. Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime.

    Science.gov (United States)

    Guo, Zijian; Favazza, Christopher; Garcia-Uribe, Alejandro; Wang, Lihong V

    2012-06-01

    Photoacoustic (PA) microscopy (PAM) can image optical absorption contrast with ultrasonic spatial resolution in the optical diffusive regime. Conventionally, accurate quantification in PAM requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. With the acoustic spectral method, the absorption coefficients of an oxygenated bovine blood phantom at 560, 565, 570, and 575 nm were quantified with errors of <3%. We also quantified the total hemoglobin concentration and hemoglobin oxygen saturation in a live mouse. Compared with the conventional amplitude method, the acoustic spectral method provides greater quantification accuracy in the optical diffusive regime. The limitations of the acoustic spectral method was also discussed.

  5. Noise spectra in balanced optical detectors based on transimpedance amplifiers

    Science.gov (United States)

    Masalov, A. V.; Kuzhamuratov, A.; Lvovsky, A. I.

    2017-11-01

    We present a thorough theoretical analysis and experimental study of the shot and electronic noise spectra of a balanced optical detector based on an operational amplifier connected in a transimpedance scheme. We identify and quantify the primary parameters responsible for the limitations of the circuit, in particular, the bandwidth and shot-to-electronic noise clearance. We find that the shot noise spectrum can be made consistent with the second-order Butterworth filter, while the electronic noise grows linearly with the second power of the frequency. Good agreement between the theory and experiment is observed; however, the capacitances of the operational amplifier input and the photodiodes appear significantly higher than those specified in manufacturers' datasheets. This observation is confirmed by independent tests.

  6. Optical spectra and lattice dynamics of molecular crystals

    CERN Document Server

    Zhizhin, GN

    1995-01-01

    The current volume is a single topic volume on the optical spectra and lattice dynamics of molecular crystals. The book is divided into two parts. Part I covers both the theoretical and experimental investigations of organic crystals. Part II deals with the investigation of the structure, phase transitions and reorientational motion of molecules in organic crystals. In addition appendices are given which provide the parameters for the calculation of the lattice dynamics of molecular crystals, procedures for the calculation of frequency eigenvectors of utilizing computers, and the frequencies and eigenvectors of lattice modes for several organic crystals. Quite a large amount of Russian literature is cited, some of which has previously not been available to scientists in the West.

  7. Linear optical absorption spectra of mesoscopic structures in intense THz fields: Free-particle properties

    DEFF Research Database (Denmark)

    Johnsen, Kristinn; Jauho, Antti-Pekka

    1998-01-01

    We theoretically study the effect of THz radiation on the linear optical absorption spectra of semiconductor structures. A general theoretical framework, based on nonequilibrium Green functions, is formulated and applied to the calculation of linear optical absorption spectrum for several...

  8. Crystal field and site deformation in spinels and pentavalent uranium compounds

    International Nuclear Information System (INIS)

    Drifford, M.; Soulie, E.

    1976-01-01

    Magnesium aluminates with different alumina contents have the spinel structure. The optical absorption spectra of doped spinel compounds (Cr 3+ , Ni 2+ , Co 2+ ) or E.S.R. spectra (Cr 3+ , Mn 2+ ) are used for the investigation of the position of the doping materials and the deformation of the crystal sites, and give information on the structural disorders. The local structural information given by the doping materials are compared with the mean structure parameters obtained from X-ray diffraction. The optical absorption spectrum and the principal components of the g tensor for UF 6 Cs and the thermal variation in the magnetic susceptibility for UF 8 Cs 3 and UF 8 (NH 4 ) are used for determining the parameters of the electron Hamiltonian for the f 1 configuration. A rather significant covalent aspect is evidenced for UF 6 Cs, in the framework of the model of Eisenstein and Pryce, this property being weaker for the other two complex compounds. The three parameters giving the crystal field at a deformed cubic site with Dsub(3d) symmetry in the Newman superposition model are noticeably weaker for the 8-coordination than for the 6-coordination. As for UF 8 Cs 3 and UF 8 (NH 4 ) 3 a calculation predicts an electronic levels with a very low excitation, at about 110 and 70cm -1 respectively [fr

  9. Method for fitting crystal field parameters and the energy level fitting for Yb3+ in crystal SC2O3

    International Nuclear Information System (INIS)

    Qing-Li, Zhang; Kai-Jie, Ning; Jin, Xiao; Li-Hua, Ding; Wen-Long, Zhou; Wen-Peng, Liu; Shao-Tang, Yin; Hai-He, Jiang

    2010-01-01

    A method to compute the numerical derivative of eigenvalues of parameterized crystal field Hamiltonian matrix is given, based on the numerical derivatives the general iteration methods such as Levenberg–Marquardt, Newton method, and so on, can be used to solve crystal field parameters by fitting to experimental energy levels. With the numerical eigenvalue derivative, a detailed iteration algorithm to compute crystal field parameters by fitting experimental energy levels has also been described. This method is used to compute the crystal parameters of Yb 3+ in Sc 2 O 3 crystal, which is prepared by a co-precipitation method and whose structure was refined by Rietveld method. By fitting on the parameters of a simple overlap model of crystal field, the results show that the new method can fit the crystal field energy splitting with fast convergence and good stability. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  10. VizieR Online Data Catalog: BD+46 442 optical spectra (Bollen+, 2017)

    Science.gov (United States)

    Bollen, D.; van Winckel, H.; Kamath, D.

    2017-08-01

    Reduced high-resolution (R~85000) optical spectra of BD+46 442. These 104 spectra were obtained between July 2009 and January 2016 from the HERMES spectrograph, mounted on the 1.2m Flemish Mercator telescope at La Palma, Canary Islands, Spain. The spectra cover a wavelength range from 3770 to 9000 angstrom in logscale. The flux is given in arbitrary units. The spectra are collected as FITS files. The numbering of the spectra corresponds to the numbering in Table B.1 in the article (e.g. spec_15.fits corresponds to N=15). (2 data files).

  11. Crystal field parameters in UCl4: Experiment versus theory

    International Nuclear Information System (INIS)

    Zolnierek, Z.; Gajek, Z.; Khan Malek, C.

    1984-01-01

    Crystal field effect on U 4+ ion with the 3 H 4 ground term in tetragonal ligand field of UCl 4 has been studied in detail. Crystal field parameters determined experimentally from optical spectroscopy and magnetic susceptibility are in good agreement with CEP sets derived from the modified point charge model and the ab initio method. Theoretical calculations lead to overestimating the A 4 4 4 > and lowering the A 2 0 2 > values in comparison to those found in the experiments. The discrepancies are, however, within an accuracy of calculations. A large reduction of expectation values of the magnetic moment operator for the eigenvectors of lowest CF levels (17.8%), determined from magnetic susceptibility, cannot be attributed to the overlap and covalency effects only. The detailed calculations have shown that the latter effects provide about 4.6% reduction of respective matrix elements, and the applied J-J mixing procedure increases this factor up to 6.5%. Since similar, as in UCl 4 , reduction factor (proportional15%) has already been observed in a number of different uranium compounds, it seems to be likely that this feature is involved in the intrinsic properties of the U 4+ ion. We endeavor to explain this effect in terms of configuration interaction mechanisms. (orig.)

  12. Crystal field parameters in UCI 4: Experiment versus theory

    Science.gov (United States)

    Zolnierek, Z.; Gajek, Z.; Malek, Ch. Khan

    1984-08-01

    Crystal field effect on U 4+ ion with the 3H 4 ground term in tetragonal ligand field of UCl 4 has been studied in detail. Crystal field parameters determined experimentally from optical spectroscopy and magnetic susceptibility are in good agreement with CFP sets derived from the modified point charge model and the ab initio method. Theoretical calculations lead to overestimating the A44 and lowering the A02 values in comparison to those found in the experiments. The discrepancies are, however, within an accuracy of calculations. A large reduction of expectation values of the magnetic moment operator for the eigenvectors of lowest CF levels (17.8%), determined from magnetic susceptibility, cannot be attributed to the overlap and covalency effects only. The detailed calculations have shown that the latter effects provide about 4.6% reduction of respective matrix elements, and the applied J-J mixing procedure increases this factor up to 6.5%. Since similar, as in UCl 4, reduction factor(≈15%) has already been observed in a number of different uranium compounds, it seems likely that this feature is involved in the intrinsic properties of the U 4+ ion. We endeavor to explain this effect in terms of configuration interaction mechanisms.

  13. On standardization of low symmetry crystal fields

    Science.gov (United States)

    Gajek, Zbigniew

    2015-07-01

    Standardization methods of low symmetry - orthorhombic, monoclinic and triclinic - crystal fields are formulated and discussed. Two alternative approaches are presented, the conventional one, based on the second-rank parameters and the standardization based on the fourth-rank parameters. Mainly f-electron systems are considered but some guidelines for d-electron systems and the spin Hamiltonian describing the zero-field splitting are given. The discussion focuses on premises for choosing the most suitable method, in particular on inadequacy of the conventional one. Few examples from the literature illustrate this situation.

  14. Laser- and gamma-induced transformations of optical spectra of indium-doped sodium borate glass

    CERN Document Server

    Kopyshinsky, O V; Zelensky, S E; Danilchenko, B A; Shakhov, O P

    2003-01-01

    The optical absorption and luminescence properties of indium-doped sodium borate glass irradiated by gamma-rays and by powerful UV lasers within the impurity-related absorption band are investigated experimentally. It is demonstrated that both the laser- and gamma-irradiation cause similar transformations of optical spectra in the UV and visible regions. The changes of the spectra observed are described with the use of a model which includes three types of impurity centres formed by differently charged indium ions.

  15. Spectral shaping for non-Gaussian source spectra in optical coherence tomography

    NARCIS (Netherlands)

    Tripathi, R; Nassif, N. A.; Nelson, JS; Park, B.H.; de Boer, JF

    2002-01-01

    We present a digital spectral shaping technique to reduce the sidelobes (ringing) of the axial point-spread function in optical coherence tomography for non-Gaussian-shaped source spectra. The spectra of two superluminescent diodes were combined to generate a spectrum with significant modulation.

  16. The physics of thin film optical spectra an introduction

    CERN Document Server

    Stenzel, Olaf

    2016-01-01

    The book bridges the gap between fundamental physics courses (such as optics, electrodynamics, quantum mechanics and solid state physics) and highly specialized literature on the spectroscopy, design, and application of optical thin film coatings. Basic knowledge from the above-mentioned courses is therefore presumed. Starting from fundamental physics, the book enables the reader derive the theory of optical coatings and to apply it to practically important spectroscopic problems. Both classical and semiclassical approaches are included. Examples describe the full range of classical optical coatings in various spectral regions as well as highly specialized new topics such as rugate filters and resonant grating waveguide structures.The second edition has been updated and extended with respect to probing matter in different spectral regions, homogenous and inhomogeneous line broadening mechanisms and the Fresnel formula for the effect of planar interfaces.

  17. STELLAR POPULATIONS IN MEDIUM REDSHIFT CLUSTERS .2. OPTICAL-INFRARED PHOTOMETRY AND SPECTRA

    NARCIS (Netherlands)

    PICKLES, AJ; VANDERKRUIT, PC

    1991-01-01

    We present optical and infrared photometry (BV RI, J H K) and spectra of galaxies in 6 medium redshift clusters covering the redshift range 0.19 less-than-or-equal-to z less-than-or-equal-to 0.4. The array photometry is used to note the radial distribution of the cluster galaxies with optical and

  18. Comparison of optical and electron spectra in an infra-red free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    MacLeod, A.M.; Gillespie, W.A.; Martin, P.F. [Univ. of Abertay, Dundee (United Kingdom)] [and others

    1995-12-31

    Time-resolved electron and optical spectra recently acquired at the FELIX facility are presented, showing the evolution of the respective macropulses. A comparison is made between the optical power output during the macropulse and the measured power extracted from the electron beam using a simple model of the cavity losses. Data are available for a wide range of operating conditions: the wavelength range is from 9 {mu}m to 28 {mu}m and detuning are between 1/4{lambda} and 2{lambda}. The effect of rapid electron beam energy changes on the optical and electron spectra will also be discussed.

  19. Explicit versus Implicit Solvent Modeling of Raman Optical Activity Spectra

    Czech Academy of Sciences Publication Activity Database

    Hopmann, K. H.; Ruud, K.; Pecul, M.; Kudelski, A.; Dračínský, Martin; Bouř, Petr

    2011-01-01

    Roč. 115, č. 14 (2011), s. 4128-4137 ISSN 1520-6106 R&D Projects: GA MŠk(CZ) LH11033; GA ČR GAP208/11/0105 Grant - others:AV ČR(CZ) M200550902 Institutional research plan: CEZ:AV0Z40550506 Keywords : raman optical activity * lactamide * solvent models Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.696, year: 2011

  20. Optical spectra of phthalocyanines and related compounds a guide for beginners

    CERN Document Server

    Isago, Hiroaki

    2015-01-01

    This book displays how optical (absorption, emission, and magnetic circular dichroism) spectra of phthalocyanines and related macrocyclic dyes can be varied from their prototypical ones depending on conditions. As these compounds can be involved in colorful chemistry (which might be driven by impurities in solvents), their spectra behave like the sea-god Proteus in their mutability. Therefore, those who have been engaged with phthalocyanines for the first time, including even educated professional researchers and engineers, may have been embarrassed by the deceptive behavior of their compounds and could have, in the worst cases, given up their projects. This book is aimed not merely at reviewing the optical spectra, but also at helping such people, particularly beginners, to figure them out by showing some examples of their prototypical spectra and their variations in several situations. For the purpose of better understanding, the book also provides an introduction to their theoretical backgrounds as graphic...

  1. Analysis of aggregate optical spectra using moments. Application to the purple membrane of halobacterium halobium

    International Nuclear Information System (INIS)

    Hemenger, R.P.

    1978-01-01

    The problem of extracting structural information from the optical spectra of aggregates of molecules interacting through their electronic transitions is studied. One serious difficulty common to all approaches to this problem is that of properly taking into account the effects of molecular vibrations. A series of exact relations derived previously which are correct with regard to molecular vibrations provide a number of independent, explicit connections between aggregate geometrical parameters and moments of experimental spectra. It is shown that, by applying these moment relations to the optical absorption and circular dichroism spectra of simple aggregates, a complete set of equations can be found, i.e., enough equations can be found to solve for all of the geometrical parameters which enter into the expressions for absorption and circular dichroism spectra. This procedure is applied in some detail to the purple membrane of Halobacterium halobium. The results are completely consistent with what is known about its structure

  2. Analyses of crystal field and exchange interaction of Dy3Ga5O12 under extreme conditions

    International Nuclear Information System (INIS)

    Wang Wei; Qi Xin; Yue Yuan

    2011-01-01

    This paper theoretically investigates the effects of crystal field and exchange interaction field on magnetic properties in dysprosium gallium garnet under extreme conditions (low temperatures and high magnetic fields) based on quantum theory. Here, five sets of crystal field parameters are discussed and compared. It demonstrates that, only considering the crystal field effect, the experiments can not be successfully explained. Thus, referring to the molecular field theory, an effective exchange field associated with the Dy—Dy exchange interaction is further taken into account. Under special consideration of crystal field and the exchange interaction field, it obtains an excellent agreement between the theoretical results and experiments, and further confirms that the exchange interaction field between rare-earth ions has great importance to magnetic properties in paramagnetic rare-earth gallium garnets. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  3. Crystal-field tuning of photoluminescence in two-dimensional materials with embedded lanthanide ions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ding; Chen, Weiyin; Zeng, Mengqi; Xue, Haifeng; Chen, Yunxu; Xiao, Yao; Zhang, Tao; Fu, Lei [College of Chemistry and Molecular Sciences, Institute for Advanced Studies, Wuhan University, Wuhan (China); Sang, Xiahan; Unocic, Raymond R.; Xiao, Kai [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2018-01-15

    Lanthanide (Ln) group elements have been attracting considerable attention owing to the distinct optical properties. The crystal-field surroundings of Ln ions in the host materials can determine their energy level splitting, which is of vital importance to tailor their optical properties. 2D MoS{sub 2} single crystals were utilized as the host material to embed Eu{sup 3+} and energy-level splitting was achieved for tuning its photoluminescence (PL). The high anisotropy of the 2D host materials makes them distort the degenerate orbitals of the Ln ions more efficiently than the symmetrical bulk host materials. A significant red-shift of the PL peak for Eu{sup 3+} was observed. The strategy for tailoring the energy level splitting of Ln ions by the highly designable 2D material crystal field provides a new method to extend their optical properties. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Hardware authentication using transmission spectra modified optical fiber

    International Nuclear Information System (INIS)

    Grubbs, Robert K.; Romero, Juan A.

    2010-01-01

    The ability to authenticate the source and integrity of data is critical to the monitoring and inspection of special nuclear materials, including hardware related to weapons production. Current methods rely on electronic encryption/authentication codes housed in monitoring devices. This always invites the question of implementation and protection of authentication information in an electronic component necessitating EMI shielding, possibly an on board power source to maintain the information in memory. By using atomic layer deposition techniques (ALD) on photonic band gap (PBG) optical fibers we will explore the potential to randomly manipulate the output spectrum and intensity of an input light source. This randomization could produce unique signatures authenticating devices with the potential to authenticate data. An external light source projected through the fiber with a spectrometer at the exit would 'read' the unique signature. No internal power or computational resources would be required.

  5. Electronic transient processes and optical spectra in quantum dots for quantum computing

    Czech Academy of Sciences Publication Activity Database

    Král, Karel; Zdeněk, Petr; Khás, Zdeněk

    2004-01-01

    Roč. 3, č. 1 (2004), s. 17-25 ISSN 1536-125X R&D Projects: GA AV ČR IAA1010113 Institutional research plan: CEZ:AV0Z1010914 Keywords : depopulation * electronic relaxation * optical spectra * quantum dots * self-assembled quantum dots * upconversion Subject RIV: BE - Theoretical Physics Impact factor: 3.176, year: 2004

  6. A first-principles investigation of the optical spectra of oxidized graphene

    KAUST Repository

    Singh, Nirpendra

    2013-01-14

    The electronic and optical properties of mono, di, tri, and tetravacancies in graphene are studied in comparison to each other, using density functional theory. In addition, oxidized monovacancies are considered for different oxygen concentrations. Pristine graphene is found to be more absorptive than any defect configuration at low energy. We demonstrate characteristic differences in the optical spectra of the various defects for energies up to 3 eV. This makes it possible to quantify by optical spectroscopy the ratios of the defect species present in a sample.

  7. A first-principles investigation of the optical spectra of oxidized graphene

    KAUST Repository

    Singh, Nirpendra; Kaloni, Thaneshwor P.; Schwingenschlö gl, Udo

    2013-01-01

    The electronic and optical properties of mono, di, tri, and tetravacancies in graphene are studied in comparison to each other, using density functional theory. In addition, oxidized monovacancies are considered for different oxygen concentrations. Pristine graphene is found to be more absorptive than any defect configuration at low energy. We demonstrate characteristic differences in the optical spectra of the various defects for energies up to 3 eV. This makes it possible to quantify by optical spectroscopy the ratios of the defect species present in a sample.

  8. Alkali-Responsive Absorption Spectra and Third-Order Optical Nonlinearities of Imino Squaramides

    International Nuclear Information System (INIS)

    Li Zhong-Yu; Xu Song; Zhou Xin-Yu; Zhang Fu-Shi

    2012-01-01

    Third-order optical nonlinearities and dynamic responses of two imino squaramides under neutral and base conditions were studied using the femtosecond degenerate four-wave mixing technique at 800 nm. Ultrafast optical responses have been observed and the magnitude of the second-order hyperpolarizabilities of the squaramides has been measured to be as large as 10 −31 esu. The absorption spectra, color of solution, and third-order optical nonlinearities of two imino squaramides change with the addition of sodium hydroxide. The γ value under the base condition for each dye is approximately 1.25 times larger than that under neutral conditions. (fundamental areas of phenomenology(including applications))

  9. Late time optical spectra from the /sup 56/Ni model for Type I supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Axelrod, T.S.

    1980-07-01

    The hypothesis that the optical luminosity of Type I supernovae results from the radioactive decay of /sup 56/Ni synthesized and ejected by the explosion has been investigated by numerical simulation of the optical spectrum resulting from a homologously expanding shell composed initially of pure /sup 56/Ni core. This model, which neglects the effects of material external to the /sup 56/Ni core, is expected to provide a reasonable representation of the supernova at late times when the star is nearly transparent to optical photons. The numerical simulation determines the temperature, ionization state, and non-LTE level populations which result from energy deposition by the radioactive decay products of /sup 56/Ni and /sup 56/Co. The optical spectrum includes the effects of both allowed and forbidden lines. The optical spectra resulting from the simulation are found to be sensitive to the mass and ejection velocity of the /sup 56/Ni shell. A range of these parameters has been found which results in good agreement with the observed spectra of SN1972e over a considerable range of time. In particular, evidence for the expected decaying abundance of /sup 56/Co has been found in the spectra of SN1972e. These results are used to assess the validity of the /sup 56/Ni model and set limits on the mass and explosion mechanism of the Type I progenitor. The possibilities for improvement of the numerical model are discussed and future atomic data requirements defined.

  10. Late time optical spectra from the 56Ni model for Type I supernovae

    International Nuclear Information System (INIS)

    Axelrod, T.S.

    1980-07-01

    The hypothesis that the optical luminosity of Type I supernovae results from the radioactive decay of 56 Ni synthesized and ejected by the explosion has been investigated by numerical simulation of the optical spectrum resulting from a homologously expanding shell composed initially of pure 56 Ni core. This model, which neglects the effects of material external to the 56 Ni core, is expected to provide a reasonable representation of the supernova at late times when the star is nearly transparent to optical photons. The numerical simulation determines the temperature, ionization state, and non-LTE level populations which result from energy deposition by the radioactive decay products of 56 Ni and 56 Co. The optical spectrum includes the effects of both allowed and forbidden lines. The optical spectra resulting from the simulation are found to be sensitive to the mass and ejection velocity of the 56 Ni shell. A range of these parameters has been found which results in good agreement with the observed spectra of SN1972e over a considerable range of time. In particular, evidence for the expected decaying abundance of 56 Co has been found in the spectra of SN1972e. These results are used to assess the validity of the 56 Ni model and set limits on the mass and explosion mechanism of the Type I progenitor. The possibilities for improvement of the numerical model are discussed and future atomic data requirements defined

  11. Study of optical and electronic properties of nickel from reflection electron energy loss spectra

    Science.gov (United States)

    Xu, H.; Yang, L. H.; Da, B.; Tóth, J.; Tőkési, K.; Ding, Z. J.

    2017-09-01

    We use the classical Monte Carlo transport model of electrons moving near the surface and inside solids to reproduce the measured reflection electron energy-loss spectroscopy (REELS) spectra. With the combination of the classical transport model and the Markov chain Monte Carlo (MCMC) sampling of oscillator parameters the so-called reverse Monte Carlo (RMC) method was developed, and used to obtain optical constants of Ni in this work. A systematic study of the electronic and optical properties of Ni has been performed in an energy loss range of 0-200 eV from the measured REELS spectra at primary energies of 1000 eV, 2000 eV and 3000 eV. The reliability of our method was tested by comparing our results with the previous data. Moreover, the accuracy of our optical data has been confirmed by applying oscillator strength-sum rule and perfect-screening-sum rule.

  12. The Radio-optical Spectra of BL Lacs and Possible Relatives

    Science.gov (United States)

    Dennett-Thorpe, J.

    I consider the suggestion that, in a complete sample of flat-spectrum radio sources with available optical spectra (Marcha et al 1996), the strong emission line objects, or those with passive elliptical spectra are close relatives of the BL Lacs. New observations at four frequencies from 8 to 43GHz are presented, together with evidence for radio variability. Combined with other radio and optical data from the literature, we are able to construct the non-thermal SEDs and use these to address the questions: are the optically passive objects potentially `unrecognised' BL Lacs (either intrinsically weak and/or hidden by starlight)? What is the relationship between the surprising number of strong emission-line objects and the BL Lacs?

  13. Quasiparticle energies, excitons, and optical spectra of few-layer black phosphorus

    International Nuclear Information System (INIS)

    Tran, Vy; Fei, Ruixiang; Yang, Li

    2015-01-01

    We report first-principles GW–Bethe–Salpeter-equation (BSE) studies of excited-state properties of few-layer black phosphorus (BP) (phosphorene). With improved GW computational methods, we obtained converged quasiparticle band gaps and optical absorption spectra by the single-shot (G 0 W 0 ) procedure. Moreover, we reveal fine structures of anisotropic excitons, including the series of one-dimensional like wave functions, spin singlet–triplet splitting, and electron–hole binding energy spectra by solving BSE. An effective-mass model is employed to describe these electron–hole pairs, shedding light on estimating the exciton binding energy of anisotropic two-dimensional semiconductors without expensive ab initio simulations. Finally, the anisotropic optical response of BP is explained by using optical selection rules based on the projected single-particle density of states at band edges. (paper)

  14. Ionization potential depression and optical spectra in a Debye plasma model

    Science.gov (United States)

    Lin, Chengliang; Röpke, Gerd; Reinholz, Heidi; Kraeft, Wolf-Dietrich

    2017-11-01

    We show how optical spectra in dense plasmas are determined by the shift of energy levels as well as the broadening owing to collisions with the plasma particles. In lowest approximation, the interaction with the plasma particles is described by the RPA dielectric function, leading to the Debye shift of the continuum edge. The bound states remain nearly un-shifted, their broadening is calculated in Born approximation. The role of ionization potential depression as well as the Inglis-Teller effect are shown. The model calculations have to be improved going beyond the lowest (RPA) approximation when applying to WDM spectra.

  15. Crystal-field analysis of U3+ ions in K2LaX5 (X=Cl, Br or I) single crystals

    Science.gov (United States)

    Karbowiak, M.; Edelstein, N.; Gajek, Z.; Drożdżyński, J.

    1998-11-01

    An analysis of low temperature absorption spectra of U3+ ions doped in K2LaX5 (X=Cl, Br or I) single crystals is reported. The energy levels of the U3+ ion in the single crystals were assigned and fitted to a semiempirical Hamiltonian representing the combined atomic and crystal-field interactions at the Cs symmetry site. An analysis of the nephelauxetic effect and crystal-field splittings in the series of compounds is also reported.

  16. [Growth of codoped CdWO4 crystals by Bridgman method and their optical spectra].

    Science.gov (United States)

    Yu, Can; Xia, Hai-Ping; Wang, Dong-Jie; Chen, Hong-Bing

    2011-09-01

    The CdWO4 crystals with good quality in the size of Phi25 mm x 120 mm, doped with Co in 0.5% molar fraction in the raw composition, were grown by the Bridgman method by taking -70 degrees C x cm(-1) of solid-liquid interface and -0.50 mm x h(-1) growth rate. The crystal presents transparence and deep blue. The X-ray diffraction (XRD) was used to characterize the crystals. Three absorption peaks at 518, 564 and 655 nm respectively, which are attributed to the overlapping of 4 T1 (4F) --> 4A2 (4F) and 4 T1 (4F) --> 4 T1 (4P) of Co2+ octahedrons, and a wide band centered at 1 863 nm, which is attributed to 4Ti (4F) --> 4 T2 (4F), was observed. The absorption results indicated that the Co ions presented +2 valence in crystal and located within the distorted oxygen octahedrons. The crystal-field parameter D(q) and the Racah parameter B were estimated to be 990 and 726.3 cm(-1) respectively based on the absorption spectra. A fluorescence emission at 778 nm (4T1 (4P) --> 4 T1 (4F)) for codoped CdWO4 crystals was observed under excitation by 520 nm light. It can be deduced from the changes in absorption and emission intensity of different parts of crystal that the concentration of Co2+ ion in crystal increased along growing direction and the effective distribution coefficient of Co2+ ion in CdWO4 crystal is less than 1.

  17. INFRARED SPECTRA AND OPTICAL CONSTANTS OF NITRILE ICES RELEVANT TO TITAN's ATMOSPHERE

    International Nuclear Information System (INIS)

    Moore, Marla H.; Hudson, Reggie; Ferrante, Robert F.; James Moore, W.

    2010-01-01

    Spectra and optical constants of nitrile ices known or suspected to be in Titan's atmosphere are presented from 2.0 to 333.3 μm (∼5000-30 cm -1 ). These results are relevant to the ongoing modeling of Cassini CIRS observations of Titan's winter pole. Ices studied are: HCN, hydrogen cyanide; C 2 N 2 , cyanogen; CH 3 CN, acetonitrile; C 2 H 5 CN, propionitrile; and HC 3 N, cyanoacetylene. For each of these molecules, we also report new cryogenic measurements of the real refractive index, n, determined in both the amorphous and crystalline phases at 670 nm. These new values have been incorporated into our optical constant calculations. Spectra were measured and optical constants were calculated for each nitrile at a variety of temperatures, including, but not limited to, 20, 35, 50, 75, 95, and 110 K, in both the amorphous phase and the crystalline phase. This laboratory effort used a dedicated FTIR spectrometer to record transmission spectra of thin-film ice samples. Laser interference was used to measure film thickness during condensation onto a transparent cold window attached to the tail section of a closed-cycle helium cryostat. Optical constants, real (n) and imaginary (k) refractive indices, were determined using Kramers-Kronig analysis. Our calculation reproduces the complete spectrum, including all interference effects.

  18. Modification of Optical Properties of Seawater Exposed to Oil Contaminants Based on Excitation-Emission Spectra

    Science.gov (United States)

    Baszanowska, E.; Otremba, Z.

    2015-10-01

    The optical behaviour of seawater exposed to a residual amount of oil pollution is presented and a comparison of the fluorescence spectra of oil dissolved in both n-hexane and seawater is discussed based on excitation-emission spectra. Crude oil extracted from the southern part of the Baltic Sea was used to characterise petroleum properties after contact with seawater. The wavelength-independent fluorescence maximum for natural seawater and seawater artificially polluted with oil were determined. Moreover, the specific excitation-emission peaks for natural seawater and polluted water were analysed to identify the natural organic matter composition. It was found that fluorescence spectra identification is a promising method to detect even an extremely low concentration of petroleum residues directly in the seawater. In addition, alien substances disturbing the fluorescence signatures of natural organic substances in a marine environment is also discussed.

  19. Optical spectra of vanadium (5, 4) compounds during extraction by di-2-ethylhexylphosphoric acid

    International Nuclear Information System (INIS)

    Kurbatova, L.D.; Medvedeva, N.I.

    2000-01-01

    Optical spectra of vanadium (5, 4) complexes with HDEHP are studied using literature data on quantum-chemical calculations of vanadium (5) and vanadium (4) oxides. Extraction of vanadium is conducted by undiluted HDEHP from sulfuric acid solutions. Absorption electron spectra (AES) of vanadium (5), vanadium (4) and vanadium (5, 4) compounds are presented. In AES of vanadium (5, 4) four absorption bands at 24000, 17000, 14500 and 13500 cm -1 appear. Comparison with spectra of vanadium (5) and vanadium (4) shows that band 17000 cm -1 which appears only during mutual extraction of vanadium (5) and vanadium (4) is caused by transitions appearing between filled and empty levels of d-zone broadened by vanadium (5) and vanadium (4) interaction [ru

  20. Electron and nuclear spin interactions in the optical spectra of single GaAs quantum dots.

    Science.gov (United States)

    Gammon, D; Efros, A L; Kennedy, T A; Rosen, M; Katzer, D S; Park, D; Brown, S W; Korenev, V L; Merkulov, I A

    2001-05-28

    Fine and hyperfine splittings arising from electron, hole, and nuclear spin interactions in the magneto-optical spectra of individual localized excitons are studied. We explain the magnetic field dependence of the energy splitting through competition between Zeeman, exchange, and hyperfine interactions. An unexpectedly small hyperfine contribution to the splitting close to zero applied field is described well by the interplay between fluctuations of the hyperfine field experienced by the nuclear spin and nuclear dipole/dipole interactions.

  1. An atlas of optical spectra of DZ white dwarfs and related objects

    International Nuclear Information System (INIS)

    Sion, E.M.; Kenyon, S.J.; Aannestad, P.A.

    1990-01-01

    An atlas of optical spectra and equivalent width measurements for DZ stars and several related objects is described. These data should improve abundance measurements for Ca/He, Mg/He, and Fe/He in these stars and provide tests for calculations of accretion, diffusion, and radiative transfer in white-dwarf atmospheres. Also reported is the possible detection of He I (3888-A) in three DZ white dwarfs, 0246 + 735, 1705 + 030, and 2215 + 388. 25 refs

  2. Optical properties and energy spectra of donors in Gasub(x)Insub(1-x)P

    International Nuclear Information System (INIS)

    Berndt, V.; Kopylov, A.A.; Pikhtin, A.N.

    1977-01-01

    Impurity optical absorption is studied in n-Gasub(x)Insub(1-x)P for compositions with indirect band structure. For the first time the photoionization bands of shallow donor centers have been observed in semiconductor solid solutions. Analysis of spectra has shown the electron transitions to excited states of donor to contribute considerably to absorption. A simple theoretical model is presented to explain the shift of ionization energy of silicon donor and the variation in shape of the impurity absorption band

  3. Ordering-induced changes in the optical spectra of semiconductor alloys

    International Nuclear Information System (INIS)

    Bernard, J.E.; Wei, S.; Wood, D.M.; Zunger, A.

    1988-01-01

    It is shown how the recently predicted and subsequently observed spontaneous long-range ordering of pseudobinary A/sub 0.5/B/sub 0.5/C isovalent semiconductor alloys into the (AC) 1 (BC) 1 superlattice structure (a CuAuI-type crystal) gives rise to characteristic changes in the optical and photoemission spectra. We predict new direct transitions and substantial splittings of transitions absent in the disordered alloy

  4. Infrared Spectra, Index of Refraction, and Optical Constants of Nitrile Ices Relevant to Titan's Atmosphere

    Science.gov (United States)

    Moore, Marla; Ferrante, Robert; Moore, William; Hudson, Reggie

    2010-01-01

    Spectra and optical constants of nitrite ices known or suspected to be in Titan's atmosphere are presented from 2.5 to 200 microns (4000 to 50 per cm ). These results are relevant to the ongoing modeling of Cassini CIRS observations of Titan's winter pole. Ices studied include: HCN, hydrogen cyanide; C2N2, cyanogen; CH3CN, acetonitrile; C 2H5CN, propionitrile; and HC3N, cyanoacetylene. For each of these molecules we report new measurements of the index of refraction, n, determined in both the amorphous- and crystallinephase at 670 nm. Spectra were measured and optical constants were calculated for each nitrite at a variety of temperatures including 20, 35, 50, 75, 95, and 110 K, in the amorphous- and crystalline-phase. This laboratory effort uses a dedicated FTIR spectrometer to record transmission spectra of thin-film ice samples. Laser interference is used to measure film thickness during condensation onto a transparent cold window attached to the tail section of a closed-cycle helium cryostat. Optical constants, real (n) and imaginary (k) refractive indices, are determined using Kramers-Kronig (K-K) analysis. Our calculation reproduces the complete spectrum, including all interference effects. Index of refraction measurements are made in a separate dedicated FTIR spectrometer where interference deposit fringes are measured using two 670 nm lasers at different angles to the ice substrate. A survey of these new measurements will be presented along with a discussion of their validation, errors, and application to Titan data.

  5. Crystal field in ErGa3 - a neutron spectroscopy study

    International Nuclear Information System (INIS)

    Murasik, A.; Czopnik, A.; Clementyev, E.; Schefer, J.

    2000-01-01

    The splitting of the J = 15/2 multiplet of Er in a cubic crystal field has been determined by inelastic scattering from a polycrystalline sample of ErGa 3 . On the base of observed intensities and their temperature variation we have been able to determine two crystal electric fields (CEF) parameters required for cubic symmetry. Least-squares fits of calculated crystal field transitions of the observed neutron inelastic scattering spectra taken at 12, 24, 32, 40, 50 and 80 K, gave the crystal field parameters: B 4 (7.15±0.05) x 10 -5 and B 6 = (1.28±0.05) x 1- -6 MeV yielding the Γ 7 doublet as a ground level with the overall splitting of 10.92 MeV. The results are used to calculate the temperature-depended zero field magnetization and the Schottky anomaly of the heat capacity of the ErGa 3 which yield reasonable agreement with experimental data obtained earlier. (author)

  6. Optical spectra of 73 stripped-envelope core-collapse supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Modjaz, M.; Bianco, F. B.; Liu, Y. Q. [Center for Cosmology and Particle Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Blondin, S. [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388, Marseille (France); Kirshner, R. P.; Challis, P.; Hicken, M.; Marion, G. H. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Matheson, T. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Berlind, P.; Calkins, M. L. [F. L. Whipple Observatory, 670 Mt. Hopkins Road, P.O. Box 97, Amado, AZ 85645 (United States); Garnavich, P. [Department of Physics, 225 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556 (United States); Jha, S., E-mail: mmodjaz@nyu.edu [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States)

    2014-05-01

    We present 645 optical spectra of 73 supernovae (SNe) of Types IIb, Ib, Ic, and broad-lined Ic. All of these types are attributed to the core collapse of massive stars, with varying degrees of intact H and He envelopes before explosion. The SNe in our sample have a mean redshift (cz) = 4200 km s{sup –1}. Most of these spectra were gathered at the Harvard-Smithsonian Center for Astrophysics (CfA) between 2004 and 2009. For 53 SNe, these are the first published spectra. The data coverage ranges from mere identification (1-3 spectra) for a few SNe to extensive series of observations (10-30 spectra) that trace the spectral evolution for others, with an average of 9 spectra per SN. For 44 SNe of the 73 SNe presented here, we have well-determined dates of maximum light to determine the phase of each spectrum. Our sample constitutes the most extensive spectral library of stripped-envelope SNe to date. We provide very early coverage (as early as 30 days before V-band max) for photospheric spectra, as well as late-time nebular coverage when the innermost regions of the SN are visible (as late as 2 yr after explosion, while for SN 1993J, we have data as late as 11.6 yr). This data set has homogeneous observations and reductions that allow us to study the spectroscopic diversity of these classes of stripped SNe and to compare these to SNe-gamma-ray bursts. We undertake these matters in follow-up papers.

  7. The temporal evolution process from fluorescence bleaching to clean Raman spectra of single solid particles optically trapped in air

    Science.gov (United States)

    Gong, Zhiyong; Pan, Yong-Le; Videen, Gorden; Wang, Chuji

    2017-12-01

    We observe the entire temporal evolution process of fluorescence and Raman spectra of single solid particles optically trapped in air. The spectra initially contain strong fluorescence with weak Raman peaks, then the fluorescence was bleached within seconds, and finally only the clean Raman peaks remain. We construct an optical trap using two counter-propagating hollow beams, which is able to stably trap both absorbing and non-absorbing particles in air, for observing such temporal processes. This technique offers a new method to study dynamic changes in the fluorescence and Raman spectra from a single optically trapped particle in air.

  8. Wavelength-selective bleaching of the optical spectra of trapped electrons in organic glasses. II

    International Nuclear Information System (INIS)

    Paraszczak, J.; Willard, J.E.

    1979-01-01

    Further resolution of the inhomogeneous optical spectra of trapped electrons (e - /sub t/) in organic glasses has been obtained from wavelength selective bleaching and thermal decay studies on 3-methylpentane-d 14 (3MP-d 14 ) and 2-methyltetrahydrofuran (MTHF) following γ irradiation in the temperature region of 20 K, and limits on the degree of resolution achievable have been indicated. Exposure of 3MP-d 14 to light of wavelengths >2100 nm (from a tunable laser) reduces the optical densities at the bleaching wavelength and longer to zero, while ''peeling off'' a portion of the O.D. at all shorter wavelengths but leaving the remainder of the spectrum unaffected. The fraction of the integrated optical spectrum, ∫OD d (eV), removed by bleaching at each wavelength tested, and also by thermal decay, is equivalent to the fraction of the total e - /sub t/ spins removed and measured by ESR. 1064 nm light bleaches the spectrum nearly uniformly, confirming that the spectra of all of the e - /sub t/ have blue tails with similar ease of bleaching. Heretofore unobserved low temperature thermal decay of e - /sub t/ occurs at 20 and 40 K (20% of the spin concentration in 30 min, 35% in 3h). The rate of decay of the optical spectrum decreases with decreasing wavelength of observation (2.5, 2.2, 1.8, and 1.5 μ), but at each wavelength is the same at 40 K as at 20 K, consistent

  9. Crystal field and magnetocrystalline anisotropy in various crystalline systems

    International Nuclear Information System (INIS)

    Adam, S.A.

    1983-01-01

    Systematic derivation of the one-perticle crystal field Hamiltonians is given for all possible site symmetries in crystals. Distinct parametrizations are found to occur for the eleven Laue-symmetry groups. The functional dependence of the Hamiltonian on the choice of the coordinate axes is also investigated. A general method is developed for the derivation of the one-particle crYstal field potential characteristic of a given crystallographic symmetry, for arbitrary effective interatomic forces. Calculations performed for cubic and hexagonal structures lead to the standard representations in spherical harmonics with the coefficients given, however, by power series of rsup(n) rather than by simgle rsup(n) terms as obtained within the usual hypothesis of Coulombian interatomic forces. This result has implications on the interpretation of some theoretical and experimental data. Theoretical results are obtained for the crystal field coefficients which enable us to develop an approach to the use of the crystal field data for the derivation of information on the effective interatomic forces in crystals. The method is applied to the magnetic Sm 3+ ion in SmCo 5 , and it is shown to provide valuable results both for the effective interatomic potential and for the consistency of various sets of crystal field parameters previously proposed in the literature. Maqnetocrystalline anisotropy of the rare-earth intermetallic compounds are discussed. Single-ion anisotropy model is used for SmCo 5 and the theoreticalpr predictions are compared with the experimental data. (author)

  10. Exciton scattering approach for optical spectra calculations in branched conjugated macromolecules

    International Nuclear Information System (INIS)

    Li, Hao; Wu, Chao; Malinin, Sergey V.; Tretiak, Sergei; Chernyak, Vladimir Y.

    2016-01-01

    The exciton scattering (ES) technique is a multiscale approach based on the concept of a particle in a box and developed for efficient calculations of excited-state electronic structure and optical spectra in low-dimensional conjugated macromolecules. Within the ES method, electronic excitations in molecular structure are attributed to standing waves representing quantum quasi-particles (excitons), which reside on the graph whose edges and nodes stand for the molecular linear segments and vertices, respectively. Exciton propagation on the linear segments is characterized by the exciton dispersion, whereas exciton scattering at the branching centers is determined by the energy-dependent scattering matrices. Using these ES energetic parameters, the excitation energies are then found by solving a set of generalized “particle in a box” problems on the graph that represents the molecule. Similarly, unique energy-dependent ES dipolar parameters permit calculations of the corresponding oscillator strengths, thus, completing optical spectra modeling. Both the energetic and dipolar parameters can be extracted from quantum-chemical computations in small molecular fragments and tabulated in the ES library for further applications. Subsequently, spectroscopic modeling for any macrostructure within a considered molecular family could be performed with negligible numerical effort. We demonstrate the ES method application to molecular families of branched conjugated phenylacetylenes and ladder poly-para-phenylenes, as well as structures with electron donor and acceptor chemical substituents. Time-dependent density functional theory (TD-DFT) is used as a reference model for electronic structure. The ES calculations accurately reproduce the optical spectra compared to the reference quantum chemistry results, and make possible to predict spectra of complex macromolecules, where conventional electronic structure calculations are unfeasible.

  11. Exciton scattering approach for optical spectra calculations in branched conjugated macromolecules

    Science.gov (United States)

    Li, Hao; Wu, Chao; Malinin, Sergey V.; Tretiak, Sergei; Chernyak, Vladimir Y.

    2016-12-01

    The exciton scattering (ES) technique is a multiscale approach based on the concept of a particle in a box and developed for efficient calculations of excited-state electronic structure and optical spectra in low-dimensional conjugated macromolecules. Within the ES method, electronic excitations in molecular structure are attributed to standing waves representing quantum quasi-particles (excitons), which reside on the graph whose edges and nodes stand for the molecular linear segments and vertices, respectively. Exciton propagation on the linear segments is characterized by the exciton dispersion, whereas exciton scattering at the branching centers is determined by the energy-dependent scattering matrices. Using these ES energetic parameters, the excitation energies are then found by solving a set of generalized "particle in a box" problems on the graph that represents the molecule. Similarly, unique energy-dependent ES dipolar parameters permit calculations of the corresponding oscillator strengths, thus, completing optical spectra modeling. Both the energetic and dipolar parameters can be extracted from quantum-chemical computations in small molecular fragments and tabulated in the ES library for further applications. Subsequently, spectroscopic modeling for any macrostructure within a considered molecular family could be performed with negligible numerical effort. We demonstrate the ES method application to molecular families of branched conjugated phenylacetylenes and ladder poly-para-phenylenes, as well as structures with electron donor and acceptor chemical substituents. Time-dependent density functional theory (TD-DFT) is used as a reference model for electronic structure. The ES calculations accurately reproduce the optical spectra compared to the reference quantum chemistry results, and make possible to predict spectra of complex macromolecules, where conventional electronic structure calculations are unfeasible.

  12. Exciton scattering approach for optical spectra calculations in branched conjugated macromolecules

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hao [Department of Chemistry, University of Houston, Houston, TX 77204 (United States); Wu, Chao [Electronic Structure Lab, Center of Microscopic Theory and Simulation, Frontier Institute of Science and Technology, Xian Jiaotong University, Xian 710054 (China); Malinin, Sergey V. [Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202 (United States); Tretiak, Sergei, E-mail: serg@lanl.gov [Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Chernyak, Vladimir Y., E-mail: chernyak@chem.wayne.edu [Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202 (United States)

    2016-12-20

    The exciton scattering (ES) technique is a multiscale approach based on the concept of a particle in a box and developed for efficient calculations of excited-state electronic structure and optical spectra in low-dimensional conjugated macromolecules. Within the ES method, electronic excitations in molecular structure are attributed to standing waves representing quantum quasi-particles (excitons), which reside on the graph whose edges and nodes stand for the molecular linear segments and vertices, respectively. Exciton propagation on the linear segments is characterized by the exciton dispersion, whereas exciton scattering at the branching centers is determined by the energy-dependent scattering matrices. Using these ES energetic parameters, the excitation energies are then found by solving a set of generalized “particle in a box” problems on the graph that represents the molecule. Similarly, unique energy-dependent ES dipolar parameters permit calculations of the corresponding oscillator strengths, thus, completing optical spectra modeling. Both the energetic and dipolar parameters can be extracted from quantum-chemical computations in small molecular fragments and tabulated in the ES library for further applications. Subsequently, spectroscopic modeling for any macrostructure within a considered molecular family could be performed with negligible numerical effort. We demonstrate the ES method application to molecular families of branched conjugated phenylacetylenes and ladder poly-para-phenylenes, as well as structures with electron donor and acceptor chemical substituents. Time-dependent density functional theory (TD-DFT) is used as a reference model for electronic structure. The ES calculations accurately reproduce the optical spectra compared to the reference quantum chemistry results, and make possible to predict spectra of complex macromolecules, where conventional electronic structure calculations are unfeasible.

  13. Crystal field levels of tetravalent actinide ions in actinide dioxides UO sub 2 , NpO sub 2 and PuO sub 2

    Energy Technology Data Exchange (ETDEWEB)

    Krupa, J.C. (Paris-11 Univ., 91 - Orsay (FR). Inst. de Physique Nucleaire); Gajek, Z. (Polska Akademia Nauk, Wroclaw (PL). Inst. Niskich Temperatur i Badan Strukturalnych)

    1991-01-01

    Crystal-field parameters resulting from analysis of optical spectroscopy and neutron diffraction data recorded on UO{sub 2} and NpO{sub 2} as well as ab-initio calculated parameters were used to calculate the crystal-field eigenfunctions and eigenvalues for the J ground-state manifold of U{sup 4+}, Np{sup 4+} and Pu{sup 4+} in UO{sub 2}, NpO{sub 2} and PuO{sub 2}.

  14. Crystal field levels of tetravalent actinide ions in actinide dioxides UO2, NpO2 and PuO2

    International Nuclear Information System (INIS)

    Krupa, J.C.; Gajek, Z.

    1991-01-01

    Crystal-field parameters resulting from analysis of optical spectroscopy and neutron diffraction data recorded on UO 2 and NpO 2 as well as ab-initio calculated parameters were used to calculate the crystal-field eigenfunctions and eigenvalues for the J ground-state manifold of U 4+ , Np 4+ and Pu 4+ in UO 2 , NpO 2 and PuO 2

  15. Fine hematite particles of Martian interest: absorption spectra and optical constants

    International Nuclear Information System (INIS)

    Marra, A C; Blanco, A; Fonti, S; Jurewicz, A; Orofino, V

    2005-01-01

    Hematite is an iron oxide very important for the study of climatic evolution of Mars. It can occur in two forms: red and grey, mainly depending on the granulometry of the samples. Spectra of bright regions of Mars suggest the presence of red hematite particles. Moreover the Thermal Emission Spectrometer (TES), on board the Mars Global Surveyor mission, has discovered a deposit of crystalline grey hematite in Sinus Meridiani. TES spectra of that Martian region exhibit features at about 18, 23 and 33 μm that are consistent with hematite. Coarse grey hematite is considered strong evidence for longstanding water, while it is unknown whether the formation of fine-grained red hematite requires abundant water. Studies are needed in order to further characterize the spectral properties of the two kinds of hematite. For this reason we have analyzed a sample of submicron hematite particles in the 6.25-50 μm range in order to study the influence of particles size and shape on the infrared spectra. The optical constants of a particulate sample have been derived and compared with published data concerning bulk samples of hematite. Our results seem to indicate that particle shape is an important factor to take into account for optical constants derivation

  16. Crystal field in rare-earth metals and intermetallic compounds

    International Nuclear Information System (INIS)

    Ray, D.K.

    1978-01-01

    Reasons for the success of the crystal-field model for the rare-earth metals and intermetallic compounds are discussed. A review of some of the available experimental results is made with emphasis on cubic intermetallic compounds. Various sources of the origin of the crystal field in these metals are discussed in the background of the recent APW picture of the conduction electrons. The importance of the non-spherical part of the muffin-tin potential on the single-ion anisotropy is stressed. (author)

  17. Correlation theory of crystal field and anisotropic exchange effects

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1985-01-01

    A general theory for including correlation effects in static and dynamic properties is presented in terms of Raccah or Stevens operators. It is explicitly developed for general crystal fields and anisotropic interactions and systems with several sublattices, like the rare earth compounds....... The theory gives explicitly a temperature dependent renormalization of both the crystal field and the interactions, and a damping of the excitations and in addition a central park component. The general theory is illustrated by a discussion of the singlet-doublet system. The correlation effects...

  18. Optical properties of organic semiconductor thin films. Static spectra and real-time growth studies

    Energy Technology Data Exchange (ETDEWEB)

    Heinemeyer, Ute

    2009-07-20

    The aim of this work was to establish the anisotropic dielectric function of organic thin films on silicon covered with native oxide and to study their optical properties during film growth. While the work focuses mainly on the optical properties of Diindenoperylene (DIP) films, also the optical response of Pentacene (PEN) films during growth is studied for comparison. Spectroscopic ellipsometry and differential reflectance spectroscopy are used to determine the dielectric function of the films ex-situ and in-situ, i.e. in air and in ultrahigh vacuum. Additionally, Raman- and fluorescence spectroscopy is utilized to characterize the DIP films serving also as a basis for spatially resolved optical measurements beyond the diffraction limit. Furthermore, X-ray reflectometry and atomic force microscopy are used to determine important structural and morphological film properties. The absorption spectrum of DIP in solution serves as a monomer reference. The observed vibronic progression of the HOMO-LUMO transition allows the determination of the Huang-Rhys parameter experimentally, which is a measure of the electronic vibrational coupling. The corresponding breathing modes are measured by Raman spectroscopy. The optical properties of DIP films on native oxide show significant differences compared to the monomer spectrum due to intermolecular interactions. First of all, the thin film spectra are highly anisotropic due to the structural order of the films. Furthermore the Frenkel exciton transfer is studied and the energy difference between Frenkel and charge transfer excitons is determined. Real-time measurements reveal optical differences between interfacial or surface molecules and bulk molecules that play an important role for device applications. They are not only performed for DIP films but also for PEN films. While for DIP films on glass the appearance of a new mode is visible, the spectra of PEN show a pronounced energy red-shift during growth. It is shown how the

  19. Effect of ladder diagrams on optical absorption spectra in a quasiparticle self-consistent GW framework

    Science.gov (United States)

    Cunningham, Brian; Grüning, Myrta; Azarhoosh, Pooya; Pashov, Dimitar; van Schilfgaarde, Mark

    2018-03-01

    We present an approach to calculate the optical absorption spectra that combines the quasiparticle self-consistent GW method [Phys. Rev. B 76, 165106 (2007), 10.1103/PhysRevB.76.165106] for the electronic structure with the solution of the ladder approximation to the Bethe-Salpeter equation for the macroscopic dielectric function. The solution of the Bethe-Salpeter equation has been implemented within an all-electron framework, using a linear muffin-tin orbital basis set, with the contribution from the nonlocal self-energy to the transition dipole moments (in the optical limit) evaluated explicitly. This approach addresses those systems whose electronic structure is poorly described within the standard perturbative GW approaches with density-functional theory calculations as a starting point. The merits of this approach have been exemplified by calculating optical absorption spectra of a strongly correlated transition metal oxide, NiO, and a narrow gap semiconductor, Ge. In both cases, the calculated spectrum is in good agreement with the experiment. It is also shown that for systems whose electronic structure is well-described within the standard perturbative GW , such as Si, LiF, and h -BN , the performance of the present approach is in general comparable to the standard GW plus Bethe-Salpeter equation. It is argued that both vertex corrections to the electronic screening and the electron-phonon interaction are responsible for the observed systematic overestimation of the fundamental band gap and spectrum onset.

  20. Media effects on the optical absorption spectra of silver clusters embedded in rara gas matrices

    International Nuclear Information System (INIS)

    Fedrigo, S.; Harbich, W.; Buttet, J.

    1993-01-01

    The optical absorption of small mass selected Ag n -clusters (n=7, 11, 15, 21) embedded in solid Ar, Kr and Xe has been measured. The absorption spectra show 1 to 3 major peaks between 3 and 4.5 eV, depending on the cluster size. Changing the matrix gas Ar→Kr→Xe induces a redshift which is comparable for all sizes studied and does not affect the main structure of the absorption spectra. We propose a scheme to estimate the gas phase value of the absorption energies which is in fair agreement with an estimation obtained by a simple model based on a Drude metal. (author). 10 refs, 2 figs

  1. Zn-VI quasiparticle gaps and optical spectra from many-body calculations.

    Science.gov (United States)

    Riefer, A; Weber, N; Mund, J; Yakovlev, D R; Bayer, M; Schindlmayr, Arno; Meier, C; Schmidt, W G

    2017-06-01

    The electronic band structures of hexagonal ZnO and cubic ZnS, ZnSe, and ZnTe compounds are determined within hybrid-density-functional theory and quasiparticle calculations. It is found that the band-edge energies calculated on the [Formula: see text] (Zn chalcogenides) or GW (ZnO) level of theory agree well with experiment, while fully self-consistent QSGW calculations are required for the correct description of the Zn 3d bands. The quasiparticle band structures are used to calculate the linear response and second-harmonic-generation (SHG) spectra of the Zn-VI compounds. Excitonic effects in the optical absorption are accounted for within the Bethe-Salpeter approach. The calculated spectra are discussed in the context of previous experimental data and present SHG measurements for ZnO.

  2. Crystal field excitations of YbMn{sub 2}Si{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Mole, R.A. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234 (Australia); School of Physical, Environmental and Mathematical Sciences, The University of New South Wales at the Australian Defence Force Academy, Canberra, ACT 2600 (Australia); Hofmann, M. [School of Physical, Environmental and Mathematical Sciences, The University of New South Wales at the Australian Defence Force Academy, Canberra, ACT 2600 (Australia); Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Technische Universität München, 85747 Garching (Germany); Adroja, D.T. [ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, OX11 OQX (United Kingdom); Moze, O. [Dipartimento di Fisica, Università degli Studi di Modena e Reggio Emilia, Modena (Italy); Campbell, S.J., E-mail: stewart.campbell@adfa.edu.au [School of Physical, Environmental and Mathematical Sciences, The University of New South Wales at the Australian Defence Force Academy, Canberra, ACT 2600 (Australia)

    2013-12-15

    The crystal field excitations of the rare earth intermetallic compound YbMn{sub 2}Si{sub 2} have been measured by inelastic neutron scattering over the temperature range 2.5–50 K. The YbMn{sub 2}Si{sub 2} spectra exhibit three low energy excitations (∼3–7 meV) in the antiferromagnetic AFil region above the magnetic phase transition at T{sub N2} = 30(5) K. The crystal field parameters have been determined for YbMn{sub 2}Si{sub 2} in the antiferromagnetic AFil region. A further two inelastic excitations (∼9 meV, 17 meV) are observed below T{sub N2}=30(5) K, the temperature at which the high temperature antiferromagnetic structure is reported to exhibit doubling of the magnetic cell. Energy level diagrams have been determined for Yb{sup 3+} ions in the different sites above (single site) and below the magnetic transition temperature (two sites). The excitation energies for both sites are shown to be temperature independent with the temperature dependences of the transition intensities for the two sites described well by a simple Boltzmann model. The spectra below T{sub N2} cannot be described fully in terms of molecular field models based on either a single Yb{sup 3+} site or two Yb{sup 3+} sites. This indicates that the magnetic behaviour of YbMn{sub 2}Si{sub 2} is more complicated than previously considered. The inability to account fully for excitations below the magnetic phase transition may be due to an, as yet, unresolved structural transition associated with the magnetic transition. - Highlights: • The inelastic neutron scattering from YbMn{sub 2}Si{sub 2} has been investigated over the temperature range 2.5–50 K. • The crystal field splitting has been monitored through the magnetic transition at 30(5) K. • We have determined the crystal field parameters for the antiferromagnetic AFil region. • The transition intensities are described well by Boltzmann occupancy models. • The spectra below the magnetic transition have been analysed by

  3. Extracting Optical Fiber Background from Surface-Enhanced Raman Spectroscopy Spectra Based on Bi-Objective Optimization Modeling.

    Science.gov (United States)

    Huang, Jie; Shi, Tielin; Tang, Zirong; Zhu, Wei; Liao, Guanglan; Li, Xiaoping; Gong, Bo; Zhou, Tengyuan

    2017-08-01

    We propose a bi-objective optimization model for extracting optical fiber background from the measured surface-enhanced Raman spectroscopy (SERS) spectrum of the target sample in the application of fiber optic SERS. The model is built using curve fitting to resolve the SERS spectrum into several individual bands, and simultaneously matching some resolved bands with the measured background spectrum. The Pearson correlation coefficient is selected as the similarity index and its maximum value is pursued during the spectral matching process. An algorithm is proposed, programmed, and demonstrated successfully in extracting optical fiber background or fluorescence background from the measured SERS spectra of rhodamine 6G (R6G) and crystal violet (CV). The proposed model not only can be applied to remove optical fiber background or fluorescence background for SERS spectra, but also can be transferred to conventional Raman spectra recorded using fiber optic instrumentation.

  4. Comparison of optical spectra recorded during DPF-1000U plasma experiments with gas-puffing

    Directory of Open Access Journals (Sweden)

    Zaloga Dobromil R.

    2015-06-01

    Full Text Available The results are presented of the optical spectra measurements for free plasma streams generated with the use of the modified DPF-1000U machine. This facility was recently equipped with a gas injection system (the so-called gas-puff placed on the symmetry axis behind the central opening in the inner electrode. The DPF-1000U experimental chamber was filled up with pure deuterium at the initial pressure of 1.6 or 2.4 mbar. Additionally, when the use was made of the gas-puff system about 1 cm3 of pure deuterium was injected at the pressure of 2 bars. The gas injection was initiated 1.5 or 2 ms before the triggering of the main discharge. The investigated plasma discharges were powered from a condenser bank charged initially to 23 kV (corresponding to the energy of 352 kJ, and the maximum discharge current amounted to about 1.8 MA. In order to investigate properties of a dense plasma column formed during DPF-1000U discharges the use was made of the optical emission spectroscopy. The optical spectra were recorded along the line of sight perpendicular to the vacuum chamber, using a Mechelle®900 spectrometer. The recent analysis of all the recorded spectra made it possible to compare the temporal changes in the electron density of a freely propagating plasma stream for discharges without and with the gas-puffing. Using this data an appropriate mode of operation of the DPF-1000U facility could be determined.

  5. Optical absorption spectra of semiconductors and insulators: ab initio calculation of many-body effects

    International Nuclear Information System (INIS)

    Albrecht, Stefan

    1999-01-01

    A method for the inclusion of self-energy and excitonic effects in first-principle calculations of absorption spectra, within the state-of-the-art plane wave pseudopotential approach, is presented. Starting from a ground state calculation, using density functional theory (DFT) in the local density approximation (LDA), we correct the exchange-correlation potential of DFT-LDA with the self-energy applying Hedin's GW approximation to obtain the physical quasiparticles states. The electron-hole interaction is treated solving an effective two-particle equation, which we derive from Hedin's coupled integral equations, leading to the fundamental Bethe-Salpeter equation in an intermediate step. The interaction kernel contains the screened electron-hole Coulomb interaction and the electron-hole exchange effects, which reflect the microscopic structure of the system and are thus also called local-field effects. We obtain the excitonic eigenstates through diagonalization. This allows us a detailed analysis of the optical properties. The application of symmetry properties enables us to reduce the size of the two-particle Hamiltonian matrix, thus minimizing the computational effort. We apply our method to silicon, diamond, lithium oxide and the sodium tetramer. Good agreement with experiment is obtained for the absorption spectra of Si and diamond, the static dielectric constant of diamond, and for the onset of optical absorption of Li 2 O due to discrete bound excitons. We discuss various approximations of our method and show the strong mixing of independent particle transitions to a bound excitonic state in the Na 4 cluster. The influence of ground state calculations on optical spectra is investigated under particular consideration of the pseudopotential generation and we discuss the use of different Brillouin zone point sampling schemes for spectral calculations. (author) [fr

  6. Experimental investigation and crystal-field modeling of Er{sup 3+} energy levels in GSGG crystal

    Energy Technology Data Exchange (ETDEWEB)

    Gao, J.Y., E-mail: jygao1985@sina.com [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031 (China); Sun, D.L.; Zhang, Q.L. [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031 (China); Wang, X.F. [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Liu, W.P.; Luo, J.Q.; Sun, G.H.; Yin, S.T. [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-06-25

    The Er{sup 3+}-doped Gd{sub 3}Sc{sub 2}Ga{sub 3}O{sub 12} (Er{sup 3+}:GSGG) single crystal, a excellent medium of the mid-infrared and anti-radiation solid state laser pumped by laser diode, was grown by Czochralski method successfully. The absorption spectra were measured and analyzed in a wider spectral wavelength range of 350–1700 nm at different temperatures of 7.6, 77, 200 and 300 K. The free-ions and crystal-field parameters were fitted to the experimental energy levels with the root mean square deviation of 9.86 cm{sup −1}. According to the crystal-field calculations, 124 degenerate energy levels of Er{sup 3+} in GSGG host crystals were assigned. The fitting results of free-ions and crystal-field parameters were compared with those already reported of Er{sup 3+}:YSGG. The results indicated that the free-ions parameters for Er{sup 3+} in GSGG host are similar to those in YSGG host crystals, and the crystal-field interaction of GSGG is weaker than that of YSGG, which may result in the better laser characterization of Er{sup 3+}:GSGG crystal. - Highlights: • The efficient diode-end-pumped laser crystal Er:GSGG has been grown successfully. • The absorption spectra of Er:GSGG have been measured in range of 350–1700 nm. • The fitting result is very well for the root mean square deviation is 9.86 cm{sup −1}. • The 124 levels of Er:GSGG have been assigned from the crystal-field calculations.

  7. Infrared Spectra and Optical Constants of Astronomical Ices: II. Ethane and Ethylene

    Science.gov (United States)

    Hudson, Reggie L.; Gerakines, Perry A.; Moore, M. H.

    2014-01-01

    Infrared spectroscopic observations have established the presence of hydrocarbon ices on Pluto and other TNOs, but the abundances of such molecules cannot be deduced without accurate optical constants (n, k) and reference spectra. In this paper we present our recent measurements of near- and mid-infrared optical constants for ethane (C2H6) and ethylene (C2H4) in multiple ice phases and at multiple temperatures. As in our recent work on acetylene (C2H2), we also report new measurements of the index of refraction of each ice at 670 nm. Comparisons are made to earlier work where possible, and electronic versions of our new results are made available.

  8. Temperature dependence of the optical absorption spectra of InP/ZnS quantum dots

    Science.gov (United States)

    Savchenko, S. S.; Vokhmintsev, A. S.; Weinstein, I. A.

    2017-03-01

    The optical-absorption spectra of InP/ZnS (core/shell) quantum dots have been studied in a broad temperature range of T = 6.5-296 K. Using the second-order derivative spectrophotometry technique, the energies of optical transitions at room temperature were found to be E 1 = 2.60 ± 0.02 eV (for the first peak of excitonic absorption in the InP core) and E 2 = 4.70 ± 0.02 eV (for processes in the ZnS shell). The experimental curve of E 1( T) has been approximated for the first time in the framework of a linear model and in terms of the Fan's formula. It is established that the temperature dependence of E 1 is determined by the interaction of excitons and longitudinal acoustic phonons with hω = 15 meV.

  9. Meeting the Cool Neighbors. XII. An Optically Anchored Analysis of the Near-infrared Spectra of L Dwarfs

    Science.gov (United States)

    Cruz, Kelle L.; Núñez, Alejandro; Burgasser, Adam J.; Abrahams, Ellianna; Rice, Emily L.; Reid, I. Neill; Looper, Dagny

    2018-01-01

    Discrepancies between competing optical and near-infrared (NIR) spectral typing systems for L dwarfs have motivated us to search for a classification scheme that ties the optical and NIR schemes together, and addresses complexities in the spectral morphology. We use new and extant optical and NIR spectra to compile a sample of 171 L dwarfs, including 27 low-gravity β and γ objects, with spectral coverage from 0.6–2.4 μm. We present 155 new low-resolution NIR spectra and 19 new optical spectra. We utilize a method for analyzing NIR spectra that partially removes the broad-band spectral slope and reveals similarities in the absorption features between objects of the same optical spectral type. Using the optical spectra as an anchor, we generate near-infrared spectral average templates for L0–L8, L0–L4γ, and L0–L1β type dwarfs. These templates reveal that NIR spectral morphologies are correlated with the optical types. They also show the range of spectral morphologies spanned by each spectral type. We compare low-gravity and field-gravity templates to provide recommendations on the minimum required observations for credibly classifying low-gravity spectra using low-resolution NIR data. We use the templates to evaluate the existing NIR spectral standards and propose new ones where appropriate. Finally, we build on the work of Kirkpatrick et al. to provide a spectral typing method that is tied to the optical and can be used when only H or K band data are available. The methods we present here provide resolutions to several long-standing issues with classifying L dwarf spectra and could also be the foundation for a spectral classification scheme for cloudy exoplanets.

  10. Real-time Fourier transformation of lightwave spectra and application in optical reflectometry.

    Science.gov (United States)

    Malacarne, Antonio; Park, Yongwoo; Li, Ming; LaRochelle, Sophie; Azaña, José

    2015-12-14

    We propose and experimentally demonstrate a fiber-optics scheme for real-time analog Fourier transform (FT) of a lightwave energy spectrum, such that the output signal maps the FT of the spectrum of interest along the time axis. This scheme avoids the need for analog-to-digital conversion and subsequent digital signal post-processing of the photo-detected spectrum, thus being capable of providing the desired FT processing directly in the optical domain at megahertz update rates. The proposed concept is particularly attractive for applications requiring FT analysis of optical spectra, such as in many optical Fourier-domain reflectrometry (OFDR), interferometry, spectroscopy and sensing systems. Examples are reported to illustrate the use of the method for real-time OFDR, where the target axial-line profile is directly observed in a single-shot oscilloscope trace, similarly to a time-of-flight measurement, but with a resolution and depth of range dictated by the underlying interferometry scheme.

  11. Study on the influence of optical electronegativity of fluoride host structures on the crystal field components' position of the [Xe]4f{sup 1}5d{sup 1}-configuration of trivalent praseodymium; Untersuchungen zum Einfluss optischer Elektronegativitaet fluoridischer Wirtsstrukturen auf die Position der Kristallfeldkomponenten der [Xe]4f{sup 1}5d{sup 1}-Konfiguration von trivalentem Praseodym

    Energy Technology Data Exchange (ETDEWEB)

    Herden, Benjamin

    2014-03-15

    As alternative radiation sources for mercury containing lamps LEDs cover the normal range, but efficient alternatives for UV radiations are still not available. Xenon excimer discharge lamps could be candidate as alternatives to mercury low-pressure discharge lamps. The discharge wavelength of these lamps is 172 nm that has to be converted in other spectral ranges. The theses deals with trivalent praseodymium as activator ion in binary and ternary fluoride host structures. The host structure and the crystallographic position of the praseodymium ion influence the development of emissions line and bands and the energetic position of the emission. The results are explained by the interaction of the nephelauxetic effect and the crystal field splitting of 5d orbitals, called optical electronegativity.

  12. Infrared Spectra and Optical Constants of Nitrile Ices Relevant to Titan's Atmosphere

    Science.gov (United States)

    Anderson, Carrie; Ferrante, Robert F.; Moore, W. James; Hudson, Reggie; Moore, Marla H.

    2011-01-01

    Spectra and optical constants of nitrile ices known or suspected to be in Titan?s atmosphere have been determined from 2.0 to 333.3 microns (approx.5000 to 30/cm). These results are relevant to the ongoing modeling of Cassini CIRS observations of Titan?s winter pole. Ices studied were: HCN, hydrogen cyanide; C2N2, cyanogen; CH3CN, acetonitrile; C2H5CN, propionitrile; and HC3N, cyanoacetylene. Optical constants were calculated, using Kramers-Kronig analysis, for each nitrile ice?s spectrum measured at a variety of temperatures, in both the amorphous- and crystalline phases. Spectra were also measured for many of the nitriles after quenching at the annealing temperature and compared with those of annealed ices. For each of these molecules we also measured the real component, n, of the refractive index for amorphous and crystalline phases at 670 nm. Several examples of the information contained in these new data sets and their usefulness in modeling Titan?s observed features will be presented (e.g., the broad emission feature at 160/cm; Anderson and Samuelson, 2011).

  13. Optical spectra of composite silver-porous silicon (Ag-pSi) nanostructure based periodical lattice

    Science.gov (United States)

    Amedome Min-Dianey, Kossi Aniya; Zhang, Hao-Chun; Brohi, Ali Anwar; Yu, Haiyan; Xia, Xinlin

    2018-03-01

    Numerical finite differential time domain (FDTD) tools were used in this study for predicting the optical characteristics through the nanostructure of composite silver-porous silicon (Ag-pSi) based periodical lattice. This is aimed at providing an interpretation of the optical spectra at known porosity in improvement of the light manipulating efficiency through a proposed structure. With boundary conditions correctly chosen, the numerical simulation was achieved using FDTD Lumerical solutions. This was used to investigate the effect of porosity and the number of layers on the reflection, transmission and absorption characteristics through a proposed structure in a visible wavelength range of 400-750 nm. The results revealed that the higher the number of layers, the lower the reflection. Also, the reflection increases with porosity increase. The transmission characteristics were the inverse to those found in the case of reflection spectra and optimum transmission was attained at high number of layers. Also, increase in porosity results in reduced transmission. Increase in porosity as well as in the number of layers led to an increase in absorption. Therefore, absorption into such structure can be enhanced by elevating the number of layers and the degree of porosity.

  14. The Intrinsically X-Ray-weak Quasar PHL 1811. II. Optical and UV Spectra and Analysis

    Science.gov (United States)

    Leighly, Karen M.; Halpern, Jules P.; Jenkins, Edward B.; Casebeer, Darrin

    2007-11-01

    This is the second of two papers reporting observations and analysis of the unusually bright (mb=14.4), luminous (MB=-25.5), nearby (z=0.192) narrow-line quasar PHL 1811. The first paper reported that PHL 1811 is intrinsically X-ray-weak and presented a spectral energy distribution (SED). Here we present HST STIS optical and UV spectra, and ground-based optical spectra. The optical and UV line emission is very unusual. There is no evidence for forbidden or semiforbidden lines. The near-UV spectrum is dominated by very strong Fe II and Fe III, and unusual low-ionization lines such as Na I D and Ca II H and K are observed. High-ionization lines are very weak; C IV has an equivalent width of 6.6 Å, a factor of ~5 smaller than measured from quasar composite spectra. An unusual feature near 1200 Å can be deblended in terms of Lyα, N V, Si II, and C III* using the blueshifted C IV profile as a template. Photoionization modeling shows that the unusual line emission can be explained qualitatively by the unusually soft SED. Principally, a low gas temperature results in inefficient emission of collisionally excited lines, including the semiforbidden lines generally used as density diagnostics. The emission resembles that of high-density gas; in both cases this is a consequence of inefficient cooling. PHL 1811 is very unusual, but we note that quasar surveys may be biased against finding similar objects. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. These observations are associated with proposal 9181. Based on observations obtained at Kitt Peak National Observatory, a division of the National Optical Astronomy Observatories, which is operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.

  15. Predicting ambient aerosol Thermal Optical Reflectance (TOR) measurements from infrared spectra: organic carbon

    Science.gov (United States)

    Dillner, A. M.; Takahama, S.

    2014-11-01

    Organic carbon (OC) can constitute 50% or more of the mass of atmospheric particulate matter. Typically, the organic carbon concentration is measured using thermal methods such as Thermal-Optical Reflectance (TOR) from quartz fiber filters. Here, methods are presented whereby Fourier Transform Infrared (FT-IR) absorbance spectra from polytetrafluoroethylene (PTFE or Teflon) filters are used to accurately predict TOR OC. Transmittance FT-IR analysis is rapid, inexpensive, and non-destructive to the PTFE filters. To develop and test the method, FT-IR absorbance spectra are obtained from 794 samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites sampled during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to artifact-corrected TOR OC. The FTIR spectra are divided into calibration and test sets by sampling site and date which leads to precise and accurate OC predictions by FT-IR as indicated by high coefficient of determination (R2; 0.96), low bias (0.02 μg m-3, all μg m-3 values based on the nominal IMPROVE sample volume of 32.8 m-3), low error (0.08 μg m-3) and low normalized error (11%). These performance metrics can be achieved with various degrees of spectral pretreatment (e.g., including or excluding substrate contributions to the absorbances) and are comparable in precision and accuracy to collocated TOR measurements. FT-IR spectra are also divided into calibration and test sets by OC mass and by OM / OC which reflects the organic composition of the particulate matter and is obtained from organic functional group composition; this division also leads to precise and accurate OC predictions. Low OC concentrations have higher bias and normalized error due to TOR analytical errors and artifact correction errors, not due to the range of OC mass of the samples in the calibration set. However, samples with low OC mass can be used to predict samples with high OC mass indicating that the

  16. OPTICAL SPECTRA OF CANDIDATE INTERNATIONAL CELESTIAL REFERENCE FRAME (ICRF) FLAT-SPECTRUM RADIO SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Titov, O.; Stanford, Laura M. [Geoscience Australia, P.O. Box 378, Canberra, ACT 2601 (Australia); Johnston, Helen M.; Hunstead, Richard W. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Pursimo, T. [Nordic Optical Telescope, Nordic Optical Telescope Apartado 474E-38700 Santa Cruz de La Palma, Santa Cruz de Tenerife (Spain); Jauncey, David L. [CSIRO Astronomy and Space Science, ATNF and Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Maslennikov, K. [Central Astronomical Observatory at Pulkovo, Pulkovskoye Shosse, 65/1, 196140, St. Petersburg (Russian Federation); Boldycheva, A., E-mail: oleg.titov@ga.gov.au [Ioffe Physical Technical Institute, 26 Polytekhnicheskaya, St. Petersburg, 194021 (Russian Federation)

    2013-07-01

    Continuing our program of spectroscopic observations of International Celestial Reference Frame (ICRF) sources, we present redshifts for 120 quasars and radio galaxies. Data were obtained with five telescopes: the 3.58 m European Southern Observatory New Technology Telescope, the two 8.2 m Gemini telescopes, the 2.5 m Nordic Optical Telescope (NOT), and the 6.0 m Big Azimuthal Telescope of the Special Astrophysical Observatory in Russia. The targets were selected from the International VLBI Service for Geodesy and Astrometry candidate International Celestial Reference Catalog which forms part of an observational very long baseline interferometry (VLBI) program to strengthen the celestial reference frame. We obtained spectra of the potential optical counterparts of more than 150 compact flat-spectrum radio sources, and measured redshifts of 120 emission-line objects, together with 19 BL Lac objects. These identifications add significantly to the precise radio-optical frame tie to be undertaken by Gaia, due to be launched in 2013, and to the existing data available for analyzing source proper motions over the celestial sphere. We show that the distribution of redshifts for ICRF sources is consistent with the much larger sample drawn from Faint Images of the Radio Sky at Twenty cm (FIRST) and Sloan Digital Sky Survey, implying that the ultra-compact VLBI sources are not distinguished from the overall radio-loud quasar population. In addition, we obtained NOT spectra for five radio sources from the FIRST and NRAO VLA Sky Survey catalogs, selected on the basis of their red colors, which yielded three quasars with z > 4.

  17. Investigation of radio objects with continuos optical spectra. The results of four-color electrophotometric observations

    International Nuclear Information System (INIS)

    Beskin, G.M.; Lyutyj, V.M.; Neizvestnyj, S.I.; Pustil'nik, S.I.; Shvartsman, V.F.

    1985-01-01

    The results of UBVR photometry of 30 radio objects with continuous optical spectra (ROCOSes) are reported. The observations were performed using five telescopes during the years 1979-1982; 54 values have been obtained of U, B, V magnitudes and 26 ones of R magnitude. Colours for 16 ROCOSes have been obtained for the first time. The analysis of the data results in the following conclusions. 1) Practically all colours of ROCOSes have proved to be in the region of localization of BL Lac objects' colours on UBV and BVR diagrams. This fact (altogether with the other data) indicates on the proximity of the objects of the two classes. 2) In half of all cases, instantaneous colours of ROCOSes corresponded to purely power-law optical continua F(ν) varies as νsup(α) with α approximately= -(1-2.5). 3) In the remaining cases, optical continua differed significantly from the power-law ones. 4) 6 ROCOSes appeared to be in the phases of deep minimum of brightness at the moment of observations (namely, about 3sup(m)-5sup(m) fainter than in the brightest phase known from the literature). The UBVR colours of none of them give indication on the presence of an elliptical galaxy which, according to conventional concepts, must encompass a variable nonthermal source. 5) Two blue objects, 0548+165 and 0713+199, which are situated at low galactic latitudes (b 2 =-5 deg and +14 deg respectively) have shown colours unusual for lacertids. Appendices contain the results of theoretical calculations of (U-B), (B-V) and (V-R) colours for purely power-law spectra F(ν)=constxνsup(α) with α in the range (-6.5-+2.5) and the results of UBV photometry of the BL Lac object OJ 287 during the years 1976-1982 (24 measurements)

  18. Electronic structure and optical spectra of semiconducting carbon nanotubes functionalized by diazonium salts

    Science.gov (United States)

    Ramirez, Jessica; Mayo, Michael L.; Kilina, Svetlana; Tretiak, Sergei

    2013-02-01

    We report density functional (DFT) calculations on finite-length semiconducting carbon nanotubes covalently and non-covalently functionalized by aryl diazonium moieties and their chlorinated derivatives. For these systems, we investigate (i) an accuracy of different functionals and basis sets, (ii) a solvent effect, and (iii) the impact of the chemical functionalization on optical properties of nanotubes. In contrast to B3LYP, only long-range-corrected functionals, such as CAM-B3LYP and wB97XD, properly describe the ground and excited state properties of physisorbed molecules. We found that physisorbed cation insignificantly perturbs the optical spectra of nanotubes. In contrast, covalently bound complexes demonstrate strong redshifts and brightening of the lowest exciton that is optically dark in pristine nanotubes. However, the energy and oscillator strength of the lowest state are dictated by the position of the molecule on the nanotube. Thus, if controllable and selective chemical functionalization is realized, the PL of nanotubes could be improved.

  19. Optical and Near-infrared Spectra of σ Orionis Isolated Planetary-mass Objects

    Energy Technology Data Exchange (ETDEWEB)

    Zapatero Osorio, M. R. [Centro de Astrobiología (CSIC-INTA), Crta. Ajalvir km 4, E-28850 Torrejón de Ardoz, Madrid (Spain); Béjar, V. J. S. [Instituto de Astrofísica de Canarias, C/. Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Ramírez, K. Peña, E-mail: mosorio@cab.inta-csic.es, E-mail: vbejar@iac.es, E-mail: karla.pena@uantof.cl [Unidad de Astronomía de la Universidad de Antofagasta, Av. U. de Antofagasta. 02800 Antofagasta (Chile)

    2017-06-10

    We have obtained low-resolution optical (0.7–0.98 μ m) and near-infrared (1.11–1.34 μ m and 0.8–2.5 μ m) spectra of 12 isolated planetary-mass candidates ( J = 18.2–19.9 mag) of the 3 Myr σ Orionis star cluster with the aim of determining the spectroscopic properties of very young, substellar dwarfs and assembling a complete cluster mass function. We have classified our targets by visual comparison with high- and low-gravity standards and by measuring newly defined spectroscopic indices. We derived L0–L4.5 and M9–L2.5 using high- and low-gravity standards, respectively. Our targets reveal clear signposts of youth, thus corroborating their cluster membership and planetary masses (6–13 M {sub Jup}). These observations complete the σ Orionis mass function by spectroscopically confirming the planetary-mass domain to a confidence level of ∼75%. The comparison of our spectra with BT-Settl solar metallicity model atmospheres yields a temperature scale of 2350–1800 K and a low surface gravity of log g ≈ 4.0 [cm s{sup −2}], as would be expected for young planetary-mass objects. We discuss the properties of the cluster’s least-massive population as a function of spectral type. We have also obtained the first optical spectrum of S Ori 70, a T dwarf in the direction of σ Orionis. Our data provide reference optical and near-infrared spectra of very young L dwarfs and a mass function that may be used as templates for future studies of low-mass substellar objects and exoplanets. The extrapolation of the σ Orionis mass function to the solar neighborhood may indicate that isolated planetary-mass objects with temperatures of ∼200–300 K and masses in the interval 6–13 M {sub Jup} may be as numerous as very low-mass stars.

  20. Infrared Spectra and Optical Constants of Astronomical Ices: I. Amorphous and Crystalline Acetylene

    Science.gov (United States)

    Hudson, R. L.; Ferrante, R. F.; Moore, M. H.

    2013-01-01

    Here we report recent measurements on acetylene (C2H2) ices at temperatures applicable to the outer Solar System and the interstellar medium. New near- and mid-infrared data, including optical constants (n, k), absorption coefficients (alpha), and absolute band strengths (A), are presented for both amorphous and crystalline phases of C2H2 that exist below 70 K. Comparisons are made to earlier work. Electronic versions of the data are made available, as is a computer routine to use our reported n and k values to simulate the observed IR spectra. Suggestions are given for the use of the data and a comparison to a spectrum of Makemake is made.

  1. Band resolution of optical spectra of solvated electrons in water, alcohols, and tetrahydrofuran

    International Nuclear Information System (INIS)

    Jou, F.-Y.; Freeman, G.R.

    1979-01-01

    The optical absorption spectra of solvated electrons in water, alcohols, and tetrahydrofuran are empirically resolved into two Gaussian bands and a continuum tail. The first Gaussian band covers most of the low energy side of the spectrum. The second Gaussian band lies at an energy slightly above that of the absorption maximum of the total spectrum. With the exception of tert-butyl alcohol, in water and alcohols the following were observed: (a) the first Gaussian bands have the same half-width, but the oscillator strength in water is about double that in an alcohol; (b) the second Gaussian bands have similar half-widths and oscillator strengths; (c) the continuum tails have similar half-widths, yet that in water possesses only about one third as much oscillator strength as the one in alcohol. In tert-butyl alcohol and tetrahydrofuran the first Gaussian band and the continuum tail each carry nearly half of the total oscillator strength. (author)

  2. Spectral scalability and optical spectra of fractal multilayer structures: FDTD analysis

    Science.gov (United States)

    Simsek, Sevket; Palaz, Selami; Mamedov, Amirullah M.; Ozbay, Ekmel

    2017-01-01

    An investigation of the optical properties and band structures for the conventional and Fibonacci photonic crystals (PCs) based on SrTiO3 and Sb2Te3 is made in the present research. Here, we use one-dimensional SrTiO3- and Sb2Te3-based layers. We have theoretically calculated the photonic band structure and transmission spectra of SrTiO3- and Sb2Te3-based PC superlattices. The position of minima in the transmission spectrum correlates with the gaps obtained in the calculation. The intensity of the transmission depths is more intense in the case of higher refractive index contrast between the layers.

  3. Optical spectra of radio planetary nebulae in the large Magellanic Cloud

    Directory of Open Access Journals (Sweden)

    Payne J.L.

    2008-01-01

    Full Text Available We present 11 spectra from 12 candidate radio sources co-identified with known planetary nebulae (PNe in the Large Magellanic Cloud (LMC. Originally found in Australia Telescope Compact Array (ATCA LMC surveys at 1.4, 4.8 and 8.64 GHz and confirmed by new high resolution ATCA images at 6 and 3 cm (4' /2' , these complement data recently presented for candidate radio PNe in the Small Magellanic Cloud (SMC. Their spectra were obtained using the Radcliff 1.9-meter telescope in Sutherland (South Africa. All of the optical PNe and radio candidates are within 2' and may represent a population of selected radio bright sample only. Nebular ionized masses of these objects are estimated to be as high as 1.8 Mfi, supporting the idea that massive PNe progenitor central stars lose much of their mass in the asymptotic giant branch (AGB phase or prior. We also identify a sub-population (33% of radio PNe candidates with prominent ionized iron emission lines.

  4. Optical Spectra of Radio Planetary Nebulae in the Large Magellanic Cloud

    Directory of Open Access Journals (Sweden)

    Payne, J. L.

    2008-12-01

    Full Text Available We present 11 spectra from 12 candidate radio sources co-identified with known planetary nebulae (PNe in the Large Magellanic Cloud (LMC. Originally found in Australia Telescope Compact Array (ATCA LMC surveys at 1.4, 4.8 and 8.64~GHz and confirmed by new high resolution ATCA images at 6 and 3~cm (4arcsec/2arcsec, these complement data recently presented for candidate radio PNe in the Small Magellanic Cloud (SMC. Their spectra were obtained using the Radcliffe 1.9-meter telescope in Sutherland (South Africa. All of the optical PNe and radio candidates are within 2arcsec and may represent a population of selected radio bright sample only. Nebular ionized masses of these objects are estimated to be as high as 1.8~$M_odot$, supporting the idea that massive PNe progenitor central stars lose much of their mass in the asymptotic giant branch (AGB phase or prior. We also identify a sub-population (33\\% of radio PNe candidates with prominent ionized iron emission lines.

  5. Optical lines in europium-terbium double activated calcium tungstate phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Nazarov, M.V. [Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Tsukerblat, B.S. [Department of Chemistry, Ben-Gurion University of the Negev, 84105 Beer-Sheva (Israel)]. E-mail: tsuker@bgumail.bgu.ac.il; Popovici, E.-J. [' Raluca Ripan' Institute for Research in Chemistry, Cluj-Napoca (Romania); Jeon, D.Y. [Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2004-09-20

    The Letter is devoted to the problem of the optical anisotropy of the rare-earth ions occupying low-symmetry positions in crystals. The crystal field multiplets arising from LSJ terms of Eu{sup 3+} and Tb{sup 3+} ions in the crystal field of calcium tungstate scheelite (CaWO{sub 4}) are analyzed with regard to the experimental data on the low temperature photoluminescence and cathodoluminescence spectra. The selection rules as well as an angular (polarization) dependence of the two-photon absorption are discussed.

  6. Predicting ambient aerosol thermal-optical reflectance measurements from infrared spectra: elemental carbon

    Science.gov (United States)

    Dillner, A. M.; Takahama, S.

    2015-10-01

    Elemental carbon (EC) is an important constituent of atmospheric particulate matter because it absorbs solar radiation influencing climate and visibility and it adversely affects human health. The EC measured by thermal methods such as thermal-optical reflectance (TOR) is operationally defined as the carbon that volatilizes from quartz filter samples at elevated temperatures in the presence of oxygen. Here, methods are presented to accurately predict TOR EC using Fourier transform infrared (FT-IR) absorbance spectra from atmospheric particulate matter collected on polytetrafluoroethylene (PTFE or Teflon) filters. This method is similar to the procedure developed for OC in prior work (Dillner and Takahama, 2015). Transmittance FT-IR analysis is rapid, inexpensive and nondestructive to the PTFE filter samples which are routinely collected for mass and elemental analysis in monitoring networks. FT-IR absorbance spectra are obtained from 794 filter samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to collocated TOR EC measurements. The FT-IR spectra are divided into calibration and test sets. Two calibrations are developed: one developed from uniform distribution of samples across the EC mass range (Uniform EC) and one developed from a uniform distribution of Low EC mass samples (EC < 2.4 μg, Low Uniform EC). A hybrid approach which applies the Low EC calibration to Low EC samples and the Uniform EC calibration to all other samples is used to produce predictions for Low EC samples that have mean error on par with parallel TOR EC samples in the same mass range and an estimate of the minimum detection limit (MDL) that is on par with TOR EC MDL. For all samples, this hybrid approach leads to precise and accurate TOR EC predictions by FT-IR as indicated by high coefficient of determination (R2; 0.96), no bias (0.00 μg m-3, a

  7. Predicting ambient aerosol thermal-optical reflectance (TOR) measurements from infrared spectra: organic carbon

    Science.gov (United States)

    Dillner, A. M.; Takahama, S.

    2015-03-01

    Organic carbon (OC) can constitute 50% or more of the mass of atmospheric particulate matter. Typically, organic carbon is measured from a quartz fiber filter that has been exposed to a volume of ambient air and analyzed using thermal methods such as thermal-optical reflectance (TOR). Here, methods are presented that show the feasibility of using Fourier transform infrared (FT-IR) absorbance spectra from polytetrafluoroethylene (PTFE or Teflon) filters to accurately predict TOR OC. This work marks an initial step in proposing a method that can reduce the operating costs of large air quality monitoring networks with an inexpensive, non-destructive analysis technique using routinely collected PTFE filter samples which, in addition to OC concentrations, can concurrently provide information regarding the composition of organic aerosol. This feasibility study suggests that the minimum detection limit and errors (or uncertainty) of FT-IR predictions are on par with TOR OC such that evaluation of long-term trends and epidemiological studies would not be significantly impacted. To develop and test the method, FT-IR absorbance spectra are obtained from 794 samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least-squares regression is used to calibrate sample FT-IR absorbance spectra to TOR OC. The FTIR spectra are divided into calibration and test sets by sampling site and date. The calibration produces precise and accurate TOR OC predictions of the test set samples by FT-IR as indicated by high coefficient of variation (R2; 0.96), low bias (0.02 μg m-3, the nominal IMPROVE sample volume is 32.8 m3), low error (0.08 μg m-3) and low normalized error (11%). These performance metrics can be achieved with various degrees of spectral pretreatment (e.g., including or excluding substrate contributions to the absorbances) and are comparable in precision to collocated TOR measurements. FT-IR spectra are also

  8. Predicting ambient aerosol Thermal Optical Reflectance (TOR) measurements from infrared spectra: elemental carbon

    Science.gov (United States)

    Dillner, A. M.; Takahama, S.

    2015-06-01

    Elemental carbon (EC) is an important constituent of atmospheric particulate matter because it absorbs solar radiation influencing climate and visibility and it adversely affects human health. The EC measured by thermal methods such as Thermal-Optical Reflectance (TOR) is operationally defined as the carbon that volatilizes from quartz filter samples at elevated temperatures in the presence of oxygen. Here, methods are presented to accurately predict TOR EC using Fourier Transform Infrared (FT-IR) absorbance spectra from atmospheric particulate matter collected on polytetrafluoroethylene (PTFE or Teflon) filters. This method is similar to the procedure tested and developed for OC in prior work (Dillner and Takahama, 2015). Transmittance FT-IR analysis is rapid, inexpensive, and non-destructive to the PTFE filter samples which are routinely collected for mass and elemental analysis in monitoring networks. FT-IR absorbance spectra are obtained from 794 filter samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to collocated TOR EC measurements. The FTIR spectra are divided into calibration and test sets. Two calibrations are developed, one which is developed from uniform distribution of samples across the EC mass range (Uniform EC) and one developed from a~uniform distribution of low EC mass samples (EC < 2.4 μg, Low Uniform EC). A hybrid approach which applies the low EC calibration to low EC samples and the Uniform EC calibration to all other samples is used to produces predictions for low EC samples that have mean error on par with parallel TOR EC samples in the same mass range and an estimate of the minimum detection limit (MDL) that is on par with TOR EC MDL. For all samples, this hybrid approach leads to precise and accurate TOR EC predictions by FT-IR as indicated by high coefficient of variation (R2; 0.96), no

  9. Crystal field parameters in UCl/sub 4/: Experiment versus theory

    Energy Technology Data Exchange (ETDEWEB)

    Zolnierek, Z.; Gajek, Z. (Polska Akademia Nauk, Wroclaw. Inst. Niskich Temperatur i Badan Strukturalnych); Khan Malek, C. (Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire)

    1984-08-01

    Crystal field effect on U/sup 4 +/ ion with the /sup 3/H/sub 4/ ground term in tetragonal ligand field of UCl/sub 4/ has been studied in detail. Crystal field parameters determined experimentally from optical spectroscopy and magnetic susceptibility are in good agreement with CEP sets derived from the modified point charge model and the ab initio method. Theoretical calculations lead to overestimating the A/sub 4//sup 4/ and lowering the A/sub 2//sup 0/ values in comparison to those found in the experiments. The discrepancies are, however, within an accuracy of calculations. A large similar reduction of expectation values of the magnetic moment operator for the eigenvectors of lowest CF levels (17.8%), determined from magnetic susceptibility, cannot be attributed to the overlap and covalency effects only. The detailed calculations have shown that the latter effects provide about 4.6% reduction of respective matrix elements, and the applied J-J mixing procedure increases this factor up to 6.5%. Since similar reduction factor has already been observed in a number of different uranium compounds, as in UCl/sub 4/ it seems to be likely that this feature is involved in the intrinsic properties of the U/sup 4 +/ ion. The authors endeavor to explain this effect in terms of configuration interaction mechanisms.

  10. Crystal-field-modulated magnon squeezing states in a ferromagnet

    International Nuclear Information System (INIS)

    Peng Feng

    2003-01-01

    The magnon squeezing states in some magnetic crystals allow a reduction in the quantum fluctuations of the spin component to below the zero-point quantum noise level of the coherent magnon states. It is known that there are the magnon squeezing states in an antiferromagnet. However, their generating mechanism is not suitable for the ferromagnet. In this paper, we discuss the possibility of generating the magnon squeezing states in a ferromagnet, and discuss the effect of the crystal field on the magnon squeezing states

  11. Calculation of optical and K pre-edge absorption spectra for ferrous iron of distorted sites in oxide crystals

    Science.gov (United States)

    Vercamer, Vincent; Hunault, Myrtille O. J. Y.; Lelong, Gérald; Haverkort, Maurits W.; Calas, Georges; Arai, Yusuke; Hijiya, Hiroyuki; Paulatto, Lorenzo; Brouder, Christian; Arrio, Marie-Anne; Juhin, Amélie

    2016-12-01

    Advanced semiempirical calculations have been performed to compute simultaneously optical absorption and K pre-edge x-ray absorption spectra of Fe2 + in four distinct site symmetries found in minerals. The four symmetries, i.e., a distorted octahedron, a distorted tetrahedron, a square planar site, and a trigonal bipyramidal site, are representative of the Fe2 + sites found in crystals and glasses. A particular attention has been paid to the definition of the p -d hybridization Hamiltonian which occurs for noncentrosymmetric symmetries in order to account for electric dipole transitions. For the different sites under study, an excellent agreement between calculations and experiments was found for both optical and x-ray absorption spectra, in particular in terms of relative intensities and energy positions of electronic transitions. To our knowledge, these are the first calculations of optical absorption spectra on Fe2 + placed in such diverse site symmetries, including centrosymmetric sites. The proposed theoretical model should help to interpret the features of both the optical absorption and the K pre-edge absorption spectra of 3 d transition metal ions and to go beyond the usual fingerprint interpretation.

  12. Analysis of the Vignale-Kohn current functional in the calculation of the optical spectra of semiconductors

    NARCIS (Netherlands)

    Berger, J. A.; de Boeij, P. L.; van Leeuwen, R.

    In this work, we investigate the Vignale-Kohn current functional when applied to the calculation of optical spectra of semiconductors. We discuss our results for silicon. We found qualitatively similar results for other semiconductors. These results show that there are serious limitations to the

  13. Anharmonic effects in IR, Raman, and Raman optical activity spectra of alanine and proline zwitterions.

    Science.gov (United States)

    Danecek, Petr; Kapitán, Josef; Baumruk, Vladimír; Bednárová, Lucie; Kopecký, Vladimír; Bour, Petr

    2007-06-14

    The difference spectroscopy of the Raman optical activity (ROA) provides extended information about molecular structure. However, interpretation of the spectra is based on complex and often inaccurate simulations. Previously, the authors attempted to make the calculations more robust by including the solvent and exploring the role of molecular flexibility for alanine and proline zwitterions. In the current study, they analyze the IR, Raman, and ROA spectra of these molecules with the emphasis on the force field modeling. Vibrational harmonic frequencies obtained with 25 ab initio methods are compared to experimental band positions. The role of anharmonic terms in the potential and intensity tensors is also systematically explored using the vibrational self-consistent field, vibrational configuration interaction (VCI), and degeneracy-corrected perturbation calculations. The harmonic approach appeared satisfactory for most of the lower-wavelength (200-1800 cm(-1)) vibrations. Modern generalized gradient approximation and hybrid density functionals, such as the common B3LYP method, provided a very good statistical agreement with the experiment. Although the inclusion of the anharmonic corrections still did not lead to complete agreement between the simulations and the experiment, occasional enhancements were achieved across the entire region of wave numbers. Not only the transitional frequencies of the C-H stretching modes were significantly improved but also Raman and ROA spectral profiles including N-H and C-H lower-frequency bending modes were more realistic after application of the VCI correction. A limited Boltzmann averaging for the lowest-frequency modes that could not be included directly in the anharmonic calculus provided a realistic inhomogeneous band broadening. The anharmonic parts of the intensity tensors (second dipole and polarizability derivatives) were found less important for the entire spectral profiles than the force field anharmonicities (third

  14. Vibronic effects and destruction of exciton coherence in optical spectra of J-aggregates: A variational polaron transformation approach

    Energy Technology Data Exchange (ETDEWEB)

    Bloemsma, E.A.; Silvis, M.H.; Stradomska, A.; Knoester, J., E-mail: j.knoester@rug.nl

    2016-12-20

    Using a symmetry adapted polaron transformation of the Holstein Hamiltonian, we study the interplay of electronic excitation-vibration couplings, resonance excitation transfer interactions, and temperature in the linear absorption spectra of molecular J-aggregates. Semi-analytical expressions for the spectra are derived and compared with results obtained from direct numerical diagonalization of the Hamiltonian in the two-particle basis set representation. At zero temperature, we show that our polaron transformation reproduces both the collective (exciton) and single-molecule (vibrational) optical response associated with the appropriate standard perturbation limits. Specifically, for the molecular dimer excellent agreement with the spectra from the two-particle approach for the entire range of model parameters is obtained. This is in marked contrast to commonly used polaron transformations. Upon increasing the temperature, the spectra show a transition from the collective to the individual molecular features, which results from the thermal destruction of the exciton coherence.

  15. Optical contrast spectra studies for determining thickness of stage-1 graphene-FeCl{sub 3} intercalation compounds

    Energy Technology Data Exchange (ETDEWEB)

    Han, Wen-Peng, E-mail: han-wenpeng@163.com, E-mail: yunze.long@163.com; Yan, Xu; Zhao, Hui [College of Physics, Qingdao University, Qingdao 266071 (China); Li, Qiao-Qiao; Lu, Yan [State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Long, Yun-Ze, E-mail: han-wenpeng@163.com, E-mail: yunze.long@163.com [College of Physics, Qingdao University, Qingdao 266071 (China); Collaborative Innovation Center for Low-Dimensional Nanomaterials and Optoelectronic Devices, Qingdao University, Qingdao 266071 (China)

    2016-07-15

    Because of novel features in their structural, electronic, magnetic and optical properties, especially potential applications in nanoelectronics, the few-layer graphene intercalation compounds (FLGICs) have been intensively studied recently. In this work, the dielectric constant of the doped graphene of stage-1 FeCl{sub 3}-GIC is obtained by fitting the optical contrast spectra. And fully intercalated stage-1 FeCl{sub 3}-FLGICs were prepared by micromechanical cleavage method from graphite intercalation compounds (GICs) for the first time. Finally, we demonstrated that the thickness of stage-1 FeCl{sub 3}-GICs by micromechanical cleavage can be determined by optical contrast spectra. This method also can be used to other FLGICs, such as SbCl{sub 5}-FLGICs and AuCl{sub 5}-FLGICs, etc.

  16. Electronic structure, photoemission spectra, and vacuum-ultraviolet optical spectra of CsPbCl3 and CsPbBr3

    Science.gov (United States)

    Heidrich, K.; Schäfer, W.; Schreiber, M.; Söchtig, J.; Trendel, G.; Treusch, J.; Grandke, T.; Stolz, H. J.

    1981-11-01

    Optical spectra of CsPbCl3 and CsPbBr3 have been measured in the range from 2 to 10 eV and have been combined with ultraviolet-photoemission-spectroscopy (UPS)-measurements at 21.1 and 40.8 eV. A quantitative band calculation is presented, which takes into account anion-anion interaction as well as electronic states of the Cs+ ion. The prominent features of earlier band models and measurements are reestablished through our measurements and calculations, namely that the valence band consists of anionic p functions and Pb 6s functions, the lowest conduction band being Pb 6p type, and the lowest gap occuring at the R point of the Brillouin zone. Inclusion of a further (Cs 6s-type) conduction band, however, is necessary to bring the calculated joint density of states into agreement with vacuum-ultraviolet optical spectra. The calculated densities of states of the valence bands are in quantitative agreement with those deduced from our UPS measurements.

  17. Modelling telluric line spectra in the optical and infrared with an application to VLT/X-Shooter spectra

    Science.gov (United States)

    Rudolf, N.; Günther, H. M.; Schneider, P. C.; Schmitt, J. H. M. M.

    2016-01-01

    Context. Earth's atmosphere imprints a large number of telluric absorption and emission lines on astronomical spectra, especially in the near infrared, that need to be removed before analysing the affected wavelength regions. Aims: These lines are typically removed by comparison to A- or B-type stars used as telluric standards that themselves have strong hydrogen lines, which complicates the removal of telluric lines. We have developed a method to circumvent that problem. Methods: For our IDL software package tellrem we used a recent approach to model telluric absorption features with the line-by-line radiative transfer model (LBLRTM). The broad wavelength coverage of the X-Shooter at VLT allows us to expand their technique by determining the abundances of the most important telluric molecules H2O, O2, CO2, and CH4 from sufficiently isolated line groups. For individual observations we construct a telluric absorption model for most of the spectral range that is used to remove the telluric absorption from the object spectrum. Results: We remove telluric absorption from both continuum regions and emission lines without systematic residuals for most of the processable spectral range; however, our method increases the statistical errors. The errors of the corrected spectrum typically increase by 10% for S/N ~ 10 and by a factor of two for high-quality data (S/N ~ 100), I.e. the method is accurate on the percent level. Conclusions: Modelling telluric absorption can be an alternative to the observation of standard stars for removing telluric contamination. Based on observations collected at the European Southern Observatory, Paranal, Chile, 085.C-0764(A) and 60.A-9022(C).The tellrem package is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/585/A113

  18. Detector Sampling of Optical/IR Spectra: How Many Pixels per FWHM?

    Science.gov (United States)

    Robertson, J. Gordon

    2017-08-01

    Most optical and IR spectra are now acquired using detectors with finite-width pixels in a square array. Each pixel records the received intensity integrated over its own area, and pixels are separated by the array pitch. This paper examines the effects of such pixellation, using computed simulations to illustrate the effects which most concern the astronomer end-user. It is shown that coarse sampling increases the random noise errors in wavelength by typically 10-20 % at 2 pixels per Full Width at Half Maximum, but with wide variation depending on the functional form of the instrumental Line Spread Function (i.e. the instrumental response to a monochromatic input) and on the pixel phase. If line widths are determined, they are even more strongly affected at low sampling frequencies. However, the noise in fitted peak amplitudes is minimally affected by pixellation, with increases less than about 5%. Pixellation has a substantial but complex effect on the ability to see a relative minimum between two closely spaced peaks (or relative maximum between two absorption lines). The consistent scale of resolving power presented by Robertson to overcome the inadequacy of the Full Width at Half Maximum as a resolution measure is here extended to cover pixellated spectra. The systematic bias errors in wavelength introduced by pixellation, independent of signal/noise ratio, are examined. While they may be negligible for smooth well-sampled symmetric Line Spread Functions, they are very sensitive to asymmetry and high spatial frequency sub-structure. The Modulation Transfer Function for sampled data is shown to give a useful indication of the extent of improperly sampled signal in an Line Spread Function. The common maxim that 2 pixels per Full Width at Half Maximum is the Nyquist limit is incorrect and most Line Spread Functions will exhibit some aliasing at this sample frequency. While 2 pixels per Full Width at Half Maximum is nevertheless often an acceptable minimum for

  19. Rest-Frame Optical Spectra of Three Strongly Lensed Galaxies at z ~ 2

    Science.gov (United States)

    Hainline, Kevin N.; Shapley, Alice E.; Kornei, Katherine A.; Pettini, Max; Buckley-Geer, Elizabeth; Allam, Sahar S.; Tucker, Douglas L.

    2009-08-01

    We present Keck II NIRSPEC rest-frame optical spectra for three recently discovered lensed galaxies: the Cosmic Horseshoe (z = 2.38), the Clone (z = 2.00), and SDSS J090122.37+181432.3 (z = 2.26). The boost in signal-to-noise ratio (S/N) from gravitational lensing provides an unusually detailed view of the physical conditions in these objects. A full complement of high S/N rest-frame optical emission lines is measured, spanning from rest frame 3600 to 6800 Å, including robust detections of fainter lines such as Hγ, [S II]λ6717,6732, and in one instance [Ne III]λ3869. SDSS J090122.37+181432.3 shows evidence for active galactic nucleus activity, and therefore we focus our analysis on star-forming regions in the Cosmic Horseshoe and the Clone. For these two objects, we estimate a wide range of physical properties. Current lensing models for the Cosmic Horseshoe and the Clone allow us to correct the measured Hα luminosity and calculated star formation rate. Metallicities have been estimated with a variety of indicators, which span a range of values of 12+ log(O/H) = 8.3-8.8, between ~0.4 and ~1.5 of the solar oxygen abundance. Dynamical masses were computed from the Hα velocity dispersions and measured half-light radii of the reconstructed sources. A comparison of the Balmer lines enabled measurement of dust reddening coefficients. Variations in the line ratios between the different lensed images are also observed, indicating that the spectra are probing different regions of the lensed galaxies. In all respects, the lensed objects appear fairly typical of ultraviolet-selected star-forming galaxies at z ~ 2. The Clone occupies a position on the emission-line diagnostic diagram of [O III]/Hβ versus [N II]/Hα that is offset from the locations of z ~ 0 galaxies. Our new NIRSPEC measurements may provide quantitative insights into why high-redshift objects display such properties. From the [S II] line ratio, high electron densities (~1000 cm-3) are inferred compared

  20. A novel measuring method for arbitrary optical vortex by three spiral spectra

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Bo [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Guo, Lana [School of Electronics and Information, Guangdong Polytechnic Normal University, Guangzhou 510665 (China); Yue, Chengfeng [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Tang, Zhilie, E-mail: tangzhl@scnu.edu.cn [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China)

    2017-02-26

    In this letter, the topological charge of non-integer vortices determined by three arbitrary spiral spectra is theoretically demonstrated for the first time. Based on the conclusion, a novel method to measure non-integer vortices is presented. This method is applicable not only to arbitrary non-integer vortex but also to arbitrary integer vortex. - Highlights: • Different non-integer vortices cannot have three spiral spectra is demonstrated. • Relationship between the non-integer topological charge and the spiral spectra is presented. • Topological charge of non-integer vortices can be determined by three arbitrary spiral spectra.

  1. Longitudinal correlation properties of an optical field with broad angular and frequency spectra and their manifestation in interference microscopy

    International Nuclear Information System (INIS)

    Lyakin, D V; Ryabukho, V P

    2013-01-01

    The results of theoretical and experimental studies of the longitudinal correlation properties of an optical field with broad angular and frequency spectra and manifestations of these properties in interference microscopy are presented. The joint and competitive influence of the angular and frequency spectra of the object-probing field on the longitudinal resolution and on the amplitude of the interference microscope signals from the interfaces between the media inside a multilayer object is demonstrated. The method of compensating the so-called defocusing effect that arises in the interference microscopy using objectives with a large numerical aperture is experimentally demonstrated, which consists in using as a light source in the interference microscope an illuminating interferometer with a frequency-broadband light source. This method of compensation may be used as the basis of simultaneous determination of geometric thickness and refractive index of media forming a multilayer object. (optical fields)

  2. Tensile strain induced changes in the optical spectra of SrTiO.sub.3./sub. epitaxial thin films

    Czech Academy of Sciences Publication Activity Database

    Dejneka, Alexandr; Tyunina, M.; Narkilahti, J.; Levoska, J.; Chvostová, Dagmar; Jastrabík, Lubomír; Trepakov, Vladimír

    2010-01-01

    Roč. 52, č. 10 (2010), 2082-2089 ISSN 1063-7834 R&D Projects: GA ČR GA202/08/1009; GA AV ČR KAN301370701; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : SrTiO 3 epitaxial thin films * effect of biaxial tensile strains on optical spectra Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.727, year: 2010

  3. Nonlinear optical spectra having characteristics of Fano interferences in coherently coupled lowest exciton biexciton states in semiconductor quantum dots

    Directory of Open Access Journals (Sweden)

    Hideki Gotoh

    2014-10-01

    Full Text Available Optical nonlinear effects are examined using a two-color micro-photoluminescence (micro-PL method in a coherently coupled exciton-biexciton system in a single quantum dot (QD. PL and photoluminescence excitation spectroscopy (PLE are employed to measure the absorption spectra of the exciton and biexciton states. PLE for Stokes and anti-Stokes PL enables us to clarify the nonlinear optical absorption properties in the lowest exciton and biexciton states. The nonlinear absorption spectra for excitons exhibit asymmetric shapes with peak and dip structures, and provide a distinct contrast to the symmetric dip structures of conventional nonlinear spectra. Theoretical analyses with a density matrix method indicate that the nonlinear spectra are caused not by a simple coherent interaction between the exciton and biexciton states but by coupling effects among exciton, biexciton and continuum states. These results indicate that Fano quantum interference effects appear in exciton-biexciton systems at QDs and offer important insights into their physics.

  4. Optical absorption spectra of linear and cyclic thiophenes--selection rules manifestation

    International Nuclear Information System (INIS)

    Bednarz, Mariusz; Reineker, Peter; Mena-Osteritz, Elena; Baeuerle, Peter

    2004-01-01

    We theoretically study the size-dependent relation between absorption spectra of thiophene-based oligomers and the corresponding cyclothiophenes. In our approach based on a Frenkel exciton Hamiltonian, we demonstrate that the geometry and selection rules determine the observed relations between the spectra

  5. OPTICAL CONSTANTS AND LAB SPECTRA OF WATER ICE V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Transmission spectra of amorphous and crystalline H2O-ice at temperatures from 20-150 K for a wavelength range from 1.11 to 2.63 microns. These spectra have not been...

  6. OPTICAL CONSTANTS AND LAB SPECTRA OF WATER ICE V1.1

    Data.gov (United States)

    National Aeronautics and Space Administration — Transmission spectra of amorphous and crystalline H2O-ice at temperatures from 20-150 K for a wavelength range from 1.11 to 2.63 microns. These spectra have not been...

  7. Optical absorption spectra of the uranium (4+) ion in the thorium germanate matrix

    CERN Document Server

    Gajek, Z; Antic-Fidancev, E

    1997-01-01

    Visible and infrared absorption measurements on the U sup 4 sup + ion in tetragonal zircon-type matrix beta-ThGeO sub 4 are reported and analysed in terms of the standard parametrization scheme. The observed 17 main peaks and a number of less intense lines have been assigned and fitted to most of the 32 allowed electric dipole transitions with the root mean square error equal to 65 cm sup - sup 1. The free-ion parameters obtained for the model Hamiltonian, zeta 5f = 1809 cm sup - sup 1 , F sup 2 =43 065 cm sup - sup 1 , F sup 4 =38 977 cm sup - sup 1 and F sup 6 =24 391 cm sup - sup 1 , as well as the corresponding crystal-field parameters, B sub 0 sup 2 =-1790 cm sup - sup 1 , B sub 0 sup 4 =1200 cm sup - sup 1 , B sub 4 sup 4 =3260 cm sup - sup 1 , B sub 0 sup 6 =-3170 cm sup - sup 1 and B sub 4 sup 6 =990 cm sup - sup 1 , agree fairly well with the initial theoretical estimations. The results are discussed in relation to the previous spectroscopic study on the scheelite-type matrix UGeO sub 4. (author)

  8. Optical absorption spectra of the uranium (4+) ion in the thorium germanate matrix

    Science.gov (United States)

    Gajek, Z.; Krupa, J. C.; Antic-Fidancev, E.

    1997-01-01

    Visible and infrared absorption measurements on the 0953-8984/9/2/023/img6 ion in tetragonal zircon-type matrix 0953-8984/9/2/023/img7 are reported and analysed in terms of the standard parametrization scheme. The observed 17 main peaks and a number of less intense lines have been assigned and fitted to most of the 32 allowed electric dipole transitions with the root mean square error equal to 0953-8984/9/2/023/img8. The free-ion parameters obtained for the model Hamiltonian, 0953-8984/9/2/023/img9, 0953-8984/9/2/023/img10, 0953-8984/9/2/023/img11 and 0953-8984/9/2/023/img12, as well as the corresponding crystal-field parameters, 0953-8984/9/2/023/img13, 0953-8984/9/2/023/img14, 0953-8984/9/2/023/img15, 0953-8984/9/2/023/img16 and 0953-8984/9/2/023/img17, agree fairly well with the initial theoretical estimations. The results are discussed in relation to the previous spectroscopic study on the scheelite-type matrix 0953-8984/9/2/023/img18.

  9. Optical absorption spectra of the uranium (4+) ion in the thorium germanate matrix

    Energy Technology Data Exchange (ETDEWEB)

    Gajek, Z. [W Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-950 Wroclaw, PO Box 937 (Poland); Krupa, J.C. [Laboratoire de Radiochimie, Institut de Physique Nucleaire, BP 1, 91406 Orsay Cedex (France); Antic-Fidancev, E. [Unite P- de Recherche associee au CNRS 210, 1 place A Briand, 92195 Meudon Cedex (France)

    1997-01-13

    Visible and infrared absorption measurements on the U{sup 4+} ion in tetragonal zircon-type matrix {beta}-ThGeO{sub 4} are reported and analysed in terms of the standard parametrization scheme. The observed 17 main peaks and a number of less intense lines have been assigned and fitted to most of the 32 allowed electric dipole transitions with the root mean square error equal to 65 cm{sup -1}. The free-ion parameters obtained for the model Hamiltonian, {zeta}5f = 1809 cm{sup -1}, F{sup 2}=43 065 cm{sup -1}, F{sup 4}=38 977 cm{sup -1} and F{sup 6}=24 391 cm{sup -1}, as well as the corresponding crystal-field parameters, B{sub 0}{sup 2}=-1790 cm{sup -1}, B{sub 0}{sup 4}=1200 cm{sup -1}, B{sub 4}{sup 4}=3260 cm{sup -1}, B{sub 0}{sup 6}=-3170 cm{sup -1} and B{sub 4}{sup 6}=990 cm{sup -1}, agree fairly well with the initial theoretical estimations. The results are discussed in relation to the previous spectroscopic study on the scheelite-type matrix UGeO{sub 4}. (author)

  10. Optical Spectra of Candidate International Celestial Reference Frame (ICRF) Flat-spectrum Radio Sources. III

    Energy Technology Data Exchange (ETDEWEB)

    Titov, O.; Stanford, Laura M. [Geoscience Australia, P.O. Box 378, Canberra, ACT 2601 (Australia); Pursimo, T. [Nordic Optical Telescope, Nordic Optical Telescope Apartado 474E-38700 Santa Cruz de La Palma, Santa Cruz de Tenerife (Spain); Johnston, Helen M.; Hunstead, Richard W. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Jauncey, David L. [CSIRO Astronomy and Space Science, ATNF and Mount Stromlo Observatory, Cotter Road, Weston, ACT 2611 (Australia); Zenere, Katrina A., E-mail: oleg.titov@ga.gov.au [School of Physics, University of Sydney, NSW 2006 (Australia)

    2017-04-01

    In extending our spectroscopic program, which targets sources drawn from the International Celestial Reference Frame (ICRF) Catalog, we have obtained spectra for ∼160 compact, flat-spectrum radio sources and determined redshifts for 112 quasars and radio galaxies. A further 14 sources with featureless spectra have been classified as BL Lac objects. Spectra were obtained at three telescopes: the 3.58 m European Southern Observatory New Technology Telescope, and the two 8.2 m Gemini telescopes in Hawaii and Chile. While most of the sources are powerful quasars, a significant fraction of radio galaxies is also included from the list of non-defining ICRF radio sources.

  11. VizieR Online Data Catalog: A library of high-S/N optical spectra of FGKM stars (Yee+, 2017)

    Science.gov (United States)

    Yee, S. W.; Petigura, E. A.; von Braun, K.

    2017-09-01

    Classification of stars, by comparing their optical spectra to a few dozen spectral standards, has been a workhorse of observational astronomy for more than a century. Here, we extend this technique by compiling a library of optical spectra of 404 touchstone stars observed with Keck/HIRES by the California Planet Search. The spectra have high resolution (R~60000), high signal-to-noise ratio (S/N~150/pixel), and are registered onto a common wavelength scale. The library stars have properties derived from interferometry, asteroseismology, LTE spectral synthesis, and spectrophotometry. To address a lack of well-characterized late-K dwarfs in the literature, we measure stellar radii and temperatures for 23 nearby K dwarfs, using modeling of the spectral energy distribution and Gaia parallaxes. This library represents a uniform data set spanning the spectral types ~M5-F1 (Teff~3000-7000K, R*~0.1-16R{Sun}). We also present "Empirical SpecMatch" (SpecMatch-Emp), a tool for parameterizing unknown spectra by comparing them against our spectral library. For FGKM stars, SpecMatch-Emp achieves accuracies of 100K in effective temperature (Teff), 15% in stellar radius (R*), and 0.09dex in metallicity ([Fe/H]). Because the code relies on empirical spectra it performs particularly well for stars ~K4 and later, which are challenging to model with existing spectral synthesizers, reaching accuracies of 70K in Teff, 10% in R*, and 0.12dex in [Fe/H]. We also validate the performance of SpecMatch-Emp, finding it to be robust at lower spectral resolution and S/N, enabling the characterization of faint late-type stars. Both the library and stellar characterization code are publicly available. (2 data files).

  12. Built-in electric field effect on optical absorption spectra of strained (In,Ga)N–GaN nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    El Ghazi, Haddou, E-mail: hadghazi@gmail.com [LPS, Faculty of Science, Dhar EL Mehrez, BP 1796 Fes-Atlas (Morocco); Special Mathematics, CPGE Rabat, Rabat (Morocco); John Peter, A. [Department of Physics, Govt. Arts and Science College, Melur, 625106 Madurai (India)

    2015-08-15

    Based on the effective-mass and the one band parabolic approximations, first order linear, third-order nonlinear and total optical properties related to 1s–1p intra-conduction band transition in wurtzite strained (In,Ga)N–GaN spherical QDs are calculated. The built-in electric field effect, due to the spontaneous and piezoelectric components, is investigated variationally under finite confinement potential. The results reveal that size and internal composition of the dot have a great influence on in-built electric field which affects strongly the optical absorption spectra. It is also found that the modulation of the absorption coefficient, which is suitable for the better performance of optical device applications, can be easily obtained by adjusting geometrical size and internal composition.

  13. Phylogenetic Distribution of Leaf Spectra and Optically Derived Functional Traits in the American Oaks

    Science.gov (United States)

    Cavender-Bares, J.; Meireles, J. E.; Couture, J. J.; Kaproth, M.; Townsend, P. A.

    2015-12-01

    Detecting functional traits of species, genotypes and phylogenetic lineages is critical in monitoring functional biodiversity remotely. We examined the phylogenetic distribution of leaf spectra across the American Oaks for 35 species under greenhouse conditions as well as genetic variation in leaf spectra across Central American populations of a single species grown in common gardens in Honduras. We found significant phylogenetic signal in the leaf spectra (Blomberg's K > 1.0), indicating similarity in spectra among close relatives. Across species, full range leaf spectra were used in a Partial Least Squares Discriminant Analysis (PLS-DA) that allowed species calibration (kappa statistic = 0.55). Validation of the model used to detect species (kappa statistic = 0.4) indicated reasonably good detection of individual species within the same the genus. Among four populations from Belize, Costa Rica, Honduras, and Mexico within a single species (Quercus oleoides), leaf spectra were also able to differentiate populations. Ordination of population-level data using dissimilarities of predicted foliar traits, including leaf mass per area (LMA), lignin content, fiber content, chlorophyll a+b, and C:N ratio in genotypes in either watered or unwatered conditions showed significant differentiation among populations and treatments. These results provide promise for remote detection and differentiation of plant functional traits among plant phylogenetic lineages and genotypes, even among closely related populations and species.

  14. Effect of pressure on the crystal field splitting in rare earth pnictides and chalcogenides

    International Nuclear Information System (INIS)

    Schirber, J.E.; Weaver, H.T.

    1978-01-01

    The experimental situation for the pressure dependence of the crystal field of praseodymium pnictides and chalcogenides is reviewed and compared with the predictions of the point charge model. The problem of separating exchange and crystal field contributions from the measured NMR frequency shift or susceptibility measurements is discussed as well as problems explaining these effects with conduction electron related models

  15. Magnetic response of localized spins coupled to itinerant electrons in an inhomogeneous crystal field

    International Nuclear Information System (INIS)

    Iannarella, L.; Guimaraes, A.P.; Silva, X.A. da.

    1990-01-01

    The magnetic behavior at T = O K of a system consisting of conduction electrons coupled to localized electrons, the latter submitted to an inhomogeneous crystal field distribution, is studied. The study implies that the inhomogeneity of the crystal field attenuates the quenching effects. The model is interesting to the study of disordered rare-earth intermetallic compounds. (A.C.A.S.) [pt

  16. Crystal fields at light rare-earth ions in Y and Lu

    DEFF Research Database (Denmark)

    Touborg, P.; Nevald, Rolf; Johansson, Torben

    1978-01-01

    Crystal-field parameters have been deduced for the light rare-earth solutes Ce, Pr, and Nd in Y or Lu hosts from measurements of the paramagnetic susceptibilities. In the analysis all multiplets in the lowest LS term were included. For a given host, crystal-field parameters divided by Stevens fac...

  17. Can a one-layer optical skin model including melanin and inhomogeneously distributed blood explain spatially resolved diffuse reflectance spectra?

    Science.gov (United States)

    Karlsson, Hanna; Pettersson, Anders; Larsson, Marcus; Strömberg, Tomas

    2011-02-01

    Model based analysis of calibrated diffuse reflectance spectroscopy can be used for determining oxygenation and concentration of skin chromophores. This study aimed at assessing the effect of including melanin in addition to hemoglobin (Hb) as chromophores and compensating for inhomogeneously distributed blood (vessel packaging), in a single-layer skin model. Spectra from four humans were collected during different provocations using a twochannel fiber optic probe with source-detector separations 0.4 and 1.2 mm. Absolute calibrated spectra using data from either a single distance or both distances were analyzed using inverse Monte Carlo for light transport and Levenberg-Marquardt for non-linear fitting. The model fitting was excellent using a single distance. However, the estimated model failed to explain spectra from the other distance. The two-distance model did not fit the data well at either distance. Model fitting was significantly improved including melanin and vessel packaging. The most prominent effect when fitting data from the larger separation compared to the smaller separation was a different light scattering decay with wavelength, while the tissue fraction of Hb and saturation were similar. For modeling spectra at both distances, we propose using either a multi-layer skin model or a more advanced model for the scattering phase function.

  18. Multiplexing 32,000 spectra onto 8 detectors: the HARMONI field splitting, image slicing, and wavelength selecting optics

    Science.gov (United States)

    Tecza, Matthias; Thatte, Niranjan; Clarke, Fraser; Freeman, David; Kosmalski, Johan

    2012-09-01

    HARMONI, the High Angular Resolution Monolithic Optical & Near-infrared Integral field spectrograph is one of two first-light instruments for the European Extremely Large Telescope. Over a 256x128 pixel field-of-view HARMONI will simultaneously measure approximately 32,000 spectra. Each spectrum is about 4000 spectral pixels long, and covers a selectable part of the 0.47-2.45 μm wavelength range at resolving powers of either R≍4000, 10000, or 20000. All 32,000 spectra are imaged onto eight HAWAII4RG detectors using a multiplexing scheme that divides the input field into four sub-fields, each imaged onto one image slicer that in turn re-arranges a single sub-field into two long exit slits feeding one spectrograph each. In total we require eight spectrographs, each with one HAWAII4RG detector. A system of articulated and exchangeable fold-mirrors and VPH gratings allows one to select different spectral resolving powers and wavelength ranges of interest while keeping a fixed geometry between the spectrograph collimator and camera avoiding the need for an articulated grating and camera. In this paper we describe both the field splitting and image slicing optics as well as the optics that will be used to select both spectral resolving power and wavelength range.

  19. Optical-absorption spectra associated with shallow donor impurities in GaAs-(Ga,Al)As quantum-dots

    International Nuclear Information System (INIS)

    Silva Valencia, J.

    1995-08-01

    The binding energy of a hydrogenic donor impurity and the optical-absorption spectra associated with transitions between the n=1 valence level and the donor-impurity band were calculated for infinite barrier-well spherical GaAs-(Ga,Al)As quantum-dots of different radii, using the effective mass approximation within a variational scheme. An absorption peak associated with transitions involving impurities at the center of the well and a peak related with impurities at the edge of the dot were the main features observed for the different radii of the dots considered in the calculations. Also as a result of the higher electronic confinement in a quantum- dot, we found a much wider energy range of the absorption spectra when compared to infinite GaAs-(Ga,Al)As quantum-wells and quantum-well wires of width and diameter comparable to the diameter of the quantum dot. (author). 13 refs, 3 figs

  20. Continuous registration of optical absorption spectra of periodically produced solvated electrons

    International Nuclear Information System (INIS)

    Krebs, P.

    1975-01-01

    Absorption spectra of unstable intermediates, such as solvated electrons, were usually taken point by point, recording the time-dependent light absorption after their production by a flash. The experimental arrangement for continuous recording of the spectra consists of a conventional one beam spectral photometer with a stabilized white light source, a monochromator, and a light detector. By periodic production of light absorbing intermediates such as solvated electrons, e.g., by ac uv light, a small ac signal is modulated on the light detector output which after amplification can be continuously recorded as a function of wavelength. This method allows the detection of absorption spectra when disturbances from the outside provide a signal-to-noise ratio smaller than 1

  1. Ground and excited state absorption of Ni{sup 2+} ions in MgAl{sub 2}O{sub 4}: Crystal field analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brik, M.G. [Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo-ku, Kyoto 606-8103 (Japan) and Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan)]. E-mail: brik@fukui.kyoto-u.ac.jp; Avram, N.M. [Department of Physics, West University of Timisoara, Bd. V. Parvan No. 4, 300223 Timisoara (Romania); Avram, C.N. [Department of Physics, West University of Timisoara, Bd. V. Parvan No. 4, 300223 Timisoara (Romania); Rudowicz, C. [Institute of Physics, Szczecin University of Technology, Al. Piastow 17, 70-310 Szczecin (Poland); Yeung, Y.Y. [Department of Mathematics, Science, Social Sciences and Technology, The Hong Kong Institute of Education, 10 Lo Ping Road, Tai Po, New Territories (Hong Kong); Gnutek, P. [Institute of Physics, Szczecin University of Technology, Al. Piastow 17, 70-310 Szczecin (Poland)

    2007-04-25

    The exchange charge model (ECM) of crystal field is utilized to provide the theoretical explanation of the ground state absorption and the excited state absorption observed for the octahedrally coordinated Ni{sup 2+} ions in the spinel MgAl{sub 2}O{sub 4}. The ECM enables modeling of the crystal field parameters (CFPs) for the impurity ions based on the crystal structure data of the host lattice. To ensure the reliability of the CFPs, the convergence of the CFP values with the increasing number of the coordination spheres taken into account in the ECM calculations is considered. The trigonal CFPs B{sub 2}{sup 0},B{sub 4}{sup 0}andB{sub 4}{sup -3} determined by the ECM, together with the appropriate Racah parameters B and C, serve as input to two crystal field analysis computer packages, which compute the energy level schemes within the whole 3d{sup 8} configuration. The cubic approximation utilizing only one CFP Dq is also discussed. Basic features of the ground and excited state absorption spectra observed for MgAl{sub 2}O{sub 4}:Ni{sup 2+} are satisfactorily explained by our crystal field analysis. In order to model the pressure dependence of the CFPs (and thus of the absorption spectra when relevant experimental data become available), the variation of the CFPs induced by possible distortions of the lattice due to, e.g. overall relaxation of the ions or accommodation of the impurity ions in the lattice, is studied. Analysis of the experimental absorption spectra enables us to evaluate also the Huang-Rhys parameter, the effective phonon energy, and the zero-phonon line position.

  2. General Method for Calculating the Response and Noise Spectra of Active Fabry-Perot Semiconductor Waveguides With External Optical Injection

    DEFF Research Database (Denmark)

    Blaaberg, Søren; Mørk, Jesper

    2009-01-01

    We present a theoretical method for calculating small-signal modulation responses and noise spectra of active Fabry-Perot semiconductor waveguides with external light injection. Small-signal responses due to either a modulation of the pump current or due to an optical amplitude or phase modulatio...... amplifiers and an injection-locked laser. We also demonstrate the applicability of the method to analyze slow and fast light effects in semiconductor waveguides. Finite reflectivities of the facets are found to influence the phase changes of the injected microwave-modulated light....

  3. Optical absorption and magnetic circular dichroism spectra of thiouracils: a quantum mechanical study in solution

    DEFF Research Database (Denmark)

    Martínez-Fernández, L.; Fahleson, Tobias; Norman, Patrick

    2017-01-01

    The excited electronic states of 2-thiouracil, 4-thiouracil and 2,4-dithiouracil, the analogues of uracil where the carbonyl oxygens are substituted by sulphur atoms, have been investigated by computing the magnetic circular dichroism (MCD) and one-photon absorption (OPA) spectra at the time-depe...

  4. Application of magnetic circular dichroism spectroscopy to the optical spectra of natural and irradiated diamonds

    International Nuclear Information System (INIS)

    Douglas, I.N.; Ruciman, W.A.; Australian National Univ., Canberra. Research School of Physical Sciences)

    1977-01-01

    The MCD spectra of natural type Ia and electron-irradiated type Ia and type IIa diamonds have been measured. The information obtained from MCD spectroscopy complements that obtained from absorption spectroscopy and can be helpful in the assignment of electronic transitions. (orig.) [de

  5. Effect of Er doping on optical transmission and EL spectra of (Zn, Cd)S:Cu phosphors

    International Nuclear Information System (INIS)

    Patil, P.K.; Nandgave, J.K.; Lawangar Pawar, R.D.

    1991-01-01

    Powder phosphors((Znsub(0.4)Cdsub(0.6))S)doped with Cu and Er have been prepared under the inert atmosphere of argon. The optical transmission spectra of Cu doped phosphors have been investigated and explained on the basis of copper associated defect states. The improvement of optical transmission of the phosphors due to Er doping has been reported and explained. The EL emission spectrum of (Znsub(0.4)Cdsub(0.6))S:Cu:Er phosphors exhibits two broad bands characteristic of Cu. The absence of characteristic Er bands has been explained as an effect of thermal quenching of Er donor levels. (author). 9 refs., 2 figs

  6. CPAC moisture study: Phase 1 report on the study of optical spectra calibration for moisture

    International Nuclear Information System (INIS)

    Veltkamp, D.

    1993-01-01

    This report discusses work done to investigate the feasibility of using optical spectroscopic methods, combined with multivariate Partial Least Squares (PLS) calibration modeling, to quantitatively predict the moisture content of the crust material in Hanford's waste tank materials. Experiments were conducted with BY-104 simulant material for the 400--1100 nm (VIS), 1100--2500 (NIR), and 400-4000 cm -1 (IR) optical regions. The test data indicated that the NIR optical region, with a single PLS calibration factor, provided the highest accuracy response (better than 0.5 wt %) over a 0--25 wt % moisture range. Issues relating to the preparation of moisture samples with the BY-104 materials and the potential implementation within hot cell and waste tanks are also discussed. The investigation of potential material interferences, including physical and chemical properties, and the scaled demonstration of fiber optic and camera types of applications with simulated waste tanks are outlined as future work tasks

  7. Pr.sup.3 +./sup. crystal-field excitation study of apical oxygen and reduction processes in Pr.sub.2 - x./sub.Ce.sub.x./sub.CuO.sub.4±.delta./sub

    Czech Academy of Sciences Publication Activity Database

    Riou, G.; Richard, P.; Jandl, S.; Poirier, M.; Fournier, P.; Nekvasil, Vladimír; Barilo, S. N.; Kurnevich, L. A.

    2004-01-01

    Roč. 69, č. 2 (2004), 024511/1-024511/8 ISSN 0163-1829 R&D Projects: GA ČR GA202/03/0552 Institutional research plan: CEZ:AV0Z1010914 Keywords : cuprate superconductors * crystal field * infrared spectra Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.075, year: 2004

  8. High pressure studies of configuration interaction and crystal field effects in Sm2+

    International Nuclear Information System (INIS)

    Shen, Y.; Bray, K.L.

    1998-01-01

    Full text: Divalent rare earth ions are interesting luminescence centres because of the low energy of the excited 4f n-1 5d 1 configuration relative to the 4f n ground configuration. The low energy difference between these two configurations leads to two principle effects which distinguish the luminescence properties of divalent rare earth ions from those of trivalent rare earth ions. First, a significant amount of 5d state mixing into the electronic states of the 4f n configuration occurs and second, the thermal activation barrier to 4f n → 4f n-1 5d 1 crossing is greatly reduced. The first effect introduces opposite parity character into the emitting levels of divalent rare earth ions and acts to shorten lifetimes and increase f-f luminescence intensity, while the second effect acts to enhance thermal quenching of 4f n excited electronic states closest in energy to the 4f n-1 5d 1 configuration. The interaction between the 4f n and 4f n-1 5d 1 configurations and crystal field properties are typically studied by considering the luminescence properties of divalent rare earth ions in a series of host crystals. We are currently developing a new approach, based on high pressure luminescence spectroscopy, for understanding con-figuration interaction and crystal field properties of divalent rare earth ions. The strategy of our approach is to use high pressure as a tool of structural perturbation. By applying hydrostatic pressure to solids, we have an opportunity to continuously vary the nearest neighbour coordination environment of divalent rare earth dopants. Our general goal is to correlate pressure-induced changes in local structure with pressure-induced changes in luminescence properties in an attempt to better understand structure-property-composition relations in solid state luminescent materials. In this paper we present recent results on Sm 2+ in a series of MFCl (M = Sr, Ba, Ca) host lattices. Luminescence spectra and decay properties as a function of

  9. Hybrid excitations due to crystal field, spin-orbit coupling, and spin waves in LiFePO4

    Science.gov (United States)

    Yiu, Yuen; Le, Manh Duc; Toft-Peterson, Rasmus; Ehlers, Georg; McQueeney, Robert J.; Vaknin, David

    2017-03-01

    We report on the spin waves and crystal field excitations in single crystal LiFePO4 by inelastic neutron scattering over a wide range of temperatures, below and above the antiferromagnetic transition of this system. In particular, we find extra excitations below TN=50 K that are nearly dispersionless and are most intense around magnetic zone centers. We show that these excitations correspond to transitions between thermally occupied excited states of Fe2 + due to splitting of the S =2 levels that arise from the crystal field and spin-orbit interactions. These excitations are further amplified by the highly distorted nature of the oxygen octahedron surrounding the iron atoms. Above TN, magnetic fluctuations are observed up to at least 720 K, with an additional inelastic excitation around 4 meV, which we attribute to single-ion effects, as its intensity weakens slightly at 720 K compared to 100 K, which is consistent with the calculated cross sections using a single-ion model. Our theoretical analysis, using the MF-RPA model, provides both detailed spectra of the Fe d shell and estimates of the average ordered magnetic moment and TN. By applying the MF-RPA model to a number of existing spin-wave results from other Li M PO4 (M =Mn , Co, and Ni), we are able to obtain reasonable predictions for the moment sizes and transition temperatures.

  10. Modeling Optical Spectra of Large Organic Systems Using Real-Time Propagation of Semiempirical Effective Hamiltonians.

    Science.gov (United States)

    Ghosh, Soumen; Andersen, Amity; Gagliardi, Laura; Cramer, Christopher J; Govind, Niranjan

    2017-09-12

    We present an implementation of a time-dependent semiempirical method (INDO/S) in NWChem using real-time (RT) propagation to address, in principle, the entire spectrum of valence electronic excitations. Adopting this model, we study the UV/vis spectra of medium-sized systems such as P3B2 and f-coronene, and in addition much larger systems such as ubiquitin in the gas phase and the betanin chromophore in the presence of two explicit solvents (water and methanol). RT-INDO/S provides qualitatively and often quantitatively accurate results when compared with RT- TDDFT or experimental spectra. Even though we only consider the INDO/S Hamiltonian in this work, our implementation provides a framework for performing electron dynamics in large systems using semiempirical Hartree-Fock Hamiltonians in general.

  11. The importance of nuclear quantum effects in spectral line broadening of optical spectra and electrostatic properties in aromatic chromophores

    Science.gov (United States)

    Law, Y. K.; Hassanali, A. A.

    2018-03-01

    In this work, we examine the importance of nuclear quantum effects on capturing the line broadening and vibronic structure of optical spectra. We determine the absorption spectra of three aromatic molecules indole, pyridine, and benzene using time dependent density functional theory with several molecular dynamics sampling protocols: force-field based empirical potentials, ab initio simulations, and finally path-integrals for the inclusion of nuclear quantum effects. We show that the absorption spectrum for all these chromophores are similarly broadened in the presence of nuclear quantum effects regardless of the presence of hydrogen bond donor or acceptor groups. We also show that simulations incorporating nuclear quantum effects are able to reproduce the heterogeneous broadening of the absorption spectra even with empirical force fields. The spectral broadening associated with nuclear quantum effects can be accounted for by the broadened distribution of chromophore size as revealed by a particle in the box model. We also highlight the role that nuclear quantum effects have on the underlying electronic structure of aromatic molecules as probed by various electrostatic properties.

  12. Donor-related optical absorption spectra in GaAs-(Ga,Al)As quantum wells: hydrostatic pressure effects

    International Nuclear Information System (INIS)

    Lopez, S.Y.; Duque, C.A.; Porras-Montenegro, N.

    2004-01-01

    Full text: Donor-related optical-absorption spectra for GaAs-(Ga,Al)As quantum wells under hydrostatic pressure are investigated. A variational procedure in the e effective-mass approximation is used in order to obtain binding energies and wave functions. As a general feature, we observe that the binding energy increases with the pressure and with the decreasing of the width of the well. The pressure-related Γ-X crossover has been taken into account in the whole calculation. For the low-pressure regime we observe a linear binding energy behavior, whereas for high pressure the main effect associated with the height of the barrier is the bending of the binding energy curves towards smaller values. Two special structures in the density of impurity states and in the donor-related optical-absorption spectra are observed: an edge associated with transitions involving impurities at the center of the well and a peak associated with transitions related to impurities at the edges of the quantum well. Also, we observe shifts to higher energies of the density of impurity states as a function of the binding energy, as well as changes in the intensity with a red shift of the absorption effect with the hydrostatic pressure. (author)

  13. Establishing the link between fibril formation and Raman optical activity spectra of insulin

    Czech Academy of Sciences Publication Activity Database

    Kessler, Jiří; Yamamoto, S.; Bouř, Petr

    2017-01-01

    Roč. 19, č. 21 (2017), s. 13614-13621 ISSN 1463-9076 R&D Projects: GA ČR(CZ) GA16-05935S; GA ČR GA15-09072S Grant - others:COST(XE) CA15214 Institutional support: RVO:61388963 Keywords : molecular dynamics clusters * absolute configuration * vibrational spectra Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.123, year: 2016

  14. Anharmonic effects in IR, Raman, and Raman optical activity spectra of alanine and proline zwitterions

    Czech Academy of Sciences Publication Activity Database

    Daněček, Petr; Kapitán, Josef; Baumruk, V.; Bednárová, Lucie; Kopecký, V.; Bouř, Petr

    2007-01-01

    Roč. 126, č. 22 (2007), s. 224513-1 ISSN 0021-9606 R&D Projects: GA ČR GA203/06/0420; GA ČR GA202/07/0732; GA AV ČR IAA400550702 Institutional research plan: CEZ:AV0Z40550506 Keywords : IR * Raman * ROA spectra * Anharmonic effects Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.044, year: 2007

  15. Optical properties of Lactuca and Taraxacum seed and fruit coats: Their role as light filters [phytochrome, photoblasty, fiber optics, transmission, spectra

    International Nuclear Information System (INIS)

    Widell, K.-O.; Vogelmann, T.C.

    1985-01-01

    The optical properties of seed and fruit coats were examined from several varieties of light-sensitive achenes. Taraxacum vulgare L. and Lactuca sativa L. cv. Grand Rapids achenes with dark fruit coats and L. sativa cvs Huvudsallat and Issallat with white fruit coats were examined. Transmission spectra varied among the different achenes: white fruit coats of Lactuca acted as neutral density filters between 450 and 780 nm, whereas Taraxacum transmitted 2–36% in this region. The ribbed fruit coat structure greatly affected transmission so that at different locations in the same coat, transmission varied between 20 to 80% at 660 and 730 nm. Fruit coats of Grand Rapids lettuce and Taraxacum transmitted more far-red than red light with T 660 /T 730 ratios of 0.8 and 0.4, respectively. The relationship between the optical properties of fruit coats and light-stimulated germination is discussed. (author)

  16. Crystal Fields in Dilute Rare-Earth Metals Obtained from Magnetization Measurements on Dilute Rare-Earth Alloys

    DEFF Research Database (Denmark)

    Touborg, P.; Høg, J.

    1974-01-01

    Crystal field parameters of Tb, Dy, and Er in Sc, Y, and Lu are summarized. These parameters are obtained from magnetization measurements on dilute single crystals, and successfully checked by a number of different methods. The crystal field parameters vary unpredictably with the rare-earth solute....... B40, B60, and B66 are similar in Y and Lu. Crystal field parameters for the pure metals Tb, Dy, and Er are estimated from the crystal fields in Y and Lu....

  17. Comments on the optical lineshape function: Application to transient hole-burned spectra of bacterial reaction centers

    International Nuclear Information System (INIS)

    Reppert, Mike; Kell, Adam; Pruitt, Thomas; Jankowiak, Ryszard

    2015-01-01

    The vibrational spectral density is an important physical parameter needed to describe both linear and non-linear spectra of multi-chromophore systems such as photosynthetic complexes. Low-temperature techniques such as hole burning (HB) and fluorescence line narrowing are commonly used to extract the spectral density for a given electronic transition from experimental data. We report here that the lineshape function formula reported by Hayes et al. [J. Phys. Chem. 98, 7337 (1994)] in the mean-phonon approximation and frequently applied to analyzing HB data contains inconsistencies in notation, leading to essentially incorrect expressions in cases of moderate and strong electron-phonon (el-ph) coupling strengths. A corrected lineshape function L(ω) is given that retains the computational and intuitive advantages of the expression of Hayes et al. [J. Phys. Chem. 98, 7337 (1994)]. Although the corrected lineshape function could be used in modeling studies of various optical spectra, we suggest that it is better to calculate the lineshape function numerically, without introducing the mean-phonon approximation. New theoretical fits of the P870 and P960 absorption bands and frequency-dependent resonant HB spectra of Rb. sphaeroides and Rps. viridis reaction centers are provided as examples to demonstrate the importance of correct lineshape expressions. Comparison with the previously determined el-ph coupling parameters [Johnson et al., J. Phys. Chem. 94, 5849 (1990); Lyle et al., ibid. 97, 6924 (1993); Reddy et al., ibid. 97, 6934 (1993)] is also provided. The new fits lead to modified el-ph coupling strengths and different frequencies of the special pair marker mode, ω sp , for Rb. sphaeroides that could be used in the future for more advanced calculations of absorption and HB spectra obtained for various bacterial reaction centers

  18. Comments on the optical lineshape function: Application to transient hole-burned spectra of bacterial reaction centers

    Energy Technology Data Exchange (ETDEWEB)

    Reppert, Mike; Kell, Adam; Pruitt, Thomas [Department of Chemistry, Kansas State University, Manhattan, Kansas 66506 (United States); Jankowiak, Ryszard, E-mail: ryszard@ksu.edu [Department of Chemistry, Kansas State University, Manhattan, Kansas 66506 (United States); Department of Physics, Kansas State University, Manhattan, Kansas 66506 (United States)

    2015-03-07

    The vibrational spectral density is an important physical parameter needed to describe both linear and non-linear spectra of multi-chromophore systems such as photosynthetic complexes. Low-temperature techniques such as hole burning (HB) and fluorescence line narrowing are commonly used to extract the spectral density for a given electronic transition from experimental data. We report here that the lineshape function formula reported by Hayes et al. [J. Phys. Chem. 98, 7337 (1994)] in the mean-phonon approximation and frequently applied to analyzing HB data contains inconsistencies in notation, leading to essentially incorrect expressions in cases of moderate and strong electron-phonon (el-ph) coupling strengths. A corrected lineshape function L(ω) is given that retains the computational and intuitive advantages of the expression of Hayes et al. [J. Phys. Chem. 98, 7337 (1994)]. Although the corrected lineshape function could be used in modeling studies of various optical spectra, we suggest that it is better to calculate the lineshape function numerically, without introducing the mean-phonon approximation. New theoretical fits of the P870 and P960 absorption bands and frequency-dependent resonant HB spectra of Rb. sphaeroides and Rps. viridis reaction centers are provided as examples to demonstrate the importance of correct lineshape expressions. Comparison with the previously determined el-ph coupling parameters [Johnson et al., J. Phys. Chem. 94, 5849 (1990); Lyle et al., ibid. 97, 6924 (1993); Reddy et al., ibid. 97, 6934 (1993)] is also provided. The new fits lead to modified el-ph coupling strengths and different frequencies of the special pair marker mode, ω{sub sp}, for Rb. sphaeroides that could be used in the future for more advanced calculations of absorption and HB spectra obtained for various bacterial reaction centers.

  19. Observation of Lorentzian lineshapes in the room temperature optical spectra of strongly coupled Jaggregate/metal hybrid nanostructures by linear two-dimensional optical spectroscopy

    International Nuclear Information System (INIS)

    Wang, Wei; Sommer, Ephraim; De Sio, Antonietta; Gross, Petra; Vogelgesang, Ralf; Lienau, Christoph; Vasa, Parinda

    2014-01-01

    We analyze the linear optical reflectivity spectra of a prototypical, strongly coupled metal/molecular hybrid nanostructure by means of a new experimental approach, linear two-dimensional optical spectroscopy. White-light, broadband spectral interferometry is used to measure amplitude and spectral phase of the sample reflectivity or transmission with high precision and to reconstruct the time structure of the electric field emitted by the sample upon impulsive excitation. A numerical analysis of this time-domain signal provides a two-dimensional representation of the coherent optical response of the sample as a function of excitation and detection frequency. The approach is used to study a nanostructure formed by depositing a thin J-aggregated dye layer on a gold grating. In this structure, strong coupling between excitons and surface plasmon polaritons results in the formation of hybrid polariton modes. In the strong coupling regime, Lorentzian lineshape profiles of different polariton modes are observed at room temperature. This is taken as an indication that the investigated strongly coupled polariton excitations are predominantly homogeneously broadened at room temperature. This new approach presents a versatile, simple and highly precise addition to nonlinear optical spectroscopic techniques for the analysis of line broadening phenomena. (paper)

  20. Optical maturity variation in lunar spectra as measured by Moon Mineralogy Mapper data

    Science.gov (United States)

    Nettles, J.W.; Staid, M.; Besse, S.; Boardman, J.; Clark, R.N.; Dhingra, D.; Isaacson, P.; Klima, R.; Kramer, G.; Pieters, C.M.; Taylor, L.A.

    2011-01-01

    High spectral and spatial resolution data from the Moon Mineralogy Mapper (M3) instrument on Chandrayaan-1 are used to investigate in detail changes in the optical properties of lunar materials accompanying space weathering. Three spectral parameters were developed and used to quantify spectral effects commonly thought to be associated with increasing optical maturity: an increase in spectral slope ("reddening"), a decrease in albedo ("darkening"), and loss of spectral contrast (decrease in absorption band depth). Small regions of study were defined that sample the ejecta deposits of small fresh craters that contain relatively crystalline (immature) material that grade into local background (mature) soils. Selected craters are small enough that they can be assumed to be of constant composition and thus are useful for evaluating trends in optical maturity. Color composites were also used to identify the most immature material in a region and show that maturity trends can also be identified using regional soil trends. The high resolution M3 data are well suited to quantifying the spectral changes that accompany space weathering and are able to capture subtle spectral variations in maturity trends. However, the spectral changes that occur as a function of maturity were observed to be dependent on local composition. Given the complexity of space weathering processes, this was not unexpected but poses challenges for absolute measures of optical maturity across diverse lunar terrains. Copyright 2011 by the American Geophysical Union.

  1. Acousto-Optic Tunable Filter Hyperspectral Microscope Imaging Method for Characterizing Spectra from Foodborne Pathogens.

    Science.gov (United States)

    Hyperspectral microscope imaging (HMI) method, which provides both spatial and spectral characteristics of samples, can be effective for foodborne pathogen detection. The acousto-optic tunable filter (AOTF)-based HMI method can be used to characterize spectral properties of biofilms formed by Salmon...

  2. Pulse radiolysis of LiBr-KBr melts. Optical transient absorption spectra

    International Nuclear Information System (INIS)

    Sawamura, S.; Gebicki, J.L.; Mayer, J.; Kroh, J.

    1990-01-01

    Absorption spectra of the irradiated melts of LiBr and LiBr-KBr mixtures were investigated in the temperature range 673-873 K by nanosecond pulse radiolysis. The visible band ascribed to e s - shows the apparent shift towards longer wavelengths with increasing temperature and increasing content of KBr in the mixture. The UV transient absorption was attributed to superimposed Br 2 - and Br 3 - bands. The relation between the transition energy of visible band and the inverse mean ion distance is given for alkali bromide and chloride systems. (author)

  3. Effect of Molar Concentration on Optical Absorption Spectra of ZnS:Mn Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ravi Sharma

    2010-01-01

    Full Text Available The present paper reports the synthesis and characterization of luminescent nanocrystals of manganese doped zinc sulphide. Nanocrystals of zinc sulphide were prepared by chemical precipitation method using the solution of zinc chloride, sodium sulphide, manganese chloride and mercaptoethanol was used as the capping agent. It was found that change in the molar concentration changes the particle size. The particle size of such nanocrystals was measured using XRD pattern and it is found to be in between 3 nm – 5 nm. The blue-shift in absorption spectra was found with reducing size of the nanoparticles

  4. Optical spectra and analysis of Pr3+ in β-NaYF4

    International Nuclear Information System (INIS)

    Martin, N.; Boutinaud, P.; Mahiou, R.; Cousseins, J.C.

    1998-01-01

    We report a spectroscopic investigation of β-NaYF 4 :Pr 3+ . In order to study the upconversion properties of this system we determined the Stark energy level of different multiplets from luminescence spectra using polycrystalline samples with several concentrations at temperatures between 15 and 300 K. We correlate the luminescence and structural description and confirm the presence of three sites for the rare-earth ions in this material. Selective excitation is used to assign the self energy levels for each Pr 3+ ion in the three sites. (orig.)

  5. Crystal-fields at rare-earth sites in R2Fe14B compounds

    International Nuclear Information System (INIS)

    Adam, S.; Adam, G.; Burzo, E.

    1985-12-01

    Crystal-field effects are expected to be important in R 2 Fe 14 B compounds. Within a model-independent approach, it is proved that four distinct rare-earth sites exist with respect to the crystalline electric fields, namely, R(4f; z=0), R(4f; z=0.5 c), R(4g; z=0), and R(4g; z=0.5 c), and relationships are established between the corresponding crystal-fields coefficients. Further, generalized Stevens parametrizations of the crystal field coefficients are derived at three levels of approximation for the interatomic forces inside the crystal. A crystal lattice dressing effect upon the radial electronic integrals is found to occur, the magnitude of which depends on the deviation of the interatomic forces from Coulombian. Finally, computation of crystal-field coefficients in Nd 2 Fe 14 B leads to results which raise questions about the validity of the simple Coulomb point-charge model. (author)

  6. Mixed spin Ising model with four-spin interaction and random crystal field

    International Nuclear Information System (INIS)

    Benayad, N.; Ghliyem, M.

    2012-01-01

    The effects of fluctuations of the crystal field on the phase diagram of the mixed spin-1/2 and spin-1 Ising model with four-spin interactions are investigated within the finite cluster approximation based on a single-site cluster theory. The state equations are derived for the two-dimensional square lattice. It has been found that the system exhibits a variety of interesting features resulting from the fluctuation of the crystal field interactions. In particular, for low mean value D of the crystal field, the critical temperature is not very sensitive to fluctuations and all transitions are of second order for any value of the four-spin interactions. But for relatively high D, the transition temperature depends on the fluctuation of the crystal field, and the system undergoes tricritical behaviour for any strength of the four-spin interactions. We have also found that the model may exhibit reentrance for appropriate values of the system parameters.

  7. The diluted tri-dimensional spin-one Ising model with crystal field interactions

    International Nuclear Information System (INIS)

    Saber, M.

    1988-09-01

    3D spin-one Ising models with nearest-neighbour ferromagnetic interactions with crystal-field exhibit tricritical behaviour. A new method that applies to a wide class of random systems is used to study the influence of site and bond dilution on this behaviour. We have calculated temperature-crystal-field-concentration phase diagrams and determined, in particular, the influence of dilution on the zero temperature tricritical temperature. (author). 10 refs, 8 figs

  8. Electronic structure and optical absorption spectra of Y2 and Zr2 dimers

    International Nuclear Information System (INIS)

    Gutsev, G.L.

    1989-01-01

    The electron structure, ionization potentials from valent levels and energies of optic transitions of Y 2 and Zr 2 dimers are calculated within the framework of discrete-variatin X α -method. It is shown that the symmetry state 1 Σ g + is the main state of Y 2 and Zr 2 dimers, and the atoms in dimers have high-spin 4d n+1 5s 1 configuration. The chemical binding in Y 2 has the dominating 5s-5s nature which is revealed in a considerable interatomic distance; binding of 4d-electrons brings about a significant decrease in the bond length in Zr 2 dimer. The theoretical spectrum of optical absorption of Zr 2 agrees well with the obtained experimental spectrum of this molecule isolated in the organ matrix

  9. Interpreting the optical spectra of trace Fe2+ in layer silicates

    International Nuclear Information System (INIS)

    Tarasevich, Yu.I.; Pustovit, A.V.

    1988-01-01

    Estimates have been made of Fe 2+ term splittings in axial crystalline fields. It is found that all three long-wave bands in the optical spectrum are due to Fe 2+ α Fe 3+ charge transfer, while the splitting of 5 T/sub 2g/ and 5 E/sub g/ occurs in low-symmetry fields. Experimental evidence is presented for these calculations

  10. Theoretical emission line ratios for [Fe III] and [Fe VII] applicable to the optical and infrared spectra of gaseous nebulae.

    Science.gov (United States)

    Keenan, F P; Aller, L H; Ryans, R S; Hyung, S

    2001-08-14

    Recent calculations of electron impact excitation rates and Einstein A-coefficients for transitions among the 3d(6) levels of Fe III and among the 3d(2) levels of Fe VII are used to derive theoretical emission line ratios applicable to the optical and infrared spectra of gaseous nebulae. Results for [Fe III] are generated for electron temperatures T(e) = 7,000-20,000 K and densities N(e) = 10(2)-10(8) cm(-3), whereas those for [Fe VII] are provided for T(e) = 10,000-30,000 K and N(e) = 10(2)-10(8) cm(-3). The theoretical line ratios are significantly different in some instances from earlier calculations and resolve discrepancies between theory and observation found for the planetary nebulae IC 4997 and NGC 7027.

  11. Optimized geometry, vibration (IR and Raman spectra and nonlinear optical activity of p-nitroanilinium perchlorate molecule: A theoretical study

    Directory of Open Access Journals (Sweden)

    Tamer Ömer

    2016-03-01

    Full Text Available The molecular modeling of p-nitroanilinium perchlorate molecule was carried out by using B3LYP and HSEH1PBE levels of density functional theory (DFT. The IR and Raman spectra were simulated and the assignments of vibrational modes were performed on the basis of relative contribution of various internal co-ordinates. NBO analysis was performed to demonstrate charge transfer, conjugative interactions and the formation of intramolecular hydrogen bonding interactions within PNAPC. Obtained large dipole moment values showed that PNAPC is a highly polarizable complex, and the charge transfer occurs within PNAPC. Hydrogen bonding and charge transfer interactions were also displayed by small HOMO-LUMO gap and molecular electrostatic potential (MEP surface. The strong evidences that the material can be used as an efficient nonlinear optical (NLO material of PNAPC were demonstrated by considerable polarizability and hyperpolarizability values obtained at DFT levels.

  12. Optical and EPR spectra of the thionitrosyl complex [Cr(OH2)5(NS)]2+

    DEFF Research Database (Denmark)

    Døssing, Anders Rørbæk; Dethlefsen, Johannes Wied

    2008-01-01

    . The optical data indicate that the NS ligand is a weaker p-acceptor than the NO ligand. The EPR parameters of [Cr(OH2)5(NS)]2+ were determined: giso, g¦ and g-: 1.96515, 1.92686(5) and 1.986860(8); Aiso(53Cr), A¦(53Cr) and A-(53Cr): 25.3´10-4, 38´10-4 and 18.5´10-4cm-1; Aiso(14N), A¦(14N) and A-(14N): 6...

  13. Side Chain and Flexibility Contributions to the Raman Optical Activity Spectra of a Model Cyclic Hexapeptide

    Czech Academy of Sciences Publication Activity Database

    Hudecová, J.; Kapitán, Josef; Baumruk, V.; Hammer, R. P.; Keiderling, T. A.; Bouř, Petr

    2010-01-01

    Roč. 114, č. 28 (2010), s. 7642-7651 ISSN 1089-5639 R&D Projects: GA ČR GA203/06/0420; GA ČR GA202/07/0732; GA AV ČR IAA400550702 Grant - others:GA UK(CZ) 126310 Institutional research plan: CEZ:AV0Z40550506 Keywords : Raman optical activity * ab initio * side chain * flexibility * peptide Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.732, year: 2010

  14. A method to increase optical timing spectra measurement rates using a multi-hit TDC

    International Nuclear Information System (INIS)

    Moses, W.W.

    1993-01-01

    A method is presented for using a modern time to digital converter (TDC) to increase the data collection rate for optical timing measurements such as scintillator decay times. It extends the conventional delayed coincidence method, where a synchronization signal ''starts'' a TDC and a photomultiplier tube (PMT) sampling the optical signal ''stops'' the TDC. Data acquisition rates are low with the conventional method because ε, the light collection efficiency of the ''stop'' PMT, is artificially limited to ε∼0.01 photons per ''start'' signal to reduce the probability of detecting more than one photon during the sampling period. With conventional TDCs, these multiple photon events bias the time spectrum since only the first ''stop'' pulse is digitized. The new method uses a modern TDC to detect whether additional ''stop'' signals occur during the sampling period, and actively reject these multiple photon events. This allows ε to be increased to almost 1 photon per ''start'' signal, which maximizes the data acquisition rate at a value nearly 20 times higher. Multi-hit TDCs can digitize the arrival times of n ''stop'' signals per ''start'' signal, which allows ε to be increased to ∼3n/4. While overlap of the ''stop'' signals prevents the full gain in data collection rate to be realized, significant improvements are possible for most applications. (orig.)

  15. The role of ligands in the optical and electronic spectra of CdSe nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Kilina, Svletana [Los Alamos National Laboratory; Sergei, Ivanov A [Los Alamos National Laboratory; Victor, Klimov I [Los Alamos National Laboratory; Sergei, Tretiak [Los Alamos National Laboratory

    2008-01-01

    We investigate the impact of ligands on morphology, electronic structure, and optical response of the Cd33Se33 cluster, which already overlapps in size with the smallest synthesized CdSe quantum dots (QDs). Our Density Functional Theory (DFT) calculations demonstrate significant surface reorganization both for the bare cluster and for the cluster capped by amine and phosphine oxide ligand models. We observe strong surface-ligand interactions leading to substantial charge redistribution and polarization effects on the surface. This effect results in the appearance of hybridized states, where the electronic density is spread over the cluster and the ligands. Neither the ligand's nor hybridized molecular orbitals appear as trap states inside or near the band gap of the QD. Instead, being optically dark, dense hybridized states from the edges of the valence and the conduction bands could open new relaxation channels for high energy photoexcitations. Comparing quantum dots passivated by different ligands, we found that hybridized states are denser in at the edge of the conduction band of the cluster ligated with phosphine oxide molecules than that with primary amines. Such a different manifestation of ligand binding may potentially lead to the faster electron relaxation in dots passivated by phosphine oxide than by amine ligands, which is in agreement with experimental data.

  16. Hyperspectral optical imaging of human iris in vivo: characteristics of reflectance spectra

    Science.gov (United States)

    Medina, José M.; Pereira, Luís M.; Correia, Hélder T.; Nascimento, Sérgio M. C.

    2011-07-01

    We report a hyperspectral imaging system to measure the reflectance spectra of real human irises with high spatial resolution. A set of ocular prosthesis was used as the control condition. Reflectance data were decorrelated by the principal-component analysis. The main conclusion is that spectral complexity of the human iris is considerable: between 9 and 11 principal components are necessary to account for 99% of the cumulative variance in human irises. Correcting image misalignments associated with spontaneous ocular movements did not influence this result. The data also suggests a correlation between the first principal component and different levels of melanin present in the irises. It was also found that although the spectral characteristics of the first five principal components were not affected by the radial and angular position of the selected iridal areas, they affect the higher-order ones, suggesting a possible influence of the iris texture. The results show that hyperspectral imaging in the iris, together with adequate spectroscopic analyses provide more information than conventional colorimetric methods, making hyperspectral imaging suitable for the characterization of melanin and the noninvasive diagnosis of ocular diseases and iris color.

  17. Optical spectra obtained from amorphous films of rubrene: Evidence for predominance of twisted isomer

    Science.gov (United States)

    Kytka, M.; Gisslen, L.; Gerlach, A.; Heinemeyer, U.; Kováč, J.; Scholz, R.; Schreiber, F.

    2009-06-01

    In order to investigate the optical properties of rubrene we study the vibronic progression of the first absorption band (lowest π →π∗ transition). We analyze the dielectric function ɛ2 of rubrene in solution and thin films using the displaced harmonic oscillator model and derive all relevant parameters of the vibronic progression. The findings are supplemented by density functional calculations using B3LYP hybrid functionals. Our theoretical results for the molecule in two different conformations, i.e., with a twisted or planar tetracene backbone, are in very good agreement with the experimental data obtained for rubrene in solution and thin films. Moreover, a simulation based on the monomer spectrum and the calculated transition energies of the two conformations indicates that the thin film spectrum of rubrene is dominated by the twisted isomer.

  18. Optical Spectra of Radio Planetary Nebulae in the Small Magellanic Cloud

    Directory of Open Access Journals (Sweden)

    Payne, J. L.

    2008-06-01

    Full Text Available We present preliminary results from spectral observations of four (4 candidate radio sources co-identified with known planetary nebulae (PNe in the Small Magellanic Cloud (SMC. These were made using the Radcliffe 1.9-meter telescope in Sutherland, South Africa. These radio PNe were originally found in Australia Telescope Compact Array (ATCA surveys of the SMC at 1.42 and 2.37~GHz, and were further confirmed by new high resolution ATCA images at 6 and 3 cm (4arcsec/2arcsec. Optical PNe and radio candidates are within 2arcsec and may represent a sub-population of selected radio bright objects. Nebular ionized masses of these objects may be 2.6~$M_odot$ or greater, supporting the existence of PNe progenitor central stars with masses up to 8 $M_odot$.

  19. Optical spectra of radio planetary nebulae in the small Magellanic cloud

    Directory of Open Access Journals (Sweden)

    Payne J.L.

    2008-01-01

    Full Text Available We present preliminary results from spectral observations of four (4 candidate radio sources co-identified with known planetary nebulae (PNe in the Small Magellanic Cloud (SMC. These were made using the Radcliffe 1.9-meter telescope in Sutherland, South Africa. These radio PNe were originally found in Australia Telescope Compact Array (ATCA surveys of the SMC at 1.42 and 2.37 GHz, and were further confirmed by new high resolution ATCA images at 6 and 3 cm (400 /200 . Optical PNe and radio candidates are within 200 and may represent a sub- population of selected radio bright objects. Nebular ionized masses of these objects may be 2.6 Mo or greater, supporting the existence of PNe progenitor central stars with masses up to 8 Mo.

  20. Optical emission spectra of a copper plasma produced by a metal vapour vacuum arc plasma source

    International Nuclear Information System (INIS)

    Yotsombat, B.; Poolcharuansin, P.; Vilaithong, T.; Davydov, S.; Brown, I.G.

    2001-01-01

    Optical emission spectroscopy in the range 200-800 nm was applied for investigation of the copper plasma produced by a metal vapour vacuum arc plasma source. The experiments were conducted for the cases when the plasma was guided by straight and Ω-shaped curved solenoids as well as without solenoids, and also for different vacuum conditions. It was found that, besides singly- and doubly-charged ions, a relatively high concentration of excited neutral copper atoms was present in the plasma. The relative fraction of excited atoms was much higher in the region close to the cathode surface than in the plasma column inside the solenoid. The concentration of excited neutral, singly- and doubly-ionized atoms increased proportionally when the arc current was increased to 400 A. Some weak lines were attributed to more highly ionized copper species and impurities in the cathode material. (author)

  1. Phonon anomalies in optical spectra of LiNbO3 single crystals

    Directory of Open Access Journals (Sweden)

    ANDREJA VALCIC

    2004-06-01

    Full Text Available LiNbO3 single crystals were grown by the Czochralski technique in an air atmosphere. The critical crystal diameter Dc = 1.5 cm and the critical rate of rotation wc = 35 rpm were calculated by equations from the hydrodynamics of the melt. The domain inversion was carried out at 1430 K using a 3.75 V/cm electric field for 10 min. The obtained crystals were cut, polished and etched to determine the presence of dislocations and single domain structures. The optical properties were studied by infrared and Raman spectroscopy as a function of temperature. With decreasing temperature, an atypical behaviour of the phonon modes could be seen in the ferroelectrics LiNbO3. The obtained results are discussed and compared with published data.

  2. Nebular and auroral emission lines of [Cl III] in the optical spectra of planetary nebulae.

    Science.gov (United States)

    Keenan, F P; Aller, L H; Ramsbottom, C A; Bell, K L; Crawford, F L; Hyung, S

    2000-04-25

    Electron impact excitation rates in Cl III, recently determined with the R-matrix code, are used to calculate electron temperature (T(e)) and density (N(e)) emission line ratios involving both the nebular (5517.7, 5537.9 A) and auroral (8433.9, 8480.9, 8500.0 A) transitions. A comparison of these results with observational data for a sample of planetary nebulae, obtained with the Hamilton Echelle Spectrograph on the 3-m Shane Telescope, reveals that the R(1) = I(5518 A)/I(5538 A) intensity ratio provides estimates of N(e) in excellent agreement with the values derived from other line ratios in the echelle spectra. This agreement indicates that R(1) is a reliable density diagnostic for planetary nebulae, and it also provides observational support for the accuracy of the atomic data adopted in the line ratio calculations. However the [Cl iii] 8433.9 A line is found to be frequently blended with a weak telluric emission feature, although in those instances when the [Cl iii] intensity may be reliably measured, it provides accurate determinations of T(e) when ratioed against the sum of the 5518 and 5538 A line fluxes. Similarly, the 8500.0 A line, previously believed to be free of contamination by the Earth's atmosphere, is also shown to be generally blended with a weak telluric emission feature. The [Cl iii] transition at 8480.9 A is found to be blended with the He i 8480.7 A line, except in planetary nebulae that show a relatively weak He i spectrum, where it also provides reliable estimates of T(e) when ratioed against the nebular lines. Finally, the diagnostic potential of the near-UV [Cl iii] lines at 3344 and 3354 A is briefly discussed.

  3. Emission lines of [K V] in the optical spectra of gaseous nebulae.

    Science.gov (United States)

    Keenan, Francis P; Aller, Lawrence H; Espey, Brian R; Exter, Katrina M; Hyung, Siek; Keenan, Michael T C; Pollacco, Don L; Ryans, Robert S I

    2002-04-02

    Recent R-matrix calculations of electron impact excitation rates in K v are used to derive the nebular emission line ratio R = I(4122.6 A)/I(4163.3 A) as a function of electron density (N(e)). This ratio is found to be very sensitive to changes in N(e) over the density range 10(3) to 10(6) cm(-3), but does not vary significantly with electron temperature, and hence in principle should provide an excellent optical N(e) diagnostic for the high-excitation zones of nebulae. The observed value of R for the planetary nebula NGC 7027, measured from a spectrum obtained with the Hamilton Echelle spectrograph on the 3-m Shane Telescope, implies a density in excellent agreement with that derived from [Ne iv], formed in the same region of the nebula as [K v]. This observation provides observational support for the accuracy of the theoretical [K v] line ratios, and hence the atomic data on which they are based. However, the analysis of a high-resolution spectrum of the symbiotic star RR Telescopii, obtained with the University College London Echelle Spectrograph on the 3.9-m Anglo-Australian Telescope, reveals that the [K v] 4122.6 A line in this object is badly blended with Fe ii 4122.6 A. Hence, the [K v] diagnostic may not be used for astrophysical sources that show a strong Fe ii emission line spectrum.

  4. Effect of optical pumping on absorption spectra for the doppler broadened rubidium

    International Nuclear Information System (INIS)

    Shin, Seo Ro; Noh, Heung Ryoul

    2008-01-01

    The absorption of a laser beam in the Doppler broadened atomic vapor cell is one of the simplest problems in atomic physics. Although many reports on theoretical and experimental studies of linear absorption have been reported, the effect of optical pumping on the absorption coefficient has not been studied in detail. In this presentation, we present a theoretical and experimental study on linear absorption for the Doppler broadened rubidium vapor cell. The absorption coefficient of a σ"+"(or π)polarized laser beam was calculated as a function of the laser frequency for the various laser intensities. The calculated results were compared with the experimental results. Figure 1(a) shows the calculated absorption coefficient of the π polarized laser beam for the transition F"g"=1→F"e"=0,1,2 of the "87"Rb atom. The diameter of the laser beam was 3mm and the intensity was I=0 and I=0.1I"8"(I"8"=16.2W/m"2"). The peak values for various intensities are shown in Fig. 1(b). We found that the absorption coefficient for the transition from the lower hyperfine state decreased with the increased laser intensity, whereas that for the transition from the upper hyperfine state increased(decreased)for the σ"+"(π)polarized laser beam

  5. Dependence of magnetization on crystal fields and exchange interactions in magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Ouaissa, Mohamed, E-mail: m.ouaissa@yahoo.fr [Laboratoire de Génie Physique et Environnement, Faculté des Sciences, Université Ibn Tofail, Campus Universitaire BP 133, Kénitra 14000 (Morocco); Benyoussef, Abdelilah [Laboratory of Magnetism and Physics of High Energy, Faculty of Science, Mohammed V-Agdal University, Rabat (Morocco); Abo, Gavin S. [Department of Electrical and Computer Engineering and MINT Center, The University of Alabama, Tuscaloosa, AL 35487 (United States); Ouaissa, Samia; Hafid, Mustapha [Laboratoire de Génie Physique et Environnement, Faculté des Sciences, Université Ibn Tofail, Campus Universitaire BP 133, Kénitra 14000 (Morocco); Belaiche, Mohammed [Laboratoire de Magnétisme, Matériaux Magnétiques, Microonde et Céramique, Ecole Normale Supérieure, Université Mohammed V-Agdal, B.P. 9235, Océan, Rabat (Morocco)

    2015-11-15

    In this work, we study the magnetization of magnetite (Fe{sub 3}O{sub 4}) with different exchange interactions and crystal fields using variational method based on the Bogoliubov inequality for the Gibbs free energy within the mean field theory. The magnetic behavior was investigated in the absence and presence of crystal fields. The investigations also revealed that the transition temperature depends on the crystal fields of the octahedral and tetrahedral sites. Magnetite exhibits ferrimagnetic phase with second order transition to paramagnetic phase at 850 K. This result is confirmed using the mean field theory within the Heisenberg model. Important factors that can affect the magnetic behavior of the system are exchange interactions and crystal field. Indeed, a new magnetic behavior was observed depending on these parameters. A first order phase transition from ferrimagnetic to ferromagnetic was found at low temperature, and a second order transition from ferromagnetic to paramagnetic was observed at high temperature. - Highlights: • Magnetization of magnetite versus temperature was studied by mean field theory. • The critical temperature of magnetite (Fe{sub 3}O{sub 4}) was approximately obtained. • Effect of sublattice crystal fields on the magnetization of Fe{sub 3}O{sub 4} was investigated.

  6. Crystal-field splittings in rare-earth-based hard magnets: An ab initio approach

    Science.gov (United States)

    Delange, Pascal; Biermann, Silke; Miyake, Takashi; Pourovskii, Leonid

    2017-10-01

    We apply the first-principles density functional theory + dynamical mean-field theory framework to evaluate the crystal-field splitting on rare-earth sites in hard magnetic intermetallics. An atomic (Hubbard-I) approximation is employed for local correlations on the rare-earth 4 f shell and self-consistency in the charge density is implemented. We reduce the density functional theory self-interaction contribution to the crystal-field splitting by properly averaging the 4 f charge density before recalculating the one-electron Kohn-Sham potential. Our approach is shown to reproduce the experimental crystal-field splitting in the prototypical rare-earth hard magnet SmCo5. Applying it to R Fe12 and R Fe12X hard magnets (R =Nd , Sm and X =N , Li), we obtain in particular a large positive value of the crystal-field parameter A20〈r2〉 in NdFe12N resulting in a strong out-of-plane anisotropy observed experimentally. The sign of A20〈r2〉 is predicted to be reversed by substituting N with Li, leading to a strong out-of-plane anisotropy in SmFe12Li . We discuss the origin of this strong impact of N and Li interstitials on the crystal-field splitting on rare-earth sites.

  7. Optical absorption and photoluminescence properties of chromium in different host glasses

    Energy Technology Data Exchange (ETDEWEB)

    Lachheb, R., E-mail: raouialach66@gmail.com [LaboratoireGéoressources, Matériaux, Environnement et Changements Globaux, Faculty of Sciences of Sfax, Sfax University, 3018 Sfax (Tunisia); Herrmann, A. [Otto-Schott-Institut, Jena University, Fraunhoferstraße 6, 07743 Jena (Germany); Damak, K. [LaboratoireGéoressources, Matériaux, Environnement et Changements Globaux, Faculty of Sciences of Sfax, Sfax University, 3018 Sfax (Tunisia); Rüssel, C. [Otto-Schott-Institut, Jena University, Fraunhoferstraße 6, 07743 Jena (Germany); Maâlej, R. [LaboratoireGéoressources, Matériaux, Environnement et Changements Globaux, Faculty of Sciences of Sfax, Sfax University, 3018 Sfax (Tunisia)

    2017-06-15

    The optical absorption, excitation and fluorescence spectra, and emission lifetimes of chromium (III) were investigated in a wide variety of oxide glasses (aluminosilicate, aluminate and phosphate). For all glasses, weak crystal field strengths were deduced from the absorption spectra. The effect of the glass matrix and the Cr{sup 3+} concentration on the fluorescence properties of Cr{sup 3+} ions were investigated. An increased fluorescence intensity of Cr{sup 3+}was found for glasses of low optical basicity, the spectral position of the Cr{sup 3+} absorption and emission, however, was hardly influenced by the glass composition. The optical absorption spectra of the chromium doped aluminosilicate and aluminate glasses showed the presence of Cr{sup VI}, while in phosphate glasses most chromium occurred as Cr{sup 3+} ions. Furthermore, for the glass with the lowest basicity, the Cr{sup 3+}concentration was optimized in order to achieve maximum fluorescence emission intensity.

  8. Optical spectroscopy of lanthanide ions in ZnO-TeO2 glasses.

    Science.gov (United States)

    Rolli, R; Wachtler, K; Wachtler, M; Bettinelli, M; Speghini, A; Ajò, D

    2001-09-01

    Zinc tellurite glasses of compositions 19ZnO-80TeO2-1Ln2O3 with Ln = Eu, Er, Nd and Tm were prepared by melt quenching. The absorption spectra were measured and from the experimental oscillator strengths of the f-->f transitions the Judd-Ofelt parameters ohm(lambda) were obtained. The values of the ohm(lambda) parameters are in the range usually observed for oxide glasses. For Nd3+ and Er3+, luminescence spectra in the near infrared were measured and the stimulated emission cross sections sigma(p) were evaluated for some laser transitions. The high values of sigma(p), especially for Nd3+, make them possible candidates for optical applications. Fluorescence line narrowing (FLN) spectra of the Eu3+ doped glass were measured at 20 K, and the energies of the Stark components of the 7F1 and 7F2 states were obtained. A crystal field analysis was carried out assuming a C2v site symmetry. The behaviour of the crystal field ratios B22/B20 and B44/B40 agrees reasonably well with the values calculated using the geometric model proposed by Brecher and Riseberg. The crystal field strength at the Eu3+ sites appears to be very low compared to other oxide glasses.

  9. Optical to ultraviolet spectra of sandwiches of benzene and transition metal atoms: Time dependent density functional theory and many-body calculations

    DEFF Research Database (Denmark)

    Martinez, Jose Ignacio; García Lastra, Juan Maria; Lopez, M. J.

    2010-01-01

    The optical spectra of sandwich clusters formed by transition metal atoms (titanium, vanadium, and chromium) intercalated between parallel benzene molecules have been studied by time-dependent density functional theory (TDDFT) and many-body perturbation theory. Sandwiches with different number...

  10. Simulations and analysis of the Raman scattering and differential Raman scattering/Raman optical activity (ROA) spectra of amino acids, peptides and proteins in aqueous solution

    DEFF Research Database (Denmark)

    Jalkanen, Karl J.; Nieminen, R. M.; Bohr, Jakob

    2000-01-01

    The Raman and Raman optical activity (ROA) spectra of amino acids and small peptides in aqueous solution have been simulated by density functional theory and restricted Hartree/Fock methods. The treatment of the aqueous environment in treated in two ways. The water molecules in the first hydratio...

  11. Optical absorption spectra and g factor of MgO: Mn2+explored by ab initio and semi empirical methods

    Science.gov (United States)

    Andreici Eftimie, E.-L.; Avram, C. N.; Brik, M. G.; Avram, N. M.

    2018-02-01

    In this paper we present a methodology for calculations of the optical absorption spectra, ligand field parameters and g factor for the Mn2+ (3d5) ions doped in MgO host crystal. The proposed technique combines two methods: the ab initio multireference (MR) and the semi empirical ligand field (LF) in the framework of the exchange charge model (ECM) respectively. Both methods of calculations are applied to the [MnO6]10-cluster embedded in an extended point charge field of host matrix ligands based on Gellé-Lepetit procedure. The first step of such investigations was the full optimization of the cubic structure of perfect MgO crystal, followed by the structural optimization of the doped of MgO:Mn2+ system, using periodic density functional theory (DFT). The ab initio MR wave functions approaches, such as complete active space self-consistent field (CASSCF), N-electron valence second order perturbation theory (NEVPT2) and spectroscopy oriented configuration interaction (SORCI), are used for the calculations. The scalar relativistic effects have also been taken into account through the second order Douglas-Kroll-Hess (DKH2) procedure. Ab initio ligand field theory (AILFT) allows to extract all LF parameters and spin-orbit coupling constant from such calculations. In addition, the ECM of ligand field theory (LFT) has been used for modelling theoptical absorption spectra. The perturbation theory (PT) was employed for the g factor calculation in the semi empirical LFT. The results of each of the aforementioned types of calculations are discussed and the comparisons between the results obtained and the experimental results show a reasonable agreement, which justifies this new methodology based on the simultaneous use of both methods. This study establishes fundamental principles for the further modelling of larger embedded cluster models of doped metal oxides.

  12. Crystal fields of dilute Tb, Dy, Ho, or Er in Lu obtained by magnetization measurements

    International Nuclear Information System (INIS)

    Touborg, P.; Hog, J.

    1975-01-01

    Magnetization measurements are reported on single crystals of dilute Tb, Dy, Ho, or Er in Lu. These measurements were performed in the temperature range 1.5--100 K and field range 0--6 T and include measurements of initial susceptibility, isothermal and isofield magnetization, and basal-plane anisotropy. The results show features similar to the corresponding Y-R alloys, where R is a rare earth. Crystal-field and molecular-field parameters could be unabiguously deduced from the experimental data. The effects of crystal-field level broadening were investigated and demonstrated for Ho. Comparison of the Y-R and Lu-R results makes possible an estimate of the crystal-field parameters in the pure-rare-earth metals

  13. Tricritical behavior in the diluted transverse spin-1 Ising model with a longitudinal crystal field

    International Nuclear Information System (INIS)

    Htoutou, K.; Oubelkacem, A.; Ainane, A.; Saber, M.

    2005-01-01

    The transverse spin-1 Ising model with a longitudinal crystal field exhibits a tricritical behavior. Within the effective field theory with a probability distribution technique that accounts for the self-spin correlations, we have studied the influence of site dilution on this behavior and have calculated the temperature-transverse field-longitudinal crystal field-concentration phase diagrams and determined, in particular, the influence of the concentration of magnetic atoms c on the tricritical behavior. We have found that the tricritical point appears for large values of the concentration c of magnetic atoms and disappears with the increase in dilution (small values of c). Results for square lattice are calculated numerically and some interesting results are obtained. In certain ranges of values of the strength of the longitudinal crystal field D/J when it becomes sufficiently negative, we found re-entrant phenomenon, which disappears with increase in the value of the strength of the transverse field

  14. First-principles study on electronic and optical properties of Cu2ZnSiV I4 (VI=S, Se, and Te quaternary semiconductors

    Directory of Open Access Journals (Sweden)

    Xuebiao Zhang

    2015-05-01

    Full Text Available The electronic and optical properties of Cu2ZnSiS4, Cu2ZnSiSe4 and Cu2ZnSiTe4 in kesterite and stannite structures are systematically studied using first-principles calculations. Crystal field splitting, optical transitions, p-d bonding, and anti-bonding overlapping are analyzed. The physical and chemical trends in these properties are investigated with respect to the crystal structure and anion atomic number. The optical spectra, such as dielectric function, refractive index, reflectivity and absorption coefficient are explored in a broad range of energy. A good agreement between the calculated results and experimental data is obtained.

  15. A simple localized-itinerant model for PrAl3: crystal field and exchange effects

    International Nuclear Information System (INIS)

    Ranke, P.J. von; Palermo, L.

    1990-01-01

    We present a simple magnetic model for PrAl sub(3). The effects of crystal field are treated using a reduced set of levels and the corresponding wave functions are extracted from the actual crystal field levels of Pr sup(+3) in a hexagonal symmetry. The exchange between 4f- and conduction electrons are dealt within a molecular field approximation. An analytical magnetic state equation is derived and the magnetic behaviour discussed. The parameters of the model are estimated from a fitting of the inverse susceptibility of PrAl sub(3) given in the literature. (author)

  16. Neutron Crystal-Field Spectroscopy and Susceptibility in ErcY1-cA1

    DEFF Research Database (Denmark)

    Heer, H.; Furrer, A.; Walker, E.

    1974-01-01

    Inelastic neutron scattering experiments and susceptibility measurements have been carried out on polycrystalline ErcY1-cAl2. A least-squares fitting procedure has been applied to the neutron data which favours four sets of crystal-field parameters. The results are compared with the measured...... susceptibility and other bulk magnetic properties. From this it is concluded that the crystal-field parameters x=-0.54 and W=-0.018 meV are the most probable ones....

  17. Static magnetic susceptibility, crystal field and exchange interactions in rare earth titanate pyrochlores.

    Science.gov (United States)

    Malkin, B Z; Lummen, T T A; van Loosdrecht, P H M; Dhalenne, G; Zakirov, A R

    2010-07-14

    The experimental temperature dependence (T = 2-300 K) of single crystal bulk and site susceptibilities of rare earth titanate pyrochlores R(2)Ti(2)O(7) (R = Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) is analyzed in the framework of crystal field theory and a mean field approximation. Analytical expressions for the site and bulk susceptibilities of the pyrochlore lattice are derived taking into account long range dipole-dipole interactions and anisotropic exchange interactions between the nearest neighbor rare earth ions. The sets of crystal field parameters and anisotropic exchange coupling constants have been determined and their variations along the lanthanide series are discussed.

  18. Reliability of conventional crystal field models in f-electron systems

    Energy Technology Data Exchange (ETDEWEB)

    Gajek, Z. [Polska Akademia Nauk, Wroclaw (Poland). Inst. Niskich Temperatur i Badan Strukturalnych

    1995-03-15

    Crystal field models commonly applied to explain the electronic properties of solid f-electron compounds are discussed from the point of view of their inherent limitations and the false conclusions they may lead to. Both phenomenological and ab initio approximate models are considered. The discussion is based on generalized perturbation model calculations of the crystal field parameters for europium, uranium, plutonium and neptunium ions in various crystals. The results reveal the inadequacy of various electrostatic approaches and the correctness of models based on renormalization terms. ((orig.))

  19. Principal component analysis for the forensic discrimination of black inkjet inks based on the Vis-NIR fibre optics reflection spectra.

    Science.gov (United States)

    Gál, Lukáš; Oravec, Michal; Gemeiner, Pavol; Čeppan, Michal

    2015-12-01

    Nineteen black inkjet inks of six different brands were examined by fibre optics reflection spectroscopy in Visible and Near Infrared Region (Vis-NIR FORS) directly on paper with a view to achieving good resolution between them. These different inks were tested on nineteen different inkjet printers from three brands. Samples were obtained from prints by reflection probe. Processed reflection spectra in the range 500-1000 nm were used as samples in principal component analysis. Variability between spectra of the same ink obtained from different prints, as well as between spectra of square areas and lines was examined. For both spectra obtained from square areas and lines reference, Principal Component Analysis (PCA) models were created. According to these models, the inkjet inks were divided into clusters. PCA method is able to separate inks containing carbon black as main colorant from the other inks using other colorants. Some spectra were recorded from another piece of printer and used as validation samples. Spectra of validation samples were projected onto reference PCA models. According to position of validation samples in score plots it can be concluded that PCA based on Vis-NIR FORS can reliably differentiate inkjet inks which are included in the reference database. The presented method appears to be a suitable tool for forensic examination of questioned documents containing inkjet inks. Inkjet inks spectra were obtained without extraction or cutting sample with possibility to measure out of the laboratory. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. A systematic analysis of the spectra of trivalent actinide chlorides in D3h site symmetry

    International Nuclear Information System (INIS)

    Carnall, W.T.

    1989-11-01

    The optical spectra of actinide ions in the compound AnCl 3 and doped into single crystal LaCl 3 were interpreted in terms of transitions within 5f N configurations. Energy-level calculations were carried out using an effective operator Hamiltonian, the parameters of which were determined by fitting experimental data. Atomic and crystal-field matrices were diagonalized simultaneously assuming an approximate D 3h site symmetry. The spectroscopic data were taken from the literature but in most cases supplemented by unpublished measurements in absorption and in fluorescence. Spectroscopic data for each ion were analyzed independently, then the model parameters were intercompared and in many cases adjusted such that in the final fitting process the principal interactions showed uniform trends in parameter values with increasing atomic number. Consistent with analyses of the spectra of lanthanide ions in both LaCl 3 and LaF 3 , abrupt changes in magnitude of certain crystal-field parameters were found near the center of the 5f N -series. This resulted in two groups of parameter values, but with consistent trends for both halves of the series, and generally very good agreement between observed and computed energies. A new energy level chart based on computed crystal-field level energies for each trivalent actinide ion has been prepared. in addition, the parameters of the atomic part of each 5f N Hamiltonian were used to calculate the matrix elements of U (λ) for selected transitions. The values were tabulated to facilitate calculation of intensity-related parameters for 5f N -transitions using the Judd-Ofelt theory. 44 refs., 10 figs., 3 tabs

  1. Pressure-induced effects on the spectroscopic properties of Nd{sup 3+} in MgO:LiNbO{sub 3} single crystal. A crystal field approach

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz Santiuste, J.E., E-mail: jems@fis.uc3m.es [Departamento de Física, Escuela Politécnica Superior, Universidad Carlos III de Madrid, Avenida de la Universidad 30, E-28913 Leganés, Madrid (Spain); MALTA Consolider Team (Spain); Lavín, V.; Rodríguez-Mendoza, U.R. [MALTA Consolider Team (Spain); Departamento de Física, INM and IUdEA, Universidad de La Laguna, Apdo. 456. E-38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife (Spain); Tardio, M.M.; Ramírez-Jiménez, R. [Departamento de Física, Escuela Politécnica Superior, Universidad Carlos III de Madrid, Avenida de la Universidad 30, E-28913 Leganés, Madrid (Spain)

    2017-04-15

    The effects of pressure on the Nd{sup 3+}-doped MgO:LiNbO{sub 3} single crystal have been studied by luminescence spectroscopy at low temperature and high pressures from ambient conditions up to 33 GPa. Specifically, the pressure-induced evolution of the emission spectra, corresponding to the {sup 4}F{sub 3/2}→{sup 4}I{sub 9/2},{sup 4}I{sub 11/2} transitions, and the excitation spectra, corresponding to the {sup 4}I{sub 9/2}→{sup 4}F{sub 5/2}+{sup 2}H{sub 9/2}, and {sup 4}I{sub 9/2}→{sup 4}F{sub 7/2}+{sup 4}S{sub 3/2} transitions, show a gradual red-shift that follows a linear pressure dependence and a decrease in the intensity of the spectra with increasing pressure. The initial effect of increasing pressure on the MgO:LiNbO{sub 3} crystal is the modification of the relative amount of the several centers in the sample. At pressures around 20 GPa the characteristic multicenter Nd{sup 3+} structure eventually disappears indicating that all the centers have very similar environments near this pressure. At higher pressures, observed changes seem to have a different origin. The evolution of Nd{sup 3+} luminescence is studied in the frame of crystal-field theory in order to evaluate its capability of monitoring the pressure-induced structural changes. Crystal-field analysis, under approximated C{sub 3v} symmetry, shows a smooth increase of the overall crystal-field strength on the luminescent ion, which can be related to the volume reduction as pressure increases. Crystal-field parameters also show a general monotonic behavior with pressure that indicates a structural modification of the local structure that, maintaining the trigonal symmetry around the impurity ion, evolves towards a lower axial character. No evidences of a phase transition have been observed in the studied pressure range.

  2. Crystal-field splitting in coadsorbate systems: c (2x2) CO/K/Ni (100)

    NARCIS (Netherlands)

    Hasselström, J.; Föhlisch, A.; Denecke, R.; Nilsson, A.; Groot, F.M.F. de

    2000-01-01

    It is demonstrated how the crystal field splitting (CFS) fine structure can be used to characterize a coadsor-bate system. We have applied K 2p x-ray absorption spectroscopy (XAS) to the c(2x2) CO/K/Ni(100) system. The CFS fine structure is shown to be sensitive to the the local atomic

  3. Crystal field effect in YbMnO.sub.3./sub..

    Czech Academy of Sciences Publication Activity Database

    Diviš, M.; Hölsä, J.; Lastusaari, M.; Litvinchuk, A. P.; Nekvasil, Vladimír

    2008-01-01

    Roč. 451, 1-2 (2008), s. 662-665 ISSN 0925-8388 R&D Projects: GA AV ČR IAA100100627 Institutional research plan: CEZ:AV0Z10100521 Keywords : ytterbium * manganites * IR spectroscopy * crystal field Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.510, year: 2008

  4. Crystal field and magnetism with Wannier functions: rare-earth dopedaluminum garnets

    Czech Academy of Sciences Publication Activity Database

    Mihóková, Eva; Novák, Pavel; Laguta, Valentyn

    2015-01-01

    Roč. 33, č. 12 (2015), 1316-1323 ISSN 1002-0721 R&D Projects: GA ČR GA13-09876S Institutional support: RVO:68378271 Keywords : crystal field * ab initio calculations * garnets * rare earths Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.188, year: 2015

  5. Random crystal field effect on the magnetic and hysteresis behaviors of a spin-1 cylindrical nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Zaim, N.; Zaim, A., E-mail: ah_zaim@yahoo.fr; Kerouad, M., E-mail: kerouad@fs-umi.ac.ma

    2017-02-15

    In this work, the magnetic behavior of the cylindrical nanowire, consisting of a ferromagnetic core of spin-1 atoms surrounded by a ferromagnetic shell of spin-1 atoms is studied in the presence of a random crystal field interaction. Based on Metropolis algorithm, the Monte Carlo simulation has been used to investigate the effects of the concentration of the random crystal field p, the crystal field D and the shell exchange interaction J{sub s} on the phase diagrams and the hysteresis behavior of the system. Some characteristic behaviors have been found, such as the first and second-order phase transitions joined by tricritical point for appropriate values of the system parameters, triple and isolated critical points can be also found. Depending on the Hamiltonian parameters, single, double and para hysteresis regions are explicitly determined. - Highlights: • Phase diagrams of a ferromagnetic nanowire are examined by the Monte Carlo simulation. • Different types of the phase diagrams are obtained. • The effect of the random crystal field on the hysteresis loops is studied. • Single, double and para hysteresis regions are explicitly determined.

  6. Static magnetic susceptibility, crystal field and exchange interactions in rare earth titanate pyrochlores

    NARCIS (Netherlands)

    Malkin, B. Z.; Lummen, T. T. A.; van Loosdrecht, P. H. M.; Dhalenne, G.; Zakirov, A. R.

    2010-01-01

    The experimental temperature dependence (T = 2-300 K) of single crystal bulk and site susceptibilities of rare earth titanate pyrochlores R2Ti2O7 (R = Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) is analyzed in the framework of crystal field theory and a mean field approximation. Analytical expressions for the

  7. Crystal field and magnetism with Wannier functions: Orthorhombic rare-earth manganites

    Czech Academy of Sciences Publication Activity Database

    Novák, Pavel; Nekvasil, Vladimír; Knížek, Karel

    358-359, MAY (2014), s. 228-232 ISSN 0304-8853 R&D Projects: GA ČR GA13-25251S Institutional support: RVO:68378271 Keywords : crystal field * rare- earth magnetism Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.970, year: 2014

  8. Optical spectroscopy and luminescence quenching of LuI3:Ce3+

    International Nuclear Information System (INIS)

    Birowosuto, M.D.; Dorenbos, P.; Haas, J.T.M. de; Eijk, C.W.E. van; Kraemer, K.W.; Guedel, H.U.

    2006-01-01

    Optical spectroscopy of LuI 3 doped with Ce 3+ using ultraviolet and visible light excitation is reported. LuI 3 host excitation and emission and 4f-5d excitation and emission of Ce 3+ are observed. An empirical model based on crystal field splitting was used to estimate the energy of the highest 4f-5d excitation band. The crystal field splitting and centroid shift were compared to those of LuCl 3 :Ce 3+ and LuBr 3 :Ce 3+ . Temperature dependence of X-ray excited luminescence spectra shows thermal quenching, whereas that of the decay curve of Ce 3+ emission excited at the lowest 5d band of Ce 3+ does not indicate the presence of quenching of Ce 3+ emission for temperature below 625K. The quenching in LuI 3 :Ce 3+ therefore occurs before the 5d Ce 3+ emission takes place

  9. [Study on Square Super-Lattice Pattern with Surface Discharge in Dielectric Barrier Discharge by Optical Emission Spectra].

    Science.gov (United States)

    Niu, Xue-jiao; Dong, Li-fang; Liu, Ying; Wang, Qian; Feng, Jian-yu

    2016-02-01

    Square super-lattice pattern with surface discharge consisting of central spots and dim spots is firstly observed in the mixture of argon and air by using a dielectric barrier discharge device with water electrodes. By observing the image, it is found that the central spot is located at the centriod of its surrounding four dim spots. The short-exposure image recorded by a high speed video camera shows that the dim spot results from the surface discharges (SDs). The brightness of the central spot and is quite different from that of the dim spot, which indicates that the plasma states of the central spot and the dim spot may be differentiated. The optical emission spectrum method is used to further study the several plasma parameters of the central spot and the dim spot in different argon content. The emission spectra of the N₂ second positive band (C³IIu --> B³ IIg) are measured, from which the molecule vibration temperatures of the central spot and the dim spot are calculated respectively. The broadening of spectral line 696.57 nm (2P₂-->1S₅) is used to study the electron densities of the central spot and the dim spot. It is found that the molecule vibration temperature and electron density of the dim spot are higher than those of the central spot in the same argon content The molecule vibration temperature and electron density of the central spot and the dim spot increase with the argon content increasing from 90% to 99.9%. The surface discharge induced by the volume discharge (VD) has the determinative effect on the formation of the dim spot The experimental results above play an important role in studying the formation mechanism of surface discharg&of square super-lattice pattern with surface discharge. In addition, the studies exert an influence on the application of surface discharge and volume discharge in different fields.

  10. Optical and EPR spectra of γ-irradiated glasses of the Ba(PO3)2-LiF system

    International Nuclear Information System (INIS)

    Bocharova, T.V.; Karapetyan, G.O.; Khalilev, V.D.; Yashchurzhinskaya, O.A.

    1985-01-01

    EPR and optical absorption spectra of the Be(PO 3 ) 2 -LiF system glasses are obtained. Introduction of LiF up to 60 mol. % doesn't lead to occurrence of an additional absorption band (AAB) and EPR signals connected with F-centers formed under γ-irradiation in the LiF monocrystal. As a result of γ-irradiation of glasses activated by terbium, radiation color centers (RCC) are formed, which are, probably, the centers of electron capture and possess no unambiguous correlation with the known paramagnetic centers (PMC). Parallel investigation into the thermal decolouration kinetics by the EPR and optical spectroscopy method is reliable for establishing correlation between AAB and PMC signals in EPR spectra

  11. The optical spectra of 24 mu m galaxies in the cosmos field. I. Spitzer MIPS bright sources in the zCOSMOS-bright 10k catalog

    NARCIS (Netherlands)

    Caputi, K. I.; Lilly, S. J.; Aussel, H.; Sanders, D.; Frayer, D.; Le Fevre, O.; Renzini, A.; Zamorani, G.; Scodeggio, M.; Contini, T.; Scoville, N.; Carollo, C. M.; Hasinger, G.; Iovino, A.; Le Brun, V.; Le Floc'h, E.; Maier, C.; Mainieri, V.; Mignoli, M.; Salvato, M.; Schiminovich, D.; Silverman, J.; Surace, J.; Tasca, L.; Abbas, U.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Bottini, D.; Capak, P.; Cappi, A.; Cassata, P.; Cimatti, A.; Cucciati, O.; de la Torre, S.; de Ravel, L.; Franzetti, P.; Fumana, M.; Garilli, B.; Halliday, C.; Ilbert, O.; Kampczyk, P.; Kartaltepe, J.; Kneib, J. -P.; Knobel, C.; Kovac, K.; Lamareille, F.; Leauthaud, A.; Le Borgne, J. F.; Maccagni, D.; Marinoni, C.; McCracken, H.; Meneux, B.; Oesch, P.; Pello, R.; Perez-Montero, E.; Porciani, C.; Ricciardelli, E.; Scaramella, R.; Scarlata, C.; Tresse, L.; Vergani, D.; Walcher, J.; Zamojski, M.; Zucca, E.

    2008-01-01

    We study zCOSMOS-bright optical spectra for 609 Spitzer MIPS 24 mu m-selected galaxies with S-24 (mu m) > 0: 30 mJy and I <22.5 (AB mag) over 1.5 deg(2) of the COSMOS field. From emission-line diagnostics we find the following: (1) SFRs derived from the observed H alpha lambda 6563 and H beta lambda

  12. Quantitative analysis of reflection electron energy loss spectra to determine electronic and optical properties of Fe–Ni alloy thin films

    International Nuclear Information System (INIS)

    Tahir, Dahlang; Oh, Sukh Kun; Kang, Hee Jae; Tougaard, Sven

    2016-01-01

    Highlights: • Electronic and optical properties of Fe-Ni alloy thin films grown on Si (1 0 0) were studied via quantitative analyses of reflection electron energy loss spectra (REELS). • The energy loss functions (ELF) are dominated by a plasmon peak at 23.6 eV for Fe and moves gradually to lower energies in Fe-Ni alloys towards the bulk plasmon energy of Ni at 20.5 eV. • Fe has a strong effect on the dielectric and optical properties of Fe-Ni alloy thin films even for an alloy with 72% Ni. Electronic and optical properties of Fe-Ni alloy thin films grown on Si (1 0 0) were studied via quantitative analyses of reflection electron energy loss spectra (REELS). - Abstract: Electronic and optical properties of Fe–Ni alloy thin films grown on Si (1 0 0) by ion beam sputter deposition were studied via quantitative analyses of reflection electron energy loss spectra (REELS). The analysis was carried out by using the QUASES-XS-REELS and QUEELS-ε(k,ω)-REELS softwares to determine the energy loss function (ELF) and the dielectric functions and optical properties by analyzing the experimental spectra. For Ni, the ELF shows peaks around 3.6, 7.5, 11.7, 20.5, 27.5, 67 and 78 eV. The peak positions of the ELF for Fe_2_8Ni_7_2 are similar to those of Fe_5_1Ni_4_9, even though there is a small peak shift from 18.5 eV for Fe_5_1Ni_4_9 to 18.7 eV for Fe_2_8Ni_7_2. A plot of n, k, ε_1, and ε_2 shows that the QUEELS-ε(k,ω)-REELS software for analysis of REELS spectra is useful for the study of optical properties of transition metal alloys. For Fe–Ni alloy with high Ni concentration (Fe_2_8Ni_7_2), ε_1, and ε_2 have strong similarities with those of Fe. This indicates that the presence of Fe in the Fe–Ni alloy thin films has a strong effect.

  13. A simple model for localized-itinerant magnetic systems: crystal field effects

    International Nuclear Information System (INIS)

    Iannarella, L.; Silva, X.A. da; Guimarares, A.P.

    1989-01-01

    The magnetic behavior of a system consisting of localized electrons coupled to conduction electrons and submitted to an axial crystral field at T=0 K is ivestigated within the framework of the molecular field approximation. An analytical ionic magnetic state equation is deduced; it shows how the magnetization depends on the model parameters (exchange, crystal field, band occupation) and external magnetic field. A condition for the onset of spontaneous magnetic order is obtained and the ferro - and paramagnetic phases are studied. This study displays several features of real magnetic systems, including quenching or total suppression of the magnetic moments (depending on the relative value of the crystal field parameter) and exchange enhacement. The relevance of such model for the description of rare-earth intermetallic compounds is discussed. (author) [pt

  14. Spin-Orbit Qubits of Rare-Earth-Metal Ions in Axially Symmetric Crystal Fields

    Science.gov (United States)

    Bertaina, S.; Shim, J. H.; Gambarelli, S.; Malkin, B. Z.; Barbara, B.

    2009-11-01

    Contrary to the well-known spin qubits, rare-earth-metal qubits are characterized by a strong influence of crystal field due to large spin-orbit coupling. At low temperature and in the presence of resonance microwaves, it is the magnetic moment of the crystal-field ground state which nutates (for several μs) and the Rabi frequency ΩR is anisotropic. Here, we present a study of the variations of ΩR(H→0) with the magnitude and direction of the static magnetic field H→0 for the odd Er167 isotope in a single crystal CaWO4:Er3+. The hyperfine interactions split the ΩR(H→0) curve into eight different curves which are fitted numerically and described analytically. These “spin-orbit qubits” should allow detailed studies of decoherence mechanisms which become relevant at high temperature and open new ways for qubit addressing using properly oriented magnetic fields.

  15. Random crystal field effects on the integer and half-integer mixed-spin system

    Science.gov (United States)

    Yigit, Ali; Albayrak, Erhan

    2018-05-01

    In this work, we have focused on the random crystal field effects on the phase diagrams of the mixed spin-1 and spin-5/2 Ising system obtained by utilizing the exact recursion relations (ERR) on the Bethe lattice (BL). The distribution function P(Di) = pδ [Di - D(1 + α) ] +(1 - p) δ [Di - D(1 - α) ] is used to randomize the crystal field.The phase diagrams are found to exhibit second- and first-order phase transitions depending on the values of α, D and p. It is also observed that the model displays tricritical point, isolated point, critical end point and three compensation temperatures for suitable values of the system parameters.

  16. Uniform angular overlap model interpretation of the crystal field effect in U(5+) fluoride compounds

    Energy Technology Data Exchange (ETDEWEB)

    Gajek, Z.; Mulak, J. (W. Trzebiatowski Inst. of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw (Poland))

    1990-11-01

    The uniform interpretation of the crystal field effect in three different U(5+) fluoride compounds: CsUF{sub 6}, {alpha}-UF{sub 5} and {beta}-UF{sub 5} within the angular overlap model (AOM) is given. Some characteristic relations between the AOM parameters and their distance dependencies resulting from ab initio calculations are introduced and examined from a phenomenological point of view. The traditional simplest approach with only one independent parameter, i.e. e{sub {sigma}} with e{sub {pi}}:e{sub {sigma}} = 0.32 and e{sub {delta}} = 0, is shown to provide a consistent interpretation of the crystal field effect of the whole class of the compounds. The parameters obtained for one compound are easily and successfully extrapolated to others. The specificity and importance of the e{sub {delta}} parameter for 5f{sup 1} systems is discussed. (orig.).

  17. Symmetry-adaptation and selection rules for effective crystal field Hamiltonians

    International Nuclear Information System (INIS)

    Tuszynski, J.A.

    1986-01-01

    The intention of this paper is to systematically derive an effective Hamiltonian in the presence of crystal fields in such a way as to incorporate relativistic effects and higher order perturbation corrections including configuration mixing. This Hamiltonian will then be conveniently represented as a symmetry-adapted series of one- and two-body double tensor operators whose matrix elements will be analyzed for selection rules. 16 references, 4 tables

  18. Crystal field parameters with Wannier functions: application to rare-earth aluminates

    Czech Academy of Sciences Publication Activity Database

    Novák, Pavel; Knížek, Karel; Kuneš, Jan

    2013-01-01

    Roč. 87, č. 20 (2013), "205139-1"-"205139-7" ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP204/11/0713 Institutional support: RVO:68378271 Keywords : crystal-field * rare earths * Wannier functions Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.664, year: 2013 http://link.aps.org/doi/10.1103/PhysRevB.87.205139

  19. Evaluation of the exchange interaction and crystal fields in a prototype Dy2 SMM

    Science.gov (United States)

    Zhang, Qing; Sarachik, Myriam; Baker, Michael; Chen, Yizhang; Kent, Andrew; Pineda, Eufemio; McInnes, Eric

    In order to gain an understanding of the INS and magnetization data obtained for Dy2, the simplest member of a newly synthesized family of dysprosium-based molecular magnets, we report on calculations of the magnetic behavior of a Dy2 cluster with the formula [hqH2][Dy2(hq)4(NO3)3].MeOH. The molecular complex contains one high symmetry Dy(III) ion and one low symmetry Dy(III) ion. Our calculations suggest that exchange coupling between the two ions controls the behavior of the magnetization at low temperature, while the crystal field of the low symmetry Dy(III) ion controls the behavior at higher temperature. A point charge electrostatic model, based on crystallographic coordinates, provides a starting point for the determination of the crystal field. Parameters in these calculations are adjusted to provide best fits to inelastic neutron scattering data (INS) and low temperature magnetometry: the INS measurements access crystal field energies and low temperature magnetization probes the Dy-Dy exchange interaction. Work supported by ARO W911NF-13-1-1025 (CCNY) and NSF-DMR-1309202 (NYU).

  20. Actual and Idealized Crystal Field Parameterizations for the Uranium Ions in UF 4

    Science.gov (United States)

    Gajek, Z.; Mulak, J.; Krupa, J. C.

    1993-12-01

    The crystal field parameters for the actual coordination symmetries of the uranium ions in UF 4, C2 and C1, and for their idealizations to D2, C2 v , D4, D4 d , and the Archimedean antiprism point symmetries are given. They have been calculated by means of both the perturbative ab initio model and the angular overlap model and are referenced to the recent results fitted by Carnall's group. The equivalency of some different sets of parameters has been verified with the standardization procedure. The adequacy of several idealized approaches has been tested by comparison of the corresponding splitting patterns of the 3H 4 ground state. Our results support the parameterization given by Carnall. Furthermore, the parameterization of the crystal field potential and the splitting diagram for the symmetryless uranium ion U( C1) are given. Having at our disposal the crystal field splittings for the two kinds of uranium ions in UF 4, U( C2) and U( C1), we calculate the model plots of the paramagnetic susceptibility χ( T) and the magnetic entropy associated with the Schottky anomaly Δ S( T) for UF 4.

  1. Development of procedures for spectrometer brand Spectral Products to capture spectra of incoherent optical radiation for the Laboratorio de Fotonica y Tecnologia Laser Aplicada

    International Nuclear Information System (INIS)

    Arias Avendano, Fabio Andres

    2008-01-01

    The procedure to capture spectra of incoherent optical radiation for the Laboratorio de Fotonica y Tecnologia Laser Aplicada (LAFTLA), of the Escuela de Ingenieria Electrica de la Universidad de Costa Rica is developed through the use of a spectrometer brand Spectral Products. The thorough understanding of manuals spectrometer brand Spectral Products was necessary for the satisfactory development of the project. Spectrometer and the card National Instruments are installed and run both devices with a montage of suitable laboratory. Two catches of spectrum for two different sources of optical radiation are performanced, since damages to the files .ddl precluded that the SM 240 spectrometer worked properly to take more catches to other sources of optical radiation. A final report containing the two catches is produced with the respective analysis. (author) [es

  2. Photoluminescence and optical absorption spectra of {gamma}{sub 1}-(Ga{sub x}In{sub 1-x}){sub 2}Se{sub 3} mixed crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kranjcec, M. [Department of Geotechnics, University of Zagreb, 7 Hallerova Aleja, Varazdin, 42000 (Croatia); Ruder Boskovic Institute, 54 Bijenicka Cesta, Zagreb, 10000 (Croatia); Studenyak, I.P. [Uzhhorod National University, 46 Pidhirna Str., Uzhhorod, 88000 (Ukraine); Azhniuk, Yu. M. [Institute of Electron Physics, Ukr. Nat. Acad. Sci., 21 Universytetska Str., Uzhhorod, 88000 (Ukraine)

    2005-08-01

    Temperature and compositional studies of photoluminescence and optical absorption edge spectra of {gamma}{sub 1}-(Ga{sub x}In{sub 1-x}){sub 2}Se{sub 3} mixed crystals with x=0.1-0.4 are performed. Exciton and impurity-related photoluminescence bands are revealed at low temperatures and Urbach shape of the absorption edge is observed in the temperature range 77-300 K. Temperature and compositional dependences of the photoluminescence band spectral positions and halfwidths as well as optical pseudogap and absorption edge energy width are investigated. Mechanisms of radiative recombination and optical absorption as well as crystal lattice disordering processes in {gamma}{sub 1}-(Ga{sub x}In{sub 1-x}){sub 2}Se{sub 3} solid solutions are studied. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Wetting effect on optical sum frequency generation (SFG) spectra of D-glucose, D-fructose, and sucrose

    Science.gov (United States)

    Hieu, Hoang Chi; Li, Hongyan; Miyauchi, Yoshihiro; Mizutani, Goro; Fujita, Naoko; Nakamura, Yasunori

    2015-03-01

    We report a sum frequency generation (SFG) spectroscopy study of D-glucose, D-fructose and sucrose in the Csbnd H stretching vibration regime. Wetting effect on the SFG spectra was investigated. The SFG spectrum of D-glucose changed from that of α-D-glucose into those of α-D-glucose monohydrate by wetting. The SFG spectra showed evidence of a small change of β-D-fructopyranose into other anomers by wetting. SFG spectra of sucrose did not change by wetting. Assignments of the vibrational peaks in the SFG spectra of the three sugars in the dry and wet states were performed in the Csbnd H stretching vibration region near 3000 cm-1.

  4. X-ray absorption spectra and emission spectra of plasmas

    International Nuclear Information System (INIS)

    Peng Yonglun; Yang Li; Wang Minsheng; Li Jiaming

    2002-01-01

    The author reports a theoretical method to calculate the resolved absorption spectra and emission spectra (optically thin) of hot dense plasmas. Due to its fully relativistic treatment incorporated with the quantum defect theory, it calculates the absorption spectra and emission spectra for single element or multi-element plasmas with little computational efforts. The calculated absorption spectra of LTE gold plasmas agree well with the experimental ones. It also calculates the optical thin emission spectra of LTE gold plasmas, which is helpful to diagnose the plasmas of relevant ICF plasmas. It can also provide the relevant parameters such as population density of various ionic stages, precise radiative properties for ICF studies

  5. EMR-related problems at the interface between the crystal field Hamiltonians and the zero-field splitting Hamiltonians

    Directory of Open Access Journals (Sweden)

    Rudowicz Czesław

    2015-07-01

    Full Text Available The interface between optical spectroscopy, electron magnetic resonance (EMR, and magnetism of transition ions forms the intricate web of interrelated notions. Major notions are the physical Hamiltonians, which include the crystal field (CF (or equivalently ligand field (LF Hamiltonians, and the effective spin Hamiltonians (SH, which include the zero-field splitting (ZFS Hamiltonians as well as to a certain extent also the notion of magnetic anisotropy (MA. Survey of recent literature has revealed that this interface, denoted CF (LF ↔ SH (ZFS, has become dangerously entangled over the years. The same notion is referred to by three names that are not synonymous: CF (LF, SH (ZFS, and MA. In view of the strong need for systematization of nomenclature aimed at bringing order to the multitude of different Hamiltonians and the associated quantities, we have embarked on this systematization. In this article, we do an overview of our efforts aimed at providing a deeper understanding of the major intricacies occurring at the CF (LF ↔ SH (ZFS interface with the focus on the EMR-related problems for transition ions.

  6. Theoretical investigations of the optical and EPR spectra for trivalent cerium and ytterbium ions in orthorhombic YF{sub 3} crystal

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hong-Gang, E-mail: kezhouliu@163.com; Zheng, Wen-Chen

    2016-09-01

    The optical spectra and electron paramagnetic resonance (EPR) parameters (g factors and hyperfine structure constants A) for trivalent cerium and ytterbium ions in YF{sub 3} crystal with orthorhombic structure are investigated together by the complete diagonalization (of energy matrix) method (CDM). The obtained results are in reasonable agreement with the experimental ones. More importantly, two magnetically nonequivalent centers in YF{sub 3} crystal observed in EPR experiments are confirmed and ascribed to their specific positions in a unit cell by our calculations based on superposition model (SPM) analysis. Such identification of local sites with different magnetic properties would help us to understand not only the EPR spectra and magnetic susceptibility of other lanthanide ions doped in crystals with the same structure as YF{sub 3} but also the energy transfer scheme between two lanthanide ions occupying such two sites. All results are discussed carefully.

  7. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. III. Optical and UV Spectra of a Blue Kilonova from Fast Polar Ejecta

    Energy Technology Data Exchange (ETDEWEB)

    Nicholl, M.; Berger, E.; Kasen, D.; Metzger, B. D.; Elias, J.; Briceño, C.; Alexander, K. D.; Blanchard, P. K.; Chornock, R.; Cowperthwaite, P. S.; Eftekhari, T.; Fong, W.; Margutti, R.; Villar, V. A.; Williams, P. K. G.; Brown, W.; Annis, J.; Bahramian, A.; Brout, D.; Brown, D. A.; Chen, H. -Y.; Clemens, J. C.; Dennihy, E.; Dunlap, B.; Holz, D. E.; Marchesini, E.; Massaro, F.; Moskowitz, N.; Pelisoli, I.; Rest, A.; Ricci, F.; Sako, M.; Soares-Santos, M.; Strader, J.

    2017-10-16

    We present optical and ultraviolet spectra of the first electromagnetic counterpart to a gravitational wave (GW) source, the binary neutron star merger GW170817. Spectra were obtained nightly between 1.5 and 9.5 days post-merger, using the SOAR and Magellan telescopes; the UV spectrum was obtained with the \\textit{Hubble Space Telescope} at 5.5 days. Our data reveal a rapidly-fading blue component ($T\\approx5500$ K at 1.5 days) that quickly reddens; spectra later than $\\gtrsim 4.5$ days peak beyond the optical regime. The spectra are mostly featureless, although we identify a possible weak emission line at $\\sim 7900$ \\AA\\ at $t\\lesssim 4.5$ days. The colours, rapid evolution and featureless spectrum are consistent with a "blue" kilonova from polar ejecta comprised mainly of light $r$-process nuclei with atomic mass number $A\\lesssim 140$. This indicates a sight-line within $\\theta_{\\rm obs}\\lesssim 45^{\\circ}$ of the orbital axis. Comparison to models suggests $\\sim0.03$ M$_\\odot$ of blue ejecta, with a velocity of $\\sim 0.3c$. The required lanthanide fraction is $\\sim 10^{-4}$, but this drops to $<10^{-5}$ in the outermost ejecta. The large velocities point to a dynamical origin, rather than a disk wind, for this blue component, suggesting that both binary constituents are neutron stars (as opposed to a binary consisting of a neutron star and a black hole). For dynamical ejecta, the high mass favors a small neutron star radius of $\\lesssim 12$ km. This mass also supports the idea that neutron star mergers are a major contributor to $r$-process nucleosynthesis.

  8. Identification of persons by means of the Fourier spectra of the optical transmission binary models of the human irises

    Czech Academy of Sciences Publication Activity Database

    Muroň, A.; Koiš, P.; Pospíšil, Jaroslav

    2001-01-01

    Roč. 192, - (2001), s. 161-167 ISSN 0030-4018 Institutional research plan: CEZ:AV0Z1010921 Keywords : human iris * coherent optical Fourier transform * identification of persons Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.354, year: 2001

  9. Invisible structures in the X-ray absorption spectra of actinides

    NARCIS (Netherlands)

    Kvashnina, Kristina O.; De Groot, Frank M F

    The X-ray absorption spectra of actinides are discussed with an emphasis on the fundamental effects that influence their spectral shape, including atomic multiplet theory, charge transfer theory and crystal field theory. Many actinide spectra consist of a single peak and it is shown that the use of

  10. Li-impurity effect in optical spectra of KTaO.sub.3./sub.:Er.sup.3+./sup. crystals

    Czech Academy of Sciences Publication Activity Database

    Skvortsov, A. P.; Potůček, Zdeněk; Poletaev, N.K.; Syrnikov, P. P.; Bryknar, Z.; Dejneka, Alexandr; Jastrabík, Lubomír; Trepakov, Vladimír

    2016-01-01

    Roč. 121, č. 4 (2016), s. 534-537 ISSN 0030-400X Institutional support: RVO:68378271 Keywords : f–f absorption and emission spectra * Er impurities * KTaO 3 and K 1-x Li x TaO 3 * crystals Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.716, year: 2016

  11. On the laws of disordering of the Ln3+ -ion crystal field in insulating crystals

    International Nuclear Information System (INIS)

    Kaminskij, A.A.

    1988-01-01

    Results of the study of fundamental regularities, which cause crystal field (CF) disordering on Ln 3+ ions in dielectric crystals are summed up. Analysis and systematization of the investigation results of atomic structure of disordered laser crystals and conducted investigations on spectroscopic properties and induced radiation (IR) permitted to come to the conclusion that the nature of disordering on CF is related to two fundamental regularities. The first regularity- the structural-dynamic one- is pronounced in numerous nonstoichiometric phases; the second one - determines spectroscopic properties and IR character

  12. Angular overlap model analysis of the D 2d crystal field effect in uranium (4+) compounds

    Science.gov (United States)

    Gajek, Z.; Hubert, S.; Krupa, J. C.

    1988-12-01

    Recent interpretations of the D 2d crystal field of U 4+ in β-ThCl 4, α, β-ThBr 4, ThSiO 4 and UCl 4 are discussed in terms of the simplified one-, two- and three-parameter versions of the Angular Overlap Model which are shown to be a handy tool in a trial interpretation of the effect. The variation of the CF parameters with a small D 2 distortion of the coordination is well reproduced by the model.

  13. Crystal-field and clustering effects in the specific heat of Dy in Pd

    International Nuclear Information System (INIS)

    Devine, R.A.B.; Jacques, P.; Poirier, M.

    1975-01-01

    Recent results of specific-heat measurements on dilute alloys of Dy in Pd are reanalyzed. Assuming the ionic ground state found from paramagnetic-resonance measurements, the Schottky-anomaly and cluster contributions are segregated and the crystal-field splitting of the ground and first-excited states is found to be in reasonable agreement with theoretical predictions. The nature of the cluster contribution is discussed and an upper limit to the range of the Ruderman-Kittel-Kasuya-Yosida interaction deduced

  14. First-principles calculation of optical absorption spectra in conjugated polymers: Role of electron-hole interaction

    International Nuclear Information System (INIS)

    Rohlfing, Michael; Tiago, M.L.; Louie, Steven G.

    2000-01-01

    Experimental and theoretical studies have shown that excitonic effects play an important role in the optical properties of conjugated polymers. The optical absorption spectrum of trans-polyacetylene, for example, can be understood as completely dominated by the formation of exciton bound states. We review a recently developed first-principles method for computing the excitonic effects and optical spectrum, with no adjustable parameters. This theory is used to study the absorption spectrum of two conjugated polymers: trans-polyacetylene and poly-phenylene-vinylene(PPV)

  15. First-principles calculation of optical absorption spectra in conjugated polymers: Role of electron-hole interaction

    Energy Technology Data Exchange (ETDEWEB)

    Rohlfing, Michael; Tiago, M.L.; Louie, Steven G.

    2000-03-20

    Experimental and theoretical studies have shown that excitonic effects play an important role in the optical properties of conjugated polymers. The optical absorption spectrum of trans-polyacetylene, for example, can be understood as completely dominated by the formation of exciton bound states. We review a recently developed first-principles method for computing the excitonic effects and optical spectrum, with no adjustable parameters. This theory is used to study the absorption spectrum of two conjugated polymers: trans-polyacetylene and poly-phenylene-vinylene(PPV).

  16. Optical spectra of Zn{sub 1-x}Be{sub x}Te mixed crystals determined by IR-VIS-UV ellipsometry and photoluminescence measurements

    Energy Technology Data Exchange (ETDEWEB)

    Wronkowska, A.A., E-mail: aleksandra.wronkowska@utp.edu.p [Institute of Mathematics and Physics, University of Technology and Life Sciences, S. Kaliskiego 7, PL-85796 Bydgoszcz (Poland); Arwin, H. [Department of Physics, Chemistry and Biology, Linkoeping University, SE-58183 Linkoeping (Sweden); Firszt, F.; Legowski, S. [Institute of Physics, Nicholas Copernicus University, Grudziadzka 5, PL-87100 Torun (Poland); Wronkowski, A.; Skowronski, L. [Institute of Mathematics and Physics, University of Technology and Life Sciences, S. Kaliskiego 7, PL-85796 Bydgoszcz (Poland)

    2011-02-28

    Spectroscopic ellipsometry in the photon energy range from 0.04 eV to 6.50 eV is used for investigation of the optical response of Zn{sub 1-x}Be{sub x}Te crystals grown by a high-pressure Bridgman method in the composition range x {<=} 0.12. Infrared spectra display absorption bands centred between 411 cm{sup -1} and 420 cm{sup -1} associated with BeTe-type optical phonon modes. The positions of the transverse-optical and longitudinal-optical phonon modes have been found by modelling the line shape of the complex dielectric functions, {epsilon}-tilde and Im(-{epsilon}-tilde{sup -1}), using a classical damped Lorentzian oscillator approach. Ellipsometric measurements in the VIS-UV range allow determination of the fundamental energy-gap (E{sub 0}) and the higher threshold energies (E{sub 1}, E{sub 1} + {Delta}{sub 1}, E{sub 2}) originating from the band edge and spin-orbit splitting critical points. We have found that the Be content x = 0.12 causes an increase of the fundamental energy gap about 0.15 eV at room temperature when compared to the E{sub 0} = 2.23 eV of ZnTe crystal at the same temperature. Photoluminescence spectra were measured in the temperature range from 30 K to room temperature. Luminescence at temperature T > 200 K is very weak. The peak positions of the exciton emission lines agree well with the E{sub 0} band-gaps derived from ellipsometric data if corrected for their temperature dependence.

  17. Optical properties of ion-implanted InP and GaAs: Selectivity-excited photoluminescence spectra

    International Nuclear Information System (INIS)

    Makita, Yunosuke; Yamada, Akimasa; Kimura, Shinji; Niki, Shigeru; Yoshinaga, Hiroshi; Matsumori, Tokue; Iida, Tsutomu; Uekusa, Ichiro

    1993-01-01

    Implantation of Mg+ ions was carried out into high purity InP grown by liquid encapsulated Czochralski method. Mg+ ion-implanted InP presented the formation of plural novel emissions with increasing Mg concentration, [Mg] in the low temperature photoluminescence spectra. Selectively-excited photoluminescence (SPL) measurements were made to examine the features of two-hole replicas pertinent to the emissions of excitons bound to neutral Mg and residual Zn acceptors. Systematic variation of the emission intensities from the two types of two-hole replicas was found to be utilized for the evaluation of ion-implanted materials. The significant discrepancy of emission spectra between PL and SPL was attributed to the difference of the depth examined by using the excitation light with high and low absorption coefficient. The results revealed that the diffusion of ion-implanted Mg is extremely enhanced when [Mg] exceeds 1x10 17 cm -3

  18. Impact effects of gamma irradiation on the optical and FT infrared absorption spectra of some Nd3+-doped soda lime phosphate glasses

    Science.gov (United States)

    Marzouk, M. A.; Elkashef, I. M.; Elbatal, H. A.

    2018-04-01

    The main aim of the present work is to study by two collective optical and FTIR spectral measurements some prepared Nd2O3-doped soda lime phosphate glasses before and after gamma irradiation with dose (9 Mrad). The spectral data reveal two strong UV absorption peaks which are correlated with unavoidable trace iron impurities beside extended additional characteristic bands due to Nd3+ ions. Gamma irradiation on the undoped glass produces slight decrease of the intensity of the UV absorption and the generation of an induced visible band and these effects are controlled with two photochemical reduction of some Fe3+ ions to Fe2+ ions together with the formation of nonbridging oxygen hole center (NBOHC) or phosphorous oxygen hole center (POHC). The impact effect of gamma irradiation on the spectra of Nd2O3-doped glasses is limited due to suggested shielding behavior of neodymium ions. FT-infrared spectra show vibrational modes due to main Q2-Q3 phosphate groups and the response of gamma irradiation of the IR spectra is low and the limited variations are related to suggested changes in some bond angles and bond lengths which cause the observed decrease to the intensities of some IR bands.

  19. Optical and ESR spectra of gamma irradiated glasses in the Ba(PO/sub 3/)/sub 2/-LiF system

    Energy Technology Data Exchange (ETDEWEB)

    Bocharova, T.V.; Karapetyan, G.O.; Khalilev, V.D.; Yashchurzhinskaya, O.A.

    1985-11-01

    This study obtains the ESR and optical absorption spectra for glasses in the Ba(PO/sub 3/)/sub 2/-LiF system. Obtaining radiation color centers (RCC) induced by ionizing radiation in alkali halide crystals (AHC), in particular LiF, has been given an enormous practical impetus according to the authors, because of the development of lasers and passive laser gates based on AHC with color centers. The glasses studied were synthesized from reagents of ''exceptionally pure'' and ''chemically pure'' grades in vitreous carbon crucibles in a dry argon atmosphere at 900-1000/sup 0/C for 60 min. followed by an anneal in a muffle at 300-450/sup 0/C. The compositions of the experimental specimens and the spectra of their optical parameters are given. The addition of up to 60 mole% of LiF does not lead to the emergence of additional absorption band (AAB) or ESR signals associated with F centers formed by gamma radiation in an LiF single crystal. As a result of gamma irradiation of glasses activated by terbium, RCC are formed which are probably electron trapping centers and correspond to the paramagnetic center (PMC).

  20. EPR studies of excited state exchange and crystal-field effects in rare earth compounds

    International Nuclear Information System (INIS)

    Huang, C.Y.; Sugawara, K.; Cooper, B.R.

    1976-01-01

    EPR in excited crystal-field states of Tm 3+ , Pr 3+ , and Tb 3+ in singlet-ground-state systems and in the excited state of Ce 3+ in CeP are reviewed. Because one is looking at a crystal-field excited state resonance, the exchange, even if isotropic, does not act as a secular perturbation. This means that one obtains different effects and has access to more information about the dynamic effects of exchange than in conventional paramagnetic resonance experiments. The Tm and Pr monopnictides studied are paramagnetic at all temperatures. The most striking feature of the behavior of the GAMMA 5 /sup (2)/ EPR in the Tm compounds is the presence of an anomalous maximum in the temperature dependence of the g-factor. The relationship of this effect to anisotropic exchange is discussed. The results of the EPR of the excited GAMMA 5 /sup (2)/ level of Tb 3 + (g-factor becomes very large at T/sub N/ in antiferromagnetic TbX (X = P, As, Sb) and that of the excited GAMMA 8 level of Ce 3+ in antiferromagnetic CeP will also be reported. For sufficient dilution of the Tb 3+ in the terbium monopnictides, the systems become paramagnetic (Van Vleck paramagnets) down to 0 0 K. The Tb 3+ excited state resonance EPR in Tb/sub 0.1/ La/sub 0.9/P was studied as an example of behavior in such systems. 10 fig

  1. Luminescence of Cr{sup 3+} ions in ZnAl{sub 2}O{sub 4} and MgAl{sub 2}O{sub 4} spinels: correlation between experimental spectroscopic studies and crystal field calculations

    Energy Technology Data Exchange (ETDEWEB)

    Brik, M.G., E-mail: mikhail.brik@ut.ee [College of Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu 50411 (Estonia); Institute of Physics, Jan Dlugosz University, Al. Armii Krajowej 13/15, Czestochowa PL-42200 (Poland); Papan, J.; Jovanović, D.J. [University of Belgrade, Vinča Institute of Nuclear Sciences, P.O. Box 522, Belgrade 11001 (Serbia); Dramićanin, M.D., E-mail: dramican@vinca.rs [University of Belgrade, Vinča Institute of Nuclear Sciences, P.O. Box 522, Belgrade 11001 (Serbia)

    2016-09-15

    Details of preparation, spectroscopic and structural studies along with crystal field calculations for two Cr{sup 3+} doped spinels MgAl{sub 2}O{sub 4} and ZnAl{sub 2}O{sub 4} are given in the present paper. Both compounds show efficient red emission at about 685 nm, which is due to the {sup 2}E{sub g} → {sup 4}A{sub 2g} spin-forbidden transition of Cr{sup 3+} ions located at the sites with D{sub 3d} local symmetry. Analysis of structure of the CrO{sub 6} clusters was performed; comparison of the crystal field effects in both compounds revealed that the low-symmetry splitting of the orbital triplet states is more pronounced in ZnAl{sub 2}O{sub 4}. Both compounds show potential for applications as red-emitting phosphors. - Highlights: • Cr{sup 3+}-doped MgAl{sub 2}O{sub 4} and ZnAl{sub 2}O{sub 4} spinels were synthesized. • Excitation/emission spectra were recorded and analyzed. • Symmetry properties of the Cr-sites were analyzed. • Cr{sup 3+} energy levels in trigonal crystal field were calculated. • Cr{sup 3+}-doped MgAl{sub 2}O{sub 4} and ZnAl{sub 2}O{sub 4} spinels can be used as red phosphors.

  2. Structured optical vortices with broadband comb-like optical spectra in Yb:Y3Al5O12/YVO4 Raman microchip laser

    Science.gov (United States)

    Dong, Jun; Wang, Xiaolei; Zhang, Mingming; Wang, Xiaojie; He, Hongsen

    2018-04-01

    Structured optical vortices with 4 phase singularities have been generated in a laser diode pumped continuous-wave Yb:Y3Al5O12/YVO4 (Yb:YAG/YVO4) Raman microchip laser. The broadband comb-like first order Stokes laser emitting spectrum including 30 longitudinal modes covers from 1072.49 nm to 1080.13 nm with a bandwidth of 7.64 nm, which is generated with the Raman shift 259 cm-1 of the c-cut YVO4 crystal converted from the fundamental laser around 1.05 μm. Pump power dependent optical vortex beams are attributed to overlap of the Stokes laser field with the fundamental laser field caused by dynamically changing the coupling losses of the fundamental laser field. The maximum output power is 1.16 W, and the optical-to-optical efficiency is 18.4%. This work provides a method for generating structured optical vortices with an optical frequency comb in solid-state Raman microchip lasers, which have potential applications in quantum computations, micro-machining, and information processing.

  3. Optical Absorption Spectra and Electronic Properties of Symmetric and Asymmetric Squaraine Dyes for Use in DSSC Solar Cells: DFT and TD-DFT Studies

    Directory of Open Access Journals (Sweden)

    Reda M. El-Shishtawy

    2016-04-01

    Full Text Available The electronic absorption spectra, ground-state geometries and electronic structures of symmetric and asymmetric squaraine dyes (SQD1–SQD4 were investigated using density functional theory (DFT and time-dependent (TD-DFT density functional theory at the B3LYP/6-311++G** level. The calculated ground-state geometries reveal pronounced conjugation in these dyes. Long-range corrected time dependent density functionals Perdew, Burke and Ernzerhof (PBE, PBE1PBE (PBE0, and the exchange functional of Tao, Perdew, Staroverov, and Scuseria (TPSSh with 6-311++G** basis set were employed to examine optical absorption properties. In an extensive comparison between the optical data and DFT benchmark calculations, the BEP functional with 6-311++G** basis set was found to be the most appropriate in describing the electronic absorption spectra. The calculated energy values of lowest unoccupied molecular orbitals (LUMO were 3.41, 3.19, 3.38 and 3.23 eV for SQD1, SQD2, SQD3, and SQD4, respectively. These values lie above the LUMO energy (−4.26 eV of the conduction band of TiO2 nanoparticles indicating possible electron injection from the excited dyes to the conduction band of the TiO2 in dye-sensitized solar cells (DSSCs. Also, aromaticity computation for these dyes are in good agreement with the data obtained optically and geometrically with SQD4 as the highest aromatic structure. Based on the optimized molecular geometries, relative positions of the frontier orbitals, and the absorption maxima, we propose that these dyes are suitable components of photovoltaic DSSC devices.

  4. Application of some Hartree-Fock model calculations to the analysis of atomic and free-ion optical spectra

    International Nuclear Information System (INIS)

    Hayhurst, T.L.

    1980-01-01

    Techniques for applying ab-initio calculations to the analysis of atomic spectra are investigated, along with the relationship between the semi-empirical and ab-initio forms of Slater-Condon theory. Slater-Condon theory is reviewed with a focus on the essential features that lead to the effective Hamiltonians associated with the semi-empirical form of the theory. Ab-initio spectroscopic parameters are calculated from wavefunctions obtained via self-consistent field methods, while multiconfiguration Hamiltonian matrices are constructed and diagonalized with computer codes written by Robert Cowan of Los Alamos Scientific Laboratory. Group theoretical analysis demonstrates that wavefunctions more general than Slater determinants (i.e. wavefunctions with radical correlations between electrons) lead to essentially the same parameterization of effective Hamiltonians. In the spirit of this analysis, a strategy is developed for adjusting ab-initio values of the spectroscopic parameters, reproducing parameters obtained by fitting the corresponding effective Hamiltonian. Secondary parameters are used to screen the calculated (primary) spectroscopic parameters, their values determined by least squares. Extrapolations of the secondary parameters determined from analyzed spectra are attempted to correct calculations of atoms and ions without experimental levels. The adjustment strategy and extrapolations are tested on the KI sequence from K 0+ through Fe 7+ , fitting to experimental levels for V 4+ , and Cr 5+ ; unobserved levels and spectra are predicted for several members of the sequence. A related problem is also discussed: Energy levels of the Uranium hexahalide complexes, (UX 6 ) 2- for X = F, Cl, Br, and I, are fit to an effective Hamiltonian (the f 2 configuration in O/sub h/ symmetry) with corrections proposed by Brian Judd

  5. Application of some Hartree-Fock model calculations to the analysis of atomic and free-ion optical spectra

    International Nuclear Information System (INIS)

    Hayhurst, T.L.

    1980-05-01

    Techniques for applying ab-initio calculations to the analysis of atomic spectra are investigated, along with the relationship between the semi-empirical and ab-initio forms of Slater-Condon theory. Slater-Condon theory is reviewed with a focus on the essential features that lead to the effective Hamiltonians associated with the semi-empirical form of the theory. Ab-initio spectroscopic parameters are calculated from wavefunctions obtained via self-consistent field methods, while multi-configuration Hamiltonian matrices are constructed and diagonalized with computer codes written by Robert Cowan of Los Alamos Scientific Laboratory. Group theoretical analysis demonstrates that wavefunctions more general than Slater determinants (i.e., wavefunctions with radial correlations between electrons) lead to essentially the same parameterization of effective Hamiltonians. In the spirit of this analysis, a strategy is developed for adjusting ab-initio values of the spectroscopic parameters, reproducing parameters obtained by fitting the corresponding effective Hamiltonian. Secondary parameters are used to screen the calculated (primary) spectroscopic parameters, their values determined by least squares. Extrapolations of the secondary parameters determined from analyzed spectra are attempted to correct calculations of atoms and ions without experimental levels. The adjustment strategy and extrapolations are tested on the K I sequence from K 0+ through Fe 7+ , fitting to experimental levels for V 4+ , and Cr 5+ ; unobserved levels and spectra are predicted for several members of the sequence. A related problem is also discussed: energy levels of the uranium hexahalide complexes, (UX 6 ) 2- for X = F, Cl, Br, and I, are fit to an effective Hamiltonian (the f 2 configuration in O/sub h/ symmetry) with corrections proposed by Brian Judd

  6. Quantitative analysis of sugar composition in honey using 532-nm excitation Raman and Raman optical activity spectra

    Czech Academy of Sciences Publication Activity Database

    Šugar, Jan; Bouř, Petr

    2016-01-01

    Roč. 47, č. 11 (2016), s. 1298-1303 ISSN 0377-0486 R&D Projects: GA ČR GA15-09072S Institutional support: RVO:61388963 Keywords : honey * sugar mixtures * spectral decompositions * Raman spectroscopy * Raman optical activity Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.969, year: 2016

  7. Electronic structure, optical spectra and contact terms of the CoF64- cluster in LiF

    International Nuclear Information System (INIS)

    Albuquerque, E.L.; Maffeo, B.; Brandi, H.S.; Siqueira, M.L. de

    1975-01-01

    The electronic structure, the optical absorption bands and the magnetic hyperfine contact terms have been calculated for CoF 6 4- in LiF using the Multiple Scattering Xα Method. The results obtained are compared with experiment and once more indicated that this scheme is convenient to treat such complex problems

  8. Condensed matter optical spectroscopy an illustrated introduction

    CERN Document Server

    Ionita, Iulian

    2014-01-01

    Molecular Symmetry and the Symmetry GroupsSymmetry Elements and Symmetry OperationsPoint Groups and Molecular SymmetrySymmetry Classification of MoleculesMatrix Representation of Symmetry TransformationGroup RepresentationsProperties of Irreducible RepresentationsTables of CharactersSymmetry of Crystals and Space GroupsRotation Groups and OperatorsExamples of SymmetryStudy QuestionsReferencesCrystal Field TheoryStates and Energies of Free Atoms and IonsOptical Spectra of Ionic CrystalsImpurities in Crystal Lattice: Splitting of Levels and Terms in Lattice SymmetryWeak Crystalline Field of Octahedral SymmetryEffect of a Weak Crystalline Field of Lower SymmetriesSplitting of Multielectron dn Configurations in the Crystalline FieldJahn-Teller EffectConstruction of Energy-Level DiagramsTanabe-Sugano DiagramsExample of the Co IonLimitations of the Crystal Field TheoryStudy QuestionsReferencesSymmetry and Molecular Orbitals TheoryMolecular OrbitalsHybridization Scheme for σ OrbitalsHybridization Scheme for π Orbi...

  9. Lowest excited states and optical absorption spectra of donor–acceptor copolymers for organic photovoltaics: a new picture emerging from tuned long-range corrected density functionals

    KAUST Repository

    Pandey, Laxman; Doiron, Curtis; Sears, John S.; Bré das, Jean-Luc

    2012-01-01

    Polymers with low optical gaps are of importance to the organic photovoltaics community due to their potential for harnessing a large portion of the solar energy spectrum. The combination along their backbones of electron-rich and electron-deficient fragments contributes to the presence of low-lying excited states that are expected to display significant charge-transfer character. While conventional hybrid functionals are known to provide unsatisfactory results for charge-transfer excitations at the time-dependent DFT level, long-range corrected (LRC) functionals have been reported to give improved descriptions in a number of systems. Here, we use such LRC functionals, considering both tuned and default range-separation parameters, to characterize the absorption spectra of low-optical-gap systems of interest. Our results indicate that tuned LRC functionals lead to simulated optical-absorption properties in good agreement with experimental data. Importantly, the lowest-lying excited states (excitons) are shown to present a much more localized nature than initially anticipated. © 2012 the Owner Societies.

  10. Predicting ambient aerosol thermal-optical reflectance (TOR) measurements from infrared spectra: extending the predictions to different years and different sites

    Science.gov (United States)

    Reggente, Matteo; Dillner, Ann M.; Takahama, Satoshi

    2016-02-01

    Organic carbon (OC) and elemental carbon (EC) are major components of atmospheric particulate matter (PM), which has been associated with increased morbidity and mortality, climate change, and reduced visibility. Typically OC and EC concentrations are measured using thermal-optical methods such as thermal-optical reflectance (TOR) from samples collected on quartz filters. In this work, we estimate TOR OC and EC using Fourier transform infrared (FT-IR) absorbance spectra from polytetrafluoroethylene (PTFE Teflon) filters using partial least square regression (PLSR) calibrated to TOR OC and EC measurements for a wide range of samples. The proposed method can be integrated with analysis of routinely collected PTFE filter samples that, in addition to OC and EC concentrations, can concurrently provide information regarding the functional group composition of the organic aerosol. We have used the FT-IR absorbance spectra and TOR OC and EC concentrations collected in the Interagency Monitoring of PROtected Visual Environments (IMPROVE) network (USA). We used 526 samples collected in 2011 at seven sites to calibrate the models, and more than 2000 samples collected in 2013 at 17 sites to test the models. Samples from six sites are present both in the calibration and test sets. The calibrations produce accurate predictions both for samples collected at the same six sites present in the calibration set (R2 = 0.97 and R2 = 0.95 for OC and EC respectively), and for samples from 9 of the 11 sites not included in the calibration set (R2 = 0.96 and R2 = 0.91 for OC and EC respectively). Samples collected at the other two sites require a different calibration model to achieve accurate predictions. We also propose a method to anticipate the prediction error; we calculate the squared Mahalanobis distance in the feature space (scores determined by PLSR) between new spectra and spectra in the calibration set. The squared Mahalanobis distance provides a crude method for assessing the

  11. L-Alanyl-L-alanine Conformational Changes Induced by pH As Monitored by the Raman Optical Activity Spectra

    Czech Academy of Sciences Publication Activity Database

    Šebek, Jiří; Kapitán, Josef; Šebestík, Jaroslav; Baumruk, V.; Bouř, Petr

    2009-01-01

    Roč. 113, č. 27 (2009), s. 7760-7768 ISSN 1089-5639 R&D Projects: GA ČR GA202/07/0732; GA ČR GA203/07/1517; GA AV ČR IAA400550702 Institutional research plan: CEZ:AV0Z40550506 Keywords : Raman optical activity * peptides * conformation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.899, year: 2009

  12. Vacuum-ultraviolet ellipsometry spectra and optical properties of Ba(Zr,Ti)O.sub.3./sub. films

    Czech Academy of Sciences Publication Activity Database

    Suchaneck, G.; Chernova, Ekaterina; Kleiner, A.; Liebschner, R.; Jastrabík, Lubomír; Meyer, D.C.; Dejneka, Alexandr; Gerlach, G.

    2017-01-01

    Roč. 621, Jan (2017), s. 58-62 ISSN 0040-6090 R&D Projects: GA ČR GA15-13778S Institutional support: RVO:68378271 Keywords : barium zirconate titanate thin film * film structure * VUV ellipsometry * optical properties Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.879, year: 2016

  13. A reverse Monte Carlo method for deriving optical constants of solids from reflection electron energy-loss spectroscopy spectra

    International Nuclear Information System (INIS)

    Da, B.; Sun, Y.; Ding, Z. J.; Mao, S. F.; Zhang, Z. M.; Jin, H.; Yoshikawa, H.; Tanuma, S.

    2013-01-01

    A reverse Monte Carlo (RMC) method is developed to obtain the energy loss function (ELF) and optical constants from a measured reflection electron energy-loss spectroscopy (REELS) spectrum by an iterative Monte Carlo (MC) simulation procedure. The method combines the simulated annealing method, i.e., a Markov chain Monte Carlo (MCMC) sampling of oscillator parameters, surface and bulk excitation weighting factors, and band gap energy, with a conventional MC simulation of electron interaction with solids, which acts as a single step of MCMC sampling in this RMC method. To examine the reliability of this method, we have verified that the output data of the dielectric function are essentially independent of the initial values of the trial parameters, which is a basic property of a MCMC method. The optical constants derived for SiO 2 in the energy loss range of 8-90 eV are in good agreement with other available data, and relevant bulk ELFs are checked by oscillator strength-sum and perfect-screening-sum rules. Our results show that the dielectric function can be obtained by the RMC method even with a wide range of initial trial parameters. The RMC method is thus a general and effective method for determining the optical properties of solids from REELS measurements.

  14. Inductive crystal field control in layered metal oxides with correlated electrons

    International Nuclear Information System (INIS)

    Balachandran, P. V.; Cammarata, A.; Rondinelli, J. M.; Nelson-Cheeseman, B. B.; Bhattacharya, A.

    2014-01-01

    We show that the NiO 6 crystal field energies can be tailored indirectly via heterovalent A cation ordering in layered (La,A)NiO 4 Ruddlesden–Popper (RP) oxides, where A = Sr, Ca, or Ba, using density functional calculations. We leverage as a driving force the electrostatic interactions between charged [LaO] 1+ and neutral [AO] 0 planes to inductively tune the Ni–O bond distortions, without intentional doping or epitaxial strain, altering the correlated d-orbital energies. We use this strategy to design cation ordered LaCaNiO 4 and LaBaNiO 4 with distortions favoring enhanced Ni e g orbital polarization, and find local electronic structure signatures analogous to those in RP La-cuprates, i.e., parent phases of the high-temperature superconducting oxides

  15. Origin of gigantic magnetostriction and crystal field effects in terbium dititanate

    International Nuclear Information System (INIS)

    Aleksandrov, I.V.; Lidskij, B.V.; Mamsurova, L.G.

    1985-01-01

    The temperature and magnetic field dependences of the magnetostriction and magnetization and the temperature dependences of the magnetic susceptibility, specific heat and lattice parameter are investigated experimentally in a broad range of temperature and field strength for polycrystalline and single crystal Tb 2 Ti 2 O 7 . A conclusion is drawn regarding the structure of the energy levels of Tb 3+ in Tb 2 Ti 2 O 7 . A qualitative and quantitative explanation of all observed magnetic effects, and in particular of gigantic magnetostriction in Tb 2 Ti 2 O 7 , is presented which is based on the crystal field theory. It is shown that the huge magnitude of the magnetostriction in terbium dititanate is due to the specificity of the energy spectrum of Tb 3+ in Tb 2 Ti 2 O 7

  16. Inductive crystal field control in layered metal oxides with correlated electrons

    Energy Technology Data Exchange (ETDEWEB)

    Balachandran, P. V.; Cammarata, A.; Rondinelli, J. M., E-mail: jrondinelli@nortwestern.edu [Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104 (United States); Nelson-Cheeseman, B. B. [School of Engineering, University of St. Thomas, St. Paul, Minnesota 55105 (United States); Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Bhattacharya, A. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2014-07-01

    We show that the NiO{sub 6} crystal field energies can be tailored indirectly via heterovalent A cation ordering in layered (La,A)NiO{sub 4} Ruddlesden–Popper (RP) oxides, where A = Sr, Ca, or Ba, using density functional calculations. We leverage as a driving force the electrostatic interactions between charged [LaO]{sup 1+} and neutral [AO]{sup 0} planes to inductively tune the Ni–O bond distortions, without intentional doping or epitaxial strain, altering the correlated d-orbital energies. We use this strategy to design cation ordered LaCaNiO{sub 4} and LaBaNiO{sub 4} with distortions favoring enhanced Ni e{sub g} orbital polarization, and find local electronic structure signatures analogous to those in RP La-cuprates, i.e., parent phases of the high-temperature superconducting oxides.

  17. Crystal field effect in light actinide dioxides and oxychalcogenides - a unified phenomenological description

    Energy Technology Data Exchange (ETDEWEB)

    Gajek, Z. E-mail: gajek@int.pan.wroc.pl

    2004-05-01

    The electronic properties of the actinide ions in the series of semi-conducting, antiferromagnetic compounds: dioxides, AnO{sub 2} and oxychalcogenides, AnOY, where An=U, Np and Y=S, Se, are re-examined from the point of view of the consistency of the crystal field (CF) model. The discussion is based on the supposition that the effective metal-ligand interaction solely determines the net CF effect in non-metallic compounds. The main question we address here is, whether a reliable, consistent description of the CF effect in terms of the intrinsic parameters can be achieved for this particular family of compounds. Encouraging calculations reported previously for the AnO{sub 2} and UOY series serve as a reference data in the present estimation of electronic structure parameters for neptunium oxychalcogenides.

  18. Crystal field effect in light actinide dioxides and oxychalcogenides-a unified phenomenological description

    Science.gov (United States)

    Gajek, Z.

    2004-05-01

    The electronic properties of the actinide ions in the series of semi-conducting, antiferromagnetic compounds: dioxides, AnO2 and oxychalcogenides, AnOY, where An=U, Np and Y=S, Se, are re-examined from the point of view of the consistency of the crystal field (CF) model. The discussion is based on the supposition that the effective metal-ligand interaction solely determines the net CF effect in non-metallic compounds. The main question we address here is, whether a reliable, consistent description of the CF effect in terms of the intrinsic parameters can be achieved for this particular family of compounds. Encouraging calculations reported previously for the AnO2 and UOY series serve as a reference data in the present estimation of electronic structure parameters for neptunium oxychalcogenides.

  19. Crystal field effect in light actinide dioxides and oxychalcogenides - a unified phenomenological description

    International Nuclear Information System (INIS)

    Gajek, Z.

    2004-01-01

    The electronic properties of the actinide ions in the series of semi-conducting, antiferromagnetic compounds: dioxides, AnO 2 and oxychalcogenides, AnOY, where An=U, Np and Y=S, Se, are re-examined from the point of view of the consistency of the crystal field (CF) model. The discussion is based on the supposition that the effective metal-ligand interaction solely determines the net CF effect in non-metallic compounds. The main question we address here is, whether a reliable, consistent description of the CF effect in terms of the intrinsic parameters can be achieved for this particular family of compounds. Encouraging calculations reported previously for the AnO 2 and UOY series serve as a reference data in the present estimation of electronic structure parameters for neptunium oxychalcogenides

  20. Quasiparticle excitations in valence-fluctuation materials: effects of band structure and crystal fields

    International Nuclear Information System (INIS)

    Brandow, B.H.

    1985-01-01

    Evidence is now quite strong that the elementary hybridization model is the correct way to understand the lattice-coherent Fermi liquid regime at very low temperatures. Many-body theory leads to significant renormalizations of the input parameters, and many of the band-theoretic channels for hybridization are suppressed by the combined effects of Hund's-rule coupling, crystal-field splitting, and the f-f Coulomb repulsion U. Some exploratory calculations based on this picture are described, and some inferences are drawn about the band structures of several heavy-fermion materials. These inferences can and should be tested by suitably modified band-theoretic calculations. We find evidence for a significant Baber-scattering contribution in the very-low-temperature resistivity. A new mechanism is proposed for crossover from the coherent Fermi-liquid regime to the incoherent dense-Kondo regime. 28 refs

  1. Crystal field symmetry and magnetic interactions in rare earth-silver amorphous alloys

    International Nuclear Information System (INIS)

    Pappa, Catherine.

    1979-01-01

    A study has been made of the following rare earth based amorphous alloys: Ndsub(x)Agsub(100-x), Prsub(x)Agsub(100-x), Gdsub(x)Agsub(100-x), Tlsub(x)Agsub(100-x). In rare earth based amorphous alloys, the symmetrical distribution of the crystal field is very wide and hence not very sensitive to the content of the alloys. The existence of preponderant negative magnetic interactions leads to an upset magnetic order, the magnetization of a small volume not being nil. The magnetic behaviour of alloys with a small concentration of rare earths is governed by the existence of clusters of statistical origin, within which a rare earth ion has at least one other rare earth ion in the position of first neighbour. The presence of a high anisotropy at low temperatures make the magnetic interactions between clusters inoperative [fr

  2. Eu/RG absorption and excitation spectroscopy in the solid rare gases: state dependence of crystal field splitting and Jahn-Teller coupling.

    Science.gov (United States)

    Byrne, Owen; McCaffrey, John G

    2011-03-28

    Absorption spectroscopy recorded for annealed samples of matrix-isolated atomic europium reveals a pair of thermally stable sites in Ar and Kr while a single site exists in Xe. Plots of the matrix shifts of the visible s → p bands versus host polarizability, allowed the association of the single site in Xe and the blue sites in Ar and Kr. On the basis of the similar ground state bond lengths expected for the Eu-rare gas (RG) diatomics and the known Na-RG molecules, the blue sites are attributed to Eu occupancy in the smaller tetra-vacancy while the red sites are proposed to arise from hexa-vacancy sites. Both sites are of cubic symmetry, consistent with the pronounced Jahn-Teller structure present on the y(8)P ← a(8)S(7/2) transition for these bands in the three hosts studied. Site-selective excitation spectroscopy has been used to reanalyze complex absorption spectra previously published by Jakob et al. [Phys. Lett. A 57, 67 (1976)] for the near-UV f → d transitions. On the basis that a pair of thermally stable sites exist in solid argon, the occurrence of crystal field splitting has been identified to occur for the J ≥ 5/2 level of the (8)P state when isolated in these two sites with cubic symmetry. From a detailed lineshape analysis, the magnitude of the crystal field splittings on the J = 5/2 level in Ar is found to be 105 and 123 cm(-1) for the red and blue sites, respectively.

  3. The structure, vibrational spectra and nonlinear optical properties of the L-lysine × tartaric acid complex—Theoretical studies

    Science.gov (United States)

    Drozd, M.; Marchewka, M. K.

    2006-05-01

    The room temperature X-ray studies of L-lysine × tartaric acid complex are not unambiguous. The disorder of three atoms of carbon in L-lysine molecule is observed. These X-ray studies are ambiguous. The theoretical geometry study performed by DFT methods explain the most doubts which are connected with crystallographic measurements. The theoretical vibrational frequencies and potential energy distribution (PED) of L-lysine × tartaric acid were calculated by B3LYP method. The calculated frequencies were compared with experimental measured IR spectra. The complete assignment of the bands has been made on the basis of the calculated PED. The restricted Hartee-Fock (RHF) methods were used for calculation of the hyperpolarizability for investigated compound. The theoretical results are compared with experimental value of β.

  4. Absorption spectra analysis of hydrated uranium(III) complex chlorides

    Science.gov (United States)

    Karbowiak, M.; Gajek, Z.; Drożdżyński, J.

    2000-11-01

    Absorption spectra of powdered samples of hydrated uranium(III) complex chlorides of the formulas NH 4UCl 4 · 4H 2O and CsUCl 4 · 3H 2O have been recorded at 4.2 K in the 4000-26 000 cm -1 range. The analysis of the spectra enabled the determination of crystal-field parameters and assignment of 83 and 77 crystal-field levels for the tetrahydrate and trihydrate, respectively. The energies of the levels were computed by applying a simplified angular overlap model as well as a semiempirical Hamiltonian representing the combined atomic and crystal-field interactions. Ab initio calculations have enabled the application of a simplified parameterization and the determination of the starting values of the AOM parameters. The received results have proved that the AOM approach can quite well predict both the structure of the ground multiplet and the positions of the crystal-field levels in the 17 000-25 000 cm -1 range, usually obscured by strong f-d bands.

  5. Spectra of Wolf-Rayet stars. I. Optical line strengths and the hydrogen-to-helium ratios in WN type stars

    International Nuclear Information System (INIS)

    Conti, P.S.; Leep, E.M.; Perry, D.N.

    1983-01-01

    We begin a series of systematic studies of spectra of Wolf-Rayet stars by examining the optical line strengths of WN stars in the Galaxy and the Large Magellanic Cloud to see what similarities and differences exist among them. Tables of equivalent widths extracted from spectra are presented and some conclusions are drawn. We have found that there is a wide dispersion, up to a factor of 10 or more, in line strengths for all ions even among stars of the same subtype, with WN 7 stars weaker overall than surrounding types. Type-to-type trends are consistent with changing ionization balance in the stellar wind. Nitrogen line ratios indicate that the WN subtypes represent an ionization sequence, but one with considerable overlap: the classification scheme is not single valued; other physical parameters must play a role. The line strength dispersion does not appear to be primarily due to ionization, or luminosity. The Balmer-Pickering decrement has been used to estimate the H/He ratio for most of the WN stars with available spectra; semiquantitative results are presented. Significant differences in H/He are observed (10 stars may have H/He>2). At a given subclass, the strongest line stars have no detectable H. The abundance of H probably relates to structural differences in the winds that, in part, give rise to a dispersion in observed line strengths. Finally, we have estimated the C/N ratio from the C IV lambda5805/N IV lambda4057 line ratio. In most cases our observations suggest that the C/N ratio is consistent with ''evolved'' models for WN stars. A few stars show strong C IV implying much larger values for C/N, but hydrogen was not detected in them. These stars may be in transition from the WN to WC classes

  6. Magnetic Order and Crystal Field Excitations in Er2Ru2O7: A Neutron Scattering Study

    International Nuclear Information System (INIS)

    Ehlers, Georg; Gardner, Jason

    2009-01-01

    The magnetic pyrochlore Er 2 Ru 2 O 7 has been studied with neutron scattering and susceptibility measurements down to a base temperature of 270 mK. For the low temperature phase in which the Er sublattice orders, new magnetic Bragg peaks are reported which can be indexed with integer (hkl) for a face centered cubic cell. Inelastic measurements reveal a wealth of crystal field levels of the Er ion and a copious amount of magnetic scattering below 15 meV. The three lowest groups of crystal field levels are at 6.7, 9.1 and 18.5 meV.

  7. Global mean-field phase diagram of the spin-1 Ising ferromagnet in a random crystal field

    Science.gov (United States)

    Borelli, M. E. S.; Carneiro, C. E. I.

    1996-02-01

    We study the phase diagram of the mean-field spin-1 Ising ferromagnet in a uniform magnetic field H and a random crystal field Δi, with probability distribution P( Δi) = pδ( Δi - Δ) + (1 - p) δ( Δi). We analyse the effects of randomness on the first-order surfaces of the Δ- T- H phase diagram for different values of the concentration p and show how these surfaces are affected by the dilution of the crystal field.

  8. Crystal-field energy level analysis for Nd3+ ions at the low symmetry C1 site in [Nd(hfa)4(H2O)](N(C2H5)4) single crystals

    International Nuclear Information System (INIS)

    Mech, Agnieszka; Gajek, Zbigniew; Karbowiak, Miroslaw; Rudowicz, Czeslaw

    2008-01-01

    Optical absorption measurements of Nd 3+ ions in single crystals of [Nd(hfa) 4 (H 2 O)](N(C 2 H 5 ) 4 ) (hfa = hexafluoroacetyloacetonate), denoted Nd(hfa) for short, have been carried out at 4.2 and 298 K. This compound crystallizes in the monoclinic system (space group P 2 1 /n). Each Nd ion is coordinated to eight oxygen atoms that originate from the hexafluoroacetylacetonate ligands and one oxygen atom from the water molecule. A total of 85 experimental crystal-field (CF) energy levels arising from the Nd 3+ (4f 3 ) electronic configuration were identified in the optical spectra and assigned. A three-step CF analysis was carried out in terms of a parametric Hamiltonian for the actual C 1 symmetry at the Nd 3+ ion sites. In the first step, a total of 27 CF parameters (CFPs) in the Wybourne notation B kq , admissible by group theory, were determined in a preliminary fitting constrained by the angular overlap model predictions. The resulting CFP set was reduced to 24 specific independent CFPs using appropriate standardization transformations. Optimizations of the second-rank CFPs and extended scanning of the parameter space were employed in the second step to improve reliability of the CFP sets, which is rather a difficult task in the case of no site symmetry. Finally, seven free-ion parameters and 24 CFPs were freely varied, yielding an rms deviation between the calculated energy levels and the 85 observed ones of 11.1 cm -1 . Our approach also allows prediction of the energy levels of Nd 3+ ions that are hidden in the spectral range overlapping with strong ligand absorption, which is essential for understanding the inter-ionic energy transfer. The orientation of the axis system associated with the fitted CF parameters w.r.t. the crystallographic axes is established. The procedure adopted in our calculations may be considered as a general framework for analysis of CF levels of lanthanide ions at low (triclinic) symmetry sites

  9. Crystal-field energy level analysis for Nd(3+) ions at the low symmetry C(1) site in [Nd(hfa)(4)(H(2)O)](N(C(2)H(5))(4)) single crystals.

    Science.gov (United States)

    Mech, Agnieszka; Gajek, Zbigniew; Karbowiak, Mirosław; Rudowicz, Czesław

    2008-09-24

    Optical absorption measurements of Nd(3+) ions in single crystals of [Nd(hfa)(4)(H(2)O)](N(C(2)H(5))(4)) (hfa = hexafluoroacetyloacetonate), denoted Nd(hfa) for short, have been carried out at 4.2 and 298 K. This compound crystallizes in the monoclinic system (space group P 2(1)/n). Each Nd ion is coordinated to eight oxygen atoms that originate from the hexafluoroacetylacetonate ligands and one oxygen atom from the water molecule. A total of 85 experimental crystal-field (CF) energy levels arising from the Nd(3+) (4f(3)) electronic configuration were identified in the optical spectra and assigned. A three-step CF analysis was carried out in terms of a parametric Hamiltonian for the actual C(1) symmetry at the Nd(3+) ion sites. In the first step, a total of 27 CF parameters (CFPs) in the Wybourne notation B(kq), admissible by group theory, were determined in a preliminary fitting constrained by the angular overlap model predictions. The resulting CFP set was reduced to 24 specific independent CFPs using appropriate standardization transformations. Optimizations of the second-rank CFPs and extended scanning of the parameter space were employed in the second step to improve reliability of the CFP sets, which is rather a difficult task in the case of no site symmetry. Finally, seven free-ion parameters and 24 CFPs were freely varied, yielding an rms deviation between the calculated energy levels and the 85 observed ones of 11.1 cm(-1). Our approach also allows prediction of the energy levels of Nd(3+) ions that are hidden in the spectral range overlapping with strong ligand absorption, which is essential for understanding the inter-ionic energy transfer. The orientation of the axis system associated with the fitted CF parameters w.r.t. the crystallographic axes is established. The procedure adopted in our calculations may be considered as a general framework for analysis of CF levels of lanthanide ions at low (triclinic) symmetry sites.

  10. Crystal-field energy level analysis for Nd3+ ions at the low symmetry C1 site in [Nd(hfa)4(H2O)](N(C2H5)4) single crystals

    Science.gov (United States)

    Mech, Agnieszka; Gajek, Zbigniew; Karbowiak, Mirosław; Rudowicz, Czesław

    2008-09-01

    Optical absorption measurements of Nd3+ ions in single crystals of [Nd(hfa)4(H2O)](N(C2H5)4) (hfa = hexafluoroacetyloacetonate), denoted Nd(hfa) for short, have been carried out at 4.2 and 298 K. This compound crystallizes in the monoclinic system (space group P 21/n). Each Nd ion is coordinated to eight oxygen atoms that originate from the hexafluoroacetylacetonate ligands and one oxygen atom from the water molecule. A total of 85 experimental crystal-field (CF) energy levels arising from the Nd3+ (4f3) electronic configuration were identified in the optical spectra and assigned. A three-step CF analysis was carried out in terms of a parametric Hamiltonian for the actual C1 symmetry at the Nd3+ ion sites. In the first step, a total of 27 CF parameters (CFPs) in the Wybourne notation Bkq, admissible by group theory, were determined in a preliminary fitting constrained by the angular overlap model predictions. The resulting CFP set was reduced to 24 specific independent CFPs using appropriate standardization transformations. Optimizations of the second-rank CFPs and extended scanning of the parameter space were employed in the second step to improve reliability of the CFP sets, which is rather a difficult task in the case of no site symmetry. Finally, seven free-ion parameters and 24 CFPs were freely varied, yielding an rms deviation between the calculated energy levels and the 85 observed ones of 11.1 cm-1. Our approach also allows prediction of the energy levels of Nd3+ ions that are hidden in the spectral range overlapping with strong ligand absorption, which is essential for understanding the inter-ionic energy transfer. The orientation of the axis system associated with the fitted CF parameters w.r.t. the crystallographic axes is established. The procedure adopted in our calculations may be considered as a general framework for analysis of CF levels of lanthanide ions at low (triclinic) symmetry sites.

  11. Modeling local structure using crystal field and spin Hamiltonian parameters: the tetragonal FeK3+-OI2- defect center in KTaO3 crystal

    International Nuclear Information System (INIS)

    Gnutek, P; Rudowicz, C; Yang, Z Y

    2009-01-01

    The local structure and the spin Hamiltonian (SH) parameters, including the zero-field-splitting (ZFS) parameters D and (a+2F/3), and the Zeeman g factors g || and g perpendicular , are theoretically investigated for the Fe K 3+ -O I 2- center in KTaO 3 crystal. The microscopic SH (MSH) parameters are modeled within the framework of the crystal field (CF) theory employing the CF analysis (CFA) package, which also incorporates the MSH modules. Our approach takes into account the spin-orbit interaction as well as the spin-spin and spin-other-orbit interactions omitted in previous studies. The superposition model (SPM) calculations are carried out to provide input CF parameters for the CFA/MSH package. The combined SPM-CFA/MSH approach is used to consider various structural models for the Fe K 3+ -O I 2- defect center in KTaO 3 . This modeling reveals that the off-center displacement of the Fe 3+ ions, Δ 1 (Fe 3+ ), combined with an inward relaxation of the nearest oxygen ligands, Δ 2 (O 2- ), and the existence of the interstitial oxygen O I 2- give rise to a strong tetragonal crystal field. This finding may explain the large ZFS experimentally observed for the Fe K 3+ -O I 2- center in KTaO 3 . Matching the theoretical MSH predictions with the available structural data as well as electron magnetic resonance (EMR) and optical spectroscopy data enables predicting reasonable ranges of values of Δ 1 (Fe 3+ ) and Δ 2 (O 2- ) as well as the possible location of O I 2- ligands around Fe 3+ ions in KTaO 3 . The defect structure model obtained using the SPM-CFA/MSH approach reproduces very well the ranges of the experimental SH parameters D, g || and g perpendicular and importantly yields not only the correct magnitude of D but also the sign, unlike previous studies. More reliable predictions may be achieved when experimental data on (a+2F/3) and/or crystal field energy levels become available. Comparison of our results with those arising from alternative models existing

  12. Probing the electronic structure of Ni–Mn–In–Si based Heusler alloys thin films using magneto-optical spectra in martensitic and austenitic phases

    Energy Technology Data Exchange (ETDEWEB)

    Novikov, A. [Department of Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Sokolov, A., E-mail: asokol@unlserve.unl.edu [Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Gan’shina, E.A. [Department of Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Quetz, Abdiel; Dubenko, I.S. [Department of Physics, Southern Illinois University, Carbondale, IL 62901 (United States); Stadler, S. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Ali, N. [Department of Physics, Southern Illinois University, Carbondale, IL 62901 (United States); Titov, I.S.; Rodionov, I.D. [Department of Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Lähderanta, E. [Lappeenranta University of Technology, 53851 (Finland); Zhukov, A. [Dpto. de Física de Materiales, Fac. Químicas, UPV/EHU, 20018 San Sebastian (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain); Granovsky, A.B. [Department of Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Sabirianov, R. [Department of Physics, University of Nebraska at Omaha, Omaha, NE 68182 (United States)

    2017-06-15

    Highlights: • Magneto-optical properties of NiMnIn thin films with a magnetostructural transition. • Comparative analysis of magnetic properties in martensitic and austenite phases. • DFT calculations of the MO Kerr effect and site-resolved DOS agree with experiment. • The electronic structure does not change significantly with Martensitic transition. - Abstract: Thin films of Ni{sub 52}Mn{sub 35−x}In{sub 11+x}Si{sub 2} were fabricated by magnetron sputtering on MgO (0 0 1) single crystal substrates. Magnetization as function of temperature for Ni{sub 52}Mn{sub 35}In{sub 11}Si{sub 2} exhibits features consistent with a magnetostructural transition (MST) from an austenitic phase to a martensitic phase, similar to the bulk material. We observed that the martensitic transformation is externally sensitive to small changes in chemical composition and stoichiometry. It has been found that thin films of Ni{sub 52}Mn{sub 34−x}In{sub 11+x}Si{sub 2} with x = 0 and 1 undergo a temperature-induced MST or remain in a stable austenitic phase, respectively. Comparison of magneto-optical transverse Kerr effect spectra obtained at 0.5–4.0 eV in the 35–300 K temperature interval reveal insignificant differences between the martensitic and austenite phases. We found that the field and temperature dependencies of the transverse Kerr effect are quite different from the magnetization behavior, which is attributed to magnetic inhomogeneity across the films. To elucidate the effects of magnetostructural phase transitions on the electronic properties, we performed density functional calculations of the magneto-optical Kerr effect.

  13. Quantifying the Performances of DFT for Predicting Vibrationally Resolved Optical Spectra: Asymmetric Fluoroborate Dyes as Working Examples.

    Science.gov (United States)

    Bednarska, Joanna; Zaleśny, Robert; Bartkowiak, Wojciech; Ośmiałowski, Borys; Medved', Miroslav; Jacquemin, Denis

    2017-09-12

    This article aims at a quantitative assessment of the performances of a panel of exchange-correlation functionals, including semilocal (BLYP and PBE), global hybrids (B3LYP, PBE0, M06, BHandHLYP, M06-2X, and M06-HF), and range-separated hybrids (CAM-B3LYP, LC-ωPBE, LC-BLYP, ωB97X, and ωB97X-D), in predicting the vibrationally resolved absorption spectra of BF 2 -carrying compounds. To this end, for 19 difluoroborates as examples, we use, as a metric, the vibrational reorganization energy (λ vib ) that can be determined based on the computationally efficient linear coupling model (a.k.a. vertical gradient method). The reference values of λ vib were determined by employing the CC2 method combined with the cc-pVTZ basis set for a representative subset of molecules. To validate the performances of CC2, comparisons with experimental data have been carried out as well. This study shows that the vibrational reorganization energy, involving Huang-Rhys factors and normal-mode frequencies, can indeed be used to quantify the reliability of functionals in the calculations of the vibrational fine structure of absorption bands, i.e., an accurate prediction of the vibrational reorganization energy leads to absorption band shapes better fitting the selected reference. The CAM-B3LYP, M06-2X, ωB97X-D, ωB97X, and BHandHLYP functionals all deliver vibrational reorganization energies with absolute relative errors smaller than 20% compared to CC2, whereas 10% accuracy can be achieved with the first three functionals. Indeed, the set of examined exchange-correlation functionals can be divided into three groups: (i) BLYP, B3LYP, PBE, PBE0, and M06 yield inaccurate band shapes (λ vib,TDDFT poor band topologies (λ vib,TDDFT > λ vib,CC2 ). This study also demonstrates that λ vib can be reliably estimated using the CC2 model and the relatively small cc-pVDZ basis set. Therefore, the linear coupling model combined with the CC2/cc-pVDZ level of theory can be used as a very efficient

  14. Polar Mixing Optical Phonon Spectra in Wurtzite GaN Cylindrical Quantum Dots: Quantum Size and Dielectric Effects

    International Nuclear Information System (INIS)

    Zhang Li; Liao Jianshang

    2010-01-01

    The interface-optical-propagating (IO-PR) mixing phonon modes of a quasi-zero-dimensional (QoD) wurtzite cylindrical quantum dot (QD) structure are derived and studied by employing the macroscopic dielectric continuum model. The analytical phonon states of IO-PR mixing modes are given. It is found that there are two types of IO-PR mixing phonon modes, i.e. ρ-IO/z-PR mixing modes and the z-IO/ρ-PR mixing modes existing in QoD wurtzite QDs. And each IO-PR mixing modes also have symmetrical and antisymmetrical forms. Via a standard procedure of field quantization, the Froehlich Hamiltonians of electron-(IO-PR) mixing phonons interaction are obtained. Numerical calculations on a wurtzite GaN cylindrical QD are performed. The results reveal that both the radial-direction size and the axial-direction size as well as the dielectric matrix have great influence on the dispersive frequencies of the IO-PR mixing phonon modes. The limiting features of dispersive curves of these phonon modes are discussed in depth. The phonon modes 'reducing' behavior of wurtzite quantum confined systems has been observed obviously in the structures. Moreover, the degenerating behaviors of the IO-PR mixing phonon modes in wurtzite QoD QDs to the IO modes and PR modes in wurtzite Q2D QW and Q1D QWR systems are analyzed deeply from both of the viewpoints of physics and mathematics. (interdisciplinary physics and related areas of science and technology)

  15. Pressure dependence of crystal field splitting in Pr pnictides and chalcogenides

    International Nuclear Information System (INIS)

    Schirber, J.E.; Weaver, H.T.; Ginley, D.S.

    1978-01-01

    We have measured the pressure dependence of the Pr nuclear magnetic resonance shift in PrN, PrP, PrSb, PrAs, PrS and PrSe. The shifts in all the pnictides increase while in the chalcogenides the shifts decrease with pressure. The rare earth frequency shift is inversely proportional to the crystal field splitting in the context of the point charge model (PCM) so a decrease would be expected for all of these materials at a rate of 5/3 the volume compressibility. Our values for the pnictides tend to be considerably larger than the PCM value as well as the wrong sign. The chalcogenide values are much nearer in magnitude and are of the right sign for the PCM. Contrary to the report of Guertin et al. we see no anomaly in the pressure dependence of the susceptibility of PrS. The fact that PrN which is reported to be non-metallic also shows the wrong sign for the PCM presents difficulties for various conduction electron explanations for this unexpected behavior of the pnictides

  16. Optical bands and energy levels of Nd{sup 3+} ion in the YAl{sub 3}(BO{sub 3}){sub 4} nonlinear laser crystal

    Energy Technology Data Exchange (ETDEWEB)

    Jaque, D.; Capmany, J.; Garcia Sole, J. [Departamento de Fisica de Materiales, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Luo, Z.D. [Fujian Institute of Research on The Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)

    1997-11-03

    In this paper the polarized optical spectra (absorption and fluorescence) of the Nd{sup 3+} ion in the YAl{sub 3}(BO{sub 3}){sub 4} nonlinear crystal have been systematically investigated at low (10 K) and room temperature. Most energy levels of Nd{sup 3+} in this crystal (103) have been identified and conveniently labelled with their crystal field quantum numbers, {mu}=1/2 and {mu}=3/2. The radiative emitting states have been identified. Analysing the optical absorption spectra with the anisotropic Judd-Ofelt theory, the radiative lifetimes and branching ratios from the metastable state {sup 4}F{sub 3/2} have been calculated. Then, relevant spectroscopic parameters (quantum efficiency and emission cross sections) for laser applications have been estimated. Infrared to visible up-conversion is reported for the first time in this host crystal. (author)

  17. Effect of metal nanoparticles on energy spectra and optical properties of peripheral light-harvesting LH2 complexes from photosynthetic bacteria

    International Nuclear Information System (INIS)

    Goliney, I.Yu.; Sugakov, V.I.; Valkunas, L.; Vertsimakha, G.V.

    2012-01-01

    Highlights: ► Excitons of light-harvesting complexes (LH2) hybridize with plasmon modes. ► Light absorption of LH2 is enhanced by a metal nanoparticle. ► Using nanoshells allows reaching resonance between molecular and plasmons. ► Metal nanoparticles introduce additional channel of excitation decay. ► Light-harvesting may gain from the proper positioning of nanoshells. -- Abstract: The paper explores the theoretical possibility of affecting optical spectra and the quantum yield of the energy transfer in the peripheral light-harvesting complexes (LH2) from photosynthetic bacteria by placing a metal nanoparticle or a nanoshell nearby. An increased probability of the excitonic transition in the LH2 arises due to the borrowing of the oscillator strength from surface plasmons of the metal particle or the nanoshell. While both absorption and quenching of the excitations increase in the vicinity to a metal nanoparticle, having opposite effects, the total yield of the excitation transfer to reaction centers is shown to grow in the certain range of parameters.

  18. Effect of metal nanoparticles on energy spectra and optical properties of peripheral light-harvesting LH2 complexes from photosynthetic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Goliney, I.Yu., E-mail: igoliney@kinr.kiev.ua [Institute for Nuclear Research, National Academy of Science of Ukraine, 47 Nauki pr., 03680 Kyiv (Ukraine); Sugakov, V.I. [Institute for Nuclear Research, National Academy of Science of Ukraine, 47 Nauki pr., 03680 Kyiv (Ukraine); Valkunas, L. [Center for Physical Sciences and Technology, Savanoriu Ave. 231, 02300 Vilnius (Lithuania); Department of Theoretical Physics, Vilnius University, Sauletekio 9, Build. 3, 10222 Vilnius (Lithuania); Vertsimakha, G.V. [Institute for Nuclear Research, National Academy of Science of Ukraine, 47 Nauki pr., 03680 Kyiv (Ukraine)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Excitons of light-harvesting complexes (LH2) hybridize with plasmon modes. Black-Right-Pointing-Pointer Light absorption of LH2 is enhanced by a metal nanoparticle. Black-Right-Pointing-Pointer Using nanoshells allows reaching resonance between molecular and plasmons. Black-Right-Pointing-Pointer Metal nanoparticles introduce additional channel of excitation decay. Black-Right-Pointing-Pointer Light-harvesting may gain from the proper positioning of nanoshells. -- Abstract: The paper explores the theoretical possibility of affecting optical spectra and the quantum yield of the energy transfer in the peripheral light-harvesting complexes (LH2) from photosynthetic bacteria by placing a metal nanoparticle or a nanoshell nearby. An increased probability of the excitonic transition in the LH2 arises due to the borrowing of the oscillator strength from surface plasmons of the metal particle or the nanoshell. While both absorption and quenching of the excitations increase in the vicinity to a metal nanoparticle, having opposite effects, the total yield of the excitation transfer to reaction centers is shown to grow in the certain range of parameters.

  19. BETA SPECTRA. I. Negatrons spectra

    International Nuclear Information System (INIS)

    Grau Malonda, A.; Garcia-Torano, E.

    1978-01-01

    Using the Fermi theory of beta decay, the beta spectra for 62 negatrons emitters have been computed introducing a correction factor for unique forbidden transitions. These spectra are plotted vs. energy, once normal i sed, and tabulated with the related Fermi functions. The average and median energies are calculated. (Author)

  20. Electronic structures and magnetic/optical properties of metal phthalocyanine complexes

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Shintaro; Suzuki, Atsushi, E-mail: suzuki@mat.usp.ac.jp; Oku, Takeo [Department of Materials Science, The University of Shiga Prefecture. 2500 Hassaka, Hikone, Shiga 522-8533 (Japan)

    2016-02-01

    Electronic structures and magnetic / optical properties of metal phthalocyanine complexes were studied by quantum calculations using density functional theory. Effects of central metal and expansion of π orbital on aromatic ring as conjugation system on the electronic structures, magnetic, optical properties and vibration modes of infrared and Raman spectra of metal phthalocyanines were investigated. Electron and charge density distribution and energy levels near frontier orbital and excited states were influenced by the deformed structures varied with central metal and charge. The magnetic parameters of chemical shifts in {sup 13}C-nuclear magnetic resonance ({sup 13}C-NMR), principle g-tensor, A-tensor, V-tensor of electric field gradient and asymmetry parameters derived from the deformed structures with magnetic interaction of nuclear quadruple interaction based on electron and charge density distribution with a bias of charge near ligand under crystal field.

  1. Theoretical study of NMR, infrared and Raman spectra on triple-decker phthalocyanines

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Atsushi; Oku, Takeo [Department of Materials Science, The University of Shiga Prefecture 2500 Hassaka, Hikone, Shiga, 522-8533 (Japan)

    2016-02-01

    Electronic structures and magnetic properties of multi-decker phthalocyanines were studied by theoretical calculation. Electronic structures, excited processes at multi-states, isotropic chemical shifts of {sup 13}C, {sup 14}N and {sup 1}H-nuclear magnetic resonance (NMR), principle V-tensor in electronic field gradient (EFG) tensor and asymmetry parameters (η), vibration mode in infrared (IR) and Raman spectra of triple-decker phthalocyanines were calculated by density functional theory (DFT) and time-dependent DFT using B3LYP as basis function. Electron density distribution was delocalized on the phthalocyanine rings with electron static potential. Considerable separation of chemical shifts in {sup 13}C, {sup 14}N and {sup 1}H-NMR was originated from nuclear spin interaction between nitrogen and carbon atoms, nuclear quadrupole interaction based on EFG and η of central metal under crystal field. Calculated optical absorption at multi-excited process was derived from overlapping π-orbital on the phthalocyanine rings. The vibration modes in IR and Raman spectra were based on in-plane deformation and stretching vibrations of metal-ligand coordination bond on the deformed structure.

  2. Broken symmetry phase transition in solid p-H 2, o-D 2 and HD: crystal field effects

    Science.gov (United States)

    Freiman, Yu. A.; Hemley, R. J.; Jezowski, A.; Tretyak, S. M.

    1999-04-01

    We report the effect of the crystal field (CF) on the broken symmetry phase transition (BSP) in solid parahydrogen, orthodeuterium, and hydrogen deuteride. The CF was calculated taking into account a distortion from the ideal HCP structure. We find that, in addition to the molecular field generated by the coupling terms in the intermolecular potential, the Hamiltonian of the system contains a crystal-field term, originating from single-molecular terms in the intermolecular potential. Ignoring the CF is the main cause of the systematic underestimation of the transition pressure, characteristic of published theories of the BSP transition. The distortion of the lattice that gives rise to the negative CF in response to the applied pressure is in accord with the general Le Chatelier-Braun principle.

  3. Crystal field and magnetism of Pr.sup.3+./sup. and Nd.sup.3+./sup. ions in orthorhombic perovskites

    Czech Academy of Sciences Publication Activity Database

    Novák, Pavel; Knížek, Karel; Maryško, Miroslav; Jirák, Zdeněk; Kuneš, Jan

    2013-01-01

    Roč. 25, č. 44 (2013), s. 1-8 ISSN 0953-8984 R&D Projects: GA ČR GA13-25251S; GA ČR GAP204/10/0284; GA ČR(CZ) GAP204/11/0713 Institutional support: RVO:68378271 Keywords : crystal field * rare earth * ab initio method Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.223, year: 2013

  4. EPR and optical absorption studies of Cr3+ ions in potassium sodium dl-tartrate tetrahydrate

    International Nuclear Information System (INIS)

    Kripal, Ram; Singh, Pragya; Shukla, Santwana

    2011-01-01

    EPR spectra of Cr 3+ ions doped in potassium sodium dl-tartrate tetrahydrate single crystals are recorded at 77 K. The spin Hamiltonian and zero field parameters g, |D| and |E| are measured from the resonance lines obtained at various rotations of the magnetic field. The values obtained are: g x =1.9257±0.0002, g y =1.9720±0.0002, g z =2.0102±0.0002, |D|=313±2 (x10 -4 ) cm -1 and |E|=101±2 (x10 -4 ) cm -1 . From the results of EPR study, the site symmetry of Cr 3+ ion in the crystal is discussed. The optical absorption at room temperature is also studied. From the observed band positions, the crystal field splitting parameter (D q ) and the Racah inter-electronic repulsion parameters (B and C) are evaluated. The bonding parameters are obtained by correlating optical and EPR data and the nature of bonding in the crystal is discussed. -- Research Highlights: → EPR spectra of Cr 3+ ions doped in potassium sodium dl-tartrate tetrahydrate single crystals are done at 77 K. → The spin Hamiltonian and zero field parameters g, |D| and |E| are measured. From the results of EPR study, the site symmetry of Cr 3+ ion in the crystal is discussed. → The optical absorption at room temperature is also studied and the crystal field splitting parameter (D q ) as well as the Racah inter-electronic repulsion parameters (B and C) is evaluated. → The bonding parameters are obtained by correlating optical and EPR data and the nature of bonding in the crystal is discussed.

  5. Spectroscopic studies of the size effects in the absorption spectra of (NH2(C2H5)2)2CuCl4 nanocrystals incorporated into the PMMA photopolymer matrix

    International Nuclear Information System (INIS)

    Kapustianyk, V.; Partyka, M.; Rudyk, V.; Piasecki, M.; Brik, M.G.; Tkaczyk, S.; Ozga, K.; Plucinski, K.; Romanyshyn, S.; Kityk, I.V.

    2010-01-01

    The absorption spectra of (NH 2 (C 2 H 5 ) 2 ) 2 CuCl 4 (DEACC) single crystals and nanocrystals (NC) incorporated into the polymethyl methacrylate (PMMA) polymer matrices were investigated both experimentally and theoretically. It was established that the crystal field spectra of Cu 2+ ion detect clearly the quantum size effects. The observed spectra were analyzed using first principle crystal field quantum chemical calculations. It was shown that incorporation of NCs into the polymer matrix allows to identify the charge-transfer (CT) bands in the spectra of DEACC crystals.

  6. Raman spectra of lithium compounds

    Science.gov (United States)

    Gorelik, V. S.; Bi, Dongxue; Voinov, Y. P.; Vodchits, A. I.; Gorshunov, B. P.; Yurasov, N. I.; Yurasova, I. I.

    2017-11-01

    The paper is devoted to the results of investigating the spontaneous Raman scattering spectra in the lithium compounds crystals in a wide spectral range by the fibre-optic spectroscopy method. We also present the stimulated Raman scattering spectra in the lithium hydroxide and lithium deuteride crystals obtained with the use of powerful laser source. The symmetry properties of the lithium hydroxide, lithium hydroxide monohydrate and lithium deuteride crystals optical modes were analyzed by means of the irreducible representations of the point symmetry groups. We have established the selection rules in the Raman and infrared absorption spectra of LiOH, LiOH·H2O and LiD crystals.

  7. Environment-dependent crystal-field tight-binding based on density-functional theory

    International Nuclear Information System (INIS)

    Urban, Alexander

    2012-01-01

    systematic derivation of Slater-Koster parameters from the results of DFT calculations. In our approach, the DFT wave functions (Kohn-Sham orbitals) in a numerically converged basis of atom-centered functions and plane waves are mapped onto a minimal basis of atomic orbitals (AOs) using a projection formalism. This allows the computation of the minimal basis representation of the converged DFT Hamiltonian. The quality of TB parameters obtained using the projection methodology crucially depends on the choice of the minimal AO basis. We have therefore developed several schemes for the optimization of AO basis sets, which are discussed in detail in this thesis. The projection formalism described above is not limited to the calculation of conventional TB parameters, i.e., to bond and overlap integrals over two orbitals that are located at two different atomic sites. It also can be used to analyze crystal field interactions. We introduce an extended crystal-field tight-binding (CF-TB) method, which includes an environment-dependent on-site parametrization. It is demonstrated that the CF-TB method is substantially more accurate for low-symmetry structures. A common potential energy reference is a necessary condition to be able to compare Hamilton matrices and eigenvalues from different structures. We point out that the structure-dependent on-site parameters of a CF-TB model are suitable to gauge eigenvalues and bond integrals of different atomic and molecular structures. Most importantly, with an appropriate choice of potential energy reference, the structure sensitivity of bond integrals can be significantly reduced, thus leading to a substantial increase of the transferability of the TB models. In addition to the Slater-Koster parametrization of the electronic structure, for the calculation of cohesion energies and atomic forces in TB, a description of the ionic core repulsion and the double-counting corrections is required. We have explored various options for the partitioning

  8. Use of neural network based auto-associative memory as a data compressor for pre-processing optical emission spectra in gas thermometry with the help of neural network

    International Nuclear Information System (INIS)

    Dolenko, S.A.; Filippov, A.V.; Pal, A.F.; Persiantsev, I.G.; Serov, A.O.

    2003-01-01

    Determination of temperature from optical emission spectra is an inverse problem that is often very difficult to solve, especially when substantial noise is present. One of the means that can be used to solve such a problem is a neural network trained on the results of modeling of spectra at different temperatures (Dolenko, et al., in: I.C. Parmee (Ed.), Adaptive Computing in Design and Manufacture, Springer, London, 1998, p. 345). Reducing the dimensionality of the input data prior to application of neural network can increase the accuracy and stability of temperature determination. In this study, such pre-processing is performed with another neural network working as an auto-associative memory with a narrow bottleneck in the hidden layer. The improvement in the accuracy and stability of temperature determination in presence of noise is demonstrated on model spectra similar to those recorded in a DC-discharge CVD reactor

  9. Comparative optical study of thulium-doped YVO4 , GdVO4 , and LuVO4 single crystals

    Science.gov (United States)

    Lisiecki, R.; Solarz, P.; Dominiak-Dzik, G.; Ryba-Romanowski, W.; Sobczyk, M.; Černý, Pavel; Šulc, Jan; Jelínková, Helena; Urata, Yoshiharu; Higuchi, Mikio

    2006-07-01

    YVO4:Tm3+ crystals grown by the Czochralski technique and GdVO4:Tm3+ and LuVO4:Tm3+ crystals grown by the floating-zone technique were investigated using methods of optical spectroscopy. Polarized absorption and emission spectra were recorded at room temperature and at 6K . The crystal-field analysis was performed assuming the D2d site symmetry for Tm3+ ions. In this way the missing crystal-field components of the H63 ground multiplet were located. Room temperature absorption spectra were analyzed in the framework of the Judd-Ofelt theory. Evaluated radiative lifetimes of luminescent levels of Tm3+ follow a general trend diminishing in agreement with the sequence: YVO4:Tm3+→GdVO4:Tm3+→LuVO4:Tm3+ . Luminescence lifetimes measured for the systems under study are similar except for the F43 lifetime, which appears to be surprisingly short for LuVO4:Tm3+ . Anisotropy of optical spectra is particularly pronounced in LuVO4:Tm3+ . Peak absorption cross section for the band relevant for optical pumping at about 805nm is roughly three times higher for π polarization. Stimulated emission cross sections for the F43-H63 transition near 1800nm were evaluated using the reciprocity method. The diode-pumped continuous wave laser operation in GdVO4:Tm3+ with a slope efficiency of up to 40% is demonstrated. In LuVO4:Tm3+ the diode-pumped laser oscillation in a pulsed mode was observed.

  10. Optical properties of LiYF4:U3+. Infrared laser use

    International Nuclear Information System (INIS)

    Louis, M.

    1995-01-01

    In this study are proposed a complete interpretation of the optical spectra of trivalent uranium in LiYF 4 (LYF). Single crystals of uranium doped LYF were grown by Czochralski method with different concentration (0.05%-0.20%). The obtained crystals have pale green color, characteristic of tetravalent uranium. The absorption spectra show that effectively only U 4+ is present in this crystal. In order to reduce the oxidation state of the U 4+ , the pale green crystal containing 0.07% of U 4+ was exposed to gamma irradiation. The sample becomes orange brown and the absorption spectrum is characteristic of U 3+ . The irradiation technology is an efficient method to convert 100% of U 4+ in U 3+ . From the analysis of the polarized optical absorption and emission spectra the spectroscopic parameters have been determined. The Judd-Ofelt theory was applied in order to simulate the intensity of the 5 f 3 →5 f 3 transitions between Stark levels of U 3+ in LYF. Because of the large crystal field splitting of the J multiplet in the actinides a set of phenomenological intensity parameters is introduced to describe the transition probabilities between crystal field sublevels. A continuous laser emission of an actinide ion at ambient temperature has been revealed. In the last part of this thesis the fundamental aspect of the energy transfer process that takes place in laser crystal LYF codoped with an 4 f element Nd 3+ and an 5 f one U 3+ has been investigated. (author). 111 refs., 69 figs., 19 tabs

  11. Optics

    CERN Document Server

    Mathieu, Jean Paul

    1975-01-01

    Optics, Parts 1 and 2 covers electromagnetic optics and quantum optics. The first part of the book examines the various of the important properties common to all electromagnetic radiation. This part also studies electromagnetic waves; electromagnetic optics of transparent isotropic and anisotropic media; diffraction; and two-wave and multi-wave interference. The polarization states of light, the velocity of light, and the special theory of relativity are also examined in this part. The second part is devoted to quantum optics, specifically discussing the classical molecular theory of optical p

  12. Electron paramagnetic resonance and optical spectroscopy of Yb sup 3 sup + ions in SrF sub 2 and BaF sub 2; an analysis of distortions of the crystal lattice near Yb sup 3 sup +

    CERN Document Server

    Falin, M L; Latypov, V A; Leushin, A M

    2003-01-01

    SrF sub 2 and BaF sub 2 crystals, doped with the Yb sup 3 sup + ions, have been investigated by electron paramagnetic resonance and optical spectroscopy. As-grown crystals of SrF sub 2 and BaF sub 2 show the two paramagnetic centres for the cubic (T sub c) and trigonal (T sub 4) symmetries of the Yb sup 3 sup + ions. Empirical diagrams of the energy levels were established and the potentials of the crystal field were determined. Information was obtained on the SrF sub 2 and BaF sub 2 phonon spectra from the electron-vibrational structure of the optical spectra. The crystal field parameters were used to analyse the crystal lattice distortions in the vicinity of the impurity ion and the F sup - ion compensating for the excess positive charge in T sub 4. Within the frames of a superposition model, it is shown that three F sup - ions from the nearest surrounding cube, located symmetrically with respect to the C sub 3 axis from the side of the ion-compensator, approach the impurity ion and cling to the axis of the...

  13. [Study on Hexagonal Super-Lattice Pattern with Light Spot and Dim Spot in Dielectric Barrier Discharge by Optical Emission Spectra].

    Science.gov (United States)

    Liu, Ying; Dong, Li-fang; Niu, Xue-jiao; Zhang, Chao

    2016-02-01

    The hexagonal super-lattice pattern composed of the light spot and the dim spot is firstly observed and investigated in the discharge of gas mixture of air and argon by using the dielectric barrier discharge device with double water electrodes. It is found that the dim spot is located at the center of its surrounding three light spots by observing the discharge image. Obviously, the brightness of the light spot and the dim spot are different, which indicates that the plasma states of the light spot and the dim spot may be different. The optical emission spectrum method is used to further study the several plasma parameters of the light spot and the dim spot in different argon content. The emission spectra of the N₂ second positive band (C³IIu --> B³IIg) are measured, from which the molecule vibration temperatures of the light spot and the dim spot are calculated. Based on the relative intensity ratio of the line at 391.4 nm and the N₂ line at 394.1 nm, the average electron energies of the light spot and the dim spot are investigated. The broadening of spectral line 696.57 nm (2P₂-1S₅) is used to study the electron densities of the light spot and the dim spot. The experiment shows that the molecule vibration temperature, average electron energy and the electron density of the dim spot are higher than those of the light spot in the same argon content. The molecule vibration temperature and electron density of the light spot and dim spot increase with the argon content increasing from 70% to 95%, while average electron energies of the light spot and dim spot decrease gradually. The short-exposure image recorded by a high speed video camera shows that the dim spot results from the surface discharges (SDs). The surface discharge induced by the volume discharge (VD) has the decisive effect on the formation of the dim spot. The experiment above plays an important role in studying the formation mechanism of the hexagonal super-lattice pattern with light spot and

  14. A renormalization-group analysis of a spin-1 Ising ferromagnet with competing crystal-field and repulsive biquadratic interactions

    International Nuclear Information System (INIS)

    Snowman, Daniel P.

    2009-01-01

    Phase diagrams have been produced and critical exponents calculated for a Blume-Emery-Griffiths system with competing biquadratic and crystal-field interactions with uniform ferromagnetic bilinear interactions. This competition directly effects the clustering and density of nonmagnetic impurities. These results have been produced using renormalization-group methods with a hierarchical lattice. A series of planes of constant, repulsive biquadratic coupling have been probed while varying the temperature and concentration of annealed vacancies in the system. The sinks have been analyzed and interpreted, and critical exponents calculated for the higher order transitions.

  15. Determination of the spin orbit coupling and crystal field splitting in wurtzite InP by polarization resolved photoluminescence

    Science.gov (United States)

    Chauvin, Nicolas; Mavel, Amaury; Jaffal, Ali; Patriarche, Gilles; Gendry, Michel

    2018-02-01

    Excitation photoluminescence spectroscopy is usually used to extract the crystal field splitting (ΔCR) and spin orbit coupling (ΔSO) parameters of wurtzite (Wz) InP nanowires (NWs). However, the equations expressing the valence band splitting are symmetric with respect to these two parameters, and a choice ΔCR > ΔSO or ΔCR InP NWs grown on silicon. The experimental results combined with a theoretical model and finite difference time domain calculations allow us to conclude that ΔCR > ΔSO in Wz InP.

  16. Magnetic form factor of NpAs2: a crystal field wave function for 5f electrons

    International Nuclear Information System (INIS)

    Amoretti, G.; Blaise, A.; Bonnet, M.; Boucherle, J.X.; Delapalme, A.; Fournier, J.M.; Vigneron, F.

    1982-10-01

    Neptunium magnetic form factor measurements in the ferromagnetic phase of NpAs 2 (T = 4.2 K, H = 4.6 T) are analysed under different assumptions: Np 3 + , Np 4 + or Np 5 + , with a free ion wave-function (Russel-Saunders and intermediate coupling scheme) or with a Crystal Field Wave function for 5f electrons: sub(m)sup(μ)asub(m)asub(m)/J,m>. The experimental results are compatible with either a 3+ or 4+ state

  17. LO-TO splittings, effective charges and interactions in electro-optic meta-nitroaniline crystal as studied by polarized IR reflection and transmission spectra

    Science.gov (United States)

    Szostak, M. M.; Le Calvé, N.; Romain, F.; Pasquier, B.

    1994-10-01

    The polarized IR reflection spectra of the meta-nitroaniline ( m-NA) single crystal along the a, b and c crystallographic axes as well as the b and c polarized transmission spectra have been measured in the 100-400 cm -1 region. The LO-TO splitting values have been calculated from the reflection spectra by fitting them with the four parameter dielectric function. The dipole moment derivatives, relevant to dynamic effective charges, of the vibrations have also been calculated and used to check the applicability of the oriented gas model (OGM) to reflection spectra. The discrepancies from the OGM have been discussed in terms of vibronic couplings, weak hydrogen bondings (HB) and intramolecular charge transfer.

  18. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Ninth Edition Optics: Ninth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommen

  19. Magnetic properties and crystal field effects in TlLnX2 compounds (X=S, Se, Te)

    International Nuclear Information System (INIS)

    Duczmal, M.; Pawlak, L.

    1997-01-01

    Ternary thallium lanthanide chalcogenides TlLnX 2 (X=S, Se or Te) crystallize in the α-NaFeO 2 type of structure (R anti 3m). Each kind of the metal ions, surrounded by the distorted chalcogenide octahedra, forms separate layers. The TlX 6 octahedra are strongly elongated and the LnX 6 octahedra slightly shrunk along the threefold axis. The deformations of the coordination polyhedra and the cell volumes change regularly with the lanthanide ionic radii. The difference between the experimental and the calculated M-X distances increases on going from sulphides to tellurides, as a result of the growing covalent character of the bonds. The crystal field parameters were estimated from the high field magnetization (0-14 T) assuming trigonal distortion of the octahedral symmetry of LnX 6 polyhedra. The second-order crystal field parameters were found to correlate with the deformation of the lanthanide ions' environments. No magnetic transition was observed down to 4.2 K. (orig.)

  20. Investigating the optical modes of InxGa1xN alloy and In0.5Ga0.5N/GaN MQW in far-infrared reflectivity spectra

    International Nuclear Information System (INIS)

    Mirjalili, G.; Amraei, R.

    2006-01-01

    Optical properties of In x Ga 1 x N alloy and In 0 .5Ga 0 .5N/GaN multi quantum wells have been investigated in the region of far infrared. Far-IR reflectivity spectra of In 0 .5Ga 0 .5N/GaN multi quantum wells on GaAs substrate have been obtained by oblique incidence p- and s- polarization light using effective medium approximation. The spectra and the dielectric functions response give a good information about the phonon and plasmon contribution in doped MQW as well as the mole fraction of compounds in the alloys. The changes in position of optical modes are good tools for measurement of the amount of free carrier and the amount of mole fraction in the samples. During study of In x Ga 1 x N reflectivity spectra, two distinct reststrahl bands with frequency near those of pure InN and GaN were observed over entire composition range. Each band shifts to lower frequencies and decreases in amplitude as the concentration of corresponding compound in alloy decreased. Analysis of dielectric function gives the TO-like and LO-like mode frequencies. The changes in LO mode frequencies, due to coupling of phonon-plasmon, have been observed

  1. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Eighth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommended for engineering st

  2. EPR and optical study of Mn{sup 2+} doped monohydrated dipotassium stannic chloride

    Energy Technology Data Exchange (ETDEWEB)

    Kripal, Ram, E-mail: ram_kripal2001@rediffmail.com; Singh, Manju

    2014-11-15

    Highlights: • EPR study of Mn{sup 2+}: DPSC crystal is done at room temperature. • The spin Hamiltonian parameters for two Mn{sup 2+} sites are determined. • The optical absorption study is also done. • The nature of metal–ligand bonding is discussed on the basis of EPR and optical data. • Theoretical zero-field splitting parameters match well with the experimental values. - Abstract: Electron paramagnetic resonance (EPR) study at room temperature (RT) is used to investigate the property of Mn{sup 2+} doped monohydrated dipotassium stannic chloride (K{sub 2}SnCl{sub 4}⋅H{sub 2}O) single crystal. EPR spectra show that there exist two substitutional sites, the spin Hamiltonian parameters for which are determined. The optical absorption study is also done at room temperature in the wavelength range 195–1100 nm. The observed bands are assigned as transitions from {sup 6}A{sub 1g}(S) ground state to various excited states. These bands are fitted with four parameters, namely Racah inter-electronic repulsion parameters B = 792 cm{sup −1}, C = 2278 cm{sup −1}; cubic crystal field splitting parameter Dq = 700 cm{sup −1} and Trees correction α = 76 cm{sup −1}. The nature of metal–ligand bonding is discussed on the basis of EPR and optical data. Superposition model (SPM) is used to find out the crystal field (CF) parameters and the perturbation formulae are used to obtain zero-field splitting (ZFS) parameters. Theoretically calculated ZFS parameters match well with the experimental values obtained from EPR study.

  3. Microstructure, electronic structure and optical properties of combustion synthesized Co doped ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Srinatha, N. [Department of Physics, JB Campus, Bangalore University, Bangalore 560056 (India); Nair, K.G.M. [UGC-DAE-CSR, Kalpakkam Node, Kalpakkam, Kokilamedu 603102 (India); Angadi, Basavaraj, E-mail: brangadi@gmail.com [Department of Physics, JB Campus, Bangalore University, Bangalore 560056 (India)

    2015-10-01

    We report on the microstructure, electronic structure and optical properties of nanocrystalline Zn{sub 1−x}Co{sub x}O (x=0, 0.01, 0.03, 0.05 and 0.07) particles prepared by solution combustion technique using L-Valine as fuel. The detailed structural and micro-structural studies were carried out by XRD, HRTEM and TEM-SAED respectively, which confirms the formation of single phased, nano-sized particles. The electronic structure was determined through NEXAFS and atomic multiplet calculations/simulations performed for various symmetries and valence states of ‘Co’ to determine the valance state, symmetry and crystal field splitting. The correlations between the experimental NEXAFS spectra and atomic multiplet simulations, confirms that, ‘Co’ present is in the 2+ valence state and substituted at the ‘Zn’ site in tetrahedral symmetry with crystal field splitting, 10Dq =−0.6 eV. The optical properties and ‘Co’ induced defect formation of as-synthesized materials were examined by using diffuse reflectance and Photoluminescence spectroscopy, respectively. Red-shift of band gap energy (E{sub g}) was observed in Zn{sub 1−x}Co{sub x}O samples due to Co (0.58 Å) substitution at Zn (0.60 Å) site of the host ZnO. Also, in PL spectra, a prominent pre-edge peak corresponds to ultraviolet (UV) emission around 360–370 nm was observed with Co concentration along with near band edge emission (NBE) of the wide band gap ZnO and all samples show emission in the blue region.

  4. Crystal fields in Sc, Y, and the heavy-rare-earth metals Tb, Dy, Ho, Er, Tm, and Lu

    International Nuclear Information System (INIS)

    Touborg, P.

    1977-01-01

    Experimental investigations of the magnetic poperties of dilute alloys of the rare-earth solutes Tb, Dy, Ho, Er, and Tm in the nonmagnetic hosts Lu, Y, and Sc have been performed. These measurements, which include and supplement earlier published results, have been analyzed and crystal-field parameters for all these 15 alloy systems deduced. The consistency of the parameters was confirmed by a variety of magnetic measurements, including neutron spectroscopy. Crystal-field parameters have also been derived for the ions in pure magnetic rare-earth metals and their alloys using the results for the dilute alloys supplemented with paramagnetic measurements up to high temperatures on the concentrated systems. Mean values and standard deviations of the higher-order crystal-field parameters for all Y and Lu alloys are B 40 /β = 6.8 +- 0.9 K, B 60 /γ = 13.6 +- 0.7 K, and B 66 /γ = (9.7 +- 1.1) B 60 /γ. These values: with the inaccuracies somewhat increased: are expected to be representative also for the magnetic rare-earth metals. For rare-earth ions in the Sc host the values B 40 /β = 9.9 +- 1.9 K, B 60 /γ = 19.8 +- 1.5 K, and B 66 /γ = (9.4 +- 0.9) B 60 /γ were deduced. B 20 /α is a host-sensitive parameter which has the average values of -102.7, -53.4, and 29.5 K for rare-earth ions in Y, Lu, and Sc, respectively. There is also evidence that this parameter varies with the solute. B 20 /α for ions in the pure magnetic rare-earth metals and their alloys shows a linear variation with c/a ratio characteristic of each ion. The results indicate a contribution from anisotropic exchange to the high-temperature paramagnetic anisotropy of approximately 20% for Tb, Dy, Ho, and Er, and approximately 10% for Tm

  5. Vibrational analysis of various irotopes of L-alanyl-L-alanine in aqueous solution: Vibrational Absorption (VA), Vibrational Circular Dichroism (VCD), Raman and Raman Optical Activity (ROA) Spectra

    DEFF Research Database (Denmark)

    Jalkanen, Karl J.; Nieminen, R.M.; Knapp-Mohammady, M.

    2003-01-01

    . DFT Becke3LYP/6-31G* theory has been used to determine the geometry, Hessian, atomic polar tensors (APT), and atomic axial tensors (AAT), and the electric dipole-electric dipole polarizability derivatives (EDEDPD), which are required for us to simulate the VA, VCD, and Raman spectra. The electric...

  6. Rapid, nondestructive estimation of surface polymer layer thickness using attenuated total reflection fourier transform infrared (ATR FT-IR) spectroscopy and synthetic spectra derived from optical principles.

    Science.gov (United States)

    Weinstock, B André; Guiney, Linda M; Loose, Christopher

    2012-11-01

    We have developed a rapid, nondestructive analytical method that estimates the thickness of a surface polymer layer with high precision but unknown accuracy using a single attenuated total reflection Fourier transform infrared (ATR FT-IR) measurement. Because the method is rapid, nondestructive, and requires no sample preparation, it is ideal as a process analytical technique. Prior to implementation, the ATR FT-IR spectrum of the substrate layer pure component and the ATR FT-IR and real refractive index spectra of the surface layer pure component must be known. From these three input spectra a synthetic mid-infrared spectral matrix of surface layers 0 nm to 10,000 nm thick on substrate is created de novo. A minimum statistical distance match between a process sample's ATR FT-IR spectrum and the synthetic spectral matrix provides the thickness of that sample. We show that this method can be used to successfully estimate the thickness of polysulfobetaine surface modification, a hydrated polymeric surface layer covalently bonded onto a polyetherurethane substrate. A database of 1850 sample spectra was examined. Spectrochemical matrix-effect unknowns, such as the nonuniform and molecularly novel polysulfobetaine-polyetherurethane interface, were found to be minimal. A partial least squares regression analysis of the database spectra versus their thicknesses as calculated by the method described yielded an estimate of precision of ±52 nm.

  7. The spin-3/2 Ising model AFM/AFM two-layer lattice with crystal field

    International Nuclear Information System (INIS)

    Yigit, A.; Albayrak, E.

    2010-01-01

    The spin-3/2 Ising model is investigated for the case of antiferromagnetic (AFM/AFM) interactions on the two-layer Bethe lattice by using the exact recursion relations in a pairwise approach for given coordination numbers q=3, 4 and 6 when the layers are under the influences of equal external magnetic and equal crystal fields. The ground state (GS) phase diagrams are obtained on the different planes in detail and then the temperature dependent phase diagrams of the system are calculated accordingly. It is observed that the system presents both second- and first-order phase transitions for all q, therefore, tricritical points. It was also found that the system exhibits double-critical end points and isolated points. The model also presents two Neel temperatures, TN, and the existence of which leads to the reentrant behavior.

  8. All-electron ab initio calculations of YBa2Cu3O7 with self-consistence crystal field

    Institute of Scientific and Technical Information of China (English)

    刘洪霖; 陈念贻

    1995-01-01

    The quantum chemical calculations of cluster YBa2Cu3O7 considering all electrons have been per-formed by using the ab initio HF method with self-consistence crystal field.A Hartree-Fork surface potentialis proposed to make an asymmetric duster model possess a relatively symmetric potential field and to obtaina relatively symmetric electronic structure,electronic distributions,frontier orbitals,and bond order,etc.Thesuggestions that there exists a covalent bonding complex,[CuO2-O-CuO-O-Cu2]6,8-,in the cell unit ofthe crystal,and the cell units are connected with each other by ionic bonds along the c direction of the crys-tal lattice are offered based on the chemical bonding characteristics from the calculated results.The importantcontribution of the apical oxygen to superconductivities is emphasized as well.

  9. Tuning crystal field symmetry of hexagonal NaY0.92Yb0.05Er0.03F4 by Ti4+ codoping for high-performance upconversion

    International Nuclear Information System (INIS)

    Yu, Han; Huang, Qingming; Ma, En; Zhang, Xinqi; Yu, Jianchang

    2014-01-01

    Highlights: • Upconversion emission of Er 3+ was obviously enhanced by Ti 4+ codoped in NaYF 4 . • The upconversion luminescence lifetime was also obviously prolonged. • Na + could be induced to occupy Y 3+ sites if Ti 4+ was codoped with appropriate concentration. • The crystal field asymmetry was enhanced for better upconversion performance. • Crystal growth was prevented and small-sized NaYF 4 were obtained. - Abstract: 378 nm, 408 nm and 521 nm upconversion emissions of Er 3+ ions were obviously enhanced by Ti 4+ codoped with Yb 3+ /Er 3+ in hexagonal NaYF 4 , and the corresponding upconversion luminescence lifetimes were also prolonged, especially for 378 nm and 408 nm emissions. X-ray powder diffraction, field emission scanning electron microscope, transmission electron microscope, X-ray photoelectron spectroscopy and upconversion emission spectra were employed to explore the relationships of the structure and properties. From these characterizations we made a novel discovery that Na + could be induced to occupy Y 3+ sites for establishing valence balance of the system if Ti 4+ ions were codoped with appropriate concentration. As a result the crystal field asymmetry of NaY 0.92 Yb 0.05 Er 0.03 F 4 was enhanced and then its upconversion properties were improved because the hypersensitive electron transition of Yb 3+ /Er 3+ ions was promoted greatly. At the same time, the crystal sizes of the codoped NaYF 4 became smaller because the crystal growth was prevented by more negative charges gathering at the crystal surface. This study provides an exploration of the relationship among impurity doping, structural changes and upconversion performance, which may be useful for design and synthesis of high-performance upconversion codoping materials

  10. Crystal field effect in the uranium compounds - model calculations for CsUF/sub 6/, Cs/sub 2/UCl/sub 6/ and UCl/sub 4/

    Energy Technology Data Exchange (ETDEWEB)

    Gajek, Z.; Mulak, J.; Faucher, M.

    1987-01-01

    A practical crystal field model allowing one to estimate the crystal field parameters from first principles is presented and applied to the actinide compounds. The model results directly from the renormalization (and reduction) procedure of the true Schroedinger equation for an effective Hamiltonian acting on the 5f spin-orbitals only. In practice this approach becomes convergent with the ab initio model of Newman. Three ionic uranium compounds: CsUF/sub 6/, Cs/sub 2/UCl/sub 6/ and UCl/sub 4/ have served as examples of the application. The results obtained, particularly for the first two compounds, are in good agreement with the experimental data. The contributions of different mechanisms responsible for the crystal field effect are discussed.

  11. Crystal field effect in the uranium compounds - model calculations for CsUF6, Cs2UCl6 and UCl4

    International Nuclear Information System (INIS)

    Gajek, Z.; Mulak, J.

    1987-01-01

    A practical crystal field model allowing one to estimate the crystal field parameters from first principles is presented and applied to the actinide compounds. The model results directly from the renormalization (and reduction) procedure of the true Schroedinger equation for an effective Hamiltonian acting on the 5f spin-orbitals only. In practice this approach becomes convergent with the ab initio model of Newman. Three ionic uranium compounds: CsUF 6 , Cs 2 UCl 6 and UCl 4 have served as examples of the application. The results obtained, particularly for the first two compounds, are in good agreement with the experimental data. The contributions of different mechanisms responsible for the crystal field effect are discussed. (author)

  12. Understanding and control of optical performance from ceramic materials

    International Nuclear Information System (INIS)

    Barbour, J.C.; Knapp, J.A.; Potter, B.G.; Jennison, D.R.; Verdozzi, C.A.; Follstaedt, D.M.; Bendale, R.D.; Simmons, J.H.

    1998-06-01

    This report summarizes a two-year Laboratory-Directed Research and Development (LDRD) program to gain understanding and control of the important parameters which govern the optical performance of rare-earth (RE) doped ceramics. This LDRD developed the capability to determine stable atomic arrangements in RE doped alumina using local density functional theory, and to model the luminescence from RE-doped alumina using molecular dynamic simulations combined with crystal-field calculations. Local structural features for different phases of alumina were examined experimentally by comparing their photoluminescence spectra and the atomic arrangement of the amorphous phase was determined to be similar to that of the gamma phase. The luminescence lifetimes were correlated to these differences in the local structure. The design of both high and low-phonon energy host materials was demonstrated through the growth of Er-doped aluminum oxide and lanthanum oxide. Multicomponent structures of rare-earth doped telluride glass in an alumina and silica matrix were also prepared. Finally, the optical performance of Er-doped alumina was determined as a function of hydrogen content in the host matrix. This LDRD is the groundwork for future experimentation to understand the effects of ionizing radiation on the optical properties of RE-doped ceramic materials used in space and other radiation environments

  13. Spectra from 2.5-15 μm of tissue phantom materials, optical clearing agents and ex vivo human skin: implications for depth profiling of human skin

    International Nuclear Information System (INIS)

    Viator, John A; Choi, Bernard; Peavy, George M; Kimel, Sol; Nelson, J Stuart

    2003-01-01

    Infrared measurements have been used to profile or image biological tissue, including human skin. Usually, analysis of such measurements has assumed that infrared absorption is due to water and collagen. Such an assumption may be reasonable for soft tissue, but introduction of exogenous agents into skin or the measurement of tissue phantoms has raised the question of their infrared absorption spectrum. We used Fourier transform infrared spectroscopy in attenuated total reflection mode to measure the infrared absorption spectra, in the range of 2-15 μm, of water, polyacrylamide, Intralipid, collagen gels, four hyperosmotic clearing agents (glycerol, 1,3-butylene glycol, trimethylolpropane, Topicare TM ), and ex vivo human stratum corneum and dermis. The absorption spectra of the phantom materials were similar to that of water, although additional structure was noted in the range of 6-10 μm. The absorption spectra of the clearing agents were more complex, with molecular absorption bands dominating between 6 and 12 μm. Dermis was similar to water, with collagen structure evident in the 6-10 μm range. Stratum corneum had a significantly lower absorption than dermis due to a lower content of water. These results suggest that the assumption of water-dominated absorption in the 2.5-6 μm range is valid. At longer wavelengths, clearing agent absorption spectra differ significantly from the water spectrum. This spectral information can be used in pulsed photothermal radiometry or utilized in the interpretation of reconstructions in which a constant μ ir is used. In such cases, overestimating μ ir will underestimate chromophore depth and vice versa, although the effect is dependent on actual chromophore depth. (note)

  14. IDEN2-A program for visual identification of spectral lines and energy levels in optical spectra of atoms and simple molecules

    Science.gov (United States)

    Azarov, V. I.; Kramida, A.; Vokhmentsev, M. Ya.

    2018-04-01

    The article describes a Java program that can be used in a user-friendly way to visually identify spectral lines observed in complex spectra with theoretically predicted transitions between atomic or molecular energy levels. The program arranges various information about spectral lines and energy levels in such a way that line identification and determination of positions of experimentally observed energy levels become much easier tasks that can be solved fast and efficiently.

  15. Crystal-field energy level analysis for Nd{sup 3+} ions at the low symmetry C{sub 1} site in [Nd(hfa){sub 4}(H{sub 2}O)](N(C{sub 2}H{sub 5}){sub 4}) single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Mech, Agnieszka; Gajek, Zbigniew [Institute of Low Temperature and Structure Research, Polish Academy Of Sciences, ulica Okolna 2, 54-422 Wroclaw (Poland); Karbowiak, Miroslaw [Faculty of Chemistry, University of Wroclaw, ulica F Joliot-Curie 14, 50-383 Wroclaw (Poland); Rudowicz, Czeslaw [Institute of Physics, Szczecin University of Technology, Aleja Piastow 17, 70-310 Szczecin (Poland)], E-mail: karb@wchuwr.pl

    2008-09-24

    Optical absorption measurements of Nd{sup 3+} ions in single crystals of [Nd(hfa){sub 4}(H{sub 2}O)](N(C{sub 2}H{sub 5}){sub 4}) (hfa = hexafluoroacetyloacetonate), denoted Nd(hfa) for short, have been carried out at 4.2 and 298 K. This compound crystallizes in the monoclinic system (space group P 2{sub 1}/n). Each Nd ion is coordinated to eight oxygen atoms that originate from the hexafluoroacetylacetonate ligands and one oxygen atom from the water molecule. A total of 85 experimental crystal-field (CF) energy levels arising from the Nd{sup 3+} (4f{sup 3}) electronic configuration were identified in the optical spectra and assigned. A three-step CF analysis was carried out in terms of a parametric Hamiltonian for the actual C{sub 1} symmetry at the Nd{sup 3+} ion sites. In the first step, a total of 27 CF parameters (CFPs) in the Wybourne notation B{sub kq}, admissible by group theory, were determined in a preliminary fitting constrained by the angular overlap model predictions. The resulting CFP set was reduced to 24 specific independent CFPs using appropriate standardization transformations. Optimizations of the second-rank CFPs and extended scanning of the parameter space were employed in the second step to improve reliability of the CFP sets, which is rather a difficult task in the case of no site symmetry. Finally, seven free-ion parameters and 24 CFPs were freely varied, yielding an rms deviation between the calculated energy levels and the 85 observed ones of 11.1 cm{sup -1}. Our approach also allows prediction of the energy levels of Nd{sup 3+} ions that are hidden in the spectral range overlapping with strong ligand absorption, which is essential for understanding the inter-ionic energy transfer. The orientation of the axis system associated with the fitted CF parameters w.r.t. the crystallographic axes is established. The procedure adopted in our calculations may be considered as a general framework for analysis of CF levels of lanthanide ions at low

  16. Site symmetry and crystal field of Ce{sup 3+} luminescent centres in KMgF{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Yamaga, M. [Department of Electrical and Electronic Engineering, Faculty of Engineering, Gifu University, Gifu (Japan); Honda, M.; Kawamata, N. [Faculty of Science, Naruto University of Education, Naruto (Japan); Fujita, T.; Shimamura, K.; Fukuda, T. [Institute for Materials Research, Tohoku University, Sendai (Japan)

    2001-04-09

    The electron-spin resonance (ESR) spectra of Ce{sup 3+} in KMgF{sub 3} observed at low temperatures (<20 K) show that two tetragonal and two orthorhombic Ce{sup 3+} centres exist in the absence of a cubic centre. These Ce{sup 3+} centres are strongly associated with substitution of Ce{sup 3+} ions for K{sup +} ions with K{sup +}-ion vacancies at three different sites and for a Mg{sup 2+} ion with a vacancy of the nearest neighbour Mg{sup 2+} ion along the [101] direction as charge compensators. The optical absorption spectrum of Ce{sup 3+} in KMgF{sub 3} measured at room temperature consists of two intense broadbands with peaks at 229 and 237 nm, and two weak bands with peaks at 203 and 211 nm corresponding to the transition from the ground state {sup 2}F{sub 5/2} to the 5d{sup 1} excited states of Ce{sup 3+}. The Ce{sup 3+} luminescence spectrum excited at 229 or 237 nm at room temperature is composed of broadbands with double peaks at 265 and 282 nm, which are due to the ground-state splitting between {sup 2}F{sub 5/2} and {sup 2}F{sub 7/2}. The peak of the weak luminescence band excited at a tail (250-280 nm) of the intense absorption bands is shifted to lower energy. The intense and weak Ce{sup 3+} luminescence bands are assigned to Ce{sup 3+} ions substituting for K{sup +} ions away from and near to K{sup +}-ion vacancies, respectively. The luminescence from Ce{sup 3+} ions substituting for Mg{sup 2+} ions could not be observed at room temperature. (author)

  17. Unified explanation for optical and electron paramagnetic resonance spectra of Cr sup 3 sup + ions in LiNbO sub 3 crystals

    CERN Document Server

    Zhao, M G

    1997-01-01

    An approximately microscopic model is developed for the Cr sup 3 sup + -6O sup 2 sup - cluster and applied to study the optical data and electron paramagnetic resonance (EPR) g-factors and the zero-field splitting D-value in LiNbO sub 3 :Cr sup 3 sup +. Analysis of the optical and EPR data indicate that Cr sup 3 sup + ions substitute at Nb sites and Nb-vacancy (Li) sites simultaneously. The results are in good agreement with the experimental findings. This means that the optical and EPR data and the substitution site of Cr sup 3 sup + ions in LiNbO sub 3 can be interpreted uniformly. (author)

  18. An investigation on the effect of gamma-irradiation on the optical absorption spectra in Cu(II) doped ammonium Tetrachlorozincate (ATZC) single crystals

    International Nuclear Information System (INIS)

    Abu El-Fadl, A.; Mohamad, G.A.; Abd El-Sttar, M.

    2003-01-01

    Optical transmittance measurements were carried out on Ammonium tetrachlorozincate (ATZC) crystals doped with small concentrations of Cu 2+ ions and irradiated with different doses of gamma-radiation. The absorption coefficient (alpha) and the extinction coefficient (K) of unirradiated and irradiated ATZC crystals were calculated. Valued of the allowed indirect optical energy gap (E g ) of ATZC were calculated as a function of gamma-dose. The effect of gamma irradiation is to increase in the absorption coefficient value and to decrease in E g value. The results could be explained in the fact that gamma irradiation produces defects of ionizing type because of internal irradiation with photon or Compton electrons

  19. The comparison of the optical spectra of carbon coatings prepared by magnetron sputtering and microwave plasma enhanced chemical vapor deposition measured by the photothermal deflection spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Remeš, Zdeněk; Pham, T.T.; Varga, Marián; Kromka, Alexander; Mao, H.B.

    2015-01-01

    Roč. 7, č. 4 (2015), s. 321-324 ISSN 2164-6627 R&D Projects: GA MŠk LH12186 Institutional support: RVO:68378271 Keywords : nanocrystalline diamond * amorphous carbon * magnetron sputtering * CVD * optical spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism

  20. Electronic structure optical spectra and contact hyperfine parameters of CoF64- complex in LiF and KMgF3

    International Nuclear Information System (INIS)

    Albuquerque, E.L. de.

    1975-12-01

    The electronic structure, the optical absorption bands and the magnetic hyperfine contact terms have been calculated for CoF 6 4- cluster in LiF and KMgF 3 using the Self-Consistent-Field Multiple-Scattering Xα Method. The results obtained are compared with experiment and indicate that this scheme is convenient to treat such complex problems. (Author) [pt

  1. Optical band gap and Raman spectra in AxB0.2-x(TeO2)0.8 glasses

    Czech Academy of Sciences Publication Activity Database

    Ožďanová, J.; Tichá, H.; Tichý, Ladislav

    2010-01-01

    Roč. 12, č. 5 (2010), s. 1024-1029 ISSN 1454-4164 Institutional research plan: CEZ:AV0Z40500505 Keywords : telluride glasses * optical band gap * Raman scattering Subject RIV: CA - Inorganic Chemistry Impact factor: 0.412, year: 2010 http://joam.inoe.ro/index.php?option=magazine&op=view&idu=2453&catid=50

  2. Eu3+-doped β-Ga2O3 nanophosphors: annealing effect, electronic structure and optical spectroscopy.

    Science.gov (United States)

    Zhu, Haomiao; Li, Renfu; Luo, Wenqin; Chen, Xueyuan

    2011-03-14

    A comprehensive survey of electronic structure and optical properties of rare-earth ions-doped semiconductor is of vital importance for their potential applications. In this work, Eu(3+)-doped β-Ga(2)O(3) nanocrystals were synthesized via a combustion method. The evolution of the optical properties of nanophosphors with increasing the annealing temperature was investigated in detail by means of excitation and emission spectra at room temperature and 10 K. Eu(3+) ions were proved to be incorporated into the crystal lattice of the β-Ga(2)O(3) phase after annealing the as-prepared nanoparticles at 1100 °C. It was observed that the substitution of Eu(3+) for Ga(3+) occurred at merely single site, in spite of two crystallographically nonequivalent sites of Ga(3+) in β-Ga(2)O(3). Spectroscopic evidence corroborated and clarified the local symmetry of C(s) for Eu(3+) at this single site. From the high-resolution excitation and emission spectra, 71 crystal-field levels of Eu(3+) in β-Ga(2)O(3) were identified and analyzed in terms of 19 freely varied free-ions and crystal-field parameters based on C(s) symmetry. The standard deviation of the final fitting is as low as 12.9 cm(-1), indicating an excellent agreement between experimental and calculated energy levels. The temperature-dependent luminescence dynamics of the (5)D(0) multiplet for Eu(3+) in β-Ga(2)O(3) phosphors has also been revealed for the first time from 10 to 300 K.

  3. Composite Spectra Paper 1: HR 6902

    Indian Academy of Sciences (India)

    tribpo

    spectra; in many cases we have used the maximum width permitted by the optics of ... 10 mЕ, corresponding to 1 µm the plate, are the norm. ..... an inequality ..... on the spectra of HR 6902, we have thought it appropriate to weight the four ...

  4. Crystal field parameters with Wannier functions: application to Nd.sub.2./sub.Fe.sub.14./sub.B systems

    Czech Academy of Sciences Publication Activity Database

    Yoshioka, T.; Tsuchiura, H.; Novák, Pavel

    2015-01-01

    Roč. 19, Sup.3 (2015), S4-S8 ISSN 1432-8917 Institutional support: RVO:68378271 Keywords : crystal field parameters * Nd-Fe-B permanent magnet Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.830, year: 2014

  5. Neutron spectroscopic study of the crystal field interaction in Pr{sub 1-x}La{sub x}NiO{sub 3} (0{<=}x{<=}0.7)

    Energy Technology Data Exchange (ETDEWEB)

    Rosenkranz, S.; Medarde, M.; Mesot, J.; Zolliker, M.; Furrer, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Lacorre, P. [LeMans, Univ. (France)

    1997-09-01

    The crystal field interaction at the rare earth site in Pr{sub 1-x}La{sub x}NiO{sub 3} has been studied using inelastic neutron scattering. A parametrization consistent over the whole series is obtained and discussed within the point-charge model. (author) 2 figs., 3 refs.

  6. Phenomenological crystal-field model of the magnetic and thermal properties of the Kondo-like system UCu2Si2

    Science.gov (United States)

    Troć, R.; Gajek, Z.; Pikul, A.; Misiorek, H.; Colineau, E.; Wastin, F.

    2013-07-01

    The transport properties described previously [Troć , Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.85.224434 85, 224434 (2012)] as well as the magnetic and thermal properties presented in this paper, observed for single-crystalline UCu2Si2, are discussed by assuming a dual (localized-itinerant) scenario. The electronic states of the localized 5f electrons in UCu2Si2 are constructed using the effective Hamiltonian known for ionic systems, allowing us to treat the Coulomb, spin-orbital, and crystal-field interactions on equal footing. The space of parameters has been restricted in the initial steps with the aid of the angular overlap model approximation. The final crystal-field parameters, obtained from the refined steps of calculations, are relatively large (in absolute values), which we attribute to the hybridization characteristic of the metallic systems on the verge of localization. The proposed crystal-field model reproduces correctly with satisfactory accuracy the magnetic and thermal properties of UCu2Si2 in agreement also with the transport properties reported previously. Considerable crystal-field splitting of the ground multiplet of 2760 K is responsible for a large anisotropy in the magnetic behavior, observed in the whole temperature range explored.

  7. Crystal field splitting and spin states of Co ions in cobalt ferrite with composition Co{sub 1.5}Fe{sub 1.5}O{sub 4} using magnetization and X-ray absorption spectroscopy measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, A.K., E-mail: anil@rrcat.gov.in [HXAL, Synchrotrons Utilization Section, RRCAT, Indore 452013 (India); Homi Bhabha National Institute, RRCAT, Indore 452013 (India); Singh, M.N. [HXAL, Synchrotrons Utilization Section, RRCAT, Indore 452013 (India); Achary, S.N. [Chemistry Division, BARC, Anushaktinagar, Mumbai 400085 (India); Sagdeo, A. [HXAL, Synchrotrons Utilization Section, RRCAT, Indore 452013 (India); Homi Bhabha National Institute, RRCAT, Indore 452013 (India); Shukla, D.K.; Phase, D.M. [UGC-DAE Consortium for Scientific Research, Indore 452010 (India)

    2017-08-01

    Highlights: • Co ions in Co{sub 1.5}Fe{sub 1.5}O{sub 4} are found to be in high spin states. • XAS measurements have been used to estimate TM crystal field and core hole contributions to 3d orbital splitting. • The polycrystalline Co{sub 1.5}Fe{sub 1.5}O{sub 4} sample show two pinning centers and large magneto crystalline anisotropy. - Abstract: Structural, magnetic and electronic properties of partially inverted Cobalt Ferrite with composition Co{sub 1.5}Fe{sub 1.5}O{sub 4} is discussed in the present work. Single phase (SG: Fd3m) sample is synthesized by co-precipitation technique and subsequent air annealing. The values of saturation magnetization obtained from careful analysis of approach to saturation in initial M(H) curves are used to determine spin states of Co ions in tetrahedral (T{sub H}) and octahedral (O{sub H}) sites. Spin states of Co{sup 3+} ions in T{sub H} sites, which has not been reported in literature, were found to be in high spin state. Temperature variation of magnetic parameters has been studied. The sample shows magneto-crystalline anisotropy with two clearly distinct pinning centers. Oxygen K-edge and Fe as well as Co L{sub 2,3}-edge X-ray absorption (XAS) spectra have been used as complementary measurements to study crystal field splitting and core hole effects on transition metal (TM) 3d orbitals. The ratio of intensities of t{sub 2g} and e{sub g} absorption bands in O-K edge XAS spectrum is used to estimate the spin states of Co ions at O{sub H} and T{sub H} sites. The results are in agreement with those obtained from magnetization data, and favors Co{sup 3+} ions in T{sub H} sites in high spin states. Normalized areas of the satellite peaks in TM L{sub 2},{sub 3}-edge XAS spectra have been used to estimate 3d{sub n+1}L contribution in ground state wave function and the contributions were found to be significant.

  8. Crystal-field study of magnetization and specific heat properties of frustrated pyrochlore Pr2Zr2O7

    International Nuclear Information System (INIS)

    Alam, J.; Jana, Y.M.; Biswas, A. Ali

    2016-01-01

    The experimental results of temperature dependent dc magnetic susceptibility, field dependent isothermal magnetization, magnetic specific heat and entropy of the pyrochlore Pr 2 Zr 2 O 7 are simulated and analyzed using appropriate D 3d crystal-field (CF) and anisotropic molecular field tensors at Pr-sites in the self-consistent mean-field approach involving four magnetically non-equivalent rare-earth spins on the tetrahedral unit of the pyrochlore structure. CF level pattern and wave-functions of the ground 3 H 4 multiplet of the Pr 3+ ions are obtained considering intermediate coupling between different Russell-Saunders terms of the 4f 2 electronic configurations of Pr-ion and J-mixing effects. CF analysis shows that the CF ground-state of the Pr 3+ ion in Pr 2 Zr 2 O 7 is a well-isolated doublet, with significant admixtures of terms coming from |M J =±4〉 and |M J =±1〉, and the Pr-spins are effectively Ising-like along the local <111> axes. Magnetic specific heat in zero-field is simulated by considering a temperature dependence of the exchange splitting of the ground doublet. - Highlights: • Full CF diagonalization using intermediate coupling and J-mixing. • Pr-spins are Ising-like along local [111] axis. • Magnetic specific heat is due to temperature dependence exchange splitting of ground CF doublet.

  9. Magnetic properties and electronic structure of neptunyl(VI) complexes: wavefunctions, orbitals, and crystal-field models

    Energy Technology Data Exchange (ETDEWEB)

    Gendron, Frederic; Pritchard, Ben; Autschbach, Jochen [Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY (United States); Paez-Hernandez, Dayan; Bolvin, Helene [Laboratoire de Physique et de Chimie Quantiques, Universite Toulouse 3 (France); Notter, Francois-Paul [Laboratoire de Chimie Quantique, Universite de Strasbourg (France)

    2014-06-23

    The electronic structure and magnetic properties of neptunyl(VI), NpO{sub 2}{sup 2+}, and two neptunyl complexes, [NpO{sub 2}(NO{sub 3}){sub 3}]{sup -} and [NpO{sub 2}Cl{sub 4}]{sup 2-}, were studied with a combination of theoretical methods: ab initio relativistic wavefunction methods and density functional theory (DFT), as well as crystal-field (CF) models with parameters extracted from the ab initio calculations. Natural orbitals for electron density and spin magnetization from wavefunctions including spin-orbit coupling were employed to analyze the connection between the electronic structure and magnetic properties, and to link the results from CF models to the ab initio data. Free complex ions and systems embedded in a crystal environment were studied. Of prime interest were the electron paramagnetic resonance g-factors and their relation to the complex geometry, ligand coordination, and nature of the nonbonding 5f orbitals. The g-factors were calculated for the ground and excited states. For [NpO{sub 2}Cl{sub 4}]{sup 2-}, a strong influence of the environment of the complex on its magnetic behavior was demonstrated. Kohn-Sham DFT with standard functionals can produce reasonable g-factors as long as the calculation converges to a solution resembling the electronic state of interest. However, this is not always straightforward. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Study of crystal-field excitations and Raman active phonons in o-DyMnO3

    International Nuclear Information System (INIS)

    Jandl, S.; Mansouri, S.; Mukhin, A.A.; Yu Ivanov, V.; Balbashov, A.; Gospodino, M.M.; Nekvasil, V.; Orlita, M.

    2011-01-01

    In DyMnO 3 orthorhombic single crystals, the weak Raman active phonon softening below T=100 K is correlated with the study of infrared active Dy 3+ CF excitations as a function of temperature and under applied magnetic field. We detect five H 13/2 CF transitions that we predict with appropriate CF Hamiltonian and we confirm that the magnetic easy axis lies in the ab plane. While the CF energy level shifts below T=100 K reflect different displacements of the oxygen ions that contribute to the phonon softening, lifting of the ground state Kramers doublet degeneracy (∼30 cm -1 ) is observed below T N =39 K due to the anisotropic Mn 3+ -Dy 3+ interaction, which could be responsible for the stability of the bc-cycloid ferroelectric phase. - Research highlights: → Origin of Raman active phonon softening in the multiferroic o-DyMnO 3 . → A crystal-field study under magnetic field of Dy 3+ in o-DyMnO 3 . → Location of the magnetic easy axis in o-DyMnO 3 . → Lifting of Kramers doublet degeneracy in o-DyMnO 3 .

  11. THE DISCOVERY OF PERIODIC MODULATIONS IN THE OPTICAL SPECTRA OF GALAXIES, POSSIBLY DUE TO ULTRARAPID LIGHT BURSTS FROM THEIR MASSIVE CENTRAL BLACK HOLES

    Energy Technology Data Exchange (ETDEWEB)

    Borra, Ermanno F., E-mail: borra@phy.ulaval.ca [Centre d' Optique, Photonique et Laser, Departement de Physique, Universite Laval, Quebec, G1K 7P4 Quebec (Canada)

    2013-09-10

    A Fourier transform analysis of 2.5 million spectra in the SDSS survey was carried out to detect periodic modulations contained in the intensity versus frequency spectrum. A statistically significant signal was found for 223 galaxies, while the spectra of 0.9 million galaxies were observed. A plot of the periods as a function of redshift clearly shows that the effect is real without any doubt, because the modulations are quantized at two base periods that increase with redshift in two very tight parallel linear relations. We suggest that this result could be caused by light bursts separated by times on the order of 10{sup -13} s, but other causes may be possible. We investigate the hypothesis that the modulation is generated by the Fourier transform of spectral lines, but conclude that this hypothesis is not valid. Although the light burst suggestion implies absurdly high temperatures, it is supported by the fact that the Crab pulsar also has extremely short unresolved pulses (<0.5 ns) that imply similarly high temperatures. Furthermore, the radio spectrum of the Crab pulsar also has spectral bands similar to those that have been detected. Finally, decreasing the signal-to-noise threshold of detection gives results consistent with beamed signals having a small beam divergence, as expected from non-thermal sources that send a jet, like those seen in pulsars. Considering that galaxy centers contain massive black holes, exotic black hole physics may be responsible for the spectral modulation. However, at this stage, this idea is only a hypothesis to be confirmed with further work.

  12. Interpretation of the optical absorption spectrum of uranium germanate

    International Nuclear Information System (INIS)

    Gajek, Z.; Krupa, J.C.

    1993-01-01

    Visible and infrared absorption spectra of U 4+ in UGeO 4 are described and interpreted in terms of the standard parametrization scheme. One of the two models considered is consistent with available interpretations of other uranium germanates and silicates. The second one originating from theoretical estimation of the crystal-field effect permits exceptional properties of the compound under consideration, in particular, an untypical assignation of the electronic energy levels and values of the crystal-field parameters in comparison with other tetragonal oxides. (author)

  13. Interpretation of the optical absorption spectrum of uranium germanate

    Energy Technology Data Exchange (ETDEWEB)

    Gajek, Z.; Krupa, J.C. (Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire); Zolnierek, Z. (Polska Akademia Nauk, Wroclaw (Poland). Inst. Niskich Temperatur i Badan Strukturalnych); Antic-Fidancev, E.; Lamaitre-Blaise, M. (Centre National de la Recherche Scientifique (CNRS), 92 - Meudon-Bellevue (France))

    1993-12-06

    Visible and infrared absorption spectra of U[sup 4+] in UGeO[sub 4] are described and interpreted in terms of the standard parametrization scheme. One of the two models considered is consistent with available interpretations of other uranium germanates and silicates. The second one originating from theoretical estimation of the crystal-field effect permits exceptional properties of the compound under consideration, in particular, an untypical assignation of the electronic energy levels and values of the crystal-field parameters in comparison with other tetragonal oxides. (author).

  14. Thermal characterization, crystal field analysis and in-band pumped laser performance of Er doped NaY(WO(4(2 disordered laser crystals.

    Directory of Open Access Journals (Sweden)

    María Dolores Serrano

    Full Text Available Undoped and Er-doped NaY(WO42 disordered single crystals have been grown by the Czochralski technique. The specific heat and thermal conductivity (κ of these crystals have been characterized from T = 4 K to 700 K and 360 K, respectively. It is shown that κ exhibits anisotropy characteristic of single crystals as well as a κ(T behavior observed in glasses, with a saturation mean free phonon path of 3.6 Å and 4.5 Å for propagation along a and c crystal axes, respectively. The relative energy positions and irreducible representations of Stark Er(3+ levels up to (4G(7/2 multiplet have been determined by the combination of experimental low (<10 K temperature optical absorption and photoluminescence measurements and simulations with a single-electron Hamiltonian including both free-ion and crystal field interactions. Absorption, emission and gain cross sections of the (4I(13/2↔(4I(15/2 laser related transition have been determined at 77 K. The (4I(13/2 Er(3+ lifetime (τ was measured in the temperature range of 77-300 K, and was found to change from τ (77K ≈ 4.5 ms to τ (300K ≈ 3.5 ms. Laser operation is demonstrated at 77 K and 300 K by resonantly pumping the (4I(13/2 multiplet at λ≈1500 nm with a broadband (FWHM≈20 nm diode laser source perfectly matching the 77 K crystal (4I(15/2 → (4I(13/2 absorption profile. At 77 K as much as 5.5 W of output power were obtained in π-polarized configuration with a slope efficiency versus absorbed pump power of 57%, the free running laser wavelength in air was λ≈1611 nm with the laser output bandwidth of 3.5 nm. The laser emission was tunable over 30.7 nm, from 1590.7 nm to 1621.4 nm, for the same π-polarized configuration.

  15. Investigation of glutathione-derived electrostatic and hydrogen-bonding interactions and their role in defining Grx5 [2Fe-2S] cluster optical spectra and transfer chemistry.

    Science.gov (United States)

    Sen, Sambuddha; Bonfio, Claudia; Mansy, Sheref S; Cowan, J A

    2018-03-01

    Human glutaredoxin 5 (Grx5) is one of the core components of the Isc (iron-sulfur cluster) assembly and trafficking machinery, and serves as an intermediary cluster carrier, putatively delivering cluster from the Isu scaffold protein to target proteins. The tripeptide glutathione is intimately involved in this role, providing cysteinyl coordination to the iron center of the Grx5-bound [2Fe-2S] cluster. Grx5 has a well-defined glutathione-binding pocket with protein amino acid residues providing many ionic and hydrogen binding contacts to the bound glutathione. In this report, we investigated the importance of these interactions in cluster chirality and exchange reactivity by systematically perturbing the crucial contacts by use of natural and non-natural amino acid substitutions to disrupt the binding contacts from both the protein and glutathione. Native Grx5 could be reconstituted with all of the glutathione analogs used, as well as other thiol ligands, such as DTT or L-cysteine, by in vitro chemical reconstitution, and the holo proteins were found to transfer [2Fe-2S] cluster to apo ferredoxin 1 at comparable rates. However, the circular dichroism spectra of these derivatives displayed prominent differences that reflect perturbations in local cluster chirality. These studies provided a detailed molecular understanding of glutathione-protein interactions in holo Grx5 that define both cluster spectroscopy and exchange chemistry.

  16. Calculations of the electronic levels, spin-Hamiltonian parameters and vibrational spectra for the CrCl{sub 3} layered crystals

    Energy Technology Data Exchange (ETDEWEB)

    Avram, C.N. [Faculty of Physics, West University of Timisoara, Bd. V. Parvan No. 4, 300223 Timisoara (Romania); Gruia, A.S., E-mail: adigruia@yahoo.com [Faculty of Physics, West University of Timisoara, Bd. V. Parvan No. 4, 300223 Timisoara (Romania); Brik, M.G. [College of Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Institute of Physics, University of Tartu, Ravila 14C, Tartu 50411 (Estonia); Institute of Physics, Jan Dlugosz University, Armii Krajowej 13/15, PL-42200 Czestochowa (Poland); Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Barb, A.M. [Faculty of Physics, West University of Timisoara, Bd. V. Parvan No. 4, 300223 Timisoara (Romania)

    2015-12-01

    Calculations of the Cr{sup 3+} energy levels, spin-Hamiltonian parameters and vibrational spectra for the layered CrCl{sub 3} crystals are reported for the first time. The crystal field parameters and the energy level scheme were calculated in the framework of the Exchange Charge Model of crystal field. The spin-Hamiltonian parameters (zero-field splitting parameter D and g-factors) for Cr{sup 3+} ion in CrCl{sub 3} crystals were obtained using two independent techniques: i) semi-empirical crystal field theory and ii) density functional theory (DFT)-based model. In the first approach, the spin-Hamiltonian parameters were calculated from the perturbation theory method and the complete diagonalization (of energy matrix) method. The infrared (IR) and Raman frequencies were calculated for both experimental and fully optimized geometry of the crystal structure, using CRYSTAL09 software. The obtained results are discussed and compared with the experimental available data.

  17. Comparison of linear and nonlinear optical spectra of various ZnO epitaxial layers and of bulk material obtained by different experimental techniques

    Energy Technology Data Exchange (ETDEWEB)

    Priller, H.; Brueckner, J.; Klingshirn, C.; Kalt, H. [Institut fuer Angewandte Physik, Universitaet Karlsruhe, Wolfgang-Gaede-Str. 1, 76131 Karlsruhe (Germany); Gruber, Th.; Waag, A. [Abteilung Halbleiterphysik, Universitaet Ulm, Albert Einstein Allee 45, 89081 Ulm (Germany); Ko, H.J.; Yao, T. [Institute for Material Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan)

    2004-03-01

    We investigate ZnO epitaxial layers grown by MBE (Molecular Beam Epitaxy) and MOVPE (Metal Organic Vapor Phase Epitaxy) techniques. The samples show similar optical behavior in temperature dependent photoluminescence measurements, reflection and photoluminescence excitation spectroscopy in the low density regime. High excitation measurements show different behavior. While the MBE sample leads to stimulated emission from the exciton-exciton-scattering, an electron hole plasma is formed in the MOVPE sample which leads to stimulated emission at higher excitation intensities. The gain value measured by the variable stripe length method is much higher for the MBE grown sample. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Crystal field analysis of Pm$^{3+}$ (4$^{f4}) and Sm$^{3+}$ (4$^{f5}) and lattice location studies of $^{147}$Nd and $^{147}$Pm in w-AlN

    CERN Document Server

    Vetter, Ulrich; Nijjar, Anmol S; Zandi, Bahram; Öhl, Gregor; Wahl, Ulrich; De Vries, Bart; Hofsäss, Hans; Dietrich, Marc

    2006-01-01

    We report a detailed crystal field analysis of Pm3+ and Sm3+ as well as lattice location studies of 147Pm and 147Nd in 2H-aluminum nitride (w-AlN). The isotopes of mass 147 were produced by nuclear fission and implanted at an energy of 60 keV. The decay chain of interest in this work is 147Nd→147Pm→147Sm (stable). Lattice location studies applying the emission channeling technique were carried out using the β− particles and conversion electrons emitted in the radioactive decay of 147Nd→147Pm. The samples were investigated as implanted, and also they were investigated after annealing to temperatures of 873 K as well as 1373 K. The main fraction of about 60% of both 147Pm as well as 147Nd atoms was located on substitutional Al sites in the AlN lattice; the remainder of the ions were located randomly within the AlN lattice. Following radioactive decay of 147Nd, the cathodoluminescence spectra of Pm3+ and Sm3+ were obtained between 500 nm and 1050 nm at sample temperatures between 12 K and 300 K. High-re...

  19. Magnetic properties of lithium rare-earth fluorides: Ferromagnetism in LiErF4 and LiHoF4 and crystal-field parameters at the rare-earth and Li sites

    DEFF Research Database (Denmark)

    Hansen, P. E.; Johansson, Torben; Nevald, Rolf

    1975-01-01

    Single crystals of LiErF4 and LiHoF4 have been grown and their magnetic properties measured from 1.3 K to 300 K. LiHoF4 turned out to be a nearly ideal Ising ferromagnet with TC=1.30±0.05 K and a saturation magnetization along the crystalline c axis of (6.98±0.02)μB. In LiErF4 no ordering...... was observed, but extrapolation indicates that below 0.5 K it will be ferromagnetic with the magnetic moments in the crytalline ab plane. From the susceptibilities the crystal-field parameters Bnm with (n, m)=(2, 0), (4, 0), (4, 4), (6, 0), (6, 4) have been extracted giving for Er3+ in LiErF4: 430., -985......., 1185., -5., 740.+i135. (cm-1) and for Ho3+ in LiHoF4: 470., -825., 1050., -10., 760.+i150 (cm-1). The exchange constants were found to be small compared to the dipole interactions. Furthermore the 7Li NMR spectra have been obtained in these materials as well as in LiTbF4 thereby determining the second...

  20. Size effects in spin-crossover nanoparticles in framework of 2D and 3D Ising-like breathing crystal field model

    International Nuclear Information System (INIS)

    Gudyma, Iu.; Maksymov, A.; Spinu, L.

    2015-01-01

    Highlights: • We study the thermal hysteresis in spin-crossover nanoparticles with stochastic perturbation. • The dependence of system behavior on its dimensionality and size were examined. • The spin-crossover compounds where described by breathing crystal field Ising-like model. • The fluctuations may enlarge the hysteresis width which is dependent on the system size. - Abstract: The spin-crossover nanoparticles of different sizes and stochastic perturbations in external field taking into account the influence of the dimensionality of the lattice was studied. The analytical tools used for the investigation of spin-crossover system are based on an Ising-like model described using of the breathing crystal field concept. The changes of transition temperatures characterizing the systems’ bistable properties for 2D and 3D lattices, and their dependence on its size and fluctuations strength were obtained. The state diagrams with hysteretic and non-hysteretic behavior regions have also been determined.

  1. Size effects in spin-crossover nanoparticles in framework of 2D and 3D Ising-like breathing crystal field model

    Energy Technology Data Exchange (ETDEWEB)

    Gudyma, Iu. [Department of General Physics, Chernivtsi National University, Chernivtsi 58012 (Ukraine); Maksymov, A., E-mail: maxyartur@gmail.com [Department of General Physics, Chernivtsi National University, Chernivtsi 58012 (Ukraine); Advanced Material Research Institute (AMRI), University of New Orleans, New Orleans, LA 70148 (United States); Spinu, L. [Advanced Material Research Institute (AMRI), University of New Orleans, New Orleans, LA 70148 (United States); Department of Physics, University of New Orleans, New Orleans, LA 70148 (United States)

    2015-10-15

    Highlights: • We study the thermal hysteresis in spin-crossover nanoparticles with stochastic perturbation. • The dependence of system behavior on its dimensionality and size were examined. • The spin-crossover compounds where described by breathing crystal field Ising-like model. • The fluctuations may enlarge the hysteresis width which is dependent on the system size. - Abstract: The spin-crossover nanoparticles of different sizes and stochastic perturbations in external field taking into account the influence of the dimensionality of the lattice was studied. The analytical tools used for the investigation of spin-crossover system are based on an Ising-like model described using of the breathing crystal field concept. The changes of transition temperatures characterizing the systems’ bistable properties for 2D and 3D lattices, and their dependence on its size and fluctuations strength were obtained. The state diagrams with hysteretic and non-hysteretic behavior regions have also been determined.

  2. Crystal Field Levels of Pr3+ in PrFeO3 and PrGaO3 Determined by Inelastic Neutron Scattering

    DEFF Research Database (Denmark)

    Feldmann, K.; Henning, K.; Kaun, L.

    1975-01-01

    The crystal field splitting of the 3H4 ground state of the Pr ion in PrFeO3 and PrGaO3 has been investigated by inelastic scattering of thermal neutrons. At several temperatures the transitions have been measured by TAS and TOF methods for polycrystalline PrFeO3 and by the TOF method...... for polycrystalline PrGaO3. Energy level schemes which are different for these materials are given....

  3. Crystal-field excitations in PrAl sub 3 and NdAl sub 3 at ambient and elevated pressure

    CERN Document Server

    Straessle, T; Rusz, J; Janssen, S; Juranyi, F; Sadykov, R; Furrer, A

    2003-01-01

    The crystal fields (CFs) of the binary rare-earth compounds PrAl sub 3 and NdAl sub 3 have been examined at ambient pressure by means of inelastic neutron scattering. The CF of the latter compound has also been measured under hydrostatic pressure (p = 0.84 GPa). The observed substantial changes of the CF under pressure are discussed within the framework of first-principles density functional theory calculations.

  4. Thermal characteristics, Raman spectra, optical and structural properties of TiO2-Bi2O3-B2O3-TeO2 glasses

    Science.gov (United States)

    Gupta, Nupur; Khanna, Atul; Gonzàlez, Fernando; Iordanova, Reni

    2017-05-01

    Tellurite and borotellurite glasses containing Bi2O3 and TiO2 were prepared and structure-property correlations were carried out by density measurements, X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Raman and UV-visible spectroscopy. Titanium tellurite glasses require high melt-cooling rates and were fabricated by splat quenching. On adding B2O3, the glass forming ability (GFA) enhances, and glasses could be synthesized at lower quenching rates. The density of glasses shows a direct correlation with molecular mass of the constituents. UV-visible studies were used to determine the optical band gap and refractive index. Raman studies found that the co-ordination number of tellurium ions with oxygen (NTe-O) decreases with the increase in B2O3 as well as Bi2O3 content while, TiO2 produce only a small decrease in NTe-O, which explains the lower GFA of titanium tellurite glasses that do not contain Bi2O3 and B2O3. DSC studies show that the glass transition temperature (Tg) increases with B2O3 and TiO2 concentrations and that Tg correlates well with bond enthalpy of the metal oxides.

  5. Tuning crystal field symmetry of hexagonal NaY{sub 0.92}Yb{sub 0.05}Er{sub 0.03}F{sub 4} by Ti{sup 4+} codoping for high-performance upconversion

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Han, E-mail: fjfzyh@fzu.edu.cn [College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108 (China); Huang, Qingming [Instrumentation Analysis and Research Center, Fuzhou University, Fuzhou, Fujian 350002 (China); Ma, En [Fujian Institue of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Zhang, Xinqi [Instrumentation Analysis and Research Center, Fuzhou University, Fuzhou, Fujian 350002 (China); Yu, Jianchang [College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108 (China)

    2014-11-15

    Highlights: • Upconversion emission of Er{sup 3+} was obviously enhanced by Ti{sup 4+} codoped in NaYF{sub 4}. • The upconversion luminescence lifetime was also obviously prolonged. • Na{sup +} could be induced to occupy Y{sup 3+} sites if Ti{sup 4+} was codoped with appropriate concentration. • The crystal field asymmetry was enhanced for better upconversion performance. • Crystal growth was prevented and small-sized NaYF{sub 4} were obtained. - Abstract: 378 nm, 408 nm and 521 nm upconversion emissions of Er{sup 3+} ions were obviously enhanced by Ti{sup 4+} codoped with Yb{sup 3+}/Er{sup 3+} in hexagonal NaYF{sub 4}, and the corresponding upconversion luminescence lifetimes were also prolonged, especially for 378 nm and 408 nm emissions. X-ray powder diffraction, field emission scanning electron microscope, transmission electron microscope, X-ray photoelectron spectroscopy and upconversion emission spectra were employed to explore the relationships of the structure and properties. From these characterizations we made a novel discovery that Na{sup +} could be induced to occupy Y{sup 3+} sites for establishing valence balance of the system if Ti{sup 4+} ions were codoped with appropriate concentration. As a result the crystal field asymmetry of NaY{sub 0.92}Yb{sub 0.05}Er{sub 0.03}F{sub 4} was enhanced and then its upconversion properties were improved because the hypersensitive electron transition of Yb{sup 3+}/Er{sup 3+} ions was promoted greatly. At the same time, the crystal sizes of the codoped NaYF{sub 4} became smaller because the crystal growth was prevented by more negative charges gathering at the crystal surface. This study provides an exploration of the relationship among impurity doping, structural changes and upconversion performance, which may be useful for design and synthesis of high-performance upconversion codoping materials.

  6. Crystal field splitting and spin states of Co ions in cobalt ferrite with composition Co1.5Fe1.5O4 using magnetization and X-ray absorption spectroscopy measurements

    Science.gov (United States)

    Sinha, A. K.; Singh, M. N.; Achary, S. N.; Sagdeo, A.; Shukla, D. K.; Phase, D. M.

    2017-08-01

    Structural, magnetic and electronic properties of partially inverted Cobalt Ferrite with composition Co1.5Fe1.5O4 is discussed in the present work. Single phase (SG: Fd3m) sample is synthesized by co-precipitation technique and subsequent air annealing. The values of saturation magnetization obtained from careful analysis of approach to saturation in initial M(H) curves are used to determine spin states of Co ions in tetrahedral (TH) and octahedral (OH) sites. Spin states of Co3+ ions in TH sites, which has not been reported in literature, were found to be in high spin state. Temperature variation of magnetic parameters has been studied. The sample shows magneto-crystalline anisotropy with two clearly distinct pinning centers. Oxygen K-edge and Fe as well as Co L2,3-edge X-ray absorption (XAS) spectra have been used as complementary measurements to study crystal field splitting and core hole effects on transition metal (TM) 3d orbitals. The ratio of intensities of t2g and eg absorption bands in O-K edge XAS spectrum is used to estimate the spin states of Co ions at OH and TH sites. The results are in agreement with those obtained from magnetization data, and favors Co3+ ions in TH sites in high spin states. Normalized areas of the satellite peaks in TM L2,3-edge XAS spectra have been used to estimate 3dn+1L contribution in ground state wave function and the contributions were found to be significant.

  7. A short review of theoretical and empirical models for characterization of optical materials doped with the transition metal and rare earth ions

    Science.gov (United States)

    Su, P.; Ma, C.-G.; Brik, M. G.; Srivastava, A. M.

    2018-05-01

    In this paper, a brief retrospective review of the main developments in crystal field theory is provided. We have examined how different crystal field models are applied to solve the problems that arise in the spectroscopy of optically active ions. Attention is focused on the joint application of crystal field and density functional theory (DFT) based models, which takes advantages of strong features of both individual approaches and allows for obtaining a complementary picture of the electronic properties of a doped crystal with impurity energy levels superimposed onto the host band structure.

  8. Beta spectra. II-Positron spectra

    International Nuclear Information System (INIS)

    Grau, A.; Garcia-Torano, E.

    1981-01-01

    Using the Fermi theory of beta decay, the beta spectra for 30 positron emitters have been computed, introducing a correction factor for unique forbidden transitions. The spectra are ploted vs. energy, once normalised, and tabulated with the related Fermi functions. The average and median energies are calculated. (author)

  9. Neutron diffusion study of the crystal field action on the Er3+ ion in supraconductors with high critical temperature

    International Nuclear Information System (INIS)

    Mesot, J.

    1992-11-01

    Superconductivity in the cuprates is believed to be controlled by the density of mobile charges in the CuO 2 planes. In particular, the charge transfer process from the chains to the planes seems to play an important role. Consequently, it is crucial to observe directly the influence of different types of perturbations on the electronic structure of these compounds. The crystal field (CF) spectroscopy of the rare earth allows us to make these observations, since in the perovskite-type compounds YBa 2 Cu 3 O x (123) and YBa 2 Cu 4 O 8 (1248) the replacement of the Y ions by most of the magnetic rare-earth (R) ions does not have a detrimental effect on the superconductivity. The (2J+1)-fold degeneracy of the ground-state J-multiplet of the R ions will be partially lifted under the action of the CF potential created by the neighbouring atoms. By means of inelastic neutron scattering experiments it is possible to observe directly the transitions between the CF states. This means that we can obtain useful information on both the structural and the charge distribution parameters in the vicinity of the R ion. In the 123 and 1248 systems, the R ions are sandwiched between two CuO 2 planes, thus the CF interaction at the R sites constitutes an ideal probe of the local symmetry and charge distribution of the superconducting planes. In the first part of this work, we discuss the importance of the intermediate coupling and J mixing effects on the determination of the CF parameters of the 123 compounds. In order to quantify the charge transfer process from the chains to the planes, we performed a detailed analysis of the CF of Er 3+ in the 123 and 248 compounds under the following conditions: oxygen deficiency, Zn and Ni doping of the Cu sites, external pressure and fast neutron irradiation. In parallel, we present conclusions obtained from diffraction experiments. (author) figs., tabs., 113 refs

  10. Crystal field and low energy excitations measured by high resolution RIXS at the L edge of Cu, Ni and Mn

    DEFF Research Database (Denmark)

    Ghiringhelli, G.; Piazzalunga, A.; Wang, X.

    2009-01-01

    of the 3d transition metals with unprecedented energy resolution, of the order of 100 meV for Mn, Ni and Cu. We present here some preliminary spectra on CuO, malachite, NiO, , MnO and . The dd excitations are very well resolved allowing accurate experimental evaluation of 3d state energy splitting. The low...

  11. Terminological confusions and problems at the interface between the crystal field Hamiltonians and the zero-field splitting Hamiltonians—Survey of the CF=ZFS confusion in recent literature

    Energy Technology Data Exchange (ETDEWEB)

    Rudowicz, Czesław, E-mail: crudowicz@zut.edu.pl [Institute of Physics, West Pomeranian University of Technology, Al. Piastów 17, 70-310 Szczecin (Poland); Karbowiak, Mirosław [Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław (Poland)

    2014-10-15

    The single transition ions in various crystals or molecules as well as the exchange coupled systems (ECS) of transition ions, especially the single molecule magnets (SMM) or molecular nanomagnets (MNM), have been extensively studied in recent decades using electron magnetic resonance (EMR), optical spectroscopy, and magnetic measurements. Interpretation of magnetic and spectroscopic properties of transition ions is based on two physically distinct types of Hamiltonians: the physical crystal field (CF), or equivalently ligand field (LF), Hamiltonians and the effective spin Hamiltonians (SH), which include the zero-field splitting (ZFS) Hamiltonians. Survey of recent literature has revealed a number of terminological confusions and specific problems occurring at the interface between these Hamiltonians (denoted CF (LF)↔SH (ZFS)). Elucidation of sloppy or incorrect usage of crucial notions, especially those describing or parameterizing crystal fields and zero field splittings, is a very challenging task that requires several reviews. Here we focus on the prevailing confusion between the CF (LF) and SH (ZFS) quantities, denoted as the CF=ZFS confusion, which consists in referring to the parameters (or Hamiltonians), which are the true ZFS (or SH) quantities, as purportedly the CF (LF) quantities. The inverse ZFS=CF confusion, which pertains to the cases of labeling the true CF (LF) quantities as purportedly the ZFS quantities, is considered in a follow-up paper. The two reviews prepare grounds for a systematization of nomenclature aimed at bringing order to the zoo of different Hamiltonians. Specific cases of the CF=ZFS confusion identified in the recent textbooks, review articles, and SMM (MNM)- and EMR-related papers are surveyed and the pertinent misconceptions are outlined. The consequences of the terminological confusions go far beyond simple semantic issues or misleading keyword classifications of papers in journals and scientific databases. Serious

  12. General Notes on Processes and Their Spectra

    Directory of Open Access Journals (Sweden)

    Gustav Cepciansky

    2012-01-01

    Full Text Available The frequency spectrum performs one of the main characteristics of a process. The aim of the paper is to show the coherence between the process and its own spectrum and how the behaviour and properties of a process itself can be deduced from its spectrum. Processes are categorized and general principles of their spectra calculation and recognition are given. The main stress is put on power spectra of electric and optic signals, as they also perform a kind of processes. These spectra can be directly measured, observed and examined by means of spectral analyzers and they are very important characteristics which can not be omitted at transmission techniques in telecommunication technologies. Further, the paper also deals with non electric processes, mainly with processes and spectra at mass servicing and how these spectra can be utilised in praxis.

  13. Crystal-field-driven redox reactions: How common minerals split H2O and CO2 into reduced H2 and C plus oxygen

    Science.gov (United States)

    Freund, F.; Batllo, F.; Leroy, R. C.; Lersky, S.; Masuda, M. M.; Chang, S.

    1991-01-01

    It is difficult to prove the presence of molecular H2 and reduced C in minerals containing dissolved H2 and CO2. A technique was developed which unambiguously shows that minerals grown in viciously reducing environments contain peroxy in their crystal structures. The peroxy represent interstitial oxygen atoms left behind when the solute H2O and/or CO2 split off H2 and C as a result of internal redox reactions, driven by the crystal field. The observation of peroxy affirms the presence of H2 and reduced C. It shows that the solid state is indeed an unusual reaction medium.

  14. Controlling Chain Conformations of High-k Fluoropolymer Dielectrics to Enhance Charge Mobilities in Rubrene Single-Crystal Field-Effect Transistors.

    Science.gov (United States)

    Adhikari, Jwala M; Gadinski, Matthew R; Li, Qi; Sun, Kaige G; Reyes-Martinez, Marcos A; Iagodkine, Elissei; Briseno, Alejandro L; Jackson, Thomas N; Wang, Qing; Gomez, Enrique D

    2016-12-01

    A novel photopatternable high-k fluoropolymer, poly(vinylidene fluoride-bromotrifluoroethylene) P(VDF-BTFE), with a dielectric constant (k) between 8 and 11 is demonstrated in thin-film transistors. Crosslinking P(VDF-BTFE) reduces energetic disorder at the dielectric-semiconductor interface by controlling the chain conformations of P(VDF-BTFE), thereby leading to approximately a threefold enhancement in the charge mobility of rubrene single-crystal field-effect transistors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Synthesis, XRD, TEM, EPR, and Optical Absorption Spectral Studies of CuZnO2 Nanocompound

    Directory of Open Access Journals (Sweden)

    T. Ravindra Reddy

    2014-01-01

    Full Text Available Synthesis of nano CuZnO2 compound is carried out by thermal decomposition method. The crystalline phase of the material is characterized by XRD. The calculated unit cell constants are a=3.1 Å and c=3.4786 Å and are of tetragonal structure. The unit cell constants are different from wurtzite (hexagonal which indicate that a nanocompound is formed. Further TEM images reveal that the metal ion is in tetragonal structure with oxygen ligands. The prepared CuZnO2 is then characterized for crystallite size analysis by employing transmission electron microscopy (TEM. The size is found to be 100 nm. Uniform bright rings are noticed in the TEM picture suggesting that the nanocrystals have preferential instead of random orientations. The selected-area electron diffraction (SAED pattern clearly indicates the formation of CuO-ZnO nanocompound. The nature of bonding is studied by electron paramagnetic resonance (EPR. The covalency character is about 0.74 and thus the compound is electrically less conductive. Optical absorption spectral studies suggest that Cu(II is placed in tetragonal elongation crystal field. The spin-orbit coupling constant, λ, is calculated using the EPR and optical absorption spectral results suggest some covalent bond between metal and ligand. Near infrared (NIR spectra are due to hydroxyl and water fundamentals.

  16. Infrared transmission study of Pr.sub.2./sub.CuO.sub.4./sub. crystal-field excitations

    Czech Academy of Sciences Publication Activity Database

    Riou, G.; Jandl, S.; Poirier, M.; Nekvasil, Vladimír; Diviš, M.; Fournier, P.; Greene, R. L.; Zhigunov, D. I.; Barilo, S. N.

    2001-01-01

    Roč. 23, - (2001), s. 179-182 ISSN 1434-6028 R&D Projects: GA ČR GA202/00/1602; GA ČR GA202/99/0184 Grant - others:GA UK(XC) 145/2000/B-FYZ; DMR(XX) 9732796 Institutional research plan: CEZ:AV0Z1010914 Keywords : optical properties * crystal and ligand fields * other cuprates Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.811, year: 2001

  17. Study of the EPR and Moessbauer spectra of iron phosphites

    International Nuclear Information System (INIS)

    Ebert, M.; Kavan, L.

    1978-01-01

    The EPR and Moessbauer spectra of polycrystalline samples of ferrous phosphites FeHPO 3 .3H 2 O, FeH 2 P 2 O 5 , FeH 4 P 2 O 6 .1/2H 2 O, FeH 10 P 4 O 12 .4H 2 O and ferric phosphites Fe 2 (HPO 3 ) 3 .9h 2 O, FeH 3 P 2 O 6 .3H 2 O and Fe 4 H 33 P 15 O 45 .6H 2 O were studied. The hydrogen bonds present in hydrogen phosphite anions (polyorthophosphites) produce a decrease in the electron density on the oxygen atom in the anion and thus also a decrease in the crystal field strength with an increasing P/Fe ratio. These changes are reflected not only in the Dq values but also in the g-factors, Moessbauer isomeric shifts and quadropole splitting values. The Moessbauer spectra were measured at laboratory temperature with a Co-57/Pd source (the time for measuring one sample was about 24 hrs) and evaluated on a Hewlett-Packard computer. The EPR spectra of the polycristalline samples were measured at laboratory temperature in the 3 cm region. (T.I.)

  18. Spectra of Graphs

    NARCIS (Netherlands)

    Brouwer, A.E.; Haemers, W.H.

    2012-01-01

    This book gives an elementary treatment of the basic material about graph spectra, both for ordinary, and Laplace and Seidel spectra. The text progresses systematically, by covering standard topics before presenting some new material on trees, strongly regular graphs, two-graphs, association

  19. Spectra of alkali atoms

    International Nuclear Information System (INIS)

    Santoso, Budi; Arumbinang, Haryono.

    1981-01-01

    Emission spectra of alkali atoms has been determined by using spectrometer at the ultraviolet to infra red waves range. The spectra emission can be obtained by absorption spectrophotometric analysis. Comparative evaluations between experimental data and data handbook obtained by spark method were also presented. (author tr.)

  20. Magnetic order and crystal fields in the Pnma phases of Tm2BaTO5(T=Co and Ni)

    International Nuclear Information System (INIS)

    Harker, S.J.; Stewart, G.A.

    2000-01-01

    The magnetic ordering and crystal field interactions of the Pnma phases of both Tm 2 BaCoO 5 and Tm 2 BaNiO 5 are investigated by 169 Tm Moessbauer spectroscopy and the temperature-dependent hyperfine interactions are compared with those obtained elsewhere for Tm 2 BaCuO 5 . The Pnma phases are shown to order magnetically at temperatures of 3.5(2) K (Tm 2 BaCoO 5 ) and 4.85(5) K (Tm 2 BaNiO 5 ), the order being induced by the transition metal. For Tm 2 BaNiO 5 an additional first-order transition observed at T≤1.4 K is identified with the independent magnetic order of the thulium sub-lattice. (orig.)

  1. Dynamic phase transition in the kinetic spin-32 Blume-Capel model: Phase diagrams in the temperature and crystal-field interaction plane

    International Nuclear Information System (INIS)

    Keskin, Mustafa; Canko, Osman; Deviren, Bayram

    2007-01-01

    We analyze, within a mean-field approach, the stationary states of the kinetic spin-32 Blume-Capel (BC) model by the Glauber-type stochastic dynamics and subject to a time-dependent oscillating external magnetic field. The dynamic phase transition (DPT) points are obtained by investigating the behavior of the dynamic magnetization as a function of temperature and as well as calculating the Liapunov exponent. Phase diagrams are constructed in the temperature and crystal-field interaction plane. We find five fundamental types of phase diagrams for the different values of the reduced magnetic field amplitude parameter (h) in which they present a disordered, two ordered phases and the coexistences phase regions. The phase diagrams also exhibit a dynamic double-critical end point for 0 5.06

  2. Dynamic phase transition in the kinetic spin-1 Blume-Capel model: Phase diagrams in the temperature and crystal-field interaction plane

    International Nuclear Information System (INIS)

    Keskin, M.; Canko, O.; Temizer, U.

    2007-01-01

    Within a mean-field approach, the stationary states of the kinetic spin-1 Blume-Capel model in the presence of a time-dependent oscillating external magnetic field is studied. The Glauber-type stochastic dynamics is used to describe the time evolution of the system and obtain the mean-field dynamic equation of motion. The dynamic phase-transition points are calculated and phase diagrams are presented in the temperature and crystal-field interaction plane. According to the values of the magnetic field amplitude, three fundamental types of phase diagrams are found: One exhibits a dynamic tricritical point, while the other two exhibit a dynamic zero-temperature critical point

  3. Dynamic phase transition in the kinetic spin-32 Blume-Capel model: Phase diagrams in the temperature and crystal-field interaction plane

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)]. E-mail: keskin@erciyes.edu.tr; Canko, Osman [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Deviren, Bayram [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2007-06-15

    We analyze, within a mean-field approach, the stationary states of the kinetic spin-32 Blume-Capel (BC) model by the Glauber-type stochastic dynamics and subject to a time-dependent oscillating external magnetic field. The dynamic phase transition (DPT) points are obtained by investigating the behavior of the dynamic magnetization as a function of temperature and as well as calculating the Liapunov exponent. Phase diagrams are constructed in the temperature and crystal-field interaction plane. We find five fundamental types of phase diagrams for the different values of the reduced magnetic field amplitude parameter (h) in which they present a disordered, two ordered phases and the coexistences phase regions. The phase diagrams also exhibit a dynamic double-critical end point for 05.06.

  4. A new effective correlation mean-field theory for the ferromagnetic spin-1 Blume-Capel model in a transverse crystal field

    Science.gov (United States)

    Roberto Viana, J.; Rodriguez Salmon, Octavio D.; Neto, Minos A.; Carvalho, Diego C.

    2018-02-01

    A new approximation technique is developed so as to study the quantum ferromagnetic spin-1 Blume-Capel model in the presence of a transverse crystal field in the square lattice. Our proposal consists of approaching the spin system by considering islands of finite clusters whose frontiers are surrounded by noninteracting spins that are treated by the effective-field theory. The resulting phase diagram is qualitatively correct, in contrast to most effective-field treatments, in which the first-order line exhibits spurious behavior by not being perpendicular to the anisotropy axis at low-temperatures. The effect of the transverse anisotropy is also verified by the presence of quantum phase transitions. The possibility of using larger sizes constitutes an advantage to other approaches where the implementation of larger sizes is computationally costly.

  5. On the excitation spectra of Cr{sup 3+}/Cr{sup 2+} and V{sup 3+} co-doped ZnAl{sub 2}S{sub 4} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Anghel, S., E-mail: anggell@gmail.com [Institute of Applied Physics, Academiei Str 5, Chis,inău MD-2028, Republic of Moldova (Moldova, Republic of); Ruhr-Universität Bochum, Anorganische Chemie III, Universitätsstrasse 150, D-44801 Bochum (Germany); Brik, M.G. [College of Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Institute of Physics, University of Tartu, Ravila 14 C, Tartu 50411 (Estonia); Institute of Physics, Jan Dlugosz University, Armii Krajowej 13/15, PL-42200 Czestochowa (Poland); Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw (Poland); Ma, C.-G. [College of Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Sushkevich, K. [State University of Moldova, Mateevici Str 60, Chis,inău MD-2009, Republic of Moldova (Moldova, Republic of); Kulyuk, L. [Institute of Applied Physics, Academiei Str 5, Chis,inău MD-2028, Republic of Moldova (Moldova, Republic of)

    2015-10-15

    The excitation spectra of the ZnAl{sub 2}S{sub 4} spinel crystals codoped with chromium and vanadium are investigated in order to explain some features of the Cr{sup 3+} ions optical spectra and the inconsistency of the experimental absorption/emission bands position with the Tanabe–Sugano diagram, as well as the “missing” band in the absorption spectrum of V{sup 3+} ion although this band should be present as it is due to a spin allowed transition. The unusual high Racah parameters of the C/B ratio for Cr{sup 3+} ions have been induced to recalculate the Tanabe–Sugano diagram for the d{sup 3} electron configuration and the ratio C/B=8 in order to use it for the experimental results interpretation. The presence of Cr{sup 2+} ions in the low spin electron configurations in the octahedral coordination was confirmed; the temperature dependence of the Cr{sup 2+} emission at about 1.9 eV was studied and the Huang–Rhys factors were estimated for different temperatures. Despite the fact that the V{sup 3+}C/B ratio has a different value compared to the case of Cr{sup 3+} ions, the electron–phonon interaction is similar for both ions, with the Huang–Rhys parameter equal to 10 in both cases. Further research into optimizing the ZnAl{sub 2}S{sub 4}:Cr, V system to get an efficient enhancement of the vanadium emission on account on re-absorbing the chromium emission is suggested. - Highlights: • The spectroscopic properties of Cr and V codoped α-ZnAI{sub 2}S{sub 4} have been investigated. • The crystal field calculations have been performed. • The Huang–Rhys factors have been estimated for different temperatures. • The theoretical calculations have been correlated with the excitation spectra.

  6. Algorithms for classification of astronomical object spectra

    Science.gov (United States)

    Wasiewicz, P.; Szuppe, J.; Hryniewicz, K.

    2015-09-01

    Obtaining interesting celestial objects from tens of thousands or even millions of recorded optical-ultraviolet spectra depends not only on the data quality but also on the accuracy of spectra decomposition. Additionally rapidly growing data volumes demands higher computing power and/or more efficient algorithms implementations. In this paper we speed up the process of substracting iron transitions and fitting Gaussian functions to emission peaks utilising C++ and OpenCL methods together with the NOSQL database. In this paper we implemented typical astronomical methods of detecting peaks in comparison to our previous hybrid methods implemented with CUDA.

  7. Hybridization and crystal-field effects in Kondo insulators studied by means of core-level spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Strigari, Fabio

    2015-04-13

    and even for symmetries lower than tetragonal. In addition to that, HAXPES measurements on the CeM{sub 2}Al{sub 10} series are presented. A common technique for studying hybridization effects in rare earths, and their electronic structure in general, is photoelectron spectroscopy in the soft X-ray range (hv ≤ 1.5 keV). However, in this energy region surface effects are known to matter so that the picture about the hybridization interaction might be distorted with respect to the bulk. The use of hard X-rays (hν=5-10 keV) guarantees a sufficiently large probing depth for obtaining information about the actual bulk electronic structure. In a detailed quantitative analysis of HAXPES 3d core level spectra - using a combination of full multiplet calculations and a configuration interaction model (fm-CI model) - the hybridization strength can be quantified. The XAS results show that the CEF ground states of CeRu{sub 2}Al{sub 10} and CeOs{sub 2}Al are very similar, while it is clearly different for the non-ordering system CeFe{sub 2}Al{sub 10}. The CEF description nicely explains the magnetic anisotropy observed in susceptibility data and to a large extent the small ordered moments along the c axis. We provide a reliable quantitative description of the CEF ground state of the CeM{sub 2}Al{sub 10} compounds. Furthermore, the analysis of the HAXPES data in the fm-CI model allows to quantify the intermediate 4f valence and establishes that the exchange interaction increases within the series from Ru to Os to Fe. A substantial amount of Kondo screening is shown to be present even in the magnetically ordered Ru and Os compounds. The polarized XAS study on CeNiSn demonstrates that the monoclinic CEF is well described in a trigonal approximation, and the determined 4f ground-state wave function is consistent with results from inelastic neutron scattering for Cu-doped CeNiSn. Moreover, the systematic investigation of the CeRh{sub 1-x}Ir{sub x}In{sub 5} substitution series by means

  8. Solar Energetic Particle Spectra

    Science.gov (United States)

    Ryan, J. M.; Boezio, M.; Bravar, U.; Bruno, A.; Christian, E. R.; de Nolfo, G. A.; Martucci, M.; Mergè, M.; Munini, R.; Ricci, M.; Sparvoli, R.; Stochaj, S.

    2017-12-01

    We report updated event-integrated spectra from several SEP events measured with PAMELA. The measurements were made from 2006 to 2014 in the energy range starting at 80 MeV and extending well above the neutron monitor threshold. The PAMELA instrument is in a high inclination, low Earth orbit and has access to SEPs when at high latitudes. Spectra have been assembled from these high-latitude measurements. The field of view of PAMELA is small and during the high-latitude passes it scans a wide range of asymptotic directions as the spacecraft orbits. Correcting for data gaps, solid angle effects and improved background corrections, we have compiled event-integrated intensity spectra for twenty-eight SEP events. Where statistics permit, the spectra exhibit power law shapes in energy with a high-energy exponential roll over. The events analyzed include two genuine ground level enhancements (GLE). In those cases the roll-over energy lies above the neutron monitor threshold ( 1 GV) while the others are lower. We see no qualitative difference between the spectra of GLE vs. non-GLE events, i.e., all roll over in an exponential fashion with rapidly decreasing intensity at high energies.

  9. Room-Temperature Coherent Optical Phonon in 2D Electronic Spectra of CH3NH3PbI3 Perovskite as a Possible Cooling Bottleneck

    Energy Technology Data Exchange (ETDEWEB)

    Monahan, Daniele M. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kavli Energy NanoSciences Inst. at Berkeley, Berkeley, CA (United States); Guo, Liang [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kavli Energy NanoSciences Inst. at Berkeley, Berkeley, CA (United States); Lin, Jia [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kavli Energy NanoSciences Inst. at Berkeley, Berkeley, CA (United States); Dou, Letian [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kavli Energy NanoSciences Inst. at Berkeley, Berkeley, CA (United States); Yang, Peidong [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kavli Energy NanoSciences Inst. at Berkeley, Berkeley, CA (United States); Fleming, Graham R. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kavli Energy NanoSciences Inst. at Berkeley, Berkeley, CA (United States)

    2017-06-29

    A hot phonon bottleneck may be responsible for slow hot carrier cooling in methylammonium lead iodide hybrid perovskite, creating the potential for more efficient hot carrier photovoltaics. In room-temperature 2D electronic spectra near the band edge, we observe in this paper amplitude oscillations due to a remarkably long lived 0.9 THz coherent phonon population at room temperature. This phonon (or set of phonons) is assigned to angular distortions of the Pb–I lattice, not coupled to cation rotations. The strong coupling between the electronic transition and the 0.9 THz mode(s), together with relative isolation from other phonon modes, makes it likely to cause a phonon bottleneck. Finally, the pump frequency resolution of the 2D spectra also enables independent observation of photoinduced absorptions and bleaches independently and confirms that features due to band gap renormalization are longer-lived than in transient absorption spectra.

  10. Parameterization of rotational spectra

    International Nuclear Information System (INIS)

    Zhou Chunmei; Liu Tong

    1992-01-01

    The rotational spectra of the strongly deformed nuclei with low rotational frequencies and weak band mixture are analyzed. The strongly deformed nuclei are commonly encountered in the rare-earth region (e. g., 150 220). A lot of rotational band knowledge are presented

  11. Atomic Spectra Database (ASD)

    Science.gov (United States)

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  12. Principal spectra describing magnetooptic permittivity tensor in cubic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Hamrlová, Jana [Nanotechnology Centre, VSB – Technical University of Ostrava, listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic); IT4Innovations Centre, VSB – Technical University of Ostrava, listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic); Legut, Dominik [IT4Innovations Centre, VSB – Technical University of Ostrava, listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic); Veis, Martin [Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague, 121 16 Czech Republic (Czech Republic); Pištora, Jaromír [Nanotechnology Centre, VSB – Technical University of Ostrava, listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic); Hamrle, Jaroslav, E-mail: jaroslav.hamrle@vsb.cz [IT4Innovations Centre, VSB – Technical University of Ostrava, listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic); Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague, 121 16 Czech Republic (Czech Republic); Department of Physics, VSB – Technical University of Ostrava, 17. listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic)

    2016-12-15

    We provide unified phenomenological description of magnetooptic effects being linear and quadratic in magnetization. The description is based on few principal spectra, describing elements of permittivity tensor up to the second order in magnetization. Each permittivity tensor element for any magnetization direction and any sample surface orientation is simply determined by weighted summation of the principal spectra, where weights are given by crystallographic and magnetization orientations. The number of principal spectra depends on the symmetry of the crystal. In cubic crystals owning point symmetry we need only four principal spectra. Here, the principal spectra are expressed by ab initio calculations for bcc Fe, fcc Co and fcc Ni in optical range as well as in hard and soft x-ray energy range, i.e. at the 2p- and 3p-edges. We also express principal spectra analytically using modified Kubo formula.

  13. Optical Coherence and Quantum Optics

    CERN Document Server

    Mandel, Leonard

    1995-01-01

    This book presents a systematic account of optical coherence theory within the framework of classical optics, as applied to such topics as radiation from sources of different states of coherence, foundations of radiometry, effects of source coherence on the spectra of radiated fields, coherence theory of laser modes, and scattering of partially coherent light by random media. The book starts with a full mathematical introduction to the subject area and each chapter concludes with a set of exercises. The authors are renowned scientists and have made substantial contributions to many of the topi

  14. Observational and theoretical spectra of supernovae

    Science.gov (United States)

    Wheeler, J. Craig; Swartz, Douglas A.; Harkness, Robert P.

    1993-05-01

    Progress in nuclear astrophysics by means of quantitative supernova spectroscopy is discussed with special concentration on type Ia, Ib and Ic and on SN 1987A. Spectral calculations continue to support an exploding C/O white dwarf as the best model of a SN Ia. Deflagration model W7 produces good maximum light spectra of SN Ia and seems to have a better composition distribution compared to delayed detonation models, but proper treatment of opacity remains a problem and the physical basis of SN Ia explosions is still not completely understood. All models for SN Ia predict large quantities of 56Co in the ejecta, but it is not clear that observations confirm this. Although the evolutionary origin of SN Ia remains uncertain, there is recent evidence that transfer of hydrogen in a binary system may be involved, as long suspected. There has been progress in comparing dynamical models with the optical/IR spectra of SN 1987A. The evolution of the [OI] λλ6300, 6364 feature and the presence of strong persistent HeI λ10 830 indicate that both the envelope and core material contribute substantially to the formation of emission lines in the nebular phase and that neither the core nor the envelope can be neglected. Blending with nearby hydrogen lines may affect both of these spectral features, thereby complicating the analysis of the lines. The effects of continuum transfer and photoionization have been included and are under study. The discrepancies between theoretical and observed spectra are due primarily to the one-dimensional hydrodynamic models. The spectral data are not consistent with the high density ``spike'' (in radial coordinate) of the core material that is predicted by all such models. Analysis of the light curves of SN Ib and SN Ic supernovae implies that there are significant differences in their physical properties. Some SN Ib have considerably more ejecta mass than SN Ic events. SN Ib require He-rich atmospheres to produce the observed strong optical lines of

  15. Calculation of the NMR chemical shift for a 4d1 system in a strong crystal field environment of trigonal symmetry with a threefold axis of quantization

    International Nuclear Information System (INIS)

    Ahn, Sang Woon; Oh, Se Woung; Ro, Seung Woo

    1986-01-01

    The NMR chemical shift arising from 4d electron angular momentum and 4d electron angular momentum and 4d electron spin dipolar-nuclear spin angular momentum interactions for a 4d 1 system in a strong crystal field environment of trigonal symmetry, where the threefold axis is chosen to be the axis of quantization axis, has been examined. A general expression using the nonmultipole expansion method (exact method) is derived for the NMR chemical shift. From this expression all the multipolar terms are determined. we observe that along the (100), (010), (110), and (111) axes the NMR chemical shifts are positive while along the (001) axis, it is negative. We observe that the dipolar term (1/R 3 ) is the dominant contribution to the NMR chemical shift except for along the (111) axis. A comparison of the multipolar terms with the exact values shows also that the multipolar results are exactly in agreement with the exact values around R≥0.2 nm. The temperature dependence analysis on the NMR chemical shifts may imply that along the (111) axis the contribution to the NMR chemical shift is dominantly pseudo contact interaction. Separation of the contributions of the Fermi and the pseudo contact interactions would correctly imply that the dipolar interaction is the dominant contribution to the NMR chemical shifts along the (100), (010), (001), and (110) axes, but along the (111) axis the Fermi contact interaction is incorrectly the dominant contribution to the NMR chemical shift. (Author)

  16. Magnetic properties of Ce{sup 3+} in Pb{sub 1{minus}x}Ce{sub x}Se: Kondo and crystal-field effect

    Energy Technology Data Exchange (ETDEWEB)

    Gratens, X.; Charar, S.; Averous, M. [Groupe dEtude des Semiconducteurs URA 357, Universite Montpellier II, Place Eugene Bataillon, 34095 Montpellier Cedex 5 (France); Isber, S. [Department of Physic, Concordia University, 1455 de Maisonneuve Boulevard West, Montreal, Quebec, H3G 1M8 (CANADA); Deportes, J. [Laboratoire Louis Neel, Avenue des Martyres, BP 166X, 38042 Grenoble Cedex 9 (France); Golacki, Z. [Institute of Physics, Polish Academy of Sciences, Pl. 02-668, Warsaw (Poland)

    1997-10-01

    Electron paramagnetic resonance (EPR) experiments were performed on a Pb{sub 1{minus}x}Ce{sub x}Se crystal at liquid-helium temperatures and show very clearly that the doublet {Gamma}{sub 7} is the ground state for cerium ions. The cubic symmetry is shown and the effective Land{acute e} factor for the Ce{sup 3+} is determined to be 1.354{plus_minus}0.003. An orbital reduction factor is introduced to explain the g experimental value. High-field magnetization results are in good agreement with the EPR results. The nominal Ce composition in PbSe deduced from saturation of the magnetization, x=0.0405{plus_minus}0.0003, is very closed to the value determined by microprobe analysis (x=0.04). At 1.5 K, an antiferromagnetic interaction between the nearest-neighbor cerium atoms is found, J{sub ex}/k{sub B}={minus}0.715thinspK. The low-field magnetic-susceptibility results show that the magnetic moment of cerium impurities is strongly temperature dependent, explained by the presence of the crystal-field effect and the Kondo effect. {copyright} {ital 1997} {ital The American Physical Society}

  17. Crystal-field and Nd-Mn exchange interaction in Nd{sub 2/3}Ca{sub 1/3}MnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Beznosov, A; Fertman, E; Desnenko, V; Loginov, A [B Verkin Institute for Low Temperature Physics and Engineering, NASU, 47 Lenin Ave., 61103 Kharkov (Ukraine); Feher, A; Kajnakova, M, E-mail: fertman@ilt.kharkov.u [Centre of Low Temperature Physics of the Faculty of Science of P.J. Safarik University and IEP SAS, Park Angelinum 9, SK-04154 Kotice (Slovakia)

    2010-01-01

    A study of the low field magnetization and specific heat in magnetic fields up to 9 T of Nd{sub 2/3}Ca{sub 1/3}MnO{sub 3} perovskite in the 2-30 K temperature range has been done. All the specific heat data show broadened Schottky-like anomaly below 20 K. We suppose that such a behavior originates from the Nd magnetic ordering caused by the splitting of the Nd{sup 3+} ions ground-state doublet (GSD) in the effective molecular field H{sub ex} of Mn spin system supplemented by an applied external magnetic field. The zero field GSD splitting is an evidence of a strong exchange coupling between Nd and Mn magnetic subsystems. The Nd-ions magnetic ordering introduces an additional contribution to the ferromagnetic moment producing anomalies of the field-cooled and zero-field-cooled magnetizations of the system below 28 K. The broadened Schottky-like anomalies found are fitted for every field by a set of three Schottky functions. Applied magnetic field extends the anomaly region and shifts it to the higher temperatures. Splitting of the higher crystal field Kramers doublets gives an additional contribution to the heat capacity under magnetic fields. The GSD g-factors g{sub ||} and g{sub p}erpendicular was estimated as 3.4 and 2.2, respectively, and H{sub ex} as 9 T.

  18. Lattice vibration spectra. 16

    International Nuclear Information System (INIS)

    Lutz, H.D.; Willich, P.

    1977-01-01

    The FIR absorption spectra of pyrite type compounds RuS 2 , RuSsub(2-x)Sesub(x), RuSe 2 , RuTe 2 , OsS 2 , OsSe 2 , and PtP 2 as well as loellingite type phosphides FeP 2 , RuP 2 , and OsP 2 are reported. For RuS 2 , RuSe 2 , RuTe 2 , OsS 2 , and PtP 2 all of the five infrared allowed modes (k = 0) are observed. As a first result of a numerical normal coordinate treatment vibration forms of pyrite structure are communicated. The spectra show that lattice forces of corresponding sulfides, tellurides, and phosphides are about the same strength, but increase strongly by substitution of iron by ruthenium and especially of ruthenium by osmium. The lattice constants of the RuSsub(2-x)Sesub(x) solid solution obey Vegard's rule. (author)

  19. Deconvoluting double Doppler spectra

    International Nuclear Information System (INIS)

    Ho, K.F.; Beling, C.D.; Fung, S.; Chan, K.L.; Tang, H.W.

    2001-01-01

    The successful deconvolution of data from double Doppler broadening of annihilation radiation (D-DBAR) spectroscopy is a promising area of endeavour aimed at producing momentum distributions of a quality comparable to those of the angular correlation technique. The deconvolution procedure we test in the present study is the constrained generalized least square method. Trials with computer simulated DDBAR spectra are generated and deconvoluted in order to find the best form of regularizer and the regularization parameter. For these trials the Neumann (reflective) boundary condition is used to give a single matrix operation in Fourier space. Experimental D-DBAR spectra are also subject to the same type of deconvolution after having carried out a background subtraction and using a symmetrize resolution function obtained from an 85 Sr source with wide coincidence windows. (orig.)

  20. Spectra, Winter 2014

    Science.gov (United States)

    2014-01-01

    additional copies or more information, please email spectra@nrl.navy.mil. LEADINGEDGE 1 Contents 30 Navy Launches UAV from Submerged Submarine 31... multitasking have become mainstream concerns. For example, the New York Times in 2005 and Time magazine in 2006 both reported stories about...interruptions and multitasking , and how they affect performance by increasing human er- ror. In 2005, the information technol- ogy research firm Basex

  1. Thermoluminescence spectra of amethyst

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Q. [Suzhou Railway Teachers College (China). Dept. of Physics; Yang, B. [Beijing Normal University (China). Dept. of Physics; Wood, R.A.; White, D.R.R.; Townsend, P.D.; Luff, B.J. [Sussex Univ., Brighton (United Kingdom). School of Mathematical and Physical Sciences

    1994-04-01

    Thermoluminescence and cathodoluminescence data from natural and synthetic amethyst and synthetic quartz samples are compared. The spectra include features from the quartz host lattice and from impurity-generated recombination sites. Emission features exist throughout the wavelength range studied, 250-800 nm. The near infrared emission at 740-750 nm appears to be characteristic of the amethyst and is proposed to be due to Fe ion impurity. (Author).

  2. Auger spectra of alkanes

    International Nuclear Information System (INIS)

    Rye, R.R.; Jennison, D.R.; Houston, J.E.

    1980-01-01

    The gas-phase Auger line shapes of the linear alkanes C 1 through C 6 and of neopentane are presented and analyzed. The general shape of the spectra are characteristic of carbon in a tetrahedral environment with the major feature in all cases occurring at approx.249 eV. The relatively large spectral changes found between methane and ethane results from the direct interaction of the terminal methyl groups in ethane, and the spectra of the higher alkanes are shown to be a composite of contributions from terminal methyl and interior methylene group carbon atoms. Theoretical analysis based on a one-electron approximation is shown to be capable of making a molecular orbital assignment by comparing calculated vertical transitions to features in the Auger spectra of ethane and propane, and, in the case of ethane, of differentiating between the 2 E/sub g/ and 2 A/sub 1g/ assignment of the ground state of (C 2 H 6 ) + . A one-electron based molecular orbital treatment, however, is shown to partially break down in propane and neopentane. Analysis of neopentane and the observed absence of any noticeable major peak energy shift with increasing molecular size (as predicted by the one-electron treatment) suggests that some Auger final states occur in which both valence holes are localized on the same subunit of the molecule

  3. Pattern recognition in spectra

    International Nuclear Information System (INIS)

    Gebran, M; Paletou, F

    2017-01-01

    We present a new automated procedure that simultaneously derives the effective temperature T eff , surface gravity log g , metallicity [ Fe/H ], and equatorial projected rotational velocity v e sin i for stars. The procedure is inspired by the well-known PCA-based inversion of spectropolarimetric full-Stokes solar data, which was used both for Zeeman and Hanle effects. The efficiency and accuracy of this procedure have been proven for FGK, A, and late type dwarf stars of K and M spectral types. Learning databases are generated from the Elodie stellar spectra library using observed spectra for which fundamental parameters were already evaluated or with synthetic data. The synthetic spectra are calculated using ATLAS9 model atmospheres. This technique helped us to detect many peculiar stars such as Am, Ap, HgMn, SiEuCr and binaries. This fast and efficient technique could be used every time a pattern recognition is needed. One important application is the understanding of the physical properties of planetary surfaces by comparing aboard instrument data to synthetic ones. (paper)

  4. Recent Progress of the Synchrotron Radiation Calculation Code SPECTRA

    International Nuclear Information System (INIS)

    Tanaka, T.; Kitamura, H.

    2007-01-01

    SPECTRA is a computer software to calculate optical properties of synchrotron radiation (SR) emitted by electrons passing through magnetic devices such as bending magnets, wigglers and undulators. It has been used to design various devices in the SR beamline, such as high heat-load components in the front-end section and optical elements in the optics hutch. In addition, the electron beam quality can be estimated by comparison between the measured and calculated properties of SR. Since the first announcement, numerous improvements have been made to SPECTRA to achieve less computation time with higher numerical accuracy. In addition, a number of functions have been added to follow the user's demand. In this paper, recent progress of SPECTRA is presented and details of the new functions are explained together with several examples

  5. Cancerous tissue mapping from random lasing emission spectra

    International Nuclear Information System (INIS)

    Polson, R C; Vardeny, Z V

    2010-01-01

    Random lasing emission spectra have been collected from both healthy and cancerous tissues. The two types of tissue with optical gain have different light scattering properties as obtained from an average power Fourier transform of their random lasing emission spectra. The difference in the power Fourier transform leads to a contrast between cancerous and benign tissues, which is utilized for tissue mapping of healthy and cancerous regions of patients

  6. Deconvolution of Positrons' Lifetime spectra

    International Nuclear Information System (INIS)

    Calderin Hidalgo, L.; Ortega Villafuerte, Y.

    1996-01-01

    In this paper, we explain the iterative method previously develop for the deconvolution of Doppler broadening spectra using the mathematical optimization theory. Also, we start the adaptation and application of this method to the deconvolution of positrons' lifetime annihilation spectra

  7. Vibrational spectra of aminoacetonitrile

    International Nuclear Information System (INIS)

    Bak, B.; Hansen, E.L.; Nicolaisen, F.M.; Nielsen, O.F.

    1975-01-01

    The preparation of pure, stable aminoacetonitrile(1-amino, 1'-cyanomethane)CH 2 NH 2 CN (1) is described. The Raman spectrum, now complete, and a novel infrared spectrum extending over the 50-3600 cm -1 region are reported. A tentative normal vibration analysis is presented and supported by Raman and infrared data from the spectra of CH 2 NHDCN (2) and CH 2 ND 2 CN (3). The predominance of the trans rotamer may be attributed to intramolecular hydrogen bonding but this is too unimportant to influence the vibrational frequencies of gaseous 1, 2, and 3. However, large gas/liquid frequency shifts occur. (author)

  8. Energy spectra of quantum rings.

    Science.gov (United States)

    Fuhrer, A; Lüscher, S; Ihn, T; Heinzel, T; Ensslin, K; Wegscheider, W; Bichler, M

    2001-10-25

    Quantum mechanical experiments in ring geometries have long fascinated physicists. Open rings connected to leads, for example, allow the observation of the Aharonov-Bohm effect, one of the best examples of quantum mechanical phase coherence. The phase coherence of electrons travelling through a quantum dot embedded in one arm of an open ring has also been demonstrated. The energy spectra of closed rings have only recently been studied by optical spectroscopy. The prediction that they allow persistent current has been explored in various experiments. Here we report magnetotransport experiments on closed rings in the Coulomb blockade regime. Our experiments show that a microscopic understanding of energy levels, so far limited to few-electron quantum dots, can be extended to a many-electron system. A semiclassical interpretation of our results indicates that electron motion in the rings is governed by regular rather than chaotic motion, an unexplored regime in many-electron quantum dots. This opens a way to experiments where even more complex structures can be investigated at a quantum mechanical level.

  9. Ultraviolet spectra of planetary nebulae

    International Nuclear Information System (INIS)

    Harrington, J.P.; Seaton, M.J.; Adams, S.; Lutz, J.H.

    1982-01-01

    A detailed study of NGC 7662 is based on UV results obtained from 15 IUE spectra and on observations of other workers at optical, IR and radio wavelengths. Improved techniques are used to extract IUE data for an extended source. Relative fluxes in the different apertures which have been used are obtained using the brightness contours of Coleman, Reay and Worswick. There is close agreement between the reddening deduced from the ratios He II (lambda 1640)/(lambda 4686) and (radio)/(Hβ) and the nebular continuum emission observed with the IUE large slots agrees closely with that predicted using absolute radio and Hβ fluxes. The fluxes in nebular emission lines observed with the small slots are smaller than expected from brightness distributions; it is concluded that, for an extended source, the small slots have aperture transmission factors of 0.85 for SWP and 0.46 for LWR. The central star is fainter than has been previously supposed (by more than two magnitudes). The blackbody He II Zanstra temperature of 113 000 K is consistent with the UV colour temperature. Previous work on colour temperatures of central stars is discussed critically. Two models are discussed. (author)

  10. Structural studies of the 'Aplysia Brasiliana' and 'Dermochelis Coriacea' myoglobins by optical and electron paramagnetic resonance techniques

    International Nuclear Information System (INIS)

    Baffa Filho, O.

    1984-01-01

    The myoglobins of 'Applysia Brasiliana' (MbApB) and of the sea turtle 'Dermochelis Coriacea' (MbT) are studied with special attention devoted to the acid-alkalyne transition (AAT), the interaction with transition metals and temperature induced conformational changes in order to characterize structural differences in these proteins. The AAT of MbApB has a pK = 7.2 obtained from the EPR spectra of Fe 3+ at g (perpendicular) = 5.83 and a pK = 7.5 obtained from optical absorption (lambda = 590 nm). The EPR Spectrum of Fe 3+ at alkalyne pH shows a rhombic distortion of the ion crystal field which is in agreement with the absence in this protein of the distal histidine residue. The ESR lines associated with the low spin configuration are considerably broadened. This effect can be explained by fluctuations on the heme position relative to the symmetry axis. MbApB forms complexes with both Cu 2+ and Mn 2+ only one binding site is obtained for both metals in the protein. This site probably has common ligands for mN 2+ and Cu 2+ as the binding is competitive, suggesting also the at the Cu 2+ complex is more stable than the Mn 2+ one (K sub(A) sup(M) sub(n 2+ )) = (11,5 + - 0,8).10 3 M -1 . (Author) [pt

  11. Library search with regular reflectance IR spectra

    International Nuclear Information System (INIS)

    Staat, H.; Korte, E.H.; Lampen, P.

    1989-01-01

    Characterisation in situ for coatings and other surface layers is generally favourable, but a prerequisite for precious items such as art objects. In infrared spectroscopy only reflection techniques are applicable here. However for attenuated total reflection (ATR) it is difficult to obtain the necessary optical contact of the crystal with the sample, when the latter is not perfectly plane or flexible. The measurement of diffuse reflectance demands a scattering sample and usually the reflectance is very poor. Therefore in most cases one is left with regular reflectance. Such spectra consist of dispersion-like feature instead of bands impeding their interpretation in the way the analyst is used to. Furthermore for computer search in common spectral libraries compiled from transmittance or absorbance spectra a transformation of the reflectance spectra is needed. The correct conversion is based on the Kramers-Kronig transformation. This somewhat time - consuming procedure can be speeded up by using appropriate approximations. A coarser conversion may be obtained from the first derivative of the reflectance spectrum which resembles the second derivative of a transmittance spectrum. The resulting distorted spectra can still be used successfully for the search in peak table libraries. Experiences with both transformations are presented. (author)

  12. Electron energy-loss spectra in molecular fluorine

    Science.gov (United States)

    Nishimura, H.; Cartwright, D. C.; Trajmar, S.

    1979-01-01

    Electron energy-loss spectra in molecular fluorine, for energy losses from 0 to 17.0 eV, have been taken at incident electron energies of 30, 50, and 90 eV and scattering angles from 5 to 140 deg. Features in the spectra above 11.5 eV energy loss agree well with the assignments recently made from optical spectroscopy. Excitations of many of the eleven repulsive valence excited electronic states are observed and their location correlates reasonably well with recent theoretical results. Several of these excitations have been observed for the first time and four features, for which there are no identifications, appear in the spectra.

  13. Predicting transmittance spectra of electrophotographic color prints

    Science.gov (United States)

    Mourad, Safer; Emmel, Patrick; Hersch, Roger D.

    2000-12-01

    For dry toner electrophotographic color printers, we present a numerical simulation model describing the color printer responses based on a physical characterization of the different electrophotographic process steps. The proposed model introduces a Cross Transfer Efficiency designed to predict the color transmittance spectra of multi-color prints by taking into account the transfer influence of each deposited color toner layer upon the other layers. The simulation model leads to a better understanding of the factors that have an impact on printing quality. In order to avoid the additional optical non-linearities produced by light reflection on paper, we have limited the present investigation to transparency prints. The proposed model succeeded to predict the transmittance spectra of printed wedges combining two color toner layers with a mean deviation less than CIE-LAB (Delta) E equals 2.5.

  14. Absorption spectra of AA-stacked graphite

    International Nuclear Information System (INIS)

    Chiu, C W; Lee, S H; Chen, S C; Lin, M F; Shyu, F L

    2010-01-01

    AA-stacked graphite shows strong anisotropy in geometric structures and velocity matrix elements. However, the absorption spectra are isotropic for the polarization vector on the graphene plane. The spectra exhibit one prominent plateau at middle energy and one shoulder structure at lower energy. These structures directly reflect the unique geometric and band structures and provide sufficient information for experimental fitting of the intralayer and interlayer atomic interactions. On the other hand, monolayer graphene shows a sharp absorption peak but no shoulder structure; AA-stacked bilayer graphene has two absorption peaks at middle energy and abruptly vanishes at lower energy. Furthermore, the isotropic features are expected to exist in other graphene-related systems. The calculated results and the predicted atomic interactions could be verified by optical measurements.

  15. Infrared transmission study of crystal-field excitation in La.sub.2-x-y./sub.Nd.sub.x./sub.Sr.sub.y./sub.CuO.sub.4./sub..

    Czech Academy of Sciences Publication Activity Database

    Riou, G.; Jandl, S.; Poirier, M.; Nekvasil, Vladimír; Maryško, Miroslav; Fábry, Jan; Jurek, Karel; Diviš, M.; Hölsä, J.; Sutjahja, I. M.; Menovsky, A. A.; Barilo, S. N.; Shiryaev, S. V.; Kurnevich, L. N.

    2002-01-01

    Roč. 66, - (2002), s. 224508-1 - 221508-7 ISSN 0163-1829 R&D Projects: GA ČR GA202/00/1602; GA ČR GA203/02/0436 Institutional research plan: CEZ:AV0Z1010914 Keywords : cuprate superconductors * level splitting * interactions * crystal-field theory * rare-earth magnetism Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.327, year: 2002

  16. Crystal field effect on the f-levels of R.sub.1+x./sub.Ba.sub.2-x./sub.Cu.sub.3./sub.O.sub.6+ë./sub..

    Czech Academy of Sciences Publication Activity Database

    Nekvasil, Vladimír; Jandl, S.; Barba, D.; Martin, A. A.; Cardona, M.; Diviš, E.; Maryško, Miroslav; Wolf, T.

    226-230, - (2001), s. 985-987 ISSN 0304-8853 R&D Projects: GA ČR GA202/99/0184; GA ČR GA202/00/1602 Grant - others:FAPESP(BR) 98/14624-4 Institutional research plan: CEZ:A02/98:Z1-010-914 Keywords : crystal field * magnetic susceptibility * high Tc superconductivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.329, year: 2001

  17. Optics/Optical Diagnostics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optics/Optical Diagnostics Laboratory supports graduate instruction in optics, optical and laser diagnostics and electro-optics. The optics laboratory provides...

  18. Quantum rotation and translation of hydrogen molecules encapsulated inside C₆₀: temperature dependence of inelastic neutron scattering spectra.

    Science.gov (United States)

    Horsewill, A J; Goh, K; Rols, S; Ollivier, J; Johnson, M R; Levitt, M H; Carravetta, M; Mamone, S; Murata, Y; Chen, J Y-C; Johnson, J A; Lei, X; Turro, N J

    2013-09-13

    The quantum dynamics of a hydrogen molecule encapsulated inside the cage of a C60 fullerene molecule is investigated using inelastic neutron scattering (INS). The emphasis is on the temperature dependence of the INS spectra which were recorded using time-of-flight spectrometers. The hydrogen endofullerene system is highly quantum mechanical, exhibiting both translational and rotational quantization. The profound influence of the Pauli exclusion principle is revealed through nuclear spin isomerism. INS is shown to be exceptionally able to drive transitions between ortho-hydrogen and para-hydrogen which are spin-forbidden to photon spectroscopies. Spectra in the temperature range 1.6≤T≤280 K are presented, and examples are given which demonstrate how the temperature dependence of the INS peak amplitudes can provide an effective tool for assigning the transitions. It is also shown in a preliminary investigation how the temperature dependence may conceivably be used to probe crystal field effects and inter-fullerene interactions.

  19. Catalogue of neutron spectra

    International Nuclear Information System (INIS)

    Buxerolle, M.; Massoutie, M.; Kurdjian, J.

    1987-09-01

    Neutron dosimetry problems have arisen as a result of developments in the applications of nuclear energy. The largest number of possible irradiation situations has been collected: they are presented in the form of a compilation of 44 neutron spectra. Diagrams show the variations of energy fluence and energy fluence weighted by the dose equivalent/fluence conversion factor, with the logarithm of the corresponding energy. The equivalent dose distributions are presented as percentages for the following energy bins: 0.01 eV/0.5 eV/50 keV/1 MeV/5 MeV/15 MeV. The dose equivalent, the mean energy and the effective energy for the dose equivalent for 1 neutron cm -2 are also given [fr

  20. Donor impurity-related optical absorption spectra in GaAs-Ga{sub 1-x}Al{sub x}As quantum wells: hydrostatic pressure and {gamma}-X conduction band mixing effects

    Energy Technology Data Exchange (ETDEWEB)

    Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, C.P. 62209, Cuernavaca, MOR (Mexico); Inst. de Ciencia de Materiales de Madrid, CSIC, Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain); Lopez, S.Y. [Fac. de Educacion, Universidad de Antioquia, AA 1226, Medellin (Colombia); Duque, C.A. [Inst. de Fisica, Universidad de Antioquia, AA 1226, Medellin (Colombia); Velasco, V.R. [Inst. de Ciencia de Materiales de Madrid, CSIC, Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain)

    2007-07-01

    Using a variational procedure within the effective mass approximation, the mixing between the {gamma} and X conduction band valleys in GaAs-Ga{sub 1-x}Al{sub x}As quantum wells is investigated by taking into account the effect of applied hydrostatic pressure. Some optical properties such as donor and/or acceptor binding energy and impurity-related transition energies are calculated and comparisons with available experimental data are presented. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Design energy spectra for Turkey

    OpenAIRE

    López Almansa, Francisco; Yazgan, Ahmet Utku; Benavent Climent, Amadeo

    2012-01-01

    This work proposes design energy spectra in terms of velocity, derived through linear dynamic analyses on Turkish registers and intended for regions with design peak acceleration 0.3 g or higher. In the long and mid period ranges the analyses are linear, taking profit of the rather insensitivity of the spectra to the structural parameters other than the fundamental period; in the short period range, the spectra are more sensitive to the structural parameters and nonlinear analyses would be re...

  2. Spectra of chemical trees

    International Nuclear Information System (INIS)

    Balasubramanian, K.

    1982-01-01

    A method is developed for obtaining the spectra of trees of NMR and chemical interests. The characteristic polynomials of branched trees can be obtained in terms of the characteristic polynomials of unbranched trees and branches by pruning the tree at the joints. The unbranched trees can also be broken down further until a tree containing just two vertices is obtained. The effectively reduces the order of the secular determinant of the tree used at the beginning to determinants of orders atmost equal to the number of vertices in the branch containing the largest number of vertices. An illustrative example of a NMR graph is given for which the 22 x 22 secular determinant is reduced to determinants of orders atmost 4 x 4 in just the second step of the algorithm. The tree pruning algorithm can be applied even to trees with no symmetry elements and such a factoring can be achieved. Methods developed here can be elegantly used to find if two trees are cospectral and to construct cospectral trees

  3. Sequencing BPS spectra

    Energy Technology Data Exchange (ETDEWEB)

    Gukov, Sergei [Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E California Blvd, Pasadena, CA 91125 (United States); Max-Planck-Institut für Mathematik,Vivatsgasse 7, D-53111 Bonn (Germany); Nawata, Satoshi [Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E California Blvd, Pasadena, CA 91125 (United States); Centre for Quantum Geometry of Moduli Spaces, University of Aarhus,Nordre Ringgade 1, DK-8000 (Denmark); Saberi, Ingmar [Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E California Blvd, Pasadena, CA 91125 (United States); Stošić, Marko [CAMGSD, Departamento de Matemática, Instituto Superior Técnico,Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Mathematical Institute SANU,Knez Mihajlova 36, 11000 Belgrade (Serbia); Sułkowski, Piotr [Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E California Blvd, Pasadena, CA 91125 (United States); Faculty of Physics, University of Warsaw,ul. Pasteura 5, 02-093 Warsaw (Poland)

    2016-03-02

    This paper provides both a detailed study of color-dependence of link homologies, as realized in physics as certain spaces of BPS states, and a broad study of the behavior of BPS states in general. We consider how the spectrum of BPS states varies as continuous parameters of a theory are perturbed. This question can be posed in a wide variety of physical contexts, and we answer it by proposing that the relationship between unperturbed and perturbed BPS spectra is described by a spectral sequence. These general considerations unify previous applications of spectral sequence techniques to physics, and explain from a physical standpoint the appearance of many spectral sequences relating various link homology theories to one another. We also study structural properties of colored HOMFLY homology for links and evaluate Poincaré polynomials in numerous examples. Among these structural properties is a novel “sliding” property, which can be explained by using (refined) modular S-matrix. This leads to the identification of modular transformations in Chern-Simons theory and 3d N=2 theory via the 3d/3d correspondence. Lastly, we introduce the notion of associated varieties as classical limits of recursion relations of colored superpolynomials of links, and study their properties.

  4. Sequencing BPS spectra

    International Nuclear Information System (INIS)

    Gukov, Sergei; Nawata, Satoshi; Saberi, Ingmar; Stošić, Marko; Sułkowski, Piotr

    2016-01-01

    This paper provides both a detailed study of color-dependence of link homologies, as realized in physics as certain spaces of BPS states, and a broad study of the behavior of BPS states in general. We consider how the spectrum of BPS states varies as continuous parameters of a theory are perturbed. This question can be posed in a wide variety of physical contexts, and we answer it by proposing that the relationship between unperturbed and perturbed BPS spectra is described by a spectral sequence. These general considerations unify previous applications of spectral sequence techniques to physics, and explain from a physical standpoint the appearance of many spectral sequences relating various link homology theories to one another. We also study structural properties of colored HOMFLY homology for links and evaluate Poincaré polynomials in numerous examples. Among these structural properties is a novel “sliding” property, which can be explained by using (refined) modular S-matrix. This leads to the identification of modular transformations in Chern-Simons theory and 3d N=2 theory via the 3d/3d correspondence. Lastly, we introduce the notion of associated varieties as classical limits of recursion relations of colored superpolynomials of links, and study their properties.

  5. Linear optical properties of Ca4EuO(BO3)3 and Eu3+ : Ca4GdO(BO3)3 crystals

    International Nuclear Information System (INIS)

    Antic-Fidancev, E.; Lemaitre-Blaise, M.; Porcher, P.; Caramanian, A.; Aka, G.

    1998-01-01

    Full text: The title compounds are now intensively studied due to their quadratic nonlinear properties in view of applications, e.g. high power laser frequency conversion. Rare earth calcium oxoborates, Ca 4 REO(BO 3 ) 3 , constitute an isostructural family along the rare earth series with RE = La - Lu, Y included. These compounds crystallize in the monoclinic biaxial crystal system with Cm (N 8) space group. They are isostructural to the calcium fluoroborate Ca 5 (BO 3 ) 3 F which is related to the fluoroapatite structure Ca 5 (PO 4 ) 3 F. The rare earth ions are located in the distorted octahedron with C s point site symmetry in the mirror plane. Two types of distorted octahedral sites exist for calcium ions. The existence of some disorder between calcium and rare earth atoms is suspected from the structural analysis. Good optical quality crystals of europium (or gadolinium) oxoborate, EuCOB (GdCOB) have been grown from the stoichiometric melt by the Czochralski pulling method. From the luminescence of the Eu 3+ doped gadolinium or in the europium stoichiometric compound very complex emission spectra have been obtained. It principally depends on the preparation method of studied samples: i) for a monocrystalline sample, a single phase with a single site is observed; ii) for a polycrystalline sample complex feature occurs. It is probably due to an expanded disorder between calcium and rare earth atoms. Practically, there is one principal site corresponding to the low symmetry site of the rare earth as expected from the structural investigation. Other minor sites are attributed to the local distortion created around the active rare earth ion. The intensity of the emission lines of Eu 3+ used as a local structural probe related to these minor sites increases when the gadolinium in Ca 4 GdO(BO 0 ) 3 is substituted by lanthanum or yttrium ions. It seems therefore evident that the synthesis of these rare earth calcium oxoborates must be realised carefully. The crystal

  6. The Effect of Phonon Relaxation Process on Absorption Spectra ...

    African Journals Online (AJOL)

    In this work we study the effect of phonon relaxation process on the absorption spectra using the Green's function technique. The Green's function technique which is widely used in many particle problems is used to solve the Kubo formula which describes the optical absorption process. Finally the configurational diagram is ...

  7. Spectra of matrix isolated metal atoms and clusters

    International Nuclear Information System (INIS)

    Meyer, B.

    1977-01-01

    The matrix isolation spectra of all of the 40 presently known atomic metal species show strong matrix effects. The transition energies are increased, and the bands are broad and exhibit splitting of sublevels which are degenerate in the gas phase. Several models have been proposed for splitting of levels, but basic effects are not yet understood, and spectra cannot be predicted, yet it is possible to correlate gas phase and matrix in many of the systems. Selective production of diatomics and clusters via thermal and optical annealing of atomic species can be monitored by optical spectra, but yields spectroscopically complex systems which, however, especially in the case of transition metals, can be used as precursors in novel chemical reactions. A combination of absorption, emission, ir, Raman, ESR, and other methods is now quickly yielding data which will help correlate the increasing wealth of existing data. 55 references, 6 figures

  8. CO-SPATIAL LONG-SLIT UV/OPTICAL SPECTRA OF TEN GALACTIC PLANETARY NEBULAE WITH HST/STIS. II. NEBULAR MODELS, CENTRAL STAR PROPERTIES, AND He+CNO SYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    Henry, R. B. C.; Miller, T. R. [Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States); Balick, B. [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Dufour, R. J. [Department of Space Physics and Astronomy, Rice University, Houston, TX 77251 (United States); Kwitter, K. B. [Department of Astronomy, Williams College, Williamstown, MA 01267 (United States); Shaw, R. A. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Buell, J. F. [SUNY College of Technology at Alfred, Alfred, NY 14843 (United States); Corradi, R. L. M. [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain)

    2015-11-10

    The goal of the present study is twofold. First, we employ new HST/STIS spectra and photoionization modeling techniques to determine the progenitor masses of eight planetary nebulae (IC 2165, IC 3568, NGC 2440, NGC 3242, NGC 5315, NGC 5882, NGC 7662, and PB 6). Second, for the first time we are able to compare each object’s observed nebular abundances of helium, carbon, and nitrogen with abundance predictions of these same elements by a stellar model that is consistent with each object’s progenitor mass. Important results include the following: (1) the mass range of our objects’ central stars matches well with the mass distribution of other central stars of planetary nebulae and white dwarfs; (2) He/H is above solar in all of our objects, in most cases likely due to the predicted effects of first dredge-up; (3) most of our objects show negligible C enrichment, probably because their low masses preclude third dredge-up; (4) C/O versus O/H for our objects appears to be inversely correlated, which is perhaps consistent with the conclusion of theorists that the extent of atmospheric carbon enrichment from first dredge-up is sensitive to a parameter whose value increases as metallicity declines; (5) stellar model predictions of nebular C and N enrichment are consistent with observed abundances for progenitor star masses ≤1.5 M{sub ⊙}. Finally, we present the first published photoionization models of NGC 5315 and NGC 5882.

  9. Low resolution infrared spectra of quasars

    International Nuclear Information System (INIS)

    Soifer, B.T.; Neugebauer, G.; Oke, J.B.; Matthews, K.

    1980-01-01

    Low resolution spectra of a significant sample of quasars show that the Paschen α and Balmer line ratios do not agree with the radiative recombination case B result and vary widely within the quasars sampled. The range in Pα:Hβ ratios is a factor of approximately 6, while the range in Lyα:Hα ratios is a factor of approximately 5. For the Pα:Balmer series, the deviations from case B recombination are not consistent with reddening, but appear, within large dispersions, to be consistent with optical depth effects in the Balmer lines affecting the line ratios. The Lyα:Hα ratio is, however, correlated with the continuum spectral index, and can be explained as due to reddening affecting both the lines and continuum. Recent observational results based on a joint infrared/optical survey of the hydrogen line spectra of a significant number of the brightest low and high redshift quasars are summarised. This survey includes 12 quasars in the redshift range 0.07 1.5, where Hα and/or Hβ is redshifted into the 1.65μm or 2.2μm atmospheric windows. (Auth.)

  10. Optical Observations of X-ray Bright, Optically Normal Galaxies

    Science.gov (United States)

    Sadun, Alberto C.; Aryan, N. S.; Ghosh, K. K.

    2007-05-01

    X-ray bright, optically normal galaxies (XBONGs) are galaxies that seem to have normal spectra and morphology, but are relatively bright x-ray sources. The large ratio of the x-ray to optical emission suggests that some activity, similar to that of active galactic nuclei (AGN), is occurring. Since the galaxies do not show any obvious sign of nuclear activity in their optical spectra, one possible explanation is that these galaxies do not have an optically thick accretion disk at small radii, as previously assumed. Previous data for NGC 7626 classifies it as an XBONG, and so we are studying optical features of this galaxy in order to determine better its features. After confirming an x-ray jet, we are now comparing this to optical features that we have found, including warped dust lanes and a possible optical jet.

  11. Crystal structure and optical absorption spectra of Ga0.5Fe0.5InS3 and Ga0.5Fe0.25In1.25S3 crystals

    International Nuclear Information System (INIS)

    Gusejnov, G.G.; Musaeva, N.N.; Kyazumov, M.G.; Asadova, I.B.; Aliev, O.M.

    2003-01-01

    Single crystals of Ga 0.5 Fe 0.5 InS 3 are grown by the method of chemical gas-transport reactions and those of Ga 0.5 Fe 0.25 In 1.25 S 3 - by Bridgman method. X-ray diffraction studies reveal that they crystallize in trigonal and rhombohedral systems with lattice parameters of a = 3.796 x 2 A, c = 12.210 A, P3m1; a = 3.786 x 2 A, c = 36.606 A, R3m, respectively. An optical absorption edge in a wide range of photon energy and an energy gap width are determined: E g = 1.885 eV for Ga 0.5 Fe 0.5 InS 3 and E g 1.843 eV for Ga 0.5 Fe 0.25 In 1.25 S 3 [ru

  12. Diversity of soft X-ray spectra in quasars

    International Nuclear Information System (INIS)

    Elvis, M.; Wilkes, B.J.; Tananbaum, H.

    1985-01-01

    Soft X-ray spectra for three quasars obtained with the Einstein Imaging Proportional Counter covering the 0.1-4.0 keV band are reported. Power-law fits to these spectra have best-fit energy indices of 1.2 +0.6 or -0.2, for the quasar NAB 0205 + 024, 0.6 +0.3 or -0.2 for the quasar B2 1028 + 313, and 2.2 + or -0.4 for the quasar PG 1211 + 143. None of the quasars shows any evidence for a column density of cold matter in excess of the galactic values. The derived spectra demonstrate that there is no single universal power law slope for quasar X-ray spectra. The implications of these results for the X-ray background, X-ray continuum emission mechanisms, and the production of the optical/UV emission lines are briefly discussed. 46 references

  13. SURVEY OF THE SPECTRA OF THE DIVALENT RARE EARTH IONS IN CUBIC CRYSTALS

    Energy Technology Data Exchange (ETDEWEB)

    McClure, Donald S. [Univ. of Chicago, IL (United States); Kiss, Zoltan J. [RCA Laboratories, Princeton, NJ (United States)

    1963-04-15

    The rare earth ions may exist in the divalent state in suitable host crystals such as CaF/sub 2/. All of the trivalent ions from La to Yb are reduced in situ to the divalent state in CaF/sub 2/ by gamma irradiation. The spectra of most of these ions show that the ground and first few excited states derive from f/sup n/ configurations, but the wesk absorption due to these is masked at higher energies by strong broad bands of the parity permitted f/sup n/ yields f/sup n-1/ d transitions. The excitation energy of these spectra have been calculated in a first approximation as the energy difference between the Hund Rule'' single determinant states of the configurations f/sup n -1/d and f/sup n/. This procedure satisfactorily accounts for the remarkable variations in the excitation energy in passing from one ion to the next in the series with the exception of Ge/ sup 2+/ Ce/sup 2+/, and Tb/sup 2+/, Ge/sup 2+/ probably has f/sup 7/d for its ground con figuration, while Ce/sup 2+/ and Tb/sup 2+/ are borderline cases. The spectral structure probably arises chiefly from the crystal field splitting of the d-orbital, since each ion in CaF/sub 2/ has a similar spectrum, and the spectra change drastically in sites of other than cubic symmetry. (auth)

  14. Electronic Spectra of Cs2NaYb(NO2)6: Is There Quantum Cutting?

    Science.gov (United States)

    Luo, Yuxia; Liu, Zhenyu; Hau, Sam Chun-Kit; Yeung, Yau Yuen; Wong, Ka-Leung; Shiu, Kwok Keung; Chen, Xueyuan; Zhu, Haomiao; Bao, Guochen; Tanner, Peter A

    2018-05-03

    The crystal structure and electronic spectra of the T h symmetry hexanitritoytterbate(III) anion have been studied in Cs 2 NaY 0.96 Yb 0.04 (NO 2 ) 6 , which crystallizes in the cubic space group Fm3̅. The emission from Yb 3+ can be excited via the NO 2 - antenna. The latter electronic transition is situated at more than twice the energy of the former, but at room temperature, one photon absorbed at 470 nm in the triplet state produces no more than one photon emitted. Some degree of quantum cutting is observed at 298 K under 420 nm excitation into the singlet state and at 25 K using excitation into either state. The quantum efficiency is ∼10% at 25 K. The energy level scheme of Yb 3+ has been deduced from excitation and emission spectra and calculated by crystal field theory. New improved energy level calculations are also reported for the Cs 2 NaLn(NO 2 ) 6 (Ln = Pr, Eu, Tb) series using the f- Spectra package. The neat crystal Cs 2 NaYb(NO 2 ) 6 has also been studied, but results were unsatisfactory due to sample decomposition, and this chemical instability makes it unsuitable for applications.

  15. Crystal structure, vibrational spectra, optical and DFT studies of bis (3-azaniumylpropyl) azanium pentachloroantimonate (III) chloride monohydrate (C6H20N3)SbCl5·Cl·H2O

    Science.gov (United States)

    Ahmed, Houssem Eddine; Kamoun, Slaheddine

    2017-09-01

    The crystal structure of (C6H20N3)SbCl5·Cl·H2O is built up of [NH3(CH2)3NH2(CH2)3NH3]3 + cations, [SbCl5]2 - anions, free Cl- anions and neutral water molecules connected together by Nsbnd H ⋯ Cl, Nsbnd H ⋯ O and Osbnd H ⋯ Cl hydrogen bonds. The optical band gap determined by diffuse reflection spectroscopy (DRS) is 3.78 eV for a direct allowed transition. Optimized molecular geometry, atomic Mulliken charges, harmonic vibrational frequencies, HOMO-LUMO and related molecular properties of the (C6H20N3)SbCl5·Cl·H2O compound were calculated by Density functional theory (DFT) using B3LYP method with GenECP sets. The calculated structural parameters (bond lengths and angles) are in good agreement with the experimental XRD data. The vibrational unscaled wavenumbers were calculated and scaled by a proper scaling factor of 0.984. Acceptable consistency was observed between calculated and experimental results. The assignments of wavenumbers were made on the basis of potential energy distribution (PED) using Vibrational Energy Distribution Analysis (VEDA) software. The HOMO-LUMO study was extended to calculate various molecular parameters like ionization potential, electron affinity, global hardness, electro-chemical potential, electronegativity and global electrophilicity of the given molecule.

  16. Techniques for Handling and Removal of Spectral Channels in Fourier Transform Synchrotron-Based Spectra

    International Nuclear Information System (INIS)

    Ibrahim, Amr; Predoi-Cross, Adriana; Teillet, Philippe M.

    2010-01-01

    Channel spectra are a big problem for those attempting to use synchrotron-based Fourier transform spectra for spectral lineshape studies. Due to the layout of the optical system at the CLS far-infrared beamline, the synchrotron beam undergoes unavoidable multiple reflections on the steering mirrors, beam splitter, several sets of windows, and filters. We present a method for eliminating channel spectra and compare the results of our technique with other methods available in the literature.

  17. Exploration of faint absorption bands in the reflectance spectra of the asteroids by method of optimal smoothing: Vestoids

    Science.gov (United States)

    Shestopalov, D. I.; McFadden, L. A.; Golubeva, L. F.

    2007-04-01

    An optimization method of smoothing noisy spectra was developed to investigate faint absorption bands in the visual spectral region of reflectance spectra of asteroids and the compositional information derived from their analysis. The smoothing algorithm is called "optimal" because the algorithm determines the best running box size to separate weak absorption bands from the noise. The method is tested for its sensitivity to identifying false features in the smoothed spectrum, and its correctness of forecasting real absorption bands was tested with artificial spectra simulating asteroid reflectance spectra. After validating the method we optimally smoothed 22 vestoid spectra from SMASS1 [Xu, Sh., Binzel, R.P., Burbine, T.H., Bus, S.J., 1995. Icarus 115, 1-35]. We show that the resulting bands are not telluric features. Interpretation of the absorption bands in the asteroid spectra was based on the spectral properties of both terrestrial and meteorite pyroxenes. The bands located near 480, 505, 530, and 550 nm we assigned to spin-forbidden crystal field bands of ferrous iron, whereas the bands near 570, 600, and 650 nm are attributed to the crystal field bands of trivalent chromium and/or ferric iron in low-calcium pyroxenes on the asteroids' surface. While not measured by microprobe analysis, Fe 3+ site occupancy can be measured with Mössbauer spectroscopy, and is seen in trace amounts in pyroxenes. We believe that trace amounts of Fe 3+ on vestoid surfaces may be due to oxidation from impacts by icy bodies. If that is the case, they should be ubiquitous in the asteroid belt wherever pyroxene absorptions are found. Pyroxene composition of four asteroids of our set is determined from the band position of absorptions at 505 and 1000 nm, implying that there can be orthopyroxenes in all range of ferruginosity on the vestoid surfaces. For the present we cannot unambiguously interpret of the faint absorption bands that are seen in the spectra of 4005 Dyagilev, 4038

  18. FSFE: Fake Spectra Flux Extractor

    Science.gov (United States)

    Bird, Simeon

    2017-10-01

    The fake spectra flux extractor generates simulated quasar absorption spectra from a particle or adaptive mesh-based hydrodynamic simulation. It is implemented as a python module. It can produce both hydrogen and metal line spectra, if the simulation includes metals. The cloudy table for metal ionization fractions is included. Unlike earlier spectral generation codes, it produces absorption from each particle close to the sight-line individually, rather than first producing an average density in each spectral pixel, thus substantially preserving more of the small-scale velocity structure of the gas. The code supports both Gadget (ascl:0003.001) and AREPO.

  19. Optical materials

    International Nuclear Information System (INIS)

    Poker, D.B.; Ortiz, C.

    1989-01-01

    This book reports on: Diamond films, Synthesis of optical materials, Structure related optical properties, Radiation effects in optical materials, Characterization of optical materials, Deposition of optical thin films, and Optical fibers and waveguides

  20. Infrared spectra of mineral species

    CERN Document Server

    Chukanov, Nikita V

    2014-01-01

    This book details more than 3,000 IR spectra of more than 2,000 mineral species collected during last 30 years. It features full descriptions and analytical data of each sample for which IR spectrum was obtained.

  1. Correlation Functions and Power Spectra

    DEFF Research Database (Denmark)

    Larsen, Jan

    2006-01-01

    The present lecture note is a supplement to the textbook Digital Signal Processing by J. Proakis and D.G. Manolakis used in the IMM/DTU course 02451 Digital Signal Processing and provides an extended discussion of correlation functions and power spectra. The definitions of correlation functions...... and spectra for discrete-time and continuous-time (analog) signals are pretty similar. Consequently, we confine the discussion mainly to real discrete-time signals. The Appendix contains detailed definitions and properties of correlation functions and spectra for analog as well as discrete-time signals....... It is possible to define correlation functions and associated spectra for aperiodic, periodic and random signals although the interpretation is different. Moreover, we will discuss correlation functions when mixing these basic signal types. In addition, the note include several examples for the purpose...

  2. Dynamics in terahertz semiconductor microcavity: quantum noise spectra

    Science.gov (United States)

    Jabri, H.; Eleuch, H.

    2018-05-01

    We investigate the physics of an optical semiconductor microcavity containing a coupled double quantum well interacting with cavity photons. The photon statistics of the transmitted light by the cavity is explored. We show that the nonlinear interactions in the direct and indirect excitonic modes generate an important squeezing despite the weak nonlinearities. When the strong coupling regime is achieved, the noise spectra of the system is dominated by the indirect exciton distribution. At the opposite, in the weak regime, direct excitons contribute much larger in the noise spectra.

  3. LINE FORMATION IN SPECTRA OF X-RAY NOVAE

    OpenAIRE

    Suleimanov, V. F.; Shimansky, V. V.

    2017-01-01

    Results of X-ray Novae (XN) optical spectra computation are presented. The continuum and Balmer line are calculated. The model of XN as a self-irradiated accretion disk is used. Local (for given radius) disk atmospheres as model stellar atmospheres, heated due to external X-ray radiation are treated. Changes of spectra shape and equivalent widths of the Balmer lines depending from the luminosity and some others accretion disk parameters are investigated. The comparison of GRO JO422+32 observe...

  4. Multifractal spectra in shear flows

    Science.gov (United States)

    Keefe, L. R.; Deane, Anil E.

    1989-01-01

    Numerical simulations of three-dimensional homogeneous shear flow and fully developed channel flow, are used to calculate the associated multifractal spectra of the energy dissipation field. Only weak parameterization of the results with the nondimensional shear is found, and this only if the flow has reached its asymptotic development state. Multifractal spectra of these flows coincide with those from experiments only at the range alpha less than 1.

  5. Sequential Analysis of Gamma Spectra

    International Nuclear Information System (INIS)

    Fayez-Hassan, M.; Hella, Kh.M.

    2009-01-01

    This work shows how easy one can deal with a huge number of gamma spectra. The method can be used for radiation monitoring. It is based on the macro feature of the windows XP connected to QBASIC software. The routine was used usefully in generating accurate results free from human errors. One hundred measured gamma spectra were fully analyzed in 10 minutes using our fast and automated method controlling the Genie 2000 gamma acquisition analysis software.

  6. Response spectra in alluvial soils

    International Nuclear Information System (INIS)

    Chandrasekharan, A.R.; Paul, D.K.

    1975-01-01

    For aseismic design of structures, the ground motion data is assumed either in the form of ground acceleration as a function of time or indirectly in the form of response spectra. Though the response spectra approach has limitations like not being applicable for nonlinear problems, it is usually used for structures like nuclear power plants. Fifty accelerograms recorded at alluvial sites have been processed. Since different empirical formulas relating acceleration with magnitude and distance give a wide scatter of values, peak ground acceleration alone cannot be the parameter as is assumed by a number of authors. The spectra corresponding to 5% damping have been normalised with respect to three parameters, namely, peak ground acceleration, peak ground velocity and a nondimensional quantity ad/v 2 . Envelopee of maxima and minima as well as average response spectra has been obtained. A comparison with the USAEC spectra has been made. A relation between ground acceleration, ground velocity and ad/v 2 has been obtained which would nearly give the same magnification of the response. A design response spectra for alluvial soils has been recommended. (author)

  7. Enhanced magneto-optical Kerr effect in rare earth substituted nanostructured cobalt ferrite thin film prepared by sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Avazpour, L.; Toroghinejad, M.R. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Shokrollahi, H., E-mail: Shokrollahi@sutech.ac.ir [Electroceramics Group, Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz 13876-71557 (Iran, Islamic Republic of)

    2016-11-30

    Highlights: • The nanostructured rare earth doped Co-ferrite thin film was synthesized by the sol–gel method. • The coercivity of as high as 1.8 kOe is achieved for 20% substituted cobalt ferrite. • The average particle diameter of particulate film is decreasing by increasing substitute content. • Kerr spectra of films shifted to higher energies. • Kerr rotation angle increased to 1.65° for 0.1 Eu doped thin film. - Abstract: A series of rare-earth (RE)-doped nanocrystalline Co{sub x} RE{sub (1−x)} Fe{sub 2}O{sub 4} (x = 0, 0.1, 0.2 and RE: Nd, Eu) thin films were prepared on silicon substrates by a sol–gel process, and the influences of different RE{sup 3+} ions on the microstructure, magnetism and polar magneto-optical Kerr effect of the deposited films were investigated. Also this research presents the optimization process of cobalt ferrite thin films deposited via spin coating, by studying their structural and morphological properties at different thicknesses (200, 350 nm) and various heat treatment temperatures 300–850 °C. Nanoparticulate polycrystalline thin film were formed with heat treatment above 400 °C but proper magnetic properties due to well crystallization of the film were achieved at about 650 °C. AFM results indicated that the deposited thin films were crack-free exhibiting a dense nanogranular structure. The root-mean square (RMS) roughness of the thin films was in the range of 0.2–3.2 nm. The results revealed that both of the magnetism and magneto optical Kerr (MOKE) spectra of Co{sub x} RE{sub (1−x)} Fe{sub 2}O{sub 4} films could be mediated by doping with various RE ions. The Curie temperature of substituted samples was lower than pristine cobalt ferrite thin films. In MOKE spectra both dominant peaks were blue shifted with addition of RE ions. For low concentration dopant the inter-valence charge transfer related rotation was enhanced and for higher concentration dopant the crystal field rotation peak was enhanced

  8. Theory of optical flashes

    International Nuclear Information System (INIS)

    London, R.A.

    1983-01-01

    The theory of optical flashes created by x- and γ-ray burst heating of stars in binaries is reviewed. Calculations of spectra due to steady-state x-ray reprocessing and estimates of the fundamental time scales for the non-steady case are discussed. The results are applied to the extant optical data from x-ray and γ-ray bursters. Finally, I review predictions of flashes from γ-ray bursters detectable by a state of the art all-sky optical monitor

  9. Optical properties of solids

    CERN Document Server

    Wooten, Frederick

    1972-01-01

    Optical Properties of Solids covers the important concepts of intrinsic optical properties and photoelectric emission. The book starts by providing an introduction to the fundamental optical spectra of solids. The text then discusses Maxwell's equations and the dielectric function; absorption and dispersion; and the theory of free-electron metals. The quantum mechanical theory of direct and indirect transitions between bands; the applications of dispersion relations; and the derivation of an expression for the dielectric function in the self-consistent field approximation are also encompassed.

  10. OSL, TL and IRSL emission spectra of sedimentary quartz and feldspar samples

    International Nuclear Information System (INIS)

    Lomax, Johanna; Mittelstraß, Dirk; Kreutzer, Sebastian; Fuchs, Markus

    2015-01-01

    This contribution presents a variety of different luminescence emission spectra from sedimentary feldspar and quartz samples under various stimulation modes. These are green stimulated quartz (OSL-) spectra, quartz TL spectra, feldspar IRSL and post-IR IRSL spectra. A focus was set at recording OSL and IRSL spectra at elevated stimulation temperatures such as routinely applied in luminescence dating. This was to test whether optical stimulation at elevated temperatures results in a shift of emission peaks. For OSL emissions of quartz, this has so far not been tested. In case of feldspar emissions, post-IR IRSL conditions, hence IRSL emissions at a low temperature, directly followed by high temperature post-IRSL emissions, are explicitly investigated. All spectra were recorded using a new system incorporated into a Lexsyg luminescence reader. Thus, this study, besides presenting new spectral data, also serves as a feasibility study for this new device. It is shown that (a) the new device is capable of automatically measuring different sorts of spectra, also at elevated temperatures, (b) known thermally and optically stimulated peak emissions of quartz and feldspar are confirmed, (c) obtained IRSL and OSL spectra indicate that there is no significant relation between peak emission and stimulation temperature. - Highlights: • We have measured OSL, IRSL and TL emission spectra of sedimentary quartz and feldspar samples. • Spectral analyses were performed at elevated stimulation temperatures. • Emission spectra show very little variation with stimulation temperatures.

  11. Optical properties of Eu{sup 3+}-doped antimony-oxide-based low phonon disordered matrices

    Energy Technology Data Exchange (ETDEWEB)

    Som, Tirtha; Karmakar, Basudeb, E-mail: basudebk@cgcri.res.i [Glass Technology Laboratory, Glass Division, Central Glass and Ceramic Research Institute (Council of Scientific and Industrial Research), 196 Raja S C Mullick Road, Kolkata 700032 (India)

    2010-01-27

    A new series of monolithic Eu{sub 2}O{sub 3}-doped high antimony oxide (40-80 mol%) content disordered matrices (glasses) of low phonon energy (about 600 cm{sup -1}) in the K{sub 2}O-B{sub 2}O{sub 3}-Sb{sub 2}O{sub 3} (KBS) system was prepared by the melt-quench technique. Infrared reflection spectroscopy was used to establish the low phonon energy of the glasses. Amorphicity and devitrification of the glasses were confirmed by x-ray diffraction analysis. UV-vis absorption spectra of Eu{sup 3+} have been measured and the band positions have been justified with quantitative calculation of the nephelauxetic parameter and covalent bonding characteristics of the host. These Eu{sub 2}O{sub 3}-doped glasses upon excitation at 393 nm radiation exhibit six emission bands in the range 500-750 nm due to their low phonon energy. Of these, the magnetic dipole {sup 5}D{sub 0} -> {sup 7}F{sub 1} transition shows small Stark splitting while the electric dipole {sup 5}D{sub 0}->{sup 7}F{sub 2} transition undergoes remarkable Stark splitting into two components. They have been explained by the crystal field effect. The Judd-Ofelt parameters, {Omega}{sub t{sub =2,4,6}}, were also evaluated and the change of {Omega}{sub t} with the glass composition was correlated with the asymmetric effect at Eu{sup 3+} ion sites and the fundamental properties like covalent character and optical basicity. We are the first to report the spectroscopic properties of the Eu{sup 3+} ion in KBS low phonon antimony glasses.

  12. Analysis of the luminescent spectra of Eu{sup 3+} in glasses

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Sha; Wei, Xiantao; Chen, Zhejia; Chen, Yonghu, E-mail: yhuchen@ustc.edu.cn; Yin, Min

    2013-11-15

    The spectroscopy properties of lanthanide ions in glasses differ remarkably from crystal and powder samples due to superposition of transitions from many ions with different local environments. Eu{sup 3+} ions were doped in lead–borosilicate and boro–tellurite glass samples to probe the structural information and to reveal their effects on the luminescent properties of lanthanide ions. Three emission peaks were observed for {sup 5}D{sub 0}→{sup 7}F{sub 0} transition, with peak energies linearly dependent on the excitation wavelengths, and correlation between the intensity ratio of {sup 5}D{sub 0}→{sup 7}F{sub 0} versus {sup 5}D{sub 0}→{sup 7}F{sub 2} and the width of {sup 7}F{sub 1} was observed. The former indicates that there are three subsets of Eu{sup 3+} sites in the samples, with {sup 7}F{sub 0} being pushed downwards by {sup 7}F{sub J} (J=2, 4, and 6) by crystal-field J-mixing, and the latter can be quantitatively modeled by the adaptation of the theoretical model of Wen et al. [Phys. Chem. Chem. Phys. 12, 9933 (2010)] to account for the corrections due to the inhomogeneous broadening of {sup 7}F{sub J} (J=0, and1) crystal-field levels. The methods explored here can be applied to study other glass hosts for luminescent materials. -- Highlights: • The quantitative analysis of Eu{sup 3+5}D{sub 0}→{sup 7}F{sub 0} emission spectra in glasses. • Improved data fitting with the modified CF splitting width calculation method. • Demonstration of the generality of the spectral analysis method in two glasses.

  13. Infrared Model Spectra for Evolving Red Supergiants

    Directory of Open Access Journals (Sweden)

    Kyung-Won Suh

    1993-06-01

    Full Text Available The space and ground based infrared spectra of red supergiants are modeled and arranged in order of their evolutionary status with their theoretical model parameters. The chemical compositions of the dust shells around red supergiants are affected by the nuclear reaction and dredge-up processes of the cental stars. The processes are sensitively dependent on the initial mass, the initial chemical composition, and the evolutionary status. Miras, infrared carbon stars, and OH/IR stars have close link in their evolution in manu aspects, i,e., the chemical composition, the optical depths and the mass loss rates. The evolutionary tracks for the three classes of red supergiants on infrared two-color diagrams have been made from model calculations and IRAS observational data.

  14. Characterizing Sky Spectra Using SDSS BOSS Data

    Science.gov (United States)

    Florez, Lina Maria; Strauss, Michael A.

    2018-01-01

    In the optical/near-infrared spectra gathered by a ground-based telescope observing very faint sources, the strengths of the emission lines due to the Earth’s atmosphere can be many times larger than the fluxes of the sources we are interested in. Thus the limiting factor in faint-object spectroscopy is the degree to which systematics in the sky subtraction can be minimized. Longwards of 6000 Angstroms, the night-sky spectrum is dominated by multiple vibrational/rotational transitions of the OH radical from our upper atmosphere. While the wavelengths of these lines are the same in each sky spectrum, their relative strengths vary considerably as a function of time and position on the sky. The better we can model their strengths, the better we can hope to subtract them off. We expect that the strength of lines from common upper energy levels will be correlated with one another. We used flux-calibrated sky spectra from the Sloan Digital Sky Survey Baryon Oscillation Spectroscopic Survey (SDSS BOSS) to explore these correlations. Our aim is to use these correlations for creating improved sky subtraction algorithms for the Prime Focus Spectrograph (PFS) on the 8.2-meter Subaru Telescope. When PFS starts gathering data in 2019, it will be the most powerful multi-object spectrograph in the world. Since PFS will be gathering data on sources as faint as 24th magnitude and fainter, it's of upmost importance to be able to accurately measure and subtract sky spectra from the data that we receive.

  15. Reviews Book: SEP Communications: Transmitting and Receiving Signals Book: Gliding for Gold Book: Radioactivity: A History of a Mysterious Science Book: The New Quantum Age Books: The Art of Science and The Oxford Book of Modern Science Writing Equipment: SEP Analogue/digital transmission unit Equipment: SEP Optical signal transmission set Book: Stars and their Spectra Book: Voicebox: The Physics and Evolution of Speech Web Watch

    Science.gov (United States)

    2012-03-01

    WE RECOMMEND Transmitting and Receiving Signals SEP booklet transmits knowledge The New Quantum Age Understanding modern quantum theory The Art of Science and The Oxford Book of Modern Science Writing Anthologies bring science to life SEP Analogue/digital transmission unit Kit transmits signal between two points SEP Optical signal transmission set Optical kit shows light transmission Stars and their Spectra New book for teaching astrophysics WORTH A LOOK Gliding for Gold Take a journey through the physics of winter sports Radioactivity: A History of a Mysterious Science Book looks at history of radioactivity Voicebox: The Physics and Evolution of Speech TExploring the evolution of the voice WEB WATCH An interactive program with promise?

  16. Optical study of SrAl1.7B0.3O4:Eu, R (R=Nd, Dy) pigments with long-lasting phosphorescence for industrial uses

    International Nuclear Information System (INIS)

    Sanchez-Benitez, J.; Andres, A. de; Marchal, M.; Cordoncillo, E.; Regi, M.V.; Escribano, P.

    2003-01-01

    We have studied and compared the optical properties of SrAl 1.7 B 0.3 O 4 :Eu, R (R=Nd, Dy) pigments that present long-lasting phosphorescence obtained by different synthesis techniques. Samples obtained by ceramic methods, in our laboratories and by an industrial process, present better phosphorescent properties than those obtained by sol-gel technique. Raman spectra show that grinding produces severe damage of the lattice. We have obtained and analyzed the Eu 3+ crystal field luminescence indicating that Eu 3+ is found in quite different sites comparing ceramic and sol-gel samples. Codoping, with Nd or Dy is necessary in order to reduce the Eu 3+ content, in all cases. The green luminescence band, obtained under UV illumination, can be fitted to two and three components in ceramic and sol-gel samples, respectively, due to different Eu 2+ sites. Eu-Dy samples present the longest and the most efficient phosphorescence. The time evolution of the afterglow is well described by a t -1 law, up to about 2 h, indicating that the recombination process is achieved by electron-hole tunneling

  17. Optical properties on thermally evaporated and heat-treated ...

    Indian Academy of Sciences (India)

    Administrator

    of the intra-molecular bonds between the powder compounds and thin films. The optical ... Keywords. Phthalocyanine; thin films; optical properties; absorption spectra. 1. .... Leica Cambridge scanning electron microscope (model. Stereoscan ...

  18. Influence of fluctuating strain on exciton reflection spectra

    DEFF Research Database (Denmark)

    Skettrup, Torben

    1982-01-01

    The influence of an internal distribution of strain on the exciton reflection spectra is investigated. The resulting fluctuating optical constants give rise to a fluctuating phase of reflectivity. The standard deviation σ of these phase fluctuations is the quantity which can be observed...... to derive the dependence of the phase of reflectivity on the direction of the fluctuating optical axis. The results obtained for σ are compared with the experimental depolarization spectra of ZnO. The only fitting parameter is the common standard deviation of the strain components. It is found......, for example, between crossed polarizers or from ellipsometric measurements. Assuming the phase fluctuations to obey a Gaussian distribution, σ can be expressed in a simple way in terms of the degree of polarization or the depolarization of the reflected light. σ is then derived in terms of the standard...

  19. Evolution of transmission spectra of double cladding fiber during etching

    Science.gov (United States)

    Ivanov, Oleg V.; Tian, Fei; Du, Henry

    2017-11-01

    We investigate the evolution of optical transmission through a double cladding fiber-optic structure during etching. The structure is formed by a section of SM630 fiber with inner depressed cladding between standard SMF-28 fibers. Its transmission spectrum exhibits two resonance dips at wavelengths where two cladding modes have almost equal propagation constants. We measure transmission spectra with decreasing thickness of the cladding and show that the resonance dips shift to shorter wavelengths, while new dips of lower order modes appear from long wavelength side. We calculate propagation constants of cladding modes and resonance wavelengths, which we compare with the experiment.

  20. EPR, optical and superposition model study of Mn2+ doped L+ glutamic acid

    Science.gov (United States)

    Kripal, Ram; Singh, Manju

    2015-12-01

    Electron paramagnetic resonance (EPR) study of Mn2+ doped L+ glutamic acid single crystal is done at room temperature. Four interstitial sites are observed and the spin Hamiltonian parameters are calculated with the help of large number of resonant lines for various angular positions of external magnetic field. The optical absorption study is also done at room temperature. The energy values for different orbital levels are calculated, and observed bands are assigned as transitions from 6A1g(s) ground state to various excited states. With the help of these assigned bands, Racah inter-electronic repulsion parameters B = 869 cm-1, C = 2080 cm-1 and cubic crystal field splitting parameter Dq = 730 cm-1 are calculated. Zero field splitting (ZFS) parameters D and E are calculated by the perturbation formulae and crystal field parameters obtained using superposition model. The calculated values of ZFS parameters are in good agreement with the experimental values obtained by EPR.

  1. Spectroscopic properties of Fe2+ ions at tetragonal sites-Crystal field effects and microscopic modeling of spin Hamiltonian parameters for Fe2+ (S=2) ions in K2FeF4 and K2ZnF4

    International Nuclear Information System (INIS)

    Rudowicz, C.; Piwowarska, D.

    2011-01-01

    Magnetic and spectroscopic properties of the planar antiferromagnet K 2 FeF 4 are determined by the Fe 2+ ions at tetragonal sites. The two-dimensional easy-plane anisotropy exhibited by K 2 FeF 4 is due to the zero field splitting (ZFS) terms arising from the orbital singlet ground state of Fe 2+ ions with the spin S=2. To provide insight into the single-ion magnetic anisotropy of K 2 FeF 4 , the crystal field theory and the microscopic spin Hamiltonian (MSH) approach based on the tensor method is adopted. Survey of available experimental data on the crystal field energy levels and free-ion parameters for Fe 2+ ions in K 2 FeF 4 and related compounds is carried out to provide input for microscopic modeling of the ZFS parameters and the Zeeman electronic ones. The ZFS parameters are expressed in the extended Stevens notation and include contributions up to the fourth-order using as perturbation the spin-orbit and electronic spin-spin couplings within the tetragonal crystal field states of the ground 5 D multiplet. Modeling of the ZFS parameters and the Zeeman electronic ones is carried out. Variation of these parameters is studied taking into account reasonable ranges of the microscopic ones, i.e. the spin-orbit and spin-spin coupling constants, and the energy level splittings, suitable for Fe 2+ ions in K 2 FeF 4 and Fe 2+ :K 2 ZnF 4 . Conversions between the ZFS parameters in the extended Stevens notation and the conventional ones are considered to enable comparison with the data of others. Comparative analysis of the MSH formulas derived earlier and our more complete ones indicates the importance of terms omitted earlier as well as the fourth-order ZFS parameters and the spin-spin coupling related contributions. The results may be useful also for Fe 2+ ions at axial symmetry sites in related systems, i.e. Fe:K 2 MnF 4 , Rb 2 Co 1-x Fe x F 4 , Fe 2+ :Rb 2 CrCl 4 , and Fe 2+ :Rb 2 ZnCl 4 . - Highlights: → Truncated zero field splitting (ZFS) terms for Fe 2+ in K

  2. Biological Action Spectra (invited paper)

    International Nuclear Information System (INIS)

    Gruijl, F.R. de

    2000-01-01

    Ultraviolet (UV) radiation induces a wide variety of biological responses: ranging in humans from well-known short-term effects like sunburn to long-term effects like skin cancer. The wavelength dependencies ('action spectra') of the responses can differ significantly, depending on the UV-targeted molecules (their absorption spectra), their localisation (transmission to the target depth) and the photochemical reactions involved (e.g. quantum yields, competing reaction). An action spectrum (e.g. of sunburn) is usually determined in a wavelength by wavelength analysis of the response. This is not always possible (e.g. in case of skin cancer), and an action spectrum may then be extracted mathematically from differences in responses to broadband UV sources of various spectral compositions (yielding 'biological spectral weights'). However, relative spectral weights may shift with exposure levels and contributions from different wavelengths may not always add up. Under these circumstances conventional analyses will yield different action spectra for different experimental conditions. (author)

  3. Double photoionisation spectra of molecules

    CERN Document Server

    Eland, John

    2017-01-01

    This book contains spectra of the doubly charged positive ions (dications) of some 75 molecules, including the major constituents of terrestrial and planetary atmospheres and prototypes of major chemical groups. It is intended to be a new resource for research in all areas of molecular spectroscopy involving high energy environments, both terrestrial and extra-terrestrial. All the spectra have been produced by photoionisation using laboratory lamps or synchrotron radiation and have been measured using the magnetic bottle time-of-flight technique by coincidence detection of correlated electron pairs. Full references to published work on the same species are given, though for several molecules these are the first published spectra. Double ionisation energies are listed and discussed in relation to the molecular electronic structure of the molecules. A full introduction to the field of molecular double ionisation is included and the mechanisms by which double photoionisation can occur are examined in detail. A p...

  4. QUALITATIVE INTERPRETATION OF GALAXY SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Almeida, J.; Morales-Luis, A. B. [Instituto de Astrofisica de Canarias, E-38205 La Laguna, Tenerife (Spain); Terlevich, R.; Terlevich, E. [Instituto Nacional de Astrofisica, Optica y Electronica, Tonantzintla, Puebla (Mexico); Cid Fernandes, R., E-mail: jos@iac.es, E-mail: abml@iac.es, E-mail: rjt@ast.cam.ac.uk, E-mail: eterlevi@inaoep.mx, E-mail: cid@astro.ufsc.br [Departamento de Fisica-CFM, Universidade Federal de Santa Catarina, P.O. Box 476, 88040-900 Florianopolis, SC (Brazil)

    2012-09-10

    We describe a simple step-by-step guide to qualitative interpretation of galaxy spectra. Rather than an alternative to existing automated tools, it is put forward as an instrument for quick-look analysis and for gaining physical insight when interpreting the outputs provided by automated tools. Though the recipe is for general application, it was developed for understanding the nature of the Automatic Spectroscopic K-means-based (ASK) template spectra. They resulted from the classification of all the galaxy spectra in the Sloan Digital Sky Survey data release 7, thus being a comprehensive representation of the galaxy spectra in the local universe. Using the recipe, we give a description of the properties of the gas and the stars that characterize the ASK classes, from those corresponding to passively evolving galaxies, to H II galaxies undergoing a galaxy-wide starburst. The qualitative analysis is found to be in excellent agreement with quantitative analyses of the same spectra. We compare the mean ages of the stellar populations with those inferred using the code STARLIGHT. We also examine the estimated gas-phase metallicity with the metallicities obtained using electron-temperature-based methods. A number of byproducts follow from the analysis. There is a tight correlation between the age of the stellar population and the metallicity of the gas, which is stronger than the correlations between galaxy mass and stellar age, and galaxy mass and gas metallicity. The galaxy spectra are known to follow a one-dimensional sequence, and we identify the luminosity-weighted mean stellar age as the affine parameter that describes the sequence. All ASK classes happen to have a significant fraction of old stars, although spectrum-wise they are outshined by the youngest populations. Old stars are metal-rich or metal-poor depending on whether they reside in passive galaxies or in star-forming galaxies.

  5. Optic neuritis

    Science.gov (United States)

    Retro-bulbar neuritis; Multiple sclerosis - optic neuritis; Optic nerve - optic neuritis ... The exact cause of optic neuritis is unknown. The optic nerve carries visual information from your eye to the brain. The nerve can swell when ...

  6. Absorption Spectra of Gold Nanoparticle Suspensions

    Science.gov (United States)

    Anan'eva, M. V.; Nurmukhametov, D. R.; Zverev, A. S.; Nelyubina, N. V.; Zvekov, A. A.; Russakov, D. M.; Kalenskii, A. V.; Eremenko, A. N.

    2018-02-01

    Three gold nanoparticle suspensions are obtained, and mean radii in distributions - (6.1 ± 0.2), (11.9 ± 0.3), and (17.3 ± 0.7) nm - are determined by the transmission electron microscopy method. The optical absorption spectra of suspensions are obtained and studied. Calculation of spectral dependences of the absorption index of suspensions at values of the gold complex refractive index taken from the literature showed a significant deviation of experimental and calculated data in the region of 450-800 nm. Spectral dependences of the absorption of suspensions are simulated within the framework of the Mie-Drude theory taking into account the interband absorption in the form of an additional term in the imaginary part of the dielectric permittivity of the Gaussian type. It is shown that to quantify the spectral dependences in the region of the plasmon absorption band of nanoparticles, correction of the parameters of the interband absorption is necessary in addition to the increase of the relaxation parameter of the Drude theory. Spectral dependences of the dielectric permittivity of gold in nanodimensional state are refined from the solution of the inverse problem. The results of the present work are important for predicting the special features of operation of photonic devices and optical detonators based on gold nanoparticles.

  7. The structure of BPS spectra

    Science.gov (United States)

    Longhi, Pietro

    In this thesis we develop and apply novel techniques for analyzing BPS spectra of supersymmetric quantum field theories of class S. By a combination of wall-crossing, spectral networks and quiver methods we explore the BPS spectra of higher rank four-dimensional N = 2 super Yang-Mills, uncovering surprising new phenomena. Focusing on the SU(3) case, we prove the existence of wild BPS spectra in field theory, featuring BPS states of higher spin whose degeneracies grow exponentially with the energy. The occurrence of wild BPS states is surprising because it appears to be in tension with physical expectations on the behavior of the entropy as a function of the energy scale. The solution to this puzzle comes from realizing that the size of wild BPS states grows rapidly with their mass, and carefully analyzing the volume-dependence of the entropy of BPS states. We also find some interesting structures underlying wild BPS spectra, such as a Regge-like relation between the maximal spin of a BPS multiplet and the square of its mass, and the existence of a universal asymptotic distribution of spin-j irreps within a multiplet of given charge. We also extend the spectral networks construction by introducing a refinement in the topological classification of 2d-4d BPS states, and identifying their spin with a topological invariant known as the "writhe of soliton paths". A careful analysis of the 2d-4d wall-crossing behavior of this refined data reveals that it is described by motivic Kontsevich-Soibelman transformations, controlled by the Protected Spin Character, a protected deformation of the BPS index encoding the spin of BPS states. Our construction opens the way for the systematic study of refined BPS spectra in class S theories. We apply it to several examples, including ones featuring wild BPS spectra, where we find an interesting relation between spectral networks and certain functional equations. For class S theories of A 1 type, we derive an alternative technique for

  8. Automatic identification of mass spectra

    International Nuclear Information System (INIS)

    Drabloes, F.

    1992-01-01

    Several approaches to preprocessing and comparison of low resolution mass spectra have been evaluated by various test methods related to library search. It is shown that there is a clear correlation between the nature of any contamination of a spectrum, the basic principle of the transformation or distance measure, and the performance of the identification system. The identification of functionality from low resolution spectra has also been evaluated using several classification methods. It is shown that there is an upper limit to the success of this approach, but also that this can be improved significantly by using a very limited amount of additional information. 10 refs

  9. Investigation of gamma spectra analysis

    International Nuclear Information System (INIS)

    Wu Huailong; Liu Suping; Hao Fanhua; Gong Jian; Liu Xiaoya

    2006-01-01

    In the investigation of radiation fingerprint comparison, it is found out that some of the popular gamma spectra analysis software have shortcomings, which decrease the radiation fingerprint comparison precision. So a new analysis software is developed for solving the problems. In order to display the advantage of developed program, some typical simulative warhead gamma spectra are analyzed respectively by present software and GAMMAVISION and GENNIE2000. Present software can be applied not only in nuclear warheads deep-cuts verification, but also in any radiation measurement field. (authors)

  10. Ultraviolet spectra of planetary nebulae

    International Nuclear Information System (INIS)

    Adams, S.; Seaton, M.J.

    1982-01-01

    Features observed in infrared spectra suggest that certain very low excitation (VLE) nebulae have low C/O abundance ratios (Cohen and Barlow 1980; Aitken and Roche 1982). Fluxes in the multiplets [O II] lambda 2470 and C II] lambda 2326 have been measured for the VLE nebula He He 2-131 = HD 138403 using IUE high-dispersion spectra. An analysis similar to that of Harrington et al. (1980) for IC 418 gives C/O = 0.3 for He 2-131, compared with C/O = 1.3 for IC 418 and 0.6 for the Sun. (author)

  11. Investigation of gamma spectra analysis

    International Nuclear Information System (INIS)

    Wu Huailong; Liu Suping; Hao Fanhua

    2006-12-01

    During the investigation of radiation fingerprint comparison, it is found out that the popular gamma spectra analysis softwares are faultful, which decrease the precision of radiation fingerprint comparison. So a new analysis software is development for solving the problems. In order to display the advantage of new program, some typical simulative gamma spectra of radiation source are analyzed respectively by our software and GAMMAVISION and GENNIE2000. The software can be applied not only in nuclear warheads deep-cuts verification, but also in any radiation measurement field. (authors)

  12. Raman spectra studies of dipeptides

    International Nuclear Information System (INIS)

    Blanchard, Simone.

    1977-10-01

    This work deals with the homogenous and heterogeneous dipeptides derived from alanine and glycine, in the solid state or in aqueous solutions, in the zwitterions or chlorhydrates form. The Raman spectra comparative study of these various forms of hydrogenated or deuterated compounds allows to specify some of the attributions which are necessary in the conformational study of the like tripeptides. These compounds contain only one peptidic group; therefore there is no possibility of intramolecular hydrogen bond which caracterise vibrations of non bonded peptidic groups and end groups. Infrared spectra of solid dipeptides will be presented and discussed in the near future [fr

  13. Optical spectroscopy of Pr3+ in M+Bi(XO4)2, M+ = Li or Na and X = W or Mo, locally disordered single crystals

    International Nuclear Information System (INIS)

    Mendez-Blas, A; Rico, M; Volkov, V; Cascales, C; Zaldo, C; Coya, C; Kling, A; Alves, L C

    2004-01-01

    NaBi(WO 4 ) 2 (NBW), NaBi(MoO 4 ) 2 (NBMo) and LiBi(MoO 4 ) 2 (LBMo) single crystals grown by the Czochralski technique have been doped up to a praseodymium concentration of Pr ∼1x10 20 cm -3 in the crystal. 10 K polarized optical absorption and photoluminescence measurements have been used to determine the energy position of 32, 39 and 36 Pr 3+ Stark levels in NBW, NBMo and LBMo crystals, respectively. These energy levels were labelled with the appropriate irreducible representations corresponding to a C 2 local symmetry of an average optical centre. Single-electron Hamiltonians including free-ion and crystal field interactions have been used in the fitting of experimental energy levels and in the simulation of the full sequence of the 4f 2 Pr 3+ configuration. 300 K absorption spectra of different 2S+1 L J Pr 3+ multiplets were determined and used in the context of the Judd-Ofelt theory and for the calculation of the 1 D 2 -related emission cross sections of this average Pr 3+ centre. Non-radiative electron relaxation from the 3 P 0 level feeds the 1 D 2 multiplet. This latter level efficiently decays radiatively to the ground 3 H 4 multiplet but still there is a significant rate of radiative decay to the 1 D → 3 F 3 praseodymium laser channel. For Pr ≥ 2x10 19 cm -3 , non-radiative electric dipole-dipole Pr pair energy transfer limits the radiative yield

  14. Transformation from an easy-plane to an easy-axis antiferromagnetic structure in the mixed rare-earth ferroborates Pr x Y1-x Fe3(BO3)4: magnetic properties and crystal field calculations.

    Science.gov (United States)

    Pankrats, A I; Demidov, A A; Ritter, C; Velikanov, D A; Semenov, S V; Tugarinov, V I; Temerov, V L; Gudim, I A

    2016-10-05

    The magnetic structure of the mixed rare-earth system Pr x Y1-x Fe3(BO3)4 (x  =  0.75, 0.67, 0.55, 0.45, 0.25) was studied via magnetic and resonance measurements. These data evidence the successive spin reorientation from the easy-axis antiferromagnetic structure formed in PrFe3(BO3)4 to the easy-plane one of YFe3(BO3)4 associated with the weakening of the magnetic anisotropy of the Pr subsystem due to its diamagnetic dilution by nonmagnetic Y. This reorientation occurs through the formation of an inclined magnetic structure, as was confirmed by our previous neutron research in the range of x  =  0.67 ÷ 0.45. In the compounds with x  =  0.75 and 0.67 whose magnetic structure is close to the easy-axis one, a two-step spin reorientation takes place in the magnetic field H||c. Such a peculiarity is explained by the formation of an interjacent inclined magnetic structure with magnetic moments of Fe ions located closer to the basal plane than in the initial state, with these intermediate states remaining stable in some ranges of the magnetic field. An approach based on a crystal field model for the Pr(3+) ion and the molecular-field approximation is used to describe the magnetic characteristics of the system Pr x Y1-x Fe3(BO3)4. With the parameters of the d-d and f-d exchange interactions, of the magnetic anisotropy of the iron subsystem and of the crystal field parameters of praseodymium thus determined, it is possible to achieve a good agreement between the experimental and calculated temperature and field dependences of the magnetization curves (up to 90 kOe) and magnetic susceptibilities (2-300 K).

  15. Classical Trajectories and Quantum Spectra

    Science.gov (United States)

    Mielnik, Bogdan; Reyes, Marco A.

    1996-01-01

    A classical model of the Schrodinger's wave packet is considered. The problem of finding the energy levels corresponds to a classical manipulation game. It leads to an approximate but non-perturbative method of finding the eigenvalues, exploring the bifurcations of classical trajectories. The role of squeezing turns out decisive in the generation of the discrete spectra.

  16. Vibrational spectra of ordered perovskites

    NARCIS (Netherlands)

    Corsmit, A.F.; Hoefdraad, H.E.; Blasse, G.

    1972-01-01

    The vibrational spectra of the molecular M6+O6 (M = Mo, Te, W) group in ordered perovskites of the type Ba2M2+M6+O6 are reported. These groups have symmetry Oh, whereas their site symmetry is also Oh. An assignment of the internal vibrations is presented.

  17. Raman spectra of graphene ribbons

    International Nuclear Information System (INIS)

    Saito, R; Furukawa, M; Dresselhaus, G; Dresselhaus, M S

    2010-01-01

    Raman spectra of graphene nanoribbons with zigzag and armchair edges are calculated within non-resonant Raman theory. Depending on the edge structure and polarization direction of the incident and scattered photon beam relative to the edge direction, a symmetry selection rule for the phonon type appears. These Raman selection rules will be useful for the identification of the edge structure of graphene nanoribbons.

  18. Explanation of earthquake response spectra

    OpenAIRE

    Douglas, John

    2017-01-01

    This is a set of five slides explaining how earthquake response spectra are derived from strong-motion records and simple models of structures and their purpose within seismic design and assessment. It dates from about 2002 and I have used it in various introductory lectures on engineering seismology.

  19. Optical spectroscopy of rare earth ion-doped TiO2 nanophosphors.

    Science.gov (United States)

    Chen, Xueyuan; Luo, Wenqin

    2010-03-01

    Trivalent rare-earth (RE3+) ion-doped TiO2 nanophosphors belong to one kind of novel optical materials and have attracted increasing attention. The luminescence properties of different RE3+ ions in various TiO2 nanomaterials have been reviewed. Much attention is paid to our recent progresses on the luminescence properties of RE3+ (RE = Eu, Er, Sm, Nd) ions in anatase TiO2 nanoparticles prepared by a sol-gel-solvothermal method. Using Eu3+ as a sensitive optical probe, three significantly different luminescence centers of Eu3+ in TiO2 nanoparticles were detected by means of site-selective spectroscopy at 10 K. Based on the crystal-field (CF) splitting of Eu3+ at each site, C2v and D2 symmetries were proposed for Eu3+ incorporated at two lattice sites. A structural model for the formation of multiple sites was proposed based on the optical behaviors of Eu3+ at different sites. Similar multi-site luminescence was observed in Sm(3+)- or Nd(3+)-doped TiO2 nanoparticles. In Eu(3+)-doped TiO2 nanoparticles, only weak energy transfer from the TiO2 host to the Eu3+ ions was observed at 10 K due to the mismatch of energy between the TiO2 band-gap and the Eu3+ excited states. On the contrary, efficient host-sensitized luminescences were realized in Sm(3+)- or Nd(3+)-doped anatase TiO2 nanoparticles due to the match of energy between TiO2 band-gap and the Sm3+ and Nd3+ excited states. The excitation spectra of both Sm(3+)- and Nd(3+)-doped samples exhibit a dominant broad peak centered at approximately 340 nm, which is associated with the band-gap of TiO2, indicating that sensitized emission is much more efficient than direct excitation of the Sm3+ and Nd3+ ions. Single lattice site emission of Er3+ in TiO2 nanocrystals can be achieved by modifying the experimental conditions. Upon excitation by a Ti: sapphire laser at 978 nm, intense green upconverted luminescence was observed. The characteristic emission of Er3+ ions was obtained both in the ultraviolet-visible (UV-vis) and

  20. Correlation between optical emission spectra and the process ...

    Indian Academy of Sciences (India)

    and disadvantages, but, good quality diamond can be deposited mainly using ... increase in the CH4 concentration up to 0.8% of the total gas mixture, and then ... the effect of microwave reactor parameters on thermal management of silicon.

  1. Pulse radiolysis experiments: synthesis and analysis of composite spectra

    Energy Technology Data Exchange (ETDEWEB)

    Schuler, R H; Buzzard, G K [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA). Dept. of Chemistry

    1976-01-01

    Methods are outlined for compiling optical spectra obtained in pulse radiolysis experiments in a form suitable for detailed synthesis and analysis of composite spectra. The experimental data are processed with a programmable calculator having a cassette recorder for the storage of the output data files and a peripheral plotter. The spectra are first smoothed by fitting them parabolically segment by segment. The overall spectrum is then assembled in digital form by interpolating the fitted data on a 1 nm grid and the results are stored on cassette files for further processing. Composite spectra can be readily calculated and plotted from the data on these files or known components can be subtracted from observed spectra to examine underlying contributions. The use of the fairly simple data processing methods described here permits an interactive mode of operation by the investigator which can maximize insight into details of the various contributions to an observed spectrum. Several examples of the use of these methods in conjunction with data obtained with a computer controlled pulse radiolysis data acquisition system are given.

  2. Skyshine spectra of gamma rays

    International Nuclear Information System (INIS)

    Swarup, Janardan

    1980-01-01

    A study of the spectra of gamma photons back-scattered in vertical direction by infinite air above ground (skyshine) is presented. The source for these measurements is a 650 Ci Cobalt-60 point-source and the skyshine spectra are reported for distances from 150 m to 325 m from the source, measured with a 5 cm x 5 cm NaI(Tl) detector collimated with collimators of 12 mm and 20 mm diameter and 5 cm length. These continuous spectra are unfolded with Gold's iterative technique. The photon-spectra so obtained have a distinct line at 72 keV due to multiply-scattered photons. This is an energy where photoelectric and Compton cross-sections for multiply-scattered photons balance each other. The intensity of the line(I) decreases exponentially with distance (d) from the source obeying a relation of the type I = Isub(o)esup(-μd) where μ is called as ''Multiply-Scatter Coefficient'', a constant of the medium which is air in these measurements. This relationship is explained in terms of a halo around the source comprising of multiply-scattered gamma photons, Isub(0) being the intensity of these scattered photons at the location of cobalt-source. A fraction called as ''Back-scattered Fraction'', the ratio of Isub(0) to the number of original photons from the cobalt-source entering the infinite air, is also calculated. It is shown that with a properly calibrated detector system, this fraction can be used to determine the strength of a large gamma source, viz. a nuclear explosion in air, and for mineral prospecting. These conclusions are general and can be applied to any other infinite medium. Some forward-scatter (transmission) spectra of cobalt-60 source through 10 cm of Pb and 2.5 cm of Al are also reported. (auth.)

  3. [The NIR spectra based variety discrimination for single soybean seed].

    Science.gov (United States)

    Zhu, Da-Zhou; Wang, Kun; Zhou, Guang-Hua; Hou, Rui-Feng; Wang, Cheng

    2010-12-01

    With the development of soybean producing and processing, the quality breeding becomes more and more important for soybean breeders. Traditional sampling detection methods for soybean quality need to destroy the seed, and does not satisfy the requirement of earlier generation materials sieving for breeding. Near infrared (NIR) spectroscopy has been widely used for soybean quality detection. However, all these applications were referred to mass samples, and they were not suitable for little or single seed detection in breeding procedure. In the present study, the acousto--optic tunable filter (AOTF) NIR spectroscopy was used to measure the single soybean seed. Two varieties of soybean were measured, which contained 60 KENJIANDOU43 seeds and 60 ZHONGHUANG13 seeds. The results showed that NIR spectra combined with soft independent modeling of class analogy (SIMCA) could accurately discriminate the soybean varieties. The classification accuracy for KENJIANDOU43 seeds and ZHONGHUANG13 was 100%. The spectra of single soybean seed were measured at different positions, and it showed that the seed shape has significant influence on the measurement of spectra, therefore, the key point for single seed measurement was how to accurately acquire the spectra and keep their representativeness. The spectra for soybeans with glossy surface had high repeatability, while the spectra of seeds with external defects had significant difference for several measurements. For the fast sieving of earlier generation materials in breeding, one could firstly eliminate the seeds with external defects, then apply NIR spectra for internal quality detection, and in this way the influence of seed shape and external defects could be reduced.

  4. ACCELERATED FITTING OF STELLAR SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Ting, Yuan-Sen; Conroy, Charlie [Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Rix, Hans-Walter [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany)

    2016-07-20

    Stellar spectra are often modeled and fitted by interpolating within a rectilinear grid of synthetic spectra to derive the stars’ labels: stellar parameters and elemental abundances. However, the number of synthetic spectra needed for a rectilinear grid grows exponentially with the label space dimensions, precluding the simultaneous and self-consistent fitting of more than a few elemental abundances. Shortcuts such as fitting subsets of labels separately can introduce unknown systematics and do not produce correct error covariances in the derived labels. In this paper we present a new approach—Convex Hull Adaptive Tessellation (chat)—which includes several new ideas for inexpensively generating a sufficient stellar synthetic library, using linear algebra and the concept of an adaptive, data-driven grid. A convex hull approximates the region where the data lie in the label space. A variety of tests with mock data sets demonstrate that chat can reduce the number of required synthetic model calculations by three orders of magnitude in an eight-dimensional label space. The reduction will be even larger for higher dimensional label spaces. In chat the computational effort increases only linearly with the number of labels that are fit simultaneously. Around each of these grid points in the label space an approximate synthetic spectrum can be generated through linear expansion using a set of “gradient spectra” that represent flux derivatives at every wavelength point with respect to all labels. These techniques provide new opportunities to fit the full stellar spectra from large surveys with 15–30 labels simultaneously.

  5. Reconstruction of neutron spectra through neural networks

    International Nuclear Information System (INIS)

    Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.

    2003-01-01

    A neural network has been used to reconstruct the neutron spectra starting from the counting rates of the detectors of the Bonner sphere spectrophotometric system. A group of 56 neutron spectra was selected to calculate the counting rates that would produce in a Bonner sphere system, with these data and the spectra it was trained the neural network. To prove the performance of the net, 12 spectra were used, 6 were taken of the group used for the training, 3 were obtained of mathematical functions and those other 3 correspond to real spectra. When comparing the original spectra of those reconstructed by the net we find that our net has a poor performance when reconstructing monoenergetic spectra, this attributes it to those characteristic of the spectra used for the training of the neural network, however for the other groups of spectra the results of the net are appropriate with the prospective ones. (Author)

  6. Biological Action Spectra (invited paper)

    Energy Technology Data Exchange (ETDEWEB)

    Gruijl, F.R. de

    2000-07-01

    Ultraviolet (UV) radiation induces a wide variety of biological responses: ranging in humans from well-known short-term effects like sunburn to long-term effects like skin cancer. The wavelength dependencies ('action spectra') of the responses can differ significantly, depending on the UV-targeted molecules (their absorption spectra), their localisation (transmission to the target depth) and the photochemical reactions involved (e.g. quantum yields, competing reaction). An action spectrum (e.g. of sunburn) is usually determined in a wavelength by wavelength analysis of the response. This is not always possible (e.g. in case of skin cancer), and an action spectrum may then be extracted mathematically from differences in responses to broadband UV sources of various spectral compositions (yielding 'biological spectral weights'). However, relative spectral weights may shift with exposure levels and contributions from different wavelengths may not always add up. Under these circumstances conventional analyses will yield different action spectra for different experimental conditions. (author)

  7. Spectral Barcoding of Quantum Dots: Deciphering Structural Motifs from the Excitonic Spectra

    International Nuclear Information System (INIS)

    Mlinar, V.; Zunger, A.

    2009-01-01

    Self-assembled semiconductor quantum dots (QDs) show in high-resolution single-dot spectra a multitude of sharp lines, resembling a barcode, due to various neutral and charged exciton complexes. Here we propose the 'spectral barcoding' method that deciphers structural motifs of dots by using such barcode as input to an artificial-intelligence learning system. Thus, we invert the common practice of deducing spectra from structure by deducing structure from spectra. This approach (i) lays the foundation for building a much needed structure-spectra understanding for large nanostructures and (ii) can guide future design of desired optical features of QDs by controlling during growth only those structural motifs that decide given optical features.

  8. Systematic evaluation of prompt neutron spectra in fission

    International Nuclear Information System (INIS)

    Osawa, Takaaki

    1995-01-01

    To create the nuclear data fail JEND-32, the prompt fission neutron spectra X(E) of 233 U, 235 U, 238 U and 239 Pu were reevaluated and some improvement were added to the calculation models. We tried to extend the calculation method of fission spectra of nuclides with poor measurement data in consideration of increasing the importance of nuclear data of minor actinoids. We improved and extended the following five points. (1) On JENDL-3.1, the fission spectra of principal fissible materials had been calculated by the Modland-Nix model which the neutron emissions of fragments were calculated under the approximation of the constant inverse process cross section. In the paper, the spectra were calculated by the use of the inverse process cross section depend on the energy obtained by the calculation of the optical model. The result showed the increase of low energy components and the softening effect of spectra (2) On JENDL-3.1, the all fission processes were assumed to undergo (n,f) reaction. In the paper, they were calculated by the multi-chance fission such as (n, n'f), (n, 2nf) and (n, 3nf) etc. Softening of the spectra (En > 6 MeV) was obtained by this method. (3) The level density parameter (LDP) has been assumed as a = A/C in either case of light fragment (LF) and heavy fragment (HF) in the original Madland-Nix model. But we used LDP based on the Ignatyuk model under consideration of the shell effects of nuclear fragments, hence the neutron spectra of heavy fragments were hardening. (4) Nuclear temperature of both fragments had been assumed to be the same at original model, but now R T = Tm/TmH was derived to calculate them. The ratio of middle/both side components of spectra was changed. (5) Unknown neutron fission spectra of minor actinide were able to the assumed on the basis of Moriyama-Ohnishi model. (S.Y.)

  9. Depth distributions of light action spectra for skin chromophores

    Science.gov (United States)

    Barun, V. V.; Ivanov, A. P.

    2010-03-01

    Light action spectra over wavelengths of 300-1000 nm are calculated for components of the human cutaneous covering: melanin, basal (bloodless) tissue, and blood oxy- and deoxyhemoglobin. The transformation of the spectra with depth in biological tissue results from two factors. The first is the wavelength dependence of the absorption coefficient corresponding to a particular skin chromophore and the second is the spectral selectivity of the radiation flux in biological tissue. This factor is related to the optical properties of all chromophores. A significant change is found to take place in the spectral distribution of absorbed radiant power with increasing depth. The action spectrum of light for the molecular oxygen contained in all components of biological tissue is also studied in the 625-645 nm range. The spectra are found to change with both the volume fraction of blood vessels and the degree of oxygenation of the blood. These results are useful for analyzing processes associated with optical absorption that are possible mechanisms for the interaction of light with biological tissues: photodissociation of oxyhemoglobin and the light-oxygen effect.

  10. Faraday effect and λ-modulation absorption spectra of GaP

    International Nuclear Information System (INIS)

    Petkova, P N; Dimov, T N; Iliev, I A

    2007-01-01

    There are presented the absorption optical spectra of GaP measured by λ-modulation method at room temperature in the spectral region from 505 nm to 700 nm. It is not possible even by λ-modulation to be registered at room temperature the wave bands due to the exciton-phonon interaction. The absorption spectra of GaP carried out by a λ-modulation can be separated exactly in the spectral parts as follows: the transmittance region where the absorption is too slightly expressed; the region determined by the phonon-assisted indirect transitions; the region of the interband absorption. The purpose of Faraday rotation measurements is to establish the influence of the exciton-phonon interaction on the magneto-optical effect. The magneto-optical effect has been investigated by a φ-modulation. The spectral dependence of dn/dλ in the transmittance region is determined by the φ-modulated spectra

  11. The photoluminescence spectra of micropowder of aromatic compounds under ultraviolet laser excitation

    International Nuclear Information System (INIS)

    Rakhmatullaev, I.A.; Kurbonov, A.K. et al.; Gorelik, V.S.

    2016-01-01

    The method of diagnostics of aromatic compounds on the example of novocaine, aspirin and anthracene is presented. The method is based on optical detection of photoluminescence spectra at ultraviolet laser (266 nm) excitation. Employing this method the photoluminescence spectra are obtained which allows one to establish the differences of the composition and structure of compounds. The developed method can be used for analysis the quality of the large class of luminescent bioactive structures under the ultraviolet radiation. (authors)

  12. COLORED DISSOLVED ORGANIC MATTER (CDOM) CHARACTERIZATION BY ABSORPTION AND FLUORESCENCE SPECTRA

    OpenAIRE

    Goncalves Araujo, Rafael; Ramirez-Perez, Marta; Kraberg, Alexandra; Piera, Jaume; Bracher, Astrid

    2014-01-01

    Colored dissolved organic matter (CDOM) absorption and fluorescence spectra were analyzed from samples collected in the Lena River Delta region (Siberia, Russia; summer-2013) and in the Alfacs Bay (Ebro River Delta, Spain; summer-2013/winter-2014) in order to use optical measurements to infer loading and origin of CDOM. Absorbance spectra and Excitation-Emission matrices (EEMs) were obtained with a HORIBA Aqualog® spectrofluorometer. CDOM absorption at 443nm (a443) and terrestrial absorption ...

  13. Design spectra development considering short time histories

    International Nuclear Information System (INIS)

    Weiner, E.O.

    1983-01-01

    The need for generation of seismic acceleration histories to prescribed response spectra arises several ways in structural dynamics. For example, one way of obtaining floor spectra is to generate a history from a foundation spectra and then solve for the floor motion from which a floor spectrum can be obtained. Two separate programs, MODQKE and MDOF, were written to provide a capability of obtaining equipment spectra from design spectra. MODQKE generates or modifies acceleration histories to conform with design spectra pertaining to, say, a foundation. MDOF is a simple linear modal superposition program that solves for equipment support histories using the design spectra conforming histories as input. Equipment spectra, then, are obtained from the support histories using MODQKE

  14. Gamma-ray burst spectra

    International Nuclear Information System (INIS)

    Teegarden, B.J.

    1982-01-01

    A review of recent results in gamma-ray burst spectroscopy is given. Particular attention is paid to the recent discovery of emission and absorption features in the burst spectra. These lines represent the strongest evidence to date that gamma-ray bursts originate on or near neutron stars. Line parameters give information on the temperature, magnetic field and possibly the gravitational potential of the neutron star. The behavior of the continuum spectrum is also discussed. A remarkably good fit to nearly all bursts is obtained with a thermal-bremsstrahlung-like continuum. Significant evolution is observed of both the continuum and line features within most events

  15. Wavelet spectra of JACEE events

    International Nuclear Information System (INIS)

    Suzuki, Naomichi; Biyajima, Minoru; Ohsawa, Akinori.

    1995-01-01

    Pseudo-rapidity distributions of two high multiplicity events Ca-C and Si-AgBr observed by the JACEE are analyzed by a wavelet transform. Wavelet spectra of those events are calculated and compared with the simulation calculations. The wavelet spectrum of the Ca-C event somewhat resembles that simulated with the uniform random numbers. That of Si-AgBr event, however, is not reproduced by simulation calculations with Poisson random numbers, uniform random numbers, or a p-model. (author)

  16. Uranium spectra in the ICP

    Energy Technology Data Exchange (ETDEWEB)

    Ghazi, A.A.; Qamar, S.; Atta, M.A. (Khan (A.Q.) Research Labs., Rawalpindi (Pakistan))

    1994-05-01

    Uranium spectra have been studied by inductively coupled plasma atomic emission spectroscopy (ICP-AES). In total, 8361 uranium lines were observed in the wavelength range of 235-500 nm. This article is an electronic publication in Spectrochimica Acta Electronica (SAE), the electronic section of Spectrochimica Acta Part B (SAB). The hard copy text is accompanied by a disk with data files and test files for an IBM-compatible computer. The main article discusses the scientific aspects of the subject and explains the purpose of the data files. (Author).

  17. Identified hadron spectra from PHOBOS

    Science.gov (United States)

    Veres, Gábor I.; the PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wysłouch, B.; Zhang, J.

    2004-08-01

    Transverse momentum spectra of pions, kaons and protons, as well as antiparticle to particle ratios near mid-rapidity from d+Au collisions at \\sqrt{sNN} = 200 GeV have been measured by the PHOBOS experiment at RHIC. The transverse momentum range of particle identification was extended to beyond 3 GeV/c using the TOF detector and a new trigger system. The pseudorapidity dependence of the nuclear modification factor for charged hadrons in d+Au collisions is presented.

  18. Uranium spectra in the ICP

    International Nuclear Information System (INIS)

    Ghazi, A.A.; Qamar, S.; Atta, M.A.

    1994-01-01

    Uranium spectra have been studied by inductively coupled plasma atomic emission spectroscopy (ICP-AES). In total, 8361 uranium lines were observed in the wavelength range of 235-500 nm. This article is an electronic publication in Spectrochimica Acta Electronica (SAE), the electronic section of Spectrochimica Acta Part B (SAB). The hard copy text is accompanied by a disk with data files and test files for an IBM-compatible computer. The main article discusses the scientific aspects of the subject and explains the purpose of the data files. (Author)

  19. Emissive spectra of shock-heated argon

    International Nuclear Information System (INIS)

    Tang Jingyou; Gu Yan; Peng Qixian; Bai Yulin; Li Ping

    2003-01-01

    To study the radiant properties of argon under weak shock compression, an aluminum target filled with gaseous argon at ambient states was impacted by a tungsten alloy projectile which was launched from a two-stage light gun to 2.00 km/s. The radiant signals of single shock-compressed argon were recorded by a six-channel pyrometer and oscilloscopes, which varied with time linearly for the five channels from 405 nm to 700 nm and exponentially for the channel 800 nm, and the corresponding velocity of shock wave was determined to be 4.10 ± 0.09 km/s. By the present experiment, it has been shown that the absorbability of the shock-heated argon is low for visual light and the optical depths of argon gas turn from thin to thick as wavelengths gradually increase. The time-resolved spectra in the rising-front of the radiant signal in the re-shocked argon were recorded by means of an OMA, and strong emissive spectrum bands near 450 nm light-wave length but no linear spectrum were found. The emissive spectrum properties of shock-compression argon were qualitatively explained by the state parameters and ionization degree

  20. Operator functions and localization of spectra

    CERN Document Server

    Gil’, Michael I

    2003-01-01

    "Operator Functions and Localization of Spectra" is the first book that presents a systematic exposition of bounds for the spectra of various linear nonself-adjoint operators in a Hilbert space, having discrete and continuous spectra. In particular bounds for the spectra of integral, differential and integro-differential operators, as well as finite and infinite matrices are established. The volume also presents a systematic exposition of estimates for norms of operator-valued functions and their applications.